
Tallinn 2024

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Maria Bušujeva 230645IVGM

Measuring Technical Debt in the Public Sector:
a Case Study of Estonia

Master's thesis

Supervisor: Richard Michael
Dreyling III

 Master’s degree

Tallinn 2024

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Maria Bušujeva 230645IVGM

“Tehnilise võla mõõtmine avalikus sektoris:
Eesti juhtumiuuring”

Magistritöö

Juhendaja: Richard Michael
Dreyling III

 Magistrikraad

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature, and the work of others have been referred to the best of my knowledge

and ability. This thesis has not been presented for examination anywhere else.

Author: Maria Bušujeva

13.05.2024

4

Abstract

This master's thesis examines the measurement of technical debt in the public sector,

focusing on a case study of Estonia. Through qualitative research methods, including

thematic analysis of semi-structured interviews, the study highlights the challenges faced

by public sector organizations in Estonia in addressing technical debt. The research

emphasizes the importance of structured approaches and proactive measures to

effectively manage technical debt in governmental IT projects. By implementing a

framework for technical debt measurement, public organizations in Estonia can enhance

decision-making, resource allocation, and overall digital government services' efficiency,

reliability, and security. The findings underscore the perpetual nature of managing

technical debt and the critical need for ongoing proactive measures and strategic

management in the public sector.

Keywords: Technical Debt Measurement, Public Sector, Estonia, Information

Technology, Governance, Risk Management.

This thesis is written in English and is 51 pages long, including 6 chapters, 2 figures and

1 table.

5

List of abbreviations and terms

COO
CTO
eGA
IT

Chief Operating Officer
Chief Technical Officer
e-Governance Academy
Information Technology

MKM
RIA
RIK
RIKS
RMIT
SMIT
TEHIK

Ministry of Economic Affairs and Communications
Estonian Information System Authority
Centre of Registers and Information Systems
State Infocommunication Foundation
Information Technology Centre of the Ministry of Finance
IT and Development Centre of the Ministry of the Interior
Health and Welfare Information Systems Centre

6

Table of contents

1 Introduction ... 9

1.1 Problem statement .. 10

2 Literature review .. 12

2.1 Understanding technical debt ... 12

2.2 Measuring technical debt .. 14

2.3 Issues when measuring technical debt .. 16

2.4 Tools and techniques for measuring technical debt .. 18

3 Methodology .. 21

3.1 Research questions ... 21

3.2 Research method ... 21

3.3 Interview design ... 22

4 Research findings and analysis .. 24

4.1 Context of research ... 24

4.2 Interviewees .. 25

4.3 Thematic analysis of the interviews ... 26

4.3.1 Current approaches to measuring technical debt ... 30

4.3.2 Opportunities for improvement in technical debt measurement 31

5 Discussion .. 33

5.1 How would it be possible to improve measurement of the technical debt in public

organisations in Estonia? .. 37

5.2 Framework recommendations .. 39

5.3 Recommendations for further research ... 42

5.4 Limitations and future work ... 42

6 Conclusion ... 44

References .. 45

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 48

Appendix 2 – Table from Rios et al., 2018, on technical debt types 49

Appendix 3 – Interview questionnaire .. 50

7

List of figures

Figure 1. The technical debt landscape (Kruchten et al., 2012). 18

Figure 2. Tools used to analyse technical debt as percentage (Ernst et al., 2015). 19

8

List of tables

Table 1. List of expert interviews. .. 26

9

1 Introduction

The concept of technical debt has garnered significant attention as a critical factor

influencing the quality and sustainability of software systems. Technical debt

encapsulates the compromises made during the software development lifecycle, where

hasty solutions may lead to deferred maintenance, increased complexity, and reduced

agility over time. As software projects progress, the accumulation of technical debt poses

challenges that can impede progress, increase costs, and undermine the overall viability

of software products. Consequently, gaining a deep understanding of technical debt and

developing effective strategies for its management have become paramount concerns for

software development organisations.

This thesis aims to contribute to the scholarly discourse on technical debt by conducting

a comprehensive investigation into its various dimensions, including conceptual

foundations, measurement methodologies, and practical implications in real-world

software projects. Through rigorous empirical research and critical analysis, this study

seeks to look into the complexities of technical debt and offer insights that can inform

decision-making and best practices in contemporary software engineering practices. By

bridging theory and practice, this research aims to advance understanding of technical

debt and provide actionable guidance for public organisations striving to achieve

excellence and innovation in software development endeavours.

Furthermore, the significance of examining instances where technical debt management

has faltered or measurement has been lacking. Numerous real-world examples highlight

the adverse consequences of neglecting technical debt. For instance, cases of software

systems plagued by accumulated technical debt have experienced reduced performance,

increased downtime, and heightened vulnerability to security breaches. Moreover,

inadequate measurement of technical debt has often resulted in unforeseen costs, project

delays, and compromised software quality. Instances where technical debt has spiralled

out of control underscore the critical need for effective measurement and proactive

management strategies. By exploring these examples, this research aims to underscore

10

the urgency of addressing technical debt and provide insights into the potential

ramifications of its neglect. Through this analysis, stakeholders can gain a deeper

appreciation for the importance of incorporating robust technical debt management

practices into software development processes.

This thesis intends to address two primary research questions concerning the

measurement of technical debt in public organisations in Estonia. The first question

explores the current approaches to measuring technical debt, with sub-questions delving

into the methods and tools employed for measurement within projects in the Estonian

public sector. The second question focuses on potential improvements in technical debt

measurement, considering the applicability of suggested frameworks and identifying

limitations specific to the public sector context in Estonia. The methodology is centred

around semi-structured interviews and thematic analysis. Semi-structured interviews are

utilised to gather insights from experts with experience in public sector IT projects

regarding their approaches to measuring technical debt. These interviews allow for

flexibility in exploring participants' perspectives while maintaining a focus on key

research questions. Subsequently, thematic analysis is employed to identify recurring

themes and patterns in the interview data, providing a structured framework for analysing

and interpreting the findings.

1.1 Problem statement

In the realm of software development, technical debt refers to the potential expense of

future revisions that may be needed as a result of choosing a quick but suboptimal solution

over a more comprehensive one that may require additional time (Cunningham, 1992).

The issue is multifaceted and includes a variety of types of debt (Melo et al., 2022).

Similar to financial debt, failing to address technical debt can result in accruing "interest,"

leading to increased difficulty in implementing modifications or making them impossible.

Technical debt can pose a significant risk to software systems by making them more

difficult and expensive to maintain and update, and potentially leading to system failures

or security vulnerabilities (Tom et al., 2013).

The public sector relies heavily on software systems to provide critical services to

citizens, such as healthcare, education, and transportation. However, these systems often

suffer from technical debt, resulting in increased maintenance costs, security

11

vulnerabilities, and reduced system performance. Despite the importance of managing

technical debt in the public sector, there is a lack of research on how to measure technical

debt in this context (Hansen, 2022). In order to provide strong arguments for funding and

adequate attention it is necessary to find ways to measure technical debt and evaluate its

impact.

The Estonian state institutions face challenges in maintaining existing IT systems due to

a preference for allocating funds to new developments rather than upkeep (Lõvi, 2019).

Consequently, operational systems quickly become outdated, necessitating a deliberate

and separate budgeting approach for IT systems. This situation is exemplified by the ease

of securing funds for new developments compared to maintaining or updating existing

systems, with funds often originating from different sources (Ibid.). While significant

investments in ICT projects are constantly being reported, there remains a lack of focus

on long-term maintenance and support costs necessitating urgent action to address the

growing technical debt and ensure the sustainability of the country's IT infrastructure.

The initial step to managing technical debt in software systems, particularly in large and

complex legacy software systems, is to measure its levels (Melo et al., 2022). However,

this can be a challenging task as technical debt is a broad and abstract concept.

Establishing precise metrics is crucial in identifying the appropriate course of action to

ensure that software systems can continue to support business and users over an extended

period of time (Kruchten et al., 2012). This paper aims to address this gap by proposing

a framework for measuring technical debt in public sector software systems, in order to

help decision-makers prioritise technical improvements and allocate resources

effectively.

This study will be analysing ways that technical debt is measured within the Estonian

public sector and evaluating the viability of given methods. Unwisely used shortcuts

during the software development process can lead to a variety of serious issues in the

future. Therefore, the process of measurement of technical debt quantifies the costs and

efforts required to create a comprehensive plan of eliminating the debt. The study will

provide insights into the techniques and tools used in the public sector to measure

technical debt in software systems and investigate possible improvements to adoption of

effective measurement strategies.

12

2 Literature review

2.1 Understanding technical debt

Initially introduced by Ward Cunningham as a metaphor for describing the consequences

of short-term expedient practices, technical debt refers to the accruing consequences of

deferred tasks or suboptimal decisions (Cunningham, 1992). Technical debt not only

impacts maintainability but also extends to various internal and external software

qualities like performance, operability, and usability. Over time, definition has broadened

to encompass deliberate or inadvertent actions and various forms, ranging from code

deficiencies to architectural issues, anti-patterns, and even the impact on social structures

and developer morale. While technical debt is inevitable to some extent, its management

is crucial for software development success (Ciolkowski et al., 2021).

Technical debt is a metaphor used in software development to describe the consequences

of taking shortcuts or making compromises during the development process. Just like

financial debt, technical debt accumulates interest over time in the form of additional

work that must be done to correct or address the shortcuts taken earlier. These shortcuts

may include writing quick and dirty code, skipping proper documentation, delaying

necessary refactoring, or neglecting testing procedures (Li et al., 2014). While in the short

term these shortcuts may help in meeting deadlines or cutting costs, they can lead to

increased complexity, reduced maintainability, and higher risks in the long run. Technical

debt can slow down development, introduce bugs, and make future changes more difficult

and costly. It is important for software development teams to manage and address

technical debt proactively to maintain the health and sustainability of their software

systems (Li et al., 2014).

