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1 Introduction
Traffic congestion is a widespread problem that extends beyond geographical boundaries,impacting communities globally and significantly influencing society. The 2021 UrbanMo-bility Report conducted by the Texas A&M Transportation Institute unveils the alarmingrepercussions of congestion within the United States, exposing significant time wastageand the depletion of billions of gallons of fuel, which inflict substantial economic losseson the nation [48]. Similarly, the INRIX Global Traffic Scorecard offers a glimpse into theeconomic toll of congestion in Europe, revealing an estimated cost of 166 billion euros in2019. This staggering figure underscores themagnitude of the problem [45]. However, thedetrimental consequences of traffic congestion extend well beyond their financial impli-cations. One of the most concerning effects is the degradation of air quality, which posesa significant risk to public health and the environment. According to theWorld Health Or-ganization, outdoor air pollution, primarily driven by congested roadways, contributed toan alarming 4.2 million premature deaths globally in 2016 [57]. Such harmful impacts onhuman well-being highlight the urgent need to tackle traffic congestion as a critical publichealth concern.

The increased congestion on the road networks also compromises safety, whichmakesit a leading cause of accidents and injuries. The congestion-induced delays, frustration,and impatience experienced by drivers often lead to risky behaviors such as speeding,reckless maneuvering, and impaired decision-making, increasing the likelihood of acci-dents. Shockingly, statistics from theWorld Health Organization reveal that approximately
1.35 million lives are tragically lost on roads globally each year, with traffic accidentsemerging as a pressing public safety issue [57]. Thesemultifaceted consequences of trafficcongestion underline the imperative to develop comprehensive strategies and innovativesolutions to alleviate this global challenge. Efforts to mitigate congestion not only holdthe potential to enhance mobility and alleviate economic losses but also address criticalissues such as air pollution, public health, and road safety. By addressing congestion, wecan forge a path toward sustainable cities that prioritize thewell-being of their inhabitantsand safeguard the environment for future generations.

In addressing the urgent problem of traffic congestion, the advent of traffic manage-ment systems has offered a promising solution, utilizing state-of-the-art technologies tousher in a fresh era of smart and effective traffic control. While these traditional systemshave made notable contributions, they need to be improved due to their inherent limita-tions in capturing the dynamic nature of real-time traffic conditions, primarily due to theirheavy reliance on historical data and rigid traffic models. Recognizing the need for moreaccurate and responsive solutions, recent research endeavors have focused on integratingintelligence within trafficmanagement systems to outperform traditional methodologies’boundaries and unlock traffic congestion mitigation and management’s full potential. Byembracing the power of machine learning algorithms, deep learning-based approachescan revolutionize traffic management by leveraging vast amounts of historical data andadditional information sources. This integration empowers the system to discern intri-cate patterns and hidden relationships, making more informed and precise predictionsabout future traffic conditions [59]. Unlike their traditional counterparts, these innova-tive approaches can adapt to and learn from evolving traffic dynamics, offering a dynamicand responsive framework for intelligent traffic management.
Integrating deep learning-based approaches into intelligent transportation systems(ITS) represents a major shift in traffic management, offering the potential to overcometraditional limitations. These approaches utilize neural networks to uncover intricate traf-fic patterns, adapt to changing conditions, capture temporal dependencies, and reveal
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non-linear relationships that were previously elusive [50]. Incorporating real-time datasources like live traffic feeds, weather updates, and social media trends, along with datafusion techniques that seamlessly blend diverse data types from different sources andcapture a broader range of factors influencing traffic patterns, leads to more accurate androbust predictions [30, 37]. This holistic approach empowers authorities tomake informeddecisions, optimize traffic flow, and proactively address congestion. These advancementsin deep learning promise a future with reduced congestion, improved travel efficiency,and an enhanced quality of life.
The effectiveness of deep learning models in addressing traffic congestion has beenextensively validated through various empirical studies. For instance, a study published inthe IEEE Transactions on Intelligent Transportation Systems investigated the performanceof deep learning models in traffic flow prediction and found that they surpassed tradi-tional models, exhibiting superior accuracy and precision [33]. Another study highlightedthe remarkable advantages of a deep learning-based approach to traffic signal control.This approach reduced travel time andmitigated delays, enhancing efficiency and improv-ing traffic conditions [20]. These empirical findings underscore the immense potential ofdeep learning models for tackling traffic congestion and optimizing traffic managementstrategies. As the field continues to evolve, further research and development efforts areneeded to refine and enhance these models, address potential challenges, and exploreinnovative applications.
The practical application of deep learning models in traffic management introducessubstantial technical challenges that warrant meticulous examination [51]. At the fore-front of these challenges lies the intricate issue of data privacy. Integrating diverse datasources necessitates handling sensitive information, compelling us to strike an intricatebalance between data utilization for enhanced traffic management and robust privacyprotection mechanisms. Achieving this equilibrium is vital for building public trust andensuring compliance with stringent data protection regulations such as GDPR, which de-mand meticulous data handling. Another significant challenge is the substantial amountof data required to train and fine-tune deep learning models effectively. Collecting andcurating large-scale datasets can be resource-intensive and time-consuming [35]. More-over, maintaining the quality and representativeness of the data is crucial to preventingbiases and inaccuracies during the training process, which can lead to skewedor unreliableresults. Furthermore, the complexity inherent in deep learning models poses another ob-stacle, particularly regarding understanding and interpretability. These models often fea-ture numerous parameters and intricate architectures, making it difficult to comprehendtheir decision-making processes. Addressing this complexity is essential to fostering trustamong stakeholders, enabling transparency in the system’s functioning, and facilitatingthe seamless integration of deep learning models into existing traffic management sys-tems. In addition to the technical challenges mentioned earlier, implementing zero-touchsystems in traffic management introduces additional complexity. One notable challengeis system robustness and adaptability without human intervention [16]. Designing anddeploying algorithms and models capable of making autonomous decisions in real-timetraffic scenarios while ensuring the system’s reliability is a challenging task. The challengelies in developing AI-driven systems that can effectively handle unforeseen and dynamicsituations. These systems should be able to self-monitor, detect anomalies, and makeinformed decisions to optimize traffic flow, mitigate congestion, and respond to emer-gencies without human intervention.
Future research in traffic management should focus on developing advanced deep-learning models that prioritize privacy, can work effectively with smaller datasets, and in-
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corporate mechanisms for transparency. Additionally, seamless integration with existingtraffic management systems is essential for practical implementation and the transitionto more efficient and sustainable transportation networks. These efforts aim to create ro-bust, adaptable, and privacy-conscious deep learning solutions that enhance traffic man-agement and reduce the need for human intervention.In summary, combating worldwide traffic congestion necessitates exploring and de-ploying inventive strategies. Leveraging the capabilities of deep learning-based approachesand data fusion techniques within ITS holds the promise of revolutionizing trafficmanage-ment. The rewards include enhanced traffic flow, decreased congestion, and improvedoverall mobility. Nevertheless, sustained investment in research and development is in-dispensable to surmount hurdles related to data privacy, data prerequisites, and modelintricacies. This commitment will enable us to unleash the complete potential of thesecutting-edge methodologies and cultivate transportation networks that remain efficientand sustainable over the long term.The thesis is thoughtfully arranged with a well-structured framework that includesseveral key chapters:
• Chapter 2: "Focus and Aim": This chapter introduces the research questions andpresents the various publications that address these questions.
• Chapter 3: "Research Methodology": This chapter outlines the applied researchmethodology consistently employed throughout the study.
• Chapter 4: "Related Research": This chapter gives an overview of the related workregarding traffic prediction approaches and the data fusion techniques used in thefield of ITS.
• Chapter 5: "Publication-specific Contributions": This chapter thoroughly exploresthe contributions conducted in each publication.
• Chapter 6: "Discussion of Challenges": This chapter comprehensively examines thechallenges encountered during the research journey.
• Chapter 7: "Conclusion": The final chapter provides a concise summary of the the-sis’s key findings and contributions.
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2 Focus and Aim
This Ph.D. thesis strives to tackle the prevalent and growing issue of traffic congestionin urban areas. Acknowledging the negative impact of congestion on various aspectsof urban life, the main aim of this research is to enhance prediction accuracy and alle-viate congestion by integrating diverse information from different sources. By utilizingadvanced deep-learning architecture and data fusion techniques, this research seeks totransform the field of traffic management, contributing to more efficient and sustainableurban transportation systems. The various adverse effects of congestion on society, in-cluding extended travel times, increased fuel consumption, elevated environmental pol-lution, compromised public health, and financial losses, emphasize the pressing need toaddress the issue. To fill existing research gaps and address these challenges, this thesisseeks to answer two primary research questions as outlined in Section 2.1.
2.1 Research Questions

• RQ.1: Which are the suitable models, in terms of scalability, to improve traffic pre-diction accuracy?The first research question focuses on identifying models that can notably improvethe accuracy of traffic predictions. Scalability is considered important due to the sig-nificant amount of real-time data produced in urban areas, which requires efficientprocessing. This research explores different scalable models to reveal strategies forhandling traffic data’s increasing volume and speed while ensuring high predictionaccuracy. Finding models that achieve a balance between computational efficiencyand prediction performance is seen as crucial for effective traffic congestion man-agement.
• RQ.2: How can multimodal data fusion techniques aggregate heterogeneous infor-mation collected from different sources to improve prediction models accurately?The second research question dives into the domain of data fusion methodologies.With numerous data sources available, including traffic sensors, GPS data, weatherreports, and social media updates, the seamless integration of diverse informationbecomes crucial for building accurate prediction models. This investigation aimsto investigate and develop techniques capable of harmonizing data from varioussources to improve the accuracy of traffic forecasting andmanagementmodels. Theprimary goal of this research is to enhance the overall effectiveness and reliabilityof prediction models by leveraging the capabilities of diverse data sources.
The research questions have been addressed in four articles to accomplish the ob-jectives of this thesis. These articles aim to comprehensively understand the latest ap-proaches in traffic prediction and data fusion techniques. Each article contributes to theoverall research goals by exploring different aspects of traffic congestion managementand proposing innovative solutions.Publication I, "Sequence to Sequence Hybrid Bi-LSTM Model for Traffic Speed Pre-

diction", directly addresses the first research question by proposing the "Grizzly" hybridapproach. An advanced sequence-to-sequence bidirectional long-short-termmemory (Bi-LSTM) neural networkmodel is combinedwith data preprocessing techniques in thismethodto improve the accuracy of traffic speed predictions. This publication provides valuable in-sights into improving traffic prediction accuracy by offering a scalable model capable ofhandling substantial data volumes efficiently. It shows how adding sequence-to-sequencearchitectures, data preprocessingmethods (like normalization and embeddings), and bidi-
13



rectional LSTM neural networks to ITS can be helpful. The approach effectively addressesnon-linearity and large-scale time-series traffic data challenges.Publication II, "EcoLight: Eco-friendly Traffic Signal Control Driven By Urban Noise
Prediction", addresses the first research question by focusing on scalability and efficienttraffic control. This approach prioritizes scalability and efficient traffic control by optimiz-ing cycle timing at road intersections to alleviate congestion andpromote eco-friendliness.With real-time traffic data streams and a sequence-to-sequence long-short-term mem-ory (SeqtoSeq-LSTM) prediction model combined with deep reinforcement learning, thestudy aims to improve the accuracy of traffic predictions. This research represents a com-prehensive effort to advance trafficmanagement systems’ predictive capabilities and sus-tainability.Publication III, "Data Fusion for ITS: A Systematic Literature Review", partially ad-dresses the second research question by conducting a systematic literature review ondata fusion methods applied in ITS. This review explores the potential of data fusion forenhancing prediction models by aggregating varied information from different sources intraffic management applications. While not presenting a specific technique, the publica-tion provides valuable insights, identifies research gaps, and outlines challenges in thisfield.Publication IV, "EcoLight+: ANovelMulti-ModalData Fusion for Enhanced Eco-friendly
Traffic Signal Control Driven by Urban Traffic Noise Prediction", builds upon previous re-search (Publications I, II, and III) and introduces innovative methodologies to extend theknowledge of traffic congestion management. It directly addresses the second researchquestion by presenting the "EcoLight+" approach, which combines future noise predic-tions with a deep dueling Q-Network Reinforcement Learning algorithm. Additionally,it introduces a novel data fusion approach to enhance the LSTM-based noise predictionmodel by integrating heterogeneous data from multiple sources.

The four publications in this thesis align with the research questions and significantlycontribute to the field. They introduce innovative models, such as the "Grizzly" hybridapproach and the "EcoLight" approach, specifically designed to enhance traffic predictionand control accuracy. Furthermore, these publications delve into data fusion techniques,combining diverse information from multiple sources. The systematic literature reviewprovides a comprehensive overview of different data fusion methods in Intelligent Trans-portation Systems (ITS). Simultaneously, another publication introduces a novel data fu-sion approach to enhance the accuracy of the Long Short-Term Memory (LSTM)-basednoise prediction model, thereby improving the overall accuracy of the EcoLight approach.These advancements in data fusion contribute to a better understanding of how differentdata sources can be effectively integrated to enhance prediction accuracy in the contextof traffic management.
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Figure 1: Applied Research Cycle.

3 Research Methodology
This thesis adopts the applied researchmethodology based on its effectiveness in address-ing complex and practical issues, as supported by [14]. The selection of this methodologyis driven by its capacity to systematically tackle the multifaceted challenges associatedwith predicting and managing urban traffic congestion, focusing on developing practicalsolutions for real-world problems [21]. Applied research follows a systematic cycle thatinvolves problem identification, hypothesis formulation, experimentation, and the appli-cation of findings. By embracing this methodology, the study aims to derive actionableinsights to enhance traffic flow, alleviate congestion, and contribute to the sustainabledevelopment of urban transportation systems [36]. Figure 1 provides an illustration of theapplied research cycle used in this thesis.

This applied research methodology, widely employed in diverse fields, proves perti-nent to ITS [24]. In the realm of trafficmanagement, outcomes from applied researchmaymanifest in diverse forms, including the development of predictive models, the formula-tion of trafficmanagement strategies, or the implementation of data-driven techniques toalleviate congestion. This research methodology provides a robust framework for craftingand enhancing practical solutions to confront the persistent and complex issue of urbantraffic congestion. Through this approach, the author aims to extract insights from exist-ing traffic management practices, peer-reviewed studies, and other pertinent sources toformulate effective strategies for congestion mitigation.
To address the multifaceted challenges of urban traffic congestion, this thesis has un-dertaken three iterations of the applied research methodology cycle through four publi-cations. Notably, publications [I, III] are published in high-impact Q1 journals, reflectingtheir substantial impact and rigorous evaluation. The inclusion of these respected jour-nals underscores the importance of the presented research. Additionally, publication IVappears in a well-regarded Q2 journal. Publication II is presented as a notable featurein a prestigious international conference, accentuating the research’s broad recognitionand scholarly value. Cumulatively, these publications form a robust foundation for thefindings and insights presented in this thesis, underscoring a dedication to academic ex-cellence and real-world applicability.
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Applied research encompasses various methods and techniques that can be used toinvestigate and address practical problems or questions in real-world contexts. Each se-lected publication in this thesis followed an applied research method tailored to the re-search questions and objectives. These methods were carefully designed to tackle theunique challenges and explore innovative traffic congestion prediction and managementsolutions. Table 1 presents the publications included in this thesis and their related re-search questions and methods employed.
Table 1: Publications, Research Questions, Research Cycle and Methodology

RQ. Publication Cycle Methodology
RQ.1 I 1 Experimental Research: Development and evaluation ofadvanced deep learning algorithms for traffic speed pre-diction using real-world data.II 2 Simulation and Modeling Research: Implementationand evaluation of advanced deep reinforcement learningalgorithms for traffic signal control management, utiliz-ing real-world data in a simulated environment.
RQ.2 III 3 Secondary Research: Comprehensive analysis of exist-ing literature through systematic reviewmethods, focus-ing on ITS, to extract insights into data fusion techniques.IV 3 Simulation and Modeling Research: Integration of aData Fusion approach and the Deep Dueling Q-NetworkReinforcement Learning algorithm, followed by empiri-cal evaluations using real-world data to address trafficcongestion challenges.
The development of a novel AI model for predicting road segment speed in Publica-tion I, utilizing real-world datasets, aligns with the principles of experimental researchwithin applied science. This method involves creating, testing, and validating a model toaddress real-world problems, aiming to establish causal relationships and produce prac-tical applications. Specifically, the methodology employs Python as the central program-ming language, with TensorFlow-Keras [1] serving as the primary deep learning frame-work. This strategic integration enables the construction and fine-tuning of predictionmodels. Simultaneously, the research in [II, IV] involving the proposal of a new trafficsignal management system and experiments conducted using a simulation tool and real-world datasets fall within the realm of simulation and modeling in applied research. Thisapproach allows for creating and analyzing models to study complex systems, providinga controlled environment to test and optimize the system’s performance before poten-tial real-world implementation. This research leverages tools like the SUMO (Simulationof Urban MObility) traffic simulator [31] to establish a controlled environment for test-ing and refining the proposed smart traffic signal models. Python and TensorFlow-Kerasplay a central role in constructing and fine-tuning models, ensuring compatibility with ad-vanced neural network architectures. Lastly, the secondary research method was appliedto synthesize and analyze existing data, research, and literature on data fusion techniquesused in ITS. Operating within the category of secondary research, a systematic literaturereview contributes to understanding the current state of knowledge and informing prac-tical solutions, policies, or interventions in the context of applied research. Each methodcontributes uniquely to the overarching goal of providing evidence-based insights and rec-ommendations, ensuring a robust exploration of the congestion mitigation topic.
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4 Related Research
This section provides an overview of related knowledge extracted from existing literature,establishing a foundation by synthesizing and summarizing the current state of knowledgein the field. It also emphasizes gaps and limitations in the existing literature relevant tothe research questions introduced in Section 2. By identifying these gaps, the thesis aimsto make a meaningful contribution to the knowledge base. The intention is to addressthese research gaps through original research, offering novel insights and solutions.
4.1 Traffic Prediction and ITS Management

A crucial research challenge is pursuing precise and efficient short- and long-term trafficprediction within ITS. This challenge is inherently tied to the issue of traffic congestion, aproblem with widespread societal, governmental, and economic implications. To allevi-ate these challenges, researchers have dedicated efforts to developing traffic predictionmethods utilizing extensive data on vehicle behavior, often collected through various tech-nologies like loop detectors and radar systems. Despite advancements, existing modelsin this domain encounter a critical issue — the struggle to provide highly accurate pre-dictions, especially when confronted with non-linear, multi-feature, and high-frequencytraffic data at a large scale. The dynamic and ever-changing nature of traffic data, influ-enced by diverse factors such as road conditions, further complicates the accuracy of pre-dictions. The research landscape reveals a pronounced gap concerning the limitations ofcurrent traffic prediction models, including parametric and non-parametric approaches.Parametric models like the Auto-Regressive Integrated Moving Average (ARIMA) exhibithistorical significance but falter in handling non-linear traffic data and real-world trafficpatterns due to their reliance on linear conditions [6]. On the other hand, non-parametricmodels, notably deep neural network architectures, offer flexibility in dealing with non-linear traffic data [50]. However, their effectiveness is hindered by inadequate analysisand pre-processing of dynamically changing traffic data patterns.
Accurately predicting traffic conditions within a road network is undoubtedly valuable,but the ultimate goal extends beyond forecasting. It entails taking timely and meaningfulactions to shape traffic flow effectively and prevent congestion. Transitioning from pre-diction and detection to proactive management is the key to ITS and urban traffic control.Therefore, it is crucial to stress the significance of moving from foresight to action. Toaddress this problem, urban planners and policymakers seek ways to enhance existinginfrastructure since building new infrastructure is often slow and costly. One hypothesispresented is that improving the traffic light system can lead to better traffic managementand, consequently, more peaceful urban areas [2]. Optimizing cycle timing at intersec-tions can alleviate congestion and improve environmental quality. Real-time traffic signalcontrol reduces congestion by responding to constantly changing traffic network dynam-ics. Moreover, the rapid growth in transportation needs poses challenges to sustainabledevelopment, including emissions and energy consumption caused by traffic. Noise pol-lution from road traffic significantly contributes to environmental and health problems,affecting around 100million people in Europe. TheWorld Health Organization (WHO) [57]has linked exposure to loud noise with health issues such as high blood pressure, hearingloss, heart disease, sleep disturbances, and stress.
Various traffic signal control strategies have been explored and categorized into fixed-time and traffic-responsive approaches. Fixed-time strategies rely on predetermined sig-nal plans periodically adjusted based on historical traffic data, yet their effectiveness di-minishes in the face of sudden traffic surges or disruptions. On the other hand, traffic-
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responsive strategies, incorporating real-time traffic information, have shown promise,especially with the integration of reinforcement learning techniques [26, 7, 56, 54, 55].However, a noticeable research gap emerges— the lack of consideration for sustainabilityand proactivity in traffic signal control. These methods often prioritize current traffic con-ditions, neglecting long-term environmental impact and predictive capabilities. The iden-tified research gap underscores the need for innovative solutions that integrate sustain-able practices, addressing challenges such as noise pollution and CO2 emissions. Proac-tively anticipating future traffic congestion patterns becomes crucial, leading to develop-ing more effective and environmentally conscious traffic signal control methods.
4.2 Data Fusion Techniques for ITS
The increasing need for reliable transportation networks has driven rapid advancementsin ITS. The widespread deployment of communication technologies, including IP, Blue-tooth, surveillance cameras, GPS, smartphones, loop detectors, magnetometers, radars,social media, and Vehicle to X (V2X), enables the continuous monitoring of traffic at-tributes, resulting in extensive databases of diverse traffic data [59, 8, 47, 53, 19, 15, 9].These varied data sources offer insights into different traffic conditions and statistics, cater-ing to various ITS applications such as vehicle navigation, incident detection, and trafficprediction, all aimed at enhancing safety and efficiency on the roads [10, 12, 27, 64, 3].Nevertheless, challenges persist, particularly regarding real-time heterogeneous data andsensor reliability. Continuous data generation in inconsistent formats and diverse storagesettings poses obstacles to direct usability [18]. Additionally, issues with sensor reliability,arising from technical and operational issues like locations or damages, introduce gapsand missing information, impacting decision-making for stakeholders. Addressing thesechallenges is crucial to enhancing the robustness and accuracy of ITS applications [59].Multi-source Data Fusion (MDF) models have gained significant interest in response tothese challenges. As an advanced technique, MDF combines information from multiplesources to yield more accurate results than individual sources can provide separately [4].Bachmann et al. [5] investigated the efficiency of several data fusion algorithms (simpleconvex combination and Kalman filter) for fusing data from loop detectors and probe ve-hicles to gauge freeway traffic speeds accurately. Essien et al. [13] stated an improvedtraffic speed prediction model involving traffic-related variables and weather data fusionwith the deep learning LSTM architecture. Lin et al. [29] —presented a unified probabilis-tic framework for traffic speed prediction based on fusing multi-source data, includinglocation, textual traffic descriptions, and heterogeneous traffic-related data. Yang et al.[60] propose a hybrid deep learning structure for short-term traffic speed prediction in-volving external factors such as weather conditions and the air quality feature fusion tomeasure the impact of environmental factors. Shan et al. [49] used the multiple linearregression fusion models (MLR) to estimate missing traffic data by extracting the inherentspatio-temporal correlations from road segments to improve the performance of trafficspeed prediction.The challenges associated with data fusion techniques in ITS are diverse and complex.The accumulation of communication technologies has led to the extensive collection oftraffic-related data to address transportation issues. Challenges include the difficulty inevaluating the effectiveness of methodologies due to the lack of standardized metricsand the non-uniform application of fusion methods across different ITS domains. Theintegration of traffic and environmental features, along with the need for comprehensivestudies combining various methods, emerges as a key area for prospective research.

18



5 Publication-specific Contributions
The thesis presents conceptual and practical solutions, addressing the two primary re-search questions and concluding with four significant contributions.
5.1 Traffic Speed Prediction [I]
In this study, the author aims to tackle the challenge of achieving precise and efficientlong-term traffic prediction within the framework of ITS. The need for advanced trafficprediction models is highlighted by challenges such as non-linearity, complex data, andhigh-frequency fluctuations in traffic dynamics. Current traffic predictionmodels face lim-itations (as mentioned in Section 4), as parametric models struggle with non-linear pat-terns, and non-parametric models, like deep neural networks, may lack accuracy due toinadequate analysis of dynamic traffic data. Bridging these gaps is essential for developingeffective models that account for the complexity of real-world traffic conditions.This research gap emphasizes a compelling need for holistic solutions to surmountparametric models’ limitations and non-parametric models’ challenges. These solutionsshould provide accurate predictions for large-scale, dynamic trafficdata, enabling informeddecision-making in ITS.The core hypothesis of the study in Publication I posits that deep learning algorithms,renowned for their ability to model intricate traffic patterns, can further enhance theirpredictive performance through integration with complementary techniques such as re-current neural networks (RNNs) and advanced data preprocessing methods. This integra-tion is anticipated to improve traffic forecasting algorithms’ accuracy and reliability sig-nificantly. By combining the pattern recognition capabilities of deep learning with RNNs’handling of temporal dependencies and advanced data preprocessing techniques, the re-sulting model is expected to empower stakeholders with accurate traffic predictions, ulti-mately benefiting traffic management and urban planning.In response, the author introduces the Grizzly hybrid model, which uses sequence-to-sequence bi-directional long-short-termmemory neural networks to predict traffic speed.The model incorporates advanced techniques to enhance traffic prediction accuracy, in-cluding data preprocessing, normalization, and embeddings. Figure 2 illustrates the archi-tecture of the Grizzly approach, which consists of two main phases:Figure 2 provides a high-level abstraction of the framework, while a more detailedoverview is illustrated in Figure 2 in [40], involving three main phases:

• Data preprocessing phase: This phase involves encoding the input sequences forcategorical and continuous features and applying normalization techniques to thecontinuous features.
• Model training phase: In this phase, the model learns the embedding of each cat-egorical feature and integrates the resulting embeddings with the normalized con-tinuous features. These combined features are then fed into a deep-stacked bi-directional LSTM architecture to predict future traffic sequences accurately.
• Prediction and Evaluation phase: Following the training, themodel utilizes the learnedparameters to make predictions on new data, and its accuracy is evaluated usingdifferent metrics.
Themethodology involved experimentingwith large-scale real-world datasets, namelyPEMS-BAY and METR-LA 1, and comparing the performance of Grizzly against other time-
1PEMS-BAY and METR-LA datasets available at: https://github.com/liyaguang/DCRNN
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Figure 2: A high-level abstraction of the Grizzly framework.

series-based and hybrid neural network-based baselines (ARIMA, STGCN [62], DCRNN[28], GWNet [58], SLCNN [63]) using regression evaluation metrics such as mean abso-lute error (MAE) and root mean square error (RMSE). This rigorous evaluation allowed fora comprehensive assessment of the Grizzly hybrid approach and demonstrated its predic-tion and computation time accuracy.
The study’s results highlight Grizzly’s effectiveness in traffic speed prediction, consis-tently outperforming competitors. It substantially improves, with approximately 10.76%to 18.58% lower MAE and 2.92% to 15.40% lower RMSE, depending on the predictiontask. Traditional models like ARIMAkal exhibit the poorest performance. Graph-basedmodels, GWNet and SLCNN, offer practical alternatives, with performance dependent ondataset characteristics. With its embedded temporal features, Grizzly enhances its abilityto capture temporal dependencies, particularly for smaller sequence sizes. Importantly,it proves efficient regarding training times, approximately three times faster than SLCNN.In summary, Grizzly presents a substantial improvement in traffic speed prediction, withsuperior prediction accuracy and impressive computational efficiency, offering a valuableasset for ITS. Through this publication, the author concludes the initial iteration of theapplied research methodology cycle adopted in this thesis, spanning the entire processfrom problem identification to evaluation.

5.2 Eco-friendly Traffic Signal Control driven by Urban Noise Prediction
[II]

The author introduces the invaluable task of accurately predicting traffic conditions in[Publication I]. However, the true objective surpasses mere forecasting, aiming to tran-sition from prediction to proactive traffic management—a cornerstone for ITS and effec-tive urban traffic control. In pursuit of this shift, Publication II posits a hypothesis ofincorporating sustainable and proactive aspects into traffic signal control strategies. Thesystem is proposed to reduce traffic congestion while effectively addressing environmen-tal concerns. The "sustainable" aspect involves considering the environmental impact oftransportation systems, such as noise pollution and CO2 emissions, and optimizing trafficsignals to minimize these negative effects. The "proactive" aspect is achieved by imple-menting predictive models that anticipate future traffic congestion patterns. These mod-els use real-time data and historical trends to forecast traffic conditions, enabling trafficsignals to make informed and timely adjustments to manage traffic more efficiently andreduce congestion before it becomes a significant issue.
In response, the author delves into integrating Grizzly’s (Publication I) predictive ca-pabilities with dynamic traffic signal control. This integration facilitates real-time inter-ventions, effectively alleviating congestion and enhancing urban traffic flow, thereby min-
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imizing the impact of environmental emissions. The EcoLight approach represents a re-finement in traffic signal control, utilizing deep reinforcement learning (RL) and innova-tive techniques to enhance the sustainability and efficiency of urban traffic management.This integration aimed to enhance the decision-making capabilities of the model and in-crease the environmental consciousness of the city’s stakeholders by optimizing trafficsignal control based on predictions of future noise levels. The proposed methodologyaimed to go beyond traditional approaches and promote environmentally friendly prac-tices. EcoLight focuses on predicting traffic noise levels using Grizzly’s architecture. Thispredictionmodel significantly outperforms the traditional ARIMAmodel in forecasting fu-ture noise levels, demonstrating its effectiveness in enhancing predictive accuracy. Figure3 shows a high-level representation of the EcoLight framework. This figure illustrates theprocess steps involved in one iteration, integrating the noise prediction model, deep rein-forcement learning, and their application in optimizing traffic signal control. Figures 1 and3 provide a more in-depth framework in [43].
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Figure 3: A high-level abstraction of the EcoLight framework.

The methodology involved experimenting with real-world data from Helsinki, Finland,ensuring a realistic assessment of its performance and comparing the performance of Eco-Light against other baselinemethods such as BASIC [31] (fixed-timing control), PETSSA [17],and IntelliLight [56] (Deep RL-based approach). The empirical evaluations demonstratedthe effectiveness of EcoLight. In terms of noise prediction, it significantly outperforms theARIMA model, substantially reducing Mean Absolute Error (MAE) from 65.89 to 1.15 andMean Squared Error (MSE) from 4439.42 to 6.94 for the morning period. MAE drops from2.31 to 1.07 for the evening period, andMSE decreases from 11.24 to 6.39. During the night,MAE is reduced from 72.94 to 1.62, and MSE is reduced from 5537.93 to 10.27. Regardingreducing traffic noise pollution, EcoLight outperforms the traditional BASIC and the ad-vanced models PETSSA and IntelliLight. Moreover, the proposed approach showcases re-markable reductions in CO2 emissions, with the BASIC model emitting 74,579,545.10 kg ofCO2, while EcoLight lowers this to 62,053,611.60 kg. It also significantly reduces fuel con-sumption, with the BASIC model consuming 32,925.02 liters and EcoLight lowering this to26,675.58 liters. These results underscore the potential of the EcoLight approach to cre-ate more sustainable and eco-friendly urban transportation systems. While PublicationII does not extensively discuss scalability, it offers valuable insights for developing scal-able models. By leveraging real-time traffic data streams and reinforcement learning, theEcoLight system aims to address scalability challenges and efficiently manage traffic on alarger scale. Through this publication, the author concludes the second iteration of theapplied research methodology cycle adopted in this thesis, spanning the entire processfrom problem identification to evaluation.
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5.3 Data fusion for ITS [III]

Expanding on the groundwork established by the EcoLight approach (Publication II) foreffective urban trafficmanagement, the author conducted an investigation into the pivotalrole of data fusion techniques in optimizing trafficmanagement strategies. This systematicreview aims to show how integrating diverse data sources can enhance traffic systems,mitigate congestion, promote sustainability, and elevate the overall quality of urban life.Addressing a critical gap in ITS, this research responds to the absence of a comprehensivestudy systematically exploring the landscape of data fusion techniques in the context ofITS applications. Conducting the review per established guidelines by Kitchenham [23],the author comprehensively searched and analyzed scholarly literature, focusing onmulti-sensor data sources and their properties in various traffic domains.
Figure 4 illustrates this review’s detailed secondary research method. This figure out-lines the systematic approach taken during the review process, including the stages ofliterature search, selection criteria for articles, data extraction methods, quality assess-ment techniques, and the overall systematic review protocol. The study scrutinizes 175articles utilizing data fusion in ITS applications, categorizing methods into probabilistic-based, evidence-reasoning-based, and knowledge-based approaches. Notably, the au-thor observes a shift toward data-driven and knowledge-based methods. The reviewhighlights the increasing interest in data fusion techniques incorporating relationships be-tween traffic and environmental features. Assessing the effectiveness of these method-ologies is challenging due to the varied evaluationmethods, with real-world scenarios andsimulation-based evaluations playing roles. With certain domains extensively investigatedand others receiving comparatively less attention, exploring data fusion methods in ITS isunevenly distributed. As a noticeable outcome, the author presents a taxonomy of ITSapplications in Figure 5, categorizing them into seven types based on their characteristics,
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Figure 5: Taxonomy of Data Fusion for ITS applications.

data sources, features, and fusion models, offering a comprehensive overview within therealm of data fusion in ITS.
This comprehensive reviewadds significant insights into the current trends, challenges,and empirical discoveries within the realm of data fusion in ITS. The author not only iden-tifies crucial methodological and empirical gaps but also proposes avenues for future re-search, emphasizing the exploration of secure and privacy-preserving data fusion in ITSapplications. Furthermore, the review underscores the need for research that combinesdifferent data fusion methods, as existing publications predominantly focus on individ-ual approaches. By consolidating these findings, the author highlights the escalating im-portance of data fusion in urban traffic management, connecting the innovative EcoLightapproach to the broader landscape of data-driven solutions addressing urban mobilitychallenges. Through this publication, the author advances into the third iteration of theapplied research methodology, specifically focusing on the literature review stage withinthe cycle.

