
Tallinn 2019

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Rashiduddin Kakar, 165526IVEM

TRANSIENT COMPUTING AND
APPROXIMATE COMPUTING ON NON-

VOLATILE MICROCONTROLLERS

Master’s Thesis

Supervisor: Yannick Le Moullec

 PhD

Co-supervisor: Sikandar Khan

MSc

Tallinn 2019

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Rashiduddin Kakar, 165526IVEM

JUHU- JA LÄHENDARVUTUS PASSIIVSETEL
MIKROKONTROLLERITEL

Magistritöö

Juhendaja: Yannick Le Moullec

 PhD

Kaasjuhendaja: Sikandar Khan

 MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Rashiduddin Kakar

06/05/2019

4

Abstract

According to estimates, the future IoT will accommodate around 50 billion nodes by the

year 2025. The deployment of billions of these IoT nodes in hardly accessible areas

demand for deploy-and-forget type installations where batteries pose a single greatest

threat to the vision of a sustainable IoT. Replacing and disposing of billions of batteries

is not only impractical and costly in terms of maintenance but is also a severe threat to

the resources of our planet. That is why battery-less IoT nodes are considered as the

next crucial step towards a sustainable IoT.

Battery-only designs are not an option since their limited lifetimes require expensive

maintenance. Energy-Driven Systems (EDS), that are powered from energy harvesting

sources, seem to offer an alternative and promising solution for the realization of

battery-less IoT nodes. However, since the Harvested Power (HP) from miniaturized

harvesting sources is generally low and unstable, an HP-node cannot operate in the

same way as a battery-powered system. Hence, it is crucial to optimize the IoT nodes,

both from the hardware and software perspectives, so as to efficiently utilize the

scarcely available and highly unpredictable harvested energy.

With such an aim to utilize the harvested energy from various ambient energy sources in

an efficient manner, this thesis combines the techniques of transient computing,

approximate computing and energy/data prediction models so as to reduce the energy

consumptions and prolong the life-time of the nodes.

These techniques are applied in a test-bed consisting of two nodes that combine Texas

Instruments MSP-EXP430FR5739 kits (FRAM-based micro-controllers) with CC2500

radio module evaluation kits. Building upon the Compute Through Power Loss utility,

the various techniques are implemented for different cases, which illustrate their

potential in terms of power, memory, and communication efficiency.

Our experimental results show that the accuracy lost due to incorporation of

approximations depend on the nature of the data and the number of approximated bits.

5

In case of data that is represented only in lower order bits, a 1-bit approximation gives a

mean percentage error of 11.11%. However, in case of data that can be represented in

higher order bits, a 1-bit approximation gives a mean percentage error of 1.06%, and a

2-bits approximation gives a mean percentage error of 6.11%. Our results also show that

the number of radio transmissions could be reduced by 10%, 20%, and 30% through the

incorporation of approximations.

This thesis is written in English and is 64 pages long, including 5 chapters, 23 figures

and 13 tables.

6

Annotatsioon
Juhu- ja lähendarvutus passiivsetel mikrokontrolleritel

Hinnangute kohaselt sisaldab tuleviku IoT (asjade Internet) aastaks 2025 umbes 50

miljardit sõlme. Nende miljardite IoT-sõlmede kasutuselevõtt raskesti

juurdepääsetavates piirkondades nõuab paigalda-unusta (deploy-and-forget) seadmeid,

kus akud on suurimaks ohuks jätkusuutliku IoT visioonile. Miljardite akude asendamine

ja hävitamine ei ole mitte ainult ebapraktiline ja kulukas, vaid see kujutaks endas ka

tõsist ohtu meie keskkonnale. Seepärast peetakse passiivsete IoT-sõlmede arendust

järgmiseks oluliseks sammuks jätkusuutliku asjade Interneti suunas.

Ainult akutoitel põhinev disain ei ole vastuvõetav, kuna piiratud kasutusiga nõuab

kulukat hooldust. Energiasäästlikud süsteemid (EDS - Energy-Driven Systems), mis

töötavad energia lõikuse (energy harvesting) allikatel, näivad pakkuvat alternatiivset ja

paljutõotavat lahendust passiivsete IoT-sõlmede realiseerimiseks. Kuna aga väikesest

energia lõikuse seadmest pärinev kogutud energiatase (HP-Harvested Power) on üldiselt

madal ja ebastabiilne, ei saa HP-sõlm töötada samamoodi nagu akutoitega süsteem.

Seega on ülioluline optimeerida IoT-sõlmede riist- ja tarkvara, et tõhusalt ära kasutada

raskesti kättesaadavat ja äärmiselt ettearvamatut kogutud energiat.

Käesolev töö ühendab juhu- ja lähendarvutusmeetodeid ning energia ja andmete

prognoosimudelite tehnikaid, et vähendada IoT-sõlmede energiatarvet ning pikendada

nende eluiga.

Neid meetodeid rakendatakse kahest sõlmest koosneval testplatvormil, mis sisaldab

FRAM-põhiseid mikrokontrollereid (Texas Instruments MSP-EXP430FR5739) ja

raadio-arendusmoodulit (CC2500). Tuginedes juhuarvutuse võtetele (CPTL - Compute

Through Power Loss) rakendatakse mitmeid tõhusaid võimsuse ja mälu kasutamise ning

kommunikatsiooni tehnikaid.

Katsetulemused näitavad, et lähendusarvutuste tõttu kaotatud täpsus sõltub andmete

iseloomust ja bit-lähenduse sügavusest. Juhul kui andmed on esitatud ainult nooremates

bittides, siis 1-bitine lähendus annab keskmiseks veaks 11,11%. Kuid andmete puhul,

7

mis on esitatud vanemates bittides, annab 1-bitine lähendus keskmise vea 1,06% ja 2-

bitine lähendus annab keskmiseks veaks 6,11%. Tulemused näitavad, et

lähendusvõtteid kasutades saab raadioside aega vähendada 10%, 20% ja 30%.

Lõputöö on kirjutatud eesti keeles ning sisaldab teksti 64 leheküljel, 5 peatükki, 23

joonist, 13 tabelit.

8

List of abbreviations and terms

AC

ADC
ANN
API
ASEA
BOR
CTPL
CPS
DC

DEBS
DFS
DP
DRA
DRAM
EDS
EEPROM
EH
EMU
ENS

EPROM
EWMA
FPU
FPWF
FRAM
GND
GPIO
GPR
GPU

HP
IoBT
IoT
ISR

Approximate Computing
Analog to Digital Converter
Adaptive Neural Network
Application Program Interface
Accurate Solar Energy Allocation
Brownout Reset
Compute Through Power Loss
Cyber Physical Systems
Direct Current
Dynamic Energy Burst Scaling
Dynamic Frequency Scaling
Data Prediction
Dynamic Routine Adjustment
Dynamic Random Access Memory
Energy Driven Systems
Electrically Erasable and Programmable Read-Only Memory
Energy Harvesting
Energy Management Unit
Energy Neutral Systems
Electrically Programmable Read-Only Memory
Exponential Weighted Moving Average
Floating Point Unit
Fixed Parameter Weighting Factor
Ferroelectric Random Access Memory
Ground
General Purpose Input Output
General Purpose Register
Graphics Processing Unit
Harvested Power
Internet of Battery-less Things
Internet of Things
Interrupt Service Routine

9

LPM

LSB
MOS
NB-IoT
NVM
NY City
MAE
MRAM
MSE
PC

PCM
PNS
PROM
QL-SEP
RF
ROM
SP
SRAM
SVS

TalTech
TC
TCS
WCMA
WSN

Low Power Mode
Least Significant Bit
Metal Oxide Semiconductor
Narrowband-Internet of Things
Non Volatile Memory
New York City
Mean Absolute Error
Magnetoresistive Random Access Memory
Mean Squared Error
Program Counter
Pulse Code Modulation
Power Neutral Systems
Programmable Read-Only Memory
Q-Learning based Solar Energy Predictions
Radio Frequency
Read-Only Memory
Stack Pointer
Static Random Access Memory
Supply Voltage Supervisor
Tallinn University of Technology
Transient Computing
Transient Computing Systems
Weather Conditioned Moving Average
Wireless Sensor Network

10

Table of contents

1 Introduction and Motivation .. 14	

1.1 Problem Statement .. 16	

1.2 Organization of the thesis ... 18	

2 Background .. 19	

2.1 Non-Volatile Memories .. 19	

2.1.1 Available NVMs .. 20	

2.1.2 Emerging Non-Volatile Memories .. 22	

2.2 Energy Driven Systems .. 23	

2.2.1 Transient Computing Systems (TCS) .. 23	

2.3 Energy Prediction ... 38	

2.3.1 LINE-P EP Model ... 38	

2.3.2 Other Models ... 39	

2.4 Approximate Computing .. 41	

3 Experimental Setup .. 45	

3.1 Hardware platform .. 45	

3.2 Software modules ... 46	

3.2.1 CTPL Mechanism .. 47	

3.2.2 Proposed approximation of data .. 49	

3.2.3 Proposed Radio Control using DP ... 50	

3.3 Challenges .. 50	

3.3.1 Hardware related issues ... 50	

3.3.2 Software related issues .. 50	

4 Results ... 52	

4.1 Current consumption .. 52	

4.2 TC Results .. 52	

4.3 DP results .. 54	

4.4 AC results ... 56	

4.5 Results with radio control ... 62	

4.6 Observations ... 63	

11

5 Summary and Perspectives .. 65	

References .. 67	

Appendix 1 – Source-Code ... 70	

12

List of figures

Figure 1. Illustration of the available energy and communication states at different Vcc

(voltages). Figure inspired from [7]. .. 16	

Figure 2. PNS’s energy subsystem architecture in TC. Figure inspired by [1]. 24	

Figure 3. ENS’s energy subsystem architecture in TC. Figure inspired by [1] 24	

Figure 4. Flowchart illustrating the principle of Hibernus. .. 30	

Figure 5. Flowchart illustrating the software flow of QuickRecall.. 33	

Figure 6. Working mechanism of the Hibernus++.. ... 34	

Figure 7. Self-calibration of the threshold voltage VH. ... 36	

Figure 8. Working mechanism of CTPL. ... 37	

Figure 9. Security embedding in IEEE 754 Single-precision floating-point format. 43	

Figure 10. Schematic diagram for experimental setup. .. 46	

Figure 11. Modified finite state machine for TC and AC. ... 47	

Figure 12. CTPLexecution flow and its integration with the developed program. 48	

Figure 13. AC execution flow for the developed program ... 49	

Figure 14. Triggering of CTPL utility in case of voltage drop 53	

Figure 15. Triggering of CTPL utility (benchmark pin P4.0) .. 53	

Figure 16. Wind-speed data versus predicted data ... 54	

Figure 17. Temperature data versus predicted data using LINE-P energy prediction ... 55	

Figure 18. Enabling the equivalent of 1 additional byte of information by approximating

the single LSB of the 8 bytes of a packet, .. 56	

Figure 19. Enabling the equivalent of 2 additional bytes of information by

approximating 2 LSB bits in each of the original 8 bytes of a packet, 57	

Figure 20. 1 bit approximation of the wind speed dataset of NY city. 60	

Figure 21. 1bit approximation of the Temp dataset of Rome city 61	

Figure 22. 2 bit approximation of the Wind dataset of the NY city. 61	

Figure 23. 2 bit approximation of the Temperature dataset of Rome. 62	

13

List of tables

Table 1. Comparison of FRAM with other memory products. Table inspired by [9]. ... 21	

Table 2 Comparison of available NVMs. Table inspired by [9]. 22	

Table 3. Classification of recent studies in EH powered IoT nodes 25	

Table 4. Taxonomy of Approximate Computing, inspired by [3]. 42	

Table 5. Power Consumption of MSP430FR5739 plus CC2500 radio module in

different states of the application .. 52	

Table 6. MSE, MAE and MPE for DP of wind-speed ... 54	

Table 7. MSE, MAE and MPE of DP for temperature in Rome 55	

Table 8. Added information through approximation and loss of accuracy in a single

transmission .. 58	

Table 9. Reducing the number of transmissions through approximation 59	

Table 10. MSE, MAE and MPE of approximated wind speed data of NY City 60	

Table 11. MSE, MAE and MPE of approximated temperature data of Rome City 60	

Table 12. MSE, MAE and MPE of 2 bit Approximated Wind speed data of NY City .. 62	

Table 13. MSE, MAE and MPE of 2 bit Approximated temperature data of Rome 62	

14

1 Introduction and Motivation

Thanks to rapid advances in the design processes of semiconductor electronics, the

power consumption of embedded IoT devices has reduced significantly. However, the

demand for long-term deployments and virtually unlimited lifetimes of IoT devices is

still at large and the energy consumption of existing IoT devices is considered as one of

the most crucial issues in today’s IoT and WSN (Wireless Sensor Networks)

applications.

Today’s battery-powered IoT devices are resource limited; they cannot sustain their

power for longer periods of time and need battery recharges and/or replacements so as

to sustain themselves for longer periods of time. The power management of such

battery-powered IoT nodes is a challenge so as to efficiently utilize the power of

batteries for longer periods of time without any need for recharge or replacements.

However, battery-only designs do not appear to be sustainable on the long term since

their limited lifetimes require expensive maintenance.

