
DOCTORAL THESIS

Monoidal Width

Elena Di Lavore

TALLINNA TEHNIKAÜLIKOOL

TALLINN UNIVERSITY OF TECHNOLOGY
TALLINN 2023

TALLINN UNIVERSITY OF TECHNOLOGY
DOCTORAL THESIS

55/2023

Monoidal Width

ELENA DI LAVORE

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Software Science

The dissertation was accepted for the defence of the degree of Doctor of Philosophy
(Computer Science) on 9 November 2023

Supervisor:

Opponents:

Professor Paweł Sobociński,
Department of Software Science,
School of Information Technologies,
Tallinn University of Technology
Tallinn, Estonia

Professor Samson Abramsky,
University College London,
London, United Kingdom

Professor Dan Marsden,
University of Nottingham,
Nottingham, United Kingdom

Defence of the thesis: 17 November 2023, Tallinn

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology, has not been
submitted for any academic degree elsewhere.

Elena Di Lavore
signature

Copyright: Elena Di Lavore, 2023
ISSN 2585-6898 (publication)
ISBN 978-9916-80-075-1 (publication)
ISSN 2585-6901 (PDF)
ISBN 978-9916-80-076-8 (PDF)
Printed by Koopia Niini & Rauam

TALLINNA TEHNIKAÜLIKOOL
DOKTORITÖÖ

55/2023

Monoidiline laius

ELENA DI LAVORE

Abstract
Compositionality lies at the core of abstraction: local windows on a problem can be combined into a global
understanding of it; models and code can be written so that parts can be reused or replaced without break-
ing thewhole; problems can be solved by combining partial solutions. Compositionalitymay give algorithmic
advantages as well. This is the case of divide-and-conquer algorithms, which use the compositional struc-
ture of problems to solve them efficiently. Courcelle’s theorems are a remarkable example. They rely on a
divide-and-conquer algorithm to show that checking monadic second order formulae is tractable on graphs
of bounded tree or clique width.

The idea behind fixed-parameter tractability results of this kind is that divide-and-conquer algorithms
are efficient on inputs that are structurally simple. In the case of graphs, tree and clique widths measure
their structural complexity. When a graph has low width, combining partial solutions on it is tractable. This
work aims to bring the techniques from parametrised complexity to monoidal categories.

This thesis introduces monoidal width to measure the structural complexity of morphisms in monoidal
categories and investigates some of its properties. By choosing suitable categorical algebras, monoidal width
captures tree width and clique width. Monoidal width relies on monoidal decompositions in the same way
graph widths rely on graph decompositions and graph expressions. Monoidal decompositions are terms in
the language of monoidal categories that specify the compositional structure needed by divide-and-conquer
algorithms. A general strategy to obtain fixed-parameter tractability results for problems on monoidal cat-
egories highlights the conceptual importance of monoidal width: compositional algorithms make functorial
problems tractable on morphisms of bounded monoidal width.

Kokkuvõte
Kompositsioonilisus on abstraktsiooni juures tsentraalne: ülesande mõistmise osade kaupa saab kokku panna
selle tervikuna mõistmiseks; mudeleid ja koodi saab arendada nii, et nende osi on võimalik asendada või
taaskasutada tervikut rikkumata; ülesande terviklahendus on leitav osalahendusi kombineerides. Komposit-
sioonilisus võib anda ka algoritmilisi eeliseid. Nii on näiteks jaga-ja-valitse algoritmidega, mille puhul ülesande
efektiivseks lahendamiseks kasutatakse ära selle kompositsioonilist struktuuri. Üheks väljapaistvaks näiteks
sellest on Courcelle’i teoreemid. Need põhinevad jaga-ja-valitse algoritmil ning näitavad, et monaadiliste
teist järku valemite kontroll on praktiliselt arvutatav nendel graafidel, mille puu- või klikilaius on
tõkestatud.

Taoliste fikseeritud parameetritega praktilise arvutatavuse tulemuste aluseks on asjaolu, et jaga-ja-valitse
algoritmid on tõhusad struktuurselt lihtsate sisendite korral. Graafi puu- ja klikilaius mõõdavad selle struktuur-
set keerukust ning kui graafi laius on väike, on osalahenduste kombineerimine praktiliselt arvutatav. Siinne
töö üritab tuua parametriseeritud keerukuses kasutatavad võtted monoidilisse kategooriateooriasse.

Käesolev doktoritöö toob sisse monoidilise laiuse mõiste, et mõõta morfismide struktuurset keerukust
monoidilistes kategooriates, ning uurib mõningaid selle omadusi. Valides sobiva kategoorsed algebrad, on
monoidiline laius puu- ja klikilaiuse vasteks. Monoidiline laius põhineb monoidilistel dekompositsioonidel
samal viisil, nagu graafilaiused põhinevad graafi-dekompositsioonidel ning graafiavaldistel. Monoidilised
dekompositsioonid on termid monoidiliste kategooriate keeles, mis kirjeldavad jaga-ja-valitse algoritmidele
vajaliku kompositsioonilise struktuuri. Üldine strateegia monoidiliste kategooriate ülesannetel fikseeritud
parameetritega praktilise arvutatavuse tulemuste saamiseks toob esile monoidilise laiuse kontseptuaalse
olulisuse: kompositsioonilised algoritmid muudavad funktoriaalsed ülesanded praktiliselt arvutatavaks tõ-
kestatud monoidilise laiusega morfismidel.

Acknowledgements
The first thanks go to Paweł Sobociński, my supervisor, for the academic advice and freedom he gave me, for
the trust he put on me, and for the amazing and lively group he has created in Tallinn, where I have grown so
much as a researcher. I would like to thank Samson Abramsky, Dan Marsden and Niccolò Veltri for agreeing
to examine this thesis and for their helpful feedback.

I owe a big thank you to Tomáš Jakl for introducing me to finite model theory, for his suggestions and
for taking the time to read through my notes. I thank Jamie Vicary for inviting me to Cambridge and for
his feedback on this work. I have enjoyed my academic visit in Pisa, and I thank Filippo Bonchi and Fabio
Gadducci for their feedback and hospitality.

I am grateful tomy coauthors, even ifmost of our jointwork is not reflected in this thesis. I thankGiovanni
de Felice and Mario Román for turning a stressful deadline into so much fun. I thank Valeria de Paiva for
sharing her encyclopaedic knowledge on linear logic and her energy. I thank Nicoletta Sabadini for all the
nice conversations we had in Como and for sharing her always grounded intuitions. Her and Bob Walters’
work have particularly influenced my research.

I would like to thank all my PhD siblings, and Clémence and Diana in particular, for creating such an
enjoyable and productive environment. I will remember these four years with affection.

Thanks from the bottom of my heart to my parents and my brother for their everlasting love and sup-
port. Grazie davvero. A special thank you goes to Mario for his ability to turn our ideas into fun papers, his
continuous encouragement and support.

Contents

1 Introduction 1
1.1 Fixed-parameter tractability . 1
1.2 Monoidal decompositions . 2
1.3 Related work . 3
1.4 Contributions and synopsis . 4

2 Background 7
2.1 Monoidal categories . 7
2.2 Graph complexity measures . 13
2.3 Divide-and-conquer algorithms . 19

3 Monoidal Width 25
3.1 Decompositions in monoidal categories . 25
3.2 Categories with copy . 28
3.3 Categories with biproducts . 31

4 Interlude: Two Perspectives on Graphs 39
4.1 Cospans of hypergraphs and relational structures . 39
4.2 Matrices . 44
4.3 Graphs with dangling edges . 45

5 A Monoidal Algebra for Branch Width 69
5.1 Inductive branch decompositions . 69
5.2 Bounding branch width . 73

6 A Monoidal Algebra for Rank Width 77
6.1 Inductive rank decompositions . 77
6.2 Bounding rank width . 81

7 A Monoidal Courcelle-Makowsky Theorem 89
7.1 Fixed-parameter tractability in monoidal categories . 89
7.2 Computing colimits compositionally . 93

8 Conclusions 97

Bibliography 99

A Publications and academic activities 109

Chapter 1

Introduction

Famously, Caesar used to say “divide et impera”, divide and conquer, as a strategy to overcome enemies.
This strategy is sometimes also useful to design algorithms. When the input has a simple structure, solving
the problem on its components and then combining the solutions may be more efficient than solving it on
the input as a whole. One of themost famous results in parametrised complexity, Courcelle’s theorem, relies
on a divide-and-conquer algorithm to bound the time complexity of solving a class of problems on graphs.

1.1 Fixed-parameter tractability

Parametrised complexity studies computational complexity of problems depending on parameters. The
problems that are tractable for given choices of the parameter are called fixed-parameter tractable. Cour-
celle’s theorem [Cou92a] is one of the most famous results in this field, and shows fixed-parameter tractabi-
lity of checking monadic second order formulae on graphs. This is a hard problem in general, but becomes
tractable when the input is restricted to belong to a class of bounded-width graphs.

There are similar results for different notions of width for graphs [Cou92a; CMR00; CO00]. We will be
concerned with the general structure of these results rather than their details. They all rely on a decompo-
sition algebra for graphs to determine the corresponding graph width. A decomposition algebra is a set of
operations and a set of generators that allow graphs to be expressed as terms. Each operation has a cost and
each term is priced according to the most expensive operation in it. Different terms may express the same
graph and have different costs. The width of a graph is the cost of one of its cheapest terms.

The second ingredient for fixed-parameter tractability results like Courcelle’s is a preservation theorem.
Given a decomposition algebra for graphs and a logic for them, a preservation theorem states that the op-
erations preserve logical equivalence. As a consequence, given a term for a graph, the value of a formula
on it can be determined compositionally. This computation is tractable when the input graphs are restricted
to a bounded-width class because combining partial solutions takes constant time in the size of the input
graph. A famous result of this kind is the Feferman-Vaught-Mostowsky theorem [Fef57; FV59] that shows, via
Ehrenfeucht-Fraissé games [Fra55; Fra57; Ehr57; Ehr61], that the disjoint union of graphs preserves monadic
second order logical equivalence.

Each fixed-parameter tractability result for checking monadic second order formulae on graphs relies on
its owndecomposition algebra and relative preservation theorem. TheCourcelle-Makowsky theorem [CM02;
Mak04] summarises the common technique to all these results. It assumes the existence of a decomposition
algebra and a corresponding preservation theorem, which is the difficult part to show, and deduces fixed pa-
rameter tractability of checking formulae on graphs. This result is an almost straightforward consequence of

1

2 CHAPTER 1. INTRODUCTION

its assumptions but highlights the common proof structure to the mentioned graph fixed-parameter tracta-
bility results.

The insight that led to these results is the expression of graphs as terms. The graph widths defined by
operations and generators had already been defined combinatorially [RS83; RS86; RS91; OS06] and led to
fundamental results in graph theory and combinatorics, such as the famous Robertson and Seymour graph
minor theorem [RS04]. However, the algebraic perspective on them gave the possibility to take advantage
of graph decompositions to obtain algorithmic results. We bring these insights to the world of monoidal
categories, where we definemonoidal decompositions and the relative monoidal width. We show that com-
positional algorithms make functorial problems tractable on morphisms of bounded monoidal width.

Monoidal categories often serve as semantic universes for programs. Depending on the additional struc-
ture and properties of the chosen monoidal category, its morphisms may represent different kinds of com-
putations, either classical [Lam86] or with effects [Gui80; Mog91]. With these models, program verification
may be done compositionally and one may be able to obtain fixed-parameter tractability results.

For graph decompositions, different sets of operations may define the same width, while for monoidal
decompositions, the choice ofmonoidal category determines the decomposition algebra: the operations are
compositions and monoidal product. These are the canonical choice among all the possible operations that
define equivalent width measures.

1.2 Monoidal decompositions

Wedefinemonoidal decompositions andmonoidal widthmimicking Courcelle’s algebraic decompositions of
graphs and their width. While for graphs the choice of operations determines the decomposition algebra, for
monoidal decompositions it is the choice of monoidal category that determines, canonically, the operations:
compositions andmonoidal product. A monoidal decomposition of a morphism in a monoidal category is an
expression of this morphism in terms of compositions and monoidal products of “smaller” morphisms.

There may be different monoidal decompositions of the same morphism, some more efficient than oth-
ers, and monoidal width measures the cost of a most efficient decomposition. The cost of a decomposition
depends on the operations that appear in it and their cost. The composition of two morphisms may repre-
sent running two processes one after the other with some information passed along a channel from the first
process to the second, or it may represent running two processes that have access to the same resource and
need to synchronise along a common boundary to access the resource. Resource sharing, synchronisation
and information sharing are costly operations and their cost increaseswith the size of the commonboundary.
We assign to composition operations a cost that increases with the size of the shared boundary. On the other
hand, monoidal products usually represent running processes in parallel, without communication. Monoi-
dal products are, thus, usually, cheap operations with constant cost. With these choices, monoidal width
incentivises parallelism: highly parallelised monoidal decompositions will be cheaper that highly sequential
ones. The monoidal decompositions in Figure 1.1 exemplify this phenomenon. The monoidal decomposition
on the left cuts the morphism along 4 wires, while the biggest cut in the one on the right is along 2 wires.

𝑓

𝑓

𝑓

𝑔

𝑔

𝑔

𝑓

𝑓

𝑓

𝑔

𝑔

𝑔

Figure 1.1: An inefficient (left) and an efficient (right) monoidal decompositions.

1.3. RELATED WORK 3

We study monoidal width in two categorical algebras of graphs. We give syntactic presentations of them
in terms of generators and equations. The algebra of discrete cospans of graphs is equivalent to the prop
generated by a Frobeniusmonoidwith an added “edge” generator. The algebra of graphswith dangling edges
is equivalent to the prop generated by a bialgebra with an added “vertex” generator. We show that Cour-
celle’s operations for tree width derive from compositions and monoidal product in the monoidal category
of Frobenius graphs, while those for rank width and clique width derive from compositions and monoidal
product in the monoidal category of bialgebra graphs. In fact, we show that monoidal width in the first of
these categories is equivalent to tree width, while, in the second, it is equivalent to clique width.

Inspired by the Courcelle-Makowsky analogous result for graphs [CM02; Mak04], we conclude by giving
a general strategy for showing fixed-parameter tractability of problems on monoidal categories. The choice
of decomposition algebra is given by fixing amonoidal category of inputs. The structural part of the preserva-
tion theorems corresponds to functoriality of the mapping from inputs to solutions, and the computational
part of these results bounds the cost of combining partial solutions. Composing two partial solutions needs
to be linear in the size of the components, but it can be arbitrarily complex in the size of the common bound-
ary. These conditions make computing solutions efficient on inputs of bounded monoidal width.

1.3 Related work
Since the first definitions of graph decompositions and relativewidths, there have been twomain approaches
to them. A more combinatorial one, where decompositions are combinatorial objects, paths or trees with
additional data, and a more algebraic one, where decompositions are terms that express graphs as the re-
sult of operations applied to generators. Some of the first combinatorial approaches to graph widths define
tree decompositions [BB73; Hal76], which proved fundamental for Robertson and Seymour’s graph minors
series [RS83] that culminated with the proof of the graph minors theorem [RS04]. This result shows a com-
binatorial property of graphs: they are well-quasi-ordered under the graphminor partial order. On the other
hand, the algebraic and syntactic approaches to graph decompositions led to results in complexity theory.
One of the earliest syntactic definitions of graph decompositions define them in terms of operations and
generators [PRS88]. This idea was rediscovered by Bauderon and Courcelle [BC87] and developed into Cour-
celle’s monadic second order logic of graphs series [Cou90]. This line of research led to fixed-parameter
tractability results for graphs [Cou92a; CO00; CK09].

Mowshowitz and Dehmer’s review [MD12] give a thorough taxonomy of graph complexity measures,
while Bodlaender’s classical review [Bod93b] and a more recent one by Hliněnỳ et al. [Hli+08] summarise
algorithmic applications of tree width and related widths.

As mentioned above, the algebraic approach to graph decompositions led to results in parametrised
complexity, but this is one of few examples where algebraic, or “structural”, methods have been adopted in
complexity theory. Considered the success of this perspective, other recent lines of research aim to bridge
the gap between algebraic methods and complexity results, to relate structure and power [AS21].

Graph grammars. Our work follows the syntactic approach to graph decompositions by Bauderon and
Courcelle [BC87]. This started the monadic second order logic of graphs series [Cou90] where syntactic
decompositions of graphs give the possibility to show fixed-parameter tractability of checking monadic sec-
ond order formulae on graphs. Different decomposition algebras define different classes of bounded-width
graphs. The first decomposition algebra defines tree width [BC87; Cou90] and leads to the relative fixed-
parameter tractability result [Cou92a]. Similar results hold for decomposition algebras defining clique width
and rank width [CER93; CO00; CK07; CK09]. These results share the proof structure, which is summarised
by Courcelle and Makowsky [CM02; Mak04]. We will recall definitions and results about these graph de-
compositions in Section 2.3 in detail.

4 CHAPTER 1. INTRODUCTION

Althoughwewill not refer to it later on, it isworthmentioning the twinwidth series [Bon+21] that recently
started an active line of research by defining a graph complexity measure that is stronger than the known
ones but still admits fixed-parameter tractable first-order model checking, twin width [Bon+21].

Game comonads. Another prolific approach to connect structure and power targets logic games. Logic
games are a common, if not the most common, technique to show preservation theorems. The proof of the
Feferman-Vaught-Mostowsky preservation theorem [Fef57; FV59] relies on Ehrenfeucht-Fraissé games [Fra55;
Fra57; Ehr57; Ehr61] to show logical equivalence of structures. A logic game consists of two players, Spoiler
and Duplicator, that in turns choose vertices of two relational structures. Spoiler tries to show that the two
structures are not logically equivalent, while Duplicator’s goal is to show that they are. The details of the
moves of each player and the details of the rules of the game determine the logic fragment that defines
logical equivalence.

Game comonads are families of comonads on the category of relational structures and their homomor-
phisms that are indexed by a resource. For a game comonad 𝐂, the comonad 𝐂𝑘 associates to a relational
structure the relational structure of plays on it that use atmost 𝑘 resources. The type of resource determines
the type of logical equivalence of the corresponding game. Intuitively, the resource bounds the size of the
windows though which the relational structure can be looked at.

Game comonads unify logic games and their corresponding logical equivalence with graph widths, and
systematise these correspondences. For a game comonad𝐂, the existence of a winning strategy for Duplica-
tor on structures𝐺 and𝐻 is witnessed by the existence of a coKleisli morphism or isomorphism𝐂𝑘(𝐺) → 𝐻
and characterises logical equivalence for a specific logic fragment. Different comonads define logical equiva-
lence for different logical fragments [ADW17; AM21; AS21; ÓD21;MS22]. Widths are, instead, characterised by
the coalgebra number. The coalgebra number of a structure𝐺with respect to a game comonad𝐂 is themin-
imum 𝑘 for which𝐂𝑘 admits a𝐺-coalgebra𝐺 → 𝐂𝑘(𝐺). The pebbling comonad defines tree width [ADW17],
the Ehrenfeucht-Fraissé comonad defines tree depth [AS21] and the pebble-relation comonad defines path
width [MS22].

The game comonad approach recovers classical results from finite model theory [Pai20; DJR21; AJP22]
and gives general strategies to obtain new ones [AR23]. In particular, Jakl, Marsden and Shah [JMS23] focus
on abstracting the Feferman-Vaught-Mostowsky preservation theorems, an issue we do not touch upon.

Cospan decompositions. Blume et al. [Blu+11] noticed that the categorical algebra behind tree decompo-
sitions is that of cospans of graphs. Their work characterises path and tree decompositions in terms of path-
and tree-shaped colimits in the category of graphs and their homomorphisms. Following a similar intuition,
Bumpus, Kocsis and Master [BK21; Bum21; BKM23] generalised tree decompositions beyond graphs. The
starting point of this line of work is a characterisation of tree width in terms of Halin’s S-functions [Hal76].
These approaches define decompositions “globally”: they are functors whose domain determines the shape
of the decomposition.

1.4 Contributions and synopsis
This thesis defines monoidal width and investigates some of its properties. It is based on published work by
the author [DHS21; DS22; DS23].
• Monoidal width and monoidal decompositions are defined in Section 3.1.
• By choosing a suitable categorical algebra of graphs with vertex interfaces, Theorem 5.16 shows equiva-
lence of monoidal width with branch width and tree width.

• Similarly, Theorem 6.19 relies on a categorical algebra of graphs with edge interfaces to show equivalence
of monoidal width with rank width and clique width.

1.4. CONTRIBUTIONS AND SYNOPSIS 5

• Theorem 4.44 provides a syntactic presentation of graphs with edge interfaces.
• Theorem 7.6 shows that functorial problems on morphisms in monoidal categories that admit a compo-
sitional algorithm (Definitions 7.1 and 7.4) are fixed-parameter tractable with parameter monoidal width.
This result mimicks the Courcelle-Makowsky result about fixed-parameter tractability of checking formu-
lae on relational structures.

Synopsis Chapter 2 gives some background on both category theory and graph decompositions. Section 2.1
recalls monoidal categories and props, while Sections 2.2 and 2.3 recall graph widths and their application to
fixed-parameter tractability results. In particular, we recall the definitions of tree width, branch width, clique
width and rank width, both the original combinatorial ones and the ones in terms of operations on graphs
and generators.

Chapter 3 introduces monoidal width and two simple examples. The definition of monoidal decomposi-
tions and monoidal width are in Section 3.1, and Sections 3.2 and 3.3 study monoidal width of coherent copy
morphisms and in categories with biproducts.

The main study case for monoidal decompositions are graphs. Chapter 4 recalls two categories where
morphisms are graphs with interfaces, one where the interfaces are vertices, in Section 4.1, and one where
the interfaces are edges, in Section 4.3. Graphs with vertex interfaces are discrete cospans of graphs and
can be syntactically presented by a Frobenius monoid with an added “edge” generator. Graphs with edge
interfaces are matrices quotiented by an equivalence relation and can be syntactically presented by a bialge-
bra with an added “vertex” generator. We show how compositions and monoidal products in the monoidal
category of Frobenius graphs express the operations for tree decompositions, while those in the monoidal
category of bialgebra graphs express the operations for rank and clique decompositions. Chapter 5 is dedi-
cated to showing that monoidal width in the monoidal category of Frobenius graphs is equivalent to branch
and tree widths, while Chapter 6 shows that monoidal width in the monoidal category of bialgebra graphs
is equivalent to rank and clique widths. These equivalences rely on constructing a monoidal decomposition
from a branch or rank decomposition and vice versa. As intermediate step between monoidal and graph
decompositions we construct inductive branch and rank decompositions.

Chapter 7 concludes with a version of the Courcelle-Makowsky theorem for fixed-parameter tractability
for problems on monoidal categories. Section 7.2 applies this result to the case of computing colimits in
presheaf categories.

Chapter 2

Background

This chapter introduces some background about monoidal categories and fixed-parameter tractability in the
attempt tomake this work accessible fromboth the “structure” community studying category theory and the
“power” community studying computational complexity. Section 2.1 recalls the definitions of monoidal cate-
gory and prop, and their string diagrammatic syntax and interpretation as theories of processes. Section 2.3
recalls relational structures, some preservation theorems and their consequences as fixed-parameter trac-
tability results.

2.1 Monoidal categories
Monoidal categories [Mac63] often serve as process theories. Depending on the additional properties and
structure on the chosen monoidal category, its morphisms may represent classical computations [Lam86;
JH90], computations with effects [Gui80; Mog91; AM99; CFS16; Rom23] or different kinds of computational
models, from automata [KSW97b; KSW97a; Di +23; Di +21a], to signal flow graphs [BSZ14; BSZ15] and da-
taflow computations [Oli84; Şte86b; Şte86a; KSW99; KSW02; UV08; MHH16; SK19; CVP21; DFR22; Gar23].
Similarly, they may represent processes of different kinds, like stochastic processes [Pan99; Fri20; Sta17;
Ste21; DR23], linear processes [BSZ17; Bon+19b; Bon+19a], partial processes [Car87; RR88; CO89; CL07; Di
+21b], or quantum processes [AC09; CS12; HV19]. Morphisms are depicted as boxes with input and output
wires. These wires are the objects, which specify the resources that can be transformed by processes.

𝑓𝐴 𝐵 ℎ
𝐴1
𝐴2
𝐴3

𝐵1
𝐵2

The categorical structure allows processes to be composed sequentially: for twomorphisms 𝑓 ∶ 𝐴→ 𝐵 and
𝑔∶ 𝐵 → 𝐶 , there is a composite morphism 𝑓 � 𝑔∶ 𝐴 → 𝐶 that, usually, represent the process of executing
𝑓 first and then 𝑔.

𝑓 𝑔𝐴 𝐶

The monoidal structure also allows morphisms to be composed in parallel: for two morphisms 𝑓 ∶ 𝐴 → 𝐵
and 𝑓 ′ ∶ 𝐴′ → 𝐵′, there is a composite morphism 𝑓 ⊗ 𝑓 ′ ∶ 𝐴⊗ 𝐴′ → 𝐵 ⊗ 𝐵′ that, usually, represent the
process of executing 𝑓 and 𝑓 ′ at the same time.

𝑓

𝑓 ′

𝐴 𝐵

𝐴′ 𝐵′

7

8 CHAPTER 2. BACKGROUND

Both these composition operations have units. The identity morphisms 𝟙𝐴 are the units for sequential com-
position: they represent the process that “does nothing” to a resource, so composing sequentially with the
identity morphism should not change the process.

𝑓𝐴 𝐵 = 𝑓𝐴 𝐵 = 𝑓𝐴 𝐵

The monoidal unit 𝐼 is the unit for parallel composition: it represents “absence of resources”, so a process
that produces as outputs, or requires as inputs, a resource 𝐴 and the monoidal unit 𝐼 , it is essentially the
same as the same process only producing, or requiring,𝐴. This reflects in the algebra of monoidal categories
with natural isomorphisms 𝐴⊗ 𝐼 ≅ 𝐴 ≅ 𝐼 ⊗𝐴. Some processes may not take any inputs, 𝑠∶ 𝐼 → 𝐵, or do
not produce any outputs, 𝑡∶ 𝐴→ 𝐼 .

𝑠 𝐵 𝑡𝐴

The string diagrammatic syntax is convenient because it hides the bureaucracy isomorphisms that ensure
associativity and unitality of themonoidal structure, and equations like functoriality of themonoidal product,
(𝑓 ⊗ 𝑓 ′) � (𝑔 ⊗ 𝑔′) = (𝑓 � 𝑔)⊗ (𝑓 ′ � 𝑔′) also become trivial in string diagrams.

𝑓 𝑔

𝑓 ′ 𝑔′

𝐴 𝐶

𝐴′ 𝐶 ′

Amonoidal category is a category with extra structure, themonoidal product⊗ andmonoidal unit 𝐼 , subject
to coherence conditions given by natural transformations that witness associativity, 𝛼, and unitality, 𝜆 and
𝜌, of the monoidal structure.

Definition 2.1 ([Mac63]). Amonoidal category (𝖢, ⊗, 𝐼) is given by a category𝖢, a functor (−⊗ =)∶ 𝖢×𝖢 →
𝖢 and an object 𝐼 of 𝖢 with coherence natural isomorphisms 𝛼∶ (− ⊗ (= ⊗ ≡)) → ((−⊗ =)⊗ ≡), the
associator, 𝜆∶ (𝐼 ⊗ −) → 𝟙, the left unitor, and 𝜌∶ (−⊗ 𝐼) → 𝟙, the right unitor, satisfying the pentagon
and triangle equations below.

𝐴⊗ ((𝐵 ⊗ 𝐶)⊗𝐷)

𝐴⊗ (𝐵 ⊗ (𝐶 ⊗𝐷)) (𝐴⊗ (𝐵 ⊗ 𝐶))⊗𝐷

(𝐴⊗ 𝐵)⊗ (𝐶 ⊗𝐷) ((𝐴⊗ 𝐵)⊗𝐶)⊗𝐷

𝛼𝐴,(𝐵⊗𝐶),𝐷𝟙⊗𝛼𝐵,𝐶,𝐷

𝛼𝐴,𝐵,(𝐶⊗𝐷) 𝛼𝐴,𝐵,𝐶⊗𝟙

𝛼(𝐴⊗𝐵),𝐶,𝐷

(𝐴⊗ 𝐼)⊗𝐵 𝐴⊗ (𝐼 ⊗ 𝐵)

𝐴⊗ 𝐵

𝛼𝐴,𝐼,𝐵

𝜌𝐴⊗𝟙 𝟙⊗𝜆𝐵

A monoidal category is strict if the coherence isomorphisms are identities.

Morphisms ofmonoidal categories aremonoidal functors, which are functors that preserve themonoidal
structure.

Definition 2.2. A (strong) monoidal functor 𝐅∶ (𝖢, ⊗, 𝐼) → (𝖣,⊠, 𝐽) between two monoidal categories is
a functor 𝐅∶ 𝖢 → 𝖣 between the underlying categories that respects the monoidal structure. This means
that there are natural isomorphisms 𝜀∶ 𝐽 → 𝐅(𝐼) and 𝜇∶ 𝐅(−)⊠ 𝐅(=) → 𝐅(−⊗ =) that are associative
and unital.

(𝐅(𝐴)⊠ 𝐅(𝐵))⊠ 𝐅(𝐶) 𝐅(𝐴)⊠ (𝐅(𝐵)⊠ 𝐅(𝐶))

(𝐅(𝐴⊗ 𝐵)⊠ 𝐅(𝐶) 𝐅(𝐴)⊠ 𝐅(𝐵 ⊗ 𝐶))

(𝐅((𝐴⊗ 𝐵)⊗𝐶) 𝐅(𝐴⊗ (𝐵 ⊗ 𝐶))

𝛼𝐅

𝜇⊠𝟙 𝟙⊠𝜇

𝜇 𝜇

𝐅(𝛼)

2.1. MONOIDAL CATEGORIES 9

𝐽 ⊠ 𝐅(𝐴) 𝐅(𝐽)⊠ 𝐅(𝐴)

𝐅(𝐴) 𝐅(𝐼 ⊗ 𝐴)

𝜀⊠𝟙

𝜆𝐅 𝜇

𝐅(𝜆)

𝐅(𝐴)⊠ 𝐽 𝐅(𝐴)⊠ 𝐅(𝐽)

𝐅(𝐴) 𝐅(𝐴⊗ 𝐼)

𝜀⊠𝟙

𝜌𝐅 𝜇

𝐅(𝜌)

Locally small monoidal categories and monoidal functors form a monoidal category𝖬𝗈𝗇𝖢𝖺𝗍 with the Carte-
sian product and the one-object category.

Example 2.3 (The monoidal category of hypergraphs). A hypergraph 𝐺 = (𝑉 ,𝐸, 𝖾𝗇𝖽𝗌) is a set of vertices 𝑉 ,
a set of edges 𝐸 and a function 𝖾𝗇𝖽𝗌∶ 𝐸 → ℘(𝑉)1. A morphism ℎ∶ 𝐺 → 𝐻 of graphs is a pair of functions
ℎ𝑉 ∶ 𝑉𝐺 → 𝑉𝐻 and ℎ𝐸 ∶ 𝐸𝐺 → 𝐸𝐻 that preserve the adjacency relation: ℎ𝐸 � 𝖾𝗇𝖽𝗌𝐻 = 𝖾𝗇𝖽𝗌𝐺 � ℘(ℎ𝑉).
Hypergraphs and their homomorphisms form a monoidal category 𝖴𝖧𝖦𝗋𝖺𝗉𝗁 with the coproduct monoidal
structure where the monoidal product is component-wise disjoint union and the monoidal unit is the empty
graph.

The Coherence Theorem for monoidal categories [Mac78, Section VII.2] states that all well-typed equa-
tions between morphisms constructed only from 𝛼, 𝜆, 𝜌 and the categorical and monoidal structure hold. A
consequence of this result is the Strictification Theorem [Mac78, Section XI.3].

Theorem 2.4 (Strictification [Mac78]). Every monoidal category is monoidally equivalent to a strict one.

