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Abstract

With the ongoing climate change, glacial meltwater channels have been of significant
interest to researchers. These channels are river-like structures formed on the surface of
glaciers and carry a large volume of meltwater flowing downstream from the glaciers.
They are important to ice sheet mass balance as their development and drainage are
connected to changes in ice flow dynamics. Understanding the characteristics of these
channels helps estimate the ice sheet melting and predict the ice flow dynamics. To study
the characteristics of these channels, researchers at the Centre for Biorobotics, Tallinn
University of Technology, developed special drifter sensors. These drifters are low-cost
submersible flow sensors that can be deployed on englacial, subglacial, and supraglacial
channels in the Arctic region. Englacial channels are penetrated below the surface of a
glacier and carry meltwater towards the bed. Subglacial channels are located beneath the ice
mass, directing the meltwater parallel to the main ice flow direction. However, supraglacial
channels are the streams that form on top of the glaciers that drain the meltwater into
the englacial or subglacial channels. Recently, in July 2021, the drifter sensors were
deployed in a supraglacial channel in Kongsvegen (Svalbard) to study its characteristics.
The collected data is in raw form and requires a substantial effort in cleaning and organising
it before conducting any analysis. This hinders the researchers from performing a rapid
assessment of the collected data quality and complicates the process of filtering the useful
data for further processing. This study primarily focuses on developing Python scripts
robust enough to filter, preprocess, and analyze the collected dataset. These scripts were
customised to investigate possible events occurring in the supraglacial channel, referred to
as features, using various statistical techniques. Specifically, the study examined drifter
sensor stalls and step-pool formations within the data. The analysis shows that the sensor
stall occurred in all the sensors with varying frequency. For some sensors, the stall period
was excessively long, up to eight minutes. Similarly, the number of step-pool events
varied both among sensors on the same day and across different days. Moreover, the
step-pool events were overlaid with GPS data to estimate their spatial locations. This work
provides valuable insights for researchers studying supraglacial hydrology by offering
a methodological framework to detect and analyze the features and estimate the spatial
mapping of dynamic events. These findings contribute to improved monitoring of glacial
systems, supporting predictions of meltwater dynamics and related climatic impacts.
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Annotatsioon
Triiviva anduri signaalandmete töötlemine, tunnuste tuvastamine ja

valideerimine

Seoses kliimamuutuste suurenemisega pakuvad liustikupealsed kanalid teadlastele
märkimisväärset huvi. Liustikupealsed kanalid kujutavad endast jõesarnaseid struk-
tuure, mis tekivad liustiku pinnale ning suunavad märkimisväärse osa sulamisveest liustiku
sisemusse. Nende morfoloogia ja kuivenduskäitumine mõjutavad jääkihi massibilanssi,
kuna on otseselt seotud jäävoolu dünaamikaga. Nende kanalite ruumilise topoloogia
mõistmine aitab jälgida jää kiiruse voolumustreid ja võib aidata prognoosida jõgede
voolukiirust. Tallinna Tehnikaülikooli biorobootika keskuses on teadlased töötanud välja
triivivad andurid nende muutuste uurimiseks. Need seadmed on odavad vooluandurid,
mida saab kasutada erinevates liustikukanalites. Hiljutised katsed viidi läbi juulis 2021,
kus need seadmed paigutati liustikupealsesse kanalisse Kongsvegeni liustikul (Svalbard),
et uurida kanali omadusi. Kogutud andmed on töötlemata kujul, mis raskendab nende
kiiret analüüsimist, kuna kasuliku teabe eraldamine ja eeltöötlus nõuavad märkimisväärset
töömahtu. Käesolevas töös keskendutakse peamiselt Pythoni skriptide arendamisele,
mis võimaldavad kogutud andmeid eraldada, eeltöödelda ja analüüsida. Need skriptid
kohandati kanalis esinevate võimalike protsesside (nn tunnuste) uurimiseks, kasutades
erinevaid statistilisi meetodeid. Analüüs keskendus eelkõige triivandurite tööseisakute ning
jääastmeliste moodustiste tuvastamisele andmestikus. Analüüs näitab, et andurite seisakud
esinesid kõigil anduritel erineva sagedusega. Mõne anduri puhul oli seisakuperiood väga
pikk, kuni kaheksa minutit. Samamoodi varieerus sammupoolsete sündmuste arv nii sama
päeva andurite vahel kui ka eri päevade vahel. Need sündmused pandi üle GPS-andmetega,
et hinnata nende ruumilist asukohta. See töö annab väärtuslikke teadmisi liustikupealsete
kanalite hüdroloogiat uurivatele teadlastele, esitades metoodilise raamistiku dünaamiliste
protsesside tuvastamiseks, analüüsimiseks ja nende ruumilise paiknevuse hindamiseks.
Need tulemused aitavad kaasa liustikusüsteemide paremale seirele, toetades sulamisvee
dünaamika ja sellega seotud kliimamõjude prognoosimist.

3



List of Abbreviations and Terms

GPS Global Positioning System
IMU Inertial Measurement Unit
GNSS Global Navigation Satellite System
GLOF Glacial Lake Outburst Flood
IPCC Intergovernmental Panel on Climate Change
ACIA Arctic Climate Impact Assessment
UAV Unmanned Aerial Vehicles
NASA National Aeronautics and Space Administration
USGS United States Geological Survey
InSAR Interferometric Synthetic Aperture Radar
LiDAR Light Detection and Ranging
GPR Ground Penetrating Radar
RDF Radio Direction Finding
PEARL Persistent Environmental Awareness Reporting and Location
NaN Not a Number
ROI Regions of Interest
IQR Interquartile Range
hPa Hectopascal (unit of pressure)
PCC Pearson Correlation Coefficient
ML Machine Learning

4



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

2.1 Ice �ow dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Remote sensing in glaciology . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Flow sensing drifters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Low-cost drifting sensors in glaciology . . . . . . . . . . . . . . 16

2.3.2 Sensing drifters in aquatic environments . . . . . . . . . . . . . . 17

2.4 Signal classi�cation methods . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Research Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Data cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Data transformation . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Kalman �lter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Pressure correlation . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2 Feature detection in supraglacial channel . . . . . . . . . . . . . . 27

3.3.3 Drifter sensor stall . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.4 Step-pool events . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.5 Data validation through GPS tracking . . . . . . . . . . . . . . . 30

4 Results and Discussions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Data cleaning and preprocessing . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Pressure correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Feature detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 Sensor stall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.2 Step-pool event . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 GPS tracking of events . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Limitations of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Future outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

Appendix 1 – Non-Exclusive License for Reproduction and Publication of a

Graduation Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6



List of Figures

1 Low cost drifting sensor used in the study . . . . . . . . . . . . . . . . . 9

2 Supraglacial channel on Kongsvegen, Svalbard . . . . . . . . . . . . . . 13

3 Structure of the metadata directory with sensor data. . . . . . . . . . . . . 19

4 Data analysis work�ow . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Drifter sensor Pressure 1 and 2 over the deployment time . . . . . . . . . 22

