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 Abstract 

 Conformational  analysis  is  one  of  the  central  topics  in  computational  chemistry.  It  is 

 well  known  that  conformational  analysis  for  transition  metal  compounds  is  an  extremely 

 challenging  task,  mainly  due  to  the  difficult  nature  of  accurately  modelling  the  forces 

 between  atoms  that  include  (transition)metals.  In  this  thesis  we  present  the  results  of  a 

 conformational  analysis  by  which  we  found  a  set  of  conformers  for  a  titanium  tartrate 

 complex.  This  complex  is  known  from  “Sharpless  epoxidation”  -  a  work  leading  to  a 

 Nobel  Prize  by  T.Katsuki  and  K.B.Sharpless.  Conformers  that  we  found  are  a 

 significant  step  forward  in  the  particular  research,  as  the  last  notable  work  at  TalTech 

 with  the  subject  was  in  2011.  In  addition  to  conformational  analysis,  this  thesis  presents 

 (1)  an  overview  of  a  workflow  with  analysis  and  suggestions  that  could  help  future 

 research  in  this  area  and  (2)  an  open-source  software  “Molli”,  that  was  written  by  the 

 author,  and  which  was  used  extensively  in  preparing  numerical  and  visual  analysis 

 presented in this thesis. 

 This  thesis  is  written  in  english  and  is  54  pages  long,  including  6  chapters,  3  figures 

 and 14 tables. 
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 Annotatsioon 

 Konformatsioonianalüüs  kuulub  arvuskeemia  võtmeteemade  hulka.  On  hästi  teada,  et 

 üleminekumetalliühendite  konformatsioonianalüüs  on  eriti  suur  väljakutse  kuna 

 aatomite  vaheliste  jõudude  täpne  modelleerimine  osutub  väga  keerukaks 

 (ülemineku)metalli  aatomite  puhul.  Käesolevas  magistritöös  esitame 

 konformatsioonianalüüsi  tulemused,  mille  käigus  leidsime  konformeeride  hulga 

 titaan-tartraat  ühendile.  Antud  ühend  on  tuntud  “Sharpless  epoksüdatsioonist”  -  Nobeli 

 preemiani  viinud  tööst,  mille  autoriteks  T.Katsuki  ja  K.B.Sharpless.  Meie  leitud 

 konformeerid  on  oluline  samm  edasi  antud  uurimissuunal,  kuna  eelnev  töötulemus 

 nimetatud  ühendiga  pärineb  aastast  2011.  Lisaks  konformatsioonianalüüsi  tulemustele 

 esitab  käesolev  magistritöö  (1)  ülevaate  töövoost  koos  analüüsi  ja  ettepanekutega,  mis 

 loodetavasti  aitavad  sarnast  tööd  tulevikus  paremini  läbi  viia,  (2)  vaba  tarkvara  “Molli”, 

 mille  lõi  käesoleva  magistritöö  autor  ning  mida  autor  kasutas  ulatuslikult  käesolevas 

 töös esitatud numbrilise ja visuaalse analüüsi koostamisel. 

 Lõputöö  on  kirjutatud  inglise  keeles  ning  sisaldab  teksti  54  leheküljel,  6  peatükki,  3 

 joonist, 14 tabelit. 
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 List of abbreviations and terms 

 Ab Initio  Latin: “from the first principles” 

 CENSO  An open-source software for evaluating and sorting molecular 
 geometries 

 Conformation  Energy-optimized molecular geometry (local minimum) 

 Conformer  Low-energy conformation of a particular molecule 

 CREST  Conformer–Rotamer Ensemble Sampling Tool 

 DFT  Density Functional Theory 

 GFN  Geometries, Frequencies and non-covalent interactions 

 GFN-FF  GFN force field method 

 GFN2-xTB  GFN extended tight binding method 

 PES  Potential energy surface 

 TargetMol  The titanium tartrate complex this thesis works with 

 xTB  Extended Tight Binding 
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 1  Introduction 

 Conformational  analysis  is  one  of  the  central  topics  in  computational  chemistry.  It 

 means  the  process  of  sampling  molecular  configurations  from  the  conformational  space. 

 The  complexity  of  this  problem  is  exponential,  where  n  is  the  number  of  𝑂 ( 𝑐  𝑛 ),

 rotatable  bonds  and  c  >  0.  In  addition  to  the  high  combinatorial  complexity,  we  need  to 

 do  expensive  energy  calculations  at  each  configuration  which  makes  a  conformational 

 analysis  of  transition  metal  compounds  even  more  challenging  task  because  the  difficult 

 nature  of  accurately  modelling  the  forces  between  atoms  that  include  (transition)  metals 

 [1],  [2],  [3],  [4],  [5],  [6].  Our  research  subject  was  a  titanium  tartrate  complex  [7], 

 catalyst  from  famous  Sharpless  epoxidation  -  a  work  leading  to  a  Nobel  prize  by  T. 

 Katsuki  and  K.B.  Sharpless  with  chemical  formula  C  24  H  44  O  16  Ti  2  and  molecular  structure 

 as shown in Figure 1. 

 Figure 1.  Molecular structure of the titanium tartrate  complex. 

 For  the  sake  of  simplicity,  we  refer  to  the  compound  we  are  working  with  as 

 “TargetMol”  throughout  this  thesis.  Our  aim  is  to  make  progress  in  the  research  with  the 

 TargetMol,  a  medium  sized  organometallic  compound  containing  86  atoms  including  2 

 titanium  atoms,  as  the  last  notable  work  with  the  TargetMol  at  TalTech  was  in  2011. 

 Among  the  characteristics  of  the  TargetMol  is  the  Ti  2  O  2  core,  forming  nearly  a 

 symmetric  planar  rhombus  (as  in  [7])  and  methyl  groups  instead  of  ethyl  groups.  The 

 main  objective  of  the  research  was  to  find  “good  quality”  conformers  for  the  TargetMol 
 10 



 with  the  additional  research  goal  of  investigating  whether  we  can  achieve  our  main 

 objective  with  CREST  [8]  software.  The  major  open  question  was  whether  force  field 

 and  semiempirical  methods,  underlying  the  calculations  of  CREST,  are  capable  of 

 modeling  our  system,  TargetMol,  correctly  as  our  ultimate  goal  was  to  calculate 

 conformers  at  the  level  of  Density  Functional  Theory  (DFT).  Calculating  everything  at 

 DFT  level  could  be  computationally  prohibitive,  therefore  we  applied  data  analysis 

 tools to find computational shortcuts. 

 1.1  Main contributions 

 Main contributions of this thesis could be grouped into following three categories: 

 ●  We  found  new  conformer  ensembles  for  a  particular  medium  sized 

 organometallic  molecule,  referenced  in  this  work  as  “TargetMol”.  The 

 TargetMol  contains  86  atoms  including  2  titanium  atoms.  A  smaller  set  of 

 conformers  was  fully  optimized  at  the  theory  level  of  PBE0/cc-pVTZ  and  a 

 broader  set  of  conformers  was  optimized  at  the  level  of  PBE0/def2-SV(P)  and 

 BP86/def2-SV(P).  With  this  result  we  make  significant  progress  furthering  the 

 conformational  analysis  of  the  TargetMol.  The  best  conformer  found  has  a 

 relative  energy  more  than  112  kJ/mol  lower  than  the  best  one  known  so  far  at  the 

 theory  level  of  PBE0/cc-pVTZ.  Altogether  we  report  205  additional  conformers 

 within  a  relative  conformational  energy  threshold  of  <67  kJ/mol,  all  fully 

 optimized  at  the  theory  level  of  PBE0/def2-SV(P).  We  further  show  that  it  is 

 highly  likely  that  these  conformers  have  their  relative  conformational  energies  in 

 the  same  range  also  at  the  PBE0/cc-pVTZ  level.  Current  work  serves  as  a  proof 

 of  concept  for  further  analysis  in  this  area  and  especially  with  the  TargetMol.  By 

 utilizing  CREST  software  for  sampling  conformational  space  and  by  further 

 refinement  of  the  results  with  desired  DFT,  one  can  extend  the  research  to  obtain 

 even more conformers. 

 ●  We  propose  and  implement  a  workflow  on  how  to  practically  approach  similar 

 tasks  in  the  future,  using  conformational  analysis  of  the  TargetMol  as  a  use  case. 

 Proposed  workflow  helps  expert  computational  chemists  to:  (1)  generate 

 candidate  geometries  (CREST),  (2)  pre-screen,  analyze  and  filter  intermediate 

 results and (3) select final geometries for further analysis. 
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 ●  We  created  an  open-source  tool  Molli,  written  in  Python,  that  allows  to  perform 

 various  helpful  tasks  a  computational  chemist  faces,  e.g.,  to  process  and  extract 

 information  from  log  files  generated  by  the  Gaussian  program,  to  analyze 

 geometries of molecules, analyze and compare optimization trajectories etc. 

 12 



 2  Theoretical background 

 The  main  aim  of  this  chapter  is  to  give  a  brief  overview  of  the  theoretical  background 

 and  key  concepts.  Our  aim  is  not  to  explain  everything  in  a  very  technical  and  detailed 

 manner,  rather  to  explain  the  key  concepts,  understandings  and  core  principles  of  the 

 modern  theory.  For  a  more  curious  reader  there  are  a  multitude  of  great  textbooks  on  the 

 topic  of  computational  chemistry  [9],  [10],  [11],  [12].  As  the  result  of  reading  this 

 chapter a reader should get an idea of the following: 

 ●  How does modern science view molecular structure? 

 ●  What are some of the central topics in computational chemistry? 

 ●  What is the importance and motivation of the Density Functional Theory? 

 ●  What is the importance and motivation of conformational analysis? 

 2.1  Elementary Chemistry: molecules, atoms, electrons 

 Everything  material  around  us  consists  of  molecules.  A  molecule,  being  a  typical  unit  of 

 abstraction  in  chemistry,  is  a  group  of  atoms  held  together  by  interatomic  forces.  Atoms 

 consist  of  a  nucleus  and  one  or  more  electrons.  In  modern  chemistry  the  major 

 fundamental  unit  is  an  atom,  as  molecules  are  viewed  as  collections  of  atoms,  chemical 

 formulas  represent  the  counts  of  the  atoms  in  a  molecule,  molecular  structures  are 

 visually  depicted  as  atoms  which  are  connected  by  lines  representing  chemical  bonds. 

 However,  in  computational  chemistry,  electrons  play  an  even  more  important  role  as  a 

 fundamental  unit.  The  reason  being  that  from  the  probability  density  of  electrons  we  can 

 derive  all  physical  properties  of  a  molecule.  That  is,  if  we  could  find  out  for  all  points  in 

 the  space  what  is  the  probability  of  an  electron  being  at  that  point,  then  we  would  know 

 everything  there  is  to  know  about  that  space.  This  remarkable  discovery  [13]  in  1960-s 

 led  to  the  creation  of  Density  Functional  Theory  (DFT)  and  was  later  awarded  the 

 Nobel  prize.  We  will  describe  DFT  in  more  detail  in  the  following  chapters.  The 

 periodic  table  depicts  chemical  elements  arranged  in  the  order  of  their  atomic  number, 

 which  is  defined  as  the  number  of  protons  in  the  nucleus  of  an  atom.  In  a  way  we  could 
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 interpret  the  atomic  number  as  the  “size”  or  “complexity”  of  a  chemical  element, 

 starting  from  the  simplest,  element  no.1  Hydrogen(H)  until  element  no.118 

 Oganesson(Og).  Although  definitions  of  the  term  “transition  metal”  vary,  they  are 

 generally regarded as those elements shown in blue in the d-block as shown in Figure 2. 

 Figure 2.  Block periodic table. 

 Transition  metal  compounds  are  an  important  class  of  molecules,  both  in  basic  chemical 

 research  as  well  as  in  industrial  and  pharmaceutical  chemistry.  In  addition,  transition 

 metal  complexes  are  crucial  for  numerous  biological  processes  [3].  In  biology  transition 

 metals are some of the key elements in life and evolution, e.g.: 

 ●  Iron:  without  iron,  oxygen  wouldn’t  make  it  to  the  brain  and  life  would  not  exist. 

 Helps transporting oxygen to the brain and muscles inside hemoglobin. 

 ●  Cobalt: component of vitamin B12. 

 In  material  science  transition  metal  compounds  play  an  important  role  in  the  production 

 of  coloured  paints,  semiconductors,  solar-cells,  batteries  etc.  Another  very  important 

 role of transition metals is their use as catalysts. 

 2.2  Computational Chemistry 

 Computational  chemistry  as  the  name  refers  to,  is  literally  chemistry  coupled  with 

 computer  science.  All  natural  sciences  used  to  be  mostly  experimental  sciences.  With 

 the  advent  of  computers  natural  sciences  grew  new  branches  with  computers  involved. 

 The  same  happened  with  chemistry.  Instead  of  conducting  relatively  expensive  “in 

 vitro”  (physical  experiments  in  a  laboratory)  experiments,  we  could  do  experiments 
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 virtually  using  computers,  with  the  added  benefit  of  algorithms  and  methods  from 

 computer  science.  Computational  methods  are  a  complement  to  the  experiments,  not  a 

 replacement.  No  matter  how  powerful  and  exact  the  methods  of  computational 

 chemistry are, the ground truth about nature is finally decided by the experiment. 

 Motivation 

 By  using  the  tools  and  methods  of  computational  chemistry  we  can  calculate  many 

 important  physical  molecular  properties.  That  leads  us  to  better  understanding  of  these 

 properties so that we could design new and better ones e.g.: 

 ●  Drugs in the Pharmaceutical industry. 

 ●  Materials,  plastics,  fuels,  component  materials  in  electronics  and  batteries  etc  in 

 Materials Science. 

 ●  etc. 

 Main methods of Computational Chemistry 

 According to [9] we could categorize the main tools into five broad classes: 

 ●  Molecular  Mechanics:  collection  of  atoms  in  a  molecule  is  modelled  based  on 

 classical  Newtonian  mechanics.  Atoms  are  modelled  as  balls  connected  to  each 

 other  with  elastic  connections.  By  knowing  the  lengths  of  each  connection  and 

 the  energy  needed  to  bend  or  stretch  these,  we  could  calculate  the  energy  of  a 

 given  molecule.  By  manipulating  the  atoms  in  space,  we  could  change  the 

 geometry  until  we  find  the  lowest  energy.  It  is  called  geometry  optimization. 

 Calculations are “fast”. 

 ●  Ab  Initio:  (  ab  initio  ,  Latin:  “from  the  start”,  i.e.,  “from  first  principles”)  Ab 

 Initio  calculation  is  based  only  on  quantum  mechanics  (deriving  from  quantum 

 physics,  the  best-known  description  of  the  matter  in  our  Universe)  and  is  in  this 

 sense  “from  first  principles”.  Ab  Initio  calculations  are  based  on  the  Schrödinger 

 equation,  which  is  one  of  the  fundamental  equations  of  modern  physics  and 

 describes,  among  other  things,  how  the  electrons  in  a  molecule  behave.  The  Ab 

 Initio  method  solves  the  Schrödinger  equation  for  a  molecule  and  gives  us  an 

 energy  and  a  wavefunction.  The  wavefunction  is  a  mathematical  function  that 

 can  be  used  to  calculate  the  electron  distribution  (and,  in  theory  at  least, 
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 anything  else  about  the  molecule).  Because  the  Schrödinger  equation  cannot  be 

 solved  exactly  for  any  molecule  with  more  than  one  electron,  we  need  to  use 

 approximations  [9],  meaning  that  any  practical  Ab  Initio  method  approximates 

 the  Schrödinger  equation.  “True”  Ab  initio  calculations  are  computationally 

 “impossible” on any practically relevant system. 

 ●  Semiempirical  methods:  empirical  here  means  experimental  and  by  combining 

 theory  with  experiment  gives  us  the  name  “semiempirical”.  The  idea  is  that  we 

 approximate  Ab  Initio  calculations  with  some  empirical  data  to  speed  up  the 

 calculations  at  the  expense  of  accuracy.  It  is  based  on  the  Schrödinger  equation 

 but  parameterized  with  experimental  (or  high-level  theoretical)  values  [9]. 

 Calculations  are  slower  than  Molecular  Mechanics  but  much  faster  than  Ab 

 Initio. 

 ●  Density  Functional  Methods  based  on  Density  Functional  Theory  (DFT):  a 

 functional  is  a  function  that  takes  a  function  as  input  and  returns  a  value,  same 

 as  “higher-order”  function  in  computer  science,  e.g.,  energy  functional  might 

 take  wave  function  representing  atomic  orbitals  as  input  and  return  a  value 

 corresponding  to  the  energy.  DFT  methods  are  based  on  the  Schrödinger 

 equation,  however,  theoretical  DFT  does  not  calculate  a  wavefunction,  but  rather 

 derives  the  electron  distribution  (electron  density  function)  directly.  Calculations 

 are  faster  than  Ab  Initio,  but  slower  than  semiempirical  [9].  In  practice  DFT 

 methods  approximate  the  wave  function  with  a  set  of  simpler  wave  functions  to 

 achieve computational speed-up. 

 ●  Molecular  Dynamics:  applying  the  laws  of  motion  to  the  atoms  under  the 

 influence  of  a  force  field.  A  force  field  could  be  generated  with  any  method 

 described  above:  Ab  Initio,  Semiempirical  or  Density  Functional  Methods.  It  is 

 important  to  distinguish  between  Molecular  Dynamics  and  Molecular 

 Mechanics,  first  of  which  describes  “motion”  while  the  latter  describes  a 

 “mechanical” treatment of molecules [9]. 