The Coherence and Strictification Theorems allow us to forget about associators and unitors when show-
ing equalities between morphisms.
Remark 2.5. Let 𝖢 be a monoidal category, 𝖲 be its strictification and let 𝐇∶ 𝖢 → 𝖲 and 𝐀∶ 𝖲 → 𝖢 be
the strong monoidal functors giving the equivalence between them. The Coherence Theorem gives a unique
natural isomorphism 𝜙𝐴 ∶ 𝐴 ≅ 𝐀(𝐇(𝐴)). For each morphism 𝑓 ∶ 𝐴 → 𝐵 in 𝖢, its image 𝐀(𝐇(𝑓)) does
not necessarily coincide with 𝑓 , but 𝑓 = 𝜙𝐴 � 𝐀(𝐇(𝑓)) � 𝜙−1

𝐵
. This means that, every time we show an

equality 𝑢 = 𝑣 between morphisms 𝑢, 𝑣∶ 𝑋 → 𝑌 in the strictification 𝖲, we can deduce that 𝑓 = 𝑔,
for all objects 𝐴 and 𝐵 and morphisms 𝑓, 𝑔∶ 𝐴 → 𝐵 in 𝖢 such that 𝐇(𝑓) = 𝑢 and 𝐇(𝑔) = 𝑣, because
𝑓 = 𝜙𝐴 �𝐀(𝑢) �𝜙−1

𝐵
= 𝜙𝐴 �𝐀(𝑣) �𝜙−1

𝐵
= 𝑔. In particular, a syntax for strict monoidal categories gives a syntax

for monoidal categories.
Example 2.6 (The monoidal category of monoidal signatures). A monoidal signature Σ = 𝐸 ⇉ 𝑉 ∗ is a
set of types 𝑉 , a set of generators 𝐸, and source and target functions 𝗌, 𝗍∶ 𝐸 → 𝑉 ∗ that associate to
each generator the types of its inputs and outputs. A monoidal signature is one-sorted if 𝑉 contains only
one element. A morphism ℎ∶ Σ → Σ′ of monoidal signatures is a pair of functions ℎ𝑉 ∶ 𝑉 → 𝑉 ′ and
ℎ𝐸 ∶ 𝐸 → 𝐸′ that preserve the inputs and outputs: ℎ𝐸 �𝑠′ = 𝑠 �ℎ∗

𝑉
and ℎ𝐸 � 𝑡′ = 𝑡 �ℎ∗

𝑉
. Monoidal signatures

and their morphisms form amonoidal category𝖬𝗈𝗇𝖲𝗂𝗀wheremonoidal product is disjoint union. This is the
comma category (𝟙 ↓ 𝐋) for the identity functor and the functor 𝐋∶ 𝑉 → 𝑉 ∗ × 𝑉 ∗. One-sorted monoidal
signatures form a full subcategory 𝟣𝖬𝗈𝗇𝖲𝗂𝗀 of𝖬𝗈𝗇𝖲𝗂𝗀.

Given amonoidal signatureΣ, a string diagramoverΣ is obtained by composing sequentially or in parallel
some of the generators in Σ. String diagrams are a convenient and formal syntax for monoidal categories.
More precisely, there is an adjunction between the category𝖬𝗈𝗇𝖲𝗂𝗀 ofmonoidal signatures and the category
𝖬𝗈𝗇𝖢𝖺𝗍 of monoidal categories, where the free monoidal category on a monoidal signature Σ is given by
string diagrams on Σ [JS91, Theorem 1.2]. See Selinger’s survey [Sel11] for an overview of string diagrammatic
calculi.

Theorem 2.7 ([JS91]). String diagrams on a monoidal signature Σ form a strict monoidal category and, in
fact, the free strict monoidal category on Σ.

1We indicate with℘ the covariant powerset functor.

10 CHAPTER 2. BACKGROUND

Symmetric monoidal categories are monoidal categories equipped with processes , the symmetries,
that permute the order of resources. This family of processes is compatible with the monoidal structure,

𝐴⊗ 𝐵

𝐶

𝐶

𝐴⊗ 𝐵
=

𝐴

𝐵

𝐶

𝐶

𝐴

𝐵

and
𝐴

𝐵 ⊗ 𝐶

𝐵 ⊗ 𝐶

𝐴
=

𝐴

𝐵

𝐶

𝐶

𝐴

𝐵

,

it defines a natural transformation,

𝑓

𝑔

𝐴

𝐶

𝐷

𝐵
=

𝑓

𝑔𝐴

𝐶

𝐷

𝐵
,

and it is an isomorphism,
𝐴

𝐵

𝐴

𝐵
=

𝐴

𝐵

𝐴

𝐵
.

Definition 2.8. A braided monoidal category is a monoidal category (𝖢, ⊗, 𝐼) with a natural isomorphism
𝜎 ∶ (−⊗ =) → (= ⊗−) that is compatible with the monoidal product.

𝐴⊗ (𝐵 ⊗ 𝐶) (𝐴⊗ 𝐵)⊗𝐶

𝐴⊗ (𝐶 ⊗ 𝐵) 𝐶 ⊗ (𝐴⊗ 𝐵)

(𝐴⊗ 𝐶)⊗𝐵 (𝐶 ⊗ 𝐴)⊗𝐵

𝛼

𝟙⊗𝜎𝐵,𝐶 𝜎𝐴⊗𝐵,𝐶

𝛼 𝛼

𝜎𝐴,𝐶⊗𝟙

(𝐴⊗ 𝐵)⊗𝐶 𝐴⊗ (𝐵 ⊗ 𝐶)

(𝐵 ⊗𝐴)⊗𝐶 (𝐵 ⊗ 𝐶)⊗𝐴

𝐵 ⊗ (𝐴⊗ 𝐶) 𝐵 ⊗ (𝐶 ⊗ 𝐴)

𝛼−1

𝜎𝐴,𝐵⊗𝟙 𝜎𝐴,𝐵⊗𝐶

𝛼−1 𝛼−1

𝟙⊗𝜎𝐴,𝐶

A braided monoidal category is symmetric if the inverse of 𝜎𝐴,𝐵 is 𝜎𝐵,𝐴.

Example 2.9. The monoidal category of graphs is symmetric with the obvious isomorphism lifted from the
category 𝖲𝖾𝗍 of sets and functions.

Symmetric monoidal functors are monoidal functors that preserve the symmetries.

Definition 2.10. A braided monoidal functor 𝐅∶ 𝖢 → 𝖣 between braided monoidal categories (𝖢, ⊗, 𝐼) and
(𝖣,⊠, 𝐽) is a monoidal functor that respects the braiding.

𝐅(𝐴)⊠ 𝐅(𝐵) 𝐅(𝐵)⊠ 𝐅(𝐴)

𝐅(𝐴⊗ 𝐵) 𝐅(𝐵 ⊗𝐴)

𝜎𝐅

𝜇 𝜇

𝐅(𝜎)

A symmetric monoidal functor is a braided monoidal functor between symmetric monoidal categories. Lo-
cally small symmetric monoidal categories and symmetric monoidal functors form a symmetric monoidal
category 𝖲𝗒𝗆𝖬𝗈𝗇𝖢𝖺𝗍.

Coherence for symmetricmonoidal categories [Mac78, Section XI.1] ensures that all well-typed equations
between morphisms that have the same underlying permutation and are constructed only from 𝛼, 𝜆, 𝜌, 𝜎

2.1. MONOIDAL CATEGORIES 11

and the categorical and monoidal structure hold. The strictification 𝖲 of a symmetric monoidal category 𝖢 is
also symmetric and the symmetry on 𝖲 is defined as

𝐴⊗ 𝐵 ≅ 𝐇(𝐀(𝐴⊗ 𝐵))
𝐇𝜇−1

→ 𝐇(𝐀(𝐴)⊗ 𝐀(𝐵))
𝐇𝜎𝐀
→ 𝐇(𝐀(𝐵)⊗ 𝐀(𝐴))

𝐇𝜇
→ 𝐇(𝐀(𝐵 ⊗𝐴)) ≅ 𝐵 ⊗𝐴 .

Given a monoidal signature Σ, a string diagram with symmetries over that signature is a string diagram
over Σwhere wires are allowed to be permuted. String diagrams with symmetries are a convenient and for-
mal syntax for symmetric monoidal categories. More precisely, there is an adjunction between the category
𝖬𝗈𝗇𝖲𝗂𝗀 of monoidal signatures and the category 𝖲𝗒𝗆𝖬𝗈𝗇𝖢𝖺𝗍 of symmetric monoidal categories, where the
free symmetric monoidal category on a monoidal signature Σ is given by string diagrams with symmetries
over Σ [JS91, Theorem 2.3].

Theorem 2.11 ([JS91]). String diagrams with symmetries on a monoidal signature Σ form a symmetric strict
monoidal category and, in fact, the free symmetric strict monoidal category on Σ.

Props and finitely presented props

When a process theory only has one resource or there is no interest in recording the distinction between
the resources, the only relevant information about the inputs and outputs of processes is their number.
Props [Mac65] provide an algebra for these “untyped” process theories. They are symmetric strict monoidal
categories where the objects are natural numbers and morphisms 𝑛→ 𝑚 represent processes with 𝑛 inputs
and 𝑚 outputs.

Definition 2.12. A prop is a symmetric strict monoidal category whose objects are natural numbers, the
monoidal product on them is addition and monoidal unit is 0.

Example 2.13. The skeleton of the category 𝖥𝗂𝗇𝖲𝖾𝗍 of finite sets and functions is a prop.

Definition 2.14. A homomorphismof props is an identity-on-objects symmetric strictmonoidal functor. Props
and their homomorphisms form a category 𝖯𝗋𝗈𝗉 that is a subcategory of 𝖲𝗒𝗆𝖬𝗈𝗇𝖢𝖺𝗍.

Some props can be presented by a finite set of generators because the adjunction between monoidal
signatures and symmetricmonoidal categories restricts to an adjunction between the category of one-sorted
monoidal signatures 𝟣𝖬𝗈𝗇𝖲𝗂𝗀 and the category 𝖯𝗋𝗈𝗉 of props. As a consequence, the morphisms of free
props are one-sorted string diagrams with symmetries.

Some theories impose equations on their processes. For example, multiplying by the neutral element
needs to return the input as it is, so the theory of commutative monoids, in Figure 2.1, is presented by two
generators, themultiplication ∶ 2 → 1 and the unit ∶ 0 → 1, subject to equations that ensure unitality,
associativity and commutativity. Formally, this prop is a coequaliser: if we indicate with𝖬0 the free prop on
the generators { , }, with 𝖤 the free prop on three generators {𝑢∶ 1 → 1, 𝑎∶ 3 → 1, 𝑐 ∶ 2 → 1}, and
with 𝐥, 𝐫 ∶ 𝖤 → 𝖬0 the prop morphisms that point to the left- and right-hand sides of the three equations in
Figure 2.1,

𝐥(𝑢)∶= 𝐫(𝑢)∶=

𝐥(𝑎)∶= 𝐫(𝑎)∶=

𝐥(𝑐)∶= 𝐫(𝑐)∶=

12 CHAPTER 2. BACKGROUND

the prop that gives the theory of commutative monoids𝖬 is the coequaliser of 𝐥 and 𝐫 in 𝖯𝗋𝗈𝗉:

𝖤
𝐥,𝐫
⇉ 𝖬0

𝐪
→ 𝖬 .

Example 2.15 ([Lac04]). The skeleton of the category 𝖥𝗂𝗇𝖲𝖾𝗍 of finite sets and functions is presented by a
commutative monoid (Figure 2.1).

= = =

Figure 2.1: Generators and equations for a monoid.

Any prop 𝖲 contains the initial prop 𝖯𝟢 of permutations as subprop. This determines two propmorphisms
𝐥∶ 𝖯𝟢⊗𝖲 → 𝖲 and 𝐫 ∶ 𝖲⊗𝖯𝟢 → 𝖲 by pre- and post-composition because 𝖯𝟢 ≅ 𝖯𝟢

𝗈𝗉. The composition 𝖲⊗𝖯𝟢
𝖳

of two props 𝖲 and 𝖳 is the coequaliser of 𝟙𝖲 ⊗ 𝐥 and 𝐫 ⊗ 𝟙𝖳.

𝖲⊗ 𝖯𝟢 ⊗ 𝖳
𝟙⊗𝐥,𝐫⊗𝟙
⇉ 𝖲⊗ 𝖳 → 𝖲⊗𝖯𝟢

𝖳

Composite props are characterised by factorisations of their morphisms. This result will be useful to show
the syntactic presentations of the props in Section 4.3.

Theorem 2.16 ([Lac04, Theorem 4.6]). Let 𝖱, 𝖲 and𝖳 be props with propmorphisms 𝜄𝖲 ∶ 𝖲 → 𝖱 and 𝜄𝖳 ∶ 𝖳 →
𝖱. Suppose that any morphism 𝑟∶ 𝑚 → 𝑛 in 𝖱 can be written as a composition 𝑟 = 𝜄𝖲(𝑠) � 𝜄𝖳(𝑡) for some
𝑠∶ 𝑚 → 𝑝 in 𝖲 and some 𝑡∶ 𝑝 → 𝑛 in 𝖳, uniquely up to permutations 𝜎 ∶ 𝑝 → 𝑝. Then, 𝖱 is the composite of
𝖲 and 𝖳 via a distributive law 𝜆∶ 𝖳⊗𝖯𝟢

𝖲 → 𝖲⊗𝖯𝟢
𝖳 that associates to a pair (𝑡 ∣ 𝑠) the pair (�̂� ∣ 𝑡), where

𝜄𝖲(�̂�) � 𝜄𝖳(𝑡) is the unique factorisation of 𝜄𝖳(𝑡) � 𝜄𝖲(𝑠).

As explained in detail in Zanasi’s PhD thesis [Zan15, Proposition 2.27], when composing finitely presented
props, the distributive law 𝜆 gives the additional equations that determine the composite theory: for each
pair (𝑡 ∣ 𝑠) in 𝖳⊗𝖯𝟢

𝖲, we add the equation 𝜄𝖳(𝑡) � 𝜄𝖲(𝑠) = 𝜄𝖲(�̂�) � 𝜄𝖳(𝑡). In other words, the composed prop
𝖲⊗𝖯𝟢

𝖳 is the coequaliser

𝖳⊗𝖯𝟢
𝖲
𝐥,𝐫
⇉ 𝖲 + 𝖳 ⤏ 𝖲⊗𝖯𝟢

𝖳

of the prop morphisms 𝐥 and 𝐫 defined by

𝐥(𝑡 ∣ 𝑠)∶= 𝜄𝖳(𝑡) � 𝜄𝖲(𝑠) and 𝐫(𝑡 ∣ 𝑠)∶= 𝜄𝖲(�̂�) � 𝜄𝖳(𝑡) .

Coproducts of props are particular cases of prop compositions where the distributive law does not add
any extra equation: the set of equations of the coproduct of two props is the disjoint union of the sets of
equations of the components.

Proposition 2.17 ([Zan15, Proposition 2.11]). Let 𝖯1 and 𝖯2 be two props presented by generators and equa-
tions (Σ1, 𝐸1) and (Σ2, 𝐸2). Then, their coproduct 𝖯1 +𝖯2 is presented by the disjoint union of the generators
and equations of 𝖯1 and 𝖯2, (Σ1 ⊔ Σ2, 𝐸1 ⊔ 𝐸2).

2.2. GRAPH COMPLEXITY MEASURES 13

2.2 Graph complexity measures
Several important applications of model checking reduce to deciding whether a formula 𝜙 is true in a graph
or, more generally, in a relational structure 𝐺.

𝐺 ⊧ 𝜙

This problem is hard in general, even when the formula 𝜙 is fixed. For example, for monadic second order
logic and every level Σ𝑃𝑖 of the polynomial hierarchy, there are formulae and classes of structures that make
themodel checking problem complete for Σ𝑃𝑖 [MP96]. However, when the input graph is structurally simple,
monadic second order formulae can be checked efficiently.

The structural complexity of graphs may be measured in different ways and different measures may de-
fine different classes of “simple” graphs. Tree width and clique width are some of themost famousmeasures
of this kind: classes of graphs with bounded clique width might not have bounded tree width. This section
recalls these graph complexity measures and two equivalent ones, while the next shows how they serve the
design of efficient model checking algorithms.

All these graph widths rely on a corresponding notion of decomposition that indicates how graphs can
be split in smaller subgraphs according to some specific rules. There may be different decompositions of the
same graph and some of them may be more efficient than others. The width of a graph is the complexity of
the most efficient decompositions.

We recall the definitions of graphs, hypergraphs and relational structures.

Definition 2.18. An undirected (multi-)hypergraph𝐺 = (𝑉 ,𝐸, 𝖾𝗇𝖽𝗌) is determined by a function 𝖾𝗇𝖽𝗌∶ 𝐸 →
℘(𝑉) that assigns to each edge 𝑒 ∈ 𝐸 a set of vertices 𝖾𝗇𝖽𝗌(𝑒) ⊆ 𝑉 , the endpoints of 𝑒. An undirected
(multi-)graph is a hypergraph where all the edges have at most two endpoints.

Note that, with this definition, edges in a hypergraph can have multiple endpoints or none, and there
can be parallel edges between the same vertices.

Relational structures can be described as generalised hypergraphs where the vertices can be connected
by different “types” of edges. A relational signature fixes a set of types for the edges.

Definition 2.19. A relational signature is a set 𝜏 of relational symbols with a specified arity 𝛼∶ 𝜏 → ℕ.

We will write finite relational signatures as sets of pairs 𝜏 = {(𝑅1, 𝛼1),… , (𝑅𝑛, 𝛼𝑛)}, where 𝛼𝑖∶= 𝛼(𝑅𝑖).
Example 2.20. The relational signature for graphs contains a single relation of arity 2, 𝜏𝑔𝑟 = {(𝐸, 2)}, that
specifies which vertices are connected by an edge, while that for hypergraphs contains a relation for each
arity 𝑛, 𝜏ℎ𝑦𝑝 = {(𝐸𝑛, 𝑛) ∶ 𝑛 ∈ ℕ}, that specify which sets of vertices are connected by a hyperedge.

Definition 2.21. For a relational signature 𝜏, a relational 𝜏-structure 𝐺 is a set 𝑉 of vertices with an 𝛼𝑅-ary
relation 𝑅𝐺 ⊆ 𝑉 𝛼𝑅 for each relational symbol 𝑅 of arity 𝛼𝑅 in the signature 𝜏.

Example 2.22. Graphs and hypergraphs can be encoded as relational structures for the signatures 𝜏𝑔𝑟 and
𝜏ℎ𝑦𝑝 defined in Example 2.20. In principle, relational symbols are ordered, but we can restrict to unordered
relational structures.

While we will work with relational structures, we focus on hypergraphs for defining graph decomposi-
tions. This distinction does not matter because tree and branch decompositions do not depend on the labels
of the relational structures or on the order in which the vertices are related by a relational symbol. In fact,
the tree and branch widths of a relational structure coincide with the tree and branch widths of its underly-
ing hypergraph. We fix some graph theoretic nomenclature. Trees and, in particular, subcubic trees are part
of the data of tree and branch decompositions.

14 CHAPTER 2. BACKGROUND

Definition 2.23. Two distinct vertices 𝑣,𝑤 ∈ 𝑉 are neighbours in a hypergraph𝐺 if they are both endpoints
of the same edge 𝑒 ∈ 𝐸, 𝑣,𝑤 ∈ 𝖾𝗇𝖽𝗌(𝑒). A path in 𝐺 is a sequence of vertices (𝑣1,… , 𝑣𝑛) with a sequence
of distinct hyperedges (𝑒1,… , 𝑒𝑛−1) such that 𝑣𝑖, 𝑣𝑖+1 ∈ 𝖾𝗇𝖽𝗌(𝑒𝑖) are both endpoints of the hyperedge 𝑒𝑖, for
every 𝑖 = 1,… , 𝑛 − 1. A cycle in 𝐺 is a path where the first vertex 𝑣1 coincides with the last one 𝑣𝑛.

Definition 2.24. A hypergraph is connected if there is a path between any two vertices. A tree is a connected
acyclic graph. A subcubic tree is a tree where every vertex has at most three neighbours. Vertices with one
neighbour are the leaves.

Tree width and branch width

Treewidth and branchwidth are equivalent graph complexitymeasureswhich, intuitively, measure how tree-
like a graph is. This section recalls tree width and branch width for undirected multi-hypergraphs, which we
will simply call hypergraphs.

Tree width. Tree width, introduced by Robertson and Seymour [RS86, Section 1], measures the structural
complexity of relational structures by comparing their structure to trees. In fact, forests have tree width 2,
while the family of cliques has unbounded tree width. Tree width is based on tree decompositions, which
specify a way of aggregating the vertices of a graph in a tree shape. This information is recorded in a tree
whose nodes are labelled by sets of vertices in the graph, called bags. The conditions on the bags ensure
that they respect the shape of the tree.

Definition 2.25. A tree decomposition of a hypergraph 𝐺 = (𝑉 ,𝐸) is a pair (𝑌 , 𝑡) of a tree 𝑌 and a function
𝑡∶ 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝑌) → ℘(𝑉) such that:
1. Every vertex 𝑣 is in at least one of the bags 𝑡(𝑖),

⋃
𝑖∈𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝑌) 𝑡(𝑖) = 𝑉 .

2. For every edge 𝑒 ∈ 𝐸 there is a node 𝑖 ∈ 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝑌)whose bag 𝑡(𝑖) contains all the endpoints 𝖾𝗇𝖽𝗌(𝑒) of
𝑒.

3. The subgraphs induced by the bags are glued in a tree shape, i.e. the intersection of any two bags 𝑡(𝑖)
and 𝑡(𝑘) is contained in all the bags 𝑡(𝑗) corresponding to nodes 𝑗 ∈ 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝑌) that are on the path
between 𝑖 and 𝑘 on the tree 𝑌 .

A tree decomposition of a relational 𝜏-structure is a tree decomposition of its underlying undirected hyper-
graph.

Example 2.26. A tree decomposition of a hypergraph 𝐺 = (𝑉 ,𝐸) is a tree 𝑌 with a labelling 𝑡 of its nodes.
Every node 𝑖 ∈ 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝑌) induces the subgraph 𝐺[𝑡(𝑖)] of 𝐺 on the bag 𝑡(𝑖). We draw the decomposition
(𝑌 , 𝑡) as a tree where the nodes are bubbles containing the subgraphs 𝐺[𝑡(𝑖)] of 𝐺 induced by the bags 𝑡(𝑖).

𝐺 = (𝑌 , 𝑡) =

The width of a tree decomposition (𝑌 , 𝑡) of a graph 𝐺 is the number of vertices in the biggest bag. Intu-
itively, it is the maximum number of vertices that need to be “hidden” in a bag to obtain a tree shape from
the graph. The cost of the decomposition in Example 2.26 is 3 as all the bags contain three vertices. Different
decompositions can have different widths, but the tree width of a graph is the width of a minimal one.

2.2. GRAPH COMPLEXITY MEASURES 15

Definition 2.27. Given a tree decomposition (𝑌 , 𝑡) of a graph 𝐺, its width is the maximum cardinality of its
bags, 𝗐𝖽(𝑌 , 𝑡)∶= max𝑖∈𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝑌) |𝑡(𝑖)|. The tree width of 𝐺 is given by the min-max formula:

𝗍𝗐𝖽(𝐺)∶= min
(𝑌 ,𝑡)

𝗐𝖽(𝑌 , 𝑡).

Note that Robertson and Seymour subtract 1 from 𝗍𝗐𝖽(𝐺) so that trees have tree width 1. To minimise
bureaucratic overhead, we ignore this and, according to this convention, trees and forests have tree width
2, while the clique on 𝑛 vertices has tree width n.

Remark 2.28. The Gaifman graph of a hypergraph is the graph obtained by replacing every hyperedge with
𝑛 endpoints by an 𝑛-clique. The tree width of a hypergraph is the same as the tree width of its Gaifman graph
because the tree width of an 𝑛-clique and the tree width of a hypergraph on 𝑛 vertices that are all connected
by a single edge are both 𝑛.

Branch width. Branch width was introduced by Robertson and Seymour as alternative to tree width [RS91,
Section 4]. While a tree decomposition splits a graph into subgraphs, a branch decomposition imposes that
these subgraphs contain only one edge. Intuitively, this should not matter. In fact, the corresponding com-
plexity measure, branch width, is equivalent to tree width.

Definition 2.29. The hyperedge size of a relational 𝜏-structure 𝐺 is the maximum arity of the relations with
non-empty interpretation: 𝛾(𝐺)∶= max𝑅𝐺≠∅ 𝛼𝑅. The hyperedge size of a relational signature 𝜏 is the maxi-
mum arity of its symbols: 𝛾(𝜏)∶= max𝑅∈𝜏 𝛼𝑅.

Theorem 2.30 ([RS91, Theorem 5.1]). Branch width is equivalent to tree width. More precisely, for a hyper-
graph 𝐺,

max{𝖻𝗐𝖽(𝐺), 𝛾(𝐺)} ≤ 𝗍𝗐𝖽(𝐺) ≤ max{3
2
𝖻𝗐𝖽(𝐺), 𝛾(𝐺), 1} .

A branch decomposition is a tree where the leaves are in bijection with the edges of the graph. If this
tree had a root, a branch decomposition would be a recipe for successively splitting the graph in two parts
along its vertices until both parts contain only one edge.

Definition 2.31. A branch decomposition of a hypergraph 𝐺 = (𝑉 ,𝐸) is a pair (𝑌 , 𝑏) of a subcubic tree 𝑌
and a bijection 𝑏∶ 𝗅𝖾𝖺𝗏𝖾𝗌(𝑌) ≅ 𝐸 between the leaves of 𝑌 and the edges of 𝐺. A branch decomposition of
a relational 𝜏-structure is a branch decomposition of its underlying hypergraph.

Example 2.32. If we choose an edge of 𝑌 to be the starting point of the decomposition, we can extend the
labelling to the internal vertices of the tree by labelling them with the gluing of the labels of their children.
In this way, a branch decomposition is a way of splitting a graph by cutting along its vertices.

𝐺 = (𝑌 , 𝑏) =

16 CHAPTER 2. BACKGROUND

Each splitting of the graph cuts along some vertices, as shown in Example 2.32 and each edge 𝑒 in the
tree 𝑌 determines a splitting of the graph. More precisely, it determines a 2-partition of the leaves of 𝑌 ,
which, through 𝑏, determines a 2-partition {𝐴𝑒, 𝐵𝑒} of the edges of𝐺. This corresponds to a splitting of the
graph 𝐺 into two subgraphs 𝐺1 and 𝐺2. Intuitively, the order of an edge 𝑒 is the number of vertices that 𝐺1
and 𝐺2 have in common as subgraphs of 𝐺. Given the partition {𝐴𝑒, 𝐵𝑒} of the edges of 𝐺, we say that a
vertex 𝑣 of 𝐺 separates 𝐴𝑒 and 𝐵𝑒 whenever there are an edge in 𝑥 ∈ 𝐴𝑒 and an edge in 𝑦 ∈ 𝐵𝑒 that are
both adjacent to 𝑣: 𝑣 ∈ 𝖾𝗇𝖽𝗌(𝐴𝑒) ∩ 𝖾𝗇𝖽𝗌(𝐵𝑒).

Definition 2.33. The order of an edge 𝑒 in a branch decomposition (𝑌 , 𝑏) of a hypergraph 𝐺 is the number
of vertices that separate 𝐴𝑒 and 𝐵𝑒: 𝗈𝗋𝖽(𝑒)∶= |𝖾𝗇𝖽𝗌(𝐴𝑒) ∩ 𝖾𝗇𝖽𝗌(𝐵𝑒)|.

In Example 2.32, there is only one vertex separating the first two subgraphs of the decomposition. This
means that the corresponding edge in the decomposition tree has order 1. The width of a decomposition
is the maximum number of vertices in all cuts. The branch width of a graph is the width of a most efficient
decomposition.

Definition 2.34. The width of a branch decomposition (𝑌 , 𝑏) of a hypergraph 𝐺 = (𝑉 ,𝐸) is the maximum
order of its edges, 𝗐𝖽(𝑌 , 𝑏)∶= max𝑒∈𝖾𝖽𝗀𝖾𝗌(𝑌) 𝗈𝗋𝖽(𝑒). The branch width of a hypergraph 𝐺 is given by the
min-max formula:

𝖻𝗐𝖽(𝐺)∶= min
(𝑌 ,𝑏)

𝗐𝖽(𝑌 , 𝑏) .

Clique width and rank width

Clique width and rank width are equivalent graph complexity measures that are “stronger” than tree width
and branch width: every graph of bounded tree width has bounded clique width but vice-versa is not true.
This section recalls clique width and rank width for undirected multi-graphs.

Clique width. In the same way that trees are simple according to tree width, cliques, and cographs more
generally, are simple according to clique width. Clique decompositions, introduced by Courcelle, Engelfriet
and Rozenberg [CER93; CO00], have a more algebraic flavour compared to the combinatorial definitions of
tree and branch decompositions. They are terms formed by some operations and constants that specify
a graph where the vertices have labels. The operations can rename the labels, create edges and take the
disjoint union of graphs. The constants create a single 1-labelled vertex or the empty graph.

Definition 2.35. An 𝑛-labelled graph (𝐺, 𝑙) is a graph𝐺 = (𝐸, 𝑉)with a labelling function 𝑙∶ 𝑉 → {1,… , 𝑛}.
• The generating graphs are the 1-labelled empty graph, ∅1, and the graph 𝗏1with a single 1-labelled vertex.
• The renaming of labels 𝖱𝖾𝗇𝖺𝗆𝖾𝑛𝑖→𝑗 of an 𝑛-labelled graph (𝐺, 𝑙) is the graph (𝐺, 𝑙′), where the vertices
with label 𝑖 now have label 𝑗: 𝑙′(𝑣) = 𝑙(𝑣) if 𝑙(𝑣) ≠ 𝑖 and 𝑙′(𝑣) = 𝑗 if 𝑙(𝑣) = 𝑖.

• The edge creation 𝖤𝖽𝗀𝖾𝑛𝑖,𝑗 of an 𝑛-labelled graph (𝐺, 𝑙) is the 𝑛-labelled graph (𝐺′, 𝑙) with extra edges
between the vertices with label 𝑖 and those with label 𝑗.

• The disjoint union + of an 𝑛-labelled graph (𝐺, 𝑙) and an 𝑛′-labelled graph (𝐺′, 𝑙′) is the 𝑛 + 𝑛′-labelled
graph (𝐺 + 𝐺′, 𝑙 + 𝑙′) given by the disjoint union of graphs and their labelling functions. Note that the
labelling function 𝑙 + 𝑙′ reindexes the labels of 𝐺′: 𝑙 + 𝑙′(𝑣′)∶= 𝑛 + 𝑙′(𝑣) for a vertex 𝑣′ of 𝐺′, while
𝑙 + 𝑙′(𝑣)∶= 𝑙(𝑣) for a vertex 𝑣 of 𝐺.

Our treatment of labels slightly differs from the one in [CO00] but equivalent to it up to renaming of la-
bels, and it is closer to the categorical algebra that we will introduce in Section 4.3. To be precise, we should
define separately the syntactic operations and their semantics, but, for brevity, we presented them together.

2.2. GRAPH COMPLEXITY MEASURES 17

In Section 4.3, we will derive these operations from compositions and monoidal product in a monoidal cate-
gory where graphs are morphisms. There, the difference between the syntactic operations and the semantic
ones is clear: they belong to different, but equivalent, monoidal categories.

A clique decomposition is a syntax tree where the internal nodes are the operations and the leaves are
the constants in Definition 2.35.

Definition 2.36. A clique decomposition 𝑡 ∈ 𝑇𝐺 of a graph 𝐺 is a term constructed with the operations and
constants in Definition 2.35.

