
Tallinn 2016

TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

IDK40LT

Vjatšeslav Sobolev 112661IAPB

LIFE AND PENSION INSURANCE SELF-

SERVICE DEVELOPMENT FOR LIFERAY

PLATFORM

Bachelor's thesis

Supervisor: Jekaterina Tšukrejeva

 Master degree

 Lecturer assistant

Tallinn 2016

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

IDK40LT

Vjatšeslav Sobolev 112661IAPB

ELU- JA PENSIONIKINDLUSTUSE

ISETEENINDUSE ARENDAMINE LIFERAY

PLATVORMIL

Bakalaureusetöö

Juhendaja: Jekaterina Tšukrejeva

 Magistrikraad

 Õppejõu assistent

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Vjatšeslav Sobolev

23.05.2016

4

Abstract

The main target of this thesis is to implement simple and easy-to-use self-service demo

prototype, which run as separate portlet on Liferay portal. Portlet provides opportunity to

make pension insurance online, without insurance company office visit. Pension

insurance self-service gives information to final user about future pay-outs, payments and

other policy parameters.

Thesis describes requirements to self-service and portlet technology. Analysis of possible

portlet development technologies was done is order to choose optimal technology

solution according to requirements.

During thesis work, best technology solution for self-service portlet development were

chosen and demo self-service portlet was implemented.

This thesis is written in English and is 37 pages long, including 4 chapters, 5 figures and

2 tables.

5

Annotatsioon

Elu- ja pensionikindlustuse iseteeninduse arendamine Liferay

platvormil

Peamine lõputöö eesmärgiks on rakendada lihtne ja mugav iseteeninduse portlet, millest

saab osa Liferay portaalist. Iseteenindus portlet annab võimalust teha pensionikindlustuse

läbi veebi, pensionikindlustuse kontori külastamiseta. Pensionikindlustuse iseteenindus

annab võimalust lõppkasutajatele vaadata ja muuta sissemakse, väljamakse ja muud

pensionikindlustuse taotluse parameetreid.

Bakalaureusetöös on kirjeldatud nõudeid iseteeninduse rakendusele ja portlet

tehnoloogiale. Analüüsi käigus oli tehnoloogia valitud.

Lõputöö kaigus oli püstitatud probleem lahendatud ja demo prototüüp oli

implementeeritud.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 37 leheküljel, 4 peatükki, 5

joonist, 2 tabelit.

6

List of abbreviations and terms

REST Representational state transfer

UI User interface

IE Internet Explorer

JSF JavaServer Faces

IDE Integrated development environment

HTML Hyper Text Markup Language

API Application Programming Interface

SPA Single Page Application

CSS Cascading Style Sheets

IBAN International Bank Account Number

7

Table of contents

Author’s declaration of originality ... 3

Abstract ... 4

Annotatsioon Elu- ja pensionikindlustuse iseteeninduse arendamine Liferay platvormil 5

List of abbreviations and terms .. 6

Table of contents .. 7

List of figures ... 9

List of tables ... 10

1 Introduction ... 11

1.1 Problem ... 12

1.2 Thesis aims ... 12

1.3 Thesis workflow ... 13

2 Requirements ... 14

2.1 Requirements to application ... 14

2.1.1 Functional requirements .. 14

2.1.2 Non-functional requirements ... 15

3 Choosing Liferay portlet development technology ... 16

3.1 PrimeFaces.. 17

3.2 AngularJS + Spring .. 18

3.3 Vaadin ... 18

3.4 Technology choice summary .. 20

3.5 Technology choice for self-service portlet. .. 20

4 Self-service development .. 22

4.1 Portlet process flow .. 22

4.2 Backend development... 25

4.2.1 Details frame development .. 25

4.3 Frontend development .. 28

8

4.3.1 Details frame development .. 28

4.4 Styling and UI component composition ... 29

4.4.1 Details frame styling .. 29

4.5 Development environment ... 31

4.6 Details frame development summary ... 32

4.7 Self-service future development ... 32

Summary ... 33

Kokkuvõtte ... 34

References .. 35

Appendix 1 – Details frame frontend development initialization part 37

9

List of figures

Image 1 Non authorized user frame flow diagram ... 24

Image 2 Authorized user frame flow diagram .. 24

Image 3 Details frame class diagram .. 27

Image 4 Details frame UI component content layout visual composition. 30

Image 5 User parameters summary UI component. ... 31

10

List of tables

Table 1 Enumeration parameters value list. ... 26

Table 2 Enumeration parameters default values... 26

11

1 Introduction

The aim of this thesis is to implement self-service portlet to Liferay [1] portal.