6 Drifter sensor local and global frame . . . . . . . . . . . . . . . . . . . . 23

7 Kalman �ltering process . . . . . . . . . . . . . . . . . . . . . . . . . . 25

8 Drifter stuck behind boulder . . . . . . . . . . . . . . . . . . . . . . . . 27

9 Step-pool feature illustration . . . . . . . . . . . . . . . . . . . . . . . . 29

10 Drifter path on supraglacial channel . . . . . . . . . . . . . . . . . . . . 31

11 ROI from pressure data . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

12 Correlation between Pressure 1 and Pressure 2 . . . . . . . . . . . . . . . 33

13 Heat map of sensor stall frequency . . . . . . . . . . . . . . . . . . . . . 35

14 Pressure 1 and Pressure 2 plotted over time from screened data. . . . . . . 35

15 Filtered acceleration using Kalman �lter . . . . . . . . . . . . . . . . . . 36

16 Step-pool sequence in M04 sensor . . . . . . . . . . . . . . . . . . . . . 37

17 Step-pool sequence in acceleration and pressure data . . . . . . . . . . . 38

18 Step-pool events observed each day . . . . . . . . . . . . . . . . . . . . . 39

19 Step-pool events estimated location along drifter trajectory . . . . . . . . 40

7



List of Tables

1 Technical speci�cations of drifter sensor components. . . . . . . . . . . . 10

2 Thresholds speci�ed for the step-pool events. . . . . . . . . . . . . . . . 30

3 Mean �ow rate observed using anemometer on various days. . . . . . . . 34

8



1. Introduction

1.1 Motivation

Climate change is rapidly affecting the northern hemisphere [1]. The northern ice cap,

including Svalbard, is signi�cantly losing ice mass [2], which is ultimately contributing

to sea level rise. The resulting water from the melting ice runs through the glacial

channel system, comprising en-, supra-, and subglacial channels. These channels are

important for understanding the topography of glacial networks. Data collection in glacial

channels is challenging due to inaccessibility, lack of Global Positioning System (GPS)

signals, and harsh conditions. Researchers and environmental engineers have studied the

meltwater streams in glaciers to understand their characteristics and reveal their pathways.

In previous years, multiple studies were conducted using various sensors to track water

channels in glacial environments [3, 4, 5]. A recent experiment conducted by theCentre

for Bioroboticsat Tallinn University of Technology has shown signi�cant advancements

in tracking subsurface water �ow. These experiments involved low-cost submersible

drifter sensors developed in-house and deployed in a supraglacial channel at Kongsvegen

(Svalbard) [6]. The drifter sensors were equipped with pressure sensors and an inertial

measurement unit (IMU), allowing for precise measurements of linear acceleration (x, y,

z) and rotational movement (roll, pitch and yaw) as the sensor moved through the channel.

The pressure sensors measured the temperature at the sensor to provide real-time thermal

compensation, ensuring high accuracy in pressure readings by correcting for temperature-

induced drift and material expansion effects. Additionally, the drifter sensors are equipped

with GPS to record the deployment and recovery location with extended logging time.

The geometrical con�gurations and the components of the drifter sensor are illustrated in

Fig. 1.

Figure 1. Low cost drifting sensor developed atCentre for Biorobotics, Tallinn University
of Technology. a) Computer-aided design (CAD) model. b) An image of the sensor used
for measurements (adapted from [6]).
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The submersible drifter sensor is essentially a cylindrical tube, sealed at both ends to

protect its internal components. The diameter of the tube is around 0.08 m with a total

length of 0.26 m. One end of the sensor is af�xed with a silicone cap, which protects the

sensor against large drop impacts during deployment. The components equipped in the

drifter sensor and their technical speci�cations are provided in Tab. 1.

Table 1. Technical speci�cations of drifter sensor components.

Component Model Manufacturer Board/Carrier

IMU (accel, gyro, mag) BMX160 Bosch SEN0373 (DFRobot)
High-g accelerometer H3LIS331DL STMicro SEN-14480 (SparkFun)
2× Pressure (30 bar) MS583730BA01-50 TE Connect. Custom PCB
Temp. sensor (From pressure) – –
GNSS module ZOE-M8Q U-blox GPS-15193 (SparkFun)
Radio RC1701HP-MBUS4 Radiocrafts –
MCU (logging) Feather M0 Adafruit #2796
Batteries (2×) ICR18650-320PCM Keeppower –

The pressure sensors and the IMU in the sensing drifters operate at a sampling rate of 50 Hz.

This ensures high-resolution data collection for both pressure, acceleration, orientation,

angular velocity, and magnetic �eld measurements. The data obtained from the sensors

is stored in a numeric format to a 16 GB micro SD card. The obtained data was later

analysed by reconstructing the water �ow path between the start and end coordinates

obtained through a global navigation satellite system (GNSS) sensor, providing an insight

into subsurface water dynamics. An advantage of using the low-cost sensor is that data

quality can be improved by deploying multiple units. However, a major issue with the

sensor is the fast validation of data and ensuring its accuracy.

The data obtained from the supra-glacial channel varies from the sub-glacial or englacial

channels in terms of the channel characteristics. Sub-glacial channels usually encompass

deeper and narrower streams relative to the supra-glacial channel. Another signi�cant

difference is the �ow hydrology between the two. The supra-glacial channels exhibit

faster �ow velocity as compared to the sub-glacial channels. Therefore, analysing the

characteristics of the supraglacial channel through the signal processing methods is deemed

to be challenging. However, in contrast to subglacial environments, the features inferred

from supraglacial channel data can often be validated using auxiliary sources such as GPS

measurements or video recordings of surface �ow events. Although submersible drifters

are less accurate than GPS devices and unmanned aerial vehicles (UAVs), which are more

advantageous as they can be safely deployed in supraglacial channels with less risk of loss.

Moreover, by training these drifters to collect data in the supraglacial channel, we can

gather knowledge that helps us understand the subglacial and englacial channels. Also,
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unlike GPS and drones, drifters can be deployed under the ice, where other technologies

cannot reach. In this study, the data collected in Kongsvegen-Svalbard from a supraglacial

channel are cleaned, preprocessed, and analysed to investigate the characteristics or features

of the glacial stream. This was achieved by composingPythonscripts to �rst segregate the

useful data, which is later used in detecting the signi�cant features. ThePythonscripts

compiled are robust, which assist the researchers in identifying and pre-processing.

1.2 Problem statement

In the context of low-cost sensing drifters, rapid and reliable sensor data validation is

essential to ensure the quality and usability of the measurements collected in dynamic

and in situ environments such as glacial channels. Submersible drifters, which record

data at high frequencies, i.e. 50 Hz, result in gathering extensive and noisy datasets.

Effective data validation becomes a critical step before any meaningful analysis can take

place, as inaccurate data could lead to incorrect conclusions about subsurface �ow patterns.