𝑡 ∶∶= (𝐺) if 𝐺 = ∅1 or 𝐺 = 𝗏1
∣ 𝖱𝖾𝗇𝖺𝗆𝖾𝑛𝑖→𝑗(𝑡

′) if 𝐺 = 𝖱𝖾𝗇𝖺𝗆𝖾𝑛𝑖→𝑗(𝐺
′) and 𝑡′ ∈ 𝑇𝐺′

∣ 𝖤𝖽𝗀𝖾𝑛𝑖,𝑗(𝑡′) if 𝐺 = 𝖤𝖽𝗀𝖾𝑛𝑖,𝑗(𝐺′) and 𝑡′ ∈ 𝑇𝐺′

∣ 𝑡1 + 𝑡2 if 𝐺 = 𝐺1 + 𝐺2 and 𝑡𝑖 ∈ 𝑇𝐺𝑖

Example 2.37. The 1-labelled 4-clique is expressed by the term

𝖱𝖾𝗇𝖺𝗆𝖾22→1𝖤𝖽𝗀𝖾
2
1,2(𝖱𝖾𝗇𝖺𝗆𝖾33→2𝖤𝖽𝗀𝖾

3
2,3(𝖱𝖾𝗇𝖺𝗆𝖾44→3𝖤𝖽𝗀𝖾

4
3,4(𝗏1 + 𝗏1 + 𝗏1 + 𝗏1))) ,

that creates 4 vertices and progressively adds edges between them, or by the (simpler) term

𝖱𝖾𝗇𝖺𝗆𝖾22→1𝖤𝖽𝗀𝖾
2
1,2(𝗏1 + 𝖱𝖾𝗇𝖺𝗆𝖾22→1𝖤𝖽𝗀𝖾

2
1,2(𝗏1 + 𝖱𝖾𝗇𝖺𝗆𝖾22→1𝖤𝖽𝗀𝖾

2
1,2(𝗏1 + 𝗏1))) ,

that creates one vertex at a time and adds the edges between each new vertex and all the previous ones.

Assigning a cost to each operation inductively determines a cost for decompositions. The cost of an
operation is, intuitively, the number of labels that it needs to handle.

Definition 2.38. We assign a cost to each operation, 𝗐(𝖱𝖾𝗇𝖺𝗆𝖾𝑛𝑖→𝑗)∶= 𝑛, 𝗐(𝖤𝖽𝗀𝖾
𝑛
𝑖,𝑗)∶= 𝑛 and 𝗐(+)∶= 0.

The width of a clique decomposition 𝑡 of 𝐺 is the maximum cost of its operations.

𝗐𝖽(𝑡) ∶= |𝑉𝐺| if 𝑡 = (𝐺)
∣ max{𝑛,𝗐𝖽(𝑡′)} if 𝑡 = 𝖤𝖽𝗀𝖾𝑛𝑖,𝑗(𝑡′) or 𝑡 = 𝖱𝖾𝗇𝖺𝗆𝖾𝑛𝑖→𝑗(𝑡′)
∣ max{𝗐𝖽(𝑡1),𝗐𝖽(𝑡2)} if 𝑡 = 𝑡1 + 𝑡2

The clique width of a graph 𝐺 is the width of a best clique decomposition:

𝖼𝗅𝗐𝖽(𝐺)∶= min
𝑡∈𝑇𝐺

𝗐𝖽(𝑡) .

As with the other graph widths, the clique width of a graph is the cost of a cheapest decomposition. The
first term in Example 2.37 costs 4, while the second costs 2 and gives a cheapest decomposition. In fact, in
general, cliques (and cographs) have clique width 2, trees have clique width at most 3 [CO00], while 𝑛-grids
have clique width 𝑛 + 1 [GR00].

Rank width. Rank width and rank decompositions were introduced by Oum and Seymour to approximate
clique width [Oum05; OS06]. In fact, the two measures are equivalent.

Theorem2.39 ([OS06, Proposition 6.3]). Rankwidth is equivalent to cliquewidth. More precisely, for a graph
𝐺,

𝗋𝗐𝖽(𝐺) ≤ 𝖼𝗅𝗐𝖽(𝐺) ≤ 2𝗋𝗐𝖽(𝐺)+1 − 1 .

18 CHAPTER 2. BACKGROUND

Rank decompositions are similar in spirit to branch decompositions, but, instead of partitioning the edges
of a graph, they partition their vertices. A rank decomposition of a graph 𝐺 = (𝑉 ,𝐸) is a tree where the
leaves are in bijection with the vertices 𝑉 of the graph. If this tree had a root, a rank decomposition would
be a recipe for successively splitting the graph in two parts along its edges until both parts contain only one
vertex.

Definition 2.40. A rank decomposition of a graph 𝐺 is a pair (𝑌 , 𝑟) of a subcubic tree 𝑌 and a bijection
𝑟∶ 𝗅𝖾𝖺𝗏𝖾𝗌(𝑌) → 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝐺).

Example 2.41. While a branch decomposition cuts a graph along its vertices (Example 2.32), a rank decom-
position is, intuitively, a recipe for decomposing a graph into its single-vertex subgraphs by cutting along its
edges.

The cost of each cut is given by the rank of the adjacency matrix that represents it. The matrix below corre-
sponds to the cut in the decomposition above indicated by the arrow.

𝗋𝗄
(1 1
1 1

)
= 1

Each edge 𝑏 in the tree 𝑌 determines a splitting of the graph: it determines a two partition of the leaves
of 𝑌 , which, through 𝑟, determines a two partition {𝐴𝑏, 𝐵𝑏} of the vertices of 𝐺. This corresponds to a
splitting of the graph 𝐺 into two subgraphs 𝐺1 and 𝐺2. Intuitively, the order of an edge 𝑏 is the amount of
information required to recover 𝐺 by joining 𝐺1 and 𝐺2. Given the partition {𝐴𝑏, 𝐵𝑏} of the vertices of 𝐺,
we can record the edges in 𝐺 beween 𝐴𝑏 and 𝐵𝑏 in a matrix 𝑋𝑏. This means that, if 𝑣𝑖 ∈ 𝐴𝑏 and 𝑣𝑗 ∈ 𝐵𝑏,
the entry (𝑖, 𝑗) of the matrix𝑋𝑏 is the number of edges between 𝑣𝑖 and 𝑣𝑗 . The order of an edge 𝑏 is the rank
of its corresponding matrix𝑋𝑏.

Definition 2.42. The order of 𝑏 is the rank of the matrix𝑋𝑏 of the cut corresponding to 𝑏: 𝗈𝗋𝖽(𝑏)∶= 𝗋𝗄(𝑋𝑏).

The cut shown in Example 2.41 corresponds to the edge indicated by the arrow. The order of this edge is
1, which is the rank of thematrix recording the cut. The width of a decomposition is themaximal edge order,
and the rank width is the width of the most efficient decomposition. The complete graph on 4 vertices has
rank width 1 with minimal decomposition shown in Example 2.41.

Definition 2.43. The width of a rank decomposition (𝑌 , 𝑟) of a graph 𝐺 is the maximum order of its edges,
𝗐𝖽(𝑌 , 𝑟)∶= max𝑏∈𝖾𝖽𝗀𝖾𝗌(𝑌) 𝗈𝗋𝖽(𝑏). The rank width of a graph 𝐺 is given by the min-max formula:

𝗋𝗐𝖽(𝐺)∶= min
(𝑌 ,𝑟)

𝗐𝖽(𝑌 , 𝑟) .

The decomposition in Example 2.41 shows that the 4-clique has rank width 1. This holds for 𝑛-cliques in
general and they all have rank width 1. As for clique width, the class of grids have unbounded rank width
because the 𝑛-grid has rank width 𝑛 − 1 [Jel10].

2.3. DIVIDE-AND-CONQUER ALGORITHMS 19

2.3 Divide-and-conquer algorithms
Divide-and-conquer algorithms rely on the possibility of splitting, or decomposing, their inputs into smaller
parts according to a given set of operations. The decompositions defined in this section resemble clique de-
compositions in that they are terms expressing a certain algebraic structure. The advantage of having a term
expressing an input structure is that they give a divide-and-conquer algorithm: a “brute-force” algorithm
runs on the generating structures to compute partial solutions and these partial solutions are combined ac-
cording to the decomposition structure. When combining partial solutions is computationally easy and the
term expression for the input structure is simple, the divide-and-conquer algorithm is efficient. Problems
solved by such divide-and-conquer algorithms are fixed-parameter tractable: they can be quickly solved if
the term that expresses the input structure has bounded complexity.

This section presents a general technique [CM02; Mak04] for finding divide-and-conquer algorithms for
checking formulae of a chosen logic on relational structures and how to apply it to the case of monadic
second order logic to obtain Courcelle’s theorems for tree width [Cou92a] and clique width [CO00].

Checking formulae on relational structures

The problem of checking formulae of a given logic on relational structures is fixed-parameter tractable under
two conditions.
1. There is a finite set of generating structures and, for each 𝑘 ∈ ℕ, a finite set of operations 𝑘 to express

relational structures of width at most 𝑘.
2. A preservation theorem holds for the chosen operations.
Given some operations and some generating structures, the well-formed terms express relational structures
(Definitions 2.47 and 2.48). With Requirement 1, we define the width of a relational structure, which is
the fixed parameter for the divide-and-conquer algorithm (Definition 2.49). Requirement 2, on the other
hand, ensures that the theory of a composite structure can be computed from the theory of the component
structures as in Definition 2.46. Assembling the theories of the components amounts to looking up the
entries of a table (Definition 2.51) and evaluating a boolean function (Definition 2.45). These tasks do not
depend on the relational structure but only on the given logic and can be restricted to check one given
formula on the composite structure instead of computing its whole theory. The computation of the look-up
table depends on the width of terms and on the initial formula.

Under these conditions running the divide-and-conquer algorithm for a fixed formula depends linearly on
the size of the input term but more than exponentially on the width parameter, and the problem of checking
a formula on a term for a relational structure is fixed-parameter tractable with parameter the width of input
terms (Theorem 2.52).

For the rest of this section, we fix a logic, and consider the class of formulae(𝜏) of all those sentences
that can be written in  using the relational symbols in 𝜏. We will write (𝜏, 𝑥) for the set of formulae that
can be written in  using the relational symbols in 𝜏 and with free variables in 𝑥. The theory of a relational
structure 𝐺 in a logic  is the set of sentences in (𝜏) that are true in 𝐺.

Definition 2.44. For a relational signature 𝜏, the theory of a set of relational 𝜏-structures in a logic is the
set of sentences in the logic (𝜏) that is true in every 𝜏-structure 𝐺 ∈ : 𝖳𝗁(𝜏)()∶= {𝜙 ∈ (𝜏) ∶ ∀𝐺 ∈
 𝐺 ⊧ 𝜙}. When the set contains only one structure, we write 𝖳𝗁(𝜏)(𝐺)∶= 𝖳𝗁(𝜏)({𝐺}).

Given an operation 𝑜 and a formula, it is sometimes possible to compute a sequence of formulae, called
their reduction sequence, whose truth values on components 𝐺1,… , 𝐺𝑛 determine the truth value of the
original formula on the composite structure 𝑜(𝐺1,… , 𝐺𝑛).

Definition 2.45. For an 𝑛-ary operation 𝑜 on 𝜏-structures, an 𝑜-reduction sequence for a formula 𝜙 ∈ (𝜏)
is two pieces of data.

20 CHAPTER 2. BACKGROUND

• A list (𝜓𝑗𝑖 ∣ 𝑖 = 1,… , 𝑚 , 𝑗 = 1,… , 𝑛) of formulae 𝜓𝑗𝑖 ∈ (𝜏).
• A boolean function 𝑏∶ 𝟚𝑚⋅𝑛 → 𝟚.
For all 𝜏-structures 𝐺1,… , 𝐺𝑛, the values of the formulae 𝜓𝑗𝑖 on 𝐺1,… , 𝐺𝑛 and the function 𝑏 need to
determine the value of 𝜙 on 𝑜(𝐺1,… , 𝐺𝑛).

𝑜(𝐺1,… , 𝐺𝑛) ⊧ 𝜙 iff 𝑏((𝐺𝑗 ⊧ 𝜓
𝑗
𝑖)𝑖,𝑗) = 1

When the formula 𝜙 and the operation 𝑜 need to be explicit, we will denote the list of formulae 𝜓𝑗𝑖 by
𝖱𝖾𝖽𝖲𝖾𝗊(𝜙, 𝑜) and the boolean function 𝑏 by 𝖱𝖾𝖽𝖡𝗈𝗈𝗅(𝜙, 𝑜).

The operations that always admit reduction sequences are effectively smooth [Mak04, Definition 4.1].
For these operations, the theory of a composite structure only depends on the theories of its components.
This is a fundamental requirement for the correctness of divide-and-conquer algorithms and corresponds to
Requirement 2.

Definition 2.46. An 𝑛-ary operation 𝑜 is -smooth if the theory 𝖳𝗁(𝜏)(𝑜(𝐺1,… , 𝐺𝑛)) of the 𝜏-structure
𝑜(𝐺1,… , 𝐺𝑛) in(𝜏) depends only on 𝖳𝗁(𝜏)(𝐺1), . . . ,𝖳𝗁(𝜏)(𝐺𝑛), for all 𝜏-structures𝐺1,… , 𝐺𝑛. The opera-
tion 𝑜 is effectively -smooth if, for every formula 𝜙 ∈ (𝜏), there is an algorithm to compute the reduction
sequence 𝖱𝖾𝖽𝖲𝖾𝗊(𝜙, 𝑜) and its associated formula 𝖱𝖾𝖽𝖡𝗈𝗈𝗅(𝜙, 𝑜).

Preservation theorems are the results that show that an operation is -smooth. For first order logic,
there are preservation theorems with products and sums of relational structures [Mos52; FV59], while for
monadic second order logic, they only hold for sum-like operations [FV59; Fef57; CK09]. Theorems 2.59
and 2.60 in the next section recall these results for the operations in Definitions 2.53 and 2.56.

A finite set of relational structures and a set of operations generate inductively a class of relational struc-
tures. Inductive classes are classes of relational structures obtained in this waywith a finite set of smooth op-
erations [Mak04, Definition 4.3]. The sets of operations defined in the next section (Definitions 2.53 and 2.56)
are infinite, but they are indexed by natural numbers and finite for every fixed index. For every natural num-
ber 𝑘 ∈ ℕ, there is a class of structures generated by the operations with index 𝑘. These are the structures
of width at most 𝑘. Classes of relational structure of bounded width are inductive.

Definition 2.47. A class of 𝜏-structures is -inductive if there are
• a finite generating set0 ⊆  of 𝜏-structures and
• a finite set  of -smooth operations
such that  =

⋃
𝑛∈ℕ𝑛, where 𝑛+1∶= {𝐺 𝜏-structure ∶ ∃𝐺1,… , 𝐺𝑘 ∈ 𝑛 ∃𝑜 ∈  𝐺 = 𝑜(𝐺1,… , 𝐺𝑘)}

is the set of all the 𝜏-structures 𝐴 that are obtained by applying an operation 𝑜 ∈  to some 𝜏-structures
𝐺1,… , 𝐺𝑘 ∈ 𝑛. The class is effectively -inductive if all the operations in  are effectively -smooth.

The terms that specify relational structures in terms of operations and generating structures are decom-
positions.

Definition 2.48. For an -inductive class  of 𝜏-structures, an algebraic decomposition of a 𝜏-structure
𝐺 ∈  is a term 𝑡 ∈ 𝑇𝐺 constructed from applications of operations 𝑜 ∈  to 𝜏-structures 𝐺0 in the
generating set0:

𝑡 ∶∶= (𝐺) if 𝐺 ∈ 0 ,

∣ 𝑜 (𝑡1,… , 𝑡𝑘) if 𝑡𝑖 ∈ 𝑇𝐺𝑖 and 𝐺 = 𝑜(𝐺1,… , 𝐺𝑘) with 𝑜 ∈  of arity 𝑘 .

If a decomposition combines the structures𝐺1,…𝐺𝑙 with operations 𝑜1,… , 𝑜𝑛, its width is given by the
maximum cost,max𝑖,𝑗{𝗐(𝑜𝑖), |𝑉𝑗|}, where we fixed costs 𝗐(𝑜𝑖) for operations 𝑜𝑖.

2.3. DIVIDE-AND-CONQUER ALGORITHMS 21

Definition 2.49. Aweight function for an-inductive class of 𝜏-structures is a function𝗐∶  → ℕ. A choice
of weight function determines a width for algebraic decompositions:

𝗐𝖽(𝑡) ∶= |𝑉𝐺| if 𝑡 = (𝐺) ,
∣ max{𝗐(𝑜),𝗐𝖽(𝑡1),… ,𝗐𝖽(𝑡𝑘)} if 𝑡 = 𝑜(𝑡1,… , 𝑡𝑘) .

The size of a decomposition is the number of its leaves:

𝗌𝗂𝗓𝖾(𝑡) ∶= 1 if 𝑡 = (𝐺) ,
∣ 𝗌𝗂𝗓𝖾(𝑡1) +⋯ + 𝗌𝗂𝗓𝖾(𝑡𝑘) if 𝑡 = 𝑜(𝑡1,… , 𝑡𝑘) .

The algebraic width of a 𝜏-structure 𝐺 is the width of a best decomposition:

𝖺𝗐𝖽(𝐺)∶= min
𝑡∈𝑇𝐺

𝗐𝖽(𝑡) .

For the sets of operations defined in the next section, Theorems 2.55 and 2.58 characterise the bounded-
width classes of relational structures. The size of the decompositions corresponding to these operations is
bounded by the number of hyperedges or vertices in the relational structure.

Given a set of effectively smooth operations and a formula, we can compute the set of all reduction
sequences generated by the formula and arrange them in a look-up table. The general divide-and-conquer
strategy uses this look-up table for combining the partial solutions.

Definition 2.50. The -reduction set 𝖱𝖾𝖽(𝜙,) of a formula 𝜙 ∈ (𝜏, 𝑥) with respect to a finite set  of
-smooth operations is the smallest set of formulas in (𝜏, 𝑥) that
• contains 𝜙 and
• is closed under taking 𝑜-reduction sequences 𝖱𝖾𝖽𝖲𝖾𝗊(−, 𝑜), for all operations 𝑜 ∈ .

Definition 2.51. For a finite set  of effectively -smooth operations and a formula 𝜙 ∈ (𝜏), the look-up
table of 𝜙 and  is a list

𝖫𝗈𝗈𝗄(𝜙,)∶= (𝜓, 𝑜,𝖱𝖾𝖽𝖲𝖾𝗊(𝜓, 𝑜),𝖱𝖾𝖽𝖡𝗈𝗈𝗅(𝜓, 𝑜) ∣ 𝜓 ∈ 𝖱𝖾𝖽(𝜙,), 𝑜 ∈ ) .

When the look-up table 𝖫𝗈𝗈𝗄(𝜙,) is finite and the operations are effectively smooth, the table can be
computed in finite time. Weassume that the logic always gives finite look-up tables, which is true formonadic
second order logic [Mak04, Observation 6]. Look-up tables give a way of combining partial solutions and
showing fixed-parameter tractability of checking (𝜏)-formulae on relational structures [CM02]. The proof
that Makowsky presents [Mak04, Theorem 4.21] precomputes all the possible partial solutions, but these
can also be computed as needed.

Theorem 2.52 ([CM02]). Fix a formula 𝜙 ∈ (𝜏) and an effectively -inductive class of 𝜏-structures with
respect to a finite set of effectively -smooth operations. Let𝐺 ∈  be a 𝜏-structure with a parse term 𝑑.
Then, whether the formula 𝜙 holds in 𝐺, 𝐺 ⊧ 𝜙, can be decided in time linear in 𝗌𝗂𝗓𝖾(𝑑).

Proof. We precompute the look-up table 𝖫𝗈𝗈𝗄(𝜙,) in finite time and this computation does not depend on
the input structure but only on the fixed formula and operations. Using this look-up table, we run𝖢𝗁𝖾𝖼𝗄(𝑑, 𝜙)
(Algorithm 1). This computes𝐺𝑖 ⊧ 𝜓

𝑗
𝑖 for all the leaves𝐺𝑖 of the input decomposition 𝑑 and combines these

partial solutions by looking up on the table 𝖫𝗈𝗈𝗄(𝜙,). Looking up the information in 𝖫𝗈𝗈𝗄(𝜙,) takes
constant time 𝑐0, while computing 𝐺𝑖 ⊧ 𝜓

𝑗
𝑖 on a substructure 𝐺𝑖 of size 𝑛𝑖 takes time 𝑐(𝑛𝑖), for some more

than exponential function 𝑐 ∶ ℕ → ℕ. If the size of the decomposition is 𝑛 and the maximum size of the
substructures 𝐺𝑖 is 𝑘, the computation takes (𝑐(𝑘) ⋅ 𝑛).

22 CHAPTER 2. BACKGROUND

Algorithm 1: 𝖢𝗁𝖾𝖼𝗄(𝑑, 𝜙)
Data: a term 𝑑 for a structure 𝐺 and a formula 𝜙
Result: whether the structure 𝐺 satisfies 𝜙
if 𝑑 = (𝐺) then

compute 𝑡∶= 𝐺 ⊧ 𝜙 by brute force
else if 𝑑 = 𝑜(𝑑1,… , 𝑑𝑛) for some 𝑜 ∈  then

look up the reduction sequence (𝜓𝑗𝑖)
𝑗=1,…,𝑛
𝑖=1,…,𝑚∶= 𝖱𝖾𝖽𝖲𝖾𝗊(𝜙, 𝑜)

look up the function 𝑏∶= 𝖱𝖾𝖽𝖡𝗈𝗈𝗅(𝜙, 𝑜)
for 𝑖 = 1,… , 𝑚 and 𝑗 = 1,… , 𝑛 do

compute 𝑡𝑗𝑖 ∶= 𝖢𝗁𝖾𝖼𝗄(𝑑𝑖, 𝜓
𝑗
𝑖)

end
compute 𝑡∶= 𝑏((𝑡𝑗𝑖)𝑖,𝑗)

return 𝑡

Monadic second order logic of graphs

Monadic second order (MSO) logic is the fragment of second order logic where quantification is only allowed
on unary predicates, i.e. sets of variables. This section recalls Courcelle’s theorems for tree width and clique
width [Cou92a; CO00] in Corollaries 2.63 and 2.64. Their proof strategy relies on showing the assumptions
for applying Theorem 2.52:
(1) Definitions 2.53 and 2.56 recall the decomposition algebras for tree width introduced by Bauderon and

Courcelle [BC87; Cou90] and for rankwidth introducedbyCourcelle andKanté [CK09], and Theorems2.55
and 2.58 recall that their MSO-inductive classes are those of bounded tree width [Cou92a] and rank
width [CK07].

(2) Theorems2.59 and2.60 recall the Feferman-Vaught-Mostowski [FV59; Fef57] and theCourcelle-Kanté [CK09]
preservation theorems.

The operations for tree width and rank width join two structures by merging some of their parts. Structures
are given an additional piece of information to specify which parts are allowed to be merged with other
structures. These are called constants for the tree width decomposition algebra and labels for the rank
width decomposition algebra.

Definition 2.53. A relational 𝜏-structure with 𝑛 constants, for a natural number 𝑛 ∈ ℕ, is a pair (𝐺, 𝑐) of a
structure 𝐺 together with a function 𝑐 ∶ {1,… , 𝑛} → 𝑉 .
• The generating structures are the empty structure with no constants, ∅, and, for every relational symbol
𝑅 ∈ 𝜏, the structure 𝖾𝑅 with 𝛼𝑅 vertices that are all related by 𝑅 and are all constants.

• The disjoint union of relational structures (𝐺, 𝑐) and (𝐻, 𝑑)with𝑚 and 𝑛 constants is a relational structure
(𝐺 +𝐻, 𝑐 + 𝑑) with 𝑚+ 𝑛 constants and universe 𝐴+𝐵, where the relations are interpreted as disjoint
unions: 𝑅𝐺+𝐻 = 𝑅𝐺 ⊔ 𝑅𝐻 .

• The redefinition of constants 𝖱𝖾𝗅𝖺𝖻𝑛𝑓 of a relational structure (𝐺, 𝑐) with 𝑛 constants with a function
𝑓 ∶ {1,… , 𝑚} → {1,… , 𝑛}, is the relational strcuture (𝐺, 𝑓𝑐) with 𝑚 constants.

• The fusion of constants 𝑖 and 𝑗, with 0 < 𝑖 < 𝑗 ≤ 𝑛+1, on a relational structure (𝐺, 𝑐)with 𝑛+1 constants
gives a relational structure 𝖥𝗎𝗌𝖾𝑛𝑖,𝑗(𝐺, 𝑐) with 𝑛 constants where:
– The universe 𝑉 ∕𝑐(𝑖)=𝑐(𝑗) is the set 𝑉 quotiented by the equivalence relation 𝑐(𝑖) = 𝑐(𝑗);
– The interpretation 𝑅𝖥𝗎𝗌𝖾

𝑛
𝑖,𝑗 (𝐺) of the relation 𝑅 is the subset of 𝑉 ∕𝑐(𝑖)=𝑐(𝑗) that corresponds to the

subset 𝑅𝐺 quotiented by 𝑐(𝑖) = 𝑐(𝑗);

2.3. DIVIDE-AND-CONQUER ALGORITHMS 23

– The function for the constants 𝖥𝗎𝗌𝖾𝑛𝑖,𝑗𝑐 is the reindexing of the function 𝑐 as 𝖥𝗎𝗌𝖾𝑛𝑖,𝑗𝑐(𝑘) = 𝑐(𝑘) if
𝑘 < 𝑗 and 𝖥𝗎𝗌𝖾𝑛𝑖,𝑗𝑐(𝑘) = 𝑐(𝑘 + 1) if 𝑘 ≥ 𝑗.

• The addition of constant 𝑖, 𝖵𝖾𝗋𝗍𝑛𝑖, on a relational structure (𝐺, 𝑐)with 𝑛 ≥ 𝑖−1 constants is the relational
structure (𝐺 + {𝑣}, 𝑐′) with 𝑛 + 1 constants 𝑐′ ∶ 𝑛 + 1 → 𝑉 + {𝑣} defined as 𝑐′(𝑗) = 𝑐(𝑗) for 𝑗 < 𝑖,
𝑐′(𝑖) = 𝑣 and 𝑐′(𝑗) = 𝑐(𝑗 − 1) for 𝑗 ≥ 𝑖.

We assign a cost to these operations, 𝗐(+)∶= 0, 𝗐(𝖱𝖾𝗅𝖺𝖻𝑛𝑓)∶= 𝑛, 𝗐(𝖥𝗎𝗌𝖾𝑛𝑖,𝑗)∶= 𝑛 and 𝗐(𝖵𝖾𝗋𝗍𝑛𝑖)∶= 𝑛, and
obtain a corresponding notion of width for decompositions.

Example 2.54. The graph formed by two 3-cliques joined along a vertex

is expressed by the term 𝖥𝗎𝗌𝖾21,2(𝑡 + 𝑡), where 𝑡 is a term for the 3-clique with one constant:

𝑡 = 𝖥𝗎𝗌𝖾21,2𝖱𝖾𝗅𝖺𝖻
3
𝜄𝖥𝗎𝗌𝖾

4
2,3(𝖾 + 𝖱𝖾𝗅𝖺𝖻3𝜄𝖥𝗎𝗌𝖾

4
2,3(𝖾 + 𝖾)) ,

that creates an edge at a time and joins its endpoints with the existing edges. The function 𝜄 ∶ {1, 2} →
{1, 2, 3} indicates the inclusion of the set with two elements into the set with three elements.

Theoperations for relational structures recalled above are slightly different from theoriginal ones [Cou90],
but define the same complexitymeasure [CM02;Mak04] and aremore similar to the categorical algebra that
we will introduce in Section 4.1. They define a graph width that is equivalent to tree width [Cou92a] and, as
a consequence of Theorem 2.30, to branch width as well.

Theorem 2.55 ([Cou92a, Theorem 2.2]). For a relational 𝜏-structure (𝐺, 𝑐) with constants, the algebraic
width given by the operations of disjoint union and fusion of constants (Definition 2.53) is linearly related to
its tree width:

𝗍𝗐𝖽(𝐺) ≤ 𝖺𝗐𝖽(𝐺, 𝑐) ≤ max{2 ⋅ 𝗍𝗐𝖽(𝐺), 𝗍𝗐𝖽(𝐺) + 𝛾(𝜏), 𝛾(𝐺)} .

Rank width and clique width are defined for graphs and so they are the operations that characterise
them [CK07]. These are defined for graphs where the vertices can have multiple labels and these labels can
be linearly modified.

Definition 2.56. An 𝑛-labelled graph (𝐺,𝐵) is a graph𝐺 on 𝑘 vertices with amatrix𝐵 ∈ 𝖬𝖺𝗍𝟚(𝑘, 𝑛) assigning
to each vertex some of the labels {1,… , 𝑛}.
• The generating structures are the empty 1-coloured graph, ∅1, and graph 𝗏1 with a single 1-coloured
vertex.

• The linear recolouring 𝖱𝖾𝖼𝗈𝗅𝑀 of an 𝑛-labelled graph (𝐺,𝐵) by an 𝑛 by 𝑚 matrix𝑀 ∈ 𝖬𝖺𝗍𝟚(𝑛, 𝑚) is the
𝑚-labelled graph (𝐺,𝐵 ⋅𝑀), where the colours have been modified by the matrix𝑀 .

• The bilinear product+𝑀,𝑃 ,𝑁 of two labelled graphs, (𝐺,𝐵)with𝑚 labels and (𝐻,𝐶)with 𝑛 labels, by the
matrices𝑀 ∈ 𝖬𝖺𝗍𝟚(𝑚, 𝑙),𝑁 ∈ 𝖬𝖺𝗍𝟚(𝑛, 𝑙) and 𝑃 ∈ 𝖬𝖺𝗍𝟚(𝑚, 𝑛), is the 𝑙-labelled graph (𝐺+𝑃 𝐻,

(
𝐵⋅𝑀
𝐶⋅𝑁

)
),

where 𝐺 +𝑃 𝐻 is the graph obtained from 𝐺 and𝐻 by adding an edge {𝑖, 𝑗} between the vertex 𝑖 of 𝐺
and the vertex 𝑗 of𝐻 for every non-zero entry (𝑖, 𝑗) of 𝑃 . This operation adds the edges specified by 𝑃
and recolours the vertices of 𝐺 and𝐻 with𝑀 and𝑁 .

We assign a cost to the operations,𝗐(𝖱𝖾𝖼𝗈𝗅𝑀)∶= 𝑛 and𝗐(+𝑀,𝑃 ,𝑁)∶= max{𝑚, 𝑛}, and obtain a correspond-
ing notion of width for decompositions.

Example 2.57. The 1-labelled 4-clique is expressed by the term

𝖱𝖾𝖼𝗈𝗅 (𝗏1 +1,1,1 𝖱𝖾𝖼𝗈𝗅 (𝗏1 +1,1,1 𝖱𝖾𝖼𝗈𝗅 (𝗏1 +1,1,1 𝗏1))) ,

24 CHAPTER 2. BACKGROUND

that creates one vertex at a time and connects it to all existing vertices. The recolouring by the matrix
∶=

(1
1
)
assigns the same colour to all existing vertices. Note that the structure of this term resembles

the structure of the second clique term in Example 2.37 for the same graph.
The operations above are similar in spirit to those of clique width (Definition 2.35) and, in fact, they

define an equivalent widthmeasure, rankwidth [CK07]. All these operations are derived from the categorical
structure of graphs presented in Section 4.3.

Theorem 2.58 ([CK07, Theorem 3.4]). For a graph (𝐺,𝐵) with 𝑛 labels, the algebraic width given by linear
recolouring and bilinear product (Definition 2.56) is at least its rank width:

𝗋𝗐𝖽(𝐺) ≤ 𝖺𝗐𝖽(𝐺,𝐵) .

All these operations preserve monadic second order formulae. More precisely, the preservation theo-
rem for disjoint union is known as Feferman-Vaugh-Mostowksi preservation theorem [Fef57; FV59], while
the preservation theorem for the fuse operation as defined above is by Courcelle and Makowsky [CM02,
Lemma 5.2]. The proof of this statement relies on Ehrenfeucht-Fraıssé games [Fra55; Fra57; Ehr57; Ehr61].
For a reference, the preservation theorems can be found in Makowsky’s review [Mak04]: for the disjoint
union as Theorems 1.5 and 1.6, while for the fuse operation as Proposition 3.6.

Theorem 2.59 ([FV59; CM02]). The disjoint union and the fuse operation of 𝜏-structures with sources are
effectively MSO-smooth operations.

The preservation theorem for the rank width operations [CK09] is similar to that for clique width op-
erations [CMR00] and relies on a result that shows that all quantifier free operations are effectively MSO-
smooth [Cou92b, Theorem 3.4].

Theorem 2.60 ([CK09, Proposition 3.2]). Linear recolouring and bilinear product of graphs with labels are
effectively MSO-smooth operations.