Liferay portal popularity is growing, and usually is used for business solutions and big

companies.

Self-service will provide opportunity to make pension investment policy by using portlet

in website. Self-service will use main pension investment application with REST [2] to

get, validate and commit data. In nowadays providing self-services to final user is very

important part which gives opportunity to get a new customer.

Technology possibility to develop Liferay portlet will be analyzed and chosen for self-

service in analytics part of this thesis.

12

1.1 Problem

This thesis describes real demo solution of self-service for a software developing

company producing pension/group pension investment product. In this case final user will

invest money in his own pension. Big part of people is investing to their own pension, but

for that they must visit invest company office to complete a contract, to make that

procedure shorter was decided to make self-service for that, where final user can make

investment contract by using web application in his browser. In that case this application

must be very stable, secure and simple to improve.

In final case of self-service, final user can watch status and manage investment amount,

investment/payment periods, check bills and other opportunities which is available in real

office, but without visiting investment company office, that will save big amount of time

as for final user such as for investment company.

1.2 Thesis aims

Main goal of this thesis is to create a self-service portlet application with easy availability

to continue development.

Sub goals:

1. Analyze requirements

2. Analyze Liferay portlet development technologies for solving that problem.

3. Implement application.

13

1.3 Thesis workflow

Thesis have three main parts.

Chapter 2 describes functional and non-functional requirements to self-service

and to technology what will be used to make it.

Chapter 3 describes the technology choice, enumerated and analyzed most trend

technologies to make Liferay portlet, and reason of technology choice.

Chapter 4 describes self-service system and implementation details of

components.

14

2 Requirements

Main goal of the application is to supply to final customer possibility of making policy

without visiting investment company office.

In thesis Author will describe part of whole portlet. Described part is based on portlet

core functionality development and on details frame parts and components development

for details frame.

This application will be developed to show demo process of pension insurance self-

service possibilities to customer.

Core functionality what will be described in this thesis is parameters handling process.

Details frame [3] is frame where final user will specify additional policy information, in

this thesis frame means one page of portlet UI [4], which final user can see at the moment.

Frame will contain two Option Groups and two event Text fields as main components

and secondary components such as labels and numbering. Details frame initialize all

components (other beneficiary filed and IBAN field will be hidden from UI) and set

default values to option group fields (Beneficiary in case of death and Recurrent payment

method), in case of other beneficiary parameter is selected then additional parameter text

field will be shown.

2.1 Requirements to application

2.1.1 Functional requirements

Functional requirements to self-service portlet:

 Possibility to change policy parameters (beneficiary in case of death, recursively

payment method).

 Possibility to get overview of all user parameters which final user is specified

during policy creation process.

 Each time when parameter change event is fired, then handling process pass

changed parameter to main controller.

15

2.1.2 Non-functional requirements

Liferay portlet development technology:

 must be chosen to have good availability in future improvement.

 have a simple way to create UI component for final user.

 have a simple way to manage UI components, their content, composition and

style.

Self-service:

 Working same in any browser [5] (IE11 [6], Microsoft Edge [7], Chrome [8],

Firefox [9], Safari [10], Mobile Safari, Mobile chrome, Mobile Windows Phone)

 Have good looking user interface.

16

3 Choosing Liferay portlet development technology

For technology analysis where chosen couple of technology which Liferay portal support

and they are in trend in nowadays. In that work Author compare different technologies to

verify most effective one, to solve upcoming tasks.

Liferay portlet technology is one most important part of all application, it will tell what

language will be used to make portlet to live, and how much time will be spent to

implement upcoming tasks. In other kind of view, technology must be easy to use, and

make complicated UI elements with couple line of code. Technology must be chosen or

be already known for developers or be very familiar to already known one.

In this analysis Author will compare next technologies:

 PrimeFaces [11]

 AngularJS [12] + Spring [13]

 Vaadin [14]

Author will compare those technologies by next criteria:

 Development availability

 Code simplicity

 Availability for modify

 Browsers support

 Extendability

 Build time and Deployment complexity

 Testing and debugging possibility

17

3.1 PrimeFaces

PrimeFaces technology usage will be described on JFS 2 [15] and PrimeFaces 5

framework. PrimeFaces is built for dynamic web pages with server driven architecture,

with it is not possible to create single page applications, but provides very flexible UI

development.

