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Introduction

| received an MSc degree in Product Development and Production Engineering from the
Tallinn University of Technology (TalTech) in 2012. Since 2014, | have been the chair of
mechanical engineering at the TTK Tallinn University of Applied Sciences (TTK UAS) and
have been responsible for the development and ensuring of the sustainability of the
mechanical engineering study program and relevant laboratories. My doctoral studies in
mechanical engineering have helped me improve my knowledge of factories of the
future, as | worked closely with the Industry 4.0 research group and combined R&D with
my work at the TTK UAS.

One future goal at the TTK UAS is to widen digital manufacturing possibilities by
developing flexible manufacturing cells for Small and Medium-sized Enterprises (SME’s).
With that goal in mind, my PhD thesis is related to the development of intelligent
manufacturing cells for a network of SME’s. The main objective is to develop a new model
focused on the implementation of CNC robot-based solutions for SMEs. Continuous
optimization and preventive action, including remote monitoring and analysis, are critical
processes in the robot-based solution.

The work’s experimental part will be carried out in the production facilities of privately
held companies and the laboratories of the TTK UAS, TalTech, and the Innovative
Manufacturing Engineering Systems Competence Centre (IMECC). The introduction of the
thesis comprises a discussion of robotization based on Industry 4.0 concepts and future
trends in manufacturing. The research gaps and research problems have been defined
based on the current state of industry robotization. In the final section, the structure of
the dissertation and research process are described.

1.1 Background and Research Gaps

The industrial robot manufacturing sector has been around and growing rather steadily
since the 1960s. An industrial robot by definition is an automatically controlled,
reprogrammable, multipurpose manipulator, programmable in three or more axes,
which can be either fixed in place or mobile for use in industrial automation applications.
The industrial robot is assembled from manipulator, actuators, controller, teach pendant
and any communication interface, hardware and software (International Organization
for Standardization, 2012). The first industrial robots appeared in the automotive
industry, where they were used to spot weld vehicle bodies. It was the first growth spurt
in the application of industrial robots in automation. The second growth spurt took place
in 2010, driven by fundamental changes in the industry and economic environment
(Teulieres, Tilley, Bolz, Dehm, & Wagner, 2019). It has been estimated that by 2030
fifty-two percent of transportation and storage jobs and forty-five percent in
manufacturing will potentially be highly automated (Hawksworth, Berriman, & Goel,
2018). As transportation and storage are part of the production value chain, the
industry’s effect is expected to be enormous.

In 2011, the Industry 4.0 philosophy was widely introduced and was followed by
systematic and determined development in this field. An architecture related to Industry
4.0 (14.0) based on eight pillars was developed that describe the modern production
system narrowly and the main development trends of production more broadly
(Dalmarco, Ramalho, Barros, & Soaresa, 2019).
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Figure 1. Industry 4.0 Digital Technology Pillars (Dalmarco, Ramalho, Barros, & Soaresa, 2019).

As the manufacturing industry in European countries accounts for a large share
(24.7%) of GDP (European Central Bank Eurosystem, 2020), the sector’s development
significantly impacts all other sectors. At the same time, significant changes have
occurred in the population structure due to low birth rates and high life expectancy.
The last decade has seen an increase in the proportion of people aged 65 and over in the
European Union by more than 2.9 times, leading to a rise in the dependency ratio to over
20,3% (Eurostat, 2020). There are currently just over three working-age people for every
person aged 65 or over (Eurostat, 2020). This is having a direct impact on the number of
employees in the industrial sector today, and low birth rates will affect the share of
employees in the industrial sector in the future.

In addition to labor market problems, the European industry is under constant
pressure from cheaper production in developing countries. Over the years, exports to
the European Union have been rising continually, growing by 16.2% in 2016-2018
(European Commission, 2020).

The EU is one of the world’s leading environmental regulators. Environmental
regulations generally require polluting facilities to undertake abatement activities, and
this may impose an increase of costs on businesses. Thus, regulatory differences across
companies, sectors, or jurisdictions can cause changes in relative production costs.
Differences in environmental regulations can, therefore, alter the competition between
companies by changing their relative production costs (Dechezleprétre & Sato, 2018).
These difficulties have been driving the development of industrial technologies to reduce
the labor force, use resources more efficiently, and shorten product development time.

Trends in digitalization are of great significance to manufacturing (McKinsey Global
Institute, 2017). More companies are making footprint decisions using a “total factor
performance” approach that considers logistics, lead time, productivity, and risk, as well

12



as proximity to suppliers, the operations of other companies, and final demand.
Fundamentally, manufacturers need to identify strategic use cases that are linked to their
digital initiatives and business strategy. Furthermore, they need to consider how to begin
working alongside machines in a more automated and data-driven way.

Larger companies with more resources are more likely to be able to invest and
develop new 14.0 technologies to stay competitive and tackle these challenges. However,
SMEs (European Commission, 2017) are certainly not able to adopt similar solutions.
This is also one of the reasons why technical solutions for companies of different sizes in
the industrial sector should be considered according to the company's investment
potential. It is essential to ensure the competitiveness of small and medium-sized
enterprises by finding solutions to labor problems, trying to increase productivity with
equivalent resources, shortening the time to market, and producing products in
compliance with current environmental standards. The biggest challenge for SME’s is to
fulfil these conditions simultaneously. Those factors are forcing entrepreneurs to automate
their processes at an increased rate. As technology advances, there is less need for
advanced, expensive outsourced development services. The same goal can be achieved
by using the company's own engineering resources or using the help of integrators.
Simulation software can further close the gap between design and installation by helping
end-users prove their solution before committing to the final investment (Hawksworth,
Berriman, & Goel, 2018).

Research gap 1: It is necessary to explore how to automate existing labor intensive
production cells in SMEs, making them productive and profitable robot integrated
production cells.

The automation of individual processes may not be the most sensible solution here.
A systematic and broader approach is needed.

Research gap 2: There is a need to develop a methodology and methods which are based
on decision algorithms and simulation systems to assist developers and integrators in the
designing of highly automated and intelligent cyber-physical systems.

1.2 New Developments and Trends

Although the prices of industrial robots have been declining in recent years, the cost of
an entire integrated robot system is still high, thus extending considerably the expected
payback period. The implementation of robots will increase further in the coming years,
with the automotive, electronics, and medical industries still leading the way
(International Federation of Robotics, 2018). Continuous growth has slowed since 2019
in almost every leading industry, see Figure 2. There are various reasons for this: in the
automotive industry, a large investment in electric cars; in the electronics industry, a
substantial decrease in the demand for electronic devices. The installation of industrial
robots in 2020 will certainly be affected by the global COVID pandemic (International
Federation of Robotics, 2020), but robotization is still ongoing.

13
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Figure 2. Annual installations of industrial robots (International Federation of Robotics, 2020).

The main reasons for investing in new robotics systems are a reduction in production
costs, an increase in quality and productivity, and the increased technological capabilities
of robotics units (Teulieres, Tilley, Bolz, Dehm, & Wagner, 2019). The main obstacles to
the implementation of new robotics systems are the high total cost of ownership,
the lack of a standardized programming environment, and the shortage of integrators
with the necessary experience. These reasons apply to the industries mentioned above
with high investment capacity. If we look at SMEs, where the turnover and resulting
investment capacity are much lower than that for large companies, a robot production
unit that requires a large capital outlay is still a doubtful investment. However, recent
developments in the field of industrial robots, mainly the emergence of collaborative
robots, have also generated interest among SME’s. At present, the development of
industrial robots has reached a stage where there is an available solution for almost every
material handling or assembly operation. Also, the cost of computing power has
decreased, making it possible to use Al solutions in industrial robot control systems.
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Figure 3. Manufacturing Technology Innovation Hype-Cycle (Simon, Michelle, & Marc, 2019).
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New technologies shown in Figure 3. For the SME the following industrial
developments have been introduced:

e Big Data Analysis at a different level of management,

e Adoption of the Industrial Internet of Things (lloT) Technology,

e Industrial Cybersecurity,

e  Open Automation Architectures Implementation,

e  Virtual Solutions Assisted Physical Processes,

e  Collaborative Robots.

The forecast refers to a type of production where the production system has a high
throughput but still retains a high degree of flexibility. The manufactured products are
exchanged on the production line without stopping the line, and the product variations
are enormous. To enhance those changes, a new type of industrial robot, a co-working
robot (Peshkin, Colgate, Moore, Gillespie, & Akella, 2001), has been integrated with open
architecture and with the integration of different control systems. Such production units
have come to be called Agile Production Systems (McKinsey & Company, 2017).

1.3 Objectives and Research Questions

The objective of this research is to develop a robotic workplace desigh methodology for
a productive, highly automated, and intelligent robot integrated production cell, taking
advantage of artificial intelligence capabilities and multi-criteria decision algorithms.
The approach developed considers a company’s production needs and restrictions to
ensure an efficient workflow in the planned production system.

The main goals of the thesis are as follows:

e To develop a methodology for the design and redesign process for a robot-based
production cell. This includes an integrated data analysis based on selected
indicators to assess the feasibility and suitability of robotization and a prediction
of robot cell performance.

e To develop methods for the economic and technical performance evaluation of
robot-based production cells based on decision algorithm and simulation
techniques. To implement practical solutions for selecting components required
by the robotic workplace. This includes the design of a robot-based workplace
performance simulation in a 3D virtual environment and validation of results for
final decisions.

This thesis aims to help SMEs gather necessary information about their production
and to develop a specific production Performance Evaluation Model (PEM). Using the
PEM in the context of the company’s strategy, it is possible to evaluate its Key
Performance Indicators. In the future, using the Dual Approach Model, it will be possible
to predict the output parameters of the robot integrated solution that has been
implemented or is still under development. To find the optimal solution for the company,
the Dual Approach Model uses knowledge openly available in the industry and
incorporates different levels of analysis, including feasibility, technology selection,
suitability, and efficiency analysis. The analysis is carried out recursively, making it
possible to correct the input data at each stage and thereby achieve the desired results.
The following research questions (RQ) are thus considered:
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RQ1: What is the current state of development of the Estonian manufacturing industry
regarding robotization?

RQ2: How will the robot integrated production cell output given the company’s strategic
plan be assessed and modelled?

RQ3: How will the knowledge-driven design process of a robot integrated production cell
be optimized?

RQ4: How will the suitability and performance of a robot integrated production cell be
analyzed?

The research questions are answered stepwise in the following articles.

Article | has answered RQ1, giving an overview of robotization in Estonian production
companies.

Article Il has explained the concept of performance evaluation modelling and the
decision support system to use in the robot integrated production cell design phase,
answering RQ2.

Article Il has developed a knowledge-driven decision support model for optimal robot
integrated production cell design, thereby answering RQ3.

Article 1V has assisted in answering RQ4. In this article, a suitability analysis method was
described.

Article V has assisted in answering RQ4. In this article, a performance analysis case study
was conducted.

Article VI has assisted in answering RQ4. In this article, a performance analysis method
was described.

1.4 Contribution of the Thesis and Dissemination

In this chapter, the novelty of the thesis from a scientific and practical point of view and
the dissemination of results is discussed. The thesis involves a novel recursive and
integrated decision-making process based on multi-criteria decision algorithms and
artificial intelligence solutions for the effective planning and evaluation of robot
integrated production cells for SMEs.

The scientific novelty of the thesis consists of the following:

e A knowledge-driven decision-making method for robot integrated production
cell design and redesign.

e A method for the assessment of the feasibility of robotization for an IR
integrated production cell.

e  Asuitability index calculation method for a robot welding production cell.

e A performance evaluation method for a robot integrated CNC manufacturing
and welding cell.

The practical novelty of the thesis consists of the following:

e Determination of the level of automatization, intelligence, and competence of
Estonian manufacturing industry robot integrated production cells. Analysis of
the fulfilment of production cell design goals.

e Implementation of analyses of suitability and performance of robot integrated
production cells.

e Implementation of the design methodology developed and analysis of a method
for redesigning a company production cell into a robot integrated production
cell.
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Dissemination of the Results and Publications

The research study was carried out from 2016 to 2020 at TalTech University and the TTK
University of Applied Sciences and over a three-month period in 2019 at the Faculty of
Mechanical Engineering of the Brno University of Technology. The results of the PhD
thesis have been presented at five international conferences. One article was published
in the Journal of Machine Engineering and the rest in the proceedings of conferences:
Proceedings of the ASME (American Society of Mechanical Engineers), Proceedings of
Estonian Academy of Sciences, Proceedings of International DAAAM Symposium
(Danube Adria Association for Automation & Manufacturing), and Procedia CIRP
(The International Academy for Production Engineering).

1.5 Research Process and Structure of the Dissertation

Several methods and techniques have been used in different phases of the research.
In the initial stages of the research, pilot data was collected from the management of the
companies and researchers and was analyzed. Information was collected through
literature review and interviews, and the research area, aim, and questions were
formulated. A broader literature review was then performed to obtain additional
information and to define a research gap. A multi-stage survey was also conducted of the
Estonian manufacturing industry. Based on the data collected, an analysis was
performed, and conclusions made. Using the case study methodology, possible solutions
were proposed and then validated either by experiments in university laboratories and
company production cells or simulations, using various commercial software. Final
conclusions were reached based on the results, and research limitations and suggestions
for future research were proposed.

Introduction

Literature Review Results of Research
e Intelligent Manufacturing e Current Situation Analysis
e Robot Integrated Manufacturing * Manufacturing Cell Analysis
e Cyber-Physical Systems e Decision-Making Procedure
e Digital Twin o Knowledge-based Mfg. Cell
e Simulation tools o Feasibility Analysis
¢ Methodology of Decision-Making * Suitability Analysis

e Efficiency Analysis
e Case Studies

e Decision Making Methods

Methodology
e Robot-Based Production Cell Design

Discussion and Conclusion
Future work

References Publications

Figure 4. Structure of the Dissertation.
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2 Literature review

The literature review consists of explanations of the concepts, methods, and definitions
needed to compile the thesis. In addition, this chapter will provide the necessary
technological framework into which the solution proposed in this thesis has to fit.

2.1 Intelligent Manufacturing

The term Intelligent Manufacturing System (IMS), sometimes referred to as Smart
Manufacturing (SM), appeared in the literature in the early 90s (Kusiak A., 1990). In the
United States, similarly, the term Next Generation Manufacturing Systems (NGMS) is
used. However, so far, there is no standard approach and definition of this concept.
According to the National Institute of Standards and Technology (NIST), smart
manufacturing is a fully integrated, collaborative manufacturing system that responds in
real-time to meet customer needs and changing demands and conditions in the factory
and the supply network. To this date, quite extensive research has been done in this field,
and standards and case studies have been created.

Intelligent Manufacturing involves manufacturing as a physical process that employs
a high level of digital information technology, forming a flexible, rapidly responsive,
effective, and environmentally friendly way to produce goods. IM consists of six base
technologies or engineering domains: manufacturing technology and process, materials,
data, predictive engineering, sustainability, resource sharing, and networking (Kusiak A.,
2018). By implementing or combining the above-mentioned technologies or engineering
domains, it is possible to ensure that production is cost-effective and environmentally
friendly while maintaining the company’s competitive advantage.

Intelligent Design Intelllgent.Process Intelligent Quality
Planning Management
1/

\
//( ms

4 J

F

Intelligent . . .
. & Intelligent Control ’ Intelligent Scheduling
Maintenance

Figure 5. Intelligent Manufacturing Subsystems (Kostdl & Holubek, 2013).
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To understand an intelligent manufacturing system, we should compare it to classical
automated manufacturing systems. The automated manufacturing system (AMS) today
is understood as the manufacturing of a device or devices with various levels of
automation of operating and nonoperational activities, with various levels of subsystems
integration (technological, supervisory, transportation, manipulating, controlling).
Automatic manufacturing systems designed for repetitive production, where a
significant rate of flexibility is demanded, are called flexible manufacturing systems
(Kostal & Holubek, 2013). The IMS differs from this in that its systems and subsystems
(see Figure 5) are equipped with aids that enhance intelligence. Subsystems can make
necessary decisions independently and on the spot, decisions involving self-awareness,
self-configuration, self-optimization, etc. (Qina, Liua, & Grosvenora, 2016).

2.1.1 Cyber-Physical Systems
In the rapidly evolving field of industrial IT, more and more software-based solutions are
being developed for workplace automation. These solutions are mainly designed to
reduce workload and optimize useful working time related to planning, configuration,
reporting, and operation. The development of such a relation where the physical process
is enhanced using advanced digital technology may be defined as a Cyber-Physical
System. The system, on its own, is one component of IMS. The National Institute of
Standards and Technology describes Cyber-Physical Systems as “Smart Systems that
include engineered interacting networks of physical and computational components
(National Institute of Standards and Technology, 2020). These highly interconnected and
integrated systems provide new functionalities to improve the quality of life and enable
technological advances in critical areas, such as personalized health care, emergency
response, traffic flow management, smart manufacturing, defence and homeland
security, and energy supply and use” (National Institute of Standards and Technology,
2017).
Manufacturing CPS architecture usually consists of five levels or five components (5C):
e (Connection — Acquiring raw data from machines, workstations, measuring
points, and enterprise manufacturing information systems (ERP, MES) for
transferring to a central server.
e  Conversion — Analyzing the data collected and converting it to information using
data conversion algorithms (data mining, data visualization, etc.).
e  Cyber — Serving as an information cloud where all the information is collected
for future analysis.
e Cognition — Transformation of information to knowledge to be used by decision
making applications.
e Configuration — Based on decisions, feedback is provided to the physical
process. It acts as the Resilience Control System (RCS), applying controls to
machines in correspondence with the decisions made at the cognition level.
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Figure 6. Cyber-Physical System 5C architecture (Bagheri, Yang, Kao, & Lee, 2015).

2.1.2 Digital Twin

The Digital Twin (DT) first proposed in 2003 by Grieves (Grieves & Vickers, 2017) and later
developed by NASA (Glaessgen & Stargel, 2012) is a vital part of a CPS. It is a virtual
representation of the physical process, including its machines, equipment, working
conditions, and layout. The DT model is synchronized continuously and updated through
loT or M2M connectivity (Wu, Talwar, Johnsson, Himayat, & Johnson, 2011), assuring
near-real-time information processing. This makes it possible to monitor, control,
diagnose, and predict situations and perform what-if scenarios through simulation,
optimization, and analysis. After the simulation and optimization of product design,
manufacturing, and maintenance processes, it guides the physical process to perform an
optimized solution (Tao, et al., 2017).

Digital Twin plays a pivotal role in the vision of smart manufacturing. It enables the
shift from analyzing the past to predicting the future. Digital Twin development consists
of three major components, as shown in Figure 7 (Lua, Liub, Wangc, Huanga, & Xua,
2020):

e A specific information model for a physical object. For a production unit, a 3D
model in a simulation environment showing behaviors similar to those of the
real-life unit.

e  Two-way communication between DT and the manufacturing cell.

e A data processing module that can extract information from heterogeneous
multi-source data to construct the live representation of a physical object.
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Information models for the manufacturing equipment (CNC machines, Industrial
robots, etc.) are mainly managed by CAM software. CAM software is used to plan and
simulate machining steps prior to manufacturing. Only verified and approved operations
are sent to the machine for processing. As machines and cell capabilities and complexity
increase, simulations become critical for verifications. The same rule also applies to cell
monitoring, controlling, optimizing, diagnosing and predicting (Zhou, Chao, Li, Kai, &
Chuang, 2020).

As Digital Twin development advances, it is possible to define key research areas:

e Architecture pattern —the developing, testing, and selecting of the best
solutions for a particular application,

e Communication latency requirement — with increased data volumes
the ensuring of a sufficient synchronization speed for real-time
operations,

e Data capturing —the development of a network of sensors, devices and
robots,

e Development of standards — for accelerating the development of new
applications,

e Extension of functionality — the adding of functionality according to
specific applications,

e DT model version management — for the mapping of development
leaps,

e Human involvement.

All of the above-mentioned research areas are necessary for the development
of a next-level Digital Twin application for the CPS. It is then essential to expand the
functionality of the technologies in the coming years for a technological leap. Existing
applications are mostly used to monitor the production process and make predictions
for decision-making support applications. Most of the decisions are still made by experts
or process operators. Hence the autonomy of decision making should be increased in the
future.
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2.1.3 Simulation tools

Simulation, in general terms, can be seen as the activity of experimenting with a model
of a real or imaginary system. The main goal of simulation lies in the gain of insight into
the behavior of the system. Simulation renders itself especially valuable and comfortable
to use for the purpose of performing experiments and testing out solutions without the
costs of physically changing the system. The use of simulation tools makes it easier and
faster to achieve the goal of constructing an efficient robot integrated production cell.
Simulation has become a powerful tool in most areas of technology. It is extensively used
in manufacturing, transport and logistics, the military, construction operations, and more
(Demirbas & Una, 2018). All kinds of processes and facilities can be modelled —
restaurants, airports, theme parks, manufacturing plants, etc. (Bandyopadhyay &
Bhattacharya, 2017). In a real production environment, activities performed can fail,
resulting in scrap, be delayed, get cancelled, and so forth. Such random behaviors can be
addressed during the simulation using a probabilistic distribution, as it can be set for
every activity to obtain more realistic end values (Tolio, Sacco, Terkaj, & Urgo, 2013).

In manufacturing, it is possible to use different simulation solutions at different levels
of the production system. Based on the manufacturing system architecture,
there are three levels: Machine, Sub-system, and System level. It is possible to use
a specific solution at each level to obtain new data and knowledge. At the lowest level,
the Machine level, the goal is generally the effective operation of the machine.
Therefore, the simulations at this level are intended to ensure the simultaneous
movement of the CNC machine on all axes without collision. This kind of simulation is
usually performed using the CAM software. At both the Sub-system and System level,
the objective is the optimization of the usage of a resource (equipment, workforce, time)
at the workplace, which consists of an industrial robot and CNC machine, or more broadly
by the production unit. At those levels, Discrete Event Simulation, 3D factory, and other
more specific simulation software are used (Mahmood, Otto, Kuts, & Kangru, 2020).

2.2 Decision-Making System Methodology Development

This chapter discusses the decision-making methodology and Decision Support Systems
available for implementation in the industrial robot-based production cell design process.
Decision-making problems have been treated individually so that consistency is not
maintained between the decision-making functions regarding assumptions and data
structures (Kangru, Otto, Riives, Kuts, & Moor, 2020). These isolated decision-making
stages do not help to achieve an optimum solution, as decision-making problems in
manufacturing involve very complex data processing. Elementary estimations are very
strongly dependent on each other, and real technological resources (capabilities) must
be taken into consideration. Therefore, rational decisions cannot usually be made simply
using sequential procedures. However, using modelling and simulation procedures, it is
possible to analyze the alternatives and find the best solution. The other possibility is to
apply complex systems theory (Ladyman, Lambert, & Wiesner, 2013) (Efthymiou,
Pagoropoulos, Papakostas, Mourtzis, & Chryssolouris, 2012) and develop a solution system
architecture, allowing the reduction of the complexity of the design process, minimizing
risks in production system planning, and enabling the analysis of production variants. For a
better understanding of the entire complexity of the problem setup, it is useful to consider
the broader picture based on the ontology model in Figure 8. (Lun, Riives, & Otto, 2011).
The Robot Cell Utilization Ontology Model shows task positioning in the field of
manufacturing in its entire complexity (Kangru, Otto, Riives, Kuts, & Moor, 2020).
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Figure 8. Robot Cell Utilization Ontology Model (Kangru, Otto, Riives, Kuts, & Moor, 2020).

Manufacturing efficiency depends on the suitability of the manufacturing system to
the fulfilment of the company’s strategy and the matching of the product portfolio with
the technological capabilities of the manufacturing system, as well as the efficiency with
which the company is using its resources to fulfill orders. Results depend directly on the
quality of the decision-making process. Nowadays, in manufacturing, the DSS is used for
complicated tasks like supply chain management (Cabral, Grilo, & Cruz-Machado, 2012)
and the handling of used industrial equipment (Karaulova & Bashkite, 2016). A DSS
(Burstein & Holsapple, 2008) is a computer-based information system that supports
business or organizational decision-making activities, typically resulting in ranking,
sorting, or selection from among alternatives.

A properly designed DSS is an interactive knowledge-based software system intended
to help decision-makers compile useful information from a combination of raw data,
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documents, and personal knowledge, or business models to identify and solve problems
(Sprague, 1980). DSS is generally a system built on mathematical algorithms and
methods. The system can be entirely computer-based, operating in the background of
the main processes, providing additional information to the decision-maker at the right
time for decision-making, but it can also be a step-by-step methodology with the
involvement of different tools. A combined system is most commonly used because of
its ease of use, and at the same time, the user has complete control over the formation
of the decision. Typical information that a decision support application may collect
include the following:

e Historical data (inventory, sales, throughput, cycle times),

e Datafeed (current production flow data, OEE, OLE)

e Predefined parameters (production capacity, maintenance)

e Forecast (sales, inventory).

The whole planning system is based on a hierarchical decision-making scheme. Nodes
represent decision centers. At those centers, elementary estimations are carried out.
These elementary decision-making procedures are carried out on the basis of different
mathematical methods and systems. These elementary decisions can not be in conflict
with each other (Kangru, Otto, Riives, Kuts, & Moor, 2020).

Using the above, we can compile a decision support system. The system should have
coordination levels which take care of elementary decisions, analyzes them, and provides
the rules for further activities. That means modelling and optimization techniques are
integrated with an expert system. The basic components of the system planning
architecture are data storage, a decision-making mechanism, a knowledge base, and an
interpreter. The last one is responsible for the following main activities: calling up the
required solution module, analyzing the obtained results, generating rules and instructions
in case of contradictions, issuing sorting and search commands to the database.
The interpreter makes it possible to revise the problem-solving process. A modular
architecture guarantees the flexibility of the planning system. The result would be obtained
using different modules and models. The order of use of these modules must not be strictly
determined. This kind of flexibility gives users a more extensive goal (Kangru, Otto, Riives,
Kuts, & Moor, 2020).

2.2.1 Decision Making Methods

An expert decision-making system has been developed and used for human resources
development, relying on required skills and knowledge. Such systems have been used in
particular when the influence of human factors on productivity is large and the process
is less automated (Riives, Otto, & Loun, 2007). Possible methods for decision making in
manufacturing applications are briefly discussed below.

Weighted Sum Decision Model

The Weighted Sum Model (WSM) is the simplest multi-criteria decision analysis method
for evaluating alternatives using decision criteria. This method (Goh, Tung, & Cheng, A
Revised weighted sum decision model for robot selection., 1996) assesses critical factors
or performance values. In IR selection, those critical values are derived from three
categories: the minimal environmental conditions, the minimal performance conditions,
and the budget ceiling (Kangru, Otto, Riives, Kuts, & Moor, 2020). If the proposed
solution meets all the requirements (critical values), this can be considered one
alternative. The method relies on expert opinions to determine criteria weights, which
can be summed in the decision matrices to rank alternatives.
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Data Envelope Analysis

Data Envelope Analysis (DEA) is a performance evaluation or benchmarking method
where performance is assessed against best practice. The DEA model consists of inputs,
decision-making units (DMU), and outputs. Inputs and outputs are performance
measures and may or may not be directly linked to the production process. DMUs are
units under evaluation and are composed of performance metrics that characterize the
units (Orkcii & Orkcii, 2011). DEA evaluates minimum inputs against maximum output
(Kangru, Otto, Riives, Kuts, & Moor, 2020).

Analytic Hierarchy Process

Many decision support systems are based on the Analytic Hierarchy Process (AHP), which
was developed for use in complex decision making in 1980 by Saaty. This method and its
refined successors (Goh, 1997) (Reddy, Kumar, & Padmanabhan, 2015) are still in wide
use due to their ability to deal with objective as well as subjective attributes efficiently.
The method’s first step is to build a problem hierarchy containing criteria whose
importance is compared pairwise by different experts. The final step is obtaining and
summarizing composite performance scores for alternatives and making a final decision.
This method has been improved using Fuzzy numbers for linguistic expressions in the
pairwise comparison of criteria (Ic, Yurdakul, & Dengiz, 2013) (Kangru, Otto, Riives, Kuts,
& Moor, 2020).