 2.3  Schrödinger Equation 

 Famous  Austrian  physicist  Erwin  Schrödinger,  after  whom  the  equation  is  named,  made 

 a  key  discovery  in  quantum  mechanics  in  1925  by  postulating  the  equation  which 

 describes  fundamental  particles  and  their  forces,  earning  him  a  Nobel  Prize  in  physics  in 
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 1933.  Schrödinger  equation  involves  a  wave  function  which  gives  a  precise  quantum 

 mechanical  description  about  the  evolution  of  a  physical  system  over  time.  By 

 separating variables we arrive at time-independent Schrödinger equation (2.1), which 

 (2.1)  𝐻 Ψ   =     𝐸 Ψ

 where:  is  wave  function,  E  is  the  energy  of  the  system  and  H  is  called  Hamiltonian Ψ

 operator,  a  function  acting  upon  returning  the  observable  property  of  the  system,  a Ψ

 scalar  value  of  energy  in  this  case.  More  technically,  if  equation  (2.1)  holds  is  called Ψ

 an  eigenfunction  and  E  an  eigenvalue  [11].  Another  important  property  of  the  wave 

 function  is  that  while  being  a  complex  variable  function,  the  square  of  its  modulus, Ψ

 ,  represents  a  function  of  the  probability  density.  Thus,  the  probability  that  a Ψ| | 2 

 chemical  system  will  be  found  within  some  region  of  multi-dimensional  space  is  equal 

 to the integral over that region of space [11]. 

 2.4  Density Functional Theory (DFT) 

 Motivation:  To calculate accurate molecular properties. 

 How  to  achieve:  Create  a  mathematical  model  that  maps  electron  density  to  the  energy 

 of the system. 

 As  mentioned  above,  the  computational  problem  is  how  to  “efficiently”  calculate 

 molecular  properties  so  that  they  would  be  accurate  enough,  in  compliance  with  theories 

 of  quantum  mechanics.  DFT  is  based  on  the  two  Hohenberg-Kohn  theorems,  which 

 state  that  the  ground-state  properties  of  an  atom  or  molecule  are  determined  by  its 

 electron  density  function,  and  that  a  trial  electron  density  must  give  an  energy  greater 

 than  or  equal  to  the  true  energy  (the  latter  theorem  is  true  only  if  the  exact  functional 

 could  be  used)  [9].  Origin  of  the  Density  Functional  Theory  dates  to  1964  with  the  now 

 famous  publication  by  P.  Hohenberg  and  W.  Kohn,  “Inhomogeneous  Electron  Gas” 

 [13].  Walter  Kohn  (1923-2016)  received  the  Nobel  Prize  in  chemistry  1998  “for  his 

 development  of  the  density-functional  theory”.  As  is  known  from  Quantum  Mechanics 

 the  Schrödinger  equation  is  well  defined,  but  “impossible”  to  solve  in  practice.  DFT 

 offers  an  alternative  approach  to  the  “solution”  of  the  Schrödinger  equation  by 

 searching  for  a  (universal)  functional  that  maps  electron  density  to  the  energy  of  the 
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 system  (e.g.,  molecule).  During  the  last  decades  DFT  has  become  a  leading 

 methodological  framework,  achieving  its  position  largely  due  to  the  excellent  accuracy 

 over  the  computational  cost  ratio  as  well  as  the  broad  applicability  across  system  classes 

 of  today’s  density  functional  approximations  (DFAs)  [14],  [15],  [16]  [17],  [18],  [19]. 

 The  strengths  of  density  functional  theory  are  practicality,  universality  for  all  electronic 

 ground  states,  and  a  sound  theoretical  foundation  [20].  Based  on  Quantum  Mechanics 

 and  Coulomb’s  law  for  the  electron-electron  interaction,  we  know  almost  everything  we 

 need,  in  principle,  for  the  description  of  atoms,  molecules,  and  solids.  By  being 

 grounded  in  experiment  the  underlying  principles  of  quantum  mechanics  and 

 Coulomb’s  law  are  accepted  as  universally  valid  and  basic.  Starting  from  these 

 principles,  we  can  prove  that  the  ground-state  exchange-correlation  energy  is  a 

 functional  of  the  total  electron  density  [20].  The  caveat  is  that  although  we  can  prove 

 that  the  functional  exists,  neither  don’t  we  know  this  functional  exactly  nor  its 

 systematic  approximation  that  would  always  converge  to  the  exact  answer  as  given  by 

 the  fully  ab  initio  theory.  To  the  question  whether  density  functional  theory  is  ab  initio 

 or  semiempirical,  one  could  argue  that  if  the  functionals  are  constructed  without 

 empirical  fitting  then  it  can  fall  in  between  as  a  nonempirical  theory.  [20].  Modern 

 density  functional  approximations  (DFAs)  try  to  further  improve  on  this  balance 

 between  the  accuracy  and  computational  cost  in  several  ways,  e.g.,  by  efficient  technical 

 implementation  in  modern  programs  and  by  sophisticated  design  and  parameterization 

 [21]. 

 2.5  Density Functionals and Basis sets 

 In  this  context  a  functional  is  a  function  that  takes  a  function  as  input  and  returns  a 

 value.  In  computer  science,  in  functional  programming  particularly  it  is  known  as 

 higher-order function. 

 A  density  functional  is  a  function  that  maps  the  electron  density  to  the  value  of  energy, 

 where electron density is modeled with the collection of basis functions. 

 A  basis  set  is  a  set  of  mathematical  functions  (basis  functions)  and  the  linear 

 combinations  of  basis  functions  yield  molecular  orbitals  [9].  Molecular  orbital  is  a 

 function  that  describes  the  location  and  behaviour  of  an  electron  in  a  molecule.  The  core 

 idea  is  to  approximate  these  orbitals  with  a  set  of  functions  as  closely  as  possible.  A 
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 desired  property  to  have  is  that  when  the  basis  set  size  is  increased  then  it  would 

 approach  theoretical  limits.  Usually,  several  basis  functions  describe  the  electron 

 distribution  around  an  atom.  The  combination  of  those  “atomic”  basis  functions 

 describes  the  electron  distribution  in  the  molecule  as  a  whole.  The  typical  size  of  a  basis 

 set  ranges  from  hundreds  to  thousands  of  basis  functions.  In  this  thesis  we  mainly  used 

 basis sets ranging from 696 to 1952 basis functions. 

 2.6  Complexity of DFT: Theoretical vs practical 

 In  computational  complexity  theory,  a  complexity  class  relates  a  set  of  problems  to  the 

 resources  needed  to  effectively  solve  them  by  a  computer.  To  simplify,  the  easiest 

 problems  in  this  scale  belong  to  category  P  (Polynomial  time  complexity),  the  problems 

 that  could  be  solved  by  computers,  i.e.,  in  a  “reasonable”  time.  NP  is  the  complexity 

 class  in  which  problems  are  “hard”  to  solve  but  “easy”  to  check  the  solution.  The  term 

 NP  comes  from  the  term  “non-deterministic  polynomial”  complexity.  For  a  decision 

 problem  that  means  we  can  check  the  correctness  of  the  answer  in  polynomial  time, 

 e.g.,  the  decision  version  of  the  travelling  salesman  problem:  given  a  route,  it  is  trivial 

 to  verify  whether  the  length  of  the  route  is  smaller  than  x  .  P  and  NP  are  for  classical 

 computers,  the  analogous  classes  for  quantum  computers  are  called  BQP  and  QMA 

 correspondingly.  The  authors  of  [22]  claim  to  have  proved  that  to  find  a  universal 

 functional  for  DFT  is  QMA-hard,  meaning  that  by  finding  an  efficient  approximation  to 

 the  universal  DFT  functional  would  imply  that  QMA=P.  That  would  collapse  most  of 

 the  complexity  classes  into  class  P  (including  NP  would  be  equal  to  P),  which  as  we 

 know  contains  problems  that  are  easily  solvable  by  today’s  computers.  It  remains  to  be 

 seen,  but  more  likely  than  not  there  exists  no  universal  functional  for  DFT,  which  in 

 practice  means  that  the  research  of  designing  new  and  better  functionals  is  never  ending, 

 explaining  the  broadness  and  variety  of  today’s  “zoo”  of  available  functionals  and  basis 

 sets.  The  mere  fact  that  in  practice  we  get  very  accurate  results  with  reasonable  time  is 

 quite  astonishing  and  shows  that  there  are  no  limits  for  the  ingenuity  of  scientists  in 

 inventing  clever  algorithmic  shortcuts  and  implementation  tricks.  Authors  of  [22]  also 

 show  that  Kohn-Sham  DFT,  the  practical  approximation  to  DFT  that  is  used  in  most 

 algorithms  for  DFT  calculations,  as  well  as  Hartree-Fock  method  are  both  NP-hard 

 problems,  while  Hartree-Fock  method  is  also  shown  to  be  NP-complete  (meaning  by 

 solving  this  problem,  you  solve  all  NP  problems).  In  practical  implementations  the  DFT 
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 algorithms  have  complexity  typically  in  range  ..  .  Considering  the  𝑂  𝑛  2 . 5 ( )  𝑂  𝑛  3 ( )
 exponential  complexity,  ,  where  c  >  0,  of  the  Schrödinger  equation,  the  sub-cubic  𝑂 ( 𝑐  𝑛 )

 scaling in practice is a very large speedup. 

 2.7  Molecular Geometry and Potential Energy Surface (PES) 

 Molecular  geometry  is  a  description  of  a  molecule  by  the  3D  coordinates  of  its 

 constituent  atoms.  It  is  essentially  equivalent  to  the  notion  of  representing  a  molecule  as 

 a three-dimensional point cloud, where the points are the atoms of the molecule. 

 According  to  Born-Oppenheimer  approximation  the  nuclei  are  essentially  stationary 

 compared  to  the  electrons  in  a  molecule.  This  seemingly  simple  statement  has 

 surprisingly  profound  implications.  It  gives  meaning  to  the  potential  energy  surface 

 (PES),  a  central  concept  in  computational  chemistry.  PES  is  a  relation  between  energy 

 and geometry of a molecule. 

 Molecular  geometry  optimization  means  finding  a  local  energy  minimum  on  the 

 hypersurface  mentioned  above  -  the  Potential  Energy  Surface  (PES).  Optimization  is 

 done  by  gradually  changing  individual  positions  of  the  atoms,  so  that  the  energy  after 

 the  change  is  smaller  than  before  the  change.  Optimization  arrives  at  its  final  geometry 

 if  no  further  adjustments  of  atomic  positions  are  possible  that  would  lead  to  smaller 

 energy. 

 2.8  Conformational analysis 

 It  is  rather  obvious  that  the  properties  of  any  chemical  compound  depend  on  its 

 chemical  structure,  the  chemical  elements  that  the  molecule  is  made  of  and  how  these 

 elements  are  bonded  together.  But  that  is  not  all.  In  the  physical  world  all  chemical 

 compounds  have  a  specific  3D  geometry,  a  particular  configuration  in  space,  specified 

 by  the  x,y,z-coordinates  of  all  its  constituent  atoms.  As  it  turns  out,  two  otherwise 

 identical  molecules  may  have  different  properties  depending  on  their  3D-geometrical 

 configuration.  From  that  basic  idea  arises  the  motivation  for  conformational  analysis  - 

 finding  appropriate,  “the  best”,  three-dimensional  configurations  of  a  compound.  As 

 each  molecular  geometry  of  a  compound  has  its  corresponding  energy  value,  by 

 connecting  all  possible  configurations  with  the  corresponding  energy  values  we  get  an 
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 extremely  high  dimensional  hyper  surface  called  Potential  Energy  Surface  (PES). 

 Conformational  analysis  is  the  study  by  which  we  analyse  how  molecular  geometries 

 are  related  to  their  corresponding  energies.  The  lower  the  energy  the  more  stable  the 

 structure  is  and  vice  versa.  Conformational  analysis  is  a  major  area  of  study  in 

 computational  chemistry.  The  core  challenge  is  how  to  sample  “chemical  space”,  i.e.,  to 

 identify  structures  that  best  describe  the  system  under  investigation  [8].  Once  the 

 geometries  have  been  generated  or  found,  they  need  to  be  “energy-optimized”  to  a 

 nearby  minimum  on  the  PES,  these  are  called  conformations.  The  best  of  the 

 conformations,  the  low-energy  structures  with  the  lowest  minima  on  the  PES  are  called 

 conformers.  The  procedure  of  “adjusting”  a  geometry  to  find  its  local  minimum  on  the 

 PES  is  the  most  compute  intensive  part.  This  is  where  the  DFT  comes  into  play  if  we 

 are aiming at higher chemical accuracy. 

 Computational complexity 

 We  mentioned  above  the  computational  complexity  of  DFT.  In  conformational  analysis 

 we  must  combine  this  with  the  combinatorial  complexity  of  possible  configurations  that 

 atoms  could  occupy  within  a  molecule.  A  sample  of  different  3D-geometries  could  be 

 achieved  by  rotating  parts  of  a  molecule  around  interatomic  bonds  or  just  shifting  atoms 

 around  in  the  space  according  to  molecular  dynamics.  This  gives  rise  to  the 

 combinatorial  explosion  of  possible  searchable  geometries.  Combinatorial  complexity 

 of  molecular  geometry  configurations,  if  modeled  with  the  molecular  mechanics 

 principles,  scales  with  the  number  of  interatomic  bonds,  as  bonds  determine  the  degrees 

 of  freedom  in  this  type  of  modelling.  Exhaustive  enumeration  of  all  the  possible 

 rotations  around  every  bond  scales  exponentially  with  the  number  of  rotatable  bonds. 

 That  means  the  generation  of  conformers  ranked  by  energy  is  computationally  very 

 demanding. To summarize, finding conformers is a 2-step process: 

 ●  Generate a candidate 3D geometry. 

 ●  Calculate conformer energy. 

 Generating  candidate  geometries  scales  exponentially,  so  does  the  energy  calculation  if 

 maximum  theoretical  accuracy  is  needed,  according  to  the  Schrödinger  equation.  In 

 practice  more  precise  methods  than  DFT  could  scale  up  to  ,  depending  on  the  𝑂  𝑛  7 ( )
 chemical  accuracy,  where  n  is  the  system  size  in  terms  of  number  of  electrons.  The 
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 DFT  algorithms  that  are  implemented  in  practical  applications  have  usually  the 

 complexity  in  range  ..  ,  as  higher  scaling  would  be  too  slow  to  calculate  𝑂  𝑛  2 . 5 ( )  𝑂  𝑛  3 ( )
 any reasonable molecular system. 

 Due  to  the  vast  combinatorial  search  space  and  slow  energy  calculation,  the  common 

 shortcuts are: 

 ●  To  explore  conformational  space  very  sparsely  through  a  combination  of 

 pre-defined distances and stochastic samples. 

 ●  To  calculate  conformer  energies  with  faster  and  more  inaccurate  methods,  e.g. 

 force field or semiempirical methods. 

 Practical  scaling  in  the  case  of  TargetMol  in  terms  of  CPU  time  with  different  levels  of 

 DFT was as follows: 

 ●  Changing  functional  from  BP86  to  PBE0  increased  CPU  time  on  average  1.5 

 times. 

 ●  Changing  the  basis  set  from  def2-SV(P)  to  cc-pVTZ  increased  CPU  time  on 

 average 13.7 times. 

 ●  Changing  functional  and  basis  set  from  BP86/def2-SV(P)  to  PBE0/cc-pVTZ 

 increased CPU time on average 20.7 times. 

 2.9  Key takeaways 

 ●  One  of  the  main  motivations  is  a  search  for  molecules  that  have  better  properties 

 to design better drugs, materials etc. 

 ●  The  key  question  is  how  to  efficiently  calculate  molecular  properties  so  that  they 

 would be accurate enough, in compliance with quantum mechanical theories? 

 ●  The  main  computational  bottleneck:  according  to  the  Schrödinger  equation  we 

 need  to  calculate  space  integrals  which  are  computationally  extremely 

 demanding  and  by  designing  suitable  algorithms  scientists  try  to  find  a  good 

 balance  between  accuracy  and  the  speed  of  computation  by  approximating  the 

 space integrals. 

 ●  Density  Functional  Theory  (DFT):  Everything  can  be  derived  from  electron 

 density,  and  it  is  computationally  possible  in  practice  with  high  accuracy  and 
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 reasonable  speed.  DFT  is  a  leading  theory  that  offers  an  approximation  to  the 

 solution of the Shrödinger equation. 

 ●  Conformational  analysis  is  used  to  find  “better”  molecular  geometries,  which 

 helps in designing new types of chemical compounds with desired properties. 
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 3  Aim of the thesis 

 The  main  objective  of  this  thesis  is  to  find  conformers  for  a  titanium  tartrate  complex, 

 code  named  TargetMol,  containing  86  atoms  including  2  titanium  atoms.  The  last 

 notable work involving TargetMol at TalTech was carried out in 2011. 

 Our main goals are: 

 ●  RG1: To find conformers for TargetMol, using CREST software. 

 ●  RG2: To assess the suitability of CREST software in our context. 

 ●  RG3:  To  establish  a  workflow  that  could  assist  similar  research  (conformational 

 analysis)  in  the  future,  as  well  as  to  find  practical  suggestions  and  “short-cuts” 

 by utilizing tools and methods of data science. 

 The additional research questions were: 

 ●  RQ1:  To  estimate  the  applicability  of  GFN2-xTB  and  GFN-FF  methods  for 

 geometry  optimization  in  our  context,  by  answering  the  question:  are  the 

 resulting geometries structurally valid and reasonable? 

 ●  RQ2:  To  estimate  the  relative  performance  of  GFN2-xTB  and  GFN-FF  methods 

 with  comparison  to  DFT  methods,  by  answering  the  question:  are  relative 

 conformational  energies  that  are  calculated  by  GFN-family  methods,  good 

 predictors  of  relative  conformational  energies  that  have  been  calculated  at  DFT 

 level? 

 ●  RQ3:  Could  a  force  field  method  GFN-FF  be  considered  at  all  as  an  alternative 

 method  in  our  context  or  is  GFN2-xTB,  a  semiempirical  quantum  mechanical 

 method, the only serious candidate? 

 ●  RQ4:  How  well  does  the  conformational  sampling  of  CREST  cover  the  search 

 space and how well do the resulting CREST conformers cover the search space? 
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 4  Methods 

 Our  main  aim  was  to  use  well  established  theoretical  methods  and  apply  these  using 

 large scale computational resources that are available for a working scientist in TalTech. 