This results allow us to compute the reduction set of MSO formulae and use it to run Algorithm 1 as
described in Theorem 2.52 on MSO-inductive classes of relational structures. As consequences of Theo-
rems 2.55 and 2.58 to 2.60, bounded tree width and bounded clique width classes of relational structures
are, indeed, MSO-inductive.

Theorem 2.61 ([BC87; Cou90]). Classes of relational structures with sources of bounded tree width are ef-
fectively MSO-inductive with respect to disjoint union and the fuse operation. The same is true for classes of
bounded branch width.

Theorem 2.62 ([CK09]). Classes of graphs with labels of bounded clique width are effectively MSO-inductive
with respect to linear recolouring and bilinear product. The same is true for classes of bounded rank width.

Theorems 2.59 and 2.61 show that the assumptions of Theorem 2.52 hold for MSO logic and the op-
erations of disjoint union and fusion of sources, which gives Courcelle’s theorem for tree width [Cou92a,
Proposition 3.1], while Theorems 2.60 and 2.62 show them for the operations for rank width [CMR00, The-
orem 4].

We assume that the input graph is given as a term as we do not deal with the problem of finding ef-
ficient decompositions in this work. For tree width, it is known that the term can be computed in linear
time [Bod93a], while, for clique width, it can be approximated [OS06].

Corollary 2.63 ([Cou92a]). For a formula 𝜙 in the monadic second order logic of relational 𝜏-structures, the
problem of checking 𝜙 on an input structure of tree width at most 𝑘 is linear in the number of its vertices.

Corollary 2.64 ([CMR00; CO00]). For a formula 𝜙 in the monadic second order logic of graphs, the problem
of checking 𝜙 on an input graph of clique width at most 𝑘 is linear in the number of its vertices.

Chapter 3

Monoidal Width

Monoidal width measures the structural complexity of morphisms in monoidal categories, and is the central
definition of this work. Monoidal width takes from tree width and rank width to capture their algorithmic
properties. The structural complexity of graphs, measured by tree and rank widths, gives an upper bound
to the computational cost of checking a certain class of properties on graphs. Similarly, the structural com-
plexity of morphisms in monoidal categories, measured by monoidal width, gives an upper bound to the
computational cost of divide-and-conquer algorithms on monoidal categories.

Monoidal width depends onmonoidal decompositions as tree width and rank width depend on tree and
rank decompositions. A decomposition is a recipe for dividing amorphism, or a graph, into smaller parts with
given operations. This can be done in different ways, using different operations in different orders. Some
operations are more costly than others, which causes some decompositions to bemore efficient than others
and divide-and-conquer algorithms on some decompositions run faster than on others. Decompositions that
use cheap operations are more efficient.

The operations for monoidal decompositions are the categorical composition and themonoidal product.
Typically, compositions represent information or resource sharing, which makes them costly. On the other
hand, monoidal products represent juxtaposition, which is usually cheap.

Monoidal decompositions are like algebraic decompositions formorphisms inmonoidal categorieswhere
the choice of monoidal category fixes the operations.

Monoidal decompositions may seem more restricted than the algebraic decompositions introduced in
Section 2.3. However, on the one hand, the flexibility of the choice of categorical algebra makes up for this
restriction and it allows us to capture tree width and clique width as particular cases. On the other hand,
there are advantages to this restriction as it gives canonicity to some of the numerous possible choices of
operations that define equivalent width measures. As shown in the previous chapter, the operations that
determine clique width are equivalent to those that determine rank width, in the sense that they determine
equivalent width measures. Similarly, there are slightly different operations that all define tree width. The
next chapter shows how all these operations are derivable from compositions andmonoidal products in two
different monoidal categories of graphs.

3.1 Decompositions in monoidal categories

Amonoidal decomposition describes a process as sequential and parallel compositions of smaller processes.
Explicitly, a monoidal decomposition is a syntax tree in the language of monoidal categories: internal nodes
are compositions or monoidal products, and leaves are morphisms that, when assembled according to the
operations in the decomposition, give the original morphism.

25

26 CHAPTER 3. MONOIDAL WIDTH

Definition 3.1. Amonoidal decomposition 𝑑 ∈ 𝐷𝑓 of a morphism 𝑓 ∶ 𝐴 → 𝐵 in a monoidal category 𝖢 is a
syntax tree that uses the composition � and the monoidal product⊗ in 𝖢 as operations.

𝑑 ∶∶= (𝑓)
∣ (𝑑1—⊗—𝑑2) if 𝑑1 ∈ 𝐷𝑓1 , 𝑑2 ∈ 𝐷𝑓2 and 𝑓 = 𝑓1 ⊗ 𝑓2
∣ (𝑑1— �𝐶 —𝑑2) if 𝑑1 ∈ 𝐷𝑓1 , 𝑑2 ∈ 𝐷𝑓2 and 𝑓 = 𝑓1 �𝐶 𝑓2

The trivial decomposition, (𝑓) ∈ 𝐷𝑓 , is always a possibility, but usually not the best one, as it can cost
more than other decompositions that break 𝑓 into smaller components.

Example 3.2. Let 𝑓 ∶ 1 → 2 and 𝑔∶ 2 → 1 be morphisms in a prop. A monoidal decomposition of 𝑓 �

(𝑓 ⊗ 𝑓) � (𝑔 ⊗ 𝑔) � 𝑔 can be described by vertical and horizontal cuts in the string diagram of the morphism
(Figure 3.1). Vertical cuts represent compositions, while horizontal cuts represent monoidal products.

𝑓

𝑓

𝑓

𝑔

𝑔

𝑔

Figure 3.1: A monoidal decomposition represented with cuts in a string diagram.

Figure 3.1 encodes all the information of a monoidal decomposition but the order in which compositions and
monoidal products are associated. Choosing the order in which compositions and monoidal products are
performed, we obtain a formal expression of the decomposition in Figure 3.1.

(𝑓— �2 —(((𝑓— �2 —𝑔)—⊗—(𝑓— �2 —𝑔))— �2 —𝑔)),

We will avoid writing decompositions in this form whenever possible.

The cost of a monoidal decomposition bounds the running time of a divide-and-conquer algorithm on
this decomposition, and depends on the operations and morphisms that label its internal nodes and leaves.
More precisely, it depends on a weight assigned to the operations andmorphisms that appear in the decom-
position, in a way that we describe below.

Each morphism has a weight. The running time of a divide-and-conquer algorithm on the trivial decom-
position (𝑓) depends, usually more than exponentially, on the weight of the morphism 𝑓 , as it amounts to
running the brute-force algorithm on 𝑓 .

Definition 3.3. A weight function 𝗐∶ 𝖬𝗈𝗋(𝖢) → ℕ1 for a monoidal category 𝖢 is a function that assigns a
natural number to each morphism of 𝖢 such that
1. 𝗐(𝑓 �𝐵 𝑔) ≤ 𝗐(𝑓) + 𝗐(𝑔) + 𝗐(𝐵), for 𝑓 ∶ 𝐴→ 𝐵 and 𝑔∶ 𝐵 → 𝐶; and
2. 𝗐(𝑓 ⊗ 𝑔) ≤ 𝗐(𝑓) + 𝗐(𝑔).
The weight function extends to objects of 𝖢 by taking the weight of identity morphisms, 𝗐(𝐴)∶= 𝗐(𝟙𝐴).

The two conditions on the weight function intuitively capture the behaviour of the running time of the
brute-force algorithm on morphisms: the difference between running it on a composition 𝑓 �𝐵 𝑔 and on the
two morphisms 𝑓 and 𝑔 separately depends only on the boundary 𝐵 of the composition; the running time
on a monoidal product 𝑓 ⊗ 𝑔 depends only on the running time on the separate components 𝑓 and 𝑔.

1We indicate with 𝖬𝗈𝗋(𝖢) the set of morphisms of a small category 𝖢. If the category 𝖢 is essentially small, we can still define a
weight function for 𝖢 by defining it on its equivalent small category.

3.1. DECOMPOSITIONS IN MONOIDAL CATEGORIES 27

Given the weight of morphisms, we can assign a weight to the operations of a monoidal category. The
weight of a composition along an object 𝐴 is 𝗐(𝐴)∶= 𝗐(𝟙𝐴), while the weight of a monoidal product is 0.
These determine the width of a decomposition by taking the maximum of the weights of operations and
morphisms appearing in the decomposition.

Definition 3.4. The width of a monoidal decomposition 𝑑 ∈ 𝐷𝑓 of a morphism 𝑓 ∶ 𝐴 → 𝐵 in a monoidal
category 𝖢 with a weight function 𝗐 is defined inductively below.

𝗐𝖽(𝑑)∶= 𝗐(𝑓) if 𝑑 = (𝑓)
max{𝗐𝖽(𝑑1),𝗐𝖽(𝑑2)} if 𝑑 = (𝑑1—⊗—𝑑2)
max{𝗐𝖽(𝑑1), 𝗐(𝐶), 𝗐𝖽(𝑑2)} if 𝑑 = (𝑑1— �𝐶 —𝑑2)

The size of the monoidal decomposition 𝑑 is the number of its nodes.

𝗌𝗂𝗓𝖾(𝑑)∶= 1 if 𝑑 = (𝑓)
𝗌𝗂𝗓𝖾(𝑑1) + 1 + 𝗌𝗂𝗓𝖾(𝑑2) if 𝑑 = (𝑑1—⊗—𝑑2) or 𝑑 = (𝑑1— �𝐶 —𝑑2)

Thanks to the inequalities in Definition 3.3, the weight of a morphism is bounded by the product of the
size and the width of any of its decompositions.

Lemma 3.5. Let 𝑑 ∈ 𝐷𝑓 be a monoidal decomposition of a morphism 𝑓 ∶ 𝐴 → 𝐵 in a monoidal category 𝖢.
Then,

𝗐(𝑓) ≤ 𝗐𝖽(𝑑) ⋅ 𝗌𝗂𝗓𝖾(𝑑) .

Proof. This is easily shown by induction on 𝑑. If 𝑑 = (𝑓) is a leaf, then its width coincides with the weight of
𝑓 , 𝗐𝖽(𝑑)∶= 𝗐(𝑓), and its size is 1. If 𝑑 = (𝑑1— �𝐵 —𝑑2) or 𝑑 = (𝑑1— ⊗—𝑑2), we bound the weight of 𝑓
applying the inequalities of Definition 3.3 and the induction hypothesis.

𝗐(𝑓) 𝗐(𝑓)
≤ 𝗐(𝑓1) + 𝗐(𝑓2) + 𝗐(𝐵) ≤ 𝗐(𝑓1) + 𝗐(𝑓2)
≤ 𝗐𝖽(𝑑1) 𝗌𝗂𝗓𝖾(𝑑1) + 𝗐𝖽(𝑑2) 𝗌𝗂𝗓𝖾(𝑑2) + 𝗐(𝐵) ≤ 𝗐𝖽(𝑑1) 𝗌𝗂𝗓𝖾(𝑑1) + 𝗐𝖽(𝑑2) 𝗌𝗂𝗓𝖾(𝑑2)
≤ max{𝗐𝖽(𝑑1),𝗐(𝐵),𝗐𝖽(𝑑2)} ≤ max{𝗐𝖽(𝑑1),𝗐𝖽(𝑑2)}

⋅ (𝗌𝗂𝗓𝖾(𝑑1) + 𝗌𝗂𝗓𝖾(𝑑2) + 1) ⋅ (𝗌𝗂𝗓𝖾(𝑑1) + 𝗌𝗂𝗓𝖾(𝑑2) + 1)
= 𝗐𝖽(𝑑) ⋅ 𝗌𝗂𝗓𝖾(𝑑) = 𝗐𝖽(𝑑) ⋅ 𝗌𝗂𝗓𝖾(𝑑)

The width of a decomposition is not influenced by the order in which the operations appear, but only by
their costs. This means that all the different monoidal decompositions corresponding to the cuts in Figure 3.1
have the same width and this representation can be used without any consequences.
Example 3.6. The width of the decomposition in Example 3.2, if we assume that 𝗐(𝑓) = 𝗐(𝑔) = 2, is 2. In
fact, compositions are along at most 2 wires, and the morphisms at the leaves all weight 2.

Themonoidal width of a morphism is the width of a cheapest decomposition, and gives a bound for the
running time of a divide-and-conquer algorithm on the given morphism.

Definition 3.7. The monoidal width of a morphism 𝑓 in a monoidal category 𝖢 with a weight function 𝗐 is
the width of a cheapest decomposition:

𝗆𝗐𝖽(𝑓)∶= min
𝑑∈𝐷𝑓

𝗐𝖽(𝑑).

28 CHAPTER 3. MONOIDAL WIDTH

Example 3.8. With the morphisms 𝑓 and 𝑔 as in Example 3.2, we define a family of morphisms ℎ𝑛 ∶ 1 → 1
inductively:
• ℎ0∶= 𝑓 �2 𝑔;
• ℎ𝑛+1∶= 𝑓 �2 (ℎ𝑛 ⊗ ℎ𝑛) �2 𝑔.
Each ℎ𝑛 has amonoidal decomposition of width 2𝑛 where the first node is the composition along the 2𝑛 wires
in the middle.

𝑓

𝑓

𝑓

𝑔

𝑔

𝑔

⋯

⋯
⋯

⋯

⋯

⋯
⋯

⋯

However, the monoidal decomposition below shows that 𝗆𝗐𝖽(ℎ𝑛) ≤ 2 for any 𝑛.

𝑓

𝑓

𝑓

𝑔

𝑔

𝑔

⋯

⋯
⋯

⋯

3.2 Categories with copy
A simple case study formonoidal decompositions are the copymorphisms of symmetricmonoidal categories
with coherent copying. We bound their monoidal width, a result that is useful to compute the width in props
with biproducts (Section 3.3) and prove the more complex bounds in Chapters 5 and 6.

Definition 3.9. A symmetric monoidal category 𝖢 has coherent copying if there is a class of copiable objects
Δ𝖢 ⊆ 𝖮𝖻𝗃(𝖢) such that
• 𝑋, 𝑌 ∈ Δ𝖢 iff𝑋 ⊗ 𝑌 ∈ Δ𝖢;
• every object𝑋 ∈ Δ𝖢 is endowed with a copy morphism 𝑋 ∶ 𝑋 → 𝑋 ⊗𝑋;
• the copy morphisms are coherent: for every𝑋, 𝑌 ∈ Δ𝖢, 𝑋⊗𝑌 = (𝑋 ⊗ 𝑌) � (𝟙𝑋 ⊗𝜎𝑋,𝑌 ⊗ 𝟙𝑌).

𝑋 ⊗ 𝑌
𝑋 ⊗ 𝑌

𝑋 ⊗ 𝑌
=

𝑋

𝑌

𝑋

𝑌

𝑋

𝑌

For propswith coherent copy, we assume that theweight of copymorphisms, symmetries and identities is
given by𝗐(𝑋)∶= 2 ⋅𝗐(𝑋),𝗐(𝜎𝑋,𝑌)∶= 𝗐(𝑋)+𝗐(𝑌) and𝗐(𝟙𝑋)∶= 𝗐(𝑋). Note that, on thesemorphisms,
this weight function satisfies the conditions in Definition 3.3.

Example 3.10. Any cartesian prop has coherent copying, where the copy morphisms are the universal ones
given by the cartesian structure: 𝑛∶= ⟨𝟙𝑛, 𝟙𝑛⟩∶ 𝑛 → 𝑛 + 𝑛. The monoidal width of the copy morphism
on 𝑛 is bounded by 𝑛 + 1. This is shown more generally in Lemma 3.11, but the idea of the proof can be
exemplified in this case. Let 𝛾𝑛,𝑚∶= (𝑛 ⊗ 𝟙𝑚) � (𝟙𝑛 ⊗ 𝜎𝑛,𝑚)∶ 𝑛 + 𝑚 → 𝑛 + 𝑚 + 𝑛 be the morphism in
Figure 3.2. We can decompose 𝛾𝑛,𝑚 in terms of 𝛾𝑛−1,𝑚+1 (in the dashed box in Figure 3.2), the copy morphism

3.2. CATEGORIES WITH COPY 29

𝛾𝑛,𝑚 =
𝑛

𝑚

𝑛

𝑚

𝑛

=

𝑛 − 1

1

𝑚

𝑛 − 1

1

𝑚

𝑛 − 1

1

Figure 3.2: Decomposing copy morphisms.

1 and the symmetry 𝜎1,1, by cutting along at most 𝑛 + 1 + 𝑚 wires:

𝛾𝑛,𝑚 = (𝟙𝑛−1 ⊗ ((1 ⊗ 𝟙1) � (𝟙1 ⊗ 𝜎1,1))) �𝑛+1+𝑚 (𝑔𝑛−1,𝑚+1 ⊗ 𝟙1).

By induction, we decompose 𝑛 = 𝛾𝑛,0 cutting along only 𝑛 + 1 wires. In particular, this means that
𝗆𝗐𝖽(𝑛) ≤ 𝑛 + 1.

The following result generalises the reasoning in Example 3.10.

Lemma 3.11. Let 𝖢 be a symmetric monoidal category with coherent copying and 𝑑 ∈ 𝐷𝑓 be a monoidal
decomposition of a morphism 𝑓 ∶ 𝑌 ⊗ 𝑋 ⊗ 𝑍 → 𝑊 , with 𝑋∶= 𝑋1 ⊗⋯ ⊗ 𝑋𝑛. Then we can construct a
monoidal decomposition 

𝑋
(𝑑) of the morphism 𝛾

𝑋
(𝑓)∶= (𝟙𝑌 ⊗ 𝑋

⊗ 𝟙𝑍) � (𝟙
𝑌⊗𝑋

⊗ 𝜎
𝑋,𝑍

) � (𝑓 ⊗ 𝟙
𝑋
)

𝛾
𝑋
(𝑓) ∶= 𝑓

𝑌

𝑋

𝑍

𝑊

𝑋

of bounded width:

𝗐𝖽(
𝑋
(𝑑)) ≤ max{𝗐𝖽(𝑑),𝗐(𝑌) + 𝗐(𝑍) + (𝑛 + 1) ⋅ max

𝑖=1,…,𝑛
𝗐(𝑋𝑖)}.

Proof. Proceed by induction on the number 𝑛 of objects being copied. If 𝑛 = 0, then we are done because
we can keep the decomposition 𝑑: 𝐼 (𝑑)∶= 𝑑.

Suppose that the statement is true for any 𝑓 ′ ∶ 𝑌 ⊗𝑋⊗𝑍′ → 𝑊 and let 𝑓 ∶ 𝑌 ⊗𝑋⊗𝑋𝑛+1⊗𝑍 → 𝑊 .
Then we can rewrite 𝛾

𝑋⊗𝑋𝑛+1
(𝑓) using coherence of the copy morphisms and the properties of the

symmetries 𝜎 .

𝛾
𝑋⊗𝑋𝑛+1

(𝑓)

= 𝑓

𝑌

𝑋 ⊗𝑋𝑛+1

𝑍

𝑊

𝑋 ⊗𝑋𝑛+1

30 CHAPTER 3. MONOIDAL WIDTH

=

𝑓
𝑌

𝑋

𝑋𝑛+1

𝑍

𝑊

𝑋

𝑋𝑛+1

=

𝑓
𝑌

𝑋

𝑋𝑛+1

𝑍

𝑊

𝑋

𝑋𝑛+1

Consider 𝛾
𝑋
(𝑓)∶= (𝟙 ⊗

𝑋
⊗ 𝟙) � (𝟙 ⊗ 𝜎) � (𝑓 ⊗ 𝟙), the morphism in the dashed box. By the induc-

tion hypothesis, there is a monoidal decomposition 
𝑋
(𝑑) of 𝛾

𝑋
(𝑓) with bounded width: 𝗐𝖽(

𝑋
(𝑑)) ≤

max{𝗐𝖽(𝑑),𝗐(𝑌) +𝗐(𝑋𝑛+1⊗𝑍) + (𝑛+ 1) ⋅max𝑖=1,…,𝑛 𝗐(𝑋𝑖)}. Using this decomposition, we can define a
monoidal decomposition 

𝑋⊗𝑋𝑛+1
(𝑑) of 𝛾

𝑋⊗𝑋𝑛+1
(𝑓) as shown below.

𝑓
𝑌

𝑋

𝑋𝑛+1

𝑍

𝑊

𝑋

𝑋𝑛+1

Note that the only cut that matters is the longest vertical one, the composition node along 𝑌 ⊗𝑋⊗𝑋𝑛+1⊗
𝑍⊗𝑋𝑛+1, because all the other cuts are cheaper. The cost of this cut is𝗐(𝑌)+𝗐(𝑍)+2 ⋅𝗐(𝑋𝑛+1)+𝗐(𝑋) =
𝗐(𝑌) + 𝗐(𝑍) + 𝗐(𝑋𝑛+1) +

∑𝑛+1
𝑖=1 𝗐(𝑋𝑖). With this observation and applying the induction hypothesis, we

can compute the width of the decomposition 
𝑋⊗𝑋𝑛+1

(𝑑).

𝗐𝖽(
𝑋⊗𝑋𝑛+1

(𝑑))

= max{𝗐(𝟙
𝑌⊗𝑋

),𝗐(𝑋𝑛+1
),𝗐(𝟙𝑍),𝗐(𝟙𝑋𝑛+1),𝗐(𝜎𝑋𝑛+1,𝑍),𝗐𝖽(𝑋(𝑑)),

𝗐(𝑌 ⊗ 𝑋 ⊗𝑍 ⊗𝑋𝑛+1),𝗐(𝑋𝑛+1 ⊗𝑍 ⊗𝑋𝑛+1)}

≤ max{𝗐(𝑌) + 𝗐(𝑍) + 𝗐(𝑋𝑛+1) +
𝑛+1∑
𝑖=1

𝗐(𝑋𝑖),𝗐𝖽(𝑋(𝑑))}

≤ max{𝗐(𝑌) + 𝗐(𝑍) + (𝑛 + 2) ⋅ max
𝑖=1,…,𝑛+1

𝗐(𝑋𝑖),𝗐𝖽(𝑋(𝑑))}

≤ max{𝗐(𝑌) + 𝗐(𝑍) + (𝑛 + 2) ⋅ max
𝑖=1,…,𝑛+1

𝗐(𝑋𝑖),

𝗐𝖽(𝑑),𝗐(𝑌) + 𝗐(𝑋𝑛+1 ⊗𝑍) + (𝑛 + 1) ⋅ max
𝑖=1,…,𝑛

𝗐(𝑋𝑖)}

= max{𝗐(𝑌) + 𝗐(𝑍) + (𝑛 + 2) ⋅ max
𝑖=1,…,𝑛+1

𝗐(𝑋𝑖),𝗐𝖽(𝑑)}

3.3. CATEGORIES WITH BIPRODUCTS 31

3.3 Categories with biproducts
This section shows another simple example of monoidal decompositions. In props with biproducts, mor-
phisms have a rank which is related to their monoidal width. An example of such props is the category of
matrices2.

Example 3.12. The category𝖬𝖺𝗍𝑅 of matrices over a semiring 𝑅 is a prop where the monoidal product is a
biproduct. Its morphisms 𝑛 → 𝑚 are 𝑚 rows by 𝑛 columns matrices with entries in the semiring 𝑅 and the
biproduct of matrices, 𝐴⊕ 𝐵∶=

(
𝐴 𝟘
𝟘 𝐵

)
, is the monoidal product.

By the string diagrammatic formulation of Fox’s theorem [Fox76], every object in a bicartesian prop has
natural commutative monoid and cocommutative comonoid structures. This structures are fundamental for
the proofs in this section.

Theorem 3.13. A symmetric monoidal category 𝖢 is cartesian if and only if every object 𝐴 is equipped with
a cocommutative comonoid structure and this structure is natural and uniform, whose structure morphisms
and equations are in Figure 3.3.

𝐴
𝐴

𝐴
𝐴

= = =

𝑓𝐴
𝐵

𝐵
=

𝑓

𝑓
𝐴

𝐵

𝐵
𝑓𝐴 = 𝐵

𝐴⊗ 𝐵
𝐴⊗𝐵

𝐴⊗𝐵
=

𝐴

𝐵

𝐴

𝐵

𝐴

𝐵

𝐴⊗ 𝐵 =
𝐴

𝐵

Figure 3.3: Structure and equations for a natural and uniform cocommutative comonoid.

The results in this section hold for monoidal categories where the monoidal product is the biproduct
and whose objects are a unique factorisation monoid. To help readability, some results are stated for the
particular case of props, but they apply to, for example, coloured props as well. When the monoidal product
is the biproduct, then, in particular, the monoidal unit is the zero object. Then, there is only one scalar: the
only morphism 𝐼 → 𝐼 is the identity. In some sense, this means that the interesting part of a morphism
happens on the boundary and a reasonable choice of weight function for these categories only keeps track
of the complexity of the boundaries.

2We thank JS Lemay for suggesting to generalise this result for matrices to categories with biproducts.

32 CHAPTER 3. MONOIDAL WIDTH

Definition 3.14. For a prop 𝖯, define a weight function 𝗐∶  → ℕ as 𝗐(𝑔)∶= max{𝑚, 𝑛}, for 𝑔∶ 𝑛 → 𝑚
in 𝖯. For a monoidal category 𝖢 where the objects are a unique factorisation monoid, define the dimension|𝑋| of an object𝑋 to be the number of factors in its unique⊗-factorisation𝑋 = 𝑋1 ⊗…⊗𝑋𝑘, |𝑋|∶= 𝑘.
A weight function for 𝖢 is 𝗐∶  → ℕ as 𝗐(𝑔)∶= max{|𝑋|, |𝑌 |}, for 𝑔∶ 𝑋 → 𝑌 in 𝖢.

This definition satisfies the conditions for a weight function.

Lemma 3.15. In a monoidal category whose objects are a unique factorisation monoid, the function 𝗐 in
Definition 3.14 satisfies the conditions for a weight function in Definition 3.3.

Proof. For morphisms 𝑓 ∶ 𝑋 → 𝑌 , 𝑔∶ 𝑌 → 𝑍 and 𝑓 ′ ∶ 𝑋′ → 𝑌 ′ in 𝖢, let 𝑋 = 𝑋1 ⊗ ⋯ ⊗ 𝑋𝑙, 𝑌 =
𝑌1 ⊗ ⋯ ⊗ 𝑌𝑚, 𝑍 = 𝑍1 ⊗ ⋯ ⊗ 𝑍𝑛, 𝑋′ = 𝑋′

1 ⊗ ⋯ ⊗ 𝑋′
𝑙′
and 𝑌 ′ = 𝑌 ′

1 ⊗ ⋯ ⊗ 𝑌 ′
𝑚′ be the unique ⊗-

factorisations of𝑋, 𝑌 ,𝑍,𝑋′ and 𝑌 ′. We compute and bound their weights.

𝗐(𝑓 � 𝑔) 𝗐(𝑓 ⊗ 𝑓 ′)
∶= max{𝑙, 𝑛} ∶= max{𝑙 + 𝑙′, 𝑚 + 𝑚′}
≤max{𝑙, 𝑚, 𝑛} + 𝑚 ≤max{𝑙 + 𝑙′, 𝑙 + 𝑚′, 𝑙′ + 𝑚,𝑚 + 𝑚′}
≤max{𝑙, 𝑚} + max{𝑚, 𝑛} + 𝑚 =max{𝑙, 𝑚} + max{𝑙′, 𝑚′}
∶=𝗐(𝑓) + 𝗐(𝑔) + 𝑚 ∶=𝗐(𝑓) + 𝗐(𝑓 ′)

The proof strategy consists in finding a standard shape of decomposition and show that it is minimal.
When amorphism 𝑓 can bewritten as amonoidal product 𝑓 = 𝑓1⊗⋯⊗𝑓𝑘 ofmorphisms of smaller weight,
the decompositions that use this factorisation are more efficient (Proposition 3.19). Under the assumptions
above, every morphism has a unique⊗-factorisation (Lemma 3.20) and a minimal decomposition must use
this factorisation.

𝑓 = 𝑓1 ⊗⋯⊗ 𝑓𝑘 =

𝑢1 𝑣1

𝑢2 𝑣2

⋮

𝑢𝑘 𝑣𝑘

Every factor 𝑓𝑖 can be minimally split as a composition 𝑓𝑖 = 𝑢𝑖 �𝑟𝑖
𝑣𝑖 and give a decomposition of 𝑓 of

width at least max𝑖=1,…,𝑘 𝑟𝑖. We show that each 𝑢𝑖 and 𝑣𝑖 can be further decomposed and their monoidal
width is at most 𝑟𝑖 + 1. This compound decomposition is minimal and bounds the monoidal width of 𝑓 as
max𝑖=1,…,𝑘 𝑟𝑖 ≤ 𝗆𝗐𝖽(𝑓) ≤ max𝑖=1,…,𝑘 𝑟𝑖 + 1.

The shape of the minimal decomposition above shows that minimal vertical cuts play an important role
in computing monoidal width. Following the characterisation of rank for matrices, we define the rank of
morphisms as their minimal vertical cut.

Lemma 3.16 ([PO99]). Let 𝐴∶ 𝑛→ 𝑚 in𝖬𝖺𝗍ℕ. Thenmin{𝑘 ∈ ℕ ∶ 𝐴 = 𝐵 �𝑘 𝐶} = 𝗋𝗄(𝐴).

Definition 3.17. The rank of a morphism 𝑓 ∶ 𝑛 → 𝑚 in a prop 𝖯 is its minimal vertical cut:

𝗋𝗄(𝑓)∶= min{𝑘 ∈ ℕ ∶ 𝑓 = 𝑔 �𝑘 ℎ} .

3.3. CATEGORIES WITH BIPRODUCTS 33

Similarly, for a morphism 𝑓 ∶ 𝑋 → 𝑌 in a monoidal category 𝖢, whose objects are a unique factorisation
monoid, its rank is its minimal vertical cut:

𝗋𝗄(𝑓)∶= min{𝑘 ∈ ℕ ∶ 𝑓 = 𝑔 �𝐶 ℎ ∧ |𝐶| = 𝑘} .
The first step for computing monoidal width is to show that, whenever possible, decompositions should

start with a⊗ node. This result needs a technical lemma: discarding outputs or inputs of a morphism cannot
increase its width.

Lemma 3.18. Let 𝑓 ∶ 𝑛 → 𝑚 in a prop 𝖯 where 0 is both initial and terminal and 𝑑 ∈ 𝐷𝑓 . Let 𝑓𝐷∶= 𝑓 �

(𝟙𝑚−𝑘 ⊗ 𝑘) and 𝑓𝑍∶= (𝟙𝑛−𝑘 ⊗ 𝑘) � 𝑓 , with 𝑘 ≤ 𝑚 and 𝑘 ≤ 𝑛, respectively.

𝑓𝐷∶= 𝑓𝑛 𝑚 − 𝑘 , 𝑓𝑍∶= 𝑓𝑛 − 𝑘 𝑚 .

Then there are monoidal decompositions (𝑑) ∈ 𝐷𝑓𝐷 and (𝑑) ∈ 𝐷𝑓𝑍 of bounded width, 𝗐𝖽((𝑑)) ≤

𝗐𝖽(𝑑) and 𝗐𝖽((𝑑)) ≤ 𝗐𝖽(𝑑).

Proof. We show the inequality for 𝑓𝐷 by induction on the decomposition 𝑑. The inequality for 𝑓𝑍 follows
from the fact that the same proof applies to 𝖯𝗈𝗉. If the decomposition has only one node, 𝑑 = (𝑓), then we
define(𝑑)∶= (𝑓𝐷) and obtain that

𝗐𝖽((𝑑))∶= max{𝑛, 𝑚 − 𝑘} ≤ max{𝑛, 𝑚} ∶=𝗐𝖽(𝑑) .

If the decomposition starts with a composition node, 𝑑 = (𝑑1— �𝑗 —𝑑2), then 𝑓 = 𝑓1 �𝑗 𝑓2, where 𝑑𝑖 is a
monoidal decomposition of 𝑓𝑖.

𝑓𝑛 𝑚 − 𝑘 = 𝑓1 𝑓2𝑛 𝑚 − 𝑘

By induction hypothesis, there is amonoidal decomposition(𝑑2) of 𝑓2 �(𝟙𝑚−𝑘⊗ 𝑘) such that𝗐𝖽((𝑑2)) ≤
𝗐𝖽(𝑑2). We use this decomposition to define a decomposition(𝑑)∶= (𝑑1— �𝑗—(𝑑2)) of 𝑓𝐷. Then,(𝑑)
is a monoidal decomposition of 𝑓 � (𝟙𝑚−𝑘 ⊗ 𝑘) because 𝑓 � (𝟙𝑚−𝑘 ⊗ 𝑘) = 𝑓1 � 𝑓2 � (𝟙𝑚−𝑘 ⊗ 𝑘) and its
width is bounded.