A Technique for Order Preference by Similarity to Ideal Situation

The Technique for Order Preference by Similarity to Ideal Situation (TOPSIS) is a method
that compares a set of alternatives by identifying weights for each criterion (Kangru,
Otto, Riives, Kuts, & Moor, 2020). Scores are normalized for each criterion, and the
geometric distance between the alternative ideal positive and ideal negative solution is
calculated. The best solution is nearest to the ideal positive solution and farthest from
the ideal negative solution. The method has been improved by using Fuzzy numbers for
criteria analysis (Chu & Lin, 2003) .

Artificial Neural Network

The Artificial Neural Network (ANN) method has been used in many applications where
real-world data variables are available (Yazgana, Borana, & Goztepe, 2009). ANN is a
computing system that consists of nodes or artificial neurons connected like synapses to
transmit signals from the input layer through one or more hidden layers to the output
layer. The method's main advantages are the so-called learning effect from considering
examples and the ability to work with a tremendous amount of data.

2.2.2 Advanced Analytics
Advanced Analytics (AA) is becoming vital to making so-called “best decisions” in modern
manufacturing. AA enables companies to efficiently and effectively make both narrow
and extensive data and modelling decisions and facilitate capitalization in short, medium
and long-term activities. Support for the decision-maker involves an automated process
with visualized output rather than manual spreadsheet calculations. AA can be divided
into the following three computerized data processing analytic methods:
 Descriptive analytics: involves accounting and the analysis of historical data.
This method is used in backcasting practices and forecasting of seasonal demands.
* Predictive analytics: considers near past data to predict future trends, biases,
tendencies, behaviors, etc. using causation and correlation.
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* Prescriptive analytics: finds or prescribes the best mode, route, manner, or moves
to operate (outputs) based on given data and models (inputs). (Menezes, Kelly, Leal,
& Le Roux, 2019)

The application of Advanced Analytics requires a sufficiently extensive database. By
combining existing information gathered from MES and ERP databases with the
effects of external factors, it is possible to use Advanced Analytics to extend a simulation
model so that forecasts are as precise as possible. Potential application scenarios could
involve the optimization of manufacturing parameters, predictive maintenance,
available capacity or capacity needs prognosis, and process performance, among others
(Groggerta, Elsera, HaoNgoa, & Schmitt, 2018). The analysis process itself is cyclical in
nature and consists mainly of the following steps (Chapman, et al., 2020):

* Business understanding —objectives and requirements from a business perspective,

» Data understanding — data collection, data quality,

 Data preparation — construction of final dataset,

* Modelling — applying different modelling techniques. Some of the main methods

used for modelling in this research are correlation, regression and prognosis,

* Evaluation — verifying the model and dataset,

* Deployment — presenting results in a form that can be used.

2.3 Manufacturing System Decision Support Systems

Different robot classifications, selection systems, and methods used for decision-making
are defined in the following paragraphs. Designing a robotic cell and selecting the
most suitable components, for example, an industrial robot (IR), end-effectors (EF),
loading-unloading positions (LP), working tables (WT), transporting equipment (TR), etc.
is a complex task entailing multi-criteria decision-making procedures. For the most part,
decision-making means selecting the best type of industrial robot for performing a range
of activities. These activities may include welding, painting, assembly, machine tending,
inspection, grinding, polishing, or other manufacturing operations. Due to the dynamic
nature of production processes and the ever-changing market conditions under which
SMEs are operating, the adequacy of decisions taken may change over time. Therefore,
decisions should not only be based on technological and economic parameters but also
take into account real-life experience (successes and failures) in the industry.

2.3.1 Knowledge-Based Architecture
In the following chapter, Knowledge-based Engineering (KBE) is introduced. KBE is the
application of knowledge-based systems technology in the domain of manufacturing
design, production, and production planning (Halevi & Wang, 2007). Production systems
(robot-cell) can be defined as a kind of cognitive architecture in which knowledge is
represented in different forms. Thus, typically, a robot-cell as part of a production system
is a complex system with a specific architecture. According to Scholz-Reiter, a physical
hierarchical system should have three levels with various parameters (Benkamoun,
ElMaraghy, Huyet, & Kouiss, 2014):
1. The system level — production can be defined as stations or cells which are usually
linked with predicted storage and transport systems;
2. The sub-system level — a workplace is considered a pack of support resources for
operations (e.g., robots and different devices);
3. The machine level — an environment to which different tools, grippers, data, and
programs belong, as required by the equipment.
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As previously stated, the physical hierarchical system is combined with components
(e.g., @ CNC machine or manipulator), each having the knowledge to configure and
operate themselves. By storing these observations, skills, and expertise as knowledge and
combining different levels and systems automatically, we can create a knowledge-based
system.

2.3.2 Design Inputs
Manufacturing System Design (MSD) inputs are based on numerous parameters and
variables from internal and external sources. The wide range of selectable variables
makes it complicated to select the most vital ones (e.g., enterprise needs and objectives,
controllable factors, constraints, and targets). A precisely described manufacturing vision
and strategy and automated selection systems (Kaganski, Majak, Karjust, & Toompalu,
2017) can lead to a refined result in the design process. It is assumed that not all factors
affect MSD directly.
The following factors are indicated as major parameters (Vaughn, Fernandes, &

Shields, 2002):

e Market Uncertainty (MU),

e  Product Volume (PV),

e  Product Mix (PM),

e Frequency of Changes,

e  Complexity,

e  Process Capability,

e  Worker Skill,

e Type of organization,

e Time to the first part,

e Investment,

e Available/Existing Resources.

MU can be defined as fluctuations in product demand. Demand affects
manufacturing operations, creating an over or under capacity in the manufacturing
system. Another important factor that is tightly connected with MU is Product Volume
(PV). Maximizing PV has an impact on the physical design of the manufacturing cell,
affecting factors like space required, machine selection, and layout. Furthermore,
the MSD process certainly includes a level of flexibility that can be associated with
Product Mix. If an extensive product mix is expected from the manufacturing system,
production volume may be considerably reduced. On the other hand, not all the major
parameters listed above facilitate the MSD process. For example, the size of investments
is treated as a constraint and limits the choices available to designers. This can be
connected with several variables, such as cost of implementation, payback period, or
time needed for MSD. For investments, we can consider Available Resources to be a
constraint on the design process. Available Resources, such as time, finances, existing
technologies can limit the complexity which is expected of a designed manufacturing
system. These crucial factors should be considered carefully when they become inputs
for manufacturing system design and must be chosen according to the specific needs of
the enterprise.
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2.3.3 Performance Indicators

Key Performance Indicators (KPIs) should be considered a company vital sign,
characterizing the actual situation and goal fulfilment. The use of these as a tool provides
an opportunity to measure, analyze, make decisions, and keep production on track.
They also help to identify bottlenecks in production and possibilities to increase the
effectiveness of employees and machines and provide a way to monitor the progress of
production orders. Today, KPI monitoring is a multi-level, real-time process that begins
on the shop-floor and extends to company strategy, concentrating the information
collected for higher-level KPlIs. The selection of KPIs for different companies and different
levels is generally a multi-criterion decision-making problem, and the choice must reflect
the subject as accurately as possible. KPI selection problems have been addressed by
earlier studies (Kibira, Brundage, Feng, & Morris, 2017), (Kaganski, Majak, Karjust, &
Toompalu, 2017).

Solutions for SMEs have been developed to assess production unit performance
(Mahmood, Lanz, Toivonen, & Otto, 2018), focusing mainly on the evaluation process:
defining of the system, selection of KPIs, process modelling simulation, data collection,
analysis, and real-time visualization. A hierarchical linking between KPIs through all levels
has been mapped. The KPIs proposed for the SME production unit (see Table 1) are used
in the upcoming simulation models. The hierarchy starts at the lowest level, where inputs
are measured directly at the workplace or machine, and ends at the highest level, where
outputs are usually calculated.

Table 1. KPI selection hierarchy (Kangru, Mahmood, Otto, Moor, & Riives, 2020).

Level Performance Indicators

| Utilization
Strategic  Overall Equipment Effectiveness
Throughput
Discounted Payback Period
Il Availability
Tactical Performance
Quality
Planned Production Time
Actual Production Rate
Set-up Time vs Cycle Time
Operating Time/Idle Time vs Cycle Time
I Total Products Produced
Shop- Finished Products
Floor Rejected Products
Activity Processing Time
Operating Time
Ideal Processing Time
Total Run Time

2.3.4 Industrial Component Selection Systems

Factual selection of industrial components, e.g., industrial robots, CNC machines, and
auxiliary equipment, can be defined as a multi-criteria decision problem. A general
process flow can be seen in Figure 9. For the decision-making process, additional data,
information, and knowledge are essential. The first step in solving the selection problem
is always defining the objective function. In the case of the selection task, an objective
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function is almost always choosing the most optimal machine or equipment. Still, again
it is always accompanied by restrictions due to the specifics of the company or
production. Limitations are set by the company's strategy, development plan or
production task. The second step consists of multiple sub-processes and decisions and is
supported by the knowledge of an expert group. The contribution of the expert group
can be gradually reduced over time, as decision-making activities are handed over to
Artificial Intelligence with a Machine Learning capability. Such solutions have been
proposed elsewhere (Castellano & Fanelli, 2000) (Chan, Jiang, & Tang, 2000).

In the second step, the process begins with the selection of criteria from among all
possible criteria that best correlate with the initial task. Criteria can be divided into two
main groups: objective and subjective. Possible criteria and the principles of selection
have been explained elsewhere (Tahriri & Taha, 2011). For example, objective criteria for
industrial robot selection can be IR velocity, load capacity, repeatability, and cost,
while subjective criteria can be reliability, ease of programming, and the human-machine
interface. The selection of criteria depends on the task that requires equipment.
The accuracy of results mainly depends on successful criteria selection and their weight
factors in general problem-solving. A hierarchy model is composed from the criteria
selected; examples are discussed elsewhere (Goh, 1997), (Reddy, Kumar, & Padmanabhan,
2015). Again, this would be supported by an expert group or Al routines (Zhang, et al.,
2010).

While the hierarchy is being established, each criterion is given a weighting to reflect
its impact. This can be done by an expert group assessment using the Simple Additive
Weighting method or by determining priorities from pair-wise comparisons (Goh, 1997),
(Reddy, Kumar, & Padmanabhan, 2015); one solution is shown in the section
Performance Analysis Case Study. Exemplary scales for a pair-wise comparison are shown
in Table 2; an unbiased solution is more probable after adjustments are made for
consistency.

Table 2. Pair-wise comparison scale assessment (Kangru, Riives, Mahmood, & Otto, 2019).

Importance Description

1 Equal Importance

3 Moderate importance

5 Strong importance

7 Very strong importance

9 Extreme importance
2,4,6,8 Values between two adjacent values should be in considerations
Inverse If an activity (i) got the point compared with activity (j), then (j) has the

opposite value compared to (i)

Almost all mathematical multi-criteria decision support systems can be adopted to
support selection problem-solving. Some of the methods used have been discussed
above. The ranking performance of different techniques has been presented elsewhere
(Tahriri & Taha, 2011), (Athawale & Chakraborty, 2011) and (Saha, 2015).
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Figure 9. Industrial Component Selection System Architecture.

After the problem-solving structure is completed, parameters relevant to equipment
selection are inserted in the ranking process, and the system ranks all the alternatives.
Based on the ranking generated, according to the calculated score, the final decision can
be made. After the first successful ranking, the system is easy to use in re-selection
without the input of an expert group. This is only true as long as the objective function
does not change.
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3 Research on Intelligent Manufacturing Cell Structure
Development

The following chapter provides an overview of robot manufacturing cells implemented
in Estonia, analyzing their complexity, required competencies, and automation and
intelligence levels. Decision-making procedures and Decision Support Systems for
manufacturing cell design is further discussed. Finally, robot integrated cell design
methodology and methods are proposed.

Modern manufacturing systems have evolved into complex ecosystems. Digital
manufacturing and smart factories are becoming the norm in manufacturing. They depend
on the leveraging of connected devices and technologies, numerically controlled
machines and robots, advanced analysis with artificial intelligence, loT, digital twins,
advanced planning, and control capabilities, which operate through the entire value
chain. In addition, these devices must be capable of sensing their environments and
interacting with one another. Simulations using digital twins is a technology which makes
it possible to decrease the time to design manufacturing systems and acquire
information for decision-making in performance analysis. Development tools related to
14.0, such as advanced simulation, have proven to be of great importance in industrial
applications. Hence, there is a need and demand for digital solutions for a production
SME; these would aid the effective use of technologies implemented and resources
involved. However, there is a lack of studies that offer and develop specialized digital
solutions for production SMEs; this needs to be addressed comprehensively.

3.1 Current Situation Analysis

Currently, manufacturing is moving towards greater complexity, larger-scale integration,
digitalization, and flexibility. All this began with the introduction of Cyber-Physical
Systems (Gunes, Steffen, Givargis, & Vahid, 2014). Such a smart system is represented by
industrial robots and robot-based manufacturing cells. Since 2010, the demand for
industrial robots has accelerated considerably due to the ongoing trend towards
increased automation and integration (International Federation of Robotics, 2017).

Industrial robots are now used in a wide range of manufacturing processes, such as
welding, assembly, loading-unloading, palletizing, logistics, painting, etc. The problems
encountered when implementing robot-cells in companies are the same: how to achieve
the best results with limited resources — high productivity, low manufacturing cost,
high product quality, and smooth integration into the production system. Typically, there
are many different possibilities for improvement when implementing robot-cell
applications. But the efficiency of a manufacturing cell can be measured by the expected
results, such as cycle time, unit cost, cell productivity, and return on investments.

Therefore, a harmonized knowledge-oriented approach is needed to address the
complexity and performance of production systems for decision-making enhancement.
This led to the conclusion that a more in-depth study of the current situation in the
manufacturing industry should be carried out.

3.1.1 Robot Integrated Manufacturing

Robot integrated manufacturing uses an industrial robot to perform machining, handling
finalizing, inspecting or other work operations (Nof, 1999). A study was performed at the
end of 2017 to determine the utilization of industrial robot-based manufacturing cells in
Estonia. The goal of the study was to compare production cell design objectives to
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achieved KPIs. The study was carried out by interviewing executives from different
company management levels (production managers, R&D engineers, and setup
technicians). Where available, data were collected from the MES system implemented,
and cell layout with technological capabilities was mapped.

Information was gathered in four main areas: company profile and strategy, cell
layout and equipment, manufactured products, and process data. Documented
shortcomings and improvements performed were recorded. Performance was assessed
using the following parameters: setup-, cycle-, operational-, rework-, and maintenance
times, personnel required, lot size, repeatability, and the total number of products.
Throughput, cell utilization, and OEE were calculated and compared with cell design goals
(Kangru, Otto, Riives, Kuts, & Moor, 2020).

8.5% of the companies participating in the survey belonged to the micro-enterprises
group with a turnover of less than 2 million euros and a staff of around ten persons,
31.5% were small enterprises, and 59.6%, the majority, belonged to the medium-sized
enterprises group. The companies were mainly located close to Estonian industrial
centers (Tallinn, Tartu, Parnu), and it can be assumed that this had a strong impact on
the results. Some of them produced their own branded products, others were doing
contractual work, but the majority did both. Products produced included different parts
for agricultural and forestry machines (frames, grippers, and crane booms), small tractors,
high-speed train and lift components, wind generator rotors, and sheet metal products.

In 58% of the cases, work was organized into two shifts, in 23%, there was a one shift
workday, and in 19%, there were three shifts. 64% of the robot-based manufacturing
cells, the majority, were welding cells, 22%, CNC machine tending cells, and 14%,
material handling cells. The first cell was implemented in 2008, and the process of
implementing last one was still ongoing. The total investment was between 50 thousand
to 450 thousand euros (without taking inflation into account). Lot size and distribution
are shown in Figure 10, and lot repeatability, in Figure 11.

< 10pcs;

> 500pcs; 17%

21%

below 10%;
8%

11-20%;
8%

21- 30%;
a%

100-
500pcs;
17%

10- 50pcs;

33% over 50%;
o 31-50%;
12%
51 - 100pcs;
13%
Figure 10. Lot sizes (Vaher, Kangru, Otto, & Figure 11. Repeated lot probability (Vaher,
Riives, 2019). Kangru, Otto, & Riives, 2019).

55% of the companies stated that they had already implemented one to five industrial
robots in their production process, as shown in Figure 12. Companies using only one IR
robot in their production process provided feedback on the introduction of robotization
in their company. The robotized processes and prognosis for planned processes in the
coming three years is shown in Figure 13.
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In total, 18% of manufacturing companies in Estonia were reported to be already
using industrial robots, and 18% were planning to invest in industrial robots over the
following two years (Swedbank Research, 2019).
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Figure 12. Industrial robots in use for Figure 13. Robotized processes and 3-year prognosis
manufacturing (Vaher, Kangru, Otto, (Vaher, Kangru, Otto, & Riives, 2019).
& Riives, 2019).

The second part of the survey focused on workforce competencies, availability, and
relocation within the company. When assessing the current situation in the workplace,
63% of the executives stated there was no staff or positions were only partially covered,
as shown in Figure 14. This could become a determining factor in the development of
new and highly complex production cells and their exploitation in the future. According
to demographic trends, the workforce age 20-60 is expected to decrease by over 160 000
workers over the next 20 years (Priits, 2018). There will be a shortage of skilled workers:
welders, operators, setup engineers, and assembly workers. The prognosis of the
executives for skilled workforce demand can be seen in Figure 15.

Is covered; 37% No workers; 14%

No staff; 16% Over 10; 18%

6-9;9%

1-2;32%

. 3-5;27%
Partially covered
eng. Staff; 47%

Figure 14. The presence of engineering staff. Figure 15. Demand for workers, developed
production cells.
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3.1.2 Analysis

Although investments in machinery and R&D have increased by over 4% each year over
the last five years (Statistikaamet, 2020) (Statistikaamet, 2020) and Estonia has held a
high ranking in the Digital Economy and Society Index (DESI), with an index value of over
60 (European Commission, 2020), the number of IRs implemented in industry is still low.
According to the International Federation of Robotics, Estonia has implemented 11
industrial robots per 10 000 employees. This is well below the European Union average
of 115 units (International Federation of Robotics, 2018). In this light, the robot-based
production units implemented in industry were then examined.

Economic input parameters were chosen that best described the goals set by the
company or department managers. Among the parameters chosen were Net Income,
Net Operating Profit, Cost per Hour, and Discounted Payback Period. A goal achievement
analysis was then performed. Cell utilization, investment value, and overall goal
fulfilment were mapped (see Figure 16) and compared, and production cell design
objectives were once again assessed.
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Figure 16. IR integrated production cell design goal fulfilment (Kangru, Otto, Riives, Kuts, & Moor,
2020).

As a second step, a wider analysis was performed to assess production cell
intelligence, automation, and engineering competence levels using the categorical
framework of manufacturing (Qina, Liua, & Grosvenora, 2016). This analysis shows the
current state of production cells in comparison with global manufacturing trends (see
Figure 17). This knowledge can also lead to the steps needed to improve manufacturing
and make the leap to Industry 4.0 principles.
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Figure 17. Production cell state in manufacturing categorical framework (Kangru, Otto, Riives,
Kuts, & Moor, 2020).

3.1.3 Robot integrated production cell complexity and competence

Analyzing the data gathered from the survey, we get a picture of the current state of
manufacturing industry robot integrated production cells, with regard to cell complexity
and required competencies (see Figure 18). On the Genefke scale, which was developed
by the Danish Technological Institute (Danish Technological Institute, 2020), robot
integrated production cells are divided into five categories:

e Standard — Developed and thoroughly tested solutions with only one industrial
robot performing a single task.

e Adapted standard — Developed and tested solutions with one or more robots
performing a process.

e Special solution — The solution is specially developed to meet the company’s
needs. No exact solutions are present. Multiple robots with overlapping work
zones, auxiliary equipment, and sensor inputs are used.

e Applied research — The robotization of complicated processes, where specific
research is needed to complete the solution.

e Research — Long term technical development with a vision for the future.

58% of the production cells implemented were rated as level two —adapted standard.
This was predictable due to the high number of modular welding cells in the industry.
The prediction, according to Figure 13, shows growth at the special solution level, as the
robotic processes planned to be implemented over the following three years would have
to be integrated with the company’s existing systems, such as machine tending and
inspecting. Because no integrators, competence centers, or universities were included in
the survey, level four and five were not identified.
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Figure 18. Production cell rating according to the Genefke scale (Vaher, Kangru, Otto, & Riives,
2019).

3.2 Decision-Making Procedure

In this section, a decision-making procedure and its substeps are explained, and this is
followed by explanations of the knowledge-based robot-cell model structure.

An understanding of company strategy, management, and technology in
manufacturing can lead to the main principles and decision-making rules (Kodua, Brown,
Darlington, & Svetan, 2012) for the optimal selection and utilization of industrial robots
and equipment. For decision-making, the following criteria are typically used (Kangru,
Riives, Otto, Pohlak, & Mahmood, 2018):

* Increase in productivity

e Reduction of production costs

e Improvement of the working environment
e Increase in the security of supply

e Quality assurance

e Workforce insurance

* Increase in flexibility

e  Stock depreciation

According to robot-cell development and behavior ontology, two decision-making
circles or loops are proposed to achieve the desired goals and objectives. The design loop
and implementation loop shown in Figure 19 are used to ensure the most optimal
solution. The task of the design loop, as the primary task, is to check the robot’s
architecture and technical parameters, to be sure they are best suited for a selected job.
The task of the implementation loop, as the secondary task, is to analyze the optimal
utilization of the robot-cell implemented in a company. Based on the data analyzed in
the secondary task, we can estimate the accuracy of the direct decision.

The best solution may not be immediately apparent because of contradictory criteria.
To overcome this issue, the following tools are applied in the design and implementation
loops (Kangru, Riives, Otto, Pohlak, & Mahmood, 2018):
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e Requirement analysis is defining the technological capabilities of an industrial
robot and the robot-based cell. For example, what kind of equipment could be
used and what parameters are most suitable for the given industrial task?

e  Functional analysis is based on simulation software like 3D simulation
technology that would be able to describe the real production process:
execution possibilities, possible bottlenecks, and alternatives with efficiency
estimations.

e Behavior analysis is a reflection of real industrial applications. Using data
obtained from different real cases, it is possible to compare the best solution
description. The theoretically most suitable industrial robot is identified, and
the behavior of the selected IR is observed under real industrial conditions.

Design and redesign of Performance and continuous
[ Robot-Cell } [ improvement of production J
/
Requirement
analysis

I :
L Functional

-——

analysis
Estimation of needs @
Alternatives description Loop

Behaviour
analysis
Robot-Cell structure, Manufacturing rules,
components and Production processes,
capability Operating parameters

Figure 19. Recursive decision-making procedure (Kangru, Riives, Otto, Pohlak, & Mahmood,
2018).

3.2.1 Knowledge-based Manufacturing Cell

For the development of a conceptual model for the robot-cell, we considered a
knowledge representation that would allow the decision support system to act
intelligently. An intelligent decision support system must work as a professional
consultant, giving explanations for decisions made, analyzing evidence, identifying and
diagnosing problems, presenting possible cases for improvement, and evaluating the
alternatives.

However, the implementation of a decision support system is not something new.
DSSs have been used for different engineering tasks, like the design of flexible
manufacturing systems. All the problems of decision-making lie in the information and
how we use it. Here the novelty derives from the integrated multi-access model and
decision-making logic. A wide range of loT applications, cloud computing, big data, and
data analytics instruments have recently led to possibilities for developing intelligent
decision-making systems, where the expert system plays a significant role. Essential to the
development of such tools is the primary decision-making model with data acquisition and
knowledge representing principles, as shown in Figure 20. This event-driven conceptual
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model was generated by analyzing the robot-cells of real industrial companies and their
manufacturing processes.

This model has four independent interacting entities (Kangru, Riives, Otto, Pohlak, &
Mahmood, 2018):

Production task description entity — The main components are product model
(CAD), task model (ORDER), and process model (CAPP).

Robot-cell description entity — This part formed a robot-cell design model. The
DSS software helps to select the components and form the structure of a robot
cell.

Task performance analysis — Based on the parametrical model of performance
description and model for the optimal selection of KPIs.

General output description — Shows how the company has managed in general
(turnover, profit, etc.) and reflects the implementation of a robot-cell in the
manufacturing process through OEE, ROI, etc.

Design level
Product model (CAD) Production @ Robot-Cell Robot-Cell
Task model task description Desigm
{REREE] description ina Model
Process model
(CAPPCAM) company
Execution level @ @ @ @
Parametrical model of T
performance Task @ Annual Company’s
representation performance results of a < strategy and
Model for optimal analysis company corresponding
selection of KPIS CSF

Figure 20. Knowledge-Based Robot-Cell Model (Kangru, Riives, Otto, Pohlak, & Mahmood, 2018).

The model has two levels:

1.

The design level (primary task), which is planned for decision-making. Here the
best correlation between products to be manufactured and robot cell
parameters would be determined. The design parameters are shown in Table 3.
This level gives the primary answer to the question of parameters for the
robot-cell.

The execution level (contrary/reverse task) is based on the practical experience
of using robot-based manufacturing systems. Here actual data from
manufacturing are collected using MES or other possibilities. Based on this data,
the elements for evaluation and analysis would be determined, as shown in
Table 4. The data for performance analysis is essential and would also provide
feedback on the quality of decisions to the first level.

38



Table 3. Design parameters general description (Kangru, Riives, Otto, Pohlak, & Mahmood, 2018).

Product features Robot-cell features

Product portfolio No of robots in a robot-cell

Product mix Industrial robot technical parameters
Quantity per year Type of end effector(s)

Order fulfilment time Sensors needed

Product parametrical description (CAD Turning table(s) parameters

model)

The purpose of the product (Functional Loading-unloading position parameters
model)

Production process description (CAPP Transport devises parametrical description
model)

Operation description (CAM model)

Table 4. General description of execution parameters (Kangru, Riives, Otto, Pohlak, & Mahmood, 2018).

Elements of evaluation Elements of analysis

Order Fulfilment time Use of working time

Manufacturing ratio of order Main reasons for non-productive work
Fulfilment

Cycle Time ratio of Throughput Level of achieving the objectives

Machining Time ratio of Cycle Time Index of employee competences
Loading and unloading Time ratio of Contribution of an employee as a team member

Cycle Time

Setup Time ratio of Cycle Time Dynamics of effectiveness (changes and
improvements in the production process)

Idle Time ratio of Throughput Cost factors and their dynamics in production
process

Idle Time ratio of Fulfilment Time Quiality assurance
Robot-cell technological capabilities
exploitation

The robot-cell functionality correspondence to
the industrial tasks

3.3 Decision Support System for Manufacturing Cell

In this section, a performance evaluation model and an evaluation method for the
decision support system are proposed.

Over the years, many decision support systems (DDSs) have been developed
(Athawale & Chakraborty, 2011) to help decision-makers select the most functional and
cost-effective production cell equipment. The complexity of the selection problem is
related to economic, technical, and social attributes, which are interconnected and may
change in time. Economic attributes are likely to depend on the market situation and the
enterprise’s investment certainty. Both parameters are difficult to fix and predict. On the
other hand, technical parameters are readily available from machine datasheets and are
easily compared. A DDS should consider both qualitative and quantitative factors while
selecting and evaluating the correct solution. Some of the methods used in DDSs are
discussed below.



3.3.1 Performance Evaluation

For manufacturing processes, the Performance Evaluation Model (PEM) was developed,
as shown in Figure 21. The PEM is in correspondence with the conceptual model
described in Figure 20. The model facilitates a practical analysis of the suitability of
robot-based manufacturing cells and the execution of the planned task (nomenclature

of products, amounts of production, etc.).
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Figure 21. Performance Evaluation Model (Kangru, Riives, Otto, Pohlak, & Mahmood, 2018).

