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PREFACE 

This thesis explores the application of an optimal control algorithm to improve comfort 

levels in residential buildings. The proposed work focuses on enhancing comfort while 

also considering the cost factor. The objective is to strike the right balance between 

providing comfort and managing costs effectively. Achieving a comfortable living 

environment while being mindful of costs is crucial in residential buildings. This 

equilibrium ensures that people feel comfortable in their homes without spending too 

much. For this purpose, developed a control algorithm which was later compared with 

previous algorithm based on system performance in terms of two parameters 1) cost 

and 2) indoor temperature. 

 

The thesis structure is based on the requirements and data sets provided by Ouman 

OY, a Finnish manufacturer of controllers for the building automation industry, as part 

of their new project. The newly developed control algorithm was implemented on target 

building Tihaase 19, Harju County ESTONIA, and was renovated in August 2017 by 

Profener OÜ. The simulations were carried out using a software tool called Ouflex BA 

Tool. It is essential to mention that the automation controller and data acquisition 

software utilized in the study are sourced directly by the company. 

 

I am writing to thank Mr.Kari Heikkila, the Export Manager at Ouman OY, for allowing 

me to undertake this project. I am sincerely thankful to Jilson Jose (Technical Support 

Specialist) and Aleksander Liin (Baltic Sales Manager) at Ouman OY. Additionally, I 

appreciate Mr. Alfred Liin, the owner of the target building, for supporting me 

throughout the project by providing all the necessary building data and allowing the 

installation of controllers for the study. 

 

I am highly grateful to Prof. Hadi Ashraf Raja for his immense guidance and support 

throughout the research period at Tallinn University. Finally, I want to thank my parents 

for their constant support and encouragement throughout my studies and career. 
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List of abbreviations and symbols 

 

COP (Coefficient Of Performance) This represents heat pump 

efficiency. 

 

DH (District Heating) This system distributes heat 

generated in a centralized location 

for residential and commercial 

heating requirements. 

 

DHW (Domestic Hot Water) This refers to domestic hot water 

used usually for bathing, cooking, 

and cleaning purposes. 

 

GSHP (Ground Source Heat Pump) Heat pump variant that uses ground 

as a heat source or sink. 

 

HMI (Human Machine Interface) A user interface that connects a 

human to a machine. 

 

ERR (Energy Efficiency Ratio) Measure of a heating or cooling 

system’s efficiency in converting 

energy into heating or cooling 

output. 

 

CI (Comfort Index) Measure of effectiveness of a 

heating or cooling system in 

maintaining indoor temperatures 

within a comfortable range. 

nZEB (Nearly Zero Energy Building) Refers to buildings with 

exceptionally high energy efficiency 

and minimal energy usage. 

RES (Renewable Energy Sources) This encompasses naturally 

replenished energy sources like 

solar, wind, and hydro power. 
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RH (Radiator Heating) This heating system utilizes 

radiators to evenly distribute heat 

within a structure. 

 

SCOP (Seasonal Coefficient 

Performance) 

This quantifies the efficiency of a 

heat pump across an entire heating 

season. 

 

EER (Energy Efficiency Ratio) a metric used to measure the 

efficiency of cooling or heating 

devices such as air conditioners. 

 

CI (Comfort Index) metric used to evaluate the 

perceived comfort of an 

environment based on various 

factors such as temperature, 

humidity, air quality, and sometimes 

even noise levels or lighting. 
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1 . BACKGROUND AND CONTEXT FOR RESIDENTIAL 

HEATING SYSTEM CONTROL 

There have been radical changes in energy generation and theories in the last few years. 

Conventional energy generation and non-replenished energy sources pose challenges 

due to the extreme emission of carbon-contained pollutants that lead to global warming 

[2]. The carbon neutrality concepts face a huge backdrop due to the expanded usage 

of fossil fuels and heavy dependence on non-renewable energy sources. In the current 

scenario, Baltic countries are increasingly focusing on RES (Renewable energy source) 

in DH systems (Biomass, geothermal, and solar thermal energy) because of 

environmental impacts caused by the over-exploitation of traditional fossil fuels1. 

 

The heat curve method is widely used in water-bound radiator systems for indoor 

climate regulation. This method effectively maintains a comfortable indoor environment 

regardless of outdoor temperatures. However, it does not consider crucial factors such 

as electricity prices or forecasted weather data. HP uses a temperature sensor to 

monitor outdoor temperatures and adjusts the heat curve accordingly. Although there 

are control techniques that could incorporate this information, they often require 

simulating the system over a specified horizon, incorporating future electricity prices 

and weather forecasts. This limitation underscores the need for a more advanced control 

algorithm, which is the focus of this paper. 

 

The heat curve method is widely used in water-bound radiator systems for indoor 

climate regulation. This method effectively maintains a comfortable indoor environment 

regardless of outdoor temperatures. However, it does not consider crucial factors such 

as electricity prices or forecasted weather data. HP uses a temperature sensor to 

monitor outdoor temperatures and adjusts the heat curve accordingly. Although there 

are control techniques that could incorporate this information, they often require 

simulating the system over a specified horizon, incorporating future electricity prices 

and weather forecasts. This limitation underscores the need for a more advanced control 

algorithm, which is the focus of this paper. 

 

Many factors, including climate and resident behavior, influence the heating 

requirements in residential buildings. In addition, the architecture of a heating system 

is determined by various factors such as the characteristics and location of the building, 

the climate, the heat source used, the user’s preference, scalability, and resilience to 

 

1 https://www.stat.ee/en/find-statistics/statistics-theme/energy-and-transport/energy 

https://www.stat.ee/en/find-statistics/statistics-theme/energy-and-transport/energy
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fluctuations. A typical heating system for a private house comprises an HP as the 

primary heat source that caters to two different requirements: Radiator heating and 

Domestic hot water heating. The heating requirements of the building dictate the choice 

of heat source. To achieve effective energy management in a residential building, it is 

crucial to synchronize the operation of the system. This necessitates the use of an 

automation controller and an optimal control algorithm. This paper presents a novel 

control algorithm that regulates energy consumption and ensure energy management 

by dynamically adjusting set point temperatures for space heating. The primary 

objective is to maintain thermal comfort for the occupants at acceptable levels, 

considering the complex trade-off between comfort and cost. 

 

Keywords: Renewable energy sources, Domestic hot water, radiator heating, Solar 

panels, Greenhouse gas, Global warming, gas chambers, fossil fuels. 

 

 

 

1.1 Motivation 

There is a growing effort to reduce greenhouse gas emissions, with the EU committing 

to a 55% reduction compared to 1990.Achieving this target involves narrowing the gap 

between energy consumption and generation, and one way is to reduce overall energy 

consumption. Estonia heavily depends on non-renewable energy sources such as oil 

shale, with renewable energy contributing less to the total electricity production. Space 

heating constitutes a substantial portion, approximately 59% of total household energy 

needs, and in 2018, nearly half of space heating and DHW in Estonia were powered by 

electricity. In 2021, 60% of Estonia’s one- and two-residential buildings utilized heat 

pumps for heating purposes [4]. Residential buildings account for over 40% of the 

world’s energy consumption. Numerous studies over the years have aimed to enhance 

the performance of building energy systems [3], [4], conducted an analysis exploring 

various factors influencing thermal comfort and energy conservation. These factors 

encompassed cultural studies, climate conditions, socio-economic aspects, and more. It 

would be economically and environmentally beneficial to use low electricity prices. Given 

these factors, there is significant interest in developing a control algorithm for efficient 

household energy management. Rather than relying solely on the current outdoor 

temperature to determine the RH circuit’s supply water temperature set value, this 

thesis seeks to enhance system redundancy by integrating weather forecasting and spot 

price to identify a modulated room temperature for comfort. The potential economic 
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benefits of this approach are promising, offering a significant change in user comfort for 

residential buildings. 

 

 

1.2 Purpose 

The thesis provides an optimal solution for improving comfort in residential buildings by 

using modern control methods to maintain indoor temperature through heat pumps. 

Contemporary consumers can now monitor forecasted weather data and hourly 

electricity prices, allowing them to mitigate the impact of significant cost variations. The 

focus is on managing the timing and magnitude of energy usage to ensure advanced 

user comfort through space heating and to reduce energy costs, rather than stressing 

on minimizing overall energy consumption. The approach involves preparing a 

household for additional heating hours by anticipating high heating demands in the 

upcoming hours, relying on outdoor temperature and weather forecast data. Beyond 

merely reducing energy costs, the primary focus is sustaining a comfortable indoor 

climate. 

 

 

 

1.3 Problem evaluation 

Presently, residential buildings heavily rely on water-based heating systems for space 

heating. These systems determine the flow line temperature, regulating the water 

entering the system based on outdoor temperature. However, they do not account for 

forecasted weather conditions. It presents an opportunity to highlight the advantages 

of integrating forecasted weather data into the system for optimal energy management 

in residential buildings. Using modern automation controllers and control strategies 

enables the incorporation of such data; thus, the following questions arise. 

The research questions guiding this thesis are: Can we reduce the electricity cost for a 

heat pump while still ensuring comfort by employing optimal control strategies that 

consider Nord pool hourly electricity price data and weather predictions? 
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1.4 Aim and scope 

The thesis aims to develop an optimal control algorithm for a heating system with a 

single heat source using an Ouman automation controller for residential building 

applications. This innovative approach focuses on three key areas: 

1. The thesis aims to enhance the system redundancy by designing a control 

algorithm for supply water setpoint for RH, taking account of real-time 

outdoor temperature sensor data and weather forecasts. 

2. The thesis focuses on utilizing Nord pool electricity price data to manage 

electricity consumption by the heat pump efficiently. 

3. Design and implement an optimal control algorithm in an existing building 

with a heating system to access and compare the performance of the heating 

system. 

The newly developed algorithm will be applied in a real-world setting, a target building 

with a heating system, using actual data sets to assess and compare the performance 

of the system. This practical implementation and validation of control algorithms on 

automation controllers will demonstrate their effectiveness in energy management. The 

system’s operation and the controller’s performance are assessed using key 

parameters: energy consumption by the heat pump and the cost of purchased 

electricity, COP of heat pump and user comfort level in the building. This evaluation will 

measure the system’s efficiency and the controller’s effectiveness in managing energy 

usage and costs. 

 

 

1.5  Delimitations 

1.5.1 Simplified house model 

The target residential model, the Simplified House model, is a simplified representation 

of a residential building. It does not consider the number of occupants, their user 

behaviours and preferences, the furniture arrangement, the frequency of opening and 

closing windows and doors, and the usage of lights or other electrical appliances, which 

could moderately affect a building’s energy consumption and thermal comfort. 
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1.5.2 Heat pump type 

The residential building selected for this study is equipped with a ground-source heat 

pump. A ground-source heat pump, also known as a geothermal heat pump, uses the 

earth’s natural heat to warm or cool a building by transferring heat to or from the 

ground, depending on the season. 

1.5.3 Heat pump model 

The effectiveness of heat pumps in real-world settings relies heavily on monitoring the 

temperatures of the inlet and outlet flows, as these directly impact the efficiency and 

performance of the system. At the same time, complexities related to sensors, valves, 

and pumps are overlooked. Maintaining optimal temperature differentials is essential for 

achieving the desired heating or cooling outcomes. 

1.5.4 Other 

Burning wood in a household can influence heat optimization. Although wood is 

renewable and cost-effective, it can affect air quality, present challenges in efficiency 

and control, and require additional maintenance. 

 

 

1.6  Summary 

In summary, the advent of predictive control for optimize building heating systems 

signifies a revolution in energy management technology. By integrating weather 

forecasts and spot pricing data, the system promises to enhance heating efficiency and 

reduce energy costs while ensuring occupant comfort, thereby piquing the interest of 

professionals in building automation. This chapter provides a foundation by explaining 

the rationale for using predictive control strategies, highlighting the limitations of 

traditional heating control methods, and showcasing the advantages of this approach. 

As we delve deeper into the upcoming chapters of this thesis, I explore the theoretical 

framework, strategies for implementation, and evaluation of the performance of the 

predictive control system. The primary goal of this research is to enrich the existing 

knowledge in building automation and provide valuable, practical insights for 

development and deployment of heating control systems, thereby offering a significant 

contribution to the field. 

This paper presents an advanced control algorithm designed to improve the comfort 

levels in buildings. It prioritizes RH over DHW, ensuring they are maintained at 
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acceptable levels. The study underscores the importance of achieving comfort through 

improved controller techniques rather than altering building practices or user 

preferences. 

