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Abstract 

This thesis aimed to integrate automatic labelling into a historical image archive using 

deep learning. While several pre-trained models exist, they have two drawbacks. First 

being that they are trained on modern images, and as the size and shape of objects has 

changed over time, then they aren’t necessarily capable of detecting the objects from 

historical images. Second being that they do not necessarily detect objects that are of 

interest in historical images. 

Two tasks were performed to achieve this. First, creating an annotation solution that can 

be integrate into the website. Second, choosing an appropriate object detection 

algorithm. 

Three questions were asked when choosing the object detection algorithm.  

1) Which algorithm learns the fastest in terms of epochs?  

2) How do the algorithms’ accuracies increase with additional data?  

3) How fast is the detection of the different algorithms? 

New models were trained using historical images in order to answer the questions. The 

algorithms used were Detectron2’s implementation of Faster R-CNN, YOLOv3, 

EfficientDet D0, and EfficientDet D2. 

To evaluate how fast the algorithms learn, in terms of epochs, the accuracies of different 

models were evaluated using mAP @ 0.5 and mAP @ [0.5:0.95] after every 25 epochs, 

starting with 25 and ending with 150. This was done for every dataset size. 

In order to see how the algorithms’ accuracies increase with additional data the 

following process was done. The dataset was evaluated after every 25 images. The 

dataset size was incremented by 25 images per class, starting from 25 until reaching 100 

for a single class. Once 100 was reached for a single class, then an additional class was 
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added and it started from 25 images per class. So, 2 classes, 25 images were 50 images 

total. The dataset sizes were [1…10] * {25, 50, 75, 100}.  

Detection accuracies were measured in seconds. This was, however, a secondary 

parameter. 

The algorithm which performed the best was Detectron2’s implementation of Faster R-

CNN. At certain dataset sizes EfficientDet D2 overtook it in detection accuracy by a 

small margin, but in terms of learning speed and generalizing from a smaller dataset 

Faster R-CNN was superior. YOLOv3 trailed close behind and EfficientDet D0 was too 

far behind in accuracy to consider. Thus, Detectron2’s implementation of Faster R-CNN 

was chosen to be used in Ajapaik’s environment. 

This thesis is written in English and is 55 pages long, including 7 chapters, 64 figures 

and 5 tables. 
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Annotatsioon 

Automaatne sildistamine ajalooliste piltide kontekstis 

Antud lõputöö eesmärk oli integreerida automaatne sildistamine ajalooliste piltide 

arhiivi kasutades sügavõpet. Kuigi olemas on mitmeid välja õpetatud mudeleid, siis on 

neil kaks põhilist puudust antud kontekstis. Esitaks, kuna objektid on muutunud läbi 

ajaloo ning olemasolevad mudelid on treenitud tänapäevaste andmetega, siis ei ole need 

mudelid tingimata suutelised tuvastama neid samu objekte ajaloolistelt piltidelt. 

Teiseks, objektid, mida antud mudelid tuvastavad, ei ole tingimata kasulikud ajalooliste 

piltide kontekstis. 

Edukaks integreerimiseks oli vaja täita kaks ülesannet. Esiteks oli vaja luua 

annoteerimissüsteem, mida saaks integreerida veebi keskkonda. Teiseks oli vaja valida 

sobiv algoritm antud kontekstile. 

Sobiva algoritmi valimiseks püstitati kolm küsimust. 

1) Milline algoritm õpib epohhe arvestades kõige kiiremini? 

2) Kuidas muutuvad algoritmide täpsused kui lisatakse andmeid? 

3) Kui kiiresti tuvastavad erinevad algoritmid pilte? 

Uued mudelid treeniti välja kasutades ajaloolisi andmeid, et vastata esitatud 

küsimustele. Võrdlusteks valitud algoritmid olid Detectron2 implementatsioon Faster R-

CNN algoritmist, YOLOv3, EfficientDet D0 ja EfficientDet D2. 

Erinevate mudelite täpsusi hinnati iga 25 epohhi järel, et uurida kuidas muutub täpsus 

üle epohhide. Hindamine algas 25-st epohhist ning lõppes 150-ga. Täpsuse hindamiseks 

kasutati mAP @ 0.5 ja mAP @ [0.5:0.95]. Seda hindamist tehti iga andmestiku kohta. 

Järgnev protsess oli kasutuses hindamaks täpsusi üle erinevate andmestike suuruste. 

Andmestikke hinnati iga kord kui lisati 25 pilti. Andmestiku suurust tõsteti 25 pildi 

võrra klassi kohta. Alustati 25-st pildist ning lõpetati 100-ga ühe klassi kohta. Peale 
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seda, kui ühe klassi kohta oli jõutud 100 pildini, alustati protsessi uuesti 25-st, kuid 

nüüd lisati teine klass. Nüüd oli mõlema klassi kohta 25 pilti, ehk andmestiku suurus oli 

50. Iga sammuga lisati klasside arv * 25 pilti. Kõik kasutatud andmestiku suurused olid 

[1...10] * {25, 50, 75, 100}. 

Pildi töötlemiskiirust mõõdeti sekundites. See aga ei omanud sama suurt kaalu kui 

täpsused. 

Algoritm, mis saavutas parimad tulemused, oli Detectron2 implementatsioon Faster R-

CNN-st. Teatud andmestike suuruste juures sai EfficientDet D2 väikese eduga paremaid 

täpsuse tulemusi. Arvestades aga epohhide põhist õppimiskiirust ja võimet üldistada 

väikeselt andmehulgalt, siis Faster R-CNN oli parem. YOLOv3 tulemused olid lähedal 

Faster R-CNN ja EfficientDet D2 omadele. EfficientDet D0 jäi täpsuses aga liiga palju 

maha, et seda arvestada. Otsustati, arvestades eelnevalt toodud aspekte, et Detectron2 

implementatsioon Faster R-CNN algoritmist oleks kõige parem valik Ajapaiga 

keskkonna jaoks. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 55 leheküljel, 7 peatükki, 64 

joonist, 5 tabelit. 
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List of abbreviations and terms 

CNN Convolutional neural network 

YOLO You Only Look Once 

R-CNN Regions with CNN features 

RQ Research question 

mAP Mean average precision 

TP True positive 

FP False positive 

FN False negative 

TN True negative 

RoI Region of interest 

IoU Intersection over union 

BiFPN Weighted bidirectional feature network 

PANet Path aggregation network 

R101 ResNet-101 

X101 RexNeXt-101 

FPN Feature pyramid network 

AP Average precision 
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1 Introduction 

History is something that people should remember and learn from. It’s a subject of 

research and it’s taught in schools. Often, when discussing history in an academic 

environment, illustrations are provided – be it of drawings, objects, or even events. 

However, not everyone has their own historical images. Image archives exist for those 

purposes. 

