
TALLINN UNIVERSITY OF TECHNOLOGY 

Faculty of Information Technology 

Department of Computer Engineering 

Chair of System Software 

 

Tallinn 2015 

 

 

 

 

 

 

 

 

IAG70LT 

Oleg Dmitrijev 121998IASM 

SELECTION CRITERIA OF THE DATABASE 

MANAGEMENT SYSTEM FOR ESTONIAN 

SMALL AND MEDIUM SIZED ENTERPRISES 

Master`s thesis 

Supervisor: Vladimir Viies 

Associate professor 

  



2 

Autorideklaratsioon 

Olen koostanud antud töö iseseisvalt. Kõik töö koostamisel kasutatud teiste autorite tööd, 

olulised seisukohad, kirjandusallikatest ja mujalt pärinevad andmed on viidatud. 

Käesolevat tööd ei ole varem esitatud kaitsmisele kusagil mujal. 

Autor: Oleg Dmitrijev 

05.12.14 



3 

Abstract 

The goal of this thesis is to develop a methodology facilitating the process of multi criteria 

selection of database management system according to needs of Estonian small or 

medium sized enterprises. The developed methodology is based on mathematical method 

of decision-making named Analytic Hierarchy Process invented and popularized by 

mathematician Thomas L. Saaty. It has been proposed to implement open source project 

named as The Open Source Database Benchmark (GNU GPL), based on ANSI AS3AP 

standard, for performance evaluation.  

In order to test the viability of the proposed methodology, the evaluation process of 

selection criteria has been executed with three free database management systems. The 

criteria and features of selected database management systems have been estimated and 

compared. In the performance evaluation part, the code of The Open Source Database 

Benchmark has been adopted regarding to particular features of the database management 

systems. The projects have been written in C++ programming language and compiled 

using g++ compiler. All projects’ code resides on the DVD attached to the thesis. After 

the assessment and finding out the most relevant database management system, the 

further analysis has revealed possible improvements of the methodology. 

In recent years due to growing volumes of carbon dioxide emissions and as result global 

climate change, the issue of power efficiency in all areas of human activity has become 

actual. Therefore, in this thesis the meaning of power efficiency is stressed and although 

in common case, other selection criteria can be dominant, the elaboration and analysis of 

power efficiency evaluation are issued separately.  

The thesis is in English and contains 65 pages of text, 3 chapters, 14 figures, 28 tables. 



4 

Annotatsioon 

Käesoleva magistritöö eesmärk on Eesti väikse ja keskmise ettevõttele sobiva andmebaasi 

haldamise süsteemi mitmekriteeriumilise hindamise metoodika loomine. Töö raames 

loodud metoodika baseerub matemaatilisel Analüütiliste Hierarhiate Meetodil. Antud 

meetod on Ameerika Ühendriikide matemaatika professor Thomas L. Saaty arendatud ja 

populariseeritud. Analüütiliste Hierarhiate Meetodi kasutus leiab aset  finantsturgudel 

investeeringute hindamisel, kinnisvara arendamisel, maavarade kaevandamisel ja muudel 

tegevusaladel. Ülalmainitud meetod võimaldab läbi viia võrdlust kasutades kahe 

kriteeriumi suhtelist hinnangut. Võrdlemisprotsessi  käigus saadud hinnanguid 

paigutatakse võrdlemismaatriksisse, mille peal edasi teostatakse vastavaid matemaatilisi 

operatsioone. Tulemusena saadakse prioriteetide vektori, mille elementide väärtused ongi 

otsitavad prioriteetide hinnangud. Andmebaasi haldamise süsteemi jõudluse hindamiseks 

oli valitud vabavaraline GNU General Public License all levitatud projekt nimega The 

Open Source Database Benchmark (OSDB). Antud projekt on C++ 

programmeerimiskeeles kirjutatud ja kehastab ANSI AS3AP standardi autorite ideed 

andmebaasi haldamise süsteemi jõudluse hindamise kohta. Pakutud hindamise metoodika 

rakendatavuse testimiseks oli läbi viidud kolme andmebaasi haldamise süsteemi võrdlus 

ja hinnang.  Seoses sellega et OSDB projekti viimane ja kasutusel olnud versioon oli 

võimeline vaid MySQL, olemasolev kood oli modifitseeritud selleks et hinnata 

PostgreSQL and  FirebirdSQL jõudlust võttes arvesse nende andmebaasi 

juhtimissüsteemi võimalused ja omapärad. Kõikide projektide  programmikood leidub 

magistritööle lisatud DVD-l.  Kasutades Analüütiliste Hierarhiate Meetodi abil välja 

arvutatud kriteeriumite kaalude prioriteete Eesti väikse ja keskmise ettevõtte jaoks on 

leitud selle klassi ettevõtetele kõige sobivam andmebaasi juhtimissüsteem. Selle 

järgnevas analüüsis on pakutud metoodika võimalikud parandused. 

Seoses süsihappegaasi osakaalu suurendamisega atmosfääris ja selle negatiivse mõjuga 

kliimale energiatarve efektiivsus on muutunud aktuaalseks paljudes inimkonna 

tegevusalades. Selles magistritöös on esile tõstetud  andmebaasi haldamise süsteemi 

energiatarve efektiivsuse hindamise metoodika, kuigi süsteemi üldhindamisel võib 

leiduda olulisemaid kriteeriume.   

Magistritöö on kirjutatud inglise keeles ning sisaldab teksti 65 leheküljel, 3 peatükki, 14 

joonist, 28 tabelit. 



5 

Table of abbreviations and terms 

ACID  Atomicity, Consistency, Isolation, Durability. 

AHP Analytic Hierarchy Process 

ANSI American National Standards Institute 

AS3AP ANSI SQL Standard Scalable and Portable 

API Application Programming Interface 

BSON  Binary JSON 

CIO Chief Information Officer 

CLI  Command Line Interface 

CPU Central Processor Unit 

CSV Comma-separated values 

DBA Database Administrator 

DDL Data Definition Language 

DML Data Manipulation Language 

FAHP  Fuzzy Analytical Hierarchy Process 

GPL General Public License 

GUI Graphical User Interface 

JSON  JavaScript Object Notation 

HW Hardware 

LDAP Lightweight Directory Access Protocol 

MVCC Multiversion Concurrency Control 

SME Small and medium sized enterprises 

SQL  Structured Query Language 

DBA Database Administrator 

DBMS Database Management System 

PL Procedural Language 

ODBC Open Database Connectivity 

OLTP Online Transaction Processing 

OS Operating System 

OSDB Open Source Database Benchmark 

RDBMS Relational Database Management System 

RPM Red Hat Package Manager 

SMP Symmetric Multiprocessing 



6 

SSL Secure Sockets Layer 

SSH Secure Shell 

SW Software 

TPC Transaction Processing Performance Council 

UDF User Defined Function 

WAL Write-Ahead Logging 

XML  Extensible Markup Language 

 

 



7 

Table of Contents 

1. Objectives of database selection .............................................................................. 11 

1.1. Small and medium-sized enterprises in Estonia .............................................. 11 

1.2. Database Management Systems ....................................................................... 13 

1.3. Common selection criteria of DBMS .............................................................. 14 

1.4. Important criteria from SME point of view ..................................................... 17 

1.5. The Analytic Hierarchy Process as the basement of evaluation platform. ...... 20 

2. Proposed methodology of evaluation. ...................................................................... 24 

2.1. AHP based criteria assessment. ....................................................................... 24 

2.2. Method for evaluation DBMS performance. ................................................... 29 

2.3. Method  for evaluation the power efficiency of  DBMS ................................. 33 

2.4. Evaluation of DBMS ....................................................................................... 36 

2.4.1. Available management tools ........................................................................ 36 

2.4.2. Documentation and community ................................................................... 38 

2.4.3. Mobility ........................................................................................................ 39 

2.4.4. Reliability ..................................................................................................... 42 

2.4.5. Functionality................................................................................................. 44 

2.4.6. Scalability ..................................................................................................... 47 

2.4.7. Performance ................................................................................................. 49 

2.4.8. Power efficiency ........................................................................................... 51 

3. Synthesis of the methodology .................................................................................. 54 

3.1. Calculation ....................................................................................................... 54 

3.2. Analysis Results ............................................................................................... 58 

3.3. Possible improvements in the methodology .................................................... 59 

3.3.1. Power efficiency evaluation ......................................................................... 59 

3.3.2. Common methodology ................................................................................. 61 

4. Conclusion ................................................................................................................ 64 

References ....................................................................................................................... 66 

Appendices ...................................................................................................................... 71 

Appendix 1 – OSDB benchmark queries ................................................................... 71 

Appendix 2 – Architecture of the experimental platform........................................... 75 

Appendix 3 – Number of transactions in test ............................................................. 84 

Appendix 4 – Performance evaluation results ............................................................ 86 

Appendix 5 – Power efficiency evaluation results ..................................................... 90 

Appendix 6 – Temperature and CPU utilization ........................................................ 95 



8 

List of figures  

Figure 1. Number of employees and percentage ............................................................ 11 

Figure 2. Business areas of Estonian SMEs in 2012Business areas of Estonian SMEs in 

2012 ................................................................................................................................ 12 

Figure 3. OSDB project class diagram. .......................................................................... 31 

Figure 4. The power analyzer KEW 6310 records power consumption of the testing 

system. ............................................................................................................................ 33 

Figure 5. Wiring method for single-phase 2-wire (1ch) of KYORITSU KEW 6310. ... 34 

Figure 6. The clamp power sensor of KYORITSU KEW 6310. .................................... 34 

Figure 7. The voltage inputs plugged into the outlet and the current sensor. ................. 35 

Figure 8. Connection diagram of KYORITSU KEW 6310............................................ 35 

Figure 9. Creating PostgreSQL database dump.............................................................. 40 

Figure 10. The dump files' sizes ..................................................................................... 40 

Figure 11. Creating table in FirebirdSQL using external file. ........................................ 46 

Figure 12. Initial CSV file and imported table. .............................................................. 46 

Figure 13.  Comparison of power consumption. ............................................................ 52 

Figure 14. Performance of limited benchmark set. ........................................................ 60 



9 

List of tables 

Table 1. Random indices ................................................................................................ 23 

Table 2. Examined criteria and their abbreviations. ....................................................... 24 

Table 3. The Fundamental Scale of absolute numbers ................................................... 25 

Table 4. The Comparison Matrix of selection criteria.................................................... 26 

Table 5. The Comparison Matrix of selection criteria in decimals. ............................... 26 

Table 6. The Normalized Comparison Matrix................................................................ 27 

Table 7. The vector of priorities. .................................................................................... 28 

Table 8. AS3AP database tables ..................................................................................... 29 

Table 9. OSDB database used data types and names. .................................................... 32 

Table 10. Tables and their numbers of rows .................................................................. 32 

Table 11. The comparison matrix of management tools. ............................................... 37 

Table 12. The comparison matrix of documentation and community. ........................... 39 

Table 13. Mobility comparison matrix. .......................................................................... 41 

Table 14. Reliability comparison matrix. ....................................................................... 44 

Table 15. Functionality comparison matrix. ................................................................... 47 

Table 16. Scalability comparison matrix. ....................................................................... 48 

Table 17. The performance testing results (seconds) ..................................................... 49 

Table 18. Performance comparison matrix..................................................................... 51 

Table 19. Power efficiency comparison matrix. ............................................................. 53 

Table 20. The normalized matrix of management tools. ................................................ 54 

Table 21. The normalized matrix of documentation and community. ........................... 54 

Table 22. The normalized mobility matrix. .................................................................... 55 

Table 23. The normalized reliability comparison matrix. .............................................. 55 

Table 24. The normalized scalability matrix. ................................................................. 56 

Table 25. The normalized performance matrix. ............................................................. 56 

Table 26. The normalized matrix of power efficiency. .................................................. 56 



10 

Table 27. The priorities of the criteria. ........................................................................... 57 

Table 28. The vector of DBMS ranking. ........................................................................ 57 

 



11 

1. Objectives of database selection  

1.1.  Small and medium-sized enterprises in Estonia 

Small and medium-sized enterprise (SME) is a company with number of employees less 

than 250 [1]. The turnover should not exceed 50 million euros for medium sized enterprise 

(up to 250 employees), 10 million euros for small enterprise (up to 50 employees) and 2 

million euros for  so-called micro-enterprise (up to 10 employees) [1]. In 2013 the 

percentage of these enterprises was up to 99,8% both in EU and Estonia providing two-

thirds of jobs and more than 50% of value added produced by businesses [2]. 

SMEs are reliable basis of Estonian economy with 78% of jobs and 74% of value added 

[2]. In fact only 6,8 % (Figure 1) of Estonian SMEs are medium-sized enterprises [3] . 

 

Figure 1. Number of employees and percentage 

  

 

3,2%

24,2%

43,1%

22,8%

6,8%

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

30,0%

35,0%

40,0%

45,0%

50,0%

Number of employees

Number of employees and percentage

Unknown 0 1–9 10–49 50–249



12 

The business areas of Estonian SMEs in 2012 represented on Fig.2 depict almost 

homogeneously distributed graph with manufacturing area at the top [3].  This situation 

differs from European average where wholesale and retail trading, manufacturing, 

services and construction are leading [4]. Unusual small value belongs to the retailing can 

be based by the fact that this business area in Estonia occupied mainly by large (for 

Estonian market) retailers with a larger number of employed personal more than 249. 

 

Figure 2. Business areas of Estonian SMEs in 2012Business areas of Estonian SMEs in 2012 

According to Statistics Estonia e-commerce companies or in other words online shops 

have significant growth during the last period [4]: if in 2001 there were only 35 e-

commerce companies on Estonian market, then already in 2011 there were about 340 such 

companies on the market. However, if in 2001 average number of employees was between 

6 and 9 so in 2011 this number was 2 employees per company. Additionally, although the 

companies had revenue about 70 million euros in 2011 this number is only 1.5% of overall 

income of retailing area. So in fact, this business belonging to SME group of companies 

but has no crucial role on the Estonian market. 

 

 

6,4%

17,3%

15,7%

14,4%
4,7%

13,0%

14,7%

13,7%

Business areas

Unknown

Manufacturing

Construction

Wholesale

Retailing

Trasportation, communication

Accommodation, catering and
business services

Other services



13 

1.2.  Database Management Systems 

DBMS is software application designed to administrate and maintain databases providing 

mechanism of interactions between clients and database storage. The client can be for 

example DBA that uses DDL or GUI for database administration. As well, the client can 

be client application (web or desktop) that uses application interface, for instance ODBC, 

to interact with data or an analyst that using DML queries collects necessary data.  DBMS 

facilitates the management of data stored in a database and its logical structure. 

History of today’s DBMSs starts in 1970s when E.Codd published his work concerning 

relational model of data presentation. This time Codd worked for IBM Research 

Laboratory where basing on his document was developed System R. This DBMS 

demonstrated structured query language (SQL), advantages of relational model and 

served as example for a number of commercial DBMSs [89]. 

The relational model brings the meaning of relation and its attributes. In the RDBMS, the 

concept of relation is represented on the physical level as database table and relation 

attributes as table columns. The relational model provides data integrity by 

implementation of constraints. E. Codd was the first who noticed that data redundancy in 

relations have to be avoided, he proved that the redundancy can lead to inconsistency of 

data and proposed the procedure that called normalization [89]. DDL is a concept of a 

language that is able to describe database structure and DML allows manipulating the 

data. DMLs can be divided into procedural (what data and how manipulate it) and non-

procedural that concentrated only on what data need to be manipulated. SQL belongs to 

non-procedural family. 

Databases have to provide the ability multiple users to interact with data. The essential 

notion of concurrency control is transaction. This is undivided set of actions that can be 

executed completely or in case of failure completely cancelled. For example, in the 

database of the bank system in the scope of one transaction money should be withdrawn 

from one account and placed to another. This operation can be done in full range or fully 

cancelled, otherwise this money is able to disappear in case of some system failure. The 

transaction realizes ACID principle: atomicity, consistence, isolation and durability [89].  

T.Haerder and A.Reuter in 1983 proposed this abbreviation to describe features that 

transactional database should guarantee. Under the notion of atomicity is already 

mentioned indivisibility of transaction, the consistence means that data in database have 



14 

to be consistent, isolation requires independent execution of transactions and durability 

that results of committed transactions cannot be lost [89].  Online Transaction Processing 

(OLTP) is behavioral data model of DBMS typically concentrated into the online 

transactional data operations with multiple connected users. In OLTP systems users 

execute simple repeating but transactional queries and capability to perform large number 

of simultaneous isolated transactions plays most significant role in these systems. 

Contrary to OLTP, in Online Analytical Processing (OLAP) systems queries may have 

unique pattern, the queries are much longer, they are more complicated and may be non-

transactional. In these systems transactional performance is less important. OLAP 

systems are usually used in banking sector, data warehouses, in large companies by 

analysts while OLTP model is popular in banking sector as well for client operations, 

manufacturing, sales, bookkeeping, Client Relations Management (CRM), Enterprise 

Resource Planning (ERP). 

Data integrity and consistence mechanisms of non-relational or sometimes called NoSQL 

DBMS are based on different from relational model principles. There are key-value 

stores, XML, JSON or BSON based stores, object, graphs and document databases. These 

DBMS use different data models and serve for number of different purposes. They can 

be very effective in some areas, for instance document-oriented DBMS is able to be 

implemented in data warehouse [89].  

1.3. Common selection criteria of DBMS  

The primary goal of this selection to figure out what DBMS is most optimal for particular 

purposes of the system, taking into account performance and reliability as necessary 

components of successful everyday operation. Typically, investments are suggested in 

the framework of a project are limited by current performance requirements. However, 

today's selection of DBMS have to be done with an eye to the possible future growth of 

the system. This fact leads to understanding the next substantial ability of DBMS – the 

scalability. Usually, under this definition is meant the ability of the system to adopt a 

growth of working load or in case of DBMS growing amount of client queries. The 

planning of the issue how the system processes data in case of essential increment of the 

load need to be done in the very beginning. No doubt, the simplest way is to change the 

hardware and to buy new more powerful server. This approach is named scaling up or 

vertical scaling. However, large companies cannot afford to use vertical scaling in their 



15 

million queries per minute business systems. They have to scale horizontally that mean 

to use multiple instances of the DBMS named as nodes to split and balance the load. For 

example, some forum application can be divided to functional partitions like “forum” and   

“users”. The “forum” node can hold the data about forum messages and the “users” part 

stores the users’ data.  This technique is often called data sharding or partitioning. But if 

DBMS selected as the data processing unit of the system doesn’t support technics of 

horizontal scaling or this support is somehow limited it can ruin the system in the future. 

