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PREFACE 

 

This work was initiated by the author to assist personnel in reducing the debugging and 

repair times for industrial equipment. The objective was to develop a device capable of 

autonomously monitoring and analysing equipment, thus eliminating the need for 

specialized personnel for this specific task. The continuation of this thesis will be 

pursued separately, focusing on developing a marketable product. 

 

The research and completion of this project were conducted under the supervision of 

Daniil Valme, Early-Stage Researcher, at Tallinn University of Technology. His guidance 

was instrumental in the realization of this work. The testing phase was carried out at 

Proven OÜ, where the author is currently employed. I would like to sincerely thank 

Daniil Valme for his dedicated help and the personnel at Proven OÜ for their support 

and the provision of equipment. 
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1 INTRODUCTION 

 

The manufacturing industry stands as one of the cornerstones of any economy. In 

Estonia, for instance, manufacturing accounted for 15% of the Gross Domestic Product 

in 2022, making it the largest contributor, followed by wholesale and retail trade at 

12%, and real estate activities at 10% [1]. This sector is in a constant state of evolution, 

with automation emerging as one of its most significant trends. Increasingly, machinery 

is replacing human labour, offering cost-effectiveness, scalability, and easier 

management. 

 

Within the European Union, machinery is defined by Directive 2006/42/EC as “an 

assembly, fitted with drive system other than directly applied human or animal effort, 

consisting of linked parts or components, at least one of which moves, and which are 

joined together for a specific application” [2]. This broad definition encompasses various 

equipment critical to the production line. As companies seek to add, upgrade, and 

maintain their hardware, a specialized industry has emerged to design and maintain 

these machines. 

 

A significant aspect of machine building and maintenance involves the observation of 

machine operations to confirm their operational condition during development, testing, 

installation, or deployment. During system performance testing, the operator's task is 

to evaluate the system's performance using the appropriate machinery documentation, 

as well as monitoring the physical parameters of the system using measuring 

instruments, as well as using sensors. Without measuring equipment, the operator can 

evaluate the work visually using his eyes, as well as assess the level of vibration and 

associated noise. 

 

Automation of the machinery condition monitoring is an important task, as scaling up 

observation becomes challenging due to factors such as the need for multiple 

observation positions, time constraints, maintaining quality, and ensuring safety. One 

potential solution to the scalability problem is the use of cameras to record machine 

operations for later analysis by experts. Cameras can access small and hazardous 

positions where humans cannot, record at higher frame rates and resolutions, and 

capture a wider spectrum of information, thus enhancing data collection. While 

advancements in technology offer solutions to certain challenges in machine observation 

and analysis, addressing scalability and minimizing downtime remain ongoing concerns 

for the industry. 
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This thesis proposes an enhancement in the use of cameras for industrial equipment 

monitoring through the development of a portable device that incorporates artificial 

intelligence (AI)-based machine vision for real-time motion analysis. The goal of this 

device is to automate the observation process, thereby reducing the time and manpower 

typically required for such tasks. 

 

The device comprises three main components: a camera, a processing unit (PU), and a 

user interface (UI) in the form of a touchscreen. The camera captures footage of the 

machine during its normal operations and transmits the data to the PU. The processing 

unit then performs three primary tasks: data collection, machine model creation, and 

analysis. Firstly, the PU utilizes image processing techniques to identify the moving parts 

of the machine and measure their relative positions. This data is used to construct a 

model of the machine using a neural network in the PyTorch framework. Once the model 

is established, real-time measurements can be compared against it to conduct the 

analysis. If inconsistencies between the measurements and the predictions are 

detected, the PU can notify the user through the UI of a potential point of interest. The 

user can access the data gathering and analysis results through the user interface in 

real-time, allowing them to monitor trends over time and intervene as necessary.  

 

As a result of this thesis, a prototype of a real-time machine monitoring device has been 

developed. This device is designed to detect and issue warnings about anomalous 

motion behaviour in machinery, such as parts binding, breaking, or moving 

unexpectedly. It was tested on a sample machine in two different environments: bottles 

moving on a conveyor belt and an indexing wheel turning. The conveyor belt scene 

demonstrated clearer and simpler movements, whereas the indexing wheel scene 

displayed more complexity. The primary objective is to enhance the device's autonomy 

concerning model creation and machine observation, aiming to make it user-friendly 

and efficient in operation. 

 

The main body of the thesis is divided into five chapters. The second chapter explores 

existing solutions within the industry, as well as key concepts in machine vision and 

neural networks relevant to this thesis. The third chapter details the design approach 

and methodology of the device. The fourth chapter is dedicated to the hardware design 

of the device, while the fifth chapter covers its software design. The sixth chapter 

presents and discusses the results obtained from the thesis. 

 

Keywords: Industrial, monitoring, AI, vision, master thesis 
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2 LITERATURE REVIEW 

2.1 Machine monitoring  

2.1.1 Background 

 

Machine health monitoring is vital in today's industries, as it helps keep machines 

running efficiently and safely by spotting problems before they cause breakdowns or 

accidents. This method saves money by reducing the need for expensive repairs and 

unplanned downtime, making maintenance more effective. For example, an hour of 

downtime costs more than $2M for an automotive company in 2022 [3]. It also supports 

better decision-making, improving overall performance and sustainability by using data 

to understand and predict machine behaviour. This approach ensures that machines last 

longer, work better, and pose fewer risks, which is key for any business aiming to stay 

competitive and productive.  

 

Various techniques have been developed to monitor the condition of machines, each 

with distinct approaches and diagnostic capabilities: 

• Visual inspection uses visible light to detect abnormalities such as corrosion, 

misalignment, and structural damage, offering a quick and cost-effective 

assessment method.  

• Vibration analysis is a field of structural dynamics, which analyses phenomena 

like resonance in structures and the effects of coupling structures together. 

• Oil analysis is a technique that examines the lubricants in machinery to 

understand wear and tear inside engines, gearboxes, and hydraulic systems. 

• Electrical Signature Analysis assesses the health of electric motors, generators, 

and overall power quality by analysing the electrical characteristics of machines. 

• Performance monitoring tracks key performance indicators to optimize machine 

efficiency and detect faults, linking to the machinery’s effectiveness.  

• Thermal imaging and infrared analysis use thermal energy variations to assess 

machine health, ideal for monitoring electrical systems and mechanical 

components.  

 

In this thesis, visual inspection is selected as the monitoring technique due to its 

widespread use, real-time applicability, cost-effectiveness, and simplicity of 

deployment. Unlike thermal imaging, visual inspection incurs low equipment costs and 

can be applied in real-time settings. Additionally, it offers the advantage of being 

deployable independently, without the necessity for integration into existing systems. 
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2.1.2 Existing solutions 

  

In the realm of visual inspection tools, a large selection of products is available, each 

tailored for specific tasks. For instance, Cognex’s In-Sight D900 vision system [6], along 

with many other inspection camera systems, focuses on quality control along the 

production line. These systems typically capture an image of the object to assess its 

acceptability. However, they do not incorporate dynamics into their analyses. Single-

shot applications do not account for the varying velocities and trajectories exhibited by 

industrial machinery, rendering them unsuitable for tasks that require adaptation to 

such conditions. Teledyne FLIR also offers a wide range of cameras and AI analysis tools 

[4], but like many other similar product, require specialized knowledge for their 

implementation. 

 

There are also tools available for machine monitoring. FourJaw offers a machine 

monitoring solution using the MachineLink hardware [5], which employs sensors and 

algorithms to identify productive and unproductive machine states. It provides real-time 

utilization and Everall Equipment Effectiveness metrics, energy usage, carbon footprint, 

automatic alerts, downtime reasons, and work booking functionalities. While useful 

data, it doesn’t take into account the machines actual state, just the resulting energy 

usage. Festo’s AX system [6] is an AI and machine learning-based platform that takes 

in inputs from various sensors installed onto a machine, analyses the data, and provides 

information about the machine's health. This platform is utilized for diagnosis, predictive 

maintenance, and predictive energy management, which very flexible but does not offer 

an off-the-shelf solution. Festo AX's implementation requires support from Festo or 

qualified personnel. 

 

Clarify AI [7] provides software that combines computer vision visual inspection with 

predictive analytics. This software is utilized for equipment monitoring, maintenance 

scheduling, improving safety, and protecting expensive assets. These solutions are 

entirely based on their cloud software, and they do not provide the hardware for 

cameras. They do provide cloud computing, which can accelerate the analysis process, 

but this necessitates the uploading of images to their platform for processing. Therefore, 

an internet connection is required, and real-time processing is not feasible. 

 

With the widespread adoption of IoT (Internet of Things) devices, monitoring machines 

and their operations has become commonplace in production facilities. In the field of 

industrial equipment monitoring, a variety of solutions are available, each tailored to 

meet specific needs and functions. 
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2.2 Image processing 

 

Image processing plays a vital role in standardizing or generalizing image data. This 

involves converting images into formats that contain uniform quantities of data. The 

recognition process is thus a two-stage scheme: initially, images are transformed into 

more manageable forms with consistent data volumes; subsequently, they are 

classified, reducing their data content. Recognition, in essence, is a form of data 

abstraction where the final data bears little resemblance to the original. For example, 

an image of a handwritten letter 'A' which might begin as a 20x20 bit array, could be 

recognised a simple 7-bit ASCII representation of the letter 'A' (Figure 2.1), 1000001 in 

binary, which might appear as a random pattern unrelated to the original image [8]. 