5.4 Multi-modal data fusion for enhanced eco-friendly traffic signal con-
trol [IV]

Building on the insights from the findings in Publication III, the author undertook deci-sive action to enhance the system in Publication II. This improvement is manifested inEcoLight+, an advanced iteration of EcoLight that integrates a data fusion technique. Eco-Light+ adopts a methodology that combines a Deep Dueling Q-Network Reinforcement
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Figure 6: A high-level abstraction of the EcoLight+ framework.

Learning algorithmwith a data fusion embedding-based approach. The goal is to enhancenoise prediction and traffic signal control by integrating heterogeneous data fromdifferentsources. The approach is shown in Figure 6, which is a high-level diagram that shows howthe approach’s sustainable and proactive parts are added to the deep dueling Q-networkfor noise-driven traffic signal control along with the data fusion part.In the empirical evaluations of EcoLight+, real-world data collected fromvarious sources,including noise sensors, video cameras, weather data, and traffic-related features, wasused to assess the efficiency of EcoLight+ against pioneering baselines. The experimentsfocused on the Tammsaare tee-Sõprus intersection in Tallinn, Estonia, and spanned vari-ous prediction intervals from 1minute to 60 minutes. Themethodology involves two criti-cal data preprocessing steps (step 1 in Figure 6) to address reliability issues in the collecteddata. Firstly, the data exhibited gaps and missing information due to sensor reliability is-sues from technical and operational factors. Tomitigate this concern, the KNN-imputationtechnique was employed to fill in the missing values in the dataset. Secondly, the YOLOv4algorithm was utilized to detect and determine the number of each vehicle type (motor-bike, car, bus, and truck) passing through the intersection in each video frame.EcoLight+ demonstrated remarkable improvements in noise prediction, outperform-ing baseline models with a reduction in Mean Squared Error (MSE) of approximately 80%when compared to the absence of fusion techniques. This improvement signifies a sub-stantial enhancement in the accuracy of predicting future noise levels in congested in-tersections. Regarding traffic signal control, EcoLight+ exhibited benefits over existingstrategies. In particular, it reduced noise levels by over 74% and significantly decreasedCO2 emissions, up to 46.18% less compared to baseline models. Moreover, the approachled to an impressive reduction in fuel consumption, with vehicles consuming up to 69%less fuel, demonstrating its potential to create more eco-friendly and cost-efficient urbantransportation systems. The potential annual savings, amounting to approximately 14.8million U.S. dollars for a single intersection in Estonia, underscore the far-reaching impli-cations of this research in addressing urban traffic challenges.The publication acknowledges the need to extend the applicability of the EcoLight+approach to real-world scenarios. While the current research focuses on a simplified caseof a single intersection, the author highlights the complexity of real-world network design.Furthermore, future work is proposed to address multiple intersections by combining re-inforcement learning agents. Additionally, with the growing popularity of electric vehicles,which are environmentally friendly and produce less noise, the authors suggest exploringa hybrid approach that incorporates traffic-related features to reduce delay times further
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andmitigate congestion levels. With this publication, the author brings the thesis researchto a close, finalizing the third iteration of the applied research methodology cycle, cover-ing the stages from the literature review, as conducted in Publication 3, to the evaluationphase.
The thesis encompasses a collection of publications, each employing tailoredmethodsto address specific research questions and objectives. These methods span a scope of ad-vanced techniques, including neural network models, reinforcement learning algorithms,systematic literature reviews, and data fusion methods. By embracing these approaches,the research aims to explore innovative solutions, subjecting them to rigorous empiricalevaluations and thereby contributing valuable insights and problem-solving strategies intraffic congestion prediction and management.By utilizing advanced neural networkmodels, the publications harness the capabilitiesof deep learning to capture intricate traffic data patterns and relationships. Incorporat-ing reinforcement learning algorithms enhances decision-making processes and optimizestraffic signal control systems. Systematic literature reviews systematically gather, synthe-size, and analyze existing knowledge, identifying research gaps and unveiling emergingtrends and challenges in ITS. Data fusion techniques play a pivotal role by integrating datafrommultiple sources, affording a comprehensive understanding of traffic conditions, andenabling precise predictions.The application of these methodologies allows for the exploration of new avenuesin traffic congestion prediction andmanagement. The rigorous empirical evaluations con-ducted in each publication offer practical insights and serve as validation for the proposedmethodologies. Consequently, this research pushes the field’s boundaries, providing in-novative solutions, addressing real-world challenges, and fostering the development ofmore efficient and sustainable transportation systems.
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6 Discussion of Challenges
The publications discussed in this study have significantly contributed to traffic predictionandmanagement. However, it is essential to acknowledge and address the limitations andchallenges identified in these works. By understanding these limitations, future researchcan focus on overcoming these challenges and improving the proposed approaches.

One standard limitation observed across the publications is the difficulty in detectingoutliers or trending events. Outliers, whether from gross errors or genuine anomalies inthe data, pose a significant hurdle affecting the performance of predictionmethodologies.Due to their infrequent occurrence within the training dataset, machine learning modelsoften struggle to recognize and learn from these exceptional data points. Consequently,this limitation has a cascading effect on the accuracy and reliability of the predictions gen-erated by these models. Simultaneously, addressing data drift is equally essential. Datadrift involves changes in the statistical properties of the data used to train models overtime [34]. In traffic prediction andmanagement, data drift can result from various factors,including seasonal variations, infrastructure changes, behavioral shifts, and variability indata sources. Neglecting data drift canmakemodels less accurate and relevant to evolvingtraffic conditions.
Recent research has proposed utilizing the Matrix Profile algorithm [61] to tackle thislimitation effectively. This algorithm has shown immense promise in time series data anal-ysis, particularly in identifying intricate patterns and anomalies that might otherwise gounnoticed [25]. By integrating automated outlier detection algorithms like theMatrix Pro-file into their methodologies, future studies stand to greatly enhance their models’ abilityto detect outliers across extensive and complex datasets. Effectively addressing outliersanddata drift in trafficprediction andmanagement requires amultifaceted approach. Thisincludes using strict data preprocessing methods to find and deal with outliers, keepingan eye on model predictions and data patterns all the time, adaptive learning algorithmsto make changes to the model on the fly, ensemble techniques to lessen the effect of out-liers, retraining the model with data that includes outliers regularly, and using informedfeature engineering to take into account both outliers and data drift. This comprehensivestrategy ensures the resilience and precision of traffic management systems in urban en-vironments, enabling them to handle unexpected events and evolving data patterns effec-tively. Incorporating such algorithms and techniques allows predictive models to adapt toboth temporary and permanent alterations in the behavior of traffic features. This adapt-ability is crucial for ensuring the models remain accurate and reliable even when facedwith unexpected events or irregular patterns.
Another limitation highlighted in publications II and IV on the simplified experimentalsetup underscores a notable challenge within traffic prediction and management. Thesepublications, while valuable, have a narrow focus on a single intersection in a specific lo-cation, which does not comprehensively capture the intricacies of real-world urban traf-fic networks. In urban environments, traffic systems involve a multitude of intersections,each presenting unique characteristics and complexities. Future research endeavorsmustprioritize scalability and adaptability across more extensive and diverse urban networksto overcome this limitation. This entails extending the methodologies and models devel-oped in these publications to manage multiple intersections effectively. One promisingavenue involves the combination of several reinforcement learning agents capable of con-currently optimizing traffic signal control strategies for various intersections. Also, lookinginto hybrid approaches that combine the best parts of different algorithms and techniquescan help themodels better handle themany problems that come up in complicated trafficsituations in cities.
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Furthermore, it is imperative to address concerns related to hardware deploymentand real-time performance in the context of traffic prediction and management systems.While the proposed models show promise in software-based simulations and implemen-tations, it is very important to test how well and accurately they work when used on spe-cialized hardware platforms like Field-Programmable Gate Arrays (FPGAs) or Ti-developedkits [11]. Uncertainties persist regarding the adaptability of these models to hardware-accelerated environments. Deploying thesemodels on such platforms necessitates a com-prehensive assessment of their computational efficiency, energy consumption, and real-time responsiveness. Future research endeavors should thus investigate the feasibility ofmigrating these models to hardware accelerators, measuring their performance againstsoftware-based implementations, and identifying potential advantages, such as improvedcomputational speed and scalability. This exploration holds the potential to offer valuableinsights into the practicality and viability of utilizing hardware-accelerated solutions inreal-time traffic prediction andmanagement scenarios. By bridging the gap between soft-ware simulations and hardware deployment, researchers can ascertain the true benefitsof these models in terms of efficiency, responsiveness, and scalability, ultimately pavingthe way for more effective and robust traffic management solutions in dynamic urbanenvironments.
Another significant limitation that warrants careful consideration is the generality ofthe proposed traffic signal control approaches. This limitation stems from the inherent re-quirement for amore extensive and varied dataset, encompassing diverse traffic scenariosand environments, to effectively deploy and assess the methodology. The approach’s ef-ficacy is intricately tied to the availability of comprehensive data from many sources inreal-time [32]. However, gathering such heterogeneous data and ensuring timely transferto the cloud is no small feat, often entailing substantial time and effort investments. Thetrue power of the proposed approach lies in its adaptability across a spectrum of trafficconditions, each demanding unique insights and responses. Consequently, acquiring thisbreadth of data sources is essential for evaluating and fine-tuning the approach to diversereal-world scenarios.
Addressing this limitation calls for concerted efforts in several directions. Firstly, en-hancing data collection infrastructure is imperative, encompassing the development ofadvanced sensors, data acquisition systems, and data storage solutions. Secondly, pro-moting collaborative data-sharing initiatives among various stakeholders, including trafficauthorities, research institutions, and technology companies, can facilitate the accumu-lation of a more diverse dataset. Moreover, establishing standardized protocols for in-tegrating heterogeneous data and sensors is pivotal. These protocols should streamlinedata harmonization, ensuring that information from various sources can be effectivelycombined and utilized. By addressing these challenges, the generalization of the trafficsignal control approach can be substantially improved, rendering it more applicable androbust in real-world urban settings with their diverse and dynamic traffic conditions.
In conclusion, while the publications reviewed in this thesis have undeniably con-tributed to advancing traffic congestion prediction and management, they also bring tolight several critical challenges. These challenges encompass the identification of out-liers, scalability issues in complex urban networks, hardware deployment uncertainties,data source diversification, and the need for generalizing traffic signal controlmethods. Toaddress these limitations and propel the field forward, future research endeavors shouldbe directed towards the enhancement of outlier detection through advanced algorithms,the adaptation of solutions to handle intricate urban networks, the exploration of hard-ware deployment options for real-time performance, the integration of a wider array of
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data sources through data fusion techniques, and the establishment of robust data col-lection infrastructure. Such endeavors will undoubtedly lead to the development of moreaccurate, efficient, and sustainable traffic prediction and management systems, therebyimproving urban transportation in the years to come.
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7 Conclusion
The findings and contributions of this thesis have far-reaching implications for addressingthe complex problemof traffic congestion in urban areas. By employing cutting-edge deeplearning architecture and data fusion techniques, this research offers the potential to rev-olutionize urban transportation systems,making themmore efficient and sustainable. Thedivision of the study into two primary parts, focusing on traffic congestion detection andprediction aswell as traffic lightmanagement, ensures a comprehensive approach to tack-ling congestion. The innovative approach for traffic speed prediction in road segments,utilizing advanced deep learning algorithms, enables real-time detection and proactivemanagement of traffic congestion. Integrating heterogeneous data sources through datafusion techniques further enhances the accuracy and reliability of the prediction models,enablingmore informed decision-making in trafficmanagement. The systematic literaturereview in the field of ITS also gives useful information about the best ways to make pre-dictions more accurate and proactive. This improves the methodology used in this thesisand helps us understand how to manage traffic congestion better overall.Future research in this domain should focus on developing scalable models capable ofhandling traffic data’s increasing volume and velocity in urban areas. Striking a balancebetween computational efficiency and prediction performance will be crucial in achiev-ing real-time and effective traffic congestion management. Additionally, further advance-ments in data fusion techniques and exploring new approaches for integrating hetero-geneous data sources will enhance the accuracy and reliability of prediction models, en-ablingmore comprehensive and proactive trafficmanagement strategies. The emergenceof technologies such as the Internet of Things (IoT), edge computing, and artificial intelli-gence (AI) presents exciting opportunities for improving traffic congestion management.Leveraging real-time data from connected devices and utilizing AI algorithms for data pro-cessing and decision-making can significantly enhance prediction accuracy and enable dy-namic and adaptive traffic control systems.In conclusion, this Ph.D. thesis has made substantial progress in addressing the chal-lenge of traffic congestion in urban areas. By incorporating advanced deep learning ar-chitecture, data fusion techniques, and a systematic literature review, a comprehensiveand practical solution for traffic congestion management has been developed. The in-sights and findings from this research provide a solid foundation for future advancementsin scalable models, data fusion techniques, and the integration of emerging technologies.By continuing to innovate in these areas, thework can achievemore efficient, sustainable,and livable urban environments.
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Abstract
Urban Traffic: Data Fusion andVehicle FlowPrediction in Smart
Cities
This Ph.D. thesis proposes a comprehensive solution to tackle the problem of traffic con-gestion in urban areas. By leveraging advanced deep-learning architecture and data fusiontechniques, the research aims to integrate heterogeneous features from various sourcesand enhance the accuracy and efficiency of traffic prediction andmanagement. The studyunfolds in two key phases.

In the initial phase, the author focuses on effectively preempting and addressing traf-fic congestion. The author introduces an innovative method for predicting traffic speedswithin road segments, harnessing the potential of advanced deep-learning algorithms.This approach empowers us to pinpoint congestion accurately, enabling proactive trafficmanagement. The methodology involves training deep neural network models with his-torical traffic data and multifaceted contextual factors such as weather conditions, roadtopology, and time of day. Thesemodels proficiently forecast traffic speeds across variousroad segments, enabling timely intervention in congestion-prone areas. Moreover, the au-thor pioneered a novel approach that combines a sequence-to-sequence LSTM predictionmodel with deep reinforcement learning (RL) for optimizing traffic signal control. Diverg-ing from the traditional focus on current traffic conditions, the proposed approach incor-porates sustainability and proactivity into a deep RLQ-network. This elevation in decision-making capabilities enhances traffic flow and promotes environmental consciousness byoptimizing traffic signals based on future noise level predictions. The approach aspires totranscend conventional methods, championing eco-friendly practices through informeddecisions that ameliorate traffic flow while mitigating noise, CO2 emissions, and fuel con-sumption.
The second phase of the thesis pivots toward a comprehensive systematic literaturereview of data fusion techniques applied in Intelligent Transportation Systems (ITS). Thisreview identifies themost fitting data fusion techniques utilized by domain experts. Thesemethodologies combine data from diverse sources, including traffic sensors, GPS devices,and social media feeds, to create a comprehensive, precise snapshot of traffic conditions.This fusion-based solution ensures the robustness and reliability of the traffic predictionframework. The author integrates data fusion methodologies, adhering to establishedbest practices and procedures. Moreover, the author employs the predictions derivedfrom the initial phase to refine traffic light management and enhance traffic flow. Theauthor introduces an innovative data fusion technique that merges heterogeneous fea-tures from traffic and environmental sensors. This integration augments the precision oftraffic prediction and empowers precise traffic lightmanagement decisions. The proposedmethodology dynamically adjusts traffic signal timing to alleviate congestion and optimizetraffic flow by considering real-time traffic conditions, including predicted congestion lev-els. The author evaluates the effectiveness of this approach through simulations and em-pirical assessments utilizing real-world traffic data.
The proposed solution provides a pragmatic and effective approach to tackling urbantraffic congestion, ultimately leading to amore sustainable and efficient urban transporta-tion system. By harnessing deep learning architecture and data fusion techniques, this re-search contributes to creating a livable and sustainable urban environment, offering a po-tential solution to one of the most substantial challenges modern cities face. The insightsand findings from this thesis hold significant implications for transportation planning andpolicymaking, offering valuable guidance to optimize traffic management strategies and
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enhance the overall efficiency of urban transportation systems.In conclusion, this thesis unveils a comprehensive solution that leverages innovativemethodologies and cutting-edge technologies to elevate the precision and efficiency oftraffic prediction and management. Built upon a thorough literature review and incorpo-rating state-of-the-art data fusion techniques, the proposal promises to significantly alle-viate urban traffic congestion, ultimately enhancing the quality of life for urban citizensand the operational efficiency of urban transportation systems. Future research endeav-ors may involve refining prediction models, exploring additional data sources for fusion,and integrating emerging technologies such as connected and autonomous vehicles.
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Kokkuvõte
Linnaliiklus: andmete ühtesulamine ja sõidukite voo prognoo-
simine nutikates linnades
Käesolev doktoritöö pakub terviklikku lahendust linnaalade liiklusummikute probleemi la-hendamiseks. Töö eesmärk on kasutada kaasaegseid sügava õppimise arhitektuure ja and-mete sulandumise tehnikaid, et integreeridamitmekesiseid omadusi erinevatest allikatestning suurendada liikluse prognoosimise ja juhtimise täpsust ja efektiivsust. Uuring koos-neb kahest peamisest osast.

Esimeses osas keskendub autor liiklusummikute tõhusale ennetamisele ja lahenda-misele. Autor tutvustab uuenduslikku meetodit liikluskiiruste ennustamiseks teepiirkon-dades, kasutades sügava õppimise algoritmide potentsiaali. See lähenemine võimaldabmeil ummikuid täpselt tuvastada, võimaldades proaktiivset liikluse juhtimist.Meiemetoo-dika hõlmab sügavaid tehisnärvivõrgumudeleid,mis on treenitud ajalooliste liiklusandme-te ja mitmekülgsete kontekstuaalsete teguritega, nagu ilmastikutingimused, tee topoloo-gia ja päeva aeg. Need mudelid ennustavad tõhusalt liikluskiirusi erinevates teepiirkon-dades, võimaldades õigeaegset sekkumist ummikualadel. Lisaks on autor välja töötanuduudse lähenemise, mis ühendab järjestikuste LSTM ennustusmudelite sügava tugevdus-õppega (RL) liiklusmärgaliikluse optimeerimiseks. Eristudes traditsioonilisest keskendumi-sest praegustele liiklusoludele, hõlmab meie lähenemine jätkusuutlikkust ja proaktiivsustsügavas RL Q-võrgus. See otsustusvõime tõstmine suurendab liikluse voolavust ja soodus-tab keskkonnateadlikkust, optimeerides liiklusmärke tulevaste müratasemete prognoosi-de põhjal. Meie lähenemise eesmärk on ületada tavapäraseid meetodeid, propageerideskeskkonnasõbralikke tavasid teadliku otsustamise kaudu, mis parandavad liikluse voola-vust, vähendavad müra, CO2 heitmeid ja kütusekulu.
Uuringu teine osa keskendub põhjalikule süstemaatilisele kirjanduse ülevaatele and-mete sulandumise tehnikatest, mis on rakendatud intelligentsetes transpordisüsteemides(ITS). See ülevaade tuvastab kõige sobivamad andmete sulandumise tehnikad, mida vald-konna eksperdid kasutavad. Need metoodikad kombineerivad andmeid mitmesugustestallikatest, sealhulgas liiklussensoritest, GPS-seadmetest ja sotsiaalmeedia voogudest, etluua põhjalik, täpne pilt liiklusoludest. See sulandpõhine lahendus tagab meie liiklusprog-nooside raamistiku tugevuse ja usaldusväärsuse. Autor integreerib andmete sulandumisemetoodikad, järgides kehtestatud parimaid tavasid ja protseduure. Lisaks kasutab autoralgfaasis saadud ennustusi liiklusvalguse juhtimise täiustamiseks ja liiklusvoolu parenda-miseks. Autor tutvustab innovaatilist andmete sulandumise tehnikat, mis ühendab liikluseja keskkonnaandurite mitmekesiseid omadusi. See integreerimine suurendab liiklusprog-nooside täpsust ja võimaldab täpsemaid liiklusvalguse juhtimisotsuseid. Autor hindab sel-le lähenemise tõhusust simulatsioonide ja empiiriliste hindamiste abil, kasutades reaal-maailma liiklusandmeid.
Meie pakutud lahendus pakub praktilist ja tõhusat lahendust linnaliikluse ummiku-te vähendamiseks, mis viib lõpuks jätkusuutlikuma ja tõhusama linna transpordisüsteemipoole. Sügava õppimise arhitektuuri ja andmete sulandumise tehnikate kasutamisega ai-tab see uuring kaasa elamiskõlbliku ja jätkusuutliku linna keskkonna loomisele, pakkudespotentsiaalset lahendust ühele kaasaegsete linnade suurimale väljakutsele. Sellest dokto-ritööst saadud teadmised ja leiud on olulised transpordiplaneerimisele ja poliitikakujun-damisele, pakkudes väärtuslikku juhendit liikluse juhtimisstrateegiate optimeerimiseks jalinna transpordisüsteemi üldise tõhususe suurendamiseks.
Kokkuvõttes avab see doktoritöö tervikliku lahenduse, mis kasutab uuenduslikke me-toodikaid ja tipptasemel tehnoloogiaid liikluse prognoosimise ja juhtimise täpsuse ja efek-
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tiivsuse tõstmiseks. Põhjaliku kirjanduse ülevaate põhjal ja kasutades kaasaegseid andme-te sulandumise tehnikaid lubab meie ettepanek märkimisväärselt leevendada linnaliiklu-se ummikuid, parandades linnakodanike elukvaliteeti ja linnatranspordisüsteemide ope-ratiivset efektiivsust. Tulevased uurimisprojektid võivad hõlmata ennustusmudelite täius-tamist, täiendavate andmeallikate uurimist sulandumiseks ja uute tehnoloogiate, näiteksühendatud ja autonoomsete sõidukite integreerimist.
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A B S T R A C T

Congestion is a bane of urban life that affects a large share of the population on a daily basis. Thus, congestion
gets tremendous attention from city stakeholders, residents, and researchers. The key challenge to preventing
congestion is to accurately predict the traffic status (e.g., speed) of a particular road segment which is greatly
affected by many factors, such as spatial, temporal, and road conditions. Although several research studies have
focused on preventing congestion, most prediction-based literature came short of accurate predictions regarding
precision and time efficiency regarding large-scale datasets. This paper proposes a new hybrid approach called
Grizzly. This approach utilizes an improved Sequence to Sequence Bi-directional Long Short Term Memory
Neural Network model that integrates data pre-processing techniques such as normalization and embeddings
to improve traffic prediction accuracy. Carried out experiments on two large-scale real-world datasets, namely
PEMS-BAY and METR-LA, pinpointing that the proposed approach outperformed the pioneering competitors
from time-series-based and hybrid neural network-based baselines in terms of the agreed-on evaluation criteria
(precision and computation time).

1. Introduction

An intelligent transportation system (ITS) is integral to any smart
city. Traffic congestion is ITS and individuals’ primary concern because
of its adverse effects on governments, society, and the economy. Ac-
cording to the Urban Mobility Report of 2019 published by the Texas
A&M Transportation Institute (Schrank et al., 2019), the 8- to 10-
year growing economy has brought traffic congestion to the highest
measured levels in most U.S. cities. In 2017, congestion forced urban
Americans to travel an extra 8.8 billion hours and purchase an addi-
tional 3.3 billion gallons of fuel for a congestion cost of 166 billion
dollars. The average commuter wastes 54 h and 21 gallons of fuel due
to congestion, totaling 1080 dollars.

Researchers have devised solutions to congestion problems through
traffic prediction approaches using vast data on vehicle behavior
around routes. With the progressive deployment of low-cost sensors
that continuously measure traffic attributes (such as loop detectors,
radars, etc.), various authorities provide public transport management
and priority, traffic control in urban areas, and real-time traffic light
management systems.

Prediction results allow ITS stakeholders to ascertain and identify
the levels of congestion based on future forecasts to reduce congestion,
allocate resources, and increase safety and sustainability. For example,
they could offer new routes or services (Zhang, Li, et al., 2021), main-
tain a dynamic pricing system (Qian & Rajagopal, 2015), automate lane

∗ Corresponding author at: Department of Software Science, Tallinn University of Technology, Tallinn, Estonia.
E-mail addresses: chahinez.ounoughi@taltech.ee (C. Ounoughi), sadok.ben@taltech.ee (S. Ben Yahia).

openings and closings using an adaptive traffic light system (de Gier
et al., 2011; Zhang, Ishikawa, et al., 2021), etc. Furthermore, traffic
predictions are paramount for the marketing industry, which helps
marketers dynamically adapt their digital billboard advertisements or
shop owners to invest and open new branches in more frequented
congested locations (Nagy & Simon, 2018). Thus, the main research
question addressed in this paper is:

How can ITS applications provide accurate and efficient long-term
traffic prediction (flow, speed, etc.) from this massive amount of
high-frequency and non-linear traffic data?

This research question is particularly challenging due to the dy-
namic nature of the data and the number of road conditions fac-
tors that need to be considered. A burgeoning research background
elaborated time-series prediction and analysis, relying on enormous
algorithmic variants and processing enrichment to tackle the above
challenge. Those approaches aim at standing by stakeholders’ sidekicks
for proactive decision-making. However, prediction models of the early
days have failed to provide evidence for high accuracy on non-linear,
multi-feature, and high-frequency large-scale traffic data.

Using recurrent architectures, neural network models outperform
parametric statistical models. Moreover, the former architectures con-
firmed their potential to extract the temporal dependencies and learn

https://doi.org/10.1016/j.eswa.2023.121325
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more abstract representations in the non-linear traffic data (Shao &
Soong, 2017). Nevertheless, most traffic prediction models proposed
so far fail to consider the analysis and pre-processing feature engi-
neering phases of the dynamically changing large-scale traffic patterns,
resulting in inaccuracies and longer computation time. This paper intro-
duces an improved LSTM-based recurrent architecture called Grizzly, a
Sequence-to-Sequence Bi-directional Long Short Term Memory Neural
Network hybrid model (SeqtoSeq-Bi-LSTM) aiming to address the above
crucial accuracy and time efficiency issues. Our new architecture strives
to predict future traffic sequences based on previous ones. Furthermore,
the Grizzly approach ushers in improving prediction accuracy and cost
by incorporating data pre-processing techniques (Normalization and
Embeddings) to better unveil the hidden temporal dependencies by the
Bi-LSTM stacked layers proposed sequence to sequence architecture.
The novelty of this approach is combining multiple techniques and
carefully treating each part of the dataset with the most appropriate
method to improve accuracy. The more valuable our results are the
more effective stakeholders’ proactive decision-making to overcome the
congestion issue will be.

By and large, the main contributions of Grizzly hybrid approach are
as follows:

• We adopt the sequence-to-sequence architecture and propose
splitting the time-series traffic data into a fixed size s for each
sequence, where s is determined after analyzing the different road
network traffic behaviors. Through this architecture, patterns
can be effectively identified from every data sequence in the
time-series input.

• We use a Normalization technique for the continuous features.
This technique improves the model’s performance by decreasing
the high cost of both time and resources.

• We build the Embeddings for the temporal categorical features.
Thus, we reduce the high dimensionality of the input data and
help extract the hidden dependencies between the inputs and the
target value to be predicted (speed). Furthermore, it speeds up
the learning process of the regression model.

• To efficiently unveil the inherent temporal dependencies from the
data, we build bi-directional LSTM-based stacked layers with im-
proved architecture with more sophisticated activation functions
that help to achieve better accuracy at a lower cost. The latter
receives inputs, both normalized and embedded sequences of past
traffic status. In the output, we harvest predictions of future traffic
sequences.

• We ran extensive experiments on two large-scale public traffic
datasets collected in Los Angeles County highways and California
freeway bay areas. Outcomes from the agreed-on evaluation crite-
ria (precision and computation time) indicate that we outperform
pioneering attempts in the literature. The code of our approach
is released to facilitate further reproduction of our models in this
link.1

The remainder of this paper is organized as follows. In Section 2,
we present an overview of the related work about traffic prediction
models. In Section 3, we discuss the methodological contribution of our
work compared to the related work and their practical applications in a
real-life scenario. Before proposing our approach, we briefly describe,
in Section 4, preliminary information about the LSTM neural networks
and their variant structures. Then, Section 5 presents the main proposed
steps of our approach. We thoroughly discuss the harvest of the exper-
imental evaluation and compare our results to those of the pioneering
literature in Section 6. Finally, the conclusion and issues of future works
are stated in Section 7.

1 https://github.com/Ounoughi-Chahinez/Grizzly

2. Scrutiny of the related work

In the dedicated literature, we usually categorize traffic prediction
approaches as parametric and non-parametric ones (Kong et al., 2019).

2.1. Parametric-based approaches

They require determining specific mathematical and statistical pa-
rameters according to data conditions. One such model is the Auto-
Regressive Moving Average Integrated (ARIMA) model, which was
proposed in the 1970s and is still widely used (Box & Pierce, 1970).
Other models include the Hidden Markov Model (HMM), which uses
GPS data to assess road congestion (Lwin & Naing, 2015), and a
method that uses particle swarm optimization and fuzzy division to
classify congestion status (Kong et al., 2016). Additionally, a recent
study proposed an adaptive time series prediction approach that selects
the best prediction model’s error among five algorithms, including
ARIMA, Linear Regression, Polynomial Regression, Moving Average,
and K-Nearest Neighbors (Nadeem & Fowdur, 2018). Lastly, the Kalman
filter-based models estimate traffic measurements for dynamic systems
with slowly changing parameters (Byon et al., 2018).

Parametric-based approaches flog out a worthy-of-mention advan-
tage, which could also be a con since they do not require large datasets
for the training step, as do non-parametric-based approaches. Notwith-
standing, this makes them unable to leverage additional information
found in large datasets. Furthermore, parametric methods are lim-
ited only to specific linear traffic data conditions. Thus, even any
pointless change in external conditions badly affected their prediction
accuracy (Kong et al., 2019; Nagy & Simon, 2018).

2.2. Non-parametric-based approaches

Non-parametric methods are generally more reliable because they
attempt to find the best fit for the data. However, this requires numer-
ous observations to estimate the function 𝑓 accurately. They are highly
flexible and produce better results because they make no assumptions
about the underlying objective.

2.2.1. Feed forward neural networks (FFNN)
Recently, we have witnessed a focus shift from traditional statistical

models to non-parametric neural network-based models, particularly
for handling large amounts of non-linear traffic data. This has led to
a focus on deep neural network (DNN) architectures, which have more
layers than a simple neural network and aim to discover abstract data
representations. DNNs have lower computational complexity, enabling
better feature extraction (Shao & Soong, 2017). Various authors (Al-
bertengo & Hassan, 2018; Kong et al., 2019; Qu et al., 2019; Wang
et al., 2017; Zhang et al., 2018) have suggested using different types
of neural network architectures like Restricted Boltzmann Machine
(RBM), convolutional neural network (CNN), and deep neural net-
work to forecast traffic congestion in their respective studies. Neural
networks can extract knowledge and patterns without relying on the
events’ order. For instance, if we want to classify events in a movie
sequence, neural networks can use their understanding of past events
to predict future events, even with uncertainty.

2.2.2. Recurrent neural networks (RNN)
Recurrent neural networks (RNNs) are a type of deep neural net-

work model that addresses the issue of sequential dependencies in
artificial neural networks (ANNs). RNNs are specifically designed to
analyze traffic time-series data and have inner loops that allow infor-
mation to persist and be passed from one step to the next. They have
successfully solved various time-series problems like speech recogni-
tion, language modeling, translation, and image captioning. However, a
fundamental problem with RNNs is called the Vanishing Gradient prob-
lem (Bengio et al., 1994; Hochreiter, 1991), which makes it challenging
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to deal with long-term dependencies. An improved model called re-
current long-short-term memory (LSTM) has emerged to overcome this
issue.

Several new LSTM architectures have been proposed in the liter-
ature to address issues such as long-term dependencies, missing data,
and trends in traffic prediction. These include an LSTM-based encoder–
decoder model introduced by Shao and Soong (2017), a greedy layer-
wise unsupervised learning algorithm proposed by Zhao et al. (2017)
to tune LSTM units applied to an Origin-Destination Correlation (ODC)
matrix, an improved version of LSTM called LSTM-M presented by Tian
et al. (2018) that can infer traffic flow even with missing values,
and a pre-processing technique using an attention mechanism layer to
assign weights to inputs before using them in the LSTM layer, proposed
by Yang et al. (2019) for their improved LSTM+ model.

2.2.3. Hybrid neural networks
Hybrid neural network schemes combine one or more neural net-

work models that have recently become relevant approved approaches.
Furthermore, modeling complex correlations can be enhanced by com-
bining different methods, as the models can utilize the capabilities of
multiple techniques concurrently (Do et al., 2019).

Several approaches have been proposed for traffic prediction, in-
cluding the Spatiotemporal hybrid model, which combines convolu-
tional and recurrent neural networks, proposed by Du et al. (2020),
Guo et al. (2021), Lv et al. (2018), Ma et al. (2021). Another approach
is using temporal clustering analysis and a deep convolutional neural
network to predict traffic speed, proposed by Shen et al. (2018). The
authors used the wavelet transform technique and multi-dimensional
Taylor network in Zhu et al. (2021) to effectively learn the temporal
features’ periodicity. Additionally, Zhang et al. (2019) proposed a
layerwise structure that uses LSTM neural networks to predict short,
medium, and long-term traffic flow. In Luo et al. (2019), a Spatiotem-
poral traffic flow prediction method based on KNN and LSTM was
proposed. The road was divided into stations, and KNN assessed the
spatial correlation between these stations and other trained ones. Two
LSTM layers were used for prediction. Xiao and Yin (2019) used a
complex LSTM architecture with multi-neural network layers divided
into input, intermediate, and output to predict traffic vehicle flow.
Non-parametric neural network models are scalable and robust to ab-
normal conditions. They can train different types of information, such
as weather conditions, incidents, or special events, to enhance model
performance (Do et al., 2019). In a recent study by Modi et al. (2022),
they connected two pre-trained deep auto-encoders using latent space
mapping. They selected nearby road sensors based on the similarity of
traffic and distance for predicting traffic speed. However, if the analysis
and pre-processing of dynamically changing traffic data patterns are
ignored, most deep neural network-based traffic prediction models fail
to provide accurate predictions.