There are several image archives that deal with storing and labelling images. These 

include national ones and private ones. In the context of Estonia, an example of a 

national archive would be FOTIS [1], which is owned by Rahvusarhiiv [2]. On a smaller 

scale there is a collection of images for Saku county in their digital archive [3]. In 

addition to these national ones there are also private archives. For example, Vanadpildid 

[4] and Ajapaik [5]. 

The archives must have a search function in order to make navigating the large 

quantities of images an easier task. However, the images must get their labels somehow 

and labelling them manually can be a time-consuming task. As hardware has developed 

then certain automated approaches have become computationally feasible, namely 

convolutional neural networks. 

Convolutional neural networks are a subset of machine learning that specializes in 

working with images. Several different networks and algorithms have been developed 

for object detection. Among them are YOLO [6], SSD [7], R-CNN [8], Faster R-CNN 

[9], EfficientDet [10] and many more. However, one algorithm doesn’t fit all cases, as 

they make trade-offs. Some are faster, while others are more accurate. Thus, the usage 

of these algorithms must be looked at case by case. 

The context in which object detection algorithms will be applied within this thesis is the 

historical image archive Ajapaik [5]. It got started in 2011 and provides different 

features relating to historical photos, such as marking the locations on a map where the 

image was taken, and taking rephotos, that is taking a picture in the same location that 

the original image was in and then allowing a side-by-side comparison of what it looks 
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like today and what it looked like on the original photo. CNNs could be used in order to 

make the grouping of its images easier. In order to integrate CNNs into the website two 

tasks must be done – develop an annotation system in order to have ground truths from 

which to train, and choosing the appropriate algorithm. As the number of historical 

photos is limited and as Ajapaik is a non-profit enterprise, then the hardware available is 

limited, thus there are two main problems for choosing the appropriate algorithm. The 

first is which algorithm can learn the fastest and the second is which algorithm can 

increase its accuracy the fastest from a limited amount of data. Finally, a less important 

aspect, but still considerable is the detection time of algorithms. So, the research 

questions would be as follow: 

RQ1: Which algorithm learns the fastest in terms of epochs? 

RQ2: How do the algorithms’ accuracy increase with additional data? 

RQ3: How fast is the detection of the different algorithms? 

The following approaches will be taken in order to answer the above questions: 

• Check the accuracy of the trained models after every 25 epochs, up until 150. 

• Check the accuracy after every 25 images. 

• Check the average time spent in seconds to process images by the algorithms. 

Chapter 2 describes in more detail how the research questions will be answered. In 

Chapter 3 different available benchmark datasets will be described. Chapter 4 will 

describe the accuracy measurement metric and the algorithms chosen for the evaluation 

and why they were chosen. Chapter 5 will describe the dataset used for evaluations and 

the developed annotation solution. Chapter 6 will list the results of the evaluations. 
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2 Thesis outline 

New models must be trained for historical images. The models that exist have two 

drawbacks when considering historical images. First is that they have been trained using 

modern images, thus they can misclassify historical images, as the shapes and sizes of 

objects have not remained consistent throughout history. Second is that they don’t 

detect objects that would be of interest in historical images.  

In order to evaluate the models in the context of this thesis the following approach is 

used. 

First, a large enough quantity of images is gathered using open image archives. FINNA 

[17] and FOTIS [1] are used for the data, as they are representative of Ajapaik. The 

open image archives are used due to release schedule conflicts with Ajapaik. In the 

production environment the data labelled by the users is used. The data gathered must 

be filtered for miscellaneous images. That is, images that are not related to a searched 

keyword. For example, when searching for tanks, the word might just be in the 

photographer’s name and have nothing to do with the image. 

The filtered images must then be labelled with bounding boxes to have ground truth 

data for training. An appropriate annotation tool must be chosen for that. 

Training of the models starts once the labelling process is finished. For the training 

process a total of 1000 images with labels are used, which will be incrementally used. 

As transfer learning is used, then a base model must be present. A pre-trained model 

from the COCO dataset [12] is used as the base model. 

The training begins with a 25-image dataset, which contains a single class. During the 

training process, the model saves checkpoints after every 25 epochs. The training of a 

model is considered finished once 150 epochs are reached. Each of the checkpoints are 

then evaluated using mAP @ 0.5 and mAP @ [0.5:0.95]. The evaluation metrics are 

described in more detail in chapter 3.2.1. After evaluation 25 images are added to the 

dataset and the process is repeated until 100 images are reached.  
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Once 100 images of a class are reached, then it begins again from 25, but with an 

additional class. At the start of the cycle, 25 images per class are used. So, with 2 

classes and 25 images, there are a total of 50 images in the dataset. Now the dataset gets 

incremented by 25 images per class, meaning that with 2 classes, the step size is 50 

images, as each class contributes 25 images. This continues until 1000 images are 

reached as a total of 10 classes will be used. So, the dataset sizes will be [1…10] * {25, 

50, 75, 100}. 

Previously trained models with the historical image dataset are not reused for training. 

Each dataset’s training cycle begins with a fresh COCO pre-trained model. 

The above process is done for every algorithm – YOLOv3, Faster R-CNN, EfficientDet 

D0, and EfficientDet D2. 
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3 Background and related work 

Machine learning algorithms require a large amount of data to be as accurate as 

possible. In the context of CNNs that means having images and annotations for those 

images in order to perform a certain type of image recognition task. Some of these tasks 

are as follows: 

• Image classification – it involves assigning a certain label to an image. An 

example of that would be seeing an image of a car and then assigning the car 

label to that image.  

• Object detection – it involves assigning multiple labels to an image and then 

localizing them on the image by drawing a bounding box around them. An 

example of that would be seeing a car and then saying that the car’s bounding 

box starts at pixels x1, y1 and ends at x2, y2. 

• Object segmentation – like object detection, it assigns labels and localizes the 

objects. However, instead of simply drawing a bounding box, this type of 

detection draws an exact boundary. The segmentation boundary is described as a 

list of x, y point pairs. 

In the context of this thesis the problem of automatically labelling images will be 

addressed as an object detection problem. This is because there can be several objects 

on the image. Additionally, users validate the annotations that have been added 

automatically or by other users, so for the users to clearly see what they’re validating 

there needs to be a boundary. However, segmentation is not necessary, as an exact 

boundary doesn’t add extra benefits to localizing the object in this context. 

3.1 Evaluation datasets 

Several open source data collections exist that have been developed for the training of 

machine learning algorithms. They consist of images and their respective annotations. 
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3.1.1 Common Objects in Context (COCO) 

The COCO [12] dataset is one of the larger openly available datasets currently and thus 

a lot of projects use it to evaluate their algorithms. It has over 330000 images and 1.5 

million instances of objects. It contains captions, segmentation data, bounding boxes, 

and person keypoints. Overall there are 80 object categories defined. 

COCO also offers its own method for calculating the mean average precision. This is 

described in more detail in chapter 3.2.1. 