 

Figure 2.1 Image of a handwritten letter "A" converted to ASCII format. 

 

The classical paradigm for object recognition involves two primary stages: preprocessing 

and abstract pattern recognition. During preprocessing, image processing techniques 

are used to suppress noise and other artifacts, as well as to regularize the image data. 

This creates a cleaner, more standardized set of data for the subsequent stage. The 

second stage involves applying statistical pattern recognition methods to extract the 

minimal bits of data needed to classify the object (Figure 2.2). This process reduces the 

vast amounts of raw image data to essential information that categorizes or identifies 

the object [8]. 

 

 

Figure 2.2 Image processing pipeline, where i is the captured image, i' is the pre-processed image 
and a are the abstract features. 
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2.2.1 Preprocessing 

 

Image preprocessing plays a crucial role in the field of computer vision, serving as the 

foundation for subsequent analysis and model performance. Before delving into tasks 

such as object detection, recognition, or tracking, images must be conditioned to 

enhance their quality and ensure consistency across datasets [8]. This step is for 

removing noise, normalizing sizes, and converting formats, which increases the 

effectiveness of later algorithms, which extract meaningful information. By 

standardizing the input data, preprocessing ensures that models are not misled by 

irrelevant variations, thereby improving accuracy, reducing computational complexity, 

and facilitating more reliable interpretations of visual data. 

 

Scaling down an image significantly reduces the computational load by decreasing the 

number of pixels that need to be processed. When an image is scaled down by a specific 

factor, the total number of pixels in the image is reduced by the square of that factor. 

For instance, an image with dimensions of 1920x1080, which contains 2,1 MP. If this 

image is scaled down by a factor of 2, the new dimensions become 960x540. This results 

in a total of about 0,5 MP. Thus, by reducing the image size in this manner, the 

computational requirements for processing the image are lowered. 

 

Converting an image grayscale from RGB (Red-Green-Blue) reduces the computational 

load. An RGB image consists of three colour channels, with each channel representing 

a colour intensity value for every pixel. By converting to grayscale, these three channels 

are merged into a single channel, condensing the colour information into shades of grey 

that represent the luminance of each pixel. This reduction from three channels to one 

reduces the amount of data to be processed by a factor of three, decreasing the 

computational requirements for subsequent image analysis tasks. 

 

Removing noise is required in suboptimal lighting conditions, as it enhances image 

quality by minimizing random variations in brightness or colour. Filtering or blurring 

techniques are utilized for this purpose, each tailored to address specific types of noise 

[8]. Gaussian filtering averages pixel values using a Gaussian kernel, softening the 

image, and reducing Gaussian noise. Median filtering, on the other hand, replaces each 

pixel's value with the median of its neighbours, making it useful for eliminating salt-

and-pepper noise while preserving edges. Mode filtering replaces pixel values with the 

most frequent value among neighbouring pixels, suitable for categorical data. These 

methods improve image clarity, preparing them for more analysis and processing. 
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2.2.2 Feature recognition and movement detection 

 

Background subtraction is a widely used technique in image processing for detecting 

moving objects in a scene by assuming that the background exhibits regular, predictable 

behaviour. This method involves creating a statistical model of the scene's background 

and then identifying any deviations from this model as potential intrusions. A probability 

density function is assigned to each pixel, allowing for the individual assessment of 

whether a pixel in a new image belongs to the background based on its fit with the 

density function. For static scenes, a simple model could be an image of the scene 

without any intruding objects. The next step involves estimating the variances in pixel 

intensity levels, which are necessary because these variances can differ significantly 

from one pixel to another [9]. In this thesis, a MOG2 [9] and a KNN [10] algorithms 

were used to determine these density functions.  

 

The outcome of the background subtraction process is a grayscale image, in which the 

brightness levels indicate areas of motion. To minimize noise and isolate most significant 

areas, thresholding is applied. In this process, pixels with values above a specified 

threshold are set to the maximum value, while those below the threshold are reduced 

to zero, resulting in a binary mask. This mask enables the tracking of object movements 

across frames, enabling the system to identify and monitor moving elements (Figure 

2.3). 

 

 

Figure 2.3 Example of background subtraction. The background model is subtracted from the 
current frame, then a certain threshold is applied, which calculates the foreground mask [11].  

 

With standard thresholding techniques, we can detect which parts of an image are 

moving, but not the direction of their movement. To address this, optical flow can be 

calculated. Optical flow is a concept in motion analysis that computes a motion vector 

field across an entire image. This is done by analysing local pixel variations over time, 

assuming that changes in motion are due to alterations in image intensity[8]. 
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Optical flow detects movement and captures the direction of that movement. To visually 

represent this direction on screen, a colour wheel is used. In this scheme, the hue 

represents the direction of the movement, while the intensity indicates its magnitude. 

 

Figure 2.4 Colour wheel demonstrating the direction and magnitude of movement [12]. 

The closer the colour is to the edge of the circle, the larger the movement.  

 

Once a mask is collected from the background subtraction, the objects need to be 

identified. These objects are regions of pixels, which are close to each other. To remove 

noise and isolate objects, the mask needs to be processed. This is done through a 

combination of erosion and dilation. 

 

Morphological erosion is a process used in image processing to reduce the size of 

foreground objects in a binary image. It works by comparing a structuring element, a 

small shape or template, to the neighbourhood of each pixel in the image. If the 

structuring element fits completely within the foreground object at a specific location, 

the pixel under the structuring element's origin is set to the foreground value; 

otherwise, it's set to the background value. This operation effectively erodes away the 

boundaries of foreground objects, making them smaller and removing small, isolated 

objects (Figure 2.5) [13]. 

 

 

Figure 2.5 Effect of erosion using a 3×3 square structuring element [13]. 

 

Dilation is an image processing technique used to expand the size of foreground objects 

in a binary image. It involves the use of a structuring element, which is a predefined 

shape or template, to probe and modify the image. During dilation, the structuring 

element is centred over each pixel, and if any part of the structuring element overlaps 

with a foreground pixel, the pixel under the centre of the structuring element is set to 
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the foreground value. This operation enlarges the boundaries of foreground objects, fills 

in small holes within those objects, and can join nearby objects (Figure 2.6) [14]. 

 

 

Figure 2.6 Effect of dilation using a 3×3 square structuring element [14]. 

 

By applying both erosion and dilation, small and irrelevant particles detected during 

motion detection are removed, enhancing the clarity of object identification within the 

mask. After the noise has been removed, the binary image contours can be detected 

and object coordinates can be found [15]. 

 

When objects are detected, tracking their positions using object tracking techniques is 

required. This step is required because, for the model of the machine to function, it 

needs to understand the contextual information regarding the movement of objects, 

specifically from where and to where they are moving. Since it is already known, where 

the object was in the last frame and where an object is in the current frame, there are 

several algorithms available, that perform object tracking. 
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2.3 Modelling 

2.3.1 Approach 

 

To determine whether the machine is operating correctly, it's required to define what 

constitutes correct behaviour. This definition could be established manually by the 

device user or automatically. To enhance the device's usability, automatic identification 

of correct behaviour is preferred. To develop a model that represents machine 

behaviour, its underlying mechanics of the machine itself should be understood. This 

understanding can be approached through three primary modelling strategies [16]: 

 

White Box Modelling (also known as First Principles Modelling) seeks to construct the 

model by starting from the foundational "ground truths" or basic principles governing 

the system's operation. This method relies on established mathematical relationships 

and known physical laws to simulate the system's behaviour. 

 

Grey Box Modelling represents a middle ground, wherein the model is built upon a 

combination of known relationships and empirical data. While some system parameters 

and relationships are assumed based on theoretical knowledge, others are derived 

through observation and estimation, blending theory with empirical insights. 

 

Black Box Modelling takes a purely empirical approach, eschewing any presuppositions 

about the system's internal workings. In this method, the model is developed entirely 

from input-output data, using statistical or machine learning techniques to infer the 

system's behaviour without any assumed knowledge of its inner mechanisms. 

 

If the device is used on previously unknown machines and for user convenience, it is 

needed, that the model is identified mostly automatically, then it is necessary to define 

the machines model as a black box model. These different black box modelling options 

will be explored in the next section. 
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2.3.2 Anomaly Detection 

 

An anomaly, in the broadest sense, is an outcome or value that deviates significantly 

from what is expected or considered normal. It is not merely an outlier, which might 

represent a value that's extreme yet still within the bounds of what's considered normal 

behaviour or variation. Instead, an anomaly suggests something more significant – it 

could indicate an error, an unusual event, or a condition that warrants further 

investigation because it falls outside the normal operating parameters or expected 

patterns.  

 

The definition of what constitutes an anomaly can vary widely depending on the context 

or the specific system being observed. For example, in the context of observing swans 

by a lake, a black swan in a population predominantly consisting of white swans would 

be considered an anomaly (Figure 2.7). This is because, based on prior observations, 

the expectation has been set that swans in that location are white, making the 

appearance of a black swan a significant deviation from the norm [17]. 

 

 

Figure 2.7 A black swan appears next to white swans. [17] 

 

Anomaly detection is the process in which an algorithm identifies certain data or data 

patterns to be anomalous. Anomaly detection plays an important role across various 

sectors by identifying deviations from normal patterns in data, improving proactive 

interventions and quality assurance. In the industrial context, this technology is used 

for maintaining high standards of production, safety, and efficiency [17]. 