 4.1  Generating geometries with CREST 

 To  generate  candidate  geometries  for  conformer  ensembles  we  utilized  open-source 

 software  CREST  [8]  [30].  CREST  is  a  conformer  sampling  program,  named  after  the 

 abbreviation  from  Conformer-Rotamer  Ensemble  Sampling  Tool.  For  energy 

 calculations  and  geometry  optimizations,  CREST  uses  either  force  field  or 

 semiempirical  methods.  We  were  particularly  interested  in  two  methods:  GFN-FF  and 

 GFN2-xTB,  where  GFN  stands  for  Geometries,  Frequencies  and  Non-Covalent 

 Interactions,  FF  stands  for  Force  Field,  and  xTB  stands  for  Extended  Tight  Binding, 

 where  “extended”  emphasizes  the  parameter  availability  for  almost  the  entire  periodic 

 table of elements (Z < 87). Motivation for using CREST: 

 ●  CREST promises to give state-of-art results in terms of output geometries. 

 ●  Applicable  out-of-the-box  for  compounds  covering  most  of  the  periodic  table 

 (elements up to 86, Radon). 

 ●  Very good computational efficiency. 

 ●  CREST  authors  claim  that  their  software  is  more  generic  than  analogous 

 competing software. 

 ●  CREST, xtb software is public, free, actively maintained by authors. 

 CREST stands on two main pillars: 

 ●  Conformational search by extensive metadynamic sampling. 

 ●  Fast  semiempirical  and  force  field  energy  calculation  by  GFN  family  methods 

 (GFN2-xTB, GFN-FF). 

 CREST  provides  an  efficient  balance  between  speed  and  accuracy  due  to  fast  energy 

 calculators  by  GFN  family  methods.  The  key  conformational  search  workflow 

 implemented  in  CREST  generates  conformer/rotamer  ensembles  (CREs)  by  efficient 

 sampling  of  the  vast  conformational  space.  The  methods  use  either  GFN  parameterized 

 xTB  Hamiltonian  (GFN2-xTB)  or  GFN  parameterized  force  field  (GFN-FF)  for 
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 computational  modelling  of  molecular  structures,  to  explore  the  potential  energy 

 landscape.  Authors  say  that  GFN-FF  is  approaching  the  accuracy  of  semiempirical  QM 

 methods,  in  some  cases  even  reaching  DFT  accuracy.  The  key  premise  of  CREST  is  the 

 computational  efficiency  of  generating  conformers  with  sufficiently  high  chemical 

 accuracy.  Although  GFN  family  methods  provide  reasonably  accurate  results,  in  the 

 overall  workflow  CREST  is  an  efficient  pre-screening  tool  and  the  results  of  CREST 

 should  be  further  refined  at  desired  DFT  level  [8]  [30].  Details  of  CREST  experiments 

 settings are presented in the table Appendix 3. 

 4.2  Density Functionals and Basis sets 

 As  already  mentioned,  geometry  optimization  using  DFT  methods  for  larger  molecules 

 can  be  computationally  infeasible.  One  must  find  an  optimal  balance  between 

 calculation  speed  and  accuracy,  meaning  more  exact  DFT  methods  would  require 

 considerably  more  computational  resources  with  much  longer  calculation  times  while 

 producing  more  accurate  results.  Selecting  appropriate  DFT  functional  means  also 

 selecting  an  appropriate  basis  set.  An  expert  chemist  must  know,  guess  or  experiment  to 

 find  out  which  combination  works  best  in  the  context,  by  choosing  among  tens  of  DFT 

 functionals  and  basis  sets,  whether  to  choose  “pure”  functional  or  “hybrid”  etc.  A 

 “hybrid”  DFT  functional  might  have  been  parameterized  with  a  set  of  chemical 

 compounds,  making  it  crucial  to  know  its  applicability  in  the  context,  while  a  “pure” 

 DFT  functional  might  not  be  parameterized  and  lack  that  kind  of  “bias”,  but  the  general 

 applicability  issue  remains  -  one  must  validate  that  the  selected  functional  produces 

 chemically  accurate  results  in  the  context  [20].  As  for  the  choice  of  a  basis  set,  with  a 

 too  small  basis  set  there  is  a  risk  of  having  too  low  accuracy,  and  with  a  too  large  basis 

 set,  the  computations  may  become  too  expensive.  Again,  there  is  a  need  to  find  a  good 

 balance  in  between  and  it  is  a  topic  where  one  should  do  a  thorough  research 

 beforehand  to  have  up-to-date  information  of  which  density  functionals  and  basis  sets  to 

 consider.  Fortunately,  there  are  quite  many  research  papers  published  on  this  very  topic 

 that  could  be  extremely  helpful  [6],  [20],  [24],  [26],  [27],  [28],  [38].  Another  interesting 

 direction  in  the  development  DFT  functionals  are  extensions  to  Density  Functional 

 Approximation  (DFA)  methods  which  are  claimed  to  be  much  faster  than  “classical” 

 DFT  functionals  and  with  the  accuracies  comparable  to  a  higher  level  of  DFT  theory 

 [14],  [21],  [39].  Unfortunately,  none  of  these  methods  were  implemented  in  the 
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 Gaussian  software  at  the  time  of  our  research.  DFA  methods  such  as  r2SCAN-3c  [14] 

 which  is  implemented  in  the  default  workflow  of  CENSO,  would  be  among  the 

 suggestions for candidates of density functionals to try in future research. 

 Our  choice  of  DFT  functionals  and  basis  sets  was  based  on  experience  and  literature 

 [6],  [20],  [26],  [27],  [28].  Most  of  the  experiments  were  done  using  a  “pure”  BP86  and  a 

 “hybrid"  PBE0  [23],  [24]  functionals  (Gaussian  keyword  for  PBE0  is  PBE1PBE)  and 

 from  the  basis  sets  we  used  cc-pVTZ  and  def2-SV(P)  [25]  (Gaussian  keyword 

 corresponding  to  def2-SV(P)  is  Def2SVPP).  We  used  density  fitting  as  provided  in  the 

 Gaussian  software  to  speed  up  the  calculations.  We  used  PBE0/cc-pVTZ  as  “ground 

 truth”  while  BP86/def2-SV(P)  and  PBE0/def2-SV(P)  were  the  main  workhorses  with 

 which  we  conducted  a  much  broader  range  of  experiments.  Motivation  for  our  selection 

 was  mainly  driven  by  the  experience  and  by  the  suggestions  of  experts  in  the  field  [24], 

 [26],  [27],  [28].  The  specification  of  used  functionals  and  basis  sets  as  defined  by 

 Gaussian software is shown in Table 1. 

 Table 1.  DFT functionals and basis sets specification. 

 DFT Functional 
 Basis 

 functions 
 Primitive 
 gaussians 

 Cartesian basis 
 functions 

 BP86/def2-SV(P)  696  1318  740 

 PBE0/def2-SV(P)  696  1318  740 

 PBE0/cc-pVTZ  1952  3536  2228 

 4.3  Data driven analysis 

 To  answer  the  research  questions  stated  above,  our  aim  was  to  perform  various  data 

 analysis tasks. We can split data analysis into two categories by the purpose. 

 1.  Predictive  analytics,  an  analysis  with  which  we  aim  to  find  “shortcuts”  to  the 

 expensive DFT calculations, answering research question RQ2, e.g.: 

 ●  correlation  analysis  of  relative  conformational  energies  to  get  useful 

 information  about  the  filtering  of  conformers  and  to  assess  the  relative 

 performance of GFN family methods in comparison with DFT methods. 

 ●  prediction of conformers ranking. 

 2.  Descriptive  analysis  by  which  we  assess  the  quality  of  the  conformers, 

 answering research questions RQ1, RQ4, e.g.: 
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 ●  analyze  geometries  to  get  better  understanding  of  the  distribution  of 

 certain  structural  properties,  e.g.,  Ti-O-C,  Ti-O-Ti  angles  and  selected 

 dihedral  angles  in  the  case  of  conformers  generated  by  CREST  with 

 GFN2-xTB  method  as  well  as  to  assess  the  coverage  of  the  search  space 

 by CREST conformers. 

 ●  analyze structural validity of the conformers. 

 4.4  Software 

 CREST  [8]  :  One  of  the  main  goals  of  the  thesis  was  to  test  the  applicability  and 

 goodness  of  CREST  software  in  the  conformer  generation  process,  especially  in  our 

 context with a fairly complex transition metal compound. 

 Gaussian 

 All  DFT  level  quantum  chemical  computations  were  done  using  Gaussian  16,  Revision 

 C.02  [31].  Gaussian  software  provides  state-of-the-art  capabilities  for  electronic 

 structure  modeling.  It  is  a  respected  software  in  the  computational  chemistry 

 community and has been used for many years. 

 ASE 

 The  Atomic  Simulation  Environment  (ASE)  [35]  is  a  set  of  tools  and  Python  modules 

 for  setting  up,  manipulating,  running,  visualizing  and  analyzing  atomistic  simulations. 

 ASE  is  a  fantastic  open-source  and  free  library  for  scientific  computing,  more 

 specifically  an  atomistic  simulation  environment  -  exactly  what  we  needed.  Many 

 useful  general  chemistry  and  quantum  chemistry  functions  and  analysis  tools  etc.  have 

 been  implemented.  On  top  of  that  ASE  has  very  broad  coverage  of  API  connections  to 

 pretty  much  all  well-known  quantum  chemistry  software  providers  (Gaussian, 

 Turbomole, Orca, xtb, CP2K, QuantumEspresso, LAMMPS, Fleur, Psi4 etc). 

 Molli 

 A  brand  new  open-source  library  on  top  of  ASE  written  by  the  author  as  the  side 

 product  of  this  thesis.  The  source  code  is  available  on  GitHub  [40].  All  results  and 

 analysis  presented  in  this  thesis  were  made  with  the  help  of  Molli.  It  was  an  essential 
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 companion  for  exploring  and  analyzing  atomic  structures,  optimization  trajectories, 

 conformer  ensembles,  processing  gaussian  log  files  etc.  In  the  GitHub  repository  there 

 are  some  examples  illustrating  the  capabilities  and  functionality  of  Molli.  Hopefully 

 Molli  can  be  useful  for  future  researchers.  Further  details  about  Molli  are  presented  in 

 Appendix 4. 

 Psi4 - Open-Source Quantum Chemistry 

 Psi4  [41]  is  an  excellent  quantum  chemistry  resource  providing  a  wide  variety  of  DFT 

 implementations  for  single  point  energy  calculations  and  geometry  optimizations  among 

 other  functionalities.  We  did  quite  some  work  with  the  Psi4  running  a  multitude  of 

 experiments  in  the  AI-Lab  compute  centre.  Documentation  and  code  are  well 

 understandable  and  implementation,  usability  through  Python  API  is  quite  user  friendly. 

 Psi4  has  quite  broad  DFT  functionals  and  basis  set  coverage.  Parallelisation  on  64 

 CPU-s  seemed  to  work  very  well.  The  only  problem  for  us  was  that  we  couldn’t 

 compile  it  properly  to  perform  geometry  optimization.  Therefore,  we  had  to  abandon 

 Psi4.  As  for  single  point  energy  calculation,  Psi4  is  a  very  good  resource,  especially 

 considering it is an open-source and free product. 

 4.5  Hardware 

 Most  of  the  conducted  experiments  required  a  lot  of  computational  resources  and  these 

 were  done  using  the  resources  of  TalTech  High  Performance  Computing  Centre  (HPC 

 Centre)  [42]  and  TalTech  AI-LAB  [43].  AI-Lab  is  a  sandbox  environment  consisting  of 

 GPU  equipped  workstations  that  provides  a  stepping  stone  for  students  and  staff  to 

 efficiently  use  the  order  of  magnitude  larger  resources  of  the  HPC  Centre.  Usually,  our 

 single  jobs  utilized  64-240  CPU  threads  each.  Some  calculations  performed  with 

 Gaussian  16c02,  also  included  the  use  of  NVidia  A100  GPU-s,  but  these  did  not  seem  to 

 offer  much  of  a  speed  advantage  (order  of  magnitude  10-20%)  for  TargetMol,  not  to 

 mention considerably higher electricity consumption. 

 TalTech  High  Performance  Computing  Centre  (HPC  Centre)  develops  and  manages 

 the  compute  resources  for  scientific  use.  HPC  provides  following  compute  resources  (as 

 of Jan 1, 2023): 
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 ●  32  nodes  with:  2  x  Intel  Xeon  Gold  6148  2.40  GHz  (40  cores,  80  threads  per 

 node), 96GB RAM, 25 Gb/s Ethernet, 800GB local scratch space 

 ●  GPU  server  AMP.HPC.TALTECH.EE:  2  x  AMD  EPYC  7742  (128  cores,  256 

 threads  per  server),  8  x  NVidia  A100  with  40GB  RAM  GPU,  1TB  memory, 

 100Gb/s Ethernet. 

 ●  GPU  server  AMP2.HPC.TALTECH.EE:  2  x  AMD  EPYC  7713  (128  cores,  256 

 threads  per  server),  8  x  NVidia  A100  with  80GB  RAM  GPU,  2TB  memory, 

 100Gb/s Ethernet. 

 Taltech  AI-LAB  is  an  environment  to  learn  how  to  use  modern  computational 

 resources  to  solve  various  problems  that  require  substantial  computational  resources. 

 AI-Lab  hosts  a  varying  number  of  workstations  using  the  24  and  32  core  (48/64  thread) 

 3rd  generation  AMD  ThreadRipper  processors  (3960X  or  3970X),  or  a  10-core  10th 

 generation  Intel  Core  i9-10900X  processor,  128  GB  of  memory  and  NVidia  or  AMD 

 graphics cards for CUDA or ROCM computations. 

 30 



 5  Results and Analysis 

 We  started  with  a  single  molecular  geometry  of  the  target  molecule,  a  titanium  tartrate 

 complex  consisting  of  86  atoms,  including  2  titanium  atoms.  The  geometry  was  a  local 

 optimum  geometry  at  the  theory  level  of  BP86/def2-SV(P)  calculated  with  Turbomole 

 software.  Our  aim  was  to  find  geometries  that  would  be  at  a  better  local  optimum.  Our 

 approach  was  the  following:  use  CREST  software  to  produce  as  many  candidate 

 geometries  as  possible,  then  perform  geometry  optimization  at  a  higher-level  theory, 

 ultimately  at  the  DFT  level  of  PBE0/cc-pVTZ.  As  this  level  is  computationally  too 

 expensive,  we  estimated  that  we  could  get  a  broader  coverage  of  geometries  optimizing 

 also  at  the  levels  of  PBE0/def2-SV(P)  and  BP86/def2-SV(P).  Initially  we  considered 

 using  STO-3G  as  the  basis  set  to  cut  down  calculation  budget  even  more,  but  our 

 preliminary  experiments  using  PBE0/STO-3G  and  BP86/STO-3G  were  not  too 

 promising.  Although  being  considerably  faster,  they  seemed  to  lack  accuracy  in  our 

 context.  Considering  this  and  the  limited  available  time  we  decided  not  to  focus  too 

 much  on  the  experiments  with  STO-3G  basis  set.  cc-pVTZ  basis  set,  however  more 

 accurate  theoretically,  was  obviously  too  large  for  performing  geometry  optimizations 

 on  a  larger  scale.  The  def2-SV(P)  basis  set  seemed  to  offer  a  balanced  sweet  spot 

 between  speed  and  accuracy.  Combined  with  the  two  well-known  and  widely  used 

 functionals  BP86  and  PBE0  became  our  main  workhorses  for  quantum  chemical 

 computations. 

 Our goal was twofold: 

 ●  To test how capable is CREST software in our context. 

 ●  To  find  a  better  set  of  conformers  than  the  currently  available  single  geometry 

 that we used as main input in our experiments. 

 5.1  Overview of main results 

 Timing  report  in  Table  2  gives  the  overview  of  computational  resources  used  and  the 

 number  of  experiments  concluded.  For  a  comparison  we  performed  full  optimization  on 

 selected  geometries  also  with  other  well-known  functionals  that  were  suggested  in  the 

 literature (  TPSS, B3P86)  [3], [4], [18], [26] and  by prof. Tamm (wB97XD). 
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 Table 2.  Timing report of geometry optimization. 

 DFT functional 

 Optimization 
 step, CPU 

 Hours 
 Total time, 
 CPU Days 

 Total Wall 
 Time, Days 

 Number of 
 experiments 

 TPSS/STO-3G  0.75  82.2  1.4  38 

 PBE0/STO-3G  0.78  90  1.6  69 

 BP86/STO-3G  0.86  225.9  4  288 

 TPSS/def2-SV(P)  2.66  20.7  0.4  4 

 B3P86/def2-SV(P)  3.62  38.9  0.6  4 

 BP86/def2-SV(P)  3.79  721.8  12.8  318 

 PBE0/def2-SV(P)  4.26  2438.8  40.1  269 

 wB97XD/def2-SV(P)  4.89  41.2  0.7  4 

 PBE0/cc-pVTZ  78.41  2490.9  11.6  10 

 Main  results  of  the  conformational  analysis  are  presented  in  the  Table  3,  which  include 

 10  geometries  fully  optimized  at  the  level  of  PBE0/cc-pVTZ.  Conformer  “original” 

 refers  to  the  single  input  geometry  of  TargetMol  that  we  started  with  and  arguably  it  has 

 been  fully  optimized  at  the  level  of  BP86/def2-SV(P).  Naming  convention  of 

 conformers  is  explained  in  chapter  5.2  and  full  details  of  CREST  experiments  are 

 presented  in  Appendix  3.  Conformer  “ex16_c5_def2svpp_step10”  is  the  “head  start” 

 version  of  “ex16_c5”,  meaning  that  it  was  first  optimized  with  10  steps  at  the  level  of 

 PBE0/def2-SV(P)  and  then  continued  until  convergence  with  PBE0/cc-pVTZ. 

 Analogously  “ex0a_c10_bp86def2svpp_step10”,  but  with  the  10  step  pre  optimizing  at 

 the  level  of  BP86/def2-SV(P).  In  this  case  pre  optimizing  even  lead  to  a  better 

 conformer.  This  seemingly  minor  fact  has  quite  an  interesting  implication.  Namely  not 

 only  can  pre  optimization  be  used  as  a  tool  for  making  an  end-to-end  process 

 considerably  faster,  but  it  could  also  be  used  as  a  tool  for  generating  variety  in  high 

 quality  conformers.  Column  “Energy  delta”  is  presented  to  give  an  indication  of  how  far 

 the  input  geometries  were  from  the  fully  optimized  geometries  at  the  start  of  the 

 optimization.  Energy  delta  is  defined  as  the  energy  at  the  end  of  optimization  minus  the 

 energy  at  the  start  of  the  optimization  (starting  energy  corresponds  to  energy  of  CREST 

 output). We can make following observations: 
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 ●  10-step  pre  optimization  covers  91%  (PBE0,  ex16_c5)  and  76%  (BP86, 

 ex0a_c10) of the energy delta compared to full optimization. 