Decision-making regarding technical debt prioritisation encompasses various proposed

techniques derived from fields like finance and psychology, including methods such as

cost‐benefit analysis and the Analytic Hierarchy Process (Codabux et al, 2017). These

approaches evaluate factors like severity, existence of workarounds, and the effort

required for resolution, aiming to differentiate between potential and effective technical

13

debt. Despite the array of available techniques, their widespread adoption in the industry

remains limited. Many companies opt for internal tools or bypass measuring their debts

altogether, relying instead on singular factors like customer requests or issue severity,

thereby lacking a comprehensive multi-criteria approach (Codabux et al, 2017).

The choice of technical debt measurement technique will vary based on the specific type

of technical debt being assessed. The types of technical debt that were described in the

tertiary study by Rios et al., 2018, are as follows:

■ Design debt

■ Code debt

■ Architecture debt

■ Test debt

■ Documentation debt

■ Defect debt

■ Infrastructure debt

■ Requirements debt

■ People debt

■ Build debt

■ Process debt

■ Automation test debt

■ Usability debt

■ Service debt

■ Versioning debt

As pointed out by the study the most discussed types of technical debt are design, code

and architecture debt (Rios et al., 2018). Ernst et al., 2015, note that bad architectural

choices are the most commonly agreed source of technical debt among software

engineers. Deliberate and unintended technical debt posed significant challenges, leading

to ad-hoc decision-making and a lack of effective communication and rationale among

stakeholders (Klinger et al., 2011). Therefore, this paper will also benefit from limiting

research to primarily focus on these three types of technical debt and their measurement.

Definitions for the design, code and architecture technical debt will be based on the Rios

et al., 2018 tertiary study and are presented in the following paragraph. Design debt refers

14

to debt that is identified by analysing the source code and identifying violations of good

object-oriented design principles. This type of debt arises when the design of the codebase

deviates from established best practices, leading to potential complications in

maintenance and scalability. Code debt, on the other hand, pertains to issues found

directly within the source code itself. This includes poorly written code that violates

coding standards or best practices, resulting in reduced readability and increased

complexity. Code debt can hinder the understanding of the codebase and make it more

challenging to maintain and modify over time. Architecture debt encompasses problems

encountered in the overall product architecture. This type of debt arises when architectural

decisions are made hastily or without considering long-term implications. As a result, the

architecture may not adequately meet evolving requirements or may become outdated as

technologies and design patterns evolve. Architecture debt compromises internal quality

aspects and may require significant refactoring. The full excerpt from the table with

definitions and examples by Rios et al., 2018 can be found in the appendices section of

the thesis.

2.2 Measuring technical debt

Further research becomes imperative to address the critical gap in the industry regarding

the adoption of models for technical debt measurement. Industry-wide acceptance of

these models remains restricted, emphasising the need for extensive research aimed at

bridging this gap and crafting models tailored to suit the diverse needs of software

development organisations (Codabux et al, 2017). Improved decision-making

frameworks are essential, considering a combination of factors to prioritise debt items

effectively. According to Klinger et al. (2011) technical debt decisions were being made

by non-technical stakeholders rather than technical architects. This necessitates the

development of more comprehensive strategies, leveraging methodologies to enhance

decision-making in the context of technical debt management within software

development.

A systematic mapping study conducted by Li et al. (2014) reveals a diverse range of

measurement approaches for technical debt. These include calculation through

mathematical formulas or models, utilising source code metrics, and estimation based on

experiential knowledge, ranking among the most prominent methods. Quantifying

15

technical debt requires deciding on metrics of measurement. The majority of debt-related

methodologies prioritise identifying and preventing defects rather than strategically

managing critical infrastructure decisions, particularly concerning architecture (Nord et

al., 2012).

Terms such as "code smells" and "spaghetti code" have been employed to tackle technical

debt at the code level (Fowler et al., 1999). Refactoring techniques address the repayment

of technical debt through localised changes to the codebase. These methods, often

informed by defect analysis and software maintainability efforts, utilise metrics-based

analysis to identify areas of potential debt within the system. For instance, static analysis

tools can measure duplicate code, cyclomatic complexity, and the presence of god classes,

offering insights into existing debt (Nord et al., 2012). However, these approaches have

two limitations. Firstly, they primarily analyse code artefacts retrospectively, providing

insights post-delivery without guiding adjustments during development to prevent debt

accumulation. Secondly, while minor refactoring is feasible, addressing key design

concerns after the fact often requires significant redesign and may not be straightforward

(Ibid.). While these techniques offer avenues for addressing technical debt at the code

level, their retrospective nature and limitations in handling significant design concerns

post-delivery underscore the need for proactive strategies to prevent debt accumulation

during development.

The Ministry of Interior 2018 report presents an approach to measuring technical debt,

encompassing a two-phase methodology that involves locating technical debt in Fowler's

quadrant and assessing its magnitude through static code analysis. The findings include

the conversion of measurement results into hours, revealing an estimated technical debt

size of approximately 71,100 software developer work hours for elimination or mitigation

across analysed services and platforms (Ministry of Interior, 2018). Emphasising the

importance of analysing technical debt from both the codebase and team perspectives, the

report underscores the contextual nature of technical debt, highlighting the need for

comparisons over time and across different services to effectively address and manage

technical debt in software development projects (Ibid.).

The quantification approaches of technical debt encompass various methods and

strategies used to measure and assess technical debt in software development projects.

These approaches include the identification of code, design, or architecture smells as

16

indicators of potential technical debt, assessing the Return on Investment of refactoring

activities, comparing the ideal state of software with its current state to understand quality

gaps, evaluating alternative development paths to reduce technical debt accumulation,

conducting cost and benefit analysis to estimate the impact of technical debt on projects,

and performing risk assessments to understand the consequences of unaddressed technical

debt (Perera et al., 2023).

Mayr et al. (2014) introduced a benchmark-driven approach to calculating technical debt.

Their model for computing remediation costs of software integrated elements from three

established technical debt calculation methodologies: the CAST model, SQALE model,

and the SIG model. Authors managed to successfully derive metrics from these models

and standardize them based on lines of code before incorporating into a framework. By

utilising these diverse quantification approaches, organisations can make informed

decisions to manage technical debt effectively and enhance software quality in the long

term. Nevertheless, the choice of an approach will be solely dependent on the specific

needs of the organisation.

2.3 Issues when measuring technical debt

Measuring technical debt presents several challenges that can complicate the assessment

and management of software quality and maintainability. One of the primary issues lies

in the ambiguity surrounding the definition of technical debt itself, as previously

mentioned it encompasses various aspects of software development, including code

quality, architecture, etc. (Melo et al., 2022). Additionally, technical debt is often

subjective and context-dependent, making it difficult to establish universal metrics or

criteria for measurement (Jaspan & Green, 2023). Furthermore, the multifaceted nature

of technical debt requires a holistic approach that considers not only code-level issues but

also architectural complexities, dependencies, and long-term implications.

Another challenge arises from the dynamic nature of software projects, where technical

debt can accumulate and evolve over time, necessitating continuous monitoring and

adaptation of measurement strategies (Kruchten et al., 2013). Finally, limited visibility

and transparency into the accumulation of technical debt across different components and

systems within an organisation can hinder effective decision-making and prioritisation of

debt reduction efforts (Kruchten et al., 2012). At the same time on average, the cost of

17

managing technical debt in large software organisations is estimated to consume

approximately 25% of the total development time (Martini et al., 2018).

Addressing these issues requires a nuanced understanding of technical debt and the

development of robust measurement frameworks that account for its diverse

manifestations and impacts throughout the software lifecycle. According to the Li et al.,

2014, study some of the main issues in measuring technical debt include:

■ Ambiguity in Terminology: The term "debt" is used in various ways by

different individuals, leading to ambiguous interpretations of the concept of

technical debt.

■ Lack of Empirical Studies: There is a need for more empirical studies with

high-quality evidence on the entire technical debt management process and

the application of specific technical debt management approaches in industrial

settings.

■ Focus on Code-related Technical Debt: The study highlights that code-related

technical debt and its management have received the most attention, indicating

a potential lack of focus on other types of technical debt.

■ Cost-Benefit Analysis: Technical debt is considered a risk in some studies and

an investment in others. There is a need for further research on measuring the

cost and benefit of technical debt to make informed decisions about incurring

it.

■ Differentiating Technical Debt from Non-Technical Debt: The study notes

that there is limited effort in distinguishing between technical debt and non-

technical debt in the existing literature, highlighting the importance of clear

definitions and boundaries.

These issues underscore the complexity and challenges associated with measuring

technical debt accurately and effectively in software development projects. Figure 1

illustrates a potential organisation of the technical debt landscape, depicting the

progression of software enhancement from a given state (Kruchten et al., 2012). Within

this depiction, discernible components such as new functionality and defects are evident,

alongside elements perceivable only to software developers. The diagram highlights a

distinction between evolutionary processes or associated challenges on the left-hand side

and quality concerns, both internal and external, on the right-hand side. Furthermore, it

18

serves as evidence of complexity of understanding of technical debt, since it is mostly

invisible.

Figure 1. The technical debt landscape (Kruchten et al., 2012).