PrimeFaces development is supported by plugins for NetBeans integrated development

environments no plugins for Intellij IDEA or Eclipse. Huge availability to create different

templated projects from maven archetype.

Code is very similar to HTML, but contains PrimeFaces framework specific tags to

control dynamic components. By default, not contains any styling frameworks for style

components and it must be specified separately for each element and later describes styles

for them, style injection is available by inserting specific tags inside code, is possibility

to inject styles directly to HTML element.

<center></center>

This tag will tell that all code inside those tags will be centered relatively to parent object

their parent element.

 To show static data is possibility to use basic HTML elements, to show dynamic data

need to be used faces tags.

<p:inputText />

This code will show simple input text field.

Modification of existing component can be complicated, because is needed to change

couple of files at once.

PrimeFaces support next browsers: IE9+, Chrome, Firefox, Safari, does not support

Microsoft Edge and IE6, mobile browsers are not fully supported.

Does not encourage extending existing components with java and JavaScript [16].

Build dime directly depends from amount of code and can take seconds to minutes,

without using advanced hot deploy possibilities or hot deploy plugins. Build final result

is war file what is deployable to server with couple of seconds.

18

For testing it is possible to use automated acceptance testing tool, load testing with

standardized tools like Jmeter [17] or Gatling [18], UI elements is possible to test with

Junit [19] tests.

3.2 AngularJS + Spring

In this part Author would like to describe Spring framework as REST-full API as backend

[20] and AngularJS framework as frontend [20] SPA [21] framework. This software

architecture gives a lot of advantages in fast development, scalability, availability to

simply modify or extend application.

First of all, Spring and AngularJS frameworks are stable and actively developed by the

communities. They have plenty of ready to use build-in functionality, modules and

classes. Spring provides quite simple and understandable syntax for mapping database

entities objects and handling REQUST/RESPOSNE objects in backend REST controllers.

Using AngularJS framework can easy consume REST API and create dynamic web

application. AngularJS template syntax for HTML files is very useful and helps to write

a lot of functionality with less code. AngularJS has own $scope [22] object logic for each

part of application, that isolates/divides parts of application and keeps them independent.

AngularJS is standardized for all modern browsers and mobile platforms, it gives

opportunity to write in same way for all web browser. Developers can easy include and

configure existing AngularJS modules with understandable and intuitive JavaScript code.

This technology stack makes backend and frontend independent from each other, giving

developers possibility develop them separately in different teams, decreasing

development time with more human resources.

AngularJS provides instant build and deployment time, that also increase development

time. Bug finding and fixing can be complicated due JavaScript hard debug ability.

3.3 Vaadin

Vaadin is a java web framework, java code will be translated to HTML and JavaScript

via compiler, Vaadin has server driven architecture. Vaadin development is simplified

with Vaadin plugins witch many integrated development environment provides such

19

Eclipse or Intellij. Eclipse provides also Visual Designer plugin for quick UI

development. You can create a new Vaadin project with pair of clicks or use Apache

Maven [23] archetype for build from archetype.

Code is very simple and very easy to understand, has entry point class as main class for

application start. By default, Vaadin uses Twitter Bootstrap [24] framework for styling,

if you want change that you can specify another default styling framework, or totally

remove it. Vaadin provides easy color theme change opportunity, with what you can

change whole site color with 10 line of code.

Label label = new Label("MY Label");

label.setStyleName("my_label_css");

This code will create div HTML element with “My Label” inside it, and add to this div

CSS [25] class name “my_label_css” after that you can manage style with usual CSS in

attached css file. Label caption can be modified dynamically what is some action

completed, like button clicked or other event handled.

.my_label_css{

 font-weight: bold;

}

This code will add font-weight to label element what is declared before.

Vaadin have big amount of widgets and default UI elements what can be used for build

more complex element compositions without creating a new Vaadin Widgets. Huge

extendability with java as GWT [26] client and server side components and possibility to

extend with JavaScript components for client components.

Modification of already made component composition is quiet simple, but can be

complicated when you start changing handling events on different component. Changing

style will be very easy, because for that you need only change CSS style for that element

or add style class to element and describe it on css file.