The model aims to understand the performance of a manufacturing cell when
carrying out a particular task. There are two input modules, the product family module
and the production cell description module, one manufacturing data module, and an
output data module (a KPIs module). To evaluate cell technological capacity and
economic profitability, a set of key performance indicators were selected based on
literature reviews (Kaganski, Majak, Karjust, & Toompalu, 2017), as defined in the KPIs
module of the PEM. OEE, CU, DPP, NI, and NOP are the outcomes used to determine the
performance of production cells chosen for the case studies.

The modules make it possible to understand the correlation of input data with output
data and determine dependencies between input data and output data. These are then
used to develop knowledge-based decision-making rules to be used in manufacturing cell
design and operating processes.

The model can be formulated mathematically as a multi-criteria optimization problem.
The objective functions considered are as follows (Kangru, Riives, Otto, Pohlak, &
Mahmood, 2018):

maxF; (%) - net income (EUR), (1)
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maxF,(X) - net operational profit (EUR), (2)

maxF;(x) - overall equipment effectiveness (%), (3)
maxF,(x) - usage factor (%), (4)
minFs(x) - payback period (years). (5)

The functions have different units and range and should be normalized by applying
the following equations:

fl(f) — max Fi(x)—F;(x) (6)

max Fi(x)-min Fi(J?)'

_ Fi(X)-min Fi(x
fix) = ma;(Fi)(x)—mi‘r;(I'Ti)(x)' )

In Eq. (6) and Eq. (7), X is the design variables vector, and the values maxFi(x) and
minFi(x) are estimated values for the function maximum and minimum, respectively.
Equations (6) and (7) are applied to objectives subjected to maximization (Fz(X), Fz(X),
F3(X), Fa(x)) and minimization (Fs(X)), respectively. As a result, the normalized objective
functions fi(x) are in the range [0;1] (though they may slightly exceed the limits of the
interval [0;1] since maxFi(X) and minFi(x) are estimated values). Furthermore, all non-
dimensional objectives are subjected to minimization, i.e.

f®) = (L(X), (%), f3(X)..., fs(X)) = min. (8)

The objectives considered are not conflicting (this can be verified by performing a
pairwise analysis of the objectives). Thus, the objectives can be combined into one by
applying a weighted summation technique (in the case of conflicting objectives, it is
justified to apply a Pareto analysis). Thus, the configuration/type of production cell f.can
be expressed as

N

fo= ) cifs @) - min. Q

i=1

In Eq. (9), N=5, the number of objectives, and c¢i stands for the weight of the
objectives, as determined by the particular company/problem being considered.
However, the main impact factors for the objective functions are determined on the basis
of the analysis performed in the companies. Those impact factors are divided into the
following three groups:

e  Product Family inputs,
e  Manufacturing Data inputs,
e Production Cell inputs.
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The effect of each subfactor on the objective functions fi may be derived from the
production data or estimated by experts based on the production data (system and
process specifications) and experience (in the case of cell type selection before the
production process). To take into account the three groups of impact factors, the
objective function (9) can be completed as follows:

N M Gk
ﬁchlfiz Wkaikj—)min. (10)
i=1 k=1 j=1

In Eqg. (10), M=3, number of groups, Wk(k=1,2,3) is the weight of a group (in different
companies, the importance of a group may be different), Gk is the number of subfactors
in group k, and the weight wi; describes the effect of subfactor j in group k on objective
fi.

The multi-criteria optimization problem considered is a constrained optimization
problem with limits on different resources (time, technology, etc.) and design variables

v <n@)<r*,(l=1...L).
i () <17, ( ) (1)

Where r;, r/°?, and r*? stand for the resource, its lower limit, and its upper limit,
respectively.

3.4 Robot Integrated Manufacturing Cell Design

A multi-stage robot integrated manufacturing cell design evaluation process has been
developed (Kangru, Otto, Riives, Kuts, & Moor, 2020), as shown in Figure 22. The process
is a recursive decision-making procedure, as shown in Figure 19. The process structure
is derived from the knowledge-based robot cell model shown in Figure 20. Three
decision-making tasks are integrated in the process (shown in red in the figure). If the
input data output does not fulfil the task objectives, the previous loop will be executed
again. Two distinct loops are built into the process: a design loop and an implementation
loop. The design loop is performed at the knowledge-based robot cell model design level,
and the objective is to ensure that the robot’s architecture and technical parameters are
best suited for a selected job. The implementation loop is performed at the execution
level, and the objective is to assess the optimal utilization of the implemented robot-cell
in a company.
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Figure 22. Proposed DSS General Model (Kangru, Otto, Riives, Kuts, & Moor, 2020).

As shown in Figure 19, the design loop consists of a requirements analysis and
functional analysis. The aim of the requirements analysis is to define the kind of industrial
robots, CNC machines, jigs, and fixtures that should be used for the selected production
task. In the requirements analysis, all possible combinations are included. Prior to the
functional analysis, an elimination cycle is performed. Only the most promising
combination of equipment is selected and passed on to an alternative selective block
(shown in blue in Figure 21). The task of the functional analysis is to add all the necessary
setup conditions and cycle times to the solution selected. Part of the functional analysis
is performed in the suitability index calculation block.

The last analysis module is a behavioral analysis, which includes an efficiency analysis.
The behavioral analysis is performed according to the production cell performance
evaluation model shown in Figure 21. The goal of the evaluation is to assess the
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performance of the robot integrated production cell according to the KPIs selected.
The KPIs may vary, depending on the company or particular production cell.

3.4.1 Feasibility Analysis
The main task of the feasibility analysis is to ascertain whether robotization in a company
is practical or not. To attain the feasibility estimation, an index calculation algorithm with
the following criteria should be iterated:

e Increase in productivity,

e  Reduction of production costs,

e Improvement of the working environment,

e Increase in the security of supply,

e Quality assurance,

e  Workforce insurance,

e Increase in flexibility,

e  Stock depreciation.

For each of the above-mentioned criteria, a specific questionnaire is composed and
answered by relevant company staff. The relative priority of the attributes should differ
in different companies. The superior solution is shown in equation (12), where the list of
criteria attributes Ki(i=1, 2, ...,m) and each criterion Ki has a list of factors Fj(j=1, 2, ..., n)
having a certain weight factor Bi.

FKDmax = ) B (Z}ﬁ) (12)

One possible application is shown in Figure 23. The application uses a selection of
fifteen questions divided into three groups to assess the feasibility of robotization in the
company. The application was developed and tested together with IMECC (Kangru &
Riives, Robotiseerimise otstarbekus, 2018).
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Figure 23. Feasibility analysis application (Kangru & Riives, Robotiseerimise otstarbekus, 2018).

The estimation is calculated using equation (12). One possible result is shown in
Figure 24.
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Figure 24. Feasibility analysis results (Kangru, Otto, Riives, Kuts, & Moor, 2020).

The higher the feasibility index, the sum of all criteria, the greater the real need to
implement industrial robots in the production process of the given company and the
more effective this implementation will be. As there is a limited number of questions for
each criterion for index evaluation, this analysis can give only a general picture. For a
more exact solution, further investigation is necessary.

3.4.2 Suitability Analysis

The suitability analysis is based on the task description (Kangru, Otto, Riives, Kuts, &
Moor, 2020). Using the task description, a set of required parameters and requirements
for an IR is determined. This set is formed based on the technological capabilities of an
IR that are crucial for fulfilment of the industrial task. This new set would be compared
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with a set for an existing well-proven robot integrated production cell. The largest
common part will give the best result.

An AHP based suitability analysis method uses product, technology and objective
parameters to derive the cell suitability index. The knowledge of an expert group has
been used to evaluate application-based criteria. In the future, an ANN-based prediction
model together with fewer experts can be used to evaluate application-based criteria
(Yazgana, Borana, & Goztepe, 2009). In this study, an IR welding application model was
used. The indexes calculated were compared with the main suitability decision categories
for final assessment.

The main concern of the suitability analysis process is to find the best solution
according to the set of criteria, using a method which allows the most realistic input
(weight) for each criterion. There are different ways to influence the role of criteria, i.e.,
using the equal weight (EQW) heuristic or the weighted additive (WADD) rule. However,
the main risk is in overestimating the importance some criteria or not paying enough
attention to others (Pfeiffer, 2011). Therefore, artificial intelligence (Al) methods may be
used (Zhang, et al., 2010).

When analyzing robot welding applications, three general groups of criteria (shown
in Table 5) were developed. The criteria listed have the greatest influence on the
suitability of using welding robots in the company. Having knowledge of the welding
process and its parameters makes the welding process more efficient.

Table 5. Suitability criteria for robot welding (Kangru, Riives, Mahmood, & Otto, 2019).

Product view Technology view Objectives’ view
1. The products are 1. Experiences in 1. To shorten the
complicated from the MIG/MAG and TIG throughput time.
technology point of view. welding.
2. The products can be 2. Competences in 2. To increase
classified into product welding technologies. productivity in the
families. workplace.
3. The products are 3. Welding processes play 3. To improve product
produced in repeatable a very important role in quality.
batches. the company’s

production processes.

4. The products are of high 4. Experience in robot 4. To increase the
quality. welding already exists. precision of delivery.
5. It is necessary to use 5. It is necessary to 5. To reduce product
welding fixtures. increase the productivity  cost.

of welding processes.

Several criteria should be used to decide on the suitability of welding robots
implementation in the company. Multiple criteria are listed in Table 5. Each decision
corresponds to a variable, relation or predicate, whose possible values are listed among
the condition alternatives.
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3.4.3 Efficiency Analysis

The efficiency analysis evaluates the designed or installed solution on the basis of the
best competences. For an adequate estimation of production unit manufacturing efficiency
and assessment of production unit process failures, the whole system, its components, and
their relations must be evaluated (LGun, Laavin, Riives, & Otto, 2013), (Mahmood &
Sevtienko, 2015).

A computerized performance assessment of a production unit based on the
(Mahmood, Otto, Kuts, & Kangru, 2020) methodology, the objectives set in the
company’s strategy and industry-based collected production data can be seen in Figure
25. The proposed system evaluates a company production process by comparing it with
an ideal process set up in the proposed model. In addition, it is a useful tool in the design
phase of a new production unit, as it allows us to assess productivity based on collected
production data. The efficiency analysis is divided into three steps, as shown in Figure 25,
where each step increases the accuracy of the selection. In the first step, production
type, production volume, and production technology are determined for the designed or
redesigned cell. Inputs for this step are design rules and constraints (Vaughn, Fernandes,
& Shields, 2002). At the end of this step, general requirements for the production unit
have been determined. In the second step, a simulation model is created according to
the selected rules and constraints. Different scenarios are inserted into the developed
model, and an optimal scenario or scenarios are selected. At the end of this stage,
a parametric model of the cell has been developed. The model is then used to simulate
technical-economic results. In the last step, a 3D simulation model is created based on
the information provided earlier, and the most accurate results using different layouts
and settings are acquired.
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Figure 25. Efficiency Analysis (Kangru, Mahmood, Otto, Moor, & Riives, 2020).

After successful OEE prediction, tactical and strategic KPIs for the company can be
calculated. Theoretical return on investment (ROI) and payback period (PP) or discounted
payback period (DPP) relations to the actual Gain of Investment (Gl) are calculated
among other parameters.
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4 Analysis

This chapter discusses the different DSS methods and tools to analyse, evaluate or predict
integrated robot production cell suitability for performing a certain manufacturing task and
its performance scores or KPIs. The tools discussed in this section have been developed
with a view to their possible development for use in automated DSS.

4.1 Suitability Analysis Case Study

This chapter discusses the DSS method used to evaluate and analyse robot integrated
production cell compliance with a given production task.

Twenty SME robot integrated production cells were investigated, with the number of
employees ranging from 20-150. The companies produced different parts for agricultural
and forestry machines, small tractors, and high-speed trains, lifts components, wind
generator rotors, and other sheet metal products. The information was acquired by
interviewing company management and engineering staff and extracting data from
enterprise resource planning (ERP) software. Data gained from the interviews and ERP
system contained both quantitative and qualitative data. Only data related to robot
welding was used in the following suitability analysis (Kangru, Riives, Mahmood, & Otto,
2019).

The performances of three production units were used as a benchmark for the
suitability analysis. The production cells, shown in Table 6, were chosen for their
excellent KPI values. KPIs were selected according to the performance evaluation model,
and they were as follows: discounted payback period (DPP), cell utilization (CU), and
overall equipment effectiveness (OEE).

Table 6. Production unit description and performances (Kangru, Riives, Mahmood, & Otto, 2019).

DPP, CU, OEE,

C Producti Il Product Shi

ompany Production ce roducts ifts s %

No. 1 Yaslfa?wa IR, two-axis Heat 3 51 72
positioner exchangers

No. 2 ABEf' IR, single-axis Trailer 5 ) 40 70
positioner frames

No. 3 Yaskawa IR, single-axis Forestry
2-station positioner machine 1(2) 3 45 70

frames

Criteria for Decision Making
In this study, the main task of the multi-criteria decision analysis was to estimate the
suitability index on the basis of the following criteria and sub-criteria, as shown in Figure
26 (Kangru, Riives, Mahmood, & Otto, 2019):
e Production unit (PU):
o cost (C): total investment (C1), cost of utilities (C2), running costs (C3);
o maintenance (M): maintenance cost (M1), emergency maintenance
cost (M2);
o level (L): use of CAD/CAM (L1), automated storage (L2), machine vision
(L3);
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e Product (P):

o

physical properties (PP): the complexity of parts (T1),
manufacturing precision (T4), mass (T6);

productivity (PR): product families (T2), patch size (T3), patch
repeatability (T9), overall welding ratio (TE3), average cycle time (TE9),
average setup time (PR2), quality assurance (E2);

parts

e Company environment (CE):

o workforce (WF): workstation fulfilment (E1), workers salary (E6),
production engineer’s involvement (E8), shifts (W2), shifts durations
(W3);

o performance indicators (Pl): increment of productivity (E4), an
increment of on-time delivery OTD (E9), increment overall equipment
effectiveness OEE (E10), payback period (K1).

T2
T3 El - s
| L1 Tl T9 E6 ”

Ml E9 TE4

c2 e L2 T4 TE3 E8 E10 Thd
C3 - L3 T6 TE9 w2 TEi
PR2 w3 kl
- TE10
Cost Maintenance Level Physic'al Productivity Workforce KPI's Experiences
properties
Production unit Product Company

environment

Suitability index

Figure 26. Production Cell Suitability Hierarchy (Kangru, Riives, Mahmood, & Otto, 2019).

Performance Scores
The assessments obtained from the decision-makers were pair-wise compared.
Performance scores and consistency ratios were then calculated, as shown in Table 7.
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Table 7. Performance scores of main criteria (Kangru, Riives, Mahmood, & Otto, 2019).

Criteria CR Priority Criteria CR Priority
Production unit 21 Physnc?l 66.7
properties 0
Product 1.9 24 Productivity 33.3
C(?mpany 55 Workforce 19.5
environment 98
Cost 51.3 Performance ' 8.8
Maintenance 5.6 8.1 Experiences 71.7
Level 40.6

Decision Matrix
The normalized inputs were multiplied by their corresponding performance scores, and
the local and global scores were summed up. The results are shown in Table 8.

Table 8. Suitability index results (Kangru, Riives, Mahmood, & Otto, 2019).

Production cell Prodetion Product Co'mp — Su::tability
unit environment index
Cell No. 1 0.567 0.699 0.664 0.652
Cell No. 2 0.494 0.709 0.804 0.716
Cell No. 3 0.524 0.849 0.810 0.717
Results

The highest overall suitability score was obtained in the case of No 3. with an index of
0.717. The extremely high score was received in both product and company environment
categories, 0.849 and 0.810, respectively. The suitability analyses confirmed an excellent
choice of product to be produced in a well-organized cell and automated company
environment. For the suitability decision, four categories were proposed, as shown in
Table 9, based on suitability criteria for robot welding, as shown in Table 5.

Table 9. Suitability decision categories (Kangru, Riives, Mahmood, & Otto, 2019).

Su1'tablllty Decision Description
index
<0.25 No expediency  Product portfolio, analysis of the current process and
general conditions indicate the lack of essential need
for using robots in the company.
<0.5 To a certain A strong point (products, process, general conditions)
extent and problematic places are indicated. The final
expedient decision lies with the industrial expert.
<0.75 Robotizationis Some minor risks are indicated.
recommended
>0.75 Robotizing is Each group (product, process, manufacturing
feasible conditions) has an index higher than 0.75, making it

certain that robotization of the process will yield
significant returns to the company.



For more precise results, it is possible to simulate the planned robot cell and to
calculate the break-even point. This presumes sufficient competence in all the relevant
areas. Therefore, a tool which makes it possible to estimate the suitability of using
industrial robots to automate a certain manufacturing process is important in the early
planning stages (Kangru, Riives, Mahmood, & Otto, 2019).

4.2 Performance Analysis Case Study

This chapter discusses the DSS method used to simulate production workflow by the bill of
operation and available capacity. The method is used to evaluate or to predict production
cell KPIs.

The company was manufacturing small and medium-sized mechanical components
for industrial machines and medical devices. Work was organized mainly in one shift
and sometimes in two shifts. This case study focused on the CNC machine-tending
cell shown in Figure 27. The production cell consisted of a medium-sized turning center,
a co-working robot connected to it, and work in progress (WIP) storage. The following
KPIs were chosen: Throughput, Total Number of Orders, Total Products Produced,
Overall Equipment Effectiveness, Utilization TPU, and Discounted Payback Period.

Figure 27. CNC Manufacturing Case Study Cell (Kangru, Mahmood, Otto, Moor, & Riives, 2020).

The cell was composed as follows: 1 — Co-working robot, 2 — universal prism gripper,
3 —work in progress storage, 4 — part overturn position, 5 — machining position. Operations
for the cell's typical workflow are listed and explained in Table 10. Operation availability
and performance indicators were acquired from the company MES database. Order
volume distribution, parts distribution, and cycle times were obtained from the company
ERP system database.

Manufacturing Cell Simulation Model
The manufacturing cell model was based on a robot-based manufacturing cell PEM and
was programmed using Rockwell Automation Technologies Inc. Arena DES software.
An overview of the model is given in Figure 28 and one of the sub-models in Figure 29.
The model was used to simulate different production orders simultaneously, as in
“real life”, according to their operation sequence and order-specific data. An order could
exit the system only when all necessary operations and rework had been performed and
the order had been successfully completed.
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By using concurrent simulations, it was possible to assess the combined effects of
orders, identify bottlenecks, and incorporate improvements, which are directly reflected
in production unit performance records. Entities for the model were defined as an order
where part production information (operations, cycle times, quality parameters, etc.)
together with production volume had been assigned. Outputs were defined as both
completed orders and rejected orders. Throughput and net value were calculated for
each completed order. Similarly, the unearned cost was calculated for rejected orders.
After simulating parts and volume by their distribution, KPIs could be calculated. For this
model, a simple KPI selection of total production units, Utilization, Net Income, and
Discounted Payback Period were included (Kangru, Mahmood, Otto, Moor, & Riives,
2020).

The model first assessed the existence of production capacity. In case of no capacity,
the order was sent directly to Rejected orders.

Completed

> Orders

—>| Engineering —

|—> Pre- Production —
Total working hours,
Total parts

Operations Utilization rate’
OEE

Manufacturing
data

Is capacity — Preparation | |
avallable ? ves > —> —>Next Operation?

Order —> — ‘Station

OPP

Operation parameters Rejected
Order parameters | Cycle Time | Orders
Order ID - Operation performance AP have |—» Post- Production —|

Quantity for operations Rework been completed
Bill of Operation Order is oo long
Start Time

L—  Finshing  —

End [fime
End Time

Figure 28. CNC Manufacturing Cell Model (Kangru, Mahmood, Otto, Moor, & Riives, 2020).

If the production unit had free capacity to utilize, the order started to execute
according to the order Bill of Operation (BOO).

Rework quantity <—‘(er‘

A 4

/" Performance

Operation No. 2 L Is Rework , Preparation
Machining . E;ﬁ:g%t:; [>{ CNC Machining. - necessary ? No—>| Station

Figure 29. CNC Manufacturing Cell Sub Model (Kangru, Mahmood, Otto, Moor, & Riives, 2020).

In the model, the operations are described more broadly than normally in industry
production planning. The model combines similar industrial operations such as
turning, milling, and bending into one manufacturing operation with a cycle time and
operation-specific productivity, availability, and quality. The operations used in the
model are shown in Table 10.
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Table 10. CNC Manufacturing Case Study Operations (Kangru, Mahmood, Otto, Moor, & Riives, 2020).

Op. ID Operation Explanation
1 Engineering The order has been accepted and production planning
starts.
Engineering CAM programming the part.

3 Pre- CNC machine and IR robot setup and test run.
Production
4 Manufacturing  Blanks are inserted into the WIP, and manufacturing is
started.
5 Post- Quality control is carried out.
production
6 Finishing The batch is finished, and the setup is taken down.

Each operation in the model is associated with a database from which the required
data for the operation is loaded according to the product. Operation cycle time is
calculated according to equation (13).

Q *CT * /Py *Pp

C+A (13)

Orp =

Orh represents operation throughput time, Q, production quantity, CT, planned cycle
time, Po, operation performance value, Pp, part performance value, C, capacity, and A,
availability. Similarly, in the rework RO equation (14), a product-specific quality
coefficient Py directs Qp products to reprocessing. Normative times for moving batches
are set between operations. When all operations for the batch have been performed,
the batch is sent to Completed Orders.

R0=Q*Pq*QP (14)

Results

The production unit model was simulated using ten preset products, each with a
different configuration. The minimum parts quantity was ten and the maximum 500 parts
per order. The simulation duration was 4.5 years, for a total of 9,000 working hours, with
work performed in one shift. As a result, a total of 100 thousand parts were produced
across 430 orders, making the average number of parts per order 230 pc. The overall
utilization rate for the production unit was 40% during this period. The CNC machining
operation had the highest rate, with a utilization of 83% in some cases. The lowest value
for overall equipment effectiveness (OEE) for the CNC machining center was 52%,
the highest, 90%, making the average value 87%. Based on these values, the calculated
discounted payback period DPP was 3.2 years.
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4.3 CNC Manufacturing Cell Redesign Case Study

This chapter provides a case study of a company’s labour-intensive redesign of a
production unit to make it a more efficient robot integrated production cell.

Production cell description and redesign objectives

The company provided CNC cutting outsourcing services. Parts were manufactured in
small batches, 1-100pc., and medium-sized batches, 100-1000pc., half of which were
repeat orders (see Figure 30). They also manufactured a small number of their own-brand
products, which were marketed using a reseller network. The sizes of the parts ranged
from 10g to 3kg. The technologies used were sawing, turning, and milling, and each
machine was operated by a single operator. The work was organized in one shift, and
production planning was carried out in the order of arrival of orders. There was no
warehouse management for either the material or the finished products.

Figure 30. Production unit layout before redesign.

The main goal of the restructuring of production was to reduce costs due to waiting
times and increase the efficient use of machining centers, thus increasing profitability for
the department. The objectives of the restructuring were as follows:

e Robotic processing of repeated batches,

e Production planning according to batch size and automated production outside
the working hours of the operators,

e Increase of the OEE of machining centers,

e Increase of the OLE of operators,

e Reduction in throughput for repetitive batches.

Feasibility study

The company’s feasibility assessment had been prepared based on the methodology
presented in section 3.4.1. The assessment was carried out by conducting an interview
with the company’s CTO and together setting the weights of the various criteria. The results
are shown in Figure 31.
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Increase in productivity

Lowering of production

Production flexibility coste

Improvement of the

Stock depreciation . .
working environment

Increasing the security

Workforce insurance
of supply

Quiality assurance

Figure 31. Company feasibility study.

The results of the assessment of the impact of robotization are shown in Figure 31
(grey indicating the current situation in the company). From that chart, we can conclude
that integration of the industrial robot with the existing production cell would lead to
relatively modest results when compared with the ideal solution shown in orange.
Therefore, moving forward, a situation could arise where robotization in fact hindered
production even more. The most significant negative factors were inadequate or
incomplete planning, production of complex parts in very small batches, and the low
qualification of operators. It was recommended to re-evaluate the situation and place a
greater focus on medium-complexity products made in repeated batches. It was also
proposed to evaluate the operator's skills and provide all necessary training. Introducing
the proposed changes to the company's production would provide a stronger basis for
the robotization of the company. The predicted result is shown in yellow.

Production Cell Components and Scenarios
Due to the company's desire to robotize CNC work centers and incur the lowest possible
investment costs, it was not then possible to replace existing CNC machines with newer
ones. Therefore, an increase in productivity through a change in the capabilities of the
machines would not be possible.

The main parameters of the industrial robots included are shown in Table 11.
As the work was partly planned to take place in parallel with human operators, all robots
would be in the co-robot class.

Table 11. Selected industrial robots.

No. Positioning

Manufacturer I;::::’; of accuracy Pa}/ ,C;ad
axes [tmm]
1 Kukka KR 3 Agilus 541 6 0,02 30
2 ABB YuMi 559 14 0,02 5
3  Universal Robots URS5 850 6 0,1 50
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Based on the suitability analysis, the two main scenarios for moving forward were
decided. The main parameters for the scenarios are presented in Table 12, together with
Scenario one, which characterizes the work arrangement now and is for later comparison.

In scenario one, the work was arranged and the initial setup and lot set up were
carried out by the senior CNC operator, who set up tools, blanks, and programs and
makes all the necessary small adjustments. When the setup was complete, the cell was
handed over to the CNC operator, who ensured that the cell was working optimally.
The main tasks of the operator were changing planks, on-site quality control, cleaning,
and tool maintenance.

In Scenario two and three, the initial setup and setup were arranged similarly. The
only difference was when the lot size was larger than the Switch lot size. In this case, the
senior operator would program the machine tending robot to carry out some of the
operator's tasks like changing planks, automated quality control, and cleaning.

Table 12. Main parameters of the scenarios.

Switch  Init. setup  Setup .g
Description lot size time time g
[pcs] [min] [min] S
1 Human operated - None 60 10 30 20 10
initial
2 Human and co-working 50 120 20 30 20 15
robot
3 Human and co-working 250 120 20 30 20 15
robot

Human operated production cell. ZRobot operated production cell.

The outcomes for the form performance analysis using the methods discussed in
section 3.4.3 are shown in Figure 32.

80

Production Time (PT) [h]
~ w N v ) ~
o S S =] o o

o
o

o

0 10 20 30 40 50 60 70 80 90 100

S
Case No 1 Minimum PT Case No 1 Maximum PT
Case No 2 Minimum PT Case No 2 Maximum PT
Case No 3 Minimum PT Case No 3 Maximum PT

Figure 32. Cumulative production time.
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The results show that by using a well-optimized CNC production unit with machine-
tending and dividing the batch in two, it was possible to reduce the theoretical
throughput by 11.7%. The results for the scenarios are presented in Table 13.

Table 13. Scenario results.

Throughput Standard Difference

Description 5l dev. [%]
1 Human operated production cell 37,6 0,39 0
2 Human and co-working robot cell 33,6 0,74 11,7
3 Human and co-working robot cell 35,6 0,92 5,4

In scenario two, the switch batch size was set at 50 parts. By increasing the batch size
to 250 parts, throughput was reduced again by 5.4%. In both scenarios, the reduction in
throughput was mainly due to the constant and predetermined robot cycle time. In those
scenarios, it was assumed that the work would be done in one shift only. However, if the
production planning strategy was to be changed so that initial batch setups and
small-batch processing would be done on the day shift, when the presence of an operator
was continuously required, and large batch processing would be done on the night shift,
performance would be further enhanced.

Modelling and Visualizing in a 3D Environment

The information gathered on-site from the production unit and the data and behavior
created in the previous analyses were a good indicator of how effectively the redesigned
production unit could operate. However, there was still a desire for a more accurate 3D
analysis to optimize the workflow. For the workflow analysis, a developed production
cell performance methodology (Mahmood, Otto, Kuts, & Kangru, 2020) and methods
(Kangru, Mahmood, Otto, Moor, & Riives, 2020) are used. In addition, it was necessary
to analyze the optimal layout, the degree of accessibility, the safety of the workers, and
possible collision causes. A 3D simulation model of the production unit was created and
simulated using Visual Components Premium 4.2 software. The 3D simulation model is
shown in Figure 33.