As an alternative to battery-powered systems, Energy-Driven Systems (EDS) are

powered from ambient energy sources and offer promising solutions for the realization

of battery-less IoT nodes [1]. EDS can be used in conjunction with existing battery-

powered systems, or they can replace the existing battery-powered systems with stand-

alone Energy Harvesting (EH) sources. Replacing the battery with the EH source leads

to battery-less or energy autonomous devices also referred to as Internet of Battery-less

Things (IoBT).

EH sources transform the energy absorbed from the ambient sources (e.g. solar, thermal,

air) in the environment to electrical power, which is then converted to direct current

(DC) for powering up the sensor/IoT nodes. EH sources usually produces irregular

power due to time-based deviations in the environment such as wind speed, time of the

day, availability of light, changes of temperature and weather conditions [2]. This

uncertainty in the availability of energy from the ambient sources raises new challenges

in the development of reliable energy efficient sensor nodes. For example, solar cell

15

power production variations are not only limited to the 24-hour cycle in the solar energy

but also depends on the sensitivity, position and orientation of the cells; similarly, wind

power source deviations occur because of the changes in the speed and direction of

wind. As per the variations and even temporary unavailability of the EH sources, there

can be substantial interruptions in the execution of the IoT end device and will not be

able to operate as a battery-powered system where the power is constant for as long as

the battery is alive.

Various techniques such as Transient Computing (TC) [2], Approximate Computing

(AC) [3], and Energy/Data Prediction models (E/DP) [4] have been proposed in the

literature not only to optimize the Energy-driven (battery-less) IoT nodes both from the

hardware and software perspectives, but also to cover the intrinsic issues of EH sources.

Also from the hardware perspective, Non-Volatile Memories (NVM) based

architectures (i.e., Ferroelectric RAM (FRAM) and Magnetoresistive (MRAM)) are

currently in use to achieve power and performance efficiency as compared to flash

memory based approaches [5].

Flash memory uses bit-cells that need to be erased in order to rewrite a logic 0 or 1 to it

and this erase operation requires higher voltage due to which it is more energy

consuming and also presents asymmetric read and write operation timings, which

complexifies latency in the system. On the other hand, FRAM uses polarization on the

ferroelectric capacitor to distinguish between the logic states and does not require erase

operation. FRAM also uses destructive read with an instantaneous write operation due

to which there is no latency or overhead in the system. Additionally, FRAM has 10

orders of magnitude higher endurance than the approximate endurance of 105

erase/write cycles of the flash memory [6].

With a motivation to design an FRAM-based IoT node that could possibly sustain the

frequent power losses and variations of ambient energy sources and efficiently utilize

the available energy, this thesis combines the techniques of TC and AC along with

prediction/DP models to prolong their life time and paves the way towards self-

sustainable and maintenance free battery-less IoT nodes.

16

1.1 Problem Statement

As discussed earlier, improvements at the software and hardware ends are required to

gain more energy efficiency. This becomes more challenging due to limited hardware

resources of the IoBT devices and the irregular power supply from the ambient energy

source.

In this thesis several techniques such as TC, AC and DP are used to increase the lifetime

of the IoT end devices. This MSc thesis is part of a research effort conducted at

Thomas Johann Seebeck Department of Electronics. In [7], a working prototype

combining an FRAM-based node, TC, and EP has been implemented on a Texas

Instruments MSP430FR5739 microcontroller and CC2500 radio module. The key idea

is illustrated in Figure 1.

Figure 1. Illustration of the available energy and communication states at different Vcc (voltages). The
communication states are decided based on the predicted energy; saving and restoring state and data of
the microcontroller is enabled thanks to the FRAM technology and the CTPL library. Figure inspired
from [7].

Figure 1 illustrates how an EH source powers a node comprising a Texas Instrument

MSP430FR5739 microcontroller combined with a CC2550 RF module. The next energy

Communicating

End the
Communication

Save state and data

Restore state and
data

Restart the
Communication

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0 5 10 15 20 25 30 35 40 45 50 55 60

Vo
lta

ge
(V

)

Time (Sec)

Vcc

TC Threshold
(2.5V)
No energy threshold
(1.9V)
Communication
threshold (2.9V)
Energy prediction

17

level is predicted and the node communicates with its peer (which has the same

hardware combination) until the voltage prediction level drops to a configurable

threshold level (here 2.9 V). Below the 2.9V threshold, the node stops communicating.

The node then takes a snapshot (in the non-volatile FRAM) of the current state of the

microcontroller and hibernates when VCC further drops to the 2.5V transient computing

threshold level. If the voltage level further drops to the so-called no energy threshold

level of 1.9 V, the node is not operating. When the energy is back and the voltage rises

above 1.9 V, the processor restores the state where it was when TC triggered. Finally,

above 2.9 V the node turns on its radio again and proceeds with the communication. EP

is used to anticipate significant power losses (to properly terminate the communication

between the nodes) and very short power losses (to avoid unnecessary save and restore

steps).

The existing setup provides a suitable platform towards battery-less nodes. However,

there is room for further improvements; thus, the main purpose of this thesis is to

augment the existing setup with techniques that would allow increasing the power,

memory, and communication efficiency of the system. As a novelty of this thesis,

software based approximate computing (AC) techniques [3] is introduced in the system

to increase the amount of information that can be transmitted within the available

bandwidth. Moreover, Line-P prediction model, previously used for EP, is now used for

DP (in particular detecting if information is changing); this, in turns, allows making

decisions regarding whether or not to transfer information.

To achieve the above, the following goals have been defined:

• Analyze the existing system architecture and source code;

• Identify AC opportunities in the existing system and implement them;

• Define and implement a data prediction mechanism;

• Define a transmission control strategy based on data prediction and implement

it;

• Analyze the results in terms of power, memory, and communication efficiency.

18

1.2 Organization of the thesis

The rest of this thesis is organized as follows. Chapter 2 presents the background

information on NVMs, EDS, TC, AC and DP. Chapter 3 presents the experimental

setup, including the hardware platform and the various software modules used and

developed. Chapter 4 presents the results in terms of current consumption, TC, DP, AC,

and radio control. Chapter 5 concludes the work and suggest a few perspectives.

19

2 Background

This chapter aims to study the different techniques to comprehend the range of

approaches for EH IoT nodes. It also shows the overview of the state of the art literature

of different techniques including the challenges towards the sustainable EH IoT

technologies.

As discussed earlier, several techniques such as TC, AC, and EP can be used to reduce

the cost and increase the energy efficiency of the IoT devices. In TC, the energy buffer

is removed, and the load is directly connected to the energy supply but as the source is

subject to variations, it makes the system more unstable, meaning that if the power is

not sufficient for the load then it will turn off and when the power is restored again then

the system starts back from the beginning. As a solution to this problem, snapshots of

the state of the system are taken at periodic checkpoints to NVM; they can restore the

system from the same checkpoint at a later time when the energy will be available [8].

However, inflexible, periodic checkpoints in the system creates an overhead. In order to

remove the overhead created by the unused checkpoints, EP can be used to predict the

energy using historical data and thus reducing the number of unnecessary checkpoints.

Moreover AC can used to reduce the energy consumed for the communication between

the nodes and introduce error tolerant systems.

2.1 Non-Volatile Memories

NVMs are a type of memories that retains data after losing power. In computers, a

Read-Only Memory (ROM) is such a NVM, but as the name suggests, it is only

readable, and the data can be written only once. In embedded systems, the embedded

code and data records can be stored in the ROM. ROM can be categorized into mask

read only memories, which are PROM (Programmable Read-Only Memory), EPROM

(Electrically Programmable Read-Only Memory), and EEPROM (Electrically Erasable

and Programmable Read-Only Memory).

The other main type of memory is volatile memory, the most common one being called

Random Access Memory (RAM) and as the name suggests, RAM loses its data if the

20

power is turned off. RAM can perform both read and write operations and can be further

divided into two sub categories called SRAM (Static RAM) and DRAM (Dynamic

RAM).

The main difference between SRAM and DRAM is that after each write operation,

SRAM keeps data as long as power is available, while the data needs to be refreshed

(i.e. overwritten) in DRAM.

2.1.1 Available NVMs

There are different types of NVMs but in most of them, an NVM cell is based on a

MOS (Metal-Oxide Semiconductor) transistor having a source, drain, control gate and a

floating gate. Charges are stored and retained in the floating gate when the power is

removed. All floating gate memories have same cell structure [9].

Due to the data retaining strength of NVMs, they are used in most of the consumer

products. Flash memory is the mostly used NVM; flash memory uses a memory cell

allowing high reliability and low power consumption. As NVM is developing, new

technologies and types of NVMs are emerging day by day.

2.1.1.1 Flash memory

In 1980, Toshiba’s then factory manager Dr Fujjo Masuoka invented Flash memory [9]

and proposed it for the first time in 1984 [10]. It is commonly used in computers and

other electronic devices for the storage of important data that needs to be saved if the

power is removed. Flash memory has the advantage of removing the unwanted clusters

of data without removing the memory chip.

Flash memories uses large memory cells which are grouped in blocks comprising of

memory arrays. Charging the floating gate in the transistor can program these blocks.

2.1.1.2 FeRAM/FRAM (Ferro electric Random-Access Memory)

FRAM is another kind of widely used NVM as they preserve data even in the absence

of power supply signal. A ferroelectric capacitor is used as a storage element in each

memory cell that stores a logic state based upon electric polarization of the capacitor.

The non-volatility nature of the FRAM comes due to using ferroelectric material as the

dielectric of the cell’s capacitor. The memory cell is composed of ferroelectric capacitor

and an access transistor, which stores logical data ‘0’ or ‘1’ depending on the electrical

21

polarization state of the ferroelectric capacitor. Ferroelectricity is a physical property

where a spontaneous polarization of the electric dipoles is generated by applying

external voltage to electric dipoles arranged in the ferroelectric material [9].

FRAMs are generally classified into two types; one type operates by detecting a change

in charge amount stored in the ferroelectric capacitor and the second type operates by

detecting a change in the resistance of a semiconductor due to spontaneous polarization

of the ferroelectric material.

The applied voltage across the ferroelectric capacitor polarizes the ferroelectric material

according to the direction of an electric field. FRAM features are high speed, low power

consumption and high rewriting. A general comparison of the common RAM types is

given in Table 1.

Table 1. Comparison of FRAM with other memory products. Table inspired by [9].

Memory
Products

*1
SRAM

*2
DRAM

*3 EEPROM *4 FLASH *5
FeRAM

Memory type Volatile
backup

Volatile Non-volatile Non-volatile Non-
volatile

Read cycle (ns) 12 70 200 70 110

Internal write
voltage (V)

3.3 3.3 20 (supply
voltage 3.3V)

12 (supply
voltage 3.3V)

3.3

Write cycle 12 ns 70 ns 3 ms 1 s 110 ns

Data write Overwrite Overwrite Erase + Write Erase + Write Overwrite

Data erase Unnecess
ary

Unnecess
ary

Byte (64 byte
page)

Sector (8K /
16K /32K /64K)

Unnecessar
y

Endurance (# of
rewrites)

Infinite Infinite 1E5 1E5 1E10 to
1E12

Stand-by
current (uA)

7 1000 20 5 5

Read operation
current (mA)

40 80 5 12 4

Write operation
current (mA)

40 80 8 35 41

1 Note *1: 512K x 8bit, *2: 2M x 8bit, *3: 8K x 8bit, 4: 1M x 8bit, *5: 8K x 8bit

22

As shown in Table 1, all the other available memories have drawbacks: for instance,

DRAM and SRAM are fast but volatile, also SRAM are comprised of large cell sizes.

EEPROM and Flash are non-volatile but slow and have lower write speeds. On the

other hand, FRAM is faster and consumes less energy than the other available and low-

cost memories, which makes it more suitable for low power applications as targeted in

this work.

2.1.2 Emerging Non-Volatile Memories

Due to the limitations of the aforementioned memories, there is a dire need for high

speed, high write endurances and small size. Some of the emerging NVMs are

Magnetoresistive Random Access Memory (MRAM), Conductive Bridge Random

Access Memory (CBRAM), Phase Change Random Access Memory (PRAM), Silicon-

Oxide-Nitride-Oxide-Silicon (SONOS), Resistive Random-Access Memory (RRAM),

Racetrack memory, Nano Random Access Memory (NRAM). These memories are

under research to make it more feasible to implement them in IC technologies. MRAM

is non-volatile, fast, consume very little power and are not prone to write cycle

limitations. MRAM uses magnetic orientations to retain data in its cells. Nowadays

MRAM is also available on the market; as shown in Table 2, it has higher speed than

FeRAM but due to higher price it is not considered feasible for low cost, low power

application devices. Table 2 shows the differences and comparison of the available

memories in the industry.

Table 2 Comparison of available NVMs. Table inspired by [9].

 MRAM SRAM DRAM Flash FeRAM

Read Speed Fast Fastest Medium Fast Fast

Write Speed Fast Fastest Medium Low Medium

Array Efficiency Med/High High High Med/Low Medium

Future Scalability Good Good Limited Limited Limited

Cell Density Med/High Low High Medium Medium

Non-Volatility Yes No No Yes Yes

Endurance Infinite Infinite Infinite Limited Limited

Low Voltage Yes Yes Limited Limited Limited

Complexity Medium Low Medium Medium Medium

23

Please note that this MSc thesis does not seek to gain a deep understanding of these new

memories but rather presents an overview; the work presented later is based on already

commercially available FRAM-based microcontroller from Texas Instrument.