Therefore, a robust and effective method is required to screen out the useful data and detect

the features within the preprocessed data.

1.3 Research questions

This study aims to resolve the aforementioned issues by providing a reliable solution

for analysing low-cost drifter sensor data. While processing the data, two main research

questions are investigated, both of which are central to developing robust and reliable

methods for analysing such datasets. These questions aim to explore the effectiveness

of signal processing techniques and validation strategies that can be applied to glacial

monitoring datasets:

RQ1 Which signal processing method offers the most accurate and ef�cient solution to

assess data quality?

RQ2 What is the most effective method to rapidly validate data collected from low-cost

sensing drifters?

Addressing these questions is essential for researchers, as it enables early identi�cation

of data quality issues, reducing the time and effort on analysing unreliable datasets and

informing whether further measurements are necessary. The outcomes of this research will

contribute to developing standardised approaches for processing and validating drifter data,

ultimately enabling more reliable monitoring of glacial channels and supporting timely

decision-making in environmental management.
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2. Background

Climate change predictions show that sea levels will continue to rise [7], but the rate of rise

is unknown. The Greenland ice sheet contains suf�cient water to contribute to a 7-meter

rise in global sea levels [8]. Various models predict changes in ice masses, but they differ

in how complex they are and what results they produce. Meanwhile, ocean temperatures

around Svalbard are rising [9]. On glaciers, water running on the surface �ows into cracks

and holes, escaping into the glacial system. To model future scenarios of glacier dynamics,

it is important to understand their topography [10]. As glaciers shrink due to climate

change, the landscape under them becomes exposed. Getting insights into these dynamics

allows scientists to create accurate models capable of predicting the sea-level rise and other

environmental impacts.

2.1 Ice �ow dynamics

The meltwater �ows through the glacier and plays an important role in ice dynamics and

its properties. This meltwater can soften the base, aiding in sliding and accelerating the

ice �ow. The hydrology of glaciers can be classi�ed into four categories: supra-glacial,

sub-glacial, englacial and pro-glacial systems [11]. The supraglacial channel forms when

surface melting occurs in the �rn, an in-between state between snow and ice. The saturation

of �rn at the surface creates a swamp-like zone, forming the pools of standing water. With

the onset of the melting season, the surface drains quickly and exposes the ice beneath [12].

Consequently, the �rn zone becomes �lled with water. Surrounding ice carries water, mixed

with sediment along the glacier's surface, resembling a typical river system. The current

study examines the characteristics of a supraglacial channel and explores the features of

this channel. As an example, Fig. 2 shows a supraglacial channel at Kongsvegen, Svalbard

in which these experiments were conducted. In contrast, subglacial is a passage beneath a

glacier or ice sheet through which meltwater �ows. These subglacial channels vary in size

and their formation depends on several factors [13] such as water temperature, meltwater

volume, ice thickness, and surface mass balance. Subglacial processes are essential for

understanding glacier movement. Basal meltwater �ows [11, 14] through large subglacial

networks, which accelerate glacial erosion and ice velocity. The presence of water �ows

beneath the glaciers and ice sheets in�uences their response to stress and strain [15]. The

englacial channels are formed within the glacier by the tension in the ice that allows water

to �ow through, such as a moulins. Despite the pressure within the ice sheet, they remain

open and are maintained by the continuous melting of water. Also, many hidden englacial
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channels exist within the glaciers and ice sheets where melted water remains trapped

for some time [16]. Water enters the subglacial and englacial drainage systems through

features such as moulins, deep cracks, and cut-and-closure systems [17].

Figure 2. Supraglacial channel on Kongsvegen, Svalbard, documented during �eld experi-
ment. (a) Sensor deployment in the channel. (b) Aerial view highlighting the channel's
morphology. (c) Characteristic features of a supraglacial channel. (d) Sensor recovery after
data collection.

Proglacial channels in temperate glaciers are identi�ed by the presence of over�owing

meltwater throughout the year, as the ice remains near its melting point, with liquid water

present both on the surface and internally within the glacier. Such hydrology can affect

glacier behavior by promoting the detachment of icebergs, which accelerate glacier mass

loss. Thinning of glaciers has resulted in the formation of moraine-dammed lakes that

block the �ow of meltwater [18]. The rock debris carried by glaciers builds these moraines.

However, when moraine dams fail, a large amount of water is released suddenly, which

triggers glacial lake outburst �oods (GLOFs) [19]. Such �oods [20] are hazardous as they

have severe impacts on downriver populations and damage infrastructure. On this matter,

research on the Greenland ice sheet states that the presence of meltwater at the bed via

basal ice melt is caused by geothermal heat and sliding friction, which affects ice �ow and

overall glacier dynamics [21]. Understanding these dynamics can lead to a broader study

of glacier behavior in response to changing climate conditions.
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2.2 Remote sensing in glaciology

Mountain glaciers are a good indicator for understanding ongoing climate change [22]

as their properties, size, length, and volume can be measured over time. Glaciological

research primarily focuses on the polar regions, and here the impact of climate change

is anticipated to be most signi�cant [23], because the loss of ice mass in�uences the

global water resources, and it is a driver of sea level rise [24]. The forecast reported

by the Intergovernmental Panel on Climate Change (IPCC) and Arctic Climate Impact

Assessment (ACIA) indicates that climate change is extending the summer season in polar

regions. This prolonged period of warmth accelerates ice melting, and with more ice

melting during summers, the volume of water �owing from glaciers into rivers, lakes,

and oceans continues to increase. Also, surface mass balance shows decreased trends as

glaciers melt away more ice than they gain each year. Over the past 50 years, these changes

have been observed in the Arctic, revealing a consistent trend of glaciers shrinking due to

warming climates [25]. These �ndings highlight the potential of remote sensing to provide

valuable information.

Moreover, accurate measurements of ice �ow are essential to develop models that can

predict the future behavior of glaciers [26]. Inaccurate measurement of ice thickness can

lead to uncertainties regarding the timing of future changes in glaciers and their impact

on sea level rise [27]. Therefore, the need to observe and detect physical characteristics

of glaciers, such as their velocity, ice thickness, ice mass, length, and area, is required

as it helps to understand the ongoing transformations. The changes can be monitored

through remote sensing, a technique that uses data from sensors mounted on platforms

like unmanned aerial vehicles (UAV) [28], commonly known as drones or satellites.

Additionally, based on groundin situ techniques [29] are available for measuring glacier

characteristics, but they often involve intensive labour measurements to be conducted

directly on the ice surface during the �eld experiments.

