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Abstract
This thesis delves into the challenges and opportunities associated with in-
tegrating Extended Reality (XR) technologies into practical control engi-
neering education and training. The research is motivated by the gap in
effectively incorporating XR into mainstream computational platforms and
workflows, despite its increasing accessibility and potential benefits. The
thesis specifically targets the field of control engineering, recognizing its com-
plexity, diversity, and technological readiness, making it an ideal candidate
for adopting XR solutions to enhance educational and operational outcomes.

The primary aim of the thesis is to foster the widespread adoption of XR
as a computational platform within practical control engineering, achieved
through a three-pillar strategy. This includes integrating XR into exist-
ing workflows via a unified modular framework, introducing data-driven
decision-making methodologies for designing XR applications, and integrat-
ing AI methods to enable rapid prototyping of these applications. The con-
tributions of the thesis encompass the development of a conceptual frame-
work for integrating XR into control engineering education, the creation and
assessment of XR applications for control systems, and the proposal of in-
novative methods for data-driven analysis and AI-driven decision-making in
XR environments.

The thesis is structured into seven chapters, each addressing different
facets of the research. Chapter 2 provides a comprehensive review of the lit-
erature related to control engineering laboratories and the potential of DT
and XR technologies. Chapter 3 introduces the “Reimagine Lab” framework,
combining DT and XR to enhance traditional laboratory experiences. Chap-
ter 4 showcases the practical application of the “Reimagine Lab” framework
through detailed case studies. Chapter 5 presents research findings from a
usability study of a lab-scale gantry crane in an XR environment. Chapter
6 explores a data-driven approach to enhancing user engagement in virtual
environments (VEs), using machine learning to analyze and classify user
interactions. Finally, Chapter 7 advances the framework by integrating AI-
enhanced DTs, focusing on training DTs through a reinforcement learning
algorithm for specific tasks.

In conclusion, the thesis addresses the challenges of integrating XR tech-
nologies into established systems and workflows. By focusing on practical
control engineering education and training, the research offers a comprehen-
sive approach to enhancing learning and operational efficiency through the
innovative use of XR, data-driven decision-making, and AI methodologies.
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Kokkuvõte
Käesolevas doktoritöös käsitletakse probleeme ja võimalusi, mis on seotud
laiendreaalsuse (XR) tehnoloogiate integreerimisega praktilisse juhtimisteh-
nika valdkonna haridusse ja koolitusse. Uurimistöö ajendiks on lüngad XR-
i tõhusas integreerimises üldkasutatavatesse arvutusplatvormidesse ja töö-
voogudesse, hoolimata XR-i kättesaadavuse ja potentsiaalse kasu kasvust.
Doktoritöö on suunatud konkreetselt juhtimistehnika valdkonnale selle kogu
keerukuses, mitmekesisuses ja tehnoloogilises valmisolekus, mis on ideaal-
seks kandidaadiks XR lahenduste kasutuselevõtuks, et parandada haridus-
ja töötulemusi. Doktoritöö peamine eesmärk on edendada XR-i kui arvu-
tusplatvormi laialdast kasutuselevõttu praktilistes juhtimissüsteemides, mis
saavutatakse kolme samba strateegia abil. Strateegia hõlmab XR-i integree-
rimist olemasolevatesse töövoogudesse ühtse modulaarse raamistiku kaudu,
andmepõhiste otsustusmeetodite kasutuselevõttu XR-i rakenduste kavanda-
miseks ning tehisintellekti meetodite integreerimist, et võimaldada nende
rakenduste kiiret prototüüpimist. Doktoritöö panus haarab kontseptuaalse
raamistiku väljatöötamist XR-i integreerimiseks juhtimissüsteemide õppe-
töösse, XR-i rakenduste loomist ja hindamist juhtimissüsteemides kasuta-
miseks ning uuenduslike meetodite väljapakkumist andmepõhiseks analüü-
siks ja tehisintellektipõhiseks otsuste tegemiseks XR-i keskkonnas. Dokto-
ritöö sisaldab seitse peatükki, millest igaüks käsitleb uurimistöö erinevaid
tahke. Teises peatükis antakse põhjalik ülevaade juhtimissüsteemide labori-
tega seotud kirjandusest ning digitaalkaksikute (DT) ja XR tehnoloogiate
potentsiaalist. Kolmandas peatükis tutvustatakse “Reimagine Lab” raamis-
tikku, mis ühendab DT ja XR tehnoloogiaid, et parandada traditsioonili-
si laborikogemusi. Neljandas peatükis tutvustatakse “Reimagine Lab” raa-
mistiku praktilist rakendamist üksikasjalike juhtumiuuringute abil. Viien-
das peatükis esitatakse uurimistulemused, mis on saadud laborimõõtmeli-
se portaalkraana kasutatavusuuringust XR keskkonnas. Kuuendas peatükis
uuritakse andmepõhist lähenemisviisi kasutajate kaasatuse suurendamiseks
virtuaalkeskkondades, kasutades masinõpet kasutajate interaktsioonide ana-
lüüsimiseks ja klassifitseerimiseks. Seitsmendas peatükis arendatakse väl-
japakutud raamistikku edasi, integreerides tehisintellekti täiustatud DT-d,
keskendudes DT-de treenimisele kinnitusega õppimise algoritmi abil konk-
reetsete ülesannete jaoks. Kokkuvõttes käsitletakse doktoritöö väljakutseid,
mis kaasnevad XR tehnoloogiate integreerimisega väljakujunenud süsteemi-
desse ja töövoogudesse. Keskendudes praktilisele juhtimistehnika õppele ja
koolitusele, pakub uurimus terviklikku lähenemisviisi õppimise ja tegevuse
tõhususe suurendamiseks XR-i, andmepõhise otsustusprotsessi ja tehisintel-
lekti meetodite uuendusliku kasutamise abil.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

With the continuous advancements in information technology augmenting
the capabilities of XR hardware, such as Head-Mounted Devices (HMDs),
XR is progressively becoming more attainable and widespread. Yet, despite
the success of specific XR use cases, the technology has not yet achieved
its full potential as a mainstream computational platform. A significant
impediment to XR’s broad adoption is the lack of integration into prevail-
ing systems and workflows. Although specific XR applications in certain
sectors have shown promise, transitioning from isolated instances to a com-
prehensive, sustainable incorporation within existing infrastructures remains
a significant challenge. It is crucial to identify and establish a foundational
framework to facilitate the seamless integration of XR applications, ensuring
their sustainable and effective implementation across each sector.

Moreover, as XR is an emerging technology, professionals face intrin-
sic challenges in designing applications, crafting interaction modalities, and
developing visualization interfaces that cater to a heterogeneous user base
with varied backgrounds and expertise levels. These challenges are further
magnified by the spatial nature of XR interactions, which demand extensive
development cycles for XR applications, presenting an additional barrier to
their widespread adoption.

In addressing these challenges, this work proposes a focused approach,
beginning with the selection of a specific industry or domain. After care-
ful consideration, practical control engineering education and training has
been chosen as the focal point for applying methodologies to navigate the
challenges presented by XR technologies. This decision is underpinned by
several compelling reasons:

Firstly, the diversity and complexity of systems within control engineer-
ing are unparalleled. This field deals with a wide range of complex systems,
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from simple household appliances to intricate industrial machinery, making
it indispensable across various sectors such as manufacturing, automotive,
and healthcare. The diversity and complexity of these systems suggest that
methods successfully employed in control engineering have the potential to
be adapted and applied to other sectors.

Secondly, the technological readiness of the sector is a significant factor.
Educators and professionals in control engineering are typically at the fore-
front of technological advancements, often leading the charge in adopting
innovative tools to enhance learning and operational efficiency. The tech-
nical acumen of these individuals, combined with their openness to new
technologies, positions the sector as an ideal candidate for the integration
of XR solutions. XR technologies, renowned for their ability to simulate
complex systems and provide immersive, hands-on learning experiences, are
well-equipped to tackle the existing challenges in control engineering educa-
tion.

The aim of this research is to identify and address the challenges that
limit the widespread acceptance and integration of technologies. The central
question is how can XR specialists, position XR as a core component of
established systems not just a mere technological novelty?

1.1.1 Digital Twins as the Foundation for XR Integration in
Control Education

In today’s rapidly evolving industrial landscape, the emergence of Industry
4.0 [1] has brought in its wake a wave of transformative technologies. This
paradigm shift necessitates a broader understanding of the changing nature
of industry and the impact of new technologies that fall under the Industry
4.0 umbrella. One such technology is Digital Twins (DT) [2].

The novel developments in the Industry 4.0 era also include the emer-
gence of intelligent systems, including intelligent control systems. Mean-
while, one of the most significant advantages of utilizing DT is their ability
to design and optimize control systems. These control systems act as in-
telligent regulators that guide various industrial processes towards desired
states, such as maximizing energy efficiency and minimizing waste. Through
the accurate representation and analysis of physical systems in the virtual
world, control engineers can identify inefficiencies and tailor controllers to
address specific challenges, leading to substantial improvements in energy
consumption and overall system performance [3].

The adoption of Industry 4.0 technologies, driven by DT and advanced
control systems, has transformative effects across various sectors. For in-
stance, in manufacturing, control engineering allows for real-time monitoring
and optimization of production lines, reducing energy consumption, and op-
timizing resource utilization. In smart buildings, automated control systems
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integrated with DT can adjust heating, cooling, and lighting based on real-
time data, thus minimizing energy waste while ensuring occupant comfort.
The implications of control engineering in energy efficiency extend far be-
yond industrial and building sectors. Transportation systems, such as smart
traffic management, electric vehicle charging optimization, and intelligent
public transportation networks, all benefit from advanced control strategies.
These applications lead to reduced greenhouse gas emissions, lower fuel con-
sumption, and improved traffic flow, contributing to a more sustainable and
environmentally friendly society.

A new era in control technology in the scope of Industry 4.0 and beyond
also necessitates the availability of highly trained control engineers famil-
iar with the latest technological advancements. For this reason, the current
approach to control education must be updated accordingly. The chang-
ing nature of industry, driven by the advent of Industry 4.0, necessitates a
comprehensive understanding of DT and their role in facilitating industrial
growth. Control engineering assumes a central position within this evolv-
ing landscape, emphasizing the need for proficient control system operation
to optimize energy utilization and achieve desired outcomes. By merging
mathematical theory with practical applications, control engineering educa-
tion equips future engineers with the skills to navigate the complexities of
this interdisciplinary field [4].

Control courses —as they are conventionally taught in educational insti-
tutions— have their roots in mathematical theory and at the same time they
require from the students an intuitive understanding of different concepts,
which allows the students to relate the acquired knowledge to actual practical
applications of control theory. That is why control engineering instructors
persistently highlight the importance of practical hands-on experience in
successful control engineering education from the early stages of learning [5].
Surveys conducted among control educators and industrial partners indicate
that teaching concepts and the implications of control engineering should
take precedence before delving into the intricate mathematical calculations
behind them [6].

Many pedagogical tools, such as course projects, internships, and labo-
ratory experiments, can be used to develop the practical hands-on expertise
required by control courses. Practical laboratory work “control laboratory”
has become a typical component of automated control courses because it
aims to [7]:

• Connect theory to what is implemented and observed in the laboratory.

• Identify differences between models and physical systems.

• Design and verify controllers that meet specifications.

• Collect and visualize data.
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These laboratories have traditionally relied on working with laboratory-scale
control objects to demonstrate dynamic phenomena that can be observed in
full-scale, industrial counterparts of these control objects. These experi-
mental sets are computer-interfaced, allowing students to create and tune
controllers while also observing how the system performs under these new
settings. For example, in [8] the laboratories included experiments with a
coupled tanks system, inverted pendulum and rotary table. These systems
were used to demonstrate to the students the use of modeling, simulation
and control design.

Physical laboratories are expensive to create and operate. They take
up a lot of room in the lab and are made up of specialist hardware, which
adds to the complexity of the necessary infrastructure. Furthermore, as
the number of students grows, managing the infrastructure and organizing
physical laboratories becomes increasingly difficult. To put it another way,
this infrastructure does not scale well. Thus, educators have created vari-
ous alternative modes of technology-enabled laboratories to address issues
associated with traditional physical hands-on laboratories by leveraging re-
cent advances in information and communication technologies. Laboratory
modes can be categorized based on the nature of the experimental resources
(real or simulated) and the location of these resources (local or remote) as
follows [9]:

1. Local access-Real resource. It represents the traditional practical lab-
oratory and take-home laboratory kits where the student is in front of
a computer connected to the real plant to carry out the experiment
using DT and Reinforcement Learning.

2. Remote access-Real resource. It represents remote real experiment
where the students access the real plant equipment laboratory through
the internet. The user operates and controls a real plant through an
experimentation interface in a remote way. This approach is named
remote laboratory.

3. Local access-Simulated resource. It represents the virtual experiment
where the whole environment is software and the experimentation in-
terface works on a simulated, virtual and physically nonexistent re-
source. This approach is named locally hosted virtual laboratory.

4. Remote access-Simulated resource. It represents Remote virtual ex-
periment where the students access the remote virtual environment
through the internet where the software and the experimentation inter-
face works on a simulated, virtual and physically nonexistent resources.
This approach is named cloud hosted virtual laboratory.
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There is an ongoing debate on the effectiveness of different laboratory modes.
A comparative analysis of the different laboratory modes has shown that
when these laboratory modes are developed their efficiency is measured by
their ability to achieve different learning objectives [10]. Remote laborato-
ries, for example, are more suited for conceptual understanding, but virtual
laboratories are ideal for developing design abilities. This makes selecting a
single laboratory mode challenging.

Another significant issue to examine is how the specific laboratory mode
affects students’ interactions with laboratory objects, teachers, and other
students. The results of studies of students’ interactions in face-to-face and
remote hands-on laboratories have revealed a lack of systemic analysis of stu-
dents’ interactions in alternative technology laboratory modes. Before com-
prehensively comprehending the implications of employing such laboratory
modes, it is essential to have improved tools for examining students’ interac-
tions [11]. Although hands-on physical laboratories have obvious drawbacks
associated with cost and space requirements, remote and virtual laboratories
also possess their own limitations:

• In remote laboratories, students report a lack of personal engage-
ment because of the separation between them and the experimental
objects [12,13].

• Virtual laboratories creates further increases the separation as the vir-
tual system does not physically exist and the relationship is not clear
between the physical and VE.

• The usability of virtual laboratories is questioned as it is not the focus
point when designing virtual laboratories [14].

In addition to the learning objectives of control engineering courses, engi-
neering students should develop not only professional abilities, but also soft
skills in order to meet the needs of industry and the accreditation criteria
imposed on university study programs. In this situation, the working pat-
terns that occur in hands-on laboratories are more suited to cultivate such
abilities than those that occur in distant and virtual laboratories. [15]. Fig-
ure 1.1 shows the diffrent educational goals of hands-on, virtual, and remote
laboratories.

Regardless of the ongoing debate a hybrid approach combining several
laboratory modes has emerged that allowed for the modes to complement
each other. For example, virtual and remote laboratories concerned with the
same control object can be used [16]:

• The virtual mode is applied during the control design stage when no
interaction with the real system is strictly necessary.
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Figure 1.1: Educational goals of hands-on, virtual, and remote laboratories [10].

• The remote mode is applied for observing the behaviors introduced by
the real system and deepening the understanding of related concepts.

In light of these considerations, it becomes apparent that the pursuit of
the ultimate laboratory mode may not be the most productive approach.
Instead, a more practical and innovative solution would involve devising a
method to integrate and harness the benefits of various laboratory modes
within a single laboratory activity. This requirement for integration presents
the optimal opportunity for the XR application on top of an underlying DT
framework.

1.2 Author’s Aims and Objectives
To summarize, this thesis aims to promote widespread adoption of XR as
computational platform within practical control engineering education and
training. It endeavors to achieve this goal through a three-pillar strategy,
commencing with the integration of XR into existing workflows using a uni-
fied modular framework. Subsequently, the thesis introduces methodologies
facilitating data-driven decision-making for the design of XR applications.
Finally, it explores the integration of AI methods to enable rapid prototyp-
ing.

Towards achieving these aims the thesis is compromised of the flowing
objectives as presented in Figure 1.2 :

• To identify and conceptualize a framework for integrating XR into
practical control engineering education and training (Chapters 2-3).

• To demonstrate the proposed approach through the development of
applications for various control objects (Chapter 4).

• To conduct a study to measure VR experiment usability, comparing
traditional and VR experiments to assess VR’s effectiveness in control
systems courses (Chapter 5).
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Figure 1.2: Overview of the objectives of this thesis, highlighting the integration of DT,
XR, and AI Technologies for the advancement of practical engineering education

• To propose and implement methods and tools for data-driven analysis
and decision-making in designing XR environments (Chapter 6).

• To propose and implement AI-driven DTs as “intelligent agents” in
virtual environments(Chapter 7).

1.3 Thesis Outline
Each chapter opens with a brief overview of the material covered. Each
chapter of the thesis concludes with a section offering insights into and re-
marks about the results provided in that chapter. Finally, the final chapter
includes general concluding remarks as well as items for future investigation.
Each chapter is summarized in the sections that follow.

Chapter 2

This chapter serves as an in-depth examination of the fundamental elements
that underpin this thesis, commencing with an extensive review of the lit-
erature pertaining to practical control engineering laboratories and their
technology-enabled alternatives, emphasizing the potential for integrating
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DT and XR to bridge these modalities. . It then delves into a thorough
overview of DT . Finally, it presents a analysis literature focused on enhanc-
ing interaction within virtual environments.

Chapter 3

This chapter introduces the “Reimagine Lab” framework, which is a novel
approach in the domain of control laboratories, blending DT and XR to
enhance traditional virtual and remote laboratory experiences. The frame-
work’s foundation is established through two primary components: the trans-
formation of data-driven mathematical models into DT, and the adoption
of XR for improved interaction and visualization. This chapter details how
the “Reimagine Lab” framework synergizes DT and XR to efficiently create
new-generation virtual and remote laboratory modalities. It elaborates on
the advantages of this framework in both remote and virtual laboratory set-
tings, particularly its ability to facilitate shared experiments with hands-on
laboratories. The chapter concludes by summarizing the key insights and
outcomes of implementing the “Reimagine Lab” framework.

Chapter 4

This chapter is dedicated to demonstrating the practical application of the
“Reimagine lab” framework through two distinct use cases, each focusing
on creating a DT for a lab-scale object. It includes detailed case studies on
a lab-scale multi tank system to demonstrate the “shared experiment” and
highlights the seamless transition between simulated and physical system
modes in a mixed reality setting. The second use case of a gantry crane
system, which is used to demonstrate the simulated mode and how to apply
the framework to a lab-scale gantry crane in a VR setting. The gantry crane
use-case is also used in the subsequent chapters to perform the usability
analysis and develop the data-driven replay and annotation system. The
process for each example begins with the development of a mathematical
model that mirrors the real object’s behavior, laying the groundwork for its
DT counterpart. Following this, a 3D visual model is constructed for each
object, which serves as the basis for visualization and interaction within an
XR experiment. Furthermore, the chapter outlines an educational goal for
each experiment, which guides the development of interaction mechanisms.

Chapter 5

This chapter focuses on presenting the initial findings from a System Us-
ability Scale (SUS) study conducted using a “ReImagine lab” application,
specifically featuring a lab-scale gantry crane. The 3D crane DT, which users
can experience in an XR environment, was previously introduced. Although
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the experiment concentrates solely on the virtual lab mode, it’s crucial to
recognize that both the DT and XR technologies are integral to all lab modes
and are at the core components of the framework. The insights gained from
subject-based testing aim to guide the broader applicability and effective-
ness of these technologies for their designated purpose. If results indicate
that DT and XR are beneficial in this specific context, these findings could
have broader implications for other lab modes. The chapter is structured to
first detail the planned study, then describe the questionnaire used in study,
followed by presenting and discussing the study’s findings. It concludes by
summarizing the key outcomes and implications of the research.

Chapter 6

In this chapter, we delve into a data-driven machine learning approach,
guided by the “Reimagine Lab” framework, which integrates DT and XR.
This framework forms the basis of our research into improving user engage-
ment in VEs. Utilizing the detailed data from DT and the immersive qual-
ities of XR, a replay and annotation system is employed to classify user
behaviors, especially in the context of the 3D crane experiment focusing
on throwing actions. This system, a product of the combined strengths of
DT and XR, facilitates a deeper understanding of user interactions and aids
in developing a machine learning algorithm specifically designed to classify
these interactions. The chapter is structured to first discuss the interplay
between interaction and immersion, followed by detailing the data-driven
interaction process and introducing the replay system. It then describes the
experimental setup, presents and analyzes the results, and concludes with
the key findings and implications of the study.

Chapter 7

This chapter advances the Reimagine Lab framework by incorporating AI-
enhanced DTs, termed “intelligent agents”. Central to this approach is the
application of a reinforcement learning algorithm tailored for training DTs
to execute designated tasks proficiently. In this context, mobile robots are
selectively used to illustrate the effectiveness of the proposed approach. The
chapter is structured to initially propose the integration of AI with DT by
defining the problem within the reinforcement learning paradigm. followed
by a detailed explanation of the proposed DT and reinforcement learning
framework, including the implementation of the hybrid mobile robot as a DT.
It then outlines the three tasks used for evaluating the robot’s capabilities,
presents and discusses the results of the experiments, and concludes with
key insights derived from these findings.
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Chapter 2

Background

In the following chapter, we introduce the reader to fundamental concepts
central to this thesis. The chapter begins with an extensive review of the
literature pertaining to practical control engineering laboratories and their
technology-enabled alternatives, emphasizing the potential for integrating
DT and XR to bridge these modalities. Next, an overview of DT and XR
is presented focusing on immersion in virtual reality environments and its
promised effect is presented.

The chapter is organized as follows: Section 2.1 presents control engineer-
ing laboratories and their alternatives. Section 2.2 presents the evolution of
data-driven mathematical models into DT. Section 2.3 provides a compi-
lation of previous work on the use of DT and XR in practical educational
settings. Finally, Section 2.4 covers the immersion in VR environments and
its promised effect.

2.1 Laboratories in Control Engineering and Their
Alternatives

Experts in control engineering understand the the importance of practical
demonstrations and learning through conducting relevant experiments in the
transfer of knowledge to control engineering students [5]. On the other hand,
the traditional method of teaching control engineering involves directing the
students to learn the subject matter through memorization and recitation
techniques which may cause inefficiency of developing their critical thinking,
problem solving and decision making skills [17]. Due to the multidisciplinary
nature of control engineering applications, the majority of courses dedicated
to control and real-time systems are highly conceptional. Moreover, those
courses are usually mathematics-intensive and as such could remain distant
and abstract without developing in the student an intuitive understanding of
the problem. Thereby they may fail to enlighten students with the realities
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of different types of control system implementation [9]. Furthermore, it is
not reasonable to assert that skill and knowledge levels pertaining to subjects
related to control engineering are equal among students. Those factors may
likewise result in a less fruitful classroom experience [9].

One of the best approaches is to present the theory in a directed fashion
with the instructor going through experiments [18]. Unlike classroom edu-
cation, laboratory sessions are usually held with several groups of students
which makes it possible to divide students according to their knowledge
background and time schedule. Through laboratory experiments, students
can understand the state dynamics in real-life control systems sufficiently
and validate their theoretical knowledge with prototypes in control systems
(CS) laboratories [9]. As a matter of fact, the motivation of students in the
control engineering learning process is directly related to the opportunity
to interact with laboratory equipment. The interactivity in CS laboratories
encourages students to play a more active role and to get involved in the
CS learning process [19]. In addition, laboratory objectives are useful in
analyzing what students can likely achieve in a laboratory [7]. Furthermore,
experiments held in a laboratory environment may provide a significant ed-
ucational advantage: students who are enrolled to practical experiments are
able to investigate the resulting dynamics immediately. Thus, they become
aware of some physical phenomena that are inconvenient to perceive from
only a theoretical point of view taught in the classroom [19].

Laboratory sessions are therefore an essential part of education in en-
gineering. The theoretical material should be solidified with real-life labo-
ratory experiments. Nowadays, however, providing practical experiments is
restricted by several major matters such as the growing number of students
each year, considerable cost of necessary laboratory equipment to accommo-
date the needs of the students, maintenance costs, as well as limited time of
laboratory personnel [11].

Researchers have proposed various methods and applications to alleviate
these long-standing difficulties and provide simpler means for the students
to engage with laboratory experiments [20, 21, 22]. Proposed solutions have
been observed to meet different criteria such as cost, time efficiency, interac-
tivity and the achievement of learning outcomes. The use of such laboratory
counterparts has shifted from being an optional alternative to a necessity
due to the recent social distancing and restrictions caused by the COVID
pandemic [23,24,25,26,27]

Educators have devised many alternative types of technology-enabled
laboratories to address the challenges associated with traditional physical
hands-on laboratories by harnessing current advancements in information
and communication technologies. As indicated in Table 2.1, the authors
of [9] have classified these several laboratory modes depending on the nature
of the experimental resources (actual or simulated) and the location of these
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resources (local or remote). This taxonomy will inform the majority of future
discussion.

2.1.1 Virtual Laboratories

Unlike hands-on laboratories, virtual or simulated laboratories are based on
software simulations of physical phenomena. They allow students to explore
a specific topic in an offline manner with the ability to pause and restart
the application. This laboratory mode serves as a low cost alternative to
hands-on laboratories. Replacing the the hands-on laboratories with a vir-
tual alternative not only eliminates the need of developing, assembling and
deploying physical laboratory assets, but also allows to significantly reduce
costs related to the maintenance and operation of these assets. Researchers
have explored the use of different technologies for deploying many different
modes of virtual laboratories. For instance, these laboratories can be imple-
mented as software applications based on relevant mathematical models and
deployed to

• the local user machine, or

• to a cloud infrastructure from which they are accessible using the In-
ternet.