2.2 Energy Driven Systems

EDSs can be categorized broadly into the following classes and subclasses.

2.2.1 Transient Computing Systems (TCS)

The word transient means lasting only for a short time and computing means to

calculate or compute; so, combining both words gives us transient computing that

means temporary or non-lasting computations. In the computing world, TCS is a generic

term and refers to all those systems that are capable of providing correct operation

despite experiencing frequent power losses [1] and is often used in combination with

EH and NVM.

To remove the hustle of charging or replacing the battery, interest is growing for

powering the IoT devices from the ambient sources available in the surroundings. As

discussed earlier, EH techniques have their challenges due to constrained and irregular

supply and this irregular supply is the due to the variations in the surroundings.

However, as a traditional approach, this issue can be resolved by adding an energy

buffer such as super-capacitor between the source and the load and provides stable

supply to the system. The disadvantage associated to the energy buffer is that it adds

additional cost, weight and runtime for its charging and discharging [8].

As a solution to the aforementioned problem, TC can be used to directly power the

system with the EH method and saves a snapshot of the microcontroller state when the

system senses instability in the power. The system usually takes snapshot of the system

after certain intervals of time and if the node dies due to power loss, it retains the

snapshot and once the power is available, and the system resumes from the previous

saved checkpoint.

Scientists and researchers have developed several techniques in the recent years. Works

done on TC have not been limited to the implementation processes but also includes the

combination of other techniques, such as EP and AC. Several types of TC techniques

24

have been proposed so far which are used to optimize the available energy and take a

snapshot of the system at certain stage before the power loss so it can be retained later at

the availability of power source. TC techniques can be classified into generic TC

systems, Power Neutral Systems (PNS) and Energy Neutral Systems (ENS).

Power Neutral Systems (PNS): Directly coupled systems that adjust their performance

and adapt themselves to the harvested power are called Power Neutral Systems (PNS).

In Figure 2, the presence of a harvesting-aware computational load brings power-

neutrality into the system where a power conversion unit may or may not be present.

Systems using Dynamic Routine Adjustment (DRA), Dynamic Frequency Scaling

(DFS), or a combination of both, are examples of PNS [1].

Figure 2. PNS’s energy subsystem architecture in TC. Figure inspired by [1].

Energy Neutral Systems (ENS): These systems add intermediate components such as

power regulators, power conversions and energy storage between the harvester and the

load to make it look like a battery to the load. The added components increase the

complexity, cost, mass and volume of the system. All Energy-Management-Unit (EMU)

based systems are ENS [1], as shown in Figure 3.

Figure 3. ENS’s energy subsystem architecture in TC. Figure inspired by [1]

These techniques are summarized in Table 3 and generic TC techniques are explained
further.

Harvesting aware
computations (Load)

Energy
Harvester

Power
conversion

Computations
(Load)

Energy
Harvester

Energy
Storage

Power
conversion

Power
conversion

25

Table 3. Classification of recent studies in EH powered IoT nodes

Type

Notable
work	

Platfo
rm

Main Idea	 Advantage
s

Disadvantages Contributi
on to
further
developme
nt	

Generi
c

Memento
s[11]

Softwa
re

- Check-
pointing at
strategic points.
Interruptible
- Computations
for running over
EDS.

- A step toward
battery-less
computations.

- Improving
the
reliability
of EH
nodes
- Adding
flexibility
- Increasing
the
integrity of
EH- nodes

- No energy
consumption
evaluation
- High
overhead in
energy and
storage
- Manual entry
of Trigger
points

- Prototype

- Technique

Hibernus
[12]

Hardw
are

- One snapshot
before power
failure.

- Switching
between Active
and Hibernate
state

- Simplicity
to TCS
- No
manual
placement
of trigger
points

- No energy
consumption
evaluation

- Frequent
capturing of
snapshots
-Manual input
of threshold
voltage for
Active and
Hibernate state

- Technique
- Platform

Compute
through
power

loss
(CTPL)

utility by
TI [13]

Hardw
are

- Hibernus like
system

- Open
source
- Simple
- Available

- No energy
consumption
evaluation
-Only three
levels
available
- Only works
with
MSP430FR
microcontrolle
rs

- Prototype
- Platform

QuickRe
call [6]

Hardw
are

- Using unified
memory system.
- FRAM is used
as RAM while

- High
throughput
for taking
snapshot

- Slower due
to usage of
FRAM
- No usage of

- Technique

- Platform

26

RAM is not
used.

and restore. RAM
- Usage of
inflexible
fixed voltage
threshold.

Hypnos
[14]
(Not

complete
TC)

Hardw
are

-Uses ultra low
power mode.
- No NVM is
used and instead
SRAM and
super-capacitor
is used

- Extreme
voltage scaling

- Ultra low
power sleep
mode.
- SRAM is
used

- Loss of data
if no power is
available for
longer period

- Prototype
- Technique

Power
Neutral
System
s (PNS)

Dynamic
Frequenc
y Scaling

(DFS)
[15]

Hardw
are

-Change the
frequency of the
microcontroller
with respect to
the available
power

- High
throughput
- High
productivit
y
- Increased
execution
time

- Only
compatible
with
processors
having
frequency
scaling
capability

- Prototype

- Platform

Dynamic
Routine
Adjustme
nt (DRA)
[16]

Softwa
re

- Modulating the
sleep and wake
up routine of the
microcontroller
with respect the
available power

- High
throughput
- High
charging
time of the
capacitor

- Increased
overhead
- Increased
sleep times

- Technique

Hibernus
++ [17]

Softwa
re

- Adaptive
system to take
the snapshot
only once before
the power
failure.
- Characterise
the system
properties and
behaviour
- Intelligently
adapts hibernate
and restore
thresholds.

-
Autonomou
s set up of
thresholds
for
hibernate
and restore.
- Low
snapshot
overhead

- Higher
computation
overhead than
Hibernus

- Prototype
- Technique

27

Dynamic
Tasks

Scheduli
ng

(Enhance
d

Hibernus
++) [18]

Softwa
re

- Scheduling
tasks based on
the available
power

- Reducing
communica
tion
workload

- Only
simulations
available
- Higher
overhead than
Hibernus++

- Technique

ENZYM
E [19]

Softwa
re

- Frequency
modulation and
routine
adjustment

- High
throughput
- High
productivit
y

Combined
overhead of
DRA and
DFS.

- Technique

Energy
Neutral
System
s (ENS)

Energy
Manage

ment
Unit

(EMU)
based

EDS [20]

Hardw
are

-Useful when
tasks operate at
different
voltage/energy
levels.

-Execution
continues in
parts

-Bridging
the gap
between
operating
levels of
source/load

-Much efforts
on the design
of EMU rather
than original
problem -No
evaluation of
the EMU
based energy
consumptions

-Prototype -
Architectur
e -Platform

Dynamic
Energy
Burst

Scaling
(DEBS)

[21]

Hardw
are

-Execution of
program in
chunks of tiny
tasks

-Useful
when tasks
operate at
different
voltage/ene
rgy levels.
-Execution
continues
in parts

-Hardware
overhead -
Sustainability
issues -No
evaluation of
the EMU
based energy
consumptions

-Platform

-
Architectur
e

EMU+D
EBS+ED

S [22]

Hardw
are/So
ftware

-Speed
estimation
application
based on an
EMU based
EDS

-A reliable
platform -
Battery less
System -No
maintenanc
e -Green
application

-Accuracy is
power depende
nt
-Lack of
energy models

-
Application

The most “fundamental” techniques are explained further in what follows.

28

2.2.1.1 Mementos

Mementos is the oldest and basic technique of TC in which checkpoints at strategic

points are taken during execution, meaning that it regularly saves snapshots of the

system state to the NVM that allows it to return to a previous checkpoint after power

failure. Checkpoints are taken at strategic points, but periodically, which is considered

as the drawback for the technique, as it increases time and overhead due to unnecessary

checkpoints.

This technique has two parts, one is a set of program transformation passes and the

other one is a so-called compact library. The former is used to insert energy-

measurement code at control points and the latter provides state check pointing and

recovery functions. It can be integrated to the application using standard means. The

goal of the Mementos design is to automatically resume and suspend the program

without external intervention. The main principles of Mementos includes that it can be

developed in any NVM hardware (although it has been evaluated using only Flash

memory for experiments) and does not require any special hardware except voltage

measurement in order to measure the voltage of the energy buffer. Voltage

measurement circuitry is generally available on all devices operated on energy storage

devices.

The next principle is to argue about energy maximally during the run-time and

minimally during the compile time. Reasoning about run-time energy availability at

compile time was impossible due to variations in the energy sources. So, Mementos

designs estimates energy at run time and insert energy checks at compile time.

Mementos places trigger points and estimates the available energy, then it covers the

main() function of the program with a code that restores execution from an available

checkpoint.

Mementos offers three different instrumentation strategies enabling it to instrument

common structures to be compatible with any program. The following modes are used

in order to support the instrumentation strategies.

• Loop-latch mode: Loop-latch is a back edge that runs from the bottom to the top

of the loop. Trigger points are placed at each loop-latch and check the input

voltage level for each iteration of every loop in the program.

29

• Function-return mode: Trigger points are inserted after each function call, where

Mementos checks the input voltage level each time the program returns from a

function.

• Timer-aided mode: This mode is used to reduce the frequency of check-pointing

operations. This mode works with either the loop-latch or function-return mode.

A hardware timer interrupt is inserted to set a flag at predefined intervals. Each

trigger point checks the flag, if the flag is set then it proceeds for checking the

voltage level. This mode is used to reduce excessive check-pointing and save

energy. This energy saving make sure less energy is used in checking the voltage

level that the run-time execution.

A programmer can insert trigger points manually, instead of using the above mentioned

instrumentation strategies, simply by including the header of the API provided by

Mementos and placing the function calls without checking the input voltage level. An

ADC is used to compare the input voltage against a predefined threshold [11]. If the

input voltage is deemed to be failing (Vcc < threshold VTH), a snapshot of the system is

saved to NVM. Regular polling of Vcc is required for this purpose that results in

multiple snapshots being saved if Vcc fluctuates near the threshold and increases the

time overhead of the performance of the system [23]. The frequency of the trigger

points enables the ability of Mementos to precisely complete a checkpoint.

The drawback of this technique is that it uses (slow) flash memory and has a very high

overhead due to excessive check-pointing [11].

2.2.1.2 Hibernus

Hibernus is the second technique proposed for TC. It is a refinement of Mementos. This

approach saves the snapshot of the complete system to the NVM only once immediately

before the system power failure. This technique uses FeRAM, as it is faster than Flash

memory and easily integrated into low power application. FeRAM is exploited upon a

power failure: it is used to store the microcontroller’s state snapshot by using the energy

left in the microcontroller’s decoupling capacitance. Contrary to Mementos, Hibernus

does not use any trigger points and has two states, i.e. active and hibernating states.

Active state is when the input voltage is higher than the restore voltage (VR) and

hibernating state is that when the threshold voltage (VH) is higher than the input voltage.

30

In the original paper [23], Hibernus is implemented on a Texas Instruments FRAM-

based MSP430 microcontroller and the internal comparator of the microcontroller is

used to continuously check the input voltage and sends hardware interrupt if it crosses

either hibernate or restore thresholds. Inside the interrupt service routine, a function is

called to store the snapshot of the volatile memory and the registers into the non-volatile

FeRAM, the check-pointing is set, and the system will enter into deep sleep mode. The

energy stored in the decoupling capacitance of the microcontroller is used to save the

snapshot of the system before going to deep sleep. This allows it to have low threshold

voltage (VH), resulting in increased active period of the main program. While

determining VH, the time needed to charge the decoupling capacitor is considered in

order to have enough energy for saving the snapshot before a complete power loss. The

flowchart shown in Figure 4 illustrates the Hibernus approach.

Figure 4. Flowchart illustrating the principle of Hibernus. Flowchart inspired by [23]. Hibernus stops the
program normal operation if the supply is lower than Vh and goes to sleep after taking a snapshot. Once
power is again available, it checks the snapshot if taken successfully and restore the state.

Hibernus avoids excessive check-pointing and as a result, this technique is more energy

and time efficient. This technique can make the system hibernate at any point during the

execution of an application and is transparent to the programmer. The content of all

registers and volatile memory are copied to the NVM in order to save a snapshot. The

energy required, Eσ, to save a snapshot is calculated using Equation 1.

Eσ =nαEα +nβEβ [24] (1)

Supply failing?
(Vcc <= Vh)

Normal Operation

Snapshot to NVM

Sleep

supply recovering?
(Vcc >= Vr)

Restore
state

Restart
application

Setup hibernate interrupt

Snapshot
saved OK?

31

where nα is the size of the RAM in bytes and nβ is the number of bytes used by the

registers, Eα and Eβ are the required energies for copying each RAM and register byte to

the NVM, respectively. The microcontroller active voltage range lies between Vmin and

Vmax. Given the total capacitance 𝐶, Equation 2 can be used to determine the energy

Eδ stored in the microcontroller’s decoupling capacitor between a given voltage V and

Vmin [24].

Eδ= ((V2−V
min

2)/2). 𝐶 [24] (2)

After determining the stored energy in the decoupling capacitor, the threshold voltage

(VH) can be determined in order to ensure that the snapshot is saved completely.