2.4 Tools and techniques for measuring technical debt

Conversely, automated code analysis tools represent another significant avenue in this

domain. Numerous tools, including CAST, NDepend, SonarGraph, CodeMRI,

SonarQube, SymphonyInsight, Code Inspector, and DV8, offer varying capabilities for

technical debt measurement. These tools allow for flexibility in incorporating rules,

defining metrics, and adjusting thresholds, though some, like Code Inspector and DV8,

lack certain customization capabilities (Avgeriou et al, 2021). However, it's important to

note the limitations inherent in automated tools, as they can sometimes generate false-

positive results, necessitating cautious implementation (Melo et al, 2022).

The involvement of stakeholders, the creation of sustainable requirement lists, and the

documentation of pending issues constitute the customer review approach. This method

emphasises the importance of collaboration between the development team and clients,

enabling effective management through thorough reviews of requirements and results. By

integrating customer feedback, this approach facilitates adaptability in product

development and requirement specifications, ultimately enhancing the identification of

technical debt and overall efficiency (Melo et al, 2022; Kruchten et al., 2012).

Deserving a separate attention is artificial intelligence (AI), as it holds promising potential

in revolutionising the landscape of technical debt measurement. AI technologies,

particularly machine learning algorithms, can offer sophisticated analytical capabilities

to identify, assess, and manage technical debt within software systems. These AI-driven

approaches can automate the detection of code anomalies, architectural flaws, and other

19

indicators of technical debt. By analysing large volumes of code repositories, AI models

can recognize patterns and correlations, enabling the prediction of potential areas

susceptible to accruing technical debt (Srinivas et al., 2023). Moreover, AI-powered tools

can assist in prioritising technical debt items by assessing their potential impact on system

performance, security, and maintainability. Integrating AI into technical debt

measurement can not only streamline the identification process but also empower

developers and decision-makers with insights to proactively address and mitigate

technical debt, thus fostering more resilient and efficient software systems.

Managing technical debt typically begins with the identification of technical debt items

to compile a comprehensive list. Subsequently, the next phase involves assessing the debt

items on the list by estimating their principal, interest amount, and interest probability

(Spinola et al., 2019). While there's no universally accepted method for measuring

technical debt, several approaches and metrics can help provide insights into its

magnitude and consequences. Here are some common methods and techniques (Ernst et

al., 2015):

Figure 2. Tools used to analyse technical debt as percentage (Ernst et al., 2015).

According to study by Ernst et al., 2015, in the realm of technical debt measurement,

issue trackers emerged as the predominant category of tools, with platforms like Redmine,

Jira, and Team Foundation Server being the most widely utilised. Following this, other

tool categories such as dependency analysis (e.g., SonarQube, Understand), code rule

checking (e.g., CPPCheck, Findbugs, SonarQube), and code metrics (e.g., Sloccount) did

not yield significant results.

20

Worth mentioning is also the SQALE (Software Quality Assessment based on Life-cycle

Expectations) method, which offers a structured framework for estimating and managing

technical debt in source code by identifying quality characteristics, calculating debt

indexes for associated requirements. It is utilising pyramid indicators for debt distribution

visualisation, and analysing debt to provide technical rationale for decisions.

Organisations can deploy SQALE using compatible tools, monitor technical debt daily,

and plan refactoring activities to improve code quality and reduce long-term maintenance

costs, making it a valuable approach for enhancing software development practices and

mitigating the impact of technical debt in software projects (Letouzey & Ilkiewicz, 2012).

The limitations of the SQALE method include its focus on source code technical debt,

dependency on compatible tools, subjectivity in debt assessment, training requirements,

and scalability challenges in larger projects (Ibid.). These factors may impact the method's

effectiveness and adoption in organisations seeking to manage technical debt beyond

source code and at scale.

21

3 Methodology

3.1 Research questions

The goal of this research is to assess the current processes in measuring technical debt in

the public sector in Estonia. Furthermore, to evaluate the effectiveness of the framework

and tools and to look into any flaws in the process. This will eventually lead to developing

a comprehensive framework for measuring technical debt in public sector software

systems.

The following research questions (RQ) and sub-questions (SQ) were formulated to attain

the research goals:

RQ1. What are the current approaches to measuring technical debt?

SQ1.1. How is technical debt measured and monitored within projects in the

Estonian public sector?

SQ1.2. How are available tools or measurement techniques used?

RQ2. How would it be possible to improve measurement of the technical debt in public

organisations in Estonia?

SQ2.1. What framework for technical debt measurement would be valid for public

sector organisations?

SQ2.2. What are the limitations in the public sector for technical debt

measurement?

3.2 Research method

The methodology adopted for this research is rooted in qualitative methods, focusing on

an exploratory case study approach to investigate technical debt measurement within the

public sector, specifically in Estonia. The methodology integrates semi-structured

interviews as the primary data collection technique (Boyce & Neale, 2006). Qualitative

research is based on non-numerical data collection and analysis from semi-structured

interviews with decision-makers and software developers in governmental organisations.

22

The aim is to gain a deeper understanding of technical debt measurement techniques in

its natural setting and to identify and explore the range of factors that contribute to it. The

case study design provides an opportunity to investigate technical debt in a real-world

context, while the semi-structured interviews with experts in the organisation offer a rich

source of qualitative data on their perceptions of technical debt and the challenges of

managing it (Yin, 2018).

The thematic analysis of qualitative data, derived from semi-structured interviews, serves

as the basis for findings of this master's thesis. Thematic analysis constitutes a method

centred on the identification, analysis, and reporting of patterns or themes inherent within

the dataset (Braun & Clarke, 2006). It is a commonly used approach across various

qualitative research designs and is particularly useful for exploring complex phenomena

and understanding the meaning behind the data (Castleberry & Nolen, 2018). Through an

examination of participants' narratives and perspectives, this study uncovers the

underlying themes and patterns inherent in their experiences. By employing a systematic

approach to coding and categorization, the analysis unveils the complexity of the data,

allowing for a nuanced understanding of the phenomenon under investigation (Ibid.).

Through this thematic lens, the thesis seeks to illuminate key insights, contribute to

existing knowledge, and offer practical implications for theory, research, and practice in

the field.

In qualitative research, the researcher plays a significant role in shaping the study

outcomes, making it crucial to acknowledge and address personal biases openly

(Castleberry & Nolen, 2018). Through the utilisation of reliable and esteemed data

collection and analysis methodologies, researchers have the opportunity to establish

trustworthiness and credibility among the audience (Yin, 2011). By providing detailed

descriptions of the coding procedures and interpretations, researchers can invite scrutiny

into decision-making processes (Castleberry & Nolen, 2018).

3.3 Interview design

In qualitative research, semi-structured interviews present an advantage by uncovering

new insights and expanding upon established knowledge, even though participants may

demonstrate response bias (Karatsareas, 2022). The interviews for this study were crafted

to elicit rich insights from participants while ensuring the reliability and validity of the

23

data collected. To achieve this, the interviews were structured around a set of 15 open-

ended questions, allowing for in-depth exploration of key themes and topics related to the

research objectives. Questions can be found in the Appendix 3. The questions were

designed to encourage participants to share their experiences, perspectives, and expert

knowledge on the subject matter, thereby facilitating a comprehensive understanding of

the phenomenon under investigation. Additionally, the interview design incorporated

probing techniques to delve deeper into specific areas of interest and to clarify any

ambiguities that arose during the conversation. Semi-structured interviews offer

flexibility with set questions, allowing for follow-ups and clarifications, enhancing depth

in qualitative research without the rigidity of structured interviews (Osborne & Grant-

Smith, 2021).

Expert interviews can serve as a valuable primary data source in case studies and enrich

the study by offering insights into intricate decision-making processes, connecting macro

and micro perspectives, mitigating biases, and bolstering the evidential strength (Von

Soest, 2022). The interviews were recorded and transcribed to facilitate thorough

analysis. Prior consent was obtained from all participants for both recording and citation

in the ensuing research findings. Although the interviews were conducted in English,

potential communication challenges were acknowledged. Interviewees were encouraged

to convey their ideas in their mother tongue if they felt more comfortable doing so,

ensuring clarity and effective communication throughout the process. Overall, the

interview design was tailored to facilitate the generation of rich qualitative data that would

contribute to the robustness and depth of the study findings.

The interviewees for the study were chosen for their background in the public sector and

perspectives on the technical debt measurement. Among them are individuals with

extensive experience in technology leadership, architecture, and governmental IT

projects. Their combined expertise provides valuable insights into the challenges and

strategies associated with managing technical debt in public sector organisations. The list

mostly consists of experts from Estonia, with the notable exception of Julia Richman,

who offers an expert perspective from the United States.

24

4 Research findings and analysis

4.1 Context of research

The research focusing on technical debt measurement within the Estonian public sector

is situated within the broader context of digital transformation and modernization

initiatives undertaken by the government. Estonia is widely recognized for its advanced

and sophisticated online public services, earning accolades for its digital innovations

(Capgemini, 2007). Virtually all public services in Estonia feature an e-service

component, underscoring the country's commitment to digitalization and accessibility.

Notably, state and local government agencies, as well as entities in public and private law

executing public law functions, are mandated to accept digitally signed documents

(Kalvet, 2012). This comprehensive integration of e-services across governmental bodies

demonstrates Estonia's proactive approach towards leveraging technology to enhance

public service delivery and streamline administrative processes.

However, with the proliferation of complex IT systems and the rapid pace of

technological advancements, public sector entities face a myriad of challenges in

managing technical debt effectively. These challenges include balancing the need for

continuous innovation with the imperative to maintain legacy systems, ensuring

compliance with evolving regulatory frameworks, mitigating cybersecurity risks, and

optimising resource allocation amidst budgetary constraints. Moreover, the inherently

collaborative nature of public sector projects necessitates robust frameworks for

measuring and addressing technical debt across diverse stakeholders and departments.