𝗐𝖽((𝑑))∶= max{𝗐𝖽(𝑑1), 𝑗,𝗐𝖽((𝑑2))} ≤ max{𝗐𝖽(𝑑1), 𝑗,𝗐𝖽(𝑑2)} ∶=𝗐𝖽(𝑑)

If the decomposition starts with a tensor node, 𝑑 = (𝑑1— ⊗ —𝑑2), then 𝑓 = 𝑓1 ⊗ 𝑓2, with 𝑑𝑖 monoidal
decomposition of 𝑓𝑖 ∶ 𝑛𝑖 → 𝑚𝑖. There are two possibilities: either 𝑘 ≤ 𝑚2 or 𝑘 > 𝑚2. If 𝑘 ≤ 𝑚2, then
𝑓 � (𝟙𝑚−𝑘 ⊗ 𝑘) = 𝑓1 ⊗ (𝑓2 � (𝟙𝑚2−𝑘 ⊗ 𝑘)).

𝑓𝑛 𝑚 − 𝑘 =
𝑓1

𝑓2

𝑛1

𝑛2

𝑚1

𝑚2 − 𝑘

By induction hypothesis, there is amonoidal decomposition(𝑑2) of 𝑓2 �(𝟙𝑚−𝑘⊗ 𝑘) such that𝗐𝖽((𝑑2)) ≤
𝗐𝖽(𝑑2). Then, we can use this decomposition to define a decomposition (𝑑)∶= (𝑑1— ⊗—(𝑑2)) of 𝑓𝐷
whose width is bounded.

𝗐𝖽((𝑑))∶= max{𝗐𝖽(𝑑1),𝗐𝖽((𝑑2))} ≤ max{𝗐𝖽(𝑑1),𝗐𝖽(𝑑2)} ∶=𝗐𝖽(𝑑)

If 𝑘 > 𝑚2, then 𝑓 � (𝟙𝑚−𝑘 ⊗ 𝑘) = (𝑓1 � (𝟙𝑚1−𝑘+𝑚2
⊗ 𝑘−𝑚2

))⊗ (𝑓2 � 𝑚2
).

𝑓𝑛 𝑚 − 𝑘 =
𝑓1

𝑓2

𝑛1

𝑛2

𝑚1 − 𝑘 + 𝑚2

34 CHAPTER 3. MONOIDAL WIDTH

By induction hypothesis, there are monoidal decompositions(𝑑𝑖) of 𝑓1 � (𝟙𝑚1−𝑘+𝑚2
⊗ 𝑘−𝑚2

) and 𝑓2 � 𝑚2
such that𝗐𝖽((𝑑𝑖)) ≤ 𝗐𝖽(𝑑𝑖). Then, we can use these decompositions to define a monoidal decomposition
(𝑑)∶= ((𝑑1)—⊗—(𝑑2)) of 𝑓𝐷 of bounded width.

𝗐𝖽((𝑑))∶= max{𝗐𝖽((𝑑1)),𝗐𝖽((𝑑2))} ≤ max{𝗐𝖽(𝑑1),𝗐𝖽(𝑑2)} ∶=𝗐𝖽(𝑑)

As a consequence, decompositions that start with a⊗ node are more efficient.

Proposition 3.19. Let 𝑓 ∶ 𝑛→ 𝑚 be amorphism in a prop 𝖯 and 𝑑′ = (𝑑′1—�𝑘—𝑑′2) ∈ 𝐷𝑓 be a decomposition
of 𝑓 . Suppose there are 𝑓1 ∶ 𝑛1 → 𝑚1 and 𝑓2 ∶ 𝑛2 → 𝑚2 such that 𝑓 = 𝑓1 ⊗ 𝑓2. Then, there is 𝑑 =
(𝑑1—⊗—𝑑2) ∈ 𝐷𝑓 such that 𝗐𝖽(𝑑) ≤ 𝗐𝖽(𝑑′).

Proof. Since the monoidal unit is the zero object, 𝑓1 = (𝟙 ⊗ 𝑛1
) � 𝑓 � (𝟙 ⊗ 𝑚1

) and 𝑓2 = (𝑛2
⊗ 𝟙) � 𝑓 �

(𝑚2
⊗ 𝟙). By Lemma 3.18, there are monoidal decompositions 𝑑1 = 1(1(𝑑′)) and 𝑑2 = 2(2(𝑑′)) of

𝑓1 and 𝑓2 with bounded width, 𝗐𝖽(𝑑𝑖) ≤ 𝗐𝖽(𝑑′). Then, the decomposition 𝑑∶= (𝑑1—⊗—𝑑2) is a monoidal
decomposition of 𝑓 and

𝗐𝖽(𝑑)
∶= max{𝗐𝖽(𝑑1),𝗐𝖽(𝑑2)}
≤ 𝗐𝖽(𝑑′)

Inmonoidal categorieswhere themonoidal unit is a zero object and the objects are a unique factorisation
monoid, morphisms have a unique⊗-decomposition.

Lemma 3.20. Let 𝖢 be a monoidal category whose monoidal unit 0 is a zero object, and whose objects are a
unique factorisation monoid. Then any morphism 𝑓 in 𝖢 has a unique⊗-decomposition.

Proof. Suppose that 𝑓 ∶ 𝑋 → 𝑌 has two ⊗-decompositions 𝑓 = 𝑓1 ⊗ ⋯ ⊗ 𝑓𝑚 = 𝑔1 ⊗ ⋯ ⊗ 𝑔𝑛 with
𝑓𝑖 ∶ 𝑋𝑖 → 𝑌𝑖 and 𝑔𝑗 ∶ 𝑍𝑗 → 𝑊𝑗 that are non⊗-decomposables. Suppose 𝑚 ≤ 𝑛 and proceed by induction
on 𝑚.

If𝑚 = 0, then𝑋 = 0 is the empty monoidal product, and 𝑓 = 𝟙0 and 𝑔𝑖 = 𝟙0 for every 𝑖 = 1,… , 𝑛must
be identities on 0 because 0 is both initial and terminal.

For the induction step, suppose that𝑓∶= 𝑓1⊗…⊗𝑓𝑚−1 has a unique⊗-decomposition. Let𝐴1⊗…⊗𝐴𝛼
and𝐵1⊗…⊗𝐵𝛽 be the unique⊗-decompositions of𝑋1⊗…⊗𝑋𝑚 = 𝑍1⊗…⊗𝑍𝑛 and 𝑌1⊗…⊗𝑌𝑚 =
𝑊1 ⊗…⊗𝑊𝑛, respectively. Then, there are 𝑥 ≤ 𝛼 and 𝑦 ≤ 𝛽 such that 𝐴1 ⊗…⊗𝐴𝑥 = 𝑋1 ⊗…⊗𝑋𝑚−1
and 𝐵1 ⊗…⊗𝐵𝑦 = 𝑌1 ⊗…⊗ 𝑌𝑚−1. Then, we can rewrite 𝑓 in terms of 𝑔𝑖s, for some 𝑘 ≤ 𝑛:

𝑓1

𝑓𝑚−1

𝑋1

𝑋𝑚−1

𝑌1

𝑌𝑚−1

⋮ =

𝑓1

𝑓𝑚−1

𝑓𝑚

𝑋1

𝑋𝑚−1

𝑌1

𝑌𝑚−1

⋮

=

𝑔1

𝑔𝑘−1

𝑔𝑘

𝑔𝑛

⋮

⋮

=

𝑔1

𝑔𝑘−1

⋮

3.3. CATEGORIES WITH BIPRODUCTS 35

By induction hypothesis, 𝑓 has a unique⊗-decomposition, thus it must be that 𝑘 = 𝑚, for every 𝑖 < 𝑚 − 1
𝑓𝑖 = 𝑔𝑖 and 𝑓𝑚−1 = (𝟙 ⊗) � 𝑔𝑘 � (𝟙 ⊗) because 𝑔𝑖 are not⊗-decomposable. Then, we can express 𝑓𝑚
in terms of 𝑔𝑚,… , 𝑔𝑛:

𝑓𝑚𝑋𝑚 𝑌𝑚 =

𝑓1

𝑓𝑚−1

𝑓𝑚𝑋𝑚 𝑌𝑚

⋮

=

𝑔1

𝑔𝑚−1

𝑔𝑚

𝑔𝑛

⋮

⋮

=

𝑔𝑚−1

𝑔𝑚

𝑔𝑛

⋮

By hypothesis, 𝑓𝑚 is not⊗-decomposable and 𝑚 ≤ 𝑛. Thus, 𝑛 = 𝑚, 𝑓𝑚−1 = 𝑔𝑚−1 and 𝑓𝑚 = 𝑔𝑚.

These results show that a minimal monoidal decomposition of 𝑓 = 𝑓1 ⊗⋯⊗ 𝑓𝑘 can be obtained from
minimal monoidal decompositions of 𝑓𝑖.

Corollary 3.21. Let 𝑓 = 𝑓1⊗⋯⊗𝑓𝑘 be the unique⊗-decomposition of amorphism 𝑓 in amonoidal category
where the monoidal unit is a zero object and the objects are a unique factorisation monoid. Then, a minimal
monoidal decomposition of 𝑓 is 𝑑 = (𝑑1—⊗—(𝑑2—⊗—⋯ 𝑑𝑘)), for minimal decompositions 𝑑𝑖 of 𝑓𝑖.

How do we find minimal decompositions of the factors 𝑓𝑖? Since they cannot be ⊗-factored further,
their minimal decompositions will start with a composition node. When this composition node is minimal, it
corresponds to the rank and we obtain 𝗆𝗐𝖽(𝑓) ≥ max𝑖{𝗋𝗄(𝑓𝑖)}. For the upper bound, we show that every
𝑓𝑖 can be decomposed with width at most 𝗋𝗄(𝑓𝑖) + 1. The unpleasant +1 in this bound comes from the
difference between the weight and the minimal boundary of the morphisms and , and from the +1 in
the bound of the monoidal width of copy morphisms in Lemma 3.11.

Proposition 3.22. The monoidal width of a morphism 𝑓 ∶ 𝑛 → 𝑚 in a bicartesian prop 𝖯 is bounded by its
domain and codomain: 𝗆𝗐𝖽(𝑓) ≤ min{𝑚, 𝑛} + 1.

Proof. We proceed by induction on 𝑘 = max{𝑚, 𝑛}. There are three base cases.
• If 𝑛 = 0, then 𝑓 = 𝑚 because 0 is initial by hypothesis. Then, 𝗆𝗐𝖽(𝑓) = 𝗆𝗐𝖽(

⨂
𝑚) ≤ 𝗐() =

max{1, 1} ≤ min{0, 1} + 1.
• If 𝑚 = 0, then 𝑓 = 𝑛 because 0 is terminal by hypothesis. Then, 𝗆𝗐𝖽(𝑓) = 𝗆𝗐𝖽(

⨂
𝑛) ≤ 𝗐() =

max{1, 1} ≤ min{0, 1} + 1.
• If 𝑚 = 𝑛 = 1, then𝗆𝗐𝖽(𝑓) ≤ 𝗐(𝑓) = max{1, 1} ≤ min{1, 1} + 1 by definition of the weight function.
For the induction steps, suppose that the statement is true for any 𝑓 ′ ∶ 𝑛′ → 𝑚′ with max{𝑚′, 𝑛′} < 𝑘 =
max{𝑚, 𝑛} andmin{𝑚′, 𝑛′} ≥ 1. There are three possibilities.

36 CHAPTER 3. MONOIDAL WIDTH

1. If 0 < 𝑛 < 𝑚 = 𝑘, then 𝑓 can be decomposed as shown below because 𝑛+1 is uniform andmorphisms
are copiable because 𝖯 is cartesian by hypothesis.

𝑓𝑛 𝑚

= 𝑓𝑛
𝑚 − 1
1

= 𝑓𝑛

𝑚 − 1

1

=
𝑓

𝑓
𝑛

𝑚 − 1

1

This corresponds to 𝑓 = 𝑛 � (𝟙𝑛 ⊗ ℎ1) �𝑛+1 (ℎ2 ⊗ 𝟙1), where ℎ1∶= 𝑓 � (𝑚−1 ⊗ 𝟙1)∶ 𝑛 → 1 and
ℎ2∶= 𝑓 � (𝟙𝑚−1 ⊗ 1)∶ 𝑛 → 𝑚 − 1.
Then,𝗆𝗐𝖽(𝑓) ≤ max{𝗆𝗐𝖽(𝑛 � (𝟙𝑛 ⊗ℎ1)), 𝑛+1,𝗆𝗐𝖽(ℎ2⊗𝟙1)}. So, we want to bound the monoidal
width of the twomorphisms appearing in the formula above. For the first morphism, we apply the induc-
tion hypothesis because ℎ1 ∶ 𝑛 → 1 and 1, 𝑛 < 𝑘 and we apply Lemma 3.11. For the second morphism,
we apply the induction hypothesis because ℎ2 ∶ 𝑛→ 𝑚 − 1 and 𝑛, 𝑚 − 1 < 𝑘.

𝗆𝗐𝖽(𝑛 � (𝟙𝑛 ⊗ ℎ1)) 𝗆𝗐𝖽(ℎ2 ⊗ 𝟙1)
≤ (by Lemma 3.11) = (by Definition 3.4)
max{𝗆𝗐𝖽(ℎ1), 𝑛 + 1} 𝗆𝗐𝖽(ℎ2)
≤ (by induction hypothesis) ≤ (by induction hypothesis)
max{min{𝑛, 1} + 1, 𝑛 + 1} min{𝑛, 𝑚 − 1} + 1
= (because 0 < 𝑛) = (because 𝑛 ≤ 𝑚 − 1)
𝑛 + 1 𝑛 + 1

Then,𝗆𝗐𝖽(𝑓) ≤ 𝑛 + 1 = min{𝑚, 𝑛} + 1 because 𝑛 < 𝑚.
2. If 0 < 𝑚 < 𝑛 = 𝑘, we can apply Case 1 to 𝖯𝗈𝗉 with the same assumptions on the set of atoms because

𝖯𝗈𝗉 is also bicartesian. We obtain that 𝗆𝗐𝖽(𝑓) ≤ 𝑚 + 1 = min{𝑚, 𝑛} + 1 because 𝑚 < 𝑛.
3. If 0 < 𝑚 = 𝑛 = 𝑘, 𝑓 can be decomposed as in Case 1 (or Case 2) and, instead of applying the induction

hypothesis to bound 𝗆𝗐𝖽(ℎ1) and 𝗆𝗐𝖽(ℎ2), one applies Case 2 (or Case 1). Then, 𝗆𝗐𝖽(𝑓) ≤ 𝑚 + 1 =
min{𝑚, 𝑛} + 1 because 𝑚 = 𝑛.

Lemma 3.23. The monoidal width of a morphism 𝑓 ∶ 𝑛 → 𝑚 in a bicartesian prop 𝖯 is bounded by its rank:
𝗆𝗐𝖽𝑓 ≤ 𝗋𝗄(𝑓) + 1. Moreover, if 𝑓 is not⊗-decomposable, i.e. there are no 𝑓1, 𝑓2 both distinct from 𝑓 such
that 𝑓 = 𝑓1 ⊗ 𝑓2, then also 𝗆𝗐𝖽𝑓 ≥ 𝗋𝗄(𝑓).

Proof. For the first inequality, observe that there is a monoidal decomposition 𝑑 = ((𝑔)— �𝑘 —(ℎ)) of 𝑓
attaining the minimum of 𝑘 = 𝗋𝗄(𝑓). By Proposition 3.22, there are monoidal decompositions 𝑑1 and 𝑑2 of
𝑔 and ℎ whose width is bounded by their boundaries and, as a consequence, by the rank of 𝑓 .

𝗐𝖽(𝑑1) 𝗐𝖽(𝑑2)
≤ min{𝑛, 𝑘} + 1 ≤ min{𝑘, 𝑚} + 1

3.3. CATEGORIES WITH BIPRODUCTS 37

= 𝑘 + 1 = 𝑘 + 1

By definition of monoidal width and weight function,

𝗆𝗐𝖽(𝑓)
≤ 𝗐𝖽(𝑑)
∶= max{𝗐𝖽(𝑑1), 𝑘,𝗐𝖽(𝑑2)}
≤ max{𝑘 + 1, 𝑘, 𝑘 + 1}
= 𝗋𝗄(𝑓) + 1

For the second inequality, suppose that there are no non-trivial 𝑓1, 𝑓2 such that 𝑓 = 𝑓1 ⊗ 𝑓2. This means
that there are no monoidal decompositions of 𝑓 that start with a monoidal product node, (𝑑1— ⊗—𝑑2),
and that all monoidal decompositions of 𝑓 must either start with a composition node, (𝑑1— �𝑘 —𝑑2), or be
a leaf, (𝑓). Then,

𝗆𝗐𝖽(𝑓)
∶= min

𝑑∈𝐷𝑓
𝗐𝖽(𝑑)

≥ min{𝑘 ∈ ℕ ∶ 𝑓 = 𝑔 �𝑘 ℎ}
∶=𝗋𝗄(𝑓)

From Corollary 3.21 and Lemma 3.23, we construct a minimal monoidal decomposition of morphisms in
props with a zero object.

Theorem3.24. Let𝑓 beamorphism in a prop𝖯where0 is a zero object. Then,𝑓 has a unique⊗-decomposition
𝑓 = 𝑓1⊗…⊗𝑓𝑘 and itsmonoidalwidth is, up to 1, themaximumof the ranks of its factors,max𝑖=1,…,𝑘 𝗋𝗄(𝑓𝑖) ≤
𝗆𝗐𝖽(𝑓) ≤ max𝑖=1,…,𝑘 𝗋𝗄(𝑓𝑖) + 1.

Proof. By Lemma 3.23, there aremonoidal decompositions 𝑑𝑖 of 𝑓𝑖 of rank-boundedwidth,𝗐𝖽(𝑑𝑖) ≤ 𝗋𝗄(𝑓𝑖)+
1. We use these to define a decomposition 𝑑 of 𝑓 , 𝑑 = (𝑑1— ⊗ —⋯ (𝑑𝑘−1— ⊗ —𝑑𝑘)), whose width is
𝗐𝖽(𝑑)∶= max𝑖=1,…,𝑘 𝗐𝖽(𝑑𝑖) ≤ max𝑖=1,…,𝑘 𝗋𝗄(𝑓𝑖) + 1.

By Lemma 3.20, the factors 𝑓𝑖 are not⊗-decomposable. Then, the decompositions 𝑑𝑖 are minimal and
𝗆𝗐𝖽(𝑓𝑖) = 𝗐𝖽(𝑑𝑖) ≥ 𝗋𝗄(𝑓𝑖). By Proposition 3.19, the decomposition 𝑑 is also minimal and 𝗆𝗐𝖽(𝑓) ≥

𝗐𝖽(𝑑) = max𝑖=1,…,𝑘 𝗋𝗄(𝑓𝑖).

Chapter 4

Interlude: Two Perspectives on Graphs

Graphs and their homomorphisms form a monoidal category (Example 2.3), but not the one we will be con-
cerned with. Our interest is in decomposing graphs as morphisms and we will instantiate monoidal width in
two categorical algebras of graphs. Cospans of graphs are a well-known algebra for composing graphs along
some shared vertices. Section 4.1 recalls cospans of hypergraphs and relational structures, and their syntactic
presentation based on special Frobenius monoids [RSW05; BSS18]. Section 4.3 introduces the less-known
algebra of graphs where the boundaries are “dangling edges” [CS15; DHS21] that allow graphs to be com-
posed by connecting their boundary edges. Here, adjacency matrices encode the connectivity information
of graphs and the syntactic presentation of thismonoidal category of graphs relies on that ofmatrices [Zan15;
Bon+19b], which we recall in Section 4.2.

These categorical algebras give canonical choices for the operations defining tree width and cliquewidth,
which we recalled in Sections 2.2 and 2.3. We derive these operations from compositions and monoidal
products in cospans of hypergraphs and graphs with dangling edges, respectively.

4.1 Cospans of hypergraphs and relational structures

Cospans give an algebraic structure to compose systems along shared boundaries. Together with their dual
algebra of spans, they are natural examples of Katis, Sabadini andWalters’ bicategories of processes [KSW97a],
where cospans and spans of sets and graphs model transition systems and automata [KSW97b; Kat+00;
KSW04; RSW04]. Gadducci and Heckel’s axiomatisation of double pushout graph rewriting also relies on
cospans for adding boundaries to graphs [GH97; GHL99]. More recently, cospans of graphs and variations
of them have been applied to modelling “open” processes like Petri nets [Fon15; BP17; BM20] and Markov
processes [BFP16; CHP17].

In most of these applications, the boundaries do not retain all the computational information of the
part of the system they refer to, so the boundary objects are, usually, simpler than the objects that model
systems. Thus, the algebra of cospans is often restricted to a full subcategory on “simple” or “discrete” ob-
jects. This restriction can be mathematically justified with decorated [Fon15] and structured [FS07] cospans,
or with free feedback monoidal categories [Bon+19a; Di +23], but, for this work, the most appropriate per-
spective is the characterisation of discrete cospans of graphs as a free Frobenius monoid with an additional
generator [RSW05]. A very similar syntactic characterisation works more generally for discrete cospans of
relational structures [BSS18]. This section reviews the category of relational structures, cospans of them
and their syntactic presentation (Section 4.1). As anticipated in Example 2.22, graphs and hypergraphs are
instances of relational structures where the relational signature specifies the adjacency relations between
vertices. Morphisms of relational structures are functions preserving the relations and, in the case of graphs

39

40 CHAPTER 4. INTERLUDE: TWO PERSPECTIVES ON GRAPHS

and hypergraph, these are the usual graph and hypergraph homomorphisms.

Definition 4.1. For a relational signature 𝜏, a relational 𝜏-structure𝐺 is a finite set 𝑉 with an 𝛼𝑅-ary relation
𝑅𝐺 ⊆ 𝑉 𝛼𝑅 for each relational symbol𝑅 of arity 𝛼𝑅 in the signature 𝜏. Amorphism of relational 𝜏-structures
ℎ∶ 𝐺 → 𝐻 is a function ℎ∶ 𝑉𝐺 → 𝑉𝐻 that respects the relations: for all relational symbols (𝑅, 𝛼𝑅) ∈ 𝜏 and
all lists of elements 𝑣1,… , 𝑣𝛼𝑅 ∈ 𝑉 ,

𝑅𝐺(𝑣1,… , 𝑣𝛼𝑅) ⇒ 𝑅𝐻 (ℎ(𝑣1),… , ℎ(𝑣𝛼𝑅)) .

Relational structures and their morphisms form a monoidal category, where disjoint union gives the mo-
noidal structure (Proposition 4.6). This category can be described concisely as a comma category [Law63].
Remark 4.2. Relational 𝜏-structures and their morphisms are the objects and morphisms of the comma
category (𝟙 ↓ 𝐓) for the identity functor and the functor𝐓∶ 𝖥𝗂𝗇𝖲𝖾𝗍 → 𝖥𝗂𝗇𝖲𝖾𝗍 defined by the pullback below.

𝐓(𝑉) 𝑉 ∗

𝜏 ℕ

⌟
𝗅𝖾𝗇𝗀𝗍𝗁

𝛼

Explicitly, elements of 𝐓(𝑉) are pairs (𝑅, (𝑣1,… , 𝑣𝛼𝑅)) of a relational symbol 𝑅 and a list of length 𝛼𝑅 of
elements 𝑣1,… , 𝑣𝛼𝑅 ∈ 𝑉 . A relational structure is a function𝐺∶ 𝐸𝐺 → 𝐓(𝑉𝐺) and amorphism ℎ∶ 𝐺 → 𝐻

is a pair of functions ℎ𝐸 ∶ 𝐸𝐺 → 𝐸𝐻 and ℎ𝑉 ∶ 𝑉𝐺 → 𝑉𝐻 such that 𝐺 � 𝐓(ℎ𝑉) = ℎ𝐸 �𝐻 .

𝐸𝐺 𝐸𝐻

𝐓(𝑉𝐺) 𝐓(𝑉𝐻)

ℎ𝐸

𝐺 𝐻
𝐓(ℎ𝑉)

Proposition 4.3. Relational 𝜏-structures and their morphisms form a category 𝖲𝗍𝗋𝗎𝖼𝗍𝜏 .

Proof. As detailed in Remark 4.2, 𝖲𝗍𝗋𝗎𝖼𝗍𝜏 is also the comma category (𝟙 ↓ 𝐓) of the identity functor 𝟙𝖥𝗂𝗇𝖲𝖾𝗍
and the functor 𝐓∶ 𝖥𝗂𝗇𝖲𝖾𝗍 → 𝖥𝗂𝗇𝖲𝖾𝗍. For a reference, see [Mac78, Section II.6].

Intuitively, a cospan is a system together with two boundary maps that identify the subsystems that can
communicate with the environment. Composition of cospans allows them to be composed along common
substructures.

Definition 4.4. A cospan in a category 𝖢 is a pair of morphisms, the legs 𝑓 ∶ 𝑋 → 𝐸 and 𝑔∶ 𝑌 → 𝐸, in 𝖢
that share the same codomain 𝐸, the head.

Cospans form a monoidal category when the base category has finite colimits [Bén67].

Proposition 4.5. When𝖢 has finite colimits, cospans form a symmetric monoidal category𝖢𝗈𝗌𝗉𝖺𝗇(𝖢)whose
objects are the objects of 𝖢 and morphisms are cospans in 𝖢. More precisely, a morphism 𝑋 → 𝑌 in
𝖢𝗈𝗌𝗉𝖺𝗇(𝖢) is an equivalence class of cospans 𝑓 ∶ 𝑋 → 𝐸 ← 𝑌 ∶𝑔, up to isomorphism of the head of
the cospan. The composition of 𝑓 ∶ 𝑋 → 𝐸 ← 𝑌 ∶𝑔 and ℎ∶ 𝑌 → 𝐹 ← 𝑍 ∶𝑙 is given by the pushout of 𝑔
and ℎ. The monoidal product is given by component-wise coproducts.

Relational structures have finite colimits and there is a category of cospans of them.

Proposition 4.6. The category 𝖲𝗍𝗋𝗎𝖼𝗍𝜏 has all finite colimits.

4.1. COSPANS OF HYPERGRAPHS AND RELATIONAL STRUCTURES 41

Proof. A comma category (𝐒 ↓ 𝐓) for two functors 𝐒∶ 𝖢 → 𝖤 and 𝐓∶ 𝖣 → 𝖤 has all finite colimits if 𝖢 and
𝖣 have all finite colimits and the functor 𝐒 preserves them (see [RB88, Section 5.2] for a proof). In our case,
𝖢 = 𝖣 = 𝖥𝗂𝗇𝖲𝖾𝗍, which has all finite colimits and 𝐒 = 𝟙 is the identity functor, which preserves colimits.
Then, 𝖲𝗍𝗋𝗎𝖼𝗍𝜏 has all finite colimits.

This result ensures that we can consider the monoidal category of cospans of relational structures. As
mentioned at the beginning of this section, the boundaries do not need to carry all the computational infor-
mation of a relational structure, but it is sufficient that they record which vertices are accessible from the
environment. Thus, we restrict to discrete cospans of relational structures, the full subcategory of cospans on
discrete objects, i.e. sets. The legs of such a cospan point to some vertices in the relational structure that are
called sources as they play a similar role to the sources for graphs in Bauderon and Courcelle’s work [BC87].

Definition 4.7. The category 𝗌𝖲𝗍𝗋𝗎𝖼𝗍𝜏 of relational structures with sources is the full subcategory of the mo-
noidal category 𝖢𝗈𝗌𝗉𝖺𝗇(𝖲𝗍𝗋𝗎𝖼𝗍𝜏) on discrete structures 𝐷∶ ∅ → 𝑋. Explicitly, morphisms are cospans of
functions 𝑙∶ 𝑋 → 𝑉 ← 𝑌 ∶𝑟 with an apex 𝜏-structure 𝐺∶ 𝐸𝐺 → 𝐓(𝑉𝐺).

Explicitly, the composition of two morphisms 𝑙𝐺 ∶ 𝑋 → 𝑉𝐺 ← 𝑌 ∶𝑟𝐺 and 𝑙𝐻 ∶ 𝑌 → 𝑉𝐻 ← 𝑍 ∶𝑟𝐻 in
𝗌𝖲𝗍𝗋𝗎𝖼𝗍𝜏 is the morphism 𝑙∶ 𝑋 → 𝑉𝐺 �𝑌 𝑉𝐻 ← 𝑍 ∶𝑟 defined by the pushout of 𝑟𝐺 and 𝑙𝐻 .

𝑉𝐺 �𝑌 𝑉𝐻

𝑉𝐺 𝑉𝐻

𝑋 𝑌 𝑍

⌟𝑖𝐺 𝑖𝐻

𝑙𝐺 𝑙𝐻𝑟𝐺 𝑟𝐻

The apex of the cospan, 𝑉𝐺 �𝑌 𝑉𝐻 , is the relational structure obtained by joining 𝑉𝐺 and 𝑉𝐻 and identifying
the vertices that are the images of the same element of the boundary 𝑌 . The legs of the composite cospan
extend the legs of the original cospans: 𝑙∶= 𝑙𝐺 � 𝑖𝐺 and 𝑟∶= 𝑟𝐻 � 𝑖𝐻 . Themonoidal product of twomorphisms
𝑙∶ 𝑋 → 𝑉 ← 𝑌 ∶𝑟 and 𝑙′ ∶ 𝑋′ → 𝑉 ′ ← 𝑌 ′ ∶𝑟′ is their component-wise coproduct: 𝑙 + 𝑙′ ∶ 𝑋 + 𝑋′ →
𝑉 + 𝑉 ′ ← 𝑌 + 𝑌 ′ ∶𝑟 + 𝑟′.

Chapter 5 is dedicated to showing thatmonoidalwidth in the category 𝗌𝖲𝗍𝗋𝗎𝖼𝗍𝜏 is equivalent to treewidth.
Since the tree width of a relational structure is the same as the tree width of its underlying hypergraph, it is
sufficient to prove that monoidal width in the category of discrete cospans of hypergraphs is equivalent to
tree width.

Definition 4.8. The category 𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗ has sets as objects and discrete cospans of hypergraphs
as morphisms. It is equivalent to the category 𝗌𝖲𝗍𝗋𝗎𝖼𝗍𝜏ℎ𝑦𝑝 of discrete cospans of relational structures on the
relational signature 𝜏ℎ𝑦𝑝 for hypergraphs.

A syntax for relational structures

The skeleton of the category𝖢𝗈𝗌𝗉𝖺𝗇(𝖥𝗂𝗇𝖲𝖾𝗍) of cospans of finite sets and functions is isomorphic to the prop
generated by a special Frobenius monoid [Lac04, Section 5.4], whose generators and equations are in Fig-
ure 4.1. The syntactic presentation of discrete cospans of relational structures builds on this characterisation
and only adds a generator for each relational symbol 𝑅 in the relational signature 𝜏.

Definition 4.9. The category 𝗌𝖥𝗋𝗈𝖻 is the prop generated by a special Frobenius monoid, whose generators
and equations are in Figure 4.1.

42 CHAPTER 4. INTERLUDE: TWO PERSPECTIVES ON GRAPHS

= = =

= = =

= =

Figure 4.1: Generators and equations for a special Frobenius monoid.

Proposition 4.10 ([Lac04]). The skeleton of 𝖢𝗈𝗌𝗉𝖺𝗇(𝖥𝗂𝗇𝖲𝖾𝗍) is isomorphic to the prop 𝗌𝖥𝗋𝗈𝖻 generated by a
special Frobenius monoid.

The prop of relational structures with sources is obtained by freely adding a generator 𝖾𝑅 ∶ 𝛼𝑅 → 0 for
each (𝑅, 𝛼𝑅) ∈ 𝜏 to the prop 𝗌𝖥𝗋𝗈𝖻.