According to the authors of [12], the capacitance of the microcontroller is 16µF, the size

of RAM in bytes is 1024, and the size of registers is 512 bytes. Moreover, Eα is 4.2 nJ

and Eβ is 2.7 nJ in case of FeRAM. Substitution of the given data in Equation 1 gives

that 5.7 µJ (Eσ) is consumed to store a snapshot of the system. To make sure that a

complete snapshot is taken then the expression Eσ ≤ Eδ needs to be true. As the

MSP430FR5739 works from Vmin = 1.9 V to Vmax = 3.6 V, using Eσ = Eδ and using

Equation 2 gives the voltage as 2.17 V; to allow Vcc, an hysteresis is added by setting VR

higher than 2.17 V.

2.2.1.3 QuickRecall

The next TC technique used as a solution to the problems of EH is QuickRecall [2].

This technique allows the FRAM to be utilized as RAM and thus the system works as a

“unified memory system”, i.e. the RAM itself is not used and only FeRAM is used as a

unified memory.

In order to take a snapshot, the program needs to save the states of the processor and

program to the NVM before a power failure. Previously, checkpointing was introduced

and the application checked the input voltage level either periodically or at desired

locations, which delays program execution and introduces additional overhead to the

application. QuickRecall is designed in such a way that a checkpoint is triggered if there

is a drop in the input voltage, meaning that the checkpoint is taken only if there is a

forthcoming power loss; this results in the removal of the delay in the normal execution

of program due to checkpointing. It is crucial for this kind of technique that the

32

checkpointing needs to be successfully completed before the complete power loss. For

this, QuickRecall chooses an appropriate trigger voltage (Vtrig) to interrupt the program

and start the checkpointing.

To check the input voltage level, the microcontroller’s General Purpose Input Output

(GPIO) pins are connected to an external comparator, which is then configured with a

predetermined trigger voltage (Vtrig). The comparator checks the input voltage (Vcc) and

compares it with the trigger voltage (Vtrig). If Vcc is smaller than Vtrig, it sends the signal

output to the microcontroller [25].

To take a complete snapshot, the system needs to store the state of the program,

processor and configuration of the registers of various peripherals. All the mentioned

states need to be retained and recalled as a function of the availability of power. The

system needs to checkpoint periodically and store the contents of the RAM and the

registers, which introduces checkpointing overhead. By definition, checkpointing

overhead is the time needed to the snapshot of the system before a power-loss and

wake-up overhead is the time taken by the system to restore on the availability of

power. According to [25], the checkpointing and wake-up overhead of the techniques

presented in the previous subsections are higher as compared to that of QuickRecall.

MSP430FR5739 has internal non-programmable supply voltage supervisor (SVS) that

monitors Vcc using comparator and its output proctors the program execution window

[25]. For the MSP430FR5739, the value of Vtrig is required to be higher than values for

SVSoff and SVSon. The typical values for SVSoff and SVSon are 1.88V and 1.93V,

respectively. Moreover, 2.0V is required for the safe operation of FeRAM. The

capacitor discharge equation and the storage time enabled the calculation of Vtrig. Vtrig

was calculated as 2.0003V for the successful completion of checkpoint [25].

In the software, after taking the snapshot, a flag is set to check later if a checkpoint is

stored or not. During the booting process, the program checks the flag. If the flag is set,

then it initialises all the peripherals and checks if Vcc is higher than Vtrig, then the system

restores the core registers, clears the flag and executes the main program. The flowchart

shown in Figure 5 shows the software structure of this technique [25].

33

Figure 5. Flowchart illustrating the software flow of QuickRecall. Flowchart inspired by [25]. After the
start-up, QuickRecall checks the checkpoint flag and if the flag was set, it boots the processor and
initializes the microcontroller. It waits for Vcc to go above Vtrig and then restores SR (Stack Register),
GPR (General Purpose Register), SP (Stack Pointer) and if the flag is not set then the system goes through
normal boot.

A disadvantage of QuickRecall is that it relies on the processor for the use of FeRAM as

a unified memory and by doing so, it introduces significant timing overhead and

consumes more energy in write operation than with SRAM. Moreover, it uses a fixed

and inflexible threshold voltage (VH) to take the snapshot. An additional overhead varies

depending on the application due to initialization of the microcontroller and the

peripherals [26].

Restore PC

Store PC

Checkpoint flag
set?

Return from ISR Power off

Set checkpoint
flag

Wait for Vcc > Vtrig

Initialize microcontroller
and peripherals.

Restore SR, GPR, SP

Restore stack
pointer

Call main

Call program

Store SR, GPR, SP
Clear checkpoint

flag

Set stack pointer to root of stack.

Initialize microcontroller and
peripherals.

Checkpoint flag
set?

Power on

Wait for Vcc > Vtrig

34

2.2.1.4 Hibernus++

After considering the drawbacks of the previous techniques, a new technique was

proposed to increase the efficiency of the system. The main goal of this technique was

to reduce the overhead and increase the accuracy of system. Hibernus++ is the advanced

version of Hibernus [17]. In particular, it has the ability to self calibrate and adapt the

threshold and restore voltages in response to the load properties and source dynamics. In

this technique the system characterises the hardware in order to set the threshold voltage

(VH). This characterisation is done to increase the active time and reduce energy

wastage.

The flowchart shown in Figure 6 shows the working mechanism of the Hibernus++

technique.

Figure 6. Working mechanism of the Hibernus++. Figure inspired from [17]. Hibernus++ self calibrates
to find the threshold voltage if a snapshot was not saved previously, otherwise it restores the previous
state.

Checkpoint flag set?

Power on

Self calibration

Supply test

Restore state Restart application

Snapshot saved
OK?

Normal operation until
supply drops

Sleep until the supply
recovers

Save Snapshot to NVM

Supply fails

35

When power is available, the system checks if it was calibrated or not. If the system was

not calibrated previously, then it evaluates the rate of voltage drop in case of sudden

power loss by running the calibration routine. During this routine, the system sets the

threshold voltage (VH) to sleep. The system then checks the input power and tests if the

power is sufficient for the sustainability of the system in active mode. If the input power

is not sufficient then the system goes to sleep until the voltage reaches a sustainable

value. The system checks if there was a previous attempt to take a snapshot; if the

previous attempt failed, then it increases VH by 0.1 V and starts the execution from the

beginning. If the system snapshot was taken successfully, then the system restores and

continues normal operation until the input voltage drops below the threshold voltage

(VH). If the input voltage goes below the threshold voltage then the system stores the

snapshot and goes to sleep. If the input voltage recovers before going below the

operating voltage of the microcontroller (Vmin), and the contents of the volatile memory

are not lost, then the system resumes its operation without the need to restore the data

from the snapshot, otherwise the system restores from the previous successful snapshot.

As discussed earlier, check-pointing and polling increases the overhead. To reduce the

overhead caused by checkpointing, Hibernus++ uses an adaptive approach, i.e. the

system stores a snapshot only if the power loss is imminent. This approach involves the

risk of losing all the data if a snapshot is not successful and the system needs to start

computation from the beginning.

Hibernus++ uses self-calibration routine to determine the threshold voltage at run-time

in order to enable the system to take a snapshot using the energy stored in the

decoupling capacitance of the microcontroller. Similar to Hibernus, an interrupt is

configured to save a snapshot if the voltage goes below the threshold voltage.

36

Figure 7. Self-calibration of the threshold voltage VH. Flowchart inspired by [17]. Hibernus ++ begins
self-calibrating during the start up and tries to save the snapshot if Vcc is at the initial level. If the attempt
fails, the program increases the threshold voltage until a snapshot is taken successfully.

The flowchart shown in Figure 7 shows the process of determining VH using self-

calibration routine. As shown, the system waits for the input voltage to reach the

calibration voltage. Once both voltages are matched then the system disconnects the

source using a switch and saves a snapshot the FeRAM. Then the system checks the

input voltage and reconnects the source and closes the self-calibration routine.

2.2.1.5 Compute Through Power Loss (CTPL)

Texas Instruments (TI) provides the Compute Trough Power Loss (CTPL) software

utility library as FRAM utilities for its low power FRAM-based MSP430FRXXXX

microcontroller series. CTPL is a Hibernus-like approach and uses voltage thresholds to

save the state of the CPU and its peripherals to the FRAM NVM before the loss of

power. Once power is back, it restores the CPU and its peripherals and the program

resumes from the point where it executed last. Comparator D of the microcontroller is

used to trigger the interrupt in the program. This library can be integrated into the

program and sometimes avoids the intensive start-up routine when it starts from the

resume state.

Did previous attempt
failed?

Begin Self-calibration

Save Snapshot to NVM

Increase calibration start voltage

Sleep until input voltage =
calibration start voltage

Short circuit source

Check supply V and removes short
circuit

End Self-calibration

37

CTPL stores the CPU states, key peripherals and stack from RAM to FRAM. After the

availability of power, CTPL checks if an image was taken successfully and the program

shall resume from the image or execute the C start-up routine. The C start-up routine is

the C compiler runtime library which executes prior to the main() function. If the

program needs to execute from the image, then the state of the CPU, key peripherals

and stack are restored, which avoids the C start-up routine re-initialisation and saves

significant amount of energy. The flowchart of CTPL is shown in Figure 8.

Figure 8. Working mechanism of CTPL. Figure inspired by [13]. CTPL checks if a snapshot was taken
and then restores the state; if a snapshot was not taken then it will go through initialisation process and
once the voltage drops below threshold then it takes the snapshot

The voltage thresholds for saving the state of the program are configurable. This can be

chosen based on the system requirement of the application to provide enough energy for

safe shutdown. The voltage measurement ability of the ADC10_B is used to measure

VCC with a sampling rate of 1 kHz. Also, the built-in comparator in the

MSP430FRXXXX can be used with an external voltage divider to provide a reference

voltage on Pin P1.5 and trigger the CTPL in case the voltage drops below the threshold.

When VCC goes below the threshold level, it saves the state and enters the low-power

LPM.5x Wake-up

Voltage drops
below threshold

C Start-up routine

Initialization

Valid CTPL image?
CTPL_init();

Restore state

Save State

CTPL_enterShutdown();

Reset

38

mode “LPM.5x”. After entering LPM.5x, it waits for the device to enter a Brownout

reset (BOR) if there is loss of power [27].

The main disadvantage of CTPL is that it is designed for TI MSP430 FRAM-based

microcontrollers and is not compatible with other platforms [27]. Moreover, its

weakness is that if the voltage decrease rate is higher than 4.8 V/s, then the system will

not detect the power loss and the snapshot will not be taken [7].

2.3 Energy Prediction

Unlike battery operated IoT systems, it is impossible for a battery-less system to

quantify the amount of available energy at a given time. As of today’s research, the

energy consumption of the radio module in a node is higher than other operations

including sensing or computing. EP of the EH is new paradigm to in order to control the

radio or take other decisions based on the predicted energy. Researchers have proposed

several EP models in the recent years for EH [4]. These models depend on different

parameters such as time of the day, weather and historical data. One of the EP models

proposed in our department is LINE-P EP model.

2.3.1 LINE-P EP Model

Line-P is a lightweight and near to accurate energy prediction model. This model has

three classes and uses results of approximation and sampling theory [4]. Line-P takes

into account the smooth variations and also the rapid fluctuations of the historic data

and then predicts the short term and long term energy. In this model, sampling operators

in Equation (26) of [4] are used to define three predictors.

According to [4] LINE-P has three cases which are divided based on different levels of

memory overheads and accuracy. It has been claimed by the author of [4] that LINE-P

predictions are more accurate if the fluctuations on the source are smoother.

The first and third cases of LINE-P use energy information from one of the previous

days and take the previous samples from the same day to predict the next value.

However, unlike other cases and models, the second case works only with the previous

samples from the same day. This case is beneficial if the data from previous days are

not available. As this case does not require the data from the previous days, it is more

39

memory efficient than the other prediction cases or models. However, according to [4],

the Mean Square Error (MSE) and Mean Average Error (MAE) of Case II is higher than

the other two cases of the same model.

The equation that represents class II of Line-P EP model is as is as per Equation 3.

 (SPREDII;af) (j) = 𝑎𝑘 𝑓(𝑗− 𝑘)!
!!! [4] (3)

Where j is the next time slot, m is the number of historic slots and 𝑎𝑘 is the coefficient

and its values are derived in [4] as per (4),

𝑎 = 0,0,0,0,0,0,0, !
!
, !"
!"
, !
!
,− !

!
,− !

!
,− !

!"
 [4] (4)

To make a single prediction, six samples are taken at different time intervals. For

example, to predict the value for the next second, then the data from the previous six

seconds are considered with different weightage to give the prediction value. The

weightage of the intervals are derived in [4] and remain constant.

This prediction model was given for the prediction of energy, but if the variations of the

data are smooth, then this could possibly be used for the prediction of other types of

data.

2.3.2 Other Models

Other EP models include fixed parameter weighting factor (FPWF) and Adaptive

Neural Network (ANN) based EP models. FPWF based energy prediction models are

Exponential Weighted Moving Average (EWMA) [28], Weather Conditioned Moving

Average (WCMA) [28], Accurate Solar Energy Allocation (ASEA) [29], Q-learning-

based solar energy prediction (QL-SEP) [30], Pro-Energy (PROfile Energy Prediction

Model for solar and wind energy harvesters) [31].

EWMA uses the information from previous days combined with historical average of

the data to predict the energy. This model is suitable for consistent weather and longer

slots.