In the past century, speci�cally in the 1960s and 1970s, glaciological research utilized

satellite imagery from the U.S. Corona program to study glacier changes [22, 30]. The

researchers used these corona images to analyze changes in glacier size, mass balance,

retreat, and other dynamics over time [31]. In 1972, a program, Earth Resources Technol-

ogy Satellite (ERTS), later renamed as the Landsat [32], was launched as a partnership

between National Aeronautics and Space Administration (NASA) and the United States

Geological Survey (USGS), becoming the longest-running Earth observation satellite

program for monitoring glaciers. Recently, [33], on September 27, 2021, the Earth obser-

vation communities worldwide celebrated the successful launch of LANDSAT 9. These

satellite captures high-resolution multispectral images of Earth's surface, which allows
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optical remote sensing of glaciers, and data can be used in many cases, such as to improve

�eld-based glacial hazard assessments [34].

Revolutionary advancement in glaciological methods was made by Goldstein et al. [35]

while observing ice motion by using interferometric synthetic aperture radar (InSAR)

on an Antarctic ice stream. The �rst measurement of ice �ow velocity over the outlets

of Greenland and Antarctica provided insights into the ice-sheet �ow processes [36]. A

recent study on Collier Glacier, Oregon, introduced a photon-counting detector by utilizing

light detection and ranging (LiDAR) technology to address high losses linked to diffuse

optics [37]. These measurements provided valuable information about the glacier ice's

physical structure and composition. Ground penetrating radar (GPR) is another widely

used technique for remote sensing in my areas, such as earthquake disaster monitoring

[38], archaeology [39], soil water dynamics [40], etc. Glacier monitoring is also achieved

by remote sensing using GPR. A recent research [41] utilized a set of three multi-temporal

Landsat scenes and analysed the status of some Alpine glacier groups (Adamello, Ortles-

Cevedale and Bernina) located in northern Italy, commonly known as the "water tower" of

Europe. The objective of the study was to investigate the internal structure of the glacier

by transmitting radar pulses into the ice and analysing the re�ected signals, which gives

information about ice thickness and subglacial features.

These technological advancements in remote sensing techniques are very important as

they enhance the understanding of glaciology, as they give valuable data for research and

environmental monitoring in spatial analysis. However, hydrological variables are hard

to observe. Supra-glacial channels, which are numerous meters wide, can be observed

via satellite imagery, but measuring their depths and water �ow remains challenging[42].

Since optical satellite sensors rely on capturing visible light and other electromagnetic

waves, their effectiveness is signi�cantly reduced due to the presence of continuous clouds,

which can obstruct signals. [43] Radar sensors can enter clouds and detect changes such

as ice thickness, which is critical for observing surface changes and glacier movements.

However, they also face a challenge when signals cannot reach certain areas due to steep

topography, causing a lack of data in those regions. Additionally, in areas where glaciers

are changing surfaces, the radar signal may not match with previous data or features over

time [44]. Field-based remote sensing techniques address these problems and offer detailed

spatiotemporal resolution, tailored to speci�c needs.
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2.3 Flow sensing drifters

2.3.1 Low-cost drifting sensors in glaciology

Earth's many hydrological systems are located in remote and inaccessible regions. Several

methods, such as gas tracing, dye tracing, borehole drilling, and sensor-based direct

measurements, have been used to identify the �ow path characteristics of water beneath

glaciers [45]. Subglacial water pressure has been recorded using tethered borehole sensors

on small lowland glaciers [46]. However, it is very challenging to obtain measurements

of ice sheets due to their thickness (exceeding 1 km). Also, techniques offered invaluable

observations into glacial channels, and helped to validate the existing glacier dynamics [47,

48]. Another approach is to deploy Wireless sensors; for example, the Glacsweb program

deployed several sensor 'nodes' to monitor glacier break-up related to climate change on

Briksdalsbreen glacier in Norway and Iceland, which transmitted data to a base station on

the ice surface [49]. Data gathered through these methods is con�ned to speci�c locations.

Lagrangian measurements are based on tracking individual objects or particles as they

move through a �uid, and provide a dynamic view of how �uid motion behaves [50].

Using the trajectories of individual particles or tracers, Lagrangian measurements provide

information on the position and velocity of �uid elements over time, supporting the study

of �ow patterns [51]. Surface tracking devices or surface drifters are a type of Lagrangian

instrument. They are designed to remain slightly buoyant on the water's surface and

move passively with the �ow of water. Typically, drifters are tracked using the Argos

satellite system, which provides location updates multiple times per day with a positional

error ranging from 150 to 1000 meters [52]. Recent models are designed for nearshore

applications, and they can be tracked via GPS and cellular phones. They offer improved

accuracy of 100 meters with location updates every 10 minutes. This allows researchers to

track drifters' movement, such as speed and position over time [53].

In the past, the development of sensing drifters in glaciology has been recorded, with

one notable example being the Moulin Explorer [54], which was lost during its initial

deployment. A new, successful development of low-cost electronic tracer (E-tracer), more

or less the size of a table tennis ball, was introduced [55] for exploring the sub-surface

hydrological system of Leverett Glacier, Greenland. This device can travel through the sub-

glacial channels and measure pressure directly beneath the ice as it �ows. It is equipped

with a radio direction-�nding (RDF) transmitter, which enables the sensor to determine

its location once it reaches beneath the ice sheet. A later version of this E-tracer included

pressure sensors, as Lagrangian instruments can be equipped with multiple sensors to
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gather data along the �ow path. To continue advancements in drifters and inspired by

[55], a researcher [6] presented low-cost sensing drifters equipped with various sensors to

measure water pressure, linear acceleration, magnetic �eld intensity, and rotational speed

within a supra-glacial channel, ensuring consistent and repeatable measurements. The

sensor data was used to investigate time series features in a 450-meter-long supra-glacial

channel. In correspondence, a recent study [56] conducted in 2019 on Austre Brøggerbreen,

Svalbard, utilized low-cost sensing drifters containing IMU and pressure sensors to collect

in situ data and developed a model for reconstructing the 2D water path �ow and pressure

distribution of an englacial channel.

2.3.2 Sensing drifters in aquatic environments

Low-cost sensing drifters have been utilized in studies of many hydrological systems. A

recent experiment [57] was carried out on the Pirita River, a 105 km-long river in northern

Estonia that �ows into the Baltic Sea. The low-cost (<150 EUR) drifter equipped with

various sensors was employed as a tool for river characterization, to identify large-scale

river �ow patterns, and to understand river dynamics. Moreover, sensing drifters have

also been utilized in coastal monitoring to collect data. The low-cost drifting sensors

were designed, and several units were deployed to measure Lagrangian currents. Each

drifter was equipped [58] with a visual sensor (a camera facing the ocean �oor), an IMU,

and GPS, which improved the understanding of coastal water dynamics through data

collection. Recently, with advancements in the application of sensing drifters, a study

[59] discusses drifters for remotely tracking the trajectory of oil spills in oceans with

recent improvements allowing for more continuous and accurate location tracking and data

transmission. Furthermore, a new low-cost drifter, the Persistent Environmental Awareness

Reporting and Location (PEARL), presented in a study [60], records oceanographic data

and is widely used for environmental monitoring. It collects and processes the data quickly

on the spot using advanced edge analytics.