As all java applications Vaadin will compile to war file for server deployment.

Compilation time will be directly depending from amount of code, and can take seconds

to minutes on compilation.

20

3.4 Technology choice summary

Analysis of technologies in this chapter provided good overview of possibilities

PrimeFaces, AngularJS and Vaadin frameworks. Every framework has plusses and

minuses. All those frameworks are currently supported and their development is going

quiet fast, last official release, of any framework, was about half year ago. All frameworks

support fully internalization and localization, they all is possible to test with automated

acceptance testing tool and load testing with load testing standards.

Another aspect what will depend on that choice is that main application is using java as

backend and Struts 2 for frontend java web framework. That means java must be used as

backend language for self-service.

PrimeFaces big plus is that you can make your own very complicated component with all

your requested attributes, directly inject java code into HTML with all possibilities java

possibilities, minus of PrimeFaces is that code complexity is quiet difficult so

development time and support time can take more time that usual can be provided to that

issue solving.

The most important advantage of using AngularJS with Spring framework is that server

side and client side are totally independent from each other, project has instant build and

deploy client side, exists big community for helping developers to solve their problems,

minuses can be hard bug fining opportunity, client side code is written on another

language what can add some complicated aspect and code is available for final users.

Vaadin big plus is that you will not need to change a code whitening language to write

client side part, all code as backend and frontend can be made with java, so it is easy to

modify code, GWT technology knowledge will be big benefit if you will start developing

with Vaadin, minuses will be that Vaadin deployment is not instant and build take also

time, from couple of seconds to pair of minutes, depends of amount of code to compile,

some component not working exactly same for all browsers.

3.5 Technology choice for self-service portlet.

For self-service development author will choose Vaadin framework. To that choice

affected mostly code simplicity and development lightweight, Available difficultly big

21

amount of prepared UI elements what can be composed to more complicated components.

Another important part is that Vaadin is very secure, because all code is handled on server

and it is not allowing to somehow affect code process. Another most important part is

that styling availability from java code is on top level, that means possibility to add or

modify styles dynamically from java code.

22

4 Self-service development

Liferay portlet development as all web application development is divided to two main

parts Backend, Frontend and optional styling part, for UI elements look customization.

Backend in Life and pension insurance self-service will deal with frame composition,

data handling and user parameters handling.

Liferay portal provide authorization possibility. This allows to manage authorized and

non-authorized user UI frames customization according to authorization status without

separate authorization module implementation. Other part will be handled from portlet

itself. For navigation between frames was used modified Navigator Vaadin component.

Whole portlet is divided to frames, each frame contains specific data to show to final user.

In thesis self-service development will be described on Details frame example. Details

frame contains additional fields to complete pension policy. Those fields are:

 Beneficiary in case of death

 Other beneficiary

 Recursive payment method

 IBAN number

4.1 Portlet process flow

Self-service process flow describes final user actions and reaction to those actions, each

action will be handled in backend and reaction to that action usually will be shown in UI

frame. Reaction to user action can be one from following list:

 Changed frame to another

 Changed UI parameters component value

 Changed visibility of UI component

 Change visualization of UI component

23

Each frame specialized to special data show to user, in self-service are next frames:

 Welcome frame

 Age clarification frame

 Payout and payment data frame

 Beneficiary frame

 Confirmation frame

 First payment frame

 Contact frame

All navigation between frames is controlled by Navigator [27], which decide with

DecisionMaker what frame to show next and is next frame showing allowed in this

context and with user parameters.

Main frame flow is divided to two parts, this division depends on authorization status,

then if final user is authorized to portal then all up listed frames will be shown, except

age clarification age during age is known from final user registration data, if user is not

authorized then will be shown next frames: welcome frame, age clarification frame,

payout and payment data frame and contact frame. Between frames navigation is made

with next and back button, those navigation buttons are available in all frames, except

back button in first frame and next button in last frame.

24

Image 1 Non authorized user frame flow diagram

Image 2 Authorized user frame flow diagram

25

Author provide diagrams, to show visual process flow between frames for authorized

user(Image 1) and for non authorized user(Image 2), main different in flow is, that non

authorized user cannot make final confirmed policy, not authorized user can only see

available payment plans and pay out plan and have possibility to contact with

administrator for next steps.