Thus, understanding and effectively managing technical debt emerge as critical

imperatives for sustaining the efficiency, reliability, and security of digital government

services in Estonia.

Larger ministries have their own major departments for information systems (information

technology development centres), the main ones being KeMIT, RMIT, RIK, SMIT,

TEHIK, and RIA. These IT competence centres create public sector ICT services in a

variety of fields, such as law enforcement, work, culture, health, environment, and social

security. Establishing a dedicated IT competency centre within government infrastructure

is instrumental in streamlining and optimizing IT operations but still maintaining

flexibility (Grauer & Sipelgas, 2019). Government ministries and their agencies directly

25

manage ICT strategies, investments, data, and information architecture. Such IT hub

consolidates specialised expertise, standardised practices, and promotes cost-efficient

resource management. It plays a pivotal role in bolstering innovation, research, and

development in the public sector, while also enhancing project management, security, and

compliance efforts. Moreover, these centres foster skill development, vendor

relationships, and aids in prioritising IT projects, aligning them with the government's

strategic objectives. Nevertheless, admittedly the main risks for Estonia's e-government

are a shortage of IT-skilled individuals and struggling IT systems (Lõvi, 2019).

The issues with Estonian IT systems are multifaceted and deeply rooted. Despite Estonia's

reputation as an e-state, the technological infrastructure lags significantly behind (Hindre,

2022). For example, the existing systems in the social sector SKAIS-1 and SKAIS-2

developed by TEHIK, suffer from deficiencies, highlighting the challenges of

maintaining outdated systems alongside developing new ones (Ibid.). This fragmented

approach results in a patchwork system that lacks cohesion and efficiency, leading to

complexities in service delivery. Lack of attention to maintenance of the systems and

constant pressure from the legislators leads to even deeper problems with systems (Rudi,

2023).

The problem with financing IT systems in Estonia lies in the need for consistent funding

that allows for flexibility, enabling continuous improvement of systems and the use of

modern IT services (Ilves, 2022). The resource-intensive nature of developing and

implementing individualised support systems further exacerbates the situation, requiring

continuous manual intervention for validation and verification (Hindre, 2022). Moreover,

the lack of seamless integration among various systems leads to operational inefficiencies

and increases the likelihood of errors or discrepancies. The shortage of skilled IT

professionals exacerbates these challenges, as the demand for expertise exceeds the

available workforce, hindering timely and effective solutions. Despite efforts to

modernise and streamline processes, the pervasive reliance on manual intervention and

outdated systems continues to impede progress in delivering essential services to citizens

(Rudi, 2023).

4.2 Interviewees

Below is a compilation of experts interviewed presented in alphabetical order.

26

Interviewee Duration
(min)

Recent relevant experience Interview style

Andres Kütt 49.43 CTO at Jio Egov Center of Excellence
(2018 - present), consulted TEHIK
(2023)

Video conference call

Artur Novek 22.11 IT Architect at TEHIK (2017-present) Video conference call

Heiko Vainsalu 38.47 Programme Director of Technology,
eGA (2020-present); RIA IT Architect
(2017-2018); RIA Domain Manager
(2013-2017)

Video conference call

Jevgeni Krutov 21:17 Architect at Nortal, working on TEHIK
projects (2019-present)

Video conference call

Julia Richman 25:25 COO of Colorado Governor's Office of
Information Technology (2020-2023)

Video conference call

Kristo Vaher 59:14 Technology Director at
Digital Nation (2023-present);
MKM CTO (2018-2023)

Video conference call

Marti Lung 33:52 Head Of Development at SMIT (2020-
present)

Video conference call

Martin Õunap 41:32 Head Architect at TEHIK (2018-present) In person

Tarmo Hanga 36:00 Head Architect at RIA (2007-present) Video conference call

Kaimar Karu 39:41 Mindbridge CTO (2020-present);
Minister of Entrepreneurship and
Information Technology of Estonia
(2019–2020)

Video conference call

Table 1. List of expert interviews.

4.3 Thematic analysis of the interviews

The following chapter presents thematic analysis results from the conducted interviews,

offering an exploration of the key themes and insights gathered during the discussions

27

with experts. The interviews focused on the current methodologies employed to measure

technical debt in the public sector. Technical debt measurement emerges as a challenging

issue for many of the experts emphasising the need for ongoing vigilance required to

combat technical debt effectively. For example, Tarmo Hanga says: “About the technical

debt for me it's a never-ending question. You must fight it all the time and there are no

correct answers.”.

The mentioned approaches to technical debt underscore the significance of continuous

monitoring. Although currently organisations in Estonia do not have a formalised or

structured approach towards measuring technical debt, there are still certain techniques

and tools in use. Among tools mentioned by the experts were SonarQube, PMD, Jira,

Dependency track, AI based tools and Dynatrace, which facilitate proactive identification

of code deficiencies and issues with libraries. Tools such as SonarQube play a pivotal

role in the Estonian public sector in code analysis, aiding in the detection of code smells

and other indicators of technical debt accumulation.

However, the quest for improvement does not end with a mere understanding of current

practices; it extends to envisioning a more effective future state. Here, the discourse shifts

towards organisational culture and its profound impact on technical debt management and

measurement. Kristo Vaher has highlighted the influence of organisational culture on

technical debt: “And, and I do think that culture is absolutely huge in terms of technical

debt as well. It's going to be frustrating for engineers that are going to say that, hey, but

we are unable, like... it, it's inconvenient for us to do these changes for an ever-expanding

sort of legacy system that we have. We would like to build it again. And if our organisation

says no, but we don't have time or money for this, just add those things. It creates this

compound technical debt.” Interviewees overall agreed that culture emerges as a potential

catalyst for enhanced technical debt measurement. Fostering a culture of adaptability and

responsiveness to change can drastically improve the overall situation with measuring

technical debt.

Blame and responsibility have been brought out as factors influencing the facing of

technical debt within organisations. In order to facilitate an open discussion and proactive

approach to measuring technical debt, it is imperative to enhance accountability and

promote a culture of collaboration within organisations. This entails transcending

bureaucratic inertia and instilling an organisational mindset of openness to change and

28

continuous improvement. "Organisational culture, including factors like fear of

judgement and blame culture, can significantly influence how technical debt is recognized

and addressed within a team or organisation" (Kaimar Karu). However, such endeavours

are not devoid of challenges; resistance to change, bureaucratic impediments, and a lack

of prioritisation pose formidable obstacles.

In regards to the technical debt measurement framework, interviewees agreed that it is a

beneficial strategy to approach the issue of measuring technical debt. In addition to

agreeing with the necessity of the framework, interviewees brought out several

suggestions, such as a long-term approach to managing IT products and providing metrics

and a list of available tools. As Kristo Vaher had put it: “It could focus on certain sort of

principles of a healthy organisation that is more tolerant to technical debt and is actually

looking ahead more than five years at a time.” Furthermore, organisations need to grow

expertise towards product-based thinking rather than project-based thinking. Andres Kütt

emphasized the necessity to have a certain mind shift towards product-based approach in

development: “The, these issues are caused by people not thinking in terms of products,

but in terms of projects.” The reliance on project-based funding, particularly from the

European Union, exacerbates the challenge of sustaining IT systems beyond their initial

development.

One of the notable challenges discussed was the allocation of budgets for projects related

to technical debt within the public sector. Effectively managing technical debt requires

adequate financial resources, yet navigating budgetary constraints in the public sector can

prove to be particularly complex. "Management decisions have a profound impact on

technical debt, and it is crucial to consider the consequences of prioritisation and

resource allocation in managing debt effectively." (Kaimar Karu). Striking a balance

between allocating funds for maintaining existing systems and investing in new solutions

that resonate with constituents can pose a significant dilemma for decision-makers. In this

context, prioritising technical debt initiatives may often take a backseat to projects with

more immediate political appeal, potentially exacerbating long-term technical debt

accumulation and compromising the resilience and efficiency of public sector IT

infrastructure.

A significant number of interviewees highlighted the pivotal role of cyber security audits

in shedding light on the extent of technical debt within systems. These audits serve as

29

crucial mechanisms for uncovering vulnerabilities and weaknesses in IT systems, thereby

providing invaluable insights into the magnitude of technical debt present. By assessing

the security posture of the organisation's infrastructure, applications, and processes, cyber

security audits reveal areas where technical debt has accumulated, particularly in relation

to outdated or insecure software components, inadequate security controls, and

unresolved vulnerabilities. Moreover, these audits offer an opportunity to prioritise

remediation efforts and allocate resources effectively to address the identified security

risks. Thus, interviewees underscored the importance of integrating cyber security audits

into the broader framework for measuring and managing technical debt, emphasising the

need for a comprehensive approach to ensure the resilience and security of organisational

IT systems.

In addition to the themes outlined, another noteworthy aspect deserving attention is the

variance in understanding technical debt among the interviewees. This discrepancy in

comprehension may stem from differing professional backgrounds, levels of experience,

or organisational contexts. Some interviewees may perceive technical debt solely in terms

of code quality and architecture, while others may consider broader factors such as

infrastructure, security, or human resources. Understanding these varying perspectives is

crucial for effectively addressing technical debt within organisations, as it influences

decision-making processes, resource allocation, and prioritisation strategies.

Acknowledging and reconciling these differences can lead to more comprehensive and

informed approaches to managing technical debt and promoting organisational resilience

and innovation.

While none of the experts explicitly identified the definition of technical debt as a

concern, certain data suggests that there is room for refinement in understanding this

concept. Interviewees have indicated that technical debt is a multifaceted and intricate

issue, encompassing various dimensions beyond mere code quality or architecture. This

recognition underscores the complexity inherent in managing technical debt within

organisations. As such, refining the understanding of technical debt to encompass its

broader implications, including infrastructure, security, and compliance considerations,

is essential for devising effective strategies to mitigate its impact. By acknowledging the

multifaceted nature of technical debt, organisations can adopt more holistic approaches

to address this challenge and promote long-term sustainability and innovation.