Graph-based deep neural networks improve traffic prediction by
learning correlations between data features. DCRNN, introduced in Li
et al. (2018), models traffic flow as a diffusion process on a directed
graph using bidirectional random walks and an encoder–decoder archi-
tecture. STGCN, introduced in Yu et al. (2018), formulates the model
as a graph and uses complete convolutional structures for faster train-
ing with fewer parameters than regular convolutional and recurrent
units. GWNet is another graph-based prediction model that uses an
adjacency matrix to represent the road network with on-road distances
between sensors to predict traffic speeds, which has been improved
recently in Wu et al. (2019). SLCNN (Zhang, Chang, et al., 2020) is
an extended version of traditional convolutional neural networks that
captures dynamic spatial and temporal feature dependencies in time
series data. DHSTNet (Ali et al., 2022) is a unified dynamic deep
Spatiotemporal neural network model that combines convolutional
neural networks and long short-term memory. In their recent work,
the authors used a convolutional graph network (GCN) based on their
previous research in Ali et al. (2021) to capture short-term patterns

and successfully predict traffic crowd flows. The authors in Zheng
et al. (2022) introduced a self-attention graph convolutional network
that captures spatial, sub-spatial, and temporal dynamics of traffic
speed. To improve long-term dependency extraction, they implemented
a sequence-to-sequence model in an encoder–decoder architecture.

Traffic prediction is a problem of capturing Spatiotemporal dimen-
sionality and correlations in the data. Nonetheless, convolutional neural
networks can only extract local features from standard grid data. On
the other hand, graph convolution can automatically mine the spatial
patterns of traffic data by extracting features from graph-structured
data. Therefore, convolution operation along the time axis can reveal
the temporal patterns of traffic data. However, graph convolution and
attention-based methods produce satisfactory results but rely heavily
on adjacency matrix coefficients computed based on spatial or contex-
tual information. In some cases, these coefficients are unavailable or
cannot represent genuine dependency relationships. In addition, fixed
coefficients may fail to capture dynamic dependencies and produce
inaccurate results.

3. Methodological and practical contributions

This section makes the article gainful for both researchers and
practitioners by comparing the above approaches and illustrating how
to apply our method in a real-life scenario. Table 2 summarizes the
surveyed approaches related to the traffic prediction area considering
the following criteria:

• Category: the family of the used model.
• Model: the model used to generate the predictions.
• Prediction interval: the predicted time interval by the used

model.
• Area: the type of road networks used to evaluate the model.
• I-O: the shape of the input and output the generated model

handles. One and Multi refer to univariate and multivariate,
respectively.

• Structure: the architecture and the hyper-parameters used to
build the model.

• pre-processing: the technique of preparing the model’s inputs.
• Evaluation: the metrics used to gauge the model’s performance.
• Pros/Cons: outlines the benefits and drawbacks of using such a

category.

A list of the abbreviations used in this in Table 2 is provided in
Table 1.

Traffic dynamics are complex and stochastic, making it challeng-
ing to use a single model to capture traffic characteristics across a
city’s wide area. Hybrid approaches have been proposed to extract
spatial dependencies and temporal correlations between groups of sen-
sors in different locations or corridors. Recurrent-based deep learning
structures such as LSTM or GRU are commonly used for temporal cor-
relations, while convolutional neural network-based architectures are
primarily used for spatial dependencies. As expressed in Table 2, many
traffic prediction solutions have integrated pre-processing techniques
to improve their prediction quality. Mainly they have been focusing on
using several normalization techniques to manipulate the continuous
features and interpolating missing data if it existed. Only the authors
in Ali et al. (2021) have considered a pre-processing for the categorical
features using one-hot encoding. However, this technique maps each
label to a binary static vector. It is worth mentioning that any surveyed
approaches do not use embedding as another powerful technique for
categorical features. It provides a learned distributed representation for
each distinct label. This technique has proved to be a game-changer for
improving deep-learning prediction models’ performances (Ounoughi
et al., 2021). To the best of the author’s knowledge, no previous
research has studied the importance of combining dynamic embed-
ding pre-processing for categorical features with the normalization of
continuous ones and their effect on the prediction results.
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Fig. 1. LSTM general structure.

Based on the above studies and considering the differences be-
tween periodic data and the changing dependencies of traffic patterns,
a novel network structure named Grizzly, a Sequence to Sequence
Bi-Directional Long-Short-Term Memory Neural Network model, is pro-
posed to predict traffic speed. Due to the high performance of LSTM-
based neural network prediction models and their ability to capture
long-term dependence in sequential data, they are an ideal choice for
traffic prediction. The selection of Bidirectional LSTM in our proposed
model was based on several factors, including its ability to capture
both past and future context in the data sequence, which is vital
for accurate traffic prediction. Additionally, the Bidirectional LSTM
architecture has been shown to perform well on time-series sequence
forecasting problems, which makes it a suitable candidate for traffic
prediction. The main methodological contribution of this paper is the
combination and application of pre-processing (Normalization, Em-
bedding, and sequence-to-sequence structure) concepts and recurrent
deep learning architecture to extract the temporal correlations and
spatial dependencies within the road network to predict traffic speed.
A thorough description of the LSTM-based structures and our proposed
approach is given in Sections 4 and 5, respectively.

It is worthy of mention that our new proposed method can be
applied in different real-life scenarios. For example, it can be integrated
into an intelligent traffic signal control agent. Thanks to a responsive
strategy, it can adapt and update its phases according to the predicted
traffic speed to deal with congestion issues. Recent responsive studies,
e.g., Chen et al. (2020), Zang et al. (2020) and Zhang, Liu, et al.
(2020), to cite but a few, have shown promising results when using
reinforcement learning techniques for traffic signal control. However,
these techniques rely only on the current traffic conditions. Therefore,
through our approach, we contribute to this line of research with
a novel proactive aspect. In particular, these reinforcement learning-
based models can be invoked with the pre-knowledge of the traffic
status predicted using our approach.

4. Preliminaries

In this section, we first recall preliminaries about the elemental
components of the LSTM model architecture and its variation. Then, we
state the explanations for using the activation layers in neural networks.

4.1. Long-short term memory neural network (LSTM)

Long-short term memory neural network (LSTM) is a specific archi-
tecture of RNNs, whose design is capable of learning long-term depen-
dencies using the concept of memory. Firstly introduced by Hochreiter
and Schmidhuber (1997), then they have been varied and popularized

Table 1
List of abbreviations.

AC Average Correlation
ACC Accuracy
AHP Analytic Hierarchy Process
APE Absolute Percentage Error
CNN Convolutional Neural Network
DAE Deep Auto-Encoder
DNN Deep Neural Network
F Filter
FFNN Feed Forward Neural Network
GRU Gated Recurrent Unit
HMM Hidden Markov Machine
I/O Input/Output
KF Kalman Filter
KNN K-Nearest Neighbors
l𝑐 Sequence length of the current flow
l𝑑 Sequence length of the daily flow
l𝑟 Sequence length of the weekly flow
LSTM Long-Short Term Memory
M Time window
MA Moving Average
MAE Mean Absolute Error
MARE Mean Absolute Relative Error
ME Mean Error
MRE Mean Relative Error
MSE Mean Squared Error
MTM Markov transition matrix
MTN Multi-Dimensional Taylor Network
NN Neural Networks
PSO Particle Swarm Optimization
RB Residual Block
RBM Restricted Boltzmann Machine
RMSE Root Mean Squared Error
RNN Recurrent Neural Networks
SCAAT Single Constraint At A Time
Self-AGCN Self Attention Graph Convolutional Network
SVM Support Vector Machines
SVR Support Vector Regression

later in solving numerous issues. Fig. 1 shows the basic three-gates-
LSTM structure is also called the forward-pass LSTM network. A forget
gate 𝑓 and an input gate 𝑖 are both made for the cell state’s update
𝐶𝑡. The third and output gate, 𝑜, decides how much information about
the current input 𝑥𝑡 should remain for the current output cell ℎ𝑡. The
equations of the different gates are as follows:

𝑓𝑡 = 𝜎(𝑊𝑓 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 ) (1)

𝑖𝑡 = 𝜎(𝑊𝑖 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2)

�̂�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐 ) (3)

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × �̂�𝑡 (4)

𝑜𝑡 = 𝜎(𝑊𝑜 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5)

ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ(𝐶𝑡) (6)

We compute the different outputs as follows; first, the forget gate
(Eq. (1)) uses a sigmoid layer that takes as inputs ℎ𝑡−1 and 𝑥𝑡 to compute
the percentage of information to be conserved of the previous cell state
𝐶𝑡−1. The next step is to define which values to be updated using the
input gate’ sigmoid layer (Eq. (2)); and a tanh layer (Eq. (3)) to create
a vector of new candidate values �̂�𝑡. The combination of both resulting
information creates an update to the cell state 𝐶𝑡 (Eq. (4)). Next, a
sigmoid layer (Eq. (5)) that decides the parts of the cell state to be
output is applied. At last, to get the ℎ𝑡 (Eq. (6)), first, pass the cell state
𝐶𝑡 through the tanh function and multiply it by the output of 𝑜𝑡.
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Table 2
Summary of traffic prediction proposed approaches.

Category Model Reference Prediction
interval

Area I-O Structure Pre-processing Evaluation Pros/Cons

Parametric

Hidden
Markov

Lwin and Naing (2015) 1 min Urban One-One Hidden Markov Map matching ACC HMM is efficient learning algorithm can take place
directly from raw sequence data. However, it
cannot express dependencies between hidden stats.

SVM Kong et al. (2016) 5 min Urban Multi-One SVM + PSO Eliminate noise ACC,
Instantaneity,
Stability

SVR has greater generalization ability, but it is
more easily affected by training data.

Kalman
filters

Byon et al. (2018) 10, 30 sec
(simulation)

Urban Multi-One SCAAT Kalman filters Data fusion ME, MAE, MRE,
MARE, MSE,
RMSE

KF is fast to converge to a valid state. However, it
needs a larger computational complexity to get
better results.

Wang et al. (2017) 5 min Urban Multi-One AHP + Multilevel Fuzzy set theory Information fusion Score (%) NN can explore nonlinear relations among the
Nadeem and Fowdur (2018) 5 min Urban Multi-One NN (2,7,1) None MSE, RMSE traffic data, resulting in better predictions than
Zhang et al. (2018) 10 min Urban One-One NN (16, 16, 1) None MAE, RMSE parametric methods. However, NN requires more

FFNN Albertengo and Hassan (2018) 5 min Urban One-One NN (50, 50) Linear interpolation RMSE, RME parameters to be determined in the training step.
Smoothing MA RMSE, RME

Qu et al. (2019) 5, 10, 15,
30, 60 min

Freeway One-One DNN (15, 18, 22, 9, 5) None APE, MAPE

Kong et al. (2019) 5 min Expressway One-One RBM Normalization MRE, RMSE

Shao and Soong (2017) 5 min Freeway Multi-One LSTM + Linear Regression None MAPE, RMSE RNN model structure is more complex than the
NN methods, so it performs best for sequential
traffic data. However, it requires large-scale
training data and plenty of training parameters.

Zhao et al. (2017) 15, 30, 45
and 60 min

Urban One-One LSTM (Units = 500) None MAE, MSE, MRE

RNN Yang et al. (2019) 15 min Freeway One-One Attention layer + LSTM Smoothing noisy
data

MAE, MRE,
RMSE

Li et al. (2018) 15, 30, 60
min

Freeway One-One Stacked Diffusion ConvRecurrent Layer
(Units = 64, F = 3)

Z-Score
normalization

MAE, RMSE,
MAPE

Hybrid model captures dependencies between
heterogeneous features (temporal/spatial). It is
scalable and adaptable to a variety of
circumstances. However, it is computationally
extensive and needs large-data for the training.

Yu et al. (2018) 15, 30, 45
min

Urban One-One Graph-CNN + Gated-CNN (M = 12, F =
[64, 16, 64])

Linear interpolation
+ Z-score
normalization

MAE, RMSE,
MAPE

Lv et al. (2018) – Urban Multi-One Look-up ConvLSTM + Fusion (F =
[32,16], M = 5)

Normalization RMSE

Shen et al. (2018) 5 min Urban Multi-One Fusion + Spatio-temporal regression +
Evidence theory

Temporal Clustering MAE, APE

Zhang et al. (2019) 15, 30, 60
min

Urban Multi-One Fusion + Layerwise structure+ MTM
(NN neurons = 70)

Min-Max
Normalization

MAE, RMSE

Non-Parametric Hybrid-NN Luo et al. (2019) 5 min Freeway Multi-One KNN (K = [10, 6]) + LSTM None ACC, RMSE
Xiao and Yin (2019) 5 min Urban One-One Stacked-LSTM (Units = 8, Dropout =

0.5)
None RMSE

Wu et al. (2019) 15, 30, 60
min

Highway One-One 8 Graph-WaveNet + Graph-CNN (F = 2) Z-score
normalization

MAE, RMSE,
MAPE

Shleifer et al. (2019) 15, 30, 60
min

Highway One-One Gated-TCN + Graph-CNN (F = 40) None MAE

Du et al. (2020) 15 min Urban Multi-One 1D-CNN + GRU + Attention (128, 128,
128)

None RMSE

Guo et al. (2021) 15, 30 min Ur-
ban/Highway

Multi-Multi Graph-CNN + GRU (M = 3, F = 64) None MAE, MAPE,
MSE

Zhang, Chang, et al. (2020) 15, 30, 60,
90 min

Ur-
ban/Highway

One-One Global SLC (F = 6) + Local SLC (F =
8) + 3 P3D (depth = 32)

None MAE, RMSE

Ma et al. (2021) 5, 10, 15,
30, 60 min
and 24 h

Highway One-One ConvLSTM (F = 8, M = 28) Abnormal data
adjustment

APE, MAPE

Zhu et al. (2021) 10 min Urban One-One MTN + Wavelet transform technique None MAE, MAPE,
RMSE, AC

Ali et al. (2021) 30, 60 min Urban Multi-One Attention + ConvLSTM (l𝑐 = 4, l𝑑 = 4,
l𝑟 = 4/l𝑐 = 6, l𝑑 = 4, l𝑟 = 4)

Min–Max
Normalization +
One-hot Encoding

MAPE, RMSE

Ali et al. (2022) 30, 60 min Urban Multi-One LSTM + Graph-CNN(l𝑐 = 4, l𝑑 = 4, l𝑟 =
4/l𝑐 = 6, l𝑑 = 4, l𝑟 = 4) + Residual
units

Min–Max
Normalization

MAPE, RMSE

Modi et al. (2022) 15, 30, 60
min

Freeway One-One 2 DAEs with 3 2D-CNN (F =3,
stride=2, padding=1) + batch
normalization + tanh + 3 RBs with 2
2D-CNN (F=3, stride=1, padding=1) +
batch normalization and ReLU

Min-Max
normalization

MAE, RMSE,
MAPE

Zheng et al. (2022) 5, 15, 30,
45, 60 min

Freeway Multi-Multi m Graph-CNN + FFNN + Self-AGCN +
GRU (m=[1-6])

None MAE, RMSE,
MAPE

4.2. Bi-directional LSTM

The forward-pass LSTM takes the inputs following a direction from
past to future. However, backward-pass LSTM is another variation of
LSTM networks that works in the opposite direction. The bi-directional
LSTM network, introduced by Schuster and Paliwal (1997), extracts
both past and future temporal patterns. This latter attached both
forward-pass and backward-pass LSTM networks to the same output
layer. Thus, both hidden states (forward and backward) enable us
to capture past and future information. The bi-directional LSTM is
relatively handy regardless of tasks and contexts since it leverages the
sequential information in both directions (Ma & Hovy, 2016).

4.3. Activation layer

The activation layer is typically applied to enhance the training
model’s learning ability. The activation output layer can use specific
activation functions, i.e., mathematical formulas for computing a neu-
ral network’s output. It can essentially function like a step function that
depends on a particular rule, or threshold, to turn a neuron output on
and off. There are three categories of functions: binary step, linear, and
non-linear. First, a binary step function is a threshold-based activation
function. If the input value is greater than or equal to a threshold,

the neuron is activated and sends the same value to the next layer.
However, it does not support multi-value outputs. Second, the linear
function (Eq. (7)) multiplies the inputs by the weights for each neuron
to produce proportional outputs. We use this function for regression
problems very often.

𝑓 (𝑥) = 𝑎𝑥 (7)

Finally, recent neural network models use non-linear activation func-
tions. Doing so allows the creation of complex modeling between the
network’s inputs and outputs. These latter are essential for learning
and modeling complex data, e.g., images, video, audio, and high-
dimensional datasets. The most used activation that better suits the
classification problem is the sigmoid function called the logistic func-
tion. We computed it using Eq. (8).

𝜎(𝑥) = 1
1 + 𝑒−𝑥

(8)

Many advanced activations have been developed to enhance the
training of deep, complex neural networks. The most popular and
successful, especially for regression problems, are the Rectified Linear
Unit (ReLU), Exponential Linear Unit (ELU), and Leaky Rectified Linear
Unit (Leaky ReLU) cf. Eqs. (9) and (10).

𝐸𝐿𝑈 (𝑥) =

{
𝑥, if 𝑥 > 0
𝛼(𝑒𝑥 − 1), if 𝑥 < 0

(9)
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Fig. 2. Grizzly hybrid approach.

𝐿𝑅𝑒𝐿𝑈 (𝑥) =

{
𝑥, if 𝑥 > 0
𝛼𝑥, if 𝑥 ≤ 0

(10)

Based on the presented LSTM neural network and activation layers vari-
ants, we introduce, in the remainder, our new Sequence-to-Sequence Bi-
directional LSTM neural network (SeqtoSeq-Bi-LSTM) hybrid approach
for traffic speed prediction.

5. Proposed approach

Traffic prediction refers to predicting the next or future status of
the road. The traffic status can be volume, speed, density, or behav-
ior (Nagy & Simon, 2018). We introduce in the remainder Grizzly a
Sequence-to-Sequence Bi-directional LSTM neural network approach.
The sought-after goal is to predict traffic of predefined fixed future
periods, e.g., daily, weekly, etc. Grizzly is a hybrid approach aiming to
improve prediction performance in terms of time and resources. It com-
bines different pre-processing techniques to efficiently encode spatial
and temporal features within a sequence-to-sequence representation of
traffic time series. First, it splits the traffic time series into fixed-sized
sequences. Then, it fits them through an improved Bi-directional LSTM
architecture to accurately capture the temporal dependencies between
sequences in both directions (forward and backward). Fig. 2 depicts the
general architecture of our approach, which operates through two main
phases:

1. A data pre-processing phase (Fig. 2a) that encodes the input se-
quences for both categorical and continuous features and applies
a Normalization technique for the continuous ones.

2. A model training phase (Fig. 2b) that learns the Embeddings
of each categorical feature. Then, it feeds them into the deep-
stacked Bi-directional LSTM architecture alongside the normal-
ized continuous features to accurately predict future traffic se-
quences.

5.1. Phase 1: Data pre-processing

5.1.1. Sequence generation
A time series is a sequence of numerical data points collected and

stored in time order at regular intervals. We characterize this data
type by its ’Frequency ’ (the time interval separating two consecutive
data points). For example, if the flow is recorded once per day from
January the 1st, 2011 to January the 1st, 2021, a single interval would
be a day, while the entire period would be a decade (10 years). The
frequency must be equal and clearly defined. It could range from a

few milliseconds to several years. However, the most common ones for
traffic flow data are 5 min., 10 min., and 1 h. According to our proposed
approach, if we aim to predict daily traffic, then the form of the input
and output data would be presented with 𝑠 observations as follows:

Past day
𝑡𝑜𝑝𝑟𝑒𝑑𝑖𝑐𝑡
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Future day

[𝑥(1,1), 𝑥(1,2),… , 𝑥(1,𝑠)]
𝑡𝑜𝑝𝑟𝑒𝑑𝑖𝑐𝑡
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ [𝑦(2,1), 𝑦(2,2),… , 𝑦(2,𝑠)]

[𝑥(2,1), 𝑥(2,2),… , 𝑥(2,𝑠)]
𝑡𝑜𝑝𝑟𝑒𝑑𝑖𝑐𝑡
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ [𝑦(3,1), 𝑦(3,2),… , 𝑦(3,𝑠)]

…
𝑡𝑜𝑝𝑟𝑒𝑑𝑖𝑐𝑡
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ …

Where 𝑦(𝑑𝑎𝑦,𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛) denotes the traffic status, and each 𝑥(𝑑𝑎𝑦,𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)
is presented with a 𝑘 value of different features as 𝑥(𝑖,𝑗) =
(𝑓(𝑖,𝑗,1), 𝑓(𝑖,𝑗,2),. . . ,𝑓(𝑖,𝑗,𝑘)).

[(𝑓(1,1,1),… , 𝑓(1,1,𝑘)),… , (𝑓(1,𝑠,1),… , 𝑓(1,𝑠,𝑘))]
𝑡𝑜𝑝𝑟𝑒𝑑𝑖𝑐𝑡
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ [𝑦(2,1), 𝑦(2,2),… , 𝑦(2,𝑠)]

[(𝑓(2,1,1),… , 𝑓(2,1,𝑘)),… , (𝑓(2,𝑠,1),… , 𝑓(2,𝑠,𝑘))]
𝑡𝑜𝑝𝑟𝑒𝑑𝑖𝑐𝑡
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ [𝑦(3,1), 𝑦(3,2),… , 𝑦(3,𝑠)]

…
𝑡𝑜𝑝𝑟𝑒𝑑𝑖𝑐𝑡
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ …

We separate the continuous features from the categorical ones from
these output sequences and apply a normalization technique to the
continuous ones.

5.1.2. Normalization
Normalization is the pre-processing stage that takes an important

role in manipulating large and sparse datasets. This approach aims to
equalize the contribution of each feature by scaling or transforming
the data before it becomes used for further stages (Singh & Singh,
2020). The performance of data-driven approaches depends upon the
data quality to obtain a generalized predictive model for a specific task.
Therefore, many normalization techniques improve the performance
of neural network-based architectures, namely Min–max, Z-score, and
Decimal scaling. Min–max normalization, the widely used one, per-
forms a linear transformation on the original data. Suppose that 𝑚𝑖𝑛𝑓
and 𝑚𝑎𝑥𝑓 are the minimum and maximum values for the feature
𝐹 . Min–max normalization maps a value 𝑣 of 𝐹 to 𝑣′ in the range
[𝑚𝑖𝑛𝑓 ′, 𝑚𝑎𝑥𝑓 ′] by computing:

𝑣′ =
𝑣 − 𝑚𝑖𝑛𝑓

𝑚𝑎𝑥𝑓 − 𝑚𝑖𝑛𝑓
× (𝑚𝑎𝑥𝑓 ′ − 𝑚𝑖𝑛𝑓 ′) + 𝑚𝑖𝑛𝑓 ′ (11)

The final output of this phase is then a group of normalized con-
tinuous features (using Eq. (11)) and categorical feature sequences of
a fixed size 𝑠 to be used in the next step of our approach. Instead of
using time as a continuous feature, we propose to extract meaningful
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temporal information related to traffic dynamics, e.g., the hour of the
day on which day of the week. Therefore, we automatically benefit
from detailed information about each observation.

5.2. Phase 2: Model training

The success of LSTM-based neural networks with time-series data
is owing to their ability to capture long-term temporal dependencies.
We introduce an improved version of the Bi-directional LSTM neural
network architecture in the following. Furthermore, we adopt the
categorical feature embedding representation as a powerful technique
to improve the efficiency of the proposed approach.

5.2.1. Embedding
Embedding is a data representation technique (Grohe, 2020) that

has been extensively used recently because of data on a large scale
provided by road networks. This technique produces low-dimensional
continuous vector representations of the high-dimensional categorical
inputs that improve the performance quality and speed up the train-
ing process for the model (Ounoughi et al., 2021). For example, the
Hour_of_ the_day is a high cardinality categorical feature, which is
crucial in accurately ascertaining the variation in road traffic behavior
during the day to predict future traffic patterns.

Fig. 2 shows how we concatenate these embeddings with the rest
of the normalized continuous features in one layer to feed them all to-
gether into the training process of a (0… 𝑛) stacked Bi-directional LSTM
layer. We designed these latter to take past and future information
by combining both the forward-pass and backward-pass of the LSTM
network.

5.2.2. Bi-directional LSTM
We propose to replace the default 𝑡𝑎𝑛ℎ activation in Eqs. (3) and (6)

of the Bi-LSTM layer with two more sophisticated activation functions
(detailed in Section 6). We claim that using ELU and Leaky ReLU
instead of other non-linear activations, e.g., tanh, ReLU, would help us
to enhance precision in extracting sequential patterns from time-series
input data with better efficiency. Due to the simple definition of ReLU
as 𝑚𝑎𝑥(0, 𝑥), it suffers from a ‘‘dying problem during the training step’’.
A dead ReLU will not perform any learning on the layers below it since
0 will be multiplied by the accumulated gradient when the weights are
updated. Thus, it results in dead neurons. Leaky ReLU and ELU will
always have a slope to allow the gradients to pass. The ELU activation
function can produce negative outputs, which could aid the recurrent
network in establishing weights and biases in the right direction. Thus,
it allows a swifter model’s convergence and increases its accuracy by
allowing activation values to be returned instead of letting them equal
0 when computing the gradient (Ounoughi et al., 2021). Leaky ReLU is
advantageous since it reduces the concern about initializing the neural
network. Since we seek to improve our Bi-LSTM’s time efficiency, Leaky
ReLU can speed up training. Which can be accelerated by having ’mean
activation’ close to 0.

Later, we attach the output of the stacked Bi-directional LSTM layers
to an 𝑠-sized output activation layer. Then, to evaluate the model,
we train and update the model using a back-propagation algorithm as
an optimizer and a loss function to minimize the prediction error. Fi-
nally, we evaluate the model’s predicted sequences and compare them
with the actual traffic sequences using two constantly used evaluation
metrics.

Algorithm 1 summarizes all the steps of Grizzly traffic prediction
approach. First, we identify the sequence size 𝑆𝑒𝑞_𝑠𝑖𝑧𝑒 and prepare
the sequences for the pre-processing step (line 1–2), i.e., Normaliza-
tion for the continuous features. Once the dataset has been split into
train and test sets, we separate the categorical (Scat) and continuous
(Scont) sequences from each other (lines 3–7). After that, we feed
each categorical feature 𝑥 to the Embedding layer with its embedding
dimension 𝑣_𝑠𝑖𝑧𝑒, which is the size of the weights vector for each

Algorithm 1: Grizzly: traffic prediction
Require: 𝐷: a Time series multi-features dataset;

Where 𝐷 = {𝑥1, 𝑥2,… , 𝑥𝑚} and each observation 𝑥𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 is
collected each 𝐼 time
interval (e.g. 5 min.).

Ensure: 𝑌 : the prediction of future traffic values;
Where 𝑌 = {�̂�1, �̂�2,… , �̂�𝑚} and each 𝑦𝑖 is the traffic sequence to be
predicted.

1: Seq_size ← 24 ∗ 60∕𝐼
2: Sequences ← 𝑆𝑝𝑙𝑖𝑡(D, Seq_size)
3: Fix the normalization 𝑟𝑎𝑛𝑔𝑒
4: Scont ← 𝑀𝑖𝑛𝑀𝑎𝑥_𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(Sequencescont, 𝑟𝑎𝑛𝑔𝑒)
5: Scat ← Sequencescat
6: Traincat, Testcat ← 𝑆𝑝𝑙𝑖𝑡𝑇 𝑟𝑎𝑖𝑛𝑇 𝑒𝑠𝑡(Scat)
7: Traincont, Testcont← 𝑆𝑝𝑙𝑖𝑡𝑇 𝑟𝑎𝑖𝑛𝑇 𝑒𝑠𝑡(Scont)
8: for all x in Traincat.F do
9: Fix the Embedding vector size 𝑣_𝑠𝑖𝑧𝑒

10: Emb[x] ← 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝑙𝑎𝑦𝑒𝑟(x, 𝑣_𝑠𝑖𝑧𝑒)
11: end for
12: Concat ← 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒_𝑙𝑎𝑦𝑒𝑟([Emb, Traincont])
13: Model.add(Concat)
14: 𝑖 ← 1
15: Fix the LSTM output activation 𝑜𝑢𝑡𝑝𝑢𝑡_𝑎𝑐𝑡
16: Fix the layers number of Bi-LSTMs 𝑏𝑖_𝑙𝑎𝑦𝑒𝑟𝑠_𝑛𝑢𝑚𝑏𝑒𝑟
17: while 𝑖 ≤ 𝑏𝑖_𝑙𝑎𝑦𝑒𝑟𝑠_𝑛𝑢𝑚𝑏𝑒𝑟 do
18: Model.add(𝐵𝑖_𝐿𝑆𝑇𝑀_𝑙𝑎𝑦𝑒𝑟(𝑜𝑢𝑡𝑝𝑢𝑡_𝑎𝑐𝑡))
19: 𝑖 ← 𝑖 + 1
20: end while
21: Model.add(𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑙𝑎𝑦𝑒𝑟(𝑆𝑒𝑞_𝑠𝑖𝑧𝑒))
22: Model.Train(𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟, 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)
23: for all sequence in [Testcat,Testcont] do
24: �̂� ← Model.predict(sequence)
25: 𝑌 .append(�̂�)
26: end for
27: return 𝑌

discrete category of 𝑥 (lines 8–11). Afterward, we concatenate the
output of the embedded features with the remainder of the values of
the normalized continuous features (line 12). Finally, we train the fully
connected layers of our Bi_LSTM stacked layers architecture given the
concatenated inputs followed by an 𝑆𝑒𝑞_𝑠𝑖𝑧𝑒-neuron activation layer
(line 21). To assess the performance (line 18), we can compare the
ground-truth speeds of the test set versus the predicted ones yielded
by Grizzly (lines 23–26) using several evaluation metrics.

6. Experimental evaluation

Here we evaluate the performance of Grizzly versus the pioneering
time-series traffic prediction methods. The performance evaluation is
based on the prediction errors of each model on two large-scale real-
world sensor datasets. In the following, we usher by describing the
considered datasets.

6.1. Datasets description

Grizzly is designed to handle large-scale high-frequency traffic time-
series datasets that contain an enormous variety of previous obser-
vations of the status of the road network. Table 3 summarizes the
datasets used for the evaluation process. Both datasets are publicly
available released by previous works (Li et al., 2018; Zhang, Chang,
et al., 2020).2

2 Datasets available at: https://github.com/liyaguang/DCRNN.
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Table 3
Description of datasets used during the experimental evaluation.

Dataset PEMS-BAY METR-LA

Time window 5 min 5 min
Time span 6 months 4 months
Features Speed, timestamp Speed, timestamp
Speed unit mph km/h
#sensors 325 207
#training_set 36,465 23,974
#validation_set 5,209 3,425
#testing_set 10,419 6,850

• PEMS-BAY (Caltrans Performance Measurement System3): pro-
vides a consolidated database of real-time traffic data from over
39,000 individual detectors like inductive loop sensors, magnetic
sensors, or microwave radar sensors by Caltrans on California
freeways, as well as other partner agency datasets. In our experi-
ments, we look at 325 specific loop detector data in the Bay Area
collected each 5-min time interval during 6 months from January
1st, 2017 to May 31st, 2017.

• METR-LA: is a traffic information dataset collected from loop
detectors on the highway of Los Angeles County. Our experiments
look at 207 particular loop detector data collected with a 5-min
time window during 4 months from March 11st, 2012 to June
31th, 2012.

For both considered datasets, two other temporal categorical fea-
tures (the Hour of the Day and Day of the week) are collected alongside
the traffic speed feature to extract better the temporal dependencies
patterns. For example, Fig. 3 depicts the decrease in traffic speed during
morning and evening rush hours, e.g., between 4 pm to 6 pm, the mean
speed decreases to less than 50 km/h for the METR-LA dataset, c.f.,
Fig. 3(a). Fig. 4, on the other hand, sheds light on how the traffic
slows down around weekdays more than on weekends, e.g., most of
the observations during the weekends have a mean speed of more than
65 km∕h for the PEMS-BAY dataset, c.f., Fig. 4(b). Therefore, according
to the applied analysis, each Hour_of_the_day and Day_of_the_week are
of utmost importance to determine the variation between road traffic
behaviors during different weekdays and times of the day, which would
efficiently enhance the prediction accuracy of the future status.

6.2. Experimental setup

Our experiments were performed using Ubuntu 18.04.3 LTS (CPU:
Intel Xeon Processor (Skylake) × 8, RAM: 16 GB), with Python (Version
3.7) and Keras (Version 2.3.1) installed.

To efficiently gauge the performance of the proposed Grizzly ap-
proach, we predicted the future road segments’ speed for the next
15 min, 30 min, and 60 min. We determine the size of the time-series
sequence after analyzing the different road networks. More specifically,
the time-series sequence’s size is determined based on the temporal
characteristic of the speed data. For example, the size of the time-series
sequence may depend on the time interval between speed data samples
and the specific time of the day of the type of the day itself (Figs. 3 and
4).

As long as both datasets’ speed information is collected within a 5-
min time window, the sequence-to-sequence architecture would have
the respective sequence sizes (3, 6, 12). In both considered datasets,
we apply a Min–max normalization technique implemented by the
Scikitlearn python library (Pedregosa et al., 2011) with a range between
0 and 1 on the speed feature values. We aggregate 70% of data training,

3 http://pems.dot.ca.gov

Fig. 3. Speed vs. Hour of the day across all sensors.

Fig. 4. Speed vs. Day of the week across all sensors.

20% for testing, and the remaining 10% for validation, where we adopt
the same data split ratio as in Li et al. (2018).

Before proceeding to the model training process phase, we ex-
tract the embeddings for the set of categorical features. We fit the



Expert Systems With Applications 236 (2024) 121325

9

C. Ounoughi and S. Ben Yahia

Table 4
Trainable Parameters for Grizzly Model Complexity.

Dataset Task Trainable params

METR-LA
60 min 148,525
30 min 103,335
15 min 101,604

PEMS-BAY
60 min 148,525
30 min 140,839
15 min 136,996

Hour_of_the_day, Day_of_the_week and Sensor_ID into R1, R1 and R1

respectively, for both considered datasets. The embedding outputs with
the remainder of the normalized continuous speed values are concate-
nated at a single Concatenate layer (Fig. 2). Output data from the latter
is fed to the learning architecture for the training process.