 

 

1.7  Structure of thesis 

The introductory chapter of this thesis has provided a clear explanation of the reasons 

behind our research, what motivates me, and the specific goals I aim to accomplish. 

The author also defined the scope of our study, outlining what aspects we will be 

focusing on. These initial discussions pave the way for us to explore and apply control 

methodologies to enhance the efficiency of residential heating systems in the upcoming 

sections. 

Chapter 2 explores the heating system of a residential building, explaining how RH and 

DHW work and detailing the HP model and type (GSHP). It also introduces the important 

efficiency measure, the Coefficient of Performance (COP). 

In Chapter 3, focus is on the replication of a predictive controller using MATLAB Simulink. 

The goal of this chapter is to demonstrate the predictive behavior of the controller, 

highlighting how it optimizes heating control by adjusting setpoints based on future 

weather conditions and fluctuating energy prices. The simulation results provide insights 

into the controller’s ability to ensure user comfort while minimizing energy costs, 

showcasing its effectiveness in dynamic and variable environments. 

Chapter 4 consists of a summary of the previous algorithm before thoroughly examining 

the proposed algorithm. Provides a detailed explanation of the algorithmic conditions, 

their rationale, and the implementation process using the Ouflex automation tool. The 

goal of this chapter is to show how the newly developed algorithm optimizes residential 

heating systems. 

Chapter 5 of the thesis presents the benchmarking results, which involve acquiring data 

and analyzing the heating system’s performance by implementing a control algorithm. 

This chapter provides insights into how well the heating system works under the 

influence of the newly implemented control algorithm, exploring its effectiveness and 

efficiency in managing indoor temperatures at acceptable levels. 



20 

 

2 . MAIN BODY 

This chapter covers the theory behind heating systems, including a background analysis 

of existing systems, the basics of residential heating setups, an overview of heat pump 

types, models, and their coefficient of performance, and finally a brief overview of the 

model predictive methodology used in this research to optimize system, setting a 

foundation for the practical work in this thesis. 

2.1 Background analysis and related work 

The significance of maintaining indoor temperature in residential buildings has always 

been paramount. In recent years, significant innovations have emerged, particularly in 

automation, predictive controls, and energy recovery systems, transforming how indoor 

climates are managed. Modern systems now incorporate adaptive controls, machine 

learning for predictive maintenance, and more efficient thermal energy reuse. 

 

Over the past few years, building climate control has witnessed a surge in research. It 

includes studies on modelling and designing energy-efficient buildings (nZEB) and 

constructing control systems for dependent building models. However, many of these 

systems primarily rely on outdoor temperature to determine the set value for supply 

water temperature in RH. However, several studies have investigated the potential 

benefits of incorporating future weather predictions and hourly energy prices. These 

innovations can enhance resident comfort and reduce energy costs significantly. In a 

study [5] a control algorithm was developed that leverages the correlation between the 

maximum energy consumption during specific hours and the signals of price volume. 

Similarly, study [6] proposed a model for a heating system incorporating a heat pump 

and storage tank, capitalizing on the flexibility of heat pump operation to exploit lower 

electricity prices. 

 

 

 

2.2 Residential heating system 

As mentioned in the introduction, the proposed study was conducted on residential 

buildings with RH as the primary heat source. This section will provide further insight 

into how the RH and DHW work. RH uses radiation and convection to warm the 

surrounding space. The heated air rises to head level and tends to gather near the 

ceiling. Over time, the initially hot air cools predominantly and descends. For RH, an 

optimal hot water temperature of approximately 35-45 °C is required for effective 

indoor heating. Figure 2.1 demonstrate a typical residential heating system where the 
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radiator releases heat into the surrounding air, causing it to warm up, become less 

dense, and rise. This rising warm air is replaced by cooler air, creating a convective 

current that efficiently distributes heat throughout the room. 

• Heating system (Figure 2.1) utilizes devices known as radiators, which 

play a crucial role in maintaining the room temperature through hydronic 

heating. A heat pump heats water, and radiators act as heat exchange 

devices, extracting heat from this hot water. 

• Notably, the heat exchangers’ design ensures that the circuits for RH and 

DHW never mix. 

• The hot water medium receives heat energy from heat source through 

the radiators installed inside the room. The heating demand of the heat 

pump fluctuates according to the outdoor temperature, consequently 

affecting the temperature of the water entering the radiators. 

 

DHW operation 

• A heating system combines a storage tank with a heat pump to meet 

Domestic Hot Water (DHW) needs (Figure A5.8). The temperature of the 

DHW supply can vary from 50 °C to 60° C based on outdoor 

temperatures, adapting to seasonal changes. 

• In traditional setups, DHW flows directly to heat exchangers, where 

thermal energy from hot water transfers to cold mains water for 

distribution throughout the building. Unused hot water used circulates 

back to the storage tank through a dedicated circulation line, managed 

by a DHW circulation pump, ensuring efficient regulation and reuse 

within the heating system.  

• To maintain an adequate supply, the system reheats water as needed, 

depends on the initial mains inlet temperature and the returning DHW 

circulation temperature. 
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Figure 2.1  Residential heating system with GSHP 

 

Figure 2.1 Residential heating system with GSHP Figure 2.1 Residential heating system with GSHP[14] 

Hot water cycle is 

represented by red 

and cold water by 

blue. 
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2.2.1 Building heating system chart 

The building heating system employs a GSHP as a primary heat source for RH and DHW. 

The heat pump efficiently channels heat into the radiators to warm the living spaces. 

Simultaneously, it dedicates its energy to providing hot water for domestic use, offering 

a comprehensive and energy-efficient solution for household comfort. Explore the 

symbiotic relationship in this integrated heating system between the heat pump, 

radiators, and DHW supply. The heating system schematic is shown in Figure 2.2. The 

system includes a ground source heat pump (GSHP), a hot water tank, radiators, and 

a domestic hot water (DHW) supply. The GSHP extracts thermal energy from the ground 

and transfers it to the hot water tank, where cold water is heated. 

 

 

Figure 2.2 Heating system chart 

 
 

 

2.3  Heat pump overview 

The heat pump transfers thermal energy from one location to another within a closed 

loop, achieved through a compressor cycle. A heat pump moves heat energy from a 

heat source to a recipient, known as a heat sink. It absorbs heat from a colder area and 

moves it to a warmer space. A heat pump shifts thermal energy in the opposite direction 

of natural heat transfer. This method of heat generation does not involve converting 
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energy from one form to another, thus eliminating associated conversion losses. 

Instead, it focuses on moving heat energy from an area of abundance to where it is 

most needed. 

 

HP comprises four components: evaporator, compressor, condenser, and expansion 

device. The refrigerant acts as a working fluid that passes through all the components. 

The refrigerant is the working fluid that goes through all the components. The 

accompanying figure illustrates the operational principle of the compressor cycle. The 

system incorporates hot water carrying thermal energy directed to the compressor. The 

compressor elevates the pressure, subsequently increasing the temperature under 

constant entropy. The heated fluid then proceeds to the condenser, releasing heat into 

the indoor environment. Following this, the fluid moves to the expansion valve, causing 

a drop in both temperature and pressure. Finally, thermal energy can be transferred 

back to the water source as it passes through the evaporator, this process flow is 

demonstrated in Figure 2.3 [7].  

 

Figure 2.3 Heat pump process flow 

 

Where QL: Heat absorbed(J/kJ), QH:Heat output/useful heat(J/kJ), Win:Work input(J/kJ). 
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2.4 Coefficient of performance 

The efficiency of heat performance is assessed using the COP, which represents the 

ratio between the heat output (QH) and the work input (Wpin) [7]. COP is expressed 

mathematically in Equation 2.1. 

𝐶𝑂𝑃 =
𝑈𝑠𝑒𝑓𝑢𝑙 ℎ𝑒𝑎𝑡(𝑐𝑜𝑜𝑙𝑖𝑛𝑔)𝑜𝑢𝑡𝑝𝑢𝑡

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑖𝑛𝑝𝑢𝑡
 (2.1) 

A higher COP means greater efficiency, as it produces more heating or cooling output 

per unit of input energy. Heat pumps do not share a uniform COP, fluctuating depending 

on the operating conditions. For instance, a GSHP is expected to have a COP value 

within the range of 4-51. HPs typically exhibit higher COP values during summer when 

outdoor temperatures are higher. This is because it is easier for HP to extract heat from 

warmer air or water sources, resulting in higher efficiency. 

 

The efficiency of a heat pump, measured by its COP, is significantly influenced by both 

indoor and outdoor temperature conditions controlled by the HVAC system. As the 

indoor heating demand increases, the COP decreases because the heat pump must 

expend more energy and time to transfer heat into a warmer indoor space. Likewise, 

lower outdoor temperatures contribute to higher heat loss due to the larger temperature 

difference between indoors and outdoors, further reducing the COP. Since heat pumps 

extract heat from the outdoor air or ground, colder temperatures restrict the amount of 

available heat, thus lowering the heat pump’s efficiency. 

 

 

 

2.5  Overview of existing and proposed control 

approaches 

The previous control algorithm adjusts indoor temperatures according to hourly energy 

prices, following a proportional method that reduces the temperature by 1°C for every 

100 Euro increase once prices exceed a 100 Euro threshold. While this approach helps 

reduce energy expenses, it can lag during sudden price surges and does not 

accommodate individual comfort preferences. As a result, prolonged high-price periods 

may reduce indoor comfort due to the system’s limited flexibility. 

 

 
1 NIBE Energy Systems. Ground source heat pump NIBE S1255 Product leaflet. Technical report, 
2022. https://www.nibe.eu/assets/documents/27179/639862-2.pdf 

 

https://www.nibe.eu/assets/documents/27179/639862-2.pdf
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In contrast, the proposed algorithm employs a predictive control strategy that uses 

weather forecasts and real-time Nordpool energy prices, enabling more precise and 

responsive temperature adjustments. By balancing comfort and energy costs and 

implementing limits for both, the new system adapts more effectively to changing 

conditions. This approach allows for a quicker response to price variations while 

maintaining comfortable indoor temperatures, achieving a better balance between cost 

efficiency and occupant comfort. 

 

 

 

2.6 Optimal control 

In optimal control, the objective is to govern a system efficiently to attain a specific 

performance goal. It involves identifying a control strategy that maximizes a defined 

performance criterion while considering various associated constraints. The thesis aims 

to ensure user comfort while keeping electricity costs in check by developing a control 

strategy for heat pumps. Thus, it can be described as an optimal control problem. 

 

2.6.1 Predictive control 

Predictive controller is an optimal feedback controller with a finite prediction horizon, 

enabling it to optimize control inputs over a limited period. It employs a dynamic system 

model to assess how the system behaves over this finite horizon, considering existing 

inputs and model dynamics. The predictions are combined with an objective function, 

which is then optimized. The objective function seeks to minimize or maximize a specific 

value or efficiency while adhering to predefined constraints. The resulting optimization 

solution generates the control signal. The controller uses current state feedback 

obtained through measurement and estimation to predict future states. The series of 

control signals derived from a sequence of predictions over the finite horizon contributes 

to the final state. The sequence optimizing the objective function is selected, and the 

initial control signal is applied for a specified period. This process is iteratively repeated 

[8]. Integrating PC within household energy management provides a systematic and 

advanced methodology for optimizing the performance of critical systems like Heating, 

Ventilation, and Air Conditioning (HVAC). The organizational process involved in 

predictive controllers is the following: 

 

 

 



27 

 

Control horizon 

The prediction control framework functions within a predetermined control horizon, 

which signifies the prospective timeframe over which control actions are optimized. In 

Predictive Control, the control horizon M represents the number of future time steps 

over which control actions are optimized. The control input sequence is optimized over 

the control horizon is represented as follows in in Equation 2.2. 

 

         (2.2) 

 

Where M is control horizon (number of future control steps optimized). 

 

Dynamic model 

When anticipating future states of a system, a dynamic model is employed, providing a 

mathematical representation of the system under control. This model depicts the 

relationships between variables and their transformations, reflecting the system’s 

behavior and interactions. In discrete time, typically with a time step Ts, it is commonly 

expressed in state-space form. Consider the state of the system denoted by X; the 

things we can control are in U, and what we measure or observe is Y. The dynamic 

model, showing how the system changes over time, is usually written in a set of 

equations called state-space form. A simple and common way to express this is with a 

Linear Time-Invariant (LTI) state-space representation given in below Equation 2.3, 

2.4. 