3.1.2 PASCAL VOC 

PASCAL VOC [14] used to be a standard dataset against which people tested their 

algorithms. However, as of 2012, it has been discontinued. Regardless, algorithms are 

still evaluated against it. The dataset is smaller than COCO with 20 classes, 11530 

images, 27450 object annotations and 6929 segmentations. 

3.1.3 ImageNet 

This is the largest dataset of images. There are roughly 14.1 million images in the 

dataset. About a million of them have bounding box annotations [15]. 

3.1.4 Google Open Images 

Google’s Open Images is the largest dataset with object location annotations. It contains 

roughly 9 million images annotated with different information. Specifically, there are 16 

million bounding boxes with 600 object classes on 1.9 million images [16].  

3.2 Evaluation metrics 

There are different metrics that can be used to describe an algorithm’s performance. For 

example, precision and recall. However, most of the algorithms provide their 

performance in mean average precision (mAP), as it combines different metrics into 

one. 

3.2.1 Mean average precision (mAP) 

Several terms must be defined before defining mAP. 
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Intersection over union (IoU) shows how much did the bounding boxes of the ground 

truth and the algorithm’s output match. It’s calculated using the area of overlap divided 

by the area of union displayed in figure 1. 

  

Figure 1. Intersection over Union calculation [11] 

A threshold is chosen in order to classify a detection as either positive or negative based 

on the IoU. Anything above or equal to the threshold is considered a positive, while 

anything below it is considered a negative. Additionally, the type must be correct. 

Positive and negative result must be defined when estimating the validity of a machine 

learning algorithm’s results. There are four classifications – true positive (TP), false 

positive (FP), false negative (FN), true negative (TN). 

• True positive means that a bounding box that was estimated by the algorithm 

overlaps with the ground truth bounding box above a certain IoU threshold. 

• False positive means that a bounding box that was estimated by the algorithm 

was not present in the ground truth. 

• False negative means that a bounding box existed in the ground truth but was 

not estimated by the algorithm or that the estimation was under a certain IoU 

threshold. 

• True negative means that a bounding box was not estimated, and it did not exist 

in the ground truth either. 

Precision (1) shows how much of the positive detections were truly positive detections.  

Precision =
TP

TP + FP
 (1) 
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Recall (2) shows how much of the ground truth positives were defined as positive by the 

algorithm. 

Recall =
TP

TP + FN
 (2)  

Precision and recall can be calculated with the positive and negative detections. Their 

values will be used to calculate the average precision (AP). There are two ways to do 

this – using area under the curve approach or an N interpolated points. Both start with 

removing any zigzags from the precision/recall curve as can be seen in figure 2, where 

blue dots represent the recall/precision pairs and the green line represents the points 

without zigzags. 

 

Figure 2. Recall/precision zigzag smoothing 

The removal of zigzags is done by setting each recall point’s precision to be equal to the 

highest precision that comes after that point (3). 

𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟) = max
ȓ≥r

𝑝(ȓ) (3) 

Using N interpolated points is as follows. The area is distributed into N equally distant 

points. For each point the maximum precision value is chosen using formula 3. The 

precisions are summed and divided by the number of points (4). 
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𝐴𝑃 =
1

𝑁
∑ 𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟)

𝑟∈{0,…,1.0}

(4) 

Using area under the curve approach to calculate AP is as follows. Each precision drop 

represents a separate rectangle. The area of each of the rectangles is taken and summed 

up (5). 

𝐴𝑃 = ∑(𝑟𝑛+1 −  𝑟𝑛)𝑝𝑖𝑛𝑡𝑒𝑟𝑝(𝑟𝑛+1) (5) 

mAP is calculated by taking the average of APs over every class.  

The most common metric that is used for evaluating the mAP of an algorithm is the 

COCO method. Two things are done in that. First, recall is given 101 (N=101) points in 

that method. Second, mAP is calculated over a range of IoU threshold values. First, 

mAP is calculated for an IoU threshold value of 0.5, then it gets incremented by 0.05 

and the mAP is calculated again. This goes on until 0.95. The average of those mAPs is 

taken. It is denoted as mAP@[0.5:0.95]. COCO mAP provides insight into which 

algorithms localize better. 

In the context of this thesis mAP at a threshold of 0.5, denoted as mAP@0.5, and 

mAP@[0.5:0.95] will be used to compare the accuracies of the algorithms at various 

steps. 

  

mailto:mAP@[0.5:0.95
mailto:mAP@0.5
mailto:mAP@[0.5:0.95


23 

4 Object detectors 

Before the popularity of deep learning, object detection was done by using manually 

engineered feature detectors. This involved finding the appropriate values for filters 

instead of letting a network learn them. A sliding window would then slide over the 

image at different scales to try and find matches to the filters. 

The major shift to deep learning happened in 2012 when AlexNet [33] won the 

ImageNet Large Scale Visual Recognition Challenge [44]. Ever since, a lot of object 

detection algorithms using CNNs have come out [6][7][8]. 

They can mainly be grouped into two categories – single-stage and two-stage object 

detectors. With two-stage object detectors, the first stage is generating regions of 

interest. The second being the classification of those areas and adding a bounding box. 

Single-stage detectors do not have a region of interest generation stage, rather it all runs 

directly in one operation. 

Most of the object detection algorithms employ anchor boxes to localize objects. 

However, some newer models have tried a different approach. For example, Objects as 

Points [34], which represents objects as a single point in their bounding box centres 

from which size, dimensions etc are regressed. The algorithms used in this thesis are all 

based on anchor boxes. 

4.1 Faster R-CNN 

4.1.1 Reason for choosing 

It is not the newest nor the fastest algorithm. However, it is part of the model zoo inside 

of Detectron2 [26]. Detectron2 is a library that has several state-of-the-art object 

detection algorithms implemented. It was released in October of 2019. Detectron2 was 

chosen due to its novelty and claim that it trains faster. Faster R-CNN was chosen from 

the model zoo, as, at the time of this writing, it has the highest accuracy of the bounding 

box detectors. Additionally, the ResNet-101 [37] with a feature pyramid network [42] 

(R101-FPN) backbone version was chosen over the ResNeXt-101 [43] with a feature 
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pyramid network (X101-FPN). This is because R101 trains faster and requires less 

memory as seen in table 1. 

Table 1. Detectron2 Model Zoo Faster R-CNN snippet [28] 

Name Train time 

(s/iter) 

Inference time 

(s/im) 

Train mem 

(GB) 

Box AP 

R101-FPN 0.286 0.051 4.1 42.0 

X101-FPN 0.638 0.098 6.7 43.0 

 

4.1.2 Description 

Faster R-CNN is a two-stage object detector. Both its predecessors, R-CNN [8] and Fast 

R-CNN [9], used selective search [30] to generate the RoIs. However, selective search 

is a slow process, thus Faster R-CNN removed it and replaced it with a CNN solution. 

