
Tallinn University of Technology

Faculty of Information Technology

Department of Informatics

Solving rule set optimisation problem of the MONSA family of algorithms

and implementation in Java

Master’s thesis

Martin Rebane

Supervisors:

Professor Rein Kuusik

Grete Lind, MSc

Tallinn 2014



Author's declaration

Herewith I declare that this thesis is based on my own work. All ideas, major views and data from 

different sources by other authors are used only with a reference to the source. The thesis has not 

been submitted for any degree or examination in any other university.

…................................................

May 22nd 2014

Martin Rebane

Page 2



Solving rule set optimisation problem of the MONSA 

family of algorithms and implementation in Java

Abstract

Martin Rebane

Central research question for this thesis is to solve rule set optimisation problem of MONSA

family  of  algorithms  (MONSAMAX,  MONSAMIN,  and  MONSABAN)  and  analyse  the

properties  of  MONSA and cover  algorithms both  in  terms  of  quality of  the  solution  and

resource consumption of the implementation.

Two  different  cover  algorithms  for  solving  rule  set  optimisation  problem  are  proposed.

Greedy algorithm takes a mathematical approach to minimise the number of rules that are

selected to the final cover. Approximation algorithm attacks the problem from the other side,

selecting the best rule for each data object. They offer different business value to the end user.

Additionally, a unique coverage algorithm is introduced. This algorithm is meant to be used in

conjunction with other rule set optimisation algorithms.

All algorithms are implemented in Java programming language. Thesis tests the performance

of cover algorithms and of MONSA algorithms on different input datasets.

Finally,  efficient  handling  of  zeroes  and  null-values  in  the  program  code  for  MONSA

algorithms  is  introduced.  It  allows  to  develop  MONSA algorithms  more  efficiently  than

would be possible by using trivial implementation. All algorithms are implemented in Java.

Keywords:  MONSA  algorithm,  MONSAMAX,  MONSABAN,  MONSAMIN,  rule  set

optimisation problem, monotone systems

The thesis is in English and contains 66 pages of text,  9 chapters,  10 illustrations, 11 tables

and 7 appendices.

Page 3



MONSA algoritmiperekonna reeglisüsteemi 

katteülesande lahendamine. Realisatsioon Javas 

Annotatsioon

Martin Rebane

Selle  töö  keskseks  uurimisküsimuseks  on  MONSA  algoritmiperekonna  (MONSAMAX,

MONSAMIN  ja MONSABAN)  reeglisüsteemi  optimiseerimisülesande  lahendamine.  Töös

analüüsitakse ka nimetatud algoritmide kvalitatiivseid omadusi ning ressursikasutust.

Optimiseerimisülesande  sisu  on  leida  väikseim  hulk  reegleid,  mis  kirjeldavad  ära  kogu

andmestiku.  See  ülesanne  lahendatakse  parima  katte  leidmise  teel,  pakkudes  välja  kaks

algoritmi,  millest kumbki  defineerib  parima katte veidi  erinevalt.  Ahne (greedy)  algoritm

läheneb  ülesandele  pigem  matemaatiliselt  ja  proovib  viia  lõplikusse  valikusse  võetavate

reeglite  hulga  miinimumini.  Lähendusalgoritm  (approximation  algorithm) valib  iga

andmestiku rea jaoks kattesse reegli,  mis antud objekti seisukohalt  tundub kõige paremini

erisusi kirjeldav. Kaks alternatiivset lahendust pakuvad erineva suunitlusega väljundit ja on

mõeldud erinevateks ärivajadusteks. Lisaks pakub töö välja unikaalse katte algoritmi. See on

mõeldud kasutamiseks enne põhialgoritmi ning valib kattesse sellised reeglid, mida täieliku

katte korral välistada ei saa.

Kõik käsitletavad algoritmid on töö käigus realiseeritud Java programmeerimiskeeles. Töös

testitakse nende jõudlust ja ressursikasutust erinevate sisendite korral.

Realisatsiooni  poolelt  tutvustatakse  võtteid,  mis  aitasid  võrreldes  triviaalse  lahendusega

algoritmide  töökiirust  tõsta,  eelkõige  hõlmab  see  efektiivset  nullide  ja  nullväärtuste

käsitlemist.

Võtmesõnad:  MONSA  algoritm,  MONSAMAX,  MONSABAN,  MONSAMIN,  reeglistiku

optimiseerimine, katteülesanne, monotoonsed süsteemid

Magistritöö on kirjutatud inglise keeles, sisaldab  66 lehekülge,  9 peatükki,  10 graafikut, 11

tabelit ja 7 lisa.

Page 4



Index of Tables

Table 1: Example dataset with discreet values..........................................................................13

Table 2: Main frequency table for an example dataset.............................................................13

Table 3: Three class frequency tables.......................................................................................14

Table 4: Main frequency table on second level.........................................................................15

Table 5: Class frequency tables on second level.......................................................................15

Table 6: Examples of textual and compact representations of the rules...................................16

Table 7: Benchmark results for coverage algorithms with different datasets...........................32

Table 8: Running times and results of coverage algorithms depending on input rule set.........34

Table 9: Number of rules after each step. Unique + greedy coverage......................................35

Table 10: Average over-coverage per object after each step. Unique + greedy coverage.........35

Table 11: Replacement of values in a dataset...........................................................................42

Illustration Index

Illustration 1: Complexity growth of MONSAMAX by number of columns...........................37

Illustration 2: Complexity growth of MONSABAN by number of columns...........................38

Illustration 3: Complexity growth of MONSAMIN by number of columns............................39

Illustration 4: Running time of MONSA algorithms by number of rows in the dataset...........40

Illustration 5: Memory usage of MONSA algorithms by number of rows in the dataset.........41

Illustration 6: Running time by number of different values......................................................42

Illustration 7: Memory usage by number of different values in range......................................43

Illustration 8: MONSAMAX memory usage while processing Mushroom 16-column dataset

(complete  run: MONSAMAX, DSR, Unique + greedy coverage algorithm).  Illustration is

made using Virtual VM software..............................................................................................45

Illustration 9: MONSABAN memory usage while processing Mushroom 19-column dataset

(complete  run:  MONSABAN, DSR, Unique + greedy coverage  algorithm).  Illustration  is

made using Virtual VM software..............................................................................................46

Illustration 10: Class diagram demonstrating the differences in implementation for MONSA

algorithms. Private methods are omitted...................................................................................50

Page 5



Table of Contents

1 Introduction..............................................................................................................................9

1.1 Objectives.........................................................................................................................9

1.2 Overview..........................................................................................................................9

1.3 Outline of research.........................................................................................................10

2 Concepts and theoretical background....................................................................................11

2.1 Monotone systems algorithms........................................................................................11

2.2 MONSAMAX algorithm................................................................................................11

2.2.1 Rule.........................................................................................................................11

2.2.2 Algorithm................................................................................................................12

2.2.3 An explanation of the MONSAMAX algorithm....................................................13

2.3 MONSABAN algorithm for finding negations..............................................................16

2.4 MONSAMIN algorithm.................................................................................................17

2.5 Rule set and determinative set of rules (DSR)...............................................................18

2.6 Rule set optimisation problem of MONSA algorithms..................................................18

2.7 Set cover problem...........................................................................................................19

3 Rule set optimisation problem...............................................................................................21

3.1 Problem..........................................................................................................................21

3.2 Analysis of the problem..................................................................................................21

3.2.1 Prefer general patterns............................................................................................21

3.2.2 Prefer deviance.......................................................................................................22

3.2.3 Complexity of a rule...............................................................................................22

3.2.4 Coverage.................................................................................................................22

3.3 Solution..........................................................................................................................25

3.3.1 Integration of MONSAMAX and rule optimisation algorithm..............................25

3.3.2 Greedy cover algorithm..........................................................................................26

 Definitions..................................................................................................................26

 Algorithm...................................................................................................................26

3.3.3 Approximation algorithm.......................................................................................27

 Definitions..................................................................................................................27

 Algorithm...................................................................................................................28

Page 6



3.3.4 Unique coverage algorithm....................................................................................28

 Definitions..................................................................................................................29

 Algorithm...................................................................................................................29

4 Experiments and comparative analyses of algorithms...........................................................30

4.1 Overview of experiments...............................................................................................30

4.2 Used datasets..................................................................................................................30

4.3 Test environment............................................................................................................31

4.4 Comparison of covering algorithms...............................................................................31

4.4.1 Speed......................................................................................................................32

4.4.2 Coverage.................................................................................................................32

4.4.3 Solving rule set optimisation problem on raw rule set...........................................33

4.4.4 Reducing the size of rule set...................................................................................35

4.4.5 Discussion of test results........................................................................................35

4.5 Running time and memory usage of MONSA algorithms.............................................36

4.5.1 Number of columns................................................................................................37

 MONSAMAX............................................................................................................37

 MONSABAN.............................................................................................................38

 MONSAMIN.............................................................................................................39

4.5.2 Number of rows......................................................................................................39

4.5.3 Number of different values.....................................................................................41

4.6 Analyses of memory usage during the execution...........................................................44

4.6.1 MONSAMAX........................................................................................................44

4.6.2 MONSABAN.........................................................................................................46

4.6.3 Comparison of memory usage................................................................................47

5 Implementation notes of MONSA family of algorithms.......................................................48

5.1 Implementation of MONSAMAX using primitive data types.......................................48

5.2 Object oriented implementation of MONSA family of algorithms................................48

5.2.1 Efficient handling of zeroes and NULL-values......................................................49

5.2.2 Using abstract data types........................................................................................49

6 Ideas for future research.........................................................................................................52

6.1 Implementation...............................................................................................................52

6.2 Integration of MONSAMAX and MONSABAN...........................................................52

6.3 Rule set optimisation......................................................................................................52

6.4 Parallel algorithms..........................................................................................................53

Page 7



6.5 Live algorithm................................................................................................................53

6.6 Plug-ins for statistical computing packages...................................................................53

7 Conclusion.............................................................................................................................54

8 Kokkuvõte..............................................................................................................................56

9 References..............................................................................................................................58

10 Appendices...........................................................................................................................60

 Appendix 1 – Coverage rule sets for 18-column Mushroom dataset..................................60

 Appendix 2 – Data of MONSAMAX evaluation................................................................62

 Appendix 3 – Data of MONSABAN evaluation.................................................................63

 Appendix 4 – Data of MONSAMIN evaluation..................................................................64

 Appendix 5 – data of resource consumption depending on number of rows in dataset......65

 Appendix 6 – data of resource consumption depending on number of different values in

the dataset.............................................................................................................................65

 Appendix 7 – Software and source code in Java (CD)........................................................66

Page 8



1 Introduction

1.1 Objectives

Main  research  question  for  this  thesis  is  to  find  and implement  an  efficient  solution  for

solving  a  rule  set  optimisation  problem  of  the  MONSA1 family  of  inductive  learning

algorithms, three solutions are proposed. This thesis also investigates implementation details

of  MONSA  algorithms,  and  introduces  a  new  type  of  MONSA  algorithm  called

MONSABAN. This new algorithm seeks for negations – patterns that do not exist  in the

dataset.  Thesis  develops  corresponding  ideas  and  methods  to  improve  the  rule  sets  of

MONSA algorithms.

1.2 Overview

MONSA family of algorithms provides an efficient way to describe given dataset by finding

regularities in them (Roosmann et al. 2008). These patterns are called rules and all the rules

for given dataset form a rule set. MONSA algorithms offer excellent descriptive patterns of

the  dataset,  making  it  easier  to  understand  and  interpret  data.  Two  implementations  of

MONSAMAX will  be  introduced  in  this  thesis.  One  of  them has  been  developed  along

writing this paper and can be found on accompanying CD. This implementation will be used

to test and analyse the performance of algorithms throughout the work.

While MONSAMAX is efficient and easy to use, main deficit of MONSAMAX from user's

perspective is that the algorithm finds too many overlapping rules that describe same data

examples.  According  to  Kuusik  and  Lind,  authors  of  MONSAMAX  algorithm,  some

overlapping is desirable and even strength of the method  (Kuusik and Lind 2012),  but in

practice it finds too many overlapping rules which makes it difficult to interpret the findings

efficiently. Rule set optimisation algorithms developed in this thesis target that problem.