40

WCMA is the advanced form of EWMA and uses the mean value of the energy of the

current and previous day to predict the energy for short term. This model is more

accurate and less computationally complex.

ASEA is proposed considering short-term conditions and unpredictable weather. This is

based on the ratio between the real harvested energy and the predicted value. Although

this model does not require as many historical data, according to its authors it produces

less accurate predictions than WCMA [4].

Pro-Energy (PROfile Energy prediction model) uses the historic data from the past days

to predict energy. This prediction model is designed for solar and as well as for wind

energy harvesting sources. This model compares the current conditions with the past

days and predicts the energy using the most similar day from the stored data. 30 minute

data interval time slots are taken for Pro-Energy [31]. The results obtained from Pro-

Energy predictions are 60% better than that of EWMA and WCMA. Later on, Pro-

Energy with variable-length timeslots (Pro-Energy VLT) of 30, 60, and 90 minutes was

introduced to increase the accuracy and reduce the memory and energy overhead [32].

QL-SEP also uses the data of the past days and the most recent weather conditions from

the current day. In this model, the day is divided equally into slots. This model also uses

EWMA. A daily ratio (DR) parameter is also introduced which is the energy average

and shows if the energy increases or decreases in the slots. According to its authors,

QL-SEP produces better prediction values than EWMA, ASEA and Pro-Energy [30].

However, this model is designed for longer slots and if the condition changes rapidly,

then the model will not produce accurate predictions and involve higher computations

than the other models [4].

IPro-Energy is also based on Pro-Energy and compensates the inconsistencies in the

weather conditions [32]. This model has low requirement for the storage of data and is

less complex. Based on the results provided by its author, the predictions are more

accurate for IPro-Energy as compared to Pro-Energy [33].

Several ANN based models are also available for the short-term predictions of energy.

One of these models uses three to five months of sliding window for training the

network and it was shown by its authors that the five months window produced the most

accurate results [34]. However, this model is not suitable for low performance IoT

41

nodes due to its requirement of minimum 3 months historic data. Moreover, it is not

adaptive and less reliable than EWMA and WCMA algorithms, as it needs a large

sliding window for training [32].

2.4 Approximate Computing

Another approach associated with the energy consumption is AC. In the AC approach,

systems trade-off accuracy and energy efficiency. AC comprises a wide and open range

of hardware and software based techniques to make the system energy efficient at the

cost of accuracy. This approach exploits the tolerance level of the degradation in quality

of the application. Several research papers proposing different types of AC techniques

have been published recently, showing that AC is (again) a hot topic for research.

A taxonomy of proposed AC techniques is presented in [3] which compared the AC

techniques in terms of visibility, determinism and granularity.

Visible AC techniques are those in which the errors are introduced during the execution

of any specific instruction. These errors are architecturally visible, whereas invisible AC

techniques introduce errors to the system silently which make the error detection and

correction more challenging.

Deterministic AC techniques are those for which if there is a constant error for every

input at the same initial state, and if the error is not constant and there is more than one

error. Due to unknown error, debugging and testing of non-deterministic techniques can

be challenging.

AC techniques can be termed as coarse-grained or fine-grained. If the number of

dynamic instructions and data footprint are reduced, then the system is coarse-grained

otherwise the technique is fine grained.

Table 4 inspired from [3] compares different AC techniques based on visibility,

determinism and granularity.

42

Table 4. Taxonomy of Approximate Computing, inspired by [3].

Software Technique Visibility Deterministic Coarseness

Approximate GPU kernels Yes Yes Yes

Approximate Synthesis Yes Yes Yes

Algorithm Selection Yes Yes Yes

Code Perforation Yes Yes Yes

Lossy Compression/Packing Yes Yes Yes

Parallel Pattern Replacement Yes Yes Yes

Bit-width reduction Yes Yes No

Float to fixed conversion Yes Yes No

Approximate Parallelization Yes No Yes

Statistical Query Yes No Yes

Synchronisation Elision Yes No Yes

Hardware Technique Visibility Deterministic Coarseness

Digital Neutral Acceleration Yes Yes Yes

Interpolated memorisation Yes Yes Yes

Approximate Warp Deduplication Yes Yes Yes

Bit-width reduction (Voltage scaling) Yes Yes No

Clock Overgating Yes Yes No

Load value Approximation Yes Yes No

Approximate Cache Coherence Yes Yes No

Instruction Memorisation Yes Yes No

Precision Scaling Yes Yes No

Logical Simplifications Yes Yes No

Reduced-Precision FPU Yes Yes No

Analog Neural Acceleration Yes No Yes

Approx Processors Yes No No

Voltage Overscaling Yes No No

Stochasting Logic Yes No No

Approx. PCM Multi Level Cells Yes No No

SRAM Soft Error exposure Yes No No

Approximate Value Deduplication No Yes Yes

43

Approx. PCM Failed Cells No No No

Low Refreshed DRAM No No No

AC has been used in different applications and it depends on the level of error resiliency

of the application. The authors of [35] proposed an AC based method for addressing the

security challenges in IoT. In this method, LSBs of 32 bit segments in IEEE754 format

are replaced to hide information and produce tolerable error while MSBs is used for

precise information, as illustrated in Figure 10.

Figure 9. Security embedding in IEEE 754 Single-precision floating-point format. Figure based on [35]

In [36] several AC techniques are surveyed based on the strategies used to implement it.

As AC is wide spectrum and not exclusive to the strategies presented in Table 4. One of

the strategies presented in [36] is Precision Scaling, which is also used in this thesis.

Precision scaling presented in [36] is the strategy to reduce the bit-width and decrease

the computations and storage overhead.

The authors in [36] also surveyed a different paradigm of precision scaling called

Dynamic Precision Scaling (DPS). DPS was experimented on physics based animation

to improve its efficiency and find the minimum precision required at the design time.

DPS detects the instability in simulations during runtime by measuring the change in

energy between consecutive simulation steps and comparing it with a predefined

threshold. The system restores maximum precision, if it detects instability during

simulations. Then the system reduces the precision progressively and detects its

minimum value until the system is stable. DPS gives different optimization

opportunities to the system and leads to a hierarchical architecture at different levels for

Floating Point Units (FPU) with different precisions. It was shown by the authors that

the use of their technique increased the efficiency by up to 50% and performance by up

to 55% as compared to the single level baseline FPUs [37].

44

The survey also referred to another application using precision scaling for accessing off-

chip data to save energy. Precision scaling was applied to clustering problem based on

mixed model with a requirement of access to off-chip data. The precision scaling is

reduced to eliminate the possibility of functional error by keeping the correct order of

the distance of cluster and samples. The authors of the proposed technique showed by

implementing the technique that there was energy saving between 40 to 60 percent with

unnoticeable loss in accuracy with a model deviation of 0.3 from the accurate data [38].

As AC has wide and open spectrum, interested readers can find additional explanations

in the survey by S. Mittal in [36] and the taxonomy of AC by T. Moreau et al. in [3].

This chapter has presented some background information related to NVMs, EDS, TC,

EP, and AC. With the understanding gained through the chapter, it is now possible to

establish an experimental platform to evaluate those techniques and propose techniques

for data approximation and radio control. This is described in the next chapter.

45

3 Experimental Setup

In this chapter, TC, DP and AP are used to implement an application for a battery-less

wireless node. A test bed is set up to characterize the system and analyze the behavior

of the application. Moreover, techniques for data approximation and radio control are

proposed.

3.1 Hardware platform

Initial experiments were conducted using the following apparatus to replicate the power

consumption results obtained in [7].

• Two FRAM based EXP-MSP430FR5739 boards.

• CC2500 Low Power 2.4 GHz RF Transceiver.

• FLUKE 123 industrial scopemeter to monitor the TC benchmark.

• KEYSIGHT E3630A DC power supply

• HEWLETT PACKARD 34401A Multimeter

On of the two nodes (Node 1) was powered using an USB power supply and used as a

sender. To power the second node (Node 2) from EH source, a supply setup as shown in

Figure 10 could be used, but this was not used in these experiments. For EH source, a

voltage regulator with a low pass filter needs to be used at the input to stabilize the

voltage. A voltage divider is used to divide the voltage in half and input at pin P1.5 for

triggering the CTPL in case of voltage drop. A voltmeter is used to monitor the output

of voltage divider and a scopemeter was connected with CTPL benchmark pin P4.0 to

monitor if CTPL is triggered. An ammeter was connected in series with Vcc for

monitoring the current used by the node.

The setup is as shown in the diagram in Figure 10.

46

Figure 10. Schematic diagram for experimental setup of two nodes communicating using SimpliciTI. This
setup is used to replicate that of [7].

3.2 Software modules

A simple peer-to-peer example provided by Texas Instruments (TI) was used to set up

the communication. The example uses SimpliciTI, which is Texas Instruments

proprietary low power radio frequency communication protocol [39]. Additionally

FRAM utilities also provided by TI was used to enable TC in the system. A finite state

machine was used in [7] to establish a network using TC and it was modified to the

following, as shown in Figure 11.

EH Source and
regulatory circuit.

Ammeter

EXP-MSP430FR5739 with
CC2500 Radio Module

NODE 1

EXP-MSP430FR5739 with
CC2500 Radio Module

NODE 2
CCS Debugger and

Power supply

Voltmeter

Voltage divider

GND

Scopemeter

P1.5 Vcc

P4.0

GND

CCS Debugger

JTAG USB

DC Power
Supply

Solar Panel Voltage
Regulator

Low-pass filter
(Fc=100Khz)

GND

JTAG USB

Vcc GND

47

Figure 11. Modified finite state machine for TC and AC.. Figure inspired from [7]

As shown in Figure 11 the system initializes the radio device, CTPL library from

FRAM utilities, internal temperature sensor and ADC. After initialization, the system

monitors Vcc. If the energy is available, then the system collects the sensor data. After

collecting the data, the system moves to compute state. The system performs all the

computations in the compute state. Once the computations are done, the system

monitors the voltage and if the energy is available, then the system tries to establish link

with its peer. If the link fails, it jumps back to Vcc monitoring state and if the link is

successful, it goes to communicate state. Once the state machine is in the communicate

state, then it sends the packet and after sending the packet the state machine jumps to

Vcc monitoring state. After monitoring the voltage and if the voltage drops below 2.9V,

the radio ends the communication and goes to sleep mode and if the power is available,

then the system collects the sensor data and goes to compute state and does the

computations for approximate computing.

3.2.1 CTPL Mechanism

A high priority interrupt is used for Comparator D of MSP430FR5739 to trigger CTPL.

If Vcc drops below 2.5 V, then the CTPL is triggered and CTPL_enterShutdown()

function is called, as shown in Figure 12.

48

Figure 12. CTPLexecution flow and its integration with the developed program. Figure inspired by [27]

The interrupt service routine (ISR) disables all the other interrupts and takes a snapshot

of the system by saving the peripherals and CPU stack to FRAM. Once the snapshot is

taken, the system enters into low power mode (LPM) and waits for the system to enter

the brown out reset (BOR) or time out after the availability of power.

At the availability of power, the system initializes the radio module and SPI interface to

communicate with the radio module. After initialization, it calls the CTPL_init()

function which restores the peripherals and CPU stack from the stored snapshot. After

restoring the snapshot, the interrupts are enabled and enters to the state machine.

49

3.2.2 Proposed approximation of data

Once the state machine enters the compute state, it processes the data and embeds the

equivalent of an additional byte of information to the existing eight bytes of

information, keeping the size of the packet constant. To do so, the system splits the

source byte to be embedded into the packet bytes into bits. Then the LSB of each the

packet bytes are replaced with the information from the source byte and the packet is

made ready to be transmitted. The flowchart for this technique is shown in Figure 13.

Figure 13. AC execution flow for the developed program

50

3.2.3 Proposed Radio Control using DP

LINE-P data prediction is added to the application to predict the future data and controls

the radio based on the predictions. For a temperature monitoring application, the

algorithm then checks the previous prediction errors and whether the absolute error for

previous two predictions is less than 2 °C. It also checks if the difference between the

current data and the predicted data is less than 2 °C. If both conditions are true, then the

system put the radio to sleep and monitors the new data and Vcc. The system continues

to collect the data and do the predictions and once the absolute predictions error is

higher than 2 °C, or if three consecutive transmissions are missed, then the status of

radio is set to awake and resumes transmissions.

3.3 Challenges

During the implementation process, several challenges have been encountered that

include issues with hardware as well as software.

3.3.1 Hardware related issues

Initially it has been tried to implement the system and replicate the results from [7]. This

was not possible as there were current leaking issues with the available off the shelf

MSP430FR5739 microcontrollers. The main challenge was to identify the issue;

however, using the trial and error method it was identified. To resolve this problem new

devices were ordered which was time consuming.

3.3.2 Software related issues

To identify the hardware related issues, it was recommended to update the software and

implement the project on a different system. But the new compiler and software were

incompatible with our application.

It was advised that maybe the issues are due to software. It was tried to start the project

from scratch. However, different sorts of issues including incompatibility of the

platforms, unavailability of the peer-to-peer example for MSP430FR5739 and lack of

support from TI for SimliciTI protocol using MSP430FR5739 rendered this approach

impossible. Due to these issues, it was recommended to use the available system

instead.

51

This chapter has presented the experimental setup used in this thesis, including the

CTPL implementation and modifications made the state machine of the application.