Definition 4.11. Given a relational signature 𝜏, the category𝖫𝖧𝖾𝖽𝗀𝖾𝜏 is the free prop generated by a “labelled
hyperedge” generator 𝖾𝑅 ∶ 𝛼𝑅 → 0 for every relational symbol𝑅 of arity 𝛼𝑅 in the signature 𝜏 (Figure 4.2).

𝑅𝛼𝑅 ⋮ for every (𝑅, 𝛼𝑅) ∈ 𝜏

Figure 4.2: The labelled hyperedge generators.

Definition 4.12. For a relational signature 𝜏, the prop 𝗌𝖥𝗋𝗈𝖻𝜏∶= 𝗌𝖥𝗋𝗈𝖻+𝖫𝖧𝖾𝖽𝗀𝖾𝜏 is the coproduct of the prop
𝗌𝖥𝗋𝗈𝖻 generated by a special Frobenius monoid and the prop 𝖫𝖧𝖾𝖽𝗀𝖾𝜏 generated by the labelled hyperedges
in 𝜏.

The relational signature for graphs 𝜏𝑔𝑟 contains a single symbol and morphisms in 𝗌𝖥𝗋𝗈𝖻𝜏𝑔𝑟 are
graphs with sources.

Example 4.13. The 3-clique with one source and the 3-star with one source are morphisms 1 → 0 in 𝗌𝖥𝗋𝗈𝖻𝜏𝑔𝑟 .

⇝ ⇝

Remark 4.14. We can impose additional equations to 𝗌𝖥𝗋𝗈𝖻𝜏 to constrain the behaviour of some relational
symbols. For a symmetric relational symbol 𝑅, we impose that 𝑝 � 𝖾𝑅 = 𝖾𝑅, for every permutation 𝑝 of the
𝛼𝑅 inputs of 𝖾𝑅.

𝑅𝛼𝑅 ⋮𝑝⋮ ⋮ = 𝑅𝛼𝑅 ⋮

4.1. COSPANS OF HYPERGRAPHS AND RELATIONAL STRUCTURES 43

If wewant to impose that theremay not be parallel edges of the same type𝑅, we add that 𝛼𝑅
�(𝖾𝑅⊗𝖾𝑅) =

𝖾𝑅.
𝑅𝛼𝑅 ⋮

𝑅𝛼𝑅 ⋮

⋮ = 𝑅𝛼𝑅 ⋮

The prop 𝗌𝖥𝗋𝗈𝖻𝜏 is a syntax for relational structures with sources [BSS18]. This result relies on previ-
ous characterisations of the category of discrete cospans of graphs with Frobenius monoids [GH97; GHL99;
RSW05].

Theorem 4.15 ([BSS18, Theorem 31]). The category 𝗌𝖲𝗍𝗋𝗎𝖼𝗍𝜏 of 𝜏-structures with sources is isomorphic to the
free special Frobenius prop 𝗌𝖥𝗋𝗈𝖻𝜏 on the signature 𝜏.

The operations for tree width

This section takes theoperations for treewidth ofDefinition 2.53 introducedbyBauderon andCourcelle [BC87;
Cou90] and examines them through a categorical lens. We derive these operations from compositions and
monoidal products in the category 𝗌𝖥𝗋𝗈𝖻𝜏 of relational structures with sources. This correspondence defines
inductively a function from structures with 𝑛 constants to morphisms of type 𝑛 → 0 in 𝗌𝖥𝗋𝗈𝖻𝜏 , which maps
a structure (𝐺, 𝑐) with 𝑛 constants to the morphism 𝑔∶ 𝑛 → 0 in 𝗌𝖥𝗋𝗈𝖻𝜏 that corresponds to the discrete
cospan of structures 𝑔 = 𝑐 ∶ 𝑛→ 𝐺 ← 0 ∶¡1.

The categorical structure clarifies the relationships between all the slightly different versions of the oper-
ations for tree width [BC87; Cou90; CM02]. While it is not difficult to check, with their usual definitions, that
these different variations are equivalent, this becomes even more apparent when seen from the categorical
perspective. This perspective also gives canonicity to one choice: the operations that define tree width are
composition andmonoidal product in themonoidal category of relational structures with sources. Chapter 5
is devoted to prove this in detail.

The generating structures of the algebraic tree decompositions correspond to specific morphisms in
𝗌𝖥𝗋𝗈𝖻𝜏 . The empty structure with no constants ∅ is the identity morphism on the monoidal unit 𝟙𝐼 , and
the structure 𝖾𝑅 with 𝛼𝑅 constants is the generator 𝖾𝑅 ∶ 𝛼𝑅 → 0.

∅ → and 𝖾𝑅 → 𝑅𝛼𝑅 ⋮

The operations are derived from the categorical structure. The disjoint union (𝐺, 𝑐)+(𝐻, 𝑑) of structures
(𝐺, 𝑐)with𝑚 constants and (𝐻, 𝑑)with 𝑛 constants is theirmonoidal product asmorphisms 𝑔⊗ℎ∶ 𝑚+𝑛→ 0.

(𝐺, 𝑐) + (𝐻, 𝑑) →
𝑔

ℎ

𝑚

𝑛

The redefinition of constants 𝖱𝖾𝗅𝖺𝖻𝑛𝑓 (𝐺, 𝑐) by a function 𝑓 is obtained by precomposing the corresponding
morphism 𝑔 with the cospan 𝑓 ∶ 𝑚 → 𝑛 ← 𝑛 ∶𝟙. This cospan is composed only of the monoid operations,
i.e. it is covariantly lifted from the function 𝑓 ∶ 𝑚→ 𝑛.

𝖱𝖾𝗅𝖺𝖻𝑛𝑓 (𝐺, 𝑐) → 𝑔𝑓𝑚
𝑛

1We indicate with ¡𝐴 ∶ 0 → 𝐴 the unique morphism from the initial object 0 to an object𝐴. Similarly, we indicate with !𝐴 ∶ 𝐴 → 1
the unique morphism from an object 𝐴 to the terminal object 1

44 CHAPTER 4. INTERLUDE: TWO PERSPECTIVES ON GRAPHS

Similarly, the fusion of the constants 𝑖 and 𝑗, 𝖥𝗎𝗌𝖾𝑛𝑖,𝑗(𝐺, 𝑐), is obtained by precomposing with the cospan
𝑑
𝗈𝗉
𝑖,𝑗 = 𝟙 ∶ 𝑛 → 𝑛 ← 𝑛 + 1 ∶𝑑𝑖,𝑗 . This cospan is contravariantly lifted from the function 𝑑𝑖,𝑗 ∶ 𝑛 + 1 → 𝑛

defined as 𝑑𝑖,𝑗(𝑘) = 𝑘 if 𝑘 < 𝑗, 𝑑𝑖,𝑗(𝑗) = 𝑖 and 𝑑𝑖,𝑗(𝑘) = 𝑘 − 1 if 𝑘 > 𝑗. The cospan 𝑑𝗈𝗉𝑖,𝑗 is composed only of
symmetries and a copy morphism that joins the 𝑖𝑡ℎ and 𝑗𝑡ℎ outputs.

𝖥𝗎𝗌𝖾𝑛𝑖,𝑗(𝐺, 𝑐) → 𝑔𝑑
𝗈𝗉
𝑖,𝑗𝑛 + 1

𝑛
where 𝑑

𝗈𝗉
𝑖,𝑗∶=

𝑖𝑡ℎ
𝑖𝑡ℎ

𝑗𝑡ℎ

⋮

⋮

⋮

⋮

⋮

⋮

The addition of a constant 𝑖,𝖵𝖾𝗋𝗍𝑛𝑖(𝐺, 𝑐) is also a precomposition. We compose the cospan 𝑎𝗈𝗉𝑖 = 𝟙 ∶ 𝑛+1 →
𝑛+1 ← 𝑛 ∶𝑎𝑖 with themorphism 𝑔 that corresponds to the structure (𝐺, 𝑐). As with the fusion of constants,
the cospan 𝑎𝗈𝗉𝑖 is contravariantly lifted from the function 𝑎𝑖 ∶ 𝑛 → 𝑛 + 1 defined as 𝑎𝑖(𝑘) = 𝑘 if 𝑘 < 𝑖 and
𝑎𝑖(𝑘) = 𝑘 + 1 if 𝑘 ≥ 𝑖. The cospan 𝑎𝗈𝗉𝑖 is composed only of identities and one discard morphism on the 𝑖𝑡ℎ
input.

𝖵𝖾𝗋𝗍𝑛𝑖(𝐺, 𝑐) → 𝑔𝑎
𝗈𝗉
𝑖

𝑛
𝑛 + 1

where 𝑎
𝗈𝗉
𝑖 ∶= 𝑖𝑡ℎ

⋮

⋮

⋮

⋮

The operations of redefinition, fusion and addition of constants together are as expressive as the op-
eration of precomposition with edge-less morphisms in 𝗌𝖥𝗋𝗈𝖻𝜏 . In fact, these operations can construct all
morphisms 𝑛→ 0 in the monoidal category of relational structures with sources.

4.2 Matrices
Matrices over the natural numbers are often used to encode the adjacency relation of graphs and are the
basis for the graph algebra presented in Section 4.3. This section recalls Proposition 4.18, a result that char-
acterises the algebra of matrices in terms of the generators and equations of a bialgebra (Figure 4.3). The
characterisation of the algebra of graphs in Section 4.3, Theorem 4.44, relies on this result.

Matrices are the morphisms of a prop.

Definition 4.16. The category of matrices 𝖬𝖺𝗍ℕ is the prop whose morphisms 𝑛 → 𝑚 are 𝑚 by 𝑛 matrices.
Composition is the usual product of matrices and the monoidal product is the biproduct of matrices 𝐴 ⊕
𝐵∶=

(
𝐴 𝟘
𝟘 𝐵

)
.

A syntax for matrices

The syntax for the prop of matrices is given by a commutative monoid (,), interpreted as adding and
zero, and a cocommutative comonoid (,), interpreted as copying and discarding. These interact ac-
cording to the laws of a bialgebra.

Definition 4.17. The prop 𝖡𝗂𝖺𝗅𝗀 is freely generated by a bialgebra, whose generators and equations are given
in Figure 4.3.

The free prop generated by a bialgebra is isomorphic to the prop of matrices. Proofs of this result can be
found in Zanasi’s PhD thesis [Zan15, Proposition 3.9] and in [BSZ17, Proposition 3.7].

4.3. GRAPHS WITH DANGLING EDGES 45

= = =

= = =

= = = =

Figure 4.3: Generators and equations of a bialgebra.

Proposition 4.18 ([Zan15]). There is an isomorphism of categories𝐌𝐚𝐭 ∶ 𝖡𝗂𝖺𝗅𝗀 → 𝖬𝖺𝗍ℕ.

Every morphism 𝑓 ∶ 𝑛→ 𝑚 in 𝖡𝗂𝖺𝗅𝗀 corresponds to a matrix𝐴 =𝐌𝐚𝐭(𝑓) ∈ 𝖬𝖺𝗍ℕ(𝑚, 𝑛): we can read the
(𝑖, 𝑗)-entry of𝐴 off the diagram of 𝑓 by counting the number of paths directed from the 𝑗-th input to the 𝑖-th
output. These paths do not include paths that “go back” through a multiplication or comultiplication node.

Example 4.19. The matrix 𝐴 =
(1 0

1 2
0 0

)
∈ 𝖬𝖺𝗍ℕ(3, 2) corresponds to the morphism 𝑎∶ 2 → 3 below. The

columns are the inputs and the rows are the outputs: the two distinct paths from the second input to the
second output and the absence of paths from the same input to the third output are recorded by a 2 in the
entry (2, 2) and a 0 in the entry (3, 2) of the matrix 𝐴.

𝑎 =

Remark 4.20. By Theorem 3.24, the monoidal width of a matrix 𝐴 = 𝐴1 ⊕⋯⊕ 𝐴𝑏 is the maximal rank of
its blocks,

𝗆𝗐𝖽(𝐴) = max
𝑖=1,…,𝑏

𝗋𝗄(𝐴𝑖) ,

because the monoidal unit 0 is also a zero object.

4.3 Graphs with dangling edges
This section introduces the prop of graphswith dangling edges. Morphisms represent graphswith additional
“dangling edges” and composition joins two graphs by connecting their dangling edges. We define this alge-
bra explicitly (Definition 4.25) and give an equivalent syntactic presentation (Definition 4.42). We show their
isomorphism by finding a normal form for morphisms in the syntactic presentation. The diagram below sum-
marises the proof strategy: Proposition 4.30 shows that the prop of graphs with dangling edges,𝖬𝖦𝗋𝖺𝗉𝗁, is
the coproduct of a prop of adjacency matrices,𝖬𝖠𝖽𝗃, and a prop of bounded permutations, 𝖻𝗈𝗎𝗇𝖽𝖯; Theo-
rem4.39 and Proposition 4.41 give equivalent syntactic descriptions of adjacencymatrices,𝖠𝖽𝗃, and bounded

46 CHAPTER 4. INTERLUDE: TWO PERSPECTIVES ON GRAPHS

permutations, 𝖵𝖾𝗋𝗍, based on the bialgebra characterisation of matrices; finally, the syntactic presentation
of graphs with dangling edges is defined as their coproduct, 𝖡𝖦𝗋𝖺𝗉𝗁∶= 𝖠𝖽𝗃 + 𝖵𝖾𝗋𝗍.

𝖬𝖠𝖽𝗃 𝖬𝖦𝗋𝖺𝗉𝗁 𝖻𝗈𝗎𝗇𝖽𝖯

𝖠𝖽𝗃 𝖡𝖦𝗋𝖺𝗉𝗁 𝖵𝖾𝗋𝗍

𝜄1

Theorem 4.39 Theorem 4.44

𝜄2

Proposition 4.41

The algebra of graphswith dangling edges relies on adjacencymatrices to encode the connectivity of vertices.
These are matrices quotiented by an equivalence relation that captures that there are different ways of
expressing the same connectivity information: if there are two edges between vertices 𝑖 and 𝑗 of a graph𝐺,
then this can be recorded in the entry (𝑖, 𝑗) or (𝑗, 𝑖) as long as their sum is 2.

Definition 4.21. An adjacency matrix [𝐺] is an equivalence class of square matrices 𝐺 ∈ 𝖬𝖺𝗍ℕ(𝑚,𝑚) over
the natural numbers, where the equivalence relation is [𝐺] = [𝐻] iff 𝐺 + 𝐺⊤ = 𝐻 +𝐻⊤.

Adjacency matrices on 𝑚 vertices are the morphisms 0 → 𝑚 of a prop where generic morphisms repre-
sent adjacency matrices “with inputs”. These are an adjacency matrix together with a matrix of compatible
dimensions that connects the inputs to the adjacency matrix. This prop is defined in [CS15], where it gives
an algebra for simple graphs. Our graph algebra captures multi-graphs but follows a similar idea.

Proposition 4.22 ([CS15]). There is a prop𝖬𝖠𝖽𝗃 where morphisms 𝛼∶ 𝑛→ 𝑚 are pairs 𝛼 = (𝐵, [𝐺]) of an 𝑚
by 𝑛matrix 𝐵 ∈ 𝖬𝖺𝗍ℕ(𝑚, 𝑛) and an 𝑚 by 𝑚 adjacency matrix [𝐺].

Proof. The composition of two morphisms (𝐵, [𝐺])∶ 𝑛 → 𝑚 and (𝐶, [𝐻])∶ 𝑚 → 𝑙 is defined as (𝐵, [𝐺]) �

(𝐶, [𝐻])∶= (𝐶 ⋅𝐵,
[
𝐶 ⋅ 𝐺 ⋅ 𝐶⊤ +𝐻

]
)∶ 𝑛→ 𝑙. The identity on 𝑛 is (𝟙𝑛, [𝟘]). Themonoidal product on objects

is addition, while onmorphisms it is the component-wise biproduct ofmatrices, (𝐵, [𝐺])⊗(𝐵′,
[
𝐺′])∶= (𝐵⊕

𝐵′,
[
𝐺 ⊕𝐺′]), with monoidal unit 0. Composition is well-defined on equivalence classes of adjacency ma-

trices. Suppose (𝐵, [𝐺]) = (𝐵,
[
𝐺′]) and (𝐶, [𝐻]) = (𝐶,

[
𝐻 ′]). This means that 𝐺 + 𝐺⊤ = 𝐺′ + (𝐺′)⊤ and

𝐻 +𝐻⊤ = 𝐻 ′ + (𝐻 ′)⊤.

(𝐶𝐺𝐶⊤ +𝐻) + (𝐶𝐺𝐶⊤ +𝐻)⊤

= 𝐶𝐺𝐶⊤ + 𝐶𝐺⊤𝐶⊤ +𝐻 +𝐻⊤

= 𝐶(𝐺 + 𝐺⊤)𝐶⊤ +𝐻 +𝐻⊤

= 𝐶(𝐺′ + (𝐺′)⊤)𝐶⊤ +𝐻 ′ + (𝐻 ′)⊤

= 𝐶𝐺′𝐶⊤ + 𝐶(𝐺′)⊤𝐶⊤ +𝐻 ′ + (𝐻 ′)⊤

= (𝐶𝐺′𝐶⊤ +𝐻 ′) + (𝐶𝐺′𝐶⊤ +𝐻 ′)⊤

Then, composition preserves equivalence of adjacency matrices.

(𝐵, [𝐺]) � (𝐶, [𝐻])
∶= (𝐶 ⋅ 𝐵,

[
𝐶 ⋅ 𝐺 ⋅ 𝐶⊤ +𝐻

]
)

= (𝐶 ⋅ 𝐵,
[
𝐶 ⋅ 𝐺′ ⋅ 𝐶⊤ +𝐻 ′])

∶=(𝐵,
[
𝐺′]) � (𝐶,

[
𝐻 ′])

For the monoidal product, it is easier to see that it preserves equivalence of adjacency matrices because, if
𝐺 +𝐺⊤ = 𝐺′ + (𝐺′)⊤ and𝐻 +𝐻⊤ = 𝐻 ′ + (𝐻 ′)⊤, then (𝐺⊕𝐻) + (𝐺⊕𝐻)⊤ = (𝐺′⊕𝐻 ′) + (𝐺′⊕𝐻 ′)⊤.

4.3. GRAPHS WITH DANGLING EDGES 47

For (𝐴, [𝐹])∶ 𝑝→ 𝑛, (𝐵, [𝐺])∶ 𝑛→ 𝑚 and (𝐶, [𝐻])∶ 𝑚→ 𝑙, we show that composition is associative.

((𝐴, [𝐹]) � (𝐵, [𝐺])) � (𝐶, [𝐻]) (𝐴, [𝐹]) � ((𝐵, [𝐺]) � (𝐶, [𝐻]))
= (𝐵𝐴,

[
𝐵𝐹𝐵⊤ + 𝐺

]
) � (𝐶, [𝐻]) = (𝐴, [𝐹]) � (𝐶𝐵,

[
𝐶𝐺𝐶⊤ +𝐻

]
)

= (𝐶𝐵𝐴,
[
𝐶(𝐵𝐹𝐵⊤ + 𝐺)𝐶⊤ +𝐻

]
) = (𝐶𝐵𝐴,

[
𝐶𝐵𝐹 (𝐶𝐵)⊤ + 𝐶𝐺𝐶⊤ +𝐻

]
)

= (𝐶𝐵𝐴,
[
𝐶𝐵𝐹 (𝐶𝐵)⊤ + 𝐶𝐺𝐶⊤ +𝐻

]
)

For (𝐵, [𝐺])∶ 𝑛→ 𝑚, we show that composition is unital.

(𝐵, [𝐺]) � (𝟙𝑚, [𝟘]) (𝟙𝑛, [𝟘]) � (𝐵, [𝐺])
= (𝟙𝑚 ⋅ 𝐵,

[
𝟙𝑚 ⋅ 𝐺 ⋅ 𝟙⊤𝑚 + 𝟘

]
) = (𝐵 ⋅ 𝟙𝑛,

[
𝐵 ⋅ 𝟘 ⋅ 𝐵⊤ + 𝐺

]
)

= (𝐵, [𝐺]) = (𝐵, [𝐺])

For (𝐵, [𝐺])∶ 𝑛 → 𝑚, (𝐶, [𝐻])∶ 𝑚 → 𝑙, (𝐵′,
[
𝐺′])∶ 𝑛′ → 𝑚′ and (𝐶 ′,

[
𝐻 ′])∶ 𝑚′ → 𝑙′, we show that the

monoidal product preserves their composition.

((𝐵, [𝐺])⊗ (𝐵′,
[
𝐺′])) � ((𝐶, [𝐻])⊗ (𝐶 ′,

[
𝐻 ′]))

= (𝐵 ⊕ 𝐵′,
[
𝐺 ⊕𝐺′]) � (𝐶 ⊕ 𝐶 ′,

[
𝐻 ⊕𝐻 ′])

= ((𝐶 ⊕ 𝐶 ′)(𝐵 ⊕ 𝐵′),
[
(𝐶 ⊕ 𝐶 ′)(𝐺 ⊕𝐺′)(𝐶 ⊕ 𝐶 ′)⊤ + (𝐻 ⊕𝐻 ′)

]
)

= ((𝐶𝐵)⊕ (𝐶 ′𝐵′),
[
(𝐶𝐺𝐶⊤)⊕ (𝐶 ′𝐺′𝐶 ′⊤) + (𝐻 ⊕𝐻 ′)

]
)

= ((𝐶𝐵)⊕ (𝐶 ′𝐵′),
[
(𝐶𝐺𝐶⊤ +𝐻)⊕ (𝐶 ′𝐺′(𝐶 ′)⊤ +𝐻 ′)

]
)

= (𝐶𝐵,
[
𝐶𝐺𝐶⊤ +𝐻

]
)⊗ (𝐶 ′𝐵′,

[
𝐶 ′𝐺′(𝐶 ′)⊤ +𝐻 ′])

= ((𝐵, [𝐺]) � (𝐶, [𝐻]))⊗ ((𝐵′,
[
𝐺′]) � (𝐶 ′,

[
𝐻 ′]))

The monoidal product preserves identities.

(𝟙𝑛, [𝟘])⊕ (𝟙𝑛′ , [𝟘])
= (𝟙𝑛 ⊕ 𝟙𝑛′ , [𝟘⊕ 𝟘])
= (𝟙𝑛+𝑛′ , [𝟘])

The monoidal product is associative and unital because the objects are natural numbers and the monoidal
product is addition.

The ordering of vertices in a graph is immaterial, but adjacency matrices fix one. Graphs are adjacency
matrices where the vertices can be arbitrarily permuted, so they are obtained by adding to the prop of
adjacency matrices the possibility of permuting some of the wires, those connected to the vertices. We
introduce the prop of bounded permutations to capture this aspect: morphisms are permutations where
some of the outputs can be freely permuted.

Definition 4.23. A bounded permutation 𝑝 = (𝑘, 𝑃) is a pair of a natural number 𝑘 ∈ ℕ and a permutation
matrix 𝑃 ∈ 𝖬𝖺𝗍ℕ(𝑚 + 𝑘, 𝑚 + 𝑘). Two bounded permutations 𝑝 = (𝑘, 𝑃) and 𝑞 = (𝑘,𝑄) are equivalent if
there is a permutation 𝜎 ∈ 𝖬𝖺𝗍ℕ(𝑘, 𝑘) such that 𝑃 =

(
𝟙𝑚 𝟘
𝟘 𝜎

)
⋅𝑄.

In a bounded permutation (𝑘, 𝑃), the number 𝑘 gives the number of outputs that are “bounded” and
can, thus, be permuted without changing the morphism. Bounded permutations are the morphisms of a
prop.

48 CHAPTER 4. INTERLUDE: TWO PERSPECTIVES ON GRAPHS

Proposition 4.24. Bounded permutations form a prop 𝖻𝗈𝗎𝗇𝖽𝖯 where morphisms 𝑝∶ 𝑚 + 𝑘 → 𝑚 are equiv-
alence classes of bounded permutations 𝑝 = (𝑘, 𝑃).

Proof. The composition of two bounded permutations (𝑘, 𝑃)∶ 𝑚 + 𝑗 + 𝑘 → 𝑚 + 𝑗 and (𝑗, 𝑄)∶ 𝑚 + 𝑗 → 𝑚
is defined as (𝑘, 𝑃) � (𝑗, 𝑄)∶= (𝑘 + 𝑗, (𝑄 ⊕ 𝟙𝑘) ⋅ 𝑃), and the identity morphism on 𝑚 is (0, 𝟙𝑚)∶ 𝑚 → 𝑚.
The monoidal product on objects is addition, the monoidal unit is 0 and, for two bounded permutations
(𝑘, 𝑃)∶ 𝑚+𝑘→ 𝑚 and (𝑘′, 𝑃 ′)∶ 𝑚′ +𝑘′ → 𝑚′, their monoidal product is (𝑘, 𝑃)⊗ (𝑘′, 𝑃 ′)∶= (𝑘+𝑘′, (𝟙𝑚 ⊕
𝜎𝑘,𝑚′⊕𝟙𝑘′)⋅(𝑃⊕𝑃 ′)), where 𝜎𝑘,𝑚′ is the permutationmatrix that swaps the first 𝑘 inputs with the remaining
𝑚′ inputs. Thanks to the string diagrammatic syntax for matrices, the permutation matrices associated to a
composition and a monoidal product are, in string diagrams,

𝑃
𝑄

𝑚
𝑗
𝑘

𝑚
𝑗
𝑘

𝑃

𝑃 ′

𝑚
𝑘

𝑚′

𝑘′

𝑚
𝑚′

𝑘
𝑘′

With this, it easy to see that composition is associative and unital. Composition is well-defined because, if
(𝑘, 𝑃) = (𝑘, 𝑃 ′) and (𝑗, 𝑄) = (𝑗, 𝑄′), then 𝑃 = (𝟙𝑚+𝑗 ⊕ 𝜎) ⋅ 𝑃 ′,𝑄 = (𝟙𝑚 ⊕ 𝜏) ⋅𝑄′,

𝑃
𝑄

𝑚
𝑗
𝑘

𝑚
𝑗
𝑘

= 𝑃 ′
𝜎

𝑄′
𝜏

𝑚
𝑗
𝑘

𝑚
𝑗
𝑘

= 𝑃 ′ 𝑄′

𝜎
𝜏

𝑚
𝑗
𝑘

𝑚
𝑗
𝑘

and (𝟙𝑘⊕𝑄′)⋅𝑃 ′ = (𝟙𝑚⊕𝜏⊕𝜎)⋅((𝟙𝑘⊕𝑄′)⋅𝑃 ′). So (𝑘, 𝑃)�(𝑗, 𝑄) = (𝑘, 𝑃 ′)�(𝑗, 𝑄′). Themonoidal product is
also well-defined because, if (𝑘, 𝑃) = (𝑘, 𝑃 ′) and (𝑗, 𝑄) = (𝑗, 𝑄′), then 𝑃 = (𝟙𝑚⊕𝜎) ⋅𝑃 ′,𝑄 = (𝟙𝑛 ⊕𝜏) ⋅𝑄′,

𝑃

𝑄

𝑚
𝑘

𝑛
𝑗

𝑚
𝑛

𝑘
𝑗

=
𝑃 ′

𝑄′

𝜎

𝜏

𝑚
𝑘

𝑛
𝑗

𝑚
𝑛

𝑘
𝑗

=
𝑃 ′

𝑄′ 𝜎
𝜏

𝑚
𝑘

𝑛
𝑗

𝑚
𝑛

𝑘
𝑗

and (𝟙𝑚⊕𝜎𝑘,𝑛⊕𝟙𝑗)⋅(𝑃⊕𝑄) = (𝟙𝑚+𝑛⊕𝜎⊕𝜏)⋅(𝟙𝑚⊕𝜎𝑘,𝑛⊕𝟙𝑗)⋅(𝑃 ′⊕𝑄′). So (𝑘, 𝑃)⊗(𝑗, 𝑄) = (𝑘, 𝑃 ′)⊗(𝑗, 𝑄′).
Themonoidal product is a functor: ((𝑘, 𝑃)⊗(𝑘′, 𝑃 ′))�((𝑗, 𝑄)⊗(𝑗′, 𝑄′)) = ((𝑘, 𝑃)�(𝑗, 𝑄))⊗((𝑘′, 𝑃 ′)�(𝑗′, 𝑄′))
because their matrices are equivalent up to permuting the “bounded wires”.

𝑃
𝑄

𝑚
𝑗
𝑘

𝑃 ′ 𝑄′𝑚′

𝑗′

𝑘′

𝑚
𝑚′
𝑗
𝑘
𝑗′

𝑘′

≅
𝑃

𝑄
𝑚
𝑗
𝑘

𝑃 ′ 𝑄′𝑚′

𝑗′

𝑘′

𝑚
𝑚′
𝑗
𝑗′

𝑘
𝑘′

=
𝑃

𝑄
𝑚
𝑗
𝑘

𝑃 ′

𝑄′
𝑚′

𝑗′

𝑘′

𝑚
𝑚′
𝑗
𝑗′

𝑘
𝑘′

The monoidal product is strictly associative and unital because, on objects, it is addition of natural numbers.

Graphs with dangling edges inherit the algebra of adjacency matrices and mix it with that of bounded
permutations. In fact, Proposition 4.30 shows that the prop 𝖬𝖦𝗋𝖺𝗉𝗁 of graphs with dangling edges is the
coproduct of𝖬𝖠𝖽𝗃 and 𝖻𝗈𝗎𝗇𝖽𝖯. Graphswith dangling edges have three connectivity points: the left and right
boudaries, and the vertices. These are connected between each other and themselves with five matrices.

Definition 4.25. Graphs with dangling edges are tuples 𝑔 = ([𝐺] , 𝐿, 𝑅, 𝑃 , [𝑆]), where each matrix encodes
part of the edges:
• 𝐺 ∈ 𝖬𝖺𝗍ℕ(𝑘, 𝑘) the edges of the graph, with 𝑘 the number of vertices;

4.3. GRAPHS WITH DANGLING EDGES 49

• 𝐿 ∈ 𝖬𝖺𝗍ℕ(𝑘, 𝑛) the dangling edges to the left boundary;
• 𝑅 ∈ 𝖬𝖺𝗍ℕ(𝑘, 𝑚) the dangling edges to the right boundary;
• 𝑃 ∈ 𝖬𝖺𝗍ℕ(𝑚, 𝑛) the passing edges from the left to the right boundary; and
• 𝑆 ∈ 𝖬𝖺𝗍ℕ(𝑚,𝑚) the edges from the right boundary to itself.
Two graphs with dangling edges 𝑔 = ([𝐺] , 𝐿, 𝑅, 𝑃 , [𝑆]) and 𝑔′ =

([
𝐺′] , 𝐿′, 𝑅′, 𝑃 ′,

[
𝑆′]) are equivalent if

there is a permutation matrix 𝜎 ∈ 𝖬𝖺𝗍ℕ(𝑘, 𝑘) such that

𝑔′ =
([
𝜎 ⋅ 𝐺 ⋅ 𝜎⊤

]
, 𝜎 ⋅ 𝐿, 𝜎 ⋅ 𝑅, 𝑃 , [𝑆]

)
.

The equivalence relation of graphs with dangling edges captures that the order of the vertices is imma-
terial. Graphs with dangling edges can be composed and are the morphisms of a prop.

Proposition 4.26. Graphs with dangling edges form a prop𝖬𝖦𝗋𝖺𝗉𝗁where morphisms 𝑔∶ 𝑛→ 𝑚 are equiv-
alence classes of graphs with dangling edges 𝑔 = ([𝐺] , 𝐿, 𝑅, 𝑃 , [𝑆]) as in Definition 4.25.

Proof. Given two graphs with dangling edges 𝑔∶ 𝑛 → 𝑚 and ℎ∶ 𝑚 → 𝑙, with 𝑔 =
(
[𝐺] , 𝐿𝑔, 𝑅𝑔, 𝑃𝑔,

[
𝑆𝑔

])
and ℎ =

(
[𝐻] , 𝐿ℎ, 𝑅ℎ, 𝑃ℎ,

[
𝑆ℎ

])
, their composition 𝑔 � ℎ∶ 𝑛→ 𝑙 is([(

𝐺 𝑅𝑔𝐿
⊤
ℎ

𝟘 𝐻+𝐿ℎ𝑆𝑔𝐿⊤ℎ

)]
,
(

𝐿𝑔
𝐿ℎ𝑃𝑔

)
,

(
𝑅𝑔𝑃

⊤
ℎ

𝑅ℎ+𝐿ℎ(𝑆𝑔+𝑆⊤𝑔)𝑃
⊤
ℎ

)
, 𝑃ℎ𝑃𝑔,

[
𝑆ℎ + 𝑃ℎ𝑆𝑔𝑃⊤ℎ

])
.