For solving a rule set optimisation problem, this  thesis investigates different methods and

sorting criteria of MONSA rule set. Intention is to find a best suitable criterion to evaluate the

1 “MONSA”  is  a  shorthand  of  Monotone  System  Algorithm.  This  work  considers  three  of  them:

MONSAMAX, MONSAMIN and MONSABAN. For this reason, author uses term “MONSA” to refer to

these three algorithms.

Page 9



quality of a rule and to remove weaker rules. Ideal solution finds a minimum set that covers

all  objects  in  dataset.  This  is  both  a  technical  task  and  a  decision  problem.  Author  will

propose two different algorithms to solve the task. One of them is a greedy algorithm that

reduces rule set optimisation problem to a classical set covering problem. Other method is an

approximation algorithm that assigns weights to each rule and approximates a solution based

on  the  calculated  weights2.  Additionally  unique  coverage  algorithm is  introduced,  which

speeds up greedy algorithm on some cases.

1.3 Outline of research

As will be explained in Chapter  2, a rule selection problem reduces to a classical cover set

problem, hence a sub-chapter is also dedicated to analyse different approaches to solving a

general  cover  set  problem.  New cover  algorithms are  developed based on the  theoretical

assumptions covered there.

After  introducing  new  cover  algorithms  to  solve  rule  set  optimisation  problem,  thesis

continues  to  investigate  them  empirically.  Proposed  cover  algorithms  are  tested  against

different  datasets  and  different  types  of  compressed  and  uncompressed  rule  sets.  Their

running time, memory usage and quality of the result are compared. Empirical evaluation was

chosen because it is the first time these algorithms are implemented. Empirical tests quickly

help to determine main characteristics of algorithms while using less time than theoretical

analyses of algorithms might take.

Thesis  continues  with  the  empirical  evaluation  of  implementations  of  MONSAMAX,

MONSAMIN, and MONSABAN algorithms. Aim is to determine what affects the resource

consumption most and therefore algorithms are tested against different types of datasets and

against different characteristics of datasets, like the number of columns and number of rows.

Finally, this work analyses the implementation of MONSA algorithms in Java, highlighting

the differences between current and trivial implementations. Thesis concludes by suggesting

new research ideas for investigation of MONSA algorithms and rule set optimisation problem.

2 In a mathematical sense, both algorithms could be called greedy approximation algorithms. This work calls

one of them „greedy” as it uses classical greedy approach and aims at finding minimal solution. Other is

called approximation algorithm as it solves a problem that is close to the original.

Page 10



2 Concepts and theoretical background

2.1 Monotone systems algorithms

Monotone Systems algorithms are a type of inductive learning3 algorithms that take datasets

with an unknown structure as input, process those datasets using frequency tables and output

rules that describe the dataset (Roosmann et al. 2008). These algorithms use frequency tables

to process datasets instead of using the data directly, hence they achieve higher efficiency

while not losing information (Roosmann et al. 2008). This work implements and tests three

such  algorithms:  MONSAMAX,  MONSAMIN  and  MONSABAN.  As  all  three  are  very

similar,  this  chapter  gives  full  explanation  and  details  only  for  MONSAMAX.  For

MONSAMIN and MONSABAN, only the differences from MONSAMAX are highlighted.

2.2 MONSAMAX algorithm

MONSAMAX algorithm finds regularities and patterns in a dataset. MONSAMAX works on

datasets that are using or can be converted to use discreet values. A dataset is viewed as a

table where each row represents a data object, and columns represent variables that are called

attributes. Attributes can have different discreet  values within the dataset, but one value for

any given object. One of the attributes for each run of the algorithm will be called a class –

this is the attribute that is being characterized by the algorithm. MONSAMAX computes a

frequency tables for the dataset and uses them to find patterns that determine a certain class

value. Such pattern is called a  rule. Finally, a collection of all the rules that are found for

given class is called a rule set.

2.2.1 Rule

A found pattern in a data set is called a rule. Given that A, B and C are attributes (variables) in

a dataset then an example of a MONSAMAX4 algorithm rule might be:

if A=2 and B=3 then C=6;

3 In essence, it means “learning by example”

4 Rule  of  MONSAMAX  is  identical  to  rules  found  by  other  MONSA algorithms,  MONSABAN  and

MONSAMIN

Page 11



C is a class variable in this example.

Each rule is composed of one or more attribute-value pairs and of exactly one class value that

is determined by those attribute-value pairs. A rule also has metadata about number of objects

it covers. Rule set is a collection of rules.

2.2.2 Algorithm

MONSAMAX was developed by Rein Kuusik and Grete Lind  (2012), their algorithm code

from the same source follows5:

S0. t:=0; Ut:=

S1. Find frequencies in whole dataset and each class  

    If t>0 then Bring zeroes down

S2. For each factor A such that its frequency in some

class C is equal to its frequency in whole set 

    output rule {Ui}&AC, i=0,…,t

    A0

S3. If not enough free factors for making an extract

then 

    If t=0 then Goto End 

    Else t:=t-1; Goto S3

S4. Choose a new (free) factor Ut with largest frequency

     Ut 0; t:=t+1; 

     extract subtable of objects containing Ut;

     Goto S1

End. Rules are found

5 Kuusik and Lind offered this algorithm together with explaining notes. Author of this work has integrated

some of the notes into algorithm description for clarity.

Page 12



2.2.3 An explanation of the MONSAMAX algorithm

To get a better sense of how MONSAMAX works, a detailed description of steps of algorithm

follows. Readers familiar with MONSAMAX can safely skip this section.

An example dataset is given in Table 1 where third attribute is chosen as a class. Class is an

attribute that algorithm describes using other attributes in the data set.

Attribute A Attribute B Attribute C (Class)

Object 1 1 1 1

Object 2 2 3 2

Object 3 2 2 3

Object 4 3 3 3

Table 1: Example dataset with discreet values

Step 1. MONSAMAX computes a frequency table for the dataset and for each class. Columns

of a frequency table represent attributes, and rows represent values of the attributes. Each

entry in the frequency table shows how many times one value occurs for given attribute. Main

frequency table for example dataset is given in Table 2. As Attribute C was chosen as a class,

there is no need to compute frequencies for that.

Attribute A Attribute B

Value “1” 1 1

Value “2” 2 1

Value “3” 1 2

Table 2: Main frequency table for an example dataset

Similar frequency tables are computed for each class value. In this example dataset we chose

Attribute C as a class value. It has three possible values: 1, 2 and 3. Frequency table for class

value 1 would be built using only the objects where Attribute C has value 1, and frequency

table for class value 2 would be built using only the objects where Attribute C has value 2.

Similarly frequency table  for  class  value  3  would  be  built  using  only the  objects  where

Attribute  C  has  value  3.  If  we  add  up  the  values  for  any  given  cell  (attribute-value

combination) from all  class-based frequency tables, it  adds up to the number in the main

Page 13



frequency table. Class frequency tables are shown in Table 3.

Table for Class = 1 Table for Class = 2 Table for Class = 3

Attr A Attr B Attr A Attr B Attr A Attr B

Value “1” 1 1 0 0 0 0

Value “2” 0 0 1 0 1 1

Value “3” 0 0 0 1 1 1

Table 3: Three class frequency tables

Step 2. Rules are found by comparing frequencies. If frequencies for some attribute-value

combination are the same in any of the class frequency tables and in the main frequency table,

then this match is called a rule. Given the example dataset above, we can easily determine a

rule for class value 1:

• if the value of Attribute A is 1, then class value in this dataset is always 1 (meaning

that there are no occurrences where Attribute A is 1, but class value is not 1). This can

be shortened as IF A=1 THEN C=1;

• there is also an alternative rule based on Attribute B:  IF B=1 THEN C=1. This rule is

found  as  frequency  of  value  1  for  Attribute  B  matches  the  frequency  in  main

frequency table.

Algorithm continues by comparing all the frequencies and finds all the rules. In this example,

no rules were found from a second class frequency table. Rules IF A=3 THEN C=3 and IF

B=2 THEN C=3 are found after comparing the frequencies in third class frequency table

against the main frequency table.

If at the end of process there are any frequencies over 0 in main frequency table that have not

been used,  a largest of them is  selected.  Should several frequencies be equal,  first  one is

selected. In our case, such value is where Attribute A has frequency 2 for value 2. Hence we

build a new frequency table, based on the original dataset, and include only rows, where A=2.

Column for Attribute A is omitted from the table, as we used this as a basis for selection.

Page 14



Attribute B

Value “1” 0

Value “2” 1 0

Value “3” 1

Table 4: Main frequency table on second level

Frequency for value “2” will be replaced by 0 as we already found a rule for B=2 on previous

level. Next, we build class frequency tables based on data where A=2.

Table for Class = 1 Table for Class = 2 Table for Class = 3

Attribute B Attribute B Attribute B

Value “1” 0 0 0

Value “2” 0 0 1 0

Value “3” 0 1 0

Table 5: Class frequency tables on second level

First class frequency table is empty, nothing to do there. From the second class frequency

table we will find a rule for class value 2 as frequency matches with the main table. This rule

would be a made from 2 components:

• as this table contains only rows where A=2, we will add this as first part of a rule: if

value of Attribute A is 2 and value of Attribute B is 3 then the class value will be

always 2 for given dataset.

MONSAMAX would now return to previous level and make another extract until all unused

frequencies above 0 are used and all rules are found.

We can now formalize the representation of the rules as follows

IF [ATTRIBUTE] = [SOME VALUE] THEN [CLASS] = [SOME VALUE]

Kuusik and Lind (2011b) also write rules more formally as follows: 

• [optionally add capital  “T” for  “Attribute”]  and give  the  number  of  attribute.  For

example, for first attribute, use “1”;

• denote attribute value with a dot followed by the value;

• show class value after the equals sign.

Examples of both representations are given in Table 6.

Page 15



Textual representation Compact representations

if the value of Attribute A (first in dataset) is

1, then class value in this dataset is always 1

T1.1 = 1 or 1.1 = 1

IF A=1 THEN C=1

if the value of Attribute A is 2 and Attribute B

(second in dataset) is 3 then the class value

will be always 2 for given dataset

T1.2 & T2.3 = 2 or 1.2 & 2.3 = 2

IF A=2 AND B=3 THEN C=2

Table 6: Examples of textual and compact representations of the rules

For another example and longer explanation of MONSAMAX, please see (Kuusik and Lind

2012).

2.3 MONSABAN algorithm for finding negations

MONSABAN is an algorithm that utilizes most of the MONSAMAX code, but instead of

finding regularities, it seeks negations – combinations of attributes and values that do not exist

in a dataset. This idea was suggested to the author by Professor Leo Võhandu during master's

seminar  in  spring  2013.  Algorithm  is  based  on  MONSAMAX  and  has  only  a  small

modifications in Step 2:

S0. t:=0; Ut:=

S1. Find  frequencies  in  whole  dataset  and  each  class  

    If t>0 then Bring zeroes down

S2. For each factor A such that its frequency

 in some class C is 0 

    output rule {Ui}&A != C, i=0,…,t

S3. If not enough free factors for making an extract then 

    If t=0 then Goto End 

    Else t:=t-1; Goto S3

S4. Choose a new (free) factor Ut with largest frequency

     Ut 0; t:=t+1; 

     extract subtable of objects containing Ut; 

     Goto S1

End. Rules are found

Page 16



Instead  of  comparing  frequencies  with  main  frequency  table,  MONSABAN  compares

frequencies in sub-tables to 0. If a frequency is 0 for some combination, then we have found a

negation. Implementation in program code differs more from MONSAMAX than a written

algorithm as it uses somewhat different comparators and sorting. Efficiency and results of

MONSABAN will be introduced in a later chapter.

2.4 MONSAMIN algorithm

MONSAMIN is  similar  to  MONSAMAX,  it  even  shares  the  same  algorithm logic.  The

difference with MONSAMAX is that it processes frequency tables starting from the lowest

frequency instead of highest. MONSAMIN is also developed by Rein Kuusik and Grete Lind.