Cloud-hosted virtual laboratories allow access at a very large scale and low
computational requirements on the students end [28]. The flexible nature of
virtual laboratories allows changing the models and running the experiments
in non-real-time manner which makes them ideal for fulfilling the learning
objective of control design in control engineering education [18]. While the
space and cost factors in hands-on laboratories limit the scale and complexity
of the experiments/plants, the advances in ICT has allowed for modeling and
deploying complex simulated/virtual real world control plants [29]. All of
this has made virtual laboratories a critical part in massive open online
courses as an easy-access and cost-efficient way of online learning [30].

2.1.2 Remote Laboratories

Remote laboratories comprise real-life equipment accessed remotely over the
Internet through a digital interface. This laboratory mode offers students
the means to access the laboratories and relevant equipment without the
necessity of close physical proximity to the equipment. Remote laboratories’
main advantage is flexibility: the students can access the remote laboratories
at any convenient time and from any physical place, provided an Internet-
enabled device is available that is capable of handling the interactions with
the equipment via the digital interface. Furthermore, remote access allows
the students to have a safe experience in safety critical plants [31]. While
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hands-on laboratories require additional physical space to accommodate the
the students as well as additional interfacing hardware, remote laboratories
offer a lower cost alternative where multiple low cost experimental platforms
can be stored in a smaller space [32]. The accessibility of remote laborato-
ries make it more suitable for teaching concepts in control engineering as the
students have more freedom and flexibility in accessing the experiment [33].
As remote laboratories remove the physical location limitations, they facili-
tate the sharing of resources across different education institutions in what is
called laboratory Federations which make it possible to distribute the cost of
hosting remote laboratories between those institutions and provide students
with access to a wider variety of laboratory experiments based on different
equipment [34].

2.1.3 At-home Laboratory Kits

Take-home kits are small-scale, compact and portable sets of devices and
accessories that can be easily assembled, disassembled, and transported to
allow the students to preform laboratory experiments at home. For example,
a DC motor control experiment kit was created to allow students to learn
from home during the COVID health pandemic [22]. This kit is aimed to
give students any time/any place access to the experiment, so they could
perform various tasks, collect data, and analyse the results to get a better
understanding the of concepts presented in online lectures. In fact, long
before the COVID pandemic, researchers have prompted the use of home
laboratory kits as a cost effective alternative to hands-on laboratories en-
abled by the combination of widespread personal computers owing decent
computational power, and low cost micro-controllers for real-time control.
In [35], home laboratory kits comprising a mass-spring-damper system and
an analog filter were used to assist in teaching of undergraduate level control
course. Another approach pertains to the introduction of build-it-yourself
home laboratory kits that attempts to bring the hands-on laboratory ex-
perience to the students home [27]. In this work, a bifilar pendulum that
students can build on their own from low cost materials was introduced. This
kit can be used to investigate different physical phenomena related to vibra-
tion to students. Take-home laboratories have also been used to overcome
the lack of hands-on experiments in Massive Open Online Courses. In [36],
a student group trial aimed at studying the effect of using laboratory-home
kits in MOOCs resulted in the conclusion that such low cost laboratory kits
provide a viable way to complement the MOOC experience.

Having reviewed the various laboratory modes, Now, our attention shifts
to the novel research items that are expected to integrate all of these dis-
connected modes in a highly flexible and efficient manner.
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2.2 Evolution of Data-Driven Mathematical Mod-
els into DT

The concept of DT is a relatively new paradigm that leverages advance-
ments in information technology to create a higher level of representation
for physical objects and processes.

Physical entity Virtual entity

Database

Services

Figure 2.1: Illustration of the Digital Twin concept as the five-dimensional model in-
cluding the (1) physical entity; (2) virtual entity; (3) connections between nodes; (4)
storage/database; (5) services layer according to [2].

Shown in Figure 2.1, the DT concept is depicted as a novel paradigm
that enhances the representation of physical objects by capitalizing on recent
advancements in information technology.

Consistent with the definition of a DT, the model used to power it is
of paramount importance. An ideal model for a DT should possess two
key traits: firstly, it must enable an accurate duplication of the behavior
exhibited by the original object, which in the DT paradigm is also referred
to as “simulation capacity” of the DT, and secondly, it should facilitate the
updating of its model parameters using the data received from the actual
object.

Modeling in control engineering involves creating mathematical represen-
tations of the desired physical system. These models allow engineers to gain
insights into the system’s behavior, perform analytical evaluations, and de-
velop virtual simulations. The models are based on the principles of system
dynamics, wherein the evolution of internal variables (states) under external
stimuli (inputs) is computed to accurately depict the system’s dynamics.

There are several modeling approaches, each with its advantages and use
cases. Figure 2.2 depicts the most popular “box” models that are considered
when developing modeling approaches:
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• White box modeling (also known as First Principles modeling). The
structure of the model is known and the model is derived from physical
laws.

• Grey box modeling. Some of the model is derived from physical laws.
The model includes some aspects that are approximated in a way that
prevents direct physical interpretation while yet being useful for mod-
eling.

• Black box modeling. There is no a prior knowledge of the system’s
physical structure. As a result, the model is developed by fitting exper-
imental data to an arbitrary mathematical model type and structure.
Although it may be less useful if the structure of the systems under
research is understood, this data-driven technique is widely used.

Dynamic models
Machine learningIdentification ~ Training

Parameterization

Nonlinear

Linear

GP/Symbolic

regression

Artificial

neural networks

Figure 2.2: The most popular “box” models approaches [P1].

Looking closely at the creation of dynamic system model, a state space
representation of a dynamic model employing a system of differential equa-
tions is as follows

ẋ = f(x, u, t) (2.1)
y = h(x, u, t),

where x ∈ Rn is the state vector, u ∈ Rm is the input vector, y ∈ Rp is
the output vector, t is the time argument, and f(·) and h(·) are nonlinear
functions. For convenience, linear, time-invariant approximations of (2.1)
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are often used and are of the form

ẋ = Ax + Bu (2.2)
y = Cx + Du,

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m are state, input,
output, and direct transmission matrices with numerical entries, respectively
[37]. The transfer function notion can be used for linear, time-invariant
systems with a single input and single output. Shown below is the equivalent
dynamics equation in the Laplace domain.

G(s) = bmsm + bm−1sm−1 + · · · + b0
ansn + an−1sn−1 + · · · + a0

, (2.3)

where s is the Laplace operator, ai and bj are real numbers, and n is the
order of the model. For the system in (2.3) must be proper, i.e., the condition
n ⩾ m must be satisfied for it to be practically realizable

Data from actual plants must be gathered for grey and black box mod-
els. The sensors of the actual control object are sampled in the current
work to gather data. A data acquisition device connects the devices to the
desktop computer. The model identification process is carried out after data
gathering and reprocessing. For that purpose, the general model in (2.1) is
parameterized as

ẋ = f(x, u, t, θ) (2.4)
y = h(x, u, t, θ),

where θ is a set of model parameters to be identified. For the linear models
in (2.2) and (2.3), the parameter sets are

θss =
[
θA θB θC θD

]
(2.5)

and
θtf =

[
θb θa

]
, (2.6)

respectively. Time identification is employed such that the output error
criterion (residual norm)

F =
n∑

i=1
ε2

i = ∥ε∥2
2 (2.7)

is minimized, where εi = yi − ŷi is the residual (simulation error), yi is
the true system output and ŷi is the predicted output for collected samples
i = 1, 2, . . . , N . Figure 2.3 shows a typical time series chart for studying
control system dynamics.
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Figure 2.3: Typical time series chart for studying control system dynamics, here for a
single input, single output system. Top: tracking performance analysis through step
response evaluation. Bottom: control law dynamics analysis (system input generated
by a controller) [P1].

In case of a multi-input, multi-output system, A weighted sum is utilized
as the cost function, and the residuals from modeling individual outputs
are scaled in accordance with the size of the modeled physical variable.
The Trust Region Reflective algorithm [38, 39], the Levenberg-Marquardt
algorithm [40,41], and the Nelder-Mead direct search method [42] are some
of the optimization methods used to estimate the parameters of the model.
The latter well-suited to optimize a function whose derivatives are unknown
or non-existent. Because state space model identification requires estimating
a significant number of parameters, the parameter set θD can be disregarded
because the relevant matrix is often a zero matrix., i.e., D = 0.The subspace
estimation method is also utilized to address the issue of initial parameter
estimate [43].

Not all studied control objects are stable. Hence, a closed loop system
with a stabilizing controller (compensator) must be constructed in order to
produce significant results. In order to illustrate several connected topics,
the controller should also be given laboratory instruction. The traditional
negative unity feedback control loop is taken into consideration in this work.

H(s) = C(s)G(s)
1 + C(s)G(s) (2.8)

comprised of a plant represented G(s) and a controller represented by C(s) .
The aim of control engineering is to develop a control system, which in case
of the present work amounts to solving the tracking problem — the mea-
sured output of a given system must converge to the desired prescribed value
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we refer to as the set point. Thus, the control system’s goal is to modify
the plant input u through the controller in order to reduce the error e , or
the difference between the desired outputr (reference value) and the actual
output of the plant y, i.e., the output tracking problem is taken into con-
sideration. A proportional-integral-derivative (PID) controller is frequently
employed in real-world industrial applications [44, 45, 46]. In this work, the
parallel form of the PID controller is employed, which takes the following
form::

C(s) = Kp + Kis
−1 + Kds (2.9)

where Kp, Ki, and Kd are the proportional, integral, and derivative gains,
respectively. These parameters must be properly tuned for each control loop
that composes the full system.

The parameters of the models created using the approaches outlined
above will not be static and will co-evolve with changes in the real systems
in the case of DT synchronization with those systems. As a result, parameter
estimation and controller parameter transfer will be ongoing processes. The
unique physical lab asset will provide useful data as it is used, which will be
kept on the server and used to get the most recent mathematical models.
To summarize The following steps are involved in developing a data-driven
mathematical model for the DT:

• Relevant data are first collected from the real plant.

• second, one of the outlined box models is used with system identifica-
tion.

• Finally, the DT can use the model of the dynamics. The model is
periodically updated in a process referred to as synchronization of the
real system and the DT.

2.3 Use of DT and XR in Laboratories

In control engineering, hands-on laboratories are frequently supplemented
with mathematical models and simulations that, on the one hand, give the
theoretical underpinnings for modeling the specific control object and, on the
other, enable students to construct control systems based on these models.
The models are frequently based on approximations that result in unmodeled
dynamics; for instance, the parameters of the researched systems are believed
to be time-invariant, when in reality the values are prone to change. Hence,
upgrading these models and simulations necessitates manual labor and spe-
cialized knowledge, which increases the expense of establishing, operating,
and maintaining laboratories.
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On the other side, the Industry 4.0 revolution started to stress the utiliza-
tion of data as the foundation for enhancing process and operations across
all industries. For instance, Industry 4.0 builds on top of a data-driven
architecture by employing models that may leverage data from real sys-
tems to synchronize the virtual representation of these systems with their
real-world counterparts, resulting in the notion of DT. The most frequently
referenced definition of a DT is [47]. Note that the quote is taken from a
NASA-published paper, hence the use of the term “flying twin,” but the ap-
plications of DT are not confined to the aerospace industry. Moving forward,
Industry 5.0 integrates this data-driven approach with a renewed focus on
human collaboration, sustainability, and societal contributions, further ad-
vancing the synergy between digital advancements and human ingenuity in
the industrial domain.

A DT is defined as comprehensive multi-physics, multi-scale, probabilis-
tic simulation of an as-built vehicle or system that utilizes the best available
physical models, sensor updates, fleet history, etc., to replicate the life of its
flying twin.

As a developing technology, the DT notion has multiple meanings in the
literature, and academics are experimenting with its applications in various
industries.

This work adhere to the “Digital Twin Consortium’s” definition: “A
digital twin is a virtual representation of real-world things and processes,
synchronized with a predetermined frequency and degree of accuracy” [48].
Regarding the dynamical modeling aspect of a DT, the work refers to [49],
in which the DT is stated as consisting of three primary components:

• a replica of the object,

• an evolving collection of facts about the thing,

• a mechanism for dynamically updating or modifying the model based
on the data.

The authors of [50] highlight the benefits of going from simulated/virtual
laboratories to DT; the authors argue that while DT of laboratories are
more difficult to develop, simulated laboratories have applications mainly
focused on education, while DT have applications in research as well. In [51],
the authors identify two key issues that need to be addressed before the
transformation from simulated laboratories to DT can occur:

• devising the control architecture;

• solving the problem of synchronization.

In [52], a web-based DT of a thermal power plant was introduced, the authors
highlight the advantages of such a system in education and training, as the
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DT approach allows students to gain valuable practice with operation and
control of the facility which is not possible in the real plant due to safety
issues, nor is it feasible in hands-on laboratories as they lack the required
scale and complexity.

In [53, 54], the DT concept was introduced to students as part of the
mechatronics course, as it involves the application of identification, mod-
elling, and analysis, controller design and validation. The same DT are later
used to compensate for the lack of availability of real laboratories for remote
operations. DT have been also widely used in applications where students
safety might be an issue. The authors of [55] showed how the connection of
DT and VR can be used to create a safe working environment for students
in robotics applications. The authors of [56] showed how the use of virtual
and augmented reality (AR) in remote and simulated laboratories can be
used to enable collaboration using avatars. The study showed that this ap-
proach requires integration into an e-learning system to ensure success in
the learning process. The use of AR to enhance remote laboratories have a
shown to increase students performance, as it allows students to experience
the laboratory in a way that was not possible with traditional hands-on lab-
oratory [57]. Immersive virtual technology has gained a lot of interest as
a tool for higher education. This technology has wide adoption and uses
especially in engineering and computer science. However, these adoptions
are mostly in the experimentation phase and focused more on usability and
performance. Only a few have drawn the line between the design and theo-
ries of learning or discussed how it is going to be adopted in the curriculum.
A review of VR enabled laboratories has suggested that a blended/hybrid
approach could be an ideal solution, where the hands-on laboratories can be
introduced to address the issue of belief, and later on, more versatile and
cost-effective laboratory modes can be used, such as remote and virtual labo-
ratories. The hybrid approach must take into account the student differences
in terms of grade level, cognitive skills and psychological development [58].
A VR experience that enables a higher level of interaction is introduced for
investigating electrical connections in [59]. The system allows for faster it-
erations while performing experiments compared to hands-on laboratories.
The authors argue that this will lead to students’ better understating of the
basic principles on which the experiments are based upon. The visualiza-
tion capabilities of XR (and AR in particular) afford many opportunities
for enhancing the ways complex systems can be monitored and controlled.
This is especially important in the context of Industry 4.0 and the Internet
of Things. If these opportunities are seized early in control engineering ed-
ucation through integration of XR technologies into hands-on experiences,
these experiences can naturally lead the students through the landscape of
Industry 4.0 and prepare them for actual industrial applications where XR
is used as a part of human-machine interfaces.
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2.4 Enhancing Interactions in Virtual Environments
A key aspect of VR is its immersive quality, often referred to as ’presence,’
which is categorized into two distinct illusions [60]:

1. The place illusion: The user is feeling that he or she is moved into
another place;

2. The plausibility illusion: the user’s satisfaction with the environment
in response to his or her interaction with it.

The plausibility illusions particularly intriguing because it encompasses the
interface devices, such as controllers, and the algorithms that enhance user
interaction within the VR environment. A preferred interaction method
within the VE is using natural gestures, akin to how one quickly adapts to
smartphone usage [61].This method forgoes the need for familiarizing oneself
with physical devices like the HTC Vive controller. Despite its advantages,
this approach has its challenges, especially in providing physical feedback,
which is usually offered by tangible controllers. Innovations like the Myo
Armband [62] have been introduced to address this gap, yet they still face
challenges in maintaining user immersion, as discussed by [63]. An alterna-
tive strategy involves multimodal input techniques. For instance, the “gaze
and pinch” technique. [64] which integrates gaze tracking with hand gestures
for a more versatile interaction with VE objects. The believability of inter-
actions also hinges on the algorithms that govern the VE’s response to user
actions. Traditional handcrafted, rule-based algorithms struggle to adapt
to a diverse user base. In contrast, recent trends show a growing reliance
on data-driven approaches for recognizing and classifying human behavior
patterns in VEs. For example, [65] utilized eye gaze data to determine
movement direction in collaborative robot environments. Additionally the
authors of [66] reported on a system capable of semantic extraction and real-
time data analysis for activity classification in VEs. Similarly, the authors
of [67] proposed a deep learning framework for continuous human behavior
monitoring, applicable in fields like sports, rehabilitation, and smart home
environments.
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Table 2.1: Laboratory Modes Classification

Laboratory
mode

Resource
nature

Resource
location

Description

Traditional
practical
laboratory

Real
resources

Local
access

It represents the traditional
practical laboratory and take-home
laboratory kits where the student
is in front of a computer connected
to the real plant to carry out the
experiment

Remote
laboratory

Real
resource

Remote
access

It represents remote real
experiment where the students
access the real plant equipment
laboratory through the internet.
The user operates and controls a
real plant through an
experimentation interface in a
remote way.

Locally
hosted
virtual
laboratory

Simulated
resource

Local
access

It represents the virtual
experiment where the whole
environment is software and the
experimentation interface works on
a simulated, virtual and physically
nonexistent resource

Cloud
hosted
virtual
laboratory

Simulated
resource

Remote
access

It represents Remote virtual
experiment where the students
access the remote VE through the
internet where the software and
the experimentation interface
works on a simulated, virtual and
physically nonexistent resources.
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Chapter 3

Novel Unified Framework for
Control Engineering
Laboratories

In the subsequent chapter, the “Reimagine Lab” framework is proposed,
wherein the application of DT and XR is utilized to Reimagine the tradi-
tional virtual and remote laboratory modalities, resulting in a unified and
efficient new generation of control laboratories. The introduction of the
framework begins by establishing its two fundamental components XR and
DT. Firstly, The overall “Reimagine Lab” framework and how it combines
DT and XR to streamline the creation of virtual and remote laboratories
modes is detailed in Section 3.1, Next, in Section 3.2, XR is used to re-
place the usual 2D desktop interface to allow for a higher level of interaction
and visualization necessitate by the rich DT representation. The benefits
of employing the framework for both remote and virtual laboratories are
discussed, along with the capability it provides to create shared experiments
with hands-on laboratories in Section 3.3. Finally, conclusions for this chap-
ter are drawn in Section 3.4.

3.1 The Integration of DT and XR: The “Reimag-
ine Lab” Framework

As concluded by the literature review there is an ongoing debate about
the efficiency of various laboratory modes. A comparison of the various
laboratory modes found that the efficiency of these modes is decided by
their ability to achieve specific learning objectives. While hands-on physical
laboratories have challenges due to cost and space constraints, remote and
virtual laboratories suffer from the following:
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Figure 3.1: The overall schematic diagram for the ReImagine-laboratory framework [P1].

• Students express a lack of personal engagement in remote laboratories
due to the separation between themselves and the experiment items
[12,13].

• Virtual laboratories are even more isolated since the virtual system
does not exist in the physical world and the relationship between the
physical and virtual environments is unclear.

• The usability of virtual laboratories is called into question because it
is not the focal feature of their design [14].

Additionally, engineering students must develop soft skills in order to meet
the needs of the industry and the accreditation standards set on university
study programs. In this case, working patterns in hands-on laboratories
are more suited to cultivating these skills than those in distant and virtual
laboratories. [15]. A hybrid technique including many laboratory modes
has emerged, allowing the modes to complement one another. For example,
virtual and remote laboratories belonging to the same control object may be
used [16]:

• The virtual mode is implemented at the control design phase when
direct interface with the actual system is not necessarily required;
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• the remote mode is utilized for studying the behaviors exhibited by the
actual system and for gaining a deeper comprehension of the associated
concepts.

As a result, rather than pursuing the optimal laboratory mode, one may
devise a method for incorporating all modes into a single laboratory activity.

Motivated by this understanding, an architecture was proposed to facili-
tate the establishment of unified and compliant modes for hands-on, virtual,
and remote laboratory experiments by integrating DT and XR in the fol-
lowing manner:

• Initially, remote laboratories are duplicated as high-frequency DT of
the original laboratories.

• Secondly, locally hosted virtual laboratories are DT of the real labora-
tories that are frequently synchronized to assure the virtual represen-
tation’s validity.

• Lastly, XR is employed to enable a higher level of interactivity and
visualization provided by the DT depiction.

Illustrated in Figure 3.1, the framework overview shows how several fidelity
levels of DT implementations are employed to represent the controlled phys-
ical object, while XR is used to enable the enhanced visualization and inter-
activity required by the DT representation. The proposed framework aims
to improve usability in remote and simulated modalities to levels compara-
ble to those seen in physical laboratories while retaining the flexibility and
scalability offered by virtual and remote laboratory modalities. Addition-
ally, the usage of XR has increased cooperation and immersion possibilities
in these modalities. The “Reimagine Lab” framework indicates that DT-
based laboratories not only replace old virtual and remote laboratories, but
also improve traditional hands-on experimentation by providing shared or
mixed experiences in conjunction with the usage of XR technology. Sec-
tion 3.3 contains a detailed overview of how the framework achieves these
characteristics.

Remote mode

As depicted in Figure 3.2. The framework enables remote teleoperation of
the laboratory asset by replacing video streaming with local synchronization
of the actual asset’s digital counterpart. XR is being used to give a more
intuitive and natural sort of interaction, giving users an experience compara-
ble to that found in hands-on laboratories, by leveraging hand gestures and
other techniques. Furthermore, XR fosters collaboration by creating VEs in
which participants can interact with one another and the laboratory object.
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Figure 3.2: The schematic diagram for a remote laboratory and ReImagine enabled remote
laboratory [P1].

Virtual mode

Figure 3.3 demonstrates how the proposed approach enables locally hosted
virtual laboratories by replacing the simulated model with a DT:

• first, the bidirectional collection of data ensures that updates from the
actual laboratory object are automatically applied to the DT;

• secondly, in accordance with the DT notion, data describing the un-
certainty and divergence between the DT and physical twin are also
accessible;

• And finally, the employment of XR technology as a means of engage-
ment to capitalize on the wealth of data made available by the DT
architecture.

The first two components are intended to boost student trust in the vir-
tual simulation, while the incorporation of XR allows for the creation of
environments that promote student interaction. Cloud-hosted VEs provide
further framework benefits by allowing the use of more precise twin models.
As shown in3.3. The simulation is distributed across the network, with lo-
cal devices providing visual representations of the DT while computation is
offloaded to the cloud.

Hands-on mode

As previously noted, the benefits of adopting the framework are not re-
stricted to technology-enabled laboratories; they also assist hands-on labora-
tories by enabling for a variety of laboratory experiences to be combined.The
use of XR and DT as shown in Figure 3.4 allows a blended learning envi-
ronment in which some students interact directly with the laboratory asset
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Figure 3.3: The schematic diagram for a virtual laboratory and ReImagine enabled virtual
laboratory [P1].

while others interact remotely. If local students are also adopting AR to
interact with laboratory object, this interaction can be bidirectional.

3.2 Utilizing XR for Enhanced Interaction and Vi-
sualization

The second essential component of the Reimagine Lab framework are XR ap-
plications which encompass the DT representation. To achieve the Reimag-
ine Lab’s goal of improving student engagement, graphical data analysis and
intuitive interaction design are constructed on top of the DT’s 3D model.

3.2.1 3D Models

All DT of control objects are built by first measuring the size of actual device
parts or utilizing existing blueprints, and then implementing 3D models with
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CAD tools such as Blender 3D modeling software [68]. Because fast real-time
rendering of objects is required for XR applications, the following critical
factors must be applied while modeling all objects:

• All 3D models must be optimized, i.e., the number of polygons form-
ing the part reduced and visualization trade-offs sought in terms of
applying textures, displacement- and light maps.

• A sufficient level of detail must be ensured such that the effect of
immersion is achieved [69].

The complete procedure for 3D modeling thus comprises the following steps:

1. Measuring the physical devices or using previously known blueprint
data;

2. 3D modeling in Blender ensuring the sufficient level of detail is achieved;

3. Optimization: application of necessary textures, baking displacement-
and light-maps;

4. Exporting the 3D model from Blender into a common 3D asset ex-
change format (usually FBX);
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5. Importing the 3D asset into the real-time rendering engine, creation of
materials that are used on the 3D model, validation in the target XR
application.

If necessary, one may return to step 2 to correct any issues discovered in the
real-time application.

3.2.2 Interaction Design

Interaction is the most critical part of an immersive XR environment. The
fundamental purpose of the application’s training aspect in the construction
of DT of control systems is the design of meaningful interactions. [70]. As a
result, the creation of coherent interactions is recognized as a high priority
for assuring effective laboratory instruction.

This work investigate two forms of interactions that occur in the field of
control systems:

1. Interactive selection of the control system tracking reference (set point);

2. Interactions with floating information panels that display valuable data
concerning the setup and the state of the laboratory experiment.

In the subsequent discussion, the focus will be on the essential aspects of
implementing these interactions. In terms of interface design, there are mul-
tiple options available. One approach is to utilize the physics engine provided
by the target platform for implementation. However, the mathematical ex-
planation of the procedure in this case is inherently ambiguous. Hence, the
objective is to establish a sound mathematical model of the entire system,
encompassing the interactions, which must be replicated in the DT. Conse-
quently, interaction design is regarded as a mathematical problem, and all
of the modeling methods outlined in Subsection 2.2 are appropriate for this
purpose. Interaction mechanics are created using a variety of techniques:

• Interactions are coupled with the object dynamics, that is, the cor-
responding (non)linear mathematical model is augmented with corre-
sponding inputs and states;

• Interactions are decoupled from the object dynamics, that is, a sepa-
rate mathematical model is designed for the interaction. This approach
is feasible only if the interaction does not affect control system perfor-
mance, so its use is usually limited.