For instance, developers of car selling site had added a new function that allows to find 

car insurance history by its registration number. This function became extremely popular 

and as the result, the usage of database engine drastically increased.  Nevertheless, the 

DBMS selected for this project does not support horizontal scaling or its implementation 

requires paying high license fee. As consequence, the result of the implementation of this 

advanced function is rather negative because many site visitors refused of using this low 

overloaded site. All said above is the reason why the scalability is one of the important 

criteria of DBMS selection. 

Reliability of DBMS have to be considered as complex parameter that based on backup, 

restoring, security and transaction durability issues. Reliable OLTP DBMS have to follow 

ACID principles to ensure reliability of transactions as well. Unfortunately, under DBMS 

backup is often mistaken for replication of DBMS. Indeed, replication can be used for 

backup if it used with time delay on slave node [19], but these two processes serve 

different purposes.  Replication is typically implemented for already mentioned 

horizontal scaling when reading operation delegated from master server to slave one for 

load optimization. If data updates are being repeated on the slave immediately, there is 

no way to rollback if any unwanted data modification has occurred. Backup is rather 

separate procedure that periodically makes data snapshot. The most common way is 

making database dump manually. However, there are many possibilities, including third-

party utilities, to backup data automatically. Definitely, security issue need to be 

concerned here. It is necessary to mention that security measures as integral part of DBMS 

reliability guarantee that data remains valid and server administration data is not 

compromised. In the process of DBMS selection have to research what level of security 

should be provided and whether selected candidate is able to ensure required degree of 

security. Modern DBMSs are supplied with multilevel security mechanism and 

realization of this mechanism is different. Some DBMSs propose using of complicated 



16 

role-based mechanism like Oracle Database or Microsoft SQL server that essentially 

simplifies group security management and others do not support this mechanism. Some 

DBMSs are able to encrypt data and work with encrypted connection like SSH. 

Multiversion concurrency control is the mechanism that as part of DBMS reliability 

ensures accordance with ACID principles of transactions to act and different DBMSs 

have different implementation of this mechanism. For example, MyISAM, first storage 

engine of MySQL, does not support transactions, so it cannot be used in OLTP model.  

All this issues need to be examined during DBMS selection process from reliability point 

of view.  

When professionals speak about functionality of DBMS, they usually mean entire 

spectrum of its abilities like available APIs, stored procedures and triggers, user-defined 

data types and functions, search engines. All these features can play crucial role in 

processes of development, operation and maintenance of the system. A lack of some part 

of functionality can stop normal execution of these processes making it unsuitable for 

performing system tasks. For instance, if some function is not realized in the API 

developers have to find their own way to add required functionality to the project that 

requires extra time and as consequence money. Moreover, this devious way sometimes 

not enough optimal that makes constructed system more complex and as result less fault 

tolerant. Thus, supported functionality is important feature of DBMS.  

Mobility of DBMS or platform-independence is also important if circumstances force to 

migrate to another software or hardware platform. Some of the DBMSs are limited with 

certain platform and most vivid example that can be cited here is Microsoft SQL Server 

that is able to run only with Microsoft Windows family. Not only software but also 

hardware platform can engage some limitations like unsupported type processors or 

multiprocessors. In addition, mobility of DBMS is the measure how easy and quickly 

DBMS can be deployed on new platform. 

Data model is probably the first thing that should be decided in the very beginning of 

every project where intended to use DBMS. What type of data model whether traditional 

relational model or trendy NoSQL model in this a lot depends on developers’ skills and 

project tasks. For some applications, NoSQL model can bring significant breakthrough 

of productivity. Nevertheless, there are not too many skilled developers and CIOs prefer 



17 

to have a deal with well-known technology. So all these aspects are also should be taken 

into account immediately before starting the procedure of DBMS selection. 

Mentioned above performance is generally measured using TPC benchmarks. 

Transaction Processing Performance Council is non-profit organization dealing with 

benchmarks of co-simulation different server hardware with commercial DBMS.  De-

facto the TPC benchmarks became industrial standard for proprietary DBMSs and server 

equipment. There are several benchmarks (TPC-C, TPC-E etc.). Every benchmark is 

pointed to figure out different aspects of computing performance. TPC proposed to use 

Transaction-per-cent unit to estimate efficiency of investments into the certain platform. 

There is also new TPC-Energy specification with Energy Metrics created to find out 

optimal conjunction of price, performance and energy requirements.  The results of 

benchmarks are being regularly published on the TPC official site and interested persons 

can acquaint with them. In other words, in case of commercial platform performance can 

be approximately estimated using TPC benchmark results. In the meantime, there are 

disadvantages in TPC benchmarks. First, benchmarks concern the definite composition 

of hardware and software platforms. Hardware is usually produced by major server 

hardware manufacturers who are members and sponsor of TPC project. It means hardware 

made by smaller manufacturers like Ordi cannot be found from the list.  Same situation 

is on the software side – all tested DBMSs belong to product lines of well-known 

commercial DBMSs from such giants of the industry like Oracle, IBM and Microsoft. 

Open source DBMS are not tested in the TPC benchmarks. Second, all these benchmarks 

are too general and results achieved in the TPC benchmarks do not reflect performance 

of a custom application. As a rule, a performance demanding application needs in their 

own benchmarks based on task of the application. Analytic tools and third-party utilities 

are also useful in this situation. Some of the analytic mechanisms are included in the 

DBMS installation packet. There is slow queries log in MySQL that can be used for their 

tracking. Maatkit or its successor Percona Toolkit are sets of third-party utilities that can 

help to optimize slow queries. It is clear that low performance of DBMS affects negatively 

the selection. 

1.4.  Important criteria from SME point of view  

Apparently, the cost of DBMS license can be most important selection criteria for 

Estonian SMEs. When procedure of selection has just started from blank and there is no 



18 

legacy software that is able to work with some particular DBMS, it is very reasonable to 

weigh the possibility to implement an open source DBMS in the enterprise ecosystem.  

Very often small enterprise cannot afford to pay thousands of euros only for DBMS 

license. Today most part of work specific applications like bookkeeping, warehouse or 

monitoring systems have open source analogs without conceding functionality. Linux OS 

became a de facto standard in the webhosting business and even large corporations like 

Facebook and Google are using composition of this OS with open source DBMS. There 

is only reason to prefer proprietary DBMS is the existence of an application that is limited 

by one DBMS type and the application is tightly connected to the main working. The 

relevant example of such kind of application is very popular in Estonia is SAF 

bookkeeping software that is able to use the only one Microsoft SQL Server as database 

engine. In other cases, usage of open source DBMS is justified. Here arises the important 

issue of DBMS mobility. Platform independence and ability quickly be switched to 

another platform is definitely important for SME. Three of most popular open source 

DBMSs – MySQL, PostgreSQL and Firebird SQL server are able to run on several 

platform including most popular Windows, Linux, OSX and BSD. If a company has 

renewed its server park or acquired new software the ability to migrate to new platform 

can be crucial. For instance, the company selected new DBMS can be installed on the 

existing server with Microsoft Server OS, but it is decided to buy new server with Linux 

after certain period. The migration in this case can be performed painless because on the 

company can use same DBMS on the new platform.  As already mentioned before the 

inner structure, supported SQL syntax and data types are different for different DBMSs 

and transition process from one DBMS to another can be very complicated process. In 

case of DBMS that is compliant with different OS platform switching is easy routine 

process. Thus, issue of DBMS mobility for SME have to be considered as one of the most 

essential criteria.   

Besides, it have to be here mentioned that SME needs its own dedicated DBMS that 

located directly in the physical domain of SME, not somewhere in a provider cloud. Only 

thus, everyday working activity of the enterprise will not be suspended in case of internet 

connection failure. Nevertheless, effective energy consumption of server equipment is 

power efficiency of all its components including, inter alia, DBMS. The energy efficiency 

of DBMS can be evaluated as number of transactions performed per one consumed watt 

of energy. Although, power efficiency cannot be most crucial factor for SME yet it have 



19 

to be considered even for this type of enterprises.  This suggestion is based on the fact 

that middle-sized webhosting provider belongs to SME category and for this enterprises 

the difference in DBMS energy consumption can be perceptible. There is high probability 

that middle-sized webhosting provider is interested in scaling out of DBMS. 

Consequently, the DBMS must be scalable that is why scalability of this DBMS have to 

be verified as well.   

Functionality as measure of what and how DBMS is able to do should be thoroughly 

investigated during DBMS selection process for all types of enterprises, not only for 

SMEs. This investigation ensures that DBMS is valid for application tasks and as result 

can be selected. The basic features like triggers or stored procedures are obviously 

supported by majority of DBMS, but a lack of some part of functionality can be met for 

certain tasks. 

For open source DBMS is substantial issue the degree of DBMS information availability 

or in other words, whether DBMS documentation is detailed enough or not. It is very 

important when every moment of implementation or every member of API described by 

specialists in details. Popularity among developers and sequentially large community, 

which can help in difficult circumstances, is definitely positive sign to select DBMS. 

After the revision of business areas (Figure 2) it is possible to conclude that most of 

computing systems of SME belongs to OLTP class. Moreover, performance for such 

systems can be evaluated as value of transactions processed in second. For some 

application areas, where todays Estonian SMEs are presented, DBMS performance have 

to be taken into account. Otherwise low performance value can ruin the business. For 

example if the slow DBMS is a part of CRM software. This mismatch can lead to missed 

orders, because customers cannot wait until their order pass through the system and next 

time can order the item from somewhere else.  

Availability of software tools for DBSM administration, monitoring and optimization is 

also important for SMEs. These tools allow the DBA to save a lot of time. Already 

mentioned Maatkit [88] is a set of 31 GPL licensed utilities (Perl scripts) that are able to 

simplify significantly processes of monitoring, backup, replication and so on of MySQL 

DBMS family. This fact can make MySQL very attractive for selection and allows saving 



20 

money of SME that possibly cannot afford to invest money in such kind of proprietary 

tools.    

In addition, the DBMS have to ensure proper level of reliability. The data cannot be lost 

and unauthorized access must be restricted. This is common requirement for SMEs and 

larger companies. The requirement is because different DBMS have different 

implementation of security protocols and backup. Consequently, the issue of reliability 

have to be investigated in the scope of intended tasks.   

1.5.  The Analytic Hierarchy Process as the basement of evaluation 

platform. 

The Analytic Hierarchy Process is the decision-making methodology developed by 

mathematician Thomas L. Saaty in 1980s. The technique facilitates the way to find out 

not the perfect decision for a case, but the decision that is the best between its alternatives. 

Thomas L. Saaty compared his technique with the measurement without starting zero 

point based only on the priority hierarchy and pairwise comparison. In other words, the 

priority hierarchy plays the role of system of axis that decision maker should build up 

first guided by the goal of the case. The pairwise comparison is the process to achieve the 

goal. This process composes the consistent reciprocal matrix from elements produced 

from comparison of measured values.  

Suppose there is a collection of objects S1, S2 to Sn. As result collection of judgments on 

these objects pairs (Si, Sj) can be expressed by n x n matrix A (1) [5].  

  A = (aij), where i, j = 1…n              (1) 

For all entries aij are valid next rules. First, if aij =  α then aji = 1/α  and  α ≠ 0. Second, 

the matrix is reciprocal what means always aii = 1 and if Si and Sj have same weight both 

aij and aji equal1. 

Thus, the matrix of judgments can be presented as (2). 

 

 

 



21 

       

   1   a12  . a1n 

A     =  1/ a12  1  . a2n            (2)  

   .  .  .  . 

   1/ a1n  1/a2n  . 1 

 

A matrix of n order needs to perform n(n-1)/2 judgments [5].  

Assume that there some number of physical items S1, S2, … Sn that can be weighed with 

a certain degree of accuracy, so ω1 is the weight of S1  and ω2 is the weight of S2 and so 

on. If  S1 weights 256 grams and S2 weights 128 grams one can judge that S1, is  2 times 

heavier than S2 , and the judgment of pairwise S1, and S2 can be mathematically expressed 

as  equitation (3). 

a12 =
𝜔1

𝜔2
 ,         (3) 

Thus, judgments can be described by equitation (4). 

 aij =
𝜔𝑖

𝜔𝑗
  , where 1 ≤  i,  j ≤  n       (4) 

Consequently, the matrix of judgments is the next (5). 

 

    ω1/ω1  ω 1/ω2  . ω1/ωn 

      A       =      ω2/ω1 ω2/ω2  . ω2/ωn                   (5)  

        .     .  .     . 

       ωn/ω1 ωn/ω2  . ωn/ωn 

 

Nevertheless, if one needs to compare non-physical values like subjective judgments of 

people about some property of an object or it is impossible to measure the weight exactly, 

in this case finding of the judgment can be complicated or even non-executable task. 



22 

It is clear that such kind of judgments’ deviation have to be mathematically limited. The 

elements of row i of cited above judgment matrix are  ai1, ai2,… aji, …,  ain . According to 

equitation (4) all elements aji are relations of values like ωi/ω1 and ωn/ωn. So one multiply 

first element ai1 by ω1, second ai2 by ω2 and so on up to the last one (6). 

ωi= ωj  
𝜔𝑖

𝜔𝑗
  , where 1 ≤  i,  j ≤  n       (6) 

The result of this operation is a row contains of ωi, meantime in common case there is a 

statistical dispersion of values around ωi [5]. As consequence, the value of ωi can be 

calculated as average value of the row. That means basing on this assertion and equitation 

(4) ωi can be described by equitation (7). 

ωi = 
1

𝑛
 ∑ 𝑎𝑖𝑗

𝑛

𝑗=1
𝜔𝑗  , where 1 ≤  i,  j ≤  n     (7) 

However, if all elements of equitation (7) aij and ω1 are available it is necessary to 

determine whether this equitation has the only solution or not. Deviation of aij  depends 

on accuracy the estimation of ωi/ωj. The more exact calculated ωi/ωj the more close aij to 

real magnitudes. Thomas L. Saaty proposed that instead of rank of the matrix n another 

feature of square matrix should be used to find the solution.  This is maximum eigenvalue 

of the matrix λmax. 

ωi = 
1

λ𝑚𝑎𝑥
 ∑ 𝑎𝑖𝑗

𝑛

𝑗=1
𝜔𝑗 , where 1 ≤  i,  j ≤  n     (8) 

In fact, the comparison matrix is symmetrical by definition because all elements of the 

matrix’s trace equal to one. That means all eigenvalues are real. The calculation of 

maximum eigenvalue is well-known mathematical problem and will be demonstrated 

further in this work with real magnitudes. Generally, deviations of aij is able to cause large 

deviations in ωi and λmax , but not in case of reciprocal matrix. As result, the equitation 

(8) has the solution.  

The goal of the described above method is to get priority vectors. These vectors are 

principal eigenvectors of the comparison matrix and can be calculated by normalization 

of matrix’s entries [5]. The sum of eigenvector’s elements after normalization is 1 and 

magnitudes represent weight of priority for one element ωi. These priorities describe the 



23 

importance of  ωi  in the scale to other weights ω1...ωn. The greater number means higher 

position in overall ranking of compared items. 

The consistency index of matrix (CI) is proposed to calculate using maximum eigenvalue 

of the matrix λmax and rank of the matrix n (9). This index is the measure of deviation of 

a matrix from consistency.  

𝐶𝐼 =  
λmax − 𝑛

𝑛−1
            (9) 

In National Laboratory of Oak Ridge were computed random index of consistency for 

matrices with ranks up to 15. The results limited with rank 10 are presented below (Table 

1) [5]. The first (Table 1) presents is the rank of a matrix and second is its random index. 

Table 1. Random indices 

1 2 3 4 5 6 7 8 9 10 

0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49 

  

The consistency ratio of a matrix (CR) is relation between consistency index CI and 

relevant random index RI.  

𝐶𝑅 =  
𝐶𝐼

𝑅𝐼(𝑛)
            (10) 

If CR of a matrix does not exceed value 0.1, the matrix can be named consistent. 

There are several methods described below that can used for normalization of matrixes. 

The first method is to sum all entries in the rows, than to get total sum the row sums and 

divide every row sum by total sum. The results are priorities of the objects [87]. The next 

method proposes to sum the entries of the columns, than it is necessary to divide the 

values of the entries by the sum and the last step is calculation the average value for every 

row [87]. These values are the priorities. This method is used in this thesis for further 

normalization of the comparison matrixes. The alternative method [15] supposes to 

square the matrix (multiply it by itself) and then to divide the row sums by their total sum. 

 



24 

2. Proposed methodology of evaluation. 

As was previously described in Chapter 1.4 the most valuable criteria required to estimate 

DBMS selection are availability of management tools, thoroughness of technical 

documentation and community support, mobility as measure of platform independence, 

functionality, reliability, scalability, performance and power efficiency. Some of the 

listed DBMS features like performance or power efficiency can be measured in real 

values, but the rest features can be only subjectively estimated. Appropriately, the 

proposed methodology should be able to assess combination of physical values, like 

seconds and watts, and judgments about intangibles.   The AHP methodology is versatile 

self-complete mathematical mechanism suitable to provide relative measurement of 

intangibles [5]. The methodology found its application in various areas of business and 

science – psychology, real estate, military, minerals mining and education. This is the 

reason to apply the AHP as the basis of the methodology of DBMS evaluation. 

2.1.   AHP based criteria assessment. 

In the beginning of the pairwise comparison process, it is necessary to define DBMS 

parameters that should important for Estonian SME.  These criteria were already 

described and proposed as the most important for the DBMS (Table 2) in Chapter 1.4. 

Table 2. Examined criteria and their abbreviations. 

Abbreviation Criterion 

Tools Available administrative and monitoring tools 

Docs Documentation and community support 

Mob Mobility  

Rel Reliability  

Fun Functionality  

Scl Scalability  

Perf Performance 



25 

Abbreviation Criterion 

Power Power efficiency 

 

This comparison of intangibles requires relative values that characterize the dominance 

of one parameter over another. The Fundamental Scale (Table 3) proposed by Thomas L. 

Saaty [5] contains the required values.  

Table 3. The Fundamental Scale of absolute numbers 

Intensity of 

Importance 

Definition Explanation 

1 Equal importance Both criterion are equally 

important 

2 Weak of slight  

3 Moderate importance Experience or judgment 

slightly favor one criterion 

over another 

4 Moderate plus  

5 Strong importance Experience or judgment 

slightly favor one criterion 

over another 

6 Strong plus  

7 Very strong or demonstrated 

importance 

A criterion is favored very 

strongly over another; its 

dominance is demonstrated in 

practice   

8 Very, very strong  

9 Extreme importance The evidence favoring one 

activity over another is of the 



26 

Intensity of 

Importance 

Definition Explanation 

highest possible order of 

affirmation 

 

Thus, having the values of relative importance it is possible to compose the pairwise 

comparison table (Table 3).  The table used abbreviations described in Table 2. 