 ●  Rather  large  energy  delta  values  indicate  that  CREST  output  geometries  are 

 pretty far from optimal by DFT methods. 

 ●  CREST  geometries  optimized  with  GFN  Force  Field  (GFN-FF)  method  have 

 approximately  double  the  energy  delta  value  compared  to  the  GFN2-xTB 

 method. 

 Table 3.  Conformers optimized at the theory level  of PBE0/cc-pVTZ. 

 Index  Conformer 

 Energy 
 Difference to 
 best, kJ/mol 

 Final Energy, 
 hartree 

 Energy delta, 
 optimization 
 start to end, 

 kJ/mol 

 1  ex0ff_c6  0.00  -3842.08132304  -606 

 2  ex16_c5  5.58  -3842.07919842  -242 

 3  ex16_c5_def2svpp_step10  5.58  -3842.07919827  -21 

 4  ex0a_c10_bp86def2svpp_step10  6.06  -3842.07901627  -64 

 5  ex0a_c10  6.35  -3842.07890493  -273 

 6  ex19_c23  8.78  -3842.07797753  -242 

 7  ex0a_c24  9.09  -3842.07786203  -261 

 8  ex0a_c26  11.95  -3842.07677058  -268 

 9  ex0b_c21  26.92  -3842.07106838  -241 

 10  original  112.77  -3842.03837075  -57 

 In  addition  (including  above-mentioned  geometries),  we  fully  optimized  205 

 conformers  at  PBE0/def2-SV(P)  and  34  conformers  at  the  theory  level  of 

 BP86/def2-SV(P). For detailed results see Appendix 2. 

 Table  4  presents  the  general  statistics  of  the  fully  converged  experiments  including  the 

 information  about  sample  size,  average  number  of  steps  it  took  to  converge  and  average 

 change in the energy across all converged experiments. 
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 Table 4.  General statistics of the fully converged experiments. 

 DFT Functional 
 Sample 

 size 
 Avg steps to 

 converge 
 Avg energy 

 delta, kJ/mol 

 PBE0/cc-pVTZ  8  90  -274 

 PBE0/def2-SV(P)  205  63  -311 

 BP86/def2-SV(P)  34  92  -422 

 Stationary points and convergence 

 Although  all  found  conformers  have  been  optimized  until  convergence,  we  cannot  claim 

 that  these  stationary  points  are  also  true  local  minima.  For  this  purpose,  frequency 

 analysis  would  be  needed  and  could  be  performed  by  later  research  if  deemed  necessary. 

 To  be  more  specific,  all  our  geometry  optimizations  using  Gaussian  software  were  run 

 with  the  additional  command  option  “CalcFC”  .  From  the  Gaussian  official  website  one 

 can  read  the  following:  “CalcFC  specifies  that  the  force  constants  are  computed  at  the 

 first  point.  Alternatively,  keyword  CalcAll  specifies  that  the  force  constants  are  to  be 

 computed  at  every  point.  In  this  case  the  vibrational  frequency  analysis  is  automatically 

 done  at  the  converged  structure”  [44]  and  “In  a  geometry  optimization,  an  estimated 

 Hessian  is  used  unless  you  explicitly  request  a  computed  one  using  the  CalcFC  or 

 CalcAll  option  to  the  Opt  keyword.  As  is  well  known,  frequency  and  thermochemistry 

 results  are  based  on  a  harmonic  analysis  that  is  only  valid  at  true  stationary  points. 

 Accordingly, some results will be incorrect at non-stationary points” [45]. 

 Numerical instability 

 Quantum  Chemical  calculations  require  high  numerical  precision.  During  geometry 

 optimization  the  significant  digits  can  very  well  be  8  decimal  places.  Arguably  even 

 different  hardware  could  produce  different  results  (e.g.,  CPU  vs  GPU,  software 

 compiling  parameters  etc.).  We  faced  a  similar  problem  at  least  once  (of  what  we  are 

 aware  of),  namely  two  otherwise  identical  geometry  optimization  experiments  using 

 Gaussian  software,  one  using  GPU-s,  the  other  not.  One  experiment  converged,  the 

 other  didn’t.  By  investigating  and  comparing  Gaussian  log  files,  we  noted  that  the 

 divergence  started  after  the  first  optimization  step  with  the  numerical  difference  of  a 

 single  parameter  occurring  at  the  8th  decimal  place.  From  there  on  the  divergence 

 amplified with each successive step. 
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 Observations 

 Experiments  suggest  that  it  is  reasonable  to  optimize  CREST  outputs  at  first  with  faster 

 DFT  up  to  some  number  of  steps  to  pre-screen.  Further  refinement  could  be  done  either 

 by  continuing  pre-screened  optimizations  to  convergence  at  the  level  of  desired  DFT  or 

 by  calculating  single  point  energies  at  the  level  of  desired  DFT  on  fully  optimized 

 geometries  obtained  with  a  faster  DFT  method.  This  common  approach  helped  us 

 significantly  reduce  the  amount  of  computational  resources  needed.  By  comparing  the 

 results  of  medium  and  higher  levels  of  DFT,  we  saw  that  input  geometries  converged 

 not  only  by  the  measure  of  final  energy  but  also  by  the  measure  of  achieving  near 

 identical  final  geometries,  which  is  a  good  sign  and  indicates  that  in  our  case  different 

 DFT  levels  “understood”  the  Potential  Energy  Surface  (PES)  quite  similarly.  Obviously, 

 we  cannot  draw  any  fundamental  conclusions,  as  any  research  situation  must  be 

 assessed  case  by  case.  Finding  shortcuts  is  rather  a  practical  suggestion  for  the  future, 

 especially  if  these  shortcuts  lead  to  identical  experimental  results.  In  our  experiments 

 the  resource  savings  of  a  single  optimization  run  were  up  to  50%  (i.e.,  2  times  less),  42 

 %  reduction  in  wall  time  (16  hours  instead  of  28),  corresponding  to  saving 

 approximately  125  CPU-days  per  single  experiment  (pre-optimizing  10-steps  with 

 def2-SV(P)  basis  set  and  continuing  to  the  full  convergence  with  larger  cc-pVTZ  basis 

 set). 

 5.2  Searching conformers with CREST 

 To  generate  candidate  geometries  for  conformer  ensembles  we  utilized  open-source 

 software  CREST  [8].  Our  first  results  from  experiments  with  xtb  were  not  very 

 promising.  It  seemed  that  the  Force  Field  method,  GFN-FF,  morphed  the  chemical 

 structure  of  our  TargetMol  by  quite  a  bit.  Semi-empirical  GFN2-xTB  was  more 

 promising  in  that  respect,  however  we  were  not  convinced.  Reason  being  that  certain 

 Ti-O-C  angles  were  bent  too  much.  As  it  turned  out,  this  fact  has  been  observed  in  other 

 publications [5]. We continued two-fold: 

 ●  Let GFN methods work as is. 

 ●  Constrain  Ti-O-C  angles,  namely  the  ligands  connected  to  titanium  atoms  to 

 their  original  value,  as  well  as  the  angles  of  O-Ti-O,  that  form  the  central  metal 

 core of the molecule. 
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 At  first  we  focused  only  on  the  second  alternative,  constraining  Ti-O-C  angles. 

 However,  later  on  we  proceeded  with  both  paths,  ignoring  the  seemingly  distorted 

 nature  of  the  intermediary  results.  The  important  caveat  is  to  properly  validate  that 

 geometries  are  structurally  correct  and  correspond  to  the  structure  of  our  TargetMol  (see 

 chapter  Validation  of  structural  correctness).  Some  general  observations  regarding  our 

 experiments with CREST: 

 ●  GFN-FF  vs  GFN2-xTB:  otherwise  identical  experiments  had  wall  time 

 differences  30-70  times  in  favour  of  GFN-FF,  e.g.,  12  minutes  vs  7.5  hours  on  a 

 64  CPU  server  (more  details  about  timings  regarding  CREST  experiments  can 

 be  found  in  Appendix  3).  GFN-FF  should  be  regarded  seriously  as  an  option 

 when using CREST for conformer search as it is very fast. 

 ●  Re-running  CREST  experiments  would  find  different  geometries. 

 Conformational  search  is  implemented  as  a  (partly)  stochastic  process.  We  are 

 not  sure  whether  the  user  could  control  all  the  necessary  variables  seeding  the 

 randomness  inside  CREST.  However  not  being  able  to  control  the  randomness  is 

 not  inherently  a  bad  thing  per  se.  Re-running  the  same  experiment  multiple 

 times would give even a large sample of possible geometries for further analysis. 

 Setup strategies for conformational search by executing CREST: 

 1.  With default parameters multiple times using original input. 

 2.  With angle-constrained parameters multiple times using original input. 

 3.  With  angle-constrained  parameters  multiple  times  using  some  of  the  best  results 

 from previous strategy as input. 

 Appendix  3,  Table  A3.1.  gives  more  details.  From  there  we  can  see  that  experiment  19 

 (ex19)  uses  CREST-s  5th  best  result  from  experiment  16  as  input  geometry. 

 Experiments  with  the  prefix  “ex0”  mean  experiments  with  default  settings  in  CREST. 

 This  kind  of  recursive  way  of  generating  new  sets  of  conformers  might  be  a  good  option 

 to  try  out  if  there  is  a  need  for  ever  more  geometries.  The  underlying  assumption  here  is 

 that  the  configuration  space  of  geometries  can  be  considered  infinite  for  all  practical 

 purposes  and  the  same  goes  for  the  immense  size  of  the  Potential  Energy  Surface  (PES). 

 As  the  process  of  searching  for  conformers  is  partially  guided  by  randomness  then  we 

 are practically guaranteed to get a distinctly new set of geometries each time. 
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 To  get  an  indication  about  the  variety  of  generated  conformers  we  performed  a 

 statistical  analysis  of  selected  angles  and  dihedrals.  The  results  are  presented  in 

 Appendix  3,  Figure  A3.2.  This  kind  of  analysis  should  give  a  preliminary  idea  whether 

 generated conformers cover all “interesting” areas of the search space. 

 “noreftopo”  - a useful keyword in CREST 

 As  defined  in  CREST  documentation  for  the  keyword  “noreftopo”  :  “Turn  off  only  the 

 initial  topology  check  prior  to  the  conformational  search.”  [46].  As  it  appeared  then  our 

 TargetMol  topology  changed  while  performing  initial  energy  optimization  either  with 

 GFN2-xTB  or  GFN-FF  method.  That  change  in  topology  caused  CREST  to  stop  starting 

 to  work.  A  researcher  must  know  what  is  the  correct  topology  in  the  context  and 

 whether  the  concept  of  topology  is  even  relevant.  Molecular  topology  means  predefined 

 definitions  of  a  connecting  abilities  of  different  chemical  elements.  In  our  case  we  let 

 the  CREST  ignore  whatever  it  thinks  the  topology  is  and  whether  it  changes.  It  may 

 very  well  be  the  case  of  incompetence  of  the  author  to  properly  configure  CREST.  We 

 found 2 solutions for the “change in topology” error: 

 ●  Fix  absolute  positions  of  certain  atoms.  Result:  no  need  for  the  use  of 

 “noreftopo”  keyword  at  the  expense  of  restricting  the  conformational  search 

 space  too  much.  The  centre  of  the  molecule  was  essentially  fixed  in  space  and 

 possible conformations were very limited. 

 ●  Use  the  “noreftopo”  keyword  and  fix  certain  Ti-O-C  angles  as  given  by  the 

 input  structure.  Result:  worked  well,  however  the  search  space  became  limited 

 most  probably,  but  a  much  better  result  than  described  in  previous  point  with 

 fixing of absolute positions. 

 ●  Use  “noreftopo”  keyword  and  let  CREST  work  with  otherwise  default  settings 

 as  it  comes  “out-of-the-box”  after  the  installation.  Results:  worked  well,  larger 

 variety  of  possible  conformations  as  the  search  space  is  not  further  constrained 

 by the user. 
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 5.3  Data driven approach for selecting the right subset 

 Quantum  chemical  calculations  produce  vast  amounts  of  intermediary  data  which 

 conveys  useful  information  that  could  be  analyzed  to  get  better  insight.  This  in  turn 

 could lead us to discover better solutions. 

 Our main goal is: 

 ●  To get as many “good” geometries as possible. 

 ●  Try to gradually filter out more promising geometries. 

 The  important  caveat  here  is  obviously  how  small  or  large  is  the  sample  size,  i.e., 

 number  of  candidate  geometries.  An  end-to-end  workflow  in  a  conformational  analysis 

 will  most  probably  be  an  “expert-in-the-loop”  system  in  the  foreseeable  future.  There  is 

 no  golden  rule  that  would  apply  for  every  situation,  unless  we  achieve  computational 

 power  big  enough  that  we  could  always  calculate  everything  at  an  arbitrary  level  of 

 theory.  The  latter  is  extremely  unlikely  to  happen  in  the  next  5-10  years  to  stay  on  the 

 modest  side.  In  our  case  we  had  generated  close  to  300  candidate  geometries  in  total.  If 

 it  were  3000  then  we  should  revisit  the  specific  details  of  the  workflow,  however  the 

 core  principle  of  selecting  the  right  subset  would  stay  intact.  Exhaustive  full 

 optimization  on  all  candidates  is  computationally  prohibitive  because  the  estimated 

 average  time  for  a  single  full  optimization  in  our  experience  was  approximately  15 

 hours  with  240  CPU  threads.  Even  performing  a  single  point  energy  calculation  on 

 every  geometry  could  be  computationally  impossible  in  practice  due  to  the  constraints 

 on  affordable  resources.  So,  the  question  is  how  to  select  a  “good”  subset  from  a  large 

 set  of  candidate  geometries?  Selecting  the  “right”  subset  of  geometries  for  the  final 

 refinement  as  conformers  from  a  potentially  huge  number  of  candidate  geometries  is  a 

 major  computational  problem.  To  gradually  filter  candidate  geometries  produced  by 

 CREST  we  needed  to  develop  a  heuristic  that  would  allow  us  to  accurately  group 

 geometries  as  fast  as  possible.  The  first  natural  thing  to  do  is  to  pre-screen  a  larger 

 sample  with  a  faster  and  more  inaccurate  DFT  so  that  we  could  cover  a  broader  number 

 of  geometries.  Pre-screening  with  a  faster  DFT  relies  on  the  correlation  assumption, 

 namely  that  there  is  a  correlation  between  relative  conformational  energies  between 

 different  DFT  functionals.  If  the  correlation  assumption  holds  then  we  could  gradually 

 filter  out  more  relevant  geometries  much  faster.  Why  is  there  a  need  to  do  expensive 
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 DFT  calculation,  if  the  geometries  are  already  of  good  quality,  as  promised  by  CREST 

 authors?  The  answer  is:  no,  you  don’t  necessarily  need  to  further  fine-tune  the 

 geometries  at  a  higher  level  of  DFT.  But  this  applies  only  in  case  if  the  accuracies 

 provided  by  the  semiempirical  GFN(x)-xTB  and/or  molecular  force  field  based  GFN-FF 

 methods  are  good  enough  for  one’s  research.  It  is  known  that  transition  metal 

 complexes  are  extremely  challenging  to  model  and  the  problem  transcends  also  to  GFN 

 methods  with  published  reports  that  GFN  methods  might  systematically  distort  the 

 geometries  of  transition  metal  compounds  [3],  [5].  These  are  the  main  reasons  why  we 

 should  first  refine  CREST  generated  geometries  with  a  more  accurate  DFT  method.  We 

 observed  immediately  that  GFN2-xTB  and  GFN-FF  optimized  geometries  tend  to  be 

 “too  far”  from  DFT  optimized  ones.  As  we  had  approximately  300  geometries,  we 

 assessed  that  we  could  optimize  every  single  geometry  with  a  DFT  up  to  a  certain 

 number  of  steps  to  transform  them  closer  to  their  more  accurate  DFT  optimized 

 structure.  If  there  would  be  thousands  or  even  more  candidate  geometries,  then  it  would 

 be  practical  to  rank  candidates  based  on  some  descriptor  that  could  be  calculated  more 

 efficiently,  e.g.,  rely  on  GFN2-xTB  energy  and/or  calculate  single  point  energies  at  a 

 faster  DFT  level  or  combine  these  two  measures  etc.  There  are  various  ways  to 

 approach  this  in  practice.  Grimme  lab  [47]  has  published  an  excellent  software  CENSO 

 [48].  CENSO  is  a  threshold-based  sorting  algorithm  where  the  thresholds  have  been 

 determined  for  typical  drug-like  organic  molecules  up  to  200  atoms.  CENSO  has 

 implemented  a  workflow  that  allows  a  researcher  to  filter  conformer  candidates  by 

 gradually  ranking  and  refining  at  an  increasing  level  of  theory.  Although  we  didn’t  use 

 CENSO  in  this  research,  we  feel  that  CENSO  is  a  very  formidable  candidate  for  this 

 kind  of  task.  Another  alternative  for  ranking  would  be  a  trained  machine  learning  model 

 that  could  predict  the  difference  between  GFN2-xTB  energy  and  DFT  level  energy,  e.g. 

 DelFTa,  an  open-source  toolbox  for  the  prediction  of  electronic  properties  of  drug-like 

 molecules  at  the  density  functional  (DFT)  level  of  theory  [32].  Unfortunately,  both 

 above  mentioned  solutions  didn’t  seem  to  fit  our  needs  and  we  opted  to  implement  our 

 own rather simple and down-to-earth workflow for filtering. 