 

Anomaly detection can be categorized into three styles: Supervised, where models are 

trained with labelled data distinguishing normal from anomalous points; semi-

supervised, utilizing partially labelled data, often only marking normal data to help 

models identify anomalies by deviation; and unsupervised, which does not rely on 
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labelled data, expecting models to learn the distinction between normal and anomalous 

data through the data structure itself [17].  

 

 

2.3.3 Artificial neural networks (ANNs) 

 

Deep learning, a subset of machine learning, focuses on artificial neurons, inspired by 

biological neurons, to process information. It involves structuring neural networks as 

sequences of layers, where each layer consists of neurons that process inputs and 

produce outputs. These networks have an input layer that receives training data, output 

layers that make predictions, and intermediate hidden layers that handle complex data 

transformations (Figure 2.8). This structure enables the ANN to learn complex patterns 

through data analysis, without knowing the actual patterns or the underlaying principles. 

Because of this feature, ANNs are suitable for this thesis.   

 

Figure 2.8 Architecture of a neural network with two hidden layers [17]. 

 

The forward pass is the process where input data is fed into the network and passed 

through each layer sequentially, from the input layer to the output layer. During this 

pass, the network applies weights, biases, and activation functions to compute the final 

output. This step is critical for making predictions based on the input data. 

The backward pass, or backpropagation, occurs after the forward pass and involves 

calculating the gradient of the loss function with respect to each weight and bias in the 

network by moving backward from the output layer to the input layer. This process uses 

the chain rule to compute these gradients, which are then used to update the model's 

parameters to minimize the loss. 

 

The loss, or cost, function quantifies the difference between the predicted outputs of the 

neural network and the actual target values, thereby measuring the network's 

performance. A lower loss indicates a better model. Mean Squared Error (MSE) is 
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particularly widely used because it emphasizes larger errors more significantly. MSE can 

be represented by the following formula [17]: 

 MSE =
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑁
𝑖=1

𝑁
 (2.1) 

where 𝑦𝑖 – target value for the 𝑖𝑡ℎ sample, 

 𝑦�̂� – prediction made for the 𝑖𝑡ℎ sample, 

 𝑁 – number of samples. 

 

An optimizer is an algorithm or method used to change the attributes of the neural 

network, such as weights and learning rate, to reduce the losses. Optimizers guide the 

training process by updating the network's weights in response to the output of the loss 

function. Examples include Gradient Descent, Stochastic Gradient Descent (SGD), 

Adam, and RMSprop. Different optimizers may perform better in different types of neural 

networks and problem settings [17]. 

 

 

2.3.4 Anomaly detection ANNs 

 

Anomaly detection in (ANNs) encompasses a range of techniques aimed at identifying 

unusual patterns that deviate from the norm within datasets. These techniques use the 

computational power and flexibility of different types of ANNs to model complex data 

distributions and detect anomalies. In this thesis, 3 types of ANNs are used due to their 

simplicity and low memory requirements: Multilayer Perceptron, Autoencoders and Long 

Short-Term Memory networks. 

 

Multilayer Perceptron (MLP) Supervised Anomaly Detection involves training a type of 

neural network known as a Multilayer Perceptron to distinguish between normal and 

anomalous data points in a supervised learning context. In this approach, the MLP is 

trained on a labelled dataset where each instance is marked as either normal or an 

anomaly. Once trained, the MLP can predict the class (normal or anomaly) of new, 

unseen data points based on the patterns it has learned [17]. 
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Figure 2.9 Example concept of a multilayer perceptron [17]. 

 

Autoencoders are a type of neural network used for unsupervised learning. They work 

by compressing input data into a lower-dimensional representation in the encoder 

phase, and then reconstructing the output to match the original input as closely as 

possible in the decoder phase (Figure 2.10). The process of encoding and decoding 

allows autoencoders to learn representations of the data, capturing its most important 

features [17]. 

 

Figure 2.10 Expanded view of an autoencoder [17]. 
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Long Short-Term Memory (LSTM) networks are a type of Recurrent Neural Network 

(RNN) specialized in processing sequences of data. They excel in tasks that require 

learning from experience to classify, process, or predict time series where time intervals 

between events are unknown or variable. LSTMs are designed to overcome the 

vanishing gradient problem that can affect standard RNNs, allowing them to learn long-

term dependencies. This is achieved through their structure of gates (input, output, and 

forget gates) that regulate the flow of information (Figure 2.11). These gates control 

whether to retain or discard information, making LSTMs capable of capturing long-term 

patterns in data sequences [17]. 

 

Figure 2.11 Example of an LSTM unit. x represents the input, o denotes the output, and t indicates 
the timestep. Between each unit, both long-term and short-term memory information is shared, 
while the internal weights remain consistent across all units [17]. 
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2.4 Literature review summary 

 

Machinery equipment monitoring systems are crucial part of the modern factory and are 

growing trend in the industry. Numerous providers offer machine monitoring services, 

yet these often require specialized personnel for implementation and are not available 

off-the-shelf. Each solution needs to be custom-tailored for specific tasks, which, while 

beneficial to the customer, results in higher costs. Additionally, most manufacturers 

require installation of extra equipment to the manufacturing line, as there are no 

portable devices readily available. This situation highlights a need for a ready-made 

device, capable of visually monitoring machinery without extensive setup or 

customization. 

 

So, the devices Cost-effectiveness is a primary consideration in the development of the 

device. The aim is to select affordable components and technologies that do not 

compromise the system's effectiveness. This is achieved by integrating open-source 

software, which reduces licensing costs, and by selecting cost-efficient hardware 

components. Additionally, the design minimizes the need for high processing power, 

which typically drives up costs, ensuring that the system remains economical without 

sacrificing functionality. 

 

Existing devices require hardware integration into the machine, which makes the 

integration process time consuming and expensive. Portability and Low Weight are 

crucial for the adaptability of the device across various industrial environments. The 

design focuses on utilizing compact and lightweight components that can be easily 

transported and installed. This flexibility enables the device to be seamlessly integrated 

with a wide range of industrial equipment, enhancing its applicability and convenience. 

 

Most of the solutions assume prior expertise in the field of AI or machine vision. Thus, 

ease of use is another critical design objective, aimed at ensuring that the system is 

accessible to users of all technical skill levels. The system has a user interface that 

requires minimal training, making it straightforward for operators to use and an 

algorithm that.  

 

To extract the required data for anomaly detection, the image processing pipeline can 

be divided into the following stages: 

• Image Preprocessing - In this phase, images are transformed into a standardized 

format in terms of size and colour, and noise is removed to prepare them for 

analysis. 
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• Image Feature Extraction - During this phase, moving objects are detected and 

tracked using various motion detection algorithms such as KNN background 

subtraction, MOG2 background subtraction, and optical flow via the Farneback 

algorithm. 

 

Although there is no publicly available information about the algorithms used in 

commercial solutions, anomaly detection typically involves the application of machine 

learning algorithms. To detect anomalies in the motion of the observed machine, a black 

box modelling approach is best, as it allows for variability in the observed machinery. 

In this approach, an ANN is trained on a dataset representative of the machine’s normal 

operation. Three types of ANNs are commonly used for anomaly detection: MLP, 

Autoencoders, and LSTM. 

 

 

 

2.5 Thesis goals and system requirements 

 

Based on the literature review, the goal of this thesis is to create a prototype of a real-

time machine motion monitoring device. This device must be designed to detect and 

issue warnings about anomalous motion behaviour in the observed machinery. This 

prototype must fulfil the role of an assistive tool for machine developers and operators, 

incorporating key design principles: cost-effectiveness, portability, and ease of use. To 

achieve these goals, the device must have the following functionalities:  

• Record machine movement information, 

• Display movement information to the operator, 

• Construct a model of the movement pattern, 

• Compare the model to the movement information, 

• Detect anomalous movement and display it to the operator. 

 

To achieve the described goals and device functionality, The devices hardware design 

must incorporate the following features:  

• Capability to film the machine, 

• A user interface, 

• Support for ANN development and deployment, 

• Cost efficiency, 

• Compact form factor. 
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Several core objectives guide the software design process to ensure the final product 

meets both operational needs. These objectives focus on balancing cost-effectiveness, 

portability, user-friendliness, and performance. Performance in anomaly detection is 

essential for the effectiveness of the monitoring system. The device needs to be 

designed to deliver accuracy and reliability in detecting anomalies under diverse 

operational conditions. Performance metrics such as detection accuracy, processing 

time, and system robustness are key criteria used to evaluate the system’s efficacy. 
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3 OBSERVED MACHINE 

 

The research design for developing this monitoring device requires a fundamentally 

experimental approach. This methodology is chosen for its ability to control various 

variables that impact the system's performance, including lighting conditions, camera 

angles, and the specific nature of the anomalies being detected. The capability to 

manipulate and isolate these factors allows for the examination of how different 

configurations and algorithms influence the accuracy and reliability of the process. 

 

A disinfectant bottle cap installation machine was utilized as a case study. This machine 

operates by transferring bottles from an input conveyor to an indexing wheel, which 

advances them through several steps (Figure 3.1). At the second step, a cap is placed 

on the bottle, and at the fifth step, the cap is securely pressed onto the bottle. Finally, 

in the seventh step, the bottle exits the machine via an output conveyor. The caps 

themselves are fed into the machine using a vibrating linear and bowl feeder and are 

placed onto the bottles with pneumatic a suction cup mechanism.  