Composition is associative.

(𝑓 � 𝑔) � ℎ

=
([(

𝐹 𝑅𝑓𝐿
⊤
𝑔

𝟘 𝐺+𝐿𝑔𝑆𝑓𝐿⊤𝑔

)]
,
(

𝐿𝑓
𝐿𝑔𝑃𝑓

)
,

(
𝑅𝑓𝑃

⊤
𝑔

𝑅𝑔+𝐿𝑔(𝑆𝑓+𝑆⊤𝑓)𝑃
⊤
𝑔

)
, 𝑃𝑔𝑃𝑓 ,

[
𝑆𝑔 + 𝑃𝑔𝑆𝑓𝑃⊤𝑔

])
� ℎ

=
⎛⎜⎜⎝
⎡⎢⎢⎣
⎛⎜⎜⎝
𝐹 𝑅𝑓𝐿

⊤
𝑔 𝑅𝑓𝑃

⊤
𝑔 𝐿

⊤
ℎ

𝟘 𝐺+𝐿𝑔𝑆𝑓𝐿⊤𝑔 (𝑅𝑔+𝐿𝑔(𝑆𝑓+𝑆⊤𝑓)𝑃
⊤
𝑔)𝐿

⊤
ℎ

𝟘 𝟘 𝐻+𝐿ℎ(𝑆𝑔+𝑃𝑔𝑆𝑓𝑃⊤𝑔)𝐿
⊤
ℎ

⎞⎟⎟⎠
⎤⎥⎥⎦ ,

(𝐿𝑓
𝐿𝑔𝑃𝑓
𝐿ℎ𝑃𝑔𝑃𝑓

)
,
⎛⎜⎜⎝

𝑅𝑓𝑃
⊤
𝑔 𝑃

⊤
ℎ

(𝑅𝑔+𝐿𝑔(𝑆𝑓+𝑆⊤𝑓)𝑃
⊤
𝑔)𝑃

⊤
ℎ

𝑅ℎ+𝐿ℎ(𝑆𝑔+𝑃𝑔𝑆𝑓𝑃⊤𝑔 +𝑆
⊤
𝑔 +𝑃𝑔𝑆

⊤
𝑓
𝑃⊤𝑔)𝑃

⊤
ℎ

⎞⎟⎟⎠,
𝑃ℎ𝑃𝑔𝑃𝑓 ,

[
𝑆ℎ + 𝑃ℎ(𝑆𝑔 + 𝑃𝑔𝑆𝑓𝑃⊤𝑔)𝑃

⊤
ℎ

]⎞⎟⎟⎠
=

⎛⎜⎜⎝
⎡⎢⎢⎣
⎛⎜⎜⎝
𝐹 𝑅𝑓𝐿

⊤
𝑔 𝑅𝑓𝑃

⊤
𝑔 𝐿

⊤
ℎ

𝟘 𝐺+𝐿𝑔𝑆𝑓𝐿⊤𝑔 (𝑅𝑔+𝐿𝑔𝑆𝑓𝑃⊤𝑔)𝐿
⊤
ℎ

𝟘 𝐿ℎ𝑃𝑔𝑆𝑓𝐿
⊤
𝑔 𝐻+𝐿ℎ(𝑆𝑔+𝑃𝑔𝑆𝑓𝑃⊤𝑔)𝐿

⊤
ℎ

⎞⎟⎟⎠
⎤⎥⎥⎦ ,

(𝐿𝑓
𝐿𝑔𝑃𝑓
𝐿ℎ𝑃𝑔𝑃𝑓

)
,
⎛⎜⎜⎝

𝑅𝑓𝑃
⊤
𝑔 𝑃

⊤
ℎ

𝑅𝑔𝑃
⊤
ℎ
+𝐿𝑔(𝑆𝑓+𝑆⊤𝑓)𝑃

⊤
𝑔 𝑃

⊤
ℎ

𝑅ℎ+𝐿ℎ(𝑆𝑔+𝑆⊤𝑔 +𝑃𝑔(𝑆𝑓+𝑆
⊤
𝑓
)𝑃⊤𝑔)𝑃

⊤
ℎ

⎞⎟⎟⎠,
𝑃ℎ𝑃𝑔𝑃𝑓 ,

[
𝑆ℎ + 𝑃ℎ𝑆𝑔𝑃⊤ℎ + 𝑃ℎ𝑃𝑔𝑆𝑓𝑃⊤𝑔 𝑃

⊤
ℎ

]⎞⎟⎟⎠
= 𝑓 �

([(
𝐺 𝑅𝑔𝐿

⊤
ℎ

𝟘 𝐻+𝐿ℎ𝑆𝑔𝐿⊤ℎ

)]
,
(

𝐿𝑔
𝐿ℎ𝑃𝑔

)
,

(
𝑅𝑔𝑃

⊤
ℎ

𝑅ℎ+𝐿ℎ(𝑆𝑔+𝑆⊤𝑔)𝑃
⊤
ℎ

)
, 𝑃ℎ𝑃𝑔,

[
𝑆ℎ + 𝑃ℎ𝑆𝑔𝑃⊤ℎ

])
= 𝑓 � (𝑔 � ℎ)

Composition is unital.

𝑔 � 𝟙𝑚

=
([(

𝐺 𝑅𝑔 ¡𝑚
!𝑚 ()+!𝑚𝑆𝑔 ¡𝑚

)]
,
(

𝐿𝑔
!𝑚𝑃𝑔

)
,
(

𝑅𝑔𝟙𝑚
¡𝑚+!𝑚(𝑆𝑔+𝑆⊤𝑔)𝟙𝑚

)
, 𝟙𝑚𝑃𝑔,

[
𝟘 + 𝟙𝑚𝑆𝑔𝟙𝑚

])

50 CHAPTER 4. INTERLUDE: TWO PERSPECTIVES ON GRAPHS

=
(
[𝐺] , 𝐿𝑔, 𝑅𝑔, 𝑃𝑔,

[
𝑆𝑔

])
= 𝑔

𝟙𝑛 � 𝑔

=
([(

() !𝑛𝐿⊤𝑔
¡𝑛 𝐺+𝐿𝑔𝟘𝐿⊤𝑔

)]
,
(

!𝑛
𝐿𝑔𝟙𝑛

)
,

(
!𝑛𝑃⊤𝑔

𝑅𝑔+𝐿𝑔𝟘𝑃⊤𝑔

)
, 𝑃𝑔𝟙𝑛,

[
𝑆𝑔 + 𝑃𝑔𝟘𝑃⊤𝑔

])
=

(
[𝐺] , 𝐿𝑔, 𝑅𝑔, 𝑃𝑔,

[
𝑆𝑔

])
= 𝑔

Given two morphisms 𝑔 = ([𝐺] , 𝐿, 𝑅, 𝑃 , [𝑆]) and 𝑔′ =
([
𝐺′] , 𝐿′, 𝑅′, 𝑃 ′,

[
𝑆′]), their monoidal product

is
𝑔 ⊗ 𝑔′∶=

([
𝐺 ⊕𝐺′] , 𝐿 ⊕ 𝐿′, 𝑅 ⊕ 𝑅′, 𝑃 ⊕ 𝑃 ′,

[
𝑆 ⊕ 𝑆′]).

The monoidal product is functorial.

(𝑔 � ℎ)⊗ (𝑔′ � ℎ′)

=
([(

𝐺 𝑅𝑔𝐿
⊤
ℎ

𝟘 𝐻+𝐿ℎ𝑆𝑔𝐿⊤ℎ

)]
,
(

𝐿𝑔
𝐿ℎ𝑃𝑔

)
,

(
𝑅𝑔𝑃

⊤
ℎ

𝑅ℎ+𝐿ℎ(𝑆𝑔+𝑆⊤𝑔)𝑃
⊤
ℎ

)
, 𝑃ℎ𝑃𝑔,

[
𝑆ℎ + 𝑃ℎ𝑆𝑔𝑃⊤ℎ

])
⊗

([(
𝐺′ 𝑅′

𝑔(𝐿
′
ℎ
)⊤

𝟘 𝐻 ′+𝐿′
ℎ
𝑆′
𝑔(𝐿

′
ℎ
)⊤

)]
,

(
𝐿′
𝑔

𝐿′
ℎ
𝑃 ′
𝑔

)
,

(
𝑅′
𝑔(𝑃

′
ℎ
)⊤

𝑅′
ℎ
+𝐿′

ℎ
(𝑆′
𝑔+(𝑆

′
𝑔)
⊤)(𝑃 ′

ℎ
)⊤

)
, 𝑃 ′
ℎ𝑃

′
𝑔,
[
𝑆′
ℎ + 𝑃

′
ℎ𝑆

′
𝑔(𝑃

′
ℎ)
⊤
])

=
([(

𝐺 𝑅𝑔𝐿
⊤
ℎ

𝟘 𝐻+𝐿ℎ𝑆𝑔𝐿⊤ℎ

)
⊕

(
𝐺′ 𝑅′

𝑔(𝐿
′
ℎ
)⊤

𝟘 𝐻 ′+𝐿′
ℎ
𝑆′
𝑔(𝐿

′
ℎ
)⊤

)]
,(

𝐿𝑔
𝐿ℎ𝑃𝑔

)
⊕

(
𝐿′
𝑔

𝐿′
ℎ
𝑃 ′
𝑔

)
,

(
𝑅𝑔𝑃

⊤
ℎ

𝑅ℎ+𝐿ℎ(𝑆𝑔+𝑆⊤𝑔)𝑃
⊤
ℎ

)
⊕

(
𝑅′
𝑔(𝑃

′
ℎ
)⊤

𝑅′
ℎ
+𝐿′

ℎ
(𝑆′
𝑔+(𝑆

′
𝑔)
⊤)(𝑃 ′

ℎ
)⊤

)
,

𝑃ℎ𝑃𝑔 ⊕ 𝑃
′
ℎ𝑃

′
𝑔,
[
(𝑆ℎ + 𝑃ℎ𝑆𝑔𝑃⊤ℎ)⊕ (𝑆′

ℎ + 𝑃
′
ℎ𝑆

′
𝑔(𝑃

′
ℎ)
⊤)
])

=
⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣𝜏

⎛⎜⎜⎜⎝
𝐺 𝟘 𝑅𝑔𝐿

⊤
ℎ

𝟘
𝟘 𝐺′ 𝟘 𝑅′

𝑔(𝐿
′
ℎ
)⊤

𝟘 𝟘 𝐻+𝐿ℎ𝑆𝑔𝐿⊤ℎ 𝟘
𝟘 𝟘 𝟘 𝐻 ′+𝐿′

ℎ
𝑆′
𝑔(𝐿

′
ℎ
)⊤

⎞⎟⎟⎟⎠𝜏
⊤

⎤⎥⎥⎥⎦ , 𝜏
⎛⎜⎜⎝
𝐿𝑔 𝟘
𝟘 𝐿′

𝑔

𝐿ℎ𝑃𝑔 𝟘
𝟘 𝐿′

ℎ
𝑃 ′
𝑔

⎞⎟⎟⎠, 𝜏
⎛⎜⎜⎜⎝

𝑅𝑔𝑃
⊤
ℎ

𝟘
𝟘 𝑅′

𝑔(𝑃
′
ℎ
)⊤

𝑅ℎ+𝐿ℎ(𝑆𝑔+𝑆⊤𝑔)𝑃
⊤
ℎ

𝟘
𝟘 𝑅′

ℎ
+𝐿′

ℎ
(𝑆′
𝑔+(𝑆

′
𝑔)
⊤)(𝑃 ′

ℎ
)⊤

⎞⎟⎟⎟⎠,
(
𝑃ℎ𝑃𝑔 𝟘
𝟘 𝑃 ′

ℎ
𝑃 ′
𝑔

)
,

[(
𝑆ℎ+𝑃ℎ𝑆𝑔𝑃⊤ℎ 𝟘

𝟘 𝑆′
ℎ
+𝑃 ′

ℎ
𝑆′
𝑔(𝑃

′
ℎ
)⊤

)]⎞⎟⎟⎟⎠
≅

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝
𝐺 𝟘 𝑅𝑔𝐿

⊤
ℎ

𝟘
𝟘 𝐺′ 𝟘 𝑅′

𝑔(𝐿
′
ℎ
)⊤

𝟘 𝟘 𝐻+𝐿ℎ𝑆𝑔𝐿⊤ℎ 𝟘
𝟘 𝟘 𝟘 𝐻 ′+𝐿′

ℎ
𝑆′
𝑔(𝐿

′
ℎ
)⊤

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ ,

⎛⎜⎜⎝
𝐿𝑔 𝟘
𝟘 𝐿′

𝑔

𝐿ℎ𝑃𝑔 𝟘
𝟘 𝐿′

ℎ
𝑃 ′
𝑔

⎞⎟⎟⎠,
⎛⎜⎜⎜⎝

𝑅𝑔𝑃
⊤
ℎ

𝟘
𝟘 𝑅′

𝑔(𝑃
′
ℎ
)⊤

𝑅ℎ+𝐿ℎ(𝑆𝑔+𝑆⊤𝑔)𝑃
⊤
ℎ

𝟘
𝟘 𝑅′

ℎ
+𝐿′

ℎ
(𝑆′
𝑔+(𝑆

′
𝑔)
⊤)(𝑃 ′

ℎ
)⊤

⎞⎟⎟⎟⎠,
(
𝑃ℎ𝑃𝑔 𝟘
𝟘 𝑃 ′

ℎ
𝑃 ′
𝑔

)
,

[(
𝑆ℎ+𝑃ℎ𝑆𝑔𝑃⊤ℎ 𝟘

𝟘 𝑆′
ℎ
+𝑃 ′

ℎ
𝑆′
𝑔(𝑃

′
ℎ
)⊤

)]⎞⎟⎟⎟⎠
=

([(
𝐺 𝟘
𝟘 𝐺′

)]
,
(
𝐿𝑔 𝟘
𝟘 𝐿′

𝑔

)
,
(
𝑅𝑔 𝟘
𝟘 𝑅′

𝑔

)
,
(
𝑃𝑔 𝟘
𝟘 𝑃 ′

𝑔

)
,
[(

𝑆𝑔 𝟘
𝟘 𝑆′

𝑔

)])

4.3. GRAPHS WITH DANGLING EDGES 51

�

([(
𝐻 𝟘
𝟘 𝐻 ′

)]
,
(
𝐿ℎ 𝟘
𝟘 𝐿′

ℎ

)
,
(
𝑅ℎ 𝟘
𝟘 𝑅′

ℎ

)
,
(
𝑃ℎ 𝟘
𝟘 𝑃 ′

ℎ

)
,
[(

𝑆ℎ 𝟘
𝟘 𝑆′

ℎ

)])
= (𝑔 ⊗ 𝑔′) � (ℎ ⊗ ℎ′)

where 𝜏 =

(𝟙 𝟘 𝟘 𝟘
𝟘 𝟘 𝟙 𝟘
𝟘 𝟙 𝟘 𝟘
𝟘 𝟘 𝟘 𝟙

)
permutes the order of the vertices.

Proposition 4.30 shows the universal property of 𝖬𝖦𝗋𝖺𝗉𝗁 as a coproduct. The intermediate results in
Lemmas 4.27 to 4.29 define the inclusions and show the factorisation system of 𝖬𝖦𝗋𝖺𝗉𝗁. The inclusions
indicate that adjacency matrices and bounded permutations are graphs with dangling edges of a particular
shape.

Lemma 4.27. There are two homomorphisms of props 𝜄1 ∶ 𝖬𝖠𝖽𝗃 → 𝖬𝖦𝗋𝖺𝗉𝗁 and 𝜄2 ∶ 𝖻𝗈𝗎𝗇𝖽𝖯 → 𝖬𝖦𝗋𝖺𝗉𝗁.

Proof. The inclusions are identity on objects and, on morphisms, are defined by

𝜄1 ∶ 𝖬𝖠𝖽𝗃 → 𝖬𝖦𝗋𝖺𝗉𝗁 𝜄2 ∶ 𝖻𝗈𝗎𝗇𝖽𝖯 → 𝖬𝖦𝗋𝖺𝗉𝗁

(𝐵, [𝐺]) →
(
[()] , !, !, 𝐵, [𝐺]

)
(𝑘, 𝑃) →

([
𝟘𝑘

]
, 𝑃2, 𝟘, 𝑃1, [𝟘]

)
where 𝑃 =

(
𝑃1
𝑃2

)
, with 𝑃1 ∈ 𝖬𝖺𝗍ℕ(𝑚,𝑚+𝑘) and 𝑃2 ∈ 𝖬𝖺𝗍ℕ(𝑘, 𝑚+𝑘). These are homomorphisms of props.

They respect composition.

𝜄1(𝐵, [𝐺]) � 𝜄1(𝐶, [𝐻]) 𝜄2(𝑘, 𝑃) � 𝜄2(𝑗, 𝑄)
∶=

(
[()] , !, !, 𝐵, [𝐺]

)
�
(
[()] , !, !, 𝐶, [𝐻]

)
∶=

([
𝟘𝑘

]
, 𝑃2, 𝟘, 𝑃1, [𝟘]

)
�
([
𝟘𝑗

]
, 𝑄2, 𝟘, 𝑄1, [𝟘]

)
=

(
[()] , !, !, 𝐶𝐵,

[
𝐻 + 𝐶𝐺𝐶⊤

])
=

([
𝟘𝑘+𝑗

]
,
(

𝑃2
𝑄2𝑃1

)
, 𝟘, 𝑄1𝑃1, [𝟘]

)
∶=𝜄1(𝐶𝐵,

[
𝐻 + 𝐶𝐺𝐶⊤

]
) ≅

([
𝟘𝑘+𝑗

]
,
(
𝑄2𝑃1
𝑃2

)
, 𝟘, 𝑄1𝑃1, [𝟘]

)
= 𝜄1((𝐵, [𝐺]) � (𝐶, [𝐻])) ∶=𝜄2(𝑘 + 𝑗,

(
𝑄1𝑃1
𝑄2𝑃1
𝑃2

)
)

= 𝜄2(𝑘 + 𝑗,
(
𝑄
𝟙𝑘

)
𝑃)

= 𝜄2((𝑘, 𝑃) � (𝑗, 𝑄))

They respect identities.

𝜄1(𝟙𝑛, [𝟘]) 𝜄2(0, 𝟙𝑛)
∶=

(
[()] , !, !, 𝟙𝑛, [𝟘]

)
∶=

(
[()] , !, !, 𝟙𝑛, [𝟘]

)
= 𝟙𝑛 𝟙𝑛

They respect the monoidal product.

𝜄1(𝐵, [𝐺])⊗ 𝜄1(𝐵′,
[
𝐺′]) 𝜄2(𝑘, 𝑃)⊗ 𝜄2(𝑘′, 𝑃 ′)

∶=
(
[()] , !, !, 𝐵, [𝐺]

)
⊗

(
[()] , !, !, 𝐵′,

[
𝐺′]) ∶=

([
𝟘𝑘

]
, 𝑃2, 𝟘, 𝑃1, [𝟘]

)
⊗

([
𝟘𝑘′

]
, 𝑃 ′

2 , 𝟘, 𝑃
′
1 , [𝟘]

)
=

(
[()] , !, !, 𝐵 ⊕ 𝐵′,

[
𝐺 ⊕𝐺′]) =

([
𝟘𝑘+𝑘′

]
, 𝑃2 ⊕ 𝑃

′
2 , 𝟘, 𝑃1 ⊕ 𝑃

′
1 , [𝟘]

)
∶=𝜄1(𝐵 ⊕ 𝐵′,

[
𝐺 ⊕𝐺′]) ∶=𝜄2(𝑘 + 𝑘′,

(
𝑃1⊕𝑃

′
1

𝑃2⊕𝑃
′
2

)
)

52 CHAPTER 4. INTERLUDE: TWO PERSPECTIVES ON GRAPHS

= 𝜄1((𝐵, [𝐺])⊗ (𝐵′,
[
𝐺′])) = 𝜄2(𝑘 + 𝑘′, (𝟙𝑚 ⊕ 𝜎𝑘,𝑚′ ⊕ 𝟙𝑘′)

(
𝑃
𝑃 ′

)
)

= 𝜄2((𝑘, 𝑃)⊗ (𝑘′, 𝑃 ′))

The inclusions of𝖬𝖠𝖽𝗃 and 𝖻𝗈𝗎𝗇𝖽𝖯 into𝖬𝖦𝗋𝖺𝗉𝗁 characterise all morphisms.

Lemma 4.28. Morphisms 𝑔∶ 𝑛 → 𝑚 in 𝖬𝖦𝗋𝖺𝗉𝗁 split as 𝑔 = 𝜄1(𝑎) � 𝜄2(𝑣), for some 𝑎∶ 𝑛 → 𝑙 in 𝖬𝖠𝖽𝗃 and
𝑣∶ 𝑙 → 𝑚 in 𝖻𝗈𝗎𝗇𝖽𝖯, uniquely up to permutations.

Proof. A morphism 𝑔 = ([𝐺] , 𝐿, 𝑅, 𝑃 , [𝑆]) with 𝑘 vertices in𝖬𝖦𝗋𝖺𝗉𝗁(𝑛, 𝑚) splits as a composition.

𝑔 = ([𝐺] , 𝐿, 𝑅, 𝑃 , [𝑆])
=

(
[()] , !𝑛, !𝑚+𝑘,

(
𝑃
𝐿

)
,
[(
𝑆 𝟘
𝑅 𝐺

)])
�
([
𝟘𝑘

]
, (𝟘|𝟙𝑘), 𝟘, (𝟙𝑚|𝟘), [𝟘𝑚])

= 𝜄1(
(
𝑃
𝐿

)
,
[(
𝑆 𝟘
𝑅 𝐺

)]
) � 𝜄2(𝑘, 𝟙𝑚+𝑘)

= 𝜄1(𝑎) � 𝜄2(𝑣)

Suppose that the same morphism 𝑔 splits as 𝑔 = 𝜄1(𝐵, [𝑇]) � 𝜄2(𝑘′, 𝑃𝜏) = 𝜄1(𝑎′) � 𝜄2(𝑣′) as well. We show that
there is a permutation 𝜏 such that 𝑎 = 𝑎′ � 𝜏 and 𝑣′ = 𝜏 � 𝑣.

Then, 𝑃𝜏 ∈ 𝖬𝖺𝗍ℕ(𝑚′ + 𝑘′, 𝑚′ + 𝑘′) is the matrix corresponding to a permutation 𝜏 and 𝑚′ = 𝑚 because
(𝑘′, 𝑃𝜏)∶ 𝑚′ + 𝑘′ → 𝑚′, 𝑔∶ 𝑛 → 𝑚 and their codomains must coincide. This permutation matrix splits along
its rows as 𝑃𝜏 =

(
𝑃1
𝑃2

)
, with 𝑃1 ∈ 𝖬𝖺𝗍ℕ(𝑚,𝑚 + 𝑘′) and 𝑃2 ∈ 𝖬𝖺𝗍ℕ(𝑘′, 𝑚 + 𝑘′) and the second factor of 𝑔

splits with the permutation 𝜏: (𝑘′, 𝑃𝜏) = (0, 𝑃𝜏) � (𝑘′, 𝟙𝑚+𝑘′) = 𝜏 � (𝑘′, 𝟙𝑚+𝑘′).

𝑔 = 𝜄1(𝐵, [𝑇]) � 𝜄2(𝑘′, 𝑃𝜏)
= 𝜄1(𝐵, [𝑇]) � 𝜄2(𝜏 � (𝑘′, 𝟙𝑚+𝑘′))
= 𝜄1(𝐵, [𝑇]) � 𝜏 � 𝜄2(𝑘′, 𝟙𝑚+𝑘′)
= 𝜄1((𝐵, [𝑇]) � 𝜏) � 𝜄2(𝑘′, 𝟙𝑚+𝑘′)
= 𝜄1(𝑃𝜏𝐵,

[
𝑃𝜏𝑇𝑃

⊤
𝜏

]
) � 𝜄2(𝑘′, 𝟙𝑚+𝑘′)

=
(
[()] , !𝑛, !𝑚+𝑘′ , 𝑃𝜏𝐵,

[
𝑃𝜏𝑇𝑃

⊤
𝜏

])
�
([
𝟘𝑘′

]
, (𝟘|𝟙𝑘′), 𝟘, (𝟙𝑚|𝟘), [𝟘𝑚])

=
([
𝑃2𝑇𝑃

⊤
2
]
, 𝑃2𝐵, 𝑃2(𝑇 + 𝑇 ⊤)𝑃⊤1 , 𝑃1𝐵,

[
𝑃1𝑇𝑃

⊤
1
])

Then, we can rewrite the components of 𝑔 in terms of 𝑃𝜏 , 𝐵 and 𝑇 .

[𝐺] =
[
𝑃2𝑇𝑃

⊤
2
]

𝐿 = 𝑃2𝐵
𝑅 = 𝑃2(𝑇 + 𝑇 ⊤)𝑃⊤1
𝑃 = 𝑃1𝐵

[𝑆] =
[
𝑃1𝑇𝑃

⊤
1
]

As a consequence, 𝑘 = 𝑘′ and we can relate the two factorisations.(
𝑃
𝐿

) [(
𝑆 𝟘
𝑅 𝐺

)]
=

(
𝑃1𝐵
𝑃2𝐵

)
=

[(
𝑃1𝑇𝑃

⊤
1 𝟘

𝑃2(𝑇+𝑇⊤)𝑃⊤1 𝑃2𝑇𝑃
⊤
2

)]

4.3. GRAPHS WITH DANGLING EDGES 53

= 𝑃𝜏𝐵 =
[(

𝑃1𝑇𝑃
⊤
1 𝑃1𝑇𝑃

⊤
2

𝑃2𝑇𝑃
⊤
1 𝑃2𝑇𝑃

⊤
2

)]
=

[
𝑃𝜏𝑇𝑃

⊤
𝜏

]
Then, (

(
𝑃
𝐿

)
,
[(
𝑆 𝟘
𝑅 𝐺

)]
) = (𝑃𝜏𝐵,

[
𝑃𝜏𝑇𝑃

⊤
𝜏

]
) = (𝐵, [𝑇]) � 𝜏.

By Theorem2.16, this resultmeans that𝖬𝖦𝗋𝖺𝗉𝗁 is a composite prop. The next result ensures that𝖬𝖦𝗋𝖺𝗉𝗁
is, in particular, the coproduct of𝖬𝖠𝖽𝗃 and 𝖻𝗈𝗎𝗇𝖽𝖯.

Lemma 4.29. For any two prop morphisms 𝐚∶ 𝖬𝖠𝖽𝗃 → 𝖯 and 𝐯∶ 𝖻𝗈𝗎𝗇𝖽𝖯 → 𝖯,

𝐯(𝑘, 𝑃) � 𝐚(𝐵, [𝑆]) = 𝐚((𝐵 ⊕ 𝟙𝑘)𝑃 ,
[
𝑆 ⊕ 𝟘𝑘

]
) � 𝐯(𝑘, 𝟙𝑚+𝑘) .

Proof. We compute the composition using that 𝐚 and 𝐯 are prop morphisms. We use the red functor boxes
for 𝐯 and the blue ones for 𝐚. We indicate with the costate 𝑘 the morphism (𝑘, 𝟙𝑘) in 𝖻𝗈𝗎𝗇𝖽𝖯, with 𝑏 the
morphism (𝐵, [𝑆]) in 𝖬𝖠𝖽𝗃, and with 𝜎𝑃 the permutation in 𝖬𝖠𝖽𝗃, 𝖻𝗈𝗎𝗇𝖽𝖯 or 𝖯 corresponding to the per-
mutation matrix 𝑃 .

𝐯(𝑘, 𝑃) � 𝐚(𝐵, [𝑆])
= 𝐯(𝜎𝑃 � (𝟙𝑛 ⊗ (𝑘, 𝟙𝑘))) � 𝐚(𝐵, [𝑆])

= 𝜎𝑃
𝑘

𝑏

= 𝜎𝑃

𝑘

𝑏

= 𝜎𝑃

𝑘

𝑏

= 𝜎𝑃
𝑘

𝑏

= 𝜎𝑃
𝑘

𝑏

= 𝜎𝑃
𝑘

𝑏

= 𝐚(𝜎𝑃 � ((𝐵, [𝑆])⊗ 𝟙𝑘)) � 𝐯(𝟙𝑚 ⊗ (𝑘, 𝟙𝑘))
= 𝐚((𝐵 ⊕ 𝟙𝑘)𝑃 ,

[
𝑆 ⊕ 𝟘𝑘

]
) � 𝐯(𝑘, 𝟙𝑚+𝑘)

With these results, we can show the universal property of𝖬𝖦𝗋𝖺𝗉𝗁.

Proposition 4.30. The prop of graphs with dangling edges is the coproduct of the prop of adjacencymatrices
and that of bounded permutations: 𝖬𝖦𝗋𝖺𝗉𝗁 ≅ 𝖬𝖠𝖽𝗃 + 𝖻𝗈𝗎𝗇𝖽𝖯.

54 CHAPTER 4. INTERLUDE: TWO PERSPECTIVES ON GRAPHS

Proof. By Lemma 4.28, we can apply the result on composition of props [Lac04, Theorem 4.6], recalled in
Theorem 2.16, to the prop𝖬𝖦𝗋𝖺𝗉𝗁 to obtain that it is the composition of𝖬𝖠𝖽𝗃 and 𝖻𝗈𝗎𝗇𝖽𝖯 via a distributive
law 𝜆∶ (𝜄2(𝑣) ∣ 𝜄1(𝑎)) → (𝜄1(�̂�) ∣ 𝜄2(�̂�)). In particular, for any two prop morphisms 𝐚∶ 𝖬𝖠𝖽𝗃 → 𝖯 and
𝐯∶ 𝖻𝗈𝗎𝗇𝖽𝖯 → 𝖯 such that 𝐯(𝑣) � 𝐚(𝑎) = 𝐚(�̂�) � 𝐯(�̂�), there is a unique prop morphism 𝐡∶ 𝖬𝖦𝗋𝖺𝗉𝗁 → 𝖯 such
that 𝐚 = 𝜄1 � 𝐡 and 𝐯 = 𝜄2 � 𝐡. By Lemma 4.29, any two prop morphisms 𝐚∶ 𝖬𝖠𝖽𝗃 → 𝖯 and 𝐯∶ 𝖻𝗈𝗎𝗇𝖽𝖯 → 𝖯
satisfy 𝐯(𝑣) � 𝐚(𝑎) = 𝐚(�̂�) � 𝐯(�̂�), which means that any two such morphisms define a unique prop morphism
𝐡∶ 𝖬𝖦𝗋𝖺𝗉𝗁 → 𝖯 such that 𝐚 = 𝜄1 � 𝐡 and 𝐯 = 𝜄2 � 𝐡. This is equivalent to say that 𝖬𝖦𝗋𝖺𝗉𝗁 satisfies the
universal property of the coproduct of𝖬𝖠𝖽𝗃 and 𝖻𝗈𝗎𝗇𝖽𝖯.

A syntax for graphs with dangling edges

Wegive a syntactic presentation of graphswith dangling edges by giving syntactic presentations of its compo-
nents𝖬𝖠𝖽𝗃 and 𝖻𝗈𝗎𝗇𝖽𝖯. The string diagrammatic syntax for adjacencymatrices relies on the characterisation
of matrices as a bialgebra but needs the addition of a “cup” generator ∶ 0 → 2 (Figure 4.4) that captures
the equivalence relation of adjacency matrices (Lemma 4.36). Theorem 4.39 shows that 𝖠𝖽𝗃 is a syntactic
presentation of𝖬𝖠𝖽𝗃.

Definition 4.31. The prop 𝖠𝖽𝗃 is presented by the generators and equations in Figures 4.3 and 4.4.

= = =

Figure 4.4: Additional generator and equations for the prop of adjacency matrices (Figure 4.3 contains the
rest of generators and equations).