 Main reasons for us not choosing CENSO were: 

 ●  There is no Gaussian software backend for DFT calculations. 
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 ●  CENSO  is  targeted  for  sorting  a  considerably  larger  size  of  conformer  set  and 

 therefore  uses  two  steps  of  “cheap  pre-screening”,  meaning  calculation  of  single 

 point  energies  on  outputs  from  CREST.  Our  initial  tests  showed  that  there  is  no 

 correlation  between  relative  conformational  energies  calculated  by  GFN  and 

 DFT  methods  and  therefore  in  our  case  it  is  crucial  to  optimize  CREST  outputs 

 at  least  to  some  extent  with  a  DFT  method  to  get  a  reasonable  indication  of  how 

 good  the  conformers  are  relative  to  each  other.  However  later  calculations  on  a 

 broader  set  of  CREST  conformers  with  subsequent  full  optimization  at  level  of 

 PBE0/def2-SV(P)  revealed  a  significant  correlation  of  0.75  between  GFN2-xTB 

 and  DFT  results,  while  GFN-FF  results  showed  insignificant  correlation  of  0.22, 

 and  mixed  together  the  correlation  the  correlation  was  -0.1.  More  details  about 

 correlations are given in the next chapter. 

 Reasons  for  not  pursuing  a  Machine  Learning  based  approach,  i.e.,  use  a  prediction 

 model trained by machine learning: 

 ●  The  field  is  just  emerging,  and  the  available  research  and  models  cover  a  very 

 narrow  selection  of  chemical  compounds.  They  either  work  as  a 

 proof-of-concept  or  even  if  their  claimed  performance  is  excellent,  they  cover 

 compounds  consisting  of  only  the  most  common  chemical  elements  used  in 

 organic  chemistry,  e.g.,  Delfta  [32]  covers  H,  C,  O,  N,  F,  S,  P,  Cl,  Br,  I,  which  is 

 probably in the high end of the element coverages among analogous models. 

 ●  Machine  learning  models  as  far  as  we  came  across,  are  all  restricted  to  the 

 representation  of  inputs  (most  importantly  internal  representation)  using 

 SMILES  strings  [49].  SMILES  strings  contain  the  information  that  can  be 

 converted  into  two-dimensional  structure  diagrams.  This  fixed  topology  of  a 

 2-dimensional  structure  is  usually  implemented  through  Graph  Neural  Networks 

 (GNNs)  [50]  in  a  typical  library  based  on  Machine  Learning.  It  could  be  the 

 incompetence  of  the  author,  but  we  never  managed  to  get  the  expert  accepted  2D 

 structural  graphs  from  SMILES  strings  generated  by  Avogadro  [33]  and  later 

 imported  to  either  OpenBabel  [34]  or  RDKit  [51]  for  visual  representation  of  the 

 structural  graph.  OpenBabel  and  RDKit  being  two  of  the  most  used  open-source 

 and  free  software  for  the  conversion  in  between  different  formats.  The 

 fundamental  problem  here  is  that  an  implementation  of  a  SMILES  string 
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 generator  could  output  a  chemical  structure  that  does  not  match  with  your 

 understanding of the chemical structure corresponding to the input. 

 ●  Most  probably  we  will  have  something  of  similar  kind  off  the  shelf  in  a  couple 

 of years that is suitable for more challenging chemical compounds. 

 5.4  Correlation between DFT functionals 

 The  essence  of  “smart”  filtering  based  on  partial  optimization  or  single  point  energy 

 thresholds  is  not  something  novel.  Our  workflow  as  well  as  CENSO  and  DelFTa  are 

 based  on  the  same  fundamental  assumption  that  there  is  a  correlation  between  some 

 properties  or  descriptors  between  calculations  at  different  levels  of  theory.  If  the 

 correlation  assumption  doesn’t  hold  then  the  filtering  results  would  be  close  to  random. 

 From  that  we  formed  our  first  hypotheses  to  be  tested.  Namely,  as  our  input  data  was  the 

 result  of  the  optimizations  using  different  DFT  functional  /  basis  set  combinations,  there 

 were  two  main  ideas  we  wanted  to  test:  (i)  whether  geometries  obtained  by  different 

 DFT  functionals  tend  to  converge/diverge,  (ii)  how  strong  is  the  correlation  between 

 relative  conformational  energies  that  are  calculated  using  different  DFT  functionals.  We 

 define  “relative  conformational  energy”  as  the  difference  in  the  final  energy  between  a 

 conformation  and  the  best  conformer  in  the  ensemble  and  ground  truth  in  our  case 

 means values calculated by DFT functional PBE0/cc-pVTZ. 

 ●  Hypothesis  0:  There  is  a  strong  correlation  between  relative  conformational 

 energies  calculated  by  different  DFT  functionals  on  the  same  inputs.  It  is  the 

 fundamental  assumption  that  must  hold  before  anything  else.  If  true,  then  it 

 means  there  is  an  inherent  correlation  between  different  DFT  functionals, 

 implying  that  given  arbitrary  geometries,  fast  DFT  would  rank  them  very 

 similarly  as  ground  truth.  Meaning  that  by  performing  single  point  energy 

 calculation  with  fast  DFT  gives  similar  ranking  as  with  ground  truth.  Basically, 

 the same assumption is used in CENSO in its fast pre-screening phases. 

 ●  Hypothesis  1:  Relative  conformational  energies  during  the  early  steps  of  the 

 optimization  with  fast  DFT  correlate  well  with  the  relative  conformational 

 energies  after  the  final  step  of  full  optimization  with  the  same  fast  DFT.  We 

 compare  relative  conformational  energies  across  optimization  runs  with  the 

 same  DFT.  If  true,  we  could  predict  the  ranking  after  full  optimization,  by 
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 observing  the  relative  conformational  energies  in  the  early  stages  of  the 

 optimization without necessarily performing full optimization with a fast DFT. 

 ●  Hypothesis  2:  Relative  conformational  energies  during  the  early  steps  of  fast 

 DFT  calculations  correlate  well  with  the  relative  conformational  energies  after 

 the  final  step  of  a  full  optimization  with  the  ground  truth.  We  compare  relative 

 conformational  energies  across  different  DFT.  If  true,  we  could  predict  the 

 ranking  of  the  full  optimization  with  the  ground  truth,  by  observing  the  relative 

 conformational energies in the early stages of fast DFT. 

 ●  Hypothesis  3:  Differences  between  geometries  during  the  early  steps  of  fast 

 DFT  calculations  correlate  well  with  the  differences  between  geometries  after 

 the  final  step  of  full  optimisation  with  the  ground  truth.  We  compare  geometries 

 across  different  DFT  methods.  If  true,  we  could  assert  that  fast  DFT  and  ground 

 truth both end up in the same local optimum geometry or very close. 

 Some clarifications: 

 ●  It  is  important  to  note  that  grounded  on  the  correlation  hypothesis,  we  do  not 

 predict  the  final  energies  nor  the  differences  in  the  final  energy.  We  test  how 

 well  do  the  relative  conformational  energies  correlate  between  different  DFT 

 functionals  and  also  between  different  optimization  steps.  Filtering  could  done 

 by  ranking  or  by  energy  threshold.  By  using  different  energy  thresholds,  we 

 could  guide  the  filtering,  with  smaller  thresholds  we  would  keep  a  smaller 

 sample  of  very  best  and  with  larger  threshold  we  would  keep  a  larger  sample 

 making sure that we would not lose any good candidates. 

 ●  Obviously,  the  above-mentioned  hypotheses  cannot  be  rigorously  tested  nor 

 proven  because  of  a  small  sample  size.  If  we  were  to  collect  a  large  sample,  then 

 this  whole  exercise  would  lose  its  meaning  because  then  we  could  just  calculate 

 everything  and  always  use  ground  truth  results.  The  main  point  here  is  merely  to 

 get  an  insight  into  whether  it  would  be  plausible  to  assume  that  different  DFT 

 functionals produce well correlated results in our case. 

 ●  The  analysis  of  relative  performances  between  different  DFT  methods  is  quite 

 common  in  validation  of  the  applicability  of  a  particular  DFT  method  in 

 particular  context  [2],  [21],  [27]  etc.  However  it  must  be  emphasized  that  our 
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 results  may  not  be  necessarily  taken  as  a  broad  generalization  beyond  our 

 context. 

 ●  Problem  of  finding  a  good  approximating  predictor  is  very  similar  to  the 

 hyperparameter  search  in  Machine  Learning,  which  is  often  known  to  resemble 

 more art than science, mainly because there is no provably golden solution. 

 Correlation  throughout  this  work  is  defined  as  Pearson  correlation  coefficient  , 

 calculated by formula: 
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 ●  n  is sample size. 

 ●  ,  are the individual sample points  indexed with  i  .  𝑥 
 𝑖 

 𝑦 
 𝑖 

 ●  ,  are the sample means correspondingly.  𝑥  𝑦 

 Tables  5-7  give  the  overview  of  the  correlations  between  different  DFT  methods,  but 

 most importantly the data gives strong evidence for the support of Hypothesis 0. 

 Hypothesis  0  is  true:  different  DFT  functionals  have  strong  intrinsic  correlation. 

 Some observations: 

 ●  There  is  a  near  perfect  positive  correlation  between  all  DFT  methods  “At  start”: 

 energy  calculation  in  the  beginning  of  the  optimization  run,  i.e.,  on  CREST 

 output.  The  implication:  all  selected  DFT  methods  “understand”  the  chemical 

 structure  of  our  TargetMol  almost  identically.  That  is  very  good  news,  because 

 we  were  certain  that  the  STO-3G  basis  set  would  be  too  small  to  accurately 

 model  the  structure  of  the  TargetMol  and  we  stopped  experimenting  with 

 STO-3G  in  quite  early  stages.  Based  on  this  data  BP86/STO-3G  would  be  a 

 solid candidate for cheap pre-screening based on single point energies. 

 ●  There  is  a  near  perfect  positive  correlation  after  25  steps  of  optimization  with 

 either  PBE0/def2-SV(P)  and  BP86/def2-SV(P)  against  PBE0/cc-pVTZ.  The 

 implication:  PBE0/def2-SV(P)  and  BP86/def2-SV(P)  are  both  very  solid 
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 candidates  for  pre-screening  with  25-step  partial  optimization.  The  data 

 indicates  that  the  relative  conformational  energies  after  25  steps  of  optimization 

 correlate  near  perfectly  with  the  ground  truth  results  after  full  optimization  to 

 convergence. 

 ●  There  is  a  near  perfect  positive  correlation  after  full  optimization  with  either 

 PBE0/def2-SV(P)  and  BP86/def2-SV(P)  against  PBE0/cc-pVTZ.  The 

 implication:  not  only  does  it  reiterate  the  previous  point,  but  it  also  gives  a 

 strong  indication  about  the  absolute  quality  of  a  conformer.  Meaning  that  by 

 performing  a  full  optimization  at  the  level  of  PBE0/def2-SV(P)  or 

 BP86/def2-SV(P)  should  give  a  very  good  prediction  whether  a  particular 

 conformer  ends  up  with  better  or  worse  relative  conformational  energy  if 

 calculated  at  the  level  of  PBE0/cc-pVTZ.  All  this  indicates  strongly  that  in  our 

 context  much  of  the  computational  work  in  pre-screening  phases  could  be  done 

 with PBE0/def2-SV(P) and/or BP86/def2-SV(P) 

 ●  Substantially  degrading  correlation  in  optimizing  with  BP86/STO-3G.  The 

 implication:  BP86/STO-3G  is  probably  not  a  good  candidate  for  geometry 

 optimization in our case. 

 ●  Drop  in  correlation  after  10  steps  while  optimizing  with  BP86/def2-SV(P).  The 

 implication: 10 steps seem to be too early as the cut-off point for optimization. 

 Table  5.  Correlation  of  relative  conformational  energies  for  fully  optimized  cases  vs  PBE0/cc-pVTZ. 
 Comparison is done at the same step nr or at convergence. 

 DFT Functional  At start 
 After 10 

 steps 
 After 25 

 steps  Converged 

 PBE0/def2-SV(P)  0.999  0.994  0.994  0.992 

 BP86/def2-SV(P)  0.930  0.718  0.998  0.995 

 Sample size  8  8  8  8 

 Table  6.  Correlation  of  relative  conformational  energies,  BP86/def2-SV(P)  vs  PBE0/def2-SV(P). 
 Comparison is done at the same step nr or at convergence. 

 DFT Functional  At start 
 After 10 

 steps 
 After 25 

 steps  Converged 

 BP86/def2-SV(P)  0.983  0.426  0.957  0.984 

 Sample size  55  55  34  31 
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 Table  7.  Correlation  of  relative  conformational  energies  vs  PBE0/def2-SV(P).  Comparison  is  done  at  the 
 same step nr. 

 DFT Functional  At start 
 After 10 

 steps 
 After 25 

 steps 

 BP86/def2-SV(P)  0.966  0.850  0.960 

 BP86/STO-3G  0.982  0.727  0.544 

 Sample size  33  33  28 

 Table  8  shows  the  correlation  of  relative  conformational  energies  between  early  steps  vs 

 fully  optimized  structures,  providing  evidence  that  Hypothesis  1  holds  at  25-step  and 

 fails  for  shorter  pre-optimizations:  10-step  and  single  point  energy  at-start.  More 

 detailed results for BP86/def2-SV(P) are provided in Appendix 2, table A2.3. 

 Table  8.  Correlation  of  relative  conformational  energies  against  converged  structures.  Comparison  is  done 
 between values at particular step numbers vs values at convergence. 

 DFT Functional / source  Converged  At start  10 steps  25 steps 
 Avg steps in 
 optimization 

 BP86/def2-SV(P)  1.00  -0.36  0.33  0.89 

 PBE0/def2-SV(P) / GFN2-xTB  1.00  0.75  0.62  0.89  51 

 PBE0/def2-SV(P) / GFN-FF  1.00  0.26  0.02  0.41  110 

 PBE0/def2-SV(P)  1.00  -0.10  0.25  0.77 

 Hypothesis 1 is true at 25-steps, some observations: 

 ●  Correlation  “At  start”  vs  “Converged”  is  significant  if  CREST  conformers  have 

 been  optimized  with  GFN2-xTB.  This  is  an  important  finding  and  confirms  the 

 correlation  assumption  underlying  CENSO,  which  uses  GFN2-xTB  single  point 

 energies for pre-screening. 

 ●  Correlation  “At  start”  vs  “Converged”  is  insignificant  for  GFN-FF  method  or  if 

 conformers  from  both  methods  are  mixed  together.  It  shows  that  we  cannot  use 

 energy  numbers  directly  coming  from  optimization  with  GFN-FF  method  or  if 

 conformers  from  GFN-FF  and  GFN2-xTB  methods  are  mixed  together.  It  is 

 extremely  important  to  know  which  method  was  used  in  the  optimization  of 

 conformers. 
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 ●  Correlation  “25-steps”  vs  “Converged”  is  89%  for  GFN2-xTB  and  41%  for 

 GFN-FF  for  PBE0/def2-SV(P),  from  which  we  could  conclude  that  25  steps  is 

 not  enough  for  an  adequate  decision  in  case  of  conformers  from  GFN-FF 

 method.  This  might  be  explained  with  the  fact  that  25  steps  covers  on  average 

 50%  of  the  full  optimization  steps  in  case  of  GFN2-xTB,  as  opposed  to  23%  in 

 case  of  GFN-FF  conformers.  Finding  an  optimal  pre-optimization  schedule, 

 means finding a suitable sweet spot for each case. 

 In  addition  to  correlation  between  different  optimization  steps,  let's  assess  the  predictive 

 power  of  the  rank  prediction.  Table  9  shows  that  with  a  larger  sample  size,  after  25  steps 

 of  optimization  with  PBE0/def2-SV(P)  we  could  predict  correctly  87.5%  of  the  top  50% 

 of  the  fully  optimized  conformers,  meaning  that  87.5%  of  the  top  50%  conformers  in 

 final  ranking  were  included  in  the  top  50%  conformers  after  25  steps.  Considerably 

 lower number for BP86/def2-SV(P) might be explained by a smaller sample size. 

 Table 9.  Rank prediction: coverage of top 50% conformers  compared to fully optimized top 50%. 

 At start  10 steps  25 steps  Sample size 

 PBE0/def2-SV(P)  51.6%  54.7%  87.5%  128 

 BP86/def2-SV(P)  64.7%  70.6%  70.6%  34 

 Table  10  shows  the  results  of  correlation  analysis  between  PBE0/def2-SV(P)  and 

 converged  structures  of  PBE0/cc-PVTZ,  corresponding  to  our  Hypothesis  2:  “fast  DFT” 

 vs  ground  truth.  Similar  table  but  with  BP86/def2-SV(P)  data  is  given  in  Appendix  2, 

 Table A2.4. 

 Table  10.  Relative  conformational  energies  at  different  steps  of  optimization,  correlation  vs  “ground 
 truth”. Ground truth means fully optimized at PBE0/cc-PVTZ, units kJ/mol except correlation. 

 Label 
 Ground 
 Truth 

 PBE0/def2-SV(P) 
 10-steps 

 PBE0/def2-SV(P) 
 25-steps 

 PBE0/def2-SV(P) 
 Converged 

 ex0ff_c6  0.00  0.00  0.00  0.00 

 ex16_c5  5.58  -62.05  -10.37  -1.29 

 ex0a_c10  6.35  -59.73  -13.81  -5.77 

 ex19_c23  8.78  -61.55  -13.73  -4.57 

 ex0a_c24  9.09  -54.96  -9.92  -1.54 

 ex0a_c26  11.95  -44.97  -1.61  0.48 

 ex0b_c21  26.92  -32.49  16.18  20.45 
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 original  112.77  40.61  91.44  91.10 

 Correlation  1.0000  0.7964  0.9804  0.9917 

 Hypothesis 2 is true at 25 steps, some observations: 

 ●  Unexpectedly  high  correlation  between  25  steps  of  fast  DFT  vs  ground  truth 

 might  be  explained  by  the  small  and  extremely  lucky  sample.  As  we  saw  in  the 

 previous  point,  the  internal  correlation  was  0.92  and  we  shouldn’t  expect 

 correlation above that. 

 Hypothesis 3 holds as tested geometries converge. 