 

       

Figure 3.1 Disinfectant bottle cap assembly machine. Left hand side shows the overview of the 
machine, Right hand side shows top view of the indexing wheel movement direction. 

 

 

To analyse the devices performance, 2 scenes were filmed. The first scene features a 

video clip of bottles moving on a conveyor line (Figure 3.2). The camera was positioned 

on the side of the conveyor belt, capturing bottles as they appeared from the left side 

of the screen, moved across the screen, and exited on the right side. A maximum of 

four bottles could appear on the screen simultaneously. This setup demonstrates 

optimal performance against a static, well-lit background. 
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Figure 3.2 Example frame for the conveyor belt footage. Bottles are moving from left to right.  

 

The second scene is more challenging and better represents real-world conditions. The 

camera overlooks the indexing wheel from the perspective of the output conveyor 

(Figure 3.3). In this frame, the indexing wheel advances every three seconds, and 

following each advancement, the cap presser moves downward. The presence of 

reflections from the plexiglass doors and the machine's bottom adds complexity to the 

motion detection due to varied movement directions, thereby increasing the model's 

complexity. 

 

 

Figure 3.3 Example frame from the wheel turning footage. 



 

29 

4 HARDWARE COMPONENTS 

4.1 Architecture 

 

The architecture incorporates three essential hardware components (Figure 4.1): a 

processing unit (PU), a camera, and a user interface. The PU processes the video data 

captured by the camera. The user interface allows users to configure settings, view 

analyses, and receive alerts on detected anomalies, making the system accessible to 

operators of varying technical skill levels. 

 

Figure 4.1 Device architecture. 

 

 

 

4.2 Processing unit 

 

The controller is a the most important component of the device, as it influences the 

selection and performance of all other hardware components. The choice of controller is 

determined by several key factors: price, computational capacity, interfaces, the volume 

of available documentation, size, and open-source compatibility with community 

support. Additionally, the controller must support AI functionalities, which is essential 

for implementing advanced machine learning algorithms. Open-source controllers offer 

the advantage of community-supported updates and greater flexibility in customization, 

which are vital for adapting the system to specific industrial needs. Given the vast array 

of PUs available, the focus is primarily on single-board computers that cater to these 

needs. 

 

The Raspberry Pi 5 [18] is a compelling option for the controller due to its enhanced 

features and capabilities. This model provides significant upgrades from its 

predecessors, including improved computational power and expanded memory options, 

which are essential for processing and analysing visual data efficiently. Additionally, it 

offers a variety of interfaces such as USB ports and HDMI, supporting a wide range of 
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peripherals needed for comprehensive monitoring solutions. The Raspberry Pi 5 also 

maintains its predecessor’s advantages of being cost-effective and having extensive 

documentation available, making it a highly accessible platform for developers. Its 

compact size allows for easy integration into industrial environments where space might 

be limited. These features make the Raspberry Pi 5 a robust choice for handling the 

demands of anomaly detection in industrial settings. 

 

 

Figure 4.2 Raspberry Pi 5 board [19] 

 

The NVIDIA Jetson Nano [20] is an excellent controller option due to its specialized 

features tailored for AI and machine learning tasks. It is equipped with a GPU which 

makes it highly suitable for processing complex visual data and performing real-time 

image analysis and anomaly detection. Despite its compact form factor, the Jetson Nano 

offers substantial computational capabilities, supporting a wide range of AI frameworks 

and libraries that are essential for developing advanced detection algorithms. Jetson 

Nano provides a variety of connectivity options including USB, HDMI, and GPIO, which 

facilitate the integration with other industrial components. It also boasts a strong 

community and extensive documentation, making it easier for developers to implement 

and troubleshoot their applications. Although it is slightly more expensive than some 

basic microcontrollers, its specialized features justify the cost for applications requiring 

high processing power and real-time performance, making it a robust choice for 

sophisticated industrial monitoring systems. 

 

 

Figure 4.3 Jetson Nano board [21] 
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The Google Coral Dev Board is an excellent option particularly where edge computing 

and AI capabilities are paramount. This board is centred around the Edge TPU 

coprocessor, which excels in accelerating TensorFlow Lite models, enabling it to perform 

machine learning tasks at the edge with remarkable speed and efficiency. Key features 

include a small form factor, low power consumption, and substantial processing power, 

making it suitable for deployment in industrial environments where space and energy 

efficiency are concerns. The board also supports a variety of interfaces, including USB, 

HDMI, and GPIO, ensuring versatile connectivity with other devices and sensors. Google 

Coral Dev Board is supported by extensive documentation and a robust developer 

community, which simplifies the development process and troubleshooting. Its 

emphasis on machine learning and edge AI processing, combined with the support for 

open-source tools and software, makes it a powerful choice for implementing advanced, 

real-time anomaly detection in industrial settings. 

 

Figure 4.4 Coral Dev Board [22] 

 

While these boards appear similar, their distinct features make comparisons challenging. 

Each board possesses unique strengths as outlined in  Table 4.1. The Raspberry Pi 

boasts a faster CPU and more RAM, but it has a slower GPU and lacks built-in storage. 

Despite these limitations, it is the most affordable option and benefits from the largest 

community support and extensive documentation. On the other hand, the Jetson Nano 

is equipped with a versatile NVIDIA GPU with CUDA support, making it highly capable 

for handling visual tasks and machine learning. However, it has a slower CPU and less 

RAM compared to the Raspberry Pi but compensates with built-in storage and robust 

support in machine learning applications. Lastly, the Google Coral Dev Board shares 

several specifications with the Jetson Nano but sets itself apart with a dedicated TPU for 

Edge AI computations. It is slightly more expensive and has limited community support 

compared to the others. 
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Table 4.1 Comparison between Raspberry Pi, Jetson Nano, and Coral Dev board 

Name Raspberry Pi 5 NVIDIA Jetson Nano Google Coral Dev 

Board 

CPU 2.4GHz Quad-core 

ARM A76 

1.43 GHz Quad-core 

ARM A57 

1.5 GHz Quad-core 

ARM A57 

GPU VideoCore VII 128-core Maxwell Vivante GC7000Lite + 

Edge TPU coprocessor 

RAM 8GB LPDDR4 4 GB LPDDR4 4 GB LPDDR4 

Storage - (microSD card slot) 16 GB eMMC 16 GB eMMC 

Interfaces microSD card slot 

Gigabit Ethernet 

2 × USB 3.0 ports 

2 × USB 2.0 ports 

Dual 4Kp60 HDMI® 

display output 

2 × 4-lane MIPI 

camera/display 

transceivers 

PCIe 2.0 

40-pin GPIO header 

Dual-band 802.11ac 

Wi-Fi 

Bluetooth 5.0 

microSD card slot 

Gigabit Ethernet 

1 * USB 3.0 

2 * USB 2.0 

1*HDMI Type A 

 

2x MIPI CSI-2 DPHY 

lanes 

 

M.2 Key E 

40-pin GPIO header 

microSD card slot 

2x USB 3.0 

uSDHC 

Gigabit Ethernet 

HDMI 2.0a 

MIPI DSI display 

MIPI-CSI2 camera 

input 

Wi-Fi 2x2 MIMO 

Bluetooth 4.2 

40-pin GPIO header 

Price 72,44 € [19] 180,20 € [23] 232,51 € [24] 

Size 86 mm × 56 mm × 16 

mm 

69 mm x 45 mm x 45 

mm 

88 mm x 60 mm x 22 

mm 

Community 

support 

Very large community 

and lots of 

documentation 

Large community and 

lots of documentation. 

Excellent support for 

AI deployment 

Smaller community 

and support 

 

Based on this comparison, the Jetson Nano was determined to be a well-balanced choice 

among these three boards. It offers a powerful GPU with CUDA support, making it highly 

capable for machine learning and image processing tasks. Although it has a slightly 

higher cost than the Raspberry Pi, it is more affordable than many other specialized AI 

hardware options. The Jetson Nano also provides built-in storage, which is an advantage 

over the Raspberry Pi. While it does not have the smallest form factor compared to the 

other boards, its size is still compact enough for most applications. Moreover, the Jetson 

Nano benefits from substantial community support, particularly in the machine learning 

sector, making it an ideal choice for projects requiring advanced visual processing and 

AI capabilities. 
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4.3 Camera 

 

The selection of the camera is a critical component of the hardware setup, second only 

to the computing platform itself. The choice of camera largely hinges on two pivotal 

factors: the data transfer rate and cost. Modern cameras typically possess the capability 

to capture high-resolution imagery at sufficient frame rates for detailed analysis. 

However, the data transfer rate becomes crucial when considering the limited time 

available for computing between frames. This rate must be high enough to ensure data 

is swiftly relayed to the controller, allowing timely initiation of image analysis. 

Additionally, the type of interface used for communication between the camera and the 

controller is determined by the controller's specifications, which can influence the overall 

effectiveness of the data transfer and integration into the detection system. 

 

The Jetson Nano supports three primary methods for connecting a camera, each with 

its unique benefits and suitability for different application scenarios in industrial 

monitoring: 

 

Universal Serial Bus (USB) cameras are widely available and offer a plug-and-play 

solution, making them easy to integrate and replace. USB connections are generally 

suitable for applications where moderate data rates are sufficient and cost-effectiveness 

is a priority. However, USB cameras may not always provide the reliability needed for 

high-speed data transfer. 

 

Figure 4.5 Example of a USB camera [25]. 