         2.3) 

 

(2.4) 

 

A, B, C, D are matrices of the state vector with respect to time, U is the input vector, Y 

is the output vector, X represents derivative of state vector. 

 

Objective function 

In a controller, the objective function quantifies the system’s performance goals. It 

serves as the criterion for determining the optimization of a control signal. This function 

incorporates specific states of the system and the control signal in a defined manner. 

In the case of a prediction controller, a prediction horizon (N) is established. The 

objective function in predictive control can be represented in a simple form in below 

Equation 2.5.     

(2.5) 
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Where J is the cost function to be minimized, xk is the predicted state at time k, xref is 

the reference state, uk is the control action at time k, Q is the weighting matrix for the 

state error, R is the weighting matrix for the control effort. 

Constraints 

An advantage of using a prediction controller is its ability to account for system 

constraints during optimization1. These constraints can be imposed on various signals, 

including control inputs, state variables, or other parameters, to ensure the system 

operates within acceptable limits or deviation from a reference. Constraints are 

categorized as either hard or soft. Hard constraints are strict and not allowed to be 

violated, while soft constraints introduce a penalty to the objective function if violated. 

The constraints are often slack variables typically equal to zero if soft ones are not 

violated and thus add anything to the objective function. Let us denote the state vector 

X, the control input U, and the output vector Y. The constraints are expressed as 

inequalities. It can be expressed in Equation 2.6, 2.7, 2.8. 

 

Xmin ≤ Xk ≤ Xmax (2.6) 

Umin ≤ Uk ≤ Umax (2.7) 

Ymin ≤ Ymax ≤ Ymax (2.8) 

The above inequalities define the boundaries the state, control inputs, and outputs 

should remain. The subscript k denotes the time period/step in the prediction horizon. 

In conclusion, integrating predictive control strategies that utilize weather forecasts and 

energy prices into household energy management through HVAC optimization 

represents a sophisticated and adaptable approach. The ability to predict and adapt 

future scenarios ensures efficient decision-making, improved comfort, and cost-

effectiveness in changing and uncertain conditions. It involves identifying a control 

strategy that maximizes a defined performance criterion while considering various 

associated constraints. The thesis aims to ensure user comfort while reducing electricity 

costs by developing a control strategy for heat pumps. Therefore, it is fair to describe 

it as an optimal control problem. 

 

Chapter has covered a thorough introduction to heating systems, emphasizing heat 

pumps and how predictive control is utilized for effective energy management in the 

heating system.  

 
1 Magnus Thorstensson. Elmarknadsstatistik, February 2017. URL 
https://www.energiforetagen.se/statistik/statistik-i-bilder/Elmarknadsstatistik/. Accessed: 
2023-05-05 



29 

 

3. MODELLING AND CONTROL 

This chapter explains how the house is modeled for the simulations. The RC model is 

used to represent the house’s thermal behavior, using a state-space approach to 

evaluate its thermal capacity. Both the RC model and the controller are implemented in 

MATLAB Simulink. This setup replicates the entire system and shows how it responds 

to changes in external factors like weather conditions and spot prices, based on the 

simulation results. 

 

3.1 Data acquisition 

The simulations use data from a 10-day period, April 19, 2024, to April 30, 2024, 

gathered from the Ouman database. This data helps assess the control strategy’s 

effectiveness by showing how the system responds to external factors such as weather 

and spot prices. Additionally, historical electricity spot prices were obtained from Nord 

Pool [9], which provides this data free for academic purposes. The target building also 

uses hourly spot price variations as part of the analysis. 

 

 

 

3.2 System overview 

The system includes a controller, a heat pump, and a house. The controller takes several 

inputs: the spot price (pe), the current indoor reference temperature (Tinr), the actual 

indoor temperature, and the forecasted outdoor temperature (Tout, Tforecast). Based on 

these inputs, it calculates the electrical power input (u) needed for the heat pump to 

maintain the desired indoor comfort level. The heat pump then converts this electrical 

power into heat flow QH, which is delivered to the house. The house model is 

represented using an RC model for state-space analysis, with the indoor temperature 

(Tin) as the measured output. The outdoor temperature (Tout) and D includes all 

disturbances that impact the house, including influences from walls, windows, and user 

preferences. The overall system is depicted in the block diagram shown below. 

 

Data is delivered to the controllers in hourly intervals. The electricity spot price remains 

unchanged for each full hour, while the temperature data is interpolated at each time 

step. This approach closely mimics real-world scenarios where spot prices are 

consistently fixed hourly, and weather forecasts undergo continuous variations. The 

controller operation can be graphically represented below Figure 3.1. 
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Figure 3.1 Predictive controller operation 

 

 
 

3.3 Design of house model 

RC thermal dynamics of house model 

The RC (Resistance-Capacitance) thermal dynamics model is a fundamental method for 

simulating the thermal behavior of residential buildings. It represents the house’s 

thermal system as an electrical circuit with resistors and capacitors, which helps to 

calculate how heat is distributed and stored over time. RC model of circuit is represented 

below Figure 3.2. 

 

Figure 3.2 RC model[10] 

 

The house is modeled using an RC approach, were Re represents the thermal resistance 

between the outside temperature and the house’s envelope, which includes the walls 

and roof. Re accounts for heat transfer through convection between the outdoor air and 

the envelope, solar radiation on the outside walls, and conduction within the envelope. 

Ri represents the thermal resistance between the envelope and the indoor temperature, 

factoring in convection between the interior walls and air, solar radiation through 

windows and conduction in the wall. A capacitor, Ce, is placed between these thermal 
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resistances, representing the thermal mass of the envelope, and allowing for the 

envelope temperature state, Te. Ci represents the interior thermal capacitance, while QH 

denotes the heat flow provided by the heat pump to the interior. The second-order 

state-space model allows for the incorporation of solar radiation heat transfer through 

both the exterior walls GAwall and the windows GAwindow. 

 

To evaluate a house’s thermal capability using a state-space model, we need to provide 

values for resistances and capacitances. These values vary for each house and should 

be determined either through analytical calculations based on the materials used or 

through experiments. The experiments should ideally be conducted with the house 

unoccupied, doors and windows closed, and environmental factors controlled, which is 

not feasible or in scope of this thesis. Instead, we use data from a Danish study [7], 

which estimated the resistance and capacitance of a typical Danish house using a first-

order state-space model. The study found average values of R = 5.3×10−3°C/W and C 

= 24.5×106J/°C from five experiments. For our second-order model, we divide these 

values equally between the interior and the envelope, giving us Ri = Re = 

2.65×10−4°C/W and Ci = Ce = 12.25×106J/°C. 

 

State space model 

The RC model depicted in Fig3.2 represents two states: indoor temperature (Tin) and 

envelope temperature (Te), which corresponds to the temperature on the surface of the 

outside wall. While (Tin) is measured directly, (Te) is not. The system is affected by the 

controlled input signal, heat output (QH), and disturbances such as outside temperature 

(Tout) and solar radiation (G). Cin is the amount of heat required to change the 

temperature of the interior by one degree and Ce typically represents a heat capacity 

of house. This gives differential equations. Energy balance equation for interior and 

exterior temperatures are: 

Energy balance for the interior Tin in Equation 3.1. 

        

(3.1) 

 

 

Energy balance for the exterior Te in Equation 3.2. 

 

 

          (3.2) 

 

 

State space representation of state vector and input vector in matrix form as below: 
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The state vector is: 

                                                

 

The input vector is: 

 

 

                              

The state-space representation is generally given in Equation 3.3,3.4. 

 

             (3.3) 

        

              (3.4) 

  

Deriving state-space matrices from energy balance equation we get 3.5, 3.6. 

       

          

 

(3.5) 

  

            

 

(3.6) 

 

 

Representing them in matrix form: 
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3.4 Heat pump model overview 

The heat pump used in the house is modelled with a simple function QH = fpin, leaving 

out internal dynamics. This simplification is to keep the model less complex and linear. 

The model establishes a relationship between electrical input and heat output power, 

considering that the heat pump’s efficiency (COP) changes under different conditions. 

The source (temperature of thermal fluid from the ground source and flow temperature 

(fluid going into the radiator system) are measured directly after the heat pump is taken 

as a function for modeling. When the source temperature is assumed constant, the flow 

temperature is influenced by the input power and is treated as a factor of both the state 

and the input electrical power. The indoor temperature is maintained around 24◦C, and 

the heating power in a system will be relatively constant for specific flow temperatures. 

In essence, it is possible to derive the function for each system QH = fpin. Since QH = fpin 

is nonlinear, heat pump cannot be modelled as a linear model. 

 

 

 

3.5 Ouman predictive controller 

This section explains the implementation of Ouman predictive controllers, which use 

weather forecasts and future electricity price data to optimize both comfort and 

electricity costs based on a tuning parameter. Ouman’s heating systems incorporate a 

PID controller that is tuned to adjust heating output in real-time, ensuring the system 

maintains the desired temperature setpoint despite changing environmental conditions. 

The control loop helps reduce temperature fluctuations and minimize energy 

consumption. 

 

3.5.1 Controller implementation 

Objective function 

The objective function in a control system, especially for a predictive controller, typically 

represents the difference between the desired output (setpoint) and the actual output 

(measured process variable). The aim of the controller is to minimize this difference, 

also known as the error. In the final model mentioned below, the error signal generated 

is directly applied to the controller, which then automatically maintains the entire 

system. In our system, the objective function is to find the right balance between 

comfort (by keeping the indoor temperature close to the desired setpoint) and cost. The 

objective function combines two components: 
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1. Comfort (Jcomfort): Minimizing the deviation of the indoor temperature from 

the setpoint. 

2. Cost (Jcost): Minimizing the energy cost by integrating power consumption 

with real-time energy prices. 

 

Comfort and cost objective represented in Equation 3.7,3.8. 

              

(3.7) 

 

          

(3.8) 

 

 

Where p(t) is the real-time energy price. 

 

By adding above comfort equation, we get combined objective function as Equation 3.9. 

  

(3.9) 

 

Jtotal combines parameters α and β which are the weighting factors for cost and comfort, 

respectively, that determine the trade-off between comfort and cost. The parameter 

p(t) is a state variable affecting cost, and pheat represents the heating power or a cost-

related quantity. The indoor temperature is denoted as Tin, while Tsetpoint represents the 

desired set point. For balanced approach I took α and β = 5. 

 

State space controller model 

The indoor temperature Tin is derived and measured from the RC-model approach. The 

heating power QH serves as the controlled input signal, while the outdoor temperature 

Tout is an external disturbance that affects the system. The model is represented by a 

differential Equation below were Equation 3.10 represents interior temperature and 

3.13 for exterior temperature. The laplace transformation of below interior and exterior 

temperature equation is represented in Equation 3.11, 3.12 and 3.14, 3.15 respectively; 

For Tin(s): 

  

  

 

In Laplace domain: 

(3.10) 

 (3.11) 
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For Te(s):  

(3.12) 

  

 

 

 

In Laplace domain: 

(3.13) 

 

(3.14)  

 

 

                                                                    (3.15) 

 

By simplifying we aim to express Tout(s) as a function of QH(s) 

 

Substitute Tin(s) into the equation for Te(s) we get 3.16. 

  

    

                                                                 (3.16) 

  

Above equation results in a system of equation solved out for Tout(s) represented in 

Equation 3.17. 

  

 

(3.17) 

 

After simplifications, the transfer  function will be in the form 3.18. 

                    (3.18) 

 

Where b0,a2,a1,a0 are derived constants from system parameters. we get PID controller 

transfer function 3.19. 

         (3.19) 
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Substituting Gcl(s) and GPID(s) into the above equation gives the complete closed-loop 

transfer function. The closed-loop transfer function Gcl(s) represented in 3.20. 

 

         (3.20) 

 

State space equation can be expressed in Equation 3.21 and 3.22. 

         (3.21) 

 

            

       

    (3.22) 

 

 

the term CW represents the thermal capacitance, Q(t) represents the heat input, hW is 

heat transfer coefficient, TW is water temperature and Tenv is outdoor temperature. 

 

State space representation In state space form: 

Where x(t) is Tin, which represents the internal temperature, u(t) represents the heat 

output QH, and y(t) is Tout, which represents the heat output [11] [12]. 