4.2 Backend development

One of the most important in Backend part is user parameters handler. User parameters

is needed for store parameters and provide access to parameters from each frame. User

parameters is dynamically created for each user and pre specified with default parameters

if default parameters are defined. Parameter handlers are wired to specific events, due

final user affection to those events parameters can be changed. Parameters store different

types of data for example: Date, Locale, Payment amount, Payment frequency and others.

All parameters are classified to object types like String, Boolean, Enumeration and others.

Second Backend part is navigation processing and conditions for navigation between

frames. In Vaadin Navigation part is handled with Navigator component, to that

component Author specify enumeration of frames, and navigator will navigate to next of

previous frame according to enumeration.

Third Backend part is data processing part, deals with get or send data from main life

pension insurance application. Data processing is totally independent part and not affect

to final look and process of details frame, due that case data processing part will not

described in this thesis.

4.2.1 Details frame development

Filed for details frame are based on user parameters. In those parameters are specified

available values for those fields and default values. For details frame are specified three

parameters:

 Enumeration parameters

o Beneficiary in case of death

o Recursive payment method

26

 String parameter

o Other beneficiary

o IBAN number

For enumeration parameters is specified value list with all possible values, all possible

values for details frame enumeration parameters is shown in Table 1. Default vales for

enumeration parameters are shown in Table 2.

Beneficiary in case of death Spouse

Children

Spouse and children

Other beneficiary

Recursive payment method e-Invoice

Invoice list

Table 1 Enumeration parameters value list.

Beneficiary in case of death Spouse

Recursive payment method e-Invoice

Table 2 Enumeration parameters default values.

In case of String parameters, no default parameter is specified, due string parameter are

specialized to store string type data.

In frame initialization process all default parameter values will be set to according UI

components, and will be shown to final user as selected or entered.

27

public enum BeneficiaryType {

 SPOUSE("Spouse"),

 CHILDREN("Children"),

 SPOUSE_AND_CHILDREN("Spouse and children"),

 OTHER_BENEFICIARY("Other beneficiary");

 private String value;

 BeneficiaryType(String value) {

 this.value = value;

 }

 @Override

 public String toString() {

 return this.value;

 }

}

public class BeneficiaryParameter extends

AbstractEnumUserParameter<BeneficiaryType> {

 public BeneficiaryParameter() {

 super(UserParameterType.BENEFICIARY);

 }

 @Override

 public BeneficiaryType getDefaultValue() {

 return BeneficiaryType.SPOUSE;

 }

}

This code will show enumeration of all available Beneficiaries and default parameter setup.

Similar code parts will be for recursive payment method parameter.

Image 3 Details frame class diagram

28

Author shows in Image 3 class diagram for Details frame, it has multiple implement

interfaces for passing parameters to main controller, and to set default user parameters

automatically to fields in frame initialization process.

4.3 Frontend development

Frontend development is second big part of full application, and it is same important as

backend. Frontend provide user interfaces to final user, and with them final user can use

application, that means frontend must be intuitively easy to understand, have a good look

and contains all necessary data.

In self-service Frontend parts are separated to frames and each frame contains some

specific data.

4.3.1 Details frame development

Details frame fields are connected to parameters. Enumeration parameters can be

introduced as array or arrayList, this possibility provides short way to create Option

group.

OptionGroup beneficiaryOption = new OptionGroup();

beneficiaryOption.addItems(BeneficiaryType.values());

beneficiaryOption.setNullSelectionAllowed(false);

In this code is shown Option Group creation with Vaadin framework, and initialization

values from beneficiary type enumeration, and set no availability to unselect value.

Similar code is for recurrent payment method Option group. By default, no value in option

group is selected, but in frame initialization process default value will be set.

Details frame contains text field for initialize user parameters.

TextField ibanNumberTextField = new TextField("IBAN number");

This code will create text filed with “IBAN number” label for that field, and blank value.

Details frame contains not only parameter specific UI elements, but also navigation

element bar and common frame UI elements, like Frame labels and labels for options

group and other UI components, what makes self-service more intuitive for use. Details

frame contains next static UI labels:

29

 Main frame label

 Beneficiary options group label

 Recursive payment options group label

Some UI components is created for multiple usage in many frames, those components

can be created in separate package and later used/initialized in needed frame. Shared UI

elements, which will be used in details frame are: navigator bar and user parameters

summary component.