For the PEMS-BAY dataset, we adopt the use of a fully connected
network of one Bi-LSTM ELU activation layer. To do so, we replace
the 𝑡𝑎𝑛ℎ in Eqs. (3) and (6) with ELU Eq. (9). We set the number of
units equal to 128 and the output layer of the sequence sizes (3, 6, 12)
neurons. We also use the Leaky ReLU activation function (cf. Eq. (10))
for the three prediction tasks. For the METR-LA dataset, we adopt the
use of a fully connected network of three Bi-LSTM sigmoid activation
layers. We also replace the tanh in Eqs. (3) and (6) by sigmoid Eq. (8).
These stacked layers are with the respective sizes of (64, 32, 32) units
connected to an output layer of the dimensions of the sequence (3, 6,
12) neurons with the Linear activation function Eq. (7) for the three
prediction tasks. The Adam optimizer (Kingma & Ba, 2014), as well as
Mean Absolute Error (MAE) Eq. (12) as the loss function are used to
fine-tune the training model within 60 epochs for both datasets.

Moreover, the model complexity of Grizzly is inherently associated
with the number of trainable parameters, which plays a crucial role
in shaping its behavior. This aspect is captured in Table 4, which
presents the relationship between the model’s complexity and the
varying number of trainable parameters across different prediction
tasks and datasets. These numbers exemplify the intricate relationship
between model complexity and the number of trainable parameters,
further emphasizing the underlying mathematical and logical opera-
tions required to implement the Grizzly model successfully. The careful
consideration of these complexities contributes to the robustness and
efficiency of the proposed approach.

6.3. Baseline methods for comparison

To assess the performance of our proposed Grizzly approach, we car-
ried out a comparison with the pioneering time-series traffic prediction
baseline methods scrutinized in Section 2. The baseline methods are the
following:

• ARIMAkal: an Auto-Regressive Integrated Moving Average model
with Kalman filter, which is the classical baseline method for
time-series prediction (implemented by Li et al., 2018)

• STGCN (Yu et al., 2018): a convolutional structure built using
graphs, enabling rapid training with fewer parameters.

• DCRNN (Li et al., 2018): a graph-based deep learning architec-
ture using an encoder–decoder architecture to extract temporal
dependencies and bidirectional random walks to capture spatial
correlations.

• GWNet (Wu et al., 2019): an adjacency matrix-based representa-
tion of the road network that uses the on-road distance between
sensors to predict future traffic speeds.

• SLCNN (Zhang, Chang, et al., 2020): a graph-structured CNN
architecture that captures the dynamic spatial features and tem-
poral dependencies in time-series data.

6.4. Evaluation metrics

The performance of our model versus the baseline models is evalu-
ated using two regression metrics: the mean absolute error (MAE) and
the root mean squared error (RMSE), which are defined respectively in
Eqs. (12) and (13).

𝑀𝐴𝐸 = 1
𝑛

𝑛∑
𝑖=1

|𝑦𝑖 − �̂�𝑖| (12)

𝑅𝑀𝑆𝐸 =

√√√√1
𝑛

𝑛∑
𝑖=1

(𝑦𝑖 − �̂�𝑖)2 (13)

Where 𝑦𝑖 stands for the real observed traffic value and �̂�𝑖 for the
predicted traffic value by the model. Smaller values indicate better pre-
diction performance for both metrics. Both metrics gauge the absolute
deviation between predicted values and actual values.

6.5. Results and discussion

Table 5 shows the obtained values for both MAE and RMSE metrics
by the Grizzly approach compared to its competitors. In addition, we
analyze the models’ performance under different prediction tasks of
60 min., 30 min., and 15 min., representing another degree of efficiency
in the long run. Grizzly outperforms all the pioneering baseline meth-
ods using the PEMS-BAY dataset. However, for the METR-LA dataset,
Grizzly performances are not outperforming those of SLCNN in terms
of MAE. Nevertheless, Grizzly surpasses all the other four competitors.
An in-depth analysis can reveal exceptionally gainful insights:

1. Among all the baselines, ARIMAkal has the worst performance.
Compared to the Non-parametric-based approaches, traditional
statistical parametric-based methods cannot handle complex or
large-scale Spatiotemporal traffic data.

2. GWNet method achieves better results than convolutional graph-
based methods on the PEMS-BAY dataset, while the SLCNN
outperforms it on the METR-LA dataset. Thus, we can con-
clude that GWNet and SLCNN methods are more practical for
graph-structured data since they capture spatial information
better.

3. The results of GWNet and SLCNN methods, respectively, out-
perform the results of STGCN and DCRNN, which extract Spa-
tiotemporal features simultaneously. This is generally because
both methods avoid exploiting the graph structure and use only
the pre-defined available graph structures.

4. Different speed units (km/h and mph for METR-LA and PEMS-
BAY, respectively) are responsible for the difference in error
results between both datasets.

5. Better improvements are achieved by our proposed Grizzly. It
underscores that embedded temporal features contributed to
better capturing the inherent temporal dependencies. In doing
so, we helped the Grizzly architecture better manage the time
series of traffic data.

Figs. 5 and 6 compare the performance of Grizzly when varying
sequence sizes (3, 6, and 12) of 20 random roads sensors from both
considered datasets. It depicts that whenever the size of the sequences
goes bigger, the MAE and RMSE values increase. Although the average
values are not large, the variation between the different model perfor-
mances is evident. Accordingly, the Grizzly approach performs better
when considering smaller sequences. In addition, the model performs
differently for different sensors. Yet, simultaneously, the range of errors
is not remarkably high, which may be due to the unusual behavior of
the sensors, their locations, or different traffic factors, as illustrated
in Fig. 7. This can explain the presence of outliers that affect the
prediction but may not be predictable or detectable.
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Table 5
Performance comparison of different approaches for traffic speed prediction.

Models
Evaluation

PEMS-BAY METR-LA

MAE RMSE MAE RMSE

60 min 30 min 15 min 60 min 30 min 15 min 60 min 30 min 15 min 60 min 30 min 15 min

ARIMAkal 3.38 2.33 1.62 6.50 4.76 3.30 6.90 5.15 3.99 13.23 10.45 8.21
STGCN 2.49 1.81 1.36 5.69 4.27 2.96 4.59 3.47 2.88 9.40 7.24 5.74
DCRNN 2.07 1.74 1.38 4.74 3.97 2.95 3.60 3.15 2.77 7.59 6.45 5.38
SLCNN 2.03 1.72 1.44 4.53 3.81 2.90 3.30 2.88 2.53 7.20 6.15 5.18
GWNet 1.95 1.63 1.30 4.52 3.70 2.74 3.53 3.07 2.69 7.37 6.22 5.15

Grizzly 1.74 1.46 1.20 3.68 3.13 2.45 3.43 2.98 2.38 6.29 5.97 4.88
Improvement (%) −10.76 −10.42 −7.69 −18.58 −15.40 −10.58 +3.79 +3.35 −5.92 −12.63 −2.92 −5.24

Fig. 5. Grizzly performance evaluation of 20 random sensors with different sequence
sizes (MAE).

Fig. 6. Grizzly performance evaluation of 20 random sensors with different sequence
sizes (RMSE).

Fig. 7 shows the predicted speed values using Grizzly approach
versus the actual speed of a random sensor from both PEMS-BAY
and METR-LA datasets with a 5 min frequency pad. It is visible that
both actual and predicted curves are almost overlapping. However,
by analyzing the figure, our proposed approach is less accurate with
detecting some outliers. Nevertheless, the comparative analysis puts
forward that the Grizzly model is more effective with the non-linear
large-scale traffic data and contributes to improving ITS performances.

Table 6
The computation time comparison of different approaches for the
traffic speed prediction.

Dataset Model Training (s/epoch)

PEMS-BAY

STGCN 51.35 s
DCRNN 650.64 s
SLCNN 21.55 s
GWNet 182.21 s
Grizzly-15 min 6 s (178 μs/step)
Grizzly-30 min 6 s (169 μs/step)
Grizzly-60 min 5 s (126 μs/step)

METR-LA

STGCN 19.10 s
DCRNN 249.31 s
SLCNN 9.30 s
GWNet 53.68 s
Grizzly-15 min 8 s (337 μs/step)
Grizzly-30 min 1 s (5 ms/step)
Grizzly-60 min 3 s (4 ms/step)

6.6. Computation time

Table 6 shows the computation times of Grizzly with its variant
architectures (15, 30, and 60 min) as well as those of its competitors
on both PEMS-BAY and METR-LA datasets. Note that the average time
consumption of our architectures is about 5 s per epoch. Compared with
the pioneering models, Grizzly’s training time was better. The results
reveal that Grizzly is three times faster than SLCNN using PEMS-BAY
and two times faster using METR-LA, while it shows less prediction
performance (Table 5). DCRNN is more sluggish than other methods
because of its intensive sequence learning in recurrent networks. In
contrast to the second-best model, GWNet, shown in Table 5, Grizzly
performs favorably compared to GWNet for the training of long-term
traffic, e.g., 60 min ahead (Table 6). Grizzly is an appropriate option
if time consumption minimization is favored, as it yields superior
performance and maintains high efficiency. It is worth noting that once
the model is trained, predicting speed values for all segments in the
network is a straightforward task that requires very little computation
time. Even for larger road networks, the prediction time is typically
only a few seconds. A faster training process can also result in faster
prediction or inference times.

7. Conclusion and future work

This paper highlighted the benefits of integrating sequence-to-
sequence architectures and data pre-processing techniques (Normal-
ization and Embeddings) with bi-directional LSTM neural networks to
provide traffic predictions for ITS. Non-linearity and large-scale time-
series traffic data problems were mainly addressed. In addition, we
thoroughly investigated the performance of the developed approach
compared with the traditional time series prediction model ARIMA
and the Deep learning graph-based most performing models in the
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Fig. 7. Actual vs. predicted 5 min frequency test values of a random sensor.

literature STGCN, DCRNN, GWNet, and SLCNN in terms of MAE and
RMSE values. Experiments on two real-world, large-scale datasets with
three different time interval regression tasks showed that our proposed
approach outperforms the baseline models regarding precision and
computation time.

Limitations and future research direction

Even though this work is worth highlighting, it can still be im-
proved. Upon analysis of the predictions of our proposed approach,
we discovered that it is not capable of detecting outliers (or trend
events). The primary reason for this failure is that these events do
not frequently occur in the training dataset. Thus, the model was
unable to learn much about them. These outliers often pose problems
and influence the performance of the prediction methods. They can
generally be identified as gross errors or true outliers. Gross errors
are faulty observations, such as measurement, recording, or typing
errors. Hampel et al. (2011) estimated that the frequency of gross errors
in ‘‘row-data’’ varies from 1% to as high as 10%, whereas in ‘‘highly
reliable data’’, there are hardly any. However, if the observation is not
a gross error, it must be considered a true outlier. In other words, it is
an accurate observation that was unexpected.

One of the problems with outliers is that they can be difficult to
detect within time-series data. The Matrix profile (Yeh et al., 2016) is
a method that can be used to identify patterns and anomalies within
time series. It is a vector that stores the z-normalized Euclidean distance
between any sub-sequence within a time series and its nearest neighbor.
This algorithm is agnostic to domains, fast, supplies an exact solution,
and only requires one parameter (window size). Future work will
integrate tuning an automated detection algorithm (i.e., Matrix Profile)
into our approach to identify outliers across thousands to billions of

observations. If abnormal behavior is determined, the model will be
updated accordingly. This algorithm would give the new outlier a much
smaller weight than a standard data point and gradually increase it the
longer it persists until it has equal weight with non-anomalous data. In
that way, the system can adapt to permanent, substantial changes in a
feature’s normal behavior while also alerting the model of the change
at the moment it occurs.

A promising area for future research is implementing the Grizzly
model on FPGA or Ti-developed kits. Although our model’s complexity
is not a barrier to deployment on such platforms, there are still un-
certainties regarding its real-time performance and accuracy on these
devices. As a next step, we intend to explore the feasibility of creating
a TinyML version of the Grizzly model that can be deployed on FPGA
or Ti-developed kits. Our objective will be to compare the performance
and accuracy of this hardware-based implementation to its software-
based counterpart. We anticipate this study will offer valuable insights
into the viability of deploying our model in hardware and its potential
benefits.

Furthermore, we aim to explore data fusion techniques to aggregate
heterogeneous information, e.g., audio, images, and videos collected
from distinct sources (microwave sensors, radars, cameras, etc.). Doing
so would increase the accuracy of the long-term prediction with a
bigger sequence size and exploit the enormous variety of features
available in each data source to identify better any outliers that may
affect our results.
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Abstract. Traffic congestion is of utmost importance for modern soci-
eties due to population and economic growth. Thus, it contributes to envi-
ronmental problems like increasing greenhouse gas emissions and noise
pollution. Traffic signal control plays a vital role in improving traffic flow
in urban networks. Hence, optimizing cycle timing at many intersections
is paramount to reducing congestion and increasing sustainability. In this
paper, we introduce an alternative to conventional traffic signal control,
namely EcoLight, that provides significant improvements in noise levels,
CO2 emissions, and fuel consumption, resulting from the incorporation of
future noise predictions. A Sequence to Sequence Long Short TermMemory
(SeqtoSeq-LSTM) prediction model, combined with a deep reinforcement
learning algorithm, allows the system to achieve higher efficiency than its
competitors based on real-world data from Helsinki, Finland.

Keywords: CO2 emissions · Congestion · Fuel consumption ·
Reinforcement learning · SUMO Simulation · Traffic signal control ·
Urban noise

1 Introduction

Traffic congestion levels have been rising precipitously in the last few years due
to an imbalance between the rise in travel demand and the availability of trans-
portation services. According to [18], the cost of congestion in cities such as
Stuttgart and Paris is around 2% of their GDP. The general rule is that cities
should develop strategies based on their visions and goals to reduce congestion.
Implementation of new infrastructure is often slow and costly. Therefore, urban
planners and policymakers are interested in making existing infrastructure more
efficient [16]. One of the proposed hypotheses is that “An improved traffic light
system will lead to better traffic management and, therefore, more peaceful urban
areas” [1]. Hence, optimizing cycle timing at intersections can potentially con-
tribute significantly to reducing congestion and improving environmental qual-
ity at the same time. Real-time control of traffic signals plays a vital role in
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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reducing congestion by responding in real-time to several factors, including con-
stantly changing traffic network dynamics. Moreover, the rapid increase in trans-
port requirements has brought challenges to the sustainable development of our
society concerning emissions and energy consumption induced by traffic. The
European Environment Agency (EEA) reports that road traffic noise continues
to be the primary contributor to noise pollution. Around 100 million people are
exposed to road traffic noise above 55 decibels (dB) in the 33 member countries of
the EEA. Among them, 32 million (about one-third) are subjected to extremely
high levels of noise exceeding 65 dB [8]. Furthermore, according to the World
Health Organization (WHO), exposure to loud noise causes high blood pressure,
hearing loss, heart disease, sleep disturbances, and stress. Hence, measuring road
traffic noise is a good indicator of traffic congestion intensity.

Numerous traffic signal control solutions have been used and proposed to
overcome the traffic congestion issue. Worthy of mentioning, integrated Arduino
in cameras with machine learning (e.g., object detection deep learning algo-
rithms), and genetic algorithms for traffic signal timing optimization to help
experts manage congestion. Recently, researchers have begun investigating rein-
forcement learning (RL) techniques for controlling traffic signals. These tech-
niques appear to be more effective than traditional transportation methods. Its
main advantage is that it learns how to take real-time action by observing the
environment’s reaction to previous actions.

One major issue of most RL-based traffic signal control approaches is that
the setting considers, in each phase, only mobility and current traffic conditions
when designing the next control strategy. We elaborate on these two character-
istics by integrating two novel aspects into the RL techniques: (i) Sustainability :
is achieved by incorporating noise as an environmental input feature; and (ii)
Proactivity : is achieved by predicting future levels of noise so that the model
is better prepared to make decisions based on current observations as well as
future noise predictions. Therefore, in this paper, we propose a new eco-friendly
RL-based traffic signal control model driven by urban noise traffic prediction,
namely EcoLight. Our proposed approach reduces traffic congestion by reduc-
ing noise levels, CO2 emissions, and fuel consumption. By and large, the main
contributions of EcoLight are as follows:

– At the noise prediction stage, we take advantage of the sequence to sequence
architecture and propose splitting the time-series noise traffic data into fixed-
sized sequences, where the size is determined based on an analysis of road
network traffic behavior. Our method includes building a stacked layers archi-
tecture based on LSTM to extract temporal dependencies from noise data.
Then, by using the past noise sequences as input, we would return a future
traffic noise sequence.

– At the traffic signal control stage, we heavily rely on a deep reinforcement
learning control model that takes as an input traffic-related information, i.e.,
the queue length, average waiting time, the phase, number of vehicles, and
the vehicles’ position at an intersection, besides the traffic noise estimation
to predict the upcoming traffic signal action.
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– We run our simulation experiments on a publicly available dataset of a road
intersection collected in Helsinki, Finland. The harvested evaluation crite-
ria (noise levels, CO2 emissions, and fuel consumption) outperform those
obtained by the pioneering ones in the literature.

The rest of this paper proceeds as follows. In Sect. 2, we scrutinize the related
work that paid attention to both traffic noise prediction and traffic signal control
approaches. As an introduction to traffic signal control, Sect. 3 introduces key
notions that will simplify the understanding of our research goal. Section 4 thor-
oughly describes the proposed EcoLight approach. In the penultimate section,
we present the experimental evaluation and discuss the proposed model’s per-
formance against its competitors. The final section includes a conclusion and
recommendations for future research.

2 Related Work

Modern societies nowadays are characterized by a great deal of noise. In addi-
tion to being a nuisance, it can also negatively impact the environment and
human health. While evidence of noise’s harmful effects is increasing, spatial
understanding of its distribution is limited. This section introduces, first, brief
overview noise prediction methods for traffic congestion enhancement, followed
by methods for traffic signal control.

2.1 Noise Prediction

Noise pollution from road traffic is the most prevalent source of outdoor ambient
noise in Europe. Different prediction models may produce different noise levels
depending on traffic noise’s location and emission sources. At present, very little
research focuses on developing models that help determine the effects of traffic
noise on society. Worth mentioning, Staab et al. [20] used a land-use regression
(LUR) model and context-aware feature engineering to construct a geostatistical
model mapping approach to represent the arrangement of sources and the sur-
rounding environment. In this article, the authors deal with small communities
that have not been adequately mapped in Europe. To improve traffic noise mod-
eling, another solution was proposed by Ahmed et al. [2] that developed a deep
neural network-based optimization approach that integrated the wrapper for the
feature-subset selection (WFS) method. Using this method, weekday noise maps
are created for different times of the day, such as mornings, afternoons, evenings,
and nights. Khan et al. [10] conducted a comparison study between three dif-
ferent noise estimation models used throughout Europe. In this study, the main
focus was to explore potential patterns in the performance of the models for spe-
cific configuration types. Based on vehicular traffic volume, percentage of heavy
vehicles, and vehicles’ average speed, a neuro-fuzzy inference system that identi-
fies at what noise level the traffic (Leq dBA) will be detected has been proposed
by Singh et al. [19]. Comparing it with conventional soft-computing techniques
validates its suitability for planning mitigation measures for both new and exist-
ing roads. Finally, Zhang et al. [29] examined the accuracy of different machine
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learning recurrent architectures for predicting traffic noise using real-life traffic
data with multiple variables. According to the study, using a multivariate bidi-
rectional GRU model (Gated Recurrent Unit) with a many-to-many architecture
achieved the best computation efficiency and accuracy.

The noise generated by traffic is a complex phenomenon. In modeling traffic
noise, large and high-dimensional data are gathered. In this case, deep recur-
rent learning architectures are the best tools for analyzing large datasets and
discovering nonlinear relationships.

2.2 Traffic Signal Control

Traffic signal control is an integral part of an intelligent transportation sys-
tem that improves traffic efficiency. However, some challenges accompany these
systems, such as protecting against high roadside cameras, keeping malicious
vehicles from getting in, and preventing single points of failure. Literature has
examined several traffic signal control systems to cope with those challenges.
Two different approaches have been developed: a fixed-time (rule-based) strat-
egy and a traffic-responsive strategy [13].

As part of a fixed-time strategy, several signal plans (e.g., from 8:00 to 10:00
am) are predetermined based on historical traffic flow data. Thus, a traffic signal
is periodically changed per the predetermined signal plans. Worth mentioning,
Le et al. [12] proposed a decentralized traffic signal control using a Back-pressure
scheme for urban roads networks, which has received widespread recognition as
a method for achieving an optimal throughput control policy in data networks.
They concluded that the proposed scheme of fixed cycle times and cyclic phases
stabilizes the traffic for any possible transportation demand. However, since such
traditional transportation systems do not work in real-time, they can only be
used when the demand is relatively stable within each time interval.

By using current traffic information, the traffic-responsive strategy overcomes
the above limitation. In this strategy, the major challenge is forecasting incom-
ing vehicles or traffic status. Bravo et al. [5] proposed a city-wide traffic control
management program that assists traffic managers in making decisions, namely
HITUL. Utilizing meta-heuristic algorithms and nature-inspired techniques, the
HITUL system uses different technologies to gather data and optimize traffic sig-
nal priorities using existing traffic information. Various reinforcement-learning
methods have recently been proposed to improve the traffic signal control and
achieved better results than traditional transportation methods. Worth men-
tioning, IntelliLight [24], an RL-based method with an extended phase-sensitive
gate that provides an overall measure of traffic signal control performance based
on factors such as the waiting time and the number of vehicles at intersections.
Presslight [22] is another RL-based method that uses the current phase, the
number of vehicles on outgoing lanes, and the number of vehicles on incoming
lanes as the state, and uses the Max-pressure (MP) as the reward for achieving
coordination between neighbors. Colight [23] utilizes graph attentional networks
to facilitate communication. In this case, it uses the attention mechanism to rep-
resent neighboring information to achieve the goal of cooperative traffic signal
control.
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Table 1. Representative traffic signal control methods.

Citation Method Simulator Road net. (#
inters.)

Evaluation

[12] Back-pressure scheme SUMO Real (2) Avg. travel time

[5] Meta-heuristic algorithm SUMO Real (961) Emissions, Waiting time

[24] RL with extended

phase-sensitive gate

SUMO Synthetic (1), Reward, Queue Length,

Real (24) Delay, Duration

[22] RL with MP-based
reward

CityFlow Sythetic (1), Avg. travel time

Real (3, 5, 16)

[23] RL with graph
attentional networks

CityFlow Real (196) Avg. travel time

[25] RL trained with
Demonstrations

CityFlow Real (1) Travel time

[15] RL with object detection Pygame Synthetic (1) Avg. waiting time

[3] Queue-length responsive Real env Real (1) Avg. waiting time

[7] RL-FRAP with MP
coordination

CityFlow Real (2510) Avg. travel time,

Throughput

[26] RL-FRAP with MAML CityFlow Real (1) Travel time

[28] MUMOMAML with
clustering for Parameter
initialization

CityFlow Real (1, 5, 16) Avg. travel time

DemoLight [25] learns a stochastic policy (demonstrations) that maps states
to an action probability distribution based on a generated analogy between
agents and humans. FRAP [30] is a reinforcement learning-based method
designed to learn the inherent logic of the traffic signal control problem, called
phase competition. The advantage of this method is that it combines similar
transactions irrespective of the intersection structure or local traffic conditions.

ThousandLight [7] is one of the most recent works that has been tested on
the real-road network with 2510 traffic signals. By leveraging the ’pressure’ con-
cept, they developed RL-FRAP-based agents capable of signal coordination at a
regional level. Furthermore, the authors demonstrated that individual agents
can achieve implicit coordination through reward design, thereby decreasing
dimensionality. Another RL-FRAP with model-agnostic meta-learning (MAML)
is proposed in [26]. This model is able to transfer knowledge between different
intersections by focusing on action spaces and state spaces instead of traffic flow,
for example, training an agent at a four-way intersection and testing it at a five-
way intersection. To improve the generalization ability of traffic signal control
models, [28] proposed a meta-RL framework called GeneraLight. GeneraLight
enhances generalization performance by combining flow clustering parameters
initialization with multi-modal MAML (MUMOMAML). Table 1 summarizes
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the comparison of factors that influence the evaluation of traffic signal con-
trol strategies: method, simulation environment, road network, and evaluation
metrics. Recent studies have shown promising results when using reinforcement
learning techniques for traffic signal control. However, the use of these techniques
relies only on the current traffic conditions. Therefore, through our approach, we
contribute several novel sustainable and proactive aspects to this line of research.

3 Formalization of the Problem

This section introduces the fundamental notions used to formalize the traffic
signal control problem.

A road network consists of several junctions indexed by J . Each junction
j ∈ J consists of a number of in-roads, Rj . Note that the Rj are mutually
disjoint, and denote R = ∪j∈JRj . Multi-lane roads with different turns, such
as left- or right-turn-only lanes, are represented by multiple in-roads. Therefore,
in-roads may model one or more lanes of traffic flow. A junction may serve
different combinations of in-roads at the same time. It refers to service phases
when several in-roads are maintained simultaneously. For a junction j, a service
phase can be represented as a vector σ = (σr, r ∈ j), where σr is the rate at
which cars at j can be serviced by the in-road r. Specifically, σr > 0 if the in-road
r is green during phase σ, or σr = 0 otherwise. Accordingly, at each time step
t, the system has to determine how much time it will spend serving each phase
in Sj over the next interval, with the constraint that each phase must last for
some non-zero length of time. Where Sj denotes the set of phases at junction j.

4 EcoLight Approach

Deep reinforcement learning has proven to be a promising method for control-
ling traffic signal. By extending the previously proposed reinforcement learning
solutions, we improve the robustness of the traffic signal control system by using
future traffic noise predictions. Our proposed traffic signal control driven by noise
prediction, namely EcoLight, takes advantage of all traffic features along with the
predicted amount of future generated noise. Integrating these sustainable and
proactive aspects into our deep RL Q-network will enhance its decision-making
capabilities and raise the green awareness of the city’s stakeholders. Figure 1
illustrates the final approach framework.

4.1 Traffic Noise Prediction

A time series is an ordered sequence of numerical observations collected and
stored at regular intervals over time. It characterizes by its “Frequency” (the
time separating two consecutive data points). Time-series data must be defined
clearly and with equal frequency. The time intervals we most often deal with for
traffic-related data are 1, 5, 10 to 60 min. According to the sequence-to-sequence
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Fig. 1. EcoLight general framework.

architecture that we adopt in our algorithm, predicting hourly traffic noise would
grant the input and output data as follows:

Past hour
topredict−−−−−−→ Future hour

[x(1,1), x(1,2), . . . , x(1,s)]
topredict−−−−−−→ [y(2,1), y(2,2), . . . , y(2,s)]

[x(2,1), x(2,2), . . . , x(2,s)]
topredict−−−−−−→ [y(3,1), y(3,2), . . . , y(3,s)]

. . .
topredict−−−−−−→ . . .

where x(hour,observation) and y(hour,observation) denote the past and future noise,
respectively. And s represents the number of noise observations in one hour.
Our approach embraces the Sequence to Sequence architecture to pre-process
the time-series noise data. After splitting the time-series traffic data into fixed-
sized sequences, we leverage an LSTM-based architecture to predict traffic noise
of a future specific period (e.g., hourly, daily, etc.). Effectively it pinpoints long-
term temporal dependencies accurately. We train and update the model using the
back-propagation algorithm as an optimizer and a loss function to minimize the
prediction error. Finally, we evaluate the model’s predicted sequences, comparing
them with the actual traffic noise ones using the prevalent evaluation metrics.

4.2 Traffic Signal Control

A reinforcement learning model consists of online and offline stages. A traffic
state can be defined as a combination of five features: queue length, waiting
time, number of vehicles, the vehicles’ positions, and the phase. As soon as the
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prediction algorithm has been executed, the noise prediction will be explored
as a state input to the model. Then, we use the reward to describe how much
that action a has improved the traffic. In summary, the EcoLight approach is
described as follows:
1. Offline stage: the traffic was allowed to flow through the system according
to a fixed timetable to train the model and collect data samples.
2. Online stage: at every time interval Δt, the traffic signal agent will observe
the state s from the environment and take action a according to ε-greedy strategy
combining exploration (random action with probability ε) and exploitation (the
estimation of the potential reward of doing this action given the state s).
3. Memorization: the agent will observe the environment and get the reward
r from it. Then, the tuple (state, action, reward) will be stored in memory.
4. Network update: after several timestamps, the network will be updated
according to the logs in the memory.

Algorithm 1 summarizes the steps of the reinforcement learning approach.

Algorithm 1. EcoLight: Traffic signal control
Require: predicted roads noise: predictions output; Simulation.
Ensure: CO2, Noise, Fuel consumption
1: Initialize action-value function Q
2: Initialize updated Q′

3: Prnoise extracted from predicted roads noise
4: Initialize experience memory M
5: Initialize the Agent to interact with the environment
6: ε ← setting new Epsilon
7: for (i=0; i < N; i++) do
8: while simulation not terminated do
9: Observe state s

10: s ←(Q leng, W time, N V eh, Pos veh, Prnoise)
11: With probability ε select action at

12: Choose QV alues(M), action a
13: Observe reward r, next state s+
14: Store transition(s,a,r,s+) in M
15: end while
16: if UpdateTime then
17: Update(network)
18: Reset Q′ ← Q
19: end if
20: end for
21: Noise, CO2, Fuel consumption ← Evaluation(Simulation)
22: return Noise, CO2, Fuel consumption

5 Experimental Evaluation

This section describes our experimental setup and evaluation process for com-
paring our EcoLight approach to pioneering baselines using real-world data.
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5.1 Dataset

Experiments on real-world data are needed to determine EcoLight ’s efficiency
against the pioneering baselines. The Helsinki Region InfoShare [9] provided
us with a complete database of urban traffic noise in Helsinki. The provided
dataset is composed of several shapefiles [14], which present a storage format
for geographic data between November 2011 and January 2012. These files can
contain lines, points, polylines, and polygons representing different map features.
Therefore, we performed a data transformation process to extract the complete
traffic information, such as road names and noise values. The applied process
can be resumed in these four steps: (i) convert the Helsinki OpenStreet map to
shapefile (Fig. 2); (ii) project the noise file on the shapefile; (iii) using QGIS3,
run the intersection tool to extract the full dataset noise and roads details; and
finally (iv) export the intersection results to .csv file to be used for the noise
prediction model.

Fig. 2. Conversion of the Helsinki OpenStreet map to shapefile.

5.2 Experimental Setups

Our experiments carried out under the configuration of Ubuntu 18.04.3 LTS
(CPU: Intel Xeon Processor (Skylake) × 8, RAM: 16Go), in which Python (3.7)
and Keras (2.3.1) with the simulator SUMO [21] have been installed.

Prediction Settings. We adopt the use of a fully connected network of an
LSTM Tanh activation layer with the size of 40 units and output layer Sigmoid
activation layer for the prediction task. The Adam optimizer [11], as well as mean
squared error (MSE) as the loss function, are used to fine tune the training model
within 100 epochs for the three considered dataset splits according to the period
of the day (Morning, Evening, and Night).

Simulation Settings. “Lonnrotinkatu” is the intersection in Helsinki that is
chosen to create a network in SUMO. First, the simulation presents the environ-
ment, including the state. Then the EcoLight model, according to that state,
will predict the action of the lights then get its reward (as depicted in Fig.
3). Table 2 presents the parameters setting of the model and reward coefficient
hence the simulation. We found out that the action time interval Δt has minimal
influence on the performance of our model as long as Δt is between 5 to 25 s.



214 C. Ounoughi et al.

5.3 Baseline Methods for Comparison

To accurately validate the performance of our proposed EcoLight approach,
we led a comparison with the existing traffic signal control baseline methods;
the Deep RL-based IntelliLight [24], a Max-green-based algorithm Priority-
driven Enhanced Traffic Signal Scheduling Algorithm PETSSA [17], and the
defaults fixed-time-based traffic signal control model in the SUMO simulator
with no intervention BASIC. For the sake of a fair comparison, we tested all
the baseline methods using the same datasets.

5.4 Evaluation

Noise Prediction: The prediction performance of our model compared to
a time-series forecasting baseline are evaluated using the mean squared error
(MSE) and the mean absolute error (MAE) defined respectively by (1) and (2).

Table 2. Simulation settings.

Parameter Value

Model update interval 300 s

Action time interval Δt 5 s

γ for future reward 0.80

ε for exploration 0.05

Sample size 300

Memory length 1000
Fig. 3. Simulation process.

MSE =
1
J

J∑

j=1

(nj − n̂j)2 (1) MAE =
1
J

J∑

j=1

|nj − n̂j | (2)

where J is the size of the tested junctions, nj is the ground-truth junction’s
noise, and n̂j is the predicted noise level yield by the model of the j-th junction.

Traffic Signal Control: Traffic poses a significant burden on society through its
environmental impact, including air and noise pollution and the consumption of
nonrenewable materials. With the use of SUMO, we can measure the generated
pollution and the fuel consumption by using different models and interfaces.
Among the information that can be obtained are: (i) Trip information: sum
of pollutants emitted/fuel consumed by a single vehicle; (ii) Lane emissions:
pollutants emitted and fuel consumed at a lane, aggregated over time; and (iii)
Lane noise: noise generated along a lane, accumulated over a period of time.

Therefore, the traffic signal control performance evaluation of our approach
against the pioneering ones is based on the emitted noise, CO2 emissions, and
fuel consumption of each model on the considered dataset.
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5.5 Results and Discussion

Table 3 glances the noise prediction performance of our SeqtoSeq-LSTM app-
roach versus the AutoRegressive Integrated Moving Average (ARIMA)
[4] non-parametric model using both mentioned evaluation metrics for each
period of the day. This baseline combines the advantages of both autoregressive
and moving average models in stationary random sequence analysis. In prac-
tice, most time-series aren’t stationary. ARIMA overcomes this limitation by
introducing a differencing process [27]. A good look at our results underscores
that our model sharply outperforms ARIMA in predicting future noise with
high improvement percentages for both morning and night periods of the day.
Notwithstanding, the ARIMA model gives a slightly similar performance to
our proposed model for the evening period of the day. In the sequel, we evaluate
the effectiveness of our EcoLight traffic signal control in response to several
environmental and economic factors.

Table 3. Noise prediction performance.