• An interaction is designed for the supporting components of the XR ex-
perience (such as using the information panels). Mathematical models
of these interactions are, at first glance, not required; yet, if one consid-
ers the concept of intelligent immersive virtual environments (IIVEs),
really useful intelligent mechanics can be employed as well [P2]

45



The performance of the model is initially compared to that of the origi-
nal control object to measure interaction mechanics. Internal subject-based
evaluation is then performed in XR by developers, followed by subject-based
tests. If the input shows that the results are insufficient, the mechanism is
revised.

3.2.3 Graphical Data Analysis

Graphical Data visualization is a very useful tool for evaluating the under-
lying processes [71]. As a result, one of the most important parts of learning
control system dynamics is the analysis of time series charts displaying sys-
tem dynamics [37]. As a result, the matching feature in the XR visualization
must be implemented. That is, a real-time time series chart is required. To
that purpose, the following items are taken into account:

• Due to the flexibility of presenting data in XR, the graphs can be
presented to the user upon request and attached to the view port in
an unobtrusive way. For example, the dynamic chart may be attached
to one or both of the motion controllers and be shown upon the user
pressing a preset button;

• The structure and types of charts shall depend on the particular study.
In studying control systems, one is generally interested in control sys-
tem tracking performance and control law behavior.

3.3 Characteristics of The “Reimagine Lab” Frame-
work

Hands-on, remote, and virtual laboratories each have strengths, and educa-
tors have experimented with a variety of laboratory modalities in order to
achieve high educational goals. Each lab mode demands specialized expertise
and approaches, resulting in fragmentation and increased development and
maintenance costs. The framework through the use of DT will solve frag-
mentation by taking a simplified and consistent approach that can be used
to a wide range of control laboratory objects. Furthermore, in virtual and
remote laboratory modes, the psychological separation between the student
and the object is reduced by providing students with a thorough introduc-
tion to the use of DT in the creation of various laboratory modalities that
assist in bridging this psychological separation.

As virtual simulated objects are elevated to be twins of the original lab-
oratory objects the student-object engagement level is increased. Because
laboratory modes are DT based on the original object, they allow for greater
flexibility in laboratory mode selections. For example, students can conduct
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Table 3.1: Characteristics Comparison of Different Laboratory Modes and Hybrid ReImag-
ine Laboratories

Laboratory mode Usability Scalability Flexibility Immersion Collaboration

Hands-on laboratories High Low Low High High
Simulated laboratories Medium High High Low Medium
Remote laboratories Medium Medium Medium Medium Low
ReImagine laboratories High Medium High High High

design experiments in virtual mode and then smoothly move to remote or
hands-on modes to investigate the investigated phenomenon further. This
transformation facilitates the selection of a laboratory mode based on avail-
able resources (physical access, connection, application) without harming
the teaching experience.

The ability to produce immersion, or the sense that the user has been
transferred to another location, is a significant advantage of adopting im-
mersive VR. While immersion may be produced with a standard desktop
computer, immersive VR makes it much easier. When the amount of im-
mersion is enhanced, the student’s involvement and interaction with the
laboratory object improves. Furthermore while typically are few opportuni-
ties for students to acquire social skills when engage in virtual and remote
laboratories, it is possible to build a shared VR experience utilizing XR in
which students are portrayed as avatars within the environment and may
communicate and collaborate as a group.

The use of many laboratory modes introduces differences in elements that
affect system response and may result in unexpected behavior. For example,
virtual laboratories are typically driven by an approximate model of the
real object, which creates uncertainty. Also, communication latency has a
significant impact on system response in remote laboratories. Users must be
aware of these factors and their implications for the system. Implementing
DT methode entails being honest about the differences between the DT
model and the real system, resulting in a transparent experience.

Table 3.1 provides a comparison of the characteristics of the various
laboratory modes and hybrid Reimagine laboratories.

3.4 Conclusion

This Chapter proposes and analyzes a DT and XR-enabled framework for
constructing new generation of control system laboratory. This framework
combines the use of DT and XR towards creating a unified solution for all
laboratory modalities . Remote and virtual laboratories are recreated as DT
of actual control objects while the inclusion of XR into the proposed digital
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representation enables more interaction with the object and collaboration
between students and instructors. This unified solution not only transforms
control system laboratories but also contributes to the advancement of both
DT technology and XR applications in education and engineering.
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Chapter 4

Control Engineering Use
Cases with Lab-scale
Equipment

In this chapter, two use cases will be presented to showcase the creation of
a cohesive DT and XR application for a lab-scale object using the “Reimag-
ine Lab” framework. First in Section 4.2, a multi-tank system is used to
demonstrate the shared experiment and highlights the seamless transition
between simulated and physical system modes in a mixed reality setting.
Next, Section 4.3 hold the examples of a gantry crane system, which is used
to demonstrate the simulated mode and how to apply the framework to a
lab-scale gantry crane in a VR setting. The gantry crane use-case is also used
in the subsequent chapters to perform the usability analysis and develop the
data-driven replay and annotation system. The process of generating the DT
for each control object is outlined in detail, starting with the development of
a mathematical model that replicates the behavior of the real object, form-
ing the basis for the DT representation. Subsequently, a 3D visual model is
constructed, which will be utilized for visualization and interaction within
the XR experiment. Lastly, an educational goal is defined for each experi-
ment, upon which the interaction mechanisms are developed. Conclusions
are presented in Section 4.4.
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4.1 Selection of Specific Experimental Examples

The selection of specific experimental examples for showcasing the creation
of cohesive DT using the “Reimagine Lab” framework was based on several
key criteria. Below are the reasons why these specific experiments were
selected:

1. Multi tank system (Section 4.2): The Multi Tank System consists of
interconnected tanks with varying cross-sectional shapes, introducing
nonlinear dynamics. The system features a variable speed pump for
fluid transfer and adjustable valves for flow control, simulating real
industrial liquid storage challenges. Control strategies such as PID,
adaptive, and fuzzy logic are implemented to maintain stable liquid
levels. This system is chosen as the initial example with an educational
focus on PID controller tuning. Students initially engage with a simu-
lated model of the system, enhanced with XR and DT visualizations in
a Mixed Reality setting. Once the initial controller tuning is complete,
students can seamlessly transition to operating the actual system. This
transition exemplifies the proposed framework’s approach, offering a
shared experience that bridges simulated and hands-on laboratory ac-
tivities through the use of XR.

2. Overhead Gantry Crane (Section 4.3): The overhead gantry crane is
a nonlinear electromechanical system with complex dynamic behavior
and challenging control problems. Its real-life industrial counterpart
is used in various industries and seaports for transporting large and
heavy containers, making it an essential object for efficient and safe
cargo handling. The overhead gantry crane’s selection as an experi-
mental example demonstrates the framework’s versatility in handling
real-world industrial control applications with multiple degrees of free-
dom, offering insights into designing control strategies for optimizing
transport efficiency and stability.

In addition to their technical attributes, these experiments were also chosen
because they were created by the Inteco company, ensuring standardized and
well-documented models. Their availability as laboratory models enhances
their accessibility for research and educational purposes. The diversity of
the selected experiments, including the different types of systems and their
complexities, allows the “Reimagine” framework to showcase its adaptability
to a wide range of control problems.
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4.2 Multi Tank System

The Multitank System is a laboratory apparatus designed for the study and
application of control systems. It includes multiple tanks with varying cross
sections - some spherical and others conical, introducing nonlinear elements
into the system. This setup utilizes a variable speed pump to transfer liquid
between tanks, with gravity aiding in the outflow. Tank valves, adjustable to
control flow resistance, help manage the outflow characteristics The system
serves to explore and implement various control methods, including PID,
adaptive, and fuzzy logic controls. Control is executed through adjustments
in pump operation and valve settings, aiming to stabilize liquid levels within
the tanks. This setup mirrors industrial storage tank control problems, em-
phasizing the need for precise liquid level control.

The laboratory model of the Multi Tank System considered in this work
is depicted in Figure 4.1a. The Multitank System consists of several intercon-
nected tanks with variable cross sections, a variable speed pump, adjustable
drain valves, a water reservoir, level sensors. A schematic drawing depicting
this configuration is borrowed from the manual, provided by INTECO [72],
and depicted Figure 4.2.

3D model of the MLS

Similar to the 3D crane object, the 3D asset that represents the real life
system was prepared in Blender. However in this case only the water level
in each tank is considered for animations. Once the asset is transferred to
Unreal Engine, the asset is reconstructed where the a water level component
is attached to each water tank. The 3D model of the Multi tank sysytem is
developed by recreating the following major components:

• The yellow frame;

• The water tanks and reservoir;

• The water level sensors;

• The pump;

Thus, all critical components and the frame have been faithfully recreated,
while the wires, and power switches are ignored. The resulting model is
shown in Figure 4.1b.

Mathematical model of the MLS

The model of a Multi Tank system is borrowed from the manual, provided
by [72] The differential equations, describing dynamics of the Tank system,
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(a) Real-life Multi Tank System sys-
tem, courtesy of the Center for In-
telligent Systems at Talltech [72].

(b) 3D Model of the Multi Tank Sys-
tem system.

Figure 4.1: Multi Tank System control object in real life and the corresponding computer
graphics version [72].

can be derived, assuming the laminar outflow rate of an ideal fluid from a
tank, by means of mass balance as . The resulting model is a nonlinear
model with three states that has the following form

ẋ1 = 1
aw

(u − C1xα1
1 )

ẋ2 = H2max

cwh + bwx2
(C1xα1

1 − C2xα2
2 ) (4.1)

ẋ3 = 1
w

√
R2 − (R − x3)2 (C2xα2

2 − C3xα3
3 ).

where a, b, c, w, H2max, R are geometrical parameters of the tanks shown in
figure 4.2, xiis the fluid level of the ithe tank, Ci is the resistance of the
output orifice of the ith tank, αiis the flow coefficient for the ith tank.
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Figure 4.2: A schematic drawing of the Multi Tank System

Finally, q is the inflow of the upper tank which is the pump capacity that
depends on the normalized control input v ∈ [0, 1].

We assume that a classical PI controller will be used to control a given
plant; in particular, we consider the parallel form of the PI controller which
operates on the negative unity feedback-produced error signal

e(t) = ySP − yreal (4.2)

whereySP is the set point and yreal is the controlled plant output, to produce
a control law u(t) that in the time domain has the form

u(t) = Kpe(t) + Ki

∫ τ

0
e(t)d, (4.3)

where Kp is the proportional gain, and Ki is the integral gain. In industrial
applications, Kp and Ki are the usual “tuning knobs”—appropriate values
of these gains ensure stable and efficient operation of the control system.
Unfortunately, there are numerous instances where the PI controller’s tuning
is far from ideal. Therefore, mastering the process of adjusting these gains
to produce sufficient control performance is crucial for control engineering
practice in order to enhance tracking performance, safety, efficiency, and
dependability of control systems as well as to minimize energy waste that
results from the control law’s improper behavior.
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Educational objective and interaction design
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Figure 4.3: The schematic diagram for the multi tank system control experiment.

Next, the educational objective is outlined. This part is implemented
in MATLAB/Simulink environment as a control loop. The schematic dia-
gram that represents the whole configuration is shown in Figure 4.3. This
experiment focuses on PI controller tuning in an instructional manner. In a
Mixed Reality environment, students first interact with a simulated model
of the system that is supplemented with XR and DT representations. After
finishing up the basic controller tweaking, students can easily move on to
controlling the real system as shown in Figure 4.4. This transition serves as
an excellent example of the methodology of the proposed framework, pro-
viding a shared experience that uses XR to connect simulated and practical
laboratory activities.

Figure 4.4: Screenshot from the XR-based multi tank application: The user has switched
over to controlling the real device, and the digital twin can be used to visualize the system’s
performance and change the desired set point.

The following three interaction mechanics have been implemented for the
experiment with the multi tank system:

• Interaction with the PI tuning spheres: changing the PI gains by re-
sizing the corresponding spheres as shown in Figure 4.5a and 4.5b;
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• Interaction with control object variables: changing the set-point—the
desired water level in the upper tank—as shown in Figure 4.5c ;

• Interaction with plot widgets: such as grabbing and moving them to
a new location or or resizing the figures using both hands as shown in
Figure 4.5d.

(a) Interaction with the PI tun-
ing spheres: First, the spheres are
grasped using both hands to initi-
ate the resizing.

(b) Interaction with the PI tuning
spheres: Next, the sphere is resized
by bringing the hands closer to-
gether or moving them further apart
from each other.

(c) Interaction with control object
variables: The desired set point is
changed by directly aiming at the
upper water tank of the digital twin
and confirming the new set point us-
ing the pinch gesture.

(d) Interaction with plot widgets in-
volves moving them to a new lo-
cation or resizing the figures using
both hands.

Figure 4.5: Multi Tank System interaction mechanics.
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4.3 Overhead Gantry Crane

In the context of the suggested framework, a case study of constructing a
coherent DT of a lab-scale model of an overhead crane is described below.
The initial real-life control object was created by the Inteco company and
is known colloquially as the “3D crane” due to the number of degrees of
freedom needed in manipulating the cargo [72].

The 3D Crane is a nonlinear electromechanical system that possesses a
complex dynamic behavior and creates challenging control problems [72,73].
The 3D Crane is a nonlinear electromechanical system with complex dynamic
behavior and difficult control problems.This laboratory model’s industrial
counterpart is used in a variety of industries and seaports to transport large
and heavy containers and other payloads. To ensure efficiency and produc-
tivity, the crane must transport the payload to its destination as quickly as
possible. However, a specific motion profile must be used so that the control
actions leading to the payload’s acceleration and deceleration ensure secure
and sway-free transportation. [74]. The system’s characteristics enable the
use of various control strategies [73, 75,76]. As a result, it is very appealing
as an educational tool in the control systems laboratory.

Figure 4.6adepicts the current control object. It is made up of a frame
with a moving rail to which a moving cart is attached. A rotating spool
connects the payload to the cart. As a result, three degrees of freedom
are obtained. DC motors drive the rail, cart, and payload spool, and their
positions are determined by incremental encoder sensors. In addition, the
cart has two encoders that measure the swing angle of the attached payload.

3D model of the overhead crane

Following the discussion above, the 3D model of the crane is developed. The
following major components are recreated:

• The yellow frame;

• The moving rail;

• The moving cart with the moving spool;

• The payload itself attached to its cable.

As a result, all critical mechanical components and the frame were faithfully
recreated, while the wires, DC motors, encoders, pulleys, and belts were left
out. Initial experiments confirmed that as long as the recreated components
have the correct scale and behave exactly as expected, the 3D model will be
convincing enough to induce immersion. The resulting model is depicted in
Figure 4.6b.
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Mathematical model of the 3D crane

(a) Real-life 3D crane control object, cour-
tesy of the Center for Intelligent Systems at
Talltech.

(b) 3D Model of the 3D crane control object.

Figure 4.6: 3D crane control object in real life and the corresponding computer graphics
version.

The discussion below pertains to obtaining a single snapshot of the phys-
ical twin dynamics using the methods described in Section. 2.2. The model
shall be updated periodically based on the data generated during the oper-
ation of the physical overhead crane.

in what follows we detail the identification procedure 3D crane system
and give detailed description of the input and output signals used for the
identification.

The approximate model of the 3D crane was obtained by identification
three sub models:

• A transfer function describing the motion of the rail.

• A transfer function describing the motion of the cart.

• A state space model describing the dynamics of the payload swing
angles α and β.

The first step in the system identification procedure is collecting the data.
The 3D crane is interfaced using Simulink model which was used to drive
the crane. Figure 4.7 shows the Simulink model used to collect and store
the data.

F =
n∑

i=1
ε2

i = || ε||22 (4.4)
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Figure 4.7: The Simulink model used to collect the data.

where εi = yi − ŷi is the residual (simulation error), yi is the true system
output and ŷiis the predicted output for collected samples i = 1, 2, . . . N .
In case of a multi-input, multi-output system, the residuals resulting from
modeling individual outputs are scaled according to the magnitude of the
modeled physical variable and a weighted sum is used as the cost function.
Trust region reflective algorithm is used for the purpose of estimating the
parameters of the model.

The input signals ux , uy and output signals x , y , α , β were collected
for the identification procure. We exited the system with the input from
joystick controller to get coherent response of the system. Figure 4.8 shows
the input signal used when colleting the data for the system identification
procedure. The rail and cart position output is shown in Figure 4.9 and the
payload rotation angles α and β are shown in Figure 4.10.
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Figure 4.8: The input signal used when collecting the data for the system identification
procedure.

This model identification procedure is used to estimate the parameters
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Figure 4.9: Rail and cart output signal used in the system identification procedure.
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Figure 4.10: Payload rotation output signal plot used in the system identification proce-
dure.

of the transfer functions and the state space model.
The parameters for the transfer function of the rail motion are estimated

as:

Gx(s) = 1
s

0.30651
0.035073s + 1 (4.5)

And the parameters for the transfer function of the cart motion are
estimated as:

Gy(s) = 1
s

0.33821
0.041963s + 1 (4.6)

As for the payload dynamics of the payload swing angles α and β the
State space matrices parameters are estimated as:
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θss = [θA θB θC θD] , (4.7)

A =


−0.4377 3.513 0.5393 −1.9075

−3.804 0.2155 −1.5478 −0.8172

−0.0913 1.3392 −0.0178 4.3422

1.1336 0.0534 −3.0303 0.1400

 , (4.8)

B =


0.56505 0.21808

−1.1166 −6.7447

−0.13395 −2.3007

4.8125 −3.1489

 , (4.9)

C =

 −0.0123 0.02454 −0.00524 −0.03695

−0.04552 0.09786 0.03010 −0.02335

 , (4.10)

D =

−0.0011281 0.0013873

0.0011836 0.0012102

 . (4.11)

It is of course possible to represent the above linear approximation as a
single state space formulation:

A =



−28.5120 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 −23.8305 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 −0.4377 3.513 0.5393 −1.9075

0 0 0 0 −3.804 0.2155 −1.5478 −0.8172

0 0 0 0 −0.0913 1.3392 −0.0178 4.3422

0 0 0 0 1.1336 0.0534 −3.0303 0.1400



,

(4.12)
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B =



1.0 0

0 0

0 1.0

0 0

0.56505 0.21808

−1.1166 −6.7447

−0.13395 −2.3007

4.8125 −3.1489



, (4.13)

C =


0 8.7392 0 0 0 0 0 0

0 0 0 8.0597 0 0 0 0

0 0 0 0 −0.0123 0.02454 −0.00524 −0.03695

0 0 0 0 −0.04552 0.09786 0.03010 −0.02335

 ,

(4.14)

D =


0 0

0 0

−0.0011281 0.0013873

0.0011836 0.0012102

 . (4.15)

The last stage involves confirming whether the resultant estimated model
effectively captures the swinging characteristics of the payload. This assess-
ment serves to underscore the significance of employing feedback control to
counteract and eradicate payload swinging. To validate the model, a compar-
ison is drawn between its behavior and the response of the original physical
system. This ensures that the essential dynamics are faithfully replicated
within the DT model.

As shown in Figure 4.11, certain discrepancies can be observed between
the model and the real system. Taking a closer look at the data specifically
by plotting the difference between the model and actual system we get an
actual measure of the error.

Nevertheless, when observing the DT of the 3D crane within the XR
environment, these modeling errors typically do not disrupt the immersive
experience. The crane’s dynamics are still perceived as plausible by users.
The model’s accuracy largely hinges on the learning objectives of the control
experiment. For instance, if the aim is not to showcase the mathematical
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Figure 4.11: Validation results of the reduced state space model for the swing angle dy-
namics of the 3D crane [P1].

model’s precision but to illustrate high-level control concepts, the accuracy
achieved by the previously estimated model suffices. Examining MAE, MSE,
and RMSE in Table 4.1, it becomes evident that the disparity between the
real system and the approximated model is exceptionally small. Further-
more, as illustrated in Figure 4.12, when we measure the residuals and abso-
lute errors between the responses of the real system and the approximated
model, we can confirm that the most significant deviations occur during
periods of intense crane payload oscillations, i.e., when the crane is uncon-
trolled. On the other hand, the crane exhibits more precise responses when
it is under control. This is acceptable behavior in the context of the proposed
experiment because the proposed model successfully accounts for both the
uncontrolled case, where it is important to demonstrate the swining of the
payload, and the controlled case, where it is important to demonstrate ac-
curate tracking of the set point. The proposed model effectively fulfills both
of these criteria, therefore confirming the positive validation of this model.

When planning experiments that necessitate a more accurate representa-
tion, a more refined modeling approach becomes essential. Instead of opting
for the black box method, as illustrated in Figure 4.13, which yields a linear
approximation for a fixed crane line length, the gray box approach is prefer-
able. This involves incorporating a nonlinear model of the system, resulting
in a more precise representation. The model can also integrate the state
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Table 4.1: Fit Accuracy Metrics for Model

Metric Description Value

MAE
(Mean
Absolute
Error)

The average of the absolute
differences between the predicted and
observed values.

≈ 7.33 × 10−3

MSE
(Mean
Squared
Error)

The average of the squares of the
differences between the predicted and
observed values.

≈ 1.44 × 10−4

RMSE
(Root
Mean
Squared
Error)

The square root of MSE, measuring
the differences between values
predicted by a model and those
observed.

≈ 1.20 × 10−2
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Figure 4.12: Residuals And Absolute Error Between The Real System And The Approxi-
mated Model of The 3D Crane.

variable corresponding to the line length. This refined approach enables the
design and execution of experiments, such as controller tuning, within both
the real environment and the DT context.

Educational objective and interaction design

The experimental configuration is depicted in Figure 4.14. The primary
control loop is concerned with the payload’s position in the (x, y)-plane.
The goal is to move the payload as quickly as possible from one location
to another. The secondary loop compensates for payload swing and can be
turned on and off; the goal of the experiment is to evaluate the performance
of the control loop in both of these scenarios. Figure 4.15 shows a screenshot
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Figure 4.13: Schematic diagram showing the use of different modeling approaches for DT
models [P1].

from the application. Because the user is pointing the motion controller away
from the reference cube, the set point remains unchanged but is displayed
on the floor in the form of a cross-hair.

Packet
input

PID

PID

Plant Packet 
output

PID

PID

From A

From B 

Goto A

Goto B

3D Crane 

Position y

Position x

Position state feedback

PID controller 
(position x)

PID controller 
(position y)

PID controller
(position )

PID controller
(position )

Swing angle   

Swing angle   Swing angle 
control switches 

Figure 4.14: The schematic diagram for the 3D crane control experiment [P1].

In this case, the charting facility is used to compare the performance of
the control loop with and without swing compensation enabled. Figure 4.16
shows an example of a result depicting the situation when swing compensa-
tion is enabled. It can be seen that introducing control actions that cause
oscillations in caret position effectively dampens the swing. Better tuning
of PID controllers, which is part of the control laboratory assignment, can
improve performance.

The following two interaction mechanics have been implemented for the
experiment with the 3D crane:

• Interaction with control object variables: changing the set-point—the
desired location of the crane’s payload—and changing the crane’s con-
trol model;
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Figure 4.15: Screenshot from the VR based 3D Crane application. The user is pointing
the motion controller to an area outside of the reference box, so the cross-hair appears
only to show the current set point [P1].

• Interaction with plot widgets, such as moving them to predefined lo-
cations, grabbing and moving them to a new location, or grabbing and
throwing them anywhere in the VE.

4.4 Conclusion
In this chapter, we have demonstrated several examples of how to use the
“Reimagine” framework to XR application of control laboratories. The ex-
amples have shown that a similar work flow may be used to acquire the
mathematical model and 3D visualized model for the representation of the
DT across different control objects. On the other hand the design of the
interaction mechanism is largely dependent on the desired education object
and may change for various aims, even for the same control object. While this
may first imply that more handmade effort is required for each experience, it
turns out that the interface designed for educational aims is reusable across
different control objects. This chapter showed that the proposed framework.
which seamlessly integrates DT and XR, goes beyond theory to practical ap-
plication. Through its successful implementation on diverse control objects,
it not only transforms control system laboratories but also serves as a pio-
neering example of how DT technology and XR applications can contribute
to education and engineering fields.
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Figure 4.16: Experimental chart showing the performance of the control system with
payload swing compensation enabled [P1].

66



Chapter 5

System Usability Study for
the Framework

This chapter present the initial findings derived from conducting research us-
ing a “ReImagine laboratory” application featuring a lab-scale gantry crane.
The 3D crane DT which was demonstrated in Sec 4.3 can be experienced in
an XR environment. While the experiment exclusively explores the virtual
lab mode, it is important to note that both the DT and XR technologies are
fundamental to all lab modes and are central to this research. Therefore, the
insights derived from subject-based testing are expected to shed light on the
broader applicability and usability of these technologies for their intended
purpose. If the findings suggest that DT and XR are effective in this spe-
cific application, the implications can be extended to other lab modes. This
chapter is arranged as follows: Section 5.1 details the planned study, Sec-
tion 5.2 describes the questionnaire used in the SUS study, and the study’s
findings are presented and discussed in Section 5.3. Finally, in Section 5.4,
the conclusions are drawn.