 

System matrix 

 

Input matrix 

 

Output matrix C :C = 1 

 

Feedthrough matrix D : D = 0 

 

 

3.6 Matlab Simulink representation of model 

I have developed a first-order RC circuit state-space model to simulate and evaluate 

the thermal behavior of a house, replicating the dynamics of the real system. The state-

space equations have been calculated, and the model was implemented in MATLAB 

Simulink. This Simulink model simulates the thermal dynamics using a two-state RC 

model. The inputs include GA = 2000Wm−2(heat gain through the window), Q= 500J 

(internal heat input), and Tout(s) = 6◦C (external temperature). The model has two 
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integrators representing Te (external temperature) and Tin(internal temperature). 

Resistors Ri and Re are modeled using gain blocks G1 and G2, The gains are represented 

by 
1

𝑅1
. 

 

The Summing blocks combine the effects of heat inputs and resistances. The model 

calculates the internal temperature Tin over time, showing the system’s thermal 

response. The output is displayed using a scope. Matlab simulink visual representation 

is shown in Figure 3.3. 

 

From the RC model output shown in Figure 3.4, temperature begins at a high value 

based on the system’s initial conditions. After this initial period, the temperature usually 

decreases exponentially, which is typical for RC circuits. In these thermal circuits, a 

sudden change in temperature or heat input results in an exponential response as the 

system moves toward equilibrium. Once the transient effects have settled, the 

temperature stabilizes at a constant level, if heat inputs and external conditions remain 

unchanged. 

 

 

Figure 3.3 RC circuit simulink model 
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Figure 3.4 RC model output 

 

The output from the RC model is input to a predictive controller, Simulink model 

representation is shown in below Figure 3.5. Where the controller uses the state-space 

output to determine the error between the desired temperature setpoint and the actual 

internal temperature Tin. The PID controller then processes this error using its 

proportional, integral, and derivative components to adjust control variables, such as 

heating elements, to minimize the error and ensure precise regulation of the internal 

temperature, achieving better control and stability of the thermal environment. 

 

The output plot indicates that the system stabilizes with only a small steady-state error, 

exhibits a slight but manageable overshoot, avoids significant oscillations, and reaches 

the desired temperature within a reasonable amount of time. Predictive controller 

output can be seen in below Figure 3.6. 
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Figure 3.5 Predictive controller MATLAB Simulink model 

 

 

Figure 3.6 Controller output 
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3.7 Implementation of a predictive model using 

MATLAB function block in Simulink 

The predictive control model developed in MATLAB Simulink effectively illustrates the 

system’s ability to make dynamic and real-time adjustments to heating input, control 

signals, and power output in response to variations in spot prices and weather 

conditions. This model was designed to forecast future indoor temperature changes 

using weather and spot prices. Based on these forecasts, the predictive model provides 

optimal setpoints for the controller, enabling the system to proactively adjust to 

anticipated changes in weather conditions. 

 

Figure 3.7 Predictive control block 

 

By integrating predictive control, the system not only optimizes energy use but also 

ensures that occupant comfort requirements are met. Predictive controller block shown 

in below Figure 3.7. By running simulations over a two-week period with actual weather 

and spot price datasets, the model demonstrates its capacity for predictive control. The 

results highlight how the system anticipates and adapts to changing conditions, 

optimizing its performance in real-time. This adaptability ensures that the system can 
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proactively adjust its outputs, thereby showcasing its robust predictive capabilities and 

responsiveness to real-world fluctuations. 

 

Figure 3.8 Weather and spot price variations 

 

Then I integrated datasets into my MATLAB Simulink model and ran simulations to 

create a visual representation of weather conditions and spot electricity prices. The 

Figure 3.8 shows this graphical representation, highlighting the variations in weather 

and electricity prices over time for given data sets. This visual allows me to observe 

how fluctuations in weather, such as temperature changes, and variations in electricity 

prices influence the heating system. Analyzing this visual data helps in understanding 

the impact of external factors on system performance, which supports more informed 

decisions for optimizing energy efficiency and reducing costs. 

 

The model generates plots that visually demonstrate how indoor temperature, domestic 

hot water (DHW), and radiator setpoints adjust dynamically over time in response to 

changes in weather conditions and spot electricity prices shown in Figure 3.9. These 

plots provide a clear depiction of the system’s real-time adjustments to external factors, 

illustrating how it optimizes both comfort and energy efficiency by adapting to variations 

in weather and electricity costs. 

 

To assess the dynamic performance of the heating system, I conducted a simulation 

focusing on a brief period during the last week of April, (the red highlighted region in 

Figure 3.10 is to represent the simulation period from April 27-30). This timeframe 

presented an interesting test case, as the forecasted weather showed a significant drop 

in outdoor temperatures, while spot energy prices fell considerably. This combination 



42 

 

created an ideal scenario for testing the effectiveness of our control strategy, which 

relies on predictive algorithms to optimize both energy efficiency and comfort. 

 

Figure 3.9 Predictive output 

 

According to our control strategy, the system increases the radiator heating (RH) and 

domestic hot water (DHW) to their maximum set points in response to these conditions. 

This proactive adjustment helps the building prepare for upcoming periods of higher 

energy prices and colder weather, ensuring the household is ready for less favorable 

conditions when energy costs are higher, and temperatures drop. 

 

As a result, the indoor temperature is maintained at a comfortably high level, not just 

for the immediate comfort of the occupants, but also to provide a thermal buffer for 

future high-price, low-temperature hours. This strategy offers two key benefits: it 

maximizes user comfort while lowering overall energy costs. By preheating the building 

during off-peak, lower-cost hours, the system reduces energy usage during expensive 

peak times. In this way, the control algorithm uses predictive technology to anticipate 

changes in weather and energy prices. The Figure 3.11, Figure 3.12 illustrates the 

control signal output generated by the Simulink model, which varies in response to 

changes in weather conditions and spot electricity prices. This dynamic variation 

highlights the predictive control capabilities of the system, as it adjusts the control 

signal proactively to optimize performance based on anticipated external factors. The 

plot would provide insight into the timing and intensity of system activations as it 

adjusts the heating to meet performance goals. 
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Figure 3.10 Comparison of prediction output with data sets 
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Figure 3.11 Control signal output 

 

 

Figure 3.12 Control signal over time vs weather and spot price 
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Figure 3.13 Heat input over time vs weather and spot price 

 

The Figure 3.13 above displays how the heat input to the house dynamically adjusts 

over time in response to changes in weather conditions and spot electricity prices. It 

visually represents the system’s ability to modulate heating input in real-time, directly 

responding to external factors to maintain energy efficiency and occupant comfort. In 

essence, below heat input vs. price and weather dual plot represents the relationship 

between weather driven heating demand and cost optimization, highlighting how the 

system modulates heat input to maintain comfort while minimizing energy costs. 

 

The dual-axis plot in Figure 3.14, Figure 3.15 demonstrates how the system’s power 

output varies in response to changes in spot electricity prices and weather price 

respectively. One axis represents weather data, while the other tracks fluctuations in 

electricity prices, allowing a direct comparison with power output. This visualization 

highlights how the system adjusts its power generation dynamically to optimize both 

energy efficiency and cost-effectiveness in response to external conditions. 
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Figure 3.14 Power output over time Vs spot price 

 

By analyzing the interplay between weather conditions and energy prices, the model 

facilitates more informed decision-making, potentially leading to enhanced energy 

efficiency and cost savings. Major takeaways are: 

1. Adaptive Response: The model demonstrates the heating system’s capability 

to adjust in real-time to changing external conditions, optimizing energy use 

while consistently maintaining the desired indoor temperature. 

2. Cost Optimization: By incorporating spot price data, the model enables the 

heating system to operate more cost-effectively, minimizing energy 

expenses during periods of high electricity prices. 

3. Weather Responsiveness: The model illustrates how varying weather 

conditions influence the heating system’s energy demands, allowing for 

proactive and efficient adjustments to maintain comfort and efficiency. 
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Figure 3.15 Power output over time Vs weather data 

 

In conclusion, this chapter effectively demonstrates the thermal behavior of the house 

by replicating a first-order RC model integrated with controller in MATLAB Simulink 

(MATLAB Simulink replication of complete system is represented in Figure 3.16. The 

effectiveness of control strategy keeps indoor temperatures comfortably high to ensure 

immediate user comfort and to build a thermal buffer for times when energy prices are 

high, and temperatures are low. By heating the building during off-peak periods, the 

system minimizes energy use during peak times, achieving a balance between comfort 

and cost efficiency. This approach harnesses predictive technology to effectively 

manage fluctuations in weather and energy prices, optimizing both comfort and cost 

savings. The accompanying plots clearly illustrate the system’s dynamic adjustments, 

highlighting its ability to respond to changing inputs. 
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Figure 3.16 Simulink final model 
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The Predictive models optimize energy use by adjusting system operations based on 

weather and electricity price fluctuations. This allows the system to run more during 

cheaper periods, while still maintaining optimal room temperatures by anticipating 

higher energy demand during cold weather or high-price hours. The system modulates 

energy output based on forecasted demand, ensuring a stable Coefficient of 

Performance (COP) and preventing energy overuse. By reacting to changes in weather 

and energy prices, system effectively during low-price and cold periods.  

 

 

3.8 Pseudocode representation of matlab code for 

predictive model control 

% Pseudocode for indoor temperature control based on forecasted weather and energy 

prices 

BEGIN HeatingSystemControl 

% Load datasets 

Load weather_data from 'April 2024 weather data.xlsx' 

Load price_data from 'April Day-ahead prices.xlsx' 

% Extract relevant columns forecasted_temperatures = Extract(weather_data, 

'ForecastedTemperatureValue') energy_prices = Extract(price_data, 'EE') 

% Find common timestamps common_times = INTERSECT(forecasted_temperatures, 

energy_prices) 

% Initialize control parameters 

Set Tset_current = 21 °C 

Set Tset_max_radiator = 22 °C 

Set Tset_max_DHW = 60 °C 

Set Tset_min_DHW = 45 °C 

LP = AVERAGE(energy_prices) % Calculate Limited Price 
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% Initialize arrays 

Initialize CS and indoor_temperature arrays 

% Control loop for each time step 

FOR each time t in common_times DO 

Adjust modulated setpoint based on forecasted temperature change 

% Determine control signal based on temperature and price conditions 

IF (Condition1: Forecast < Current outdoor temperature AND Average Price < LP) THEN 

CS[t] = 1 

Set temperature setpoints 

ELSE IF (Condition2: Forecast > Current outdoor temperature AND Average Price < LP) 

THEN 

CS[t] = 1 

Set temperature setpoints 

ELSE IF (Condition3: Forecast < Current outdoor temperature AND Average Price > LP) 

THEN 

CS[t] = 1 

Set temperature setpoints 

ELSE IF (Condition4: Forecast > Current outdoor temperature AND Average Price > LP) 

THEN 

CS[t] = 1 

Set temperature setpoints 

ELSE 

CS[t] = 0 % No heating 

END IF 
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% Predict indoor temperature indoor_temperature[t] = 

PredictIndoorTemperature(previous_temperature, forecasted_temperature, 

heating_power) END FOR 

END HeatingSystemControl 

% Function: PredictIndoorTemperature 

FUNCTION PredictIndoorTemperature(previous_temp, forecast_temp, heating_power) 

% Calculate new indoor temperature 

temperature_change = (heating_power / R - (previous_temp - forecast_temp)) * dt / 

C 

RETURN previous_temp + temperature_change END FUNCTION 

Listing 3.1. Pseudocode for Predictive Model Control 
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4. CONTROL ALGORITHM 

This chapter begins with a brief overview of the previous algorithm, followed by a 

thorough exploration of the proposed algorithm. It includes detailed explanation of 

different algorithmic conditions, their rationale, and the implementation procedure 

utilizing the Ouflex BA tool tool. The objective of this chapter is to demonstrate how the 

newly devised algorithm ensures optimization of residential heating systems. 

 

4.1 Previous control algorithm 

The mechanism in the building’s heating system is in place to dynamically modulate 

room temperature with fluctuating hourly energy prices. The system continuously 

monitors hourly electricity prices, anticipating potential fluctuations. When the 

projected electricity price for the upcoming hours exceeds the 100 Euro threshold, the 

system initiates a subtle reduction in the indoor temperature by 1°C, where the 

system’s operation principle is a proportional adjustment mechanism of user set points 

based on energy price. For every 100 Euro increase in the hourly energy price, the 

system orchestrates a corresponding 1°C reduction in room set point temperature. 