Model MAE MSE

Evaluation Morning Evening Night Morning Evening Night

ARIMA 65.89 2.31 72.94 4439.42 11.24 5537.93

SeqtoSeq-LSTM 1.15 1.07 1.62 6.94 6.39 10.27

Effectiveness over Traffic Noise. From the achieved results (Table 4), the
BASIC shows the worst performance on the considered intersection as it is based
on a fixed-timing strategy that does not adapt according to current and poten-
tial future situation of the traffic. The results underscore that the PETSSA
model reduces better the noise level for both lanes of the fourth in-road of the
intersection. Figure 4(a) depicts the improvement percentages of IntelliLight,
PETSSA, and EcoLight models compared to the BASIC logic strategy. Over-
all, our proposed approach outperforms all the baselines for the produced noise
at the considered intersection.

Table 4. Produced noise performance.

Model Lane11 Lane12 Lane21 Lane22 Lane31 Lane32 Lane41 Lane42

Basic 70.38 69.38 72.86 69.54 68.91 71.57 70.25 70.55

PETSSA 70.20 67.99 72.80 68.28 67.88 70.38 67.24 68.50

IntelliLight 70.09 67.95 72.94 67.92 68.53 70.37 68.02 69.00

EcoLight 68.77 67.90 72.62 67.08 67.52 68.09 69.82 68.92
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Fig. 4. Reduction vs. BASIC.

Effectiveness over CO2 Emission. According to our approach, significant
reductions in CO2 are recorded for the majority of lanes compared to the other
baselines (Fig. 4(b)). Although EcoLight isn’t the best for some lanes, its per-
formance is barely worse than the best achieved by the IntelliLight (Table 5).
As depicted in Fig. 4(b), the improve rates of IntelliLight, PETSSA, and
EcoLight models are comparable to those of the BASIC.

Table 5. Produced CO2 emission performance.

Model Lane11 Lane12 Lane21 Lane22 Lane31 Lane32 Lane41 Lane42

BASIC 74, 579, 545.10 19, 333, 168.50 145, 881, 252.44 16, 540, 482.62 49, 821, 628.05 78, 431, 824.14 18, 681, 756.18 26, 546, 180.90

PETSSA 73, 854, 895.81 18,137,521.04 143, 853, 266.32 15, 721, 922.60 48, 154, 074.55 75, 249, 215.03 17, 950, 045.97 24, 612, 349.73

IntelliLight 73, 954, 895.81 18,137,521.04 142, 853, 266.32 15,521,922.60 49, 254, 074.55 75, 249, 215.03 17,850,045.97 22,712,349.73

EcoLight 62,053,611.60 18, 692, 031.10 106,341,550.52 15, 628, 314.04 41,154,824.82 58,907,941.13 18, 167, 102.88 22, 801, 416.51

Effectiveness over Fuel Consumption. A comparison of the improvement
percentages of fuel consumption by IntelliLight, PETSSA, and EcoLight
models to that of BASIC logic is shown in Fig. 4(c). PETSSA performs the
same as BASIC with no improvement in terms of fuel consumption. We notice
that the IntelliLight model gives a significant power reduction in two differ-
ent lanes on the considered intersection (as shown in Table 6). While operating
EcoLight, vehicular fuel consumption can be reduced by more than 50%.

Table 6. Produced fuel consumption performance.

Model Lane11 Lane12 Lane21 Lane22 Lane31 Lane32 Lane41 Lane42

BASIC 32, 925.02 9, 759.01 105, 496.35 3, 357.92 20, 427.88 55, 544.55 5, 723.92 74, 821.11

PETSSA 32, 925.02 9, 759.01 105, 496.35 3, 357.92 20, 427.88 55, 544.55 5, 723.92 74, 821.11

IntelliLight 32, 157.82 10, 171.84 90, 043.45 3,303.29 20, 325.73 38, 920.39 5,498.10 58, 134.54

EcoLight 26,675.58 8,034.87 45,713.41 6, 717.90 17,691.55 25,323.00 7, 809.22 9,801.32
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6 Conclusion

In this paper, we introduced an eco-friendly traffic signal control driven by urban
noise prediction, namely EcoLight. We address the traffic signal control problem
using a well-designed deep reinforcement learning approach that integrates future
noise predictions. We conduct our experiments on Helsinki’s geographical data.
The yielded results provide evidence for the reliability and sustainability of the
use of future noise predictions. Indeed, carried out experiments underscore the
incapacity of the baselines to perform better in terms of noise, CO2 emissions,
and fuel consumption compared to our EcoLight approach.

We point out a critical future direction to make EcoLight more relevant to
the real world. The EcoLight is designed and tested to consider a simplified case
of one intersection in Helsinki, whereas real-world network design is significantly
more complex. Multiple intersections have been addressed by combining several
reinforcement learning agents at a limited number of intersections. Meanwhile,
sales of electric cars jumped 43% to more than 3.2 million of 370 different car
models in 2020 [6]. This type of vehicles tend to be environmentally friendly and
provide less noise. Future work will seek to improve the reduction by proposing
a hybrid approach that enhances our EcoLight with traffic-related features pre-
diction other than noise, combined with the PETSSA method to benefit from
the Max-green strategy to reduce delay times, thereby limiting congestion levels.
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A B S T R A C T

In recent years, the development of intelligent transportation systems (ITS) has involved the input of various
kinds of heterogeneous data in real time and from multiple sources, which presents several additional
challenges. Studies on Data Fusion (DF) have delivered significant enhancements in ITS and demonstrated a
substantial impact on its evolution. This paper introduces a systematic literature review on recent data fusion
methods and extracts the main issues and challenges of using these techniques in intelligent transportation
systems (ITS). It endeavors to identify and discuss the multi-sensor data sources and properties used for various
traffic domains, including autonomous vehicles, detection models, driving assistance, traffic prediction, Vehic-
ular communication, Localization, and management systems. Moreover, it attempts to associate abstractions
of observation-level fusion, feature-level fusion, and decision-level fusion with different methods to better
understand how DF is used in ITS applications. Consequently, the main objective of this paper is to review DF
methods used for ITS studies to extract its trendy challenges. The review outcomes are (i) a description of the
current Data fusion methods that adopt multi-sensor sources of heterogeneous data under different evaluation
strategies, (ii) identifying several research gaps, current challenges, and new research trends.

1. Introduction

Accelerated evolution in intelligent transportation systems is ob-
tained in response to the increased demand for reliable transportation
networks. Thanks to the deployment of ubiquitous communication
technologies that can continuously measure traffic attributes, e.g., IP,
Bluetooth, surveillance video camera, GPS, smartphones, loop detec-
tors, magnetometers, R- ADARs, social media, and Vehicle to X (V2X),
massive databases of various traffic data have been so far collected [1].
Such sensors measure traffic conditions with different methods and
technologies, resulting in varying degrees of accuracy in their out-
put [2]. E.g., While loop detectors collect frequent traffic information
at a limited set of fixed points along a given road section [3–5],
probe vehicles can provide continuous traffic measurements using GPS
sensors along the same section of the road [6–8].

These heterogeneous sources of data provide different traffic condi-
tions and statistics (quantitative and qualitative [2]) to different ITS
applications (e.g. vehicle navigation [9,10], incident detection [11–
13], traffic prediction [14–16]) to the aim of ease traffic problems
by maximizing their safety and efficiency. However, they still suffer
from many issues worth mentioning (i) real-time heterogeneous data
and (ii) and sensor reliability. First, data are continuously generated
with inconsistent formats and managed in different storage settings,
which render the data unusable directly [17]. Second, sensors are not

∗ Corresponding author at: Department of Software Science, Tallinn University of Technology, Tallinn, Estonia.
E-mail address: chahinez.ounoughi@taltech.ee (C. Ounoughi).

continuously reliable because of technical and operation-related issues
(geometry locations or damages [7]), which cause gaps and missing
information that affects stakeholders’ decision-making. Therefore, a
major challenge is to reduce the data missing, redundancy, delay, and
anomalies phenomenon to improve the robustness and accuracy of the
intelligent transportation systems applications [1].

Multi-source data fusion (MDF) models have grasped an exten-
sive interest in an attempt to deal with these issues. Data fusion is
an advanced technique to combine information coming from several
sources to get more accurate results in an execution of an application
in a way that is hardly performed by the use of individual sources
separately [18]. Some existing papers have tried to summarize the
efforts in data fusion. Table 1 summaries the characteristics of each
data fusion previously conducted survey. We can see that the latest spe-
cific systematic review that covers the data fusion techniques applied
in intelligent transportation systems was proposed in 2011 by Faouzi
et al. [19]. The remaining surveys cover the general application of
the data fusion techniques in different domains such as the internet of
things (IoT) and smart cities. Both [20,21] are very recent and updated
surveys that focus only on the machine and deep learning data fusion
techniques used for different IoT applications that may also concern the
ITS.

https://doi.org/10.1016/j.inffus.2022.08.016
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Table 1
Characteristics of the reviewed literature reviews.

Article Year Coverage Objectives and topics

Faouzi et al. [22] 2011 DF in ITS Data fusion techniques, Challenges, Applications
Alam et al. [23] 2017 DF in IoT IoT applications (Methods and Environment)
Lau et al. [24] 2019 DF general applications Multi-perspectives classification of the data fusion
Ding et al. [25] 2019 DF in IoT DF techniques in smart city applications
Liu et al. [26] 2020 Urban big data Deep Learning data fusion techniques
Meng et al. [21] 2020 DF general applications Machine learning data fusion techniques

This paper performs a thorough systematic literature review on
recent data fusion techniques, applications to extract issues, and chal-
lenges of using these techniques in intelligent transportation systems
(ITS).

By and large, the main contributions of this systematic literature
review are as follows:

• We review a wide range of existing data fusion technologies in
ITS literature, including their primary methods, data properties,
evaluations, and applications.

• We discuss the important insights gleaned from data fusion tech-
niques gathered from the raised research questions using a multi-
perspectives classification methodology.

• We list several significant open issues and future research direc-
tions, which are useful for researchers and practitioners based on
the completed review and in-depth analysis.

We organize the remainder of this paper as follows. First, we
searched articles in multiple databases using a search strategy described
in Section 2. Then, once we collected the articles, they were reviewed
and organized in Section 3, which discusses the significant insights
gathered from the raised research questions. Finally, we provide the
conclusion and suggestions for future research on data fusion tech-
niques within the context of intelligent transportation applications in
Section 4.

2. Methodology and research protocol

This systematic literature review aims to summarize the recent
state-of-the-art data fusion techniques applied to intelligent transporta-
tion systems (ITS) by performing an exhaustive search of papers since
2011 and reporting our main results and findings following the protocol
recommended in the Kitchenham report [27].

2.1. Research questions

The primary research question in this systematic review is: ‘‘What
are the challenges and future directions of data fusion for ITS applica-
tions?’’. To seek to answer this question, we split it into the following
sub-questions:

1. What are the methods and techniques of data fusion used in ITS?
2. What are the different data properties used in data fusion for the

further ITS applications?
3. What are the different methods of evaluation of these tech-

niques?
4. What are the other systems’ architectures and applications that

use the Data Fusion?

2.2. Search strategy

In this section, we identify the potential range of published articles
in the field by an electronic search from ACM digital library, IEEE
Xplore, ScienceDirect, Scopus, and SpringerLink online databases.
Fig. 1 depicts the research methodology steps that were applied to
collect the potential articles. We have considered manifold and distinct
search keys in titles, keywords, abstracts, and the text of articles. The
main search keys were ‘‘data fusion, information fusion, sensor

Fig. 1. Research methodology of the review.

Table 2
Databases search results.
Database Number of articles

ACM digital library 20
IEEE Xplore 85
ScienceDirect 625
Scopus 287
SpringerLink 795

Total 1,812

fusion, and Intelligent transportation system’’ using the following
query (10.11.2020): (‘‘information fusion’’ OR ‘‘data fusion’’ OR ‘‘sensor
fusion’’) AND ‘‘intelligent transportation system’’. The obtained number of
potentially relevant articles was 1,812 articles. Table 2 glances at the
collected articles from each database.

2.3. Inclusion and exclusion criteria

The scope of this systematic review was restricted to the following
criteria to select the potentially relevant papers: (i) because the lat-
est specific systematic review that covers the data fusion techniques
applied in intelligent transportation systems was proposed in 2011 by
Fouzi et al. [19], only papers published since 2011 are included in
this study; (ii) only conference proceedings and journal manuscripts
in the English language were evaluated. Neither ScienceDirect nor
SpringerLink provides information about the type of research paper.
The number of potentially relevant articles, resulting after applying the
inclusion and exclusion criteria, is equal to 471 articles, as shown in
Table 3.
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Table 3
Distribution of database’s search results by type of the research article.
Database Journals Proceedings Total

ACM digital library 2 12 14
IEEE Xplore 21 27 48
ScienceDirect – – 199
Scopus 60 64 124
SpringerLink – – 86

Table 4
Quality assessment criteria.
Criteria Number of

excluded articles

Not related articles 215
Surveys 50
Duplicates 54
Multi-published 3

Total 322

2.4. Quality assessment

According to their study design, each of the identified articles was
chosen according to the following quality assessment criteria: (i) only
papers that apply data fusion techniques in intelligent transportation
systems applications are selected. So, we eliminated surveys from our
study; (ii) excluded duplicated articles from different data sources;
and (iii) excluded multi-published articles in various conferences or
journals. Thus, the number of total excluded articles after applying the
quality assessment criteria is 322 articles (as shown in Table 4).

We systematically reviewed the lists of references from the 50
excluded survey articles and added those research articles that met the
inclusion criteria under the 149 articles. Finally, we selected 26 more
data fusion techniques articles that will be included in our review, i.e.,
175 scientific studies.

2.5. Data extraction

As for the analysis of the selected literature studies, we have ex-
tracted the following data from each: (i) the complete reference; (ii)
classification of the study of application domain; and (iii) the clas-
sification of the data fusion techniques level. Finally, in the sequel
subsections, we usher by tabulating the extracted data to state a general
overview of the scientifically reviewed studies.

2.5.1. Distribution by years of publication
The distribution of the retained studies per publication year shows

that the period after 2015 presents a significant expansion of data
fusion research works (see Fig. 2). Indeed, the number of retained
papers in data fusion has increased remarkably from 15, before 2015,
to 120 between 2016 and 2021. This evolution of articles is a natural
result of integrating big sensor data in roads and vehicles. Table 5
shows the yearly percentages of the retained articles.

2.5.2. Distribution by data sources
We show the classification of the retrieved articles by data sources

in Fig. 3. Our statistics indicate Scopus contains 86 articles with 49.14%
of the reviewed studies.

2.5.3. Distribution by fusion level
Independent of the type of sensors, data fusion techniques can be

categorized into three main types: (i) observation-level fusion (low-
Level); (ii) feature-level fusion; and (iii) decision-level fusion (high-
Level) [28]. The first level of fusion means that raw sensor data are
combined directly. The second level underscores a preliminary extrac-
tion of representative features from the original sensor data. Finally,

Fig. 2. Distribution by year of publication.

Table 5
Percentage distribution by years of publication.
Years Number of articles Percentage (%)

2011 7 4.00
2012 10 5.71
2013 15 8.57
2014 13 7.18
2015 15 7.43
2016 21 12.00
2017 23 12.57
2018 22 13.14
2019 20 11.43
2020 27 15.43
2021 2 1.14

Total 175 100

Fig. 3. Distribution by data sources.

Table 6
Distribution by fusion level.

Level Number of articles Percentage (%)

Observation-level 5 3.28
Feature-level 164 93.44
Decision-level 6 3.28

Total 175 100

decision-level fusion is used only after a first determination of the
target’s attributes of interest [29]. As described in Table 6, almost all
the kept articles use the feature-level fusion techniques (164 papers or
93.44%). This high percentage could be explained by the need to refine
and pre-process the huge number of the collected raw data before using
it.
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Table 7
Distribution by application domains.
Domain Number of articles Percentage (%)

Autonomous vehicles 14 8.00
Detection 16 9.14
Driving assistance 17 9.71
Traffic prediction 38 21.71
Vehicular communication 8 4.57
Localization 48 27.42
Management systems 34 19.42

Table 8
List of abbreviations.
Abbreviation Description

CAN Controlled Area Network
CDR Call Detail Records
CNN Convolutional Neural Network
CVNS Continuous Visual Navigation System
CTRV Constant Turn Rate and Velocity
DGPS Differential Global Positioning System
DSRC Dedicated Short Range Communications
EEG ElectroEncephaloGraphy
FBN-PSD Functional Brain Network-Power Spectrum Density
GNSS Global Navigation Satellite System
GPS Global Positioning System
GSM Global System for Mobile communications
ILDs Inductive Loop Detectors
IMU Inertial Measurement Units
INS Inertial Navigation System
IoV Internet of Vehicles
ITS Intelligent Transportation System
JDL Joint Directors of Laboratory
LHCP Light-Hand Circular Polarized
LIDAR Light Detection And Ranging
LSSVM-NARX/KF Least-Squares Support Vector Machine

Nonlinear Autoregressive with
eXogenous input/Kalman filter

MEC Mobile Edge Computing
Mer-Gesh Merges multiple data sources in

a similar manner to transmission Gears meshing
OBU On Board Units
RHCP Right-Hand Circular Polarized
RTMS Remote Transportation Microwave Sensors
RSU Road Side Units
SCATS Sydney Coordinated Adaptive Traffic System
SNR Signal to Noise Ratio
SVM Support Vector Machine
UWB Ultra-WideBand
V2I Vehicle to Infrastructure
V2V Vehicle to Vehicle
V2X Vehicle to All
VANET Vehicular Ad Hoc Network
VLC Visible Light Communication
WSN Wireless Sensors Network

2.5.4. Distribution by application domains
In this distribution, we classify papers by the different purposes

of the data fusion using: autonomous vehicles, Detection (incident,
fatigue, traffic signs, lanes, and types of vehicles), driving assistance
(navigation systems, parking assistance, and trip planning), traffic pre-
diction (speed, flow, stat, and travel time), vehicular communication
(Vehicle-2-Vehicle, vehicle2X, and Vehicle-2-Pedestrian), localization
(positioning and tracking applications), management systems (cover-
age and quality of the collected traffic information, decision making,
automatic emergency decision, driving behavior extraction, and taxi
demand). As sketched by Table 7, most reviewed articles are related
to localization (48 papers or 27.42%) and traffic prediction (38 papers
or 21.71%). The popularity of localization applications in intelligent
transportation systems is explained by the need to accurately determine
the position of vehicles and different road stats to provide better
services.

Table 9
Fusion methods classification.
Method Number of articles Percentage (%)

Probabilistic-based 81 46.29
Evidence reasoning 14 8.00
Knowledge-based methods 52 29.71
Others 28 16.00

Total 175 100

3. Harvest scrutiny

Following the search strategy, we identified 175 articles published
between January 2011 and November 2020. We critically reviewed all
of the 175 articles to shed light on the issues raised in Section 2. At
a glance, Tables 16–24 sketch the studied articles based on the raised
researches questions using the following criteria:

• Fusion approach: refers to the used data fusion methods/techn-
iques (to answer the first question of this review).

• Data properties: presents the nature of the information used for
the fusion process.

• Source: presents different hardware/software used to collect
data.

• Evaluation: indicates whether the proposed approach was evalu-
ated using a real-life collected dataset (Real-life environment) or
a synthetic dataset (Simulation).

• Domain of application: classifies the research study into one of
the application fields depicted in Fig. 4.

All the abbreviated terms are explained in Table 8.

3.1. What are the methods and techniques of data fusion used in ITS?

The first issue of this review is about choosing the technique/met-
hod to adopt the selected application in ITS. These techniques are
mentioned in Tables 16–24 respectively. We can notice that according
to Khaleghi et al. [30] and Pires et al. [31], these approaches could
be categorized in four groups: Probabilistic-based methods, Evidence
reasoning-based methods, and Knowledge-based methods. The final dis-
tribution of the approaches according to the classification is presented
in Table 9.

3.1.1. Probabilistic-based methods
The results of this review showed that most of the studies had

used probabilistic-based fusion methods since 2011 with a percent-
age of 46.29%. Worthy of mentioning the Kalman filter algorithm
and its variations (42 articles), e.g., Extended Kalman filtring [9,32–
38], Unscented Kalman filter [39–43], Sequential Kalman filtering [44],
Cubature Kalman filtering [26,45,46], Federated Kalman filter [47].
Kalman filters require little processing power in their simplest form
and are typically used to fuse raw (low-level) nonlinear data. The
modified Kalman filter known as the extended Kalman filter (EKF) is
ideal for implementing nonlinear recursive filters. Nevertheless, it is
time-consuming when it comes to computing the Jacobians. Therefore,
linearization has been applied to reduce the computational cost. Yet
this introduces errors in the filter, which leads to instability of the
filter. The unscented Kalman filter (UKF) has gained popularity since
it eliminates the linearization step and associated errors of the EKF.
The UKF uses deterministic sampling to determine the minimum set
of points around the mean. By doing so, it captures the true mean
and covariance. Using nonlinear functions, these points are propagated,
and the covariance of the estimations can be recovered. The UKF also
provides the advantage of being used in parallel implementations.

Contrary to the Kalman filter, Particle filter is rarely used for fu-
sion in ITS applications (5 articles). Despite that in dynamic models
with nonlinearities and non-Gaussian densities, particle filters provide
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Fig. 4. Distribution by application domains.

more flexibility than Kalman filters. They do, however, come with
certain disadvantages. Obtaining low variance in the estimator re-
quires many particles. Moreover, it is tricky to determine the optimal
number of particles in advance; this affects the computational cost
significantly [48]. Furthermore, a fair number of approaches based
on probabilistic (e.g., fuzzy theory, Bayesian networks, stochastic pro-
cess, etc.) and statistical formulas (e.g., average, majority, maximum,
co-variance, etc.) were proposed for the fusion of information from
different sources (12, 22 articles respectively).

3.1.2. Evidence reasoning-based methods
Evidence reasoning-based is the most minor used category with a

percentage of 8%. Nevertheless, the Dempster Shafer theory is one of
its most known methods for data fusion (12 articles). The basic idea
behind this theory is that one has to combine all the evidence and come
up with a conclusion or degree of belief in light of all the considered
ones. A significant benefit of an evidence-based approach lies in its
ability to quantify ignorance, which makes it sound like a framework
for dealing with missing values [49]. Furthermore, the Dempster–
Shafer theory transforms the data by adjusting the granularity and
reallocating the masses. In other words, a rule that holds at a lower
level of granularity may only be valid when generalized to a higher
level of aggregation. Furthermore, Dempster–Shafer’s combination law
(the orthogonal sum) allows us to combine data from independent
sources. Having the same frame of discernment for two mass functions
derived independently from different data, we may assign a unified

mass. Nevertheless, it has some disadvantages, e.g., in some cases,
an overestimation of the final assessment can occur; small changes
in input can cause essential changes in output; high efficiency with
bodies of evidence in pseudo-agreement; lower efficiency with bodies
of evidence in conflict [50]. In addition to the Dempster Shafer theory,
two more evidence reasoning-based studies used the belief-multi-level
fusion process.

3.1.3. Knowledge-based methods
Recently, knowledge-based methods have grasped attention from

both academic and industrial fields. These methods are mainly ca-
pable of processing many non-linear heterogeneous traffic data. In
this respect, and with the development of the automatic learning-
based techniques, more data fusion research is using the machine/deep
learning models (27 articles - 51.92%) and linear weight-based (11
articles - 21.15%). Classical ML-based fusion (abductive reasoning)
infers the most accurate explanation of observation by choosing a
hypothesis under the assumption that explains it most accurately. By all
means, when a set of observed data are fused, the approach attempts
to determine the best explanation. However, the complexity of machine
learning algorithms used to solve these problems increases as the size
and complexity of data increase. ML approaches are becoming increas-
ingly complex, i.e. deep learning architectures, making it challenging to
understand what they have learned or why a given fusion was made,
representing a barrier to its adoption. Other researchers have focused
on using data mining techniques, e.g., clustering (6 articles - 11.53%).
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In general, there is no guarantee that clustering algorithms will find
the optimum number of clusters or of cluster centers. Furthermore,
these algorithms assume that the dataset has already been normalized
or that its co-variance is irrelevant. Other data pre-processing-based
techniques, e.g., such as time/spatial synchronization (6 articles), and
knowledge-based methods are proposed using semantic web technology
and ontology (2 articles - 3.84%).

The idea of semantic fusion is to integrate sensor data and translate
it into formal languages. So the resulting language is compared with
similar languages stored in the database based on the observations
of the environment. The transmission cost is reduced in this type of
method since the nodes only need to transmit the language structure
rather than the raw data. However, a set of known behaviors must
be stored in a database beforehand, which can be challenging in some
cases.

3.1.4. Other
The remaining approaches, called ‘Other’ (28 articles), are dis-

tributed between the physical fusion at the sensors level. Hybrid meth-
ods that use combinations of the ones mentioned above, e.g., Extended
Kalman filter and SVM [33], CNN-Kalman filter algorithm [51], and
LSSVM-NARX/KF [52]. Hybrid methods combine one or more algo-
rithms that have recently become relevant favored ones. These methods
can rely on the capabilities of different techniques simultaneously and
expand the ability to model complex correlations.

3.2. What are the different data properties used in data fusion for further
ITS applications?

Over the last decade, tremendous amounts of transportation-related
data have been collected owing to the availability of sensors. Sen-
sors are deployed in a real-world environment to collect and forward
data about particular physical behavior to support the design and
development of a wide range of applications to increase drivers’ and
passengers’ satisfaction, improve road safety and reduce traffic conges-
tion. Fleming [53], in his review, classified sensors based on the place
of deployment: (i) In-vehicle which many companies install (e.g., Taxi
companies) or manufacturers to control the performance and status of
the vehicle; and (ii) In-roads that are located along the roadside to
offer smart parking services (e.g., corresponding drivers with free park-
ing spots), provide information about congestion levels on the road,
or collect environmental data which can be processed to improve the
flexibility of traffic networks. Table 10 summarizes the data collection
technologies used by the reviewed data fusion literature articles. The
GPS and video camera are the most commonly used technologies to
collect transportation-related data, followed by the V2X, LIDAR, Loop
detector, IMU, RADAR, and GNSS. From the analysis, the remaining
technologies are used according to the context of the application (e.g.,
Weather data) or not used because they are not affordable (cost) or the
size of the device disables its integration in cars, etc. More specific used
technologies that are clustered as ‘Others’ in Table 10 are classified as
follows:

• Frameworks: RESTful,1 4K Stogram software2, Web crawlers,
and traffic light signals.

• APIs: Bing maps routes API,3 Here Maps API,4 and social media
content.

• Simulators: SUMO simulator.5

1 https://restfulapi.net
2 https://4k-stogram.en.softonic.com
3 https://www.microsoft.com/en-us/maps
4 https://developer.here.com/develop/rest-apis
5 https://sumo.dlr.de

Table 10
Data collection technologies used by the literature approaches.
Source Number of articles

GPS 53
Camera/video/RGB 38
V2X 17
LIDAR 16
Loop detector 16
IMU 12
RADAR 12
GNSS 11
Laser scanners 9
Odometers 8
Internal sensors vehicular sensors 6
INS 5
CAN (message protocol) 5
Gyroscope 5
Accelerometer 5
Twitter API 5
Ultrasonic 4
DSRC 4
RSU 4
Infrared 4
Smartphones 4
Probe vehicle 4
OBU or OBD 4
WI-FI 3
Magnetometer 3
Inductive loop 3
GSM 2
RTMS 2
Bluetooth 2
Others 48

• Maps: HD Map,6 OD analyzer,7 Google earth,8 and digital com-
pass.9

• Human based data: surveys, human experts reports, data service
providers, and driver’s behaviors.

• Environmental sensors: Weather sensors.
• Systems: ITS subsystems, Clarus footnotehttps://www.its.dot.

gov/research_archives/clarus, highway information safety, MEC
server, wireless sensor networks, traffic sensors, CDR, and Cellular
network.

• Algorithms: CTRV, DGPS, Dead Reckoning, stereo vision systems,
obtained from a camera, and Floating Car Data.

• Other types of sensors: Spatial NAV100, NC-200 sensors, wire-
less geomagnetic sensors, SNR transmitters, laser rangefinder,
gravity sensors, AACN, acoustic sensors, EEG, RHCP, and LHCP
antennas.

In the sequel, we will discuss some of the most commonly used data
features for fusion in ITS.

3.2.1. Geographical data
The decisive role of a sensor network is to collect and forward data

to a destination. Therefore, it is crucial to determine the location of the
collected data. The localization process is absolute to find the position
of an object as data is useless without its geographical position. This
data is obtained with the help of specialized algorithms deployed into
different sensor technologies. For example, GPS (global positioning sys-
tem) is the simplest method for detecting sensors. However, it becomes
expensive if many sensors exist in a given network. From the review
articles, many algorithms have been proposed to solve the issue of
localization, 27.42%, dedicated to using such sensors to determine the

6 https://www.tomtom.com/products/hd-map
7 https://developer.tomtom.com/od-analysis
8 https://earth.google.com
9 https://www.digitalcompass.org
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position or the series of trajectories maps grids, worth mentioning: laser
scanners, RADAR, INS, Cellular network, WI-FI, GNSS, IMU, Bluetooth,
Loop detector, Video camera, LIDAR, Odometers, RSU, RHCP and LHCP
antennas, OBU, DSRC, GSM, smartphones GPS, VANET, DGPS, RTMS,
CDR, and google earth application. The number of papers uses the
location as an input feature: 89 articles, to wit 50.85%.

3.2.2. Temporal data
Despite the rapid development of geographical positioning tools,

spatial information can only be analyzed for a fixed time point or
period for which it is assumed to remain unchanged. However, human
behaviors, transportation facilities, traffic conditions, to name a few, all
change with time. Hence, all sensors are developed to record temporal
data alongside the targeted data collected, which is the key to trans-
portation decision-making. Thus, the default time is primarily used in
most articles as input features for any application.

3.2.3. Visual data
As the transportation field seeks new and inventive methods to

transition to a ‘‘smart city’’, video surveillance solutions have become
essential for analyzing and managing traffic flow, safety, and security.
Rapid technological development of surveillance cameras and sensors
(Ultrasonic sensors, LIDAR, infrared camera, and laser scanner) allows
the sector to get vital information. Exceptionally that utilization en-
ables the stakeholders to capture a wealthy amount of knowledge,
e.g., traffic patterns, congestion levels, the distance between vehicles,
vehicles detection across several lanes and can classify vehicles by their
length or type, to name but a few. The major limitation of the visual
devices/sensors is that environmental conditions can cause reliability
issues in detecting objects in varying lighting conditions. Therefore, to
overcome the above problems, the latest management systems tend to
use image sensors (such as Laser scanners, LIDAR) with the fusion of
multiple sensor information (such as RADAR) to improve the precision
of measuring for Advanced applications. For example, positioning,
traffic prediction, object detection/tracking, autonomous car driving
safety, road condition classification, V2X communication, noise detec-
tion, travel time estimation, routing system, quality enrichment of the
data, and journey planning [9,34,35,39,41,42,54–68].

For the visual feature collection, from Tables 10 and Tables 16–24,
we notice that right after the use of the simple camera/video sensors
comes the use of the LIDAR technology. LIDAR is a novel system in
the industry that measures distances to both fixed and moving objects.
LIDAR uses specialized processes to create three-dimensional images of
the detected objects. The primary limitations of LIDAR are its expense,
limited performance in adverse weather (e.g., fog, rain, snow, etc.), and
no color or contrast detection, which yields poor optical recognition
because it makes use only of light spectrum waves [69]. Nevertheless,
companies such as Google are using an advanced LIDAR in the Waymo
self-driving car project note Waymo. An Ultrasonic sensor calculates
the distance between the sensor and the object by measuring the time
it takes for the transmitter emitting sound to contact the receiver.
The main drawback of this kind of sensor is its high sensitivity to
environmental effects. The infrared sensor measures the radiation in its
surrounding environment (vehicles, roads, or other objects). This type
of sensor is used for object tracking/detection that emits heat (has a
temperature > 5 degrees Kelvin) resulting from infrared radiation.

3.2.4. Traffic data
Table 11 glances at the various use of traffic-related data (speed,

flow, travel time, occupancy, congestion stat, and construction works)
by the reviewed research articles. The mentioned traffic data are
broadly applied for various traffic applications. First, the historically
recorded information supports predictions [15,16,55,57,67,70–91],
planning [92–94], behavior reporting and analysis [95–99]. Second,
streaming or (near) real-time traffic data can be useful for automated
driving cars [56,100], incident detection [11–13], advanced travel

Table 11
Traffic data properties used by the literature.
Source Number of articles

Speed 47
Flow 24
Trajectories 16
Travel time 4
Occupancy 3
Density 4
Congestion stat 5
Construction works 1

Table 12
Internal vehicle data properties used by the literature.
Source Number of articles

Acceleration 7
Vibration 4
Brake 3
steering wheel 4
Turns behavior 2
Horn 1

information systems (ATIS) (e.g., V2X communication [101], position-
ing/tracking [102–105], parking assistance [106]), and traffic signal
priorities [107], which require the most up-to-date data so that appli-
cations can take the best decision. There are two sorts of traffic sensor
issues in producing precise traffic data indicators. First, the internal
problems connected to the accuracy of the devices in collecting data are
referred to as a technical restrictions (e.g., scanner inaccuracy, which
provides erroneously detected speed). Second, the external issues are
related to the data’s limitations in portraying the actual traffic situation.
For example, in speed data collection, loops detect the instantaneous
speed at one point on the lane, not necessarily reflecting the full lane
speed. We should consider these internal and external issues when
using traffic data; as a result, traffic data can correctly depict the actual
traffic situation.

3.2.5. Internal vehicle’s data
Recently, the automobile sector is being transformed by digitiza-

tion. Connectivity and in-vehicle data are the primary driving forces
behind the development of new and innovative mobility services. Ve-
hicle manufacturers are controlling and exploiting the in-vehicle data
commercially using in-vehicle sensors to collect information related
to driving controls. Table 12 presents a variety of uses of in-vehicle
data in the literature. The primary usage of in-vehicle data was ded-
icated to extracting the driving behavior in roads [95,108–111] and
for autonomous driving applications [41,56,112]. Some other articles
utilized this type of data to classify the road conditions [42,58], to
detect drivers fatigue [113,114], to localize vehicles [104], and as a
parking assistance information [115].