Navigator bar UI component will exist in every frame and will handle all navigation in

self-service. Navigator bar contain back and next button.

User parameters summary UI component will be shown in details frame. Parameters

summary component contain Label of this component and list with user parameters key

value pairs. Only active parameters are shown at the moment.

4.4 Styling and UI component composition

Frame styling is divided to two parts: usual styling part with using direct css and styling

using Vaadin layout components and Vaadin component styling. In both parts styling

goes thru CSS, but when Vaadin components are used, then styling will be managed from

java code. Vaadin provides all available layout types: vertical layout, horizontal layout,

grid layout, form layout, absolute layout, CSS layout and custom layout.

4.4.1 Details frame styling

Details frame extends default frame layout, which is made for setting navigator bar to the

bottom of the frame, all other components must be set in details frame initialization.

For main layout Author has chosen CSS layout, this choice depends on mobile view for

details frame, due mobile view user parameters summary and main content width is too

high and cannot be placed in mobile screen same as in desktop screen. The position of

main content will be changed for mobile devices with media queries in CSS. Css layout

contains user parameters summary component and content layout. Content layout has

vertical layout type and next UI component composition:

30

 Frame label

 Beneficiary label

 Beneficiary option group

 Other beneficiary text field

 Recurrent payment method label

 Recurrent payment method option group

 IBAN text field

IBAN text field and another beneficiary text field are only available if other beneficiary

option was chosen and e-Invoice was chosen for Iban text field, if those options were not

selected, then fields are hidden. In image 3 is shown visually this part, Image 4 shows

user parameters component. Most of the components in content layout have margins and

paddings in their style, this styling is made with CSS.

Image 4 Details frame UI component content layout visual composition.

31

Image 5 User parameters summary UI component.

In Image 4 user parameters summary component shows only available parameters to

user and frame if the final user is navigated back to the previous frame then selected is

next frame parameters will be hidden from view and not been processed in any

processing part. Image 4 shows only example data for selected fields in details frame

and not contains other parameters from other frames or components.

Step markers, component before labels, shown in Image 3 is made for better orientation

in navigation for the final user. Step maker is made with a simple label and CSS styling

to it, numbers to it are set from code.

Mode detailed code is added in appendix part of thesis.

4.5 Development environment

Most of development code were written in Java, for that Author used Intellij as Java

integrated development environment(IDE). Intellij Idea provides good opportunity to write

code, corrects your typographical errors and provides shortcut keys to access needed part of

code and to navigate in project structure.

For project build were used Apache Maven. Maven provides control to lifecycle process

and quick deploy opportunity to server.

Git [28] was used for version control system. Git gives very flexible opportunity to make

project develop work flow.

32

4.6 Details frame development summary

In previous parts were shown whole develop process to develop Details frame. All

required UI components were set, and handled to store user parameters to backend to

forward usage in policy creation.

Due good separation to parts details frame is easy to modify or improve. Each component

deals with specific part of process.

Details frame functionality was fully realized, according to details frame requirements.

4.7 Self-service future development

Self-services are very perspective direction of product improvement, due that customers

are interested to improve they.

Future improve possibility is very big, can be improved:

 Change pay out amount during pension period

 Change payment plan(payment amount and frequency of payments during year)

 Have possibility to add multiple policies to your account for payment.

 Add possibility to show accumulated income in current working policy.

 Add notification module, what will notify final user for upcoming pay outs or

payments.

And many others.

33

Summary

In this thesis main target was to implement demo self-service portlet for Liferay portal.

First main step was Liferay portlet technology choice, in this part analysed possible

technologies and best technology, according to requirements was chosen – Vaadin

framework. According to requirements demo prototype was implemented.

The result of this thesis is a working demo prototype of self-service portlet to Liferay

portal. The working demo prototype can be improved or modified in future.

Also this thesis tested Author developing skills and knowledge, which is gained during

studying at university. In addition, Author gained new knowledge during thesis process

flow in Java development and in Vaadin framework.

34

Kokkuvõtte

Lõputöö eesmärgiks oli rakendada iseteeninduse Liferay platvormil. Esimene samm oli

iseteenindus rakenduse tehnoloogia valik, selles osas autor tegi analüüsi võimalike

tehnoloogiate hulgast ja oli valitud tehnoloogia, mis kõige rohkem vastab nõuetele –

Vaadin raamistik. Lõputöö kaigus oli viidud ellu demo iseteeninduse prototüüp.