Table 4. The Comparison Matrix of selection criteria. 

 Tools Docs Mob Rel Fun Scl Perf Power 

Tools 1 1 1/7 1/7 1/7 1/3 1/5 1/3 

Docs 1 1 1/7 1/7 1/7 1/3 1/5 1/3 

Mob 7 7 1 1 1 5 3 5 

Rel 7 7 1 1 1 5 3 5 

Fun 7 7 1 1 1 5 3 5 

Scl 3 3 1/5 1/5 1/5 1 1/3 1 

Perf 5 5 1/3 1/3 1/3 3 1 3 

Power 3 3 1/5 1/5 1/5 1 1/3 1 

 

Table 5. The Comparison Matrix of selection criteria in decimals. 

 Tools Docs Mob Rel Fun Scl Perf Power 

Tools 1.00 1.00 0.14 0.14 0.14 0.33 0.20 0.33 

Docs 1.00 1.00 0.14 0.14 0.14 0.33 0.20 0.33 

Mob 7.00 7.00 1.00 1.00 1.00 5.00 3.00 5.00 

Rel 7.00 7.00 1.00 1.00 1.00 5.00 3.00 5.00 



27 

Fun 7.00 7.00 1.00 1.00 1.00 5.00 3.00 5.00 

Scl 3.00 3.00 0.20 0.20 0.20 1.00 0.33 1.00 

Perf 5.00 5.00 0.33 0.33 0.33 3.00 1.00 3.00 

Power 3.00 3.00 0.20 0.20 0.20 1.00 0.33 1.00 

 

Using Xcas mathematician software kit the maximum eigenvalue of the comparison 

matrix (Table 4) λmax has been calculated – it equals to 8.22. According to cited above 

equitation (9), the consistency ratio has been calculated and compared with 0.10 (11). 

𝐶𝑅 =  
𝐶𝐼

𝑅𝐼(𝑛)
 =  

(8.22−8)/7

1.41
=0.03143 ≤ 0.10        (11) 

Consequently, the comparison matrix is consistent. 

Nevertheless, in order to increase the accuracy of estimates the table (Table 4) have to be 

normalized.  Here the sums of values in columns: 34.00, 34.00, 4.02, 4.02, 4.02, 20.67, 

11.07, 20.67. The normalized matrix has been produced by dividing each value in 

columns by corresponding sum of columns (Table 6). 

Table 6. The Normalized Comparison Matrix 

 Tools Docs Mob Rel Fun Scl Perf Power 

Tools 0.03 0.03 0.04 0.04 0.04 0.02 0.02 0.02 

Docs 0.03 0.03 0.04 0.04 0.04 0.02 0.02 0.02 

Mob 0.21 0.21 0.25 0.25 0.25 0.24 0.27 0.24 

Rel 0.21 0.21 0.25 0.25 0.25 0.24 0.27 0.24 

Fun 0.21 0.21 0.25 0.25 0.25 0.24 0.27 0.24 

Scl 0.09 0.09 0.05 0.05 0.05 0.05 0.03 0.05 

Perf 0.15 0.15 0.08 0.08 0.08 0.15 0.09 0.15 



28 

Power 0.09 0.09 0.05 0.05 0.05 0.05 0.03 0.05 

 

The goal of the comparison and optimization process is to get vector of priorities that 

represents distribution of DBMS parameters’ priorities. The vector has been calculated 

(Table 7) by summing of values in rows and diving this sum by rank of matrix (eight in 

our case).  

Table 7. The vector of priorities. 

Criterion Priority weight 

Available management tools 0.03 

Documentation and community support 0.03 

Mobility 0.24 

Reliability 0.24 

Functionality  0.24 

Scalability 0.06 

Performance 0.12 

Power efficiency 0.06 

 

The higher value of priority weight means the higher importance of the criterion. 

According to this three most important criteria are mobility, reliability and functionality 

with priority weight equals to 0.24. On the second place of priority is performance with 

priority weight 0.12, the third place is divided between scalability and power efficiency 

priority weight 0.06. On the last place are criteria “Available administrative and 

monitoring tools” and “Documentation and community support” with value 0.03.  

Now the priority vector can be used to investigate different DBMSs in order to evaluate 

their suitability for Estonian SMEs. A number of DBMSs can be selected for evaluation 

using very similar comparison matrixes for every proposed criterion. Then results can be 



29 

multiplied by priority weights and summed in scope of one particular DBMS. The DBMS 

that collects the maximum number of points is most suitable for proposed criteria. 

2.2. Method for evaluation DBMS performance. 

Instead of mentioned above TPC benchmarks, the open methodology based on the ANSI 

AS3AP standard is proposed to be used for performance evaluation. 

The history of AS3AP began in the end of 1980s when Carolyn Turbyfill (Sun 

Microsystems), Cyril Orji (University of Illinois at Chicago) and Dina Bitton (DB 

Software Corporation) started their work on a new benchmark for database performance 

evaluation. Before this, the widespread Wisconsin Benchmark was considered as 

common milestone in deal of comparison for a number of different systems. The 

Mentioned above authors found that the database and queries of the Wisconsin 

Benchmark after instantiation were not able to provide adequate framework for 

comparative benchmarking [6]. In this work the authors proposed new model that they 

named as ANSI SQL Standard Scalable and Portable (AS3AP). The described system 

have to be compliant and automated set of test that is able to cover all aspects of 

evaluation of database processing power. Moreover, the system have to be system 

independent, scalable and provide its results in same way for all range of tested systems. 

The proposed benchmark system includes database with certain schema that contains five 

tables described in Table 7 [6].   

Table 8. AS3AP database tables 

Table name Characteristics 

uniques Contains only unique values. 

hundred Most of the columns have exactly 100 unique values. 

tenpct Most of the columns have 10% unique values.  

updates For three different types of indices. 

tiny A one column and one row table 

 



30 

All those tables use same data types with the same names. The data types proposed to  

use in the tables are most commonly used data types likes both types of integers (signed 

and unsigned), exact decimal and floating point, strings with variable and fixed length 

and 8 character. Furthermore, it is the authors supposed that the database table could be 

queried by application that they called benchmark that can be one large or set of smaller 

programs [6]. The single-user benchmark module tests selection, joining, projection, 

aggregation and updating queries and utilities for data loading and database structuring 

[6]. The goal of this module is to check compatibility with basic required DBMS 

functionality described in ANSI SQL 2 Standard [6].  

The AS3AP based benchmark suit can be used in evaluation of DBMS data processing 

performance criteria for OLTP load model. Such benchmark set is the Open Source 

Database Benchmark (OSDB) project that is successor of one of the Compaq Computer 

Corporation projects [7] and based on AS3AP benchmark. The OSDB is published under 

GNU General Public License version 2.0 (GPLv2) .The OSDB project is intended to be 

database and system independent benchmark facilitates performance analyzing of 

different DBMS using same set of SQL queries. This goal was achieved by separation of 

database access mechanism and benchmark tests. The project is written mainly in C++ 

that simplifies significantly usage of native C libraries of DBMS-s for development 

purposes. The first version of the project accessible for download version 0.4 was 

published on January 20 2001. The version used in this work  (version 0.90 ) was 

uploaded on 22 December 2010. This version contains code for accessing and testing 

MySQL DBMS family. The architecture of the OSDB application is presented in UML 

class diagram below (Figure 3).  



31 

 

Figure 3. OSDB project class diagram. 

On the top of the application hierarchy is OSDB class that instantiates main 

supplementary classes Timer, Database, DataPopulator and array of the objects belonging 

to BenchmarkMode class. The instance of Timer class is used to measure time elapsed 

for the benchmarks. The purpose of the Database class is to create an interface to one of 

the DBMS that encapsulates DBMS specific interaction mechanism. For instance, the 

Database class creates the connection to DBMS, then the database with name “osdb” in 

the DBMS and five tables further data operations. The DataPopulator is the class that gets 

Database class object by reference and populates it with data from five files located in the 

file system. This data-loading feature is implemented in the Database class and the 

implementation is distinct in different DBMS-s. The BenchmarkMode is an abstract class 

used to instantiate objects of SingleUserMode wrapper class that is responsible for 



32 

running benchmarks by using instance of AS3APSuite class. The benchmarks are set of 

classes to hold SQL query string; every class contains the only string. The AS3APSuite 

class loads the query strings and run the tests. 

The database structure used in the OSDB project is based on AS3AP recommendations 

[6]. It consists of five tables with already known names uniques, hundred, tenpct, updates 

and tiny. 

Table 9. OSDB database used data types and names. 

Nr. Name Type 

1 col_key   int(11) 

2 col_int int(11) 

3 col_ signed int(11) 

4 col_float float 

5 col_double float 

6 col_decim decimal(18,2) 

7 col_date char(20) 

8 col_code char(10) 

9 col_name char(20) 

10 col_address varchar(80) 

 

The tables were filled with data from CSV files. The tables have the next numbers of 

rows:  

Table 10. Tables and their numbers of rows 

Nr. Table name Number of rows 

1 hundred   100902 

2 Tenpct 104809 

3 Tiny 1 

4 Uniques 86995 

5 Updates 113893 

 

The listing of used OSDB benchmark queries resides in Appendix1.   



33 

2.3.  Method  for evaluation the power efficiency of  DBMS  

For this type of evaluation, it is proposed to use power quality analyzer KYORITSU KEW 

6310 (Figure 4) to measure consumed power. The analyzer is able to lead accumulative 

measurement of the power consumed within certain interim and store the measurement 

result to SD memory card. 

To evaluate the power efficiency it is necessary to run benchmark with every of three 

DBMS and simultaneously to record power consumption. The test have to count the 

number of performed transactions. It is suggested to that unit for the evaluation can be 

named as Transaction-per-Watt and overall value can be calculate by equation (2). 

µ =
𝑁 𝑡𝑟

𝑡𝑃𝑐
         (2) 

Where µ is the power efficiency, Ntr is the number of transactions performed by 

benchmark with DBMS during certain period of time t in hours and Pc is the consumed 

power in Wh. 

 

Figure 4. The power analyzer KEW 6310 records power consumption of the testing system. 

The power analyzer KYORITSU KEW 6310 was connected using the wiring scheme 

(Figure 5) supplied by the manufacturer. The correct position of the power clamp sensor 

(Figure 7) should to be found empirically with the goal to avoid getting negative measured 

values. 



34 

 

Figure 5. Wiring method for single-phase 2-wire (1ch) of KYORITSU KEW 6310. 

 

 

Figure 6. The clamp power sensor of KYORITSU KEW 6310. 

The power clamp sensor measures the current and the other two inputs are used for  

voltage measurements (Figure 6). All sensors need to be connected according to 

manufacturer connection diagram (Figure 8) with input channels defined on Figure 7.  

The wiring implemented in this work is suitable for single-phase measurements, but using 

additional input channels it is possible to measure more complicated for example three-

phase 3- or 4-wire (with separate neutral) power supplying schemas.  



35 

 

Figure 7. The voltage inputs plugged into the outlet and the current sensor. 

 

 

Figure 8. Connection diagram of KYORITSU KEW 6310. 

 

 



36 

2.4. Evaluation of DBMS 

In order to proof the viability of the proposed methodology of the criteria evaluation it is 

highly necessary to create experimental platform consisting of hardware, OS and installed 

DBMS software.  

For this purpose three most popular open source DBMS – MariaDB (MySQL fork), 

PostgreSQL and Firebird SQL have been selected to examine and compare using AHP 

methodology. These three DBMS are open source software, available on most popular 

server OS platform (Linux, BSD, UNIX and Windows) and support SMP. Linux has been 

selected as OS of the experimental platform because this the free open source OS is 

popular on the server market. The architecture of the experimental platform is described 

in Appendix 2. 

2.4.1. Available management tools 

All three DBMSs have been examined in the work with a set of CLI and GUI utilities 

provided by DBMS developers. The task of this chapter to figure out which DBMS is 

provided most wide set of tools than can used for database optimization and 

troubleshooting. In the framework of the investigation, the open source tools are preferred 

therefore as was already mentioned above, a license fee paying can be out of investment 

focus for Estonian SME, where even hundreds of euros can play crucial role in market 

competition.  

FirebirdSQL server has free of charge multiplatform administration utility FlameRobin 

tool [59]. The utility has user-friendly GUI that functionally is very similar with pgAdmin 

III [60] - the GUI administration tool of PostgreSQL. Both utility are able to create, drop 

database and its objects (tables, views, triggers, functions, procedures etc.), backup and 

restore databases. However, the functionality of pgAdmin III is wider because it is able 

to generate server statistics reports, edit configuration files (postgresql.conf, pg_hba.conf, 

.pgpass). MariaDB is provided with phpMyAdmin [61] web-based administration utility 

that can be implemented for all described above tasks and can be compared with them 

and phpPgAdmin[62]  - similar web-based administration utility for PostgreSQL. Utility 

phpMyAdmin allows to monitor database load as well. The lack of all these utilities is 

inability to be implemented for database analyzing and optimization purposes.  



37 

There are several tools available for FirebirdSQL for optimization, monitoring and tracing 

- IBSurgeon Enterprise Pack [63], FB TraceManager [64], Sinática Monitor [65]. All of 

them are powerful but commercial software. The only open source tool Easy-IP [66] is 

limited by Windows platform has same functionality that FlameRobin has. PostgreSQL 

has impressive list of both open source and proprietary GUI modelling and administration 

tools [67]. Log scripts analyzer tool pgFouine [68] represents optimization tools 

developed for PostgreSQL. The tool is able to find out slowly executed queries thereby 

assisting to eliminate bottlenecks of application performance. PostgreSQL is provided 

with powerful built-in functionality for optimization and monitoring that are thoroughly 

documented and freely available [69, 70]. Perhaps this is the reason why number of 

optimization tools for this DBMS is small. There are companies on the market offering 

PostgreSQL optimization and consulting services [71, 72], but there is no out-of-box 

product is able to tune PostgreSQL according to customer needs automatically. MariaDB 

has the largest list of free tools available for optimization and monitoring. Already 

mentioned phpMyAdmin displays load in real-time, powerful free innotop CLI utility is 

able to monitor in up to eleven modes [73]. Percona Toolkit [74] – the successor of 

mentioned above Maatkit, is versatile set of CLI tools (32 Perl scripts) can be used by 

DBA for efficient database administration. MySQLTuner [75] and MySQL Tuning 

Primer [76] are both free scripts that can be implemented for database tuning covering 

basic performance issues like slow queries, maximum connection number, buffers and 

cache. From proprietary software, it is necessary to mention popular TOAD [77] and 

Navicat [78] administration and development GUI tools. 

The proposed matrix is cited below (Table 11). 

Table 11. The comparison matrix of management tools. 

 FirebirdSQL MariaDB PostgreSQL 

FirebirdSQL 1 1/5 1/3 

MariaDB 5 1 3 

PostgreSQL 3 1/3 1 

 



38 

2.4.2. Documentation and community 

The more completely a system is documented the less time is spent by personnel to find 

useful information in downtime. As consequence, the less customers remain unsatisfied 

and products unshipped. The community can play crucial role for technical support of 

open source DBMSs. To clarify both definitions one can suggest that documentation in 

this context is technical information provided by main developer team or official site and 

community is association of independent technical specialists and enthusiasts is able to 

help to solve a problem by their competent advices.  

FirebirdSQL Server is definitely most untypical case from technical documentation style. 

The DBMS available with four possible types of architectures with three possible dialects 

of supported SQL has the official site that provides information in the form of 

unstructured downloadable PDF files at several languages [79].  A search of any 

information suggests downloading of major part of available materials and attentive 

research.  On the contrary, the documentation of PostgreSQL [80] is well structured by 

versions and topics and has context search allowing finding required information quickly. 

It is also possible to download manuals PDF with or without user comments in English, 

French and Japanese. Both PostgreSQL and FirebirdSQL official sites have FAQ section. 

MariaDB documentation [81], it less structured than PostgreSQL (no version information 

provided) one but it better than FirebirdSQL documentation approach. Besides, many 

issues of MariaDB are compatible with MySQL, so if any information is missing in the 

documentation provided on the official MariaDB site, it is possible to find it from MySQL 

[82] documentation. Nevertheless, there is a potential risk of mismatching between 

MySQL and MariaDB supported features caused by growing furcation between the 

original (MySQL) and the fork (MariaDB). Thus, let us assume that FirebirdSQL is the 

least documented, MariaDB is the moderate documented and PostgreSQL is the most 

documented in this set of DBMSs.   

The more popular DBMS has definitely bigger community. In November 2014 in the 

complete DBMS ranking FirebirdSQL Server on 26-th place and MariaDB on 27-th place 

[83], in relational only DBMS ranking FirebirdSQL Server on 15-th place and MariaDB 

on 16-th place [84]. PostgreSQL is in both ranking tables on 4-th place. However, as 

already suggested before MariaDB has very much in common with MySQL that is on the 

second place in both ranking. There is a lot of useful information about MariaDB on the 



39 

MySQL Performance Blog sponsored by Percona LLC [85] and Ronald Bradford’s site 

Effective MySQL [86] who visited Tallinn on 27 August 2014 to meet with Estonian 

MySQL community.   Ronald Bradford is Oracle ACE director and author of several 

books about effective implementation of MySQL. So taking into the account the big 

community of MySQL users and developers it is proposed considering  MariaDB 

supportive community is bigger than PostgreSQL one. FirebirdSQL can be supposed as 

having the least community comparing with two others DBMS. 

Thereby, PostgreSQL and MariaDB are estimated as equal in this section because first 

one is better documented and second can find better community support .The assessments 

of DBMS from documentation and community point of view are proposed below (Table 

12). 

Table 12. The comparison matrix of documentation and community. 

 FirebirdSQL MariaDB PostgreSQL 

FirebirdSQL 1 1/3 1/3 

MariaDB 3 1 1 

PostgreSQL 3 1 1 

2.4.3. Mobility 

In the beginning of Chapter 2.4 all three DBMSs were selected due to their mobility. Then 

under the definition of mobility meant platform independence. In this chapter, the DBMSs 

have been examined also from used disk sizes and deployment point of view. 

In order to calculate occupied disk space for every DBMS has been created and populated 

already described OSDB database. All three DBMSs have been filled from the same 5 

CSV files.  