Moreover, data approximation and radio control techniques have been proposed. The

next chapter presents the results, which have been obtained with this setup.

52

4 Results

Despite the previously-mentioned challenges, it was finally possible to produce the

desired results in line with the objective of this thesis. This chapter presents theresults

obtained based on the experiments that have been carried out using the experimental

setup explained in the previous chapter.

4.1 Current consumption

Experiments were conducted to characterize the power consumption of one node in

different states of the application. To find out the power consumption, the input current

and voltage to the node were recorded at different states. It was noted that when the

radio is in sleep mode, the maximum current drew by the node was 14 mA, while the

node drew 20 mA when communicating with its peer. With a 3 V supply voltage, this

translate to 42 mW and 60 mW, respectively. The characterization of the application

with respect to power is shown in Table 5.

Table 5. Power Consumption of MSP430FR5739 plus CC2500 radio module in different states of the
application

State Current (average) Voltage Power

Idle 2 mA 3 V 6 mW

Computations 14 mA 3 V 42 mW

Linking 20 mA 3 V 60 mW

Communicating 20 mA 3 V 60 mW

4.2 TC Results

TC results were replicated based on the work in [5]. Figures 14 and 15 show that the

CTPL utility is triggered when the source voltage level goes below 2.5 V where the

CPU state (PC, SP, GPR, Stack, Registers, etc.) is saved to the FRAM memory and

retained for as long as the power is not available. Once the power is available again, the

CPU state is resumed and processor starts working from the point where it stopped due

to power loss. It can be seen from Figure 14 that CTPL was triggered when the power

53

loss happened (tested by manually decreasing the voltage using the power supply knob)

and after the once the power was resumed, the CTPL Benchmark pin P4.0 toggled as

shown.

Figure 14. Triggering of CTPL utility in case of voltage drop

When the reference input voltage at P1.5 was removed, the system triggered CTPL and

then checked that the input voltage was available. As a result, the benchmark pin (P4.0)

was toggling as shown in Figure 15.

Figure 15. Triggering of CTPL utility (benchmark pin P4.0) in case of removing the reference input
voltage at pin P1.5

54

4.3 DP results

The dataset of the New York city wind-speed [40] was fed into the proposed data

prediction algorithm (a slightly adapted version of LINE-P EP model). The selected

data was recorded on 29/10/2012 starting from 8:00 am and collected for each hour. The

six hours data was fed into our model to predict the future 1-hour data, as shown in

Figure 16.

Figure 16. Wind-speed data versus predicted data using the slightly adapted LINE-P energy prediction
model

Figure 16 shows the predicted results (in red) from the proposed technique along with

the real data (in blue) for the wind speed in NY City. The results show that the predicted

values are very close to the real values. However, minor errors do exist in the predicted

values. Table 5 presents the MSE, MAE and MPE measured for both the real values of

data and predicted ones. As the wind speed ranges from 0-100 km/h and in some

instants the prediction errors are very high, so the MSE value of the whole dataset is

68.74, as shown in Table 6. Considering the variations in the dataset, the obtained MAE

is 5.76% and the obtained MPE is 19.5%. The error value is higher as it is due to

squaring the individual errors and is amplified because of a few outliers.

Table 6. MSE, MAE and MPE for DP of wind-speed

Mean Squared Error (MSE) 68.74

Mean Absolute Error (MAE) 5.76

Mean Percentage Error (MPE) 19.5%

0	

20	

40	

60	

80	

100	

120	

8:
00
	

12
:0
0	

16
:0
0	

20
:0
0	

0:
00
	

4:
00
	

8:
00
	

12
:0
0	

16
:0
0	

20
:0
0	

0:
00
	

4:
00
	

8:
00
	

12
:0
0	

16
:0
0	

20
:0
0	

0:
00
	

4:
00
	

8:
00
	

12
:0
0	

16
:0
0	

W
in
d	
Sp
ee
d	
(K
m
/H

r)
	

Time	

Predicted wind speed versus real wind speed data	

Real	data	

Prediction	

55

In the second case, a dataset of the daily temperature data of the city of Rome [41] was

taken into account to be used in our DP model. Figure 17 presents the values of the real

temperature values (in blue) and the predicted temperature values (in red). In this case

the difference between the real and predicted values are visibly higher as the data range

is small (0 to 16) and the variations are also higher.

Figure 17. Temperature data versus predicted data using LINE-P energy prediction

Table 7 lists the MSE, MAE and MPE between the real and predicted values. As the

temperature ranges from 0 to 16 in one day, the MSE value of the whole dataset is

lower. Considering the variations in the dataset, the obtained MAE is 1.66 and the

obtained MPE is 21.0%.

Table 7. MSE, MAE and MPE of DP for temperature in Rome

Mean Squared Error (MSE) 4.58

Mean Absolute Error (MAE) 1.66

Mean Percentage Error (MPE) 21.0%

0	

2	

4	

6	

8	

10	

12	

14	

16	

Te
m
pe

ra
tu
re
	in
	C
en

tig
ra
de

	

Time	

Predicted versus real temperature data

Temperature	data	

Predicted	data	

56

4.4 AC results

In what follows, the results from incorporating approximate computing into the existing

platform are presented. Our results illustrate that the benefits of exploiting approximate

computing techniques into the existing platform are two folds. Firstly, more data can be

incorporated into the existing data packet at the cost of losing a certain amount of

accuracy. Secondly, the numbers of transmissions that are needed to transfer a certain

amount of data from the sender to the receiver are reduced, at the cost of transmitting

less accurate data. Both of these concepts are explained in the following.

Incorporating AC in a single packet for adding extra information to be sent as part

of a single transmission

Initially, a single transmission was taken into account where a packet that is composed

of 8 bytes of data is transmitted from the sender to the receiver. In the first case, the

LSB of each of the 8 bytes of the data packet, i.e. 8 bits in total, are combined to enable

the equivalent of an additional byte to be sent as part of the existing data of the packet.

This can be seen in Figure 18. Reducing the data width of each byte by 1 bit frees

12.5% of the total packet payload for the extra information to be carried at the cost of

reduced accuracy. The maximum accuracy loss is in the range of ±1 for any integer

data.

Figure 18. Enabling the equivalent of 1 additional byte of information by approximating the single LSB
of the 8 bytes of a packet, whereby the additional information bits are substituted to the approximated
bits.

57

In the second case, the first two LSBs of each of the 8 bytes of the packet (i.e. 16 bits in

total) were combined to enable the equivalent of an additional 2 bytes of information to

be sent as part of the existing data of the packet. This is shown in Figure 19. The price

for targeting 2 bits in each byte of the original 8-byte packet is that the data reduces 2

bits of its accuracy but an extra payload of 25% is freed for the extra information to be

transmitted as part of the existing data. The maximum accuracy loss for a 2 bit

reservations is in the range of ±3 for any integer data.

Figure 19. Enabling the equivalent of 2 additional bytes of information by approximating 2 LSB bits in
each of the original 8 bytes of a packet, whereby the additional information bits are substituted to the
approximated bits.

In the third case, the first three LSBs of each of the 8 bytes of the packet (i.e. 24 bits in

total) were combined to enable the equivalent of an additional 3 bytes of information

that can be sent as part of the existing data of the packet. In this case the accuracy is

further reduced but payload to transfer extra data is increased. Assuming that the

application cannot tolerate more loss of accuracy, no further approximations are

performed so as not to decrease the accuracy any further.

Table 8 summarizes this whole concept of exploiting the existing payload of a single

packet transmission by substituting the bits in the existing packet for sending additional

information as part of the existing data. It is clear that as the number of substituted bits

in each packet increases, the payload for extra information also increases but the

accuracy drops accordingly.

58

Table 8. Added information through approximation and loss of accuracy in a single transmission

Added information through approximation (in a single transmission scenario)

Pac
ket
Size

Approxim
ated bits
per Byte

Added
information
per Packet

Max Error
occurrence
(in
integer)

of
trans
missi
ons

% of
informatio
n per
packet

Power
consumed per
transmission

8
Byte
s

0 0 Byte 0

1

100.0% 20 mA * 3.3 V =
66 mW

1
1 Byte

(approximated)
±1 112.5%

20 mA * 3.3 V =
66 mW

2 2 Bytes
(approximated)

±3 125.0% 20 mA * 3.3 =
66 mW V

3 3 Bytes
(approximated)

±7 137.0% 20 mA * 3.3 V =
66 mW

Incorporating AC in a multi node scenario where the data size and the number of

transmissions required to send this data is taken into account

In the second scenario, the number of transmissions from each device were taken into

account by targeting the amount of data that is transmitted from the sender to the

listener. No significant gains could be achieved by considering only a single

transmission of 8 bytes of a packet. However, the number of transmissions could be

reduced significantly if large chunks of data is taken into account. Let us consider a case

where 80 bytes of data is to be sent from the sender to the listener such that 10

transmissions are needed for all the data to be sent where each packet can carry 8 bytes

of data.

If the LSB of each byte of 80 bytes of this data is targeted, a total of 80 bits, i.e. the

equivalent of an additional 10 bytes of data can be incorporated within the existing data

size. So, out of 80 bytes of this data, the equivalent of 10 bytes are incorporated within

the existing space, reducing the whole data size to 70 bytes at the cost of reducing the

accuracy of the data bits by 12.5%. And to send 70 bytes of less accurate data with the

same packet size of 8 bytes, only 9 transmissions are needed in total. Similarly, if 800

bytes of data is considered, the transmissions could be reduced from 100 to 90 and so

on. Table 9 summarizes these details with the actual number of transmissions needed for

transmitting 100% of accurate data along with reduced number of transmissions for

reduce-accuracy data and the corresponding percentage of accuracy loss.

59

The last column of Table 9 shows that these reduced number of transmissions are a

multiple of the transmitting nodes when a multi-node scenario is taken into account. So,

if a single device is to transmit 8K bytes of data in a single day, and if we can reduce

100 transmissions through approximating the data, so in 1000 such devices that transmit

8K bytes of data each, the total number of transmissions are reduced by 10K, which is

expected to have a significant impact on the overall network efficiency in terms of

energy and bandwidth.

Table 9. Reducing the number of transmissions through approximation

Reduced number of transmissions through approximation

Transmiss
ion Data

Approxim
ated bits
per byte

Added
informatio
n per
packet

Number
transmissio
ns per
device

Percentage of
reduced
transmissions
per device

Reduced number
of transmissions
in a multi node
scenario

8 Bytes

0 0

1
No reductions
possible in a
single packet

NA
1 1 byte

2 2 bytes

3 3 bytes

80 Bytes

0 0 10 0% No. of Devices

*
transmissions/Dev
ice

1 10 bytes 9 10%

2 20 bytes 8 20%

3 30 bytes 7 30%

800 Bytes

0 0 100 0% No. of Devices

*
transmissions/Dev
ice

1 100 bytes 90 10%

2 200 bytes 80 20%

3 300 Bytes 70 30%

8000 Bytes

0 0 1000 0% No. of Devices
*

transmissions/Dev
ice

1 1000 Bytes 900 10%

2 2000 Bytes 800 20%

3 3000 Bytes 700 30%

The dataset of the New York city wind-speed of section 3.2.2 [40] was incorporated

with a single bit (LSB) approximation for transmission from the sender to the listener.

The results obtained at the listener were then analyzed. Figure 18 summarizes the results

of original data vs. the approximated data. The graph shows that the approximated data

60

is almost identical to the original data as the two curves overall each other, i.e. the

approximated graph is hidden behind the graph of original data.

Figure 20. 1 bit approximation of the wind speed dataset of NY city (The real data and the 1 bit
approximation curves overlap each other).

Table 10 also depicts high accuracy since the values of the MSE, MAE and MPE are

quite low.

Table 10. MSE, MAE and MPE of approximated wind speed data of NY City

Mean Squared Error (MSE) 0.33

Mean Absolute Error (MAE) 0.33

Mean Percentage Error (MPE) 1.06%

Similarly, the temperature dataset of the Rome city of section 3.2.2 [41] was

incorporated with a single bit (LSB) approximation for transmission. The results

obtained at the listener are summarized in Figure 21. The graphs shows that with 1 bit

approximation the accuracy losses are higher for this data set as compared to the

previous one. This is also depicted from the values of MSE, MAE and MPE as

summarized in Table 11.

Table 11. MSE, MAE and MPE of approximated temperature data of Rome City

Mean Squared Error (MSE) 0.74

Mean Absolute Error (MAE) 0.66

Mean Percentage Error (MPE) 11.11%

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

100	

8:
00
	

13
:0
0	

18
:0
0	

23
:0
0	

4:
00
	

9:
00
	

14
:0
0	

19
:0
0	

0:
00
	

5:
00
	

10
:0
0	

15
:0
0	

20
:0
0	

1:
00
	

6:
00
	

11
:0
0	

16
:0
0	

W
in
d	
Sp
ee
d	
(K
m
/H

r)
	

Time	

1 bit approximation of wind speed versus real wind
speed data	

Real	data	

1	bit	approximation	

61

Figure 21. 1bit approximation of the Temp dataset of Rome city

Next, the incorporation of 2 bits approximation in the New York city wind-speed of

section 3.2.2 [40] and the temperature dataset of the Rome city of section 3.2.2 [41] is

summarized in Figure 22 and Figure 23 where the values of MSE, MAE and MPE are

summarized in Table 12 and Table 13. The accuracy slightly decreases for both

datasets, as expected.