30

4.3.1 Current approaches to measuring technical debt

The complex nature of technical debt poses challenges in effectively measuring and

addressing it. Through analysis of the qualitative interviews, this study aims to contribute

to the advancement of understanding and methodologies surrounding the measurement of

technical debt in software development contexts. The techniques brought out by experts

during the interviews can be divided into following categories:

■ Manual reviews

■ Automated tool utilisation

■ Business owner’s/user feedback

The tools highlighted by experts offer practical solutions and insights into effective

technical debt management strategies. Metrics mentioned include vulnerabilities,

dependencies, code smells, user satisfaction, bug fixing time, and time to implementation

of new features. Technical debt is monitored by tracking metrics such as security issues,

licensing compliance, and dependency updates. Regular code scans and analysis are

conducted to identify areas of concern. As Tarmo Hanga aptly expresses, "Actually, you

have to choose some auditing tools and key points where to audit your software." This

highlights the strategic selection process involved in adopting auditing tools tailored to

an organisation's specific needs and software architecture.

Nevertheless, Martin Õunap admitted that merely monitoring by developers is not enough

and eventual responsibility also lies on the architects and manual revision: "And yes, we

are using SonarQube, we see there are problems over there. And as architect on TEHIK’s

side, when some kind of work is given to our server, this is one point where architect

should go and see what is the SonarQube metrics are." He also mentioned the metrics

that are tracked using Dependency track: “In Dependency track, I have, I'm using three

types of measures. I'm measuring how many security issues is, I'm measuring what kind

of licences are used and I measure if there are new releases for the dependencies.”.

The interviewees described the current approaches to measuring technical debt in their

organisation, emphasising the importance of proactive prevention rather than reactive

fixes. They highlighted the need for collaboration between architects and product owners

to assess new requirements against existing technical landscapes.

31

Utilising cyber security audits for measuring technical debt proves highly beneficial for

organisations. However, the procurement process involved in conducting these audits can

be both costly and time-consuming. Additionally, a common challenge arises from the

tendency to focus these audits primarily on new systems, inadvertently neglecting older

systems that may serve as dependencies. Although, many techniques have been

mentioned the process of measuring technical debt within public sector is not formalised

and is something that comes to mind when systems start failing.

4.3.2 Opportunities for improvement in technical debt measurement

In exploring opportunities for improvement in technical debt measurement, it becomes

evident that a multifaceted approach is necessary to navigate the complex landscape of

debt accumulation and mitigation within the public sector. The interviewees discussed

opportunities for enhancing the measurement of technical debt in public organisations in

Estonia. They emphasised the potential benefits of implementing a framework for

technical debt measurement to improve decision-making and resource allocation.

In the realm of technical debt management within the public sector, a resounding theme

emerges: the necessity of continuous effort and strategic foresight. This underscores the

perpetual nature of the battle against technical debt, emphasising the need for ongoing

proactive measures. Kaimar Karu further emphasises the importance of strategic

management with the assertion that the two-phase approach could involve revising

existing technical debt issues and instituting ongoing monitoring to prevent future

accumulation.

Security and risk mitigation are paramount concerns, as highlighted by Tarmo Hanga's

emphasis on prioritising security patches: "Our first concern is always security patches

for libraries for software itself." This recognition underscores the critical importance of

safeguarding systems against vulnerabilities and potential threats. Additionally, Marti

Lung's observation regarding the impact of legislation on complexity echoes the need to

navigate regulatory frameworks while mitigating technical debt effectively.

Kristo Vaher proposed a valuable insight into the detection of technical debt, emphasizing

the importance of monitoring specific metrics. “So, I think measuring these indicators

how quickly bugs get fixed and how quickly new features get implemented into the

products or services, there are two indicators for seeing when technical debts might

32

actually appear and start affecting your systems.” (Kristo Vaher). He highlighted the

significance of tracking the speed at which bugs are addressed and the efficiency with

which new features are integrated into products or services. According to Vaher, these

two metrics serve as crucial indicators for identifying the emergence of technical debt and

its potential impact on systems. By closely monitoring these indicators, organizations can

proactively address technical debt issues before they escalate, ensuring the long-term

health and performance of their systems.

Cultural shifts and organisational mindsets play a pivotal role in shaping approaches to

technical debt. Tarmo Hanga's assertion that an agile mindset fosters openness to change

emphasises the need for organisational adaptability. Moreover, Kaimar Karu's reflection

on how organisational culture influences debt recognition and mitigation underscores the

significance of fostering a culture that encourages transparency and accountability. Marti

Lung also emphasised the importance of enhancing internal capabilities to gain a deeper

understanding of the systems. Increasing the level of involvement and knowledge among

team members is crucial for improving the overall situation.

Lastly, on the adoption of AI for technical debt measurement Julia Richman said: “But I

think what's really cool about the opportunity in AI is like using AI to refactor systems at

scale and sort of recode and, you know, upgrade from version to version.”. The long-

term risks and future technological shifts inherent in technical debt management are

articulated by Kristo Vaher's warning about the risks for the Estonian public sector in the

era of AI. As he puts it, entering the actual AI era of the digital world poses significant

challenges, necessitating proactive strategies to navigate these shifts: “Let's order this AI

type of thing and a lot of systems are not ready for implementing AI in this way as we

expect so immediately technical debt flags are going to be erased.”. This highlights the

imperative for public sector entities to not only address immediate technical debt but also

anticipate and prepare for future technological advancements and associated risks.

33

5 Discussion

The interview results indicate that organisations often choose to utilise internal tools or

completely overlook the measurement of their technical debt. Instead, they rely on

singular factors such as customer requests or the severity of cybersecurity issues, resulting

in a lack of a comprehensive multi-criteria approach (Codabux et al., 2017). A case study

conducted involving a mid-sized company, interviewing 27 software practitioners with

the goal of comprehending their definitions, characterizations, and prioritizations of

technical debt revealed that developers often have their own taxonomy for technical debt

(Codabux & Williams, 2013). This surely correlates with findings in the current study

and highlights the importance of formalising the approach in order to know how healthy

systems actually are.

Firstly, manual management of technical debt measurement involves a hands-on, non-

tool-dependent procedure executed by software professionals. This method entails the

identification and measurement of technical debt through the establishment of metrics

and benchmarks, complemented by manual analysis of system performance and the

application of formulas to calculate diverse ratios (Melo et al, 2022).

Automated management involves the utilisation of software and automated resources to

detect and assess technical debt. When considering these resources, a key issue is the

prevalence of false positives: the number of instances incorrectly identified as technical

debt. An excess of false positives can divert attention away from genuine technical debt.

It might be beneficial to look into already successful approaches that used multiple

systems to measure technical debt (Mayr et al., 2014).

Furthermore, customer feedback plays a crucial role in ensuring the success of a project's

quality requirements. This involves engaging stakeholders progressively, compiling lists

of sustainable requirements, and documenting any outstanding issues. Consequently, it is

imperative for all management to review requirements with both the client and the

development team. This collaborative approach allows to adapt the product and refine

specified requirements in response to customer feedback, facilitating the identification of

technical debts more efficiently.

34

Many software codebases exhibit complexity, making them difficult to comprehend and

costly to modify and enhance. Prioritising technical debt presents a formidable challenge,

particularly in modern systems comprising millions of lines of code and involving

multiple development teams, thereby lacking a holistic overview. Moreover, the perpetual

dilemma between enhancing existing code and introducing new features necessitates

rigorous management (Kruchten et al., 2013).

Readily accessible version-control data can unveil the behaviour and patterns within the

development organisation. The focus of the tools is primarily on code technical debt, with

minimal attention given to design debt and architectural debt. However, architectural

debt, in particular, can have a significant impact on maintenance efforts. There is also a

lack of consensus on standardised rules and metrics for measuring technical debt,

resulting in discrepancies among tools and creating confusion regarding the importance

of certain rules and how to customise them to suit individual needs.

Quantifying technical debt through static analysis provides a glimpse into its scale. While

measurement may shed light on the extent of technical debt, its utility in guiding

actionable decisions remains limited. Instead, prioritising technical debt must extend

beyond mere code analysis to encompass its broader business impact. Specifically, the

additional time and resources required for feature development due to existing technical

debt. This crucial consideration, unmeasurable from the code alone, underscores the

necessity for a comprehensive perspective. Ultimately, striking a balance between

improving existing code and introducing new features is paramount, highlighting the

perpetual trade-off inherent in technical debt management and the need for meticulous

project prioritisation aligned with long-term objectives.

Legacy and technical debt are often added up together, but they represent distinct

concepts. Legacy commonly refers to old code lacking in quality that was not authored

by the current team. Facing legacy code can have significant repercussions, particularly

if a key contributor has left the organisation. If one of these primary contributors leaves

and their work is not adequately understood by others, their portion of the codebase may

swiftly transition into legacy code (Dedeke, 2012).

Escalating complexity within software development brings forth multifaceted

consequences. Notably, the impact on the roadmap becomes visible as cycle times

35

gradually lengthen over time, transforming what used to be manageable tasks into

protracted endeavours. This elongation diminishes predictability, exacerbating the

already intricate task of software estimation. Simultaneously, the team bears the brunt of

this complexity surge, experiencing a surge in turnover rates as the allure of working on

needlessly convoluted tasks wanes. Moreover, the team's dependency on key individuals

intensifies, amplifying the risk associated with sole experts in particular code segments a

phenomenon often referred to as. Meanwhile, users face the ramifications first hand,

encountering a surge in bugs that manifest as a tangible decline in software quality.