The OSDB database in FirebirdSQL is represented as one file with size 55.11 MB. Same 

database as sum of five tables with indices takes in PostgreSQL 76.2 MB and in MariaDB 

88.2 MB. Consequently, FirebirdSQL has smallest footprint among the DBMSs. The 

essential difference between FirebirdSQL and the rest has been achieved due to the fact 



40 

that osdb database in this DBMS does not contain indices at all. However, even without 

indices PostgreSQL has total database size 66.1 MB and MariaDB has 74.1 MB database. 

However, database from DBMS cannot be just moved to the other system, it should be 

initially backed up. All three DBMSs can be backed up using appropriate backup utilities: 

pg_dump in PostgreSQL [46] and mysqldump for MariaDB [47], gbak for FirebirdSQL 

[8]. Then the dump files can be moved to other system and imported using psql 

(PostgreSQL) and mysql (MariaDB) DBMS interactive terminals, or already mentioned 

gbak utility for FirebirdSQL. Thus pg_dump has produced dump file that has been 

compressed to 32 MB using –Fc flags of the utility (Fig. 9). 

 

Figure 9. Creating PostgreSQL database dump 

After creation FirebirdSQL and MariaDB dump files and compression them using gzip 

the least archived dump size has been achieved in case of MariaDB. The compressed 

dump of MariaDB myosdb.sql.gz has 23831 KB and the analog file in FirebirdSQL has 

24989 KB (Fig. 10). 

 

Figure 10. The dump files' sizes 

The obvious plus of mysqldump utility is also remarkable number of available options, 

there are 89 command line arguments, allowing the most flexible way of making back up. 

The minus is this is the least user-friendly utility amid competitors that requires higher 

professional skills. The essential disadvantage of FirebirdSQL is that ability to migrate 

from this DBMS to others, for example PostgreSQL or MariaDB, is limited. This gbak 

utility converts database to proprietary FirebirdSQL format that is not set of metadata and 



41 

SQL sentences like PostgreSQL and MariaDB dumps [48]. Few third-party tools like free 

FBExport [49] or commercial DBConvert [50] are able to assist in the migration from 

FirebirdSQL to other DBMS.  The largest number of possibilities to switch from one 

DBMS to another is supplied for MariaDB. The mysqldump has as one of the command 

line arguments option “compatible” that can make dump more compatible with 

PostgreSQL database format [51]. Thus using this option and set of Perl scripts it is 

possible to convert existing MariaDB database dump to format that is readable for 

PostgreSQL. There are also numerous CLI and GUI tools, one of them is MySQL 

Workbench [52] that can execute migration from MariaDB to other DBMS formats. The 

same tool can be used to migrate from PostgreSQL to MariaDB (MySQL) database. The 

total list of available tools to migrate from PostgreSQL is significantly shorter. 

Nevertheless, because PostgreSQL dump as already mentioned consist of SQL 

commands and metadata it can be read using standard text processors and utilities like 

cat, less, tail or head in Linux with latter structural analyze and manual import. 

Taking into the account that MariaDB is most feature-rich with the least compressed 

dump size it is proposed to concern this DBMS as most mobile between three participants. 

PostgreSQL has less options then MariaDB to dump and biggest file size, but with open 

file format. Therefore, the second place in the mobility examination belongs to this 

DBMS. FirebirdSQL with its non-readable dump file format and limited number, 

comparing to two others, of migration possibilities is on the last place (Table 13). 

Table 13. Mobility comparison matrix. 

 FirebirdSQL MariaDB PostgreSQL 

FirebirdSQL 1 1/5 1/3 

MariaDB 5 1 3 

PostgreSQL 3 1/3 1 

 

 



42 

2.4.4. Reliability 

As was already mentioned above under reliability of DBMS is usually meant an 

assessment composed of security, backup and restoring issues. DBMS security concerns 

authentication, authorization, data confidentiality and integrity.  

However, in the beginning the relevance to ACID principled of the DBMSs need to be 

concerned. All three DBMS have sufficient MVCC support [ref 8]. Nevertheless, 

MariaDB as representative of MySQL family DBMS ha the only transactional data 

storage engine InnoDB.  The predecessor of Firebird InterBase was first DMBS where 

the MVCC was realized [12]. PostgreSQL is fully transactional DBMS with its own 

implementation of MVCC. All three DBMSs support two-phase commit protocol [18], 

including MariaDB InnoDB, and regarding to transaction durability can be assessed as 

equal.  

Authentication mechanism of PostgreSQL is most flexible and complicated one among 

these three DBMSs. The three components of authentication are host, name and method 

of authentication.  The combination of these components defines how different users from 

different hosts can connect to server and what identification methods they have to use [9]. 

The users can be allowed to connect using passwords and encrypted passwords, Kerberos 

identification system, identification card. It is possible as well to explicitly connect 

without password identification or reject any connection from certain host. PostgreSQL 

supports user groups for facilitation user rights management. PostgreSQL has integrated 

LDAP support that can be implemented authentication purposes. Authentication 

mechanism of MariaDB based also on host and user names without definition of access 

method. The only way to identify the user is to provide the user’s password. There is no 

group support mechanism in MariaDB. LDAP support provided by PAM (Pluggable 

Authentication Modules) that included in installation package since version 5.2.10 [11].  

This is the meaningful difference with MySQL that does not have integrated support of 

LDAP. The simplest authentication way is applied in FirebirdSQL server where users 

identified by user name and password. The password has maximum length eight bytes 

that is definitely unsufficient. There is one more significant security fault - in Posix 

systems embedded clients can at least see security database in case of Classic Server 

configuration [1]. 



43 

Authorization in both PostgreSQL and MariaDB is concentrated to maintain two 

substantial aspects of this process. The first is ability to guaranty access to specific object 

of a database like table, procedure, trigger and even column using standard SQL 

GRANT/REVOKE statements. The second one covers database administrative and 

maintenance tasks like creating databases and analyzing tables that is permitted by default 

to DBA. In case of FirebirdSQL server newly created user is able to create his/her own 

database object and populate it with tables, procedures and so on. In this work this way 

was successfully tested, in other words new user created in FlameRobin FirebirdSQL 

administration tool, then logged in using isql-fb utility and new database and table was 

created.  In two others DBMSs the privileges to create database are not implicitly 

permitted, that is benefit from security point of view. FirebirdSQL has standard 

GRANT/REVOKE procedures that can be applied to modify the rights of user. In 

addition, FirebirdSQL supports UNIX/Linux groups and accounts. 

PostgreSQL has built in support of SSL cryptographic protocol that allows establishing 

secure connections, it is possible to implement SSH and Stunnel protocols for channel 

encryption. MariaDB has also support of SSL that is disabled by default, but can be 

activated by change “have_ssl” variable [16]. There is also possibility to use SSH and 

Stunnel protocols to encrypt channel for MariaDB. The built in support of any encryption 

protocol is missing in FirebirdSQL [17]. Developers propose to use third-party ZeebeDee 

software that realizes its own protocol to create encrypted channel or standard SSH-

compatible tools [17]. 

The backup and restoration utility of FirebirdSQL gback is able to back up without 

interruption of the database work [8]. The utility has impressive number of available 

options for both backup and restoration. There is another administrative utility supplied 

with DBMS gfix that intended to use for database fixing, sweeping (garbage collection) 

and other tasks. Percona XtraBackup tool is free tool for MariaDB, MySQL and Percona 

Server hot backup [20]. PostgreSQL has supplied with DBMS utilities that can be used 

for hot backup (pg_dump) and restoration (pg_restore) [9]. Accordingly, all three DBMSs 

have equal capabilities for backup and restoration. However, only two of them – 

PostgreSQL (WAL system) and MariaDB (with InnoDB storage engine) have automatic 

recovery.  Automatic consistency check and recovery for FirebirdSQL is provided by 

third-party software [8].  



44 

Summarizing the comparison of the DBMSs’ reliability it is necessary to mention that 

only in transaction durability research all three systems were represented with certain 

degree of equality (for deeper and more comprehensive analysis all three MVCC 

mechanisms should be tested).  In others components of assessment the leading position 

belongs to PostgreSQL, MariaDB is on the second and FirebirdSQL is on the last third 

position.  

Consequently, the DBMS reliability comparison matrix can be filled as following (Table 

14). 

Table 14. Reliability comparison matrix. 

 FirebirdSQL MariaDB PostgreSQL 

FirebirdSQL 1 1/3 1/5 

MariaDB 3 1 1/3 

PostgreSQL 5 3 1 

2.4.5. Functionality 

All three examined DBMSs provide high level of functionality required for SME, yet 

there are differences. The DBMSs have triggers can be fired on INSERT, UPDATE and 

DELETE operation events (defined in SQL standard) with BEFORE and AFTER timing 

preconditions. In addition, PostgreSQL supports more operations like TRUNCATE 

commands but only FOR EACH statement [21]. If there are constraints like foreign key 

are defined by CREATE TABLE operation, PostgreSQL produces constraint triggers. 

The additional type of supported preconditions supported by PostgreSQL is INSTEAD 

OFF. In PostgreSQL triggers and stored procedures can be written in PL/pgSQL PL that 

is similar to Oracle PL/SQL. A trigger in PostgreSQL fires trigger function that can be 

written on PL/pgSQL or C or other supported PL. There is a core of PL included in 

standard PostgreSQL distribution. It consist of PL/pgSQL, Pl/Perl, PL/Tcl, and PL/Perl 

[22]. Besides, seven PL language are developed independently for PostgreSQL: PL/Java, 

PL/PHP, PL/Py, PL/R, PL/Ruby, PL/Scheme, and PL/sh [23]. Triggers in PostgreSQL 

can be applied to different table and even view columns. On the contrary, MariaDB 

triggers have substantially more limited functionality originated from MySQL. For 



45 

example, triggers cannot be fired by foreign key actions [24] that means if there is a 

trigger on child table and the table has been modified due to CASCADE rules (DELETE 

OR UPDATE) the trigger misses this event and child table remains unmodified. 

Moreover, only SQL statements can fire the trigger. In other words, if API 

implementation does not imply direct transmitting of SQL statements the trigger misses 

table modification [25]. This lack of functionality can lead to inconsistence of data and 

can also be considered in previous chapter 2.5.4. as reliability gap.  The next limitation is 

the limited number of allowed triggers in table for each type of timing/events, thus if a 

table already has a trigger fired with combination AFTER UPDATE a new trigger with 

same combination regarding to the same table cannot be added. MariaDB triggers cannot 

be applied to specific columns. Meantime triggers of PostgreSQL activate UDF, 

MariaDB triggers react only by mix of SQL commands and built in functions like 

SYSDATE. FirebirdSQL Server does not have MariaDB trigger limitations. For instance, 

there is no limitation of trigger type number in one table [26]. Moreover, triggers in 

FirebirdSQL can be created to react on database events. The events are CONNECT, 

DISCONNECT, TRANSACTION START, TRANSACTION COMMIT, 

TRANSACTION ROLBACK [27]. In both PostgreSQL and FirebirdSQL have multiple 

event statement composed by OR statements that can fire triggers. MariaDB trigger can 

be fired by one only event. Stored procedures can be written in FirebirdSQL with PSQL 

- so-called procedural SQL [8], C and Pascal can be used to create UDFs [28].  Stored 

procedures of MariaDB as MySQL fork are based syntax is defined in SQL: 2003 [29].  

MariaDB supports writing of UDFs in C and C++, but it is possible to implement Perl as 

well [30].  Thus, the most functional DBMS in the scope of triggers, stored procedures 

and UDF is PostgreSQL. MariaDB could be considered as less functional in this context 

and FirebirdSQL is between them due to its limited support of PLs. 

All three DBMSs support different client APIs : C, C++, ODBC, JDBC, Python, Perl, 

Ruby, PHP, Shell and .NET. Therefore, from supported API point of view it is proposed 

to concern all three as equal to each other. 

In practice, during working on osdb-fb project (OSDB version for FirebirdSQL) the 

serious lack of functionality has been faced. Meanwhile PostgreSQL and MariaDB have 

built in capabilities to import large volumes of data, in FirebirdSQL, large text or CSV 

files are proposed to import from external file [8].  



46 

 

Figure 11. Creating table in FirebirdSQL using external file. 

This import can be executed using only fixed length of columns (Fig. 11), so if a file 

contains data with variable length the data can be shifted to neighbor column (Fig. 12).  

 

Figure 12. Initial CSV file and imported table. 

This was the reason to use C++ boost library to add custom import method to the project. 

The method has been described in Appendix 2 “Architecture of experimental platform”.  

In addition, during benchmarking of FirebirdSQL “bulk_append” test with SQL query 

"INSERT INTO updates SELECT * FROM updates" was not finished even after 12 hours 

of computation. The AS3AP recommends that every test have to be finished within 12 



47 

hours [6]. That is the reason why this “bulk_append” test considered as a failed for 

FirebirdSQL and has been further excluded from overall test sequence.  

Moreover, FirebirdSQL is not able to create hashed table indexes. For this reason, the 

next benchmark tests cannot be performed for this DBMS: 

1. “create_idx_hundred_code_h”, 

2.  “create_idx_tenpct_code_h“,  

3. “create_idx_tenpct_code_h”, 

4.  “create_idx_tenpct_name_h”, 

5.  “create_idx_uniques_code_h”, 

6.  “create_idx_updates_code_h”  

All described above shortcomings discovered due to benchmarking creation should be 

kept in mind during DBMSs’ comparing. As result proposed table is represented below 

(Table 15). 

Table 15. Functionality comparison matrix. 

 FirebirdSQL MariaDB PostgreSQL 

FirebirdSQL 1 1/3 1/5 

MariaDB 3 1 1/3 

PostgreSQL 5 3 1 

2.4.6. Scalability 

Meanwhile MariaDB 10.1 demonstrates better performance than MySQL [31] that is able 

to support up to 48 processor cores since version 5.6 [32], PostgreSQL supports up to 64 

cores from version 9.2 [33]. Both MariaDB and PostgreSQL have built-in replication 

mechanisms and number of open source solutions that allow efficient distributing and 

balancing the load.  Introduced in version 9.0 of PostgreSQL Streaming Replication (SR) 

named features supplies WAL log records from master server to slave (or standby) servers 

[34]. This principle is very similar to replication mechanism implemented in MySQL (and 

what MariaDB uses) since version 5.1 [35].  Before replication in PostgreSQL was 



48 

realized on triggers (Slony) and statement-based middleware (Pgpool-II) and was 

significantly slower than MySQL (and MariaDB) had [36].  Now PostgreSQL and 

MariaDB have equal horizontal scalability with warm and hot standby servers, with 

different topology options including multi-master support - with MariaDB 10.0 [37] and 

Postgres-XC [38]. FirebirdSQL does not have any built-in replication support, but there 

are third-party tools available for this purpose [39].  The most advanced of them 

SymmetricDS is open source platform independent tool that supports multi-master 

replication for number of DBMSs including FirebirdSQL, MariaDB and PostgreSQL 

[40]. This tool is trigger-based and can be used for asynchronous replication only. Firebird 

Classic and SuperClassic versions support SMP [41, 42], so the DMBS can be scaled up 

although exact data how many processor cores can be supported is not available.  

All three DBMSs have no restriction concerning maximum database size. MariaDB has 

maximum table size 64 TB in case of InnoDB storage engine [43]; meanwhile 

PostgreSQL [44] and FirebirdSQL [45] have maximum table size 32 TB. Nevertheless, 

PostgreSQL have the largest maximum row size 1.6 TB [44] comparing to the rest – both 

MariaDB (InnoDB) and FirebirdSQL have 64 KB maximum row size [43, 45]. 

In a scope of scalability issue FirebirdSQL is slightly behind the rest of examined 

DBMSs. PostgreSQL and MariaDB can be estimated as equal. The results of assessment 

are in Table 16. 

Table 16. Scalability comparison matrix. 

 FirebirdSQL MariaDB PostgreSQL 

FirebirdSQL 1 1/3 1/3 

MariaDB 3 1 1 

PostgreSQL 3 1 1 

 

 

 

 



49 

2.4.7. Performance 

The results of OSDB benchmarking presented in Table 15. demonstrate the time period 

spent for every test. The architecture of the benchmarking have been described previously 

in Chapter 2.2. The expressions of the test queries reside in Appendix 1.  

As already mentioned in Chapter 2.5.5, that some of the tests are not available in case of 

FirebirdSQL DBMS due to its functional dearth.  

It was already mentioned in Chapter 2.5.5 that FirebirdSQL has no standard functions to 

upload information from text file into the database table and for this purposes this feature 

has been implemented on the client side. The implementation has led to drastically 

enlarged “Dataset load” test time with its more than 448 seconds spent to populate the 

tables. As was mentioned in 2.5.5 that some other tests marked as failed and N/A have 

been failed and unavailable for FirebirdSQL. 

Table 17. The performance testing results (seconds) 

Test name PostgreSQL 

9.2.7  

 

MariaDB 

5.5.33 

 

FirebirdSQL 2.5.2 

 

Database creation 0.842518 0.00269389 0.185572 

Table creation 0.0512509 0.888244 2.71767 

Dataset load 2.48202 20.3042 448.251 

agg_create_view 0.00862002 0.143817 0.390566 

agg_func 0.0666161 0.113545 0.0581758 

agg_info_retrieval 0.034838 0.0867929 0.049927 

agg_scal 0.034066 0.048306 0.0332489 

agg_subtotal_report 0.214588 18.8833 0.0332561 

agg_total_report 0.197711 18.8765 0.016845 

bulk_append 0.478797 3.2737 failed 

bulk_delete 0.04476 0.245332 0.0994558 

bulk_modify 0.220317 0.242565 9.75764 

bulk_save 0.0539119 0.112962 0.0169928 

count_tuples 0.052794 0.110906 0.0165181 

create_idx_hundred_code_h 0.177024 1.1546 N/A 

create_idx_tenpct_code_h 0.183337 1.30896 N/A 



50 

Test name PostgreSQL 

9.2.7  

 

MariaDB 

5.5.33 

 

FirebirdSQL 2.5.2 

 

create_idx_tenpct_name_h 0.533135 1.91246 N/A 

create_idx_uniques_code_h 0.183253 0.749002 N/A 

create_idx_updates_code_h 0.374942 1.86958 N/A 

join_2 0.05656 0.131412 0.23788 

join_2_cl 0.0199289 0.116559 0.182784 

join_3_cl 0.0207541 0.119782 0.266508 

join_3_ncl 0.000867128 0.000396013 0.291473 

agg_func 0.0203559 0.111908 9.41249 

join_4_ncl 0.000828981 0.00039506 0.374785 

proj_100 4.09898 0.140239 0.254043 

proj_10_pct 0.11451 0.116066 0.138842 

sel_100_cl 0.0656519 0.153201 0.0153391 

sel_100_ncl 0.043731 0.151931 0.0164399 

sel_10pct_ncl 0.000550032 0.000246048 0.0166061 

sel_1_cl 0.0375061 0.149212 0.0165019 

sel_variable_select_high 0.0839369 0.109101 0.01653 

sel_variable_select_low 0.0221109 0.075038 0.0166512 

table_scan 0.0216441 0.104612 0.0165169 

upd_append_duplicate 0.0233419 0.000787973 0.132842 

upd_app_t_end 0.00815701 7.82013e-05 0.116557 

upd_app_t_mid 0.00829101 0.00012207 0.199832 

upd_del_t_end 0.037215 0.22138 0.116531 

upd_del_t_mid 0.0543849 0.228939 0.133225 

upd_integrity_test 0.0250139 0.1102 0.0998979 

upd_mod_t_cod 0.0381589 0.222935 0.10823 

upd_mod_t_end 0.0449889 0.221459 0.0999041 

upd_mod_t_int 0.038198 0.222496 0.108262 

upd_mod_t_mid 0.0378802 0.222431 0.0998709 

upd_remove_duplicate 0.0403731 0.222935 0.099906 

 



51 

The Appendix 4 contains the results benchmarking tests and results deviation table. In the 

table, the best result of a test is presented with green, the worst with red and moderate 

with default black color. 