Figure 22. 2 bit approximation of the Wind dataset of the NY city. A few more differences between the
real and approximated curves can be seen as compared to the previously shown 1 bit approximation.

0	

2	

4	

6	

8	

10	

12	

14	

16	
Te
m
pe

ra
tu
re
	in
	C
en

tig
ra
de

	

Time	

Temperature data and 1 bit approximation

Original	Temperature	

1	bit	approximation	

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

100	

8:
00
	

13
:0
0	

18
:0
0	

23
:0
0	

4:
00
	

9:
00
	

14
:0
0	

19
:0
0	

0:
00
	

5:
00
	

10
:0
0	

15
:0
0	

20
:0
0	

1:
00
	

6:
00
	

11
:0
0	

16
:0
0	

W
in
d	
Sp
ee
d	
(K
m
/H

r)
	

Time	

2 bit approximation of wind speed versus
real wind speed data	

Real	data	

2	bits	approximation	

62

Table 12. MSE, MAE and MPE of 2 bit Approximated Wind speed data of NY City

Mean Squared Error (MSE) 2.61

Mean Absolute Error (MAE) 1.36

Mean Percentage Error (MPE) 6.11%

Similarly, the comparison of 2 bit approximation of the temperature data from Rome

and the original temperature data is shown in Figure 23, while the MSE, MAE and MPE

are shown in Table 13.

Figure 23. 2 bit approximation of the Temperature dataset of Rome. A few more differences between the
real and approximated curves can be seen as compared to the previously shown 1 bit approximation.

Table 13. MSE, MAE and MPE of 2 bit Approximated temperature data of Rome

Mean Squared Error (MSE) 2.79

Mean Absolute Error (MAE) 1.25

Mean Percentage Error (MPE) 20.32%

4.5 Results with radio control

In the next set of experiments, DP was used to control the radio transmissions. In this

experiment, one packet of information, including information type, temperature data,

current time (3 bytes), current voltage level, talker ID and next predicted data, was sent.

0	

2	

4	

6	

8	

10	

12	

14	

16	

Te
m
pe

ra
tu
re
	in
	C
en

tig
ra
de

	

Time	

Temperature data and 2 bit approximation

Original	Temperature	

2	bit	approximated	data	

63

In the proposed technique, radio transmissions are controlled by the value of the current

prediction and absolute error of the two previous predictions. If the absolute error of the

two previous predictions and the difference between the prediction and the current value

is less than 2, then the system will send the current data and put the radio into sleep

mode. The peer uses the same algorithm and will go to sleep. If consecutively three

packets are not transmitted, then the fourth packet will be transmitted unconditionally.

The temperature dataset was used for the experiments to see the effects of the radio

control strategy with DP. It was noted that out of 63 packets, only 48 transmissions

were done, saving a total of 15 transmissions. This means that the total numbers of

transmissions were reduced by 23.8%.

This strategy works well with the data in which variations are smooth or the data is

consistent meaning that the predictions accuracy is high. If there are numerous

variations then this strategy is not useful due to possibility of losing new data.

4.6 Observations

The following points were observed during the experiments and analysing the results.

1. The approximation error depends on the data scale. If the scale is large, e.g. in

case of wind speed for NY city (0-100 km/h), the MPE with 1 bit approximation

was 1.06%, and with 2-bit approximation, the MPE was 6.11%. If the scale is

small, e.g. in case of temperature in Rome for the month of January (0-15 °C),

the MPE with 1 bit approximation was 11.11% while the MPE for 2 bit

approximation was 20.32%. It was observed that with smaller scale the MPE is

irrelevant as it is scale dependent.

2. The MAE for 1 bit approximation and 2 bit approximation of the temperature

data from Rome was 0.66 and 1.25 °C, respectively. Similarly, the MAE for 1

bit and 2 bit approximations of wind speed of NY City were 0.33 and 1.36 km/h.

It was observed that the MAE for 2 bit approximation was 1.25 °C. The

maximum error for 1 bit approximation could be ±1 while for 2-bit

approximation it could be ±3.

3. The DP was used on the temperature data of Rome and wind speed of NY and it

was observed that there were drastic changes in some occasions and the

64

predictions were not as accurate as expected. Due to these variations, the MSE

for wind speed was 68.74 due to squaring the individual error and it was

observed that in this scenario, the MSE becomes irrelevant, while the MAE was

only 5.76 km/h meaning that the absolute error was not high, and more often it

was in the range of acceptable numbers as can be seen in Figure 16. The MSE

for the temperature data was 4.58 and it was due to the smaller scale of the data

but the data prediction model also showed that the MAE was 1.66 °C for

predictions. It was observed that the model is more suitable for the data with

smoother variations.

4. It was also observed that in both datasets, a reduction of 12.5% in number of

transmission for 1 bit and 25% reduction in number of transmissions for 2-bit

approximation was achieved.

5. Radio control results showed that there were additional 23.8% reductions in the

number of transmissions for the temperature data but this reductions depends on

the accuracy of DP, for example in case of wind speed, a 5 km/h difference was

kept in mind but even with 5 km/h error tolerance, there were no reductions in

the number of transmissions due to high variations in the data predictions.

6. With these results it was noted that the approximation techniques combined with

data DP makes that the systems error is visible, deterministic and coarse grained

with the loss of packets due to errors in data predictions.

65

5 Summary and Perspectives

With an aim to efficiently utilize the energy obtained from various energy harvesting

sources, the techniques of transient computing and approximate computing were

combined with the data and energy prediction models so as to exploit the harvested

power in a much efficient and effective way so as to prolong the life-time of a battery-

less energy-driven wireless node. These mentioned techniques were applied to a test-

bed consisting of two nodes that combine Texas Instruments’ FRAM based MSP-

EXP430FR5739 micro-controllers with CC2500 radio modules that communicate with

each other through the Texas Instruments’ SimpliciTI protocol.

To exploit the transient computing capability, the Compute Through Power Loss utility

of the TI’s FRAM based microcontrollers were utilized. On top of that, two

approximate computing techniques were incorporated into the SimpliciTI protocol at

different levels so as to increase the utilization of its existing bandwidth. To further

exploit the number of transmissions, the data and energy prediction models were used in

the best possible way to reduce the energy consumptions during transmissions.

Based on the obtained experimental results, it was concluded that transient computing

can play an important role in enabling battery-less energy harvesting nodes where the

power is not stable and continuous. To further reduce the power consumption of energy

harvesting nodes, approximate computing offers much potential at the cost of accuracy

loss. This thesis results show that the accuracy lost due to incorporation of

approximations depend on the nature and type of data that these nodes have to deal

with. The accuracy of the data is also dependent on the number and position of the

approximated bits. For example, the data that can be represented only in lower order bits

(in binary), a 1-bit approximation leads to 11.11% of MPE, whereas for the data that can

be represented in higher order bits (in binary), a 1 bit approximation gives an MPE of

1.06% only. The results also illustrate that the number of transmissions could be

reduced by 10%, 20%, or even 30% through incorporation of approximations but again

at the loss of accuracy.

66

Overall, the work presented in this thesis illustrates that it is feasible to combine

transient computing, approximate computing, and data prediction for reducing the

overall energy consumption of the wireless nodes.

The work and results invite further research and development in line with the used

approaches.

Firstly, the implemented techniques could be evaluated on more use-cases with various

constraints and error tolerance levels. In addition, the CC2500 RF module could be

replaced by a e.g. Quectel BG96 radio module to enable transient computing,

approximate computing and data prediction on larger scale network such as NB-IoT.

Secondly, energy prediction itself (in addition to data prediction) could be used to

improve the decision-making process regarding both transmission and computation.

Thirdly, more advanced (and thus more adaptive) prediction models based on e.g.

neural networks and their implementation requirements could be investigated.

67

References

[1] G. V. Merrett and B. M. Al-Hashimi, “Energy-driven computing: Rethinking the design
of energy harvesting systems,” Proc. 2017 Des. Autom. Test Eur. DATE 2017, pp. 960–
965, 2017.

[2] A. Rodriguez Arreola et al., “Approaches to Transient Computing for Energy Harvesting
Systems: A Quantitative Evaluation,” Proc. 3rd Int. Work. Energy Harvest. Energy
Neutral Sens. Syst. - ENSsys ’15, pp. 3–8, 2015.

[3] T. Moreau et al., “A Taxonomy of General Purpose Approximate Computing
Techniques,” IEEE Embed. Syst. Lett., vol. 10, no. 1, pp. 2–5, Mar. 2018.

[4] F. Ahmed, G. Tamberg, Y. Le Moullec, and P. Annus, “Dual-Source linear energy
prediction (LINE-P) model in the context of WSNs,” Sensors (Switzerland), vol. 17, no.
7, 2017.

[5] B. Things and Q. Ju, “Predictive Power Management for Internet of Battery-Less
Things,” Ieee Trans. Power Electron., vol. 33, no. 1, pp. 299–312, 2018.

[6] H. Jayakumar, A. Raha, and V. Raghunathan, “QUICKRECALL: A low overhead
HW/SW approach for enabling computations across power cycles in transiently powered
computers,” Proc. IEEE Int. Conf. VLSI Des., pp. 330–335, 2014.

[7] F. Ahmed, C. Kervadec, Y. Le Moullec, G. Tamberg, and P. Annus, “Autonomous
Wireless Sensor Networks: Implementation of Transient Computing and Energy
Prediction for Improved Node Performance and Link Quality,” Comput. J., no. October,
2018.

[8] G. V Merrett, “Invited - Energy harvesting and transient computing,” Proc. 53rd Annu.
Des. Autom. Conf. - DAC ’16, pp. 1–2, 2016.

[9] D. Kumar, “A Study about Non-Volatile Memories,” no. 10, 2016.

[10] Y. Xie, Y. Li, B. Song, and C. Jiang, “Study on a Conceptual Mobile Memory of
Interface Designation,” no. Iceeecs, pp. 260–264, 2018.

[11] B. Ransford, J. Sorber, and K. Fu, “Mementos: System support for long-running
computation on RFID-scale devices,” Asplos, no. May 2013, pp. 159–170, 2011.

[12] D. Balsamo, A. S. Weddell, G. V Merrett, B. M. Al-Hashimi, D. Brunelli, and L. Benini,
“Hibernus: Sustaining Computation During Intermittent Supply for Energy-Harvesting
Systems,” IEEE Embed. Syst. Lett., vol. 7, no. 1, pp. 15–18, 2015.

[13] T. Instruments, “Intelligent System State Restoration After Power Failure With Compute
Through Power Loss Utility,” no. April. pp. 1–16, 2015.

[14] H. Jayakumar, A. Raha, and V. Raghunathan, “Hypnos: An ultra-low power sleep mode
with SRAM data retention for embedded microcontrollers!,” in 2014 International
Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS),

68

2014, p. 10.

[15] D. Balsamo et al., “Graceful Performance Modulation for Power-Neutral Transient
Computing Systems,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 35, no. 5,
pp. 738–749, 2016.

[16] C. Pan et al., “A lightweight progress maximization scheduler for non-volatile processor
under unstable energy harvesting,” ACM SIGPLAN Not., vol. 52, no. 4, pp. 101–110,
2017.

[17] D. Balsamo et al., “Hibernus++ : A Self-Calibrating and Adaptive System for
Intermittently-Powered Embedded Devices,” IEEE Trans. Comput. Des. Integr. Circuits
Syst., vol. 11, no. 4, pp. 1–8, 2016.

[18] G. Lukosevicius, A. R. Arreola, and A. S. Weddell, “Using Sleep States to Maximize the
Active Time of Transient Computing Systems,” pp. 31–36, 2017.

[19] C. Pan, M. Xie, and J. Hu, “ENZYME: An energy-efficient transient computing
paradigm for ultralow self-powered IoT edge devices,” IEEE Trans. Comput. Des.
Integr. Circuits Syst., vol. 37, no. 11, pp. 2440–2450, 2018.

[20] A. Gomez, L. Benini, and L. Thiele, “Designing the Batteryless IoT.” Design,
Automation and Test in Europe (DATE 2017) PhD Forum, Lausanne, Switzerland, pp.
1–2, 2017.

[21] A. Gomez, L. Sigrist, M. Magno, L. Benini, and L. Thiele, “Dynamic Energy Burst
Scaling for Transiently Powered Systems,” pp. 349–354, 2016.

[22] A. Gomez, L. Sigrist, T. Schalch, L. Benini, and L. Thiele, “Wearable, energy-
opportunistic vision sensing for walking speed estimation,” SAS 2017 - 2017 IEEE
Sensors Appl. Symp. Proc., 2017.

[23] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi, D. Brunelli, and L.
Benini, “Hibernus: Sustaining Computation During Intermittent Supply for Energy-
Harvesting Systems,” IEEE Embed. Syst. Lett., vol. 7, no. 1, pp. 15–18, 2015.

[24] A. Rodriguez Arreola et al., “Approaches to Transient Computing for Energy Harvesting
Systems: A Quantitative Evaluation,” Proc. 3rd Int. Work. Energy Harvest. Energy
Neutral Sens. Syst. - ENSsys ’15, pp. 3–8, 2015.

[25] H. Jayakumar, A. Raha, and V. Raghunathan, “QUICKRECALL: A low overhead
HW/SW approach for enabling computations across power cycles in transiently powered
computers,” Proc. IEEE Int. Conf. VLSI Des., pp. 330–335, 2014.