Extended periods of elevated energy prices can significantly diminish indoor comfort 

levels, as gradual reductions in room temperature may compromise overall comfort. 

Additionally, the system’s response to fluctuating energy prices might take time, leading 

to discomfort during sudden or rapid price increases, as temperature adjustments may 

lag the changes in energy costs. Furthermore, the algorithm needs more consideration 

for individual user preferences or comfort requirements, potentially resulting in 

dissatisfaction among occupants who prioritize a stable indoor temperature, irrespective 

of energy prices. It is crucial to integrate additional mechanisms that prioritize comfort 

and accommodate user preferences during significant energy price fluctuations. 

Ensuring a balanced approach that meets both economic and comfort-related needs is 

essential. Figure 4.1 flowchart representation of the control strategy utilized previously 

in building. 

• The heating system incorporates a 10kW HP as its primary heat source, 

effectively transitioning from a conventional system. A tank with a total capacity 

of 1000L is utilized for DHW needs. 

• Gebwell’s HP features an internal controller responsible for managing a 

controlling. 

• its processes. However, the signals to operate the HP are provided by Ouman 

controllers, which are configured to function on an ON/OFF logic basis. These 

controllers receive control signals from Ouflex. 
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• The control signals, transmitted via the Modbus communication protocol, 

regulate the HP’s operation, employing a hysteresis approach to determine when 

to switch the unit on and off. 

• The demand for DHW in the tank is calculated by assessing the temperature 

difference within the tank, ensuring efficient heating. 

 

Figure 4.1 Previous control algorithm 

 

 

 

 

 

4.2 Proposed control algorithm 

The study introduced a control algorithm to regulate the set point temperature for space 

heating and the hot water storage tank, incorporating real-time hourly electricity Prices 

(HEP) and weather forecasts. The prediction-based model consistently prioritizes better 

room comfort by setting up RH over DHW, anticipating and preparing for periods of high 

heating demand, and peak pricing within the building. 
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4.2.1 Modulated room set point calculation 

The building’s room set point adjusts based on weather conditions, following an 

algorithm that considers the difference between outdoor and forecasted temperatures 

(Toutdoor and Tforecast). The author set a limit of 2°C for this difference. By analyzing 

the average day temperature over a three-month research period (January 1st to March 

15th), the author observed that the difference between current outdoor temperature 

and forecasted temperature for the next three hours typically stays within this 2°C 

range. When the outdoor temperature is expected to drop by 2°C in the upcoming 

hours, increase the room temperature by 1°C. If it is projected to rise by 4°C or more, 

increment the room temperature by 2°C. This helps us efficiently manage indoor 

temperature in response to changing weather conditions. Figure 4.2 gives a flowchart 

representation of modulated set point calculation. 

 

 

4.2.2 Algorithm conditions 

The control algorithm primarily operates based on two conditions. Initially, it evaluates 

the forecasted weather compared to the current outdoor temperature, using a set point 

difference range of 2°C. This range was established by studying the correlation between 

outdoor and predicted temperatures for the next three hours; for this purpose, the day 

average temperature is calculated from forecasted temperature data over three months 

(from January 1st to March 15th). The second segment assesses the influence of HEP 

energy prices, employing a predefined parameter known as the limited price (LP). The 

limited price is determined by averaging hourly energy prices over a day and can be 

represented by LP. Utilizing these two conditions, the controller enhances heating 

comfort in the building by regulating radiator and DHW operations within acceptable 

limits. By integrating spot price and weather forecasts, the controller will determine an 

appropriate modulated room temperature within the building. The control algorithm 

calculates the control signal and manages the heating system by selecting the set point 

temperatures for space heating(radiator) and the hot water storage tank. This approach 

involves sorting HEPs to comprehend their rise, fall, and stabilization patterns. Based 

on these trends, corresponding control signals are assigned to anticipate limited future 

prices. Figure 4.3 represents the proposed control algorithm used for optimizing heating 

system. 
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Figure 4.2 Modulated room set point 

 

This scenario involves a four-part process: 

1. When the forecasted temperature is less than outdoor, and hourly energy prices 

fall (HEP<LP), the heating system will be activated (CS+ 1) until it achieves a 

maximum set point temperature for radiator and DHW heating. 

2. When the forecasted temperature is more than outdoor, and hourly energy 

prices fall (HEP<LP), the heating system will be activated (CS+ 1) until it 

achieves modulated set point temperature for RH and maximum set point 

temperature for DHW heating. 

3. When the forecasted temperature is less than outdoor, and hourly energy prices 

rise (HEP>LP), the heating system will be activated (CS+ 1) until it achieves a 

modulated set point temperature for the radiator and minimum set point for 

DHW heating. 

4. When the forecasted temperature is more significant than outdoor, and hourly 

energy prices are rise (HEP<LP), the heating system will be activated (CS+ 1) 
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until it achieves modulated set point temperature for RH and minimum set point 

temperature for DHW heating. 

5. Where’’ (CS + 1)“ basically indicates the activation of additional heating mode 

in our system. 

 

4.2.3 RH priority 

The heating system prioritizes RH over DHW. This scenario involves a 4 basic criteria’s: 

• Criteria 1: When the forecasted temperature is lower than the outdoor 

temperature and hourly energy prices are decreasing (HEP < LP), the radiator 

heating (RH) will be activated until the room temperature reaches the maximum 

room set point. Upon achieving this maximum set point for both the radiator and 

domestic hot water (DHW), the heat pump will be deactivated. 

• Criteria 2: When the forecasted temperature is higher than the outdoor 

temperature and hourly energy prices are decreasing (HEP < LP), the RH will be 

activated until the room temperature reaches the modulated room set point. 

Once this modulated set point for the radiator and the maximum set point for 

DHW are reached, the heat pump will be deactivated. 

• Criteria 3: When the forecasted temperature is lower than the outdoor 

temperature and hourly energy prices are increasing (HEP > LP), the RH will be 

activated until the room temperature reaches the modulated room set point. The 

heat pump will be deactivated once the modulated set point for the radiator and 

the minimum set point for DHW are achieved. 

• Criteria 4: When the forecasted temperature is higher than the outdoor 

temperature and hourly energy prices are increasing (HEP > LP), the RH will be 

activated until the room temperature reaches the modulated room set point. 

Once this modulated set point is achieved for the radiator and the minimum set 

point for DHW, the heat pump will be turned off. Algorithm flow chart is shown 

in below (Figure 4.3). The operational modes and truth table representation of 

algorithm is given in Table 4.1 and 4.2 respectively. 
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Figure 4.3 Algorithm flowchart 

 

Table 4.1 Heating system operational modes 

Temperature vs Price Low High 

Low 
Heat boost mode. 
(optimal) Heat Economical mode 

High 
Heat comfort mode. 
(Balanced comfort) Heat protection mode 

 

 

 

4.2.4 Algorithm execution on ouflex tool 

This section provides an overview of applying the developed control algorithm in the 

Ouman Ouflex tool, focusing on prioritizing RH. The methodology outlines crucial design 

considerations, highlighting the integration of the Ouflex tool for practical applications. 

This concise summary creates an opportunity for a detailed exploration of the newly 

developed algorithm’s impact on the system’s overall efficiency, Figure A6.7, Figure 

A6.6, gives a detailed idea of application of algorithm in Ouflex tool. Inputs: Outdoor 

temperature, Forecasted temperature, Hourly electricity price and Average day price. 

  

Table 4.2 Truth table representation of algorithm 
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Tforc > 
Tout 

Tforc < 
Tout 

Tout = 
Tforc 

HEP < 
LP 

HEP > 
LP 

HEP = 
LP 

Output 

1 0 0 1 0 0 

Heating mode activated until the 
radiator and DHW reach their 
modulated and maximum values 
respectively 

1 0 0 0 1 0 

Heating mode activated until the 
radiator and DHW reach 
modulated room temperature. 
and minimum setpoint value, 
respectively 

0 1 0 1 0 0 

Heating mode activated until the 

radiator and DHW reach their 
maximum acceptable values 

0 1 0 0 1 0 

Heating mode activated until the 
radiator and DHW reach 
modulated room temperature 
and minimum setpoint value, 
respectively 

 

System parameters: Maximum room set point, Modulated Room set point, Minimum, 

DHW setpoint, Normal DHW setpoint, Maximum DHW setpoint. 

 

Conditions to check: 

Toutdoor - Tforecast>= 2°C, 

Hourly electricity price < Limited price 

• Scenario 1: 

Condition: Forecasted temperature is lower than outdoors, and hourly energy 

prices are falling (HEP < LP). 

Action: RH will remain active until the room temperature attains the maximum 

room set point. 

• Scenario 2: 

Condition: Forecasted temperature exceeds outdoor temperature, and hourly 

energy prices are falling (HEP < LP). 

Action: RH will remain active until the room temperature attains the modulated 

room set point. 

• Scenario 3: 

Condition: Forecasted temperature is lower than outdoors, and hourly energy 

prices are rising (HEP > LP). 

Action: RH will remain active until the room temperature attains the modulated 

room set point. 

• Scenario 4: 

Condition: Forecasted temperature is lower than outdoors, and hourly energy 

prices are falling (HEP < LP). 
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Action: RH will remain active until the room temperature attains the modulated 

room set point. 

 

 

4.2.5 Optimization problem and solution 

Previous system logic flow diagram 

 

Figure 4.4 Optimization process with previous control algorithm optimization 

 

The optimization process in the previous system starts with collecting real-time price 

data from Nordpool. The model then forecasts indoor temperatures based on the heating 

input. The system formulates an objective function to minimize costs, applying 

constraints to ensure that the heating system operates within its physical and 

operational limits. An optimization algorithm solves this problem to determine the 

optimal heating input. This optimal input is then implemented in the heating system, 

completing the process. Figure 4.4 is a graphical flowchart depicting the control 

optimization process in the previous system. 
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Proposed system 

The proposed system improves optimization by incorporating weather forecasts and 

utilizing predictive Control strategy. It begins by gathering weather forecast data along 

with real-time and forecasted electricity price data from Nordpool. The prediction model 

leverages these inputs to forecast indoor temperatures more accurately. An objective 

function is then created to balance user comfort and energy costs, assigning specific 

weights to each. Constraints are applied to ensure the system operates within physical, 

operational, and comfort limits. The predictive method addresses the optimization 

problem by taking system dynamics into account. This process computes the optimal 

heating input that balances comfort and costs, which is then implemented in the heating 

system, resulting in a more adaptive and responsive approach to maintaining indoor 

comfort. Figure 4.5 a graphical flowchart depicting the control optimization process in 

the proposed system. 

 

 

4.2.6 Description of logical operation 

• First, I compared the outdoor temperature with the forecasted temperature. I 

use a subtract block to find the difference. The result is inserted into a 

comparator block, which checks if it is more significant than, equal to, or less 

than 2°C. 

• The comparator output is then fed into an OR gate, which gives an accurate 

value if either condition (greater than or equal to) is met. This step helps us 

simplify our decision-making. Then, I move on to our second condition regarding 

changes in energy prices. We take the hourly energy and set limit prices as 

inputs for a comparator. This comparator helps us decide if the hourly energy 

price is more significant than, equal to, or less than the set limit price, as the 

first condition comparator output will be given to an OR gate block. 

• I have executed all the scenarios using various combinations by feeding output 

from an OR gate to an AND gate. 

• The output of and gates were then given to the compensator to execute 

increments and decrements of the control signal. 

• I used an absolute block for the compensator to fine-tune and give a precise 

value. There are two compensators, one to increase the temperature and the 

other to decrease it. These compensators react to specific conditions, warming 

up or cooling the temperature. Two switches are in place for each compensator 

to carry out these adjustments, which directs the control flow and helps to 

increase or decrease the temperature. 
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Figure 4.5 Optimization process with proposed control algorithm 

 

 

 

4.2.7 Application 

After implementing set point modulation, I proceeded to the overall application section. 

By implementing a priority block, the author has established a system where RH takes 

precedence over DHW. The system prioritizes heating the radiators, regardless of 

energy prices or outdoor temperatures. The DHW function becomes active only when 

the indoor temperatures reach predetermined acceptable levels. 