According to these results, the best performance has been undoubtedly achieved in case 

of PostgreSQL benchmarking. This DBMS has demonstrated the best results in 27 and 

the worst only in 2 benchmarks. MariaDB DBMS has not failed any test from the OSDB 

benchmark suit, but it has shown only 8 (10 in case of FirebirdSQL) the best results and 

22 the worst results (21 FirebirdSQL). Nevertheless, tremendous difference in dataset 

load test, caused by absence in Firebird native method to load big data array directly to 

table, gives the basement to assume that MariaDB has better performance than 

FirebirdSQL Server does. The results of performance comparison presented below (Table 

20). 

Table 18. Performance comparison matrix. 

 FirebirdSQL MariaDB PostgreSQL 

FirebirdSQL 1 1/3 1/5 

MariaDB 3 1 1/3 

PostgreSQL 5 3 1 

 

All program code (including original osdb-0.90) created in the framework of this thesis 

reside on the attached disk. 

2.4.8. Power efficiency  

In order to evaluate power efficiency of DBMSs it is assumed that every DBMS should 

execute same benchmarks during one hour.  For this purposes some benchmark tests have 

been excluded from MariaDB and PostgreSQL because FirebirdSQL is not able to run 

these tests. Thereby, the number (37 benchmark tests) and tests themselves are same for 

all three DBMSs. Code of all three projects has been also modified, now all three DBMSs 

don’t create, populate and drop databases and code includes only the tests compatible 

with FirebirdSQL Server’s functionality. 



52 

 

Figure 13.  Comparison of power consumption. 

In PostgreSQL hour operation test measured by KYORITSU KEW 6310 analyzer power 

consumption is 98.469 W (all data of power measurement resides in Appendix 5). The 

number of executed transactions is 93573. According to proposed equation (2) the power 

efficiency of PostgreSQL DBMS on the current experimental system is: 

µ =
𝑁 𝑡𝑟

𝑡𝑃𝑐
 =  

  93573

1∗98.469
=  950.279 (TpW)                                                                    (3) 

The results of one-hour-benchmarking of MariaDB demonstrate the number of executed 

transactions is 200466. During the benchmarking, the experimental system consumed 

98.6856 W. Thereby, the power efficiency of MariaDB can be evaluated as: 

µ =
𝑁 𝑡𝑟

𝑡𝑃𝑐
 =  

  200466

1∗98.6856 
=  2031.360 (TpW)                                                                     (4) 

The one-hour-benchmarking of FirebirdSQL has discovered the least number of executed 

transactions between all tests - 33041. The system consumed 86.1914 W. Thus, the 

evaluated power efficiency of FirebirdSQL: 



53 

µ =
𝑁 𝑡𝑟

𝑡𝑃𝑐
 =  

33041

1∗86.1914
=  383.346 (TpW)                                                                    (5) 

 

The power consumption of idle system has been measured and compared with three 

executed benchmarks (Figure 13). 

The comparison table (Table 21) depicts superiority of MariaDB over the competitors in 

area of power efficiency. 

Table 19. Power efficiency comparison matrix. 

 FirebirdSQL MariaDB PostgreSQL 

FirebirdSQL 1 1/7 1/5 

MariaDB 7 1 3 

PostgreSQL 5 1/3 1 

 

 



54 

3. Synthesis of the methodology 

3.1.  Calculation 

In this part of work, it is proposed to use third method of normalization described in 

Chapter 1.5 to calculate the priority values of the matrixes.   

The sums of Table 13 columns are 9.000 (first column), 1.533 and 4.333. After dividing 

the values in cells by appropriate sum, the normalized matrix has been calculated (Table 

20). 

Table 20. The normalized matrix of management tools. 

 FirebirdSQL MariaDB PostgreSQL 

FirebirdSQL 0.111 0.130 0.077 

MariaDB 0.556 0.652 0.692 

PostgreSQL 0.333 0.217 0.231 

 

The average value of a row represents the priority value. Thus, the FirebirdSQL Server’s 

priority value is 0.106, the priority of MariaDB is 0.633 and PostgreSQL has 0.260 as 

priority value. 

The column sums of Table 14 are 7.000, 2.333 and 2.333. The normalized table has been 

calculated in the same way (Table 21).  

Table 21. The normalized matrix of documentation and community. 

 FirebirdSQL MariaDB PostgreSQL 

FirebirdSQL 0.143 0.143 0.143 

MariaDB 0.429 0.429 0.429 

PostgreSQL 0.429 0.429 0.429 

 



55 

The priorities are 0.143 (FirebirdSQL), 0.429 both for MariaDB and PostgreSQL. 

The column sums of Table 15 are 9.000, 1.533 and 4.333. 

Table 22. The normalized mobility matrix. 

 FirebirdSQL MariaDB PostgreSQL 

FirebirdSQL 0.111 0.130 0.077 

MariaDB 0.556 0.652 0.692 

PostgreSQL 0.333 0.217 0.231 

 

Consequently, the priorities are 0.106 (FirebirdSQL), 0.633 (MariaDB) and 0.260 

(PostgreSQL). 

The column sums of Table 16 are 9.000, 4.333 and 1.533. 

Table 23. The normalized reliability comparison matrix. 

 FirebirdSQL MariaDB PostgreSQL 

FirebirdSQL 0.111 0.077 0.130 

MariaDB 0.333 0.231 0.217 

PostgreSQL 0.556 0.692 0.652 

 

The calculated priorities are 0.106 (FirebirdSQL), 0.260 (MariaDB) and 0.633 

(PostgreSQL). 

The results of functionality comparison are identical with the results reliability 

comparison, it means that using the same normalization method the normalized matrix is 

equal with reliability one and as result the priority vector are the same: 0.106 

(FirebirdSQL), 0.260 (MariaDB), 0.633 (PostgreSQL). 

 



56 

Using the same method for three the rest evaluation criteria have been calculated the next 

priorities for them. 

Table 24. The normalized scalability matrix. 

 FirebirdSQL MariaDB PostgreSQL 

FirebirdSQL 0.143 0.143 0.143 

MariaDB 0.429 0.429 0.429 

PostgreSQL 0.429 0.429 0.429 

 

The scalability priorities are 0.143 (FirebirdSQL), 0.429 (both MariaDB and 

PostgreSQL). 

Table 25. The normalized performance matrix. 

 FirebirdSQL MariaDB PostgreSQL 

FirebirdSQL 0.111 0.130 0.077 

MariaDB 0.556 0.652 0.692 

PostgreSQL 0.333 0.217 0.231 

 

The performance priorities are 0.106 (FirebirdSQL), 0.633 (MariaDB) and 0.260 

(PostgreSQL). 

Table 26. The normalized matrix of power efficiency. 

 FirebirdSQL MariaDB PostgreSQL 

FirebirdSQL 0.077 0.097 0.048 

MariaDB 0.538 0.677 0.714 

PostgreSQL 0.385 0.226 0.238 



57 

The priorities of power efficiency are 0.074 (FirebirdSQL), 0.643 (MariaDB) and 0.283 

(PostgreSQL). 

As the result the priorities can be collected to the matrix depicted in Table 29 (used 

described in Table 2).  

Table 27. The priorities of the criteria. 

 Tools Docs Mob Rel Fun Scl Perf Power 

FirebirdSQL 0.106 0.143 0.106 0.106 0.106 0.143 0.106 0.074 

MariaDB 0.633 0.429 0.633 0.260 0.260 0.429 0.260 0.643 

PostgreSQL 0.260 0.429 0.260 0.633 0.633 0.429 0.633 0.283 

 

This matrix has been multiplied with the vector of priorities (Table 7) according to 

mathematical rules of multiplying matrices. The result of this operation is the vector of 

DBMS ranking (Table 28). 

Table 28. The vector of DBMS ranking. 

FirebirdSQL 0.107 

MariaDB 0.395 

PostgreSQL 0.497 

  

The largest value in this vector belonging to PostgreSQL determines the DBMS that is 

most suitable for selection criteria important for Estonian SMEs. The least value has been 

achieved in case of FirebirdSQL Server defines this DBMS as the least appropriate from 

the three examined DBMSs for implementation in circumstances defined in this work as 

important for SME. The implementation capabilities of MariaDB are evaluated as 

moderate. 

 

 



58 

3.2.  Analysis Results  

The results of the experimental evaluation have revealed the best DBMS in the scope of 

proposed generalized set of criteria. In the meantime, the criteria could vary from one 

business area to another. Thus, the requirements to DBMS of webhosting enterprise are 

definitely different from transport company’s ones. Probably for a webhosting company 

the power efficiency issue can be more is the one of the most important. In this case, the 

comparison matrix of the selection criteria (Table 4) can be adopted according to the 

company requirements and as result the most power efficient DBMS can be selected. In 

other words, the proposed methodology allows to be ad hoc accommodated.   

The investigation of CPU temperature during the intensive load has revealed the fact 

concerning utilization of the CPU cores in the benchmark test.  There is a program named 

Psensor can be implemented for CPU temperature monitoring in Linux systems. 

Measuring CPU temperature with Psensor it has been discovered that temperature graphs 

in PostgreSQL and FirebirdSQL benchmark tests look similar meanwhile MariaDB 

benchmarking has produced the temperature graph that significantly varies from others 

(Appendix 6).  The Psensor has displayed the temperature of both CPU cores by red (Core 

0) and blue (Core 1) colors. In case of PostgreSQL and FirebirdSQL the temperature of 

CPU core has been declining every time after reaching the maximum temperature value 

while the temperature of the second core has been arising. In the next measurement 

period, the temperature that had been growing before fell while another one was growing. 

Meantime the temperature graph produced by MariaDB demonstrates that temperature of 

the one core was in its maximum point during several measurement period.   The 

architecture features of the DBMSs could cause such behavior. PostgreSQL and 

FirebirdSQL SuperClassic have architecture supporting SMP in full range. In spite of the 

fact that FirebirdSQL SuperClassic uses threads, not processes like PostgreSQL does, for 

client connections this DBMS uses more than one CPU core to handle results. It should 

be taken into account that there is one connection has been used in benchmarking.  

MariaDB like others MySQL representatives (MySQL, Percona Server) uses one thread 

per client connection. After thorough research it has been discovered that MariaDB does 

not change CPU core every time between benchmark cycles and prefers to run on the one 

core of CPU. Probably it can be explained as using custom thread pool in its architecture 

that does not return this resource completely to OS, but uses it in the new connection.  

There is at least one benefit when thread pool is implemented – the overhead related 



59 

thread creation. Nevertheless, the difference between temperatures of two cores has 

achieved at single moments up to 7°C and has lasted for minutes.   Besides, the maximum 

temperature (Appendix 6) achieved in case of MariaDB 80°C exceeds maximum 

temperature achieved in PostgreSQL benchmarks by 5°C and FirebirdSQL by 12°C. The 

average temperature in MariaDB test is also higher than in PostgreSQL and FirebirdSQL 

benchmarks and reaches maximally allowed by the manufacturer 72 °C. The power 

consumption of the used Intel® Core™ 2 Duo CPU E6550 at this temperature is 65 W 

[14]. The average temperature achieved in PostgreSQL tests is about 70 °C (about 61 W) 

and 64 °C (46 W) in FirebirdSQL tests [14]. As can be noticed here the homogenous 

distribution of the load between CPU cores facilitates following the thermal profile 

recommended by the manufacturer and is more important than temporal benefits from 

minimizing the OS resource allocation.  

3.3. Possible improvements in the methodology 

3.3.1. Power efficiency evaluation 

It is possible to improve the equitation of power efficiency evaluation (2). Power 

consumption of examined idle system can be evaluated and deducted from the amount of 

consumed power. The improved equitation is presented below (6). 

µ =
𝑁 𝑡𝑟

𝑡(𝑃𝑐−𝑃𝑖)
          (6) 

In this equitation Ntr is the number of executed transactions, t is time in hours, Pc is the 

power consumed by a system under running benchmarks and Pi is the power of the idle 

system. Thereby the calculation of power efficiency based only on the amount of power 

that has been consumed for transactional activity of a DBMS. Hence, power efficiency 

can be evaluated accordingly for MariaDB (7), PostgreSQL (8) and FirebirdSQL Server 

(9). 

µ =
𝑁 𝑡𝑟

𝑡(𝑃𝑐−𝑃𝑖)
 =  

  200466

1×(98.6856−64.6793)
=  5894.984 (TpW)    (7) 

µ =
𝑁 𝑡𝑟

𝑡(𝑃𝑐−𝑃𝑖)
 =  

  93573

1×(98.469 −64.6793)
=  2769.276 (TpW)    (8) 

µ =
𝑁 𝑡𝑟

𝑡(𝑃𝑐−𝑃𝑖)
 =  

  33041

1×(86.1914−64.6793)
=  1535.926 (TpW)    (9) 



60 

As can be noted here, removing idle consumption allows the equitation to describe the 

power efficiency more exactly. FirebirdSQL was slower in the tests, but it also consumed 

less power. 

 

Figure 14. Performance of limited benchmark set. 

0,000000 100,000000 200,000000 300,000000 400,000000

agg_create_view

agg_func

agg_info_retrieval

agg_scal

agg_subtotal_report

agg_total_report

bulk_delete

bulk_modify

bulk_save

count_tuples

join_2

join_2_cl

join_3_cl

join_3_ncl

agg_func

join_4_ncl

proj_100

proj_10_pct

sel_100_cl

sel_100_ncl

sel_10pct_ncl

sel_1_cl

sel_variable_select_high

sel_variable_select_low

table_scan

upd_append_duplicate

upd_app_t_end

upd_app_t_mid

upd_del_t_end

upd_del_t_mid

upd_integrity_test

upd_mod_t_cod

upd_mod_t_end

upd_mod_t_int

upd_mod_t_mid

upd_remove_duplicate

drop_agg_view

TIME IN MILLISECONDS

FirebirdSQL 2.5.2 MariaDB 5.5.33 PostgreSQL 9.2.7



61 

 

The results depicted on Figure 14 have been got during described in Chapter 2.4.8. power 

efficiency test. This test has been adopted to be able to evaluate power efficiency of all 

three selected DBMSs. In order to do this evaluation possible to demonstrate the 

methodology, the initial list of the OSDB queries has been cut by the reason of limited 

functionality of FirebirdSQL. Despite of this FirebirdSQL has lagged behind the 

competitors significantly. In addition, it should be kept in mind that AS3AP 

recommendations consider benchmarking process as comprehensive [6] so all predefined 

benchmarks ought to be included. In this case, PostgreSQL that is able to load dataset in 

2.48 seconds can be considered as more power efficient DBMS than MariaDB that loads 

same dataset in 20.32 seconds. Hereby it is recommended to use maximum sized set of 

benchmarks allowing more complete testing of DBMS.  

3.3.2. Common methodology 

There is an opinion that AHP based methodology has some kind of uncertainty originated 

from expressing subjective assessments to the exact numbers and there is a better way to 

evaluate DBMS selection criteria [10]. This method can be considered as supplement of 

AHP methodology named as FAHP (Fuzzy Analytical Hierarchy Process). There are 

researchers elaborated the FAHP based DBMS selection model for Turkish National 

Identity Card Management Project [10]. Comparing to its predecessor AHP that uses 

exact ratios, the assessments in FAHP have to be done using fuzzy comparison ratios. 

The judgments of experts on one of the selection criteria can be collected for further 

operations, thus the judgments form triangular fuzzy number (TFN) [13]. The TFN can 

be expressed by equation (10). 

𝑇𝑥𝑦 = (𝐿𝑥𝑦,𝑀𝑥𝑦, 𝐻𝑥𝑦), where 𝐿𝑥𝑦,𝑀𝑥𝑦, 𝐻𝑥𝑦  ∈ (  
1

9
 , 9)     (10) 

The Lxy and Hxy are respectively the lowest and the highest possible values [13]. The 

value of Mxy can be calculated as (11): 

𝑀𝑥𝑦 = √𝐽𝑥𝑦𝑛
𝑛  , 𝑤ℎ𝑒𝑟𝑒 𝐽𝑥𝑦𝑛 = 𝐽𝑥𝑦𝑎 × 𝐽𝑥𝑦𝑏 × 𝐽𝑥𝑦𝑐 … × 𝐽𝑥𝑦𝑛    (11) 

There is a number n of respondent judgments Jxy and mathematically Mxy represents value 

where membership function of fuzzy set is equal to one [10]. Instead of the judgment 



62 

collection from different experts the comparison set of sub criteria can be applied to 

calculate Mxy. For instance, the issue of scalability can be compared as fuzzy set of its 

sub criteria, thus sub criterion maximum database size can be estimated by 5 meanwhile 

replication capability only by 3. In this case, the TFN is (3, 3.87, 5). The process of 

defuzzification converts magnitudes of fuzzy set to values. There are many methods to 

perform this process. The equation (12) based on alpha cut approach [13]. 

𝜇𝛼,𝛽(Ḟ𝑥𝑦) = [𝛽 × 𝑓𝛼(𝐿𝑥𝑦) + (1 −  𝛽) × 𝑓𝛼(𝐻𝑥𝑦)], 𝑤ℎ𝑒𝑟𝑒  0 ≤ 𝛼, 𝛽 ≤ 1  (12) 

In this equation  Ḟ𝑥𝑦 represents fuzzy pairwise comparison matrix. The sub equation (13) 

describes the lowest boundary value of alpha cut and the sub equation (14) the highest 

one [13].   