Low-cost sensing drifters enable large-scale deployments feasible in limited-resource

settings and can operate in dif�cult-to-access areas like glacial channels, underground

rivers, and other subsurface environments. Advancements in sensing drifters are essential

for collecting data from glaciological and other environments, improving environmental

monitoring, and supporting informed decision-making to tackle global challenges. How-

ever, challenges include data processing, such as noise removal, limited battery life, and

dif�culties in signal processing to obtain accurate information.
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2.4 Signal classi�cation methods

Researchers obtain data from sensing devices and store it. Later, this sensing (signal) data

from devices like submersible drifters is analyzed, and after results are used in different

applications. As stated in a book [61], a signal represents information about the behavior

of some physical phenomenon and varies with one or more independent variables, such as

time, space, or frequency. Signals take place naturally and can be synthesized, such as an

electromagnetic wave used to transform image information. Signals are classi�ed based on

various properties, such as time-continuous signals and time-discrete signals. An analog

or continuous-time signalx(t) is de�ned for all values of the time variablet, wheret can

take any real value. A discrete-time signal is de�ned at speci�c, distinct time intervals. It

is represented asx[n], wheren is an integer (e.g., values like 0, 1, 2, 3, . . . ) that indicates

the index of a particular time sample.

In hydrological systems, signal classi�cation is essential to interpret sensor data and to

gain useful information about physical processes. Identifying and classifying signals

helps to understand the �ow of glacial channels, hence contributing to the study of glacial

hydrology and ice �ow dynamics. Classi�cation is sometimes hard and challenging

due to environmental factors causing noise in sensor data, and also different physical

phenomenon produces distinct signals, which leads to overlapping of classi�cation. A

study [62], mapping glacial parameters from space, highlights that remote sensing signals

from satellites often encounter noise and inconsistencies due to atmospheric conditions and

sensor limitations. Additionally, glaciers have complex surface and subsurface dynamics,

making it challenging to classify signals that represent different glacier states or processes.

The author also mentions that, at times, it is challenging to distinguish between rock

glaciers and debris-covered glaciers in medium-resolution satellite imagery.

In a recent study [63], the author demonstrated the importance of processing seismic signals

for identifying subsurface features, successfully detecting a previously unknown subglacial

lake on an Alaskan glacier. The study utilized seismometers, which are commonly used

to detect earthquakes, to measure vibrations caused by �owing water beneath the ice. By

mapping areas of subsurface pressure, the study demonstrated the importance of signal

classi�cation in distinguishing between different subsurface materials, such as ice and

sediments, based on their seismic output. Seismic signals are analyzed as time-series data,

and classi�cation is focused on identifying patterns associated with speci�c subglacial

features. However, re�ected signals often contain noise, leading to incorrect classi�cation

if signal processing methods are not appropriately tailored.
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3. Research Method

This chapter provides an overview of the drifters' data and methods used in analysing these

datasets. The research method adopted in this study focuses on the drifters' data collected

in July 2021 at Kongsvegen glacier (Svalbard). In these experiments, drifter sensors with

unique IDs ranging from M01 to M24 were deployed. On each of the six deployment days,

eleven sensors were released. Before each deployment, the �ow velocity in the supraglacial

channel was measured using a propeller velocimeter. The purpose of measuring the �ow

velocity through a velocimeter was to check the water velocity inside the channel over a

week. The collected data was grouped based on the day of deployment and the sensor ID.

The structure of the collected data �les is illustrated in Fig. 3. Fortunately, none of the

drifter sensors were lost or damaged during deployment. In total, one hundred and seventy

measurements were recorded over the six days.

Figure 3. Structure of the metadata directory with sensor data.

Data collected from the drifter sensors is in raw form, and extracting meaningful insights

from such data requires an open-source platform. In this study, the Python environment

was chosen due to its extensive library support and �exibility in handling complex data

preprocessing and analysis tasks. In the initial step, the data was manually classi�ed as

either good or bad. The data is considered good or usable if it does not contain data

quality errors [64], such as missing values or frozen signals, and includes measurements

with timestamps spanning at least �ve to twenty minutes. The data which did not comply
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with these criteria was classi�ed as bad or unusable. In the next step, the useful data was

�ltered and pre-processed before being used in further analyses. This was necessary to

ensure the reliability of the collected data beforehand. The �nal analysis included feature

detection through the signal processing methods and validating these features using the

auxiliary data. The research approach employed in this thesis was based on a standard data

wrangling approach [65], which involves various stages, i.e. data cleaning, transformation,

and validation. This approach ensures consistency, reduces errors, and improves data

quality. It also enhances reproducibility and ef�ciency across analyses. Fig. 4 provides a

detailed overview of each step involved in the data processing work�ow.

Figure 4. Data analysis work�ow illustrating the process from raw sensor data to feature
detection. The steps include raw data cleaning, transformation, and signal analysis for
identifying supraglacial features.
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3.1 Data cleaning

In the cleaning stage, the data was cleaned and classi�ed as good or bad data. The numeric

format of the recorded data consisted of frequency, pressure, acceleration, gyroscope,

magnetometer, and other unordered GPS data. Initially, the �rst seventeen columns were

taken into consideration, ignoring the redundant columns, and invalid entries were replaced

with a Not a Number (NaN) expression, later converted into numeric types. The headers of

the �rst seventeen columns in each �le were as follows:

time, pressure1, temp1, pressure2, temp2, accx, accy, accz,

gyx, gyy, gyz, magx, magy, magz, hgax, hgay, hgaz

The �rst column represents the time stamps or frequency. Thepressure1 and

pressure2 columns record the pressure measurements from two pressure sensors,

along with their corresponding temperaturestemp1 andtemp2 . The Inertial Measure-

ment Unit (IMU) records three-axis acceleration (accx , accy , accz ), angular velocity

(gyx , gyy , gyz ), and magnetic �eld strength (magx, magy, magz). Moreover, a high-g

accelerometer captures high-range acceleration data along the x, y, and z axes (hgax ,

hgay , hgaz ). These variables are suf�cient to understand the �ow characteristics in a

supraglacial channel.

The data classi�cation was based on the data from the pressure sensors. For that, the

frequency was converted into time over which the pressure data was plotted for each sensor

measurement. The total time of each sensor measurement varied depending on when the

sensor was switched on before deployment and switched off after the retrieval. Before

classi�cation, the sensor's active deployment period, de�ned as the region of interest (ROI),

was identi�ed, corresponding to the time between when the sensor was released into the

stream and when it was retrieved. Following this, a signal classi�cation criterion was

established: the pressure data within the region of interest had to span at least 5 minutes

and no more than 20 minutes to be considered good. Data outside this range was labelled

as bad data. Among the recorded data �les, some contained only a few entries or lasted less

than �ve minutes. Besides that, some data �les had no measurements at all or contained

extended frozen signals or non-varying data throughout the �le. These data �les were not

considered for further analysis.