Algorithm code is almost identical with MONSAMAX (see Kuusik and Lind 2012), except

for sorting in Step 4:

S0. t:=0; Ut:=

S1. Find frequencies in whole dataset and each class  

    If t>0 then Bring zeroes down

S2. For each factor A such that its frequency in some

class C is equal to its frequency in whole set 

    output rule {Ui}&AC, i=0,…,t

    A0

S3. If not enough free factors for making an extract

then 

    If t=0 then Goto End 

    Else t:=t-1; Goto S3

S4. Choose a new (free) factor Ut with smallest frequency

     Ut 0; t:=t+1; 

     extract subtable of objects containing Ut;

     Goto S1

End. Rules are found

Final rule set for MONSAMAX and MONAMIN should be the same, only the order in which

Page 17



rules are found, is different.

2.5 Rule set and determinative set of rules (DSR)

MONSA algorithms  find  many  rules  that  contain  same  set  of  attribute-value  pairs  and

determine the same class value. This problem is solvable by finding determinative set of rules

(DSR), method which was introduced in  (Kuusik and Lind 2011a). This method eliminates

rules that are contained in other rule, e.g. if one rule is a subset of other rule then this subset is

removed.

In the following example Rule 2 will  be eliminated as  A = 1 (attribute  A has value 1) is

enough information to determine Class 1 and B = 4 is unnecessary addition:

Rule 1:  IF A = 1 THEN Class = 1

Rule 2:  IF A = 1 & B = 4 THEN Class = 1

As MONSAMAX finds more overlapping rules that could be helpful to the user, there is also

a need to discard rules that are different in terms of attributes, but which cover same objects.

This article contributes to finding such solution.

2.6 Rule set optimisation problem of MONSA algorithms

MONSA algorithms may find and usually finds many rules that each describe a set of objects

in a dataset. Such sets tend to overlap and hence describe many data objects several times.

The problem usually arises when different attributes (variables) can be used to describe a data

object.

Rule set optimisation problem of MONSA algorithms is combinatorial task of selecting best

rules  from the  MONSA DSR rule  set.  Such  selection  ideally  covers  all  objects  that  are

covered by DSR set, but with fewer rules. This problem is a third step after (1) generating

rules from the dataset and (2) compressing them into DSR set, and is one of the main topics of

this thesis. As we will demonstrate, should we wish to solve rule set optimisation problem by

minimising data object coverage then this optimisation problem is reducible to a set covering

problem.

Page 18



Following is an example of rule set optimisation problem. Given dataset with variables A, B,

C, D, E and class variable F, MONSA algorithm might come up with three different rules to

describe F:

IF A=1 & B=2 THEN F=1

IF C=2 & E=4 THEN F=1

IF D=4 THEN F=1

They all describe objects where the value of class variable F is 1. Each rule uses different

variables and covers a different set of objects, but with some overlapping. Assume that first

and third rule  will  cover  the same amount  of  objects  that  all  three combined.  Successful

solution for rule selection problem considers this overlapping and may select only first and

third rule. This is equivalent to solving a set cover problem. There are also other possibilities

that are described later in this thesis.

2.7 Set cover problem

Set cover problem can be defined as follows: given a finite set U which contains n objects, we

have subsets of U named S1...Sk where each contains one or more objects from U. Intention is

to select as few subsets Si as possible, but cover all n objects from U with this selection. We

can also define vector x of size k to denote whether a subset S i is selected or not. For each Si

there is decision variable xi to denote selection – if given subset is selected then xi=1 and in

case it is not then xi=0. Given these conditions, the goal is to minimise ∑
i=0

k

x i .

Set  cover  problem was  proved  to  be  NP-complete  in  1972  by Richard  Karp  (Lund  and

Yannakakis  1994:960) after  Stephen  A.  Cook  had  proved  a  year  earlier  that  boolean

satisfiability problem is NP-complete (Praust 1996:86). Karp demonstrated that satisfiability

is reducible to different problems that belong to class NP, including a set covering problem

(Karp 1972:98).  There are  no known exact algorithms for solving NP-complete  problems

efficiently, best exact algorithms still take exponential time in the worst case (Sedgewick and

Wayne  2011:917,919).  Hence  set  covering  problem can  not  be  solved  exactly  for  larger

problems.

Page 19



Greedy  algorithm  is  one  of  the  best  algorithms  to  solve  set  covering  problem  (Slavík

1996:435) and one that is most widely studied for it. Basic concept of greedy algorithm is that

it iterates through the sets and on each iteration selects such set to the cover that offers best

value  at  that  time6.  Running  time  of  greedy  set  covering  algorithms  is  polynomial,  but

nearness  to  optimality  is  not  always  outstanding.  To  evaluate  algorithm's  nearness  to

optimality, a concept of ratio is used (Feige 1998:634; Lund and Yannakakis 1994:961). Let k

be number of sets that are selected to final cover. Ratio between k of greedy algorithm and k

of optimal solution is used to evaluate the results of algorithm (ibidem). Lund and Yannakakis

proved ratio of approximately 0.72 ln n as lower bound for greedy algorithm (n stands for the

number of objects in finite set U) in their work under stricter complexity assumptions while

Johnson (for greedy algorithm) and Lovász (for linear approximation algorithm) had shown a

ratio of ln n earlier (Feige 1998:635). They showed that below these ratios, a solution to set

cover problem can not be approximated efficiently.

6 Best value can vary by implementation and objective. Algorithm in this work prefers sets that have most

uncovered objects in it.

Page 20



3 Rule set optimisation problem

3.1 Problem

Rule set optimisation problem of MONSA algorithms aims to reduce over-coverage of data

objects. After MONSA algorithm finds rules from the dataset, a rule set compression process

removes rules that are fragments of other rules. Such cleaned rule set is called determinative

set of rules (DSR) (Kuusik and Lind 2011a). Even after DSR process there are too many rules

to be efficiently used by the analyst. This is caused by the fact that MONSA algorithm finds

many possible combinations of rules and hence covers one data object many times.   Full

description of the problem is given in previous chapter. The task of this thesis is to develop

and build an algorithm that reduces the amount of rules by reducing, perhaps minimising

over-coverage of data objects7.

3.2 Analysis of the problem

MONSA algorithm finds rules that are represented by one or more rule parts, each containing

a variable name and variable value, and class variable name and class variable value.  An

example:

IF A=1 AND B=1 THEN C=3, where A and B are variables and C is class variable.

We also know information about frequency of the rule (how many data objects a rule covers)8.

Given this information we can consider different approaches to solving rule set optimisation

problem.  These  approaches  could  be  used  independently,  but  most  of  them can  also  be

combined with each other.

3.2.1 Prefer general patterns

Should  a  user  of  the  algorithm  be  interested  in  describing  general  patterns,  rule  set

7 In a strictly mathematical task, one would prefer minimal coverage to reduce the size of a rule set. This work

also considers business requirements where minimal coverage might be neither best nor preferred solution;

or minimal coverage might be only part of the solution. Details will follow later in this chapter.

8 MONSA algorithms are based on frequency tables. Therefore saving how many objects each rule covers

(frequency) is only an implementation detail and does not change the algorithm.

Page 21



optimisation problem can be solved exactly by sorting rules by frequency and selecting all

rules  above  some  frequency  threshold.  This  problem  is  easy  to  solve  and  requires  no

additional analysis.

3.2.2 Prefer deviance

Should a user be interested in deviating cases, the solution is identical to  general patterns

approach, except that rules below some frequency threshold are selected.

3.2.3 Complexity of a rule

MONSA algorithms find rules of different length. Minimal length for any rule is 1 and it uses

only one variable  to  describe  a  class  variable  (example:  IF A=1 THEN C=4).  Maximum

length of the rule is  k where  k is the number of variables in the data set (excluding class

variable). Length of the rule could also be viewed as a complexity of a rule. More variables it

contains, more complex it is. For some scenarios a user might prefer shorter rules, while for

others longer rules are better  suited.  Reducing the rule set  by complexity is  also a trivial

challenge and easy to solve. One needs to sort the rule set by length and apply desired length

limits.

3.2.4 Coverage

Mathematically straightforward approach to reduce the size of rule set would be to minimise

the coverage of data objects. This approach does not depend on business requirements but

could also be used in combination with any business-driven approach. This method ensures

that each data object that is covered by DSR is also covered by optimised solution, but as few

times as possible. It does not make any assumptions on rule quality other that preferring rules

that can contribute to minimal coverage.

This method can also utilize information about the number of objects that each rule covers.

One  approach  to  minimising  a  rule  coverage  of  dataset  is  to  convert  rules  to  Boolean

expressions  and  try  to  simplify  these  expressions.  Praust  (1996:82–84),  also  Lensen  and

Kruus (2012) offer good examples on solving such expressions. Other feasible option would

be  constraint  programming.  Working  principle  for  constraint  programming  is  that  a  user

Page 22



specifies constraints for the solution and solver needs to satisfy them (Barták 1999).

The efficiency of such approaches would be questionable as too much information about data

objects is  lost during the generation of rules.  For example,  let  us take three rules from a

fictional dataset:

IF A=1 AND B=1 THEN C=3 (frequency 3)

IF A=2 AND E=1 THEN C=3 (frequency 3)

IF D=4 THEN C=3 (frequency 6)

They all describe class C on value 3, but they do not contain any further information about

objects they cover. From such set we can only infer that first and the second rule must be

describing different set of objects as they contain different value for variable A, but we can

not tell anything about the third rule as it may:

1. cover distinct set of objects than first and second rule,

2. partly cover same set of objects that first and second set are covering,

3. fully cover same set of objects that first and second set are covering.

Any combination might offer minimal coverage, but we have no means to verify. Continuing

with this path only makes sense if we are looking for exact coverage i.e. no object can be

covered more than once. Additionally we know that MONSA algorithm always describes all

non-contradictory data objects in the dataset.

Considering these limitations, in some cases it would be possible to solve the problem by

using constraint programming models. As we know the frequencies of rules and of class, it

would be possible to set constraints based on frequencies. An example: let us assume total

frequency of class variable-value combination C=3 in the dataset is 8. Now we can compose a

following expression for minimal coverage without overlapping rules:

x1∗f 1+x2∗f 2+x3∗f 3≤8

where xn is a Boolean decision variable which tells if given rule is selected for final set of

rules (value is either 0 or 1) and fn stands for the frequency of nth rule.

Page 23



Computing all the possibilities based on such expression would take too much time in a larger

dataset. We set additional constraint for each pair of arbitrary rules <n, m> from the rule set so

that no pair will be able to exceed total frequency:

xn∗f n+ xm∗f m≤8 .

An  advanced  solver  can  now  solve  the  problem  efficiently  by  eliminating  impossible

combinations quickly.  Alternatively,  we can derive constraints from rule parts like we did

earlier. As 1st and 2nd rule can not cover same objects, we know that optimal solution covers at

least 6 objects.

x1∗f 1+x2∗f 2+x3∗f 3≥6 .

This  constraint  sets  a lower bound to the solution and hence prunes the search space by

removing all combinations below this threshold9. Together with upper bound set by the total

frequency of  C=3 it  leaves  two options:  either  1st and 2nd together  or 3rd rule.  Any other

combination would violate the constraints. Now we can see that third rule must offer minimal

coverage by itself. Selecting it gives us maximum possible frequency with fewest rules i.e.

minimal cover.

Unfortunately this  approach only works if  we are interested in minimal coverage without

overlapping rules and even then it has its limitations. For example, let total frequency of C=3

in the dataset be 9. Now we do not have a single best solution. Recall that MONSA algorithm

always covers all objects. Therefore perfect exact minimum cover is possible in this case.

Selecting 3rd rule and one of the others gives us this minimum cover. Alas without additional

information there is no way to determine which of the two we should select.

Additionally, removing the requirement of exact cover poses even greater challenges. All the

9 This formula is necessary in more complex datasets. For example, given a total frequency of 14 and 4 rules

with frequencies 7, 5, 10, 3 where first two are known to cover different objects and there is no information

about last two, we must use this constraint. Lower bound would be 12 and this would also remove some

combinations  of  rules,  not  only single  rules.  Single  rules  can  also  be  removed by primitive  threshold:

selecting a maximum frequency among all rules for given class variable-value combination and setting it as

a lower bound.

Page 24



combinations that exceed given class variable-value frequency are then possible. But we are

not interested in any kind of over-coverage. We only care about such over-coverage which at

the  same  time  increases  total  coverage  of  objects10.  As  we  do  not  have  any  criteria  for

selecting rules for over-coverage, we need more information to solve the problem.