3.2.6. Environmental data
Many studies have shown that environmental factors such as wea-

ther (e.g., temperature) and noise in residential zones and touristic
locations influence the traffic on roads [70]. 7.42% of the reviewed
articles used the weather conditions data to predict traffic conges-
tion [70,74,77,79,88,116–118], future planning [92], emergency and
accident detection [13,107,119,120], taxi demand [121], and driving
assistance [122]. 1.71% of the articles exploit the noise information
for driver fatigue detection [113], emergency response [107], and for
vehicle localization [123]. And finally, just one article mentioned the
employment of vehicle emissions data driving assistance [122] (see
Table 13).
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Table 13
Environmental data properties used by the literature.
Source Number of articles

Weather 13
Noise 3
Emissions 1

Table 14
Textual/social media data properties used by the
literature.
Source Number of articles

Tweets 6
Instagram images 1

Table 15
Textual/social media data properties used by the
literature approaches.
Source Number of articles

Real-life environment 110
Simulation 65

3.2.7. Textual/social media data
People can publish and distribute information/opinions instantly

with the help of smartphones and social media applications (e.g., Twit-
ter). Therefore, it makes every user an instant social sensor. Because of
this, social media has emerged as a valuable source of real-time traffic
content (as shown in Table 14). Furthermore, this information is used as
input to traffic prediction approaches [16,70,71,80,117,124] for a host
of transportation services by the traffic management agencies, such as
signal control, transit scheduling, traveler information, etc.

3.3. What are the different methods of evaluation of these techniques?

As a result of reviewing the strategies for evaluating applications
(as shown in Table 15), 62.85% of the articles used real-life evaluation,
which validated the real-world scenarios and proved the adaptability of
the solutions. However, according to the reviewed articles, 37.14% use
simulations due to the continuous change in methodologies. Therefore,
it is necessary to conduct simulations as an evaluation process to reduce
the cost of evaluating strategies under different scenarios, conditions,
and parameters.

3.4. What are the different systems’ architectures and applications that use
data fusion?

Fig. 5 summarizes a taxonomy for ITS applications. The taxonomy
defines seven categories based on the type/aim of the application for
ITS.

3.4.1. Autonomous vehicles
Vehicles manufacturers are towards the innovation of enhancing

vehicles’ ability to be more autonomous without human interven-
tion. Therefore, they focus on improving the safety of travelers by
reducing the number of accidents, injuries, and fatalities [68]. The
autonomous driving control decision is obtained by collecting mas-
sive traffic events and intensive knowledge fusion processing. Worth
mentioning in the literature, Cao et al. [100] proposed an intelligent
distributed collaborative decision scheme using a multi-dimensional
data fusion mechanism that thoroughly considered the spatial and
temporal characteristics of IoV services for autonomous driving. Chitnis
et al. in [56] introduced a distributed multi-sensor fusion architecture
to ensure the no-failure that could cause hazardous situations for
humans. Dominic et al. [125] proposed a risk assessment framework for
autonomous and cooperative automated driving. Fukatsu et al. [126]
analyzed and fused the considerable amount of dynamic (real-time)

information received from the cooperative perception exchange to
enable a new level of safety and reliability in autonomous vehicles.
Hong et al. [127] designed an accurate 3D-object detector that takes
both LIDAR point clouds and RGB images as inputs to the CrossFusion
Net. This proposed fusion model exploits features from both sources
through a hierarchical fusion structure. Laghmara et al. [128] tackled
the issue of 3D object detection in the Belief Function framework for
autonomous vehicles. The approach adopts the evidence theory for
multi-feature fusion to include two heterogeneous sources defined by
the position and size besides the direction of motion in the scene of
the dynamic objects. Marin-Plaza et al. in [41] proposed a ROS-based
approach by fusing data and knowledge to adapt and alter overall
vehicle parameters in different platforms. This fusion strategy aids
the vehicles’ embedded systems increase their powerfulness, flexibil-
ity, and modularity. Zanchin et al. [68] presented a discussion about
sensors use in autonomous vehicles. The latter is recently switching
from unidimensional to multi-dimensional sensor fusion. The authors
demonstrated the importance and the necessity of fusion strategies to
provide an expansive vision of the environment in which the vehicle
is inserted to hold decisions per driveability conditions that aspire to
attain. Martín et al. [61] relied on the fusion of different sources of data
(inertial measurement units and differential GPS) to ensure vehicles’
robustness and safety in case of a large variety of lighting conditions
and complex perception tasks such as shadows, low lighting conditions,
and night vision. Raouf et al. [129] proposed an analytical approach for
fault detection of an automated Octree fusion-based system for a low-
speed autonomous vehicle. This system was tested on three different
scenarios with different sensors. The results showed that the sensor
fusion system proves its efficiency in decision making, especially when
a sensor sends incorrect data to the system. Shen et al. [130] integrated
the time-varying information into an adaptive federated Kalman filter
(FKF) fusion model based on the criteria of the degree of observabil-
ity. This model enhances the accuracy, robustness, and fault-tolerance
ability of the navigation systems for unmanned ground vehicles in
a highly dynamic environment. Wang et al. [111] designed a lower-
level controller to ensure that all the vehicle’s tires work using a novel
data fusion technique to generate the estimation value of the tire-road
friction coefficient of both through the integrated longitudinal force
and lateral force. To reduce the system delays caused by the extensive
data downloading strategies of vehicles, Yu et al. in [131] established
an optimization indicator based on mathematical programming with
equilibrium constraints (MPEC) to control and assess fusion computing
services. Daniel et al. [132] have incorporated the use of Kalman
Filter (KF) fusion techniques into an efficient architecture for real-time
big data analysis in an autonomous vehicle. Therefore, it augments
the data processing competence and removes noise from the obtained
sensor information. To strengthen the safety and trustworthiness in
autonomous vehicles, it is pivotal to adopt the data fusion algorithms
from different sources to enable drivers’ notifications and determine
expeditious automated reactions and decisions to reduce the potential
of road accidents.

3.4.2. Detection
ITS applications in this category relieve the traffic flow and ease the

driving in roads and urban zones. Detection applications can be divided
into five sub-categories as follows:

Lanes and roads detection: Cheng et al. [142] proposed a novel
road centerline detection based on a multiscale collaborative represen-
tation of VHR remote sensing images fusion of multiple features and
spatial information. Garg et al. [58] proposed a dual-modality decision-
level fusion with a belief revision approach including a particular
emphasis on robust road hazard detection. Gu et al. [151] introduced a
road detection framework based on fusing 3-D LiDAR and a monocular
camera. The proposed method projects the 3-D point cloud of LiDAR
onto the camera’s image for the escapade of range and color informa-
tion. Finally, Li et al. [162] proposed a real-time feature-level fusion
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Fig. 5. Taxonomy of Data Fusion for ITS applications.

method for both LIDAR and vision data using an optimal selection
strategy for detecting the best drivable region in front of a vehicle.
Moreover, a conditional lane detection algorithm is selectively executed
depending on the system’s fusion output. Finally, Atia et al. [136]
provided a low-cost real-time lane-determination model based on high-
resolution estimation of the vehicle’s position, speed, and orientation
using an extended Kalman filter data fusion model on several sources
(accelerometers, gyroscopes, GNSS, and roads network maps). Bosi
et al. [140] proposed an in-vehicle IoT object for real-time pothole
detection to evaluate the road condition. The proposed design is based
on implementing sensor fusion techniques to provide enhanced services
combining raw data coming from onboard devices.

Fatigue detection: Chen et al. [113] implemented a feature fusion
model for automated fatigue detection. The fusion is based on the
output features of the functional brain network, which characterizes
the relationship between brain network organization and fatigue, and
the output features of the power spectrum density, which marks the
relationship between power variation and fatigue. Daza et al. [114] pre-
sented a non-intrusive approach for detecting driver drowsiness based
on the fusion of the driver’s Percentage of Eye Closure information
captured in real-time by a stereo vision system, and its driving behavior
gathered from the CAN bus (lateral position and steering wheel angle).
Finally, Kartsch et al. [155] proposed an energy-aware solution for

drowsiness detection based on the fusion of the driver’s physiological
(single-channel EEG signal) and behavioral (IMU sensor) data.

Incident detection: Dia et al. [11] conducted a comparative study
to assess the performance of using different data fusion neural network-
based architectures for incidents detection using various probe ve-
hicle penetration rates and loop detector configurations. Fernandes
et al. [12] developed an Android OS application, namely HDy Copilot,
for automatic crash detection. The offered solution applies a data
fusion mechanism to information collected from the vehicular commu-
nications and driver/passenger’s smartphone sensors (accelerometer,
magnetometer, and gyroscope). Smartphone applications ensure a low-
cost mobile solution compared to built-in commercial systems. In [13],
a deep fusion model is proposed to determine the traffic accident
duration based on traffic accident data and spatial–temporal correla-
tions of traffic flow reports. The authors adopted different types of
RBMs to handle both categorical and continuous variables separately;
furthermore, the extracted features from each model are fused for
the final estimated output. Rapant et al. [81] proposed a data fusion
solution that avails from the advantages and disadvantages of two
different traffic data sources (floating card data and ASIM sensors)
based on Granger causality analysis to manage and successfully control
traffic incident situations. Yu et al. [120] used a deep learning graph-
based Spatio-temporal architecture with an embedding layer for traffic
accident prediction. The model fused different heterogeneous inputs
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Table 16
Data fusion for ITS approaches (part 1).

Article Fusion approach Data properties Source Evaluation Domain of application

Aeberhard et al. [54] Track-to-Track fusion Location, images Laserscanner, RADAR, Real-life environment Positioning
Ultrasonic sensors (BMW 5 Series)

Akbar et al. [70] Time synchronization Congestion(0,1), tweets, RESTful, Simulation Congestion prediction
(organize according to time) weather conditions Twitter API,

Weather Underground

Aliedani et al. [133] Vehicles signals-fusion Location SUMO simulator Simulation Parking assistance

Alkouz et al. [16] Tweets: English and Arabic, Twitter API
Instagram images, 4K Stogram software Real-life environment
traffic stat, time, location Bing maps routes API Congestion prediction

Alomari et al. [71] Text Fusion Tweets: Arabic Twitter API Real-life environment Congestion prediction

Anand et al. [72] Kalman filtering algorithm Flow, travel time Video recorder, probe vehicle Simulation Density prediction

Ardakani et al. [134] Weight-based fusion Location INS, GPS, Real-life environment Position tracking
Cellular Network, and Wi-Fi

Arribas et al. [135] Kalman filtering algorithm Location GNSS, INS and odometers Simulation Positioning
Real-life environment

Atia et al. [136] Kalman filtering algorithm Location GNSS and IMU Real-life environment Lane detection

Awasthi et al. [137] Dempster Shafer theory Transportation measures Human experts, sensors, Real-life environment Sustainability evaluation
Models and survey of solutions

Bachmann et al. [14] Simple Convex Location Bluetooth (probe vehicle), Real-life environment Speed prediction
Bar-Shalom/Campo Loop detector
Kalman filtering-based
Ordered Weighted Averaging
Fuzzy Integral
Artificial Neural Network

Bauer et al. [138] Weight-based fusion Location GNSS, CTRV, HD Map Real-life environment Positioning

Behere et al. [101] – Location, speed Video, RADAR, LIDAR Real-life scenarios Vehicle2Vehicle communication

Belhajem et al. [32] Hybrid approach Location GPS, Odometers Simulation Positioning
(Extended Kalman filtering and
Neural networks)

Belhajem et al. [33] Hybrid approach Location GPS, Odometers Simulation Positioning
(Extended Kalman filtering and
SVM)

Benalla et al. [92] Dempster Shafer theory Traffic density, weather, age Sensors Simulation Planning

from Taxi’s GPS, historical traffic accident data, POI distributions, and
weather observations at various road networks.

Vehicle type detection: Yao et al. [197] adopt a multi-stage in-
formation fusion to improve the performance of the conventional Ad-
aboost vehicle’s license plate detector. Li et al. [163]adopt a multistage
information fusion to enhance the performance of the traditional Ad-
aboost vehicle’s license plate detector. Their multi-stage fusion system
detects, first, the existence of the license plate using the fusion of a
color checking module with an SVM classifier. Furthermore, the latter
output gets through the enhanced Adaboost for the final license plate
detection.

Traffic signs detection: Lauffenburger et al. [159] examined multi-
object detection algorithms based on a transferable belief approach
dedicated to Traffic Sign Recognition. The associated targets are pur-
sued over time and space using the Kalman Filtering algorithm.

3.4.3. Traffic prediction
Traffic prediction is a crucial part of intelligent transportation sys-

tems. Accurate traffic forecasting can be used to improve routing,
dispatching, and congestion management. Recent research has focused
on this area and has provided efficient solutions for predicting traffic
flow, stats, travel time, and speed.

Flow prediction: Anand et al. [72] presented a study using a
Kalman filter to fuse spatial and location-based data to predict traffic
density. Chen [55] proposed a new hybrid fusion approach based on
fuzzy rough set theory and evidence theory. Cui et al. [143] intro-
duced a new fusion approach named Polaris. Polaris is based on a
sparsity analysis of the traffic volume and the different correlations
between the spatial–temporal features. Essien et al. [117] fused the
social information that is publicly available by Tweets with traffic and

weather conditions to improve their deep learning model for traffic
flow prediction task. Finally, Hong et al. [76] introduced a new fusion
model that avoids noisy and error-prone manual feature engineering.
Furthermore, it seizes the intrinsic characteristics of complex traffic
flow patterns in high-dimensional data using a hybrid multi-metric
based k-nearest neighbor method for traffic flow prediction. Koesd-
wiady et al. [77] focused on extracting the correlation between traffic
information and weather and proposed a decision-level data fusion
scheme to improve the prediction accuracy using weather conditions. Li
et al. [79] developed a real-time transportation flow prediction system
named VTraffic, which integrated data from heterogeneous sources
using a data fusion strategy to maximize the quality of the prediction.
Pu et al. [174] proposed a novel hybrid prediction model based on
the fusion of traffic images’ features using an attention CNN with an
encoder–decoder framework. Sun et al. [84] introduced a conditional
fusion method to enhance the data anomaly detection accuracy of
ensemble traffic prediction models. Finally, the purpose of Zheng et al.
mention Zheng2020 was to predict the traffic flow based on the LASSO
coefficient fusion of Spatio-temporal factors dictionary.

Stats: Akbar et al. [70] introduced a two-layer architecture for an-
alyzing the heterogeneous (traffic, weather, and social media) IoT data
streams. The first layer ingests, stores, and analyzes data from multiple
interfaces in real-time to extract and detect complex events. At the same
time, the second layer fuses the removed events using a probabilistic-
based model. Alkouz et al. [16] proposed a new Linguistic-based model
for traffic jam events prediction named SNSJam using cross-lingual
data fusion collected from multiple social media platforms. Alomari
et al. [71] focused on analyzing tweets about traffic to detect con-
gested areas. The authors fused tweets in the Arabic language collected
from the Twitter REST API with other traffic data in the SAP HANA
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Table 17
Data fusion for ITS approaches (part 2).

Article Fusion approach Data properties Source Evaluation Domain of application

Birek et al. [139] MapReduce framework Text data, location Web crawlers, user mobile Real-life environment Driver’s behavior extraction
device, vehicle

Bosi et al. [140] – Location, vehicle vibrations GPS, IMU, accelerometer Real-life environment Patholes detection
(smartphone, internal sensors)

Bresson et al. [34] Extended Kalman filtering Location, images Odometer, camera Simulation Positioning

Cao et al. [100] MAML (multi-dimensional Location, speed, road V2V, RSU Simulation Automated Driving
information fusion) constraints

Chen [55] Evidence theory and Flow, travel time, Loop detectors, video Real-life environment Flow prediction
Fuzzy rough set speed, lane occupancy detectors, OD analyzer

Chen et al. [108] Adaboost Steering wheel, brake
throttle, road conditions

Internal sensors Simulation Driving behavior

Chen et al. [141] Message-fusion warning messages V2V Simulation Decision-making

Chen et al. [113] FBN-PSD (feature fusion) Steering wheel, a horn,
brake pedal, noise,

Internal sensors Simulation Fatigue detection

an accelerator, the chair
and turn signals, speed

Cheng et al. [142] Multi-scale information fusion VHR images (spectral,
structural and contextual

Google Earth Real-life environment Road segments detection

road characteristics)

Chhabra et al. [109] Dynamic Bayesian Network Time of day, hours of
driving, temperature,

Smartphone sensors
(accelerometer, gyroscope)

Real-life environment Driver’s behavior classification

acceleration, turns
behavior

Chiang et al. [112] Constraint fusion speed, distance, brake Internal sensors Real-life environment Decision making

Chiang et al. [9] Extended Kalman filter Location, images POS (INS/GNSS), LIDAR Real-life environment Navigation
with motion constraints

Chitnis et al. [56] SoC multi-sensor fusion Images, location, speed,
acceleration, etc.

Camera, RADAR, LIDAR,
Ultrasonic, infrared camera,
IMU, GPS, odometry sensors,
actuators

Real-life environment Autonomous cars safety

Cho et al. [35] Extended Kalman filter Images, shapes, location Camera, LIDAR, RADAR Real-life environment Tracking

Clairais et al. [73] Multi-component Kalman gain Flow Loop detectors Real-life environment Flow prediction

Cong et al. [102] Time synchronization Speed, location Smartphone accelerometer and Real-life environment Positioning
gyroscope

Cui et al. [143] Polaris data fusion Flow, location Loop detector, signaling Real-life environment Flow prediction

Daniel et al. [132] Kalman filtering Images and texts Camera, laser scanners Real-life environment Autonomous cars

database in the city of Jeddah. Finally, Fulari et al. [57] presented
a study for real-time speed estimation based on a dynamical Kalman
filtering technique for location-based and spatial traffic variables data
fusion. Mai-Tan et al. [167] advanced novel mobile crowd-sourcing
fusion-based approaches for traffic prediction. The proposed framework
integrates and analyzes the traffic-related data shared by mobile crowds
in real-time and incorporates the missing data by applying data mining
techniques to the historical data. Osman et al. [42] acquainted an
online adaptive covariance estimation algorithm for drift suffering
proprioceptive sensors used on exteroceptive sensors with known un-
certainty. It proves the high ability to estimate the true covariance and
its adaptiveness to different driving situations. Saadeddin et al. [181]
developed a low-cost system for congestion avoidance based on the
fusion of IMU with GPS using an extended Kalman filter approach.
Shi et al. [82] exploited multi-modal data fusion through graph and
hypergraph modeling based on a neural network learning process for
traffic stat classification. Xia et al. [87] proposed a formal representa-
tion of heterogeneous traffic-related data by determining their mutual
features and fusing the spatiotemporal data. Using GPS and SCATS loop
detectors, this formal representation is sketched according to different
granularity levels of the collected traffic data. Wang et al. [86] adapted
the theory of cognitive psychology to learn the driving behaviors in
the road network using a simulation method. They applied a visual-
filtering model and a perceptual-information fusion model to describe
drivers’ heterogeneous cognitive processes. Based on a computational
domain theory for data understanding, Xia et al. [194] proposed a new
approach to formally represent heterogeneous extensive traffic data.

The authors used the data-centric and operations-centric transfer func-
tions to assess the computational intensity of different aspects of traffic
data fusion and analysis. Xia et al. [204] proposed a cooperative neural
fusion approach for fast image restoration that defeats the difficulty of
estimating the noise error based on a novel L2-norm. Yao et al. [89]
introduced a new approach for traffic stat prediction that fuses after
handling the missing data attaining from multiple sensor data streams
using Spatio-temporal correlations with the historical data.

Travel time estimation: A novel notion of intersection-to-interse-
ction real-time travel time estimation and route recommendation model
was proposed by Lee et al. [160] based on the fusion of vehicular
ad-hoc network extracted data. Rahmani et al. [64] introduced a non-
parametric travel time estimation method that fuses data from two
traffic data sources (automated number plate recognition system and
floating car data). Zhang et al. [90] advanced a data fusion structure,
called Mer-Gesh, that fuses data from multiple sources to transmis-
sion Gears meshing in a uniform Spatio-temporal context. This gear
framework can add new heterogeneous sensor features at different
locations dynamically. A new data fusion algorithm was stated by
Zhang et al. [91], based on the cosine theorem, to gauge the degree
of mutual support between beliefs and the conflicts between pieces
of evidence. Finally, Zhao et al. [201] adopted the use of recurrent
deep learning architecture, Gated Recurrent Unit, for the travel time
estimation by the fusion of both dedicated short-range communications
(DSRC) and remote transportation microwave sensors RTMS data.
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Table 18
Data fusion for ITS approaches (part 3).

Article Fusion approach Data properties Source Evaluation Domain of application

Datta et al. [144] Semantic web technologies – Vehicular sensors and Real-life environment Vehicle2Vehicle
smartphone actuators communication

Dawood et al. [39] Interacting Multiple Model Location, 3D environment images GPS, odometer and gyroscope, Real-life environment Positioning
Unscented Kalman filter laser scanner, camera

Daza et al. [114] Artificial neural network Steering wheel angle, lateral
position, heading error,
percentage of eye closure

Internal sensors, NIR stereo rig Simulation Fatigue detection

Deng et al. [145] Weight-based fusion Images RGB sensors, Infrared depth Simulation Positioning
sensors

Dheekonda et al. [146] Deep learning (CNN) Images, distance LIDAR, digital camera, Simulation Moving object
Ultrasonic distance transducer positioning

Dia et al. [11] Neural network fusion Speed, travel time Loop detector, probe vehicle Simulation Incident detection

Ding et al. [25] Mining algorithm Video, text, speed, location, etc. ITS subsystems Real-life environment Multi-media
information sharing

Dominic et al. [125] Weight-based fusion Location, road/lane markings Inertial and Odometric, GPS, Real-life environment Automated driving
range sensors safety

Du et al. [106] City Traffic
Data-as-a-Service

Traffic congestion, location GPS, data processing service, Simulation Parking assistance

Ontology-based fusion data service providers

Eciolaza et al. [10] Computational theory of
perceptions

Text, signals Drivers Simulation Driving behavior

reporting

Essein et al. [74] Data in-data out technique Flow, average speed, density Inductive loop sensors Real-life environment Speed prediction
weather

Essain et al. [117] Data in-data out technique Flow, average speed, density,
weather, tweets

Inductive loop sensors, Twitter
API

Real-life environment Flow prediction

Fernandes et al. [12] High/low filtering Speed, location Accelerometer, magnetometer,
gyroscope

Real-life environment Accident detection

Flores et al. [103] Multi-track Kalman filter Images, location LIDAR, V2P communication Real-life environment Emergency Braking

Flórez et al. [147] Calibration Images, speed, location LIDAR, Stereo vision systems, Real-life environment Positioning
proprioceptive sensors

Fukatsu et al. [126] – Images, signals LIDAR, V2V communication Simulation Automated Driving

Speed prediction: Bachmann et al. [14] investigated the efficiency
of several data fusion algorithms (simple convex combination, the Bar-
Shalom/Campo combination, and the Kalman filter) for fusing data
from loop detectors and probe vehicles to gauge freeway traffic speeds
accurately. Essien et al. [74] stated an improved traffic speed prediction
model involving traffic-related variables and weather data fusion with
the deep learning LSTM architecture. Lan et al. [78] impersonated a
speed prediction method based on the space-matching fusion model
between loop vehicle detector data and probe vehicle data according
to each road segment. This fusion technique uses the Newton method
as a training method to adjust the weights. Lin et al. [80] —presented
a unified probabilistic framework for traffic speed prediction based on
fusing multi-source data, including location, textual traffic descriptions,
and heterogeneous traffic-related data. Yang et al. [88] propose a
hybrid deep learning structure for short-term traffic speed prediction
involving external factors such as weather conditions and the air quality
feature fusion to measure the impact of environmental factors. Shan
et al. [97] used the multiple linear regression fusion models (MLR) to
estimate traffic missing data by extracting the inherent spatiotemporal
correlations from road segments to improve the performance of traffic
speed prediction.

3.4.4. Vehicular communication
Communication among vehicles and roadside infrastructure is an

area of growing importance. The development of wireless communi-
cations has made it possible to share information between vehicles and
infrastructure in real-time. As a result, applications are now available
to boost vehicle safety and connect passengers with the Internet. Addi-
tionally, efforts are underway to standardize vehicular communication
to make vehicular transportation safer, greener, and more convenient.

Vehicle2Pedestrian: Based on a probabilistic association between
perception and V2P communication, Merdrignac et al. [62] developed
an integrated cooperative system for vulnerable road users’ safety.
Salmane et al. [182] investigated the use of video data from crossing
scenes to detect and evaluate potential dangerous situations caused
by users (pedestrians, vehicles, unattended objects). The authors first
used the Hidden Markov Model to predict the ideal trajectories of the
detected objects. A Dempster–Shafer-based fusing is then applied for
each identified hazard scenario to consider different sources of danger.

Vehicle2Vehicle: Behere et al. [101] implemented a cooperative
driving architecture that shares knowledge in real-world scenarios.
The system possesses a flexible data fusion component that maintains
invariance through system changes. Finally, Datta et al. [144] outlined
several leading research and engineering challenges for integrating con-
nected vehicles into IoT ecosystems. The main difficulties are collecting
data uniformly from vehicle sensors and integrating heterogeneous
features into a standard IoT architecture for connected vehicles using
data fusion. With the help of cameras on connected cars, Liu et al. [26]
devised a unified probabilistic tracking and localization data fusion
approach to allow safe decision-making in V2V communication. In
addition, Liu et al. [164] developed a hybrid integrity monitoring
method that moves beyond the limitations of conventional satellite
visibility-based techniques by creating measurements from virtual satel-
lites via ground-based V2V range-rate measurements and a priori road
geometry.

Vehicle2X: Qui et al. [177] implemented a trust architecture to
integrate data from multiple sources and formats in heterogeneous
networks with various levels of trust.

3.4.5. Localization
Many Intelligent Transport System (ITS) applications, including the

position and heading information of vehicles and Vulnerable Road
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Table 19
Data fusion for ITS approaches (part 4).

Article Fusion approach Data properties Source Evaluation Domain of application

Fulari et al. [57] Kalman filtering algorithm Flow, speed, density, Camera, Bluetooth Real-life environment Congestion prediction
travel time

Gao et al. [104] Interacting multiple model location, velocity, GPS, CAN bus, Spatial NAV100 Simulation Positioning
and Kalman filtering acceleration, heading

García et al. [40] Unscented Kalman filter, Images Laser scanner, camera Real-life environment Tracking
Kalman filter,
Particle filter

Garg et al. [58] Decision-level fusion Images, vibrations Camera, internal sensors Simulation and Road conditions
and Belief revision Real-life environment classification

Geetla et al. [107] – Location, time of crash, weather, AACN and acoustic sensors Simulation Emergency response
congestion, road noise

Geng et al. [59] Weight assignment fusion Location, images GPS, visual odometer,LIDAR Simulation Path tracking

Ghaleb et al. [123] innovation-based adaptive Trajectories, environmental noise GNSS Simulation Positioning
estimation Kalman filter

Golestan et al. [36] Extended Kalman filtering Location GPS, V2V communication Simulation Positioning

Golestan et al. [37] Extended Kalman filtering Location V, V2V, V2I communication Simulation Positioning

Goli et al. [148] Bayesian filter Location, distance GPS, V2V communication Simulation Positioning

Gorrieri et al. [149] Cluster Probabilistic-based fusion Location, road condition V2V communication Simulation Positioning

Guermah et al. [150] – Location (C/N0-R-L, satellite RHCP and LHCP antennas Simulation Positioning
elevation)

Gu et al. [151] Inverse-depth CNN RGB image, inverse LIDAR map 3D-LIDAR, monocular camera Real-life environment Road detection

Gua et al. [110] Weight based fusion Location, longitudinal GPS, INS Simulation Side-slip angle definition
and lateral accelerations

Hoang et al. [152] Particle filter Location GPS, V2V communication Simulation Positioning

Hong et al. [76] Multi-metric weights assignment Traffic toll (flow) Road sensors Real-life environment Flow prediction

Hong et al. [127] Deep Cross fusion (NN) RGB images, point clouds Camera, LIDAR Real-life environment Autonomous driving

Hu et al. [153] CNN fusion Images Camera Real-life environment Driver’s behavior extraction

Jayarajah et al. [154] Deep-learning based Mode, location Traffic sensors – Anomalous events detection

Users (VRUs), cannot rely on the performance of the Global Navigation
Satellite System (GNSS) as a standalone technology. Therefore, numer-
ous research articles have studied the localization problem that includes
both object positioning and tracking in roads network [135].

Aeberhard et al. [54] outlined a high-level architecture for com-
bining sensor data for highly automated driver assistance functions.
An adaptive hybrid approach was developed by Ardakani et al. [134]
that takes into account data from various sources (INS, GPS, WiFi,
and cellular network). Using the proposed approach, all four major
tracking technologies are integrated to increase tracking accuracy.
Bauer et al. [138] proposed a method for pinpointing the location
of mobile objects using HD maps in urban environments. They incor-
porated lane marking detection into their fusion algorithm input to
improve accuracy. A new sensor fusion configuration (RADAR, LIDAR,
and vision) was developed by Cho et al. [35] to seamlessly incor-
porate measurements from various angles to improve tracking and
movement classification of nearby moving objects. Dawood et al. [39]
demonstrated the utility of virtual 3D models in in-vehicle localization
systems using unscented Kalman Filtring data fusion algorithms. Deng
et al. [145] developed an image fusion positioning scheme to mitigate
the effects of flexible sampling periods and data loss on the control al-
gorithm of automated guided vehicles. Dheekonda et al. [146] aimed to
examine the impact of the fusion of multi-sensor data on the robustness
and accuracy of moving object detection. This study included prelim-
inary findings on a deep learning-fusion model for object detection,
comparing it with those based on just image sensor data. By fusing data
from vehicle sensors with stereo vision perception, RodriguezFlorez
et al. [147] examined a multimodal approach for improving vehicle
localization and tracking dynamic objects. Gao et al. [104] presented
a multi-source information fusion algorithm for vehicle navigation
that is based on a hybrid model of both multiple interacting models
(IMM) and Kalman filtering algorithms. Garcia et al. [40] used both

Unscented Kalman Filter and Joint Probabilistic Data Association al-
gorithms to fuse data from vision-based systems, laser sensors, and
global positioning systems to provide augmented environment infor-
mation and knowledge to intelligent vehicles. Ghaleb et al. [123]
developed an innovation-based Adaptive Estimation Kalman Filter fu-
sion model based on vehicle kinematics and positioning measurements.
The proposed algorithm improves positioning accuracy in dynamic and
unstable measurement conditions. By integrating different techniques
of localization along with data fusion and vehicle-to-vehicle commu-
nication, Golestan et al. [36] proposed a scheme for improving the
accuracy of the localization information of the vehicles by integrating
available data and cooperatively improving it. Gorrieri et al. [149]
designed a novel scheme for clustered VSNs in which the vehicle
carries out a spatially constant process of decentralized detection by
combining several clustered algorithms with fusion rules. Guermah
et al. [150] devised a novel GNSS signal classifier based on information
provided by a fusion of RHCP and LHCP antennas and a machine
learning method. The proposed classifier exploits the characteristics
and potential of the RHCP and LHCP antennas to process the GNSS
signal. To maintain the level of positioning precision under severe
correlation environments, Hoang et al. [152] developed an innovative
framework for both GPS and V2V received data fusion capable of
mitigating the effects of measurement noise. Krishnamurthy et al. [157]
used a Bayesian estimation algorithm to perform a non-overlapping
fusion of video surveillance data for person tracking applications. Lagh-
mara et al. [128] described Dempster–Shafer as a new method for
real-time tracking of objects using a robust Dempster–Shafer approach.
Laghmara et al. [60] proposed a method for dynamic object detection
that uses Evidential 2.5D Occupancy Grids as well as the Belief Theory
to perform a grid fusion over time to keep track of moving objects
in the grid. Description of dynamic behavior is based on the issue of
the temporal conflict after the fusion. Golestan et al. [37] proposed
a new scheme that involves different techniques of localization along
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Table 20
Data fusion for ITS approaches (part 5).