In this chapter, we compare the optimization techniques used in the previous and 

proposed residential heating systems. The previous system solely relied on Nordpool 
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spot prices, compromising user comfort by decreasing the indoor temperature by 1°C 

proportionally for every 100-euro increase in energy price. This method lacked the 

capability to ensure user desired comfort levels. The proposed system, on the other 

hand, incorporates both real-time energy prices and weather forecast data using 

predictive control methodology. This advanced approach enables more dynamic and 

predictive adjustments by anticipating future weather conditions and price fluctuations. 
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5. RESULTS AND BENCHMARKS 

5.1 Data acquisition 

This section compares how well the heating system performs. We are looking at monthly 

energy reports to see how the algorithm impacts energy use and costs. To compare the 

building or its heating system performance, I took reports for the study period (January 

1 - March 15) and compared them with last year, 2023. This section comprehensively 

examines the energy consumption patterns of the heat pump, its total heat production, 

and associated expenditures during the specified periods, elucidating the impact of the 

control algorithm on the building’s operational performance. Through analysis and 

comparison of the 2023 and 2024 data sets, insights are drawn regarding the 

effectiveness of the algorithm in optimizing heating system operation and its consequent 

implications on energy utilization and financial outlays. The findings explain the tangible 

benefits and potential challenges of implementing such control strategies in real-world 

building environments. 

Numerous factors influence how I compare this year’s energy usage and heating system 

performance with last year’s. One crucial aspect is the fluctuation in outdoor 

temperature and varying weather conditions. These directly affect how much heat our 

system needs to maintain comfortable indoor levels, which I always prioritize. For 

instance, January and February 2024 were notably colder than in 2023, and March 2024 

had much higher temperatures. 

In this study, I compared the performance of our heating system using a method that 

prioritizes RH heating through our proposed algorithm. By analyzing monthly energy 

reports from January 1st to March 15th for 2023 and 2024, I looked closely at how the 

system used energy, produced heat, and incurred costs. This method helped us 

understand how our algorithm influenced the system’s operation and its impact on 

energy consumption and corresponding expenses. The monthly energy reports for the 

target building for the years 2023 and 2024 are shown in Figure A1.1, Figure A1.2, 

Figure A1.3, Figure A1.4, Figure A1.5, and Figure A1.6. Numerical breakdown of the 

results is given in below Table 5.1. 
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Table 5.1 Heating system performance comparison 

Factor January 
2023 

January 
2024 

February 
2023 

February 
2024 

March 
2023 

March 
2024 

HP Heat Production 
(kWh) 

3473 4712 2579 3564 1543 1765 

HP Consumed Electricity 
(kWh) 

1076 1415.5 855.5 1097.2 494.6 531 

Outdoor Temperature 
(°C) 

-0.47 -5.11 -0.02 -0.27 0.23 1.82 

Floor 1 Temperature 

(°C) 

16.91 6.80 18.05 18.28 17.36 18.05 

Floor 2 Temperature 
(°C) 

20.70 20.59 21.47 21.17 21.30 22.06 

COP 3.23 3.33 3.01 3.25 3.12 3.31 

HP Consumed Energy 
Consumption Equivalent 
Price (Euros) 

193.68 169.86 153.99 131.66 89.03 63.94 

Energy Efficiency Ratio 
(EER) 

3.23 3.33 3.01 3.25 3.12 3.32 

Comfort Index 0.20 -1.07 0.44 0.43 0.33 0.52 

Operational Cost 
Savings (%) 

- 12.27 - 14.51 - 28.33 

Nord Pool Avg Price Per 
Month (€) 

99.27 126.48 113.12 75.52 120.18 73.14 

 

The analysis of heating system performance between 2023 and 2024 reveals 

considerable advancements, particularly in heat production, which increased from 3,473 

kWh in January2023 to 4,712 kWh in January 2024, and from 2,579 kWh to 3,564 kWh 

in February. March also showed growth, rising from 1,543 kWh to 1,765 kWh. Electricity 

consumption followed a similar trend, with January consumption increasing from 1,076 

kWh to 1,415.5 kWh, February from 855.5 kWh to 1,097.2 kWh, and March from 494.6 

kWh to 531 kWh. The Coefficient of Performance (COP) improved, moving from 3.23 to 

3.33 in January, 3.01 to 3.25 in February, and 3.12 in March 2023 to 3.31 in March 

2024. 

In 2024, the proposed heating system demonstrated notable advancements in energy 

efficiency and user comfort compared to 2023. In January, the Energy Efficiency Ratio 

(EER) increased significantly from 3.23 to 3.33, indicating a more effective conversion 
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of energy into heating output. However, the Comfort Index decreased from 0.20 to -

1.07 due to maintenance work on Floor 1. In February, the EER rose from 3.01 to 3.25, 

while the Comfort Index remained stable, showcasing the system’s ability to maintain a 

consistent indoor environment despite similar outdoor temperatures. By March, the EER 

further improved from 3.12 to 3.32, while the Comfort Index increased from 0.33 to 

0.52, emphasizing the system’s consistent performance in delivering efficient heating 

and ensuring a comfortable indoor climate throughout the colder months. These 

enhancements underscore the effectiveness of the proposed system in optimizing 

energy usage while prioritizing occupant comfort. ERR and CI can be calculated by basic 

formula shown in 5.1 and 5.2. 

          (5.1) 

 

(5.2) 

were lower comfort threshold of 18◦C and higher comfort threshold of 22◦C is used for 

calculation. The operation savings cost can be calculated by Equation 5.3. 

           (5.3) 

The outdoor temperatures in both years have varied significantly, with some months in 

January 2024 being much colder than in 2023, and vice versa. The proposed system 

prioritizes maintaining user comfort within acceptable levels, regardless of fluctuations 

in outdoor temperatures or hourly electricity prices. In January 2024, despite the colder 

conditions, the heating system successfully maintained nearly the same indoor 

temperature on floor 2 (floor 1 was undergoing maintenance during this period). The 

system’s improved Coefficient of Performance (COP) in 2024 enabled it to achieve better 

energy efficiency and reduce operational costs, even in colder weather. In February, 

when outdoor temperatures were like those in 2023, the system maintained a COP of 

3.25, representing a 0.24 increase from the previous year, while keeping indoor 

temperatures steady and comfortable for users. The heat pump produced more heat 

during this period, which demonstrates the system’s performance stability and 

efficiency. Overall, this showcases the system’s ability to adapt to changing outdoor 

temperatures, using energy more efficiently while ensuring consistent indoor comfort 

for occupants. 

This data suggests that there is a considerable rise in operational cost savings in 2024 

compared to 2023. For instance, in January 2024, operational cost savings reached 

12.27%, despite rising electricity prices, which increased from €99.27 to €126.48. In 
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February, operational cost savings improved to 14.51%, coinciding with a drop in prices 

from €113.12 to €75.52. By March, it increased to 28.33%, as prices decreased from 

€120.18 to €73.14. It is essential to recognize that while the efficiency of the heating 

system has improved as indicated by COP, fluctuating electricity costs impact the 

effectiveness of energy savings. This creates a complex relationship among energy 

savings, operational costs, and market pricing. The enhanced system performance 

observed in 2024 demonstrates that the heating system operates more efficiently, 

irrespective of variations in electricity prices, resulting in considerable cost savings in 

2024 compared to 2023. 

 

 

5.2 Performance analysis: hourly electricity price, 

comfort, and COP 

This section comprehensively analyses our heating system’s performance, focusing on 

four key factors: Outdoor temperature, hourly electricity price, User comfort and COP. 

Through detailed examination, the author aims to gain insights into the system’s 

efficiency, ability to maintain optimal comfort levels for occupants and cost-

effectiveness. Considering these critical aspects, the author provides valuable findings 

that contribute to a deeper understanding of the system’s effectiveness in real-world 

applications. 

Analyzing the fluctuation in outdoor temperature between 2023 and 2024 during the 

study period from January 1st to March 15th is crucial. The building is situated in Tallinn, 

which experiences harsh weather, leading to a drop in outdoor temperatures from 2023 

to 2024. As I prioritize RH in our system, this colder weather will surely lead to higher 

HP production and electricity consumption by the heat pump in 2024 compared to 2023. 

Figure 5.1 illustrates how heating system requires more operating hours for the heat 

pump due to the prioritized RH heating to meet user comfort requirements with 

changing outdoor temperature in 2024. The heating system and control algorithm are 

designed to prioritize user comfort, regardless of external conditions, by taking 

forecasted weather and hourly electricity price into account. This predictive model 

prompts the heating system to generate additional heat, which in turn consumes more 

electricity, to prepare the building for unfavorable conditions characterized by low 

temperatures and high costs by effectively managing the HP operation. It’s crucial to 

recognize that changes in outdoor temperature can influence the heat production needs 

of the heat pump. However, the essence of this predictive model lies in its ability to 
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anticipate and prepare for future conditions, ultimately minimizing the impact of 

fluctuating costs and varying weather. 

In addition to the observed increase in heat pump energy consumption and production, 

it is noteworthy that despite these heightened demands, our system has managed to 

optimize energy consumption costs, as shown in Figure 5.2. This optimization is 

reflected in the reduced energy cost throughout 2024. This achievement underscores 

the effectiveness of our system’s control strategies in efficiently managing energy 

usage. By acknowledging the impact of lower average monthly hourly electricity price 

in 2024 compared to 2023, it is important to note that although the heat pump has 

operated for more hours, this has not negatively impacted the system’s performance, 

as it maintains a higher and stable COP than in 2024 than 2023. Overall, the system 

has ensured user comfort without compromising its performance. 

 

 

Figure 5.1 Outdoor temperature as a vital factor influencing heating demands 

 
By prioritizing RH heating through new control algorithm, our system demonstrates its 

capability to adapt to varying environmental conditions while simultaneously reducing 

operational expenses. The primary limitation of the previous system lies in its narrow 

focus on fluctuating hourly electricity prices as the sole determinant for adjusting the 

room’s set point temperature, disregarding crucial factors such as current weather 

conditions and forecasted trends. This system does not use weather forecasts to pre-

emptively adjust for anticipated outdoor temperature changes. Consequently, it cannot 
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develop efficient heating or cooling strategies, leading to inadequate room temperature 

regulation and potential discomfort for occupants. Moreover, the system’s linear 

response to hourly electricity price changes, reducing the room temperature by 1°C for 

every 100 euros increase in hourly electricity price, oversimplifies the complex 

relationship between energy costs and comfort requirements. This simplistic approach 

might not accurately reflect the true cost-effectiveness of energy-saving measures and 

varying comfort preferences of occupants. 

Coming to user-comfort factor, in January 2024, despite the outdoor temperature being 

nearly 5◦C lower than January 2023, the system ensures that the temperature on Floor 

2 remains consistent with that of January 2023. This indicates the system’s ability to 

effectively compensate for the colder weather, preserving indoor comfort levels despite 

external temperature fluctuations. It is not all about minimizing operating expenses; 

the system employs efficient energy management to ensure better comfort by keeping 

hourly electricity prices within the limit. It is visible in Figure 5.4 that our heating system 

 

 

Figure 5.2 Analysis of HP operation and its consumed hourly electricity price 

 
maintains almost the same indoor temperature on Floor 1 and Floor 2 compared to 

2023. Particularly in January 2024, which is significantly colder than January 2023, the 

system maintains nearly the same levels of user comfort as in 2023. Importantly, it 

achieves this without negatively affecting system performance, as evidenced by a 

slightly higher COP. 
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Generally, when there is a higher heat demand, and the heat pump operates for longer 

hours, the COP tends to decrease. This occurs because the heat pump works harder to 

meet the increased demand, which can affect its efficiency. However, this decrease in 

COP might not be permanent, as the system could adjust and become more efficient 

over time. Thus, high heat demand and longer operating hours initially lower the COP. 

Integrating this concept into our research, Figure 5.3 shows that our system ensures 

almost a constant COP, even though we have higher heating demands in 2024. 

Compared to 2023, system has produced more heat which obviously demands more 

working hours. In summary, despite high heat demand and longer running times, our 

system maintains a nearly stable COP. This indicates that our system effectively adapts 

to varying demands and environmental conditions, maintaining efficiency even under 

challenging circumstances. 

 

Figure 5.3 Analysis of variation of COP of HP 

 

Benchmarking heating system performance characteristics 

In January 2024, heat production significantly increased compared to January 2023, 

indicating higher demand (Figure 5.5). In January 2024, despite much lower outdoor 

temperatures than in 2023, the system maintained nearly the same indoor comfort level 

on Floor 2, even as Floor 1 remained unoccupied due to renovations. This was achieved 

with a slight increase in COP, indicating improved efficiency. Overall, in January 2024, 



70 

 

the system effectively ensured user indoor comfort requirements, despite the 

substantially lower outdoor temperatures compared to 2023. 