5.1 Design of the Experiment

The experiment was designed primarily to conduct a SUS, aiming to assess
and compare the effectiveness of two distinct learning environments. The
focus was on a traditional laboratory experiment and a similar VR exper-
iment, both centered around the implementation of an automated control
system for a laboratory-scale gantry crane. The traditional experiment made
use of an interactive Simulink environment coupled with an augmented 3D
model of the crane. Conversely, the VR experiment utilized a DT of the
crane, created in Unreal Engine and controlled via a mathematical model
developed in MATLAB. This comparative approach was intended to yield
valuable insights into the usability and effectiveness of VR technology in
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enhancing the learning experience in control systems courses.
The experiment is broken down into three parts. First, the course in-

structor creates a presentation that introduces the participant to the exper-
iment and the 3D crane control object. The second section is a traditional
control course experiment carried out on a desktop computer, in which a
Simulink model of the 3D crane and swing compensation PID controller is
provided. The Simulink interface depicted in Figure 5.1 is exhibited on one
screen, while the second shows graphs displaying the model’s real-time re-
sponse and a 3D representation of the crane moving in real-time based on
data received from the Simulink model depicted in Figure 5.2. The third
section consists of a similar control course experiment carried out in a VR
lab environment. It includes the 3D crane control object, an Inteco-produced
lab-scale simplified model of a gantry crane that was created as a VR DT,
as well as two interactive plot widgets, the first of which displays real-time
data illustrating the dynamics of the 3D crane, and the other graph, which
explains the control object parameters. Figure 5.3 demonstrates the various
components of the VR lab.

The desktop experiment was conducted using a laptop computer con-
nected to two monitors. The Simulink model was displayed on the first
screen, while the second screen showed a 3D model of the crane created
with Unreal Engine. Table 5.1 displays the Desktop PC’s Component con-
figuration. For the VR environment, an HTC VIVE Pro Eye VR headset
was utilized. The headset incorporates precision eye tracking sensors and
dual-OLED displays with a combined resolution of 2880x1600 pixels. The
detailed specification of the headset is provided in Table 5.2.Additionally,
two HTC Vive Controllers were employed to track the location of the user’s
hands and capture input commands. To establish a tracking area, two sen-
sors were installed, covering an approximate measurement of 3 by 2 meters.
The VE was hosted by a PC, to which the headset was connected. Table 5.1
demonstrates the VR PC’s component configuration.

Table 5.1: Hardware Comparison for VR and Desktop Experiments

Component VR experiment Desktop experiment

CPU Intel i7-6700K @4.00GHZ Intel i7-7700HQ
@2.80GHZ

Graphics card NVIDIA Geforce GTX
1080 - 8.0 GB GPU
memory

NVIDIA Geforce GTX
1070 with Max-Q Design -
8.0 GB GPU

RAM 32GB 16GB
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Table 5.2: HTC Vive Pro Eye VR Headset Technical Specifications

Specification Details

Headset HTC Vive Pro Eye

Display Resolution 2880×1600

Refresh Rate 90 Hz

Field of View 110 degrees

Figure 5.1: Simulink model of the 3D crane and swing compensation PID controller [P1].

Our study included 37 participants (20 male, 17 female, average age
of 25.0 years old). Table 5.3 summarizes the distribution of participants
according to several key variables.

The instructions given to all test takers are described below. The three
components of the study are all held in the same room. Following a brief
introduction to the three primary duties that the participant will undertake,
they are directed to the desktop computer where the presentation is deliv-
ered. Participants are instructed to go through the slides and ask questions
if any of them are unclear.

When the subject confirms that they have completed the slides, they are
given the second phase of the experiment and the following instructions:

1. Select run in real time (from top menu) and flip the first switch (DOU-
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Figure 5.2: Charts that display the real-time response of the model and a 3D model of
the crane that is moving in real-time based on data received from the Simulink model
graphs that display the real-time response of the model and a 3D model of the crane that
is moving in real-time based on data received from the Simulink model [P1].

BLE CLICK);

2. Observe the animation. Notice how the load on the 3D crane keeps
swinging from side to side;

3. After about half a minute, flip the first switch back;

4. Now flip the second switch (OFF / ON) and observe the 3D crane. Also
observe the time series plots generated on the virtual scope screen and
make conclusions about which mode would work best for a real life
scenario.

When the second half of the experiment is completed, the subject is directed
to a location in the same room as the VR HMD.

In the third stage of the experiment, a series of procedures are performed
to introduce the VR controllers and HMD, as well as to perform eye calibra-
tion, which allows the participant’s gaze direction to be captured:

1. An introduction to the VR headset and controllers is given;

2. The headset is put on and adjusted such that the display is centred in
the view;

3. The controllerssetup are located and picked up;
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Table 5.3: Distribution Table of Participants

Variables Description Frequency

Gender Male 20 (≈ 54.1%)

Female 17 (≈ 45.9%)

Dominant hand Right Hand 35 (≈ 94.6%)

Left Hand 2 (≈ 5.4%)

Study status Current Student 23 (≈ 62.2%)

Not a current Student 14 (≈ 37.8%)

Confidence level using VR Not confident 20 (≈ 54.1%)

Neutral 5 (≈ 13.5%)

Confident 12 (≈ 32.4%)

General IT skills and
knowledge confidence level

Not confident 5 (≈ 13.5%)

Neutral 10 (≈ 27.0%)

Confident 22 (≈ 59.5%)

Confidence level with the
topic of Control systems

Not confident 19 (≈ 51.4%)

Neutral 7 (≈ 18.9%)

Confident 11 (≈ 29.7%)

4. The eye-tracker is calibrated:

(a) The headset is adjusted vertically so that the display is centred
on the eyes;

(b) The lens distance is adjusted based on participants eyes;
(c) The participants are asked to follow a set of dots using only their

eyes.

5. The operator starts the experiment.

The participant’s first objective during the experiment is to walk to a
preset position near to the control object. The specific spot is clearly marked
in the VE. When the participants arrive at the designated site, they may
choose from the following options:
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Figure 5.3: VE used in the experiment [P1].

• Interact of the control object (change the set-point—i.e., the desired
location of the crane’s payload,—and change the control mode of the
crane);

• Interact with the plot widgets (move them to the predefined locations,
grab and move them to a new location, or grab and throw them any-
where in the VE).

5.2 Questionnaire and System Usability Scale

After completing the final phase of the experiment, participants were asked
to complete a questionnaire comprising 10 SUS questions for the Desktop
trial and 10 SUS questions for the VE experiment, as well as three extra
questions concerning their degree of confidence in VR, IT, and Control sys-
tems. The system usability measure consists of ten items, each with five
values ranging from strongly agree to strongly disagree. The following is an
example questionnaire:

1. “I think that I would like to use this system frequently.”

2. “I found the system unnecessarily complex.”

3. “I thought the system was easy to use.”

4. “I think that I would need the support of a technical person to be able
to use this system.”
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5. “I found the various functions in this system were well integrated.”

6. “I thought there was too much inconsistency in this system.”

7. “I would imagine that most people would learn to use this system very
quickly.”

8. “I found the system very cumbersome to use.”

9. “I felt very confident using the system.”

10. “I needed to learn a lot of things before I could get going with this
system.”

5.3 Results

The SUS elements are classified as either positive or negative. Even objects
are bad, while odd items are good. To obtain the real score of the SUS
results, subtract 1 for each of the user replies for the five odd components,
then subtract the user answer from 5 for the even components, and then
multiply all of the components by 2.5 to obtain a score ranging from 0 to
100. Figure 5.5 presents the System Usability Scale (SUS) results, where
the average scores for each individual question are illustrated for all partici-
pants. This comprehensive comparison encompasses both the Desktop and
VR experiments, providing a clear view of user experience metrics across
different platforms. Figure 5.5 depicts the quartile distribution of the SUS
score for all participants in both experiments. The average SUS score for
all PC participants was 70 with a standard deviation (SD) of 20.8279, while
the average SUS score for all VR participants was 85 (SD=10.2977).

This demonstrates that the suggested solution is more usable than the
desktop experiment. Furthermore, the smaller SD indicates that there was
more consensus on the effectiveness of the technology in the VR trial. Fur-
ther investigation was carried out to see how the self-reported participant
distribution affected the utility of both studies. First, as illustrated in Fig-
ure 5.6,The system usability scale results revealed that users who reported
being confident in using VR got the highest average usability score. This
research indicates that as users gain trust in VR and get more comfortable
with it, the system’s usability will improve. These findings lend support
to the utilization of VR experiments in a larger context across the control
systems course.

Next, an investigation was conducted to determine whether individuals
with greater confidence in their general IT abilities were more inclined to
choose VR. In the case of the VR solution, it was observed that participants
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Figure 5.4: System Usability Scale Results Displaying Average Scores for Each Individual
Question Across All Participants in Both Desktop and VR Experiments.

with higher levels of confidence in general IT abilities and knowledge ob-
tained higher average SUS scores, as illustrated in Figure 5.7, whereas the
average score for the Desktop experiment did not alter significantly.

Lastly, an examination was undertaken to ascertain whether the partic-
ipants’ level of trust in the specific research material had an impact on the
SUS findings, particularly in the context of control systems. The outcomes
of the system usability scale were categorized according to the participants’
self-assessed level of trust in control systems, as depicted in Figure 5.8. Par-
ticipants who rated neutral confidence in control methods offered the highest
usability score in both the desktop and VR studies. Participants assessed
the VR experiment as easier to use than the desktop trial in general. While
the small sample size limits any inferences drawn from this study, the find-
ings underline the need of incorporating VR into the development of more
realistic rich experiments for control object DT.
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Figure 5.5: System usability scale results for all participants in the Desktop and VR
experiments [P1].

5.4 Conclusion
In this chapter, we conducted a SUS study to assess the usability of the
3D crane DT experienced in an XR environment, specifically focusing on
the virtual lab mode. The DT and XR technologies form the foundation of
all lab modes and represent a significant contribution to the current work.
Therefore, understanding their general usability for the intended application
is essential to establish their effectiveness across all other lab modes. Based
on the analysis of the study’s results, it is evident that the DT and XR
technologies demonstrated promising usability for the intended application
in the virtual lab mode. The participant’s feedback indicated positive ex-
periences and effective interactions with the system, suggesting that these
technologies hold significant potential for various other lab modes. In this
chapter We showed that our framework’s practical application extends to a
usability case study, where we systematically evaluated the impact of VR in
control systems education. This research not only complements the transfor-
mation of control system laboratories but also advances the understanding of
how XR technologies, such as VR, can significantly improve the educational
experience in engineering and beyond.
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Figure 5.6: System usability scale results based on participants self-evaluated confidence
using VR [P1].

Not confident Neutral Confident
Participants reported confidence level in their general IT skills and knowledge

20

30

40

50

60

70

80

90

100

(S
U

S
) 

sc
or

e

Desktop experiment
VR experiment

Figure 5.7: System usability scale results based on participants self-evaluated confidence
in general IT skills and knowledge [P1].
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Figure 5.8: System usability scale results based on participants self-evaluated confidence
with control systems [P1].
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Chapter 6

Data-Driven XR Design
Methods and Tools

In this chapter, we explore a data-driven machine learning approach, an-
chored within the principles of the “Reimagine Lab” framework. This frame-
work, with its foundation in DT and XR, serves as a foundation for our
investigations into enhancing user engagement in virtual settings.

Leveraging the detailed data representation from DT and the immersive
visualization from XR, we employ a data-driven replay and annotation sys-
tem. This system plays a pivotal role in classifying user behaviors, drawing
its strengths from the synergies of DT and XR as proposed in the “Reimag-
ine Lab” framework. Our studies centered around the 3D crane experiment,
with a particular emphasis on the throwing action. Using the insights de-
rived from this use case of the “Reimagine Lab” framework, we utilized
the replay system to better understand these throw attempts. This led to
the development of a machine learning classification algorithm fine-tuned to
classify user interactions.

The Chapter organized as follows. In Section 6.1, the relationship be-
tween interaction and immersion is discussed. Next in Section, 6.2 the pro-
posed data driven interactions procedure is detailed and the replay system is
introduced. The results are presented and analyzed in Section 6.3. Finally,
in Section 6.4, conclusions are drawn.

6.1 Interaction and immersion

One remarkable feature of VR is its capacity to create a sensation known as
“immersion”, wherein the user, while experiencing the VE, genuinely feels
as though they have been transported into an entirely different reality. This
immersive experience provides valuable learning opportunities, as it closely
mimics real-world scenarios, allowing users to interact with the environment
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authentically, with the added benefit that artificial components in such an
environment can be easily synthesized, something not achievable in the phys-
ical world.

The quality of immersion of the VR environment or presence divided into
two parts [60]:

1. The place illusion: The user is feeling that they are moved into another
place;

2. The plausibility illusion: the user’s satisfaction with the environment
in response to their interaction with it.

This chapter centers its attention on the latter aspect, specifically the con-
cept of plausibility illusion. This particular focus is intriguing due to its
reliance on interface devices (controllers) and the algorithms that govern
the extent of user interaction within the environment. Within this chap-
ter, we delve into a potential solution for addressing this unique challenge.
To be more precise, we explore a scenario where the VE is endowed with
rudimentary intelligence, enabling it to anticipate the user’s actions. This
anticipation is achieved through signal processing and classification applied
to the data collected from biometric and human motion data, thereby facil-
itating a seamless assistance to the user in carrying out those actions.

6.2 Data Driven Interactions

Design of the VE
(specific application)

Run the VE experiment
(data collection)

Label and preprocess 
the collected data

Apply machine
learning algorithms

Provide an
implementation

Visual elements
(Objects)

Sensory feedback 
(Audio ,haptic)

Input interaction
behavior

Controllers Tracking

Input events 

VE state

HMD Tracking

User Input events 

ensemble classifier

Naive Bayes

SVM classifier

Ensemble C
lassifier

Decision Tree
Manual annotation

Automated annotation

Transfer the implemented model into the actual VE

Figure 6.1: Diagram of the data driven procedure for the implementation of assistive
features in a VE [P2].

Figure 6.1 illustrates the proposed process for constructing a Data-driven
VE. This process initiates with the design of the VE. While VEs may vary
considerably across different applications and industries, they typically con-
sist of three core components:

• visual elements, which are graphical representations of the objects and
the environment,
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• sensory feedback that is used increases the effect of immersion for the
user,

• the algorithms that determine the environment’s responses to the user
interaction (input).

The next phase in the procedure is data collection. To comprehensively
capture the user’s behavior, it is essential to record all the input data that
the user imparts to the VE. This encompasses tracking data from both the
HMD and controllers, as well as the input events generated by pressing
buttons on the controllers.

Subsequently, the third step involves labeling and data processing. This
task is efficiently carried out using the proposed replay and annotation sys-
tem, as elaborated in Subsection 6.2.1.

Through the utilization of this system, we are able to pinpoint and label
undesired interactions or behaviors within the VE. Moreover, this system
serves as a valuable tool for providing developers with insights into user
actions within the VE.

In the final phase, we employ machine learning algorithms to train clas-
sifiers capable of more accurately predicting intended human behavior. This
training process utilizes the annotated data obtained from the replay and
annotation system. A wide spectrum of algorithms is available for this
purpose. For instance, we can opt for a naive Bayes classifier, which is a
straightforward probabilistic model assuming independence among different
features. Alternatively, support vector machines and decision trees, among
other methods, can also be applied effectively.

Once we have achieved a model with a satisfactory level of accuracy,
it can be integrated into our original VE as an alternative to the initial
rule-based algorithm that led to undesirable interaction behaviors.

6.2.1 Replay and annotation system

Figure 6.2 depicts the proposed VR data replay and annotation approach
designed for the analysis and classification of data collected within VR en-
vironments. Through this interactive visual interface, developers gain the
capability to employ this data-driven replay system for the following pur-
poses:

• Replay the participant’s behaviour in the experiment;

• Annotate the user behaviour and actions in the experiment;

• Test alternative algorithms for the user interaction with the environ-
ment without the need to record new data;

• Automate post-processing and annotation of the data.
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setup

Figure 6.2: VR data replay and annotation system [P2].

6.3 Results And Analysis

Within this section, we present two instances exemplifying the workflow of
the system. We pinpoint situations where undesired outcomes arise due to
user interactions during the experiment. Moreover, we illustrate the sys-
tem’s capability to employ a data-driven approach, which allows for the
development of alternative and more precise interaction algorithms.

6.3.1 Grabbing Actions

Input Replay system Output

Recorded experiment
data

Recorded
experiment 

data + annotated
data

Original VE
interaction Behaviour

Focused object
classification
component

Operator annotations

Figure 6.3: Replay system workflow for data annotation [P2].

In this subsection, we will present the first example of utilizing the re-
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play system to enhance the interaction within the VE. This improvement is
achieved through the insights obtained from the collected data and by em-
ploying the replay system for annotating and categorizing user actions and
objects.

Throughout the experiment, it became evident that participants encoun-
tered difficulties when attempting to grasp objects within the VR environ-
ment. Subsequent analysis of the collected data confirmed these observa-
tions. Among the 26 participants, a total of 421 attempts were made to
grab objects, with 180 of these attempts resulting in failure.(≈ 42.8%). Cer-
tain attempts may be considered as random occurrences where users were
not intentionally trying to grab objects. To validate this observation, we em-
ployed the replay and annotation system, which confirmed that users were
indeed encountering difficulties with the grabbing action. Initially, it is im-
perative to examine the rule-based algorithm governing the interaction with
the interactive plot widgets, as depicted in Figure 6.4a.
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Attach the plot
widget to the

controller
End

YesNo

(a) Original rule-based algo-
rithm defining grabbing the
interactive plot widgets in-
teraction.
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Attach the plot  
widget to the

controller

YesNo 
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(b) Improved rule-based al-
gorithm defining grabbing
the interactive plot widgets
interaction.
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is thrown
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is moved

YesNo

Start

End

(c) Original rule-based
algorithm defining mov-
ing/throwing the interac-
tive plot widgets interaction
.

Figure 6.4: Different algorithms for interactions in a VE [P2].

Numerous factors may have contributed to the undesirable interaction
behavior observed during the experiment. These factors include varying lev-
els of depth perception and VR experience among participants. Leveraging
the replay system, we embarked on a data-driven exploration to develop
a more robust grasping implementation. This involved examining trends
within user-collected data with a focus on the grabbing action.

Our analysis led us to a significant conclusion: integrating gaze data
with the grabbing input event could potentially reduce the number of failed
grabbing attempts.

To assess the viability of using the object that captures the user’s gaze
at the moment of grabbing, we conducted a new data collection process.
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This involved introducing a new component into the replay system, which
utilizes collision detection boxes to identify the object of interest within the
environment. Subsequently, the replay system was employed to annotate
and capture the gaze-focused object for each participant frame by frame.
The comprehensive workflow of this annotation method, facilitated by the
replay system, is illustrated in Figure 6.3.

The last phase of the process involved incorporating the user’s gaze-
focused object into the interaction behavior of the grabbing action, depicted
in Figure 6.4b.

The new approach reduced the number of failed attempts to 84, reducing
the percentage of failed attempts to (≈ 20.0%). Table 6.1 demonstrates the
disparity in failed grab attempts between the original and enhanced rule-
based algorithms.

Though this example may appear straightforward in its application, it
underscores the value of incorporating data within the iterative process of
constructing immersive environments.

Table 6.1: Grabbing objects interaction algorithms comparison

Algorithm Total grab
attempts

Failed grab
attempts

Original rule-based algorithm 421 180 (≈ 42.8%)

Improved rule-based
algorithm

421 84 (≈ 20.0%)

6.3.2 Moving and Throwing Actions

Once the plot widgets have been grabbed, users have the option to either
relocate them or discard them, with the latter causing the plot widgets to
reappear on the virtual window frame.

Similar to the previous scenario, it was observed that some participants
attempted to initiate the throwing of plot widgets. However, their attempts
often failed due to issues such as a failure to release the grip button on the
VR controller at the correct moment or insufficient throwing speed. These
challenges highlight how differences in reaction time and user dexterity can
lead to undesired interactions within the VE.

In contrast to the previous scenario, improving the throwing action’s
robustness in VEs is not as straightforward, as there is no single feature
that can be introduced. However, upon closer examination of the movement
patterns, distinctions between moving an object within the VE and throwing
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it become apparent.

In cases like these, machine learning classification methods can serve as
a viable alternative to the original rule-based algorithm for both moving and
throwing actions, as depicted in Figure 6.4c.

The Replay system was employed to annotate all instances of attempts
to either throw or move the interactive plot. The comprehensive workflow
of this annotation method, facilitated by the replay system, was previously
illustrated in Figure 6.3. According to the data collected from the 26 par-
ticipants, there were a total of 89 attempts to throw the interactive plot.
Among these attempts, 23(≈ 25.8%) resulted in failure.

The acquired data was employed to train a classifier of the ensemble
bagged trees type, enabling the prediction of whether the user intended to
throw or move the interactive plot. The outcomes of utilizing this classifier in
comparison to the original rule-based algorithms are presented in Table 6.2.
By employing the classifier, the number of failed throw attempts was notably
reduced to just 6 (≈ 6.7%) of the total attempts..

Figure 6.5 shows the confusion matrix of the result of the training with
5-fold cross-validation. While the trained classifier has a high overall recog-
nition accuracy of approximately 95% and a throw action accuracy of ap-
proximately 93%, it introduced an undesired effect of classifying eight move
actions as thrown, reducing the accuracy of the move action to approximately
95%.

moved thrown

Predicted Class

moved

thrown

T
r
u
e
 
C
l
a
s
s

Confusion matrix

6

8

83

163

Figure 6.5: The confusion matrix of the classifier results using 5-fold cross-validation [P2].
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Table 6.2: Moving-Throwing objects interaction algorithms comparison

Algorithm Total throw
attempts

Failed throw
attempts

Original rule-based algorithm 89 23 (≈ 25.8%)

Classifier of ensemble bagged
trees type

89 6 (≈ 6.7%)

6.3.3 Analysis

The replay and annotation system has opened up possibilities for leverag-
ing a data-driven approach to analyze and enhance user interaction within
VR. Although the two cases we examined were relatively simple, the same
methodology and tools can be extended to more intricate and densely pop-
ulated VR environments with more sophisticated interaction behaviors.

It is worth noting that this system facilitates the testing of alternative
algorithms without the need for recording entirely new data. By replaying an
experiment with a newly introduced algorithm (distinct from the one used
during the original data recording), we can explore different approaches.
However, it is essential to acknowledge that the introduction of this new
algorithm can disrupt the continuity of user actions, as their reactions to
these alternative algorithms remain unknown. Therefore, our analysis should
be confined to isolated activities within the recorded experiment, rather than
the entire sequence of actions.

It is crucial to recognize that VR immersion involves various factors
beyond just VE interaction algorithms. Elements like haptic and visual
feedback significantly influence the level of immersion in a VE. Consequently,
it becomes essential to investigate the impact of introducing these alternative
algorithms on other aspects of immersion. Examining the case of grabbing
or moving interactions and their influence on other immersion factors reveals
some limitations of substituting rule-based methods with machine learning
classifiers. Machine learning models, due to their complex nature, make it
challenging to provide users with a straightforward description of the model’s
decision-making process. For instance, while it is feasible to add a visual
indicator to the VE when using the original rule-based algorithms (as shown
in Figure 6.4c), indicating whether the threshold velocity has been reached,
such indicators become more complex to implement with machine learning
models.
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6.4 Conclusion
In this chapter, we have unveiled a data-driven replay and annotation system,
directly drawing from datasets procured from VR laboratory experiments.
Aligning with the “Reimagine Lab” framework’s principles, we ventured
deeper into the utilization of data-driven techniques and machine learning
to bolster user interactions within VR settings. This engagement is real-
ized through strategic data classification, informed by the unique insights
our system offers. As a testament to our methodology’s reliability, we an-
chored our exploration in data assembled and annotated from the 3D crane
experiment. Not only does our proposed approach highlight the potential
of machine learning in crafting more intuitive interactions within VR spaces
but is also a pivotal contribution to the evolution of adaptive VEs, aligned
with the “Reimagine Lab” framework.
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Chapter 7

Intelligent agents in virtual
environments

This chapter extends the Reimagine Lab framework, introducing AI-driven
DTs as “intelligent agents”. Here, mobile robots are specifically chosen to
illustrate the effectiveness of the proposed approach. The field of robotics, a
cornerstone of control engineering, underpins this initiative, emphasizing the
creation of controllers for various systems, from basic cart-poles to sophis-
ticated mobile robots, essential in control education. The method utilizes a
reinforcement learning algorithm for training mobile robots in specific tasks.

This chapter structure is organized as follows: We begin by formulating
the problem as a reinforcement learning task in Section 7.1. Next, we delve
into the details of our proposed DT and reinforcement learning framework
in Section 7.2, wherein we implement the hybrid mobile robot as a DT. The
three tasks used to assess the robot’s abilities are outlined in Section 7.3.
Following that, we present and discuss the results of our experiments in
Section 7.4. Finally, we draw conclusions based on our findings in Section 7.5.

7.1 Formulating the Problem as a Reinforcement
Learning Task

This section details how AI-enhanced Digital Twins (DTs), known as “intel-
ligent agents,” are integrated into the Reimagine Lab framework, addressing
the challenge of assessing DT performance. This creates a new challenge
for XR specialists integrating XR and DT in the proposed “Reimagined
Framework”. The proposed method defines evaluating DT performance as
a reinforcement learning problem. It utilizes learning-based methods to un-
derstand and evaluate the DT’s capability to accomplish predefined tasks.
This approach is showcased through a case study of a hybrid, multi-mode
locomotion mobile robot. The complexity and adaptability of this robot
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demonstrate the feasibility and potential of the proposed method.
Mobile robots serve a wide array of purposes, ranging from planetary

exploration to industrial manufacturing and package delivery. Depending
on the environment, different locomotion mechanisms have been proposed
for these robots. For instance, wheeled robots excel in energy efficiency and
ease of control on smooth terrains like paved roads and indoor spaces, while
legged robots offer superior obstacle navigation capabilities, making them
suitable for rough and unstructured terrains, although with increased energy
consumption and control complexity [77]. In real-world applications, mobile
robots encounter a mix of rough and smooth terrains, necessitating the use
of hybrid locomotion concepts. These concepts allow robots to operate in
various locomotion modes, adapting to their surroundings. However, deter-
mining the optimal operational mode for these hybrid robots requires prior
knowledge of each mode’s limitations and capabilities. This constraint adds
complexity to navigation strategies and limits their widespread application.