We saw that using MONSA DSR rules as an input for optimisation problem is somewhat

efficient only if we are using exact minimal coverage and if we are able to set bounds. This

clearly  is  not  satisfactory  for  most  use  cases  where  we  can  not  meet  these  conditions.

Therefore this thesis proposes a solution that integrates with original MONSA algorithm and

saves concrete reference to the data objects that each rule covers. This allows to approach the

problem differently and to use wider set of methods. It also makes it feasible to solve rule set

optimisation problem by finding minimal coverage without above-mentioned constraints.

3.3 Solution

3.3.1 Integration of MONSAMAX and rule optimisation algorithm

This  thesis  proposes  that  the  solution  for  rule  optimisation  problem would  be  closer  to

optimality if the algorithm can access information about data objects that each rule covers.

One approach would be to take both the DSR rule set and original dataset as input and match

rules  to  data.  This  approach  would  cause  a  lot  of  extra  work  that  could  be  avoided  by

integration with MONSA algorithm. 

When MONSA algorithm finds a rule in Step 2, the code has access to a frequency table

which was used to find a rule. Data that was used to compute this frequency table is kept

available as it might be necessary to make another extract based on this table. Software can

easily process this data and save references to data objects as rule metadata. This does not

make  MONSA algorithms  more  complex  and  adds  very little  overhead.  Software  that  is

developed  in  this  thesis  implements  this  functionality.  This  chapter  proposes  three  such

approaches for solving rule set optimisation problem.

10 If rule covers objects that are not yet covered, it increases total coverage. At the same time it may cover

some objects that are already covered, therefore also increasing over-coverage.

Page 25



3.3.2 Greedy cover algorithm

This greedy algorithm for rule set  optimisation is similar to classical approach of solving

cover set problem (a good example is Chvatal 1979). It works by selecting the best rule to the

final rule set, then ordering the rule set to determine a new best rule, selecting it, sorting again

etc. until all the objects are covered. Here we define best rule by unique coverage – the rule

which at the moment of decision covers most uncovered objects, is the best. The goal is to

minimise the number of rules that are going to be selected.11

Definitions

n – number of objects (= rows in dataset)

R – rule set after DSR, containing rules. Each rule covers >= 1 object. Rule set covers <= n

objects

R2 – rule set for final selection of rules, initially empty set.

¬R2 – negation of R2. Objects that are covered by rule set R, but not by R2.

N – vector of size n to store the status of object, all values initially 0. If object (data row) has

been covered by rule set R2, object's value in N is set to 1.

current unique coverage of rule – count of objects that are covered by rule r and rule set ¬R2

(=are covered by R and not covered by R2)

Algorithm

Step 1. Sort rule set R by current unique object coverage, in descending order.

Step 2. Take and remove first rule from set R, name it r.

Step 3. Add r to set R2

Step 3. Mark all objects that r covers in N.

Step 4. Remove rule r from R.

Step 5. Sort R by current unique objects coverage (same as step 1).

Step 6. Take and remove first rule from set R, name it r. (same as step 2)

Step 6. If size(R) > 0 AND at least 1 object that r covers is not covered by R2 GOTO STEP 3

ELSE END;

Final rule set is R2.

11 There are also other possibilities. For example, if one might need to minimise over-coverage, it is better to

calculate some sort of ratio between uncovered and already covered objects and sort by that ratio.

Page 26



3.3.3 Approximation algorithm

While greedy algorithm works by selecting best rules from the rule set, this approximation

algorithm works  by selecting  best  rule  for  every data  object.  At  the  first  step,  algorithm

computes a weight to each rule. We start by computing variable  k  for each data object. k

denotes how many times a data object is covered by original rule set. Then we sum all k's of

objects that a rule covers and divide the sum by the number of objects. For better separation, k

is squared. Finally, algorithm selects a rule with smallest k for each data object. This selection

is a final rule set.

Definitions

n – number of objects (= rows in dataset)

R – rule set after DSR, containing rules. Each rule covers >= 1 object. Rule set covers <= n

objects

R2 – rule set for final selection of rules, initially empty set.

¬R2 – negation of R2. Objects that are covered by rule set R, but not by R2.

N – vector of size n to store the status of object, all values initially 0. If object (data row) has

been covered by rule set R2, object's value in N is set to 1.

current unique coverage of rule – count of objects that are covered by rule r and rule set ¬R2

(=are covered by R and not covered by R2)

F – data structure to save references between data objects and rules. For each data object there

is as set of rules that it covers.

M – vector of size n to store the rule count for each object, all values initially 0. For each rule

from the initial set R that covers given object, this value is increased by 1

Page 27



Algorithm

R2 = Ø (final set is initially empty)

N = int[n] (integer array of size n, all values initially 0)

M = int[n] (integer array of size n, all values initially 0)

Step 1. Build frequency table to mark how many times each data row is covered by rules.

E.g if data row is covered by 3 rules then its frequency is 3

For each data row, save references to rules that they cover.

F[i] = List<Rule[, Rule, ...]>

M[i] = size(F(i)); // rule count for given data object

Step 2. Calculate coverage coefficient (weight) for each rule in rule set R:

For each rule r that covers s data rows:

s  = number of data objects that r covers

set coverage coefficient c for r:

c=
∑
i=1

s

M [ID of ith object ]

s

Step 3. For each data row from 1 to n

If data row is already covered, skip and continue with next row

If related rule set F[i] exists and contains at least one rule

Sort rule set F[i] by coverage coefficient in ascending ordering

Add first item F[1] to final rule set R2

END

Notes: variable M can be replaced with size(F(i)), it is added for clarity.

3.3.4 Unique coverage algorithm

This is not an independent algorithm, but is meant to be used in conjunction with either one of

the other algorithms. This algorithm selects all rules that cover at least one object which is not

covered by any other rule. Hence it is efficient for problems where such rules exist and can

reduce running time of full algorithms significantly. It has especially good impact on greedy

Page 28



algorithm, but it also reduces running time for approximation algorithm.

Definitions

n – number of objects (= rows in dataset)

R – rule set after DSR, containing rules. Each rule covers >= 1 object. Rule set covers <= n

objects

R2 – rule set for final selection of rules, initially empty set.

N – vector of size n to store the status of object, all values initially 0. If object (data row) has

been covered by rule set R2, object's value in N is set to 1.

Algorithm

R2 = Ø (final set is initially empty)

N = int[n] (integer array of size n, all values initially 0)

Step 1. Build frequency table to mark how many times each data row is covered by rules.

E.g if data row is covered by 3 rules then its frequency is 3

Step 2. Iterate over unsorted rule set R, select rule r on each iteration

Step 2.1 Check if rule r covers any data row where frequency is 1

Step 2.2. If such row is found

* add rule r to final set R2 as no other rule can cover given data row

* mark all data rows that r covers in N, set N[r] = 1 (to show that it is covered)

* remove rule r from original rule set R

Pass R, R2 and N to full algorithm.

Page 29



4 Experiments and comparative analyses of algorithms

4.1 Overview of experiments

This chapter is dedicated to experiments with both MONSA algorithms and cover algorithms

implementations. Rationale behind the experiments is to evaluate the speed and quality of the

output of different algorithms. We will also investigate how they handle different datasets, and

compare  similar  algorithms  against  each  other.  First  half  of  the  chapter  examines cover

algorithms and the rest is dedicated to MONSA algorithms. For cover algorithms, we test

three: greedy algorithm, approximation algorithm, and unique coverage algorithm combined

with greedy. As combination of unique coverage algorithm and greedy is more efficient than a

combination of unique coverage algorithm and approximation algorithm, we only test unique

coverage algorithm combined with greedy in this work. From MONSA algorithms, all three,

MONSAMAX, MONSABAN, and MONSAMIN, are tested for running time and memory

consumption under different input.

4.2 Used datasets

This work uses two datasets of different characteristics to compare algorithms. First dataset is

Nursery dataset describing application  acceptance  decisions for nursery schools in Slovenia

(Rajkovic et al 1997). It is a multivariate dataset with 9 categorical attributes and 12960 rows.

Any attribute has at most 5 different values. Second is Mushroom dataset describing physical

characteristics  of  mushrooms  (Schlimmer  1987).  It  has  8124 rows and 23 attributes  with

categorical values up to 12 different values. For testing purposes, we use first 18 attributes

and  a  class  value  from this  dataset12.  Nursery  dataset  represents  social  science  data  for

decision problem, certain objects categorise well, but there are no dominant patterns for other

objects. Mushroom dataset is a natural sciences dataset with more attributes where data is

much  easily  categorised  with  fewer  rules  than  in  Nursery  dataset.  These  datasets  were

selected to test algorithms with inputs of different complexity.

12 To achieve reasonable running time on given hardware and have comparable results. 18-column dataset was

largest that can be run with MONSAMAX on a computer with 4 GB of RAM without excessive garbage

collection overhead.

Page 30



4.3 Test environment

All tests were conducted on the same PC with following characteristics:

• Processor Intel Core i5-2410M 2.3 GHz

• 4 GB DDR3 memory

• Windows 7 64-bit operating system

• Java version 1.7.0_07

• Java HotSpot 64-Bit Server VM (build 23.3-b01, mixed mode)

One every test, a program ran single-threaded and used maximum 1 processor core, but there

were no restrictions for Java Virtual Machine to use as much processor power as necessary for

background tasks (e.g. garbage collection). Each program was allocated maximum 2800 MB

of memory (java was invoked with -Xmx2800M flag).

4.4 Comparison of covering algorithms

This chapter tests covering algorithms against two datasets to see how efficiently they can

cover rule sets. Efficiency is measured both in terms of running time and size of the solution.

All results for Nursery dataset are shown as average over 100 runs and for Mushroom dataset

over 10 runs13. Tests were ran in cycles,  using a new program instance for each run. Java

virtual  machine  garbage  collector  was  explicitly  executed  before  each  run  to  minimise

chances that it stops the execution of program during the test. Each program was additionally

executed once before the test cycle. This ensures all classes are loaded into computer memory

before the test. At the end of this comparison the algorithms will also be run using raw rule

set14 from MONSAMAX algorithm instead of DSR. Purpose of this is to test how efficient the

algorithms are and how stable the solution is.

13 Running Mushroom 18-column dataset for 100 runs with MONSAMAX would take too much time. It does

not significantly affect the reliability as the differences between runs are proportionally much smaller than

for Nursery dataset, e.g. 0.25 seconds difference of MONSAMAX running time would be 25% for Nursery

dataset while 20 seconds (largest recorded value) for Mushroom dataset is only 6%.

14 This work uses the term “raw rule set” to indicate unprocessed rule set that MONSA algorithm outputs.

Page 31



Nursery dataset Mushroom dataset reduced

 (18 columns + class)

No of rows in dataset 12960 8124

No of columns in dataset 9 19

No of rules MONSAMAX 8188 861756

No of rules after DSR 638 1634

Time spent for algorithm 1.247 sec 352.64 sec

Time spent for DSR 0.258 sec 133.53 sec

Approximation coverage

Time 0.006 sec 0.113 sec

No of rules in cover 556 40

Greedy coverage

Time 0.016 sec 0.323 sec

No of rules 557 21

Unique + Greedy coverage

Time 0.015 sec 0.42 sec

No of rules 555 21

Table 7: Benchmark results for coverage algorithms with different datasets

4.4.1 Speed

Empirical evaluation demonstrates that approximation algorithm is always running in shortest

time.  This  has  also been case  for  all  the  datasets  which  were used when developing the

algorithm, regardless of dataset properties. Approximation algorithm is  almost three times

faster than greedy or greedy and unique coverage algorithm combined. Still we observe that

running  time  for  every  coverage  algorithm  is  reasonably  low  and  unnoticeable  when

compared to the running times of algorithm and DSR.

4.4.2 Coverage

For Nursery dataset where coverage includes many small rules, all algorithms perform equally

well. For Mushroom dataset, coverage includes few rules that each cover many objects. In this

case greedy algorithms offer much smaller cover (21 rules) than approximation algorithm (40

cover).

Page 32



If we take a closer look at the rules (see Appendix 1), we see that greedy algorithms select

rules  that  cover  large  number  of  objects.  Only  tree  rules  cover  less  than  100  objects.