Lõputöö tulemusena on töötav iseteeninduse prototüüp Liferay portaalis. Tulevikus

prototüüpi saab muuta ja modifitseerida edasiarendamiseks.

Lõputöö kaigus autor oli testitud oma nii praktilisi kui ka teoreetilisi teadmisi, mis oli

omandatud ülikooli õppimise käigus. Samas autor oli suurenenud oma Java keele

teadmisi ja Vaadini raamistiku teadmisi.

35

References

[1] [Online]. Available: https://en.wikipedia.org/wiki/Liferay. [Accessed 01 05 2016].

[2] [Online]. Available: https://en.wikipedia.org/wiki/Representational_state_transfer.

[Accessed 01 05 2016].

[3] [Online]. Available: https://en.wikipedia.org/wiki/Frame_%28GUI%29.

[Accessed 04 05 2016].

[4] [Online]. Available: https://en.wikipedia.org/wiki/User_interface. [Accessed 02 05

2016].

[5] [Online]. Available: https://en.wikipedia.org/wiki/Web_browser. [Accessed 02 05

2016].

[6] [Online]. Available: https://en.wikipedia.org/wiki/Internet_Explorer_11.

[Accessed 02 05 2016].

[7] [Online]. Available: https://en.wikipedia.org/wiki/Microsoft_Edge. [Accessed 02

05 2016].

[8] [Online]. Available: https://www.google.com/chrome. [Accessed 02 05 2016].

[9] [Online]. Available: https://www.mozilla.org/en-US/firefox. [Accessed 02 05

2016].

[10] [Online]. Available: www.apple.com/safari/. [Accessed 02 05 2016].

[11] [Online]. Available: primefaces.org/. [Accessed 03 05 2016].

[12] [Online]. Available: https://angularjs.org/. [Accessed 03 05 2016].

[13] [Online]. Available: https://spring.io/. [Accessed 03 05 2016].

[14] [Online]. Available: https://vaadin.com/. [Accessed 03 05 2016].

[15] [Online]. Available: https://en.wikipedia.org/wiki/JavaServer_Faces. [Accessed

03 05 2016].

[16] [Online]. Available: https://en.wikipedia.org/wiki/JavaScript. [Accessed 04 05

2016].

[17] [Online]. Available: jmeter.apache.org/. [Accessed 04 05 2015].

[18] [Online]. Available: gatling.io/. [Accessed 04 05 2016].

[19] [Online]. Available: junit.org/. [Accessed 05 05 2016].

[20] [Online]. Available: https://en.wikipedia.org/wiki/Front_and_back_ends.

[Accessed 05 05 2016].

[21] [Online]. Available: https://en.wikipedia.org/wiki/Single-page_application.

[Accessed 05 05 2016].

[22] [Online]. Available: https://docs.angularjs.org/guide/scope. [Accessed 05 05

2016].

[23] [Online]. Available: https://maven.apache.org/. [Accessed 06 05 2015].

[24] [Online]. Available: getbootstrap.com/. [Accessed 05 05 2016].

36

[25] [Online]. Available: https://en.wikipedia.org/wiki/Cascading_Style_Sheets.

[Accessed 06 05 2016].

[26] [Online]. Available: www.gwtproject.org/. [Accessed 06 05 2016].

[27] [Online]. Available: https://vaadin.com/api/com/vaadin/navigator/package-

summary.html. [Accessed 07 05 2016].

[28] [Online]. Available: https://git-scm.com/. [Accessed 08 05 2016].

[29] [Online]. Available: https://netbeans.org. [Accessed 03 05 2016].

[30] [Online]. Available: https://www.jetbrains.com/idea/. [Accessed 03 05 2016].

[31] [Online]. Available: https://eclipse.org/. [Accessed 03 05 2016].