 

Ethernet cameras are ideally suited for environments requiring long cable runs or 

extensive networking of multiple cameras. They excel in situations where cameras must 

be placed significant distances from their control units, such as large-scale industrial 

plants or outdoor monitoring areas. These cameras benefit from advanced network 

technologies like Power over Ethernet, which simplifies wiring and reduces installation 
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costs by transmitting power and data over the same cable. Moreover, Ethernet cameras 

provide high data transfer rates and enhanced reliability, attributes crucial for 

applications demanding high-resolution and high-frame-rate imaging. Despite these 

benefits, Ethernet cameras tend to be more expensive compared to other types, 

reflecting their advanced capabilities and the technological sophistication they bring to 

sophisticated monitoring systems. 

 

 

Figure 4.6 Example of an Ethernet-based camera [26]. 

 

The Camera Serial Interface (CSI) is optimal for applications demanding high data 

throughput and low latency, characteristics essential for effective real-time anomaly 

detection. CSI enables direct interfacing between the camera and the Jetson Nano’s 

processing core. This direct path facilitates faster image processing and reduces delay, 

critical factors in scenarios where timely processing can significantly impact system 

performance and reliability. Additionally, CSI-2 cameras are typically more cost-

effective compared to other high-throughput interfaces, making them a preferred choice 

for embedded systems where budget constraints are considered alongside performance 

requirements. 

 

Figure 4.7 Example of a CSI camera [27] 

 

For this device, CSI was used due to its advantages in providing high data throughput 

and low latency, which are crucial for real-time processing applications, while keeping 

costs low. After determining that the CSI interface would best meet the system 

requirements for efficient image data handling, the Raspberry Pi Camera Module 2 was 

selected. The camera’s cost-effectiveness, widespread availability, and robust 

community support influenced this choice. The Raspberry Pi Camera Module 2 not only 
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fits well within the device due to its compact size and lightweight design but also ensures 

rapid and reliable anomaly detection by facilitating a direct connection to the Jetson 

Nano’s processing core. Additionally, the camera’s favourable cost and strong user 

support network make it an economical choice for maintaining and scaling the system. 

 

 

Figure 4.8 Raspberry Pi Camera Module 2 [28] 
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4.4 User interface display 

 

The user interface (UI) of the device, although seemingly less critical, plays a pivotal 

role in user interaction and system operation. A well-designed UI is vital as it forms the 

primary touchpoint between the user and the system, ensuring efficient device 

management and ease of use.  

 

Given the Jetson Nano's lack of built-in wireless interfaces and reliance on HDMI and 

USB connections, the UI needed to be in the form of a touchscreen, touchscreen 

interface was used, which allows for operation without extensive training. Among the 

available options, the 7-inch HDMI LCD touchscreen by Ingcool (Figure 4.9) was 

selected. This model was chosen for several reasons: its compatibility with the Jetson 

Nano, matching size with the device, support for essential functionalities, short shipping 

times, and affordability. The touchscreen’s low cost and quick integration make it an 

ideal, flexible solution for the current stage of the project, allowing for future 

modifications or upgrades as the system evolves or as user needs evolve. 

 

 

Figure 4.9 LCD touchscreen [29] 
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4.5 Housing and assembly 

 

The device's housing was designed in SolidWorks for 3D printing. The design principle 

focused on maximizing compactness while ensuring sufficient space for the hardware 

components, wiring, and airflow necessary for cooling. The housing consists of two main 

parts. The Jetson and touchscreen are mounted on the first part, the main frame, using 

M2.5 bolts. A Noctua 40x40x20 mm fan [30] was attached to the Jetson Nano's heatsink 

to enhance heat dissipation. The Raspberry Pi camera is affixed to the protective cover, 

which shields the Jetson Nano and the internal wiring. The two parts of the housing are 

friction-fitted together and secured with M3 bolts (Figure 4.10). 

 

Figure 4.10 3D model of the created device, left side shows the exploded view, right side shows 
the general dimensions once assembled. 

 

Power for the device is supplied through a USB-C connection to the Jetson Nano, which 

in turn provides power to the touchscreen, fan, and CSI camera (Figure 4.11). The CSI 

camera streams data into the Jetson Nano, where it is processed, and the results are 

displayed on the touchscreen via the HDMI interface. Inputs from the touchscreen are 

sent back to the Jeton Nano through a USB connection. 

 

Figure 4.11 Overview of the electrical connections within the device. 
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5 THE SOFTWARE 

5.1 Model design 

5.1.1 Defining inputs and outputs 

 

A black box model operates by processing inputs to generate outputs. It's crucial to 

clearly define these inputs and outputs. In the context of using a camera for machine 

monitoring, previously recorded frames can be utilized as inputs to predict the 

subsequent frame, making the previous frames the input and the current frame the 

output (Figure 5.1). By comparing pixel values between the predicted and the actual 

recorded frame, the accuracy of the model can be assessed. This comparison allows the 

training the model. The model can be used to compare the expected frame with the 

current frame to detect anomalies or deviations, indicating potential issues with the 

machine. 

 

Figure 5.1 Model inputs and outputs, where n is the current frame number and i is the number 

of previous frames to be inputted into the model. 

 

The approach of using past frames to predict future frames is theoretically sound but 

presents practical challenges in terms of computational efficiency and model complexity. 

Processing a continuous stream of images demands substantial computational 

resources, placing a significant burden on processing power and memory. This high 

requirement poses a particular challenge for a portable device, which will typically have 

limited hardware capabilities. 

 

To address this issue, it's necessary to simplify the information processed by the model, 

thereby reducing the volume of data required. The critical aspect to focus on is the 

movement of the machine parts. These changes can be translated into part position 

information, significantly reducing the data before it's fed into the model. The model 
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can then calculate the part positions from the next frame and compare them to the 

actual positions (Figure 5.2). 

 

Figure 5.2 Model inputs and outputs, where n is the current frame number and i is the number 

of previous frames to be analysed. Each previous frame is converted to position data and then 
imputed into the model. The model output is the predicted position data frame n. 

  

 

5.1.2 Workflow 

 

A structured pipeline is necessary to analyse the observed machine on a standalone 

device. This involves several steps (Figure 5.3): reading the input images from a 

camera, preprocessing them for analysis, recognizing movement in the image, inputting 

the position information to a model of the machine and comparing the output of the 

model to the actual movement and finally, displaying the results. 

 

 

Figure 5.3 Machine monitoring pipeline, where i is the input image, i’ is the pre-processed 
image, m is the detected movement information, m’ is the predicted movement information for 
the current frame, M are the previous images movement information and Δm is the difference 
between the predicted and actual movement information.  
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To determine whether the machine is operating correctly, it's required to define what 

constitutes correct behaviour. Therefore, the identification phase is conducted before 

the monitoring process. This would be initiated by the user, after which the device is 

able to start monitoring (Figure 5.4).  

 

 

Figure 5.4 Model creation pipeline. 

 

 

 

5.2 Evaluation 

 

Validating the design involves testing its accuracy, efficiency, and effectiveness in real-

world settings. The validation focuses on three key metrics: motion prediction accuracy, 

computation time, and anomaly score accuracy. Each of these metrics targets a specific 

aspect of the device's performance. 

 

Motion tracking accuracy is visually assessed by the author. If the motion calculated by 

the system does not match the observed motion, it can be discarded. 

 

Computation time measures the efficiency of the system, specifically how quickly it 

processes data and delivers outputs. This is measured by the playback frames per 

second (FPS) 

 

Anomaly score is evaluated by calculating the modified MSE (Equation (5.1) of each 

bounding box, where the output of the created model is compared to the output from 

the motion tracking algorithm. Under normal behaviour, the model’s outputs should 

closely align with the motion tracking outputs. A significant discrepancy between the 

two suggests an anomaly. If a significant difference occurs during normal behaviour, or 

if there is no difference when an anomaly is expected, then the device is not performing 

adequately. 

 MSE = (𝑦𝑥 − 𝑞𝑥)
2 + (𝑦𝑦 − 𝑞𝑦)

2
+ (𝑦𝑤 − 𝑞𝑤)

2 + (𝑦ℎ − 𝑞ℎ)
2, (5.1) 

where 𝑦𝑥 – tracking bounding box X coordinate, normalized to image dimensions, 

 𝑦𝑦 – tracking bounding box Y coordinate, normalized to image dimensions, 

 𝑦𝑤– tracking bounding box width, normalized to image dimensions, 

 𝑦ℎ – tracking bounding box height, normalized to image dimensions. 
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 𝑞𝑥 – model bounding box X coordinate, normalized to image dimensions 

 𝑞𝑦 – model bounding box Y coordinate, normalized to image dimensions 

 𝑞𝑤– model bounding box width, normalized to image dimensions 

 𝑞ℎ – model bounding box height, normalized to image dimensions  

 

 

 

5.3 Software packages 

 

OpenCV, or Open Computer Vision Library, is known for its versatile capabilities in 

computer vision. As an open-source library, it offers an infrastructure that supports real-

time image processing and includes a broad range of functions from basic image 

manipulation to advanced algorithms for object and feature detection. This library is 

used for processing the visual data necessary, providing a vast range of pre-built 

functions that speed up the development and testing of complex image analysis 

techniques.  

 

Complementing OpenCV, PyTorch is selected for its strengths in handling neural 

networks. It excels due to its flexible nature, making it ideal for academic research and 

projects that necessitate quick iterations and model adjustments. The library's GPU 

acceleration capabilities and the support of an active community offer tools and pre-

trained models.  