Figure 33. A 3D model of the case study environment.
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Results

A robotization analysis was carried out for the manufacturing company’s low-performing
production unit. After the main goals were identified, a feasibility analysis was
performed. The analysis revealed that successful robotization demanded a re-planning
of the work of the production unit. Two shifts would have to be implemented, the skill
and knowledge level of operators would have to be raised, and the nomenclature of
manufactured products would have to be narrowed. The implemented changes would
lay a solid foundation for robotization.

An analysis of existing production equipment was performed, and the most optimal
industrial robots were selected for the production task. In the efficiency analysis, two
scenarios were simulated, and on the basis of these, a 3D simulation of the redesigned
production unit was created. The 3D simulation model was used to determine the most
optimal equipment layout and workflow. In addition, the safety of workers in the
production environment was examined. With these changes, the OEE of the production
unit would increase by 25% and the throughput would decrease by more than 10%.
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5 Conclusion and Future Work

This dissertation presented a digital evaluation system for SME robot integrated
production cell design and redesign. The proposed work can improve the design process
by requiring minimal human and financial input.

The proposed approach, set in the thesis objective, to the design and redesign of a
productive, highly automated and intelligent, robot integrated production cell was
composed by conducting a comprehensive study of relevant methodologies and
methods. The time-consuming and complicated design problems are divided into stages.
In each step, sub-goals are derived from overall goals, focus points are determined, and
control criteria specified.

The developed methodology, discussed in paragraph 3.4, is derived from a
knowledge-based model and a recursive decision-making procedure introduced in
section 3.2. The knowledge-based model was composed and optimized using information
acquired from the Estonian manufacturing industry robotization survey discussed in
paragraph 3.1 and a more specific robot integrated production cell study discussed in
section 3.1.3. According to the survey conducted among Estonian manufacturing
companies, there is a desire to robotize labor-intensive processes, and good examples
are presented. However, there is still a need to develop new solutions to overcome
company skepticism.

Two decision loops are implemented in the recursive decision-making procedure. First,
there is a design loop, whose objective is to check the robot’s architecture and technical
parameters for the manufacturing task ahead. Second, there is an implementation loop,
whose objective is to assess or predict the utilization of the implemented robot-cell.

To fulfil the second thesis objective, a toolset of methods was developed to evaluate
the economic and technical performance of a robot integrated production cell according
to a company’s strategic plan. The developed method was validated using different case
studies. A feasibility analysis was designed as an online program using a weighted sum
decision model. For the analysis, eight criteria were finally selected among many others
that best characterized the implementation process outputs of the robot cell. With the
help of expert groups, a set of questions was compiled, and weights were determined
for each criterion. Different weights were used in other manufacturing fields. The model
was verified and tested by IMECC.

The robot integrated production cell equipment selection problem was studied and
different methods were investigated and rated. An improved analytic hierarchy process
was chosen for this problem. The selected method has been extensively studied and
tested over several years, the created model is easily configurable, and the results were
consistent.

A more precise suitability analysis tool was developed to assess the overall
performance of previously selected components. To validate the method, the case study
discussed in the section Suitability Analysis Case Study of robot welding was carried out.
A multi-criteria multi-level hierarchical model was created with three product,
technology, and objectives main criteria groups. An expert group was used to select and
pair-wise assess the sub-criteria. Information gathered from the robot integrated
production cell study was used to optimize and test the model.

Following this, a robot integrated production system efficiency analysis tool was
developed to predict the impact of different production strategies and scenarios. The tool
was validated by the case study discussed in section Performance Analysis Case Study.
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A robot integrated production cell model with operations, routes, and specific
parameters was programmed using Discrete Event Simulation software. Different
scenarios were simulated, optimized, and the most promising selected.

Finally, a 3D factory simulation using the previously generated data was created.
The most optimal solutions were selected from among different layouts and scenarios
for the company’s production floor.

5.1 Further Research

e The proposed approach can be further developed by creating a common digital
environment for the developed methods. The easily followed environment
would show more clearly the implemented decisions, their reasons, and
possible further recommendations.

e The developed tools can be improved in future by widening their scope with
different robot integrated processes and new technology.

e The performance model can be further developed by including a wider range of
production processes, product-related parameters, and a more comprehensive
selection of KPIs.
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Abstract
Development of Intelligent Manufacturing Cell Structure for
SME Digital Manufacturing Hub

To maintain the competitiveness of a manufacturing company in today's changing world,
a company must take into account the growing expectations of customers for product
quality and functionality, shortening product life cycle and the need to reduce time to
market. As a result, production must become increasingly efficient, as flexible as possible,
with the necessary level of automation and the effective use of digital solutions.

Today, with Industry 4.0, new digital technologies and solutions help to increase
production efficiency significantly: the Internet of Things (loT), high-speed device
compatibility (M2M), industrial robots and cyber-physical systems (IR and CPS), data
analytics and cloud solutions, the use of artificial intelligence, digital twins, simulation
techniques, modelling solutions, virtual and augmented reality, etc. The list is just a brief
example of products and technologies that today's production can not any longer handle.

One of the essential components of modern production systems is industrial robots.
Their number increases, and the field of application expands rapidly. The main
operations industrial robots are nowadays performing are welding, painting, gluing and
similar operations, as well as machine tending, handling products, performing quality
control, logistics (mobile robots). An evolving field is process robots: polishing, grinding,
and machining.

Using industrial robots in production, it is necessary to realize a robotization solution.
Robotization solutions, or robot cells, are usually solutions where the robot forms a
complete integration with the device or other solution. There are many variants and
possibilities of realization. The extensive range of robot functions, the large number of
manufacturers, and the wide price range significantly contribute to diversity. Also, there
is an excellent variety of options for the accessories that come with the solution.
The main problem is the layout of the robotic workplace, the nature of the components
(robot, implements, accessories) and the required functionality, the performance and
efficiency of the system as a whole. All this is extremely important and necessary for the
company to make rational decisions. As a rule, the wrong decision is expensive and,
in the worst case, it is not possible to implement it in the company production system.

The company will only benefit if the designed robotic cell is used rationally according
to needs. Both the correct design and rational use of the solution are complex
engineering tasks due to a large number of variants and the variety of target functions
(product cost, labour productivity, system cost, solution complexity, functional
capability, etc.). Hence the task setting and the purpose of the work.

This doctoral thesis aims to develop a robotic workplace design solution
(methodology) using the possibilities of artificial intelligence and based on multi-criteria
decision possibilities, which take into account the company's production needs and
ensures successful output from the planned production system. The implementation of
the methodology includes solving the following integrated tasks:

1. Implementation of integrated data analysis to assess the suitability of
robotization, based on the SME strategy, workplace, product parameters and
the constraints from the company structure.

2. Development of a solution for practical robotic workplace components
selection.
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3. Development of a methodology for the robotic workstation effectiveness
analysis.

4. Development of a methodology based on selected performance indicators
(KPIs) to analyze the performance of a planned (or existing) robotic workplace.

5. Development of a 3D virtual environment simulation solution for designed
robotic workplace rationality and performance analysis. Validation of the results
and making of the final decision.

The novelty of the thesis is the development of an integrated and recursive artificial
intelligence-based decision-making process for robotic workplace design and
performance evaluation.

The developed methodology is built on different decision algorithms and is recursive
between steps. The decision-making methods mainly used are a weighted sum method,
different analytical hierarchical decision-making methods, and decision models based on
artificial neural networks. These listed methods have been integrated into a knowledge-
based system, the raw data collected from implemented robot-based production cells,
experimental tests or based on simulations.

As the environment in which the production unit is designed is dynamically changing
due to the nature of business and technology, it would be reasonable to apply the
proposed methodology repeatedly for continuous process improvement. In summary,
a systematic and assured robot production unit design methodology will help to
determine with optimal time and human resources whether the planned production unit
is technically feasible and cost-effective for use by an SME. In addition, a solid structure
limit human mistakes and omissions in the planning process.
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Liihikokkuvote
Intelligentse robot-tootmise struktuuri arendus vdike- ja

keskmise suurusega ettevotete digitaalsete tookohtade tarbeks

Tootmisettevotte konkurentsivéime hoidmiseks tdnapdevases muutuvas maailmas peab
ettevotja arvestama klientide jarjest kasvavate ootustega toodete kvaliteedile ja
funktsionaalsusele, toodete elukaare pideva lihenemisega, vajadusega vahendada toote
turule toomise aega, aga ka Uhiskonna vananemisega ja rohetehnoloogiate iimnemisega,
jms. Mistottu peab tootmine muutuma jarjest efektiivsemaks, olema vdimalikult
paindlik, vajaliku automatiseerituse tasemega ja kasutama tulemuslikult digilahendusi.

Tootmise tulemuslikkust aitavad tdnapaeval oluliselt tdsta To6stus 4.0-ga kaasnevad
uued digitehnoloogiad ja lahendused: asjade internet (IoT), seadmete kiire Ghilduvus
(M2M), toostusrobotid ja kiiber-fusilised siisteemid (IR ja CPS), andmeanaliitika ja
pilvelahendused, tehisintellekti valjundite kasutamine, digitaalsete kaksikute,
simulatsioonitehnikate, modelleerimise lahenduste kasutamine, virtuaalreaalsuse-
liitreaalsuse lahendused, sensorid, jms. Loetelu on vaid pdgus ndide toodetest ja
tehnoloogiatest, milledeta tdnapdeva tootmises enam hakkama ei saa.

Kaasaegsete tootmissiisteemide juures on Uheks vaga oluliseks komponendiks
toostusrobotid. Nende arvukus pidevalt suureneb ja rakendusvaldkond laieneb.
Toostusroboteid kasutatakse koostamisel, keevituse-, varvimise-, liimimise- jt taoliste
operatsioonide sooritamisel aga ka seadmete teenindamisel, toodete pakkimisel,
pakendite teisaldamisel, md&dte- ja kontrolli operatsioonide ldbiviimisel,
tootmislogistikas (mobiilsed robotid). Arenevaks valdkonnaks on t66d sooritavad
robotid: poleerimine, lihvimine, mehaaniline to6tlemine. Rakendusvaldkondi on veelgi ja
robotite kasutusvGimalused aina suurenevad.

Toostusrobotite kasutamiseks tootmises on tarvilik realiseerida robotiseeritud
kooslus. Robotiseeritud kooslused ehk robot-rakud on reeglina lahendused, kus robot
moodustab seadmega vm lahendusega integreeritud terviku. Realisatsiooni variante ja
vOimalusi on palju. Paljususele aitab oluliselt kaasa robotite vaga laialdased
funktsionaalsed v&imalused, suur tootjate arv ja lai hinnaskaala. Lisaks on suur
varieeruvus ka lahendusega kaasnevate lisaseadmete vdimalustes. P3hiprobleem
seisneb robotiseeritud tookoha llesehituses (layout), koostisosade (robot, té6organid,
lisaseadmed) olemuses ja vajalikus funktsionaalsuses, siisteemi kui terviku toimivuses ja
tulemuslikkuses. See ko&ik on ettevottele darmiselt oluline ja vajalik ratsionaalsete
otsuste tegemiseks. Vale otsus ldheb reeglina kalliks maksma ja halvimal juhul ei olegi
voimalik juurutada ettevéttes.

Kasu ettevottele on vaid siis kui planeeritud robotiseeritud t66koht on vajadustele
vastavalt kavandatud ning ratsionaalselt kasutatud. Nii lahenduse dige disain kui ka
ratsionaalne kasutamine on keerulised insenerililesanded variantide suure hulga ja
sihifunktsioonide (toote omahind, t66 tootlikkus, siisteemi maksumus, lahenduse
keerukus, funktsionaalne vGimekus, jt) mitmekesisuse tottu. Siit tuleneb Ulesande
postitus ja to6 eesmark

Doktorito6 eesmargiks on vilja tootada tehisintellekti véimalusi kasutav ning mitme-
kriteeriumilisele otsustusvdimalustele tuginev robotiseeritud todkoha kavandamise
lahendus (metoodika), mis arvestab ettevGtte tootmise vajadusi ning tagab tulemusliku
t66 planeeritud tootmissiisteemis.

69



Metoodika rakendamine sisaldab alljargnevate integreeritud (ilesannete

lahendamist:

1. Integreeritud andmeanaliilisi teostus robotiseerimise sobivuse hindamiseks
tuginedes VKE tegevusstrateegiale, robotiseeritud tookoha olemusele,
planeeritavate toodete parameetritele ning ettevétte struktuurist tulenevatele
piirangutele

2. Lahenduse leidmine robotiseeritud tookoha kavandamiseks vajalike
komponentide otstarbeka valiku teostamiseks

3. Metoodika valjatootamine valitud komponentide alusel kavandatud
robotiseeritud téokoha kui stisteemitiksuse toimivuse analiiisiks.

4. Metoodika valjatootamine kavandatud (voi olemasoleva) robotiseeritud
téokoha toimivuse anallisiks valitud tulemusnaitajate (KPI) alusel

5. Simulatsioonilahenduse valjato6tamine kavandatud robotiseeritud tockoha
olemuslikkuse ja toimivuse analiilisiks 3D virtuaalkeskkonnas ning leida lahend
tulemuste valideerimiseks ja |I6ppotsuse langetamiseks

T66 uudsus seisneb integreeritud ja rekursiivses tehisintellektile tuginevad
otsustusprotsessi  valjatootamises  robotiseeritud  téokohtade  tulemuslikuks
kavandamiseks ja saadud lahenduste hindamiseks ning t60 soorituse tulemusnaitajate
prognoosimiseks.

Vilja tootatud metoodika on (iles ehitatud erinevatele otsustus algoritmidele ning on
rekurseeriv erinevate sammude vahel. Otsustumeetoditena on kasutatud peamiselt
kaalutud keskmise meetodit, erinevates variatsioonides anallittilist hierarhilist
otsustusprotsessi ning on kaasatud tehisnarvivorkudel pdhinevad otsustusmudeleid.
Neid loetletud meetodeid on kasutatud teadmispShise sisteemi loomiseks mille
algandmed on kogutud t66stusettevGtete robottootmisiiksustest, eksperimentaalkatsetuste
kaigus voi simulatsioon-katsete baasil. Kuna keskkond kuhu tootmisiiksus planeeritakse
on diinaamiliselt muutuv ettevétluse eriparade ja tehnoloogiate arenemise tdttu oleks
maistlik selgitatud metoodikat protsesside pideva tdiustamise teostamiseks korduvalt
rakendada.

Kokkuvdtvalt aitab slistematiseeritud ja korrastatud robottootmisiiksuse planeerimise
metoodika jouda optimaalseima aja ja inimressursiga teadmiseni kas planeeritav
tootmisiiksus on tehniliselt teostatav ja rentaabel kasutamiseks VKE. Lisaks aitab kindel
struktuur valtida inimlikke vigu ja tegematajatmisi planeerimise kaigus.
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Abstract

Many companies are already using robots, but many have not found enough applications for the robot and therefor
they have not purchased it jet. One robot can be used to perform several different tasks, but it also raises the question of
whether the production needs to be reorganized so that these multiple tasks are directed to the robot, or it can be solved
differently where the robot moves between different tasks. In this paper different concepts will be discussed and each of
its disadvantages and advantages will be highlighted. Paper also includes survey among Estonian manufacturing
companies to find out which tasks are robotized and which tasks are desired to give over to robots in future. Paper also
include short description about recently opened Industry 4.0 test hub where mobile robot applications are being tested
and paper results will be also tested in this test hub. In general, this paper focus on solution how to use robot arm most
efficient way if there is not enough job for stationary robot solution.

Keywords: Mobile robot, robot arm, manufacturing, industry 4.0

1. Introduction

One of the biggest problems of industry today is the shortage of qualified workforce. The development of technologies
in the last decades has been extremely fast, the technologies today change much faster than generations. People from
older generations often lack the knowledge and the courage to use the newest technologies. At the same time, children
(and youngsters) from the younger generations lack the patience and willingness to study complicated engineering
specialties. It is difficult to pinpoint the causes of this behaviour, but it is becoming clear that the industry must learn to
deal with the situation and find new ways to keep the production ongoing and making profit in the future.

In order to alleviate the problem of qualified workforce, it is possible to use industrial robots and increase the
automation of production. Robotization is, of course, more affordable to larger companies than to small and middle-sized
enterprises (SMEs). The main precondition for using industrial robots is the production in large batches, especially in
cases when there are multiple robots working simultaneously in the same system. Production monitoring system helps to
identify the needed predictive maintenance and tool exchange times [1]. This, however, does not mean SMEs should not
use robots at all. Collaboration robots can be successfully integrated into the work process of smaller enterprises, using
interaction technologies [2]. Predictive simulations are used for fastest route planning in an industrial environment [3].
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The development of collaboration robots and the general compliance of Industry 4.0 principles have made the
implementation of industrial robots fairly easy [4], [5], [6], [7], [14].

One of the preconditions of operating an industrial robot is that it has enough working hours per day. In case of smaller
enterprises that produce small batches, it would mean the reorganization of production so that the tasks performed by the
robot would be directed to a stationary robot. Another option is to move manually the robot between different units of
production. This may result in long pauses in working time and degrees of efficiency. The robot could, instead of waiting,
fulfil another task or serve other benches. To achieve this, the production must be planned so that the benches the robot
needs to serve are placed around the robot. Another option is to move the robot arm from one bench to another in the
production area. It can be done by lifting it manually or by mobile robot.

In addition to the shortage of skilled labour, industries also have to deal with issues such as optimizing production
times, using resources more efficiently, producing faster and smaller quantities, while ensuring high quality [13]. Robotic
solutions are one of the key factor in solving these issues as well. Lack of knowledge to guide potential users of robotic
sell is an essential barrier to more extensive use of robotised solutions [9].

2. Survey among Estonian Enterprises

In 2017, a survey was conducted among Estonian enterprises in order to map the level of robotization in production
companies. Among other questions, the companies were asked about the characteristics of production in terms of batch
sizes, in order to evaluate which companies could benefit from stationary and which from mobile robot cell solutions. 30
enterprises took part in the survey. The average size of the enterprises was 140 people, and according to turnover data,
most of the companies could be defined as SMEs (small and middle-sized enterprises).

In addition, the survey included questions about batch/lot sizes of products and parts, and about the repeatability factor
of a batch — meaning whether one part is produced multiple times or is every operation different. The survey showed that
the batch sizes in 1/3 of the enterprises correspond to 10 — 50 units. In most cases, the repeatability of a batch was more
than 50%. In case of batch sizes of less than 10 units, we could see a low repeatability level (ca 10%). With batches of
more than 50 units, the repeatability level was high, more than 50%. Over 60% of companies answer that more that 50%
of batches are repeated constantly over the time.

= <10 4% 5 <10%
¢
= 10-50 / = 11-20%
= 51-100 12% =21-30%
100 - 500 31-50%
= >500 > 50%

Fig. 1. Parts in lot size (left) and repeatability of the lots (right)

Based on the information from the survey, it can be concluded that most enterprises produce relatively small batches
with high level of repeatability. This means that one bench is not only used for producing one product or part, and that
products are being manufactured repeatedly. From the viewpoint of robotization, it means creating multiple programmes.
When repeating the production cycle, a programme that has already been written can be used again.

The survey also indicates that the robots used in manufacturing are not fully occupied. Half on the enterprises use
robots for up to 50-70% of their capacity. It shows that robots could be given additional tasks, but since the companies
are using mainly welding robots, it is hard to assign other jobs for them. The data shows that only 25% of enterprises use
more than 70% of their robots capacity.

According to the survey, up until now, industrial robots have mainly been used in welding operations. However, the
data shows that enterprises would like to use robots for other operations as well, such as mechanical processing, painting,
assembling and quality control (Fig. 2). In these areas, there are various tasks that can be assigned to one robot. If it is not
possible to occupy a robot fully with a certain task, it is reasonable to use the robot for many different tasks.
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Fig. 2. Robotized protsesses today and desired processes for future

According to the Genefke scale, elaborated at Danish Technological Institute by Bo Genefke, the enterprises that took
part in the survey mainly operate with tasks requiring standard and adaptable knowledge, which could be easily automated
(Fig. 3). Genetke scale divides enterprises into five categories. The enterprises that belong to the first group can use
standardized, easily applicable solutions. When moving to the right end of the scale, we see the complexity of tasks rising.
The right end of the scale indicates enterprises who need completely new knowledge in their processes, such as enterprises
and organisations dealing with research.
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Fig. 3. Genefke scale

The survey conducted among Estonian enterprises shows that the robots used in production are mainly welding robots
which are not used to their 100% capacity. At the same time, enterprises would like to use robots for other operations as
well. The problem is that it is difficult to implement welding robots for other tasks, as their tool and installation is meant
only for welding operations and it would be too costly to exchange those. Instead, it would be feasible to use a new robot
for operations other than welding. In case the new robot cannot be fully occupied with one type of task, it would be
beneficial to find a universal solution where the robot could perform different types of tasks, such as serving the CNC
bench and packaging.

3. Manufacturing testbed for Industry 4.0

Most of the testbeds related research is related to cyber security and electrical grids, while robotics and manufacturing
are in minority [10]. In current research the testbed for applying Industry 4.0 principles through robotics and
manufacturing has been developed at TTK University of Applied Sciences [8]. The testbed laboratory features a
functioning production system, starting from entering the order to Enterprise Resource Planning (ERP) until the pickup
at the package station by an end consumer. In between, there is the whole manufacturing process together with several
robots. The production system is modular and flexible. The system is easily reconfigurable when new products are added,
and modules can be added or reconfigured when production volumes increase. Main purpose of this lab was to get test
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bed where different scenarios can be tested according to Industry 4.0 principles. Automatization components from
Estonian manufacturers were also integrated to connect the concept regionally and also educate visitors and students.

One of the modules of this testbed manufacturing system is a mobile robot arm, the task of which is to serve all the
other modules (Fig. 4). The main tasks of the robot arm include transporting the warehouse container between different
modules and changing the plate in the 3D printer. In the testbed, similarly to state of the art international labs [11] robots
from two different manufacturers have been used — the robot arm Universal Robots UR 10 and the mobile robot Mobile
Industrial Robots MIR 100.

Fig. 4. Robot arm and mobile robot tandem.

Based on the mobile robotic arm module described above, practical tests will be conducted, and a prototype model
developed for supporting the theoretical part of the current study. The aim is to build a base frame or a platform to the
robot arm that would be separate from the mobile robot and that would be transportable by the mobile robot in the
automated process together with the robot arm.

4. Alternative solutions for increasing the performance of a robot-cell

Today there are several different mobile robots available that are capable of moving the robot arm around in a room.
For this, two different technologies must be combined. The result is a flexible solution that enables to use one robot arm
in many working positions. There are solutions where a robot arm has been permanently installed into a mobile robot,
such as KUKA KMR Quantec, KUKA KMR iiwa, Robotnik Kairos 3. In addition, there are many solutions of combining
MIR 100 + UR10, and other robots from different manufacturers. In this case, the cost of the robot cell would be the sum
of a robot arm and a mobile robot, therefore approx. doubling the cost.

However, the two work cells could be separated when, for example, more than one robot arm is used in manufacturing.
In this case, one mobile robot can serve many robot arms. When combining a mobile robot and a robot arm, only one of
them can work simultaneously with the other in most cases. During transport, the robotic arm is not working and when
the robot arm is working, the mobile robot is standing idly. Separation of the tandem of a mobile robot and a robotic arm
(fig. 5.) would considerably raise the efficiency of both units.

Fig. 5. Separating mobile robot from robot arm tandem

One industrial robot may easily be used for performing different working tasks. For this, a robot cell with different
functionalities is needed. Many different tools can also be assembled to one robotic arm. For example, several work tools
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can be assembled to a robotic arm with a rotating multi-tool mount. Another option is to use a quick-change system (tool-
change solution for immediate use). Using a rotatable multi-tool solution is a good and fast option, but its extra hardware
and it add a lot of weight to the robot arm, which will therefore lower the maximum weight limit of the working task. The
rotating multi-tool solution is being produced, for example, by New Scale Robotics. The advantage of a quick-change
system compared to the rotatable multi-tool solution is its smaller weight. However, with this solution, less time will be
left for the production process itself, as the change of the tool must be done in distance from the work object, therefore,
it will take some time to detach a tool and replace it with a new one. Quick-change solutions are offered, for example, by
the company Stdubli. Both solutions have their advantages and disadvantages and the choice depends largely on the
implementation specialty and the characteristics of the working process.

Regardless of the type of a work tool of a robotic arm, the more important question is whether to bring the work tasks
to the robot or to take the robot to the task(s). In case a robot will be brought into a working production facility, it is
important to assess whether and how much will the system be reorganized and how much additional investments will be
needed. The following pages focus on the three possible options of integrating robots with different working tasks.

4.1. Solution 1

In order to use one robot for many different operations, production should be planned so that the automated tasks are
moved to the robot and the robot itself is stationary (Fig. 6.). In this case, the robot is the central object of production and
everything else should be positioned accordingly. This would be a typical solution for a production facility using cage
robots, where, in addition to the investment of buying a new robot, a security zone must be built around the robot. This is
the option where the integration of a robot to an existing industrial environment will require a certain amount of
reconfiguration. Production lines and other tasks should be moved towards the robot. In most cases, this means production
would be stopped for a longer period of time.

CNC s - -
| H

Fig. 6. Tasks directed to robot

4.2. Solution 2

The second option is to leave the existing production environment as it is and move the robot in between different
working positions. In this case, the robot will be taken from one working position to another by a human (Fig. 7). The
central object in the process is the human who has to be ready to move the robot at any time as soon as the production
process requires. In this case, the manufacturing process will not change much. The moving of the robot requires the
presence of a human, who will move the robot from one position to another in between working tasks. To employ an
individual just for moving robots, however, may not be efficient. This solution may also cause time delays, at it may take
time for a human to arrive to the robot after it has finished work. Similar solution was done by OpiFlex.

CNC

Fig. 7. Robot arm is moved between tasks by human
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4.3. Solution 3

The third option is to automate the moving process of the robot arm by using a mobile robot (Fig. 8). With this solution,
no part of the production takes the central role, as the whole process is fully automated and works as a compact whole.
The manufacturing process can be planned with high accuracy level. For example, in case of a robot serving a CNC
machine, it can be quite accurately calculated when the batch will be finished. By this time, a mobile robot can be sent to
fetch the robotic arm, and it can be moved to the next task. In this option, there is no need for a human who would take
the robot arm from one working station to another. Connecting the robot arm to the electricity network and other
communications will take place automatically through the base frame of the robotic arm.

This solution presupposes that every working position need for the robot arm an automatic docking station, which has
been linked with the centralized systems such as electricity, compressed air, data, etc.

CNC

Fig. 8. Robot arm is moved between tasks by mobile robot

4.4. Comparison of solutions

The following charts (Table 1.) illustrate the levels of the changes that need to be done and the impact to the manufacturing
process in case of different options of taking in use a robot arm solution. The chart does not bring out the factors that are
similar for all the options, such as programming, implementation to the process, maintenance etc. Evaluation is done

based on comparing those three solutions with each other and marks are given witch solution takes the highest credit and
witch one the least.

Need for Need for Need for Need for
reconfiguring the additional additional additional
production appliances software human work
hours
Solution 1 High Low Low Low
Solution 2 Low Low Low Medium
Solution 3 Low High (mobile High (MES") Low
robot, dock’s)

The chart below (Table 2) compares the benefits of integrating a robot arm solution in factory. Case by case it can be

Table 1. Integration needs for a robot solution implementation

different but in general it shows the different between those three solution results.