[26] D. Balsamo et al., “Hibernus++ : A Self-Calibrating and Adaptive System for
Intermittently-Powered Embedded Devices,” IEEE Trans. Comput. Des. Integr. Circuits
Syst., vol. 11, no. 4, pp. 1–8, 2012.

[27] Texas Instruments, “MSP MCU FRAM Utilities version 03.10.00.10 User ’ s Guide,”
pp. 1–70, 2017.

[28] J. R. Piorno, C. Bergonzini, D. Atienza, and T. S. Rosing, “Prediction and management
in energy harvested wireless sensor nodes,” Proc. 2009 1st Int. Conf. Wirel. Commun.
Veh. Technol. Inf. Theory Aerosp. Electron. Syst. Technol. Wirel. VITAE 2009, pp. 6–10,
2009.

[29] D. K. Noh and K. Kang, “Balanced energy allocation scheme for a solar-powered sensor

69

system and its effects on network-wide performance,” J. Comput. Syst. Sci., vol. 77, no.
5, pp. 917–932, 2011.

[30] S. Kosunalp, “A New Energy Prediction Algorithm for Energy-Harvesting Wireless
Sensor Networks With Q-Learning,” IEEE Access, vol. 4, pp. 5755–5763, 2016.

[31] A. Cammarano, C. Petrioli, and D. Spenza, “Pro-Energy: A novel energy prediction
model for solar and wind energy-harvesting wireless sensor networks,” MASS 2012 - 9th
IEEE Int. Conf. Mob. Ad-Hoc Sens. Syst., pp. 75–83, 2012.

[32] F. Ahmed, G. Tamberg, Y. Le Moullec, and P. Annus, “Adaptive LINE-P: An adaptive
linear energy prediction model for wireless sensor network nodes,” Sensors
(Switzerland), vol. 18, no. 4, pp. 1–26, 2018.

[33] Muhammad, H. K. Qureshi, U. Saleem, M. Saleem, A. Pitsillides, and M. Lestas,
“Harvested Energy Prediction Schemes for Wireless Sensor Networks: Performance
Evaluation and Enhancements,” Wirel. Commun. Mob. Comput., vol. 2017, pp. 1–14,
2017.

[34] M. J. Ismail, R. Ibrahim, and I. Ismail, “Adaptive neural network prediction model for
energy consumption,” ICCRD2011 - 2011 3rd Int. Conf. Comput. Res. Dev., vol. 4, pp.
109–113, 2011.

[35] M. Gao, Q. Wang, M. T. Arafin, Y. Lyu, and G. Qu, “Approximate computing for low
power and security in the internet of things,” Computer (Long. Beach. Calif)., vol. 50,
no. 6, pp. 27–34, 2017.

[36] S. Mittal, “A Survey of Techniques for Approximate Computing,” ACM Comput. Surv.,
vol. 48, no. 4, pp. 1–33, 2016.

[37] T. Y. Yeh, P. Faloutsos, M. Ercegovac, S. J. Patel, and G. Reinman, “The art of
deception: Adaptive precision reduction for area efficient physics acceleration,” Proc.
Annu. Int. Symp. Microarchitecture, MICRO, pp. 394–406, 2007.

[38] Y. Tian, Q. Zhang, T. Wang, F. Yuan, and Q. Xu, “{ApproxMA:} Approximate
Memory Access for Dynamic Precision Scaling,” Proc. 25th Ed. Gt. Lakes Symp. {VLSI}
- {GLSVLSI} ’15, pp. 337–342, 2015.

[39] Texas Instruments, “Introduction to SimpliciTI,” pp. 1–14, 2010.

[40] D. Beniaguev, “Historical Hourly Weather Data 2012-2017,” 2017. [Online]. Available:
https://www.kaggle.com/selfishgene/historical-hourly-weather-data/metadata.
[Accessed: 10-Mar-2019].

[41] M. A. Alswailim, H. S. Hassanein, and M. Zulkernine, “CRAWDAD dataset
queensu/crowd_temperature (v. 2015‑11‑20): derived from roma/taxi (v. 2014‑07‑17).”

70

Appendix 1 – Source-Code

The complete source-code contains many files and hundreds of line of code, thus this

appendix presents only extracts of the source-code, specifically some parts that have

been modified or added for implementing the proposed techniques and application.

case	COMPUTE	:	 //	 Energy	 is	 available	 for	 the	 least-energy	
consuming	task	i-e	Computations.	
									 //	while(1)			//for	debugging	
	
												//	{	
											 	 computedone=1;	
											 	 temp=readTemperature();		

//updateDataMessage_approx()									
											 	 //updateDataMessage();	
	
#ifdef	Data_Prediction	
	
	 	 percent_error=historical_data_length;				
//	percent_error	here	is	just	used	as	a	flag	and	it	is	not	actually	an	
error	
	
											 	 updateDataMessagewithdp();	
	
											 	 if(percent_error!=(historical_data_length-1))	
											 	 {	
											 	 	 computedone=0;	
											 	 	 State	=	ENERGY_MONITORING;	
	
											 	 	 break;	
	
											 	 }			 	 	
	
#endif	
	
	 	 updateDataMessage_approx();	
	
	
	

71

													 //uart_send();	
	
											 	 	 //for(j=0;j<100000;j++)		//added	by	SIK	
	
											 	 	 //	 temp=rand()*8.55;	
	
												//			}	
	
											 	 State	=	ENERGY_MONITORING;	
	
																break;	
	
	
void	updateDataMessagewithdp()	
	
{	
	
	 updateTime(&time);	
	
	 //vcc_level		 =	 (uint8_t)	
computeEnergyLevel(getVoltageADC10());	
	
	 temp	 	 =	readTemperature();	
	
	 data_msg_send[0]	 =	 0xFF;	
	
	 data_msg_send[1]	 =	 temp;	
	
	 data_msg_send[2]	 =	 time.sec;	
	
	 data_msg_send[3]	 =	 time.min;	
	
	 data_msg_send[4]	 =	 time.hour;	
	
	 data_msg_send[5]	 =	 vcc_level;	
	
	 data_msg_send[6]	 =	 ++talker_tid;	
	
	
	
#ifdef	Data_Prediction	
	
	 data_predictioncall();	
	
	 data_msg_send[7]	 =		 data_prediction1;	
	
//	 	

72

	
	 if(((historicaldata_predictions[64-1]-
historical_data[historical_data_length-1])<<2)	 &&	
((historicaldata_predictions[64-2]-
historical_data[historical_data_length-2])<<2))	
	
	 	 {	
	
	 	 if	((temp-data_prediction1)<<2)	
	
	 	 	 isCommunicating	=	0;	
	
	 	 	 SMPL_Unlink(sLinkID1);	
	
	 	 	 SMPL_Ioctl(IOCTL_OBJ_RADIO,	 IOCTL_ACT_RADIO_SLEEP,	
0);	 //	Turn	off	the	radio	
	
	 	 	 radioAwake	=	0;	
	
	 	 }	
	
	 historical_data_length++;	
	
#endif	
	
}	
	
void	updateDataMessage_approx()	
	
{	
	
	 	 svalues.sbytedata	=	sbyte;	
	
	 	 sbit[0]=svalues.sbits.bit0;	
	
	 	 sbit[1]=svalues.sbits.bit1;	
	
	 	 sbit[2]=svalues.sbits.bit2;	
	
	 	 sbit[3]=svalues.sbits.bit3;	
	
	 	 sbit[4]=svalues.sbits.bit4;	
	
	 	 sbit[5]=svalues.sbits.bit5;	
	
	 	 sbit[6]=svalues.sbits.bit6;	
	

73

	 	 sbit[7]=svalues.sbits.bit7;	
	
	 	 k=0;	
	
	 	 for	(j=1;j<8;j++)	{	
	
	 	 if(msg_test[j]!=254)	
	
	 	 {	
	
	 	 svalues.sbytedata=	 msg_test[j];	 	 	 //	 needs	 to	 be	 changed	
based	on	the	data	you	want	to	send	
	
	 	 svalues.sbits.bit0=sbit[j];	
	
	 	 msg_test[j]=svalues.sbytedata;	
	
	 	 }	
	
	 	 }	
	
	 	 sbyte=temparrayhc_added[kk+11];	
	
	 	 svalues.sbytedata	=	sbyte;	
	
	 	 sbit[0]=svalues.sbits.bit0;	
	
	 	 sbit[1]=svalues.sbits.bit1;	
	
	 	 sbit[2]=svalues.sbits.bit2;	
	
	 	 sbit[3]=svalues.sbits.bit3;	
	
	 	 sbit[4]=svalues.sbits.bit4;	
	
	 	 sbit[5]=svalues.sbits.bit5;	
	
	 	 sbit[6]=svalues.sbits.bit6;	
	
	 	 sbit[7]=svalues.sbits.bit7;	
	
	 	 for	(j=1;j<8;j++)	{	
	
	 	 if(msg_test[j]!=254)	
	
	 	 {	
	

74

	 	 svalues.sbytedata=	 msg_test[j];	 	 	 //	 needs	 to	 be	 changed	
based	on	the	data	you	want	to	send	
	
	 	 svalues.sbits.bit1=sbit[j];	
	
	 	 msg_test[j]=svalues.sbytedata;	
	
	 	 }	 	 	
	
	 	 }	
	
}	
	
void	data_predictioncall()	
	
{	
	
#ifdef	Data_Prediction	
	
	
	 data_prediction1=(38)*(historical_data[historical_data_length-
1])+(94)*(historical_data[historical_data_length-
2])+(50)*(historical_data[historical_data_length-3])-
(38)*(historical_data[historical_data_length-4])-
(38)*(historical_data[historical_data_length-5])-
(6)*(historical_data[historical_data_length-6]);	
	
	 if(data_prediction1<=0)	//	To	avoid	negatives	values	
	
	 	 data_prediction1=0;	
	
	 else	
	
	 	 data_prediction1=data_prediction1/100;	 //	 /!\	 Loss	 of	
accuracy	
	
	 //test=64;	 	 //testing	
	
	 push_data(data_prediction1,	 historicaldata_predictions,	
historical_data_length);	
	
	 //push_data(data_prediction1,	historicaldata_predictions,	test);	
	
	 nb_data_prediction	++;	
	
	 historical_data_length++;	
	
	 //test++;	 	 //testing	

75

	
	 //percent_error_previous=percent_error_avg;	
	
	 //percent_error=(abs((data_prediction1-
historical_data[historical_data_length-
1]))*100)/historical_data[historical_data_length-1];	
	
	 if	(percent_error_flag==0)	
	
	 {	
	 	 percent_error_avg=percent_error;	
	
	 	 percent_error_flag++;	
	
	 }	
	 else	
	 {	
	 percent_error_avg=(percent_error_previous+percent_error);	
	
	 	 percent_error_avg=(percent_error_avg/2);	
	
	 }	
#endif	
	
}	
	
	
void	savedata()	
	
{	
	
	 //Received_data2[kk]=svalues.sbytedata;	
	
	 for	(j=1;j<8;j++)	
	
	 {	
	
	 	 Received_data1[ii]=data_msg_receive[j];	
	
	 	 ii++;	
	
	 	 if(data_msg_receive[j]==254)	
	
	 	 	 {	
	
	 	 	 for	(j=1;j<50;j++)	
	

76

	 	 	 SPIN_ABOUT_A_SECOND;	
	
	 	 	 //SMPL_Ioctl(IOCTL_OBJ_RADIO,	
IOCTL_ACT_RADIO_SLEEP,	0);	 //	Turn	off	the	radio	
	
	 	 	 }	
	
	 }	
	
	 kk++;	
	
	 if(kk==11	||	ii==70)	
	
	 {	
	
	 	kk=0;	
	
	 	ii=0;	
	
	 }	
	
}	
	
void	decode_Packet()	
	
{	
	
	 	 for	(j=1;j<8;j++)	
	
	 	 {	
	
	 	 svalues.sbytedata=	data_msg_receive[j];	
	
	 	 sbit[j]=svalues.sbits.bit0;	
	
	 	 //msg_test[j]=svalues.sbytedata;	
	
	 	 }	
	
	 	 	for	(j=1;j<8;j++)	
	
	 	 	{	
	
	 	 	svalues.sbytedata=	data_msg_receive[j];	
	
	
	 	 	sbit[j]=svalues.sbits.bit1;	

77

	
	 	 	//msg_test[j]=svalues.sbytedata;	
	
	 	 	}	
	
	 	 	k=0;	
	
	 	 	svalues.sbits.bit0=sbit[k];	
	
	 	 	k++;	
	
	 	 	svalues.sbits.bit1=sbit[k];	
	
	 	 	k++;	
	
	 	 	svalues.sbits.bit2=sbit[k];	
	
	 	 	k++;	
	
	 	 	svalues.sbits.bit3=sbit[k];	
	
	 	 	k++;	
	
	 	 	svalues.sbits.bit4=sbit[k];	
	
	 	 	k++;	
	
	 	 	svalues.sbits.bit5=sbit[k];	
	
	 	 	k++;	
	
	 	 	svalues.sbits.bit6=sbit[k];	
	
	 	 	k++;	
	
	 	 	svalues.sbits.bit7=sbit[k];	
	
	 	 	k++;	
	
	 	 	Received_data2[kk+11]=svalues.sbytedata;	
	
	 }	
	
	
	
	
	