The identi�cation of the region of interest (ROI) within the pressure signal was carried out

using a statistical approach (see Fig. 5). A rolling window analysis was used in which the

variance of both pressures, i.e. pressure 1 and pressure 2, was calculated within a de�ned

window size. A minimum threshold in rolling variance was de�ned to identify regions of

high variability within the signal. Segments exceeding this threshold were designated as
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regions of interest corresponding to the movement of the sensor within the channel. The

variance (� 2) of the pressure signal was calculated using the following expression:

� 2 =
1
N

NX

i =1

(x i � � )2 (3.1)

where� is the local mean,x i represents the individual pressure readings within the window,

andN is the window size.

Figure 5. Pressure 1 and Pressure 2 plotted over the complete sensor deployment time.
The gray region shows the region of interest later screened.

The regions of interest from each sensor were saved as separate.csv�les, later used for

preprocessing. To eliminate the outliers in the pressure signal caused by anomalies or

noise, an Interquartile Range (IQR) method was applied to both Pressure 1 and Pressure 2.

This outlier removal step ensured cleaner data for further identi�cation of features from

the signal.

3.2 Data preprocessing

Following successful data cleaning, the dataset was prepared for the next phase: preprocess-

ing. This stage involved structured steps to re�ne the data further, ensuring its suitability

for subsequent feature detection analysis. The following sections brie�y explain the steps

involved in the preprocessing of the data.
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3.2.1 Data transformation

The Inertial Measurement Unit (IMU) used in the sensing drifter records acceleration data

along three local axes:x, y, andz as shown in Fig. 6. In the local drifter's frame, the axes

represent the orientation of the drifter, such that thex-axis points lateral, they-axis points

forward, and thez-axis points downwards to the drifter's body. However, the orientation

of the IMU within the drifter can vary and might not always stay in the same position due

to external forces and water �ow dynamics during the deployment. Therefore, the raw

acceleration values do not directly correspond to a global frame of reference, thus making

physical interpretation and feature extraction dif�cult. To address this, acceleration vectors

were transformed into the �xed global coordinate system.

Figure 6. (a) Orientation of axes for drifter's local frame. (b) Orientation of axes for global
frame

A rotation matrix was applied to convert the body-frame acceleration vector into the

global frame. The transformation used is a 90-degree rotation around thez-axis combined

with a �ip in the z-direction to match the orientation of the sensor when deployed. The

rotation matrix transforms the original acceleration vector into the global frame by matrix

multiplication and is de�ned as follows:

R =

2
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aglobal = R : alocal (3.4)

The transformation results in the following global axis interpretations:

Xforward: aligned with the original lateral direction (accy).

Y lateral: aligned with the negative of the original forward direction (� accx).

Zupward: aligned with the negative of the original upward direction (� accz).

Acceleration transformation was essential to align the data with the direction of gravity and

horizontal �ow, as it corrects sensor tilt and orientation changes during movement, thus

allowing a meaningful comparison and analysis, such as pattern recognition and feature

detection across different deployments and periods.

3.2.2 Kalman �lter

Following the coordinate transformation of acceleration data, the data exhibited signi�cant

environmental noise, which complicated the interpretation of the features. Therefore, to

enhance signal quality and extract signi�cant features, the acceleration data was smoothed

using a Kalman �lter algorithm [66]. It is a mathematical technique that is commonly used

in signal processing to help remove noise or errors from data. It is quite ef�cient, especially

when there is missing information in the data; it can give the best possible estimate of

how a system is changing over time. This �ltering approach allowed for effective noise

reduction while preserving the dynamic characteristics essential for analysis. This method

provides an optimal solution for tracking and predicting data in various applications. Fig. 7

demonstrates a potential use case for the Kalman �lter.

Ideally, there are known inputs and the Kalman �lter uses them to predict system changes

over time [67]. The drifter sensors move passively through the supra-glacial channel,

carried by the natural �ow of water while encountering slopes, obstacles, and varying

hydraulic conditions along their path. The IMU units inside the drifter sensors record the

motion of the drifter, i.e, acceleration and orientation, which are subject to environmental

noise that comes from ice water dynamics. Fig. 7 illustrates the Kalman �ltering process

employed in this study.
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Figure 7. Kalman �ltering process employed in current study [adapted from [68]].

The mathematical used for Kalman �ltering is expressed as follows:

x̂k = x̂kjk� 1 + K k(zk � H x̂kjk� 1) (3.5)

where:

x̂k is the updated state estimate,

x̂kjk� 1 is the prior state estimate,

zk is the measurement at timek,

H is the observation model (matrix),

K k is the Kalman gain, calculated as:

K k =
Pkjk� 1H T

HPkjk� 1H T + R
(3.6)

WherePkjk� 1 is the predicted error covariance,Q andR are the process noise covariance

and measurement noise covariance, respectively. The Kalman �lter was applied to each

axis of IMU recorded data. i.e. in acceleration dataaccx, accy, andaccz. The �lter was

adjusted by using a process varianceQ of 1 � E � 4, re�ecting the assumption that the

drifter's acceleration is smooth and does not �uctuate suddenly, unless external forces act

on it. Also, a measurement covarianceR of 0.05 was con�gured, which represents the
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expected noise from the IMU sensor readings. The Kalman �lter combines both predictions

using a weighted average, where the weights depend on the relative certainty (inverse

of covariance) of each source. This balances the expected smoothness of the true signal

against the uncertainty/errors in the sensor reading. This process is recursive, ef�cient, and

allows real-time state estimation. The resulting �ltered signals provide a reliable estimate

of the drifter's true acceleration and are used for further analysis.

3.3 Data analysis

The �nal step in this study is to analyse the preprocessed data of the drifter sensor to

identify the features or characteristics of the supraglacial channel. The drifter sensor

transits through the stream, encountering key events referring to the characteristics of the

channel. These events were identi�ed as features such as a step pool or sensor stall, etc.

The data was qualitatively assessed using statistical techniques. The identi�cation of such

features helps us understand the characteristics of these streams as well as possible sensor

anomalies that occur in such remote environments.

3.3.1 Pressure correlation

The pre-processed data includes two sets of pressure readings, i.e, pressure 1 and pressure

2, recorded simultaneously by two sensors. The pressure readings are measured in hec-

topascals (hPa) and capture atmospheric pressure variations over time. It was reasonable

to investigate whether the two pressures, mounted on the cylindrical anterior part of the

drifters, are correlated. To assess consistency between the two pressure sensors across

multiple measurements, a statistical correlation analysis was performed on the entire

dataset.