𝑓𝛼(𝐿𝑥𝑦) = (𝑀𝑥𝑦 −  𝐿𝑥𝑦) × 𝛼 + 𝐿𝑥𝑦        (13) 

𝑓𝛼(𝐻𝑥𝑦) = 𝐻𝑥𝑦 − (𝐻𝑥𝑦 −  𝑀𝑥𝑦) × 𝛼       (14) 

The coefficients α and β used in the last three equations (12, 13, 14) represent preferences 

and risk tolerance [13]. The values for this coefficient should be selected basing on the 

principle of estimation the uncertainty degree in decision making, if this degree is high 

the values of the coefficients will be smaller than in case of lower degree of  uncertainty 

[13]. The value 0.5 is neutral [13]. It means respondents estimate their judgments neither 

pessimistic nor optimistic [13]. Thereby, in case of already cited TFN equals to  (3, 3.87, 

5) with α and β both equal to 0.5 the calculated value of corresponding entry of 

comparison matrix is 3.935 (15).  

𝜇𝛼,𝛽(Ḟ𝑥𝑦) = [0.5 × ((3.87 − 3) × 0.5 + 3) + (1 −  0.5) × (5 − (5 − 3.87) × 0.5)] =

= 3.935          (15) 

Then the comparison matrix can be normalized using regular methods described in 

Chapter 1.5. There is reasonable remark that greater number of the judgments leads to 

calculation of Mxy producing the value representing assessment that is more 

comprehensive. As consequence, the overall evaluation result will be more accurate than 

AHP is able to represent.  



63 

The second possible improvement can be done by thorough research of accordance of 

OSDB proposed benchmarks (Appendix 1) with AS3AP recommendations. The deep 

analysis of used benchmark queries can spot some possible improvements. The authors 

of OSDB project declared that AS3AP needs more SQL specifications rather than native 

language descriptions [7].  There is an ambiguity in AS3AP documentation [6] concerning 

bulk queries block – in bulk_save and bulk_append queries is proposed to insert and select 

data from the relation named “saveupdates” that never mentioned before. These queries 

need to be replaced with others providing better compliance with AS3AP 

recommendations.  



64 

4. Conclusion 

In this thesis, the methodology for multi criteria selection of database management system 

has been elaborated and described. The selection criteria have been proposed considering 

the needs of Estonian SMEs. There are suggestions to use the next DBMS features as 

important selection criteria: the available management tools, documentation and 

community support, mobility, reliability, functionality, scalability, performance and 

power efficiency. The AHP has been implemented as the mathematical basis of the 

elaborated methodology. Every selection criterion has got its priority weight that has been 

used latter in the calculation of the final result. The methodology has successfully 

demonstrated its viability and one of three DBMSs, which have been analyzed in 

evaluation process, has declared as most suitable for Estonian SMEs. It should be 

mentioned here that priority weights of selection criteria have been calculated according 

to generalized needs of SMEs and ought to be recalculated for special cases. There is 

another multi criteria selection method reviewed in the analysis part of the thesis. This 

method FAHP is based on already known AHP and uses fuzzy sets for criteria evaluation. 

The FAHP is able to calculate an entry of comparison matrix using multiple judgments 

on the same subject getting more accurate input data than AHP does.   

The OSDB open source project has been implemented in this thesis for DBMS 

performance evaluation purposes. This project is based on ANSI SQL Standard Scalable 

and Portable Benchmark for Relational Database Systems (AS3AP) therefore can be used 

only for relational DBMS (RDBMS) performance assessment. The OSDB is written on 

C++ programming language and has been accommodated in the scope of the thesis for 

benchmarking of two DBMSs (PostgreSQL and FirebirdSQL Server). This adaptation 

revealed as well some issues about functional capabilities of these DBMS that have been 

taken into account for functionality assessment. Besides, the benchmarks based on the 

OSDB code have been used in the power efficiency evaluation part, where the 

benchmarks have been running during the one hour performing transactions. The codes 

have been slightly modified for the power efficiency tests. 

In the beginning of the thesis it is suggested for evaluation of power efficiency to use the 

relation of executed transaction number and consumed power in watts. The proposed 

measurement unit is named as Transactions-per-Watt (TpW) in parallel with famous TPC 

(Transactions-Per-Cent) benchmark tests for proprietary server systems. In the analysis 



65 

part, the proposed method for power efficiency evaluation has been improved by 

subtracting the consumption of the idle system from the value consumed by the system 

with running benchmarks. The power quality analyzer KYORITSU KEW 6310 has been 

used in this thesis for power consumption measurements.  

The elaborated methodology can be considered as consisting of three parts – an overall 

estimation system for multi criteria selection, the DBMS performance benchmarking and 

the power efficiency assessment. Besides, every part can be used separately. The AHP 

(or FAHP) method of multi criteria selection can be implemented for estimation both 

relational and non-relational DBMSs. The method of DBMS power efficiency evaluation 

can be implemented for all types of DBMS and others high load applications. However, 

the AS3AP based DBMS performance benchmarking needs to be replaced to appropriate 

for NoSQL DBMS performance evaluation method.  



66 

References  

[1] On the implementation of Commission Recommendation of 6 May 2003 concerning the 

definition of micro, small and medium-sized enterprises. Commission staff working 

document. [WWW]. European commission. 2009 

http://ec.europa.eu/enterprise/policies/sme/files/sme_definition/sme_report_2009_en.pdf 

[2] 2014 SBA Fact Sheet. European commission. 2014. [WWW] 

http://ec.europa.eu/enterprise/policies/sme/facts-figures-analysis/performance-

review/files/countries-sheets/2014/estonia_en.pdf 

[3] Kaarna, R., Masso, M., Rell, M. Väikese ja keskmise suurusega ettevõtete 

arengusuundumused. PRAXIS, 2012. [WWW]  

http://www.arengufond.ee/upload/Editor/ettevotlus/VKE_arengusuundumused_uuring_201

2%20praxis.PDF 

[4] Tiigiste, J. e-kaubandus on viimasel kümnendil hoogsalt arenenud. Statistikaamet. 2012 

[WWW] https://statistikaamet.wordpress.com/2012/05/16/e-kaubandus-on-viimasel-

kumnendil-hoogsalt-arenenud/ 

[5] Saaty, T. Theory an Application of the Analytic Network Process: Decision Making with 

Benefits, Opportunities, Costs, and Risks, , Pittsburgh: RWS Publications, 2005 

[6] Turbyfill, C., Orji, C., Bitton, D. AS3AP - An ANSI SQL Standard Scalable and Portable 

Benchmark for Relational Database Systems.  [WWW]  http://research.microsoft.com/en-

us/um/people/gray/benchmarkhandbook/chapter5.pdf 

[7] The Open Source Database Benchmark: What is OSDB? (FAQ) [WWW] 

http://osdb.sourceforge.net/index.php?page=faq 

[8] Borrie, H. The Firebird Book: A Reference for Database Developers, Apress, 2004 

[9] Worsey, J., Drake, J. Practical PostgreSQL. Sebastopol: O'Reilly, 2002.  

[10] Catak, F.O., Karabas, S., Yildirim, S. Fuzzy Analytic Hierarchy Based DBMS Selection 

in Turkish National Identity Card Management Project. [WWW] 

http://airccse.org/journal/IS/papers/2412ijist03.pdf 

[11] PAM authentication plugin. [WWW] 

https://mariadb.com/kb/en/mariadb/documentation/plugins/pam-authentication-plugin/ 

[12] FirebirdSQL: A not-so-very technical discussion of Multi Version Concurrency Control 

[WWW] http://www.firebirdsql.org/en/multi-version-concurrency-control/ 

[13] Tahriri, F., Dabbagh, M., Ebrahim N.A., Supplier Assessment and Selection Using 

Fuzzy Analytic Hierarchy Process in a Steel Manufacturing Company, Journal of Scientific 

Research & Reports, 2014. [WWW] 

http://zenodo.org/record/8612/files/Supplier_Assessment_-Nader_Ale_Ebrahim-

_Tahriri_3102013JSRR8627.pdf  

[14] Intel® Core™2 Extreme Processor X6800 and Intel® Core™2 Duo Desktop Processor 

E6000 and E4000 Sequences. Intel Corporation. October 2007.  [WWW] 

http://download.intel.com/design/processor/datashts/31327807.pdf 



67 

[15] Haas, R., Meixner, O. An Illustrated Guide to the Analytic Hierarchy Process. Institute 

of Marketing & Innovation. University of Natural Resources and Applied Life Sciences, 

Vienna. [WWW] https://mi.boku.ac.at/ahp/ahptutorial.pdf 

[16] MariaDB Documentation. SSL Overview. [WWW] 

https://mariadb.com/kb/en/mariadb/documentation/user-account-management/ssl-

connections/ssl-overview/ 

[17] The Firebird FAQ. How to protect the connection over insecure networks (Internet)? 

[WWW] http://www.firebirdfaq.org/faq113/ 

[18] Evdoridis, T., Tzouramanis, T. A Generalized Comparison of Open Source and 

Commercial Database Management Systems. Chapter XXIII in St.Amant, K., Still, B. 

Handbook of Research on Open Source Software: Technological, Economic, and Social 

Perspectives. Information Science Reference. PA: IGI Global. New York, 2007 

[19] Schwartz, B., Zaitsev, P., Tkachenko, V., Zawodny, J., Lentz, A., Balling, D. High 

Performance MySQL, Second Edition. O'Reilly Media, Sebastopol, 2008 

[20] Percona XtraBackup. [WWW] http://www.percona.com/software/percona-xtrabackup 

[21] Create Trigger.  PostgreSQL 9.2.9 Documentation. [WWW] 

http://www.postgresql.org/docs/9.2/static/sql-createtrigger.html 

[22] Chapter 38: Procedural Languages. PostgreSQL 9.2.9 Documentation. [WWW] 

http://www.postgresql.org/docs/9.2/static/xplang.html 

[23] H.3. Procedural Languages: Table H-2. Externally Maintained Procedural Languages. 

PostgreSQL 9.2.9 Documentation [WWW] 

http://www.postgresql.org/docs/9.2/static/external-pl.html 

[24] Trigger Limitations. MariaDB Documentation. [WWW] 

https://mariadb.com/kb/en/mariadb/documentation/stored-programs-and-

views/triggers/trigger-limitations/ 

[25] Using Triggers. 19.3. MySQL 5.7 Reference Manual. [WWW] 

http://dev.mysql.com/doc/refman/5.7/en/triggers.html 

[26] Server-side programming. Firebird Documentation. [WWW] 

http://www.firebirdsql.org/manual/ufb-cs-serverprog.html 

[27] Trigger. DDL statements. Firebird Documentation. [WWW] 

http://www.firebirdsql.org/refdocs/langrefupd21-ddl-trigger.html 

[28] Writing UDFs for InterBase. Third-party Docs and Articles. Firebird Documentation. 

[WWW] http://www.firebirdsql.org/en/writing-udfs-for-interbase/ 

[29] Using Stored Routines (Procedures and Functions). 19.2. MySQL 5.7 Reference 

Manual. [WWW] http://dev.mysql.com/doc/refman/5.7/en/stored-routines.html 

[30] Perl stored procedures for MariaDB. Percona Live.  

https://www.percona.com/live/mysql-conference-2013/sessions/perl-stored-procedures-

mariadb 

[31] Performance evaluation of MariaDB 10.1 and MySQL 5.7.4-labs-tplc. The MariaDB 

Blog. [WWW] https://blog.mariadb.org/performance-evaluation-of-mariadb-10-1-and-

mysql-5-7-4-labs-tplc/ 



68 

[32] Henschen, D. Oracle MySQL Upgrade Challenges NoSQL Onslaught. 

InformationWeek. [WWW] http://www.informationweek.com/software/information-

management/oracle-mysql-upgrade-challenges-nosql-onslaught/d/d-id/1108523 (5.02.2013) 

[33] PostgreSQL 9.2 released. PostgreSQL News. [WWW] 

http://www.postgresql.org/about/news/1415/ (10.09.2012) 

[34] Streaming Replication. PostgreSQL Wiki. [WWW] 

https://wiki.postgresql.org/wiki/Streaming_Replication 

[35] Multi-source replication. MariaDB Documentation. [WWW] 

https://mariadb.com/kb/en/mariadb/documentation/replication/standard-replication/multi-

source-replication/ 

[36] Яковлев, C. MySQL и PostgreSQL. Часть 1. Сравнительный анализ. [WWW] 

http://www.ibm.com/developerworks/ru/library/os-mysql-postgresql/01/ (27.07.2010) 

[37] Multi-source replication. MariaDB Documentation. [WWW] 

https://mariadb.com/kb/en/mariadb/documentation/replication/standard-replication/multi-

source-replication/ 

[38] Postgres-XC Wiki. [WWW] http://postgresxc.wikia.com/wiki/Postgres-XC_Wiki 

[39] How to do replication of Firebird databases? The Firebird FAQ [WWW] 

http://www.firebirdfaq.org/faq249/ 

[40] What is SymmetricDS. Overview. SymmetricDS official webpage. [WWW] 

http://www.symmetricds.org/about/overview 

[41] Does Firebird support SMP? The Firebird FAQ. [WWW] 

http://www.firebirdfaq.org/faq2/ 

[42] Firebird – SuperServer, ClassicServer or SuperClassic? Sinática Information 

Technology Blog. [WWW] http://www.sinatica.com/blog/en/index.php/articles/firebird-

superserver-classicserver-or-superclassic 

[43] Limits on InnoDB Tables. 14.2.13. MySQL 5.0 Reference Manual. [WWW] 

http://dev.mysql.com/doc/refman/5.0/en/innodb-restrictions.html 

[44] About. The official site for PostgreSQL. [WWW] http://www.postgresql.org/about/ 

[45] Database Limits. Firebird Technical Specifications. [WWW] 

http://www.firebirdsql.org/en/firebird-technical-specifications/ 

[46] pg_dump. PostgreSQL 9.2.9 Documentation. [WWW] 

http://www.postgresql.org/docs/9.2/static/app-pgdump.html 

[47] mysqldump. MariaDB Documentation. [WWW] 

https://mariadb.com/kb/en/mariadb/documentation/clients-and-utilities/backup-restore-and-

import/mysqldump/ 

[48] Why not use firebird? Stack Overflow. [WWW] 

http://stackoverflow.com/questions/1398491/why-not-use-firebird 

[49] FBExport. Tools for Firebird developers. [WWW]  

http://fbexport.sourceforge.net/fbexport.php 



69 

[50] Firebird to MySQL. DBConvert. [WWW] https://dbconvert.com/convert-firebird-to-

mysql-pro.php 

[51] Converting MySQL to PostgreSQL. Wikibooks. [WWW] 

http://en.wikibooks.org/wiki/Converting_MySQL_to_PostgreSQL 

[52] De la Cruz, S. How-To: Migrate PostgreSQL databases to MySQL using the MySQL 

Workbench Migration Wizard. The MySQL Workbench Team Blog. [WWW]  

http://mysqlworkbench.org/2012/11/how-to-migrate-postgresql-databases-to-mysql-using-

the-mysql-workbench-migration-wizard/ (21.11.2012) 

[53] MariaDB versus MySQL - Features. Knowledge Base. MariaDB Corporation. [WWW] 

https://mariadb.com/kb/en/mariadb/mariadb-vs-mysql-features/ 

[54] Appendix A: Firebird server architectures. Firebird 2.5 Quick Start. Firebird 

Documentation Index. [WWW]  http://www.firebirdsql.org/manual/qsg25-appx-

architectures.html 

[55] IBPP, a C++ Client Interface to Firebird Server. [WWW]  http://www.ibpp.org/ 

[56] PostgreSQL DROP DATABASE. PostgreSQLTutorial.com. [WWW]  

http://www.postgresqltutorial.com/postgresql-drop-database/ 

[57] How to drop a PostgreSQL database if there are active connections to it? [WWW]  

http://stackoverflow.com/questions/5408156/how-to-drop-a-postgresql-database-if-there-

are-active-connections-to-it 

[58] Escaped List Separator. Boost C++ libraries. [WWW]  

http://www.boost.org/doc/libs/1_36_0/libs/tokenizer/escaped_list_separator.htm 

[59] What is FlameRobin? FlameRobin.org. [WWW] http://www.flamerobin.org/index.php 

[60] pgAdmin. PostgreSQL Tools. [WWW]  http://www.pgadmin.org/ 

[61] About. phpMyAdmin. [WWW] http://www.phpmyadmin.net/home_page/index.php 

[62] What is phpPgAdmin? [WWW]  http://phppgadmin.sourceforge.net/doku.php 

[63] IBSurgeon Enterprise Pack. IBSurgeon. [WWW]  http://www.ib-aid.com/ 

[64] What is FB TraceManager. Upscene. [WWW]  

http://www.upscene.com/fb_tracemanager/ 

[65] Features and Benefits. Sinática Monitor. Sinática. [WWW]  

http://www.sinatica.com/index.php/en/monitor 

[66] Easy-IP Firebird Database Manager. Publisher's description. [WWW]  http://easy-ip-

firebird-database-manager.software.informer.com/ 

[67] Community Guide to PostgreSQL GUI Tools. PostgreSQL Wiki. [WWW]  

https://wiki.postgresql.org/wiki/Community_Guide_to_PostgreSQL_GUI_Tools 

[68] pgFouine - a PostgreSQL log analyzer. [WWW]   

http://pgfouine.projects.pgfoundry.org/ 

[69] Performance Optimization. PostgreSQL Wiki. [WWW]  

https://wiki.postgresql.org/wiki/Performance_Optimization 



70 

[70] Monitoring. PostgreSQL Wiki. [WWW]  https://wiki.postgresql.org/wiki/Monitoring 

[71] PostgreSQL Performance Management. EnterpriseDB. [WWW]  

http://www.enterprisedb.com/solutions/postgresql-performance-management 

[72] PostgreSQL Performance Tuning. PostgreSQL. Revolution Systems. [WWW]   

http://www.revsys.com/services/postgresql/tuning/ 

[73] The innotop MySQL and InnoDB monitor. Xaprb. Baron Schwartz Blog. [WWW]   

http://www.xaprb.com/blog/2006/07/02/innotop-mysql-innodb-monitor/ 

[74] Percona Toolkit for MySQL. Percona.  [WWW] 

http://www.percona.com/software/percona-toolkit 

[75] MySQLTuner-perl. [WWW]  http://mysqltuner.com/ 

[76] Overview. MySQL Tuning Primer Script. [WWW]   https://launchpad.net/mysql-

tuning-primer 

[77] Automate MySQL Development Tasks. Toad for MySQL. Dell Software. [WWW] 

http://www.quest.com/toad-for-mysql/ 

[78] Navicat for MySQL. PremiumSoft. [WWW] http://navicat.com/products/navicat-for-

mysql 

[79] Reference Manuals. Firebird. [WWW] http://www.firebirdsql.org/en/reference-manuals/ 

[80] PostgreSQL 9.2.9 Documentation. The PostgreSQL Global Development Group. 