Approximation algorithm, on the other hand, selects more rules, but each rule covers less

objects.

Over-coverage object count is 16938 for approximation and 14870 for greedy algorithm, so

each data object is covered 2.1 or 1.8 times on average. Difference between object count is

2068 objects which is 13.9%. Therefore we can tell that while approximation algorithm finds

almost 50% more rules, it  only find about 14% larger over-coverage. This demonstrates a

fundamental  difference  between  two  approaches.  Greedy  algorithms  select  rules  that  are

universal  while  approximation  algorithm  selects  rules  that  are  more  unique.  From  a

mathematical perspective, greedy algorithm performs better in this case, but one may also

judge the result by business value. Approximation algorithm might offer better insight into the

characteristics  of  data.  From business  perspective  greedy algorithm answers  the  question

“What is common?” and approximation algorithm “What is different?”.

4.4.3 Solving rule set optimisation problem on raw rule set

Rule set optimisation step is meant to be third and final step of selecting final selection of

rules to describe the dataset. Rationale behind this is that rule set optimisation by finding

minimal  cover  is  a  NP-complete  problem  which  is  hard  to  solve,  so  minimal  input  is

preferred. But as this implementation is not looking for exact minimal cover, but a solution

that is reasonably close or otherwise acceptable, it works in a decent time frame as seen from

previous experiments. Hence it is feasible to investigate how the performance of covering

algorithms is affected if instead of DSR they get a raw rule set from MONSAMAX as input.

Results are given in Table 8.

Page 33



Input: DSR Input: raw rule set Increase %

Nursery dataset

Input rule count 638 8188 11834%

Approximation 0.006 sec 0.142 sec 2267%

556 556 0%

Greedy 0.016 sec 2.42 sec 15025%

557 557 0%

Unique + greedy 0.015 sec 2.67 sec 17700%

555 557 0.36%

Mushroom 18-column dataset

Input rule count 1634 861756 52639%

Approximation 0.113 sec 22.32 sec 19652%

40 rules 41 rules 2,5%

Greedy 0.323 sec 54.47 sec 16764%

21 rules 21 rules 0%

Unique + greedy 0.42 sec 45.80 sec 10804%

21 rules 21 rules 0%

Table 8: Running times and results of coverage algorithms depending on input rule set

We  observe  that  for  Nursery  dataset,  where  good  coverage  includes  many  rules,

approximation algorithm performs best both in terms of total running time and increase of

running time. While input rule set grows 118 times, running time of approximation algorithm

grows only 22 times. Greedy algorithms perform much worse in sense of running time and it's

growth.  Growth  of  running  time  (150  times  for  greedy  and  177  for  unique  and  greedy

combined) exceeds the growth of input (118 times).

For  Mushroom  dataset  where  good  coverage  includes  less  rules,  results  are  almost

contradictory  to  Nursery's  results.  Largest  increase  in  running  time  is  observed  for

approximation algorithm. Still,  given that  the input increases 526 times,  running time for

approximation  algorithm  increases  197  times,  meaning  it  still  retains  efficiency.  While

running times for greedy algorithms increase 167 and 108 times, their total running time is

still twice as much as that of approximation algorithm. We also notice that for Mushroom

dataset greedy algorithm is faster than greedy and unique combined if DSR is used as input.

When  calculating  cover  based  on  raw  rule  set,  combined  algorithm  outperforms  greedy

noticeably.

Page 34



Evaluating  the  quality of  cover  from raw rule  set,  we notice only very slight  and trivial

changes, meaning that the quality is approximately same as if the coverage was calculated on

DSR.

4.4.4 Reducing the size of rule set

Main motivation behind constructing rule set optimisation algorithms is a necessity to reduce

the size of final rule set.  Combination of unique coverage and greedy algorithm is used to

assess the proportion of reduction of rule sets.

MONSAMAX

output

DSR Change Coverage Change Total

change

Nursery 8188 638 -92.2% 555 -13.0% -93.2%

Mushr. 18-c 861756 1634 -99.8% 21 -98.7% -99.9%

Table 9: Number of rules after each step. Unique + greedy coverage.

MONSAMAX DSR Coverage

Nursery 7.64 1.95 1.82

Mushroom 18-col 4928.28 43.08 1.83

Table 10: Average over-coverage per object after each step. Unique + greedy coverage.

Table 9 And Table 10 demonstrate that rule optimisation algorithm is effectively reducing the

size of the rule set for both datasets, therefore working as expected. As a co-effect they also

show reasonably good results for over-coverage.

4.4.5 Discussion of test results

We  observed  that  approximation  algorithm  runs  fastest  for  both  datasets  and  retains

reasonable running times even when the input is raw rule set. It is efficient for finding good

coverage  if  cover  includes  many rules.  It  is  outperformed  by greedy-based algorithms if

dataset can be covered with few rules. We also noticed the business value of approximation

algorithm – it tends to cover dataset by selecting rules that contain information about smaller

groups of data objects.

Page 35



Greedy algorithms offer coverage with smaller  number of rules and smaller over-coverage

rates if a dataset contains larger universal patterns. While greedy algorithms are always slower

than approximation algorithm, they return good value for all types of datasets and they should

be preferred if  it  is  important to  minimise the number of rules in cover.  Running greedy

algorithm in combination with unique coverage algorithm appears to be faster than greedy

alone for larger rule sets that contain rules that can be selected by unique coverage algorithm.

The solutions that cover algorithms output are very stable. Solutions that are calculated using

DSR as input are almost the same as solutions that are calculated directly from the raw rule

set of MONSAMAX algorithm. As DSR algorithm removes rules that are already contained

in other rules, extra rules from raw rule set do not add any value. Therefore it is a sign of

quality that the solution remains very close for both types of input.

It is noticeable that given the current implementation of DSR, it would be more efficient to

skip  finding  DSR for  datasets  with  large  number  of  rules  (e.g.  Mushroom dataset)  and

compute the final coverage rule set directly from raw rule set. When raw rule set contains

relatively small number of rules as in Nursery dataset, only approximation algorithm achieves

better result when skipping DSR.

4.5 Running time and memory usage of MONSA algorithms

Complexity  of  the  implementation  of  MONSA algorithms  was  tested  empirically  against

number of rows in the dataset, number of columns in the dataset and maximum number of

different attribute values in a dataset.

Mushroom dataset was used for testing against number of columns. Number of columns in the

dataset was reduced by removing last  columns. For experiments 8 different datasets  were

created  –  a  range  from  11-column  to  18-column  Mushroom dataset  (not  counting  class

column).

For testing against number of rows, an 11-column Mushroom dataset was selected as a basis.

This dataset has 8124 rows. On each iteration, a number of rows was increased by 8124 by

adding an original 11-column dataset to the end. This method ensures, that the number of

rows increases, but the complexity of other parameters (number of extracts, number of rules,

Page 36



size of frequency tables) stays constant.

4.5.1 Number of columns

MONSAMAX

Illustration 1 demonstrates how algorithm running time, memory usage and cover time are

affected by number of columns (on X-axis), which increases number of extracts and number

of rules. Units of different measures are scaled to fit into the same graph, please see Appendix

2 for original data. Numbers of rules and extracts are not a direct functions of number of

columns. They are also dependent upon other properties of a dataset, i.e. data distribution.

Number of extracts are perhaps one of the easiest ways to observe the complexity of task for

any given number of columns. Observing graphed variables, we see that the bottleneck of this

MONSAMAX implementation is  memory usage.  Memory usage seems to grow by much

higher order polynomial term15 than running time of algorithm.

Rule set covering time is relatively unaffected by column count as it depends on qualities of

the rules rather than the size of dataset.

15 At least.

Page 37

Illustration 1: Complexity growth of MONSAMAX by number of columns

11 12 13 14 15 16 17 18
0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

Rules

Extracts

Memory, KB/3

AlgoTime, millisec

CoverTime, microsec

No of columns in dataset

S
ca

le
 p

cs
/K

B
/3

/m
ill

is
e

c/
m

ic
ro

se
c



MONSABAN

Running same tests for implementation of MONSABAN, an algorithm which finds patterns

of negations in dataset, we observe from Illustration 2 that algorithm running time is the only

resource where usage increases noticeably16. Memory usage is unaffected by the number of

columns in the dataset. Although we see that number of extracts increases very fast, it does

not bring along a rise in memory usage as in the MONSAMAX algorithm.

Combination of unique and greedy algorithms is used in this test to find cover. Although the

graph displays a rise for running time of finding a cover, this change is rather irrelevant in

absolute  terms  as  cover  time  increases  from 0.12 seconds  for  11-column dataset  to  0.42

seconds for 18-column dataset17. For unscaled data, please consult Appendix 3.

16 When comparing results to MONSAMAX, please note that the scale for number of rules for MONSABAN

is pcs*100, not pcs as for MONSAMAX.

17 This rise is due to more data that allows MONSABAN to extract different rules. For 11-column dataset there

were 643 rules in DSR and 44 in cover, for 18-column dataset there is 1634 rules in DSR and only 21 in

cover. As we see, while input has grown more than 250%, number of rules in coverage has fallen 50%.

Page 38

Illustration 2: Complexity growth of MONSABAN by number of columns

11 12 13 14 15 16 17 18
0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

Rules*100

Extracts

Memory, KB/3

AlgoTime, millisec

CoverTime, microsec

Number of columns in dataset

S
ca

le
 p

cs
/K

B
/3

/m
ill

is
e

c/
m

ic
ro

se
c/

p
cs

*1
0

0



MONSAMIN

Illustration  3 demonstrates  that  complexity  growth  for  MONSAMIN  is  very  similar  to

MONSABAN with 19-column Mushroom dataset. This is due to the fact that class column of

this dataset has two different values. Hence the number of extracts and rules are the same for

both algorithms. MONSABAN achieves 10-20% better results in running time and memory

usage because of comparison method. MONSABAN compares frequencies in class frequency

tables against constant 0, while MONSAMIN compares them against main frequency table.

Compared  to  MONSAMAX,  we  see  that  MONSAMIN  achieves  much  better  results.  It

processes 18-column dataset in 175 seconds compared to 353 seconds of MONSAMAX, and

uses 172 MB of memory against 2193 MB that MONSAMAX uses.  It achieves this result

because MONSAMIN processes smallest frequencies first. Smallest frequencies have shortest

paths  to  the  deepest  level  and  less  data  must  be  kept  in  memory  in  any  given  time.

MONSAMAX selects longest paths first and this requires much more memory.

4.5.2 Number of rows

Five different datasets that are based on 11-column Mushroom dataset were used to test how

algorithms  perform when  the  number  of  rows  increases  in  the  dataset  while  number  of

extracts and rules stay constant. At first iteration, 11-column Mushroom dataset is used and on

Page 39

Illustration 3: Complexity growth of MONSAMIN by number of columns

11 12 13 14 15 16 17 18
0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000
Rules*100

Extracts

Heap used, KB/3

AlgoTime, millisec

CoverTime, microsec

No of columns in datasetS
ca

le
 p

cs
/K

B
/3

/m
ill

is
e

c/
m

ic
ro

se
c/

p
cs

*1
0

0



each iteration the number of rows increases by the original dataset size. Memory usage was

measured with Virtual VM software. Results are given on illustrations 4 and 5.

Observing the growth in running time and memory usage, we notice that the results are much

more  promising  than  for  the  number  of  columns.  Usage  of  both  resources  grows  very

reasonably  for  MONSAMIN  and  MONSABAN.  Although  the  growth  is  higher  for

MONSAMAX, it  is  still  linear  growth for  both memory and running time.  MONSAMIN

performs best in memory usage. Data for experiments is given in Appendix 5.

Page 40

Illustration 4: Running time of MONSA algorithms by number of rows in the dataset

8124 16248 24372 32496 40620
0

5

10

15

20

25

MONSAMAX

MONSAMIN

MONSABAN

Number of rows

T
im

e
 in

 s
e

co
n

d
s



4.5.3 Number of different values

The size of frequency tables is affected by the number of different values in the dataset. This

part of work tests how algorithms perform when the size of input (number of data rows) stays

constant, but the number of different variables inside the dataset increases. Nursery dataset is

used to evaluate this. Dataset was modified in two steps for this test. First, it was multiplied 5

times – same set of data was added 5 times to form a new dataset. New dataset has 5 times as

many rows  as  the  original.  Second,  5  different  versions  of  the  dataset  were  made,  each

replacing additional 20% of the original dataset with duplicate data with same structure, but

with different value range. For example, original dataset had values in range from 1 to 5.