Inspired by the successes of deep reinforcement learning algorithms in
various domains [78], such as video games, energy management systems [79],
and robotics for manipulation and navigation purposes [80,81], we propose
a data-driven method to evaluate hybrid mobile robots. We achieve this by
formulating the problem as a reinforcement learning task applied to a DT
simulation of the mobile robot, taking advantage of industry 4.0 technology.

The proposed method involves developing a collection of testing envi-
ronments for evaluating the robot’s capabilities in different operation modes
and with various task sets, utilizing deep reinforcement learning algorithms.
A schematic representation of the approach is shown in Figure 7.1.

Specifically, we create a DT of the Hybrid Wheel-on-Leg mobile robot [82]
using a general-purpose reinforcement learning simulation tool. The DT is
then trained on three predefined tasks to assess the robot’s abilities in its
two locomotion modes for solving these tasks.

The three tasks consist of evaluating the robot’s capability to reach a
known target position rapidly, ascend an increasing steep slope, and climb
over steps of increasing height. By conducting these tests in both operational
modes, we analyze the results to determine the robot’s optimal operational
mode for accomplishing each set of tasks. This data-driven approach lever-
ages the power of reinforcement learning to optimize the performance of
hybrid mobile robots in diverse environments.
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Figure 7.1: Overall reinforcement learning the DT method for evaluating hybrid mobile
robot [83] locomotion modes [P3].

7.2 DT Simulation of the Hybrid Mobile Robot
The Unity Engine and the ML-agents [84] framework were used for creating
the DT and reinforcement learning training. The process of creating a DT
is shown in Figure 7.2 and can be summarized as follows:

1. Conversion of SolidWorks Assemblies to “.OBJ” Files: To initiate the
DT creation process, the existing SolidWorks assemblies of the target
robot were converted into “.OBJ” files, which are compatible with the
Unity Engine. This step ensures seamless integration of the robot’s
physical properties and geometry into the VE.

2. Hierarchical Construction within Unity: After importing OBJ files into
Unity, we establish a hierarchical system of rigid bodies, joints, and
collision components to mimic the robot’s overall behavior and loco-
motion mode. This structure reflects the robot’s physical framework,
enabling the simulation to capture its dynamic movements and inter-
actions with the environment.

3. Programmable Sensor and Motor Functionality: To enable effective
interaction and control of the DT, custom and built-in scripts are em-
ployed to implement programmable sensor and motor functionality.
These scripts facilitate the integration of various sensors, enabling the
DT to perceive the VE, and motors.

SolidWorks was used to create the original 3D model of the hybrid robot,
Where the robot is composed of numerous sub assemblies for each physical
component. The first step involved exporting the SolidWorks sub assemblies
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(a) (b) (c)

®

Figure 7.2: The DT creation process: (a) original SoildWorks assembly [83] (b) exported
sub assemblies in Blender (c) DT in Unity 3D [P3].

for the vehicle’s main body, legs, and wheels as OBJ files. Blender was used
as a bridge between Unity and Soildworks to modify the OBJ files, such as
reducing the number of vertices and setting an appropriate pivot points for
each sub assembly, to make re-creating the vehicle easier in the following
steps.

After importing the OBJ files for all of the components, the robot is
modeled using a hierarchical parent-child approach, with the main body
serving as the parent for all four legs that are located in relative coordinates
to the main body and the wheels as child objects of the legs. If the pivot
points are selected correctly, as described previously, the process is quite
simple to follow.

At this point, the robot is only a visualization of a DT of the robot. To
achieve physical interaction with the unity environment, component defini-
tions must be used to define the robot’s behavior, which will be simulated
using the Unity 3D-physics simulation [85]. The first component is the rigid
body, which was added to the robot’s main body and each of its four legs.
We define properties such as the mass of the body part in this component
which will be used by the engine during the simulation. Each wheel was
fitted with the built-in wheel collider component. This wheel component en-
ables torque to be applied independently to each wheel while also managing
the interaction with the surface. To enable the engine to detect and handle
collisions, the Mesh collider component was also added to the wheels and
robot’s body. Finally, the legs motorized function function is applied via a
coded script that rotates the legs at the pivot point where they are connected
to the mobile robot’s main body. The final step in this process is simulating
the sensors which will be used as observations for the reinforcement learning
training. First, the robot posture and velocity are extracted by accessing
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the internal states in the previously added rigid body components. Second
an array of laser range finders competent which comes built-in with the ML-
Agent Framework is used to for sensing the environment.Figure 7.3displays
a visualization of the laser range finders attached to the robot.

Figure 7.3: Visualization of laser range finders mounted on the robot, demonstrating the
placement and orientation of the sensor.

Following the successful creation of the DT, reinforcement learning train-
ing is conducted using the ML-agents framework. The training process in-
volves the following stages:

1. Environment Setup: The DT, equipped with programmable sensor and
motor functionality, is integrated into the reinforcement learning en-
vironment provided by the ML-agents framework. This environment
serves as the training ground for the twin to learn and adapt its be-
haviors based on rewards and penalties received during the training
process.

2. Reward Design: An essential aspect of the reinforcement learning
training is the design of appropriate reward functions. These func-
tions define the desired behavior and tasks that the DT is expected
to achieve. Positive rewards are assigned for successful completion of
tasks, while negative rewards are applied for undesired behaviors or
failures.

3. Training Algorithm: The ML-agents framework employs state-of-the-
art reinforcement learning algorithms to optimize the DT’s behaviors.
Algorithms such as Proximal Policy Optimization(PPO) and Deter-
ministic Policy Gradients (DDPG) are commonly used to fine-tune the
twin’s actions and maximize cumulative rewards over multiple training
episodes.

In the domain of mobile robot navigation employing reinforcement learn-
ing, the robot is designated as an “agent”, while its external surroundings
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are regarded as the “environment”. This interaction between the agent and
the environment can be formally represented as a Markov Decision Process
(MDP), wherein the objective of the agent is to acquire knowledge on select-
ing the most optimal action, denoted as A, based on the current state of the
environment, denoted as S. This choice of action is intended to maximize
the reward, denoted as R, obtained from the environment. The selection of
observations and actions plays a crucial role in the learning process. Ob-
servations are the information the robot receives from its sensors and the
environment, providing it with insights into the current state S of the envi-
ronment. These observations serve as inputs to the reinforcement learning
algorithm, allowing the robot to make informed decisions on how to act
based on the received data. For example, in a mobile robot, observations
could include data from various sensors such as cameras, LIDAR, or other
environmental sensors. The robot may receive information about its own po-
sition, orientation, nearby obstacles, and the presence of any targets or goals
it needs to reach. All these observations contribute to creating a represen-
tation of the environment’s state S. On the other hand, actions refer to the
decisions made by the robot in response to the observations it receives. These
actions are typically executed to perform some movement or manipulation
in the environment. In a mobile robot navigation scenario, actions could
involve moving forward, turning, stopping, or any more refined action such
as applying torque to the motors. The set of available actions constitutes
the “action space” of the reinforcement learning problem. The choice of ob-
servations and actions is critical for the success of the reinforcement learning
algorithm. The observations must capture relevant information about the
environment to allow the robot to learn an effective policy, while the action
space should include a sufficient range of actions for the robot to navigate
and achieve its objectives. Table 7.1 presents the specific observations and
actions used in the training of the mobile robot for both locomotion modes.

Although the agent receives immediate rewards at each time step, the
essence of reinforcement learning lies in the pursuit of maximizing the cu-
mulative reward value over time, rather than solely focusing on short-term
gains. Consequently, the goal is formulated to maximize the cumulative
reward, Rt, as expressed in equation (7.1).

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑

k=0
γkrt+k+1. (7.1)

Numerous research endeavors have proposed diverse methods for solving
such MDPs. For our specific case study, we have opted to employ PPO as
proposed by [86]. PPO is a policy gradient-based deep reinforcement learn-
ing method designed to accommodate environments with either discrete or
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continuous action spaces. The core objective of PPO is to optimize the pol-
icy, denoted as πθ, which refers to a neural network function approximation
responsible for mapping the environmental state, S, to the corresponding
agent action, A.

PPO stands out as a favorable choice for our use case due to its ability
to strike a suitable balance between simplicity and efficiency. It should be
noted, however, that alternative reinforcement learning methods could be
employed in a similar manner to address this problem effectively.

Table 7.1: The reinforcement learning observation and action space for both locomotion
modes of the mobile robot

Locomotion mode Observations Actions

Skid steering (Wheels
only)

An arrays of sparse laser
range finders; vehicle Pose
and velocity;
target relative location.

Wheels motors.

Hybrid steering
(Wheels and legs)

An arrays of sparse laser
range finders;
vehicle Pose and velocity;
target relative location;
legs rotation.

Wheels motors;
legs motors.

7.3 Designing the Testing Environments and Tasks

The robot can operate in two operational modes, the first operational mode
involves the robot’s wheel navigation while maintaining locked legs. The
robot is required to execute a skid steering mechanism, applying varying
torques independently to each wheel to effectively navigate the course. In
the second operational mode, the robot is tasked with adjusting the leg
angles to ensure contact between wheels and the ground. Additionally, the
robot must employ the skid steering method to drive and rotate effectively.

This section presents a comprehensive analysis of the first and second
operational modes of a hybrid robot, focusing on torque-controlled wheel
navigation and leg rotation capabilities. The robot’s center of gravity ad-
justment during hybrid operation is explored to facilitate obstacle clearance
and traversal of steep slopes. Three distinct task environments were de-
vised to evaluate the robot’s performance, including target reaching on a
flat surface, ascending slopes, and climbing steps. Reward shaping tech-
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niques were employed to quantify the robot’s speed, slope traversal ability,
and step-climbing capacity in each operational mode.

7.3.1 Target Reaching On Flat Surface

The primary objective in this task is for the robot to reach a static target
with a known location as shown in Figure 7.4. To accomplish this seem-
ingly trivial task, the robot needs to exhibit proficiency in both operational
modes. The reward system is composed of two components: First, the robot
receives positive rewards for progressing toward the target and negative re-
wards for moving away from it, scaled based on the initial distance from
the target. The maximum reward of +10 points is attained upon successful
target reaching. Second, additional rewards are provided based on the time
(simulation steps) taken to achieve the target. The cumulative reward Rt

collected during each episode directly reflects the robot’s speed capabilities
in each operational mode.

For the first operating mode, the robot must learn how to apply a skid
steering mechanism to a navigator in order to navigate the course by employ-
ing a variety of torques on each wheel independently. While in the second
operation mode, it must first learn to adjust the leg angles such that the
wheels are in contact with the ground before it can use the skid steering
method to drive and rotate the robot which in turn increase the difficulty
for the second operation mode.

Figure 7.4: Target Reaching Task Environment [P3].

7.3.2 Ascending a Slope

In this task, the robot must reach a goal located at the end of a slope,
as illustrated in Figure 7.5. The slope angle increases incrementally after
the robot reaches the goal a predetermined number of times, making the
task progressively more challenging. The robot must successfully reach the
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goal 100 times before the slop angle is increased by 0.5 degree. To evaluate
the robot’s performance, the reward system is structured similarly to the
first task, employing cumulative rewards as a measure of the robot’s slope
traversal proficiency. Notably, when the robot attains the maximum slope
inclination it can ascend for each operation mode, the earned rewards de-
cline significantly throughout training, reflecting the robot’s limitations in
ascending steeper slopes.

Figure 7.5: Ascending Slopes Task Environment [P3].

7.3.3 Climbing a Step

The hybrid robot capacity to climb steps is one of the reasons behind its
design. The third test environment is specifically designed to assess the
robot’s capacity to climb steps of varying height. The robot must complete
this task by reaching a goal positioned at the end of a step of varying height,
as seen in Figure 7.6. Similar to the second task, the step height increases
as the robot achieves the goal a certain number of times. The established
threshold is 100, necessitating the robot to successfully accomplish the task
at each step height before a subsequent increment of 0.05m is applied to
the step’s height. The reward system adopted in this task aligns with the
first two tasks, allowing for the utilization of overall cumulative rewards to
evaluate the robot’s performance. As in the previous task, the robot’s reward
during training experiences a substantial drop when it reaches the maximum
height of the step it can climb for each operation mode, and its inability to
scale the step results in an inability to attain the maximum possible reward.
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Figure 7.6: Climbing Step Task Environment [P3].

7.4 Comparison of Operational Modes for Differ-
ent Tasks

Table 7.2 provides an overview of the different locomotion modes and eval-
uated capabilities of the hybrid mobile robot.

The results shown in Figure 7.7-a reveal a speed difference between the
two robots. Initially, the first mode reached the goal with fewer simulation
steps than the second mode. However, As shown in Figure 7.7-b, the robot
in the second mode eventually learned a policy resulting in a higher speed
than the first mode, reaching a maximum speed of approximately 1.6 m/s.

During the slope ascending task, both locomotion modes experienced
a drop in the collected reward, as depicted in Figure 7.8, indicating the
points at which the slope steepness increased and the robot’s previously
learned policy needed updating before ascending the new slope. In the first
operation mode, the robot reached a terminal steepness of 18.5 degrees after
1.2M steps, while in the second mode, it reached 24 degrees after 5.45M
steps.

Likewise, the drop in reward shown in Figure 7.9 illustrates the points at
which the step height increased, requiring the robot’s learned policy to be
updated before climbing the new step height. In the first operation mode,
the robot reached a terminal step height of 0.3 m after 400k steps, and in
the second mode, it reached 0.8 m after 4.8M steps.

Throughout all three tasks simulations, the robot operating in the first
mode consistently learned to reach the target faster than in the second mode.
This was expected since the second mode increased control complexity, de-
manding the robot to manage both wheels and legs. As demonstrated in
the results the robot in the first locomotion mode completed each task in
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approximately 110k, 90k, and 60k steps, respectively, while the robot in the
second mode took 500k, 280k, and 190k steps to complete the same tasks.

These findings indicate that valuable insights into the capabilities and
limitations of hybrid robot locomotion modes can be obtained. However,
the knowledge is inevitably influenced by the task set used during training
and the accuracy of the DT and simulation environment.

Table 7.2: Overview of the mobile robot different locomotion modes results

Task First mode, skid steering
(Wheels only)

Second mode, Hybrid
steering (Wheels and legs)

Target
Reaching On
Flat Surface

Maximum speed= 1.64
m/s.

Maximum speed= 1.69
m/s.

Ascending
Slope

Maximum ascended
slope=18.5 degrees.

Maximum ascended
slope=24 degrees.

Climbing Step Maximum climbed
step=0.3 m.

Maximum climbed
step=0.8 m.
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Figure 7.7: The cumulative reward and speed for the target reaching task environment.
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Figure 7.8: The cumulative reward and slope steepness for the ascending slopes task
environment.
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Figure 7.9: The cumulative reward and step height for the climbing step task environment
.

7.5 Conclusions

In this chapter, we delved deeper into the “ReImagine Lab” by presenting
a data-driven approach that applies reinforcement learning to a DT simula-
tion, specifically focusing on mobile robot locomotion. Through an extensive
case study, we scrutinized the performance of a hybrid wheel-on-leg robot,
evaluating its capabilities in speed, slope ascension, and step obstacle climb-
ing. The findings revealed significant insights into the robot’s strengths and
weaknesses across various operational modes. By framing the challenge as a
reinforcement learning task, we effectively enhanced the robot’s adaptability
and efficiency in a range of environments, thereby reinforcing the connection
with the foundational concepts and goals of ReImagine Lab. In essence, the
DT of the mobile robot discussed in this chapter can also be viewed as an
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“intelligent agent” the the context of the present work. The specific aspects
of intelligence are twofold in this case:

1. The robot is learning to solve a task, in a similar way to how students
interact with DT in control experiments, trying and failing and eventu-
ally succeeding, albeit automatically, though the use of reinforcement
learning. This allows to develop interactions between the human user
and the intelligent agent that would benefit the human user and pro-
vide additional insights as to how machine learning works.

2. The concept of automatic tuning. In control engineering, automatic
tuning typically refers to the ability of a controller running in a pro-
cess control loop, to self-adjust and find optimal settings to make sure
the control loop is performing well. This concept is far more advanced
with solving complex tasks like in the case of the mobile robot naviga-
tion, however, drawing these parallels is also important toward future
research and development activities and further unification of afore-
mentioned concepts.

Hence, this gives rise to further opportunities of endowing the immersive
virtual environments with additional intelligence in the form of agents (au-
tonomous DTs). Due to the extensible nature of the Reimagine framework,
this development is seen as the natural step forward.
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Conclusions

In this thesis, a novel solution for control system laboratories was proposed
based on DT and XR technologies that significantly advances the state of
the art. This framework combines the innovative use of DT and XR to
transform the educational experience in engineering fields. Our exploration
began with the proposal and analysis of a DT and XR-enabled framework for
constructing a new generation of control system laboratories, demonstrating
how these technologies can unify and enhance laboratory modalities. This
not only elevates the educational experience by recreating remote and virtual
laboratories as DT but also fosters interaction and collaboration between
students and instructors, propelling the advancement of DT technology and
XR applications in education and engineering.

Furthermore, the subsequent chapters demonstrated the practical imple-
mentation and efficacy of the “Reimagine” framework. Chapter 4 showcased
the creation of cohesive DT for lab-scale objects using the framework. The
examples illuminated the potential for developing mathematical and 3D vi-
sual representations of DT across different control objects, underscoring the
versatility and reusability of the educational interfaces designed within the
framework. This underscores how the proposed framework seamlessly inte-
grates DT and XR, offering tangible applications that extend beyond theory
to practical implementation, making a meaningful contribution to education
and engineering fields.

Moreover, we conducted a study using the SUS study to evaluate the us-
ability of the 3D crane DT experienced in an XR environment, highlighting
the promising usability of DT and XR technologies for control systems ed-
ucation. This research not only complements the transformation of control
system laboratories but also advances the understanding of how XR tech-
nologies can significantly enhance the educational experience in engineering
and beyond.

Additionally, a data-driven replay and annotation system was introduced,
leveraging datasets from VR laboratory experiments to enhance user inter-
actions within VR settings. Aligning with the “Reimagine Lab” framework’s
principles, this showcased the utilization of data-driven techniques and ma-
chine learning to bolster engagement within VR spaces, serving as a pivotal
contribution to the evolution of adaptive VEs aligned with the “Reimagine
Lab” framework.

Lastly, we proposed an extended data-driven approach within the ReImag-
ine Lab framework, employing reinforcement learning in a DT simulation of a
mobile robot. This methodology offers crucial insights into the robot’s func-
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tionalities and constraints across various operational scenarios. By show-
casing how effectively Industry 4.0 technology can be utilized to refine the
robot’s performance in a multitude of settings, this approach not only aligns
with but also significantly advances the objectives of “ReImagine Lab”.

Collectively, these findings underscore the transformative potential of the
“Reimagine” framework in shaping the future of control system laboratories,
education, and engineering fields. The seamless integration of DT and XR
technologies, coupled with the insights and methodologies outlined in this
research, presents an innovative and impactful approach to redefining the
educational and practical applications of control systems, positioning it at
the forefront of advancements in engineering education and practice.

The “Reimagine” framework’s suggests various future prospects in con-
trol systems education and engineering. Key areas include enhancing the
DT and XR framework, potentially broadening its application to other con-
trol systems for more effective laboratory education. Improving real-time
data integration could increase the virtual models’ realism, enriching stu-
dents’ learning experiences. Additionally, exploring machine learning in XR
environments is promising. Advancing machine learning techniques could
improve user interaction in VR, leading to more responsive VEs. AI could
also tailor the XR educational interface to individual learning styles, mak-
ing education more personalized and human-centric. Future research should
also focus on developing standardized metrics for evaluating these technolo-
gies’ effectiveness in education, emphasizing human-centered design. This
will provide valuable feedback for refining educational methods and curric-
ula. Extending the “Reimagine” framework to other engineering fields could
foster interdisciplinary innovation and enhance education across various dis-
ciplines, all while focusing on user-centric designs. Finally, integrating DT
and XR technologies in industrial training as Industry 5.0 evolves could be
beneficial. Adapting “Reimagine” for industry-specific training might enable
professionals to acquire practical skills in a virtual setting before transition-
ing to real-world applications, aligning with human-centered design princi-
ples.
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ABSTRACT Practical work is one of themost important instructional tools in control engineering. To address
concerns linked to the cost and space requirements of traditional hands-on laboratories, technology-enabled
laboratory modes, such as virtual, remote, and take-home laboratory modes are proposed. Each of these
alliterative laboratory modes has its own set of benefits and emphasizes a distinct learning goal. Furthermore,
due to lockdown and physical proximity restrictions imposed by policies in response to the COVID-19
pandemic, the employment of these laboratory modes has been quickly increasing. The laboratories’
development, operation, and maintenance become more fragmented as a result of these many possibilities.
In this study, we propose ‘‘ReImagine Lab’’ as a framework for leveraging digital twins and extended reality
technologies to streamline the development and operation of hands-on, virtual, and remote laboratories. By
increasing the level of interaction, immersion, and collaboration in technology-enabled laboratory forms,
this framework intends to boost student engagement. The benefits of this framework are demonstrated by
examining several use cases, and a 37-person ‘‘system usability study’’ is conducted to assess the usability
of virtual laboratories employing desktop computers and immersive virtual reality.

INDEX TERMS Control system, digital twins, extended reality, virtual reality, industry 4.0, remote
laboratories, virtual laboratories, metaverse.

I. INTRODUCTION
Control engineering is a major interdisciplinary topic that
exists in almost every engineering discipline [1]. Automatic
control is fundamental to advancements in a wide sector
of industries, including the energy sector, transportation,
manufacturing, aerospace, smart homes and consumer appli-
ances. Control engineering is devoted to the use of math-
ematical modeling and analysis to understand systems and

The associate editor coordinating the review of this manuscript and

approving it for publication was Emanuele Crisostomi .

their interactions in nature, as well as applying control theory
to the controllers’ designs that drive these systems to reach
desired states. Control engineering is applied to systems that
can vary in nature and include mechanical, electrical, fluid,
chemical, financial or biological systems [2]. While they
are conventionally taught in educational institutions, con-
trol courses have roots in mathematical theory, and at the
same time, they require an intuitive understanding of differ-
ent concepts from students, which allows students to relate
the acquired knowledge to actual practical applications of
control theory. As a result, control engineering instructors

89924 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022



S. Alsaleh et al.: ReImagine Lab

persistently highlight the importance of practical hands-on
experience in successful control engineering education from
the early stages of learning [3].
There are many pedagogical tools that can be applied to

build the practical hands-on expertise required by control
courses, including course project assignments, internships
and laboratory experiments. Practical work in the laboratory
(‘‘control laboratory’’) has become a standard component of
automatic control courses, as they aim to [4]:
• connect theory to implementations and observations in
the laboratory,

• identify differences between models and physical
systems,

• design and verify controllers that meet specifications,
• collect and visualize data.
Traditionally, these laboratories were based on work-

ing with laboratory-scale control objects that were used to
demonstrate dynamic phenomena that was observed in full-
scale, industrial counterparts of these objects.
These experimental setups incorporated computer inter-

faces to enable students to design and tune controllers and
observe how the system behaves under these new conditions.
For example, in [5], the laboratories included experiments
with a coupled tank system, an inverted pendulum and a
rotary table. These systems were used to demonstrate the use
of modeling, simulation and control design to students.
However, actual physical laboratories are costly to build

and maintain. They require a considerable amount of space
and are composed of specialized hardware, which increases
the complexity of the necessary infrastructure. Moreover,
as the number of students increases, managing the infrastruc-
ture and organizing physical laboratories becomes extremely
challenging. In other words, this infrastructure does not
scale well.
Thus, leveraging the recent advances in information and

communication technologies, educators have created differ-
ent alternative modes of technology-enabled laboratories to
tackle the issues related to traditional physical hands-on lab-
oratories. Works [2] categorized these different laboratory
modes based on the nature of the experimental resources (real
or simulated) and the location of these resources (local or
remote), as shown in Table 1. Further discussion is largely
based on this taxonomy.

A. SEEKING THE ULTIMATE LABORATORY MODE
There is an ongoing debate on the effectiveness of the
different laboratory modes. A comparative analysis of the
different laboratory modes has shown that when these lab-
oratory modes are developed, their efficiency is measured
by their ability to achieve different learning objectives [29].
For example, remote laboratories are more suited for under-
standing concepts, while virtual laboratories are better suited
for learning design skills. This makes it difficult to prioritize
any single laboratory mode.
Another important factor to consider is the way that stu-

dents’ interaction with laboratory objects, instructors and

other students is affected by the specific laboratory mode.
Analysis of results from studies of students’ interaction in
face-to-face and remote hands-on laboratories have shown
that there is a lack of systemic analysis of students’ interac-
tions in the alternative technology laboratory modes. Before
we are able to understand the full implications of the use
of such laboratory modes, we need to have better tools to
investigate the students’ interactions [30].
While hands-on physical laboratories have evident disad-

vantages related to cost and space requirements, remote and
virtual laboratories also have drawbacks:
• In remote laboratories, students report a lack of personal
engagement because of the separation between them and
the experimental objects [31], [32].

• Virtual laboratories have even more of a separation,
as the virtual system does not physically exist and the
relationship is not clear between the physical and the
virtual environment.

• The usability of virtual laboratories is questioned,
as it is not the focus point when designing virtual
laboratories [33].