[WWW]  http://www.postgresql.org/docs/9.2/static/ 

[81] MariaDB Documentation. Knowledge Base. MariaDB Corporation. [WWW] 

https://mariadb.com/kb/en/mariadb/documentation/ 

[82] MySQL Documentation: MySQL Reference Manuals. MySQL.com.  [WWW] 

http://dev.mysql.com/doc/ 

[83] DB-Engines Ranking. DB-Engines. [WWW] http://db-engines.com/en/ranking 

[84] DB-Engines Ranking of Relational DBMS. DB-Engines. [WWW] http://db-

engines.com/en/ranking/relational+dbms 

[85] Percona MySQL performance blog. [WWW] 

http://www.percona.com/blog/search/mariadb/ 

[86] Effective MySQL. Ronald Bradford’s site. [WWW]  http://effectivemysql.com/ 

[87] Саати, Т. Принятие решений. Метод анализа иерархий. Перевод с английского Р. 

Г. Вачнадзе. Радио и связь. Москва. 1993. 

[88] Description. Maatkit - Essential command-line utilities for MySQL. [WWW] 

http://www.maatkit.org/doc/maatkit.html 

[89] Connolly, T., Begg., C.  Database Systems. A Practical Approach to Design, 

Implementation, and Management. Fourth Edition. University Of Paisley, Pearson 

Education Limited, Essex, 2005 

 



71 

Appendices 

Appendix 1 – OSDB benchmark queries 

Benchmark name SQL query  

 

agg_create_view CREATE VIEW REPORTVIEW 

(COL_KEY,COL_SIGNED,COL_DATE,COL_DECIM, 

COL_NAME,COL_CODE,COL_INT) AS   

SELECT UPDATES.COL_KEY, UPDATES.COL_SIGNED, 

UPDATES.COL_DATE, UPDATES.COL_DECIM, 

HUNDRED.COL_NAME, HUNDRED.COL_CODE, 

HUNDRED.COL_INT FROM UPDATES, HUNDRED WHERE 

UPDATES.COL_KEY = HUNDRED.COL_KEY; 

agg_func SELECT MIN(COL_KEY) FROM HUNDRED GROUP BY 

COL_NAME; 

agg_info_retrieval SELECT COUNT(COL_KEY) FROM TENPCT WHERE 

COL_NAME = 'THE ASAP BENCHMARKS' AND COL_INT <= 

100000000 AND COL_SIGNED BETWEEN 1 AND 99999999 

AND NOT (COL_FLOAT BETWEEN -450000000 AND 

450000000) AND COL_DOUBLE > 600000000 AND 

COL_DECIM < -600000000"; 

agg_scal SELECT MIN(COL_KEY) FROM UNIQUES; 

agg_subtotal_report SELECT AVG(COL_SIGNED), MIN(COL_SIGNED), 

MAX(COL_SIGNED), MAX(COL_DATE), MIN(COL_DATE), 

COUNT(DISTINCT COL_NAME), COUNT(COL_NAME), 

COL_CODE, COL_INT FROM REPORTVIEW WHERE 

COL_DECIM >980000000 GROUP BY COL_CODE, COL_INT; 

agg_total_report SELECT AVG(COL_SIGNED), MIN(COL_SIGNED), 

MAX(COL_SIGNED), MAX(COL_DATE), MIN(COL_DATE), 

COUNT(DISTINCT COL_NAME), COUNT(COL_NAME), 

COUNT(COL_CODE), COUNT(COL_INT) FROM 

REPORTVIEW WHERE COL_DECIM > 980000000; 

bulk_append INSERT INTO UPDATES SELECT * FROM SAVEUPDATES; 

bulk_delete DELETE FROM UPDATES WHERE COL_KEY < 0; 

bulk_modify UPDATE UPDATES SET COL_KEY = COL_KEY - 100000 

WHERE COL_KEY BETWEEN 5000 AND 5999; 

bulk_save SELECT MIN(COL_KEY) FROM HUNDRED GROUP BY 

COL_NAME; 

count_tuples SELECT MIN(COL_KEY) FROM HUNDRED GROUP BY 

COL_NAME; 



72 

Benchmark name SQL query  

 

create_idx_hundred_code_h MariaDB: CREATE INDEX HUNDRED_CODE_H ON 

HUNDRED(COL_CODE) USING HASH;  

PostgreSQL: CREATE INDEX HUNDRED_CODE_H ON 

HUNDRED USING HASH (COL_CODE); 

create_idx_tenpct_code_h MariaDB: CREATE INDEX TENPCT_CODE_H USING HASH 

ON TENPCT(COL_CODE);  

PostgreSQL: CREATE INDEX TENPCT_CODE_H ON TENPCT 

USING HASH (COL_CODE); 

create_idx_tenpct_name_h MariaDB: CREATE INDEX TENPCT_NAME_H ON 

TENPCT(COL_NAME) USING HASH;  

PostgreSQL: CREATE INDEX TENPCT_NAME_H ON TENPCT 

USING HASH (COL_NAME); 

create_idx_uniques_code_h MariaDB: CREATE INDEX UNIQUES_CODE_H ON 

UNIQUES(COL_CODE) USING HASH;  

PostgreSQL: CREATE INDEX UNIQUES_CODE_H ON 

UNIQUES USING HASH (COL_CODE); 

create_idx_updates_code_h MariaDB: CREATE INDEX UPDATES_CODE_H ON 

UPDATES(COL_CODE) USING HASH;  

PostgreSQL: CREATE INDEX UPDATES_CODE_H  ON 

UPDATES USING HASH (COL_CODE);  

join_2 SELECT UNIQUES.COL_SIGNED, UNIQUES.COL_NAME, 

HUNDRED.COL_SIGNED, HUNDRED.COL_NAME FROM 

UNIQUES, HUNDRED WHERE UNIQUES.COL_ADDRESS = 

HUNDRED.COL_ADDRESS AND UNIQUES.COL_ADDRESS 

= 'SILICON VALLEY'; 

join_2_cl SELECT UNIQUES.COL_SIGNED, UNIQUES.COL_NAME, 

HUNDRED.COL_SIGNED, HUNDRED.COL_NAME FROM 

UNIQUES, HUNDRED WHERE UNIQUES.COL_KEY = 

HUNDRED.COL_KEY AND UNIQUES.COL_KEY =1000"; 

join_3_cl SELECT UNIQUES.COL_SIGNED, UNIQUES.COL_DATE, 

HUNDRED.COL_SIGNED, HUNDRED.COL_DATE, 

TENPCT.COL_SIGNED, TENPCT.COL_DATE FROM 

UNIQUES, HUNDRED, TENPCT WHERE UNIQUES.COL_KEY 

= HUNDRED.COL_KEY AND UNIQUES.COL_KEY = 

TENPCT.COL_KEY AND UNIQUES.COL_KEY = 1000; 

join_3_ncl SELECT UNIQUES.COL_SIGNED, UNIQUES.COL_DATE, 

HUNDRED.COL_SIGNED, HUNDRED.COL_DATE, 

TENPCT.COL_SIGNED, TENPCT.COL_DATE FROM 

UNIQUES, HUNDRED, TENPCT WHERE 

UNIQUES.COL_CODE = HUNDRED.COL_CODE AND 

UNIQUES.COL_CODE = TENPCT.COL_CODE AND 

UNIQUES.COL_CODE = 'BENCHMARKS'; 



73 

Benchmark name SQL query  

 

join_4_ncl SELECT UNIQUES.COL_DATE, HUNDRED.COL_DATE, 

TENPCT.COL_DATE, UPDATES.COL_DATE FROM 

UNIQUES, HUNDRED, TENPCT, UPDATES WHERE 

UNIQUES.COL_CODE = HUNDRED.COL_CODE AND 

UNIQUES.COL_CODE = TENPCT.COL_CODE AND 

UNIQUES.COL_CODE = UPDATES.COL_CODE AND 

UNIQUES.COL_CODE = 'BENCHMARKS'; 

proj_100 SELECT DISTINCT COL_ADDRESS, COL_SIGNED FROM 

HUNDRED; 

proj_10_pct SELECT DISTINCT COL_SIGNED FROM TENPCT; 

sel_100_cl SELECT COL_KEY, COL_INT, COL_SIGNED, COL_CODE, 

COL_DOUBLE, COL_NAME FROM UPDATES WHERE 

COL_KEY <= 100; 

sel_100_ncl SELECT COL_KEY, COL_INT, COL_SIGNED, COL_CODE, 

COL_DOUBLE, COL_NAME FROM UPDATES WHERE 

COL_KEY <= 100; 

sel_10pct_ncl SELECT DISTINCT COL_SIGNED FROM TENPCT; 

sel_1_cl SELECT COL_KEY, COL_INT, COL_SIGNED, COL_CODE, 

COL_DOUBLE, COL_NAME FROM UPDATES WHERE 

COL_KEY = 1000; 

sel_variable_select_high SELECT COL_KEY, COL_INT, COL_SIGNED, COL_CODE, 

COL_DOUBLE, COL_NAME FROM TENPCT WHERE 

COL_SIGNED < -250000000; 

sel_variable_select_low SELECT COL_KEY, COL_INT, COL_SIGNED, COL_CODE, 

COL_DOUBLE, COL_NAME FROM TENPCT WHERE 

COL_SIGNED < -500000000; 

table_scan SELECT * FROM UNIQUES WHERE COL_INT = 1; 

upd_append_duplicate INSERT INTO UPDATES  (COL_KEY, COL_INT, 

COL_SIGNED, COL_FLOAT,COL_DOUBLE, COL_DECIM, 

COL_DATE, COL_CODE, COL_NAME, COL_ADDRESS) 

VALUES( 6000, 0, 60000, 39997.90, 50005.00, 50005.00,  

'11/10/1985', 'CONTROLLER', 'ALICE IN WONDERLAND',  

'UNIVERSITY OF ILLINOIS AT CHICAGO') 

upd_app_t_end INSERT INTO UPDATES VALUES (1000000001, 50005, 50005, 

50005.00, 50005.00, 50005.00, '1/1/1988', 'CONTROLLER', 

'ALICE IN WONDERLAND',  'UNIVERSITY OF ILLINOIS AT 

CHICAGO'); 

upd_app_t_mid INSERT INTO UPDATES  (COL_KEY, COL_INT, 

COL_SIGNED, COL_FLOAT, COL_DOUBLE, COL_DECIM, 

COL_DATE, COL_CODE, COL_NAME, COL_ADDRESS) 

VALUES (5005, 5005, 50005, 50005.00, 50005.00, 



74 

Benchmark name SQL query  

 

50005.00,'1/1/1988', 'CONTROLLER', 'ALICE IN 

WONDERLAND','UNIVERSITY OF ILLINOIS AT CHICAGO'); 

upd_del_t_end DELETE FROM UPDATES WHERE COL_KEY = '-1000'; 

upd_del_t_mid DELETE FROM UPDATES WHERE (COL_KEY='5005') OR 

(COL_KEY='-5000'); 

upd_integrity_test UPDATE HUNDRED SET COL_SIGNED = '-500000000' 

WHERE COL_INT = 0; 

upd_mod_t_cod UPDATE UPDATES SET COL_CODE = 'SQL+GROUPS' 

WHERE COL_KEY = 5005; 

upd_mod_t_end UPDATE UPDATES SET COL_KEY = '-1000' WHERE 

COL_KEY = 1000000001; 

upd_mod_t_int UPDATE UPDATES SET COL_INT = 50015 WHERE COL_KEY 

= 5005; 

upd_mod_t_mid UPDATE UPDATES SET COL_KEY = '-5000' WHERE 

COL_KEY = 5005; 

upd_remove_duplicate DELETE FROM UPDATES WHERE COL_KEY = 6000 AND 

COL_INT = 0; 

 

 

 

 

 

 

 

 

 

 

 



75 

Appendix 2 – Architecture of the experimental platform 

The information of tested system hardware is presented below on Table 1. 

Table 1 of Appendix 2. HW/SW components of tested system  

Component Description 

System Lenovo ThinkCentre M57 6069Y19 

CPU Intel(R) Core(TM)2 Duo CPU E6550  @ 2.33GHz 

RAM 2 x 1 GB DDR2 @ 667 MHz 

HDD ST3320820AS 298 GB IDE  

OS OpenSuse 13.1 

Kernel 3.11.10-21-desktop x86_64 Linux/GNU 

 

The system is rather representative of desktop type computer than server, but all selection 

of this particular computer is justified at least by number of reason. First, the development 

of the benchmark tests is more convenient on the same platform where these tests run. 

Second, this was the only available computer system at the moment. At last, OpenSuse 

distributive was selected because this is most full, stable and user-friendly distributive. 

The OpenSuse provides many of RPM packages ready-from-box and much more can be 

added and reconfigured with YaST Control Center. All three versions of DBMSs (Table 

12.) are installed from RPM packages in YaST.  

Table 2 of Appendix 2. Versions of tested DBMS. 

DBMS Version 

PostgreSQL 9.2.7. on x86_64-suse-linux-gnu, compiled by gcc (SUSE Linux) 

4.8.1.(gcc-4_8-branch revision 202388) 64-bit 

MariaDB 5.5.33-2.2-x86_64 OpenSuse package 

Firebird SQL SuperClassic version 2.5.2.26539-79.2 

 



76 

MariaDB is successful fork of MySQL that provides state-of-the-art features of the 

MySQL family like Percona-XtraDB storage engine [53] that replaces older InnoDB 

belonging to Oracle Inc. OpenSuse has switched to MariaDB since its version 12.3 like 

some other developers of Linux distributives to avoid risk of Oracle can close MySQL 

project. Nevertheless, in the experimental evaluation process have been out-off-box 

configuration settings and default storage engine (InnoDB) to provide fair competition 

between three DBMSs. Configuration files of all three DBMSs reside on disk attached to 

this work.  

MariaDB has been shipped with in RPM packages with mysql CLI administration utility 

and separate phpMyAdmin web administration utility. PostgreSQL 9.2.7. installed on the 

platform on the installation moment (September 2014) was the last version provided with 

OpenSuse. This DBMS has psql CLI administration utility, and two separately installed 

GUI pgadmin3 and web administration utility phpPgAdmin. FirebirdSQL could be 

installed as one of four different available possible version:  Classic Server, Superserver, 

SuperClassic and Embedded [54], besides there is only one architecture, excluding 

Embedded, can be installed at time on the platform. In this work has been installed and 

used SuperClassic architecture than was firstly introduced with FirebirdSQL 2.5. version. 

The decision of selection this very architecture type is based on the fact that SuperClassic 

version is trade-off between two polar Classic Server and Superserver models of server 

architecture. SuperClassic combines the full support of SMP as Classic Server does with 

possibility to use Superserver efficiency in deal of accommodation of possible growth of 

connection number [54].  

The OSDB project that is available for download [55] contains only the code that after 

light modification is able to execute benchmarks only with MySQL. As consequence, the 

code has been adopted to work with two others DBMS – PostgreSQL and FirebirdSQL 

Server, therefore methods used for connection and database administration are different. 

Moreover, even SQL queries syntax differs in these three DBMS.  This fact supposed a 

modification of the major part of the code and this has been done in the work (Figure 1 

of Annex 2). 



77 

 

Figure 1 of Annex2. Implementation of Database class for different tested DBMS. 

In this work were used C++ APIs :  

1. pqxx (version 4.0.1-2.1.3-x86_64) for PostgreSQL  

2. mysqlclient-devel (version 5.5.33-2.2-x86_64) for MariaDB    

3. IBPP (version 2.5.3.1)  for FirebirdSQL  

Two first (pqxx and mysqlclient) were provided in OpenSuse RPM-package and the IBPP 

was downloaded, compiled and installed from sourceforge.net. 



78 

In order to be successfully compiled Makefile.am for different DBMSs should include 

next rows representing path to library:  

1. AM_LDFLAGS=-L/usr/lib/mysql –lmysqlclient  

2. AM_LDFLAGS=-L/usr/include/pqxx –lpqxx 

3. AM_LDFLAGS=-L/usr/include/ibpp –libpp 

The directories can vary in different distributions, therefore their locations should be 

verified. In all project has been used g++ (SUSE Linux) 4.8.1 (gcc-4_8-branch revision 

202388) compiler.  

The CSV file sets (40 or 4 MB) necessary for OSDB database populating can be 

downloaded from the project’s page on sourceforge.net. The minor modifications have 

been also performed with downloaded osdb-0.90 project to be able to interact with 

MariaDB database. For example, string in original osdb CreateIdxUpdatesCodeH 

contains string “create index updates_code_h on updates HASH (col_code)” that is not 

compatible with current SQL supported by MariaDB and has been replaced with string 

“create index updates_code_h on updates (col_code) using hash”. In addition, the 

connection string parameters have been hard coded to simplify testing.  

Then the new osdbpg-0.91 project has been created on the base of OSDB for MySQL. 

Instead of mysqlclient library, the libpqxx has been linked to the project. In the subfolder 

„dbms“of the project has been added files with PGDB.h and PGDB.cpp. The files 

encapsulate the inner mechanism of the class PGDB with its members. The PGDB class 

is inherited from class Database.  The instance of the PGDB class is used in main project 

OSDB class.  

However, the PostgreSQL client library differs from MySQL van not only by signatures 

of the methods but in principles of these realizations. That was the reason to implement 

this class in relevance to client library.  The instance of pqxx::work class has been added 

to the OSDB class. The work class encapsulates all operations with transactions in 

libpqxx library. The methods exec (String query) and commit () have been used to execute 

and commit. Besides, a database can be created in PostgreSQL only using nontransaction 

class of pqxx library.  



79 

 

Figure 2 of Annex 2. Creating database using non-transaction class of libpqxx 

The drop database procedure in PostgreSQL is even more complicated. As first step, it is 

required to revoke possibility to create new database connections using SQL query 

described in Figure 12.  presented code snippet as string s1. Then, using s2 query string 

(Figure 12) the existing connection should be terminated [56, 57]. At last, the database 

can be dropped using SQL query “DROP DATABASE IF EXISTS”. 

 

 Figure 3 of Annex 3. Dropping database in PostgreSQL 

For FirebirdSQL benchmarking has been created project osdbfb-0.91 that varies 

substantially from two previous OSDB benchmarking projects. The overall structure of 

the project has been remained the same, but significant modifications have been done for 

Database inherited class FBDB by the reason of lack of required for this project data 

import functionality discovered during osdbfb-0.91 project development. This functional 

mismatching has been thoroughly described in Chapter 2.4.5. Because relevant external 

data import is missing in FirebirdSQL the new data class Tuple has been added to the 

project.  