Level of Rise of Efficiency 24/7 (full time) Flexibility
automation level working capacity
Solution 1 High High High Low
Solution 2 Medium Medium Medium High
Solution 3 High Rather high High High

Table 2. Benefits of integrating a robot arm to a production facility

! MES - Manufacturing execution systems
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Different solutions require very different investments. Investing in automation is inevitable. New equipment and software
must be introduced and money spent on programming. As a result, the goal is to achieve more efficient production.
Efficiency gains are expressed differently by each company. It can be one of the factors in the table, or it can be all of the
actions taken together. In solution three the score is high for all the factors. In future developments the testbed can be
implemented for investigation of Industry 4.0 Digital maturity Model 4.0 [12].

5. Conclusion

Survey among Estonian companies brought out that implementation of industrial robots by SMEs has been slow. One
reason for that is that, there is not enough work assignments for stationary robots without reorganize production in a big
scale. At same time, the companies are interested to give more jobs to the robots. As a result of this work, a solution has
been proposed in which the robot arm is moved between different working positions and the transport part is filled by
another robot - a mobile robot. Such a solution can give high level of work hours to the robotic arm without the need to
reorganize existing factory in big scale. When using a mobile robot, there is no need for a separate person who should
take care to move the robot arm between different workstations. Carrying a robotic arm on a mobile robot gives you the
opportunity to apply a robotic arm around the clock and it gives you flexibility to reconfigure your production more easily
rather the solution where robot arm is stationary.

The aim of the thesis is to develop a technical solution for the mobile use of a robot arm, accompanied by a prototype
and an assessment of its applicability. Further on, a design model will be developed for configuring a mobile robot to the
robot arm. MIR 100 will be used as a mobile robot and UR 10 as a robot arm. A functional model and a cost-analysis will
be developed. After this, a practical model will be built, and necessary tests completed for assessing the model’s
applicability.
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ABSTRACT

Manufacturing is moving towards complexity, large
integration, digitalization and high flexibility. A combination of
these characteristics is a basic for forming a new kind of
production system, known as Cyber Physical System (CPS).
CPS is a board range of complex, multidisciplinary, physically-
aware next generation engineered systems that integrates
embedded computing technologies. Those integrated
manufacturing systems usually consist of four levels: network,
enterprise, production system and workplace. In this article we
are concentrated to the workplace level, examining the
implementation of the most suitable robot-cell and integration it
into the production system and enterprise structure. The
problem is actual for the big companies such as automobile
industry, but very important is also for small and medium sized
enterprises (SMEs) that tend to produce for example; small
tractors, air conditioners for high speed trains or even different
type of doors for houses. In all cases the best solution to
response the situation is the implementation of robot-based
manufacturing cell into a production system, which is not only a
challenge but also need a lot of specific knowledge. Designing
and selecting optimal solutions for robot-based manufacturing
systems is suitable to carry out by a computer-based decision
support systems (DSS). DSS typically works by ranking, sorting
or choosing among the alternatives. This article emphasis to the
problem of integration the DSS with the artificial intelligence
(AI) tools. For this objective, the study has been focused to
development of a conceptual model for assessing robot-based
system by means of technical and functional capabilities, which
is combined with cell efficiency based on process Key
Performance Indicators (KPIs) and enterprise Critical Success
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Factors (CSFs). The elaborated model takes into consideration
system design parameters, product specific indicators, process
execution data, production performance parameters and
estimates how the production cell objective can be achieved.
Ten different types of companies were selected and their robot-
based manufacturing systems were mapped by qualitative and
quantitative factors based on the model, whereas executives
were interviewed to determine companies’ strategic objectives.
The study results comprise of an approach that helps SMEs to
gain additional economic-technical information for decision
making at different levels of a company.

INTRODUCTION

Currently, manufacturing is moving towards complexity,
bigger integration, digitalization and flexibility. This all
appeared with introducing Cyber Physical Systems (CPS) [1].
The National Institute of Standard and Technology describes
“Cyber Physical System” as an Internet of Things (IoT) which
involves connecting of smart devices and systems in diverse
sectors like transportation, energy, manufacturing and
healthcare in a fundamental new way [2]. One of these smart
systems and devices are industrial robots and robot-based
manufacturing cells. Since 2010, the demand for industrial
robots has accelerated considerably due to the ongoing trend
towards automation and integration [3]. The industrial robots
are used in a wide range of different manufacturing processes
such as welding, assembly, loading-unloading, palletizing,
logistics, painting, etc. The problems with the implementation
of robot-cells for the companies are more or less same i.e., how
with the limited resources to achieve the best results: high
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productivity, low manufacturing cost, high quality and smooth
integration of a robot-cell into a production system. Typically,
there are a lot of different improvement possibilities under the
robot-cells applications, but the problem is to find the best
solution for a manufacturing with certain workpieces, product
families and process parameters. Since there are existing some
technical  restrictions and the efficiency of a
manufacturing/production cell can be characterized by the
expected results such as cycle time, unit cost, cell productivity,
return on investments (ROI), etc. Therefore, a harmonized
knowledge oriented approach is needed to address the
complexity and performance of a production systems and/or
cells for the decision making enhancement. A knowledge-based
conceptual model for robot-based manufacturing is proposed in
the article and the data, information and knowledge processing
for decision support systems are mainly focused. The model can
be used for different applications like welding, loading-
unloading, palletizing. Moreover, it helps to design a suitable
robot-cell structure and estimate the relationships between the
parameters inside the cell and through this the possible
problematic situations or cases can be evaluated. Based on
workgroup longtime experience with development/adaption of
global optimization methods and techniques for various
engineering design problems [4-6], the robot-cell performance
evaluation model (PEM) has been formulated as multi-criteria
optimization problem and solved by applying global
optimization methods [7, 8].

BACKGROUND

This section expresses the evolution and objectives of an
integrated manufacturing system as a complex system, and the
rising involvement of Industrial Robots (IR) into a
manufacturing environment. Followed by the brief description
of an overview of decision making principles for the designing
and operation of a robot-based manufacturing cell.

Nevertheless, an increasing trend of the adoption of IR by
SMEs to enhance the efficiency and effectiveness of their
production systems as a robot-based production cell leads to
develop an approach to evaluate the performance of a
production cell. The approach helps the stakeholders to make a
decision based on certain knowledge and Key Performance
Indicators (KPIs), which has been developed in this paper. A
conceptual model, which facilitates to establish a case-based
model is included in the approach.

Integrated manufacturing based on complex systems

A company is an entire system that has to find the most
effective and efficient ways to use its resources for realizing its
strategic plans and producing the determined nomenclature of
goods. A complex system is a system composed of many
components which may interact with each other. The system is
defined as a set of attributes that is through their interactions,
relationships, or dependencies form a unified organization
model [9, 10].

The schematic model of integrated manufacturing can be
seen in the Fig. 1, it has four basic levels: network, enterprise,
production system and workplace. Each level could be
represented by the value composing frame V, having several
indicators:

V=1{N,A,S,F,P} 1)

Where:

N — Components of the system (depending on the objective
of the system);

A — Parameters describing the components of the system
(for example technological parameters in the case of production
system);

S — Structure of the system (in the case of production
system the locations of existing equipment and connections
between them);

F — Amount of functional connections between the
elements of the system (depends on the ontology of the system
and defines essence of single events). In the case of production
system, the number and essence of events depends on used
technology, rate of automatization and organization of
production;

P — Set of transactions. In manufacturing system, it is the
amount of manufacturing operations taking place, pi to px, (e.g.
p1 — milling, p» — turning; ps — boring etc), depends on
technological possibilities of the system.

INETWORK
Supply Chain Management (SCM)

11 COMPANY Strategy Performance indicators
CEO Objectives (CSF, KPD)

— I PRODUCTION SYSTE =
* Results
Marketing Production J’
Tehnical level IV WORKPLACE|
Organising level Planned resuts | Achieved results
Teamvworking level
C level Quality. “Plvdnnw i- | Idle ;m OEE
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Fig. 1. SCHEMATIC MODEL OF INTEGRATED
MANUFACTURING.

On each level of the integrated manufacturing, there are
different objectives that would be fulfilled by various tasks
which are considered in the strategy and production plan of a
company. Practically direct manufacturing lies on the
workplace, which is a basic for achieving the productivity,
flexibility or needed quality through its integration with
different processes and systems of a company [11]. The
important question for every company is the expediency,
suitability and functionality of each subsystem of the company
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and the enterprise as the whole to manage with the planned
technological and organisational tasks. The level of executing
these tasks would be expressed in results of the workplace,
production process or whole company. The validation and
estimation of such results can be possible through the analysis
of obtained data and accumulated information. Here we can
consider the technical, organizational, and other aspects [12].

Emergence of Industrial Robots in Manufacturing

The most active industry, implementing the industrial
robots is automobile industry. In recent times, SME-s have a
great interest of implementing industrial robots in different
fields such as welding, assembly operations, material handling,
palletizing and etc. [13-15]. The expectations are to achieve
better results and to be more competitive due to the new
investments. On the basis of analysis of different SMEs we can
draw out different objectives in the different integration levels
of manufacturing, which are described in the table 1.

Table 1. VARIETY OF OBJECTIVES IN THE INTEGRATION
LEVELS

Goals Objectives

System goal | Using the production system most suitable
way for having maximum profit with
proper utilization of resources.

The evaluation of alternative routes for the
determined set of products or product
families based on the cost and total
throughput time of these products (optimal
fulfilling of the manufacturing task).
Workplace Reducing all non-productive times by
goal analyzing and eliminating the reasons of
occurrence like by following the principles
of Lean manufacturing.

Using the most suitable industrial robot
with the needed technological capabilities,
considering also economical side like
Return on Investment (ROI).

Process goal

Industrial
robot goal

In order to choose the industrial robot, designing of the
robot-cell and implementing it, it is essential to proceed from
the goals that are given in table 1. Performance of such
manufacturing systems are realized through the right decisions.
First level decisions can be made by designing or redesigning
the workplaces of the manufacturing system and the second
level of decisions are connected with the operations in the
workplace. Moreover, the technological capabilities of a
production system depend mainly on the technological
capabilities of workplaces a production system consists of.
Therefore, workplaces are the main important parts of a
production system. Presently, more significant are becoming
robot-based workplaces. They have a large variety and different
applications in the industry.

Technological capabilities of a robot-based workplace
(robotic cell) depends on the characteristics of type of robots,
end-effectors, turning tables, storage equipment, etc. As a result,
the efficiency of manufacturing cell not only be influenced by
the right decisions of designing a robot-cell, but also rely on the
operating rules and procedures used in the workshop.
Intelligent  Decision Robot-Cell
Operations

Designing of a robotic cell and selecting the most suitable
components for this system like industrial robot (IR), end-
effectors (EF), loading-unloading positions (LP), working tables
(WT), transporting equipment (TR), etc. is a complex task with
multi-criteria decision-making procedures. There are different
robot classifications and/or robot selection systems, some of
them are described in [16-18] and methods for decision making
are defined in [19, 20]. Mostly decision making includes the
primary task i.e., selecting the best type of industrial robot for
performing the several activities that may contain welding,
painting, assembly, machine tool servicing, and inspection,
grinding and polishing or doing other manufacturing operations.
This task is solved by using the hierarchical decision-making
approach and multi-criteria optimization [21]. The contrary task
is the performance analysis of the implemented robot-cell in
manufacturing conditions. Study of the results for practical use
of robot-workplaces in an industry shows that the optimal
solution in the upper level (robot selection) could not give the
best result in lower level i.e., the integration of robot-cell into a
manufacturing process. This integration and different aspects of
manufacturing were described and previously reflected in the
Fig. 1.

Due to the dynamic nature of production process and it
takes place under fast-changing conditions. Especially, SMEs
are working in the conditions of uncertainty where the
production plans and production conditions could be changed.
Therefore, in manufacturing planning and selection of necessary
equipment, it is not only useful to move according to the
straight path, but also to take into consideration the real
examples (successes and failures) from the industry. In this
paper a conceptual model is developed that consist of intelligent
event-driven process engineering decision making procedure as
shown in the Fig. 2. Where the primary task (robot-cell
parametrical ~ selection) and contrary task (robot-cell
parametrical utilization) are in interaction. It means we have a
basic issue in goal settings which are connected to each other
through the design loop and implementation loop. Therefore, in
the real company, the practical goals in different levels are
normally different and the primary objectives are also different.

Principles  for
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Fig. 2. RECURSIVE DECISION MAKING PROCEDURE.

According to the robot-cell development and behavior
ontology, we can distinguish two decision making circles with
three activities:

e Requirement analysis is defining the technological
capabilities of an industrial robot and the robot-based cell.
For example, what types of equipment could be used and
what technological parameters are most suitable for the
given industrial task.

e  Functional analysis on the basis of simulation software like
3D manufacturing simulation technology that would be
able to describe the real production process execution
possibilities, the possible bottlenecks and alternatives with
efficiency estimations.

e Behavior analysis is the reflection of real industrial
applications. On the basis of obtained data from different
real cases, it is possible to compare the best solution
description. By getting the theoretical most suitable
industrial robot and observe the behavior of the selected IR
in real industrial conditions.

While the purpose of a primary task is to check the robot’s
architecture and technical parameters best suited for a selected
job, the contrary task consists of the analysis of optimal
utilization of the implemented robot-cell in a company. On the
basis of this data, we can estimate the accuracy of the direct
decision. The understanding of the utilization of industrial
robots in manufacturing leads to the main principles and
decision making rules [22] for the optimal selection of

industrial robots in companies.

For decision making following criterions are normally used:

Increase in productivity

Lowering of production costs
Improvement of the working environment
Increasing the security of supply

Quality assurance

Workforce insurance

An increase of flexibility

Stock depreciation

METHODOLOGY

In this study a conceptual model for performance
evaluation of a manufacturing cell is developed that based on
recursive decision making procedure. A comprehensive
literature review was carried out, expert opinions from the
manufacturing industry related to the design and execution of
robotic cell were gathered that helps to build the conceptual
model. In order to verify and to see the relevance of the
proposed conceptual model, a case study approach is used to as
a research method [23]. Moreover, a case-based performance
evaluation model for a robotic manufacturing cell, its
implementation and results are described in the following
sections.

Knowledge-based Conceptual Model

For the development of a conceptual model for the
manufacturing robot-cell we considered the knowledge
representation so that the decision support system can act in an
intelligent manner. An intelligent decision support system must
work as a professional consultant, giving explanations for made
decisions, analysing evidence, identifying and diagnosing
problems, presenting possible cases for improvement or
evaluating the alternatives.

However, decision support systems implementation is not a
new one. This has been used for different engineering tasks, like
design of flexible manufacturing systems. All the problems of
decision making lies on the used information and how we use
this. Here the novelty is based on the integrated multi-access
model and decision-making logic. Recently, wide range of IoT
applications, cloud computing, big data and data analytics
instruments, leads to the possibilities for developing intelligent
decision-making systems where expert system have a great role.
Very important for developing such type of tools is the basic
decision-making model with data acquisition and knowledge
representing principles as shown in the Fig. 3. The system is
more capable for SME's and could be used over the Internet.
Proceeding from the real industrial companies and analysing
their manufacturing processes, based on robot-cells, the
developed event-driven conceptual model is described in the
Fig. 3.
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This model has four independent interacting entities:

e  Production task description entity, where main components
are: product model (CAD); task model (ORDER) and the
process model (CAPP).

e Robot-cell description entity {IR, EF, LP, WT, TR}. This
part formed a robot-cell design model and the simulation
software helps to the robot selection and forming the
structure of a robot cell.

e  Task performance analysis, based on parametrical model of
performance description and model for optimal selection of
KPIs.

e  General output description, which shows how the company
has managed in general (turn-over, profit, etc.) and
reflected the implementation of a robot-cell in
manufacturing process through OEE, ROI, etc.

Design level

Product model (CAD)
Task model
(ORDER)
Process model
(CAPBCAM)

@ o
Parametrical model of
Task @
» performance

analysis

Robot-Cell

description

Robot-Cell
Desigm

Production @
task

description

performance Annual Company’s
representation results of a

Model for optimal

strategy and
e

company

Table 2. DESIGN PARAMETERS GENERAL DESCRIPTION

Product features

Robot-cell features

Product portfolio
Product mix
Quantity per year
Order fulfilling time
Product parametrical
description (CAD
model)

The purpose of the
product (Functional
model)

Production process
description (CAPP
model)

Operation description
(CAM model)

e No of robots in a robot-cell
e Industrial robot technical
parameters
- no of axes
- reach
- payload
- speed
- acceleration
- accuracy
- repeatability
Type of end effector(s)
Sensors needed
e  Turning table(s)
parameters
e [oading-unloading
position parameters
e  Transport devices
parametrical description

Table 3. EXECUTION PARAMETERS GENERAL
DESCRIPTION

Elements of evaluations

Elements of analysis

c

selection of KPIS

CSF

Fig. 3. KNOWLEDGE-BASED CONCEPTUAL MODEL FOR
MANUFACTURING ROBOT-CELL.

The model has two levels:

1. Design level (primary task) which is planned for decision
making. Here would be determined the best correlation
between products to be manufactured and the parameters of
a robot cell, can be seen in the table 2. This level gives the
primary answer to the parameters of the robot-cell.

2. Execution level (contrary/reverse task) is based on practical
experiences of using robot-based systems in manufacturing.
Here the real data from manufacturing are gathered using
MES (manufacturing execution system) or other
possibilities. Based on these data there would be formed
elements of evaluation and elements of analysis as defined
in the table 3. These data for performance analysis are
extremely important and they would also give a feedback
of the quality of decisions to the first level.

Order fulfilment
time

Ratio of
manufacturing in
order fulfilment
process

Ratio of cycle time
in throughput time
Ratio of machining
time in cycle time
Ratio of loading and
unloading time in
cycle time

Ratio of setup time
in cycle time

Ratio of machining
time in cycle time
Ratio of idle time in
throughput time and
in order fulfilment
time

e  Use of working time

(importance of value
creating time in production
process)

e  Main reasons of non-

productive work

e Level of achieving the

objectives

e Index of employee

competences

e  Contribution of an

employee as a team member

e  Dynamics of effectiveness

(changes and
improvements in production
process)

e Cost factors and their

dynamics in production
process

e  Quality assurance
e Robot-cell technological

capabilities exploitation

e  The robot-cell functionality

correspondence to the
industrial tasks
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In the manufacturing process, one of the important
indicator is the order fulfilment time, which depends on the
cycle time. Cycle time is the operation fulfilling time at a
workplace. Generally, cycle time consists of machining time,
set-up time, loading-unloading time, inspection time and in
principle, there is an idle time. For the efficient manufacturing,
proportions of these time components are extremely important
to know. Because at one hand it depends on the organisation of
the manufacturing process and from the other hand, it depends
on the decisions that were made in the designing phase.

The proposed knowledge-based model enables to respond
the following conditions:

e Robot cell (workplace) suitability for the planned industrial
task(s).

e Product portfolio, product mix, routing flexibility,
compliance to the manufacturing system.

e Automation and digitizing level compliance to the
production volume, production flow and company's
general strategy

e Seclected KPI's information reflection to the needed
operational data for describing current situation in a
company for example, efficiency and competitiveness.

Product Family

e ging
. Jobs

BOO

D e e

Cap.

e Product mix, product flexibility, routing flexibility
influence to the expected results.

e  Structure of a robot cell and operating rules impact to the
expected rules and vice versa.

Furthermore, the model is capable to support decision
making in terms of: to find the most suitable robot-cell for the
given industrial task(s) and to determine the operating rules.
However, the most important is to find out the relationships
between the interacting entities as described in the Fig. 4 and
formed these on the basis of knowledge engineering. The model
is particularly important for SMEs, where the manufacturing
situations are rapidly changed.

Performance Evaluation Model

In order to analyze the manufacturing processes, a
Performance Evaluation Model (PEM) is developed as shown
in Fig. 4. The PEM is in correspondence to the conceptual
model described in the Fig. 3. The model is for practical
analysis of the suitability of robot-based manufacturing cell and
for carrying out the planned task (nomenclature of products,
amounts of production, etc.).

TYTTYTYY

Production Cell

IR Cell — Cﬂ

Order —'E’B [ﬁ‘ R

i

K2

T
SM__}

N

Manufacturing Data

[

ET.'|

KPI s

Fig. 4. PERFORMANCE EVALUATION MODEL.
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Table 4. PEM INPUT, OUTPUT PARAMETERS AND

FUNCTIONAL BLOCKS
Symbol | Explanation
Py Product mass
5 P> Dimensions
= P3 Manufacturing technology
N Py Lot size
= Ps Lot repeatability
B Additional product parameters
- S Engineering time
:§ S> Setup time
&0 S;3 Machining time
§ Sn Inspection time etc.
S M, Planned maintenance
E M. Emergency maintenance
§ R, Product reject ratio
Ry Number of reclamations
U, IR parameters
~ U, End effector parameters
S Us Auxiliary equipment parameters
.§ Uy Workforce parameters
é Us Market environment parameters
S Us Indirect costs
& U, Payback period prognosis
Uy Other production cell parameters
NI Net income

NOP | Net operating profit
DPP Discounted payback period
cU Cell utilization

OEE | Overall equipment effectiveness
Pr. spet. | Product specification list

BOO | Bill of operations

Cap. Cell Technological Capabilities

Order | Production order

Jobs Jobs to produce at the cell

KPIs

§ TPR | Total production time resource
§ TCO Total cost of ownership
§ Tour Measured cycle times
S A Availability
5 P Performances
= (0] Quality
Trn Throughput time
Ch Production cell cost per hour
Cidel Production cell idling cost

Py Value added per hour

The aim of the model is to understand the performance of a
manufacturing cell for a certain task. There are two input
modules: product family module and production cell description
module; one manufacturing data module and an output data
module (KPIs module). For evaluating a cell technological
capacity and economic profitability a set of key performance

indicators were selected based on literature reviews [24] as
defined in the KPIs module of PEM. OEE, CU, DPP, NI and
NOP are the outcomes used to determine the performance of a
production cells chosen for case studies.

The PEM inputs, outputs parameters and functional blocks
explanations are provided in the table 4. The modules give the
possibility to understand the correlation of input data to the
output data and find out dependences between input data and
output data. These are used for developing the knowledge-based
decision-making rules in manufacturing cell designing and
operating process. The PEM model can be formulated
mathematically as multi-criteria optimization problem. The
objective functions considered are as follows (see table 4):

F(X) - net income (EUR), 2

F,(x) - net operational profit (EUR), (3)
F5(X) - overall equipment effectiveness (%), (C))
F,(x) - usage factor (%), (5)

F5(X) - payback period (years). (6)

Functions have different units, range and should be normalized
by applying the following equations:

f(®) = max F,(x) — F,(x)
7 max F(%) — min F)(X) (7)
F, (%) - min F,(%)
max F(X) — min F,(x)

fi(x)= ®)

In Eq. (7) and Eq. (8) x stand for the vector of design variables
and the values maxF;(X) and minF;(X) are estimated values for
function maximum and minimum, respectively. Equations (7)
and (8) are applied to objectives subjected to maximization
(Fi(X), FxX), F3X), Fy«X)) and minimization (Fs5(X)),
respectively. As result, the normalized objective functions fi(X)
are in range [0;1] (may slightly exceed limits of the interval
[0;1] since maxFi(X) and minF;X) are estimated values).
Furthermore, all non-dimensional objectives are subjected to
minimization i.e.

S &) =13 f5(3)s f5(%)--05 f5(¥)) = min . ©

The objectives considered are not conflicting (can be verified
by performing pairwise analysis of the objectives). Thus, the
objectives can be combined into one by applying weighted
summation technique (for conflicting objectives it is justified to
apply Pareto concept).
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Thus, the configuration/type of production cells fccan be

expressed as
N .
fi=2 cl.fl.(fc)ﬁmm. (10)
i=1

In Eq. (10) N=5 (number of objectives) and ¢; stand for weights
of the objectives, determined for particular company/problem
considered. However, based on analysis performed in
companies, main impact factors for objective functions are
determined. Based on table 4, these impact factors (model
inputs) are divided into following three groups:

e Product Family inputs,
e Manufacturing Data inputs,
e Production Cell inputs.

The effect of each subfactor on objective functions f; may be
obtained by evaluated based data, gathered from production or
estimated values from experts based on production data (system
and process specifications) and experience (in the case of
selection cell type before production process). In order to
consider the effect of impact factors given in three groups the
objective function (10) can be completed as

N M Gy .
fi= ‘zlc,‘f,.ZWkaW — min. (11)
1=

k==

In Eq.(11) M=3 (number of groups), Wi(k=1,2,3) are the
weights of the groups (in different companies the importance of
the groups may be different), Gi is number of subfactors in
group number k, the weight wy; describes the effect of the
subfactor j in group k on objective f;.

The considered multi-criteria optimization problem is
constrained optimization problem with limits on different
resources (time, technological, etc.) and design variables

B <@ <, (1=1..L). (12)

Where r;, /" and 1/ stand for the resource, its lower and upper
limit values, respectively.

CASE STUDY

Information for the case study was acquired by
interviewing the management and engineering staff of ten
chosen companies. All of the assessed companies belongs to the
SME class, with the total number of employees 20-150. With
some exception all of the companies have integrated only one
robot cell in their production at the moment. The investment for
the cells have been 30,000 to 450,000 euros. The produced
products included different parts for agricultural, forestry
machines (frames, grippers and crane boom), small tractors,

high speed trains and lifts components, wind generator rotor
and sheet metal products. Largest products being produced
weights 300kg and the smallest 150g, similarly cycle times
varies from 1 minute to 4 hours.

Data gain from the interviews contains both quantitative
and qualitative data. Quantitative data such as product
dimension, mass etc. are shown on table 4. Qualitative data
such as complexity of operations, manufactured parts precision,
experience and competencies of engineering stuff and workers,
etc. are considered as the relations to production time gained or
lost from total production resource. By implementing PEM for
the ten companies’ case studies, cell utilization and discounted
payback period are presented in table 5.

Table 5. ROBOT CELLS PEM CALCULATED OUTCOMES

s N

E Eﬂ E *CU | *DPP

E‘ E Cell description % ) (%] vl

S| & N

= —

Robotic Press Brake

1 MT | Amada Astro 450k 42 8
100NT HDS1030
Mitsubishi RV-

2 | MT 4FRM 30k 54 6
ABB IRB2400,

3 W | IRBP750A with | 270k 71 3
automated storage

4 W | ABB IRB2600 200k 56 4
Yaskawa HP-20

5 W | mounted on TSK, | 130k 71 4
RM2-4000
Yaskawa HP-20,

6 | W | tuntableMT1-500 | 2% | PP | 3
Yaskawa MH12

7 W | with turntable MT1 | 60k 69 4
/2016
ABB IRB2400

8 W | mounted on track, | 60k 72 6
two positioners
Yaskawa MHS50-

9 | w | 2011 mounted on g gy | s
track, positioner
HSB-1000

10 P | ABBIRB2600 50k 45 6

MT - Machine Tending, W — Welding, P — Palletizing.
* - PEM Model calculated values.

For illustrating the PEM in practice one company was
chosen for the detailed analysis. There are about 135 employees
and the main products are trailers, forklifts, etc. for forestry and
agricultural industry. Welding is one of the mostly used
manufacturing process in the company, for that reason the
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robot-based welding cells were implemented in the
manufacturing process. The 3D layout and specifics of the
welding cell is given in the Fig. 5. The maximum capacity of
the studied production cell is to produce the products having
weight about 1000 kg and with 1500x1500x6000 mm
dimension. Average cycle time for welding the parts is about 90
— 150 min, set-up time in between 10-15 min.

Welding wire

based search Welding unit K7 450

not shown -
Industrial robot

MH50-2011 with
DX200 controller

Track TSL-1000 SD

F3
S >
Changeable jig \\

' \
Positioner HSB-1000 SD2 alistock

Fig. 5. PRODUCTION CELL COMPONENTS AND LAYOUT.