To compare two pressure data readings to see how similar they are, aPythonscript was

written to recursively search all subdirectories containing �ltered pressure data �les and

compute the Pearson correlation coef�cient (PCC). The method assesses the strength of the

linear relationship between the two pressure signals across the entire dataset. The Pearson

correlation coef�cientr is calculated using the formula:

r =
P n

i =1 (x i � �x)(yi � �y)
p P n

i =1 (x i � �x)2
p P n

i =1 (yi � �y)2
(3.7)

wherex i andyi represent the individual data points of pressure 1 and pressure 2, respec-

tively, and�x and�y are their corresponding means.
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The analysis extracts metadata such as date and sensor identi�ers from the folder structure

and assigns a unique label to each �eld measurement. The results are compiled, and

plots are generated to visualize the distribution of correlation values across the sensors.

This approach provides insight into sensor agreement trends over time across drifters and

highlights datasets with notably strong, moderate, or weak inter-sensor correlation for all

data samples.

3.3.2 Feature detection in supraglacial channel

Supraglacial channels are formed on the surface of a glacier due to melting ice. The

identi�cation of key features and events occurring within these channels requires signal

processing methods. In this study, two different key events, i.e. drifter sensor stall and step

pool, were investigated using distinct analytical methods. The identi�ed events were later

overlaid on the GPS collected data to estimate their positioning along the track. Moreover,

video recordings of the experiments were used to �ne-tune the analytical parameters for

feature identi�cation and to validate the results.

3.3.3 Drifter sensor stall

In this study, speci�c segments of the drifter trajectory called stall regions were identi�ed,

where the sensor temporarily stopped moving or became lodged in place. These regions

are of particular hydrodynamic signi�cance, as they often correspond to distinct stream

features. For example, the sensor occasionally remained stationary behind submerged ice

boulders or became trapped on ice meanders. In the latter case, manual assistance was

required to push the drifter into the main �ow. Fig. 8 shows the drifter sensor holding a

station behind an ice boulder.

Figure 8. Drifter sensor holding a station behind the boulder during sensor stall.

27



The identi�cation of these stall regions was primarily based on two key variables: ac-

celeration and pressure. During sensor stall, acceleration in thex, y, andz directions

remained constant, indicating no signi�cant movement or change in the sensor's position.

Meanwhile, the mean pressure values remained stable in these regions, showing a low

variance in the pressure measurement, again suggesting minimal sensor activity. Thus, the

following criterion was established to identify instances of drifter sensor stall within the

signal:

- Constant acceleration in thex, y, andz directions

- Minimal variance in Pressure 1 and Pressure 2

)

Sensor stall

Sensor stall regions were identi�ed using rolling window analysis applied to the time series

data. A detailed description of this analysis method, including the parameters used, is

provided in the following section.

Rolling window analysis

Rolling window analysis is a common technique in signal processing, used to analyze local

patterns in the signal by applying statistical measures over a �xed window size. Rather

than computing statistics on the entire dataset, rolling analysis slides the window forward

one data point at a time, allowing dynamic observation of how metrics evolve over time.

In this study, the variance of the �ltered acceleration data in all three directions (accx, accy

andaccz) was calculated in a rolling window of 100 samples. Regions where the variance

dropped below 10% and remained consistently low for at least 3 seconds were classi�ed as

stall regions. The rolling variance� t was computed by evaluating, at each time stept, the

variance of data points within a prede�ned window of sizen, as given by the following

expression:

� t =
1
n

n� 1X

i =0

(x t � i � x t )
2 (3.8)

This method enables the detection of subtle changes in signal dynamics. The mean ac-

celeration values of the �ltered data in bothaccxandaccywere close to zero. However,

the mean acceleration in the upward directionacczremained9:8 m=s2, due to the gravita-

tional acceleration while traversing supra-glacial channels. In regions where the sensor

experienced a stall, the acceleration values remained closer to their mean values with low

or zero variance.

28



3.3.4 Step-pool events

Supraglacial channels exhibit signi�cant geomorphological features such as steps and pools,

which form due to differential melting of the glacier surface. These features in�uence the

hydraulic behaviour of the meltwater �ow, creating zones of high acceleration at steps and

relatively low acceleration regions in pools, which can contribute to further ice erosion and

alter the channel morphology over time, Fig. 9. A comprehensive description of step-pool

features can be found in the work of [6], which serves as a key reference for this study.

Figure 9. Illustration of the step-pool feature [adapted from [69]]

In this study, steps and pools were investigated using a multi-variable analysis. Step-pool

features were identi�ed by applying a prede�ned criterion to the acceleration and pressure

data, based on distinct signal characteristics outlined below.

- Higher acceleration in the forward direction

- Low pressure variance

)

Steps

- Decrease in gravitational acceleration

- High variance in pressure

)

Pools

These areas were initially identi�ed as step-pool regions based on the time series data and

were subsequently cross-checked across all drifter datasets collected each day. Given the

high probability of false positives in such detections, only those regions that consistently

appeared across multiple datasets were ultimately labelled as step-pool regions.

Threshold-based event detection

As the step-pool event is explicitly linked to multi-variable dependency, a relatively simple

approach is applied to detect it within the signal. The threshold-based detection is quite

simple as it examines point by point the successive data values in the trace. If the value is
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above or below the de�ned thresholds, the event is marked as started, and when the value

crosses the threshold in the opposite direction, the event ends. As in our case, the threshold

values were set for multiple variables, i.e., acceleration and pressure, and the event detection

was split into two steps. In the �rst step, the mean gravitational accelerationacczwas

deducted from the �ltered accelerationdacczand was divided by its standard deviation to

obtain the normalised gravitational acceleration. The normalised acceleration accounts for

the sensor sensitivity and biases and is therefore preferred. The normalised acceleration

was later multiplied by a constant to set the threshold for acceleration. Similarly, in the

second stage, the median pressure (ep) from both pressure sensors was added to the product

of their standard deviation and a constant. The value of the constant was input to the

system to tune the sensitivity of the algorithm in capturing the pressure peaks. Finally,

the regions where the steps and pools occurred repeatedly in sequence were called the

step-pool events. The current study was tuned to identify the step pool events where the

pool depth was a minimum of 6 cm.

Table 2. Thresholds speci�ed for the step-pool events.

Steps Pools

gravitational
acceleration g [m/s]

min step
duration
[samples]

pressure threshold
[hPa]

rolling window
size
[samples]

< daccz� accz
� accz

� c 5 ep + ( � p � c) 2

3.3.5 Data validation through GPS tracking

Once the key features were identi�ed, they were overlaid onto the GPS data to estimate

their positions along the drifter's path. The drifter sensors were capable of recording

Global Positioning System (GPS) data, which could be used to identify the positioning

of the sensor, but unfortunately, among all the drifters deployed, only some could record

it in sections with little accuracy. However, the surface drifter data from the Global

Navigation Satellite System (GNSS) were accurate and provided an estimate of the path,

which was later overlaid with the drifter sensor data. As mentioned, the drifters' data were

in sections; therefore, the closest time steps to the available data were selected to represent

the estimated location of the events. The total track length of the GPS data was around

590 m with a slope of 19 m (see Fig. 10).
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Figure 10. Drifter's path on supraglacial channel in the polar region.
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4. Results and Discussions

This chapter presents the results of analyses conducted on the acquired drifter sensor

datasets, including data cleaning, preprocessing, and feature detection. It also highlights

the outcomes of the statistical approaches used, their effectiveness in identifying key

features, and the advantages they offer in signal interpretation.