Second dataset has 20% of them replaced by values 6 to 10 accordingly (1 was replaced with

6; 2 with 7 etc). All replacements are shown in Table 11.

Maximum number of different values in this test was 25. This should cover many cases where

categorical variables are used and is enough to capture the trends.

Page 41

Illustration 5: Memory usage of MONSA algorithms by number of rows in the dataset

8124 16248 24372 32496 40620
0

100

200

300

400

500

600

MONSAMAX

MONSAMIN

MONSABAN

Number of rows

M
e

m
o

ry
 u

s
a

g
e

, M
B



Range of

values 

1st run 2nd run 3rd run 4th run 5th run

1-5 100 % 80% 60% 40% 20%

6-10 - 20% 20% 20% 20%

11-15 - - 20% 20% 20%

16-20 - - - 20% 20%

21-25 - - - - 20%

Table 11: Replacement of values in a dataset

Results from  Illustration 6 show that number of different values in the dataset do increase

running time for every algorithm. It also demonstrates that number of different values is the

weakest  spot  of  MONSABAN, running time goes  up from 0.26 seconds with 5 different

values in range to 7.35 seconds when there are 25 different values in range. 

Increase in running time for MONSABAN means that for datasets with high range of values it

loses it's advantage over other algorithms. Both MONSAMAX and MONSAMIN show good

results as running time of those increases 40% and 52 % respectively  when going from 5

different values to 25.

Page 42

Illustration 6: Running time by number of different values

5 10 15 20 25
0

2

4

6

8

10

12

MONSAMAX

MONSAMIN

MONSABAN

Size of value range

R
u

n
n

in
g

 ti
m

e
, s

e
co

n
d

s



Illustration 7 demonstrates that while losing it's advantage in running time, MONSABAN is

still the most efficient in memory consumption. On the other hand, memory usage also goes

up fast, achieving half of the consumption for MONSAMAX and MONSAMIN. Latter two

also perform very well. While there is a significant increase in memory usage when going

from 5 different values to 10, further growth is slow and very stable for both MONSAMAX

and MONSAMIN.

Results indicate that the growth of value range does not affect the running time and memory

usage of  MONSAMAX and MONSAMIN unreasonably.  Resource  consumption  for  them

grows in significantly slower pace than the number of different attribute values in the dataset.

For MONSABAN, increase in number of different values brings along much higher resource

consumption. This is explained by the logic of algorithms. MONSAMAX and MONSAMIN

are effectively pruning the search space each time a rule is found. If a rule is found they are

blocking  corresponding  frequencies  for  all  subsequent  frequency tables  (“bringing  zeroes

down” in Step 1  of algorithm). In most datasets there are less negating rules than there are

positive rules, so MONSABAN does not benefit from such pruning and processes most values

down to the deepest level. Data for experiments is given in Appendix 6.

Page 43

Illustration 7: Memory usage by number of different values in range

5 10 15 20 25
0

100

200

300

400

500

600

MONSAMAX

MONSAMIN

MONSABAN

Size of value range

M
e

m
o

ry
 u

s
a

g
e

, M
B



4.6 Analyses of memory usage during the execution

Analyses of resource consumption of MONSA algorithms in Chapter  4.5 demonstrated that

memory usage becomes a bottleneck for processing larger datasets. This chapter takes a closer

look at the memory usage of MONSAMAX and MONSABAN implementations.

For  analysing  memory  usage,  we  observe  heap  size  and  memory  usage  in  Java  Virtual

Machine  (JVM)  during  the  execution  of  MONSAMAX  and  MONSABAN  programs.  A

special software package Visual VM is used for analysis  (Sedlacek and Hurka 2014). Tests

and results show that memory consumption for MONSABAN and MONSAMIN are very

similar, so only one of them is selected for comparison with MONSAMAX.

Heap is a portion of memory that JVM allocates to the program. This memory is available

when a program needs it.  JVM keeps heap larger than actual memory (heap) usage.  This

allows  efficient  garbage  collection  without  considerably  affecting  the  performance  of

execution of the program.

4.6.1 MONSAMAX

Illustration 8 demonstrates that peak memory usage occurs during MONSAMAX execution

and that memory usage is lower for DSR and coverage algorithms. MONSAMAX is being

executed from around 1:08:58 to 1:10:15 where peaks occur. Peaks rise when new extracts are

made  and fall  when  garbage collector  removes  redundant  extracts  that  have  went  out  of

scope18. From 1:10:15 onwards a DSR processing occurs and coverage is calculated. As we

see, this does not increase memory usage significantly and memory usage remains lower than

during algorithm execution.

18 For example, when a frequency table extract is no longer used and there are no references to the extract in

the program code, this extract is ready to be collected by garbage collector which frees up the memory that

was used by the extract.

Page 44



Page 45

Illustration 8: MONSAMAX memory usage while processing Mushroom 16-column

dataset (complete run: MONSAMAX, DSR, Unique + greedy coverage algorithm).

Illustration is made using Virtual VM software.



4.6.2 MONSABAN

Memory usage of MONSABAN differs much from that of MONSAMAX. As can be seen

from  Illustration  9,  memory usage  of  MONSABAN is  stable  during  the  execution,  even

falling at the end. For MONSAMAX, it was constantly increasing. Also, memory usage for

MONSABAN is much lower than for MONSAMAX. 19-column Mushroom dataset was used

to record the memory usage here, while 16-column dataset was used for MONSAMAX19.

19 Memory usage patterns for algorithms are the same for all lengths of Mushroom dataset extracts. Reason for

selecting this configuration was that their graphical representation was clear and easier to understand than

for very small or very large time frames.

Page 46

Illustration  9:  MONSABAN  memory  usage  while  processing  Mushroom  19-column

dataset  (complete  run:  MONSABAN,  DSR,  Unique  +  greedy  coverage  algorithm).

Illustration is made using Virtual VM software.



4.6.3 Comparison of memory usage

Better memory efficiency of MONSABAN is caused by the sorting criteria it uses. Like sister

algorithm MONSAMIN, it takes shortest path to scan all data. All new extracts are made by

selecting smallest frequency first. MONSAMAX selects largest frequency first, which causes

deeper recursions and larger extracts that must be kept in the memory.

Analysis of memory dump for MONSAMAX with Visual VM showed that for 16-column

Mushroom dataset,  at  the  time of  peak memory usage,  on average  65% of  memory was

allocated to extract data. For MONSABAN, maximum memory usage for extract data was

only 25%.

Number of columns seems to increase resource consumption for every algorithm more than

other factors. Number of rows also increases running time and memory usage, but the growth

is very reasonable. MONSAMAX performs well, but is still most resource hungry, it's running

time increases as much the input increases. MONSAMIN and MONSABAN have much better

ratios.

Number of different values in dataset affects  mostly MONSABAN, but does not increase

memory usage significantly for others.

Page 47



5 Implementation notes of MONSA family of algorithms

MONSA algorithms have been implemented two times, this chapter gives a short overview of

the implementations.

5.1 Implementation of MONSAMAX using primitive data types

MONSAMAX  was  first  fully  implemented  as  software  package  in  2012  using  C#

programming language (Jõgiste, Vellamäe, and Rebane 2012). This implementation used data

structures that closely mimicked the structures proposed in the original description of the

algorithm (see Kuusik and Lind 2012). The implementation used multi-dimensional integer

arrays to store frequency tables, and literally set used frequencies to zeroes just as described

in the algorithm. It is a fine implementation as it offers good debugging options and each step

is  easy  to  follow.  Algorithm  was  implemented  using  static  methods  to  decrease  object

overhead in memory usage. It has a graphical user interface to control input parameters of

algorithm.

On the other hand, such implementation had a few disadvantages that constrained its further

development.  Namely,  it  was  necessary  to  create  new  data  structure  for  each  level  of

algorithm, while more general object oriented approach would have allowed to efficiently

reuse existing data structures. Also, static methods had somewhat poorer interface for storing

meta information about the rules. As we see  in this thesis, information about objects that a

rule covers is important in finding optimal rule coverage for the dataset. For those reasons, a

new implementation of MONSA algorithms was developed using object oriented methods in

Java programming language.

5.2 Object  oriented  implementation  of  MONSA  family  of

algorithms

Main  reasons  for  implementing  MONSA algorithms  in  object  oriented  Java  code  were

extensibility and better code reuse capabilities. It also uses different data structures to store

data more efficiently.

Page 48



5.2.1 Efficient handling of zeroes and NULL-values

Trivial  implementation  of  a  frequency  table  for  MONSA algorithm  would  bring  along

unreasonable growth in running time and memory usage if the number of different attribute

values in the dataset grows. This is because the size of the frequency table is a product of

number  of  columns and number  of  different  attribute  values  (Table  2 demonstrates  this).

Should there be a dataset with m columns where all attributes use maximum k different values

and one uses 3k values,  the size of frequency table  would be  m * 3k.  This unreasonably

increases the running time of algorithm, because all those unnecessary rows are carried along

and checked on each iteration. Even if  impossible combinations are set to NULL, they still

cause  noticeable  overhead  both  in  terms  of  running  time  and  memory  usage.  This

implementation of MONSA family of algorithms avoids this pitfall by saving only relevant

pairs of attribute-value combinations.

This implementation also introduces a novel concept for bringing zeroes down in the first step

of  MONSA  family  of  algorithm.  Instead  of  literally  setting  values  to  zeroes,  this

implementation saves a list of banned frequencies. When the frequency table is accessed, it

will efficiently return only valid frequencies. This also allows to distinguish between cells

where frequency is indeed zero20, and cells where frequency has been set zero by algorithm.

Such distinction was necessary for implementing and testing MONSABAN algorithm on the

same code base.

5.2.2 Using abstract data types

In sense of memory usage it is efficient to store data using primitive data types. This uses less

memory than complex data types.  On the other hand, operating with primitive data types

becomes increasingly difficult when one needs to add, sort and access data in different ways.

It would take too much time to implement accessors and sorting algorithms with reasonable

running time for primitive data types. It is much reasonable to use existing data structures.

Although  they  bring  along  somewhat  higher  memory  usage,  built-in  structures  let

programmer concentrate on the main task of implementing algorithm instead of reinventing

data structures.

20 As noted this implementation does not save such frequencies but computes them on demand as it is more

efficient. Zero-frequencies are relevant for class frequency tables when compared against main frequency

table.

Page 49



Also, object oriented approach is better suited for testing and implementing different versions

of algorithms that are sharing much of the code. Eventually there is more time to improve the

algorithm as refactoring of program code takes less time. Performance that is initially lost by

using  complex  data  structures,  is  eventually  regained  by  well-crafted  code  which  uses

efficient accessors and sorting algorithms.

Class diagram on Illustration 10 demonstrates how different algorithms from MONSA family

share  most  of  the  methods  and  override  only  a  small  amount  of  them.  As  an  example,

implementing different sorting algorithms for frequency tables, is as easy as passing relevant

Comparator object for data structure in method createEmptyFrequencySet.

Page 50

Illustration  10: Class diagram demonstrating the differences in implementation for MONSA

algorithms. Private methods are omitted.



Such approach easily  allows  to  override  certain  methods  to  implement  and  test  different

algorithms.

Additionally, when a programmer is familiar with one MONSA algorithm, he only needs to

examine a concrete implementation to understand the differences between algorithms.

Page 51



6 Ideas for future research

6.1 Implementation

Results indicate that there are many ways to improve both MONSA family of algorithms and

rule set optimisation  algorithms, especially in terms of memory consumption. Also, results

suggest that further integration of MONSA algorithms and rule set optimisation algorithm

could offer better performance.

Program code of current implementations of both MONSA algorithms and cover algorithms

are designed to be easily expandable and modifiable. It suits well for testing different versions

of algorithms quickly and can be used in future research.

This  work identified  that  number  of  column affects  running time  of  MONSA algorithms

considerably.  Using  matrix  calculations  could  be  one  possible  option  to  overcome  that

difficulty and improve speed of both MONSA family of algorithms and cover set optimisation

problem and is worth further investigation. Basis of such solution is introduced by Zakrevskij

et al (2008:67).