In addition to the learning objectives of control engineering
courses, to meet the needs of the industry as well as the
accreditation criteria imposed on the university study pro-
grams, engineering students should develop not only profes-
sional skills but also soft skills. In this case, the working
patterns that happen in hands-on laboratories are more suited
to foster these skills compared to remote and virtual laborato-
ries [34]. An overview of laboratories in control engineering
and their alternatives is presented in Table 2.
Regardless of the ongoing debate, the recent coronavirus

pandemic has forced the use of these alternative laboratory
modes as physical distancing and lockdowns prevented the
use of traditional physical laboratories [35], [36]. The lock-
downs and related movement restrictions resulted in the need
for organizing classes in hybrid form, and thus, the option of
distance learning was made available to students. In a similar
way, a hybrid approach combining several laboratory modes
has emerged that allowed for the modes to complement each
other. For example, virtual and remote laboratories concerned
with the same control object can be used as follows [26]:
• the virtual mode is applied during the control design
stage when no interaction with the real system is strictly
necessary;

• the remote mode is applied for observing the behaviors
introduced by the real system and deepening the under-
standing of related concepts.

As a result, rather than searching for the ultimate laboratory
mode, one might devise a method for combining all of the
modes within the same laboratory activity.

B. EMERGING INDUSTRY 4.0 TECHNOLOGIES: DIGITAL
TWINS AND EXTENDED REALITY
Hands-on laboratories in control engineering are often
extended with mathematical models and simulations that,
on the one hand, provide the theoretical foundations for
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TABLE 1. Laboratory mode classifications.

modeling the specific control object and, on the other hand,
allow the students to design control systems based on these
models. The models themselves are often based on approx-
imations leading to unmodeled dynamics. For example, the
parameters of the studied systems are assumed to be time-
invariant, yet in real life, the parameters of the systems are
subject to change. Thus, updating these models and simula-
tions requires manual effort and specialized expertise, which
makes creating, operating, and maintaining the laboratories
even more costly.
The industry 4.0 revolution, however, emphasized the

usage of data as the cornerstone for improving processes
and operations across all industries. For example, industry
4.0 builds on a data-driven architecture by utilizing models
that are capable of using data from real systems, which are
used to synchronize the virtual representation of these sys-
tems with their real life counterparts, leading to the concept
of Digital Twins (DT). The most cited definition for a digital
twin reads as follows [37]. Note that the quote is taken from
the document published by NASA, hence the occurrence of
the ‘‘flying twin’’ concept, but the applications of the digital
twins are obviously not limited to the aerospace industry.

A digital twin is an integrated multiphysics, multi-
scale, probabilistic simulation of an as-built vehicle
or system that uses the best available physical mod-
els, sensor updates, and fleet history to mirror the
life of its corresponding flying twin.

The digital twin concept has many other definitions in the
literature, as it is an emerging technology, and researchers are
experimenting with its applications across different types of
industries.
In our work, we follow the definition presented by the Dig-

ital Twin Consortium: ‘‘A digital twin is a virtual represen-
tation of real world entities and processes, synchronized at a
specified frequency and fidelity’’ [38]. Toward the dynamical
modeling aspect of a digital twin, we turn to [39], which
describes the digital twin as having three main parts:

• a model of the object,
• an evolving set of data relating to the object,
• a tool for dynamically updating or adjusting the model
in accordance with the data.

Concerning the last item, we note that the need for transfer-
ring data from virtual simulation to DT-based virtual labora-
tories specifically has been stressed in [9].

C. CONTRIBUTION
In this paper, we build upon this idea by showing that
DT-based laboratories replace traditional simulated virtual
laboratories and remote laboratories. Furthermore, with this
approach, the traditional hands-on experiments are enhanced
by enabling shared and mixed experiences coupled with the
use of the extended reality technology.
The proposed framework is composed of multiple levels of

fidelity based on digital twin implementation and extended
reality (XR), with the ability to create unified and com-
pliant modes for hands-on, virtual and remote laboratory
experiments:

• First, remote laboratories are replicated as digital
twins of the original laboratories synchronized at high
frequency.

• Second, locally hosted virtual laboratories are digital
twins of the original laboratories synchronized period-
ically to ensure the validity of the virtual representation.

• Finally, XR is used to enable a higher level of interaction
and visualization offered by digital twin representation.

A comparison of the characteristics of different laboratory
modes and hybrid ReImagine laboratories is presented in
Table 3.
The main contribution of this study is presented in the

following paragraphs. We first introduce the ‘‘Reimagine
Lab’’ framework and show how the use of digital twins
and extended realities streamlines the creation of virtual and
remote laboratory modes. We then review the benefits of
using the framework for both remote and virtual laboratories,
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TABLE 2. Overview of laboratories in control engineering and their alternatives.
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TABLE 3. Characteristics comparison of different laboratory modes and hybrid ReImagine laboratories.

as well as how it enables the creation of shared experiments
with hands-on laboratories. A specific use case is studied to
test the validity of the framework, where a digital twin of
an actual control object, a laboratory-scale model of a 3D
crane located in the CS laboratory at Tallinn University of
Technology, Tallinn, Estonia [40] is created.
The structure of the manuscript is as follows. The proposed

DT and XR laboratory framework is detailed in Section II.
A use case of a digital twin-based implementation of a 3D
crane is described in Section III. Next, the system usability
study comparing the use of immersive virtual reality and
desktop virtual experiments is put into context and presented
in Section IV. The results of the experiments are presented
and discussed in Section V. Finally, conclusions are drawn
in Section VI.

II. REIMAGINE LAB: A DIGITAL TWINS AND
EXTENDED REALITY FRAMEWORK
The proposed framework is underpinned by two major com-
ponents: digital twins and extended reality. Fig. 1 presents
an overview of the proposed framework. The components
highlighted by dashed outlines represent the different lab
modes (with the exception of hands-on labs):
• Remote laboratory mode;
• Virtual laboratory mode;
• Cloud hosted virtual laboratory mode.
In all cases, while multiple fidelity levels of digital twin

implementations are used to represent the controlled physical
object, XR is used to enable a higher level of visualization and
interaction required by the digital twin representation. The
components on the bottom left represent:
• the physical lab asset, which allows for the hands-on lab
mode to be employed;

• the big data server that handles data storage for digital
twin synchronization and other tasks;

• a cloud-hosted version of the digital twin of the physical
lab asset.

The suggested framework addresses all of the issues raised
previously. Table 4 presents an overview of the characteristics
of the framework, and each lab mode is discussed separately
in the next section.

A. REIMAGINE-LAB MODES
1) REMOTE MODE
As illustrated in Fig. 2, the framework performs remote
teleportation of the laboratory asset by substituting video
streaming with synchronization of the local digital twin of the
real asset. Extended reality is being utilized to offer a more

intuitive and natural form of engagement using hand gestures
and other tools, allowing for an experience comparable to
that found in the hands-on laboratories. Because this type of
engagement does not need any user to have control privileges,
the usage of XR facilitates collaboration by establishing vir-
tual environments where users may interact with one another
and the laboratory object.

2) VIRTUAL MODE
Fig. 3 shows how the proposed solution enables locally hosted
virtual laboratories by replacing the simulated model with a
digital twin:
• first, the bidirectional evolving set of data guarantees
that updates from the actual laboratory object are applied
automatically to the digital twin;

• second, adhering to the digital twin principle, ReImag-
inedata that describes the uncertainty and divergence
between the digital twin and the physical twin is also
available;

• finally, usingf XR technology as amedium of interaction
to take advantage of the rich amount of information is
available through the digital twin architecture.

The first two features are intended to foster greater trust in the
virtual simulation, while the use of XR enables the creation
of environments that promote student collaboration.
Cloud-hosted virtual environments provide additional ben-

efits from the framework because they enable the use of
higher-fidelity twin models. As illustrated in Fig. 3, the simu-
lation is distributed across the network, with the local device
rendering the visual representation of the digital twin asset
while computation is offloaded to the cloud.

3) HANDS-ON MODE
The benefits of utilizing the framework are not limited to
technology-enabled laboratories; they also benefit hands-on
laboratories by allowing for mixed experiences in various
laboratory modes. The use of XR and digital twins in Fig. 4
enables a mixed experience where a group of students can
interact directly with the laboratory asset while others can
interact remotely. This interaction can be bidirectional if local
students are also utilizing augmented reality to interact with
laboratory assets.

B. CREATION OF THE REIMAGINE LAB ASSETS
The following section defines the core process of creating
digital twins in the context of automatic control systems. This
involves mathematical modeling, the creation of 3D assets,
interaction and visualization design.
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FIGURE 1. The overall schematic diagram for the ReImagine-laboratory framework.

FIGURE 2. The schematic diagram for a remote laboratory and ReImagine enabled remote laboratory.

1) MATHEMATICAL MODELING
Wefirst address the modeling and simulation aspect of digital
twins. Here, modeling broadly refers to the problem of the

coherent representation of the dynamics of the system studied
by computing the evolution of its internal variables (states)
under external stimuli (inputs). States and inputs represent
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TABLE 4. Characteristic of the ReImagine Lab.

some physical properties of the system. In general, a dynamic
model can be represented in state space form using a system
of differential equations as follows:

ẋ = f (x,u, t) (1)

y = h(x,u, t),

where x ∈ Rn is the state vector, u ∈ Rm is the input vector,
y ∈ Rp is the output vector, and t is the time argument, and
f (·) and h(·) are nonlinear functions. For convenience, linear,
time-invariant approximations of (1) are often used and are
of the form as follows:

ẋ = Ax+ Bu (2)

y = Cx+ Du,

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈
Rp×m are state, input, output, and direct transmissionmatrices
with numerical entries, respectively [41]. For single-input,
single-output linear, time-invariance systems, the concept of

the transfer function can be employed. The corresponding
dynamics equation in the Laplace domain is given as follows:

G(s) =
bmsm + bm−1sm−1 + · · · + b0
ansn + an−1sn−1 + · · · + a0

, (3)

where s is the Laplace operator, and ai and bj are real num-
bers, and n is the order of the model. For the system in (3) to
be practically realizable, it must be proper, i.e., the condition
n > m must be satisfied.
In terms of modeling approaches, the usual ‘‘box’’ models

are considered:
• White box modeling (also known as First Principles
modeling). The structure of the model is known, and the
model is derived from physical laws.

• Gray box modeling. The model is partially derived from
physical laws. Certain parts of the model are approx-
imated such that these approximations have no direct
physical interpretation but are nevertheless suitable for
modeling purposes.
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FIGURE 3. The schematic diagram for a virtual laboratory and ReImagine enabled virtual laboratory.

• Black box modeling. No information about the physical
structure of the system is given a priori. As a result,
the model is created by fitting experimental data to a
mathematical type of model and structure that has been
arbitrarily chosen. This is a data-driven technique that
is ubiquitous, although it may be less beneficial if the
structure of the systems under investigation is known.

In the case of gray and black box modeling, data must be
collected from real life plants. In the present work, data
are collected by sampling the sensors of the real life plant.
The system under investigation is connected to a desktop
computer through a data acquisition device that allows the
collection of all relevant data for creating a mathematical

model of the digital twin. The complete process is presented
in Fig. 5.
After the collection and preprocessing of data, the model

identification procedure is carried out. In this work, we con-
sider linear approximations of the system in question and for
the linear models in (2) and (3), the estimated parameter sets
are as follows:

θss =
[
θA θB θC θD

]
(4)

and

θtf =
[
θb θa

]
, (5)

respectively, with the individual entries of θss and θtf repre-
senting row vectors of parameters stemming from either the
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FIGURE 4. The schematic diagram for a hands-on laboratory and ReImagine enabled hands-on laboratory.

corresponding system matrices or the zero and pole polyno-
mials. Time identification is employed such that the output
error criterion (residual norm) is as follows:

F =
N∑
i=1

ε2i = ‖ε‖
2
2 (6)

is minimized, where εi = yi − ŷi is the residual (sim-
ulation error), yi is the true system output and ŷi is the
predicted output for collected samples i = 1, 2, . . . ,N .
In the case of a multi-input, multioutput system, the resid-
uals resulting from modeling individual outputs are scaled
according to the magnitude of the modeled physical variable,
and a weighted sum is used as the cost function. Several
optimization algorithms are used to estimate the parame-
ters of the model, including the Trust Region Reflective
algorithm [42], [43], the Levenberg–Marquardt algorithm
[44], [45], and the Nelder–Mead direct search method [46].
The latter is well-suited to optimize a function with
derivatives that are unknown or nonexistent. Addressing the
problem of the initial parameter estimation, the subspace
estimation method is used [47].

Concerning control, in the present work, we consider the
classical negative unity feedback control loop as follows:

H (s) =
C(s)G(s)

1+ C(s)G(s)
(7)

consisting of a controller denoted by C(s) and the plant
denoted byG(s). Here, the objective of the control system is to
manipulate the plant input u via the controller to minimize the
error e, i.e., difference between the desired output r (reference
value) and the true output of the plant y, and we consider the
output tracking problem. In real life industrial applications,
a proportional-integral derivative (PID) controller is typically
used [48], [49], [50]. In this work, we employ the parallel
form of the PID controller that has the form as follows:

C(s) = Kp + Kis−1 + Kd s, (8)

where Kp, Ki, and Kd are the proportional, integral, and
derivative gains, respectively. These parameters must be
properly tuned for each control loop that composes the full
system.
An important point to make is that in the case of digital

twin synchronization with real systems, the parameters of
the models obtained using the methods described above are
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not static and coevolve with the changes in real systems.
Therefore, the process depicted in Fig. 5 can be thought of
as the creation of a mathematical model snapshot. At preset
time intervals, new model snapshots are created. Hence, the
process of parameter estimation and controller parameter
transfer is continuous. As the specific physical lab asset is
utilized, it generates valuable data that are stored on the server
and used to obtain the updated mathematical models.

2) 3D MODELING
All digital twins of control objects are recreated by either
measuring the dimensions of the parts of physical devices
or by using available blueprints and then implementing the
3D models using CAD software, such as the Blender 3D
modeling software [51]. For XR applications, efficient real-
time rendering of the objects must be ensured. Therefore,
the following important considerations are in effect when
modeling all objects:
• All 3D models must be optimized, i.e., the number of
polygons forming the part reduced and visualization
tradeoffs sought in terms of applying textures, displace-
ment maps and lightmaps.

• A sufficient level of detail must be ensured such that the
effect of immersion is achieved [52].

The complete procedure for 3Dmodeling thus is composed
of the following: steps:
1) Measuring the physical devices or using a previously

known blueprint data;
2) 3D modeling in Blender ensuring a sufficient level of

detail is achieved;
3) Optimization, meaning the application of necessary

textures, baking displacement- and lightmaps;
4) Exporting the 3D model from Blender into a common

3D asset exchange format (usually FBX);
5) Importing the 3D asset into the real-time rendering

engine, creation of materials that are used on the
3D model, validation in the target extended reality
application.

If necessary, we may return to step 2 to correct any issues
discovered in the real-time application.
The process of 3Dmodeling can also be semiautomated by

introducing photogrammetry [53]. This approach, however,
falls outside the scope of the present paper.

3) PROTOTYPING PLATFORM
To efficiently codevelop the 3D visualization and XR and
themathematical modeling parts, a coherent prototyping plat-
form is needed. In the present work, the following software
packages are chosen to implement the platform:
• Unreal Engine 4 [54] as the visualization platform due to
highly sophisticated support for virtual reality and rapid
game logic prototyping via Unreal Engine Blueprints.

• MATLAB/Simulink environment [55] as the mathemat-
ical prototyping platform with real-time simulation sup-
port via the Simulink Desktop Real-Time toolbox.

• UDP communication plugin for Unreal Engine 4 that
makes real-time simulation possible and was devel-
oped for Re:creation Virtual and Augmented Reality
Laboratory-related applications [56].

The diagram showing the prototyping configuration is
depicted in Fig. 6. This configuration allows for true real-
time simulations to be carried out. Prototyping involves the
following stages:

1) Development of mathematical models based on
the methods discussed in Subsection III-B. Design
of mathematical models of interaction mechanics.
Validation of the models using data from real control
objects. This part is done in either the MATLAB or
Simulink environment. As a final stage, functions or
blocks enabling real-time data communication through
the UDP protocol are added to the project.

2) Development of the 3D models per the methods dis-
cussed in Subsection II-B2. After importing the models
into Unreal Engine 4, correct assembly of all parts
in the hierarchical structures follows. This has to do
with ensuring correct coordinate transformations to be
applied to connected parts of the given object.

3) Evaluation of the developed application in virtual real-
ity. Assessment of the immersion effect, correctness of
dynamics and interaction mechanics.

Once refined, the mathematical models can be directly
exported from Simulink as C++ code and integrated into
Unreal Engine 4 as blueprint-accessible code plugins. This
approach provides the greatest amount of flexibility because
the developed mathematical models of dynamics are com-
puted in separate modules that are accessible as blueprint
blocks with the required number of inputs and outputs. The
plugins are also reusable in other projects.
The prototyping platform can also be used to teach control

system design effectively. In this case, the student receives the
Simulink block, which represents the system and internally
implements communication between themathematical model
and visualization. The visualization application can then be
kept running at all times while the mathematical model with
the designed controllers is launched several times to enable
experimentation with different controllers or controller set-
tings. This can also be done as part of group work, with
one student controlling the experiment from the VR envi-
ronment and the other designing the control experiment in
MATLAB/Simulink.

4) INTERACTION DESIGN
Interaction is the most important aspect of an immersive
XR environment. While developing digital twins of control
systems, the design of meaningful interactions is the main
goal of the training aspect of the application [57]. As a result,
the development of coherent interactions is regarded as a top
priority for ensuring effective laboratory instruction.
In this work, we explore two types of interactions that arise

in the area of control systems:
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FIGURE 5. The process of creating a data-driven mathematical model for the digital twin. Relevant data are first
collected from the real plant. Then one of the box models is used with system identification (the choice is
determined by the position of the switch in the figure). Finally, the digital twin can use the model of the dynamics.
The model is periodically updated in a process referred to as synchronization of the real system and the digital twin.

FIGURE 6. Real-time prototyping platform for developing digital twins of
control objects.

1) Interactive selection of the control system tracking ref-
erence (set point);

2) Interactions with floating information panels that dis-
play valuable data concerning the setup and the state of
the laboratory experiment.

Next, we focus on key aspects of the implementation of
these interactions. There are several options available when
designing interactions. First, we can implement those using
the physics engine available in the target platform. In this
case, the mathematical description of the process is largely
unclear. The task is, however, to obtain a valid mathematical
model of the whole system, including interactions, which
must be reproduced in the digital twin. Thus, interaction
design is also seen as a mathematical problem and all mod-
eling methods discussed in Subsection III-B are valid for this
purpose. Several methods are used for developing interaction
mechanics:
• Interactions are coupled with the object dynamics, that
is, the corresponding (non)linear mathematical model is
augmented with corresponding inputs and states;

• Interactions are decoupled from the object dynamics,
that is, a separate mathematical model is designed for

the interaction. This approach is feasible only if the inter-
action does not affect the control system performance,
and thus, its use is usually limited.

• An interaction is designed for the supporting compo-
nents of the XR experience (such as using the infor-
mation panels). Mathematical models of these interac-
tions are, at first glance, not needed; however, if one
considers the concept of intelligent immersive virtual
environments (IIVEs), useful intelligent mechanics can
be employed as well [58].

Interaction mechanics are first evaluated by comparing the
performance of the model with that of the original con-
trol object. Then, the subject-based evaluation is performed
in XR internally by developers and through subject-based
experiments. If the results are not satisfactory based on the
feedback, the mechanism is revised.
Another important interaction mechanic is not considered

in the case study presented in this work, but it should be
mentioned. This is the direct physical interaction with the
moving parts of the recreated control objects. From the con-
trol systems perspective, this is generally used to introduce
disturbances into the studied systems. From the user perspec-
tive, such interactions are of curiosity driven experimental
nature, and hence, are very valuable features.

5) GRAPHICAL DATA ANALYSIS
Graphical representation of data is a very convenient tool for
analyzing the underlying phenomena [59]. Consequently, one
of the key aspects of learning control system dynamics is
related to the study of time series charts depicting system
dynamics [41]. For this reason, the corresponding feature
must be implemented in the XR visualization, that is, a real-
time time series chart must be available. Therefore, the fol-
lowing items are considered:
• Due to the flexibility of presenting data in XR, the
graphs can be presented to the user upon request and
attached to the view port in an unobtrusive way. For
example, the dynamic chart may be attached to one or
both of the motion controllers and shown upon the user
pressing a preset button;
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FIGURE 7. Typical time series chart for studying control system dynamics,
here for a single input single output system. Top: tracking performance
analysis through step response evaluation. Bottom: control law dynamics
analysis (system input generated by a controller).

• The structure and types of charts shall depend on the
particular study. In studying control systems, one is gen-
erally interested in control system tracking performance
and control law behavior. Thus, the most general chart
is presented in Fig. 7.

In this work, for implementing charts in the XR application,
an Unreal Engine 4 plugin called Kantan Charts is used [60].

III. CASE STUDY: DIGITAL TWIN BASED
IMPLEMENTATION OF A 3D CRANE
IN EXTENDED REALITY
Hereinafter, a case study of developing a coherent digital
twin of a lab-scale model of an overhead crane is provided
in the context of the proposed framework. The original real
life control object was produced by the Inteco company [61]
and is commonly referred to as the ‘‘3D crane’’ as a reference
to the number of degrees of freedom involved in moving the
payload.
The 3D crane is a nonlinear electromechanical system that

possesses a complex dynamic behavior and creates challeng-
ing control problems [61], [62]. The industrial counterpart
of this laboratory model is used in various industries and
seaports to transport large and heavy containers and other
payloads. To ensure efficiency and productivity, the crane
must transport the payload as fast as possible to its desti-
nation. However, a certain motion profile must be employed
such that the control actions leading to the acceleration and
deceleration of the payload ensure secure and sway-free
transportation [63]. The characteristics of the system allow
the application of various control strategies [62], [64], [65].
This makes it very appealing as an educational tool in the
control systems laboratory.
The present control object is depicted in Fig. 8. It consists

of a frame, a moving rail attached to a moving cart. The
payload is attached to the cart via a rotating spool. Thus, three
degrees of freedom are achieved. The rail, cart and payload

FIGURE 8. Real-life 3D crane control object.

spool are actuated by DC motors, and their positions are
determined with incremental encoder sensors. In addition, the
two encoders are attached to the cart that measure the swing
angle of the attached payload.

A. 3D MODEL OF THE OVERHEAD CRANE
Following the discussion above, the 3D model of the crane is
developed. The following major components are recreated:
• Yellow frame;
• The moving rail;
• The moving cart with the moving spool;
• The payload itself attached to its cable.

Thus, all critical mechanical components and the frame
have been faithfully recreated, while the wires, DC motors,
encoders, pulleys and belts were ignored. It was confirmed
through initial experiments that as long as the recreated
components had the correct scale and behaved exactly as
expected, the 3D model would be convincing enough for
immersion to occur [58]. In the future, the other components
can be recreated as well, but the additional complexity may
not necessarily benefit the present digital twin. The resulting
model is shown in Fig. 12.

B. MATHEMATICAL MODEL OF THE 3D CRANE
The discussion below pertains to obtaining a single snapshot
of the physical twin dynamics using the methods described
in Sec. II-B1. The model shall be updated periodically based
on the data generated during the operation of the physical
overhead crane.
In this work, we use the physical model of the object

shown in Fig. 9. Instead of using a complicated nonlinear
model as in previous cases, linear models are used for two
purposes:
• Describing the motion of the rail and the caret in the
(x, y)-plane (transfer functions);

• Determining the dynamics of the payload swing angles
α and β (state space model).

The third degree of freedom (payload height) is not used.
The payload is fixed at a height of approximately 30 cm
from the floor. Time domain identification is used to obtain a
snapshot of a decoupled set of models. For the transfer from
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FIGURE 9. Physical model of the 3D crane system.

the normalized actuator control signal ux , uy ∈ [0, 1] to the
rail and caret positions, we obtain the following:

Gx(s) =
1
s

0.30651
0.035073s+ 1

(9)

and

Gy(s) =
1
s

0.33821
0.041963s+ 1

, (10)

and for the transfer from the inputs to the swing angles the
state space model of the form (2) is obtained, where the state
matrix is as follows:

A =


−0.4377 3.513 0.5393 −1.9075
−3.804 0.2155 −1.5478 −0.8172
−0.0913 1.3392 −0.0178 4.3422
1.1336 0.0534 −3.0303 0.1400

 ,
(11)

The input matrix is as follows:

B =


0.56505 0.21808
−1.1166 −6.7447
−0.13395 −2.3007
4.8125 −3.1489

 , (12)

The output matrix is as follows:

C =
[
−0.0123 0.02454 −0.00524 −0.03695
−0.04552 0.09786 0.03010 −0.02335

]
,

(13)

and the direct transmission matrix is as follows:

D =
[
−0.0011281 0.0013873
0.0011836 0.0012102

]
. (14)

Furthermore, the model in (11)–(14) was modified so that
the second swing angle motion needed to be corrected. This
was done by multiplying the real part of the corresponding
eigenvalues by a factor of 2.5. Then, a balanced reduction
technique was applied to the modified model, which also
resulted in a nonzero matrix D. The corresponding validation
plot is shown in Fig. 10.
Some modeling discrepancies can be observed. However,

when the digital twin of the 3D crane is observed in the XR
environment, the modeling errors do not, generally, result in

FIGURE 10. Results of model validation for the swing angle dynamics of
the 3D crane.

breaking the effect of immersion; the dynamics of the crane
are perceived by the subjects as believable. For the present
work, the accuracy of the model is not critical as long as
immersion is achieved because the goal of the experimental
study is not related to demonstrating the precision of the
mathematical model but rather demonstrating some high-
level control concepts. However, when further experiments
are designed, a different modeling approach should be used.
Therefore, instead of using the black box route in Fig. 5,
which yields a linear approximation for a fixed line length
of the 3D crane, the gray box route should be used instead
of involving a nonlinear model of the system. That way,
a more precise model can be achieved, the state variable
corresponding to the line length can be integrated into the
model, and relevant experiments that are, e.g., related to
controller tuning, can be designed and carried out in the real
environment and with the digital twin.
Finally, although the identification procedure for the mod-

els in (9)–(10) and (11)–(14) is carried out separately, since
the inputs are the same in both cases, the mathematical model
can be combined into a single 8th order state-space formula-
tion for convenience.