 To  test  Hypothesis  3,  we  set  up  two  experiments  by  comparing  the  geometries  of  fully 

 optimized  structures  at  PBE0/cc-pVTZ.  We  took  two  geometries  and  fully  optimized 

 them  at  PBE0/cc-pVTZ,  forming  a  ground  truth  set.  On  the  other  hand,  we  optimized 

 the  same  two  initial  geometries  as  follows:  first  geometry  optimized  10  steps  with 

 PBE0/def2-SV(P)  and  continued  with  PBE0/cc-pVTZ  until  convergence.  Second 

 geometry  optimized  10  steps  with  BP86/def2-SV(P)  and  continued  with  PBE0/cc-pVTZ 

 until  convergence.  From  the  Table  3  above  we  already  saw  that  from  an  energy 

 standpoint  these  experiments  ended  in  pretty  much  identical  results.  Experiments  under 

 discussion are: 

 ●  ex16_c5 vs ex16_c5_def2svpp_step10 

 ●  ex0a_c10 vs ex0a_c10_bp86def2svpp_step10 

 We  analyzed  further  the  final  geometries  and  found  that  these  are  nearly  identical. 

 Convergence  of  optimization  trajectories  can  be  seen  on  Figure  3.  The  blue  line 

 represents  ground  truth  and  the  orange  line  represents  the  pre  optimized  version.  Orange 

 line  starts  from  a  lower  point  because  it  is  closer  to  the  destination  -  distance  from  the 

 fully optimized ground truth structure. From that we concluded that Hypothesis 3 holds. 
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 Figure  3.  Comparison  of  optimization  trajectories:  end-to-end  optimized  with  PBE0/cc-pVTZ  (blue  line) 
 vs  10-step  pre  optimized  with  BP86/def2-SV(P)  (case:  ex0a_c10)  or  PBE0/def2-SV(P)  (case:  ex16_c5) 
 and continued with PBE0/cc-pVTZ until convergence. 

 5.5  Partial optimization strategy 

 Previous  section  presented  the  high  correlation  between  the  calculation  results  between 

 chosen  DFT  functionals.  That  in  turn  gives  rise  to  the  idea  of  the  partial  optimization 

 strategy.  The  main  idea  is  to  minimize  end-to-end  time  of  full  optimization  with  the 

 desired  accurate  and  slow  DFT  while  not  sacrificing  the  accuracy  and  the  quality  of  the 

 results.  To  emphasize  once  more,  this  is  purely  a  suggestion  for  resource  optimization, 

 not  a  revolutionary  idea  that  qualitatively  improves  the  results  themselves.  By 

 comparing  head  start  optimization  where  we  pre  optimize  with  fast  DFT  some  number 

 of  steps  with  the  full  optimization  at  the  desired  slow  DFT,  the  idea  relies  on  a  claim 

 that  both  optimizations  end  at  the  same  geometry,  while  starting  from  scratch  with  the 

 desired  slow  DFT  is  considerably  more  time  consuming.  As  already  mentioned  above, 

 in  our  experiments  where  we  tested  this  idea,  the  resource  savings  of  a  single 

 optimization  run  were  up  to  50%  (i.e.  two  times  less),  42  %  reduction  in  wall  time  (16 

 hours  instead  of  28),  corresponding  to  saving  approximately  125  CPU-days  per  single 

 experiment  (pre-optimizing  10  steps  with  def2-SV(P)  basis  set  and  continuing  to  the  full 

 convergence  with  larger  cc-pVTZ  basis  set).  Saving  125  CPU-days  per  single 

 optimization  is  impressive,  but  our  data  indicates  that  we  could  possibly  do  even  better, 

 namely  by  head  starting  with  a  25-step  pre  optimized  structure.  Correlation  analysis 

 above  indicates  clearly  that  25-step  pre  optimization  correlates  even  better  with  the  end 

 result  than  10-step  pre  optimization.  Unfortunately,  we  didn’t  have  time  to  test  this  in 

 practice.  It  might  even  be  that  the  optimal  way  is  to  start  optimizing  at  the  desired  slow 
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 DFT  with  the  structure  that  is  fully  optimized  or  close  to  full  convergence  by  a  fast 

 DFT.  These  kinds  of  decisions  must  be  made  on  a  case-by-case  basis,  because  there  is 

 no  general  answer  that  satisfies  all  scenarios.  Based  on  the  results  above,  to  perform  a 

 DFT  optimization  on  a  broader  sample  starting  from  CREST  conformers,  our 

 suggestions are as follows. 

 Group conformers based on the optimization method they were calculated: 

 ●  e.g.  GFN2-xTB,  GFN-FF  methods,  as  discussed  above,  have  completely 

 different  correlation  profiles  compared  to  DFT  methods.  Pre-optimization 

 schedules must be adjusted accordingly. 

 ●  In  case  of  conformers  optimized  with  GFN2-xTB,  one  can  consider  filtering 

 directly  using  single  point  energies  calculated  with  GFN2-xTB,  as  does  CENSO. 

 As  shown  above,  for  the  sample  size  around  200,  the  correlation  between 

 relative  conformational  energies  calculated  with  GFN2-xTB  and 

 PBE0/def2-SV(P) was 0.75, which is rather significant. 

 If resources allow: 

 ●  25-step optimization with PBE0/def2-SV(P). 

 ●  Make final selection. 

 If less resources or larger initial sample: 

 ●  10-step optimization with BP86/def2-SV(P). 

 ●  25-step optimization with BP86 or PBE0/def2-SV(P). 

 ●  Make final selection. 

 Even less resources or much larger initial sample: 

 ●  10-step optimization with BP86/def2-SV(P). 

 ●  10-15-step continuation from previous step with BP86/def2-SV(P). 

 ●  10-15-step continuation from previous step with PBE0/def2-SV(P). 

 ●  Make final selection. 

 5.6  Validation of structural correctness of molecular geometries 

 Based  on  the  TargetMol  we  defined  a  set  of  criteria  that  had  to  be  satisfied  to  be 

 validated  as  a  correct  structure,  e.g.,  certain  interatomic  bonds  that  had  to  be  retained. 
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 The  general  validation  criteria  were  that  all  Ti-O,  C-O,  C-C  and  C-H  bonds  should  stay 

 intact,  and  neither  removal  nor  creation  of  any  such  bonds  should  occur.  The  atomic 

 neighbour  lists  and  corresponding  interatomic  bonds  were  determined  using  covalent 

 radii as implemented in ASE software [35], which are based on [36]. 

 Summary of the results of structural validation is presented in Table 11 and Table 12. 

 Table  11.  Structural  validation  of  fully  optimized  conformers:  (A)  CREST  conformers,  (B)  Fully  DFT 
 optimized conformers, % of valid structures. 

 A.  CREST conformers  B.  Fully DFT optimized  conformers 

 Optimization 
 method  At start 

 Sample 
 size  DFT Functional 

 At 
 start 

 After 10 
 steps 

 GFN-FF  100%  218  BP86/def2-SV(P)  28%  100% 

 GFN2  43%  172  PBE0/def2-SV(P)  30%  100% 

 PBE0/cc-pVTZ  40%  100% 

 Table 12.  Structural validation of all conformers,  % of valid structures. 

 DFT Functional  At start 
 After 10 

 steps 
 After 25 

 steps 
 After 

 convergence 

 BP86/def2-SV(P)  59%  100%  100%  100% 

 PBE0/def2-SV(P)  56%  100%  100%  100% 

 PBE0/cc-pVTZ  40%  100%  100%  100% 

 BP86/STO-3G  62%  37%  21% 

 PBE0/STO-3G  6%  6%  3% 

 Validation  errors  are  all  caused  by  a  single  interatomic  distance  that  becomes  too  short 

 and  gets  caught  by  the  validator:  Atoms  O(31)  and  C(42)  with  the  original  distance  3Å 

 vs  1.6-2Å  in  conformers.  While  atom  O(31)  belongs  to  a  ligand  connected  to  one 

 titanium  atom  and  atom  C(42)  belongs  to  a  ligand  connected  to  the  other  titanium  atom, 

 the  shortening  of  the  above  mentioned  distance  connected  to  separate  ligands,  creating  a 

 different  chemical  structure.  Based  on  the  validation  results  we  made  the  following 

 observations: 
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 ●  Although  CREST  force  field  method  GFN-FF  produces  100%  structurally  valid 

 structures  by  our  validation  protocol,  a  visual  inspection  of  the  geometries 

 reveals remarkable distortions in the central part of the molecule. 

 ●  It  appears  as  if  def2-SV(P)  or  a  larger  basis  set  repairs  all  validation  errors. 

 STO-3G  validation  results  even  degrade  during  DFT  optimization.  Possible 

 implications:  probably  a  basis  set  larger  than  STO-3G  is  more  suitable  in  our 

 context. 

 ●  We  either  need  a  more  strict  (proper)  structural  validation  protocol  or  we  can’t 

 (always)  trust  human  expert’s  conclusions  based  on  visual  inspection  of  the 

 geometry. 

 5.7  Duplicates and near-similar geometries 

 Hypothesis  is  that  different  optimization  runs  could  converge  into  the  same  final 

 geometry  even  if  they  started  from  different  input  geometries.  To  perform  that  check  we 

 need  to  define  a  metric  and  threshold  by  which  we  could  determine  whether  two 

 molecular  geometries  are  duplicate  or  nearly  similar.  Commonly  used  metrics  here  are 

 Mean  Absolute  Distance  (MAD),  Root  Mean  Squared  Distance  (RMSD),  Maximum 

 distance  amongst  many  possibilities.  There  is  no  one  answer  which  metric  is  the  right 

 one  and  we  could  argue  in  favour  of  each  one  of  them.  It  is  recommended  to  monitor 

 various  metrics  and  not  rely  on  one.  Our  choice  was  RMSD  and  Max  Distance  in 

 addition  to  visually  inspect  the  structures  as  we  don’t  have  that  many.  After  the  metric 

 has  been  chosen,  there  is  a  question  about  the  threshold  value.  Obviously,  there  is  no 

 single  answer  to  that.  It  must  be  noted  that  a  typical  quantum  chemistry  software  has 

 some  pre-set  defaults  in  its  geometry  optimization  routines,  defining  when  to  stop,  e.g., 

 Gaussian  [31]  has  RMSD  and  Max  Distance  with  the  threshold  values  0.0012A  and 

 0.0018A  correspondingly,  meaning  essentially  identical  geometries  (this  the  point  of  the 

 stopping  criteria  for  an  optimizer).  Further  analysis  of  near  similars  is  needed  to  decide 

 whether  the  geometries  in  question  are  unique  conformers  or  not.  Probably  this  needs  to 

 be  done  by  an  expert  through  manual  inspection  of  the  geometries.  Further  details  about 

 the  distances  between  near-similar  geometries  are  presented  in  Appendix  2  in  the  sub 

 section  Comments  to  Table  A2.1.  Figures  A2.1  and  A2.2  present  distance  matrices  with 

 RMSD  values  between  a  selection  of  conformers.  Figure  A2.1  shows  two  distance 

 matrices,  presenting  distances  between  conformers  in  conformer  group  6  kJ/mol  (A), 
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 where  RMSD  values  are  in  range  0.95-2.18  Å  and  in  conformer  group  10  kJ/mol  (B) 

 where  RMSD  values  are  in  range  0.82-2.61  Å.  These  results  suggest  that  both  groups 

 contain  unique  conformers,  but  for  a  definitive  conclusion  further  analysis  is  needed.  As 

 a  contrast  to  intra-group  distances,  Figure  A.2.2  presents  distances  between 

 representatives  from  different  conformer  groups.  It  shows  RMSD  values  between 

 representatives  from  the  first  ten  conformer  groups,  0-13  kJ/mol,  with  values  in  range 

 1.15-2.56  Å.  RMSD,  MAD  and  Max  Distance  metrics  provide  a  quick  indication  of 

 how  similar  geometries  are  and  in  case  of  duplicates  we  can  detect  these  immediately. 

 However,  in  case  of  very  similar  geometries  that  are  not  identical,  as  most  confromers 

 in  the  same  group  are,  a  further  analysis  is  needed  to  determine  their  status.  CREST 

 workflow  includes  thorough  sorting  and  filtering  of  geometries  making  sure  that 

 resulting  conformers  are  unique.  Based  on  this  fact  and  also  considering  that  the 

 Potential  Energy  Surface  is  infinite  in  all  practical  purposes,  we  shouldn’t  collide  on 

 duplicates very often. 

 As  a  technical  sidenote:  before  calculating  similarity  metric  between  two  molecular 

 geometries,  the  geometries  must  be  aligned:  a  general  problem  that  in  applied 

 mathematics  is  called  Wahba's  problem  [52],  seeks  to  find  a  rotation  matrix  between 

 two  coordinate  systems.  The  general  idea  is  to  calculate  the  optimal  rotation  matrix  that 

 minimizes  the  RMSD  (root  mean  squared  deviation)  between  two  paired  sets  of  points 

 (see  Kabsch  algorithm  [53]).  Algorithmic  solution  to  the  alignment  problem  is  an 

 independent  research  topic.  In  this  work  we  used  the  implementation  in  the  ASE 

 software,  which  has  implemented  an  algorithm  for  finding  the  optimal  rotation  matrix 

 using quaternions (algorithm itself based on [37]). 

 5.8  Descriptive analysis of geometries 

 As  already  discussed,  GFN  family  methods  tend  to  compress  the  Ti-O-C  ligands  by 

 making  the  angles  narrower  compared  to  DFT  calculations.  Table  13  shows  the  statistics 

 of  Ti-O-C  angles  before  and  after  full  optimization  at  PBE0/def2-SV(P)  level.  It  can  be 

 seen  that  certain  Ti-O-C  angles  get  straightened  by  the  DFT  method  by  as  much  as 

 12.4-18.9  degrees.  Where  Ti(7)-O(20)-C(18),  Ti(7)-O(31)-C(29),  Ti(61)-O(56)-C(48), 

 Ti(61)-O(68)-C(72)  represent  pure  ligands  not  directly  constrained  by  any  other 
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 covalent  bonding.  Additional  details  about  the  distribution  angles  are  presented  in 

 Appendix 3 Figures A3.4 and A3.5. 

 Table  13.  Ti-O-C  angles  in  ligands  connected  to  the  central  core  of  the  TargetMol.  “At  start”  corresponds 
 to  the  starting  geometry  and  “Converged”  corresponds  to  the  fully  optimized  geometry  at  the  level  of 
 PBE0/def2-SV(P), all values in degrees. 

 At start  Converged  Difference 

 Angle  mean  stdev  mean  stdev  in mean 

 Ti(7)-O(6)-C(4)  107.5  1.1  114.2  2.4  6.7 

 Ti(7)-O(20)-C(18)  139.7  11.5  154.4  5.3  14.7 

 Ti(7)-O(31)-C(29)  127.5  5.5  146.4  4.3  18.9 

 Ti(7)-O(60)-C(53)  120.1  10.6  126.9  1.7  6.7 

 Ti(61)-O(56)-C(48)  134.4  8.9  150.4  5.1  16.0 

 Ti(61)-O(59)-C(54)  118.9  8.1  121.4  0.6  2.5 

 Ti(61)-O(60)-C(53)  92.6  4.1  108.7  2.3  16.1 

 Ti(61)-O(68)-C(72)  130.6  6.9  143.0  5.7  12.4 

 Ti(7)-O(8)-C(10)  111.4  2.9  115.0  0.8  3.6 

 In  addition  to  ligands  connected  to  central  titanium  atoms,  the  analysis  of  the 

 characteristic  Ti  2  O  2  core  of  the  TargetMol  reveals  that  at  sufficiently  accurate  DFT 

 level,  the  central  core  always  forms  a  nearly  perfect  symmetric  planar  rhombus,  as  was 

 described  in  the  original  publication  [7].  Planarity  of  the  rhombus  cannot  be  deduced 

 from  the  results  in  Table  14,  but  can  be  confirmed  by  visual  inspection  of  the 

 geometries.  However,  near  zero  variability  (stdev)  among  converged  geometries 

 supports  the  claim  of  nearly  perfect  symmetry  of  the  rhombus.  Additional  details  about 

 the distribution angles are presented in Appendix 3 Figures A3.4 and A3.5. 

 Table  14.  Ti-O-Ti  angles  in  the  central  Ti  2  O  2  core  of  the  TargetMol.  “At  start”  corresponds  to  the  starting 
 geometry  and  “Converged”  corresponds  to  the  fully  optimized  geometry  at  the  level  of  PBE0/def2-SV(P), 
 all values in degrees. 

 At start  Converged  Difference 

 Angle  mean  stdev  mean  stdev  in mean 

 Ti(7)-O(8)-Ti(61)  109.9  7.8  108.3  0.7  -1.5 

 Ti(7)-O(60)-Ti(61)  97.0  5.9  108.9  0.5  11.9 
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 6  Summary 

 In  this  work  we  found  a  set  of  conformers  for  a  titanium  tartrate  complex  TargetMol 

 with  the  use  of  an  open-source  software  CREST,  achieving  the  main  goal  of  the  work. 

 The  found  conformers  present  a  significant  step  forward  in  the  analysis  of  TargetMol. 

 We also found answers to most of the research questions that we posed in chapter 3: 

 ●  CREST  is  an  excellent  tool  for  generating  conformers,  answering  our  research 

 goals RG1 and RG2. 

 ●  Answering  our  research  questions  RQ1  and  RQ2,  we  found  that  GFN2-xTB  and 

 GFN-FF  methods  are  applicable  in  our  context,  however  GFN-optimized 

 geometries  cannot  be  always  considered  directly  as  the  assessment  of  the  final 

 conformer  ensemble.  All  geometries  should  be  optimized  at  the  level  of  DFT  by 

 at  least  25  steps  to  get  an  adequate  estimate  of  their  relative  conformational 

 energies.  In  the  case  where  conformers  were  generated  with  the  GFN-FF 

 method, 25 steps seemed insufficient to make adequate decisions. 

 ●  GFN-FF  method  is  a  solid  alternative  to  use  in  CREST  workflow.  In  the  case  of 

 a  larger  molecule  or  in  case  of  a  more  constrained  computational  resources, 

 GFN-FF  method  becomes  the  first  suggestion,  directly  answering  our  research 

 question RQ3. 