37

Appendix 1 – Details frame frontend development

initialization part

final OptionGroup beneficiaryOption = new OptionGroup();

final OptionGroup recurrentPaymentMethodOption = new OptionGroup();

final TextField otherBeneficiaryTextField = new TextField();

final TextField bankAccountIBAN = new TextField("IBAN");

CssLayout contentLayout = new CssLayout();

contentLayout.addStyleName("detailsView");

VerticalLayout detailsLayout = new VerticalLayout();

detailsLayout.addStyleName("optionsLayout");

detailsLayout.setSizeUndefined();

PhaseHeader detailsPhaseHeader = new PhaseHeader("4", "Details");

VerticalLayout subPhaseDeathCaseBeneficiaryLayout = new

VerticalLayout();

subPhaseDeathCaseBeneficiaryLayout.addStyleName("subPart");

PhaseHeader subPhaseDeathCaseHeader = new PhaseHeader("4.1",

"Beneficiary in case of death");

beneficiaryOption.addItems(BeneficiaryType.values());

beneficiaryOption.setNullSelectionAllowed(false);

otherBeneficiaryTextField.addStyleName("beneficiaryTextField");

otherBeneficiaryTextField.setVisible(false);

otherBeneficiaryTextField.addListener(new

FieldEvents.TextChangeListener() {

 @Override

 public void textChange(FieldEvents.TextChangeEvent event) {

 for (DetailsViewListener listener : listeners) {

 listener.otherBeneficiaryFieldChanged(event.getText());

 }

 }

});

subPhaseDeathCaseBeneficiaryLayout.addComponents(subPhaseDeathCaseHead

er, beneficiaryOption, otherBeneficiaryTextField);

detailsLayout.addComponents(detailsPhaseHeader,

subPhaseDeathCaseBeneficiaryLayout);

OptionGroup.ValueChangeListener

DeathBeneficiaryOptionValueChangeListener = new

OptionGroup.ValueChangeListener() {

 @Override

 public void valueChange(Property.ValueChangeEvent event) {

 for (DetailsViewListener listener : listeners) {

 listener.deathCaseBeneficiaryChanged((BeneficiaryType)

event.getProperty().getValue());}

 if ((event.getProperty().getValue()).equals(

38

BeneficiaryType.OTHER_BENEFICIARY)) {

 otherBeneficiaryTextField.setVisible(true);

 } else {

 otherBeneficiaryTextField.setVisible(false);

 }

 }

};

beneficiaryOption.addValueChangeListener(DeathBeneficiaryOptionValueCh

angeListener);

VerticalLayout subPhasePaymentMethodLayout = new VerticalLayout();

PhaseHeader subPhasePaymentMethodHeader = new PhaseHeader("4.2",

"Recurrent payment method");

recurrentPaymentMethodOption.addItems(RecurrentPaymentMethodType.value

s());

recurrentPaymentMethodOption.setNullSelectionAllowed(false);

recurrentPaymentMethodOption.addStyleName("subPart");

final VerticalLayout bankAccountDetailsLayout = new VerticalLayout();

bankAccountDetailsLayout.addStyleName("bankAccountDetails");

Label bankAccountDetailsLabel = new Label("Bank account details");

bankAccountDetailsLabel.addStyleName(ValoTheme.LABEL_BOLD);

bankAccountIBAN.addStyleName("bankAccount");

bankAccountIBAN.setInputPrompt("IBAN...");

bankAccountIBAN.addListener(new FieldEvents.TextChangeListener() {

 @Override

 public void textChange(FieldEvents.TextChangeEvent event) {

 for (DetailsViewListener listener : listeners) {

 listener.bankAccountIBANChanged(event.getText());

 }

 }

});

bankAccountDetailsLayout.addComponents(bankAccountDetailsLabel,

bankAccountIBAN);

OptionGroup.ValueChangeListener

recurrentPaymentOptionValueChangeListener = new

OptionGroup.ValueChangeListener() {

 @Override

 public void valueChange(Property.ValueChangeEvent event) {

 RecurrentPaymentMethodType newRecurrentPaymentOption =

(RecurrentPaymentMethodType) event.getProperty().getValue();

 for (DetailsViewListener listener : listeners) {

 listener.recurrentPaymentMethodChanged(newRecurrentPaymentOption);}

 if

(recurrentPaymentMethodOption.getValue().equals(RecurrentPaymentMethod

Type.EINVOICE)) {

 bankAccountDetailsLayout.setVisible(true);

 } else {

 bankAccountDetailsLayout.setVisible(false);}

 }};

recurrentPaymentMethodOption.addValueChangeListener(recurrentPaymentOp

tionValueChangeListener);

subPhasePaymentMethodLayout.addComponents(subPhasePaymentMethodHeader,

recurrentPaymentMethodOption, bankAccountDetailsLayout);

detailsLayout.addComponents(subPhasePaymentMethodLayout);