Analysing the obtained data from the model and comparing it to
the company's assessment gathered through management
interviews. It was found out that the management has estimated
the operation of the production unit to be considerably
optimistic. Company prognosis for payback or return of
investment was set to three years but model calculation clearly
shows that by continuing given production volume the payback
period appeared to be five years. The particular production cell
was designed to reduce the manual welding and to consider
different product specifications. However, the product length is
one the driving factor of the total cost of ownership. The
corresponding weight for impact factor groups was calculated
as following: Product Family W;=0,578, Manufacturing
W>=0,199 and Production Cell W3=0,223. The information
gained from the model shows that to meet the objective of three
years DPP, the total production time has to be increased by
21%. In addition, it was noted that the production cell
utilization factor appeared to be 64%, which may be a sign of
unorganized production flow. Furthermore, transportation and
queue times together with product initial setup time are critical
to be looked over.

CONCLUSION AND FUTURE WORK

This study described how knowledge-based conceptual
model can be created and implemented as a performance
evaluation model. The knowledge-based conceptual model
consists of intelligent event-driven decision making procedures.
The multi-criteria mathematical model was developed based on
manufacturing industry experts’ experience related to the design
and execution of robotic cells. Case study research approach
was used to verify the PEM model.

For the case study ten companies were chosen, their
production cells qualitative and quantitative data together with
company’s strategic and production plan objectives were used
to execute performance evaluation model. For evaluating of
production cell’s capacity and profitability, a set of key
performance indicators were chosen based on literature reviews.
The presented case study economically assessed by using
following key performance indicators: OEE, CU, NI, NOP and
DPP. The obtained data was compared and analyzed with
companies strategic and production plan and a new sets of
knowledge-based rules were created. One rule was found out
that to fulfill the objectives, the effective production time
should be increased by 21%.

However, the most important is to find out the relationships
between the interacting entities as described and formed these
on the basis of knowledge engineering. So the process in
transforming the data and information into knowledge for
decision making. Other benefit of the developed model is to use
it as a tool at the production cell design phase. Where it is
possible to simulate different combination of production cell
components that creates simple and combined capabilities.
Those sets of capabilities are inputs for the best-fit product
analysis, at the same time user or cell-based selection of KPIs
can be calculated. For the future development of the model, a
wider range of production processes and product related
parameters can be included into the model input module and
wider selection of KPIs for the model output module.
Moreover, different rule based sets of KPI can be put together
and inserted to describe an Al model. Likewise, it is vital to
increase the model capacity to operate a large amount of data
collected from different industries.
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OPTIMISATION OF DECISION-MAKING PROCESS
IN INDUSTRIAL ROBOT SELECTION

The successful selection process of industrial robots (IRs) for today’s Cyber-Physical Systems is an important
topic and there are different possibilities to solve the task. The primary task is to estimate the existing IR selection
systems according to the suitability analysis and to highlight the main positive features and problematic areas. The
objective of the reverse task is to carry out the sensitivity analysis of the existing robot-based manufacturing
systems. The matching of these two approaches helps decision makers to develop the main principles of IR
selection in today's multidimensional and fast-changing economic world.

1. INTRODUCTION

The importance of industrial robots (IRs) in manufacturing is increasing continuously.
This is caused by their flexibility, productivity, relatively low cost and large technological
capabilities. The nomenclature and functionality of modern IRs are remarkable. IRs are also
basic components of Cyber-Physical Systems (CPS), which, at the same time, form
an important part of Industry 4.0 [1]. Due to their large variety and application possibilities,
the selection of a most suitable IR is a complicated task. Several selection criteria need to be
taken into consideration. The challenge of choosing a suitable robot for a certain
manufacturing application lays often not only in knowing whether a robot is needed but in
predicting what tasks are the most suitable for the current application. It is also necessary to
consider that today’s IRs are becoming smarter, faster, and more and more adaptable and
collaborative.
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2. ROBOT-BASED MANUFACTURING CELL

A robot-based manufacturing cell (system) can be considered as a closed system within
a larger unit (workshop). The system can be described with the help of dimensioning its main
parts, giving the relations between the parts, and forming the structure of the system. These
relations are workpiece loading-unloading equipment, gripper (end effector), IR working
area, range, loading capacity, controlled coordinates of IR and MT, etc.

A study was performed at the end of 2017 to determine the utilization of robot-based
manufacturing cell’s in Estonian industry. The goal of the study was to compare production
cell design objectives to achieved KPI's. The study was carried out by interviewing executives
from different company management levels (production managers, R&D engineers and setup
technicians), gathering data from implemented MES system, where it was available and
mapping the cells layout with technological capabilities. Altogether 14 robot based
manufacturing cell’s where investigated of which a majority 64% where welding, 22% CNC
machine tending and 14% material handling cell’s. The first cell was implemented at 2008
and the last one implementation process where ongoing. The total investment between 50k to
450k EUR, inflation not taken in to account.

Information was gathered in four main fields: company profile and strategy, cell layout
and equipment, manufactured products and process data and shortcomings or improvement
necessary to perform. From that data, a preliminary report was made which evaluated
the production cells performance values and economical aspects.

Performance was assessed through following parameters setup, cycle, operational,
rework and maintenance times, operators needed, lots size and repeatability, total number
of setup products at the cell. Throughput, cell utilization and OEE was calculated and
compared with cell design goals.
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Fig. 1. Production cell design goal fulfilment
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Economical input parameters where chosen that best described the goals set by the
company or department management. Parameters included among others where net income,
net operating profit, cost per hour, discounted payback period. As a result goal achievement
analysis [2] where performed, where cell utilization, investment value and overall goal
fulfilment where mapped (see Fig. 1) and compared. Production cell design objectives where
once again assessed.

As a second step, a wider analysis where performed to assess production cell intelligent
level and automation or engineering level by the categorical framework of manufacturing [3].
This analysis shows the production cells current state, compared to global manufacturing
trends (see Fig. 2) and can lead to steps needed to perform for improve manufacturing and
leap to Industry 4.0 principals.

() (o) (o)

Intelligence

Intelligent level
Integration

INTELLIGENCE '

Control

COMPLEXITY ‘

Machine Process Factory

Automation level

Fig. 2. Production cells state on manufacturing categorical framework

Based on this generalization, it is possible to develop a set of industrial robot selection
principals and rules which best suits regional industry level. Furthermore, gathering different
production cell development approaches from industry and judging their accuracy is a vital
input for developing robot selection workflow. This can be used as an expert advice in the
decision-making process.

3. DECISION-MAKING TASK FOR ROBOT-CELL COMPONENT SELECTION

The decision-making problems have been treated individually, consistency is not kept
between the decision-making functions regarding the assumptions and data structures. These
isolated decision-making stages do not help to achieve the global optimum solution because
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the decision-making problems in manufacturing involve very complex data processing. The
elementary estimations are very strongly dependent on each other and the real technological
resources (capabilities) must be taken into consideration. Therefore, rational decisions usually
cannot be made simply with sequential procedures. However, with modelling and simulation
procedures, it is possible to analyse the alternatives and find the best solution. The other
possibility is to start from the complex systems theory [4, 5] and to develop a solution system
architecture, allowing the reduction of complexity of a design process, minimizing risks in
production system planning and enabling analysis of various production variants. For a better
understanding of the whole complexity of the problem setup, it is useful to see the wider
picture based on the ontology model (see Fig. 3) [6]. This shows the task positioning in the
field of manufacturing in its whole complexity.

Enterprise
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Fig. 3. Robot Cell Utilisation Ontology Model

The efficiency of manufacturing depends on how suitable the manufacturing system is
for fulfilling of the company’s strategy and how completely the product portfolio fits the
technological capabilities of the manufacturing system, but also of course on how efficiently
the company is using their resources and how productive they are in fulfilling orders. The
results depend directly on the quality of decision-making process. Nowadays in
manufacturing, decision support system (DSS) are used for complicated tasks. DSS [7] is
a computer-based information system that supports business or organizational decision-
making activities, typically resulting in ranking, sorting or choosing from among alternatives.
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DSS’s serve the management, operations, and planning levels of an organization (usually
mid- and higher management) and help people make decisions about problems that may be
rapidly changing and not easily specified in advance — i.e. unstructured and semi-structured
decision problems. Decision support systems can be either fully computerized, human-
powered or a combination of both. While academics have perceived DSS as a tool to support
the decision-making process, DSS users see DSS as a tool to facilitate organizational
processes that might support decision making. DSS is defined as follows:
1. DSS tends to be aimed at the less well structured, underspecified problem that upper-
level managers typically face;
2. DSS attempts to combine the use of models or analytic techniques with traditional data
access and retrieval functions;
3. DSS specifically focuses on features which make them easy to use by non-computer-
proficient people in an interactive mode; and
4. DSS emphasizes flexibility and adaptability to accommodate changes in the
environment and the decision making approach of the user.

Properly designed DSS is an interactive knowledge-based software system intended to
help decision makers compile useful information from a combination of raw data, documents,
and personal knowledge, or business models to identify and solve problems [8].

Typical information that a decision support application might gather and present
includes:

— inventories of information assets (including legacy and relational data sources, data
cubes, data warchouses, and data marts),

— comparative sales figures between one period and the next,

— projected revenue figures based on product sales assumptions.

The whole planning system is based on a hierarchical decision-making scheme. Nodes
on it represent the decision centres. On those centres, the elementary estimations are carried
out. These elementary decision-making procedures are carried out on the basis of different
mathematical methods and systems. These elementary decisions could not be in conflict with
each other. For this reason, there are coordination levels, which take care of the elementary
decisions, analysing these and giving the rules for further activities. That means that
modelling and optimization techniques are integrated with the expert system. The basic
components of the system planning architecture are data storage, decision-making
mechanism, knowledge base and interpreter. The last one has the following main activities:
to call out the needed solution module, to analyse the obtained results, to generate the rules
and instructions on the existence of contradictions, to issue the sorting and searching
commands to the database. Through the interpreter, the revision of problem-solving is
possible. A modular architecture guarantees the flexibility of the planning system. The result
would be obtained on the basis of different modules and models. The order of using these
modules must not be strictly determined. That kind of flexibility gives users more extensive
goal.

A modular architecture guarantees the flexibility of the planning system. The result
would be obtained on the basis of different modules and models. The order of using these
modules must not be strictly determined. That kind of flexibility gives users more
extensive goal.
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4. DECISION MAKING METHODS FOR INDUSTRIAL ROBOT-CELL
COMPONENT SELECTION

Over the year many decision support systems (DDS) has been developed [9] to help
decision makers to select most functional and cost-effective equipment for production cell.
The complexity of the selection problem are related to economical, technical and social
attributes, which are interconnected and may change in time. Economical attributes are likely
to dependent on the market situation and entrepreneur’s investment certainty. Both
parameters are hard to enquire and predict. Other hand technical parameters are readily
available from machines data sheets and are easily compared. DDS should consider both
qualitative and quantitative factors while selecting and evaluating correct solution. Some
of the methods used in DDS are discussed below.

4.1. WEIGHTED SUM DECISION MODEL (WSM)

Weighted sum model is the simplest multi-criteria decision analysis method for
evaluating alternatives by decision criteria. In this method [10], critical factors or performance
values are assessed. In IR selection those critical values are derived from three categories: the
minimal environmental conditions; the minimal performance conditions; and the budget
ceiling. If proposed solution meets all the requirements (critical values) this can be considered
as one alternative. The methods relays on expert’s opinions to value criteria weights, which
can be summed at the decision matrices to rank alternatives.

4.2. DATA ENVELOPE ANALYSIS (DEA)

Data envelope analysis is a performance evaluation or benchmarking method where
appreciable is assessed against the best practice. DEA model consist of inputs, decision-
making units (DMU) and outputs. Inputs and outputs are performance measures and may or
may not be directly linked to production process. DMU's are units under evaluation which
are composed performance metrics that characterize the units [11]. DEA evaluates minimum
inputs against maximum output.

4.3. ANALYTIC HIERARCHY PROCESS (AHP)

Many of the decision support system are based on analytic hierarchy process (AHP),
developed for use in complex decision making in 1980 by Saaty. The method and its refined
successors [12, 13] are still widely used due to its ability to efficiently deal with objectives as
well as subjective attributes. Methods first step is to build a problem hierarchy, containing
criteria which importance are pairwise compared by different experts. Final step is obtaining
and summarising composite performance scores for alternatives and making a final decision.
The method has been improved by using Fuzzy numbers for linguistic expressions to pair-
wise comparison of criteria [ 14].
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4.4. TECHNIQUE FOR ORDER PREFERENCE BY SIMILARITY TO IDEAL SITUATION (TOPSIS)

TOPSIS is a method that compares a set of alternatives by expert group evaluated
weights for criterion. Scores are normalised for each criterion and geometric distance between
alternative ideal positive and ideal negative solution is calculated. The best solution is nearest
to ideal positive solution and farthest from ideal negative solution. The method has been
improved by using Fuzzy numbers for criteria analysis [15].

4.5. ARTIFICIAL NEURAL NETWORK (ANN)

Artificial Neural Network method has been used in many applications where real world
data variables are available [16]. ANN is a computing system that consist of nodes or artificial
neurons, which are connected like synapses to transmit signal from input layer through one
or many hidden layers to output layer. The main advantages of the method are so called
learning effect from considering examples and ability to work whit great amount of data.

5. PROPOSED DUAL APPROACH MODEL

Most IR selection and decision making application includes only primary tasks —
selecting the best type of industrial robot for a determined industrial task (welding, painting,
assembly, machine tool servicing, and inspection, grinding and polishing or doing other
manufacturing operations). Such a decision-making expert system has been developed and
used for human resources development depending on needed skills and knowledge, whereas
influence of human factor to productivity is larger when process is less automated [17].
Mapping of capabilities in managements systems described in [18] needs also input from
process level.

However, at the same time, the robot cells are integrated into the manufacturing systems.
This integration and different aspects of manufacturing were described in the ontology model
(see Fig. 3). Proceeding from the manufacturing strategy and production principles of
a company, new aspects will arise which are needed to take into consideration in the robot
selection process (break-even point, increasing of productivity, OEE, etc.). All these are also
directly connected to the products (product families) to be manufactured and to the task
description (annual quantities, delivery times, batch sizes, quality and/or cost restrictions,
etc.).

While the purpose of a primary or selection task is to check the robot’s architecture and
technical parameters best suited for a selected job, the reverse or prediction task consists
of the analysis of optimal utilization of the implemented robot-cell in a company (see Fig. 4).
Understanding the utilization of industrial robots in manufacturing will give us the main
principles and decision-making rules for the optimal selection of industrial robots. Based on
iterations of those tasks, we can derive optimal solution and estimate the accuracy of the
decision.
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5.1. FEASIBILITY ANALYSIS AND ESTIMATION

Principle estimation on the bases of following criteria {Increase in productivity,
lowering of production costs, improvement of the working environment, increasing the
security of supply, quality assurance, workforce insurance, an increase of flexibility, stock
depreciation}. The estimation could be calculated using different decision-making
algorithms. We have used a self-adjustment algorithm (see one possible result on the Fig. 5).

5.2. THE SUITABILITY ANALYSIS

The suitability analysis is based on the task description. From the task description,
the set of needed parameters {SNP} of an industrial robot (IR) would be determined. This set
1s formed based on the technological capabilities of an IR, which are crucial for fulfilling
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the industrial task. This set would be compared with the set of existing parameters of IR
{SEP}. The largest common part will give the best result.

Max {SNP}N{SEP}

1. Productivity

8. Flexibility, . Costs
Criteria with prioroty
7. Production 3. Work index
space enviroment Criteria without prioroty
ind
6. Labor 4. Supply naex

5. Quality

Fig. 5. Company feasibility analysis

We have used AHP based suitability analysis method [19], which uses product,
technology and objective based parameters to evaluate suitability index. Expert group
knowledge has been used for application-based criteria’s evaluation. Future an ANN based
prediction model together with fewer experts can be used for evaluating application-based
criteria’s [16]. For this study, IR welding application model has been used. Calculated indexes
are compared to main suitability decision categories [19] for final assessment.

5.3. THE EFFICIENCY ANALYSIS

The efficiency analysis evaluates the designed or installed solution, based on best
competences. For adequate estimation of production unit manufacturing efficiency and
assessment of production unit process failures, the whole system, components and their
relations must be evaluated [20, 21].

The output of a production unit are determined by the manufacturing task, which
explains what is produced, which technologies are needed and which production type is used.
The production type is one of the most important factors affecting productivity. According to
production type (single, series or mass production), necessary technologies and equipment
are selected. Those parameters and factors are summarised in Task Description. Selected
technological capabilities and production program will form the production cell layout. In this
case, selected system degree of flexibility is dependent on production equipment and their
parameters for a chosen production program and layout. Depending on the flexibility
of a production unit, it is possible to combine production structures to achieve minimum
production time.

An outside factor affecting the efficiency of a production unit is the control over waiting
times. The lack of balance in processing times and waiting times may result in production
unit stalling or workplace congestion, which clogs the production flow and negatively affects
Total Effective Equipment Performance (TEEP). Thus, one of the most important factors in
assessing the efficiency of a production system is the degree of integration at a production
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unit. In the integrated system, it is possible to plan ahead and optimize the production flow to
maximize Overall Equipment Effectiveness (OEE).

Prediction of manufacturing cell efficiency are performed by using Deep Learning (DL)
ANN. An OEE prediction study comparing different machine learning algorithms have shown
better reliability and performance dealing with given data [22].

DL is a neural network with a multilayer architecture capable of processing large
amounts of data. While the architecture is significantly complex, DL algorithms are one
of the best performing. Their performance will improve future by increasing the number
of data. After every data iteration through ANN, back-propagation process is called and
synapsis weights are adjusted using Gradient Descent, maximizing the correlation between
the output and the residual error of the model [19]. The DL networks are built using Artificial
Intelligence Techniques Inc., Neural Designer software. Technical parameters and
operational data from similarly structured real production cell Manufacturing Execution
Systems (MES) are used to train and test prediction model.
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Fig. 6. OEE Prediction Model

The developed neural network are used to predicting production unite OEE [23] from
input data shown on Fig. 6. After successful OEE prediction, company tactical and strategic
KPI’s can be calculated. Theoretical break-even point (BEP), return on investment (ROI),
payback period (PP) or discounted payback period (DPP) relations to the actual Gain
of Investment (GI) were calculated among the other parameters.

6. CONCLUSION

Robotized production cells are complex systems and they consist of several specialty
components. The selection of robots and all necessary components for robotized system
design is not only a decisive task. Even less can be achieved by using available industrial
robot classification systems. For a successful robot cell components selection, there are two
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prerequisites: firstly, we have to have a good overview of industrial robots and their
technological capabilities; and, secondly, we have to assess the company's ability to integrate
new systems to production and execution processes. To address those problem a concept
model is proposed in which firstly a combined robot classification system together with
robotisation feasibility analysis are performed. Subsequently, for achieving best possible
results, a suitability and efficiency analysis loop are designed into the selection process.
Suitability analysis is used to evaluate the selected solution correspondence to design
requirements. As a last step an efficiency analysis is used to predict production cell
parametrical model key performance indicators values. Both analysis steps are designed as
a loop sub processes, in case of non-correspondence a previous step is again executed.
Performing step iterations a optimal parametrical solution can be formed. Obtained results
can be use to build and simulate virtual production cell model. Although each system
component on its own has demonstrated good performance, the whole system still needs
testing, and verifications. A proposed dual concept is an expedient approach because, on one
hand, it is based on the analytic hierarchical task solving process of decomposition method;
and on the other hand, systematically collected data allows us continuously to evaluate
the system’s operational efficiency in a company. On the basis of accumulated data, new
knowledge is generated constantly, which can be used for robot selection, feasibility analysis
and for the evaluation of results.
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Abstract. Manufacturing industry robotization is spreading into wider range of processes. Determination if robotization is
suitable for the company is one of the most critical issues before selecting industrial robot and designing the robot cell. A survey
was carried out among Estonian small and medium sized manufacturing enterprises (SMEs) for this study to determine the
utilization of industrial robot (IR) in the industry. More specific study of production unit was conducted, using gathered
information, to estimate how the objectives of the production cell design were achieved. The aim of the present scientific work is
to map the knowledge whether robotization is suitable or not for the company or working processes and to appoint parameters
obtained after using the robot cell for practical manufacturing processes. The study results comprise the suitability assessment
method with the set of criteria and key performance indicators (KPIs), that best describe implemented production unit profitability

and help SMEs to gain additional economic-technical information for future robot-based unit development.

Key words: industrial robots, feasibility analysis, suitability analysis.

1. INTRODUCTION

Suitability analysis is the process and procedure used
to establish a system that meets the needs of users.
Suitability of robotization is a basic question for managers
who are planning changes in the company. For pro-
ducing goods, companies have to perform different
processes and industrial tasks. There are certain aspects
why industrial robots are used for those processes.
Theoretically, the basic aspects concern humans,
productivity and quality [1-3].

The widest areas using industrial robots are:
welding, machine tool servicing, assembling, painting,
loading-unloading, packaging, palletizing, and medical
applications. Welding ranks among the most important

’ Corresponding author, tavo.kangru@tktk.ee

joining processes and has special features for the
industrial robots, such as programming task sequences,
free definition and parameterization of robot positions/
orientations, high repeatability and positioning accuracy
of moving paths, high speed of end effector, minimum
six degrees of freedom (6DOF), variable payloads
depending on the welded products (2-150 kg), advanced
programmable logic controllers (PLCs). The vision,
strategy and action plans for implementation of robots
are described in [4] and statistics about using robots in
industry can be found in [5].

Literature review and efficiency analysis of IR cells
are important basis for gathering information. To
estimate the suitability of using industrial robots in
different application areas, it is necessary to analyse
the applications of the robot in the industry and to solve
a decision-making task.



384 Proceedings of the Estonian Academy of Sciences, 2019, 68, 4, 383388

2. BACKGROUND

Suitability analysis belongs to the tasks of dual
approach. From one hand, it is an application area for
the efficient use of industrial robots and on the other
hand it supports decision making methods. The decision
maker (expert) must have an excellent understanding
about the application area and should be familiar with
the factors influencing the effective use of industrial
robots. For this purpose, a robot-based manufacturing
cell performance evaluation conceptual model was
developed, which is based on a recursive decision-
making procedure [6]. In the model shown in Fig. I,
there are four groups of parameters: product features,
robot cell features, elements of evaluation and general
output description. The first two groups are the parameters
of the design level (parameters of the product portfolio
and their manufacturing processes) and the last two
groups are the execution outcomes (different KPIs, that
measure, and critical success factors — cost factors,
level of achieving the general objectives, dynamics
of effectiveness, employee competencies, etc.). These
interactions reflect the suitability of using the real IR
cell in the company.

The main concern in the suitability analysis process
is to find the best solution, according to the set of
criteria using the method, which allows the most realistic
input (importance) of each criterion. There are different
possibilities to influence the roles of criteria: the equal
weight (EQW) heuristic [7], the weighted additive
(WADD) rule [7]. However, the main risk is over-
estimating some of the criteria or not paying enough
attention to others. Therefore, artificial intelligence (Al)
methods may be used [8].

Analysing industrial robot’s applications for welding,
there were developed three general groups of parameters,
shown in Table 1. Those listed parameters have the
greatest influence to the suitability of using welding
robots in the company.

Having knowledge about the welding process and
parameters make the welding process more efficient.
It is possible to find the tools for suitability analysis. To
solve the engineering task, such as making a decision
about the suitability of welding robots in the company,
multiple criteria should be used (see Table 1). Each
decision corresponds to a variable, relation or predicate,
whose possible values are listed among the condition
alternatives. Each action is a procedure or operation

[ Design parameters ]

Product features

Process performance
indicators

S
N

Robot cell

Overall efficiency
indicators

v

Execution parameters ’

Fig. 1. Efficiency analysis of implementing robot cells in the companies.

Table 1. Suitability criteria for robot welding

Product view

Technology view
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—_
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. The products are complicated from

. Experiences in MIG/MAG and TIG

1. To shorten the throughput time

the technological point of view welding 2. To increase the productivity in the
2. The products can be classified into 2. Competences in welding technologies workplace
product families 3. Welding processes have great 3. To increase the product quality
3. The products are produced in importance in the company’s 4. To increase the precision of delivery
repeatable batches production processes 5. To reduce the product cost
4. The products are of high quality 4. There are already experiences with
5. It is necessary to use welding fixtures robot welding
5. It is necessary to increase the

productivity of welding processes
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to perform, and the entries specify whether or in what
order the actions should be performed for the set of
condition alternatives the entry corresponds to.

3. ANALYTIC HIERARCHY PROCESS

Solving the engineering decision making problem of
IR cell suitability, which has multiple criteria and
alternatives, is a difficult task. One of the techniques
for solving multi-criteria decision making (MCDM)
problems is analytic hierarchy process (AHP). AHP was
proposed by Saaty [9] and developed further by [10,11].
Those methods use fundamental scale of relative
importance to construct a pairwise comparison matrix
of attributes. Likewise, consistent weight of attributes
is determined, which help evaluating composite per-
formance score of alternatives. The alternatives are then
ranked according to their composite performance score.
Several steps and principles should be considered and
understood for constructing a MCDM problem solving
tool. The steps are the following:
(1) Developing the hierarchy criteria model for decision;
(2) Deriving priorities by pair-wise comparison for the
criteria. Pair-wise comparison scales are shown in
Table 2;
(3) Determining local priorities for alternatives;
(4) Calculating and adjusting the consistency:
(a) Multiplying the matrix of judgements by the
eigenvector, obtaining a new vector (Aw);
(b) Dividing each component of a new vector of 4w
by the corresponding eigenvector element;
(c) The mean value from the point b is the estimated
for Amax;
(d) Calculating the consistency index (CI) by:

C[:(Amax_n)/n; (1)
(e) Calculating the consistency ratio (CR) by:

CR=CI/RI, )

(f) Checking the consistency of the hierarchy. CR
should be below or equal to 10 %;

(5) Populating the judgement matrix with input data:
quantitative data, such as product payback period
total investment etc. are normalized by using Eq. (3).
Dimensions, mass etc., are normalized by using
Eq. (4). Qualitative data, such as complexity of
operations, manufactured parts precision, experience
and competencies of engineering stuff and workers,
etc., are graded by the scale of 1-5 and normalized.

X — X,

Z=1-—"fmin 3)
Xmax ~ Xmin
7=—""Tmin_, ©)

Xmax ~ ¥min

(6) Making the final decision.

4. CASE STUDY

Production cells were investigated in twenty SMEs with
the number of employees ranging from 20 to 150. They
produced different parts for agricultural and forestry
machines, small tractors, high speed trains, lifts’ com-
ponents, wind generator rotors and other sheet metal
products. The information was acquired by interviewing
companies’ management, engineering staff and data
extracted from the enterprise resource planning (ERP)
software. Data gained from the interviews and ERP
system contained both, quantitative and qualitative data.
From the collected data, the information about the robot
welding production units was the only one used for the
following suitability analysis.

Three performances of production units were stated
as a benchmark for the suitability analysis. Production
cells, shown in Table 3, were chosen by their excellent
KPIs’ outcomes. KPIs were selected according to the
performance evaluation model [6] and they are as follows:
discounted payback period (DPP), cell utilization (CU)
and overall equipment effectiveness (OEE).

Table 2. Pair-wise comparison scale assessment

Importance Description
1 Equal Importance
3 Moderate importance
5 Strong importance
7 Very strong importance
9 Extreme importance
2,4,6,8 Values between two adjacent values should be in considerations
Inverse If activity (i) got a point compared with activity (j), then (j) has the opposite value compared to (i)
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Table 3. Production unit’s description and performances

Company Production cell Products Shifts DPP, CuU, OEE,
years % %
No. 1 Yaskawa IR, two axes positioner Heat exchangers 2 3 51 72
No. 2 ABB IR, single axes positioner Trailer frames 2 2 40 70
No. 3 Yaskawa IR, single axes 2-station Forestry machine 1(2) 3 45 70

positioner frames

5. CRITERIA AND SUB-CRITERIA

Regarding this study, the main task of multi criteria
decision analysis (MADM) is to estimate the suitability
index and it is based on the following criteria and sub-
criteria (see Fig. 2):

e Production unit (PU):

o

[e]

cost (C): total investment (C1), cost of utilities
(C2), running costs (C3);

maintenance (M): maintenance cost (M1), emer-
gency maintenance cost (M2);

level (L): use of CAD/CAM (L1), automated
storage (L2), machine vision (L3).

e Product (P):

[e]

[e]

physical properties (PP): complexity of parts (T1),
parts manufacturing precision (T4), mass (T6);
productivity (PR): product families (T2), patch
size (T3), patch repeatability (T9), overall welding
ratio (TE3), average cycle time (TE9), average
setup time (PR2), quality assurance (E2).