In 2023 and 2024, February saw nearly identical outdoor temperatures, were the 

system maintained similar indoor comfort levels on both building floors (Figure 5.6) with 

a significant increase in COP compared to 2023. In essence, the system kept the building 

comfortable while maintaining steady performance. Figure 5.7 illustrates the 

characteristics of the heating system in March 2023 and 2024. Compared to 2023, March 

2024 experienced higher outdoor temperatures (March 1-15) and a better user comfort 

levels is maintained in both floors in 2024 by maintaining a better COP. Despite higher 

outdoor temperatures during these months, the system produced significantly more 

heat, with the heat pump working harder to prepare the building for the anticipated high 

prices and harsher outdoor conditions expected in the coming hours. 

 

Figure 5.4 Optimizing indoor comfort 

 
The comparison between 2024 and 2023 shows a significant rise in heating demand as 

the system always prioritize user comfort. This has led to a considerable increase in 

heat production and electricity consumption. Despite fluctuating outdoor temperatures 

within this unfavorable condition, the system consistently preserves indoor user comfort 

levels. This highlights its strong ability to adjust and control indoor environments, 

ensuring that occupants’ comfort is maintained regardless of external weather changes. 

A comprehensive visual representation of the above-mentioned system’s characteristics 

can be found in the figure below Figure 5.8. 
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5.3 Discussion of results 

Analysis of user comfort and hp consumed energy cost 

The optimized control algorithm developed was implemented in a real building and 

tested over a three-month period, from January 1 to April 15, 2024. The primary 

objectives of the algorithm were to maintain user comfort while minimizing energy 

costs. All results were derived from monthly utility bills obtained from the Ouman 

platform, considering fluctuations in Nord Pool prices. Consequently, results were 

analyzed based on monthly utility bills, where the control algorithm used a predictive 

model that incorporated forecasted intra-hour spot prices. This approach allows for 

optimized heating adjustments in response to anticipated price fluctuations. The results 

represented in Figure in 5.6,5.7,5.8 and 5.9 indicate that the algorithm successfully 

achieved following objectives. 

1. Maintained user Comfort: The algorithm effectively maintained the required 

comfort levels for the building occupants. 

2. Reduced Energy Costs: The energy consumption costs for the heat pump in 2024 

were significantly lower compared to 2023, without compromising user comfort. 

3. Stable COP: The algorithm maintained a stable coefficient of performance (COP), 

which was slightly higher than in 2023, ensuring efficiency of system. 

 

 

Figure 5.5 Heating system characteristics January 2023 & 2024 
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Figure 5.6 Heating system characteristics February 2023 & 2024 

 

 

Figure 5.7 Heating system characteristics March 2023-2024 
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Figure 5.8 Overall system characteristics for a simulation period 

 

Comparison with previous Year 

To evaluate the effectiveness of the algorithm, a comparative analysis was performed 

using utility bills from the same period in the previous year (1 January to 15 April 2023). 

It is important to highlight that: 

• Focus on Relative Performance: The key performance indicators for this project 

are maintaining user comfort levels, minimizing energy costs, and ensuring COP 

stability. Although the difference in hourly electricity prices between the two 

years is acknowledged, it should be understood as an external variable that does 

not affect the core evaluation of the optimization algorithm itself. 

• Scope of Provided Data: There is a noticeable decrease in hourly electricity prices 

in 2024 compared to 2023. The data sets for hourly electricity prices and weather 

forecasts used in this work were provided by the company. Therefore, the 

observed decrease in hourly electricity prices in 2024 is an external factor beyond 

the control and scope of the project. 

Implications 

In evaluating the performance of the developed control algorithm, it is important to 

acknowledge the impact of varying hourly electricity prices between 2023 and 2024. At 

the same time, it is necessary to recognize that the performance of the heating system 

and the resulting cost changes cannot be attributed solely to fluctuations in hourly 
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electricity prices, due to the influence of building-specific factors like thermal resistance 

and inertia. Compared to 2023, HP heat production and electricity consumption have 

increased, while maintaining a nearly stable COP, highlighting the algorithm’s 

effectiveness in adapting to changing weather conditions and maintaining indoor 

comfort. This stable COP indicates that the algorithm has successfully optimized heating 

efficiency and performance, despite the increased electricity consumption. Unlike 

previous algorithms that primarily focused on minimizing costs by leveraging lower-

priced hours, this proposed algorithm prioritizes user comfort while effectively balancing 

cost considerations. 

In summary, the control algorithm has proven effective in achieving a balance between 

comfort and efficiency. While the decrease in hourly electricity prices in 2024 is a 

beneficial external factor, it does not detract from the algorithm’s performance. The 

data sets were provided by the company, and the focus of the project was on achieving 

relative improvements in the specified metrics. 

 

 

5.4 Conclusion 

This study explored how predictive control strategies can improve performance with a 

residential heating system featuring a heat pump and thermal energy storage tank. The 

primary goal was to enhance comfort levels within the building while simultaneously 

managing energy costs. Unlike conventional approaches that aim to reduce energy 

consumption, this research focused on optimizing system operations by strategically 

scheduling energy delivery based on hourly electricity prices and weather forecasts. 

Weather conditions have a notable effect on the heating and cooling needs of the 

household in question. Quick changes in outdoor temperature led to adjustments in the 

algorithm’s indoor comfort settings. Likewise, fluctuations in hourly electricity prices 

influence how the algorithm manages heating, cooling, and storage systems to improve 

energy efficiency and reduce costs. The algorithm’s adaptability across different 

situations ensures efficient operation and prevents excessive energy use during peak 

demand periods. 

The control algorithm considers the present and future electricity prices and weather 

data. It adapts space heating set point temperatures, accordingly, allowing for user-

defined maximum room temperatures. Additionally, it calculates modulated set points 

based on hourly prices and weather conditions to meet the recommended thermal 

comfort levels for residential detached houses. 
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In 2024, the average indoor temperature on Floor 1 decreased to 14,37◦C compared to 

17,44◦C in 2023, while Floor 2 maintained a similar average temperature of 21,27◦C 

compared to 21,15◦C in 2023(considering of no occupancy on Floor 1 in January 2024 

due to renovation work). Despite the lower temperature on Floor 1, the heating system 

ensures user-set comfort levels for the whole house. Additionally, the proposed control 

algorithm led to a cost reduction of approximately 71 Euros in 2024 compared to 2023, 

saving about 19,47%. Moreover, the average COP increased by approximately 0,17 in 

2024 compared to 2023, signifying a 5,45% improvement in energy efficiency. These 

enhancements suggest improved system performance and the potential for reduced 

energy expenses. To conclude, implementation of the control algorithm in the heating 

system has yielded notable improvements in both energy efficiency and cost savings, 

with a minor decline in the average indoor temperature on Floor 1 in 2024 compared to 

the preceding year, the heating system, with its reliable performance, continues to 

maintain user-defined comfort levels across the household. It underscores the 

effectiveness of the proposed algorithm in optimizing heating performance, even amidst 

challenging conditions. 

It’s crucial to recognize the pivotal role the control algorithm plays in achieving these 

outcomes. The algorithm, with its predictive control approach, optimizes energy usage 

and ensures effective operation in weather and cost conditions. It does so by 

dynamically adjusting heating system parameters based on real-time data and user 

preferences. This proactive control approach not only enhances comfort and cost-

effectiveness but also lays the foundation for adaptable and resilient heating systems 

that can meet the evolving needs of a specific household. Therefore, the seamless 

integration of prediction-based methodology in heating systems is vital in shaping 

intelligent solutions. 

While the findings of this study demonstrate promising outcomes for the targeted 

building, it’s essential to acknowledge that the effectiveness of the proposed algorithm 

may vary when implemented in different households. The algorithm’s performance is 

inherently influenced by the unique characteristics and properties of each building, 

including factors such as insulation levels, building layout, occupancy patterns, and 

climate conditions. Therefore, future implementations of the control algorithm should 

be designed and optimized according to the specific requirements and dynamics of each 

target building to ensure optimal energy efficiency and cost-effectiveness. 
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APPENDIX 1 IMPLEMENTATION OF PREDICTIVE CONTROL 

% This is a simple MATLAB code to solve a system of linear equations 

% Load the datasets weather_data = 

readtable('April 2024 weather data.xlsx'); 

price_data = readtable('April Day-ahead 

prices.xlsx'); 

% Extract relevant data from the tables 

DayAndTime_weather = weather_data.DayAndTime; % Using the correct 

column name 

T_forecast_data = weather_data.ForecastedTemperatureValue; % Using the 

correct column name 

DayAndTime_price = price_data.Var1; % Using the correct column name 

HEP = price_data.EE; % Using the correct column name 

% Convert to datetime if 

necessary if 

~isdatetime(DayAndTime_w

eather) 

DayAndTime_weather = 

datetime(DayAndTime_weather); end 

if ~isdatetime(DayAndTime_price) 

DayAndTime_price = 

datetime(DayAndTime_price); end 

% Find the common time range common_times = 

intersect(DayAndTime_weather, DayAndTime_price); 

% Align weather data 

[~, idx_weather] = ismember(common_times, DayAndTime_weather); 

T_forecast_data_aligned = T_forecast_data(idx_weather); 

% Align price data 

[~, idx_price] = ismember(common_times, DayAndTime_price); 

HEP_aligned = HEP(idx_price); 

% Update the DayAndTime to the common times 

DayAndTime = common_times; 
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% Define the setpoints 

Tset_max_radiator = 22; % Max setpoint for radiator (°C) 

Tset_max_DHW = 60; % Max setpoint for DHW (°C) 

Tset_min_DHW = 45; % Min setpoint for DHW (°C) 

Tset_current = 21; % Current indoor temperature setpoint (°C) 

Tset_modulated = Tset_current; % Initialize modulated setpoint 

% Calculate the limited price (LP) as the average of the hourly energy prices 

LP = mean(HEP_aligned); 

% Initialize arrays for results 

num_points = length(T_forecast_data_aligned); % Number of data points 

CS = zeros(num_points, 1); % Control signal 

Tset_radiator = zeros(num_points, 1); % Setpoint for radiator 

Tset_DHW = zeros(num_points, 1); % Setpoint for DHW 

Tindoor_pred = zeros(num_points, 1); % Indoor temperature prediction 

% Define the RC model parameters 

R = 1; % Thermal resistance 

(°C/W) C = 500; % Thermal 

capacitance (J/°C) dt = 1; % 

Time step (hours) 

% Initialize the indoor temperature prediction array 

Tindoor_pred(1) = Tset_current; % Initial indoor temperature 

% Implement the predictive-based control 

algorithm for t = 2:num_points 

% Calculate the temperature difference between forecasted 

temperatures temp_diff = T_forecast_data_aligned(t) - 

T_forecast_data_aligned(t-1); 

% Adjust the modulated setpoint based on temperature 

difference if abs(temp_diff) > 2 && abs(temp_diff) <= 4 

Tset_modulated = Tset_current + 1; % Increase setpoint 

by 1°C elseif abs(temp_diff) > 4 

Tset_modulated = Tset_current + 2; % Increase setpoint 

by 2°C else 
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Tset_modulated = Tset_current; % Keep the current 

setpoint end 

% Determine the control signal (CS) and setpoints based on HEP and 

temperature if T_forecast_data_aligned(t) < T_forecast_data_aligned(t-

1) && HEP_aligned(t) < LP 

% Condition 1: Forecast < Previous Forecast, Price < Limited 

CS(t) = 1; 

Tset_radiator(t) = Tset_max_radiator; 

Tset_DHW(t) = Tset_max_DHW; elseif 

T_forecast_data_aligned(t) > T_forecast_data_aligned(t-1) 

&& HEP_aligned(t) < LP 

% Condition 2: Forecast > Previous Forecast, Price < Limited 

CS(t) = 1; 

Tset_radiator(t) = Tset_modulated; 

Tset_DHW(t) = Tset_max_DHW; elseif 

T_forecast_data_aligned(t) < T_forecast_data_aligned(t-1) 

&& HEP_aligned(t) > LP 

% Condition 3: Forecast < Previous Forecast, Price > Limited 

CS(t) = 1; 

Tset_radiator(t) = Tset_modulated; 

Tset_DHW(t) = Tset_min_DHW; elseif 

T_forecast_data_aligned(t) > T_forecast_data_aligned(t-1) 