 

Alongside OpenCV and PyTorch, the device also incorporates NumPy and Tkinter to 

enhance both the backend computations and the user interface, respectively. NumPy is 

used for handling high-performance mathematical operations and manipulating large 

arrays of image data, which is essential for preprocessing steps before feeding data into 

the neural networks in PyTorch. On the frontend, Tkinter plays a role by providing a 

practical and easy-to-use graphical interface, allowing users to interact with the device. 

This includes starting and stopping processes, adjusting settings, and displaying real-

time analysis results. 

 

The Jetson Nano, which serves as the core computing unit of the system, supports, and 

comes with a ready-built version of Ubuntu 18.04. Because of these libraries used, the 

device is mainly programmed in the Python programming language. 
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5.4 Data collection 

 

In the initial phase, video data is collected under controlled conditions where specific 

types of anomalies are artificially introduced into the machinery's operation. This 

approach allows the calibration of the system to recognize and differentiate various 

anomaly types based on visual cues. Following the controlled recordings, the system is 

further tested through a real-time camera feed directly connected to the algorithm's 

input. This step used for assessing the system's capability to process and analyse data 

in real time, simulating actual operational conditions. The real-time feed tests the 

system's response times and accuracy under typical industrial conditions, providing 

valuable feedback for further tuning and optimization. 

 

The videos are recorded in MP4 format with a resolution of 1280 x 720 pixels. This 

resolution balances between detail and file size, showing clarity without excessively 

large data volumes that could hinder processing efficiency. The videos are captured at 

a frame rate of 30 frames per second, which is sufficient to capture motion and provide 

a realistic representation of how machines operate in real time. 

 

 

 

5.5 Motion detection  

 

Three distinct motion detection algorithms were tested for the device: MOG2, KNN, and 

Farneback optical flow. These algorithms were tested in two benchmark scenes to 

evaluate their effectiveness in detecting moving objects. Each algorithm was assessed 

based on its detection accuracy and performance in identifying and tracking moving 

objects in these scenes.  

 

 

5.5.1 Preprocessing 

 

The performance of an anomaly detection algorithm significantly relies on the input 

data. Generally, the more data available, the higher the potential accuracy of the model. 

However, processing larger datasets not only demands more computing time but also 

introduces potentially irrelevant data that may not contribute to the overall effectiveness 

of the model. Particularly with image data, the computational resources required can 

escalate rapidly.  
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To mitigate computational challenges, input data is simplified using preprocessing 

techniques such as erosion and dilation, which help reduce noise. After preprocessing, 

the largest 'n' objects that exceed a specified size threshold are identified and 

encapsulated within bounding boxes (Figure 5.5). This data, the size and position of 

these bounding boxes, serves as both the input to the model and the benchmark for 

expected output. Anomaly detection is performed by comparing the model’s predictions 

against the actual measured data. Any discrepancies between these two datasets are 

analysed to identify and confirm the presence of anomalies. 

 

 

Figure 5.5 Example of finding the bounding boxes around moving objects in the bottle conveyor 
scene. Output from the motion detection algorithm shown in the top left; thresholding above 

shadow values in the top right; noise removal through erosion and dilation in the bottom left; and 
the largest white regions enclosed by bounding boxes in the bottom right. 
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5.6 Anomaly detection 

5.6.1 Multilayer perceptron design 

 

A typical Multi-Layer Perceptron (MLP) includes an input layer to receive data points, 

several hidden layers for processing, and an output layer with two nodes to classify data 

as either normal or anomalous. However, this approach is inadequate for the specific 

scenario, as MLP training requires a labelled dataset containing examples of both normal 

and anomalous conditions. Since there is only data representing normal operational 

conditions available, the network must be adapted to identify deviations from this 

'normal' pattern as potential anomalies. 

 

To address this challenge, the network is specifically configured to predict the next 

position of objects by analysing their historical positional data (Figure 5.6). Positional 

information, including the coordinates (x, y) and dimensions (width and height) for 'n' 

boxes during the last 'm' time steps, is fed into the MLP. The output is then set to predict 

the current position of these objects. This modelling approach allows the network to 

learn and recognize typical movement patterns during standard operations. 

Consequently, any deviations from these expected positions can be flagged as potential 

anomalies. This capability enables the system to identify irregular behaviours 

autonomously, without the need for a labelled dataset containing examples of 

anomalies. 

 

Figure 5.6 Configuration of the MLP, where t represents the current time step for positions, n is 

the maximum number of boxes analysed, m is the number of time steps analysed, x and y denote 
the horizontal and vertical positions of a box, respectively, and w and h represent the width and 
height of the box. 
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5.6.2 Autoencoder design 

 

The structure of an autoencoder mirrors that of a MLP in that both are feed-forward 

networks. However, the autoencoder differentiates itself by typically featuring fewer 

neurons in its hidden layers than in the input or output layers. This reduction in neurons 

is aiming to condense the input data into a more compact representation that 

encapsulates the essential features of the system. 

 

For this application, data concerning the current boxes is input into the autoencoder. 

The network is then tasked with reconstructing this data in its output (Figure 5.7). The 

premise is that if the autoencoder successfully learns the essential features of the 

system during training, it will be able to accurately reconstruct similar data. 

Consequently, any discrepancies between the model’s output and the actual input data 

could indicate changes or anomalies within the system. 

 

Figure 5.7 Configuration of the autoencoder, where t represents the current time step for 

positions, n is the maximum number of boxes analysed, x and y denote the horizontal and vertical 
positions of a box, respectively, and w and h represent the width and height of the box. 
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5.6.3 LSTM design  

 

An LSTM (Long Short-Term Memory) network is an ideal choice for this task due to the 

time-dependent nature of the movements observed. Each movement influences 

subsequent movements, making the sequence of actions interdependent. LSTMs excel 

with time series data because they are specifically designed to recognize and remember 

patterns over extended time intervals. This capability allows them to be finely tuned for 

tasks where past events significantly affect future outcomes. 

 

In this example, data from previous timesteps about the boxes is input into the LSTM. 

The LSTM is trained to predict the current timestep's box information based on this input 

coupled with the memory it has retained from past sequences. The greater the length 

of this memory, the more dynamics it can store, which enhances its predictive capability. 

However, this also increases the computational demands. The outputs of the LSTM 

nodes are then translated back into bounding box data through a fully connected layer 

at the output. 

 
Figure 5.8 Configuration of the LSTM model, where t represents the current time step for positions, 
n is the maximum number of boxes analysed, x and y denote the horizontal and vertical positions 
of a box, respectively, and w and h represent the width and height of the box.  
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5.7 The interface  

 

5.7.1 Data collection 

 

During the data collection phase, the user plays a role in establishing a baseline of 

normal operation. They are required to upload or record a sample video that depicts the 

machinery operating correctly under conditions identical to those where ongoing 

monitoring will occur. It's vital that this recording is made in the same position and 

under the same lighting conditions as the observation location to ensure consistency in 

the data used for training. 

 

Once the video is uploaded into the system, it undergoes preprocessing to enhance 

efficiency. The video is scaled down by a specified factor of 2 to reduce the time required 

for analysis. Following this, an OpenCV background subtractor is initialized with 

predefined settings that include the learning rate, minimum foreground object size, and 

the maximum number of objects allowed in the frame. 

 

The background subtractor processes the video to isolate and identify each moving 

object's size and position. This information is recorded in a CSV file, along with the 

video's parameters. As the video progresses, the system draws bounding boxes around 

the detected objects and assigns each an ID marker. By highlighting the objects being 

tracked, users can visually verify that the system is accurately capturing and analysing 

the operational dynamics of the machinery.  

 

Upon completion of the training phase, all gathered data—object sizes, positions, and 

corresponding video parameters—are saved to a .csv file. This compiled information 

forms the dataset on which the neural network will be trained. The training involves 

adapting the model to recognize and predict typical patterns of machine behaviour, 

setting a benchmark for detecting deviations that may indicate operational anomalies in 

the future.  
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Figure 5.9 Screenshot of the UI During the Data Collection Process: The top part of the screen 

displays the input parameters, including the learning rate of the motion detection algorithm, the 
minimum bounding box area, and the maximum number of bounding boxes detected in a single 
frame. The bottom half of the screen presents the output from the motion detection algorithm, 
highlighting the moving object with a green bounding box and displaying its ID above it. 

 

 

5.7.2 Training 

 

In the training phase, the data gathered and recorded during the data gathering phase—

specifically the information on each moving object's size, position, and associated video 

parameters—is loaded into memory. Once the data is loaded, the user is presented with 

the capability to customize several key parameters of the neural network through the 

user interface. These parameters include the training ratio (the split between training 

and validation data), batch size (the number of samples processed before the model is 

updated), hidden size (the number of units in the hidden layers of the neural network), 

number of epochs (the number of complete passes through the training dataset), and 

the learning rate (the step size at each iteration while moving toward a minimum of a 

loss function). Adjusting these settings allows the user to tailor the training process to 

fit specific needs and constraints, balancing between training speed and model accuracy. 
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With the parameters set, the user can initiate the training process via the user interface. 

As training progresses, real-time updates on the training and validation losses are 

displayed. This feedback provides insight into how well the model is learning from the 

data—lower losses indicate better learning. By monitoring these metrics, users can 

make decisions about possibly tweaking the neural network settings or halting the 

training early if the desired accuracy is achieved.  