6.2 Integration of MONSAMAX and MONSABAN

MONSAMAX is very efficient in terms of finding a set of rules that describe the dataset

completely,  it's  drawback  is  memory  consumption.  MONSABAN finds  rules  that  negate

existence  of  patterns,  it  describes  combinations  that  are  not  possible  in  the  dataset.  It  is

efficient  in  resource  consumption,  requiring  much  less  memory  and  running  time  than

MONSAMAX. Still, it's results are not as informative as those of MONSAMAX. Therefore it

would be fruitful to investigate possibilities to combine those two algorithms to achieve the

descriptive  rule  set  of  MONSAMAX while  using  less  resources  like  MONSABAN. One

approach would be to run MONSABAN before MONSAMAX and prune the search space for

the latter by using information that MONSABAN gathers.

6.3 Rule set optimisation

This work concentrated on minimising the number of rules in cover set. Alternative approach

Page 52



would be to minimise over-coverage instead, to see if it yields results with different qualities.

Additionally, current cover algorithms work to find one best solution. It might be fruitful to

test if finding k best solutions would offer better business value.

Much effort in this thesis was directed towards finding mathematically good coverage, future

research might broaden the scope of coverage algorithms by considering different business

use cases.

6.4 Parallel algorithms

MONSA algorithms and cover algorithms would benefit a lot from parallelism. In parallel

implementation a dataset could be parsed by several or evens hundreds of parallel threads

either  in  one  computer  or  in  a  grid  of  computers.  While  it  is  largely an  implementation

problem, it also requires analyses of algorithms to determine if and how the results would be

affected.

6.5 Live algorithm

Currently MONSA algorithms take a finite dataset as input and they output the number of

rules. While there is large number of potential use cases for such algorithms, the potential of

MONSA algorithms  is  even  wider.  It  would  be  worthwhile  to  consider  if  live  MONSA

algorithms  are  also  possible.  Such  algorithms  would  accept  initial  input  like  current

algorithms, but they would then continue to accept new incremental input and recalculate the

rule set based on new data. Current implementation could do it by parsing all the data again,

but a live implementation would recompute only relevant parts that are affected by new data.

Such algorithm could be used in big data applications or in embedded devices. For example,

to detect changes in system environment.

6.6 Plug-ins for statistical computing packages

MONSA family of algorithms would be more accessible to scientific community if they were

developed and offered as  plug-ins  for  larger  statistical  computing  packages  like R,  Stata,

Octave, MathLab or similar.

Page 53



7 Conclusion

Central  research  question  for  this  thesis  was  to  solve  rule  set  optimisation  problem  of

MONSA family of algorithms. Along the process, a new implementation of MONSA family

of algorithms in Java programming language was developed. Thesis then concentrated on

analysing the properties of MONSA and cover algorithms both in terms of quality of the

solution and resource consumption of the implementation.

Rule set optimisation problem was reduced to set cover problem in this thesis. Two different

cover algorithms for solving rule set optimisation problem were proposed. Greedy algorithm

takes a mathematical approach to minimise the number of rules that are selected to the final

cover. It offers stable cover solutions for different types of datasets. Output rule set tends to

describe universal trends in the dataset. Main deficit of the algorithm is somewhat greater

running time than the alternative solution, approximation algorithm. Approximation algorithm

attacks the problem from the other side, selecting the best rule for each data object. The result

is different from that of greedy algorithm as it covers dataset with rules that tend to describe

unique properties of the dataset. Such rule set offers different business value for the user.

Running  time  of  approximation  algorithm  is  much  faster  than  running  time  for  greedy

algorithm.

Additionally, a unique coverage algorithm was introduced. This algorithm is meant to be used

in conjunction with other rule set optimisation algorithms and improves the speed of them if

dataset contains objects that are only covered by one single rule.

Testing the performance of MONSA algorithms demonstrated that small details in algorithms

bring along large differences in performance. We saw that MONSAMAX, MONSAMIN and

MONSABAN are all rather efficient for datasets with small number of columns. This work

identified that MONSAMAX, because it makes extracts by preferring larger frequencies, is

currently not able to parse datasets with large number of columns. This thesis proposed two

ideas  for  future  research  to  attack  this  problem.  It  could  be  addressed by optimising  the

implementation of the algorithm or by modifying the algorithm by combining MONSAMAX

and MONSABAN.

Page 54



Finally,  few concepts  were introduced that  allowed to  develop MONSA algorithms more

efficiently than would have been possible by using trivial implementation. Efficient handling

of zeroes and null-values is the most notable. Complex data structures were developed to store

frequencies and used values. This significantly reduced memory usage for algorithms.

All research questions in this thesis  were successfully answered and new ideas for future

research were proposed.

Page 55



8 Kokkuvõte

Selle  töö  keskseks  teemaks  on  MONSA  algoritmiperekonna  reeglisüsteemide

optimiseerimisülesande  lahendamine.  Antud  ülesande  püstitus  nõudis  ka  kogu  MONSA

algoritmiperekonna  realisatsiooni  loomist.  Realisatsiooniks  valisin  Java

programmeerimiskeele.  Kolmanda  olulise  komponendina  analüüsisin  MONSA algoritmide

ning reeglisüsteemide kattealgoritmide tööefektiivsust.

Reeglistiku  optimiseerimisülesande  taandasin  töö  käigus  hulgakatte  ülesandeks.  Pakkusin

välja  kaks  erinevat  algoritmi  probleemi  lahendamiseks.  Ahne  (greedy)  algoritm  läheneb

probleemile matemaatiliselt, püüdes lõplikus valikus olevate reeglite arvu miinimumini viia.

See  algoritm  pakub  stabiilselt  head  tulemust  erinevate  andmestike  korral,  kuid  tema

puuduseks  alternatiivselt  väljapakutud  lähendusalgoritmiga  (approximation  algorithm)  on

suurem tööaeg.   Lähendusalgoritm valib  probleemi lahendamiseks teistsuguse lähenemise,

valides  iga  konkreetse  andmerea  jaoks  parimate  näitajatega  reegli.  Tulemus  erineb  ahne

algoritmi omast, sest katab andmestiku pigem selliste reeglitega, mis kirjeldavad väga hästi

erisusi andmestiku sees, mitte ei otsi võimalikult universaalset lahendust. Selline lähenemine

pakub kasutajale  teistsugust  ülevaadet  ja  võib  teatud  ärivajaduste  korral  paremini  sobida.

Lähendusalgoritmi suureks plussiks on ahnest algoritmist oluliselt kiirem tööaeg.

Lisaks eelnimetatutele tutvustab töö ka unikaalse katte algoritmi. Selle algoritmi tööpõhimõte

on valida  kattasse  ainult  sellised  reeglid,  mis  ainsana katavad mõnda objekti  ja  on seega

ainsaks võimaluseks antud reegli katmisel. See algoritm on mõeldud kasutamiseks koos teiste

algoritmidega,  lisades  enne  põhialgoritmi  käivitamist  kattesse  kõik  eelkirjeldatud

kriteeriumile vastavad reeglid ja seega vähendades põhialgoritmi sisendi mahtu.

Töö  testis  ka  realiseeritud  algoritmide  töökiirust  ja  mälukasutust,  leides,  et  väikesed

muudatused  algoritmi  tööpõhimõtetes  toovad  kaasa  ootamatult  suuri  muutusi  jõudluses.

Väikeste andmestike puhul olid nii MONSAMAX, MONSAMIN kui MONSABAN ühtviisi

efektiivsed.  Samas  selgus,  et  MONSAMAXi  jõudlus  väheneb  oluliselt  andmemahtude

kasvades,  eriti  rängalt  mõjutab  MONSAMAXi  mälukasutust  veergude  arvu  suurenemine

andmestikus.  Selle  põhjustab  väljavõttude  tegemise  printsiip  –  kui  MONSAMIN  ja

MONSABAN  teevad  väljavõttusid  minimaalsed  sageduse  järgi,  siis  MONSAMAX  teeb

Page 56



maksimaalse  sageduse  järgi.  See  toob  kaasa  mahukamad  rekursioonid  ja  suurema

mälukasutuse. Töö lõpus pakun välja kaks ideed, kuidas MONSAMAXi jõudlust parandada.

Üks  võimalus  oleks  kasutusele  võtta  Zakrevskij  pakutud  maatriksarvutused  (2008),  teine

võimalus  on  MONSAMAX  ja  MONSABAN  algoritme  kombineerides  vähendada

MONSABANi tulemuse abil MONSAMAXi sisendi mahtu.

Algoritmide  realisatsiooni  osas  pakkusin  välja  uued  võtted  MONSA  algoritmide

tööefektiivsuse tõstmiseks, mis erinevad oluliselt triviaalse algoritmi meetoditest. Triviaalses

käsitluses  toovad  nullid ja  väärtuste  puudumine  kaasa  olulise  mahtude  tõusu.  Siinses

realisatsioonis  on  see  probleem  lahendatud  kasutades  keerukamaid,  kuid  efektiivsemaid

andmestruktuure.

Töö tulemusena leidsid vastuse kõik algselt püstitatud uurimisküsimused ja pakkusin välja

uusi ideid edasiseks uurimistööks.

Page 57



9 References

Barták, Roman. 1999. “Constraint Programming-What Is behind.” Pp. 7–15 in Proceedings of
the Workshop on Constraint Programming for Decision and Control.

Chvatal,  V.  1979.  “A Greedy  Heuristic  for  the  Set-Covering  Problem.”  Mathematics  of
Operations Research 4(3):233–35.

Feige, Uriel. 1998. “A Threshold of Ln N for Approximating Set Cover.” J. ACM 45(4):634–
52.

Jõgiste, Liisa, Madis Vellamäe, and Martin Rebane. 2012.  Realisation of MONSAMAX and
DSR (software in C#). Tallinn: Tallinn Technical University.

Karp,  Richard  M.  1972.  “Reducibility  among  Combinatorial  Problems.”  Pp.  85–103  in
Complexity of Computer Computations, The IBM Research Symposia Series, edited by
Raymond  E.  Miller,  James  W.  Thatcher,  and  Jean  D.  Bohlinger.  Springer  US.
Retrieved  May  8,  2014  (http://link.springer.com/chapter/10.1007/978-1-4684-2001-
2_9).

Kuusik, Rein, and Grete Lind. 2011a. “New Developments of Determinacy Analysis.” Pp.
223–36  in  Advanced  Data  Mining  and  Applications,  Lecture  Notes  in  Computer
Science,  edited by Jie Tang, Irwin King, Ling Chen, and Jianyong Wang. Springer
Berlin Heidelberg.

Kuusik, Rein, and Grete Lind. 2011b. “New Solution for Extracting Inductive Learning Rules
and  Their  Post-Analysis.”  Pp.  121–26  in  IMMM  2011,  The  First  International
Conference on Advances in Information Mining and Management.

Kuusik,  Rein,  and  Grete  Lind.  2012.  “An  Effective  Inductive  Learning  Algorithm  for
Extracting Rules.” Pp. 339–44 in Proceedings of the 2011 2nd International Congress
on Computer Applications and Computational Science,  Advances in Intelligent and
Soft  Computing,  edited  by Ford Lumban Gaol  and Quang Vinh Nguyen.  Springer
Berlin  Heidelberg.  Retrieved  May  20,  2013
(http://link.springer.com/chapter/10.1007/978-3-642-28308-6_46).

Lensen, Harri, and Margus Kruus. 2012.  Diskreetne Matemaatika. 4., parand. ja täiend. tr.
Tallinn: [Tallinna Tehnikaülikooli] Kirjastus.

Lund,  Carsten,  and  Mihalis  Yannakakis.  1994.  “On  the  Hardness  of  Approximating
Minimization Problems.” J. ACM 41(5):960–81.

Praust, Valdo. 1996. Keerukusteooria Alused. Tallinn: Ülikoolide Informaatikakeskus.

Rajkovic,  Vladislav  et  al.  1997.  “Nursery  Data  Set.”  Retrieved  May  10,  2013
(http://archive.ics.uci.edu/ml/datasets/Nursery).