C. 3D CRANE INTERACTION DESIGN
The following two interaction mechanics have been imple-
mented for the experiment with the 3D crane:
• Interaction with the control object variables: changing
the set-point, which refers to the desired location of the
crane’s payload—and changing the control mode of the
crane;

• Interaction with the plot widgets: moving them to the
predefined locations, grabbing and moving them to a
new location, or grabbing and throwing them anywhere
in the virtual environment.

IV. EXPERIMENTAL VERIFICATION OF A DIGITAL TWIN
OF AN OVERHEAD CRANE MODEL IN
EXTENDED REALITY
The goal of this section is to show evidence of a successful
implementation of an overhead crane digital twin that can be
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FIGURE 11. The schematic diagram for the 3D crane control experiment.

experienced in an extended reality environment. We cover
a single lab mode in the experiment, namely, the virtual
lab mode; however, because the digital twin and extended
reality technologies underpin all of the other lab modes as
well, the data obtained through subject-based testing should
contain information about the usability of these technologies
in general for the intended application. As a result, if the data
show that the digital twins and extended reality are effective
in the intended application, then this result can be valid for
all other lab modes.

A. THE DESCRIPTION OF THE LAB EXPERIMENT
The experimental configuration is shown in Fig. 11. The
main control loop addresses the position of the payload in
the (x, y)-plane. The task is to transport the payload from
one point to another as fast as possible. The secondary loop
compensates for the payload swing and can be turned on and
off; the goal of the experiment is to assess the performance
of the control loop in both these cases. A screenshot from the
application is depicted in Fig. 12. Here, the user points the
motion controller away from the reference cube, so the set
point is unchanged but is shown on the floor in the form of a
crosshair.
The charting facility in this case serves as a reference for

the performance of the control loop with and without swing
compensation enabled. An exemple depicting the situation
when the swing compensation is enabled is shown in Fig. 13.
By introducing control actions that lead to some oscillations
in the caret position, the swing is effectively damped. The
specific parameters of the PID controllers are not shown to
the subjects in the experiments. Tuning the PID controllers is

FIGURE 12. Screenshot from the VR-based 3D Crane application. The user
is pointing the motion controller to an area outside of the reference box,
so the crosshair appears only to show the current set point.

a topic for a different kind of experiment along the lines of
what was presented previously in [66].

B. VALIDATION OF THE SOLUTION WITH A SYSTEM
USABILITY STUDY WITH SUBJECTS
In the educational setting, cognitive ergonomics is the study
of the design of learning activities that conform to students’
cognitive capabilities by applying principles based on human
perception, mental processing, and memory to improve the
usability of the learning activities. Since we are interested
in understanding the usability of using VR in control sys-
tems courses, we conduct a system usability study (SUS) to
compare a classical experiment that introduced the concept
of automatic control application for the 3D crane object and
a similar experiment in VR. The original experiment uses an
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FIGURE 13. Experimental chart showing the performance of the control
system with payload swing compensation enabled.

interactive Simulink environment enhanced with a 3D model
of the crane. The VR experiment uses a digital visual twin
of the 3D crane in Unreal Engine driven with a mathematical
model implemented in the MATLAB environment.
The experiment is divided into three parts. First, a presenta-

tion created by the course instructor introduces the participant
to the experiment and the 3D crane control object.
The second part is a classical control course experiment

conducted on a desktop computer where a Simulink model
of the 3D crane and swing compensation PID controller is
presented. The Simulink interface shown in Fig. 14 is dis-
played on one screen, while the second screen shows graphs
that display the model’s real-time response and a 3D model
of the crane that is moving in real-time based on data received
from the Simulink model shown in Fig. 15.
The third part is a similar control course experiment con-

ducted in a VR laboratory environment that includes the ‘‘3D
Crane’’ control object, a laboratory-scale simplified model
of a gantry crane produced by Inteco and recreated as a
digital twin in VR, as well as two interactive plot widgets;
the first widget shows real-time data representing the 3D
crane dynamics and the other graph shows an explanation
of the control object parameters. Fig. 16 shows the different
elements of the VR laboratory.
For the desktop experiment, we used a laptop computer

connected to two monitors. The Simulink model was shown
on the first screen, and a 3D presentation of the 3D crane that
was created using Unreal Engine was shown on the second
screen. Table 5 demonstrates the component configuration of
the desktop PC.
To create a VR environment, we used an HTC VIVE Pro

Eye virtual reality headset. The HTC VIVE Pro Eye HMD
features dual-OLED displays with a combined resolution
of 2880 × 1600 pixels and precision eye tracking sensors.
In addition to the headset, we used two HTCVive Controllers
that track the location of the user’s hands and receive input
commands. The tracking area was set up with two sensors,

TABLE 5. Hardware components of the desktop and VR experiment
computers.

FIGURE 14. Simulink model of the 3D crane and the swing compensation
PID controller.

and the size of the tracking area was approximately 3 meters
by 2 meters. The headset was connected to a PC that hosted
the virtual environment. Table 5 shows the component con-
figuration of the VR PC.
Our study included 37 participants (20 male, 17 female;

an average age of 25.0 years old). Table 6 summarizes the
distribution of participants according to several key variables.
All test participants were given the same instructions that

are described below.
All three phases of the study took place in the same room.

The participant was given a summary of the three main
activities they would perform, as well as the sort of data that
would be collected. They were requested to sign an informed
consent form after agreeing to participate, which specifies the
three parts of the experiments, as well as the nature and the
extent of data usage and their right to quit the tests at any time.
Participants were directed to a desktop computer where the

presentation was shown once they were ready. Participants
were encouraged to go over the slides and ask questions if
they had any questions.
Once the participant indicated that they had finished going

through the slides, they were presented with the second part
of the experiment and given the following instructions:

1) Select run in real-time (from the top menu) and flip the
first switch (DOUBLE CLICK);

2) Observe the animation. Notice how the load on the 3D
crane keeps swinging from side-to-side;

3) After approximately half a minute, flip the first switch
back;
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FIGURE 15. Charts display the model’s real-time response and a 3D
model of the crane that is moving in real-time based on data received
from the Simulink model graphs that display the model’s real-time
response and a 3D model of the crane that is moving in real-time based
on data received from the Simulink model.

TABLE 6. Distribution table of participants.

4) Now flip the second switch (OFF / ON) and observe
the 3D crane. Additionally, observe the time series
plots generated on the virtual scope screen and make
conclusions about which mode would work best for in
a real life scenario.

When the second part of the experiment was finished, the
participant was guided to an area in the same room where the
VR HMD was located.
In the third part of the experiment, a set of steps that served

as an introduction to the VR controllers and HMD, as well as
performing eye calibration, which allows the capturing of the
participant’s gaze direction, are performed.
1) An introduction to the VR headset and controllers is

given;
2) The headset is put on and adjusted so the display is

centered in the view;
3) The controllers are located and picked up;
4) The eye-tracker is calibrated:

a) The headset is adjusted vertically so that the dis-
play is centered on the eyes;

FIGURE 16. Virtual environment used in the experiment.

b) The lens distance is adjusted based on the partic-
ipants’ eyes;

c) The participants are asked to follow a set of dots
using only their eyes.

5) The operator starts the experiment.
At the beginning of the experiment, the participants are

transferred to a virtual laboratory environment where they
can see the ‘‘3D Crane’’ control object, a laboratory-scale
simplified model of a gantry crane produced by Inteco and
recreated as a digital twin in VR, as well as two interactive
plot widgets; the first widget shows real-time data represent-
ing the 3D crane dynamics and the other graph shows an
explanation of the control object parameters. Fig. 16 shows
the different elements of the VR laboratory.
During the experiment, the participant’s first task was to

walk to a predefined location adjacent to the control object.
This location was clearly marked in the VE. Once the partic-
ipants reached the marked location, they were free to do any
of the following actions:
• Interact with the control object (change the set-point,
i.e., the desired location of the crane’s payload—and
change the control mode of the crane);

• Interact with the plot widgets (move them to the prede-
fined locations, grab and move them to a new location,
or grab and throw them anywhere in the VE).

C. QUESTIONNAIRE AND SYSTEM USABILITY SCALE (SUS)
After participants finished the third part of the experiment,
they were asked to complete a questionnaire of 10 SUS ques-
tion items for the desktop experiment and 10 SUS question
items for the VE experiment with three additional questions
about their confidence level in the VR, IT and control sys-
tems. The system usability scale includes 10 items with five
responses that range from strongly agree to strongly disagree.
The example questionnaire includes the following: I found
the system was easy to use, and I would imagine that most
people would learn to use this system very quickly. To exam-
ine perceived task loads:
1) I think that I would like to use this system frequently.
2) I found the system unnecessarily complex.
3) I thought the system was easy to use.
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FIGURE 17. System usability scale results for all participants in the
desktop and VR experiments.

4) I think that I would need the support of a technical
person to be able to use this system.

5) I found that the various functions in this system were
well-integrated.

6) I thought there was too much inconsistency in this
system.

7) I would imagine that most people would learn to use
this system very quickly.

8) I found the system very cumbersome to use.
9) I felt very confident using the system.

10) I needed to learn a lot of things before I could get going
with this system.

V. RESULTS
The SUS elements are divided into two categories: positive
and negative. Even items are negative, while odd items are
positive. To acquire the actual score of the SUS results,
we deduct 1 for each of the users answers for the five odd
components, then subtract the user answer from 5 for the
even components. Finally, we multiply all the components by
2.5 to obtain a score in the range of 0 to 100.
The quartile distribution of the SUS score for all partici-

pants in both experiments is shown in Fig. 17. The average
SUS score for all participants in the desktop experiment was
70 with a standard deviation (SD) = 20.8279, while the
average SUS score for all participants in the VR experiment
was 85 (SD = 10.2977). This shows that the suggested
solution’s usability is superior to that of the desktop exper-
iment. Furthermore, the lower SD suggests that in the VR
experiment, there was more of an agreement on the system’s
usefulness.
Further analysis was conducted to determine how the self-

reported participant distribution affected the usefulness of
both experiments. First, as shown in Fig. 18, the system
usability scale results, which were categorized based on par-
ticipants’ self-evaluated confidence in using VR, revealed
that users who reported being confident in using VR had
the highest average usability score. This finding reveals that
as users become more comfortable with virtual reality and
their confidence grows, the system’s usability will improve.

FIGURE 18. System usability scale results based on participants’
self-evaluated confidence using VR.

FIGURE 19. System usability scale results based on participants’
self-evaluated confidence in general IT skills and knowledge.

FIGURE 20. System usability scale results based on participants’
self-evaluated confidence with control systems.

These findings support the use of VR experiments in a
broader context throughout the control systems course.
Second, we examine whether individuals who are confi-

dent in their overall IT skills are more likely to favor the VR
option. The average SUS results for participants with greater
levels of confidence in general IT skills and knowledge were
higher in the case of the VR solution, as shown in Fig. 19,
whereas the average score for the desktop experiment did not
change significantly.
Finally, we looked to see if the participants’ level of con-

fidence in the targeted study material had an effect on the
SUS results in this instance control system. The findings
of the system’s usability scale were categorized based on
the participants’ self-evaluated confidence in control systems
(Fig. 20). The results show that in both the desktop and
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VR experiments, participants who reported neutral confi-
dence with control systems provided the greatest usability
score. In general, the VR experiment was rated as being easier
to use than the desktop trial by the participants. While the
limited sample size restricted any conclusions taken from this
research, the findings highlighted the need to leverage virtual
reality in the creation of more realistic rich experiments for
control object digital twins.

VI. CONCLUSION
In this paper, a digital twin and an extended reality-enabled
framework for constructing control system laboratory modes
is developed and examined as a full framework integrating
all lab modes. The developed solution fits naturally into
the scope of Industry 4.0 in the context of these emerg-
ing digital technologies, each having an important role in
transforming the manufacturing landscape. We thoroughly
explain how virtual and remote laboratories can be recreated
as digital twins of physical control objects. Incorporating
extended reality into the proposed digital representation
allows for greater interaction with the object while also
allowing students and instructors to collaborate with one
another.
To verify the main innovation in the proposed contribution,

a case study was conducted with a laboratory model of an
overhead crane. An immersive virtual reality simulation
was created for the crane using the proposed framework.
A subject-based experiment was then designed focusing on
the usability of the proposed solution versus a traditional
desktop-based environment. For this, a typical lab assignment
was considered part of the subject-based testing. There were
37 participants involved in the study.
The main conclusion based on the conducted study is

as follows. It was successfully confirmed that the proposed
framework, from the perspective of combining the digi-
tal twins and extended reality technologies, substantially
improved the usability of the simulated laboratory environ-
ment. While only the virtual lab mode was considered and
advanced features, such as remote collaboration, were not
addressed, it is possible to say that the technologies support-
ing the proposed framework have a high potential to improve
lab work outcomes for students.
The ability to manipulate the control object and study

the outcomes from several perspectives was identified as a
critical factor during the design and development of the sim-
ulation. This is not particularly surprising because hands-on
labs have known similar favorable qualities. However, when
implemented in extended reality, new possibilities emerge
to provide a more complete experience. For example, the
user can manifest and position a time series chart in the
surrounding space near the control object. The chart allows
us to interpret the results of the experiment from a time
domain analysis perspective, which is common in industry.
The solidification of this important connection between the
time series and actual events can be achieved naturally with
the proposed solution.

Future work must be concentrated on implementing the
framework in its entirety. Additional subject-based tests with
larger sample sizes will also be conducted as the restrictions
related to the COVID-19 pandemic are fully lifted.
Furthermore, the design of advanced control system exper-

iments must be done in accordance with the desired learning
outcomes of the related study courses. One pressing issue in
the industry is the ability to coherently tune PID controllers
subject to certain performance specifications. It is expected
that the proposed framework will positively influence the
ability of the students to manipulate the parameters of the PID
controllers in hands-on XR experiments toward achieving
better performing control loops with both digital twins of
control objects and real objects, as demonstrated in [66].
To conclude the paper, we would like to acknowledge

the contribution from Ms. Dolores Freiberg for her work on
the 3D crane model described in this article. Additionally,
we would like to express our gratitude to Ms. Oleksandra
Zamana for assisting us in safely conducting the experiments
with the subjects during a particularly trying period of the
pandemic.
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Abstract

Natural interaction plays a significant role in the credibility of the virtual
reality (VR) environments; unwanted or unexpected user interaction with
the objects in the environment will negatively affect the immersion level
for the user. Users have different level of skills when it comes to using
VR. Therefore, handcrafting rule-based robust behaviour interaction that
adapts to varying abilities of users is an ongoing challenge. In this study, the
potential of using a data-driven method allowing researchers to gain insight
into user behavioural data is investigated. A VR data replay and annotation
method that allows for the analysis and classification of VR collected data
through a graphical user interface is introduced. This method is applied
to data collected from a VR lab study, including users with different skills
in VR. Finally, the system is used to identify unwanted user interaction
and Machine learning methods are investigated as an alternative for user
interaction classification.
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I. INTRODUCTION

The Virtual Reality technology (VR) has a significant role
to play in the technology stack of Industry 4.0. As the cost
of integration of VR into existing and novel solutions is
steadily decreasing, it is without a doubt that VR, along with
augmented reality (AR) will take firm roots in the fourth
industrial revolution complementing such technologies such as
the Internet of Things (IoT) and Artificial Intelligence (AI) [1].

One of the exceptional qualities of VR is the ability to induce
the so called effect of immersion when the user experiencing
the virtual environment (VE) actually believes he or she has
been transported into an entirely different reality. This has
positive sides as well as negative ones. On the one hand, the
user will benefit from the learning opportunities afforded by
introducing such an environment to him or her exactly due
to the believability of the experience which may not be any
different from the real world experience except any artificial
components of the such an environment may be synthesized
easily unlike in the real world. On the other hand, immersion
can also cause the user to feel really vulnerable in the artificial

environment which is why some users prefer to use AR
instead [2].

To circumvent this issue, trust must be established between
the user and the virtual environment. One of the ways to do
it, irrespective whether the VE is intended for consumer or
industrial application, is to make the environment adapt to the
user based on the user’s behavior.

In this paper, we investigate a possible solution for this
specific problem. Namely, we consider a situation, when the
VE is endowed with basic intelligence that allows to predict the
user’s action by applying signal processing and classification
to collected biometric and human motion data to seamlessly
assist the user with performing that action.

A. Contribution

In this paper, a data-driven replay and annotation system
is proposed and applied to data collected from VR lab
experiments. Furthermore, data-driven and machine learning
methods are investigated as alternative methods for user
interaction using data classification based on data collected
from the experiment using the system.

B. Outline

The paper organized as follows. In Section II, a literature
review is provided, forming the basis of our study. In Sec-
tion, III the proposed methodology is detailed and the replay
system is introduced. The experimental setup is described
in Section IV. The results are presented in Section V. In
Section VI, some items for discussion are given. Finally, in
Section VII, conclusions are drawn.

II. RELATED WORKS

Over the last years, industries have seen a wide application
of Virtual Reality (VR). Researchers have developed VR-based
applications that aim to create more efficient manufacturing,
logistics, and training processes [3]. Another recent trend is
the use of VR in the medical field. Hospitals and clinics are
experimenting with the use of VR for the rehabilitation of
patients and training of surgeons [4]. Education is another
field that holds promise for the use of VR. researchers and
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educators are attempting to introduce VR technology as part
of their curriculum with varying scales and success [5], [6].

As the range of the target audience of VR applications grows,
researchers face the challenge of creating environments that
can adapt to the varying degree of skills and knowledge of the
users.

The quality of immersion of the VR environment or presence
divided into two parts [7]:

1) The place illusion: The user is feeling that he or she is
moved into another place;

2) The plausibility illusion: the user’s satisfaction with the
environment in response to his or her interaction with it.

This work focuses on the latter, i.e., on the plausibility
illusion. This task is of interest because it involves the interface
devices (controllers), and the algorithms that drive the level of
interaction the user can have in the environment.

Using natural gestures for interacting with the VE is likely
the preferred method for the user as it does not involve
learning the operation of a physical device such as an HTC
Vive controller—so, the users can learn to interact with the
VE quickly, just like they learn quickly to operate, e.g.,
a smartphone [8]. However, this brings about other issues,
namely there is no physical feedback when interacting with
artificial objects in VE which is partially provided by physical
controllers. Novel technology like the Myo Armband [9] has
been introduced to tackle this issue, but the technology still
presents some drawbacks, especially in the face of maintaining
user immersion in the VE [10].

Another approach was to use multi-modal input techniques,
for example “gaze and pinch” is an input technique that
combines gaze tracking information with hand gestures to
create a more flexible method of interaction with objects [11].

Another factor in determining the plausibility of the interac-
tion is the type of algorithms that controls the VEs reaction to
the users interaction; for example hand crafted rule-based VEs
algorithms are difficult to make adaptable for a wide range of
people.

We have seen many examples in recent years of using data-
driven approaches to classify patterns and recognize human
behaviour. For example, eye gaze data patterns were used to
classify a person’s movement direction in collaborative robots
VE [12].

Moreover, the authors of [13] report on a semantic extraction
and reasoning system that is able to collect data in real time
and perform ontology-based reasoning to learn and classify
activities performed by the user in the VE. Furthermore, in [14],
the authors propose a deep learning framework for continuous
monitoring of human behaviors suitable for application in many
areas such as sports, rehabilitation, elderly care and smart home
environments. Obviously, similar techniques can be applied to
VEs as well.

In this paper, we explore machine learning methods for
implementing user behavior prediction such that endows the
VE with the ability to assist the user in performing the actions
intended by the user in a seamless way.

III. METHODOLOGY

Figure 1 shows the proposed procedure for creating Data-
driven VE. It starts with the VE design; while the VEs are
different across different applications and industries, they
usually are a combination of three main components, visual
elements, which are graphical representations of the objects
and the environment; Sensory feedback that is used increases
the effect of immersion for the user and final part is the
algorithms that determine the environment’s responses to the
user interaction (input). An example of such a VE was presented
in [15] where the authors introduced a VE for digital twins
applications in the industry.

The second step in the procedure is data collection.To fully
capture the user’s behaviour, all of the input data delivered to
the environment by the user must be recorded. This includes
the tracking information of the HMD and controllers and the
input events created by pressing buttons on the controllers.

The third step is labelling and data processing which is
accomplished using the proposed replay and annotation system
described in Section III-A.

Using this system, unwanted interactions or behaviours of
the VE can be identified and labelled. This system can also
be used to give developers insights about the users’ action in
the VE.

Finally, we apply machine learning algorithms to train
classifiers that can better predict the intended human behaviour
using the annotated data from the replay and annotation system.
Here, a wide range of algorithms can be used: for example,
a naive Bayes classifier—a simple probabilistic model that
assumes that the different features are independent; support
vector machine and decision trees can also be applied as well
as other methods.

Once we obtain a model with satisfactory accuracy, we
can use that model in our original VE as an alternative to the
initial rule-based algorithm that caused the unwanted interaction
behaviour.

A. Replay and annotation system

Figure 2 shows the VR data replay and annotation method
that is proposed for the analysis and classification of VR
collected data through an interactive visual interface. This
data-driven replay system enables developers to:
• Replay the participant’s behaviour in the experiment;
• Annotate the user behaviour and actions in the experiment;
• Test alternative algorithms for the user interaction with

the environment without the need to record new data;
• Automate post-processing and annotation of the data.

IV. EXPERIMENTAL SETUP

In this section, an experiment where the participants have
varying skill levels (self-evaluated) using VR is presented. The
experiment is based on an experiment created for educational
purposes in the field of automatic control system design.

Before the the experiment begins, a set of steps that serve
as an introduction the VR controllers and HMD, as well as
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Fig. 1. Diagram of the data driven procedure for the implementation of assistive features in a VE

Fig. 2. VR data replay and annotation system

preforming eye calibration which allows the capturing of the
participant’s gaze direction are preformed:

1) An introduction to the VR headset and controllers is
given;

2) The headset is put on and adjusted such that the display
is centred in the view;

3) The controllers are located and picked up;
4) The eye-tracker is calibrated:

a) The headset is adjusted vertically so that the display
Is centred on the eyes;

b) The lens distance is adjusted based on participants
eyes;

c) The participants are asked to follow a set of dots
using only their eyes.

5) The operator starts the experiment.
At the beginning of the experiment the participants are

transferred to a virtual laboratory environment where they can
see the “3D Crane” control object—a lab scale simplified
model of a gantry crane produced by Inteco and recreated as
a digital twin in VR,—as well as two interactive plot widgets,
the first one showing real-time data representing the 3D crane
dynamics, and the other graph showing an explanation of the
control object parameters. Figure 3 shows the different elements
of the VR lab.

Fig. 3. VE used in the experiment

During the experiment, the participant’s first task is to walk
to a predefined location adjacent to the control object. This
location is clearly marked in the VE. Once the participants
reach the marked location, they are free to do any of the
following actions:
• Interact of the control object (change the set-point—i.e.,

the desired location of the crane’s payload,—and change
the control mode of the crane);

• Interact with the plot widgets (move them to the predefined
locations, grab and move them to a new location, or grab
and throw them anywhere in the VE).

In this work, we will be focusing on the participants’
interactions (grabbing, moving, throwing) with the interactive
plot widgets.

V. RESULTS

In this section, two examples of the workflow of the system
are showcased. We identify cases of undesired results stemming
from users’ interaction in the experiment and show the potential
of using the data-driven approach to derive alternative more
accurate interaction algorithms.

A. Grabbing objects
In this section, we will showcase the first example of using

the replay system for creating a better performing interaction
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in the VE using insight gained from the collected data and
using the replay system to annotate and classify the user’s
objects.

During the experiment, it was observed that users had
struggled with the task of grabbing the objects. Further
analysis of the data confirmed that across the 26 participants,
there were 421 grab attempts, out of which 180 were failed
attempts (≈ 42.8%). Some of these attempts can be random
incidents where the user was not attempting to grab the objects.
The replay and annotation system was used to confirm the
observation that the user was in fact struggling with the
grabbing action.

At first, we must consider the rule-based algorithm defining
the interactive plot widgets interaction which is shown in
Figure 5a.

There are many factors that might have caused this unwanted
interaction behavior of the experiment. For example, the
different depth perception or the level of VR experience
across participants could have played a role in this. Using
the replay system, we start to look at the data and build a more
robust gripping implementation by investigating trends in user
collected data from the perspective of the grabbing action.

It was concluded that the combination of the gaze data with
the grabbing input event could decrease the number of failed
grabbing attempts.

To test the idea of using the object that is focused by the
user gaze at the point of grabbing, we collect new data of the
human focused gaze object in the environment by adding a
new component to the replay system that uses the collision
detection boxes for the object of interest in the environment.
The Replay system was used to annotate and obtain the gaze
focused object at each frame for the participants. The overall
workflow of this annotation method using the replay system is
shown in Figure 4.

The final step was to include the user gaze focused object
in the interaction behaviour of the grab action as shown in
Figure 5b.

The new approach reduced the number of failed attempts to
84, reducing the percentage of failed attempts to (≈ 20.0%).
Table I shows a comparison of the failed grab attempts between
the original and improved rule-based algorithms.

While this example is quite simple in its application, it
highlights the advantage of using data in the iterative process

Table I. Grabbing objects interaction algorithms comparison

Algorithm Total grab
attempts

Failed grab
attempts

Original rule-based algorithm
which is shown in Figure 5a

421 180 (≈ 42.8%)

Improved rule-based algorithm
which is shown in Figure 5b

421 84 (≈ 20.0%)

of building immersive environments.