 

 

Figure 5.10 Screenshot of the user interface during training. 

 

 

5.7.3 Observation 

 

In the observation phase begins with the user selecting the video input that will be 

monitored in real-time and loading the trained model, which has been optimized during 

the training phase. Just like in the data gathering phase, the system continues to 

analyse the video input to identify and track moving objects. Utilizing the same 

background subtraction techniques, the system calculates each object's position and 

size in real time. Simultaneously, the neural network model, now trained to understand 

the typical behaviour and positions of these objects under normal operating conditions, 

makes predictions about where these objects should ideally be located and how they 

should move based on the learned patterns. 

 

The core of the anomaly detection lies in the computation of the anomaly score, which 

is determined by the mean squared error (MSE) between the model’s predictions and 

the actual observed values. This score quantifies the deviation of the observed 

behaviour from what is expected under normal conditions; a higher MSE indicates a 

greater deviation, suggesting an anomaly. If the anomaly score exceeds a predefined 
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threshold, it signals that the machine is exhibiting unfamiliar or abnormal behaviour. 

This trigger can alert operators or trigger automated systems to take corrective actions, 

such as shutting down equipment for inspection or adjusting operational parameters to 

mitigate risk. 

 

Figure 5.11 Screenshot of the observation window. The green bounding box is the observed object 
location, the red outline is the predicted location of the object. In the top right corner, the error 
between the prediction and the measured positions is displayed. 
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6 RESULTS AND DISCUSSIONS 

6.1 Device 

 

The mechanical components were assembled inside a 3D printed housing. These 

components include: A Jetson Nano for the processing unit, a Ingcool 7-inch LCD display 

for the user interface, A Noctua fan for cooling and a Raspberry Pi camera 2 for the 

camera. The housing included a standard mounting point, so that the camera could be 

attached to a tripod (Figure 6.1). 

 

Figure 6.1 Device mounted on a tripod, observing the machine. 
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6.2 Performance 

6.2.1 Motion detection 

 

Three different methods for motion detection were tested: KNN background subtraction, 

MOG2 background subtraction, and optical flow using the Farneback algorithm. These 

methods were evaluated in two different scenes, with videos shot at a resolution of 

1280x720 and a frame rate of 30 fps. 

 

The KNN background subtraction method demonstrated the poorest performance in 

scenarios with a static background. Despite the stable conditions, it struggled to detect 

moving objects as complete entities; only the leading and trailing edges of the objects 

were consistently identified (Figure 6.2). In scenarios where the background was subject 

to changes, the KNN background subtractor exhibited similar performance issues. The 

algorithm continued to have difficulty recognizing the full scope of movement in the 

indexing wheel footage, typically detecting only the advancing or trailing edge of moving 

objects. When the video was scaled down by 50%, the method achieved an average 

frame rate of 35 FPS in both scenes. 

 

  

Figure 6.2. Examples of the KNN background separation algorithm. Moving areas are shown in 
white. Left side shows frame from conveyor belt scene, right side shows frame from index wheel 
scene. 
 

The MOG2 algorithm excelled in the conveyor belt scene. It distinguished the 

background and successfully separated the bottles from the conveyor belt. The 

algorithm was good at detecting shadows, differentiating them from moving objects 

(Figure 6.3). In the case of the indexing wheel, the learning rate needed to be increased 

due to minor changes in background positions. Nevertheless, the model worked 

smoothly, finding the moving parts of the machine very effectively. When the video was 

scaled down by 50%, the algorithm maintained an average frame rate of 34 FPS in both 

scenes. 
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Figure 6.3 Examples of the MOG2 background separation algorithm. Moving areas are shown in 
white. Left side shows frame from conveyor belt scene, right side shows frame from index wheel 
scene. 

 

Calculating optical flow using the Farneback method [31] proved to be the slowest but 

also the most promising. When scaled down by 50%, the framerate was close to 1 frame 

per second. Further reducing the resolution helped slightly; scaling the video down to 

10% of its original size resulted in a resolution of 128x76, achieving 20 frames per 

second. However, at that resolution, there was little to no useful information. Despite 

these limitations, the method shows promise with more computing power, as it 

illustrates movement direction within the frame. With this added benefit, the resulting 

model could have the potential to become more accurate. 

   

Figure 6.4 Examples of the optical flow analysis at a resolution of 640x320. Movement direction 
is shown the colour hue, and the magnitude is shown by the colour intensity. Left side shows 

frame from conveyor belt scene, right side shows frame from index wheel scene. 
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Among the three motion detection algorithms evaluated—KNN background subtraction, 

MOG2 background subtraction, and optical flow using the Farneback method—the MOG2 

algorithm emerged as the most effective across both test scenes. Although the KNN 

algorithm slightly outperformed others in terms of FPS, MOG2 demonstrated greater 

adaptability in varied scenarios, especially in environments with controlled backgrounds. 

Moreover, MOG2 was particularly adept at distinguishing between actual movements 

and shadows, even in dynamic backgrounds. While optical flow provided detailed motion 

with directional data, its low frame rate limits its suitability for real-time applications. 

Nevertheless, with advancements in computing power, optical flow has potential for 

future applications. 

 

The bounding box finding algorithm performance deteriorated in scenarios where the 

background is complex, and the moving objects travel in different directions with high 

overlap. Under these conditions, the bounding boxes fail to provide reliable data for 

model building. Specifically, in the case of the indexing wheel, the bounding boxes 

created through this process frequently shift position erratically, failing to offer a clear 

depiction of the machine's mechanics (Figure 6.5). Due to these issues, the indexing 

wheel scene was not utilized for anomaly detection testing. In the future, a top-down 

view of the rotating wheel should be tested. 

 

 

Figure 6.5 Example of bounding boxes inside indexing wheel scene. Even though the whole wheel 
is spinning, only the lower left corner shows movement with bounding boxes. 
 

 

 

 



 

55 

6.2.2 Anomaly detection 

 

For the anomaly detection algorithm, three types of neural networks were evaluated: 

the multilayer perceptron (MLP), autoencoder, and long short-term memory (LSTM). 

Each network was trained on a video illustrating normal working conditions, allowing 

them to establish a baseline for expected behaviour. After training, they were tested on 

a separate validation video file containing both normal behaviour and anomalous 

behaviour, such as bottles falling. The neural networks were trained to minimize the 

error between the predicted bounding box location and size and the actual bounding 

box position and size.  

 

The MLP was tested under different configurations, with variations in the number of 

previous time steps as inputs (ranging from 1 to 30), the number of hidden layers (from 

1 to 5), and the number of nodes per hidden layer (from 100 to 2000) with a maximum 

number of boxes set to 6. Despite these variations, the model struggled to accurately 

represent real-world scenarios, even though it improved the loss function within the 

learning process (Figure 6.6). The predicted bounding boxes failed to align with the 

actual positions in the real world (Figure 6.7). This misalignment was more pronounced 

in configurations with more hidden layers, which also resulted in longer and less 

effective training sessions. As a result, the model was deemed unsuitable for reliable 

anomaly detection. 

 

Figure 6.6 Training progress of the MLP on training data. 
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Figure 6.7 MLP model prediction results, configured with 30 time steps and three hidden layers 
(2000, 1000, 500 neurons each). The green outline indicates the actual tracked positions of the 
objects, while the red outline shows the predicted positions by the MLP model. 

 

The autoencoder network underwent testing with variations that included the number 

of hidden layers (from 1 to 4) and the number of nodes per hidden layer (ranging from 

25 to 10), with the number of boxes analysed capped at 6. The most effective version 

of the autoencoder featured four layers, with the number of neurons in each layer 

matching those in the input and output layers (Figure 6.8). Any reduction in the number 

of neurons led to a decrease in the model's accuracy. This setup enabled the 

autoencoder to model the positions of the boxes more accurately than the MLP. The 

predicted bounding boxes aligned more closely with the actual measured values (Figure 

6.9). 

 

Figure 6.8 Training progress of an autoencoder for 6 boxes, with 4 hidden layers with 24 neurons. 
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Figure 6.9 Autoencoder output. Top right corner shows the errors with a proportional rectangle 

to illustrate the size difference. The green outline indicates the actual tracked positions of the 
objects, while the red outline shows the predicted positions by the MLP model. 

 

The autoencoder also performs very well in case of an anomaly, where a tipped bottle 

showed very high error, compared to other bottles (Figure 6.10). However, the model 

is prone to inaccuracy. Situations such as bottles exiting the scene can trigger these 

inaccuracies, compromising the reliability of the model (Figure 6.11). 

 

Figure 6.10 Output of the autoencoder when presented with a tipped bottle. Top right corner 
shows the errors with a proportional rectangle to illustrate the size difference. For the tipped 
bottle (2) the error is very high, indicating an anomaly. 

 

 

Box 0 Error: 0.002 
Box 1 Error: 0.002 
Box 2 Error: 0.004 
Box 3 Error: 0.003 

Box 0 Error: 0.005 
Box 1 Error: 0.004 
Box 2 Error: 0.245 
Box 3 Error: 0.003 
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Figure 6.11. Output of the autoencoder during a transition phase where a bottle exits on the right 
side. The model struggles with this scenario, incorrectly predicting two movements in the top left 
corner and inaccurately calculating the position of bottle 3, which is flagged as an anomaly. 