 ●  Answering  research  question  RQ4,  we  found  that  results  about  the  search  space 

 coverage  by  CREST  remain  open.  We  performed  preliminary  analysis  on  the 

 conformers  found  by  CREST  and  reported  distribution  of  selected  angles  and 

 dihedrals,  giving  an  indication  of  the  search  space  coverage  among  found 

 conformers.  Further  work  is  needed  to  assess  the  coverage  of  search  space  by 

 the  conformational  sampling  of  CREST  as  the  current  thesis  did  not  investigate 

 that  topic,  apart  from  collecting  all  necessary  input  data  and  building  appropriate 

 software (Molli) to do this kind of analysis. 

 ●  Research  goal  RG3  was  also  achieved.  By  answering  above-mentioned  points 

 we  gained  a  lot  of  insight  into  how  to  orchestrate  a  similar  workflow  more 

 efficiently and published open-source software Molli to support similar research. 
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 Appendix 2 - Conformers 

 Table A2.1.  Conformers fully optimized with PBE0/def2-SV(P) 

 Index  Conformer 
 Energy difference 

 to best, kJ/mol 
 Final Energy, 

 hartree 
 energy delta 

 kJ/mol 

 1  ex21_c12  0.00  -3839.38363489  -581 

 2  ex21_c43  1.42  -3839.38309480  -565 

 3  ex21_c4  1.93  -3839.38289836  -571 

 4  ex21_c2  5.52  -3839.38153264  -575 

 5  ex21_c45  5.65  -3839.38148335  -575 

 6  ex0ff_c4  5.97  -3839.38136096  -647 

 7  ex21_c59  6.32  -3839.38122896  -583 

 8  ex21_c44  6.32  -3839.38122888  -546 

 9  ex21_c57  8.18  -3839.38051917  -543 

 10  ex21_c58  8.30  -3839.38047335  -512 

 11  ex19_c61  9.27  -3839.38010312  -236 

 12  ex0ff_c3  9.99  -3839.37982882  -704 

 13  ex23_c25  10.42  -3839.37966586  -242 

 14  ex23_c26  10.42  -3839.37966583  -239 

 15  ex19_c44  10.42  -3839.37966567  -232 

 16  ex19_c40  10.42  -3839.37966563  -236 

 17  ex21_c41  10.94  -3839.37946958  -515 

 18  ex21_c16  10.94  -3839.37946951  -544 

 19  ex21_c14  10.94  -3839.37946909  -547 

 20  ex21_c32  11.04  -3839.37942992  -512 

 21  ex0a_c3  11.24  -3839.37935309  -265 

 22  ex0a_c10  11.29  -3839.37933581  -278 

 23  ex0a_c21  11.29  -3839.37933563  -283 

 24  ex0a_c13  11.29  -3839.37933562  -277 

 25  ex0a_c16  11.29  -3839.37933551  -278 

 26  ex23_c30  11.37  -3839.37930614  -233 

 27  ex19_c52  11.37  -3839.37930613  -239 

 28  ex19_c45  11.37  -3839.37930612  -241 

 29  ex19_c48  11.37  -3839.37930612  -234 

 30  ex23_c29  11.37  -3839.37930609  -250 

 31  ex19_c49  11.37  -3839.37930608  -242 
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 Index  Conformer 
 Energy difference 

 to best, kJ/mol 
 Final Energy, 

 hartree 
 energy delta 

 kJ/mol 

 32  ex19_c47  11.37  -3839.37930606  -232 

 33  ex23_c31  11.37  -3839.37930605  -235 

 34  ex19_c51  11.37  -3839.37930605  -239 

 35  ex19_c46  11.37  -3839.37930605  -246 

 36  ex23_c27  11.37  -3839.37930604  -238 

 37  ex19_c50  11.37  -3839.37930602  -236 

 38  ex21_c56  11.58  -3839.37922351  -578 

 39  ex19_c56  11.74  -3839.37916500  -240 

 40  ex19_c57  11.74  -3839.37916477  -248 

 41  ex21_c13  12.41  -3839.37890643  -518 

 42  ex23_c13  12.48  -3839.37888102  -243 

 43  ex19_c36  12.48  -3839.37888096  -242 

 44  ex19_c34  12.48  -3839.37888087  -238 

 45  ex23_c20  12.48  -3839.37888082  -234 

 46  ex19_c42  12.48  -3839.37888078  -239 

 47  ex19_c23  12.48  -3839.37888068  -244 

 48  ex19_c16  12.48  -3839.37888056  -237 

 49  ex23_c22  12.48  -3839.37888055  -244 

 50  ex19_c39  12.48  -3839.37888051  -223 

 51  ex23_c15  12.48  -3839.37888050  -244 

 52  ex23_c16  12.48  -3839.37888046  -236 

 53  ex19_c29  12.48  -3839.37888043  -236 

 54  ex19_c26  12.48  -3839.37888040  -239 

 55  ex19_c24  12.48  -3839.37888034  -234 

 56  ex19_c19  12.48  -3839.37888026  -241 

 57  ex19_c22  12.48  -3839.37888006  -249 

 58  ex19_c17  12.48  -3839.37888000  -238 

 59  ex19_c38  12.48  -3839.37887997  -229 

 60  ex19_c27  12.48  -3839.37887996  -231 

 61  ex19_c18  12.48  -3839.37887984  -229 

 62  ex23_c17  12.48  -3839.37887978  -232 

 63  ex23_c23  12.48  -3839.37887961  -243 

 64  ex23_c21  12.49  -3839.37887952  -230 

 65  ex19_c20  12.49  -3839.37887944  -239 
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 Index  Conformer 
 Energy difference 

 to best, kJ/mol 
 Final Energy, 

 hartree 
 energy delta 

 kJ/mol 

 66  ex23_c14  12.49  -3839.37887932  -244 

 67  ex23_c19  12.49  -3839.37887916  -234 

 68  ex19_c21  12.49  -3839.37887916  -240 

 69  ex19_c33  12.49  -3839.37887859  -225 

 70  ex21_c26  12.77  -3839.37877211  -524 

 71  ex23_c33  13.14  -3839.37862918  -233 

 72  ex0a_c6  13.14  -3839.37862856  -275 

 73  ex0a_c20  13.16  -3839.37862078  -251 

 74  ex19_c60  13.18  -3839.37861372  -233 

 75  ex0a_c4  13.18  -3839.37861361  -254 

 76  ex0a_c11  13.27  -3839.37858101  -244 

 77  ex0a_c9  13.27  -3839.37858082  -250 

 78  ex19_c31  13.27  -3839.37857997  -231 

 79  ex0a_c5  13.58  -3839.37846437  -279 

 80  ex0a_c28  13.70  -3839.37841834  -269 

 81  ex21_c24  13.76  -3839.37839316  -519 

 82  ex21_c22  13.87  -3839.37835116  -544 

 83  ex21_c30  13.94  -3839.37832454  -492 

 84  ex0a_c7  14.10  -3839.37826483  -255 

 85  ex0a_c15  14.10  -3839.37826465  -273 

 86  ex21_c50  14.16  -3839.37824152  -498 

 87  ex23_c18  14.23  -3839.37821448  -234 

 88  ex19_c41  14.23  -3839.37821445  -237 

 89  ex19_c37  14.23  -3839.37821440  -243 

 90  ex19_c32  14.23  -3839.37821439  -235 

 91  ex19_c28  14.23  -3839.37821404  -233 

 92  ex19_c25  14.23  -3839.37821358  -225 

 93  ex19_c35  14.23  -3839.37821352  -231 

 94  ex23_c24  14.23  -3839.37821352  -230 

 95  ex19_c43  14.23  -3839.37821330  -233 

 96  ex19_c30  14.23  -3839.37821329  -229 

 97  ex16_c6  14.64  -3839.37805738  -243 

 98  ex0a_c12  14.64  -3839.37805713  -287 

 99  ex16_c7  14.64  -3839.37805694  -249 
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 Index  Conformer 
 Energy difference 

 to best, kJ/mol 
 Final Energy, 

 hartree 
 energy delta 

 kJ/mol 

 100  ex0a_c14  14.65  -3839.37805678  -255 

 101  ex0a_c8  15.05  -3839.37790317  -272 

 102  ex23_c32  15.05  -3839.37790315  -238 

 103  ex19_c10  15.41  -3839.37776701  -236 

 104  ex16_c4  15.41  -3839.37776696  -247 

 105  ex19_c55  15.41  -3839.37776693  -238 

 106  ex19_c7  15.41  -3839.37776691  -225 

 107  ex23_c2  15.41  -3839.37776689  -231 

 108  ex23_c6  15.41  -3839.37776688  -225 

 109  ex16_c1  15.41  -3839.37776687  -236 

 110  ex19_c11  15.41  -3839.37776687  -232 

 111  ex19_c5  15.41  -3839.37776686  -230 

 112  ex0a_c2  15.41  -3839.37776685  -250 

 113  ex19_c1  15.41  -3839.37776684  -230 

 114  ex23_c1  15.41  -3839.37776684  -235 

 115  ex23_c9  15.41  -3839.37776682  -231 

 116  ex19_c15  15.41  -3839.37776680  -228 

 117  ex16_c3  15.41  -3839.37776679  -240 

 118  ex19_c8  15.41  -3839.37776678  -226 

 119  ex23_c10  15.41  -3839.37776678  -224 

 120  ex23_c8  15.41  -3839.37776677  -230 

 121  ex23_c5  15.41  -3839.37776676  -238 

 122  ex23_c12  15.41  -3839.37776675  -221 

 123  ex16_c2  15.41  -3839.37776672  -240 

 124  ex23_c7  15.41  -3839.37776668  -232 

 125  ex19_c14  15.41  -3839.37776667  -225 

 126  ex19_c2  15.41  -3839.37776667  -231 

 127  ex19_c12  15.41  -3839.37776666  -230 

 128  ex19_c4  15.41  -3839.37776664  -228 

 129  ex19_c6  15.41  -3839.37776662  -226 

 130  ex19_c13  15.41  -3839.37776659  -224 

 131  ex19_c3  15.41  -3839.37776657  -227 

 132  ex23_c4  15.41  -3839.37776654  -232 

 133  ex19_c9  15.41  -3839.37776653  -225 
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 Index  Conformer 
 Energy difference 

 to best, kJ/mol 
 Final Energy, 

 hartree 
 energy delta 

 kJ/mol 

 134  ex23_c11  15.41  -3839.37776648  -233 

 135  ex23_c3  15.41  -3839.37776619  -237 

 136  ex0ff_c9  15.43  -3839.37775958  -660 

 137  ex0a_c24  15.52  -3839.37772520  -263 

 138  ex21_c33  15.54  -3839.37771639  -511 

 139  ex19_c54  15.76  -3839.37763127  -228 

 140  ex19_c53  15.76  -3839.37763121  -236 

 141  ex16_c5  15.76  -3839.37763108  -236 

 142  ex21_c11  16.08  -3839.37750989  -547 

 143  ex21_c38  16.34  -3839.37741247  -539 

 144  ex0a_c17  16.51  -3839.37734674  -236 

 145  ex0a_c18  16.51  -3839.37734607  -262 

 146  ex0ff_c6  17.05  -3839.37713962  -622 

 147  ex21_c46  17.12  -3839.37711321  -517 

 148  ex21_c47  17.23  -3839.37707160  -544 

 149  ex0a_c23  17.33  -3839.37703238  -262 

 150  ex21_c25  17.34  -3839.37702963  -536 

 151  ex0a_c26  17.53  -3839.37695637  -271 

 152  ex0a_c25  17.54  -3839.37695584  -274 

 153  ex21_c3  18.23  -3839.37668969  -560 

 154  ex0a_c19  18.29  -3839.37666936  -267 

 155  ex21_c20  18.80  -3839.37647384  -512 

 156  ex21_c40  19.32  -3839.37627788  -505 

 157  ex21_c18  19.40  -3839.37624543  -586 

 158  ex0a_c1  19.68  -3839.37613830  -252 

 159  ex21_c29  21.63  -3839.37539738  -544 

 160  ex15_c10  21.82  -3839.37532324  -665 

 161  ex15_c2  22.87  -3839.37492341  -673 

 162  ex0ff_c8  23.02  -3839.37486569  -598 

 163  ex0a_c29  23.99  -3839.37449816  -274 

 164  ex21_c48  24.02  -3839.37448548  -502 

 165  ex0ff_c1  24.22  -3839.37440996  -638 

 166  ex0a_c22  25.46  -3839.37393777  -276 

 167  ex0ff_c7  26.56  -3839.37351892  -598 
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 Index  Conformer 
 Energy difference 

 to best, kJ/mol 
 Final Energy, 

 hartree 
 energy delta 

 kJ/mol 

 168  ex15_c4  26.82  -3839.37342033  -656 

 169  ex0b_c22  35.64  -3839.37006213  -280 

 170  ex0b_c30  35.93  -3839.36994918  -266 

 171  ex0b_c34  35.97  -3839.36993275  -266 

 172  ex0b_c31  35.98  -3839.36992927  -263 

 173  ex0b_c29  36.01  -3839.36992020  -235 

 174  ex0b_c16  36.32  -3839.36980132  -292 

 175  ex0b_c21  37.50  -3839.36935231  -242 

 176  ex0b_c15  37.68  -3839.36928523  -237 

 177  ex0b_c2  37.86  -3839.36921374  -286 

 178  ex0b_c1  37.86  -3839.36921361  -288 

 179  ex0b_c20  37.90  -3839.36919950  -291 

 180  ex0b_c7  38.54  -3839.36895472  -286 

 181  ex0b_c28  38.94  -3839.36880208  -262 

 182  ex0b_c25  39.54  -3839.36857347  -272 

 183  ex0b_c27  39.78  -3839.36848275  -269 

 184  ex0b_c26  39.78  -3839.36848262  -266 

 185  ex0b_c9  40.70  -3839.36813285  -264 

 186  ex0b_c4  40.90  -3839.36805855  -257 

 187  ex0b_c3  40.90  -3839.36805845  -281 

 188  ex0b_c19  40.91  -3839.36805277  -276 

 189  ex0b_c11  41.13  -3839.36797092  -264 

 190  ex0b_c13  41.13  -3839.36797060  -270 

 191  ex0b_c10  41.13  -3839.36797053  -269 

 192  ex0b_c14  41.13  -3839.36797048  -272 

 193  ex0b_c12  41.13  -3839.36797038  -278 

 194  ex0b_c36  41.36  -3839.36788069  -282 

 195  ex0b_c6  41.54  -3839.36781168  -288 

 196  ex0b_c18  42.03  -3839.36762787  -272 

 197  ex0b_c17  42.03  -3839.36762780  -273 

 198  ex0b_c33  44.17  -3839.36681074  -284 

 199  ex0b_c35  58.43  -3839.36137937  -273 

 200  ex0b_c38  60.93  -3839.36042853  -225 

 201  ex0b_c39  61.93  -3839.36004788  -226 
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 Energy difference 

 to best, kJ/mol 
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 energy delta 

 kJ/mol 

 202  ex0b_c32  62.84  -3839.35970153  -227 

 203  ex0b_c23  66.65  -3839.35825023  -216 

 204  ex0b_c37  66.81  -3839.35818882  -228 

 205  original  108.15  -3839.34244253  -48 

 Table  A2.2.  Conformers  groups,  PBE0/def2-SV(P),  grouped  by  rounded  relative  conformational  energy, 
 kJ/mol. 

 idx 
 First conformer 
 in group 

 Threshold, 
 kJ/mol 

 Number of 
 conformers 

 1  ex21_c12  0  1 

 2  ex21_c43  1  1 

 3  ex21_c4  2  1 

 4  ex0ff_c4  6  5 

 5  ex21_c58  8  2 

 6  ex19_c61  9  1 

 7  ex19_c40  10  5 

 8  ex19_c50  11  21 

 9  ex19_c19  12  32 

 10  ex19_c31  13  9 

 11  ex19_c30  14  18 

 12  ex0a_c12  15  40 

 13  ex19_c54  16  7 

 14  ex21_c47  17  7 

 15  ex0a_c26  18  4 

 16  ex21_c18  19  3 

 17  ex0a_c1  20  1 

 18  ex21_c29  22  2 

 19  ex0ff_c8  23  2 

 20  ex0a_c29  24  3 

 21  ex0a_c22  25  1 

 22  ex0ff_c7  27  2 

 23  ex0b_c34  36  6 

 24  ex0b_c21  37  1 

 25  ex0b_c20  38  4 
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 idx 
 First conformer 
 in group 

 Threshold, 
 kJ/mol 

 Number of 
 conformers 

 26  ex0b_c28  39  2 

 27  ex0b_c25  40  3 

 28  ex0b_c13  41  10 

 29  ex0b_c18  42  3 

 30  ex0b_c33  44  1 

 31  ex0b_c35  58  1 

 32  ex0b_c38  61  1 

 33  ex0b_c39  62  1 

 34  ex0b_c32  63  1 

 35  ex0b_c23  67  2 

 36  original  108  1 

 Total  205 

 Comments to Table A2.1. 

 All  conformers  with  very  similar  relative  conformational  energy  must  be  analyzed 

 further.  RMSD  and  Max  distance  information  is  given  below.  All  distances  between 

 geometries are given in ångstroms (Å). 

 (A)                                                                                   (B) 

 Figure A2.1.  RMSD between conformers in group 6 kJ/mol  (A) and group 10 kJ/mol (B). 
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 Figure A2.2.  RMSD between the first conformer in each of the first 10 conformers groups, 0-13 kJ/mol. 