Article Fusion approach Data properties Source Evaluation Domain of application

Kartsch et al. [155] Decision fusion technique brain cells electrical activity, EEG and IMU signals Simulation Fatigue detection
blink duration, gestures

Koesdwiady et al. [77] Decision In Decision Flow, weather Loop detectors, weather Real-life environment Flow prediction
Out technique Out technique service network

Kong et al. [156] Cluster Probabilistic-based fusion Traffic data packets Wireless sensor networks Simulation Bandwidth allocation

Krishnamurthy et al. [157] Probabilistic-based fusion Images Cameras network Simulation Tracking

Laghmara et al. [128] Dempster-Shafer theory Images Camera Real-life environment Pedestrian tracking

Laghmara et al. [60] Dempster-Shafer belief theory 2.5 Grid maps, location GPS/IMU, LIDAR, laser scans Real-life environment 3D object detection

Laghmara et al. [158] Multiple feature fusion Location, Images Camera, LIDAR Real-life environment 3D object detection

Lan et al. [78] Newton weight-based fusion Speed, location Loop detector, probe vehicle Simulation Speed prediction

Lassoued et [44] Sequential Kalman filtering Location GPS, CAN-bus Real-life environment Positioning

Lauffenburger et al. [159] Kalman filtering Images Camera Real-life environment Traffic sign recognition

Lee et al. [160] Weight-based fusion Location GPS, OBU, RSU Simulation Travel time estimation

Li et al. [79] Time synchronization Flow, speed, occupancy, weather NC-200 sensors, Clarus Flow prediction

Li et al. [161] Split co-variance intersection filter Location – Simulation Positioning

Li et al. [162] Multi-layer feature fusion Images laser scanners, camera Real-life environment Lane detection

Li et al. [163] Probabilistic feature fusion waveforms wireless geomagnetic sensors Real-life environment Vehicle type recognition

Li et al. [13] Restricted Boltzmann machines Flow, accident Information, Loop detector, highway safety Real-life environment Traffic accident prediction
weather, personal information information system

Lin et al. [80] Topic-Enhanced Gaussian Speed, trajectories, tweets Sensors, Twitter API Real-life environment Speed prediction
Process Aggregation Model

Liu [164] Inference-based fusion Videos, trajectories Camera Real-life environment Positioning

Liu et al. [165] Map matching Location GPS Simulation Positioning

Liu et al. [45] Cubature Kalman filtering Location GNSS, DSRC Simulation Positioning

Liu et al. [166] Particle Filtering Location, range IMU, UWB Simulation Positioning

Liu et al. [26] Cubature Kalman filtering Location GPS, GNSS, DSRC Simulation V2V communication

Lu et al. [118] Regression models Weather, text posts, Weibo, social media Real-life environment Congestion prediction
Traffic Incidents

with data fusion and vehicle-to-vehicle communication to integrate the
available data and improve the accuracy of the localization information
of the vehicles. Goli et al. [148] developed a cooperative multi-sensor
multi-vehicle localization algorithm with high accuracy for terrestrial
vehicles based on the fusion of heterogeneous observations in the form
of GPS coordinates of nearby vehicles as well as inter-vehicle distance
measurements. Arribas et al. [135] designed a multi-sensor positioning
Bayesian fusion algorithm that uses GNSS, IMU, and Odometric signals
for ground ITS applications. The algorithm was improved by looking
at dynamic noise covariance matrices with non-holonomic constraints
on vehicle movement and calibrating for zero velocity using the ve-
hicle’s speedometer measurements. Novak et al. [170] presented a
new approach to enhancing the detection of LEDs for Visible Light
Communication by fusing their outputs. Based on the use of multimodal
sensor fusion, Oliveira et al. [171] presented a robust solution to
overcome the significant limitation in inverse perspective mapping for
road obstacle detection. As a result of fusing laser range finding data
with the camera images, the maps are not computed in areas where
obstacles exist. Peixoto et al. [173] presented a framework for repre-
senting and processing spatiotemporal data that is suitable for handling
a variety of mobility data as well as supporting multiple approaches to
data visualization and processing. For this, the authors described how
actual data from heterogeneous sources is integrated into the proposed
framework by defining a set of concepts. Schwarzbach et al. [184]
provided GNSS pseudo ranges fusion based on spatial data given in the
form of a digital elevation model. To detect various types of abnormal
driving, Sun et al. [43] integrated data from multiple sources (GPS,
BeiDou, and IMU) using an Unscented Particle Filter. By using Kalman
filters to combine information from radar, GPS, and DSRC V2V commu-
nications equipment, a tracking system that increases target tracking
accuracy is proposed by Tian et al. [190]. Qin et al. [175] adopted the
use of the Particle Filter (PF) data fusion algorithm to exploit GNSS,

Dead Reckoning, and road segment information for vehicle location
estimation. A probabilistic Bayesian algorithm is applied by Verentsov
et al. [192] to combine global coordinates from GPS and relative
coordinates from IMU to generate a vehicle’s trajectory in an unknown
environment. Verentsov et al. [193] presented a Bayesian approach for
sensor fusion that improves vehicle localization using crowdsourced
data on traffic sign positions. Compared to using only GNSS and IMU,
this method offers noticeable improvements and uses precise traffic
sign positions. Li et al. [205] proposed a multi-sensor fusion approach
based on enhanced Kalman filters (KF) that fuses information from a
low-cost GPS, MEMS IMU, and digital compass to provide reliable and
low-cost navigation solutions in different scenarios. Bresson et al. [34]
proposed a new approach to solve the decentralized Simultaneous
Localization And Mapping issue using Extended Kalman Filter fusion
architecture designed for low-density maps built with low-cost sensors.
Zhu et al. [203] developed an expectation–maximization algorithm that
performs a joint data association and fusion simultaneously for dis-
tributed tracking. Cong et al. [102] proposed a smart and eco-friendly
tracking approach that uses the smartphone as a sensing platform to
obtain and fuse real-time data about vehicle acceleration, velocity, and
location. Through the use of a novel federal Kalman filtering approach
with a two-state chi-square detector and residual chi-square detector,
Geng et al. [59] developed a robust fault-tolerant path tracking control
algorithm that detects and identifies sensor faults in autonomous vehi-
cles. Pi et al. [63] created a framework for the detection and removal of
bogus mobility information that involves a fusion model. Additionally,
the authors integrated the proposed algorithms with previous data
fusion algorithms to achieve joint mobility tracking in autonomous
vehicles. Qin et al. [176] developed a measurement framework for a
large-scale data-driven tracking study that fuses two different sensing
approaches: vehicular tracking using crowdsourcing and cellular track-
ing using the infrastructure. Smaili et al. [187] proposed an approach
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Table 21
Data fusion for ITS approaches (part 6).

Article Fusion approach Data properties Source Evaluation Domain of application

Mai-Tan et al. [167] Quality validation Traffic-related
crowd-sources data

APIs Real-life environment Congestion prediction

Marin-Plaza et al. [41] Unscented Kalman filter Images, location, vibration LIDAR, GPS, Wheel odometer Real-life environment Automated Driving

Martín et al. [61] Context-aided Unscented Images, location Laser scanner, LIDAR, digital Real-life environment Automated Driving
Kalman filter camera, GNSS, IMU

Merdrignac et al. [62] Probabilistic-based fusion Perception (obstacles
detection data),

Camera, laser scanner, GPS, Real-life environment V2Pedestrian communication

V2Pedestrian data V2P communication

Moghaddasi et al. [168] Time synchronization Velocity, delay RADAR and radio signals Real-life environment Sensor data quality

Müller et al. [105] Probabilistic-based fusion Speed, location RADAR, GPS Real-life environment Positioning

Müller et al. [169] Belief-based fusion Location, speed RSU, V2X communication Simulation Trust management
and misbehavior Detection

Narayanan et al. [95] GRU fusion Images, speed, accelerator,
braking pedal positions,
yaw rate, turns, steering
wheel angle

Video stream, CAN signals Simulation Driver’s behavior extraction

Novák et al. [170] Weighted-based fusion Images colors, shape, time VLC, LED, and SNR transmitters Real-life environment Positioning

Oliveira et al. [171] Inverse projection fusion Images, location, range Laser range finder, camera Simulation Positioning

Osman et al. [42] Unscented Kalman Filter Images, location, vibrations LIDAR, camera, optical encoders, Real-life environment Noise detection
digital magnetometer, GPS

Pang et al. [172] Kalman filtering algorithm Location IoV communication Simulation Distance prediction

Peixoto et al. [96] Clustering based fusion Location, speed,
orientation

GPS, Wi-Fi, GSM Real-life environment Urban dynamics analysis

Peixoto et al. [173] Spatial synchronization Location GPS, Wi-Fi, GSM Real-life environment Human movement
analysis

Pi et al. [63] Kalman filtering algorithm Location, images,
trajectories

GPS, IMU, camera, V2X communication Simulation Tracking

Pu et al. [174] CNN 2D and 3D Images Satellite Real-life environment Human flow prediction

Qin et al. [175] Particle Filter Location, road segment
information

GNSS, Dead Reckoning, Simulation and Flow prediction

Real-life environment

Qin et al. [176] Average-based fusion Location GPS, cellphone Real-life environment Positioning

Qiu et al. [177] Trust-level fusion Signals RSU-Vehicle communication Simulation V2X communication

based on hybrid dynamic bayesian networks: linear Kalman filters and
Hidden Markov Models. These two models, when combined, offer the
ability to manage and manipulate multi-hypotheses and multi-modality
of observations characteristic of Map Matching problems and improve
integrity approaches. Thomaidis et al. [188] presented an algorithm
for fusing and associating tracking data from an onboard radar sensor
with position and motion data received from the VANET. The algorithm
is based on a track-oriented multiple hypothesis tracker, modified
to incorporate information from VANET messages. Tian et al. [189]
developed a cooperative vehicle infrastructure system based on the con-
cept of multi-source data fusion (machine vision, including vehicular
subsystem, the roadside subsystem, and the parking lot subsystem) to
detect road channelization, pedestrians, and vehicle.

3.4.6. Management systems
Transport management systems play a crucial role in supply chains,

from planning and procurement to logistics and lifecycle management.
In turn, this means better transportation planning and execution, which
leads to a higher level of customers satisfaction. Not only these systems
are beneficial with reliable and robust solutions, but they also enable
you to anticipate future needs of the industry while providing visibility
and complete control over your entire execution process.

Driving behavior extraction: Chen et al. [108] introduced an
innovative algorithm of driving behavior analysis based on AdaBoost,
fusing a variety of driving operations (steering wheel angle, brake force,
and throttle position) and traffic information. Chhabra et al. [109]
presented a context-aware system for driver behavior classification
as a safe, or fatigue or unsafe driver that considers the fusion of
vehicle, driver, and the environment information using a Dynamic

Bayesian Network. Birek et al. [139] examined the numerous data
sources available within the car and the surrounding environment, both
of which can be analyzed with different conceptual and contextual
representations for predicting the drivers’ intent and behavior. Inspired
by the gating mechanisms in LSTM units, Narayanan et al. [95] pro-
posed a novel Gated Recurrent Fusion Units (GRFU) that learns fusion
weighting and temporal weighting simultaneously from multimodal
signals, including video, LiDAR, and CAN signal data streams. Singh
et al. [185] used DTW-based event detection techniques to detect
sudden braking and aggressive driving behaviors using smartphone-
based sensory data fusion. Finally, Hu et al. [153] presented a CNN
approach for combining the multi-scale information and generating the
final decision in behavior recognition by filtering images with different
fusion strategies.

Analytical-based decision: Aiming to assess the impact of green
transport measures on city sustainability, Awasthi et al. [137] pre-
sented a hybrid approach based on the Analytical Hierarchy Process
and Dempster Shafer’s theory. This theory combines information from
multiple sources (human experts, questionnaires, sensors, etc.). Chen
et a. [141] investigated the information security of a vehicular Ad hoc
network whose messages were susceptible to abuse before they were
transmitted. This framework analyzes message dissemination using a
fusion mechanism in a malicious vehicles network. Yang et al. [196]
proposed a pairwise inconsistency-based algorithm to address the se-
curity problems of Cyber–Physical Systems that use multiple sensors
to measure the same physical variables. This approach uses fusion
intervals and historical measurements of the sensor to identify attacks
using virtual sensor inconsistencies in pairs. An analysis of correlations
among urban traffic multi-sensors was conducted by Kong et al. [156]
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Table 22
Data fusion for ITS approaches (part 7).

Article Fusion approach Data properties Source Evaluation Domain of application

Rahmani et al. [64] Weight-based fusion Automatic vehicle identification Camera, GPS, loop detector Real-life environment Travel time estimation
data, floating car data

Raouf et al. [129] Octree fusion Location LIDAR Real-life environment Fault detection in
Autonomous driving cars

Rapant et al. [81] Granger causality fusion Location, speed, travel direction, Infrared detectors, RADARs, Real-life environment Incident detection
speed floating car data

Raposo et al. [178] Calibration of a color Images Color camera, laser-range finder, Real-life environment Detection quality
depth camera

Ren et al. [65] Map-matching Location, direction, speed, images GPS, loop detector, camera Real-life environment Routing system
images

Rettore et al. [179] Artificial neural network Location, speed, flow, Vehicle’s OBD, CAN, smartphones Real-life environment Quality enrichment
trajectories

Rettore et al. [124] Weighted mapping fusion Tweets, location, speed, flow, Twitter API, vehicle’s OBD, Real-life environment Quality enrichment
trajectories CAN, smartphones

Rodrigues et al. [121] Neural network Flow, text, weather, event data Sensors, Web, APIs Real-life environment Taxi demand

Rodriguez-Castaño et al. [180] Fuzzy logic fusion Location GPS, odometric sensors Real-life environment High-speed navigation

Ruta et al. [122] Location, road type, weather, Smartphone-GPS, Web services, Real-life environment Driving assistance
Emissions, fuel consumption vehicle’s OBD

Saadeddin et al. [181] Neuro-Fuzzy Inference Location GPS, INS Real-life environment Congestion prediction

Salmane et al. [182] Demptster-Shafer theory Images Camera Real-life environment Detecting hazard situations

Salpietro et al. [183] Probabilistic-based fusion Location Sensors, GPS Simulation Parking assistance

Schwarzbach et al. [184] Probabilistic-based fusion Location, ranges GNSS, WSN Simulation Positioning

Shan et al. [97] Dempster-Shafer theory Speed Traffic microwave sensors, GPS Real-life environment Speed prediction

Shen et al. [66] Evidence theory Location, images GPS, camera Real-life environment Quality enrichment

Shen et al. [116] Time synchronization Flow, weather, Here Maps API Real-life environment Important crossroads
Construction works, holidays

Shen et al. [130] Federated Kalman filter Location, images GNSS, odometer, and CVNS Simulation Automated driving

Shi et al. [82] CNN Trajectories GPS Simulation Congestion prediction

to fuse the monitoring information within the coverage area of the sens-
ing system. Therefore, improving the vehicle type recognition system’s
resolution and accuracy. Muller et al. [169] suggested the fusion of
information from multiple agents reporting the same event, based on
a subjective logic-based mechanism that adds reliability information to
the shared data. Peixoto et al. [96] investigated a set of basic concepts
for representing and processing spatiotemporal urban mobility data
using a learning algorithm. Their geometric and symbolic data fusion
demonstrates the adequacy of the proposed concepts and uncovers new
possibilities for fusing heterogeneous datasets. Zhang et al. [198] fused
local feature descriptors based on different scales and image features
to enhance the detection of objects in traffic scenes. Zhang et al. [199]
created a visibility monitoring system using video camera facilities
distributed along highway roadsides that provided services such as data
transmission, data fusion, monitoring alert, and data publish/subscribe
mechanism. This system can be integrated with other ITS systems
using a data-sharing bus. Zhou et al. [202] presented a novel coupled
tensors model incorporating multi-source traffic data fusion for missing
data imputation and proposed a new tensor completion algorithm
using a modified associated matrix and tensor factorization weighted
optimization algorithm. Finally, Xia et al. [99] proposed a parallelized
fusion approach to overcome data heterogeneity and high computation
intensity for processing massive transportation data.

Coverage and quality: Ding et al. [25] investigated the properties
of IoT data to propose many IoT data fusion requirements. These
requirements are used as a metric to evaluate and compare methods
for data fusion. Jayarajah et al. [154] explored sociophysical analyt-
ics of multimodal informatics data that fuses social media analytics
to identify anomalous events, localize, and explain them. Van wyk
et al. [51] applied a nonlinear car-following model based on an adap-
tive extended Kalman filter model to smooth sensor readings from a
connected and automated vehicle to detect anomalies. In support of
joint radar-communication functions, Moghaddasi et al. [168] proposed

a multifunctional transceiver. Using a multiport interferometer, the
system can determine the target’s range, angle, velocity, and direction
of motion in radar mode. Raposo et al. [178] provided an accurate and
practical solution for the extrinsic calibration of mixtures of color cam-
eras, LRFs, and depth cameras whose fields of view are not overlapping
with each other using calibration software based on mirror reflections.
Rettore et al. [124] outlined a framework for data enrichment that
fuses heterogeneous data to enhance Intelligent Transportation System
(ITS) services, such as vehicle routing. Sinha et al. [186] presented a
novel architecture of multi-channel cognitive radio based on a dynamic
Bayesian network for decision and data fusion. Xia et al. [98] de-
signed a hierarchical evidential parallelized fusion model based on the
Dempster Shafer Evidence theory to implement the feature-level fusion.
Xia et al. [47] proposed a novel theoretical framework to assess the
computational demand and computing resources of ITS services based
on federated Kalman filters and Dempster Shafer evidence theories for
the multi-sensor data fusion. The authors transformed this framework
into a generic methodology applied for Cyber-ITS, mainly consisting
of region-based ITS data divisions and tasks scheduling for processing,
to support the efficient use of cyber-infrastructure in Xia et al. [206].
Xiong et al. [195] designed a cloud computing platform based on
multi-source massive data fusion to provide different transportation
data services for different traffic enterprises and business users. Shen
et al. [116] proposed a novel adaptive federated Kalman filter based
on the criteria for the degree of observability with time-varying infor-
mation sharing factors. Shen et al. [66] have built a multi-source traffic
data analysis method based on a Spatio-temporal regression model
and an evidence theory data fusion method that relies on the confi-
dence tensor for different ITS services. Geetla et al. [107] conducted
analysis-based research to determine where to place accident-detecting
omnidirectional sensors to maximize detection capabilities for crash
characterization using data fusion techniques. Titouna et al. [191]
develop a new approach based on clustering and graphical possibilistic
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Table 23
Data fusion for ITS approaches (part 8).

Article Fusion approach Data properties Source Evaluation Domain of application

Shi et al. [83] JDL fusion model Location Automatic Dependent Simulation Trajectory prediction
Surveillance-Broadcast

Singh et al. [185] Normalization Gyroscope, gravity Gyroscope, gravity sensors Real-life environment Driver’s behavior extraction

Sinha et al. [186] Dynamic Bayesian network Location, speed, GPS, local RADAR and gyroscopic Simulation Quality enrichment

Smaili et al. [187] Hybrid Dynamic Bayesian Location, speed GPS, trajectory data Real-life environment Positioning
Networks

Sun et al. [43] Unscented Particle Filter Location BeiDou, GPS, IMU Real-life environment Positioning

Sun et al. [84] Conditional Information
Fusion

Flow, speed Road sensors Real-life environment Flow prediction

Tak et al. [85] Average fusion Speed ILDs and DSRC Real-life environment Travel time estimation

Terroso-Sáenz et al. [93] Density-based clustering fusion Location, trajectory GPS Simulation Planning

Thomaidis et al. [188] Interacting Multiple Mode
filtering

Location, speed VANET, RADAR Simulation Positioning

Tian et al. [189] – images Camera Real-life environment Moving object detection

Tian et al. [190] Kalman Tracking Model Location, speed RADAR, V2V (GPS) Real-life environment Tracking

Titouna et al. [191] Clustering and graphical Emergency case road sensor signal Simulation Emergency decision
possibilistic fusion

Verentsov et al. [192] Probabilistic Bayesian fusion Trajectories GPS, IMU Simulation Positioning

Verentsov et al. [193] Probabilistic Bayesian fusion Trajectories GPS, IMU Simulation Positioning

Vu et al. [38] Extended Kalman filter Location, images Computer vision, DGPS Real-life environment Positioning

Wang et al. [119] Bayesian reasoning Flow, weather, location Sensors Real-life environment Emergency decision

Wang et al. [111] Weight-based fusion Speed, acceleration Internal sensors Simulation Automated wheels control

Wang et al. [86] Fuzzy-Logic Model of
Perception

Traffic environmental
information

Traffic light signals, sensors Simulation Congestion prediction

Wyk et al. [51] CNN-Kalman filtering
algorithm

Speed, acceleration,
location

Internal sensors, GPS Real-life environment Quality enrichment

Xia et al. [87] Dempster–Shafer theory Location, speed, flow GPS, SCATS loop detectors Real-life environment Congestion prediction

Xia et al. [47] Federated Kalman filter and Traffic data, Location traffic sensors, GPS Real-life environment Data coverage
Dempster–Shafer theory

Xia et al. [98] Hierarchical Dempster–Shafer
theory

Speed, flow GPS, SCATS loop detector Real-life environment Parallelized analysis

fusion modeling to proactively change traffic lights during emergen-
cies. The proposed system decomposes the environment into clusters,
performs a local fusion mechanism inside each cluster, then applies a
global fusion at the level of head clusters. Flores et al. [103] proposed
a cooperative approach using the fusion of LIDAR sensing V2V and V2P
communication signals for unexpected car-following situations. Finally,
Wang et al. [119] proposed a Perceptual Control Architecture of Traffic
Incident Management systems by fusing heterogeneous information
processing and varying environmental interactions.

Taxi demand: Rodrigues et al. [121] proposed two deep learning
architectures that rely on word embeddings, convolutional layers, and
attention mechanisms for fusing text information with time-series data
for taxi demand forecasting in event areas.

3.4.7. Driving assistance
Systems of advanced driver assistance help drivers with driving and

parking tasks. These systems play a crucial role in increasing road and
vehicle safety by utilizing a safe human–machine interface. Cameras
and sensors use automated technology to identify nearby obstacles or
driver errors and act accordingly.

Parking assistance: Aliedani et al. [133] investigated the deception
behavior of malicious vehicles looking to park by sending false infor-
mation in decentralized vehicle cooperation using a deception detection
fusion-based mechanism. Based on a sensor feature-fusion model called
the Orthogonality Error Estimate, a new method for detecting vehicle
parking activity to reduce vacant parking space search times is pre-
sented by Yeh et al. [115]. With this model, parking activity can be
detected with high accuracy and low power consumption. Salpietro
et al. [183] developed an urban parking spot search mobile application

designed to reduce the overhead of parking operations. This application
performs the automatic detection of parking actions algorithm by ana-
lyzing smartphone fused sensors’ (accelerometer and gyroscope) and
the Bluetooth connectivity. Du et al.. [106] developed a novel City
Traffic Data-as-a-Service that identifies associations and relationships
among data resources to fuse data from distributed providers.

Navigation systems: Chiang et al. [9] proposed a semi-tightly
coupled integration scheme based on Extended Kalman Filter (EKF)
with motion constraints that fuse INS/GNSS with grid-based Simul-
taneous Localization and Mapping for robust and stable navigation
information. Eciolaza et al. [10] developed an application for driving
behaviors reporting to ensure safe driving practices Based on Fuzzy
Logic and the computational theory of Perceptions. Based on the fusion
of GPS and odometric sensors using fuzzy logic, Rodriguez-Castano
et al. [180] developed a GPS-based autonomous navigation method
for heavy vehicles at high speeds. Yu et al. [67] created a multi-
modal journey planner that combines comprehensive traffic network
data with real-time traffic speed data to provide commuters with more
accurate and practical recommendations. As an alternative to travel
diaries, Zilske et al. [94] considered integrating call details with link
volume counts as inputs for an agent-based traffic simulation to re-
duce spatiotemporal uncertainty and correct underrepresented traffic
segments. Ren et al. [65] presented an information fusion model based
on a dynamic traffic routing system multi-resource heterogeneous data
sources. In addition to providing comprehensive traffic information to
the system and traveler, the fusion results will help optimize operations.
Finally, Vu et al. [38] described a sensor fusion technique that can
assist an INS in challenging environments with limited or unreliable
GPS reception, using computer vision and differential pseudo-range
GPS measurements.
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Table 24
Data fusion for ITS approaches (part 9).

Article Fusion approach Data properties Source Evaluation Domain of application

Xia et al. [99] Rough Dempster–Shafer theory Speed, flow GPS, SCATS loop detector Real-life environment Parallelized analysis

Xia et al. [194] Dempster–Shafer theory Speed, flow GPS, SCATS loop detector Real-life environment Big-data management

Xiong et al. [195] Time synchronization Human, road, vehicle data Sensors technologies Real-life environment Big-data management

Xu et al. [52] LSSVM-NARX/KF Location, GPS, IMU, digital compass Real-life environment Positioning

Yang et al. [196] Pairwise fusion Speed Ultrasonic sensor Real-life environment Sensors security

Yang et al. [88] Neural network Speed, Weather, road data,
date

Floating car data,
environmental sensors

Real-life environment Speed prediction

Yao et al. [197] Adaboost and SVM Images Camera Real-life environment License Plate detection

Yao et al. [89] Dempster–Shafer theory Speed GPS, RTMS Real-life environment Speed prediction

Yeh et al. [115] Orthogonality Error Estimate Location, speed,
acceleration

Accelerometer,
magnetometer

Real-life environment Parking assistance

Yu et al. [67] Linear fusion Speed, trajectories GPS, camera Real-life environment Planning

Yu et al. [131] Hierarchical game Traffic data MEC server, V2X Simulation Time optimization

Yu et al. [120] Deep neural network Location, weather,
trajectories

GPS, environmental sensors Real-life environment Incident detection

Zanchin et al. [68] – Speed, location, images RADAR, camera, scanner,
LIDAR

Real-life environment Automated driving

Zhang et al. [198] Boosting fusion Images video sensors Real-life environment Surveillance

Zhang et al. [90] Mer-Gesh Trajectories GPS Real-life environment Travel time estimation

Zhang et al. [91] Uncertainty feedback fusion Speed, Trajectories GPS Real-life environment Travel time estimation

Zhang et al. [199] – Images Video sensors Real-life environment Roads management

Zhang et al. [200] R-CNN and Kalman filter Images, speed Video sensors Real-life environment Tracking

Zao et al. [201] Gated Recurrent Unit flow, speed, location, DSRC, RTMS Real-life environment Travel time estimation
time occupancy

Zheng et al. [15] Time synchronization dictionary Flow Loop detector Real-life environment Flow prediction

Zhou et al. [202] Coupled tensors model Flow, Speed Loop detector Simulation Quality enrichment

Zhu et al. [203] Maximum likelihood function Speed Sensors Simulation Tracking

Zilske et al. [94] – Location, transport mode, CDR technology Simulation Planning
trajectory

Planning: Benalla et al. [92] proposed a novel agent-based eviden-
tial reasoning system that deals jointly with the driving behavior and
driving environment conditions. Chiang et al. [112] developed a data
fusion stage based on a collision warning algorithm which is integrated
into a driver-assistance system that uses a low-cost embedded digital
signal processor based on driving information supplied by multiple
sensors to avoid collisions. Pang et al. [172] proposed a method for
determining the vehicle-to-vehicle distance utilizing a Kalman filter to
ensure better accuracy. This method enables the Double DQN algorithm
to compute the optimal scheduling strategy to minimize the navigation
system’s total consumption cost. Ruta et al. [122] developed a driv-
ing assistance application that makes use of the on-board diagnostics
protocol, the vehicle’s diagnostic information, smartphone embedded
micro-device data, and web information is collected and fused con-
sistently. Finally, Terroso-Saenz et al. [93] implemented an on-board
context-aware application that processes the typical routes of the Ego
Vehicle according to its context. The application detects vehicular
occupancy and the meaningful points of the frequent itineraries using
a density-based cluster fusion algorithm.

3.5. What are the challenges and future directions of data fusion for ITS
applications?

This article aims to highlight the challenges of using data fusion
in ITS applications that must be addressed in the future when trying
to improve transportation systems, increase mobility, and reduce acci-
dents for both drivers and travelers. Based on a computational vision,
stakeholders in traffic management are steadily deploying sensors on
the roads and within vehicles. Despite this, physical infrastructure
deployment cannot resolve mobility challenges due to the large scale
of heterogeneous information generated by these different sources.

Consequently, it is necessary to integrate other technologies such as
data fusion and analytics, automated operation tools, decision-making
tools, and social and mobile networks to capture, analyze and share in
real-time, with the relevant parties, all the information generated by all
the different sources. Data fusion techniques have been widely applied
in multi-sensory environments to combine and aggregate data from
various sensors according to specific criteria, such as complementing
or redundant data, data type, centralized, decentralized, or distributed
architecture.

3.5.1. Hybrid data fusion models
Multiple levels of transportation-related information can be fused

into a single decision-making process, which leads to the improvement
of the application domain. Sources of this heterogeneous information
differ in what they convey conceptually, contextually, and graphically.
The uncertainty and complex data handling process are tedious while
using their content in the fusion process. Thus, the ancient approaches
have the limitation to retail each fusion results of each group of similar
features with a different one. The challenge here is the combina-
tion of efficient algorithms that detect and fuse traffic patterns from
the collected heterogeneous features that increase the performance
of transportation systems. Data samples are gathered from different
sources (such as cameras and sensors) and transmitted by other meth-
ods (through wires/wireless links). Thus, it is tricky to analyze the
data first to remove some redundancy and preserve relevant features;
then compare and fuse the data collected from different sources using
different algorithms; finally, provide a single output from all the fusion
process to the system.
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3.5.2. Explainable Deep Neural Network data fusion
A recent increase in the sophistication of ML-based models used

in different ITS applications has made their design and deployment
almost utterly automated. As such systems can ultimately affect human
lives (e.g., self-driving vehicles), it will become necessary to understand
the processes through which such decisions are generated. In contrast
to the early machine learning systems that were easily interpretative,
advanced decision systems such as Deep Neural Networks (DNN’s)
have recently been developed. The effectiveness of DNNs is linked to
their wide parametric space and effective learning algorithms. Conse-
quently, DNNs are considered complex black-box models due to the
large number of layers they contain and the millions of parameters they
contain. The eXplainable AI (XAI) [207] proposes creating a suite of ML
techniques that will produce more explainable models while retaining
a high level of learning performance. Therefore, it enables humans to
better understand, respect, and trust the next generation of artificially
intelligent partners.

3.5.3. Adaptative sensor selection
In the context of ITS data fusion, sensor selection and flexible data

fusion are both sought-after research topics. A significant issue in the
fusion of multi-sensor data is the selection, evaluation, and charac-
terization of sensor performance and the establishment of confidence
factors for each sensor as part of the interpretation and multi-target
tracking. In other words, a methodology, that adaptively determines
sensor confidence for any given tracking or positioning system, must be
devised under a practical research question, namely ‘‘how to adaptively
select suitable sensors, and then perform flexible data fusion relying on the
selection’’.

3.5.4. Privacy-preserving
Data fusion with privacy-preserving features remains a hot topic.

Privacy-sensitive sensors may not provide enough information for ap-
plication design. Security and privacy for users are still open issues
that require more research. Data analytics and machine learning can
be performed using Homomorphic encryption, but they cannot be
employed in real-time applications because of their high computation
cost. Despite recent information fusion trends, there are significant
limitations with real-time data fusion to solve the security issues for
both low-level and high-level fusion. Secret sharing schemes, which
combine data in clusters with reduced communication costs, may be
a solution in a highly distributed system to tackle this issue. Yet a
literature review suggests that more advanced solutions can be widely
implemented in practice. Privacy-preserving data fusion is a fascinating
and challenging field of research.

3.5.5. Sensor data quality
The quality of sensor data produced by an ITS application may

suffer due to errors, as poor sensor data quality could lead to incor-
rect decision-making. Even if an ITS application contains hundreds of
sensors that produce vast amounts of data, the latter is rendered useless
if it is riddled with errors. Furthermore, the term error refers to the soft
faults found in sensor data, such as outliers, missing/incorrect values,
and uncertainty, which should be identified or quantified and removed
or corrected to improve sensor data quality [208]. Therefore, sensor
data fusion raises the following fundamental challenges:

• Outliers and spurious collected records: uncertainty does not
arise only from the absence of details and noise but also from the
environment’s obscurity and unpredictable behavior.

• Data imperfection: information gathered from sensors is affected
by some degree of incompleteness (missing values) and ambiguity
(incorrect values).

• Data correlation: this problem is primarily critical and not un-
usual in distributed fusion settings, e.g., wireless sensor networks.
For example, sensors can be uncovered to an equal outer sound
which biases their readings. Fusion procedures, in such cases,
are not based on information reliance and may be impacted by
over/under command effects.

• Data association: this problem occurs when it is hard to de-
termine from which sensor the information is gathered. Measur-
ement-to-track or track-to-track are two possible solutions.

• Data adjustment: Sensor data should be merged into one record
before being fused. The problem is referred to as data registration
because it involves calibration errors caused by different sensor
nodes.

• Data dimensionality: data need to be compressed to lower
dimensionality either locally or globally. In addition to speeding
up the transmission process, this would reduce the transmission
range and the amount of capacity needed to transfer the records.

It is crucial to treat highly conflicting data problems carefully. Data
fusion procedures require showing such imperfections successfully and
making use of the records excessively to minimize their effects.

3.5.6. Real-time acquisition
As transportation systems generate many data and requests that

need to be handled quickly, fog computing is a powerful complement
to the cloud since it can significantly improve transportation services.
A task scheduling policy is applied by fog computing to the incoming
task to ensure that the service runs at its optimal performance. For
determining the correct handling of incoming tasks, Louail et al. [209]
proposed a real-time dynamic task scheduler that considers schedule
deadlines and frequency constraints at the fog level. As a result of edge
computing-based video pre-processing, another solution was proposed
by Wan et al. [210] to eliminate redundant frames, reducing the
computing, storage, and network bandwidth requirements of the cloud
center based on video segmentation for real-time traffic monitoring on
the internet of vehicles. Through the exploration of short-term traffic
predictions, Chen et al. [211] proposed a novel data dissemination
scheme for Industry 4.0 applications enabled by the Internet of Vehi-
cles. This paper presents a three-tiered network architecture aiming to
simplify network management and reduce communication overhead.
Furthermore, Chen et al. in [212] addressed this issue by proposing
a traffic flow detection scheme based on deep learning deployed on
an edge node. The authors claimed that this solution solves storage,
communication, and processing problems associated with traditional
transportation systems.

4. Conclusion

Intelligent transportation refers to a set of applications that requires
knowledge to ensure reliable and safe movement of passengers and
freight in various environments. However, because of the ubiquitous
deployment of communication technologies, tremendous amounts of
traffic-related data have been collected to ease traffic issues. As a result,
multi-source data fusion models have grasped an extensive interest in
an attempt to deal with these issues. The present paper systematically
reviews a broad range of data fusion technologies in ITS literature (175
publications) regarding extraction of their primary methods, data prop-
erties, evaluations, and applications. The key findings and conclusions
of the review are as follows:

• Data fusion methods can be conventionally divided into three
main categories (Probabilistic-based methods, Evidence reasoning-
based methods, and Knowledge-based methods). We analyzed the
dynamics of method applications from different categories in in-
telligent transportation. We concluded that the general trend has
recently shifted from probabilistic and Evidence reasoning-based
methods to various data-driven or knowledge-based methods.
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• Data fusion methods that utilize both traffic and environmental
features relationships are gaining scientific interest in the field
of different ITS applications in which the number of related
publications has increased during the past decade and is expected
to continue to grow.

• The effectiveness of data fusion methodologies is challenging to
compare based on the existing literature. Studies are typically
evaluated using real-world scenarios; however, simulation can
provide a safer evaluation method in some instances (applica-
tions).

• The coverage of using data fusion methods in ITS applications is
not uniform. For example, several application domains (i.e., Lo-
calization) have been intensively examined using different data
fusion methods with heterogeneous data properties. On the other
hand, several others (i.e., Vehicular communication) have not
been widely analyzed. In addition, most publications are limited
to applying a single data fusion method, and there is a lack of
studies based on combining different methods. This may loom to
a broad direction for future research.