 

The LSTM model was tested with variations in the number of memory nodes (ranging 

from 25 to 500) and the number of internal LSTM layers (1 to 2), while the maximum 

number of boxes was set to 6. The most effective setup consisted of a single LSTM layer 

with 30 nodes, which proved capable of tracking the objects (Figure 6.12). These 

adjustments allowed the model to predict the size and location of the boxes (Figure 

6.13). However, like the autoencoder, the model faced challenges with edge cases, such 

as when boxes would suddenly appear or disappear (Figure 6.14). Despite these 

challenges, the model could identify anomalies, such as a bottle that had tipped over 

(Figure 6.15).  

 

Figure 6.12 Training progress of the LSTM model with 30 nodes. 

 

Box 3 Error: 0.172 
Box 1 Error: 0.004 
Box 2 Error: 0.245 
Box 3 Error: 0.003 
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Figure 6.13 LSTM model output during normal conditions. The green outline indicates the actual 
tracked positions of the objects, while the red outline shows the predicted positions by the MLP 
model. 

 

 
Figure 6.14 LSTM model struggling to accurately track a bottle as it exists on the right side of the 
screen. 

 

 

Figure 6.15 LSTM model detecting an anomaly of a tipped bottle. 

 

 

Box 0 Error: 0.005 

Box 1 Error: 0.005 
Box 2 Error: 0.005 

Box 3 Error: 0.004 

Box 0 Error: 0.003 

Box 1 Error: 0.088 
Box 2 Error: 0.001 

Box 3 Error: 0.005 

Box 0 Error: 0.304 
Box 2 Error: 0.039 

Box 2 Error: 0.001 
Box 3 Error: 0.005 
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The MLP, while traditional, proved not effective. The Autoencoder improved upon the 

MLP by learning to compress and reconstruct input data, which allowed it to better detect 

discrepancies indicative of anomalies. However, it too struggled with edge cases where 

objects transitioned into or out of the scene. The LSTM model while also preforming 

better than the MLP, still faced challenges with sudden appearances and disappearances 

of objects. 

 

Ultimately, while each model has its strengths, the autoencoder stands out for its 

robustness and adaptability in complex dynamic environments. Future work should 

focus on enhancing these models' resistance to false positives and improving their ability 

to generalize from limited examples. Advancements in computational power and further 

tuning of model parameters could also enhance their efficacy and reliability in real-time 

anomaly detection applications. 
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6.3 Future plans  

6.3.1 Hardware 

 

The hardware configuration of the device offers several avenues for enhancement to 

accommodate more complex models and improve processing speeds. The impending 

discontinuation of the Jetson Nano board in 2026 necessitates the migration to a newer 

model, ensuring future compatibility and performance improvements. An upgrade to the 

processing unit's (PU) RAM is advisable, addressing a limitation encountered during the 

development phase. Additionally, incorporating an SSD would increase file transfer rates 

and support the storage of larger files. 

 

Further improvements could include replacing the current Raspberry Pi camera with a 

model featuring adjustable focus to enhance image clarity and detail. An adaptor could 

be designed to allow the device to accommodate standard camera lenses, broadening 

its applicability and flexibility in various industrial environments. To protect the device 

in more demanding conditions, the housing could be engineered to be watertight, 

safeguarding the electronic components from moisture and dust. 

 

To optimize space and possibly enhance the device's overall design, the processing unit 

could be replaced with a custom-designed PCB. This would not only save space but also 

potentially streamline the assembly and maintenance of the device, making it more 

robust and user-friendly in industrial settings. 

 

 

6.3.2 Software 

 

Improvements to the software aspect of the anomaly detection device could significantly 

enhance its efficiency and accuracy. Migrating the existing software from its current 

programming language to C++ could substantially boost execution speed. C++ is known 

for its performance advantages, especially in systems requiring real-time processing. 

 

In terms of algorithmic enhancement, exploring and integrating newer optical flow 

algorithms would be beneficial. By implementing advanced optical flow techniques, the 

system can achieve more accurate and reliable motion detection. Furthermore, 

developing a neural network designed to process raw image data directly could 

streamline the entire analysis pipeline. This neural network would eliminate the need 

for a separate motion detection step, processing the input images in one continuous 
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operation. By doing this, the system can reduce computational overhead and simplify 

the processing chain, potentially leading to faster and more efficient anomaly detection. 

This approach would leverage the strengths of deep learning to handle complex patterns 

and anomalies that traditional image processing methods may not detect effectively. 
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SUMMARY 

 

This thesis explored the development of a motion-based anomaly detection device 

designed to enhance the monitoring of industrial machinery using artificial intelligence 

(AI) and machine vision technologies. During the literature review, different existing 

solution were analysed, and it was determined that this device could prove useful. The 

thesis proposed an approach to machinery condition monitoring that leverages the 

capabilities of cameras combined with AI to provide real-time, efficient, and scalable 

observations. 

 

The core of the proposed device consists of three main components: a camera, a 

processing unit, and a touchscreen interface. The camera captures live footage of 

machinery in operation, which is then processed by the unit to detect and analyse 

anomalies in the machine’s motion. This processing utilizes image processing algorithms 

from the OpenCV library and modelling techniques via neural networks implemented 

with PyTorch. The primary aim is to identify deviations in machine operation, such as 

unexpected part movements, which can indicate equipment failure. 

 

A prototype has been successfully developed and tested. This thesis evaluated different 

motion detection algorithms—KNN, MOG2, and optical flow—to establish a motion data 

for anomaly detection. Additionally, 3 machine learning models were tested on this 

motion data, including the Multi-Layer Perceptron (MLP), Autoencoder, and Long Short-

Term Memory (LSTM) networks, to assess their anomaly detection capabilities in 

industrial settings.  

 

Among the motion detection methods, MOG2 stood out for its adaptability and accuracy 

in distinguishing between moving objects and static backgrounds, especially under 

controlled conditions. Optical flow, despite its lower frame rate, showed potential for 

detailed movement analysis and could be more applicable with future technological 

advancements. An autoencoder proved more effective by learning to reconstruct data 

and identify deviations without explicit anomaly labels. However, it faced challenges 

with transitional object movements. 

 

Future efforts should concentrate on enhancing the robustness of these models and 

minimizing false positives. One promising strategy could involve developing hybrid 

models that merge the strengths of neural network-based motion detection algorithms 

and anomaly detection neural networks. Additionally, investing in computational 

resources and refining model parameters are steps to improve the performance.  
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KOKKUVÕTE 

 

See lõputöö uuris liikumispõhise anomaaliate tuvastamise seadme väljatöötamist, mis 

on mõeldud tehisintellekti ja masinnägemise tehnoloogiate abil tööstusmasinate 

jälgimise tõhustamiseks. Kirjanduse ülevaate käigus analüüsiti erinevaid saadaval 

olevaid tooteid ning lahendusi ja leiti, et selline seade võib osutuda kasulikuks. Lõputöö 

pakkus välja lähenemisviisi masinate seisukorra jälgimiseks, mis kasutab kaamera ja 

tehisintellektiga kombineeritud seadet, et pakkuda reaalajas masina seiret. 

 

Kavandatava seade koosneb kolmest põhikomponendist: kaamerast, protsessorist ja 

puutetundliku ekraanist. Kaamera jäädvustab reaalajas kaadreid töötavatest masina 

osadest, mida seade seejärel töötleb, et tuvastada ja analüüsida masina liikumise 

kõrvalekaldeid. See töötlemine kasutab pilditöötlusalgoritme OpenCV teegist ja 

modelleerimistehnikaid PyTorchiga rakendatud närvivõrkude kaudu. Eesmärk on 

tuvastada kõrvalekalded masina töös, näiteks masina osade ootamatud liikumised, mis 

võivad viidata masina rikkele. 

 

Prototüüp on edukalt välja töötatud ja testitud. Selles lõputöös hinnati erinevaid 

liikumistuvastuse algoritme, KNN, MOG2 ja optilist voogu, et luua anomaalia 

tuvastamiseks liikumisandmed. Lisaks testiti nende liikumisandmetega 3 

masinõppemudelit, sealhulgas mitmekihilise pertseptroni, automaatkodeerija ja pika-

lühiajalise mälu võrke, et hinnata nende anomaaliate tuvastamise võimalusi tööstuslikes 

olukordades. 

 

Liikumistuvastusmeetoditest paistis MOG2 silma kohanemisvõime ja täpsusega liikuvate 

objektide ja staatilise tausta eristamisel, eriti kontrollitud tingimustes. Vaatamata 

madalamale kaadrisagedusele näitas optiline voog üksikasjaliku liikumise analüüsi 

potentsiaali ja võib olla tulevaste tehnoloogiliste edusammudega paremini rakendatav. 

Automaatkodeerija osutus tõhusamaimaks masinõppemudeliks, õppides 

rekonstrueerima andmeid ja tuvastama kõrvalekaldeid ilma anomaalia siltideta. Siiski 

seisis see silmitsi väljakutsetega üleminekuliste objektide liikumisega. 

 

Tulevased jõupingutused peaksid keskenduma nende mudelite optimeerimisega ja 

valepositiivide minimeerimisele. Üks strateegia võiks hõlmata hübriidmudelite 

väljatöötamist, mis ühendavad liikumistuvastuse ja anomaaliatuvastuse 

masinõppemudelid. Lisaks parandaks tulemuse arvutusressurssidesse investeerimine ja 

mudeli parameetrite optimeerimine. 
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