The structure of the Faster R-CNN model can be seen in figure 3. 

 

Figure 3. Faster R-CNN structure [9] 

The image is fed into the chosen backbone. In the context of this thesis it’s the ResNet-

101 network. A feature map is generated as the output from that network. An anchor 

point is generated at every point in the feature map. For every anchor point k anchor 

boxes are generated, which are of certain predefined width/height ratio and scales. The 

number of anchor boxes k depends on the amount of scales and aspect ratios chosen. 

For 3 scales and 3 aspect ratios, the number of boxes generated for each point would be 
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k=9. The total number of anchor boxes generated for a feature map with dimensions 

width W and height H would then be W*H*k. 

Next these anchor boxes go into the region proposal network, which starts with a 3x3 

convolutional filter, followed by 2 1x1 convolutional filters in parallel. The first of the 

1x1 filters is for classifying whether the anchor box is an object or background. The 

output size for that is 2*k, where k is the number of anchor boxes. The second filter is 

for adjusting the anchor box to be more exact to the object. It outputs multipliers for the 

anchor box centre point x, y and for its width and height, thus its output is 4*k. 

Non-max suppression is used in order to limit the number of anchors. The highest 

probability boxes are found and boxes that overlap with it are removed using an IoU 

value. If a box overlaps with the highest probability box with an IoU larger than a set 

threshold, then that box is removed. An N amount of the best boxes are kept, sorted by 

score. 

What follows is the region of interest pooling layer and actual classification. The initial 

feature map is used to extract each region proposal. It gets resized to a fixed size of 

14x14xD, followed by max pooling with a kernel of 2x2, resulting in a feature map of 

7x7xD, where D is the depth of the output from the backbone. The output gets flattened 

and sent into two fully connected layers of a size of 4096. 

Finally, what follows are two additional fully connected layers. One for deciding the 

class. It has a size of N + 1, where N is the number of classes and 1 is the background 

class. The other one for adjusting the box dimensions to the object. This layer has a size 

of 4N, where N is the number of classes and 4 is the offset for centre point x, y and 

width and height.  

4.2 YOLOv3 

4.2.1 Reason for choosing 

While not the newest, it is one of the fastest detection algorithms, while sacrificing 

some accuracy. The comparison between some models can be seen in table 2, taken 

from the YOLO website. 
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Table 2. YOLOv3 benchmark comparisons [29] 

Model mAP @ 0.5 FPS 

SSD300 [7] 41.2 46 

SSD500 [7] 46.5 19  

YOLOv2 608x608 

[40] 

48.1  40 

Tiny YOLO [6] 23.7 244 

SSD321 [39] 45.4 16 

DSSD321 [39] 46.1 12 

R-FCN [41] 51.9 12 

SSD513 [39] 50.4 8 

DSSD513 [39] 53.3 6 

FPN FRCN [42] 59.1 6 

Retinanet-50-500 

[36] 

50.9 14 

Retinanet-101-500 

[36] 

53.1 11 

Retinanet-101-800 

[36] 

57.5 5 

YOLOv3-320 51.5 45 

YOLOv3-416 55.3 35 

YOLOv3-608 57.9 20 

YOLOv3-tiny 33.1 220 

YOLOv3-spp 60.6 20 

 

4.2.2 Description 

YOLOv3 [35] is the third iteration in the YOLO algorithms. With it came a larger 

network, thus increasing detection accuracy and detections at different scales. The 

structure of the network can be seen in figure 4. 
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Figure 4. YOLOv3 network architecture [31] 

Unlike Faster R-CNN, it is a one-stage detector. However, several implementation 

details are shared with Faster-RCNN. One of them being pre-defined anchor boxes. The 

anchor point for the boxes is the centroid of the grid. Like Faster-RCNN, it uses 3 

bounding boxes at 3 different scales for a total of 9 bounding boxes. Additional ones 

can be added, but it increases computation considerably. The previous scales’ feature 

maps are concatenated with the current scale in the case of medium and small scale 

detection, allowing the other layers to benefit from the results of the previous scale. 

In the case of a 416x416 input, the dimensions of the output at different scales would be 

52x52x3x(4 + 1 + N) at small scale, 26x26x3x(4 + 1 + N) at medium scale, and 

13x13x3x(4 + 1 + N) at large scale, where N is the total number of classes. 3 denotes 

the number of anchor boxes at that scale. The final dimension is formed by similar 

values as can be seen in Faster-RCNN. The 4 denotes adjustments to the pre-defined 

anchor box for its centre x, y coordinates and its width and height. The 1 denotes 

objectness – whether the area has a detection or not. Finally, the number of classes, that 

specify what class the area has. 

Non-max suppression is used to remove duplicate detections, like Faster R-CNN. 
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4.3 EfficientDet 

4.3.1 Reason for choosing 

The algorithm was chosen due to its novelty. The algorithm has varying degrees of 

models, where a trade-off is being made between the accuracy and model complexity. 

The models start from EfficientDet-D0 and go up to EfficientDet-D7. The paper [10] 

claims that their most basic model structure of EfficientDet-D0 is capable of matching 

YOLOv3 accuracy while being faster. Additionally, it is claimed that EfficientDet-D2 

achieves a mAP of 43.0 on the COCO test set, which would be 1% higher than Faster 

R-CNN. A section of the comparisons can be seen in table 3. Both D0 and D2 were 

chosen for the comparisons in order to validate the accuracy claims. 

Table 3. EfficientDet model comparisons snippet [10] 

 COCO test set COCO 

validation 

set 

FLOPs Latency 

Model mAP @ 

[0.5:0.95] 

mAP@

0.50 

mAP@

0.75 

mAP @ 

[0.5:0.95] 

FLOPs GPU 

(ms) 

CPU 

(s) 

EfficientDet-D0 

(512) 

33.8 52.2 35.8 33.5 2.5B 16 0.32 

YOLOv3 33.0 57.9 34.4 - 71B 51 - 

EfficientDet-D2 

(768) 

43.0 62.3 46.2 42.5 11B 24 1.2 

RetinaNet-R50 

(1024) [36] 

40.1 - - - 248B 51 7.5 

RetinaNet-R101 

(1024) [36] 

41.1 - - - 326B 65 9.7 

ResNet-50 + 

NAS-FPN (640) 

[38] 

39.9 - - - 141B 41 4.1 

 

4.3.2 Description 

Like YOLOv3, this is a one stage detector. It consists of an EfficientNet [13] backbone 

combined with a weighted bidirectional feature network (BiFPN). The main additions 

that this solution adds to existing ones is a new type of feature fusion, the BiFPN, and 

the ability to scale the network. The architecture can be seen in figure 5. 
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Figure 5. EfficientDet network architecture [10] 

PANet [32] was used as an example in order to develop BiFPN. This was because 

PANet has bidirectional feature fusing, however it has additional computation costs. 