 Table A2.3.  Conformers fully optimized with BP86/def2-SV(P) 

 Index  Conformer 
 Energy Difference 

 to best, kJ/mol 
 Final Energy, 

 hartree 

 Energy delta in 
 optimization start 

 to end, kJ/mol 

 1  ex0ff_c6  0.00  -3842.44270854  -650 

 2  ex0ff_c4  2.22  -3842.44186280  -663 

 3  ex0a_c27  8.02  -3842.43965316  -365 

 4  ex0a_c13  8.02  -3842.43965288  -363 

 5  ex0a_c10  8.02  -3842.43965259  -367 

 6  ex0a_c20  8.63  -3842.43942032  -335 

 7  ex0a_c9  9.54  -3842.43907391  -337 

 8  ex0a_c7  9.54  -3842.43907386  -342 

 9  ex16_c5  9.87  -3842.43894817  -327 

 10  ex0a_c1  10.17  -3842.43883519  -345 

 11  ex19_c23  10.17  -3842.43883497  -332 

 12  ex0a_c6  10.45  -3842.43872819  -365 
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 13  ex0a_c26  11.49  -3842.43833132  -364 

 14  ex0a_c23  11.51  -3842.43832491  -355 

 15  ex15_c5  12.00  -3842.43813683  -693 

 16  ex0ff_c8  12.06  -3842.43811451  -619 

 17  ex16_c6  12.40  -3842.43798645  -330 

 18  ex0a_c24  12.67  -3842.43788436  -354 

 19  ex16_c2  13.13  -3842.43770884  -329 

 20  ex16_c1  13.14  -3842.43770252  -325 

 21  ex16_c4  13.15  -3842.43769824  -336 

 22  ex0ff_c1  14.02  -3842.43736721  -659 

 23  ex0ff_c7  16.12  -3842.43656932  -616 

 24  ex15_c10  16.84  -3842.43629344  -685 

 25  ex0a_c29  17.62  -3842.43599928  -362 

 26  ex15_c4  19.29  -3842.43535948  -678 

 27  ex15_c8  21.50  -3842.43452136  -704 

 28  ex0b_c34  29.21  -3842.43158332  -352 

 29  ex0b_c16  30.29  -3842.43117189  -380 

 30  ex0b_c21  32.64  -3842.43027744  -324 

 31  ex0b_c6  35.68  -3842.42911692  -377 

 32  ex0b_c19  35.85  -3842.42905524  -364 

 33  ex0b_c9  36.32  -3842.42887667  -345 

 34  original  97.30  -3842.40564860  -16 
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 Table A2.4.  Relative conformational energies at different  stages of optimization, correlation vs 
 “Converged”. BP86/def2-SV(P), kJ/mol 

 Label  Converged  At start  10 steps  25 steps 

 ex0ff_c6  0.00  0.00  0.00  0.00 

 ex0ff_c4  2.22  14.81  31.67  -0.14 

 ex0a_c27  8.02  -277.15  -24.88  16.78 

 ex0a_c13  8.02  -279.07  -44.96  -5.56 

 ex0a_c10  8.02  -274.98  -49.10  -4.50 

 ex0a_c20  8.63  -306.37  -44.46  7.04 

 ex0a_c9  9.54  -303.30  -44.93  -2.98 

 ex0a_c7  9.54  -298.16  -40.71  -1.44 

 ex16_c5  9.87  -312.97  -48.72  -0.98 

 ex0a_c1  10.17  -294.49  -45.78  0.77 

 ex19_c23  10.17  -308.22  -48.39  -3.48 

 ex0a_c6  10.45  -274.96  -43.42  -2.33 

 ex0a_c26  11.49  -274.32  46.46  4.34 

 ex0a_c23  11.51  -283.39  -43.79  1.12 

 ex15_c5  12.00  55.00  56.02  26.59 

 ex0ff_c8  12.06  -18.67  -7.49  12.08 

 ex16_c6  12.40  -307.76  -47.20  -0.71 

 ex0a_c24  12.67  -283.27  -40.70  1.35 

 ex16_c2  13.13  -307.73  -46.76  0.10 

 ex16_c1  13.14  -311.45  -48.37  -0.06 

 ex16_c4  13.15  -300.83  -48.54  0.04 

 ex0ff_c1  14.02  23.26  59.62  2.35 

 ex0ff_c7  16.12  -18.11  -14.52  6.81 

 ex15_c10  16.84  51.64  73.34  41.75 

 ex0a_c29  17.62  -270.70  -33.41  4.35 

 ex15_c4  19.29  47.41  42.79  14.64 

 ex15_c8  21.50  75.33  25.94  25.47 

 ex0b_c34  29.21  -268.72  -11.71  21.52 

 ex0b_c16  30.29  -239.99  3.77  19.93 

 ex0b_c21  32.64  -293.53  -24.04  21.33 

 ex0b_c6  35.68  -237.61  -4.81  24.41 

 ex0b_c19  35.85  -250.26  30.12  26.27 

 ex0b_c9  36.32  -268.34  -16.20  27.11 

 original  97.30  -536.30  43.85  93.15 

 Correlation  1.00  -0.36  0.33  0.89 
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 Table A2.5.  Relative conformational energies at different stages of optimization, correlation vs 
 “Converged”. BP86/def2-SV(P). ground truth is fully optimized at PBE0/cc-pVTZ, kJ/mol 

 Label 
 Ground 
 Truth 

 BP86/def2-SV(P) 
 10-steps 

 BP86/def2-SV(P) 
 25-steps 

 BP86/def2-SV(P) 
 Converged 

 ex0ff_c6  0.00  0.00  0.00  0.00 

 ex16_c5  5.58  -48.72  -0.98  9.87 

 ex0a_c10  6.35  -49.10  -4.50  8.02 

 ex19_c23  8.78  -48.39  -3.48  10.17 

 ex0a_c24  9.09  -40.70  1.35  12.67 

 ex0a_c26  11.95  46.46  4.34  11.49 

 ex0b_c21  26.92  -24.04  21.33  32.64 

 original  112.77  43.85  93.15  97.30 

 Correlation  1.0000  0.5849  0.9939  0.9953 
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 Appendix 3 - CREST Experiments 

 Table A3.1.  Details of CREST experiments 

 Exp. 
 Name 

 Opt. 
 Method  Wall time 

 CREST Result: 
 Energy, Number 
 of conformers  CREST Command line input  Comment 

 ex0  GFN2  1h :35m 

 E lowest : 
 -142.72799 
 1 structures remain 
 within 5.00 
 kcal/mol window, 
 unique 1 

 crest mol24_final.xyz --gfn2 -T 64 --opt 
 normal --squick --nowr --noreftopo | tee 
 stdout.txt 

 crest GFN2 run on 
 original 
 mol24_final.xyz to see 
 how good/bad does it 
 work out-of-the-box 

 ex0a  GFN2  14h :22m 

 E lowest : 
 -142.74475 
 112 structures 
 remain within 6.00 
 kcal/mol window, 
 unique 29 

 crest mol24_final.xyz --gfn2 -T 64 --opt 
 vtight --nowr --noreftopo | tee stdout.txt 

 crest GFN2 run on 
 original 
 mol24_final.xyz to see 
 how good/bad does it 
 work out-of-the-box 
 vtight opt 

 ex0b  GFN2  7h :25m 

 E lowest : 
 -142.73587 
 440 structures 
 remain within 6.00 
 kcal/mol window, 
 unique 39 

 crest mol24_final.xyz --gfn2 -T 64 --opt 
 vtight --noreftopo --keepdir | tee 
 stdout.txt 

 repeat ex0a with more 
 verbose output, aim is 
 to analyze intermediate 
 results 

 ex0ff  GFN-FF  12m 

 E lowest : 
 -13.47791 
 9 structures remain 
 within 6.00 
 kcal/mol window, 
 unique 9 

 crest mol24_final.xyz --gfnff -T 64 --opt 
 vtight --noreftopo --keepdir | tee 
 stdout.txt 

 crest GFN-FF run on 
 original 
 mol24_final.xyz to see 
 how good/bad does it 
 work out-of-the-box 
 vtight opt, verbose full 
 output 

 ex8  GFN2  12h :18m 

 E lowest : 
 -142.74595 
 53 structures 
 remain within 6.00 
 kcal/mol window, 
 unique 53 

 crest final_constraints4.xyz --gfn2 -T 48 
 --opt vtight --nowr --cinp constraints4.txt 

 fix atoms: 
 2,4,7,8,45,60,61 (add 
 O:45) 

 ex10  GFN-FF  30m 

 E lowest : 
 -13.56466 
 4 structures remain 
 within 6.00 
 kcal/mol window, 
 unique 4 

 crest final_constraints4.xyz --gfnff -T 48 
 --opt vtight --nowr --cinp constraints4.txt 

 fix atoms: 
 2,4,7,8,45,60,61 (add 
 O:45) 

 ex15  GFN-FF  14m 

 E lowest : 
 -13.47818 
 158 structures 
 remain within 6.00 
 kcal/mol window, 
 unique 150 

 crest 
 mol24_final_constraints6_angles.xyz 
 --gfnff -T 64 --opt vtight --nowr --cinp 
 mol24_constraints6_angles.txt 
 --noreftopo | tee stdout.txt 

 Ti-O-C angles fixed as 
 in original input: 
 mol24_final.xyz, 
 GFN-FF 
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 Exp. 
 Name 

 Opt. 
 Method  Wall time 

 CREST Result: 
 Energy, Number 
 of conformers  CREST Command line input  Comment 

 ex16  GFN2  11h :41m 

 E lowest : 
 -142.75207 
 7 structures remain 
 within 6.00 
 kcal/mol window, 
 unique 7 

 crest 
 mol24_final_constraints6_angles.xyz 
 --gfn2 -T 64 --opt vtight --nowr --cinp 
 mol24_constraints6_angles.txt 
 --noreftopo | tee stdout.txt 

 Ti-O-C angles fixed as 
 in original input: 
 mol24_final.xyz, 
 GFN2 

 ex19  GFN2  2h :36m 

 E lowest : 
 -142.75236 
 183 structures 
 remain within 5.00 
 kcal/mol window, 
 unique 61 

 crest 
 mol24_ex16_gfn2_crest5_constr6.xyz 
 --gfn2 -T 64 --opt normal --squick 
 --nowr --mrest 3 --cinp 
 mol24_constr6.txt --noreftopo | tee 
 stdout.txt 

 start new CREST run 
 from ex16 crest best 5 

 ex20  GFN2  2h :45m 

 E lowest : 
 -142.73324 
 3 structures remain 
 within 5.00 
 kcal/mol window, 
 unique 3 

 crest mol24_final_constr7.xyz --gfn2 -T 
 64 --opt normal --squick --nowr --mrest 
 3 --cinp mol24_constr7.txt --noreftopo > 
 stdout.txt 

 relax some angles from 
 constr6 

 ex21  GFN-FF  2m 

 E lowest : 
 -13.60953 
 60 structures 
 remain within 5.00 
 kcal/mol window, 
 unique 59 

 crest 
 mol24_ex16_gfn2_crest5_constr6.xyz 
 --gfnff -T 64 --opt normal --squick 
 --nowr --mrest 3 --cinp 
 mol24_constr6.txt --noreftopo > 
 stdout.txt 

 repeat ex19 but with 
 GFN-FF 

 ex21a  GFN-FF  14m 

 E lowest : 
 -13.61704 
 150 structures 
 remain within 6.00 
 kcal/mol window, 
 unique 146 

 crest 
 mol24_ex16_gfn2_crest5_constr6.xyz 
 --gfnff -T 48 --opt vtight --nowr --cinp 
 mol24_constr6.txt --noreftopo > 
 stdout.txt 

 repeat ex21 but more 
 thorough search 

 ex22  GFN2  1h :52m 

 E lowest : 
 -142.74937 
 8 structures remain 
 within 5.00 
 kcal/mol window, 
 unique 1 

 crest 
 mol24_ex20_gfn2_crest1_constr7.xyz 
 --gfn2 -T 64 --opt normal --squick 
 --nowr --mrest 3 --cinp 
 mol24_constr7.txt --noreftopo > 
 stdout.txt 

 repeat ex20 with its 
 best 1 

 ex23  GFN2  1h :43m 

 E lowest : 
 -142.75242 
 89 structures 
 remain within 5.00 
 kcal/mol window, 
 unique 33 

 crest 
 mol24_ex16_gfn2_crest3_constr6.xyz 
 --gfn2 -T 48 --opt normal --squick 
 --nowr --mrest 3 --cinp 
 mol24_constr6.txt --noreftopo | tee 
 stdout.txt 

 repeat ex19 with 
 source from ex16 crest 
 best 3 

 ex24  GFN2  15h : 4m 

 E lowest : 
 -142.75207 
 7 structures remain 
 within 6.00 
 kcal/mol window, 
 unique 4 

 crest 
 mol24_final_constraints6_angles.xyz 
 --gfn2 -T 64 --opt vtight --cinp 
 mol24_constraints6_angles.txt 
 --noreftopo --keepdir | tee stdout.txt 

 repeat ex16 with more 
 verbose output, aim is 
 to analyze intermediate 
 results 
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 Figure  A3.2.  Selection  of  Ti-O-C  and  Ti-O-Ti  angles  from  conformers  generated  by  CREST  using 
 GFN2-xTB method (experiments ex0a, ex0b). 
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 Figure  A3.3.  Selection  of  dihedral  angles  from  conformers  generated  by  CREST  using  GFN2-xTB  mthod 
 (experiments ex0a, ex0b). 
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 Figure  A3.4.  Selection  of  Ti-O-C  and  Ti-O-Ti  angles  at  the  start  of  optimization  with  PBE0/def2-SV(P). 
 Ti-O-C  angles  are  significantly  smaller  compared  to  Figure  A3.5.  which  shows  the  same  angles,  but  at  the 
 end  of  the  DFT  optimization,  showing  how  much  GFN  family  optimization  methods  compress  the  Ti-O-C 
 ligands compared to more accurate DFT methods. 
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 Figure  A3.5.  Selection  of  Ti-O-C  and  Ti-O-Ti  angles  at  the  end  of  full  optimization  with 
 PBE0/def2-SV(P).  Ti-O-C  angles  show  a  significant  shift  towards  straightening  compared  to  Figure  A3.4. 
 which shows the same angles, but at the start of the DFT optimization. 
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 Figure  A3.6.  Selection  of  dihedral  angles  at  the  start  of  optimization  with  PBE0/def2-SV(P).  Indicating 
 the coverage of the search space by found conformers by CREST. 

 78 



 Figure  A3.7.  Selection  of  dihedral  angles  at  the  end  of  full  optimization  with  PBE0/def2-SV(P). 
 Indicating the coverage of the search space by fully optimized conformers. 
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 Appendix 4 - Molli 

 Molli  [40]  is  a  newly  created  open-source  library.  Written  in  Python  with  the  heavy 

 lifting  of  computational  chemistry  related  functionality  based  on  an  excellent 

 open-source library called ASE [35]. 

 Main workflows using Molli: 

 ●  EDA - Exploratory Data Analysis. 

 ●  Dataset generation. 

 ●  Analysis: molecules, optimization trajectories, ensembles of molecules etc. 

 ●  Helper functions. 

 A4.1. EDA - Exploratory Data Analysis 
 With  the  advent  of  machine  learning  competitions  held  by  Kaggle  [54]  emerged  a  new 

 kind  of  data  science  and  visual  analysis  related  subfield.  It  is  quite  a  common  situation 

 that  we  have  a  lot  of  data,  but  we  lack  the  idea  of  what  the  data  presents.  Are  there  any 

 interesting  patterns  to  be  detected?  How  diverse  is  the  data?  Are  there  any  common 

 descriptors  that  allow  grouping  and  clustering  of  the  data?  As  you  can  imagine  the 

 number  of  questions  one  could  ask  is  limitless.  That  is  the  main  goal  of  the  EDA  - 

 Exploratory  Data  Analysis.  You  start  to  poke  around  with  the  data,  visualize  various 

 properties  from  different  viewpoints,  analyze  various  metrics  etc.  Readers  of  an  EDA 

 should  get  a  quick  overview  of  the  main  attributes  and  patterns  found  in  the  data.  It 

 doesn’t  matter  if  none  are  found  -  then  the  reader  knows  that  information  and  can  draw 

 his/her  own  conclusions  about  the  data.  EDA  is  not  a  definitive  ruleset  or  a  proof  of 

 how  things  are  or  should  be.  EDA  is  rather  a  nice  informative  visual  guide  to  better 

 understand the data. 

 A4.2. Dataset generation 
 Recent  years  have  shown  tremendous  progress  in  machine  learning.  Although  many 

 contribute  this  success  to  the  advances  in  hardware  and  to  some  extent  to  algorithms, 

 one  could  argue  that  the  role  of  datasets  has  played  an  equally  important  part.  While 

 performing  long  lasting  DFT  calculations,  computational  chemistry  software  produces 

 huge  amounts  of  valuable  intermediate  data  that  is  mostly  ignored  as  an  artefact  and 

 only  results  are  gathered  and  published.  This  intermediate  data  could  potentially  be  a 
 80 



 game  changer  for  a  machine  learning  pipeline  in  the  future.  Similarly  high-quality 

 dataset  consisting  of  DFT  calculations  over  some  well-defined  chemical  structures 

 could  potentially  be  an  invaluable  asset  for  a  broader  audience  of  computational 

 chemists.  Especially  concerning  transition  metal  complexes.  On  a  smaller  scale  one 

 could  compile  a  dataset  within  the  context  of  experiments  done  in  this  thesis.  Molli  has 

 been  built  keeping  these  considerations  in  mind.  Molli  helps  to  navigate,  analyze  and 

 extract  useful  information  easily  to  compile  a  dataset  for  testing  particular  hypotheses  or 

 even  for  more  general  purposes.  There  are  already  multiple  good  resources  that  host 

 either datasets or references to datasets [55], [56]. 

 A4.3. Analysis: molecules, optimization trajectories, ensembles of 

 molecules etc. 
 As  said  before  computational  chemists  drown  in  the  abundance  of  the  data.  Molli  comes 

 to  help  here.  Whether  you  want  to  sort  molecules  by  the  value  of  a  certain  angle 

 between  3  atoms  or  by  the  value  of  some  inter  atomic  distances  etc.  All  this  and  much 

 more can be easily done with Molli. Compare optimisation trajectories, etc. 

 A4.4. Helper functions for a computational chemist 
 Molli  contains  many  practical  and  useful  utility  functions  regarding  parsing  and 

 processing several common file formats that are used in computational chemistry. 

 ●  Gaussian  log  file  parser,  extracting  useful  information  from  the  log  files 

 produced by Gaussian software for further analysis. 

 ●  xyz-file parser allows reading and writing of xyz-files. 

 ●  Align  molecular  geometries  so  that  their  root  mean  squared  distance  is 

 minimized. 

 ●  etc. 
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