Roosmann,  Peeter,  Leo  Võhandu,  Rein  Kuusik,  Tarvo  Treier,  and  Grete  Lind.  2008.
“Monotone  Systems  Approach  in  Inductive  Learning.”  International  Journal  of
Applied Mathematics and Informatics 2(2):47–56.

Page 58



Schlimmer,  Jeff.  1987.  “Mushroom  Data  Set.”  Retrieved  May  9,  2014
(https://archive.ics.uci.edu/ml/datasets/Mushroom).

Sedgewick, Robert, and Kevin Wayne. 2011. Algorithms. Addison-Wesley Professional.

Sedlacek, Jiri, and Tomas Hurka. 2014.  Visual VM. Oracle Corporation. Retrieved May 14,
2014 (http://visualvm.java.net/).

Slavík, Petr. 1996. “A Tight Analysis of the Greedy Algorithm for Set Cover.” Pp. 435–41 in
Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing,
STOC  ’96.  New  York,  NY,  USA:  ACM.  Retrieved  May  7,  2014
(http://doi.acm.org/10.1145/237814.237991).

Zakrevskij, Arkadij. 2008. Combinatorial Algorithms of Discrete Mathematics. Tallinn: TUT
Press.

Page 59



10 Appendices

Appendix 1 – Coverage rule sets for 18-column Mushroom

dataset

Approximation algorithm Unique coverage + greedy combined

10.10 => class 1 (96)

6.1 => class 1 (400)

4.7 => class 1 (16)

6.2 => class 1 (400)

2.6 => class 1 (32)

16.7 => class 1 (96)

15.7 => class 1 (96)

16.5 => class 1 (192)

4.3 & 6.7 => class 1 (32)

6.7 & 10.8 => class 1 (756)

4.1 & 8.2 => class 1 (280)

4.4 & 6.7 => class 1 (1032)

6.7 & 11.2 => class 1 (2496)

6.7 & 10.1 => class 1 (216)

4.1 & 12.1 => class 1 (624)

6.7 & 10.2 => class 1 (712)

4.2 & 12.7 => class 1 (48)

4.8 & 6.7 => class 1 (624)

3.3 & 14.1 => class 1 (60)

4.1 & 10.5 => class 1 (12)

8.2 & 9.1 => class 1 (1056)

5.1 & 12.7 => class 1 (192)

2.3 & 19.3 => class 1 (180)

6.5 => class 2 (2160)

3.2 => class 2 (4)

6.4 => class 2 (576)

6.3 => class 2 (192)

4.3 & 6.7 => class 1 (32)

4.4 & 6.7 => class 1 (1032)

4.1 & 12.1 => class 1 (624)

8.2 & 11.2 => class 1 (864)

9.1 & 12.7 => class 1 (672)

2.3 & 6.7 & 12.1 => class 1 (900)

5.2 & 6.7 & 13.4 => class 1 (888)

5.2 & 6.7 & 12.1 => class 1 (64)

19.2 & 6.7 & 9.1 => class 1 (2688)

19.2 & 9.1 & 11.1 & 13.4 => class 1 (896)

10.3 => class 2 (1728)

10.6 => class 2 (24)

4.2 & 12.1 => class 2 (120)

4.10 & 5.2 => class 2 (672)

8.1 & 13.3 => class 2 (2228)

10.5 & 12.1 => class 2 (504)

2.1 & 5.1 & 6.7 => class 2 (38)

5.1 & 9.2 & 11.1 => class 2 (264)

4.9 & 11.1 & 12.1 => class 2 (96)

3.4 & 19.2 & 8.1 & 12.1 => class 2 (336)

9.2 & 11.1 & 12.1 & 16.8 => class 2 (200)

Page 60



Approximation algorithm Unique coverage + greedy combined

16.9 => class 2 (24)

10.3 => class 2 (1728)

6.8 => class 2 (256)

10.6 => class 2 (24)

2.1 & 9.2 => class 2 (12)

4.2 & 12.1 => class 2 (120)

4.10 & 6.7 => class 2 (24)

3.3 & 13.3 => class 2 (1132)

4.1 & 13.3 => class 2 (460)

10.5 & 12.1 => class 2 (504)

2.1 & 5.1 & 6.7 => class 2 (38)

3.3 & 5.1 & 8.2 => class 2 (4)

4.9 & 5.1 & 6.7 => class 2 (32)

Letter  “T”  is  omitted  from the  attributes,  hence  “T3.3”  is  shortened  to  “3.3”  for  better

readability.

Page 61



Appendix 2 – Data of MONSAMAX evaluation

Results of measuring the running time of MONSAMAX, DSR and cover algorithm (unique +

greedy) as the number of columns increases in a dataset. Mushroom dataset is used as a base

dataset, last columns omitted.

Page 62

No of columns 15 16 17 18
Rules 128454 256878 510149 861756
DSR rules 1326 1326 1363 1634
Cover rules 22 22 22 21
Extracts 101069 202138 402766 736838
Algo time, sec 38.369 84.540 193.387 352.640
DSR time, sec 15.844 32.004 71.820 133.530
Cover time, sec 0.417 0.491 0.348 0.423
Total time, sec 54.631 117.036 265.555 486.593
Max heap MB 1062 1366 1920 2695
Used heap MB 911 1144 1436 2193

No of columns 11 12 13 14
Rules 12816 20735 35777 69414
DSR rules 643 786 982 1123
Cover rules 26 22 22 22
Extracts 9360 15843 29432 54860
Algo time, sec 4.554 6.103 13.491 23.432
DSR time, sec 0.721 1.460 3.314 7.614
Cover time, sec 0.236 0.193 0.301 0.336
Total time, sec 5.511 7.755 17.105 31.382
Max heap MB 215 347 673 887
Used heap MB 84 232 446 562



Appendix 3 – Data of MONSABAN evaluation

Results of measuring the running time of MONSABAN, DSR and cover algorithm (unique +

greedy) as the number of columns increases in a dataset. Mushroom dataset is used as a base

dataset, last columns omitted.

Page 63

No of columns 11 12 13 14
Rules 1740 2256 2908 3516
DSR rules 643 786 982 1123
Cover rules 44 43 41 40
Extracts 9877 17293 32286 61788
Algo time 2.918 3.593 7.328 11.095
DSR time 0.082 0.128 0.166 0.306
Cover time 0.115 0.017 0.019 0.031
Total time 3.115 3.737 7.513 11.433
Max heap MB 119 223 237 213
Used heap MB 56 109 122 140

No of columns 15 16 17 18
Rules 4219 4219 4365 5756
DSR rules 1326 1326 1363 1634
Cover rules 22 22 22 21
Extracts 117312 234588 467714 869753
Algo time 16.911 32.981 68.612 133.715
DSR time 0.357 0.287 0.356 1.709
Cover time 0.216 0.247 0.300 0.415
Total time 17.483 33.515 69.267 135.839
Max heap MB 193 155 200 284
Used heap MB 131 74 121 172



Appendix 4 – Data of MONSAMIN evaluation

Results of measuring the running time of MONSAMIN, DSR and cover algorithm (unique +

greedy) as the number of columns increases in a dataset. Mushroom dataset is used as a base

dataset, last columns omitted.

Page 64

No of columns 11 12 13 14
Rules 1740 2256 2908 3516
DSR rules 643 786 982 1123
Cover rules 26 22 22 22
Extracts 9877 17293 32286 61788
Algo time 3.387 4.028 6.483 11.442
DSR time 0.305 0.146 0.279 0.443
Cover time 0.179 0.234 0.395 0.442
Total time 3.871 4.407 7.156 12.328
Max heap MB 118 220 320 479
Used heap MB 62 113 140 267

No of columns 15 16 17 18
Rules 4219 4219 4365 5756
DSR rules 1326 1326 1363 1634
Cover rules 22 22 22 21
Extracts 117312 234588 467714 869753
Algo time 18.067 40.758 85.990 173.204
DSR time 0.514 0.724 0.530 1.004
Cover time 0.455 0.372 0.453 0.545
Total time 19.037 41.855 86.973 174.753
Max heap MB 467 416 365 362
Used heap MB 368 198 286 306



Appendix 5 – data of resource consumption depending on

number of rows in dataset

Running time is given in seconds, memory consumption in megabytes.

Appendix 6 – data of resource consumption depending on

number of different values in the dataset

Running time is given in seconds, memory consumption in megabytes.

Page 65

No of rows in dataset 8124 16248 24372 32496 40620
MONSAMAX, time 4.46 7.23 10.51 15.78 20.52
MONSAMAX, mem 83.92 211.72 367.16 403.40 570.30
MONSAMIN, time 3.14 3.86 6.13 7.24 9.27
MONSAMIN, mem 132.56 132.56 175.48 192.64 308.04
MONSABAN, time 2.82 3.79 6.20 6.97 8.98
MONSABAN, mem 22.89 126.84 226.97 367.16 388.15

Time

No of values 5 10 15 20 25
MONSAMAX 7.03 8.66 8.71 9.14 9.85
MONSAMIN 5.36 6.32 6.83 7.44 8.13
MONSABAN 0.27 2.06 3.53 5.42 7.35

Memory

No of values 5 10 15 20 25
MONSAMAX 319.48 529.29 526.43 547.41 562.67
MONSAMIN 282.29 494.96 494.00 509.26 538.83
MONSABAN 32.42 93.46 155.45 216.48 272.75



Appendix 7 – Software and source code in Java (CD)

This appendix adds a CD to the thesis with following contents:

• Java executable JAR file with MONSA UI application for running all the algorithms

that are implemented in this work

• Source code for the software, and SWT libraries

To run the software, please open command line, navigate to the folder of JAR file and type:

java -jar MONSA_UI_20140522.jar

Additional parameters can be used to change default settings. E.g. to allow more memory to

Java, please use -Xmx parameter. For example, to allow maximum 1800 MB, use:

java -jar -Xmx1800M MONSA_UI_20140522.jar

Page 66


	1 Introduction
	1.1 Objectives
	1.2 Overview
	1.3 Outline of research

	2 Concepts and theoretical background
	2.1 Monotone systems algorithms
	2.2 MONSAMAX algorithm
	2.2.1 Rule
	2.2.2 Algorithm
	2.2.3 An explanation of the MONSAMAX algorithm

	2.3 MONSABAN algorithm for finding negations
	2.4 MONSAMIN algorithm
	2.5 Rule set and determinative set of rules (DSR)
	2.6 Rule set optimisation problem of MONSA algorithms
	2.7 Set cover problem

	3 Rule set optimisation problem
	3.1 Problem
	3.2 Analysis of the problem
	3.2.1 Prefer general patterns
	3.2.2 Prefer deviance
	3.2.3 Complexity of a rule
	3.2.4 Coverage

	3.3 Solution
	3.3.1 Integration of MONSAMAX and rule optimisation algorithm
	3.3.2 Greedy cover algorithm
	Definitions
	Algorithm

	3.3.3 Approximation algorithm
	Definitions
	Algorithm

	3.3.4 Unique coverage algorithm
	Definitions
	Algorithm



	4 Experiments and comparative analyses of algorithms
	4.1 Overview of experiments
	4.2 Used datasets
	4.3 Test environment
	4.4 Comparison of covering algorithms
	4.4.1 Speed
	4.4.2 Coverage
	4.4.3 Solving rule set optimisation problem on raw rule set
	4.4.4 Reducing the size of rule set
	4.4.5 Discussion of test results

	4.5 Running time and memory usage of MONSA algorithms
	4.5.1 Number of columns
	MONSAMAX
	MONSABAN
	MONSAMIN

	4.5.2 Number of rows
	4.5.3 Number of different values

	4.6 Analyses of memory usage during the execution
	4.6.1 MONSAMAX
	4.6.2 MONSABAN
	4.6.3 Comparison of memory usage


	5 Implementation notes of MONSA family of algorithms
	5.1 Implementation of MONSAMAX using primitive data types
	5.2 Object oriented implementation of MONSA family of algorithms
	5.2.1 Efficient handling of zeroes and NULL-values
	5.2.2 Using abstract data types


	6 Ideas for future research
	6.1 Implementation
	6.2 Integration of MONSAMAX and MONSABAN
	6.3 Rule set optimisation
	6.4 Parallel algorithms
	6.5 Live algorithm
	6.6 Plug-ins for statistical computing packages

	7 Conclusion
	8 Kokkuvõte
	9 References
	10 Appendices