Thus, the approach was to optimize PANet by removing input nodes with a single edge. 

Additionally, an extra edge was added from the input to the output to provide more 

feature fusing without adding great additional cost. The top-down and bottom-up paths 

are considered one layer, so when the network is scaled, then the pair of those are 

added. What’s more is that the fused feature maps have trainable weights added to it in 

order to negate certain layers contributing more than others. 

Different sized backbones are used when scaling. These range from EfficientNet-B0 to 

B6. Table 4 shows the different sizes of the scaled networks. 

Table 4. EfficientDet network sizes [10] 

EfficientDet 

network 

Input size EfficientNet 

backbone 

network 

BiFPN Box/Class 

#layers 
#channels #layers 

D0 (Φ = 0) 512 B0 64 3 3 

D1 (Φ = 1) 640 B1 88 4 3 

D2 (Φ = 2) 768 B2 112 5 3 

D3 (Φ = 3) 896 B3 160 6 4 

D4 (Φ = 4) 1024 B4 224 7 4 

D5 (Φ = 5) 1280 B5 288 7 4 

D6 (Φ = 6) 1280 B6 384 8 5 

D7 (Φ = 6) 1536 B6 384 8 5 
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Input size (9), BiFPN channels (6), BiFPN layers (7), and Box/Class layers (8) are 

calculated based on the Φ values for D0-D6. D7 is the same as D6, except it has a larger 

input size.  

𝑊𝑏𝑖𝑓𝑝𝑛 = 64 ∗ (1.35Φ) (6) 

𝐷𝑏𝑖𝑓𝑝𝑛 = 3 +  Φ (7) 

𝐷𝑏𝑜𝑥 = 𝐷𝑐𝑙𝑎𝑠𝑠 = 3 + ⌊
Φ

3
⌋ (8) 

𝑅𝑖𝑛𝑝𝑢𝑡 = 512 +  Φ ∗ 128 (9) 
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5 Dataset 

5.1 Gathering data 

Due to the constraints of Ajapaik’s system at the time of this writing it was easier to 

gather the data from external sites. The sites used were FINNA [17] and FOTIS [1]. 

FOTIS contains images mainly from Estonia, while FINNA contains images mainly 

from Finland. Both image archives have data similar to that which can be found on the 

Ajapaik website, thus the dataset gathered is representative of the data on which the 

algorithms will be run in production. The process of data gathering was running a 

JavaScript script to mass download images of a certain class and then manually filtering 

through the datasets to remove unrelated datasets. A considerable portion of the 

downloaded images had nothing to do with the objects that were searched for. Examples 

of the dataset can be seen in figure 6. 

 

Figure 6. Examples of the dataset 
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5.2 Annotating 

An annotation solution had to be created for the Ajapaik webpage as training data for 

the algorithms is crowdsourced. The users provide the ground truth labels that are used 

for training. Other users can then validate the labels. Labels with positive feedback get 

used for training, while negative ones get ignored. 

There are many existing JavaScript libraries that provide this function [18][19][20]. 

However, all of them have some drawbacks. While a lot of them allow for 

customization of styling, then none of them allow for customization of event handlers, 

at least as far as the author could find.  

There are two main ways they function. One way is by creating a box of predetermined 

size when the user clicks on the annotation button. Then the user must resize that as 

required. Another way is by holding down the mouse button and dragging. The first 

option can be annoying to the user and requires them to perform extra steps. The second 

option eliminates compatibility with touch screen devices as there’s no option to hold 

down the mouse. In order to circumvent these problems, a separate annotation library 

had to be written for the webpage to have maximum control over the annotation 

process. 

The created solution functions by clicking in the start position and then clicking at the 

end position to finish drawing the annotation. This allows the library to function on 

touch screens, in addition to mouse input devices. An example of the flow is shown in 

figures 7, 8, 9. In figure 7 the user has finished drawing and a popover opens asking for 

the user to specify the object. After the annotation has been submitted, then other users 

can give feedback on it as depicted in figure 8. Images with negative feedback will not 

be used in the training process to try and limit training on wrong data. The user can 

either agree with the object class or disagree and additionally specify their own object 

type, as shown in figure 9. 



33 

 

Figure 7. Adding an annotation 

 

Figure 8. Adding positive feedback to the annotation 
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Figure 9. Giving negative feedback 

The labelling solution above uses Wikidata [21] in order to give label selections. The 

positive side of this is that an admin doesn’t have to manually define labels that are 

allowed, thus requiring less manual human interaction. The negative side, however, is 

that while users might want to label objects as the same type, they might select an 

option that has the same written form but means something different. Short explanations 

of the objects, in addition to hyperlinks to their respective Wikipedia pages, are added in 

order to try and minimize that risk, which can be seen in figure 7. This does not 

completely eliminate the risk. However, solving that task is outside of the scope of this 

thesis. 

The above explained process was not used to label the data used to train the algorithms 

in this thesis due to the limited time available and the conflicting release schedule of 

Ajapaik. Thus, the author had to use an existing external solution to label the data. 

Different annotation applications exist for images. Some are online tools, some are 

offline. Probably the most popular one is CVAT [21]. However, the author of this thesis 

decided to use LabelBox [23], due to its ease of use and online nature, meaning that 

annotations were easy to share between environments. But there is a drawback – the 

number of labels that can be exported is limited to a considerably small number when 
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using a free license. Due to the availability of an education license, however, this was 

not a problem. 

5.3 Running detectors on acquired data 

Ajapaik’s environment is limited by hardware and funds available. As such, Ajapaik’s 

server cannot be used for training since there is only a CPU. Most of the time a GPU is 

required for training machine learning algorithms. This could be addressed by using 

Google Colab [24] as the training environment. As Google Colab provides 12 hours of 

free GPU time and the size of the data isn’t enormous, then that environment suffices. 

Both training and inference are performed in this environment. While Google Colab 

randomizes the card that a free session gets, then a Pro session gets a 16 GB Tesla P100. 

The inference tests are run on that card. 

The training process is done incrementally to test the growth of the accuracy over 

epochs and increased dataset sizes. The process looks as follows: 

1) 25 images of a single class are chosen. 

2) Those 25 images are trained for and evaluated after every 25 epochs, up until 

150 epochs. 

3) The accuracy evaluation is performed using the COCO format at IoU values 0.5 

(mAP@0.5) and incrementally increasing from 0.5 to 0.95 and taking the mAP 

(mAP@[0.5:0.95]). 

4) After the completion of the epochs 25 images are added and the process is 

repeated until reaching 100 images. 

5) Once 100 images are reached, then the process is started again from 25 images, 

but with an additional class. So, 25 images for each class, followed by 50 images 

for each class. 