The added value of this review includes the trends and challenges
discovered in the methodology of using data fusion and empirical
insights into applied ITS problems. The list of 175 studies, classified
by the applied methods, the handled data properties, evaluation pro-
cesses, and application domains, is a self-contained contribution to
assist further literature analyses in this field. Following a systematic
review of the scientific literature, we identified several methodologi-
cal and empirical gaps and provided suggestions for future research.
The systematic review discussion leads to the identification of several
methodological and empirical gaps related to the characteristics and
the quality of sensor data (e.g., the voluminous size, heterogeneity,
real-time processing, and scalability). Further, it suggests promising
directions for research towards secure and privacy-preserving data
fusion in ITS applications.
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Abstract
Urban traffic congestion is of utmost importance for modern societies due to population and
economic growth. Thus, it contributes to environmental problems like increasing greenhouse
gas emissions and noise pollution. Improved traffic flow in urban networks relies heavily
on traffic signal control. Hence, optimizing cycle timing at many intersections is paramount
to reducing congestion and increasing sustainability. This paper introduces an alternative to
conventional traffic signal control, EcoLight+, which incorporates future noise predictions
with the deep dueling Q-network reinforcement Learning algorithm to reduce noise levels,
CO2 emissions, and fuel consumption. An innovative data fusion approach is also proposed
to improve our LSTM-based noise prediction model by integrating heterogeneous data from
different sources. Our proposed solution allows the system to achieve higher efficiency than
its competitors based on real-world data from Tallinn, Estonia.

Keywords CO2 emissions · Congestion · Fuel consumption · Data Fusion · Dueling DQN ·
SUMO Simulation · Traffic signal control · Urban noise

1 Introduction

Traffic congestion levels have been rising precipitously in the last few years due to an
imbalance between the rise in travel demand and the availability of transportation services.
According to [1], congestion cost in cities such as Stuttgart and Paris is around 2% of their
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GDP. Moreover, in 2021, New York City drivers lost an average of 102 hours in congestion
which before the pandemic it was even worse.1 The general rule is that cities should develop
strategies to reduce congestion based on their visions and goals. Implementation of new
infrastructure is often slow and costly. Therefore, urban planners and policymakers are inter-
ested in making existing infrastructure more efficient [2]. One of the proposed hypotheses
is that “An improved traffic light system will lead to better traffic management and, there-
fore, more peaceful urban areas” [3]. Hence, optimizing cycle timing at intersections can
significantly reduce congestion and improve environmental quality.

Furthermore, the rapid increase in transport requirements has brought challenges to the sus-
tainable development of our society concerning emissions and energy consumption induced
by traffic. The European Environment Agency (EEA) reports that road traffic noise continues
to be the primary contributor to noise pollution. Around 100 million people are exposed to
road traffic noise above 55 decibels (dB) in the 33 member countries of the EEA. Among
them, 32 million (about one-third) are subjected to extremely high noise levels exceeding 65
dB [4]. Furthermore, according to the World Health Organization (WHO), exposure to loud
noise causes high blood pressure, hearing loss, heart disease, sleep disturbances, and stress.
Hence, measuring traffic noise is a good indicator of traffic congestion intensity.

Numerous traffic signal control solutions have been used and proposed to overcome the
traffic congestion issue. Worth mentioning is the integration of Arduino in cameras with
machine learning (e.g., object detection deep learning algorithms) and genetic algorithms for
traffic signal timing optimization to help experts manage congestion. Recently, researchers
have begun investigating reinforcement learning (RL) techniques for controlling traffic sig-
nals. These techniques appear to be more effective than traditional transportation methods.
Its main advantage is that it learns how to take real-time action by observing the envi-
ronment’s reaction to previous actions. One major issue with most RL-based traffic signal
control approaches is that their setting considers, in each phase, only mobility and current
traffic conditions when designing the next control strategy. In our previous EcoLight solution
[5], we elaborated on these two characteristics by integrating two novel aspects into the RL
techniques. First, sustainability is achieved by incorporating noise as an environmental input
feature. The second aspect is the proactivity achieved by predicting future noise levels so
that the model is better prepared to make decisions based on current observations alongside
future noise predictions. The EcoLight solution proved its efficiency in reducing noise levels,
CO2 emissions, and fuel consumption.

Data fusion is a sophisticated technique for combining information from multiple sources
to obtain more accurate results in the execution of an application in a way that is barely
possible by using individual sources separately. Due to the deployment of ubiquitous
communication technologies, e.g., surveillance video cameras, loop detectors, and radars,
multi-source data fusion models have captured great interest. The sought-after goal is to
process knowledge from these enormously collected databases of heterogeneous traffic data
[6]. To this end, as an enhancement to EcoLight, we leverage the heterogeneous traffic data
available and propose a novel data fusion technique to improve the accuracy of our noise
prediction model. Moreover, we use a deep dueling Q-network reinforcement learning-based
architecture as an improved alternative to the deep Q-network to learn the best strategies for
traffic signal control. By and large, the main contributions of EcoLight+ are as follows:

• At the data fusion stage, we want to leverage knowledge from different available sources
with varied structures by integrating data from on-road sensors, cameras, andweather sta-
tions. Furthermore, we propose a new embedding-based multi-modal data fusion module

1 https://inrix.com/scorecard/.
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that uses different embedding techniques for each data type. Our module uses a neural
network-based embedding to generate the categorical feature vectors and feature2vec to
learn the continuous ones.

• At the noise prediction stage, we take advantage of the sequence-to-sequence architec-
ture and propose splitting the time-series noise traffic data into fixed-sized sequences,
where the size is determined based on an analysis of road network traffic behavior. Our
method includes building a stacked layer architecture based on LSTM to extract temporal
dependencies behavior from the fused data. Using the current state as input, the model
will return a future traffic noise sequence.

• At the traffic signal control stage, we heavily rely on a deep dueling Q-network rein-
forcement learning-based model that inputs the current state traffic-related information
alongside the traffic noise estimation to predict the upcoming traffic signal phase.

• We run our simulation experiments on a real-world dataset of a road intersection collected
in Tallinn, Estonia. The harvested evaluation criteria (noise levels, CO2 emissions, and
fuel consumption) outperform those obtained by the pioneering ones in the literature.
We designed this solution to function as stakeholders’ accurate sidekick for proactive
decision-making at a lower cost. Indeed, our approach has wide practical use in real-life
scenarios.

We organize the remainder of this paper as follows: In Sect. 2, we scrutinize the related
work that paid attention to both data fusion for traffic prediction and traffic signal control
approaches. In Sect. 3, key notions for traffic signal control are introduced to simplify the
understanding of our research goal. Section 4 thoroughly describes the proposed EcoLight+
approach. A comparative analysis of the proposed model’s performance against the compe-
tition is presented in the penultimate section. The final section wraps up our findings and
sketches avenues for future work.

2 Related work

Modern societies are characterized by a great deal of urban noise. In addition to being a
nuisance, it can negatively impact the environment and human health. While evidence of
noise’s harmful effects is increasing, spatial understanding of its distribution is limited. A
brief overview of noise prediction methods is given in this section, followed by a discussion
of data fusion for enhancing traffic prediction methods, followed by a discussion of traffic
signal control methods.

2.1 Noise prediction

Noise pollution from road traffic is Europe’s most prevalent source of outdoor ambient noise.
Different prediction models may produce different noise levels depending on traffic noise’s
location and emission sources. At present, very little research focuses on developing models
that help determine the effects of traffic noise on society. Staab et al. [7] used a land-use regres-
sion (LUR) model and context-aware feature engineering to construct a geostatistical model
mapping approach to represent the arrangement of sources and the surrounding environment.
In this article, the authors deal with small communities that have not been adequately mapped
in Europe. To improve traffic noise modeling, another solution was proposed by Ahmed et
al. [8] that developed a deep neural network-based optimization approach that integrated the
wrapper for the feature-subset selection (WFS) method. This method creates weekday noise
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maps for different times, such as mornings, afternoons, evenings, and nights. Khan et al. [9]
compared three different noise estimationmodels used throughout Europe. This studymainly
explored potential models’ performance patterns for specific configuration types. Based on
vehicular traffic volume, percentage of heavy vehicles, and vehicles’ average speed, a neuro-
fuzzy inference system that identifies at what noise level the traffic will be detected has been
proposed by Singh et al. [10]. Comparing it with conventional soft-computing techniques
validates its suitability for planning mitigation measures for new and existing roads. Finally,
Zhang et al. [11] examined the accuracy of different machine learning recurrent architec-
tures for predicting traffic noise using real-life traffic data with multiple variables. According
to the study, using a multivariate bidirectional GRU model (Gated Recurrent Unit) with a
many-to-many architecture achieved the best computation efficiency and accuracy. Recently,
Ounoughi et al. [5] introduced a sequence-to-sequence LSTM-based architecture to predict
urban noise. Using a real-life dataset, the model underscores high performance at different
times of the day (morning, evening, and night). The noise generated by traffic is a complex
phenomenon. In modeling traffic noise, large and high-dimensional data are gathered. In this
case, deep recurrent learning architectures are the best tools for analyzing large datasets and
discovering nonlinear relationships.

2.2 Multi-modal data fusion

Current intelligent transportation systems (ITS) incorporate heterogeneousmulti-modal input
data from multiple sources in real time. Multimodality involves extracting and combining
relevant information from individual sensors to solve agivenproblem.Therefore, the expected
output will have a richer representation and performance than the individual modalities. In
a single-domain dataset, deep learning-based prediction models have proven successful. In
recent years, studies on data fusion (DF) have contributed significantly to the development
of ITS and contributed significantly to its improvement. Recently, Ounoughi and Ben Yahia
[6] categorized data fusion techniques into three primary levels. This categorization is driven
by the stage where the fusion process takes place:

1. Observation-level: raw sensor data are combined directly;
2. Feature-level: emphasizes a preliminary extraction of representative features from the

original sensor data; and
3. Decision-level: is used only after a first assessment of the target’s attributes of interest.

The techniques applied to solve and improve different applications are Bayesian inference,
Dempster–Shafer evidential reasoning, artificial neural networks, fuzzy logic, and Kalman
filters. It is worth mentioning that Mai-Tan et al. [12] introduced a mobile crowd-sourcing
fusion-based approach for traffic prediction. In the proposed framework, the mobile crowd-
shared data are analyzed in real time, and the missing data are incorporated using data mining
techniques and historical data. Using a simulation method, Wang et al. [13] applied cognitive
psychology to learning driving behaviors on the road network. They used visual-filtering
and perceptual-information fusion models to describe drivers’ heterogeneous cognitive pro-
cesses. Yeferny and Ben Yahia [14] introduced the Markov Chain-based data Dissemination
Protocol (MCDP), an adaptive geocast protocol designed specifically for vehicular ad hoc net-
works (VANETs). MCDP dynamically determines the Zone of Relevance (ZOR) for events
by considering the probability of receiving vehicles’ information encountering them within
VANETs. Alkouz et al. [15] proposed a cross-lingual data fusion model named SNSJam that
predicts traffic jam events using cross-lingual data collected from multiple social media plat-
forms. Many traffic prediction research works have involved external environmental factors
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such as weather conditions and air quality in measuring environmental factors. Worth citing,
Essien et al. [16] stated an improved traffic speed prediction model fusing traffic-related
variables with weather into a deep learning LSTM architecture. Moreover, Essien et al. in
[17] fused public tweets with traffic and weather conditions to improve their deep learning
model for traffic flow prediction tasks. Yang et al. [18] presented a hybrid deep learning
structure for short-term traffic speed prediction using weather conditions and an air quality
fusion model. Furthermore, Pu et al. [19] introduced a novel hybrid prediction model based
on the fusion of traffic images’ features using an attention CNN with an encoder–decoder
framework. Real-world fusion-based applications have to deal with several data-related chal-
lenges. Their input data might be imperfect, correlated, inconsistent, or in various forms or
modalities. Regardless of how different inputs to the data fusion module are managed, the
underlying fusion algorithms must ultimately fuse the input data. As a result, we proposed to
explore multi-modal data fusion according to our novel module based on the data embedding
aspect.

2.3 Traffic signal control

Traffic signal control is integral to an intelligent transportation system that improves traffic
efficiency. However, some challenges accompany these systems, such as protecting against
high roadside cameras, keeping malicious vehicles from getting in, and preventing single
points of failure. The literature has examined several traffic signal control systems to cope
with those challenges. Two approaches have been developed so far: a fixed-time (rule-based)
strategy and a traffic-responsive strategy [20].

Several signal plans (e.g., from 8:00 to 10:00 am) are predetermined based on historical
traffic flow data as part of a fixed-time strategy. Thus, a traffic signal is periodically changed
per the predetermined signal plans. Le et al. [21] proposed a decentralized traffic signal
control scheme using a back-pressure scheme for urban road networks, which has received
widespread recognition for achieving an optimal throughput control policy in data networks.
They concluded that the proposed scheme of fixed cycle times and cyclic phases stabilizes the
traffic for any possible transportation demand. However, since such traditional transportation
systems do not work in real time, they can only be used when the demand is relatively stable
within each time interval.

By using current traffic information, the traffic-responsive strategy overcomes the above
limitation. In this strategy, the major challenge is forecasting incoming vehicles or traf-
fic status. Bravo et al. [22] proposed a city-wide traffic control management program that
assists traffic managers in making decisions, namely HITUL. Relying on a conjunction of
meta-heuristic algorithms and nature-inspired techniques, the HITUL system uses different
technologies to gather data and optimize traffic signal priorities using existing traffic infor-
mation. Various reinforcement learning methods have recently been proposed to improve
traffic signal control and achieve better results than traditional transportation methods.Worth
mentioning, IntelliLight [23] is an RL-based approach that incorporates an extended phase-
sensitive gate. It comprehensively evaluates traffic signal control performance, considering
variables like waiting time and vehicle count at intersections. Presslight [24] is another
RL-based method that uses the current phase, the number of vehicles on outgoing lanes, and
the number of vehicles on incoming lanes as the state and uses the Max-pressure (MP) as
the reward for achieving coordination between neighbors. Colight [25] utilizes graph atten-
tional networks to facilitate communication. In this case, it uses the attention mechanism to
represent neighboring information to achieve the goal of cooperative traffic signal control.
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DemoLight [26] learns a stochastic policy (demonstrations) that maps states to an action
probability distribution based on a generated analogy between agents and humans. FRAP
[27] is a reinforcement learning-based method designed to learn the inherent logic of the
traffic signal control problem, called phase competition. The advantage of this method is
that it combines similar transactions, irrespective of the intersection structure or local traffic
conditions. ThousandLight [28] is one of the most recent works that has been tested on the
real-road network with 2510 traffic signals. By leveraging the ‘pressure’ concept, they devel-
oped RL-FRAP-based agents capable of signal coordination at a regional level. Furthermore,
the authors demonstrated that individual agents could achieve implicit coordination through
reward design, thereby decreasing dimensionality. Another RL-FRAP with model-agnostic
meta-learning (MAML) is proposed in [29]. This model can transfer knowledge between
different intersections by focusing on action spaces and state spaces instead of traffic flow.
For example, it can train an agent at a four-way intersection and test it at a five-way inter-
section. To improve the generalization ability of traffic signal control models, the authors
in [30] proposed a meta-RL framework called GeneraLight. GeneraLight enhances general-
ization performance by combining flow clustering parameter initialization with multi-modal
MAML (MUMOMAML). Our previously proposed approach is designed to manage traffic
signal control by considering both sustainability and proactivity aspects. This solution adapts
the traffic lights to reduce noise levels, CO2 emissions, and vehicle fuel consumption.

Table 1 summarizes the factors influencing the evaluation of traffic signal control strate-
gies: method, simulation environment, road network, and evaluation metrics. Recent studies
have shown promising results when using reinforcement learning techniques for traffic sig-
nal control. However, these techniques rely only on the current traffic conditions. Therefore,
through our improved approach, we accurately contribute several novel sustainable and
proactive aspects to this line of research.

3 Formalization of the problem

This section introduces the fundamental notions formalizing the traffic signal control problem.
A road network consists of several junctions indexed by J . Each junction j ∈ J consists

of several in-roads R j . Note that the R j are mutually disjoint and denote R = ∪ j∈J R j .
Multi-lane roads with different turns, such as left- or right-turn-only lanes, are represented
by multiple in-roads. Therefore, in-roads may model one or more lanes of traffic flow. A
junction may serve different combinations of in-roads at the same time. It refers to service
phases whenever several in-roads are maintained simultaneously. For a junction j , a service
phase is represented as a vector σ = (σr , r ∈ j), where σr is the rate at which cars at j can
be serviced by the in-road r . Specifically, σr > 0 if the in-road r is green during phase σ , or
σr = 0 otherwise. Accordingly, at each time step t , the system has to determine how much
time it will spend serving each phase in S j over the next interval, with the constraint that
each phase must last for some nonzero length of time. Here, S j denotes the set of phases at
junction j .

4 The EcoLight+ approach

Deep reinforcement learning has proven to be a promising method for controlling traffic
signals. By extending the previously proposed reinforcement learning solutions, we improve
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Fig. 1 EcoLight+ general framework

the robustness of the traffic signal control system by using future traffic noise predictions.
Our enhanced proposed traffic signal control driven by noise prediction, namely EcoLight+,
takes advantage of all traffic features along with the predicted amount of future generated
noise. Integrating these sustainable and proactive aspects into our deep dueling Q-network
will enhance its decision-making capabilities and raise the green awareness of the city’s
stakeholders. Figure 1 illustrates the final approach framework.

4.1 Data fusion for traffic noise prediction

In the last two decades, many cities have adopted intelligent transportation systems (ITS) that
support urban transportation network planning and traffic management. These systems use
current traffic information and generate predictions to improve transport efficiency and safety
by informing users of current road conditions and adjusting road infrastructure (traffic lights).
Traffic prediction aims to estimate the volume and density of traffic flow, generally to reduce
congestion and generate optimal decisions with the least time or energy consumption. Traffic
is influenced bymany factors that should all be considered tomake accurate predictions. Thus,
we introduce a new embedding-based feature data fusionmodule that presents heterogeneous
modalities into homogeneous learned numerical vectors. Figure 2 illustrates an overview of
the proposed embedding-based feature data fusion module for urban noise prediction.

4.1.1 NN-Embeddings

The neural network embeds categorical values with similar output values into an N-
dimensional space [33]. This spatial representation allows us to extract intrinsic properties
from each categorical value, which generalize and replace our old high-dimensional dummy
encoded features. NN-embedding weights act as a lookup table, leading to reduced mem-
ory usage and speeding up the training compared with one-hot encoding [2]. Moreover, this
technique reduces the dimensionality of feature space, which should reduce overfitting in
prediction problems. The embedding size defines the dimensionality with which we map the
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categorical features. Howard et al. [34] provided a general rule of thumb about the number
of embedding dimensions (shown in Eq. 1).

Embsize = min(50, (|feature| + 1)/2) (1)

where |feature| is the number of distinct values of the categorical feature.

4.1.2 Feature2Vec embeddings

Kazemi et al. in [35], proposed a new method, called Time2vec, that generates embeddings
for the time feature. In our case, we adopt their Time2Vec and adjust it to generate embedding
representations of our continuous input features. The latter captures three main properties
(periodicity, invariance to time rescaling, and simplicity). For a given scalar notion of feature
f , Feature2Vec of f denoted as F2v(x) is vectors of size k + 1 defined as follows:

F2v(x)[i] =
{

wi x + ϕi , if i = 0

�(wi x + ϕi ), if 1 ≤ i ≤ k
(2)

where � is a periodic activation function and wi and ϕi are the learnable parameters. This
vector representation of feature x allows it to be ingested in any architecture. We used � as
the cosine function in our implementation.

4.1.3 Prediction

Our approach embraces the sequence-to-sequence architecture for the input fused embed-
ding vectors and the noise prediction output. After generating our fixed-sized sequences,
we leverage an LSTM-based architecture to predict traffic noise for a specific future period
(e.g., hourly, daily). Effectively, it pinpoints long-term temporal dependencies accurately.
We train and update the model using the back-propagation algorithm as an optimizer and
a loss function to minimize the prediction error. Finally, we evaluate the model’s predicted
sequences, comparing them with the actual traffic noise ones using the prevalent evaluation
metrics.

4.2 Traffic signal control

Reinforcement learning involves learning through reward and error to make decisions. It can
take significant inputs to decide what actions to take to maximize the reward (advantage A).
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With deep RL, agents can learn from unstructured data and make decisions without manually
engineering their state space. Among the types of RL Q-networks, dueling network has two
streams to estimate the state value according to each action separately. Both state value V (s)
and advantage A(s, a) streams share a standard convolutional feature learning module. The
two streams are combined via a particular aggregating layer to produce an estimate of the
state-action value function Q(s, a) denoted as follows:

Q(s, a, θ, α, β) = V (s, θ, β) + A(s, a, θ, α) (3)

where θ denotes the parameters of the convolutional layers. The parameters α and β are for
fine-tuning two streams of fully connected layers.

A traffic state can be defined as a combination of various features such as queue length,
waiting time, and the vehicles’ positions. Once the prediction algorithm has been executed,
the noise prediction will be explored as a state input. Then, we use the reward to describe how
much that action a has improved traffic. In summary, the EcoLight+ dueling-based approach
is described as follows:

• The offline stage allows traffic to flow through the system according to a fixed schedule
to train the model and collect data samples.

• At every time interval �t , the traffic signal agent observes the state s of the environment.
It takes actions a based on a greedy ε-based strategy combining exploration (random
action with probability ε) and exploitation (estimating the reward of taking this action
given the current state s).

• The agent observes the environment and receives the reward r . Then, the tuple (state,
action, reward) will be stored in memory.

• The network will be updated based on the logs in memory after several timestamps.

Figure 3 sketches the steps of the dueling deep Q-network approach.

5 Experimental evaluation

This section describes our experimental setup and evaluation process for comparing our
EcoLight+ approach to pioneering baselines using real-world data. The source code for our
project is publicly available and can be accessed through the following link.2

5.1 Dataset

Experiments on real-world data are needed to determine EcoLight+’s efficiency against the
pioneering baselines. We collected data from noise sensors, video cameras3, weather 4 data,
and TomTom 5 traffic-related features in one of the most congested intersections in Tallinn,
Estonia, the Tammsaare tee-Sõpruse between 2022-02-15 and 2022-04-06 with a one-minute
frequency. The applied preprocessing can be depicted in the following two steps:

• According to the applied analysis, the collected time-series data suffer from sen-
sor reliability issues. Sensors are not continuously reliable because of technical and

2 Link to the source code: https://github.com/doua-ounoughi/EcoLightPlus.
3 https://ristmikud.tallinn.ee/index.php/cams.
4 https://ristmikud.tallinn.ee/index.php/temperature.
5 https://www.tomtom.com.

123



EcoLight+: a novel multi-modal data fusion...

Environment

…

……Inputs

State value
function node

The nodes estimation A(s,a)

The dueling
Q(s,a)

Hidden layers

The stream merging 
V(s) and A(s,a)

Observation Reward Action

Fig. 3 Dueling deep Q-network process

operation-related issues, which cause gaps and missing information that could affect the
accuracy of the prediction model. Therefore, to tackle this issue, we used the KNN-
imputation technique with k = 5 to fill in the missing value in our dataset.

• Using YOLOv4 [36], we have been able to detect the number of each type of vehicle
(motorbike, car, bus, and truck) that passed through the intersection in each single video
frame.

The final input featureswe get after the preprocessing procedure are as follows: timestamp,
noise, temperature, air pressure, air humidity, wind speed, rain, current speed, wind direction,
cloudiness, sunrise hour, speed, travel time, minute, the hour of the day, the day of the week,
the day of the month, road type, road closed, number of cars, number of motorbikes, number
of buses, and number of trucks.

5.2 Experimental setups

Our experiments carried out under the configuration ofUbuntu 18.04.3 LTS (CPU: Intel Xeon
Processor (Skylake) × 8, RAM: 16Go), in which Python (3.7) and Keras (2.3.1) with the
simulator SUMO [37] have been installed.
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Fig. 4 Tammsaare tee-Sõpruse intersection, Tallinn, Estonia

Table 2 Simulation settings Parameter Value

Model update interval 400,000 s

Action time interval �t 5 s

γ for future reward 0.80

ε for exploration 0.05

Sample size 300

Memory length 1000

5.2.1 Prediction settings

To efficiently reckon the performance of the proposed approach, we predicted the future
noise levels for the next 1 min, 5 min, 10 min, 15 min, 30 min, and 60 min. We apply a
min–max normalization technique implemented by the Scikit-learn python library [38] with
a range between 0 and 1 on all the continuous feature values. We aggregate 80% of data
training and 20% for testing. After preprocessing our inputs and generating our fixed-sized
sequences, we adopt the use of a fully connected network of a bidirectional LSTM ReLU
activation layer connected to seven ELU activation dense layers with the sizes of 256, 256,
256, 256, 256, 128, and 128 units, respectively, and an output layer linear activation layer
for the prediction task. The Adam optimizer [39], as well as mean squared error (MSE) as
the loss function, is used to fine-tune the training model within 40 epochs and a batch size
of 128 for the considered dataset.
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5.2.2 Simulation settings

We have used the Open Street Map WebWizard to generate the “Tammsaare tee-Sõprus”
intersection network and configurationfiles to be used in theSUMO simulator.Weobtained 43
lanes at this intersection after considering all the types of lanes (car, bus, bicycle, pedestrian).
First, the simulation presents the environment, including the state (current phase, queue
length, waiting time, vehicles’ positions, and noise prediction). Then, the EcoLight+model,
according to that state, will predict the action of the lights and then get its reward (as depicted
in Fig. 3). Table 2 presents the parameter settings of the model and reward coefficient, hence
the simulation. We found out that the action time interval �t has minimal influence on the
performance of our model as long as�t is between 5 and 25 s. For a fair comparison, we kept
the same configuration for all the deep Q-network-based baselines. For the simulation of the
fixed-time BASIC strategy, we had the default green phases generated by the WebWizard
network with the following time intervals: {7, 3, 7, 7, 7, 7, 7, 3, 7}.

5.3 Baselinemethods for comparison

To accurately validate the performance of our proposed EcoLight+ approach, we carried out
a comparison versus the existing traffic signal control baseline methods: the deep RL-based
IntelliLight [23], our previously proposed solution EcoLight enhanced with the embedding
fusion [5], and the default fixed-time-based traffic signal controlmodel in theSUMO simulator
with no intervention BASIC. In addition, we conducted an ablation study to test different
reinforcement learning models, i.e., double deep Q-network (DDQN) with and without using
our embedding-based fusion model and dueling deep Q-network (DDDQN). All baseline
methods are tested with the same network data and simulation configuration to ensure a fair
comparison.

5.4 Evaluation

5.4.1 Noise prediction

The prediction performance of our model compared to the baselines is evaluated using the
mean squared error (MSE), the root mean squared error (RMSE), the mean absolute error
(MAE), and the mean absolute percentage error (MAPE) defined, respectively, by (4), (5),
(6), and (7).

MSE = 1

J

J∑
j=1

(n j − n̂ j )
2 (4)

RMSE =
√√√√ 1

J

J∑
i=1

(yi − ŷi )2 (5)

MAE = 1

J

J∑
j=1

|n j − n̂ j | (6)

MAPE = 1

J

J∑
j=1

|ni − n̂i |
ni

(7)
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Table 3 Noise prediction performance (MSE)

Prediction MSE
Model 1 min 5 min 10 min 15 min 30 min 60 min

No fusion 13.04 19.85 24.22 27.76 27.12 17.59

UKF fusion 39.74 39.94 39.70 39.80 39.83 39.79

KF fusion 5.02 9.06 11.40 11.72 12.36 9.19

SKF fusion 3.38 8.23 10.96 11.23 11.69 8.65

Embeddings 2.89 7.37 9.95 10.52 11.55 8.61

-based fusion −14.49% −32.75% −9.21% −6.32% −1.19% −0.45%

The bold font indicates the best results

where J is the size of the tested junctions, n j is the ground-truth junction’s noise, and n̂ j is
the predicted noise level yielded by the model of the j-th junction.

5.4.2 Traffic signal control

Traffic poses a significant burden on society through its environmental impact, including air
and noise pollution and the consumption of nonrenewable materials. Using SUMO, we can
measure the generated pollution and fuel consumption using different models and interfaces.
Among the information that can be obtained are:

• Trip information sum of pollutants emitted/fuel consumed by a single vehicle.
• Lane emissions Pollutants emitted and fuel consumed at a lane aggregated over time.
• Lane noise Noise generated along a lane accumulated over a period of time.

Therefore, our approach’s traffic signal control performance evaluation against the pioneering
ones is based on each model’s emitted noise, CO2 emissions, and fuel consumption on the
considered dataset.

5.5 Results and discussion

Tables 3, 4, 5, and 6 glance at the noise prediction performance of our Bidirectional
SeqtoSeq-LSTM with embedding fusion approach against the baselines. We use the men-
tioned evaluation metrics to compare our approach with the same architecture without fusion
and with different Kalman filter fusion variations (simple KF, unscented KF, and smooth
KF). Our results underscore that our model sharply outperforms the baselines in predicting
future noise with high improvement percentages. Notwithstanding, the SKF fusion model
performs slightly similarly to our proposed model.

In the sequel, we evaluate the effectiveness of our EcoLight+ traffic signal control in
response to several environmental and economic factors. The tested simulation ran for
960, 243 seconds (approximately 266 hours). After each phase change, the evaluation results
between all the models were compared to the model’s hourly average emitted noise, CO2,
and consumed fuel.

5.5.1 Effectiveness over traffic noise

From the achieved results (c.f., Table 7), the DDQN model and BASIC show similar and
the worst performance on the considered intersection, respectively. Indeed, they use a fixed-
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Table 4 Noise prediction performance (RMSE)

Prediction RMSE

Model 1 min 5 min 10 min 15 min 30 min 60 min

No fusion 3.61 4.45 4.92 5.26 5.20 4.19

UKF fusion 6.30 6.32 6.30 6.30 6.31 6.30

KF fusion 2.24 3.01 3.37 3.42 3.51 3.03

SKF fusion 1.84 2.87 3.31 3.35 3.42 2.94

Embeddings 1.70 2.71 3.15 3.24 3.39 2.93

-based fusion −7.60% −5.57% −16.00% −3.28% −0.87% −0.34%

The bold font indicates the best results

Table 5 Noise prediction performance (MAE)

Prediction MAE

Model 1 min 5 min 10 min 15 min 30 min 60 min

No fusion 2.62 3.29 3.63 3.86 3.85 3.14

UKF fusion 5.12 5.14 5.13 5.13 5.13 5.13

KF fusion 1.58 2.23 2.54 2.57 2.68 2.27

SKF fusion 1.35 2.12 2.46 2.49 2.58 2.17

Embeddings 1.20 2.02 2.38 2.45 2.60 2.17

-based fusion −11.11% −4.71% −3.35% −1.60% +0.77% 0%

The bold font indicates the best results

Table 6 Noise prediction performance (MAPE)

Prediction MAPE

Model 1 min 5 min 10 min 15 min 30 min 60 min

No fusion 4.41 5.57 6.19 6.61 6.56 5.31

UKF fusion 8.99 9.04 9.01 8.99 8.99 9.01

KF fusion 2.67 3.80 4.34 4.39 4.57 3.85

SKF fusion 2.30 3.61 4.19 4.24 4.38 3.68

Embeddings 2.05 3.45 4.07 4.19 4.46 3.71

-based fusion −10.86% −4.43% −2.86% −1.17% +1.82% +0.81%

The bold font indicates the best results

timing strategy that does not adapt to current and potential future traffic situations. The results
underscore that the DDQN alongside the noise prediction model performs slightly the same
as the IntelliLight model. Additionally, EcoLight+ shows a better performance than its
former counterpart, EcoLight, with an improvement of 18.77%, which proves that using
dueling DQN yields better strategies for traffic signal control. Figure 5a depicts the sharp
improvement percentages of EcoLight+ model compared to the BASIC logic strategy with
more than 74% and outperforms all the baselines for the produced noise at the considered
intersection (Fig. 4).
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Table 7 Average hourly performance evaluation

Model Noise (dB) CO2 (kg) Fuel consumption (L)

BASIC 69,938.82 0.1811 1272.85

DDQN 71,417.23 0.1972 1282.97

DDQN with EF 52,604.22 0.1715 1027.28

IntelliLight 52,036.50 0.1742 1060.82

DDDQN 34,984.01 0.1331 732.20

EcoLight with EF 22,335.80 0.1219 689.97

EcoLight+ 18,141.59 0.0656 385.78

Improvement −18.77% −46.18% −43.50%

The bold font indicates the best results

5.5.2 Effectiveness over CO2 emission

Our approach shows a significant reduction in CO2 for the considered intersection compared
to other baselines, more specifically the EcoLight with a 46.18%.We notice that the dueling
deep Q-network performs better than the different reinforcement learning model variations.
Furthermore, with our multi-modal data fusion noise prediction enhancement, it performs
even better. The improvement rates of most models are comparable to those of BASIC, as
shown in Figure 5b.

5.5.3 Effectiveness over fuel consumption

A comparison of the improvement percentages of fuel consumption by all the models to
that of BASIC logic is shown in Figure 5b. DDQN performs the same as BASIC with no
significant improvement in fuel consumption.We notice that theDDQNwith noise prediction
outperforms the IntelliLightmodel.While operatingEcoLight+, vehicular fuel consumption
can be reduced by more than 69% compared to the BASIC. According to the EcoLight+
approach, if we assume that Estonia’s current average fuel price is 1.905 US dollars, we will
save up to 1,689.86 US dollars per hour, which works out to approximately 14.8 million
dollars annually only this intersection.

6 Conclusion

In this paper, we introduced an advanced eco-friendly traffic signal control driven by urban
noise prediction, namely EcoLight+. We address the traffic signal control problem using
a well-designed deep dueling reinforcement learning-based approach that integrates future
noise predictions. We conduct our experiments on Tallinn’s multi-modal data from different
sources. The yielded results provide evidence for the reliability and sustainability of the use of
future noise predictions. Indeed, experiments underscore the baselines’ inability to perform
better in terms of noise, CO2 emissions, and fuel consumption compared to our EcoLight+
approach.

We point out a critical future direction to make EcoLight+ more relevant to the real world.
The EcoLight+ is designed and tested to consider a simplified case of one intersection in
Tallinn, whereas real-world network design is significantly more complex. Multiple inter-
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(a) Noise

(b) CO2 emissions

(c) Fuel consumption

Fig. 5 Average hourly performance
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sections have been addressed by combining several reinforcement learning agents at limited
intersections. Meanwhile, sales of electric cars jumped 43% to more than 3.2 millions of
the 370 different car models in 2020 [40]. This type of vehicle tends to be environmentally
friendly and makes less noise. Future work will improve emissions reduction by proposing
a hybrid approach that enhances our EcoLight+ with traffic-related features other than noise
to reduce delay times, thereby limiting congestion levels.
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