Translating technical debt measurement results into an understandable language for

decision-makers and ministry officials serves several crucial purposes. Firstly, it

facilitates effective communication and comprehension of the implications of technical

debt within the organisation. By presenting technical debt metrics in a language that

resonates with decision-makers, such as financial terms or risk assessments, it enhances

their ability to grasp the significance of technical debt and its potential impact on project

timelines, budgets, and overall organisational objectives. Secondly, it fosters informed

decision-making by providing decision-makers with actionable insights derived from

technical debt analysis.

Clear and comprehensible explanations of technical debt metrics enable decision-makers

to prioritise investments, allocate resources effectively, and make strategic decisions that

mitigate risks associated with technical debt. Moreover, translating technical debt

measurement results into understandable language helps bridge the gap between technical

experts and non-technical stakeholders, fostering collaboration and alignment across

different levels of the organisation. Ultimately, by translating technical debt measurement

results into an understandable language, decision-makers and ministry officials are

empowered to make informed decisions that drive organisational success and mitigate the

adverse effects of technical debt.

Effectively conveying risks to decision-makers entails framing them in a language that

resonates with their priorities and responsibilities. Decision-makers are typically focused

on organisational objectives, financial outcomes, and strategic initiatives. Therefore, risks

should be articulated in terms of their potential impact on these areas, such as project

delays, budget overruns, reputational damage, or hindrance to achieving strategic goals.

36

Moreover, it's essential to emphasise the urgency and severity of these risks, highlighting

the consequences of inaction or inadequate mitigation efforts. By contextualising risks

within the broader organisational context and aligning them with decision-makers'

objectives, they are more likely to recognize the importance of addressing them and take

ownership of mitigation strategies. Additionally, fostering a culture of accountability

ensures that decision-makers understand their role in risk management and actively

participate in implementing and monitoring mitigation measures. This combination of

clear communication, contextualization, and accountability empowers decision-makers

to proactively address risks and safeguard the organisation's interests.

Various methods exist for measuring technical debt within software development efforts.

One approach involves utilising system health analysis tools to quantify and visualise

technical debt within code bases. These tools provide relevant, objective, and actionable

data to help identify, quantify, and resolve technical debt within software systems.

Technical assessments conducted on code bases using these tools can assess the level of

technical debt present.

Another method involves defining a set of metrics to measure the extent of technical debt

accumulation within software systems. Metrics may include bug fix time, architectural

cyclicality, propagation cost, and other indicators of code health. Coded results can then

be used to indicate the performance levels of code bases. The main challenge would be

agreeing on the necessary metrics and benchmarks. Each public organisation could

develop a personal approach. Nevertheless, a universal baseline understandable equally

by everyone can significantly benefit the overall system.

Additionally, quantifying the cost of technical debt is crucial for understanding its impact

on software development efforts. This involves projecting the programmatic and

economic impacts of technical debt and mapping the output from architectural health

analysis tools to associated financial outcomes. By linking technical characteristics of

code bases to business outcomes such as productivity, defect density, staff turnover,

growth rates, cost performance, and schedule performance, organisations can gain

insights into the true cost of technical debt.

Measuring technical debt over time is essential for recognizing its evolution within

software systems. Technical debt can be present from the beginning of a design or

37

accumulate over time as software functionality changes. By monitoring changes in coding

practices, market pressures, and system objectives, organisations can assess how

technical debt evolves and take proactive measures to manage it effectively.

Technical debt management tools play a crucial role in addressing technical compromises

during software evolution by providing support for informed decision-making and

facilitating the mitigation of technical debt. Some tools help in quantifying code metrics

related to technical debt, allowing teams to measure the impact of technical debt on

software quality and make informed decisions (Saraiva et al., 2021). Allowing to cross

check with multiple tools and techniques can significantly improve the accuracy in

measuring technical debt (Mayr et al., 2014).

5.1 How would it be possible to improve measurement of the technical

debt in public organisations in Estonia?

According to Nord et al., 2012, measuring technical debt involves assessing the trade-off

between short-term benefits and long-term consequences in software development. Here

are some approaches to measure technical debt:

■ Code Analysis Tools: Utilise static code analysis tools to identify potential

technical debt in the codebase. These tools can detect code smells, duplicate

code, complexity metrics, and other indicators of poor code quality.

■ Architectural Analysis: Conduct architectural analysis to understand the

dependencies and structural elements contributing to technical debt. Metrics

based on architecture structure and dependency analysis can help quantify

technical debt outcomes.

■ Rework Cost Calculation: Calculate the rework cost associated with

implementing new architectural elements or making changes to the system.

This cost can be based on detecting changing dependencies that create interest

payments in the form of rework.

■ Dependency Analysis: Analyse the dependencies within the system to identify

areas where technical debt may be accumulating. Understanding the

dependencies can help in quantifying the impact of changes and potential

rework costs.

38

■ Economic Models: Develop economic models to account for the cost of

paying back technical debt. Consider the future cost of paying back debt, make

the debt visible, and analyse the consequences of payback or carrying the debt.

■ Metrics for Refactoring: Use metrics to guide the refactoring process and

assess the quality of the system at the architecture level. Metrics such as

duplicate code, cyclomatic complexity, and code smells can provide insights

into potential technical debt.

■ Empirical Studies: Conduct empirical studies to assess the impact of technical

debt on software projects. Gather data on induced and unintentional debts,

challenges faced, and decision-making processes related to managing

technical debt.

■ Quantifying Value: Consider quantifying the value of infrastructure and

quality-related tasks, especially architectural ones, to understand the trade-off

between short-term and long-term value in software development.

By employing these measurement approaches and considering the various aspects of

technical debt, organisations can gain insights into the impact of debt on their software

projects and make informed decisions to manage and mitigate technical debt effectively.

Transitioning from a project-based mentality to a product-based mentality is crucial for

effectively managing technical debt and fostering sustainable development practices.

Unlike projects, which have defined start and end dates, products are continuous entities

that evolve over time. By embracing a product-based mindset, organisations shift their

focus from short-term project deliverables to long-term value creation and ongoing

improvement. This approach encourages teams to prioritise the maintenance and

enhancement of existing systems alongside the development of new features, ensuring

that technical debt is continuously monitored and addressed throughout the product life

cycle. Moreover, adopting a product-based mentality promotes collaboration, agility, and

customer-centricity, as teams work iteratively to deliver value and meet evolving user

needs. Ultimately, this shift enables organisations to build resilient, adaptable systems

that can effectively navigate the complexities of modern software development and drive

sustainable growth.

Managing technical debt effectively in software development projects can be tricky for

ensuring the quality, maintainability, and success of the software product. Software

developers and project managers should be aware of the meaning of technical debt and

39

its implications on software projects. Educating team members about the importance of

managing technical debt can help foster a proactive approach to addressing potential

issues (Melo et al., 2022). Harnessing data with advanced digital tools has the potential

to enhance both decision-making processes and the management of service quality

(Morgareidge et al., 2014).

5.2 Framework recommendations

Some of the recommendations could include conducting regular reviews of requirements

documentation to identify and address any instances of technical debt (Melo et al., 2022).

Refine requirements continuously to ensure they are clear, complete, and aligned with

stakeholder needs (Ibid.). Encouraging collaboration and feedback from all project

stakeholders to improve requirement quality. Prioritising requirements based on their

criticality and impact on the project. Develop a clear roadmap for requirement

implementation, considering dependencies, constraints, and trade-offs. Establishing a

structured process for managing changes to requirements to minimise the accumulation

of technical debt (Ibid.).

Utilise tools and metrics to assist in the identification and measurement of technical debt.

Implement automated resources or software solutions that can streamline the management

of technical debt in requirements. Track relevant metrics to monitor the impact of

technical debt on project progress and quality (Nord et al., 2012). Foster open

communication and collaboration among team members, stakeholders, and clients to

ensure a shared understanding of requirements and project goals. Encourage regular

feedback loops and discussions to address any ambiguities, conflicts, or changes in

requirements promptly. Incorporate risk management practices into requirement

engineering processes to proactively identify and mitigate potential sources of technical

debt. Anticipate and address risks associated with incomplete, ambiguous, or poorly

defined requirements to prevent future challenges and rework (Melo et al., 2022).

A comprehensive framework for measuring technical debt in the public sector

necessitates careful consideration of the unique characteristics and requirements inherent

in governmental organisations. To begin, it is essential to define technical debt within the

context of public sector IT projects, taking into account factors such as regulatory

40

compliance, security, and long-term sustainability. This clear definition has to be agreed

upon by all of the organisations and maintained centrally to avoid disagreements.

Once the technical debt definition has been agreed upon, the framework must establish

measurable metrics and indicators to quantify its extent, considering aspects like code

quality, system complexity, security vulnerabilities, and maintenance effort. Precisely

defining metrics becomes imperative in delineating the most suitable path forward,

thereby safeguarding software systems' ability to sustainably support business operations

and user needs over the long term (Kruchten et al., 2012).

Selecting appropriate measurement tools and techniques, such as code analysis tools,

dependency scanners, and documentation assessments, is to be left for the IT

organisations to decide internally based on the list of tools that are most suitable for the

task. Approaches predominantly centred on code analysis overlook the distinction

between various design challenges that result in increased rework expenses, thus leaving

unanswered the critical inquiry into which issues carry the most substantial weight

(Ozkaya & Nord, 2019). A multitude of companies choose to utilise internal tools or forgo

measuring their technical debt entirely, instead relying on singular factors such as

customer requests or issue severity. This approach overlooks the necessity of adopting a

comprehensive multi-criteria approach to effectively assess technical debt (Codabux et

al., 2017).