6) Class adding continues until reaching 10 classes. Thus, the final model is trained 

on 10 classes of 100 images, totalling 1000 images. The dataset sizes used are 

[1…10] * {25, 50, 75, 100}. 
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6 Analysis of the results 

The process described in chapter 5.3 is used for evaluation. A total of 10 classes are 

used. The 10 classes are the following: church, cannon, tractor, lighthouse, monument, 

tank (military), bridge, windmill, altar, ruins. The classes are added to the data in that 

order as well. So, 1 class is church, 2 classes are church and cannon etc. 

The results are presented in pairs of graphs representing mAP @ 0.5 on (a) and mAP @ 

[0.5: 0.95] on (b). Each pair of graphs represents the results after every 25 images. The 

evaluations are performed on the validation set. The validation set sizes are roughly 

10% of the overall gathered data. The overall gathered data is more than the data used 

for training. The total dataset gathered is 4500 images. However, due to labelling being 

a time-consuming process, then a total of 1000 images are used for training. The 

validation set sizes vary by class as there are different amounts of images available per 

class, but the sizes range from 30 to 50 images. 

The models are trained with a learning rate of 0.01. Stepwise scheduler is used for 

Faster R-CNN, while a cosine scheduler is used for the others. These schedulers are the 

defaults for the libraries.  

6.1 One class 

The first detection is done using the church class.  

All the algorithms reach a decent score by 100 images as only a single class must be 

detected and that single class generalizes relatively well, since most of the churches 

have a similar structure as can be seen in figure 10.  

   

Figure 10. Church examples 
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What can be noted, however, is that Faster R-CNN gets to a high accuracy value already 

at 25 epochs, while others take a longer time to build up. This holds true for every 

dataset size with one class as can be seen in figures 11-14. Additionally, it reaches a 

near 100 mAP while training with only 25 images, as can be seen in figure 11. 

However, as more data gets added and epochs become longer, then the other algorithms 

start learning faster as well. Namely EfficientDet D2 gets close to Faster R-CNN by 100 

images. 

Looking at the COCO mAP score, then Faster R-CNN is the most accurate at localizing 

the object. However, as data gets added, then the difference between Faster R-CNN and 

the other algorithms reduces as can be seen in figures 11(b)-14(b). 

  
(a) (b) 

Figure 11. 1 class 25 images results 
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(a) (b) 

Figure 12. 1 class 50 images results 

 

  
(a) (b) 

Figure 13. 1 class 75 images results 
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(a) (b) 

Figure 14. 1 class 100 images results 

6.2 Two classes 

The classes for these evaluations are church and cannon. 

A drop in accuracy can be seen with the addition of a second class. While the church 

class is easy to generalize from, then cannon isn’t. While churches of the same religion 

from different periods look similar, then cannons do not. An example of cannons from 

different periods can be seen in figure 15. 

  

Figure 15. Cannon examples 
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additional data gets added, then EfficientDet D2 catches up and even surpasses the 

accuracy of Faster R-CNN as described by figures 16(a) – 19(a). Even though 

EfficientDet D2 catches up to Faster-RCNN in detection accuracy, then the latter 

remains the most accurate at localizing the objects as can be seen in figures 16(b) – 

19(b). 

In terms of per-epoch learning performance Faster R-CNN maintains the lead with it 

having reached its maximum, or near maximum, value already by epoch 25. 

  
(a) (b) 

Figure 16. 2 classes 25 images results 
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(a) (b) 

Figure 17. 2 classes 50 images results 

 

  
(a) (b) 

Figure 18. 2 classes 75 images results 
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(a) (b) 

Figure 19. 2 classes 100 images 

6.3 Three classes 

The classes for these evaluations are church, cannon, and tractor. 

An additional drop in overall accuracy can be noted due to similar reasons as with the 

cannon class. Tractors can look different based on the period. An example of tractors 

can be seen in figure 20. 

   

Figure 20. Tractor examples 

Although the overall accuracy dropped, the same accuracy relations hold true. As more 

data gets added, then other algorithms catch up to Faster R-CNN as displayed in figures 

21(a) – 24(a). EfficientDet D2 is even able to surpass Faster R-CNN as seen in figure 

22(a). 

Faster R-CNN, however, remains in the lead in terms of per-epoch learning 

performance and object localization accuracy described by figures 21(b) – 24(b). 
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(a) (b) 

Figure 21. 3 classes 25 images 

 

  
(a) (b) 

Figure 22. 3 classes 50 images results 
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(a) (b) 

Figure 23. 3 classes 75 images results 

 

  
(a) (b) 

Figure 24. 3 classes 100 images results 
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radical differences between periods. The same tall and skinny structure is valid for most 

of the data. An example of the dataset can be seen in figure 25. 

   

Figure 25. Lighthouse examples 

The same accuracy relations hold true as with the previous classes. Faster R-CNN can 

get the highest detection and localization accuracy from a small dataset, as seen in 

figure 26. As data gets added, then the gap starts closing, with EfficientDet D2 and 

YOLOv3 able to overtake at 50 images in figure 27(a). 

However, regardless of the dataset size, the other algorithms cannot match Faster R-

CNN’s per-epoch training performance and localization accuracy as displayed in figures 

26(b) – 29(b). 

  
(a) (b) 

Figure 26. 4 classes 25 images results 
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(a) (b) 

Figure 27. 4 classes 50 images results 

 

  
(a) (b) 

Figure 28. 4 classes 75 images results 
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(a) (b) 

Figure 29. 4 classes 100 images results 

6.5 Five classes 

The classes for these evaluations are church, cannon, tractor, lighthouse, and monument. 

Another drop in overall accuracy happens due to a hard to detect class. Monuments can 

differ greatly in shape and dimensions as seen in figure 30. Additionally, they are 

embedded into the environment, so their start and end aren’t as clearly defined. 

  

 

Figure 30. Monument examples 

For the most part, the same relations hold true in terms of accuracy. However, with 100 

images, in figure 34(a), EfficientDet D0 can match Faster R-CNN, while in previous 

steps it has fallen considerably behind. YOLOv3 and EfficientDet D2 have managed to 

pass Faster-RCNN as seen in figures 32(a) and 34(a). D2 has done so by a considerable 

margin. 
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Although Faster R-CNN is matched in detection accuracy, it still stays ahead the rest in 

terms of per-epoch training performance and localization accuracy. But YOLOv3 and 

EfficientDet D2 come close when reaching 100 images as seen in figure 34(b). 

  
(a) (b) 

Figure 31. 5 classes 25 images results 

 

  
(a) (b) 

Figure 32. 5 classes 50 images results 
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(a) (b) 

Figure 33. 5 classes 75 images results 

 

  
(a) (b) 

Figure 34. 5 classes 100 images results 

6.6 Six classes 
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attributed to the object being defined more clearly. That is, it’s not part of the 

environment but a stand-alone object with a clearly defined start and end. Examples of 

tanks can be seen in figure 35. 