T2

T3

Cl L1 T1 T9
C2 Ml L2 T4 TE3

M2

Cc3 L3 T6 TE9
PR2

E2

Cost Maintenance Level Physxc_al Productivity
properties
Production unit Product

Suitability index

Company environment (CE):
o workforce (WF): workstation fulfillment (E1),

workers salary (E6), production engineer’s involve-
ment (E8), shifts (W2), durations of shifts (W3);
performance indicators (PI): increment of
productivity (E4), increment of on time delivery
OTD (E9), increment overall equipment effective-
ness OEE (E10), payback period (K1);
experiences (E): experiences with MIG/MAG,
TIG (TE1), competencies in welding technology
(TE2), experiences with robotization (TE4),
experiences with jigs and fixtures (TE7), work-
station organization level (TES), overall auto-
matization level (TE10).

6. PERFORMANCE SCORES

The assessments obtained from the decision makers are
made by pairwise comparisons. Performance scores and
consistency ratio are calculated and given in Tables 4 and 5.

TE1
£ E4 TE2
E8 E9 TE4
W2 E10 TE7
Wg K1 TE8
TE10
Workforce KPI's Experiences
Company
environment

Fig. 2. Production cell suitability hierarchy.
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Table 4. Performance scores of main criteria

Criteria CR Priority Criteria CR Priority
Production unit 21 Physical properties 0 66.7
Product 1.9 24 Productivity 333
Company environment 55 Workforce 19.5
Cost 51.3 Performance 9.8 8.8
Maintenance 5.6 8.1 Experiences 71.7
Level 40.6

Table 5. Sub-criteria, local performance scores

Criteria CR Priority Criteria CR Priority Criteria CR Priority
Cl 74.3 T2 4.4 W3 2.6 18
C2 7.4 6.3 T3 18.1 E4 23.8
C3 19.4 T9 35.5 E9 76 28
Ml 0 66.7 TE3 8.9 9.6 E10 ’ 8.9
M2 333 TE9 16.6 K1 39.3
Ll 26 PR2 7.5 TEI 20.2
L2 5.6 41.3 E2 8.3 TE2 24.5
L3 32.7 El 25.4 TE4 77 20.6
Tl 5.6 413 E6 26 339 TE7 ’ 8.8
T4 32.7 E8 ’ 7.5 TE8 10.1
T6 26 w2 15.2 TE10 15.8

Explanations for the abbreviations are given in paragraph 5. Criteria and sub-criteria.

7. DECISION MATRIX

The normalized inputs are multiplied by their corres-
ponding performance scores and the local and global
scores are summed up. Results are shown in Table 6.

8. DISCUSSION AND CONCLUSIONS

In this study an AHP based suitability analysis for robot
integrated production cells was developed. Twenty
production cells in different industries and at different
levels were investigated. Based on the literature, review
input parameters were selected, criteria set up and
hierarchy of the problem were developed. To ensure
the objectivity of experts’ pairwise comparisons of the
responses of criteria, consistency ratio was calculated
and controlled. For testing the developed tool, a case

study approach was used. Three welding cells were
selected based on their excellent KPIs* outcomes and
set as a benchmark for suitability analysis. The highest
overall suitability score was obtained in case of No. 3
with index of 0.17. The extremely high score was received
in both, product and company environment categories,
i.e. 0.849 and 0.810, respectively. The suitability analyses
confirmed an excellent choice of product to be produced
in a well-organized cell and automated company environ-
ment. For decision of suitability, four categories were
proposed in Table 7, based on suitability criteria for robot
welding, shown in Table 1.

For more precise results, it is possible to simulate
the planned robot cell and to calculate the break-even
point. Having enough competence in all these areas is
quite sophisticated. Therefore, the tool which gives the
possibilities to estimate the suitability of using industrial
robots for the automation of a certain manufacturing

Table 6. Suitability index results

Production cell Production unit Product Company environment Suitability index
Company cell No. 1 0.567 0.699 0.664 0.652
Company cell No. 2 0.494 0.709 0.804 0.716
Company cell No. 3 0.524 0.849 0.810 0.717
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Table 7. Suitability decision categories

Suitability index Decision

Description

Smaller than 0.25 No expediency

Products portfolio, analysis of the current process and general conditions are

indicating the lack of essential need for using robots in the company.

Smaller than 0.5 To a certain extent

expedient
Smaller than 0.75 Robotization is

recommended
Higher than 0.75 Robotizing is

feasible

There is indicated the strong point (products, process, general conditions) and also
the problematic places. The final decision lays on the industrial expert.
There are indicated some risks which are not so much important.

Each group (product, process, manufacturing conditions) has an index higher than
0.75, which gives a solid knowledge that robotization of the process would give

significant benefits to the company.

process, is important in the early stage of planning. For
future work, more robot integrated processes like machine
tending, palletizing, etc. can be added to the tool.
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Toostusrobotite kasutatavuse sobivusanaliiiis

Tavo Kangru, Jiiri Riives, Kashif Mahmood ja Tauno Otto

Tootmisettevdttes on madrava tihtsusega enne robottootmisiiksuse loomist 1dbi viia todstusrobotite sobivusanaliiiis.
Selle viljatootamiseks tehti Eesti viikese ja keskmise suurusega ettevotete hulgas uuring, madramaks toostusrobotite
kasutust. Kogutud andmete pdhjal viidi 1dbi spetsiifilisem tootmisiiksuste uuring, millega hinnati tootmisrakkude
projekteerimisel piistitatud eesmérkide saavutamist. Tulemusena loodi todstusrobotite sobivuse hindamise meetod
koos kriteeriumide ja tulemuslikkuse votmenditajate kogumiga. Hindamismeetod voimaldab hinnata rakendatud tootmis-
tiksuse kasumlikkust ja saada tdiendavat majanduslik-tehnilist teavet tulevaste robottootmisiiksuste arendamiseks.
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Abstract

The recent shift in manufacturing paradigm in terms of reconfigurable automation technologies invites the involvement of industrial mobile
robots, highly automated production systems and digital information models to support manufacturing. Therefore, in the future, manufacturers
need to complete automated production lines to compete in the global market. However, a current lack of performance assessment methods for
the successful functioning of an advanced manufacturing line demands to describe a concept for the evaluation of such a manufacturing
environment. This paper presents a concept to analyze the performance of advanced technologies integrated manufacturing line. Modeling and
simulation of a case study are performed to validate and to attain the results of the proposed concept.
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1. Introduction

In recent years, technologies evolved rapidly,
manufacturing became more complex, and companies are
getting specialized in their respective fields [1]. Manufacturing
has been an essential economic driver in developed nations
since the Industrial Revolution, and it continues to play a
significant role in the process of wealth creation in today’s
world. To attain higher profit margins, continuous evaluation
and improvement of business processes and production flows
are required. A factory can be analyzed at different control
levels, spanning from the more general enterprise-level until
the more refined process level [2, 3]. Global organizational
changes can influence the performance of a production facility,
but new business models commonly affect only a type of
product being manufactured, not the efficiency of the
production itself.

Modern manufacturing involves the use of technology-
supported decision-making on the managerial side, the
implementation of Internet of Things (IoT) in factories, the

2212-8271 © 2020 The Authors. Published by Elsevier B.V.

integration of novel technologies like Augmented Reality (AR)
and Virtual Reality (VR) within existing production
environments, as well as the further development towards an
autonomous and seamlessly working smart factory. The term
that encompasses all aforementioned components is known as
“Industry 4.0, a neologism coined at the “Hannover Messe”
held in 2011 [4]. The nine pillars of Industry 4.0 are as follows:
Big Data and Analytics, Autonomous Robots, Simulation,
Horizontal and Vertical System Integration, IoT, Cloud
Computing, Additive Manufacturing, Augmented Reality and
Cyber Security [5].

This paper proposes a concept of performance evaluation of
a manufacturing line integrated with modern manufacturing
technologies such as industrial mobile robots and IoT sensors.
The manufacturing line to be analyzed as a case study uses
Automated Ground Vehicles (AGVs) or mobile robots that
collect and send data via Infra-red (IR) sensors. As such, it
includes some elements of the 4th Industrial Revolution
Concept.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 53rd CIRP Conference on Manufacturing Systems
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2. Literature Review

The increased degree of complexity in modern
manufacturing facilities, stemming from a larger number of
Internet-connected devices used on the shop-floor, calls for
advanced performance evaluation techniques to be
implemented. There are methodologies covered the topic of
performance evaluation of production lines, but they mainly
based on complex mathematical models, aside from the
physical enactment of the model in a factory environment [6, 7
& 8]. For manufacturers, such methods and approaches are
difficult to construct and adopt.

Moreover, there are studies of lean and throughput
assessment of production systems [9, 10], some researches are
based on complex distribution and statistical process control
analysis of manufacturing systems [11, 12]. Those studies
lacking in the exploration of digital tools that can be used in the
evaluation of manufacturing lines and they are falling behind to
describe the evaluation process in a harmonized way. This
research defines an approach to evaluate a manufacturing
environment that reflects the harmonization of activities and
supported by digital tools. Those digital tools can be integrated
like process modeling tool connects to discrete event simulation
tool and to 3D geometric simulation tool, which helps to
evaluate manufacturing systems from definition to realization
in a virtual environment.

Modeling and simulation technique allows constructing both
2D and 3D representations of the production line. They offer
the possibility to make changes to the model quickly and easily,
while also providing a substantially better depiction of the to-
be-built or to-be transformed factory. The current study
comprises of the Integrated Definition (IDEF3) process
modeling method for the static representation of the production
line, alongside the animated 2D and 3D models for analysis
built in a Discrete Event Simulation (DES) software i.e.,
ARENA and 3D simulation were performed on Visual
Components 4.1 respectively.

2.1. New Technological Impact on Manufacturing

From a technological standpoint, change towards more
integration is observable. This is manifested through the idea of
a “smart factory” where all machines are in the process of
constant exchange of information with each other, thus working
together and working autonomously. Vanderspek named three
factors that would influence the rate at which a fully automated
factory would be adopted:

1. Low-cost, yet highly modern automated equipment;

2. Successful implementation of that equipment into a
“comprehensive production system”;

3. Absence of nontechnical issues and influences that would
prevent the integration of automation in a factory [13].

These three requirements have been on the path of being
fulfilled in the past decade, as we see the creation of fully
automated, flexible manufacturing systems and their
performance analysis were conducted [13, 14]. Now the
concurrent goal is moving to digital manufacturing. The impact
can be observed as the recent manufacturing system

incorporates a variety of automation tools, including AGVs,
sensors, RFIDs, etc.

2.2. Selection of Key Performance Indicators

The use of a certain set of metrics to evaluate the current
performance of a company is an essential part of business
management. Nowadays, product managers receive an
enormous dataset with statistics which can be difficult to follow
through, so it is only appropriate for a company to select only
the most relevant ones that would align with their values and
business goals. In this study, only KPIs at the shop-floor level
were considered and evaluated; metrics that involve external
factors, such as supply chain partners and the end-users, are not
included.

Hopp and Spearman [15] defined “The 7 Efficiencies” that
best showcase the performance of a manufacturing company.
They are throughput, utilization, cycle time, inventory, quality,
customer service, and lead time. There are other KPIs metrics,
optimized with the help of mathematical models and
recommended for the shop-floor level [16].

2.3. Simulation as an analysis tool

Simulation has become a powerful tool in most areas of
technology. It is extensively used in manufacturing, transport
and logistics, military, construction operations, and more [17].
All kinds of processes and facilities can be modeled —
restaurants, airports, theme parks, manufacturing plants, etc.
[18]. In areal production environment, activities performed can
fail, resulting in scrap, be delayed, get canceled, and so forth.
Such kind of random behaviors can be addressed during the
simulation through probabilistic distribution as it can be set to
every activity to obtain more realistic end values [19, 20].
Moreover, simulation especially discrete-event simulation
(DES) models can be connected to the different process
modeling technique such as Integrated DEFinition (IDEF3) for
a comprehensive description and analysis of manufacturing
systems. DES model on ARENA can be generated based on
IDEF3 process modeling [21, 22 & 23].

2.4. 3D Configuration and Visualization

In addition to simulating the overall process flow using DES,
a virtual prototype of the production line in a three-dimensional
environment can be constructed and simulated. It enables to
enhance the visualization, which also encompasses a more
specific emulation of a manufacturing unit. For the
performance evaluation, the 3D configuration of work stations,
AGVs, workers, and the products can be taken into
consideration, resulting in the creation of a replica of the
production line that is closer to real life. Moreover, 3D
configuration in the virtual environment helps to check the
feasibility of a production line before the actual physical
implementation. Authors used 3D manufacturing simulation
software, Visual Components Premium 4.1 [24] for the case
study.
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Fig. 1. An approach to analyse the performance of a manufacturing environment

3. Methodology

To realize and signify the proposed approach for
performance analysis of an advanced manufacturing
environment, a case study practice was used as a research
method. Moreover, a literature review of the related context was
carried out to describe and understand the key techniques that
help to build a concept of performance analysis. The concept
can be depicted in Fig. 1 and it is a continuous improvement
approach. It describes a workflow for the analysis of a
manufacturing system/line and structured as a sequence of
activities. There are three layers in the approach: phase layer,
activities layer, and digital tools layer. The description of each
layer and how layers are corresponding to each other explained
in this section.

3.1. Understand Phase

Activities: It delivers the modeling of the system and steps of
the working of a system. In the case of configuration, it can be
a new one or in case of reconfiguration, it can be the selected
one.

Digital Tools: Mapping and modeling digital tool can be used
to portray the idea for understanding. A software tool for basic
system modeling helps to execute this phase.

3.2. Create Phase

Activities: Resources should be selected based on the system
model and the tasks — a system performs. A logical initial

layout should be developed that executes the desire steps or
define the process flow.

Digital Tools: Similar mapping and modelling digital tools can
be used as in the 1 phase. However, DES software such as
ARENA can also be used to develop a logical model.

3.3. Evaluate/Compare/Analyze Phase

Activities: It provides the KPIs or parameters which are needed
for the system evaluation. An analytical model of KPIs can be
called here. Analysis can be done by DES, based on the
selected KPIs and their relationship. Sensitivity analysis can be
considered as well. Digital discrete-event simulation tools
could be utilized here. ARENA results were used for the
selected use-case.

3.4. Choose and Prototype Phase

Activities: Based on the analysis the final configuration/layout
of a manufacturing system can be selected. The selected final
layout can be modelled/configured in a 3D environment for 3D
simulation and serve as a virtual model of a physical system.
3D manufacturing simulation, VR/AR and digital dashboard
tools can be applied here. Visual Components Premium 4.1
used for the case study.
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Fig. 2. IDEF3 Process Flow Description of the production line

4. Case Study

The developed approach for performance analysis was
applied to a production process carried out in a chemical
manufacturing company. The studied production line fills
empty bottles with liquid, labels and caps the bottles, at the
same time transferring them throughout the production line,
from one workstation to another, accordingly. The bottles enter
the system in crates, each crate containing 12 of them. The crate
travels through the production line by the means of an AGV. At
certain points, it is handled by a human worker (for example,
the worker lifts the crate or scans the RFIDs on the crate). The
three main operations — labeling, filling and capping — are
performed by three separate machines respectively, all
connected by a conveyor.

4.1. Process Model

IDEF3 model of the selected production line that described
its process flow can be seen in Fig. 2. Processing time in
seconds of each activity is also mentioned in the corresponding
rectangular activity box.

The production line consists of four workstations and one
waiting area for the AGV. The processes related to every
workstation, as well as the transfers and the data acquisition by
the sensors, are described in the steps below:

e A crate enters the facility via store outlet which is signified
as Workstation 1 (W1). IR sensor #1 at this point detects
whether there is a container on the loading area or not.

e AGV, beforeresiding at its waiting area (W), moves to W1,
picks up the crate and measures its weight.

e AGV takes the crate from W1 to Workstation 2 (W2)
which is the start of the conveyor.

e Asthe AGV puts the crate onto the loading area of W2, a
human worker scans the crate using an RFID sensor. The
sensor records data on which bottles are in the crate
currently. IR sensor #2, installed on the loading area,
checks whether the crate is placed on the base correctly.

e  The human worker opens the crate, places the bottles onto
the conveyor and launches the desired production order.

e Bottles are labeled, filled and capped at the respective
machines, with IR sensors #3 and #4 checking the levels of
filling and the orientation of the bottles at area M.

e At the end of the conveyor, a human worker puts the filled
bottles back into the crate, sticks a label onto the box, scans
the crate with an RFID sensor, and loads it onto
Workstation 3 (W3).

e At W3, IR sensor #5 detects the crate and checks its
positioning on the base. If all conditions are met, the AGV
is called to pick up the crate.

e AGV moves from W to W3. As it takes the crate and re-
checks the weight, and then transfers it to the final
workplace - Workstation 4 (W4). At W4, the production
line ends, and the warehousing activities begin.

e AGV moves from W4 to W, after releasing the crate. IR
sensor #6, installed on W4, checks the presence of the crate
in this area.

4.2. DES Model

The DES model of the production line was created on
ARENA software. Entities were defined as bottles and crate,
resources were assigned as AGV, worker, labelling machine,
filling, machine and capping machine. KPIs such as parts
produced, throughput, cycle time and utilization were chosen
for the analysis. The simulation run for eight hours and results
are portrayed in Fig. 3.

The goals were to improve throughput, cut-down waiting
time and balancing of resource utilization. Several iterations
were executed, the different combinations of resources and
changes in the layout were made to get the optimized results. A
couple of steps were taken in the virtual environment for the
improvement of the KPIs, these changes are:
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e Change 1 — Increase the speed of the filling unit by
installing new motors

e Change 2 — Installed an additional filling unit parallel to
the existing one also serves as increased capacity.

Parts IN ' Parts OUT
1 1l

Cycle time (sec)

9.3

Throughput - {pcs/h)

99
Utilization (%) - AGV utilization (%)
34.3 21 .2
Worker utilization (%)
Labelling machine utilization (%)
25 .4
Filling machine utilization (%)
96 .4
Capbi:ng machine util:i:zation : (:%)

15.2

Fig. 3. KPI dashboard in the Arena model at the end of a simulation
run

As a result of the steps taken, the production line was
successfully analyzed. The large queue and the high waiting
time of the bottle filling machine recognized as the bottleneck
of the system, as it showed a waiting time of 153 seconds per
bottle. To mitigate the issue both changes were practiced and
variations in the waiting time are shown in Fig. 4.

COMPARISON OF WAIT TIME PER
ENTITY METRIC

= Labellng mahine Filling machine === Capping machine

g 15362

— e
Change 2

o o
AS1S Change 1

PRODUCTIONLINE

Fig. 4. Comparison of Wait Time per Entity metric for all machines
in all three scenarios AS-IS, Change 1 and Change 2.

By increasing the capacity of the filling resource, resulting
in the reduction of the Wait Time per Entity by one third (67%).

4.3. Modeling and Visualization in 3D Environment

DES provides the relevant information, the behaviour of the
production line in regards to how efficiently it handles the
entities and resources. Nonetheless, a higher level of
visualization was desired to observe the viability of changes.
For that purpose, physical elements of the production line
placed in a 3D simulated space, this step can create a perception
towards the planning of layout in the production facility.
Collisions can be prevented, the safety of the workers and the
degree of accessibility to a machine or workstation can be
visualized, and that all can be done before the actual
construction or reconstruction of the manufacturing unit in the
real environment. Visual Components Premium 4.1 was used
to build a 3D simulation model of the selected manufacturing
environment and exported to the Virtual Reality (VR) setting
for comprehensive visualization and can be used for training
purposes.

The manufacturing environment was shaped in the form of
an elongated rectangle, thus creating a loop. The AGV travels
along from one workstation to another and following the
pathways designated specifically for it. The workstations were
not labeled in the model, aside from the waiting area W of the
AGYV. The separating and batching processes were presented
through two funneling conveyor elements at the beginning and
ending points of the conveyor. A human worker is shown at
Workstation 2, and depending on the arrival time of the bottles,
he or she may move to the position Workstation 3 to perform
further tasks there. The 3D setup design was safe for the worker
and facilitates a collision-free workflow. The 3D environment
can be seen in Fig. 5.

5. Conclusion

The proposed approach is a contribution to the performance
evaluation of the manufacturing environment integrated with
mobile robots or AGVs. This work presents how the
performance evaluation of manufacturing lines should be
conducted in a unified way and how it may visualize in a 3D
simulated world through VR application. Firstly, the
production processes were described using IDEF3 diagrams.
Secondly, a simulation of the production line was constructed
using DES. As the third step, the factory system was configured
and simulated for comprehensive visualization and to endorse
the changes. The test case enabled the validation of the
proposed approach and showed positive results. The analysis
of the production line yielded good results, as both the issues
and the solutions were successfully found. This research may
be deemed as yet another proot of concept that the performance
evaluation of production lines by the deployment of modern
software solutions is feasible and fruitful. The limitation in this
approach is that while the other technical challenges were
solved, the interoperability aspect such as the integration of the
used 3D software tool was not considered. The approach will
be enhanced in the future with more real test cases with digital
tools integration. Another future step would be the collected
data from the real system and its integration to the simulation
mode.
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Fig. 5. 3D manufacturing environment of the selected case study
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ABSTRACT

Manufacturing companies must ensure high productivity
and low production cost in rapidly changing market conditions.
At the same time products and services are evolving permanently.
In order to cope with those circumstances, manufacturers should
apply the principles of smart manufacturing together with
continuous processes improvement. Smart manufacturing is a
concept where production is no longer highly labor-intensive
and based only on flexible manufacturing systems, but
production as a whole process should be monitored and
controlled with sophisticated information technology, integrated
on all stages of the product life cycle. Process improvements in
Smart Manufacturing are heavily reliance on decisions, which
can be achieved by using modeling and simulation of systems
with different analyzing tools based on Big Data processing and
Artificial Intelligence (AI) technologies.

This study was performed to automate an estimation process
and improve the accuracy for production cell’s performance
evaluation. Although there have been researches performed in
the same field, the substantial estimation process outcome and
accuracy still need to be elaborated further.

In this article a robot integrated production cell simulation
framework is developed. A developed system is used to simulate
production cell parametric models in the real-life situations. A
set of rules and constraints are created and inserted into the
simulation model. Data for the constraints were acquired by
investigating industries’ best production cells performance
parameters. Information was gathered in four main fields:
company profile and strategy, cell layout and equipment,
manufactured products process data and shortcomings of goal
achievements or improvement necessary to perform. From those
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parametric case model, a 3D virtual manufacturing simulation
model is built and simulated for achieving accurate results.

The integration of manufacturing data into decision making
process through advanced prescriptive analytics models is a one
of the future tasks of this study. The integration makes it possible
to use “best practice” data and obtained Key Performance
Indicators (KPIs) results to find the optimal solutions in real
manufacturing conditions. The objective is to find the best
solution of robot integrated cell for a certain industry using Al
enabled simulation model. It also helps to improve situation
assessment and deliberated decision-making mechanism.

Keywords: Knowledge driven manufacturing, robot-cell
performance analysis, data analytics, simulation applications,
digital twins.

1. INTRODUCTION

In 2011 the Industry 4.0 philosophy was widely introduced,
followed by a systematic and determined development in this
field. An architecture based on seven pillars has developed
related to Industry 4.0 (I4.0), which describes the modern
production system more narrowly and the main development
trends of all production more broadly. As production in European
countries accounts for a large share of GDP at 24.9% [1],
development of this sector has a major impact on all other
sectors. Nevertheless, major changes are taking place in the
population structure due to low birth rates and high life
expectancy. The last decade has seen an increase in the
proportion of people aged 65 and over in the European Union of
more than 2.6%, leading to an increase in the dependency ratio
to over 21% [2] of the total population. There are currently just
over three people of working age for every person aged 65 or
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over [2]. This indirectly affects the number of employees in the
industrial sector and there is rather pressure to increase the
growth of value added in production, then in future the low birth
rate directly affects the share of people of working age in the
industrial sector.

In addition to labor market problems, European industry is
under constant pressure from cheaper production in developing
countries. Over the years, exports to the European Union have
been in constant profit, growing by 16.2% in 2016-2018 [3].

The EU is one of the world's leading environmental
regulations. Environmental regulations generally require
polluting facilities to undertake abatement activities and may
impose costs on businesses. Thus, regulatory differences across
firms, sectors or jurisdictions can cause changes in relative
production costs. Differences in environmental regulations can
thus alter the competition between firms by changing their
relative production costs. [4]. These difficulties drive the
development of industrial technologies for reducing the labor
force, using resources efficiently, and shorting the developing
time of the product.

The trends of digitalization have a great importance in US
manufacturing [5]. More firms are making footprint decisions
using a “total factor performance” approach that considers
logistics, lead time, productivity, and risk as well as proximity to
suppliers, other company operations, and final demand.
Fundamentally, manufacturers need to identify strategic use
cases that are linked to their digital initiatives and business
strategy. Furthermore, they need to consider how to begin
working alongside machines in a more automated and data
driven way.

Large companies with more resources are more likely to be
able to invest in and develop new 14.0 technologies to stay
competitive and tackle these challenges. However, small and
medium-sized enterprises (SMEs) are certainly not able to adapt
similar solutions. This is also one of the reasons why technical
solutions for companies of different sizes in the industrial sector
should be considered according to the company's investment
potential. It is important to ensure the competitiveness of small
and medium-sized enterprises by finding solutions to labor
problems, trying to increase productivity with equivalent
resources, shorten the time to market, and produce products in
compliance with current environmental standards. The biggest
challenge for SME:s is to fulfill these conditions simultaneously.
It certainly cannot be a single solution, but rather a continuous
process improvement that could be based on the well-known
Deming's Plan (P) - Do (D) - Check (C) - Act (A) cycle, one
possible implementation of such kind of work has been discussed
in high performance workplace design model [6].

Currently, SMEs use different types of production units such
as single station automated cell, automated assembly system,
flexible manufacturing  system, computer integrated
manufacturing systems, reconfigurable manufacturing systems
and in these units the level of automation and intelligence vary
greatly. Analyzing the current situation in the industry like
digitalization via digital twin, communication, standardization,
flexibility, customization, real-time monitoring, predictive

maintenance, and industry lower level evaluations, upper level
self-optimization and self-configuration [7, 8] and comparing it
14.0 principles lead to separate development areas for each
company that should be addressed. This paper described a digital
analyzing tool based on continuous process improvement
philosophy to optimize production cell workflow for the SME's.
Some of the key aspects for optimization are workforce shortage
and age peculiarity, assessment of investment compared to
production output and maintaining a competitive advantage in
high environmental regulations region.

2. MODERN MANUFACTURING

Modern manufacturing systems have evolved into complex
ecosystems. Digital manufacturing and smart factories are
becoming the norm in manufacturing, they depend on leverage
of connected devices and technologies, numerically controlled
machines and robots, advanced analysis with artificial
intelligence, IoT, digital twins, advanced planning and control
capabilities, which operates through the entire value chain. In
addition, these devices must be capable of sensing their
environments and interacting with one another. Simulation
through digital twin is the technology for decreasing the time to
design manufacturing systems and having information for
decision making in performance analysis. Development tools
related to 14.0 such as advanced simulation have great
importance in industrial applications. Hence, there is a need and
demand of digital solutions from production SME, which would
help effectively use implemented technology and involved
recourses. However, the studies offered and developed
specialized digital solutions for production SMEs are lacking
and need to be addressed comprehensively.
2.1 Manufacturing System Knowledge Based
Architecture

Knowledge-based engineering (KBE) is the application of
knowledge-based systems technology into the domain of
manufacturing design and production. Production systems
(robot-cell) can be defined as a kind of cognitive architecture, in
which knowledge is represented in different forms. So, typically
robot-cell based workplace as a part of a production system is a
complex system with a specific architectural structure. To have
a better understanding, according to Scholz-Reiter, a physical
hierarchical levelling system should have three levels with
various parameters: [9]

1. The system level, a production can be defined as stations or
cells which are usually linked with predicted storage and
transport systems;

2. The sub-system level, a workplace is considered as a pack
of support resources for operations (e.g. robots and
different devices);

3. The machine level, an environment with different tools,
grippers, data, programs according to the necessity of the
required equipment.