Li et al. (2014) introduced a technical debt management approach comprising five key

stages: identification, measurement, prioritisation, repayment, and monitoring.

Integration with existing project management processes, such as Agile or waterfall

methodologies, is crucial for effective implementation. Defining thresholds and

prioritisation criteria based on impact, risk levels, and strategic alignment with

organisational goals enables informed decision-making. Additionally, establishing a

governance structure for oversight, continuous monitoring, and transparent reporting of

technical debt is essential. One of the best practices for managing technical debt is

dedicating an iteration within a 10-week release cycle specifically for debt reduction

efforts (Codabux & Williams, 2013).

Managing and mitigating technical debt risks require the development of proactive

strategies, including risk mitigation plans and resource allocation. Education and

41

awareness programs aimed at project teams, managers, and decision-makers are vital to

emphasise the importance of technical debt management and its implications for project

success. Continuous evaluation of the framework's effectiveness, coupled with

adjustments based on lessons learned and emerging best practices, ensures its ongoing

relevance and effectiveness. Ultimately, alignment with organisational goals ensures that

the framework supports the broader mission, vision, and strategic priorities of the public

sector organisation.

SonarQube used by organisations is among one of the most popular tools utilised for

technical debt measurement (Avgeriou et al., 2020). While all tools assess maintainability

issues to some extent, not all of them consider the consequences of these issues, such as

extra maintenance costs and the probability of additional work, thereby limiting the

effectiveness of technical debt as a communication medium. Secondly, most tools rely

solely on static analysis in their calculation models, overlooking valuable sources of

information from version history, issue trackers, and email exchanges (Avgeriou et al.,

2020).

While empirical evidence currently lacks to support the implementation of enhanced

processes and tools for managing technical debt, according to Martini et al., 2018, existing

literature on technical debt and related research on change management suggest potential

future maturity steps that organisations could achieve with the implementation of research

findings. These steps encompass a progression from merely measuring technical debt to

institutionalising processes for its management and, ultimately, to fully automating

decisions regarding refactoring. For instance, companies may start by adopting tools for

identifying technical debt and implementing indicators to aid in its estimation and

prioritisation.

Subsequently, they may institutionalise these processes across the organisation, enabling

aligned prioritisation of technical debt and resource allocation. Finally, as the

organisation matures, it may transition to fully data-driven decision-making processes,

leveraging statistics collected from historical data or benchmarking against reference

systems. Achieving such advanced stages of technical debt management necessitates a

comprehensive approach integrating research insights and practical implementation

strategies.

42

5.3 Recommendations for further research

For further research, several avenues could be explored to enhance understanding and

address gaps in the current knowledge of technical debt measurement in the public sector.

Firstly, conducting a larger-scale study involving a more extensive sample of public

sector organisations and IT professionals could provide broader insights into the

challenges and best practices associated with managing technical debt. Additionally,

incorporating quantitative analysis alongside qualitative methods would offer a more

comprehensive understanding of the quantitative impact of technical debt on project

outcomes and organisational performance.

Furthermore, investigating in an experimental setting the effectiveness of different

measurement frameworks and tools in the public sector context could help identify

practical strategies for assessing and prioritising technical debt. Lastly, exploring the role

of organisational culture, leadership, and governance structures in influencing technical

debt management practices could provide valuable insights into the socio-technical

aspects of this phenomenon and inform the development of tailored interventions and

strategies.

Future directions in technical debt management encompass several areas, including the

need for holistic methods to assess and prioritise technical debt, especially considering its

economic and long-term impacts. Additionally, there's a call for better understanding and

managing technical debt induced by emerging technologies like cloud-native approaches,

machine learning, and agile frameworks (Ciolkowski et al., 2021). Moreover, integrating

technical debt measurement seamlessly into agile and DevOps practices and mitigating

the risk of overlooking technical debt while emphasising feature development remain key

areas for further exploration.

5.4 Limitations and future work

The conducted research has unveiled deeper underlying issues that warrant attention and

resolution. Despite its insights, the study is constrained by several limitations. These

include a relatively small sample size of interviewees and the absence of quantitative data

analysis. While the qualitative findings offer valuable insights, the lack of quantitative

data may limit the generalizability of the study's conclusions. Additionally, the research

43

may benefit from broader participant representation to ensure a comprehensive

understanding of the subject matter. As well as providing more comparisons by

introducing cases from other countries. Addressing these limitations through future

research endeavours could enhance the validity and robustness of the findings, thereby

contributing to a more nuanced understanding of the complexities surrounding the topic

at hand.

Moving forward, future research endeavours could explore avenues to address the

identified limitations and further enhance the validity and robustness of findings in

technical debt measurement within the public sector. This may involve expanding the

sample size of interviewees to capture a more diverse range of perspectives and

experiences. Additionally, integrating quantitative data analysis methods alongside

qualitative approaches could provide a more comprehensive understanding of the

phenomenon. Furthermore, comparative studies across different public sector

organisations or longitudinal studies tracking the evolution of technical debt over time

could offer valuable insights into patterns and trends. By addressing these avenues, future

research can contribute to advancing knowledge and informing strategies for effectively

managing technical debt in public sector contexts.

44

6 Conclusion

In conclusion, this master's thesis on measuring technical debt in the public sector, with

a focus on Estonia, sheds light on the critical importance of effectively managing

technical debt in governmental IT projects. The research findings highlight the challenges

faced by public sector organisations in Estonia in measuring and addressing technical

debt, emphasising the need for structured approaches and proactive measures. The study

underscores the significance of continuous effort and strategic foresight in navigating the

complex landscape of debt accumulation and mitigation within the public sector.

Moreover, the research findings underscore the importance of implementing a framework

for technical debt measurement to improve decision-making and resource allocation in

public organisations in Estonia. The study highlights the perpetual nature of the battle

against technical debt, emphasising the need for ongoing proactive measures and strategic

management. Security and risk mitigation emerge as paramount concerns, underscoring

the critical importance of safeguarding systems against vulnerabilities and potential

threats.

In conclusion, this thesis provides insights into the challenges, successes, and potential

strategies for managing technical debt effectively in governmental IT projects in Estonia.

The research outcomes offer a comprehensive understanding of the current approaches to

measuring technical debt and opportunities for improvement within the public sector. By

addressing these challenges and leveraging the opportunities identified, public sector

organisations in Estonia can enhance their digital government services' efficiency,

reliability, and security, ultimately contributing to sustainable digital transformation and

modernization initiatives.

45

References

Avgeriou, P., Taibi, D., Ampatzoglou, A., Arcelli Fontana, F., Besker, T., Chatzigeorgiou, A.,
Tsintzira, A. (2021). An Overview and Comparison of Technical Debt Measurement
Tools. IEEE Software, 38(3), 61-71.

Avgeriou, P., Taibi, D., Ampatzoglou, A., Fontana, F. A., Besker, T., Chatzigeorgiou, A.,
Lenarduzzi, V., Martini, A., Moschou, A., Pigazzini, I., Saarimäki, N., Sas, D., De
Toledo, S. S., & Tsintzira, A. A. (2020). An overview and comparison of technical debt
measurement tools. IEEE Software, 38(3), 61–71.
https://doi.org/10.1109/ms.2020.3024958

Boyce, C. & Neale, P. (2006). Conducting in-depth Interviews: A Guide for Designing and
Conducting In-Depth Interviews. Pathfinder International Tool Series.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in
Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa

Capgemini, B. NV/SA. (2007). The User Challenge: Benchmarking the Supply of Online Public
Services. 7th Measurement, European Commission, Directorate General for Information
Society and Media, Available online at:
http://www.ch.capgemini.com/m/ch/tl/EU_eGovernment_Report_2007.pdf

Castleberry, A., & Nolen, A. (2018). Thematic analysis of qualitative research data: Is it as easy
as it sounds? Currents in Pharmacy Teaching and Learning, 10(6), 807-815.
https://doi.org/10.1016/j.cptl.2018.03.019

Ciolkowski, M., Lenarduzzi, V., Martini, A. (2021). 10 Years of Technical Debt Research and
Practice: Past, Present, and Future. IEEE Software, vol. 38(6), 24-29.
https://doi.org/10.1109/ms.2021.3105625

Codabux, Z., & Williams, B. (2013). Managing technical debt: An industrial case study. 2013 4th
International Workshop on Managing Technical Debt (MTD).
https://doi.org/10.1109/mtd.2013.6608672

Codabux, Z., Williams, B., Bradshaw, G. L., & Cantor, M. (2017). An empirical assessment of
technical debt practices in industry. Journal of Software: Evolution and Process, 29(10).
https://doi.org/10.1002/smr.1894

Cunningham W. (1992). The WyCash portfolio management system. Addendum to the
Proceedings on Object-oriented Programming Systems, Languages, and Applications.

Dedeke, A. (2012). Improving Legacy-System Sustainability: A Systematic Approach. IT
Professional, 14(1), 38–43. doi:10.1109/mitp.2012.10

Ernst, N.A., Bellomo, S., Ozkaya, I., Nord, R.L., & Gorton, I. (2015). Measure it? Manage it?
Ignore it? software practitioners and technical debt. Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering.

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (1999). Refactoring: Improving the
Design of Existing Code. Boston: Addison-Wesley Professional.

Grauer, M., Sipelgas, K. 2019. How to set up a competence centre for innovation.
Procure2innovate

Hansen, M. E. K (2022). Technical Debt Management in the public sector. IT University of
Copenhagen, Computer Science.