   

Figure 35. Tank examples 

While EfficientDet D2 was able to surpass Faster R-CNN in two datasets with five 

classes, figures 32(a) and 34(a), then now it has surpassed it in 3 dataset sizes as seen in 

figures 37(a) – 39(a). YOLOv3 was able to match Faster R-CNN performance, while 

EfficientDet D0 lagged far behind in all the datasets, as seen in figures 36(a) – 39(a). 

However, in terms of per-epoch training performance and localization accuracy, Faster 

R-CNN was still the best as seen in figures 36(b) – 39(b). 

  
(a) (b) 

Figure 36. 6 classes 25 images results 
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(a) (b) 

Figure 37. 6 classes 50 images results 

  
(a) (b) 

Figure 38. 6 classes 75 images results 
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(a) (b) 

Figure 39. 6 classes 100 images results 

6.7 Seven classes 

The classes for these evaluations are church, cannon, tractor, lighthouse, monument, 

tank, and bridge. 

The detection accuracy remained at a similar level as with six classes, however, 

localization accuracy took a slight dip. This could be due to bridges not having such 

clearly defined borders. Some examples of the dataset are shown in figure 40. 

   

Figure 40. Bridge examples 

Faster R-CNN continued being the best at object localization and per-epoch training 

performance, additionally, with this class, YOLOv3 and EfficientDet D2 could not 

overtake Faster R-CNN in any of the dataset sizes as seen in figures 41 - 44. 
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(a) (b) 

Figure 41. 7 classes 25 images results 

 

  
(a) (b) 

Figure 42. 7 classes 50 images results 
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(a) (b) 

Figure 43. 7 classes 75 images results 

 

  
(a) (b) 

Figure 44. 7 classes 100 images results 

6.8 Eight classes 

The classes for these evaluations are church, cannon, tractor, lighthouse, monument, 

tank, bridge, and windmill. 
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Overall accuracy saw a slight increase with the addition of the windmill class. This can 

be due to it having clearly defined characteristic features and clear borders where it ends 

and starts. Some examples of the class can be seen in figure 45. 

   

Figure 45. Windmill examples 

Faster R-CNN remained the best at per-epoch training performance and the most 

accurate at localizing the objects as seen in figures 46(b) – 49(b). Additionally, it 

maintained the highest detection accuracy as seen in figures 46(a) – 49(a). YOLOv3 and 

EfficientDet D2 managed to keep pace with each other. 

  
(a) (b) 

Figure 46. 8 classes 25 images results 
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(a) (b) 

Figure 47. 8 classes 50 images results 

 

  
(a) (b) 

Figure 48. 8 classes 75 images results 
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(a) (b) 

Figure 49. 8 classes 100 images results 

6.9 Nine classes 

The classes for these evaluations are church, cannon, tractor, lighthouse, monument, 

tank, bridge, windmill, and altar. 

The overall localization accuracy took a slight dip, when comparing to the accuracies of 

eight classes. The altar class is one that’s embedded into the rest of its environment, 

thus it doesn’t have such clearly defined borders of where it starts and ends. Some 

examples of the class can be seen in figure 50. 

   

Figure 50. Altar examples 

Faster R-CNN remained the most accurate at object detection and localization as seen in 

figures 51 – 54. Also, it had the best per-epoch training performance. YOLOv3 and 
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EfficientDet D2 came close to it with detection accuracy as seen in figures 51(a) – 

54(a). However, what’s interesting to note is that YOLOv3 came close to Faster R-

CNN’s performance with 25 images, while for most of the rest of the classes Faster R-

CNN has been clearly ahead at 25 image datasets. 

  
(a) (b) 

Figure 51. 9 classes 25 images results 

 

  
(a) (b) 

Figure 52. 9 classes 50 images results 
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(a) (b) 

Figure 53. 9 classes 75 images 

 

  
(a) (b) 

Figure 54. 9 classes 100 images results 

6.10 Ten classes 

The classes for these evaluations are church, cannon, tractor, lighthouse, monument, 

tank, bridge, windmill, altar, and ruins. 
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The final class added was ruins. It is the most abstract class, as ruins can be a crumbled 

castle, or a house damaged in war time. The uncertainty of the class can also be noted in 

the drop in accuracy. Some examples of ruins are shown in figure 55. 

   

Figure 55. Ruins examples 

A selection of detections over all the classes, using the 10 classes 100 images model, 

can be seen in figures A – N in the appendix. 

Faster R-CNN’s comparative localization accuracy doesn’t change with the final class. 

It remains the most accurate at localizing as seen in figures 56(b) – 59(b). There is also 

no difference in the per-epoch training performance, in which Faster R-CNN is the best. 

However, YOLOv3 and EfficientDet D2 surpassed its detection accuracy at 100 images, 

as seen in figure 59(a). 

  
(a) (b) 

Figure 56. 10 classes 25 images results 
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(a) (b) 

Figure 57. 10 classes 50 images results 

  
(a) (b) 

Figure 58. 10 classes 75 images results 
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(a) (b) 

Figure 59. 10 classes 100 images results 

6.11 Detection speeds 

The average time spent processing an image in the validation set is used to describe the 

detection speeds. The detection tests are run using a 16 GB Tesla P100. The models 

used are those trained with 10 classes and 100 images. 

Table 5. Detection speeds 

Algorithm Time spent per image (s) 

Faster R-CNN 0.10 

YOLOv3 0.01 

EfficientDet D2 0.14 

EfficientDet D0 0.07 

 

Table 5 shows results that are supported by existing literature. YOLOv3 is the fastest 

algorithm, followed by EfficientDet D0. Faster R-CNN and EfficientDet D2 are 

considerably slower. 

As the environment where object detection is used is not a real time environment, then 

the detection speeds don’t play into it that greatly. They can be used as a tiebreaker in 

choosing the appropriate algorithm. 
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6.12 Per class maximum mAPs 

Looking at the per class overview of the 25 image datasets, then it can be noted that 

Faster R-CNN with Detectron2 is the most capable at generalizing from a smaller 

dataset as seen in figure 60. Additionally, it has the most accurate results in localizing 

the objects as can be seen in figure 61. 

 

Figure 60. Per class maximum mAP @ 0.5, 25 images 

 

 

Figure 61. Per class maximum mAP @ [0.5:0.95], 25 images 
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The basic truth of machine learning holds true with the 100 images datasets. As more 

data gets added, then the algorithms become more accurate. Both YOLOv3 and 

EfficientDet D2 manage to catch up to Faster R-CNN and even surpass it at certain 

points. While EfficientDet D0 can match the performance of other algorithms at a 

smaller number of classes, then halfway through it starts falling behind as can be seen in 

figure 62. 

However, while EfficientDet D2 and YOLOv3 catch up and even surpass Faster R-

CNN in detection at certain points, then Faster R-CNN is still the most accurate at 

localizing with none of the other algorithms coming close to its results as can be seen in 

figure 63. 