&& HEP_aligned(t) > LP 

% Condition 4: Forecast > Previous Forecast, Price > Limited 

CS(t) = 1; 

Tset_radiator(t) = Tset_modulated; 

Tset_DHW(t) = 

Tset_min_DHW; else 

CS(t) = 0; % No heating if conditions are 

not met end 

% Predict the indoor temperature using the RC thermal model 

Tindoor_pred(t) = RC_model(Tindoor_pred(t-1), 

T_forecast_data_aligned(t), CS(t) 

* 1000, R, C, dt); 

end 

% Visualization of results 
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% 1) Plot the control signal over time figure; 

plot(DayAndTime, CS, '-k', 'DisplayName', 'Control 

Signal'); xlabel('Time'); 

ylabel('Control Signal'); 

legend(); title('Control 

Signal Over Time'); 

% 2) Plot the real-time variation of temperature input and 

power output figure; yyaxis left; 

plot(DayAndTime, T_forecast_data_aligned, '-b', 'DisplayName', 'Forecasted 

Temperature'); ylabel('Temperature (°C)'); yyaxis right; 

plot(DayAndTime, CS * 1000, '-r', 'DisplayName', 'Power 

Output'); ylabel('Power Output (W)'); xlabel('Time'); 

legend(); title('Real-Time Variation of Temperature Input 

and Power Output'); 

% 3) Scatter plot of Temperature Input vs. Weather Data 

and Price figure; scatter(T_forecast_data_aligned, 

HEP_aligned, 'filled'); xlabel('Forecasted Temperature 

(°C)'); ylabel('Hourly Energy Price (SEK/kWh)'); 

title('Temperature Input vs. Weather Data and Price'); 

% 4) Scatter plot of Control Signal vs. Weather Data and Price Data 

figure; scatter(HEP_aligned(CS == 1), T_forecast_data_aligned(CS 

== 1), 'filled'); xlabel('Hourly Energy Price (SEK/kWh)'); 

ylabel('Forecasted Temperature (°C)'); title('Control Signal vs. 

Weather Data and Price Data'); 

% 5) Plot of Power Output vs. Weather Data and 

Price Data figure; scatter(HEP_aligned, CS * 

1000, 'filled'); xlabel('Hourly Energy Price 

(SEK/kWh)'); ylabel('Power Output (W)'); 

title('Power Output vs. Weather Data and Price 

Data'); 

% Optional: Save the updated results to an Excel file for further analysis 

results_table = table(DayAndTime, T_forecast_data_aligned, HEP_aligned, 
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Tset_radiator, Tset_DHW, Tindoor_pred, CS); 

writetable(results_table, 

'Updated_Heating_System_Control_Results.xlsx'); 

% Define the RC model function function Tindoor = 

RC_model(Tindoor_prev, T_forecast, power_input, R, C, dt) 

% Calculate the temperature change based on the RC model 

% Tindoor_prev: Previous indoor temperature 

% T_forecast: Forecasted outdoor temperature 

% power_input: Heating power input (W) 

% R: Thermal resistance (°C/W) 

% C: Thermal capacitance (J/°C) 

% dt: Time step (hours) 

% Calculate the temperature difference delta_T = 

(power_input / R - (Tindoor_prev - T_forecast)) * (dt / C); 

% Update the indoor temperature 

Tindoor = Tindoor_prev + 

delta_T; end 

Listing 5.1. MATLAB code for predictive control algorithm implemention  
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APPENDIX 2 RESULTS (JANUARY 1 -APRIL 15) 

 

Figure A2.1 January 2023 
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Figure A2.2 February 2023 
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Figure A2.3 March 1-15, 2023 
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Figure A2.4 January 2024 
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Figure A2.5 February 2024 
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Figure A2.6 March 1-15, 2024 

After reviewing data from March 15 to April 15 in 2023 and 2024, I found significant 

improvements in terms of cost and comfort. In 2024, the outdoor temperature 

increased from 4.57◦C to 5.732◦C, were both Floor 1 and Floor 2 temperatures 

increased slightly by 0.31°2◦C and 0.16°2◦C, respectively, compared to 2023 (Figure 

A2.8). Additionally, the equivalent energy cost for the heat pump consumption 

reduced significantly, from 239.58 Euros in 2023 to 131.99 Euros in 2024, marking 
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a 44.86% decrease in energy expenses. A slight increase in outdoor temperature 

may have contributed to the overall improvements in comfort in 2024. 

 

Figure A2.7 March 15- April 15 2023 
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Figure A2.8 March 15- April 15 2024 
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Figure A2.9 Heating system characteristics March 15- April 15 

 

 

Figure A2.10 Overall system characteristics for a simulation period until 15th of April 

 
Compared to previous months, there was a considerably higher outdoor temperature 

during this period. In 2023, from March 15 to April 15, the heat pump consumption was 

2876kWh, while during the same period in 2024, it decreased to 2266kWh, indicating a 

significant reduction in energy usage by 610kWh or approximately 21.22%. This 

demonstrates that our system is responsive to changing outdoor temperatures and can 

anticipate and prepare the building for periods of high prices and cold weather in the 

future (Figure A2.9) (Figure A2.10).  
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APPENDIX 3 ALGORITHM TESTING AND VALIDATION 

The proposed algorithm is executed in the BA Ouflex tool and tested for various 

scenarios. The solution prioritizes user comfort by incorporating weather forecasts and 

hourly electricity prices. Based on these two factors, the algorithm develops a suitable 

modulated room temperature. 

• Scenario 1: If the forecasted temperature is lower than current outdoor 

temperature, and hourly energy prices are falling (HEP<LP), RH will be ON until 

room temperature reaches the maximum room set point. Once this temperature 

is reached, the RH will be switched off, and priority will shift to DHW until the 

DHW temperature reaches its maximum set point value. 

• Scenario 2: If the forecasted temperature is higher than current outdoor 

temperature, and hourly energy prices falling (HEP<LP), RH will be ON until room 

temperature reaches the modulated room set point. Once this temperature is 

reached, the RH will be switched off, and priority will shift to DHW until the DHW 

temperature reaches its maximum set point value. 

• Scenario 3: If the forecasted temperature is lower than current outdoor 

temperature and hourly energy prices are rising (HEP>LP), RH will be ON until 

the room temperature reaches the modulated room set point. Once this 

temperature is reached, the RH will be switched off and HP will be switched off. 

• Scenario 4: If the forecasted temperature exceeds current outdoor temperature 

and hourly energy prices rising (HEP>LP), RH will be ON until the room 

temperature reaches the modulated room set point. Once this Temperature is 

reached, the RH will be switched off and HP will be switched off. 

 

To sum up, this chapter re-evaluates the algorithm’s conditions and its validation using 

the Ouflex simulation tool. All the above scenarios are represented in Figure A3.1, Figure 

A3.2, Figure A3.3, Figure A3.4, Figure A3.5, Figure A3.6, Figure A3.7, Figure A3.8. 
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Figure A3.1 Scenario 1 RH during low-price hours anticipating cold hours 

 

Figure A3.2 Scenario 1 DHW during low-price hours anticipating cold hours 

 

Figure A3.3 Scenario 2 RH during low-price hours anticipating warm hours 
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Figure A3.4 Scenario 2 DHW heating during low-price hours anticipating warm hours 

 

Figure A3.5 Scenario 3 RH during high-price hours anticipating cold hours 

 

Figure A3.6 Scenario 3 DHW during high-price hours anticipating cold hours 
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Figure A3.7 Scenario 4 RH during high-price hours anticipating warm hours 

 

 

Figure A3.8 Scenario 4 DHW during high-price hours anticipating warm hours 
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APPENDIX 4 FUTURE SCOPE 

This chapter extensively examines the benchmarking method and outcomes, with a 

specific emphasis on the operation and performance of the controller. Detailed 

discussions regarding the system’s design and model, particularly about houses and 

controllers, focus on potential challenges. The implementation of the predictive 

approach in consumer products is explored, and specific aspects of the feasibility of 

real-world implementation are discussed. The conclusion is derived from evaluating 

problems, methodology, and results. Additionally, suggestions for future work are 

incorporated. 

 

Impact of varying COP on predictive controller 

The significance of keeping a consistent COP has pros and cons for controller 

performance. While it can sometimes cut costs compared to using a heat curve 

controller, using it in worst-case scenarios may mean less comfort for occupants and 

higher electricity bills. It is crucial to consider these advantages and disadvantages 

carefully when deciding whether to adopt a constant COP approach in HVAC systems. 

In direct comparison with a predictive controller, the constant COP approach consistently 

performs poorly. The intention is to concentrate power consumption during periods of 

low electricity prices. However, achieving better comfort in households may demand 

power consumption even during high-price hours. Traditional control methods yield 

more uneven power consumption patterns, favoring a significant amount of energy at 

once or not when needed. The COP is highest for low-power inputs and lowest for high-

power inputs. From a COP perspective, it is always beneficial to maintain a low but 

steady power consumption. 

Importance of radiation forecasting in prediction 

A model considering global radiation based on sunshine and cloudiness, along with time 

of day and day of the year, has limitations. The cloudiness model could be more reliable, 

leading to occasional over- or underestimation, especially in winter. While excluding the 

radiation model improves simplicity, it may sacrifice accuracy, and including it increases 

complexity, requiring a careful balance between accuracy and model simplicity. 

Considering the importance of better heating comfort in buildings, it is decided to 

exclude the radiation model from the prediction. 

 

Dimension of heating system 

The thesis employed a COP model based on a real-world heat pump installed in the 

targeted building. This building has a GSHP with a 10-kW capacity. The recommended 

10 kW heat pump effectively covers the outside temperature range considered in the 
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analyzed cases. Specifically, a 10-kW heat pump can handle temperatures ranging from 

approximately -20 to 12 degrees Celsius without burst heating, as it would not operate 

at its lowest capacity. The fact that the heat pump predominantly operates at low power 

implies that the COP is generally favorable. 

Comfort vs Cost balance 

In heating systems, there is a balance between cost and comfort. It would help if you 

often decided how much you are willing to spend to keep warm while ensuring occupants 

are still comfortable. This trade-off depends on comfort, temperature range, insulation, 

and energy efficiency. Adjusting these parameters, such as lowering the thermostat, 

enhancing insulation, or upgrading to a more energy-efficient system, allows you to 

finetune this balance and strike the right compromise between cost savings and 

maintaining a comfortable environment. 

Weight 

The weight α is like a tuning knob for the predictive controller in heating systems. 

Consumers can choose its value based on their preferences. A larger α emphasizes 

keeping the comfort level high, while a smaller α prioritizes saving money on electricity. 

If α is set to 0, the user wants to minimize electricity costs as much as possible. In this 

scenario, the heat pump could be turned off entirely when it is unnecessary for comfort, 

emphasizing cost savings over maintaining a specific level of warmth. 

Other Constraints 

User preference plays a crucial role when designing constraints for heating system 

models. Keeping the indoor temperature within or close to the comfort range is entirely 

up to the user. Some users prioritize staying within the comfort range regardless of cost 

considerations. However, the spot price exceeds a specific limit. In that case, an 

opportunity arises to temporarily raise the indoor temperature above the comfort range 

or allow it to drop below, aiming to save on electricity costs. The most straightforward 

approach involves increasing the comfort range by accepting higher prices. In this 

thesis, a slightly higher priority is given to maximizing comfort over energy cost. 

 

Controller implementation feasibility 

This thesis has examined the theoretical and practical feasibility of employing a 

prediction controller for heat pump control through simulations on the Ouflex tool. 

Implementing the controller on a heat pump has revealed additional challenges, mainly 

related to the complex house modeling process, particularly related to the complex 
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house modeling process. While identifying a heating system model for a GSHP is 

relatively straightforward and has sufficient data, challenges arise due to variations in 

power output to the heat pump at different flow temperatures depending on the size of 

the radiator system.  
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APPENDIX 5 – ADDITIONAL GRAPHICAL MATERIALS 

 

Figure A5.1 Floor1 plan 
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Figure A5.2 Floor2 layout 

 

 

Figure A5.3 Ceiling plan 
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Figure A5.4 Overall house schematics 

 

Figure A5.5 Algorithm flow chart 
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Figure A5.6  Application 

 

 

Figure A5.7 Set point modulation 
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Figure A5.8 Typical DHW system[13] 
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Figure A5.9 Floor2 layout with an area of each zone and window. 
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Figure A5.10 Floor1 layout with an area of each zone and window 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