80 

class Tuple{ 
private: 
 int count;    
 std::string col_key;     
 std::string col_int;    
 std::string col_signed;    
 std::string  col_float;    
 std::string  col_double;   
 std::string  col_decimal;   
 std::string col_date;    
 std::string col_code;    
 std::string col_name;    
 std::string col_address;   
   
public: 
 Tuple(void){ count = 0; } 
 void getString(const std::string &str);  
 int getCount(void);  
 std::string getKey(void); 
 std::string getInt(void); 
 std::string getSigned(void); 
 std::string getFloat(void);  
 std::string getDouble(void); 
 std::string getDecimal(void); 
 std::string getDate(void); 
 std::string getCode(void); 
 std::string getName(void); 
 std::string getAddress(void); 
}; 

void Tuple::getString(const std::string &str) 
{ 
 switch(count) 
 { 
  case 0: 
   col_key = str;    
   break; 
     
  case 1: 
   col_int = str;    
   break; 
    
  case 2: 
   col_signed = str;    
   break; 
     
  case 3: 
   col_float = str;    
   break; 
    
  case 4: 
   col_double = str;    
   break; 
    
  case 5: 
   col_decimal = str;    
   break; 
     
  case 6: 
   col_date = str;    
   break; 
    



81 

  case 7: 
   col_code = str;    
   break; 
   
  case 8: 
   col_name = str;    
   break; 
   
  case 9: 
   col_address = str;    
   break; 
 }  
 ++count;  
} 
 
int Tuple::getCount() { return count; } 
std::string Tuple::getKey() { return col_key; } 
std::string Tuple::getInt() { return col_int; } 
std::string Tuple::getSigned() { return col_signed; } 
std::string Tuple::getFloat() { return col_float; } 
std::string Tuple::getDouble() { return col_double; } 
std::string Tuple::getDecimal() { return col_decimal; } 
std::string Tuple::getDate() { return col_date; } 
std::string Tuple::getCode() { return col_code; } 
std::string Tuple::getName() { return col_name; } 
std::string Tuple::getAddress() { return col_address; } 

Figure 4 of Appendix 2. Class Tuple with methods. 

In addition, the new method insertTuple has been added to FBDB class. This method 

composes SQL query “INSERT INTO” from the instance of Tuple class and string 

variable containing the table name. 

 

Figure 5 of Appendix 2. Method insertTuple of FBDB class. 



82 

 The method loadDataFrom that was inherited from Database has been drastically 

changed. Now this method implements escaped_list_separator class of boost C++ library 

[56] to read coma-separated data from file. It instantiates an object of Tuple class that 

latter is used in SQL composition with insertTuple method. The query is submitted to 

method “execute” wrapping interaction with transaction mechanism in all three projects. 

The header of boost library have to be included in FBDB header file. 

 

Figure 6 of Appendix 2. Implementation of loadDataFrom in FBDB class. 

For power consumption and performance evaluation, it was necessary to know the exact 

number of performed transaction. The different numbers are based on the different 

functionality and realization. These numbers are calculated in Appendix 3. 

The main file of OSDB project OSDB.cpp has been modified to run continuously during 

the one hour. This multiplier 52 is implemented for PostgreSQL, and for other project 

were used relevant numbers: 54 for MariaDB and 43 for FirebirdSQL 



83 

 

Figure 7 of Appendix 2. Code snippet of OSDB.cpp file.  

The idea of this approach is to evaluate number of transaction committed during the one 

hour to evaluate performance and power efficiency of every DBMS. 

All program codes used in current work have been added to attached disk. 

 

 

 

 

 

 

 

 

 

 

 

 



84 

Appendix 3 – Number of transactions in test 

Table 1 of Appendix 3. Number of transactions in test 

Nr Test name  PostgreSQL 

9.2.7  

 

MariaDB 

5.5.33 

 

FirebirdSQL 

2.5.2 

 

1 Database creation 0 1 0 

2 Table creation 5 5 0 

3 Dataset load 5 5 0 

4 agg_create_view 1 1 1 

5 agg_func 1 1 1 

6 agg_info_retrieval 1 1 1 

7 agg_scal 1 1 1 

8 agg_subtotal_report 1 1 1 

9 agg_total_report 1 1 1 

10 bulk_append 1 1 1 

11 bulk_delete 1 1 1 

12 bulk_modify 1 1 1 

13 bulk_save 1 1 1 

14 count_tuples 1 1 1 

15 create_idx_hundred_code_h 1 1 0 

16 create_idx_tenpct_code_h 1 1 0 

17 create_idx_tenpct_name_h 1 1 0 

18 create_idx_uniques_code_h 1 1 0 

19 create_idx_updates_code_h 1 1 0 

20 join_2 1 1 1 

21 join_2_cl 1 1 1 

22 join_3_cl 1 1 1 

23 join_3_ncl 1 1 1 

24 agg_func 1 1 1 

25 join_4_ncl 1 1 1 

26 proj_100 1 1 1 

27 proj_10_pct 1 1 1 

28 sel_100_cl 1 1 1 

29 sel_100_ncl 1 1 1 



85 

Nr Test name  PostgreSQL 

9.2.7  

 

MariaDB 

5.5.33 

 

FirebirdSQL 

2.5.2 

 

30 sel_10pct_ncl 1 1 1 

31 sel_1_cl 1 1 1 

32 sel_variable_select_high 1 1 1 

33 sel_variable_select_low 1 1 1 

34 table_scan 1 1 1 

35 upd_append_duplicate 1 1 1 

36 upd_app_t_end 1 1 1 

37 upd_app_t_mid 1 1 1 

38 upd_del_t_end 1 1 1 

39 upd_del_t_mid 1 1 1 

40 upd_integrity_test 1 1 1 

41 upd_mod_t_cod 1 1 1 

42 upd_mod_t_end 1 1 1 

43 upd_mod_t_int 1 1 1 

44 upd_mod_t_mid 1 1 1 

45 upd_remove_duplicate 1 1 1 

46 drop_agg_view 0 0 1 

47 Drop database 0 1 0 

TTL  52 54 43 

 

 

 

 

 

 

 

 



86 

Appendix 4 – Performance evaluation results 

Table 1 of Appendix 4. Results of performance benchmarking (seconds) 

Test name PostgreSQL 9.2.7  

 

MariaDB 5.5.33 

 

FirebirdSQL 2.5.2 

 

Database creation 0.842518 0.00269389 0.185572 

Table creation 0.0512509 0.888244 2.71767 

Dataset load 2.48202 20.3042 448.251* 

agg_create_view 0.00862002 0.143817 0.390566 

agg_func 0.0666161 0.113545 0.0581758 

agg_info_retrieval 0.034838 0.0867929 0.049927 

agg_scal 0.034066 0.048306 0.0332489 

agg_subtotal_report 0.214588 18.8833 0.0332561 

agg_total_report 0.197711 18.8765 0.016845 

bulk_append 0.478797 3.2737 failed 

bulk_delete 0.04476 0.245332 0.0994558 

bulk_modify 0.220317 0.242565 9.75764 

bulk_save 0.0539119 0.112962 0.0169928 

count_tuples 0.052794 0.110906 0.0165181 

create_idx_hundred

_code_h 

0.177024 1.1546 N/A 

create_idx_tenpct_

code_h 

0.183337 1.30896 N/A 

create_idx_tenpct_

name_h 

0.533135 1.91246 N/A 

create_idx_uniques

_code_h 

0.183253 0.749002 N/A 

create_idx_updates

_code_h 

0.374942 1.86958 N/A 

join_2 0.05656 0.131412 0.23788 

join_2_cl 0.0199289 0.116559 0.182784 

join_3_cl 0.0207541 0.119782 0.266508 

join_3_ncl 0.000867128 0.000396013 0.291473 

agg_func 0.0203559 0.111908 9.41249 

join_4_ncl 0.000828981 0.00039506 0.374785 

proj_100 4.09898 0.140239 0.254043 



87 

Test name PostgreSQL 9.2.7  

 

MariaDB 5.5.33 

 

FirebirdSQL 2.5.2 

 

proj_10_pct 0.11451 0.116066 0.138842 

sel_100_cl 0.0656519 0.153201 0.0153391 

sel_100_ncl 0.043731 0.151931 0.0164399 

sel_10pct_ncl 0.000550032 0.000246048 0.0166061 

sel_1_cl 0.0375061 0.149212 0.0165019 

sel_variable_select

_high 

0.0839369 0.109101 0.01653 

sel_variable_select

_low 

0.0221109 0.075038 0.0166512 

table_scan 0.0216441 0.104612 0.0165169 

upd_append_duplic

ate 

0.0233419 0.000787973 0.132842 

upd_app_t_end 0.00815701 7.82013e-05 0.116557 

upd_app_t_mid 0.00829101 0.00012207 0.199832 

upd_del_t_end 0.037215 0.22138 0.116531 

upd_del_t_mid 0.0543849 0.228939 0.133225 

upd_integrity_test 0.0250139 0.1102 0.0998979 

upd_mod_t_cod 0.0381589 0.222935 0.10823 

upd_mod_t_end 0.0449889 0.221459 0.0999041 

upd_mod_t_int 0.038198 0.222496 0.108262 

upd_mod_t_mid 0.0378802 0.222431 0.0998709 

upd_remove_duplic

ate 

0.0403731 0.222935 0.099906 

 

* - Low performance caused by custom C++ implementation due to lack of native data upload 

methods. 

 

 

 



88 

Table 2 of Appendix 4. Results deviation from average value (seconds) 

Test name Average 
PostgreSQL 

9.2.7 

MariaDB 

5.5.33 

FirebirdSQL 

2.5.2 

Database creation 0.3435946 0.4989234* -0.3409007* -0.1580226 

Table creation 1.2190550 -1.1678041 -0.3308110 1.4986150 

Dataset load 157.01241 -154.53039 -136.70821 291.23859 

agg_create_view 0.1810010 -0.1723810 -0.0371840 0.2095650 

agg_func 0.0794456 -0.0128295 0.0340994 -0.0212698 

agg_info_retrieval 0.0571860 -0.0223480 0.0296069 -0.0072590 

agg_scal 0.0385403 -0.0044743 0.0097657 -0.0052914 

agg_subtotal_report 6.3770480 -6.1624600 12.5062520 -6.3437919 

agg_total_report 6.3636853 -6.1659743 12.5128147 -6.3468403 

bulk_append 1.8762485 -1.3974515 1.3974515 N/A 

bulk_delete 0.1298493 -0.0850893 0.1154827 -0.0303935 

bulk_modify 3.4068407 -3.1865237 -3.1642757 6.3507993 

bulk_save 0.0612889 -0.0073770 0.0516731 -0.0442961 

count_tuples 0.0600727 -0.0072787 0.0508333 -0.0435546 

create_idx_hundred_code_h 0.6658120 -0.4887880 0.4887880 N/A 

create_idx_tenpct_code_h 0.7461485 -0.5628115 0.5628115 N/A 

create_idx_tenpct_name_h 1.2227975 -0.6896625 0.6896625 N/A 

create_idx_uniques_code_h 0.4661275 -0.2828745 0.2828745 N/A 

create_idx_updates_code_h 1.1222610 -0.7473190 0.7473190 N/A 

join_2 0.1419507 -0.0853907 -0.0105387 0.0959293 

join_2_cl 0.1064240 -0.0864951 0.0101350 0.0763600 

join_3_cl 0.1356814 -0.1149273 -0.0158994 0.1308266 

join_3_ncl 0.0975787 -0.0967116 -0.0971827 0.1938943 

agg_func 3.1815846 -3.1612287 -3.0696766 6.2309054 



89 

Test name Average 
PostgreSQL 

9.2.7 

MariaDB 

5.5.33 

FirebirdSQL 

2.5.2 

join_4_ncl 0.1253363 -0.1245074 -0.1249413 0.2494487 

proj_100 1.4977540 2.6012260 -1.3575150 -1.2437110 

proj_10_pct 0.1231393 -0.0086293 -0.0070733 0.0157027 

sel_100_cl 0.0780640 -0.0124121 0.0751370 -0.0627249 

sel_100_ncl 0.0707006 -0.0269696 0.0812304 -0.0542607 

sel_10pct_ncl 0.0058007 -0.0052507 -0.0055547 0.0108054 

sel_1_cl 0.0677400 -0.0302339 0.0814720 -0.0512381 

sel_variable_select_high 0.0698560 0.0140809 0.0392450 -0.0533260 

sel_variable_select_low 0.0379334 -0.0158225 0.0371046 -0.0212822 

table_scan 0.0475910 -0.0259469 0.0570210 -0.0310741 

upd_append_duplicate 0.0523240 -0.0289821 -0.0515360 0.0805180 

upd_app_t_end 0.0415974 -0.0334404 -0.0415192 0.0749596 

upd_app_t_mid 0.0694150 -0.0611240 -0.0692930 0.1304170 

upd_del_t_end 0.1250420 -0.0878270 0.0963380 -0.0085110 

upd_del_t_mid 0.1388496 -0.0844647 0.0900894 -0.0056246 

upd_integrity_test 0.0783706 -0.0533567 0.0318294 0.0215273 

upd_mod_t_cod 0.1231080 -0.0849491 0.0998270 -0.0148780 

upd_mod_t_end 0.1221173 -0.0771284 0.0993417 -0.0222132 

upd_mod_t_int 0.1229853 -0.0847873 0.0995107 -0.0147233 

upd_mod_t_mid 0.1200607 -0.0821805 0.1023703 -0.0201898 

upd_remove_duplicate 0.1210714 -0.0806983 0.1018636 -0.0211654 

 

* - Red is the worst and green is the best case comparing with average.  

 

 



90 

Appendix 5 – Power efficiency evaluation results 

 

Figure 1 of Appendix 5. Results of PostgreSQL testing during one hour. 



91 

 

Figure 2 of Appendix 5. Results of MariaDB testing. 



92 

 

Figure 3 of Appendix 5. Results of FirebirdSQL testing. 

 

 

 

 

 

 

 



93 

Table 1 of Appendix 5. The power consumption measurement results (W). 

Elapsed 

time 
PostgreSQL MariaDB FirebirdSQL 

Idle  

computer 

0:01:00 1.60634 1.64058 1.43726 1.09018 

0:02:00 3.24322 3.30791 2.85761 2.17359 

0:03:00 4.89388 4.97836 4.28994 3.26528 

0:04:00 6.55664 6.66175 5.71459 4.34583 

0:05:00 8.17039 8.27233 7.12347 5.43079 

0:06:00 9.79653 9.9071 8.54891 6.51455 

0:07:00 11.4138 11.6174 9.99042 7.59364 

0:08:00 13.0414 13.3213 11.4266 8.68023 

0:09:00 14.6742 15.0401 12.8491 9.75864 

0:10:00 16.302 16.7416 14.2831 10.8387 

0:11:00 17.9397 18.3736 15.7343 11.9255 

0:12:00 19.5807 19.9935 17.1437 13.0147 

0:13:00 21.2189 21.6251 18.5976 14.1032 

0:14:00 22.859 23.2539 20.0379 15.1882 

0:15:00 24.5011 24.8717 21.4488 16.2593 

0:16:00 26.1271 26.5001 22.9037 17.337 

0:17:00 27.7484 28.1303 24.324 18.4148 

0:18:00 29.3769 29.8336 25.7701 19.4876 

0:19:00 31.0196 31.556 27.2178 20.5585 

0:20:00 32.6479 33.283 28.6377 21.6337 

0:21:00 34.2889 35.0039 30.0894 22.7096 

0:22:00 35.9201 36.6662 31.5239 23.7871 

0:23:00 37.5536 38.2857 32.9512 24.8654 

0:24:00 39.1871 39.9153 34.3768 25.9402 

0:25:00 40.8109 41.5497 35.7881 27.0222 

0:26:00 42.4464 43.1836 37.2118 28.0976 

0:27:00 44.0812 44.8129 38.6418 29.1731 

0:28:00 45.756 46.434 40.0721 30.2486 

0:29:00 47.4451 48.0527 41.4787 31.319 

0:30:00 49.1435 49.6758 42.8986 32.3969 

0:31:00 50.8381 51.3004 44.3584 33.4743 



94 

Elapsed 

time 
PostgreSQL MariaDB FirebirdSQL 

Idle  

computer 

0:32:00 52.5073 52.9259 45.7969 34.556 

0:33:00 54.1641 54.5485 47.2194 35.6331 

0:34:00 55.8124 56.1695 48.6351 36.7103 

0:35:00 57.4616 57.786 50.0427 37.7875 

0:36:00 59.1076 59.3845 51.5068 38.8623 

0:37:00 60.7586 60.9881 52.933 39.9398 

0:38:00 62.4032 62.5982 54.3759 41.0168 

0:39:00 64.0539 64.2245 55.8099 42.0907 

0:40:00 65.7051 65.8351 57.2593 43.1641 

0:41:00 67.3476 67.4566 58.7267 44.2417 

0:42:00 68.991 69.057 60.1573 45.3178 

0:43:00 70.6276 70.7496 61.6007 46.3849 

0:44:00 72.2728 72.4701 63.037 47.4643 

0:45:00 73.9089 74.1989 64.5077 48.5359 

0:46:00 75.5497 75.9204 65.9704 49.6105 

0:47:00 77.1885 77.5761 67.3869 50.6864 

0:48:00 78.8204 79.1969 68.8351 51.7675 

0:49:00 80.4574 80.8165 70.2692 52.8397 

0:50:00 82.0972 82.4331 71.6953 53.9138 

0:51:00 83.7419 84.06 73.1235 54.9857 

0:52:00 85.3758 85.6863 74.58 56.0555 

0:53:00 87.0175 87.3128 76.0073 57.1451 

0:54:00 88.6597 88.9494 77.4821 58.2243 

0:55:00 90.3015 90.5782 78.9187 59.3013 

0:56:00 91.9338 92.1994 80.3823 60.3792 

0:57:00 93.5663 93.8194 81.8362 61.4513 

0:58:00 95.1996 95.4364 83.294 62.5261 

0:59:00 96.8329 97.0506 84.735 63.6035 

1:00:00 98.469 98.6856 86.1914 64.6793 

 

 



95 

Appendix 6 – Temperature and CPU utilization 

 

 

Figure 1 of Appendix 6. Temperature during tests of  FirebirdSQL. 



96 

 

Figure 2 of Appendix 6. Temperature during tests of  PostgreSQL. 

 



97 

 

Figure 3 of Appendix 6. Temperature during tests of  MariaDB. 