 

Figure 62. Per class maximum mAP @ 0.5, 100 images 
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Figure 63. Per class maximum mAP @ [0.5:0.95], 100 images 

When considering the average accuracy of the maximum mAPs @ 0.5 over all the 

classes, displayed in figure 64, then EfficientDet D2 gets a slightly higher accuracy than 

Faster R-CNN on dataset sizes of 100, with 0.47, and 50, with 0.38. Faster R-CNN gets 

a slight lead in the dataset size of 75 images with a mAP difference of 0.32. However, 

when looking at 25 images, then Faster R-CNN has the clear lead with a mAP 

difference between them of 10.32. 

 

Figure 64. Average mAP over all classes 
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The difference in accuracy in the 50, 75, and 100 datasets are negligible. However, 

considering the limited nature of historical images, then 25 image datasets can feasibly 

happen. Thus, the detection accuracy differences with 25 images carries considerable 

weight. Additionally, getting the bounding box as accurate as possible can matter, as 

historical photos can have low quality and an offset bounding box can cause confusion.  

Considering the accuracy, detection time, and being considerably faster at learning in 

terms of epochs, from the algorithms tested, Detectron2’s implementation of Faster R-

CNN is the best fit for automatically labelling historical images.   
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7 Summary 

Over the course of this thesis an annotation solution was created, and an algorithm was 

chosen to integrate automatic labelling using object detection into the Ajapaik web 

environment. Ajapaik is an online historical image archive. 

Existing annotation solutions were considered for the environment but there were 

drawbacks in how input was handled. They drew boxes in one of two ways. One of the 

ways was by drawing a box of pre-defined height and width at the centre of the screen 

when the annotation process was started. This requires the user to perform extra actions 

by having to resize and move the drawn box. The other was by having the user holding 

down the mouse button and dragging. This eliminates compatibility with touch screen 

devices. Thus, an annotation solution was developed for the website. 

Three aspects were considered when choosing an algorithm for automatic labelling. 

1) Which algorithm learns the fastest in terms of epochs? 

2) How do the algorithms’ accuracies increase with additional data? 

3) How fast is the detection speed of the different algorithms? 

Four algorithms were used for the comparisons. Detectron2’s implementation of Faster 

R-CNN, YOLOv3, EfficientDet D2, and EfficientDet D0. 

Detectron2’s implementation of Faster R-CNN was found to provide the fastest increase 

in accuracy in terms of epochs with it achieving its maximum, or near maximum, value 

by epoch 25. EfficientDet D2 was able to pass Faster R-CNN in average object 

detection accuracy for datasets with 50, and 100 images by a negligible margin. 

However, with 25 images, Faster R-CNN had a strong lead when compared to the other 

algorithms. YOLOv3’s object detection accuracy fluctuated between matching and 

slightly falling behind EfficientDet D2 and Faster R-CNN. EfficientDet D0 had the 

worst performance on most cases. 

Detectron2’s implementation of Faster R-CNN was also the most accurate in terms of 

object localization accuracy, with none of the other algorithms coming close. It was 
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followed by EfficientDet D2, YOLOv3, with EfficientDet D0 trailing considerably 

behind. 

In terms of detection speed, YOLOv3 was the fastest, as expected, based on existing 

literature. It was followed by EfficientDet D0, Faster R-CNN, and EfficientDet D2. As 

the environment isn’t a real time system, then the speed differences didn’t carry as 

much weight as accuracies. 

Considering the above findings, Detectron2’s implementation of Faster R-CNN was 

concluded to be the best at the task of automatic labelling in the context of historical 

images. 

Further work must be done to integrate Faster R-CNN into Ajapaik's environment. The 

data flow between Ajapaik and Faster R-CNN must be planned. However, a bigger 

challenge is creating a training environment. Considering the hardware and funding 

limitations, then a possible solution could be integration with Google Colab. 

Further research can be done to investigate the inner workings of Detectron2 to see how 

it is able to learn so fast. Additionally, different configuration options could be tested to 

see if EfficientDet D0 could match YOLOv3’s performance, as claimed by the 

EfficientDet paper [10]. 
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Appendix 

 
(YOLOv3) 

 
(Faster R-CNN) 

 
(EfficientDet D2) 

 
(EfficientDet D0) 

Figure A. Partially unsuccessful church detection examples, 10 classes 100 images model 
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(YOLOv3) 

 
(Faster R-CNN) 

 
(EfficientDet D2) 

 
(EfficientDet D0) 

Figure B. Successful church detection examples, 10 classes 100 images model 
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(YOLOv3) 

 
(Faster R-CNN) 

 
(EfficientDet D2) 

 
(EfficientDet D0) 

Figure C. Cannon and windmill detection examples, 10 classes 100 images 
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(YOLOv3) 

 
(Faster R-CNN) 

 
(EfficientDet D2) 

 
(EfficientDet D0) 

Figure D. Church and bridge detection examples, 10 classes 100 images model 



77 

 
(YOLOv3) 

 
(Faster R-CNN) 

 
(EfficientDet D2) 

 
(EfficientDet D0) 

Figure E. Partially successful tank detection examples, 10 classes 100 images model 

 
(YOLOv3) 

 
(Faster R-CNN) 

 
(EfficientDet D2) 

 
(EfficientDet D0) 

Figure F. Tank and church detection examples, 10 classes 100 images model 
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(YOLOv3) 

 
(Faster R-CNN) 

 
(EfficientDet D2) 

 
(EfficientDet D0) 

Figure G. Lighthouse detection examples, 10 classes 100 images model 
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(YOLOv3) 

 
(Faster R-CNN) 

 
(EfficientDet D2) 

 
(EfficientDet D0) 

Figure H. Altar detection examples, 10 classes 100 images model 
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(YOLOv3) 

 
(Faster R-CNN) 

 
(EfficientDet D2) 

 
(EfficientDet D0) 

Figure I. Successful monument, faulty tractor/tank detection example, 10 classes 100 images model 
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(YOLOv3) 

 
(Faster R-CNN) 

 
(EfficientDet D2) 

 
(EfficientDet D0) 

Figure J. Monument detection example, 10 classes 100 images 
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(YOLOv3) 

 
(Faster R-CNN) 

 
(EfficientDet D2) 

 
(EfficientDet D0) 

Figure K. Partially correctly labelled tractor, falsely labelled cannon detection example, 10 classes 100 

images model 

 
(YOLOv3) 

 
(Faster R-CNN) 

 
(EfficientDet D2) 

 
(EfficientDet D0) 

Figure L. Tractor detection example, 10 classes 100 images model 
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(YOLOv3) 

 
(Faster R-CNN) 

 
(EfficientDet D2) 

 
(EfficientDet D0) 

Figure M. Partially correctly ruins detection example, 10 classes 100 images model 
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(YOLOv3) 

 
(Faster R-CNN) 

 
(EfficientDet D2) 

 
(EfficientDet D0) 

Figure N. Ruins detection example, 10 classes 100 images model 

 

 