4.1 Data cleaning and preprocessing

The raw data, once cleaned using a rolling window analysis, yielded a section de�ned as

the region of interest (ROI). As discussed in the previous chapter, the ROI corresponded

to data segments between 5 and 20 minutes in duration within each dataset. Following

the cleaning step, the data underwent outlier removal using the Interquartile Range (IQR)

method. The resulting pressure data, for example, is illustrated in Fig. 11.

Figure 11. Region of interest ROI extracted with outlier removed from the Pressure 1 and
Pressure 2 data.

Both the rolling window analysis and the IQR method were quite effective in extracting

relevant signal sections while minimising the impact of noise and anomalies, thereby

ensuring cleaner input for the subsequent feature identi�cation analysis. These methods not

only enhanced the reliability of the data but also helped retain meaningful variations crucial

for detecting events such as sensor stalls and step-pool interactions. Their combined use

provided a robust framework for preprocessing, balancing sensitivity to signal �uctuations

with resistance to outliers.
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4.2 Pressure correlation

After the successful data cleaning and preprocessing, the pressure sensor data was further

analysed to identify the correlation between pressure 1 and pressure 2. At this stage, it was

essential to quantify the correlation between the two pressure sensors before proceeding

with further analysis. The Pressure 1 and Pressure 2 are pressure sensor data collected

by the two pressure sensors located around the spherical head of the drifter sensor. The

Pearson correlation coef�cientr was calculated for each sensor measurement, followed by

a box plot (see Fig. 12).

Figure 12. Correlation between the measured Pressure 1 and Pressure 2, based on the
Pearson coef�cient of the sampled data.

From the data analysed, it was observed that the Pearson correlation coef�cient remained

within a moderate range, between 0.5 to 0.6, suggesting that both sensors generally

recorded similar pressure readings and responded equally to any changes while the sensor

moved through the channel. Additionally, a few datasets showed a strong correlation, with

values exceeding 0.7, indicating that the sensors captured consistent trends in pressure

variations. An outlier with weak similarity was observed in the M16 sensor readings

from the �eld experiment conducted on 15-07-2021. This dataset showed a low Pearson

correlation of 0.152, indicating that M16 recorded distinctly different pressure patterns

compared to the other sensor. An ideal case of perfect correlation was also observed, with a

Pearson correlation value of 1.0 between pressure 1 and pressure 2. However, this was later
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considered an outlier, as both pressure readings contained identical values, resulting in the

perfect correlation. Speci�cally, this occurred in the M17 sensor measurements taken on

13.07.2021 and 15.07.2021, as well as in the M05 sensor readings recorded on 17.07.2021.

Overall, correlation results showed consistency in the pressure readings and re�ect reliable

sensor performance across different sensors embedded in the drifting sensors.

4.3 Feature detection

The preprocessed dataset from the drifter sensor was further analysed to identify key

features encountered within the supraglacial channel. The subsequent sections describe the

results of the two potential features, i.e., drifter sensor stall and step-pool event, identi�ed in

the measured data using different statistical techniques. These �ndings show the estimated

number of times these events happened along the drifter's transit path and possible reasons

causing these events.

4.3.1 Sensor stall

The drifter sensor moving through the supra-glacial channel stalled multiple times during its

transit. Data analysis revealed two distinct stall mechanisms: (1) brief interruptions (lasting

seconds) caused by ice boulders obstructing the sensor, and (2) prolonged immobilisation

when high-velocity �ow displaced the sensor onto ice bars. These stall periods were

systematically identi�ed in each sensor's dataset to evaluate individual performance metrics,

including total run time versus stall duration. Fig. 13 shows a heat map of the sensor stall

frequency on each measurement day. A comprehensive overview of the data shows that

the average stall frequency of the measurements was around 5, with an average stall time

of approximately 3.8 mins.

The M04 sensor on 18.07.2021 exhibited the highest stall frequency of 22 events, with a

total stall duration of 8 minutes. Table 3 shows the mean �ow velocities measured using

the propeller velocimeter along the channel during the �eld experiments. The elevated

number of stall events recorded on 18.07.2021 is truly supported by the velocity data in

the table, as it corresponds to the lowest average �ow velocity observed during the study

period, measured at 1.13 m/s.

Table 3. Mean �ow rate observed using anemometer on various days.

Measurement day 13 Jul 15 Jul 17 Jul 18 Jul
Velocity [m/s] 1.40 1.77 1.82 1.13
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The inverse relationship between �ow velocity and stall frequency suggests that reduced

water movement increased the likelihood of stall conditions, as slower velocities limited

the drifter's ability to overcome local �ow resistance and pressure �uctuations, therefore,

an increased count of stalls is observed on 18.07.2021. Moreover, it can also be observed

that on 17.07.2021, the average stall frequency count was 2, the lowest observed during

the day, which re�ects the highest recorded �ow velocity of 1.82 m/s on that day.

Figure 13. Heat map illustrating the stall frequency of the deployed sensors on different
days.

The individual variable, such as acceleration (x, y andz), post Kalman �lter application

of the M04 sensor on 18.7.2021, also shows the signal stall durations. The sections of

the stall signals can be viewed in Fig. 15, highlighted with grey hatched regions. A cross

comparison shows that during these signal stalls, the Pressure 1 and Pressure 2 exhibited

minimum variance (see Fig 14).

Figure 14. Pressure 1 and Pressure 2 plotted over time from screened data.
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Figure 15. Time series acceleration data of all three axis overlaid with the �ltered accelera-
tion obtained through Kalman �lter (black line). The gray hatched regions represent drifter
stall regions.

4.3.2 Step-pool event

The step-pool events described in the method section were identi�ed by a two-step identi�-

cation method. The initial step involved the search for regions where the upward/gravita-

tional acceleration falls below zero. These regions were marked as the step regions. In the

second step, the pressure peaks were checked throughout the signal in both Pressure 1 and

Pressure 2, marking these regions as pools. Finally, Fig. 16, those time stamps where both

the step and pools were occurring in sequence, were identi�ed as the step-pool events.

For example, the M04 sensor from July 18, 2021, shows the step-pool event occurring

at approx 27.5 sec (see Fig. 17). During the step-pool event, it is observed that there

was a deceleration in the forward acceleration, whereas the lateral acceleration exhibits

subtle �uctuations. The gravitational acceleration starts to descend at 22.5 sec where a

smaller peak was observed in the pressure as well. Later at 27.5 secs when the gravitational

acceleration touches its minimum value of zero, the pressure also exhibits a higher value

up to 1025 hPa, which represents the hydrostatic pressure on the drifter at that speci�c

depth in the pool. The depth of the pool was estimated empirically to be 25 cm at this

location.
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