46

Hindre, M. (2022, September 7). SKA juht kaheaastasest IT-arendusest: meil on majas Lotte
porgandimasin. ERR. https://www.err.ee/1608708193/ska-juht-kaheaastasest-it-
arendusest-meil-on-majas-lotte-porgandimasin

Ilves, L. (2022, September 8). Kindlasti tuleb IT-le kulutada rohkem. ERR.
https://www.err.ee/1608708700/luukas-ilves-kindlasti-tuleb-it-le-kulutada-rohkem

Jaspan, C., & Green, C. (2023). Defining, measuring, and managing technical debt. IEEE
Software, 40(3), 15–19. https://doi.org/10.1109/ms.2023.3242137

Kalvet, T. (2012). Innovation: a factor explaining e-government success in Estonia. Electronic
Government, an International Journal, 9(2), 142. doi:10.1504/eg.2012.046266

Karatsareas, P. (2022). Semi-Structured Interviews. In R. Kircher & L. Zipp (Eds.), Research
Methods in Language Attitudes (pp. 99–113). chapter, Cambridge: Cambridge University
Press.

Klinger, T., Tarr, P., Wagstrom, P., & Williams, C. (2011). An enterprise perspective on technical
debt. Proc. 2nd Work. Managing Technical Debt (MTD ’11), ACM Press, May 2011, pp.
35–38, doi: 10.1145/1985362.1985371.

Kruchten, P., Nord, R. L., Ozkaya, I., (2012). Technical Debt: From Metaphor to Theory and
Practice. IEEE Software.

Kruchten, P.B., Nord, R.L., Ozkaya, I., & Falessi, D. (2013). Technical debt: towards a crisper
definition report on the 4th international workshop on managing technical debt. ACM
SIGSOFT Softw. Eng. Notes, 38, 51-54.

Letouzey, J., & Ilkiewicz, M. (2012). Managing Technical Debt with the SQALE Method. IEEE
Software, 29(6), 44–51. https://doi.org/10.1109/ms.2012.129

Li, Z., Avgeriou, P., & Liang, P. (2014). A Systematic Mapping Study on Technical Debt and Its
Management. Journal of Systems and Software, 101, 12-31. DOI:
10.1016/j.jss.2014.12.027

Lõvi, S. (2019, November 11). Riigikontroll: IT-süsteemide käigushoidmine vajab teadlikku
eelarvestamist. ERR. https://www.err.ee/1001671/riigikontroll-it-susteemide-
kaigushoidmine-vajab-teadlikku-eelarvestamist

Martini, A., Besker, T., & Bosch, J. (2018). Technical Debt tracking: Current state of practice.
Science of Computer Programming, 163, 42–61.
https://doi.org/10.1016/j.scico.2018.03.007

Mayr, A., Plosch, R., & Korner, C. (2014). A Benchmarking-Based Model for Technical Debt
Calculation. 2014 14th International Conference on Quality Software.
doi:10.1109/qsic.2014.35

Melo, A., Fagundes, R., Lenarduzzi, V., Santos, W. (2022). Identification and Measurement of
Technical Debt Requirements in Software Development: a Systematic Literature Review.
Journal of Systems and Software. https://doi.org/10.1016/j.jss.2022.111483

Ministry of Interior. (2018). Final report: The development of ICT services in the administrative
area of the Ministry of the Interior and the sustainability of management financing and
the impact on ensuring internal security. 17.08.2018 [WWW]
https://www.smit.ee/files/ikt-finantseerimine-pwc-lopparuanne-veeb.pdf?a8072e9c5b

Morgareidge, D. L., Cai, H., & Jun, J. (2014). Performance-driven design with the support of
digital tools: Applying discrete event simulation and space syntax on the design of the
emergency department. Frontiers of Architectural Research, 3(3), 250– 264.
https://doi.org/10.1016/j.foar.2014.04.006

Nord, R.L., Ozkaya, I., Kruchten, P.B., & Gonzalez-Rojas, M. (2012). In Search of a Metric for
Managing Architectural Technical Debt. 2012 Joint Working IEEE/IFIP Conference on
Software Architecture and European Conference on Software Architecture, 91-100.

https://www.err.ee/1608708193/ska-juht-kaheaastasest-it-arendusest-meil-on-majas-lotte-porgandimasin
https://www.err.ee/1608708193/ska-juht-kaheaastasest-it-arendusest-meil-on-majas-lotte-porgandimasin
https://www.err.ee/1608708700/luukas-ilves-kindlasti-tuleb-it-le-kulutada-rohkem
https://doi.org/10.1016/j.scico.2018.03.007
https://www.smit.ee/files/ikt-finantseerimine-pwc-lopparuanne-veeb.pdf?a8072e9c5b

47

Osborne, N., & Grant-Smith, D. (2021). In-Depth interviewing. In Cities research series (pp. 105–
125). https://doi.org/10.1007/978-981-16-1677-8_7

Ozkaya, I., & Nord, R. (2019, December 16). Data-Driven Management of Technical Debt.
Retrieved March 30, 2024, from https://insights.sei.cmu.edu/blog/data-driven-
management-of-technical-debt/.

Perera, J., Tempero, E., Tu, Y., & Blincoe, K. (2023). Quantifying Technical Debt: a systematic
mapping study and a conceptual model. arXiv (Cornell University).
https://doi.org/10.48550/arxiv.2303.06535

Rios, N., Mendonça, M., & Spínola, R. O. (2018). A tertiary study on technical debt: Types,
management strategies, research trends, and base information for practitioners.
Information & Software Technology, 102, 117–145.
https://doi.org/10.1016/j.infsof.2018.05.010

Rudi, H. (2023, February 6). Poliitikute kihk toetusi ja pensione tõsta pani SKA keerulisse
olukorda. ERR. https://www.err.ee/1608876080/poliitikute-kihk-toetusi-ja-pensione-
tosta-pani-ska-keerulisse-olukorda

Saraiva, D., Kulesza, U., Freitas, G., Almeida, R. R., et al. (2021). Technical Debt Tools: A
Systematic Mapping Study.

Spínola, R., Zazworka, N., Vetrò, A., Shull, F., & Seaman, C. (2019). Understanding automated
and human-based technical debt identification approaches-a two-phase study. Journal of
the Brazilian Computer Society, 25(1). https://doi.org/10.1186/s13173-019-0087-5

Srinivas B. P., Binta, S., & Kaushal, S. (2023). Artificial Intelligence for Technical Debt
Management in Software Development. ArXiv.org, ArXiv.org, 2023.

Tom, E., Aurum, A., Vidgen, R. (2013). An exploration of technical debt. Journal of Systems and
Software.

Von Soest, C. (2022). Why do we speak to experts? Reviving the strength of the expert interview
method. Perspectives on Politics, 21(1), 277–287.
https://doi.org/10.1017/s1537592722001116

Yin, R. K. (2011). Qualitative Research from Start to Finish. The Guilford Press.
Yin, R. K. (2018). Case Study Research and Applications - Design and Methods. Los Angeles:

SAGE Publications, Inc.

https://doi.org/10.1016/j.infsof.2018.05.010
https://www.err.ee/1608876080/poliitikute-kihk-toetusi-ja-pensione-tosta-pani-ska-keerulisse-olukorda
https://www.err.ee/1608876080/poliitikute-kihk-toetusi-ja-pensione-tosta-pani-ska-keerulisse-olukorda

48

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis

I, Maria Bušujeva (Date of Birth: 23.04.1991)

1. Allow the Tallinn University of Technology without any charges (Plain licence) my

work

“Measuring Technical Debt in the Public Sector: Case Study of Estonia”,

supervised by Richard Michael Dreyling III,

1.1. to be reproduced for the purpose of conservation and electronic publication,

including the digital repository of the Tallinn University of Technology, until the end of

copyrighted time limit;

1.2. to be available to the public through the Tallinn University of Technology online

environment, including the digital repository of the Tallinn University of Technology,

until the end of the copyrighted time limit.

2. I am aware, that all rights, named in section 1, will remain to the author.

3. I confirm that by allowing the use of the Plain licence, no intellectual rights of

third parties will be violated as set in the personal data protection act and other legislation.

Signed digitally

13.05.2024

49

Appendix 2 – Table from Rios et al., 2018, on technical debt

types

50

Appendix 3 – Interview questionnaire

Intro

Tell me about your relevant professional experience.

Could you describe your understanding of technical debt?

Let’s build common ground for the interview and define technical debt. Architectural

debt.

Section 1: Current Approaches to Measuring Technical Debt

1. What are the current approaches to measuring technical debt that you are aware

of?

1.1. Can you describe how technical debt is currently measured and

monitored within projects?

1.2. How are available tools (ex. SonarQube) or measurement techniques

utilised in assessing technical debt within projects?

Additional Probing Questions:

1.2.1. Can you provide specific examples of technical debt encountered

in projects?

1.2.2. How do you prioritise addressing technical debt within projects?

1.2.3. Are there any notable challenges or successes related to

measuring technical debt?

1.2.4. Can you provide any relevant metrics for measuring technical

debt?

Section 2: Opportunities for Improvement in Technical Debt Measurement

2. How can the measurement of technical debt in public organisations in Estonia be

enhanced?

2.1. Do you believe a framework for technical debt measurement would be

beneficial for public sector organisations in Estonia? Why?

2.2. What do you perceive as the primary limitations or barriers to effectively

measuring technical debt within the public sector?

Additional Probing Questions:

2.2.1. How do you envision the integration of technical debt

measurement practices?

51

2.2.2. What support or resources do you think would facilitate more

effective measurement and management of technical debt in the

public sector?

2.2.3. In your opinion, how might organisational culture influence the

recognition and mitigation of technical debt?

3. Any other remarks relating to measurement of technical debt?