Previously stated physical hierarchical levelling system is
combined with components (e.g. CNC machine or a
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manipulator). According to the complexity of different level
systems, these resources can be described in several levels. In
this study, we have been using two different robot cells which
range between Sub-system to System level in principle. It allows
to define certain constraints and input for work cells used for
case studies.

2.2 Manufacturing System Design Inputs

Manufacturing System Design (MSD) inputs are based on
numerous different parameters or keywords for “how to design”.
The wide range of variables makes it complicated to select
important design input parameters (e.g. enterprise needs and
objectives, external factors, controllable factors, constraints and
targets), but precisely described manufacturing vision that leads
to refined result in design process. Moreover, not all these factors
affect the MSD directly, factors such as Market Uncertainty
(MU), Product Volume (PV), Product Mix (PM), Frequency of
Changes, Complexity, Process Capability, Worker Skill, Type of
organization, Time to first part, Investment, Available/Existing
Resources pointed out major parameters [10]. Starting with MU,
it can be defined with fluctuations of a product demand. The
demand affects manufacturing operation, creating an over or
under capacity in the manufacturing system. Another important
factor which is tightly connected with MU is the Product volume.
Maximizing the PV determines manufacturing physical design
by affecting factors like needed space, machine selection and
layout. Furthermore, MSD process certainly includes the level of
flexibility which can be associated with Product Mix. If the
manufacturing system is expected a large product mix, it would
lower the product volume produced per part. On the other hand,
not all these factors stated above favor the MSD process. For
example, the amount of investments is treated as a constraint and
limits available choices to the designers. This can be based on
several variables such as cost of implementation, payback period
or time needed for MSD. For investments, we can consider
Existing Resources to be a constraint in the design process.
These availabilities such as time, finances, existing technologies
can set limitation to the complexity which are expected from
designed manufacturing system. All in all, these crucial factors
should be considered carefully to use as inputs for fundamentals
of manufacturing system design which should be chosen
according to specific needs of enterprise.

2.3 Advanced Analytics

Advanced Analytics (AA) are becoming more and more
vital for making so called “best decisions” on today’s field of
manufacturing. AA enables companies to efficiently and
effectively make both narrow and extensive data-and modelling
decision and facilitates on how to capitalize within the short-,
medium- and long-term activities. Support for the decision
maker comes to an automated process with visualized output
rather than manual calculations on spreadsheet. AA can be
divided into three computerized data processing analytic
methods which are listed below:

* Descriptive analytics: accounting and analysis of historical
data. Used in back casting practices and forecasting of
seasonal demands.

* Predictive analytics: considers near past data to predict
coming future trends, biases, tendencies, behaviors, etc.,
through causation and correlation.

* Prescriptive analytics: finds or prescribes the best mode,
route, manner or moves to operate (outputs) based on given
data and models (inputs). [11]

Data Analytics application requires a sufficient available
database. By combining existing information gathered from
MES and ERP databases with the effects of external factors, it is
possible to use advanced analytics to extend the simulation
model so that the forecast for the future is as real as possible.
Possible application scenarios could be from manufacturing
parameters optimization, predictive maintenance, available
capacity or capacity needs prognosis and process performance
among others [12]. The analysis process itself is designed
cyclical nature and consists mainly of following steps [13]:

* Business understanding - objectives and requirements from
a business perspective,

* Data understanding - data collection, data quality,

* Data preparation — construction of final dataset,

* Modeling — applying different modeling techniques. Some
of the main methods used for modeling is this research are
correlation, regression and prognosis,

* Evaluation — verifying model and dataset,

* Deployment — presenting results in a form that can be used.

2.4 Performance Monitoring

Key Performance Indicators (KPI) should be consider as a
company vital sign, describing the actual situation and goal
fulfillment. Using those as a tool, provides an opportunity to
measure, analyze and make decisions for keeping production on
track. At the same time, it is possible to identify bottlenecks in
production, possibility to increase the effectiveness of employees
and machine or to monitor the progress of production orders.
Today, KPI monitoring is a multi-level, real-time process which
begins at the shop-floor and reaches to the company strategic
level, concentrating collected information for higher level KPIs.
Selection of KPI for different companies and for different levels
is generally a multi-criterion decision-making problem (MCDM)
and it is important that the choice reflects the subject as
accurately as possible. KPI selection problem have been
addressed in those following researches [14, 15].
Solution for SME have been developed to assess the production
unit performance [16], focused particularly on the evaluation
process: Define System, Selection of KPIs, Process Modeling
Simulation, Data Collection and Analysis and finally, Real Time
Visualization. Hierarchical linking between KPIs through all
levels have been mapped. The proposed KPIs are shown in Table
1. for SME production unit and are used in simulation model.
Starting from the third and lowest level where inputs are
measured directly from workplace or machine and ending at the
highest where outputs are calculated.
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TABLE 1. SELECTED KPI HIERARCHY

Level Performance Indicators
Utilization
1 Overall Equipment Effectiveness

Strategic ~ Throughput
Discounted Payback Period
Availability
Performance
I Quality
Planned Production Time
Actual Production Rate
Set-up Time vs. Cycle Time
Operating Time/Idle Time vs. Cycle Time
Total Products Produced
Finished Products
I Rejected Products
Shop- Activity Processing Time
Floor Operating Time
Ideal Processing Time
Total Run Time

Tactical

2.5 Production Cell Efficiency Analysis

Over the years many decision support systems (DSS) has
been developed to help decision makers to select most functional
and cost-effective equipment for production cell. One of the IR
manufacturing cell design and redesign DSS system are shown
in Fig 1.
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FIGURE 1: IR SELECTION DSS GENERAL MODEL [19]

Primary task is to check the cell architecture and technical
parameters best suited for a selected job, and the reverse or
prediction task consists of the analysis of optimal utilization of
the implemented robot-cell in a company. One of the key
components of reverse task is production cell efficiency analysis.
The efficiency analysis evaluates the designed or installed
solution, based on best competences. For adequate estimation of
production unit manufacturing efficiency and assessment of
production unit process failures, the whole system, components
and their relations must be evaluated [17, 18]. Next section
focuses on the development of the efficiency analysis module.

3. METHODOLOGY

To develop the efficiency analysis module of the production
unit, a case study methodology was applied, for which the
necessary theoretical material was investigated in the literature
review. The proposed model (Fig. 2) is intended for
computerized performance assessment of a production unit
based on the objectives set in the company's strategy and
industry-based collected production data. The model can be used
to evaluate a company production process (CNC production cell)
for a comparison with an ideal process set up in the proposed
model. In addition, the proposed model is a useful tool in the
design phase of a new production unit, as it allows to assess
productivity based on the collected production information. The
advanced data analysis of the model provides information for
further improvements.

P N
I Rules
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Strategy ) —= [ [ LT TN
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Results

FIGURE 2: PRODUCTION SYSTEM EFFICIENCY ANALYSIS

The efficiency analysis is divided into three steps as shown in
Fig. 2., where each step increases the accuracy of the selection.
In the first step, production type, production volume and
production technology are determined for the designed or
redesigned cell. Inputs for this step are the design rules and
constraints [10]. At the end of this step, the general requirements
of the production unit have been determined. In second step, a
simulation model is created according to the selected rules and
constraints. Different scenarios are inserted into the developed
model and the optimal scenario or scenarios are selected. At the
end of this stage, a parametric model of the cell has been
developed with a simulated technical economic result. At last
step 3D simulation model is create based on the information
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provided earlier and most accurate results in different layouts
and settings are acquired.

Information and data for the simulation model have been
collected through various studies and databases. Studies on
companies' products, production capacity and production units
have been included [20, 21]. Production-specific data have been
collected from companies' Manufacturing Execution Systems
(MES) databases. The parameters and sub-parameters are
selected according to the literature [10] and vary depending on
the production capacity and type of the company. A list of the
parameters used are given in table 2. From companies MES
databases, the list and order of operations, their planned and
actual cycle times, amount of scrap and rework needed to
manufacture the products are used. The number of operations,
cycle times and the number of reworks give an estimation of the
product complexity.

TABLE 2: PARAMETER AND SUB-PARAMETER LIST

Part of the collected data (No of production machines,
Shifts, Investment), the smallest in volume, can be used in the
raw form. The second part of the data (product variability,
quantities, new products) was processed statistically and their
distribution was calculated. The third part and largest of the data
were processed using artificial neural network classification [22,
23]. Neural Designer software was used for this purpose.

3.1 Manufacturing Cell Model

The manufacturing cell model is based on robot-based
manufacturing cell Performance Evaluation Model (PEM) [19]
and is programmed using Discrete Event Simulation (DES)
software, Rockwell Automation Technologies Inc. Arena. An
overview of the model is given in Fig. 3 and one of the sub-
models in Fig 4.

The model is used to simulate different production orders
simultaneously, like in “real life”, according to their operation
sequence and order specific data. Order can exit the system only

Parameter Sub-parameter when all the necessary operation and occasional rework have
Company No of production machines been performed, and order has been successfully completed.
Shifts Simulating concurrently, it is possible to assess the combined
Investment effects of orders, identify bottlenecks and incorporate
Manufacturing Operation orders improvements, which are directly reflected on production unit
Volume performance records.
Performance Entities for the model were defined as an order where part
Operation Start Time production information (operations, cycle times, quality
End Time parameters, etc.) together with production volume are assigned.
Availability Outputs were defined as completed orders and rejected orders.
Performance Throughput and net value are calculated for each completed
Quality order. Similarly, unearned value is calculated for rejected orders.
Process Capability After simulating parts and volume by their distribution a KPI can
Product Complexity be calcglated‘ For thi.s.mo_del a simple KPI selectior_l of total
Variety production unite Utilization, Net Income and Discounted
Quantity Payback Period were included. At first the model asses the
“New Products” existence of production capacity, in case the operations are busy
and there is no free capacity, the order is sent to Rejected orders.
B > Coppits
Ma;n;famiu-ring [—* Engmeeng
data )
(— Pre- Production —
Total working hours,
Total parts 4
Operations Utilization rate
Order —> —> ;{;ﬁg;@"ﬁ; —Yes— Pr;;'x:tr‘zgun —> —< Next Operation? Iring  — gg&
Operation parameters: Rejected
Order parameters: ‘ Cycle Time . Orders
Order ID The queue Operation performance All OP have — Post- Production —
Quantity for operations Rework been completed
Bill of Operation Order is too long e
Start Time

End ’T\me

—> Finishing —

End Time

FIGURE 3: MANUFACTURING CELL MODEL

5 © 2020 by ASME



If the production unit has free capacity to utilize, the order will
start to execute according to the order bill of operation BOO list.

Rework guantity 4—Yer‘

( Performance
Operation No. 2 Is Rework . Preparation
Machining E;rcaur‘l:‘luerrl > CNC Machining —» necessary o> e

FIGURE 4: MANUFACTURING CELL SUB MODEL

In the model, the operations are described more broadly than
normally in industry production planning. The model combines
similar industrial operations such as turning, milling, bending
into one manufacturing operation with a cycle time and operation
specific productivity, availability and quality. Fig. 2. The
following operations are used in the model: Engineering, Pre-
processing, Manufacturing, Post-processing and Finishing. Each
operation in the model is associated with a database, from which
the required data for the operation is loaded according to the
product and the operation cycle time and calculated according to

equation (1).
Q *CT = /Py * Pp )

Orn xA
Where Or, - represents operation throughput time, Q -
production quantity, CT - planned cycle time, Po - operation
performance value, Pp - part performance value, C - capacity and
A - availability. Similarly, rework RO equation (2). is calculated
where a product-specific quality coefficient Py directs Qp
products to reprocessing. Normative times to move batches are
set between operations. When all operations for the batch have
been performed, the batch is sent to Completed Orders.

Ro=Q*Py+Qp @

4. CASE STUDY

The validation of the model was accomplished by using
cases studies. Two cases were chosen, a CNC manufacturing cell
and a robot welding cell. The reason to select those cases was
that there are large number of such production cells available in
the regional industry. Another consideration was the availability
of necessary production data and the structure of collected data.
During the validation process, the correlation of production unit
performance values and KPI's, was observed at the same
production program.

4.1 CNC Manufacturing Case Study

For the CNC Manufacturing case a small company was
chosen. The company is manufacturing small and medium sized
mechanical components for industrial machines and medical
devices. Work is organized mainly in one shift and sometimes in
two shifts. This study focused on the CNC machine-tending cell
shown in Fig. 5. The production cell consists of medium sized
turning center, co-working robot connected to it and WIP (work

in progress) storage. The KPI where chosen as following:
Throughput, Total Number of Orders, Total Products Produced,
Overall Equipment Effectiveness, Utilization TPU and
Discounted Payback Period.

FIGURE 5: CNC MACHINE-TENDING CELL

Where: 1 - Co-working robot, 2 - universal prism gripper, 3 -
work in progress storage, 4 - part overturn position, 5- machining
position. Operations for the cells normal workflow are listed and
explained in table 3. Average operations availability and
performance was acquired from the company MES database.
Order volume distribution, parts distribution and part cycle times
for the operation where acquired from the company ERP system
and MES database.

TABLE 3: CNC MANUFACTURING CASE STUDY OPERATIONS
Op. Operation Explanation

The order has been accepted and

! Engineering planned for production starts.

2 Engineering CAM programming the part

3 Pre- Production CNC machine and IR robot setup
and test run.

4 Manufacturing Blanks are inserted to the WIP

and manufacturing is started.

5 Post- production  Quality control are carried out
The batch is finished, and the
setup is taken down

6 Finishing

For further configuration a 3D simulation is used, see Fig. 6.
Visual Components 4.2 software was used to perform the
analysis. By experimenting with different layout variations, it is
possible to find the most optimal solution for the company
production floor. As in this case the real environment already
exists, the simulation was used only to optimize the IR robot
position according to robot reach. For the new layout design,
different configuration robot can be used at different mount
locations and these changes can be tested in the 3D simulation
environment.
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FIGURE 6: CNC MANUFACTURING CASE STUDY
SIMULATION MODEL

4.2 Robot Welding Case Study

For the second case study a robotic welding unit of a small
manufacturing company has been selected similarly as before.
The company manufactures boiler housings and small
assemblies for forest machines in small-scale serial production
conditions. Six different products have been setup in this
production unit. The work is organized in one shift. The
production unit operator assembles parts from a pre-welded
assembly in the jig, which is placed into the production unit for
final welding. The KPI where chosen similarly as previous case.

FIGURE 7: ROBOTIC WELDING PRODUCTION UNIT

The production unit is shown in Fig. 7. where: 1 - robot
manipulator, 2 - controller 3 - welding unit, 4 - programmable L-
type positioners.

Operations for the regular workflow are listed and
explained in table 4. For the welding cell case study 3D
simulation, shown in Fig. 8, MotoSim EG-VRC software was
used. As with the previous case 3D analysis, the optimal robot
position was determined, same here but the main concern was
whether the robot can reach all the assembly welding seams on
the L positioner. Since the welding parameters had already been
validated, it was possible to obtain accurate welding cycle times
from the simulation.

TABLE 4: ROBOTIC WELDING CASE STUDY OPERATIONS

Op. Operation Explanation

The order has been accepted and

! Engineering planned for production starts.
. . CAM programming or teach in

2 Engineering the assembly

3 Pre- Production IR robot setup and test run.

4 Pre- Production jSigot welding parts in assembly
Assembly are inserted to welding

5 Manufacturing table and manufacturing are
started.

6 Post- production  Quality control are carried out

The batch is finished, and the

7 Finishing setup is taken down

FIGURE 8: ROBOTIC WELDING CASE STUDY SIMULATION
MODEL

4.3 Results and discussion

The production unit model was simulated using 10 preset
products with different configuration, the minimum parts
quantity was 10 and the maximum 500 parts per order. The
simulation duration was 4.5 years, which in total was 9,000
working hours, working in one shift. As a result, a total of 100
thous. parts were produced during 430 orders, making the
average number of parts per order 230 pc. The overall utilization
rate for the production unit was 40% during this period, with
CNC machining being the highest, with a utilization of 83% in
some cases. CNC machining center overall equipment
effectiveness OEE lowest 52%, highest 90% and average value
87%. Based on these data, the calculated discounted payback
period DPP was 3.2 years.

The second case study production model was simulated for
continuous work of 4000 hours, 2 years. As a result, 1400
assemblies where welded during 120 orders. The overall
utilization rate for the production unit was 53% during this
period, with robot welding operation being the highest,
utilization of 80% in some cases. Overall equipment
effectiveness OEE average value was calculated 72%. Based on
these data, the calculated discounted payback period DPP was

7 © 2020 by ASME



4.8 years. Comparing the KPI numerical values obtained in both
simulations with the actual KPI values of the company's
production unit, the variation remains within 25% of the
boundaries.

5. CONCLUSION

In this research, various possibilities were explored how to
model semi robotized production unit workflow, using existing
production information as input data. As a result, a methodology
was developed to assess the performance of a production unit
interactively by comparing it in digital twin modeled ideal
process, where one of the main elements was a production unit
knowledge-driven based discrete simulation operation model.
The developed model was validated by using two case studies
and modeled results compared and verified to the companies
actual KPI's. As a last step, a 3D simulation was created, based
on the previous results, which was used to refine or reconfigure
the production unit. Based on the developed methodology, it is
possible to analyze the performance of an existing production
units. It also helps to validate a new design of a production
cell/unit and optimize their outputs through prescriptive analysis.
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Robotiseerimis tase SME ‘des

Uuringu eesmargiks on vélja selgitada Eestis keskmiste ja vdikeste ettevotetes robotiseerimise
ulatus ja tase. Uuringu kaigus kogutud andmeid téddeldakse ja avalikustatakse uldistades.

Ettevote nimi

Mis on teie ettevotte pdhitegevusala?

Mitu tootajat on teie ettevottes?

Mitu tdotajat on teie ettevottes tootval tdokohal ?

Kui suur on teie ettevotte kaive ?



6. Millises vahemikus on teie toodete partiide levinuimad suurused?

Markige ainult liks ovaal.

C <10
()10-50
(_)51-100
(" )100-500
(" )>500

7. Kui suur on korduvate toodete osakaal?

Markige ainult (iks ovaal.

C )<10%
C )11-20%
C)21-30%
()31-50%
C )>50%

8. Mitmes vahetuses on t60 organiseeritud teie ettevottes?
Markige ainult (iks ovaal.

(") Uhes vahetuses
() Kahes vahetuses
(") Kolmes vahetuses

- Vastake juhul kui ettevdttes on juba juurutatud
EttevGttes on kasutusel t66stusrobotid.

toostusrobotid.



9. Mitu robotit on teie ettevottes kasutusel?

10. Kas te kasutate robotiseeritud tdokohtadel traditsioonilist voi koostoorobotit
(robot tootab ilma eriliigiliste turandueteta)?

Maérkige kbik sobivad.

|| Traditsioonilist robotit
|| Koosts6 robotit

Muu: D

11.  Millistes protsessides/operatsioonides on teie ettevottes robotiseeritud?

Markige kbik sobivad.

|| Pakkimine

|| Koostamine

|| Materjali liigutamine
D Varvimine

|| Palletiseerimine
|| Punktkeevitus

|| Kaarkeevitus

|| Mehaaniline t56tlus
D Lopptootlus

|| Pinnakatmine

|| Inspekteerimine

Muu: D



12.  Kui suureks te hindate oma ettevottes kasutatavate robotite koormatust?

Maérkige ainult iks ovaal.

( )<30%
( )31-50%
( )51-70%
C )>70%

13. Kas robotiseeritud todkohal teostatakse pdhi voi abioperatsioone?

Maérkige kbik sobivad.

|| Pohioperatsiooni
|| Abioperatsiooni

Muu: D

14. Kas robotiseeritud tookohal on kasutusel lisaseadmed?

Maérkige kbik sobivad.

| | Eikasuta
D Lisateljed, poordlauad
|| Liikumisrajad

Muu: D

15. Kas roboti tooriist voi haarats vajas eraldi projekteerimist, valmistamist?

Markige ainult (iks ovaal.

() Jah
(C Ei



16. Kuidas on tagatud todlise ohutus robotiseeritud tookohal?

Maérkige ainult iks ovaal.

() Eiole tagatud
() Kaitseekraan

() Eraldatud tsoon

() Inimese tuvastamise siisteem

() Muu:

17. Kas robotiseeritud tddkohad on piisavalt kaetud insener-tehnilise personaaliga?
Markige ainult (iks ovaal.

() Eiole kaetud, ostetakse teenusena sisse

() On osaliselt kaetud, osaliselt ostetakse sisse

() Onkaetud

EttevStte tulevik Kisimustele vastates tugineda ettevotte jargmise 3
evotte tulevikuprognoos aasta arengustrateegiale.

toostusrobotite kasutuselevotuga.

18. Kas loodaval robotiseeritud todkohal voiks kasutada traditsioonilist voi
koostdorobotit (robot tédtab ilma eriliigiliste turandueteta)?
Markige kbik sobivad.

|| Traditsiooniline robot
|| Koost66 robot

Muu: D



19. Milliseid protsessides/operatsioonides teie ettevottes voiks robotiseerida?

Markige kbik sobivad.

|| Pakkimine

|| Koostamine

|| Materjali liigutamine
|| vérvimine

|| Palletiseerimine

|| Punktkeevitus

|| Kaarkeevitus

|| Mehaaniline t&6tlus

|| Lopptootlus
|| Pinnakatmine
|| Inspekteerimine

Muu: D

20. Kas loodaval robotiseeritud todkohal oleks vaja lisaseadmeid?

Markige ainult (iks ovaal.

(_ DEiolevaja

() Lisateljed, posrdlauad

() Liikumisrajad

21. Kasrobotile oleks vaja projekteerida eraldi tooriist/haarats?

Markige ainult (iks ovaal.

() Jah
( E

22. Mitu inimest hetkel tootab robotiseeritaval tdokohal?



23. Kas ettevottes on olemas inimene kes tegeleb tédkoha robotiseerimisega?

Markige ainult (iks ovaal.

() Jah
( Ei

24. Kas teie ettevottes on voimalik t66joudu umber paigutada?
Markige ainult (iks ovaal.

() Jah, ettevote ise tegeleb iimberkoolitusega

() Jah, kuid on vajalik t66j6u iimberkoolitus

( DEi

25.  Kommentaarid

Google pole seda sisu loonud ega heaks kiitnud.
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ROBOTISEERITUD TOOTMISUKSUSE UURING

Kuupaev: 20

1 Uldandmed

Ettevotte nimi:

Intervjueeritava nimi ja amet:

Tootajate arv:

Vahetuste arv:

Ettevotte kaive:

Ettevotte bilansimaht:

Il Tootmisiiksus

Valdkond:

Tehnoloogia:

Tootmistksuse plaan:

Robotite arv ja Ulesanne:

Lahendus: (standardlahendus, stand. adapt, erilahendus, sisseostetud erilahendus, uus
lahendus)




ROBOTISEERITUD TOOTMISUKSUSE UURING

Protsess: (materjali paigutus, protsessi robot, ks protsessi osa, keeruline protsess,
erilahendus )

Lisaseadmed: (ei, lisateljed, lisateljed ja juhtréopad, koostdd robotid, mobiilsed avatud kk.)

Robotite pdhiparameetrid:

Tootmisiiksuse maksumus:

Tootmisutiksuse planeeritav tasuvusaeg:

Tootmistksuse koormatus (h):

Tootmisiiksuse seisakud (h):

Toodete praagiprotsent / reklamatsioonid (Quality):

Tootmisuksuse hooldus:

Tootmisvdimekuse muutus (%):

Tddliste arve enne ja parast robotiseerimist:

Insener-tehnilise personali arv (vajadus):

Esinenud probleemid:




ROBOTISEERITUD TOOTMISUKSUSE UURING

Il Tooted

Tootepere nimetus:

Erinevate toodete arv tooteperes:

Partii suurused ja korratavus:

Keskmine seadistusaeg:

Keskmine tsikliaeg:

Hinnanguline tstikliaja vdit protsesside optimeerimisega (Availability) :

Toolise abi toimetamine, tegevus ja keskmine aeg:

IV Médrkused




Curriculum vitae

Personal data
Name:
Date of birth:
Place of birth:

Citizenship:
Contact

E-mail:
Education

2017 -

2006 — 2012

2001 - 2005

1989 — 2001

Language competence
Estonian:
English:

Tavo Kangru
20.12.1982
Turi

Estonia

tavo.kangru@tktk.ee

Tallinn University of Technology, PhD studies in Department of
Mechanical and Industrial Engineering

Tallinn University of Technology,

MSc studies in Product Development

TTK University of Applied Sciences,

Mechanical Engineering

Turi Gymnasium of Economics

Native speaker
High Level

Professional employment

2017 -

2016 -
2015-
2012 -

2014 - 2017

2008 — 2012
2003 — 2005

Honours & awards

2020
2019
level 8
2012
level 7

Patents

TTK University of Applied Sciences, Institute of Technology,
curriculum coordinator of Mechanical Engineering

Vahva Solution OU, product development

0U Toucan Engineering, CTO

TTK University of Applied Sciences, Institute of Technology,
lecturer

TTK University of Applied Sciences, Chair of Mechanical
Engineering

TTK University of Applied Sciences, assistant

0U Kavor Motorsport, production engineer

Product design contest “Bruno” Special Award Edasi 2020
Professional certificate 151504 Chartered Mechanical Engineer, EstQF

Professional certificate 075896 Diploma Mechanical Engineer, EstQF

A pair of wind rotors; Owners: TTK University of Applied Sciences; Authors: Erich
Rannat, Tavo Kangru, Rein Mégi, Tiit Tiidemann; Priority date: 27.12.2007.

148



Elulookirjeldus

Isikuandmed
Nimi:
Slinniaeg:
Sinnikoht:
Kodakontsus:
Kontaktandmed
E-post:
Hariduskaik
2017 -
2006 — 2012
2001 — 2005
1989 — 2001

Keelteoskus

Eesti keel:
Inglise keel:
Téokogemus

2017 -
2016 —
2015 -
2012 -
2014 -2017
2008 — 2012
2003 — 2005

Tunnustused ja preemiad

Disaini konkursi “Bruno” eriauhind Edasi

Kutsetunnistus 151504 Volitatud mehaanikainsener, tase 8
Kutsetunnistus 075896 Diplomeeritud mehaanikainsener V, tase 7

2020
2019
2012

Patendid

Tavo Kangru
20.12.1982
Turi

Eesti

tavo.kangru@tktk.ee

Tallinna Tehnikallikool,
To6stustehnika instituudis
Tallinna Tehnikailikool, magistriGpingud, Tootearendus
Tallinna Tehnikakorgkool, rakenduskdrgharidusdpe,
Masinaehitus

Tiri Majandusglimnaasium

doktoriépingud Mehaanika ja

Emakeel
Korgtase

Tallinna Tehnikakdrgkool, Tehnikainstituut, Masinaehituse
Oppekava juht

Vahva Solution OU, tootearenduse insener

0U Toucan Engineering, tootmisjuht

Tallinna Tehnikakdrgkool, Tehnikainstituut, lektor

Tallinna Tehnikakdrgkool, Masinaehituse dppetooli hoidja
Tallinna Tehnikakdrgkool, assistent

oU Kavor Motorsport, tootmisinsener

Tuulerootoripaar; Omanikud: Tallinna Tehnikak&rgkool; Autorid: Erich Rannat,
Tavo Kangru, Rein Magi, Tiit Tiidemann; Prioriteedi kuupdev: 27.12.2007.
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