B. Moving-Throwing objects

After the plot widgets have been grabbed, the user can either
move them to a new location or throw them away—the latter
results in the plot widgets reappearing on the virtual window
frame.

Similar to the first case, it was observed that some of the
participants were attempting to proceed with throwing the plot
widgets. However, they either did not release the grip button
on the VR controller at the right time, or their speed did not
reach the desired threshold, and therefore their throw attempt
failed. Here we can see that the difference in reaction time
and dexterity of the users leads to undesired interaction with
the VE.

Unlike the first case, there is no single feature that can be
introduced to the VEs to make the throwing action more robust.
However, if we take a closer look at the pattern of movement,
we can see that there are differences of pattern between moving
the object around the VE and throwing it.

In such cases, machine learning classification methods might
be an alternative to the original moving or throwing rule-based
algorithm shown in the Figure 5c.

The Replay system was used to annotate all of the attempts
to throw or move the interactive plot. The overall workflow of
this annotation method using the replay system was previously
shown in Figure 4. The data showed that across the 26
participants, there were 89 throw attempts, out of which 23
failed attempts (≈ 25.8%).

The resulting data was used to train a classifier of ensemble
bagged trees type to predict the user throwing or moving action.
Table II shows the results of using classifier in comparison
with the original rule-based algorithms, using the classifier the
number of failed throw attempts was reduced to 6 (≈ 6.7%).

Figure 6 shows the confusion matrix of the result of the
training with 5-fold cross-validation. While the trained classifier
has a high overall recognition accuracy of approximately
95% and a throw action accuracy of approximately 93%,
it introduced an undesired effect of classifying eight move
actions as thrown, reducing the accuracy of the move action
to approximately 95%.

VI. DISCUSSION

The replay and annotation system enabled us to explore
the potential of using a data-driven approach to analyze and
improve user interaction in VR. While the two studied cases are
relatively simple, the same method and tools can be applied to
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Table II. Moving-Throwing objects interaction algorithms comparison

Algorithm Total throw
attempts

Failed throw
attempts

Original rule-based algorithm
which is shown in Figure 5c

89 23 (≈ 25.8%)

Classifier of ensemble bagged
trees type

89 6 (≈ 6.7%)

more complex and cluttered environments with more elaborate
interaction behaviours.

We have shown that this system allows testing alternative
algorithms without recording new data by replaying an exper-
iment with a newly introduced algorithm (alternative to the
one used when recording the experiment). However, this newly
introduced algorithm will invalidate the long-term sequences of
actions taken by the user as the user’s action after experiencing
these alternative algorithms is unknown. Therefore we should
limit our analysis to isolated activities throughout the recorded
experiment, not the complete sequence of activities.

VE interaction algorithms are not the only factor in the

immersion level of VE. Design elements such as haptic and
visual feedback significantly impact the VE immersion level
as well. Therefore the effect of introducing these alternative
algorithms on other factors of immersion must be examined.
Examining the case of grabbing or moving interaction and its
impact on other immersion factors reveals some limitation of
using machine learning classifiers to replace rule-based methods.
Due to the nature of the models generated by machine learning
methods, providing users with a description of the machine
learning model is far more complex than rule-based algorithms.
For example, using the original rule-based algorithms shown
in Figure 5c., it is possible to add a visual indicator to the VE
that shows the user if the threshold velocity has been reached.
However, in the case of the machine learning model using such
indicators is not possible.

VII. CONCLUSIONS

Creating VEs that can adapt to users varying abilities
remains one of the challenges towards truly immersive VR. We
presented a replay and annotation system that enables the use of
data-driven methods as an alternative for the classical rule-based
algorithms used in VR. Two examples of the system being used
successfully on data collected from a VR study were presented.
First, the system was used to identify, classify and gain insight
into users object grabbing action in the VE. From this learned
insight, an alternative algorithm was introduced that improved
the rate of success of grabbing action by approximately 23%.
In the second example, the system was used to train an ML
classifier that can predict users throwing/moving action with a
high 95% accuracy.

We envision that methods similar to what we have presented
in this paper will help to establish a new generation of data-
driven VEs that can reuse data collected from experiments
effectively.
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Abstract

Hybrid mobile robots are able to function in a number of different modes of
locomotion, which increases their capacity to overcome challenges and makes
them appropriate for a wide range of applications. To be able to develop
navigation techniques that make use of these improved capabilities, one must
first have a solid grasp of the constraints imposed by each of those different
modalities of locomotion. In this paper, we present a data-driven approach
for evaluating the robots’ locomotion modes. To do this, we formalize the
problem as a reinforcement learning task that is applied to a digital twin sim-
ulation of the mobile robot. The proposed method is demonstrated through
the use of a case study that examines the capabilities of hybrid wheel-on-leg
robot locomotion modes in terms of speed, slope ascent, and step obstacle
climbing. First, a comprehensive explanation of the process of creating the
digital twin of the mobile robot through the use of the Unity gaming engine
is presented.

153





Proceedings of the ASME 2022
International Mechanical Engineering Congress and Exposition

IMECE2022
October 30 – November 3, 2022, Columbus, Ohio

IMECE2022-95411

DIGITAL TWIN SIMULATIONS BASED REINFORCEMENT LEARNING FOR
NAVIGATION AND CONTROL OF A WHEEL-ON-LEG MOBILE ROBOT

Saleh Alsaleh ∗

Department of Computer Systems
Tallinn University of Technology

Tallinn, Harjumaa 19086
Estonia

Email: saleh.alsaleh@taltech.ee

Aleksei Tepljakov
Department of Computer Systems
Tallinn University of Technology

Tallinn, Harjumaa 19086
Estonia

Mart Tamre
School of Engineering

Tallinn University of Technology
Tallinn, Harjumaa 19086

Estonia

Vladimir Kuts
Mechanical and Industrial
Engineering Department

Tallinn University of Technology
Tallinn, Harjumaa 19086

Estonia

Eduard Petlenkov
Department of Computer Systems
Tallinn University of Technology

Tallinn, Harjumaa 19086
Estonia

ABSTRACT
Hybrid mobile robots are able to function in a number of

different modes of locomotion, which increases their capacity
to overcome challenges and makes them appropriate for a wide
range of applications. To be able to develop navigation tech-
niques that make use of these improved capabilities, one must
first have a solid grasp of the constraints imposed by each of
those different modalities of locomotion. In this paper, we present
a data-driven approach for evaluating the robots’ locomotion
modes. To do this, we formalize the problem as a reinforce-
ment learning task that is applied to a digital twin simulation of
the mobile robot. The proposed method is demonstrated through
the use of a case study that examines the capabilities of hybrid
wheel-on-leg robot locomotion modes in terms of speed, slope
ascent, and step obstacle climbing. First, a comprehensive ex-
planation of the process of creating the digital twin of the mobile
robot through the use of the Unity gaming engine is presented.

∗Address all correspondence to this author.

Second, a description of the construction of three test environ-
ments is provided so that the aforementioned capabilities of the
robot can be evaluated. In the end, Reinforcement Learning is
used to evaluate the two types of locomotion that the mobile robot
can utilize in each of these different environments. Correspond-
ing simulations are conducted in the virtual environment and the
results are analyzed.

Keywords: Reinforcement learning; digital twins; mobile
robots; machine learning; simulation

NOMENCLATURE
DRL Deep Reinforcement Learning
DT Digital Twins
MDP Markov Decision Proccess
RL Reinforcement learning
R The long-term cumulative expected reward value
rt The instantaneous reward at step time t
γ The a discount factor (0,1] of future reward
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INTRODUCTION
Mobile robots are built and deployed for a diverse range of

tasks, including planetary exploration, safety and resource op-
erations, industrial manufacturing, and last-mile package deliv-
ery. Researchers have proposed a variety of potential locomotion
mechanisms for mobile robots [1], each optimized for naviga-
tion in a particular sort of environment. For example, wheeled
robots are energy efficient and simple to control in environments
with even terrains such as paved roads and indoor environments,
whereas legged robots have greater obstacle navigation capabil-
ity making them suitable for unstructured and rough terrain en-
vironments at the expense of increased energy consumption and
increased control complexity.

Due to the fact that real-life applications require the robot
to navigate a mixture of rough and smooth terrains, researchers
have presented a variety of hybrid locomotion concepts which
lead to the robot operating in different locomotion modes to
adapt to its surroundings. The problem of determining the op-
timal operational mode for these robots requires using prior in-
formation about the capabilities and limitations of each mode.
This requirement limits the application and adds complexity to
the navigation strategies of the hybrid locomotion mobile robots.
Since [2], outstanding achievements have been made by applying
deep reinforcement learning algorithms to a variety of applica-
tions, including video games, energy management systems [3],
and robotics from both manipulation and navigation perspec-
tives [4, 5]. In several cases, these RL techniques have even out-
performed humans [6, 7, 8].

Contribution
Motivated by those recent developments in reinforcement

learning and the emergence of Industry 4.0 technology, we pro-
pose a data-driven method for evaluating the performance of hy-
brid mobile robots by formalizing this problem as a reinforce-
ment learning task applied to a digital twin simulation of the
mobile robot. The proposed method investigates the applica-
tion of the DT concept to develop a collection of testing envi-
ronments for evaluating the robot’s capabilities in a variety of
operation modes and with a variety of task sets using deep rein-
forcement learning algorithms. The overall schema for the pros-
pered method is detailed in Fig. 1.

More specifically, we use a general purpose reinforcement
learning simulation tool to create a digital twin of a Hybrid
Wheel-on-Leg mobile robot developed at the School of Engi-
neering at Tallinn University of Technology [9] that will be
trained on a set of three predefined tasks to determine abilities
of the robot’s locomotion modes to solve these three tasks.

The tasks are used to assess the robot’s ability to rapidly
reach a known target position, ascending an increasing steep
slope, and climb over steps of increasing height. All tests are
conducted on the robot in two operational modes, with the envi-

ronment structured in such a way that the analysis of results can
be used to asses the operational mode of the robot to accomplish
the three distinct sets of tasks.

Outline
The structure of the paper is as follows. Prior work in hy-

brid locomotion robots and deep reinforcement learning which
serve as motivation behind this work is presented in Section 1.
Next, the proposed DT and RL framework is detailed in Sec-
tion 2 where a use case of a digital twin based implementation
of the hybrid mobile robot is described. The three tasks that are
used to assess the robot’s abilities are presented in Section 3.
The results of the experiments are presented and discussed in
Section 4. Finally, conclusions are drawn in Section 5.

1 RELATED WORK
Different configurations of hybrid locomotion robots have

been introduced by researchers. For example, in [1], a leg-wheel
hybrid robot is introduced with the capacity to modify the mor-
phology of wheels so that it can function in two different modes:
full-wheel and half-circle wheel, where the second mode can be
used as a two degrees of freedom mode for navigation, allow-
ing the robot to navigate with greater flexibility. A novel, trans-
formable, four-legged robot was introduced in [10]; this recon-
figurable robot can operate in both circle-wheeled and wheel-
legged modes. The robot’s multi-mode operation provides it
with additional obstacle negotiation capacity, which is particu-
larly useful for search and rescue missions in difficult terrain.

Machine learning in general provides attractive means for
implementing intelligent, digital twin based environments [11].
What concerns the navigation of wheeled mobile robots, ma-
chine learning approaches have been investigated in multiple
studies. In [12], deep imitation learning, a supervised learning
approach, was effectively applied to the issue of mapless navi-
gation control of mobile robots using direct LIDAR sensors and
relative target position with excellent results. Such systems re-
quire the annotation of data by humans, on the other hand, by uti-
lizing the availability of advanced simulation environments [13]
Reinforcement learning became a viable solution for the nava-
gation of mobile robots. In [14], an obstacle navigation system
based on deep reinforcement learning was employed to drive the
Turtulebot 3 mobile robot. The algorithm was initially trained
through simulation, during which the author proposed the usage
of discrete action space instead of a continuous action space, con-
siderably reducing training time. RL was also applied on legged
robots in, e.g., [15]. To teach a legged robot to leap and navigate
in a low gravity environment, the authors used a deep reinforce-
ment learning technique.

Similar approaches were are also used on hybrid locomo-
tion robots with different configurations; for example, consider

2 Copyright © 2022 by ASME
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FIGURE 1. Overall Reinforcement learning Digital Twin method for evaluating hybrid mobile robots’ locomotion modes. The picture of the hybrid
mobile robot is courtesy of the School of Engineering at Tallinn University of Technology.

an obstacle avoidance navigation control of a leg/wheel robot
described in [16] where a model-predictive control system that
works for both robot operating modes was developed and imple-
mented. The authors of [17] utilized deep reinforcement learning
with proximal policy optimization (PPO) to teach a crawl-type
robot the ability to climb stairs using a mix of visual (camera)
observation and robot posture. As a result, the robot learned to
climb stairs.

An interest towards developing methods for the selection of
the locomotion method can be observed in the research commu-
nity. In [18], the authors stressed the need to develop new ac-
tion planning methods for hybrid multi-modal mobile robots, in
which action planning can take into account how well a robot
performs in each mode of operation and in different types of ter-
rain, and they devised a method for finding the best routes using
environment topology and specifications. In [19], a 2D occu-
pancy map constructed based on priority information that pro-
vides the maximum jump height, as well as a state machine that
selects the jumping action when such obstacles are met, are ap-
plied for quadrupedal jumping across confined obstacles.

These methods necessitate the use of knowledge about the
capabilities of the robots beforehand to be able to make the de-
cision regarding the selection of the locomotion mode. In our
work, we propose a data-driven methodology using RL and DT
towards acquiring and evaluating such knowledge.

2 DIGITAL TWIN AND REINFORCEMENT LEARNING
The wheel-on-leg hybrid robot that is shown in Fig. 2 is

capable of operating in two different modes of locomotion. In
the first operational mode, the legs of the robot are locked, and
the robot is driven only through the torque that is applied to its
wheels. In the second operational mode, however, the robot is
given the ability to rotate both the wheels and the legs simultane-
ously. To create a digital twin that is capable of operating in the
same locomotion modes as the physical counterpart, the Unity
Engine and the ML-agents framework [20] were used. This made
it possible to use reinforcement learning to evaluate the different

(a) (b) (c)

®

FIGURE 2. The Digital Twin creation process: (a) original Soild-
Works assembly (b) exported subassemblies in Blender (c) Digital twin
in Unity 3D.

locomotion modes. The procedure of creating a digital twin is
shown in Fig. 2 and can be summarized as follows:

1. Convert existing SolidWorks assemblies of the target
robot to OBJ files which are compatible with Unity.
2. Utilize a hierarchical set of rigid bodies, joints, and colli-
sion components to recreate the robot within Unity.
3. Create programmable sensor and motor functionality, us-
ing custom and built-in scripts.

SolidWorks software was used to create the original 3D
model of the hybrid robot, where the robot is composed of nu-
merous subassemblies for each physical component. The first
step involved exporting the SolidWorks subassemblies for the ve-
hicle’s main body, legs, and wheels as OBJ files.

Blender software, on the other hand, was used as a bridge
between Unity and Soildworks to modify the OBJ files, such as
reducing the number of vertices and setting an appropriate pivot
points for each subassembly, to make re-creating the vehicle eas-
ier in the following steps.

After importing the OBJ files for all of the components, the
robot is modeled using a hierarchical parent-child approach, with
the main body serving as the parent for all four legs that are lo-
cated in relative coordinates to the main body and the wheels as
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child objects of the legs. If the pivot points are selected correctly,
as described previously, the process is quite simple to follow.

At this point, the robot is only a visualization of a digi-
tal twin of the robot. To achieve physical interaction with the
unity environment, component definitions must be used to define
the robot’s behavior, which will be simulated using the Unity
“Physix” engine. The first component is the rigid body, which
was added to the robot’s main body and each of its four legs.
We define properties such as the mass of the body part in this
component which will be used by the Physix engine during the
simulation. Each wheel was fitted with the built-in wheel collider
component. This wheel component enables torque to be applied
independently to each wheel while also managing the interaction
with the surface.

To enable the Physix system to detect and handle collisions,
the Mesh collider component was also added to the wheels and
robot’s body. Finally, the legs’ motorized function is applied via
a coded script that rotates the legs at the pivot point where they
are connected to the mobile robot’s main body.

The final step in this process is simulating the sensors which
will be used as observations for the reinforcement learning train-
ing. First, the robot posture and velocity are extracted by access-
ing the internal states in the previously added rigid body com-
ponents. Second an array of laser range finders competent which
comes built-in with the ML-Agent Framework is used to for sens-
ing the environment.

In the context of mobile robots navigation using reinforce-
ment learning, the robot is defined as an agent and everything
outside the robot is considered to be the environment. The agent-
environment interaction process can be described as an Markov
Decision Process (MDP) where the agents goal is to learn how to
select the best action A based on the state of the environment S
,towards receiving the maximum reward value from the environ-
ment R.

While the agent receives an immediate reward feedback at
each time step, the goal of reinforcement learning is to maximize
the cumulative reward value over time, rather than to maximize
the short-term reward. Thus, the goal is formulated such that the
cumulative reward Rt is to be maximized according to (1):

Rt = rt+1 + γrt+2 + γ2rt+3 + · · ·=
∞

∑
k=0

γkrt+k+1, (1)

where R the long-term cumulative expected reward value, rt the
instantaneous reward at step time t and γ is the a discount factor
(0,1] of feature reward. Research works have proposed numer-
ous methods for solving such MDP, to evaluate our case study we
have selected to use Proximal Policy Optimization (PPO) [21].
PPO is a policy gradient DRL method that can be used for envi-
ronments with either discrete or continuous action spaces. The
method aims to optimize πθ —a neural network function approx-

TABLE 1. The reinforcement learning observation and action space
for both locomotion modes of the mobile robot.

Locomotion mode Observations Actions

Skid steering
(Wheels only)

An arrays of sparse
laser range finders;
vehicle pose and
velocity;
target relative
location.

Wheels motors.

Hybrid steering
(Wheels and legs)

An arrays of sparse
laser range finders;
vehicle pose and
velocity;
target relative
location;
legs rotation.

Wheels motors;
Legs motors.

imate which maps the state of the environment S to the action
taken by the agent A. Table 1 shows the observations and ac-
tions used for the training of the mobile robot in both locomotion
modes. While this method is known to have a good balance be-
tween simplicity, and efficiency making it a good candidate for
our use case, the same approach can be used using other rein-
forcement learning methods.

3 EXPERIMENTAL SETUP FOR THE CASE STUDY
The first operational mode of the hybrid robot is achieved by

locking the legs and allowing the robot to control just the torque
given to the wheels, whereas the second operational mode al-
lows the robot to rotate the legs in addition to the wheels. By
altering its center of gravity, this hybrid operation attempts to
enable it to clear obstacles and steep slopes. Three task envi-
ronments were created to assess three distinct qualities of these
operational modes: the robot’s speed in reaching a known goal;
the robot’s ability to traverse slopes; and the robot’s ability to
climb step obstacles:

1. Reaching the target on a flat surface;
2. Ascending Slopes;
3. Climbing steps.

We now describe each scenario in more detail.

3.1 Reaching a Target On a Flat Surface
The agent’s first task, as illustrated in Fig. 3, is to reach

a static target with a known location. While this is seemingly
a trivial task, there are multiple operating modes involved in it
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FIGURE 3. Target Reaching Task Environment.

which require some consideration from the side of implementing
the RL technique.

For the first operating mode, the robot must learn how to
apply a skid steering mechanism to a navigator in order to navi-
gate the course by employing a variety of torques on each wheel
independently.

While in the second operation mode, it must learn two be-
haviours in order to reach the destination successfully:

1. Adjust the leg angles such that the wheels are in contact with
the ground.

2. Use the skid steering method to drive and rotate the robot.

In this first task, the reward R consists of two components:

1. Each step rewards the robot based on its movement: a pos-
itive reward is given for progressing toward the target and a
negative reward is given for moving away from the target.
This reward is linearly scaled according to the robot’s initial
distance from the target and is capped at +10 points when
the robot reaches the target.

2. The second component of the reward is given only after the
robot reaches the target and is dependent on the amount of
time (simulation steps) that took the robot to achieve the tar-
get.

As a result, in this first test setting, the robot’s speed capa-
bility to be evaluated is directly related to the cumulative amount
of reward Rt collected during each episode, where higher reward
indicates higher speed for that operation mode.

3.2 Ascending a Slope
The robot must complete this task by reaching a goal posi-

tioned at the end of a slope, as illustrated in Fig. 4. When the
robot hits the objective a predetermined number of times, the an-
gle of the slope increases, making the slope steeper. The robot
must successfully reach the goal 100 times before the slope angle
is increased by 0.5 degrees. The reward in the second task is de-
fined and quantified in a similar way to the first task. This choice

FIGURE 4. Ascending Slopes Task Environment.

of reward shaping and incremental increase of the slope angle
enables one to use the overall cumulative reward for the evalua-
tion the robot performance. When the maximum inclination of
the slope that the robot can ascend is reached for each operation
mode, the robot’s earned reward decreases significantly through-
out training. As the robot is unable to ascend the slope it will not
earn the maximum possible reward.

3.3 Climbing a Step
The hybrid robot capacity to climb steps is one of the reasons

behind its design. The third test environment was created with
the purpose of assessing the steps climbing ability of the robot.
The robot must complete this task by reaching a goal positioned
at the end of a step of varying height, as seen in Fig. 5. As with
the second task, the step height will be increased as the robot hits
the target a specific number of times. The threshold is set to 100,
which means that the robot must successfully complete the task
for each step height before the step height is increased by 0.05m.
The third task’s reward is defined in the same way as the first and
second tasks. Similarly to the previous task, this environment
and reward shaping design allow us to utilize the overall cumu-
lative reward to evaluate the robot’s performance. The robot’s
received reward during training will drop significantly when the
maximum height of the step that the robot can climb is reached
for each operation mode. As the robot is unable to climb the step
it will not earn the maximum possible reward.

4 EXPERIMENTAL RESULTS AND DISCUSSION
An overview of the hybrid mobile robot different locomotion

modes results and evaluated capability is shown in Table 2.
The results shown in Fig.6-a indicate that initially there is

a speed difference between the two robots —the first mode the
robot was able to reach the goal with fewer simulation steps
than the second locomotion mode— As illustrated in Fig.7-a, the
robot in the second mode was eventually able to learn a policy re-
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FIGURE 5. Climbing Step Task Environment.

sulting in a higher speed than the first mode. The robot reached
maximum speed of approximately 1.6 m/s (about 5.76 km/h).

The drop in the collected reward for both locomotion modes
in the slope ascending task shown in Fig.6-b indicates the point
at which the slope steepness increased and the robot’s previously
learned policy must be updated before the robot is able to ascend
the new slope. Fig.7-b shows that the robot reached a terminal
steepness of 18.5 degrees after 1.2M steps in the first operation
mode, and 24 degrees after 5.45M steps in the second operating
mode.

Finally, in a similar way the dropout in reward shown in
Fig. 6-c illustrates the point at which the step height has increased
where the robot’s previously learned policy must be updated be-
fore the robot can climb the new step height. Fig.7-c shows the
robot reached a terminal step height of 0.3 m after 400 k steps in
the first operation mode, and 0.8 m after 4.8M steps in the second
operating mode.

In the simulation of all three tasks, it was observed that while
the robot was operating in the first mode, it learned to reach the
target faster than when it was operating in the second mode. This
is expected behavior, as the second mode of operation increases
the control complexity by requiring the robot to control both the
wheels and legs. As demonstrated in Fig. 6, the robot in the
first locomotion mode reached the target in each one of the tasks
in approximately 110K, 90K, and 60k steps, respectively, while
the robot in the second mode completed the same tasks in 500k,
280K, and 190k steps.

These findings suggest that it is possible to acquire informa-
tion about the capabilities and limitations of hybrid robot loco-
motion modes; however, this knowledge will be constrained by
the task set utilized during training and the accuracy of the DT
and simulation environment.

TABLE 2. Overview of the mobile robot performance in different lo-
comotion modes.

Task First mode, skid
steering (Wheels
only)

Second mode, Hybrid
steering (Wheels and
legs)

Target
Reaching
On Flat
Surface

Maximum speed=
1.64 m/s.

Maximum speed=
1.69 m/s.

Ascending
Slope

Maximum ascended
slope=18.5 degrees.

Maximum ascended
slope=24 degrees.

Climbing
Step

Maximum climbed
step=0.3 m.

Maximum climbed
step=0.8 m.

5 CONCLUSIONS

In the present paper, a digital twin and reinforcement learn-
ing method was proposed as a data-driven approach for evaluat-
ing the abilities of hybrid mobile robots under different locomo-
tion operation modes.

This concept was illustrated by developing a digital twin of a
hybrid wheel-on-leg robot capable of operating in two operation
modes. The abilities of the robot in various operation modes
were assessed using three independent tasks: speed to complete
a stated objective, slope ascending, and step obstacle climbing.

The process of creating the digital twin using the general-
purpose gaming engine was detailed. A detailed description of
the three tasks that were used to measure the robot’s abilities in
different modes was given. The results have shown that a careful
selection of reward shapes and the increased complexity of the
environment tasks made it possible to evaluate the robot’s abili-
ties under different modes of locomotion.

In future work, we will address the issue of transferring the
learned abilities from the digital twin to the real-life robot and
the creation of a set of tasks which is applicable to a wide range
of mobile robot configurations.
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FIGURE 6. The cumulative reward over time steps for the three tasks: (a) reaching a target on a flat surface (b) ascending a slope (c) climbing a step.
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FIGURE 7. The performance metric over time steps for the three tasks: (a) reaching a target on a flat surface (b) ascending a slope (c) climbing a
step.
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