As recalled in Section 2.1, presenting a prop with generators and equations corresponds to taking a co-
equaliser in the category 𝖯𝗋𝗈𝗉 of props and their morphisms. The generators and equations in Figure 4.4
indicate that 𝖠𝖽𝗃 is the coequaliser of two prop morphisms 𝐬, 𝐭 ∶ 𝖠 → 𝖡𝗂𝖺𝗅𝗀 + 𝖢𝗎𝗉. The prop 𝖠 is freely
generated by two morphisms 𝑎∶ 0 → 3 and 𝑏∶ 0 → 1, while the prop 𝖢𝗎𝗉 is presented by a cup morphism
∶ 0 → 2 and quotiented by the first equation in Figure 4.4. The prop morphisms are defined inductively

by their images on the generators of 𝖠.

𝐬(𝑎)∶= 𝐭(𝑎)∶=

𝐬(𝑏)∶= 𝐭(𝑏)∶=

(4.1)

The isomorphism between the props 𝖠𝖽𝗃 and𝖬𝖠𝖽𝗃 is proven in [CS15, Theorem 4.2] by defining a prop
morphism 𝖠𝖽𝗃 → 𝖬𝖠𝖽𝗃 inductively and showing that it is an isomorphism. We rely on the same arguments
but give a slightly different proof. We show that𝖬𝖠𝖽𝗃 also satisfies the universal property of the coequaliser

4.3. GRAPHS WITH DANGLING EDGES 55

of 𝐬 and 𝐭. The isomorphism 𝜙∶ 𝖬𝖠𝖽𝗃 → 𝖠𝖽𝗃 defined in Theorem 4.39 captures the normal form of mor-
phisms in 𝖠𝖽𝗃.

𝜙∶ (𝐵, [𝐺]) → 𝐺
𝐵

(4.2)

This notation implicitly relies on the isomorphism 𝖡𝗂𝖺𝗅𝗀 ≅ 𝖬𝖺𝗍ℕ of Proposition 4.18: a box 𝐴 indicates
the image of the matrix 𝐴 under the isomorphism𝐌𝐚𝐭−1 ∶ 𝖬𝖺𝗍ℕ → 𝖡𝗂𝖺𝗅𝗀.

The proof that𝖬𝖠𝖽𝗃 is the coequaliser of 𝐬 and 𝐭 first constructs a candidate coequaliser map 𝐪∶ 𝖡𝗂𝖺𝗅𝗀+
𝖢𝗎𝗉 → 𝖬𝖠𝖽𝗃 and then shows the universal property for it. The prop morphism 𝐪 is defined as a coproduct
map of prop morphisms 𝐛∶ 𝖡𝗂𝖺𝗅𝗀 → 𝖬𝖠𝖽𝗃 and 𝐜∶ 𝖢𝗎𝗉 → 𝖬𝖠𝖽𝗃. The morphism 𝐛 is the composition of the
isomorphism𝐌𝐚𝐭 ∶ 𝖡𝗂𝖺𝗅𝗀 → 𝖬𝖺𝗍ℕ and the prop morphism 𝐣∶ 𝖬𝖺𝗍ℕ → 𝖬𝖠𝖽𝗃 described in Lemma 4.32.

Lemma 4.32. There is a morphism of props 𝐣∶ 𝖬𝖺𝗍ℕ → 𝖬𝖠𝖽𝗃 from the prop of matrices to that of adjacency
matrices defined by 𝐣(𝐴)∶= (𝐴, [𝟘]).

Proof. We check that 𝐣 preserves compositions, identities and monoidal products.

𝐣(𝐴) � 𝐣(𝐵) 𝐣(𝟙𝑛) 𝐣(𝐴)⊗ 𝐣(𝐴′)
∶= (𝐴, [𝟘]) � (𝐵, [𝟘]) ∶= (𝟙𝑛,

[
𝟘𝑛

]
) ∶= (𝐴, [𝟘])⊗ (𝐴′, [𝟘])

∶= (𝐵𝐴,
[
𝐵𝟘𝐵⊤ + 𝟘

]
) = 𝟙𝑛 ∶= (𝐴⊕𝐴′, [𝟘⊕ 𝟘])

= (𝐵𝐴, [𝟘]) = (𝐴⊕𝐴′, [𝟘])
∶=𝐣(𝐴 � 𝐵) ∶=𝐣(𝐴⊕𝐴′)

There is a morphism in𝖬𝖠𝖽𝗃 that behaves like the cup .

Lemma 4.33. There is a morphism of props 𝐜∶ 𝖢𝗎𝗉 → 𝖬𝖠𝖽𝗃 defined by

𝐜()∶= (¡2,
[(0 1

0 0
)]
) .

Proof. We define the mapping 𝐜 on the generator as 𝐜()∶= (¡2,
[(0 1

0 0
)]
), which, using the isomorphism

𝐌𝐚𝐭 ∶ 𝖡𝗂𝖺𝗅𝗀 → 𝖬𝖺𝗍ℕ, becomes

𝐜() =
(
𝐌𝐚𝐭

()
,
[
𝐌𝐚𝐭

()])
.

The image on the rest of the morphisms of𝖢𝗎𝗉 is defined inductively, so we need to check that the equation
of commutativity of the cup holds. We use the equivalence relation of adjacencymatrices for

(0 0
1 0

)
∼

(0 1
0 0

)
.

𝐜(�)
∶= 𝐜() � 𝐜()

=
(
𝐌𝐚𝐭

()
,
[
𝐌𝐚𝐭

()])
�

(
𝐌𝐚𝐭

()
,
[
𝐌𝐚𝐭

()])
∶=

(
𝐌𝐚𝐭

()
,

[
𝐌𝐚𝐭

()
+𝐌𝐚𝐭

()])
=

(
𝐌𝐚𝐭

()
,
[
𝐌𝐚𝐭

()])
= (¡2,

[(0 0
1 0

)]
)

56 CHAPTER 4. INTERLUDE: TWO PERSPECTIVES ON GRAPHS

= (¡2,
[(0 1

0 0
)]
)

∶=𝐜()

The propmorphism𝐪∶ 𝖡𝗂𝖺𝗅𝗀+𝖢𝗎𝗉 → 𝖬𝖠𝖽𝗃 is the coproductmap of the propmorphisms 𝐛 and 𝐜 defined
in Lemmas 4.32 and 4.33. The morphism 𝐪 also coequalises 𝐬 and 𝐭.

Proposition 4.34. The coproduct map 𝐪∶= [𝐛, 𝐜] is a coequalising prop morphism 𝐪∶ 𝖡𝗂𝖺𝗅𝗀 + 𝖢𝗎𝗉 → 𝖬𝖠𝖽𝗃
of the pair 𝐬, 𝐭 ∶ 𝖠 → 𝖡𝗂𝖺𝗅𝗀 + 𝖢𝗎𝗉.

Proof. Thepropmorphism𝐛∶ 𝖡𝗂𝖺𝗅𝗀 → 𝖬𝖠𝖽𝗃 is defined as the composition of the isomorphism𝐌𝐚𝐭 ∶ 𝖡𝗂𝖺𝗅𝗀 →
𝖬𝖺𝗍ℕ, recalled in Proposition 4.18, with the morphism 𝐣∶ 𝖬𝖺𝗍ℕ → 𝖬𝖠𝖽𝗃, defined in Lemma 4.32. The prop
morphism 𝐜∶ 𝖢𝗎𝗉 → 𝖬𝖠𝖽𝗃 is defined in Lemma 4.33. We show that their coproduct map 𝐪 is a coequalis-
ing morphism of 𝐬 and 𝐭 by computing the images of 𝐬 � 𝐪 and 𝐭 � 𝐪 on both the morphisms 𝑎∶ 0 → 2 and
𝑏∶ 0 → 1 of the prop 𝖠. For both computations, we use the definition of 𝐪 as a coproduct map.

𝐪(𝐬(𝑎))∶= 𝐪
⎛⎜⎜⎝

⎞⎟⎟⎠
= 𝐪

()
� 𝐪

()

= 𝐜
()

� 𝐛
()

∶=
(
𝐌𝐚𝐭

()
,
[
𝐌𝐚𝐭

()])
�

(
𝐌𝐚𝐭

()
,

[
𝐌𝐚𝐭

()])

=

(
𝐌𝐚𝐭

()
,

[
𝐌𝐚𝐭

()
+𝐌𝐚𝐭

()])

=

(
𝐌𝐚𝐭

()
,

[
𝐌𝐚𝐭

()])

=
⎛⎜⎜⎜⎝𝐌𝐚𝐭

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠ ,

⎡⎢⎢⎣𝐌𝐚𝐭
⎛⎜⎜⎝

⎞⎟⎟⎠ +𝐌𝐚𝐭
()⎤⎥⎥⎦

⎞⎟⎟⎟⎠
=

(
𝐌𝐚𝐭

()
,

[
𝐌𝐚𝐭

()])
�

(
𝐌𝐚𝐭

()
,

[
𝐌𝐚𝐭

()])

= 𝐜
⎛⎜⎜⎝

⎞⎟⎟⎠ � 𝐛
()

= 𝐪
⎛⎜⎜⎝

⎞⎟⎟⎠ � 𝐪
()

4.3. GRAPHS WITH DANGLING EDGES 57

= 𝐪

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠

∶=𝐪(𝐭(𝑎))

𝐪(𝐬(𝑏))∶= 𝐪
()

= 𝐪
()

� 𝐪
()

= 𝐜
()

� 𝐛
()

=
(
𝐌𝐚𝐭

()
,
[
𝐌𝐚𝐭

()])
�

(
𝐌𝐚𝐭

()
, [𝐌𝐚𝐭 ()]

)
=

(
𝐌𝐚𝐭

()
,
[
𝐌𝐚𝐭

()
+𝐌𝐚𝐭 ()

])
= (𝐌𝐚𝐭 () , [𝐌𝐚𝐭 ()])
= 𝐛 ()
= 𝐪 ()

∶=𝐪(𝐭(𝑏))

We show that the prop morphism 𝐪 satisfies the universal property of coequalisers. For every coequal-
ising prop morphism 𝐩∶ 𝖡𝗂𝖺𝗅𝗀 + 𝖢𝗎𝗉 → 𝖯 of the pair 𝐬, 𝐭 ∶ 𝖠 → 𝖡𝗂𝖺𝗅𝗀 + 𝖢𝗎𝗉, Proposition 4.38 defines a
candidate extension �̄�∶ 𝖬𝖠𝖽𝗃 → 𝖯 of 𝐩 to𝖬𝖠𝖽𝗃. Theorem 4.39 concludes by showing that �̄� is the unique
extension of 𝐩 along 𝐪. For constructing the candidate extension �̄� we need to investigate some properties
of the coequalising morphism 𝐩 that are consequences of the cup axioms in Figure 4.4. Those equations
imply that the cup quotients by transposition.

𝐴
=

𝐴⊤

This equation holds in 𝖠𝖽𝗃 and also in the image of any coequalising morphism of 𝐬 and 𝐭.

Lemma 4.35. For any coequalising morphism of props 𝐩∶ 𝖡𝗂𝖺𝗅𝗀+𝖢𝗎𝗉 → 𝖯 of the pair 𝐬, 𝐭 ∶ 𝖠 → 𝖡𝗂𝖺𝗅𝗀+𝖢𝗎𝗉
in Equation (4.1),

𝐩
(

𝐴
)

= 𝐩
(

𝐴⊤

)
. (4.3)

Proof. By Proposition 4.18, every morphism 𝐴∶ 𝑛 → 𝑚 in 𝖬𝖺𝗍ℕ can be written as compositions and mo-
noidal products of finitely many of its generators. These generators are the images under the isomorphism
𝐌𝐚𝐭 ∶ 𝖡𝗂𝖺𝗅𝗀 → 𝖬𝖺𝗍 of the generators in Figure 4.3. By these considerations, the proof can proceed by struc-
tural induction on the morphisms. For the base cases, Equation (4.3) holds for the bialgebra generators

58 CHAPTER 4. INTERLUDE: TWO PERSPECTIVES ON GRAPHS

because 𝐩 is a coequalising morphism for 𝐬 and 𝐭, 𝐬 � 𝐩 = 𝐭 � 𝐩.

𝐩
⎛⎜⎜⎝

⎞⎟⎟⎠ = 𝐩(𝐬(𝑎)) = 𝐩(𝐭(𝑎)) = 𝐩
⎛⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎠
𝐩
()

= 𝐩(𝐬(𝑏)) = 𝐩(𝐭(𝑏)) = 𝐩 ()

The two remaining equations follow by commutativity of the cup. For the inductive steps, suppose that
Equation (4.3) holds for 𝐴∶ 𝑛 → 𝑚, 𝐵∶ 𝑚 → 𝑙 and 𝐴′ ∶ 𝑛′ → 𝑚′. We show that it holds for 𝐴 � 𝐵 and for
𝐴⊕𝐴′. We indicate 𝐩 with a blue functor box.

𝐴 𝐵

𝐴

𝐵

=
𝐴 𝐵

=

𝐴

𝐵

=
𝐴⊤

𝐵
=

𝐴

𝐵

=
𝐴⊤

𝐵
=

𝐴⊤

𝐵⊤

=
𝐴⊤

𝐵
=

𝐴⊤

𝐵⊤

=
𝐴⊤

𝐵
=

𝐴⊤

𝐵⊤

4.3. GRAPHS WITH DANGLING EDGES 59

=
𝐵⊤ 𝐴⊤

=
𝐵⊤ 𝐴⊤

A consequence of this result is that equality in the prop of adjacency matrices captures the equivalence
relation of adjacency matrices. Recalling Definition 4.21, two adjacency matrices are equivalent, [𝐺] = [𝐻],
if and only if they are equal up to transposition, 𝐺 + 𝐺⊤ = 𝐻 +𝐻⊤. In string diagrams, this is

[𝐺] = [𝐻] iff
𝐺

=
𝐻

,

and holds in 𝖠𝖽𝗃 and the image of any coequalising prop morphism of 𝐬 and 𝐭.

Lemma 4.36. For two adjacency matrices [𝐴] and [𝐵], and any coequalising morphism of props 𝐩∶ 𝖡𝗂𝖺𝗅𝗀 +
𝖢𝗎𝗉 → 𝖯 of the pair 𝐬, 𝐭 ∶ 𝖠 → 𝖡𝗂𝖺𝗅𝗀 + 𝖢𝗎𝗉 in Equation (4.1),

if [𝐴] = [𝐵] then 𝐩
(

𝐴
)

= 𝐩
(

𝐵
)
.

Proof. Proceed by induction on the size 𝑛 of the matrices. For 𝑛 = 0, there is only one morphism 0 → 0
in𝖬𝖺𝗍ℕ so the statement is trivially true. For the induction step, suppose that the statement is true for any
two 𝑛 by 𝑛matrices𝐴′ and𝐵′ and consider two 𝑛+1 by 𝑛+1matrices𝐴 =

(
𝐴′ 𝑎
𝑎′ 𝑖

)
and𝐵 =

(
𝐵′ 𝑏
𝑏′ 𝑗

)
. Notice

that the two matrices are equivalent, [𝐴] = [𝐵], if and only if
[
𝐴′] =

[
𝐵′], 𝑎′ + 𝑎⊤ = 𝑏′ + 𝑏⊤ and 𝑖 = 𝑗,

because 2 ⋅ 𝑖 = 2 ⋅ 𝑗 implies 𝑖 = 𝑗. By induction hypothesis,
[
𝐴′] = [

𝐵′], 𝑎′ + 𝑎⊤ = 𝑏′ + 𝑏⊤ and 𝑖 = 𝑗 imply
the corresponding equalities in the image of 𝐩.

𝐩
(

𝐴
)

= 𝐩
(

𝐵
)

𝐩
(

𝑎′

𝑎⊤

)
= 𝐩

(
𝑏′

𝑏⊤

)

𝐩
(

𝑖
)

= 𝐩
(

𝑗
)

By functoriality of 𝐩, we obtain

𝐩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐴′

𝑖

𝑎′

𝑎⊤

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 𝐩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐵′

𝑗

𝑏′

𝑏⊤

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

60 CHAPTER 4. INTERLUDE: TWO PERSPECTIVES ON GRAPHS

By the bialgebra axioms (Figure 4.3) and Lemma 4.35, we can do the rewrites below for any 𝑛 + 1 by 𝑛 + 1
square matrix𝑀 =

(
𝑁 𝑢
𝑣 𝑘

)
.

𝐩
(

𝑀
)

= 𝐩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑁

𝑢

𝑣

𝑘

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝐩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑁

𝑢

𝑣

𝑘

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝐩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑁

𝑣

𝑘

𝑢⊤

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

4.3. GRAPHS WITH DANGLING EDGES 61

= 𝐩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑁

𝑘

𝑣

𝑢⊤

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝐩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑁

𝑘

𝑣

𝑢⊤

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
With these equalities, we obtain that

𝐩
(

𝐴
)

= 𝐩
(

𝐵
)
.

Example 4.37. The matrices 𝐺 =
(0 1
1 0

)
and𝐻 =

(0 0
2 0

)
are equivalent as adjacency matrices. In fact, their

string diagrams are equal up to the equations of 𝖠𝖽𝗃.

𝐺

=

=

=

=

62 CHAPTER 4. INTERLUDE: TWO PERSPECTIVES ON GRAPHS

=
𝐻

Thanks to Lemmas 4.35 and 4.36, the mapping 𝜙∶ 𝖬𝖠𝖽𝗃 → 𝖠𝖽𝗃 given in Equation (4.2) is a prop mor-
phism. More generally, for every coequalising prop morphism 𝐩∶ 𝖡𝗂𝖺𝗅𝗀 + 𝖢𝗎𝗉 → 𝖯 of the pair 𝐬, 𝐭 ∶ 𝖠 →
𝖡𝗂𝖺𝗅𝗀 + 𝖢𝗎𝗉, these results allow us to define a candidate extension �̄�∶ 𝖬𝖠𝖽𝗃 → 𝖯.

Proposition 4.38. Any coequalising prop morphism 𝐩∶ 𝖡𝗂𝖺𝗅𝗀 + 𝖢𝗎𝗉 → 𝖯 of the pair 𝐬, 𝐭 ∶ 𝖠 → 𝖡𝗂𝖺𝗅𝗀 + 𝖢𝗎𝗉
in Equation (4.1) induces a prop morphism �̄�∶ 𝖬𝖠𝖽𝗃 → 𝖯 given by

�̄�(𝐵, [𝐺])∶= 𝐩
(

𝐺
𝐵

)
.

Proof. By Lemma 4.36 and functoriality of 𝐩, the assignment �̄� is well-defined on equivalence classes of
adjacency matrices: if (𝐵, [𝐺]) = (𝐵, [𝐻]), then �̄�(𝐵, [𝐺]) = �̄�(𝐵, [𝐻]) because

𝐩
(

𝐺
𝐵

)
= 𝐩

(
𝐻

𝐵
)
.

Applying Lemma 4.35, we check that �̄� preserves compositions.

�̄�((𝐵, [𝐺]) � (𝐶, [𝐻]))
∶= �̄�(𝐶𝐵,

[
𝐶𝐺𝐶⊤ +𝐻

]
)

∶= 𝐩
⎛⎜⎜⎜⎝

𝐶𝐵

𝐶𝐺𝐶⊤

𝐻

⎞⎟⎟⎟⎠

= 𝐩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐶𝐵
𝐶𝐺

𝐶

𝐻

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 𝐩

⎛⎜⎜⎜⎜⎜⎝

𝐶𝐵
𝐶𝐺

𝐶
𝐻

⎞⎟⎟⎟⎟⎟⎠
= 𝐩

⎛⎜⎜⎜⎝ 𝐺
𝐵

𝐻
𝐶

⎞⎟⎟⎟⎠
= 𝐩

(
𝐺

𝐵
)

� 𝐩
(

𝐻
𝐶

)

4.3. GRAPHS WITH DANGLING EDGES 63

∶=̄𝐩(𝐵, [𝐺]) � �̄�(𝐶, [𝐻])

The hypothesis that 𝐩 is a coequalising morphism implies that 𝐩(𝐬(𝑏)) = 𝐩(𝐭(𝑏)) and that �̄� preserves identi-
ties.

�̄�(𝟙𝑛,
[
𝟘𝑛

]
)

∶= 𝐩
(

𝟘
𝟙𝑛

)

= 𝐩
()

= 𝐩
⎛⎜⎜⎝

⎞⎟⎟⎠
= 𝐩(𝑛)
= 𝟙𝑛

Finally, we check that �̄� preserves monoidal products.

�̄�((𝐵, [𝐺])⊗ (𝐵′,
[
𝐺′]))

∶= �̄�(𝐵 ⊕ 𝐵′,
[
𝐺 ⊕𝐺′])

∶= 𝐩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐵

𝐺

𝐵′

𝐺′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 𝐩

⎛⎜⎜⎜⎜⎜⎝

𝐵
𝐺

𝐵′

𝐺′

⎞⎟⎟⎟⎟⎟⎠
= 𝐩

(
𝐺

𝐵
)
⊗ 𝐩

(
𝐺′

𝐵′
)

∶=̄𝐩(𝐵, [𝐺])⊗ �̄�(𝐵′,
[
𝐺′])

The candidate coequaliser of Proposition 4.34 is, indeed, a coequaliser. This follows from checking that
the candidate extension of a coequalising prop morphism 𝐩 in Proposition 4.38 is an extension of 𝐩 along 𝐪
and is unique. In particular, the propmorphism𝜙 defined in Equation (4.2) is the extension of the coequaliser
map 𝖡𝗂𝖺𝗅𝗀 + 𝖢𝗎𝗉 → 𝖠𝖽𝗃. Then, 𝜙∶ 𝖬𝖠𝖽𝗃 → 𝖠𝖽𝗃 is an isomorphism and gives a normal form for morphisms
in 𝖠𝖽𝗃.

64 CHAPTER 4. INTERLUDE: TWO PERSPECTIVES ON GRAPHS

Theorem 4.39. The prop 𝖠𝖽𝗃 is isomorphic to the prop 𝖬𝖠𝖽𝗃 of adjacency matrices via the isomorphism
𝜙∶ 𝖬𝖠𝖽𝗃 → 𝖠𝖽𝗃 defined in Equation (4.2).

Proof. Proposition 4.34 provides a candidate 𝐪∶ 𝖡𝗂𝖺𝗅𝗀 + 𝖢𝗎𝗉 → 𝖬𝖠𝖽𝗃 for the coequaliser of 𝐬 and 𝐭, and
Proposition 4.38 defines a morphism �̄�∶ 𝖬𝖠𝖽𝗃 → 𝖯 for any coequalising morphism 𝐏∶ 𝖡𝗂𝖺𝗅𝗀 + 𝖢𝗎𝗉 → 𝖯.
The prop morphism 𝐪 is the coequaliser if �̄� is the unique prop morphism such that 𝐪 � �̄� = 𝐩. Since 𝐪 is a
coproduct map, its composition with �̄� is also a coproduct map

𝐪 � �̄� = [𝐛 � �̄�, 𝐜 � �̄�]

and we can check that the desired equality holds by checking the components separately. We implicitly use
that𝐌𝐚𝐭 is an isomorphism.

�̄�(𝐛(𝐌𝐚𝐭−1(𝐴))) �̄�
(
𝐜
())

= �̄�(𝐣(𝐴))

∶= �̄�(𝐴, [𝟘]) ∶= �̄�
(
𝐌𝐚𝐭

()
,
[
𝐌𝐚𝐭

()])
∶= 𝐩

(
𝟘

𝐴
)

∶= 𝐩
⎛⎜⎜⎜⎝

⎞⎟⎟⎟⎠
= 𝐩

(
𝐴

)
= 𝐩

(
𝜄2

())
= 𝐩(𝜄1(𝐌𝐚𝐭−1(𝐴)))

Suppose that there is another morphism 𝐫 ∶ 𝖬𝖠𝖽𝗃 → 𝖯 such that 𝐪 � 𝐫 = 𝐩. We check that 𝐫 must coincide
with �̄�.

𝐫(𝐵, [𝐺])

= 𝐫
(((𝟙

𝟘
𝟘

)
,
[(𝟘 𝟘 𝟘

𝟘 𝟘 𝟙
𝟘 𝟘 𝟘

)])
� ((𝐵 ∣ 𝐺 ∣ 𝟙), [𝟘])

)
= 𝐫

⎛⎜⎜⎝𝐜
()

� 𝐛
⎛⎜⎜⎝

𝐵
𝐺

⎞⎟⎟⎠
⎞⎟⎟⎠

= 𝐫
⎛⎜⎜⎝𝐪

()
� 𝐪

⎛⎜⎜⎝
𝐵

𝐺
⎞⎟⎟⎠
⎞⎟⎟⎠

= 𝐫
⎛⎜⎜⎝𝐪

⎛⎜⎜⎝ �

𝐵
𝐺

⎞⎟⎟⎠
⎞⎟⎟⎠

= 𝐩
(

𝐺
𝐵

)
∶=̄𝐩(𝐵, [𝐺])

This shows that𝖬𝖠𝖽𝗃 is the coequaliser of 𝐬 and 𝐭, but so is𝖠𝖽𝗃 by its definition. Colimits are unique up to the
unique isomorphism given by extensions, so the prop morphism 𝜙∶ 𝖬𝖠𝖽𝗃 → 𝖠𝖽𝗃 defined in Equation (4.2)
is this isomorphism.

4.3. GRAPHS WITH DANGLING EDGES 65

We will add vertices to adjacency matrices to obtain graphs, but, first, we study vertices on their own.
The prop 𝖵𝖾𝗋𝗍 is freely generated by a “vertex” 1 → 0 generator, so morphisms are permutations with some
outputs bounded by vertices.

Definition 4.40. The prop 𝖵𝖾𝗋𝗍 is freely generated by one 𝗏∶ 1 → 0 generator and no extra equations
(Figure 4.5).

Figure 4.5: Generator of the one-vertex prop.

Graphs are adjacency matrices with vertices. The prop 𝖵𝖾𝗋𝗍 is isomorphic to that of bounded permuta-
tions, 𝖻𝗈𝗎𝗇𝖽𝖯, via the isomorphism that composes the bounded outputs with vertices.

𝜓 ∶ (𝑘, 𝑃) → 𝑃
𝑚
𝑘

𝑚

𝑘

This defines an isomorphism because we can check initiality of 𝖻𝗈𝗎𝗇𝖽𝖯.

Proposition 4.41. The freely generated prop 𝖵𝖾𝗋𝗍 is isomorphic to that of bounded permutations, 𝖻𝗈𝗎𝗇𝖽𝖯 ≅
𝖵𝖾𝗋𝗍.

Proof. We show that 𝖻𝗈𝗎𝗇𝖽𝖯 also satisfies the universal property of 𝖵𝖾𝗋𝗍: it is initial among the props with
a 1 → 0 morphism. Let 𝖯 be a prop with a morphism 𝑣∶ 1 → 0 and define 𝐇∶ 𝖻𝗈𝗎𝗇𝖽𝖯 → 𝖯 as identity on
objects and, on morphisms, as

𝐇(𝑘, 𝑃𝜏)∶= 𝜏 � (𝟙𝑚 ⊗ 𝑣𝑘) = 𝜏

𝑘
𝑣

𝑚
𝑘

𝑚
,

where 𝑃𝜏 is the permutation matrix corresponding to the permutation 𝜏 and 𝑣𝑘 is the 𝑘-fold monoidal prod-
uct of 𝑣 with itself. Then, 𝐇(1, 𝟙1) = 𝑣 and 𝐇 is well-defined on equivalence classes by naturality of the
symmetries in 𝖯.

𝐇(𝑘, (𝟙𝑚 ⊕ 𝑃𝜎)𝑃𝜏)

∶= 𝜏
𝜎

𝑘
𝑣

𝑚
𝑘

𝑚

= 𝜏

𝑘
𝑣

𝑚
𝑘

𝑚

∶=𝐇(𝑘, 𝑃𝜏)

The definition above gives a functor because𝐇 preserves identities,

𝐇(0, 𝟙𝑚)∶= 𝟙𝑚 ,

and preserves compositions.

𝐇(𝑘, 𝑃𝜏) �𝐇(𝑗, 𝑃𝜎)

66 CHAPTER 4. INTERLUDE: TWO PERSPECTIVES ON GRAPHS

∶= 𝜏

𝑘
𝑣

𝜎

𝑗
𝑣

𝑚
𝑗
𝑘

𝑚

= 𝜏

𝑘
𝑣

𝜎

𝑗
𝑣

𝑚
𝑗
𝑘

𝑚

= 𝐇(𝑘 + 𝑗, (𝑃𝜎 ⊗ 𝟙𝑘)𝑃𝜏)
= 𝐇((𝑘, 𝑃𝜏) � (𝑗, 𝑃𝜎)) .

The functor𝐇 is unique because any other prop morphism 𝐅∶ 𝖻𝗈𝗎𝗇𝖽𝖯 → 𝖯 such that 𝐅(1, 𝟙1) = 𝑣must, by
functoriality of 𝐅, coincide with𝐇.

𝐅(𝑘, 𝑃𝜏)
= 𝐅((0, 𝑃𝜏) � ((0, 𝟙𝑚)⊗ (𝑘, 𝟙𝑘)))
= 𝐅(𝜏 � (𝟙𝑚 ⊗ (1, 𝟙1)𝑘))
= 𝐅(𝜏) � (𝐅(𝟙𝑚)⊗ 𝐅(1, 𝟙1)𝑘)
= 𝜏 � (𝟙𝑚 ⊗ 𝑣𝑘)

∶=𝐇(𝑘, 𝑃𝜏)

The prop of graphs is the coproduct of that of adjacency matrices and that of vertices. Coproducts of
props presented by generators and equations are presented by the disjoint union of the generators and of
the equations of the components [Lac04] (see also [Zan15, Proposition 2.11]).

Definition 4.42. The prop of graphs𝖡𝖦𝗋𝖺𝗉𝗁 is the coproduct of the props𝖠𝖽𝗃 and𝖵𝖾𝗋𝗍,𝖡𝖦𝗋𝖺𝗉𝗁∶= 𝖠𝖽𝗃+𝖵𝖾𝗋𝗍.
Its generators and equations are in Figures 4.3 to 4.5.

Example 4.43. The string diagram below on the left is a morphism 1 → 1 in 𝖡𝖦𝗋𝖺𝗉𝗁 that represents a graph
with two vertices connected by an edge. The vertices are also both connected to the right boundary, while
only one of them is connected to the left boundary. This corresponds to the informal drawing of the graph
below on the right.

⇝

As with the isomorphism between the props of adjacency matrices, the isomorphism𝖬𝖦𝗋𝖺𝗉𝗁 ≅ 𝖡𝖦𝗋𝖺𝗉𝗁
gives a normal form for morphisms in 𝖡𝖦𝗋𝖺𝗉𝗁. This is the coproduct of the isomorphisms 𝜙∶ 𝖬𝖠𝖽𝗃 ≅ 𝖠𝖽𝗃

4.3. GRAPHS WITH DANGLING EDGES 67

and 𝜓 ∶ 𝖻𝗈𝗎𝗇𝖽𝖯 ≅ 𝖵𝖾𝗋𝗍.

𝜃∶ ([𝐺] , 𝐿, 𝑅, 𝑃 , [𝑆]) →

𝑘𝐺

𝐿

𝑅

𝑃

𝑆
𝑛

𝑚

Theorem 4.44. The prop of graphs 𝖡𝖦𝗋𝖺𝗉𝗁 is isomorphic to𝖬𝖦𝗋𝖺𝗉𝗁.

Proof. By Proposition 4.30, the prop 𝖬𝖦𝗋𝖺𝗉𝗁 is the coproduct of 𝖬𝖠𝖽𝗃 and 𝖻𝗈𝗎𝗇𝖽𝖯. The prop 𝖬𝖠𝖽𝗃 is iso-
morphic to𝖠𝖽𝗃 by Theorem 4.39 and the prop 𝖻𝗈𝗎𝗇𝖽𝖯 is isomorphic to 𝖵𝖾𝗋𝗍 by Proposition 4.41. These imply
that𝖬𝖦𝗋𝖺𝗉𝗁 is isomorphic to the coproduct 𝖡𝖦𝗋𝖺𝗉𝗁 of 𝖠𝖽𝗃 and 𝖵𝖾𝗋𝗍 (Definition 4.42).

The operations for clique width and rank width

This section repeats the prodedure of Section 4.1 for clique and rank widths. It takes the operations for
clique width of Definition 2.35 introduced by Courcelle and Olariu [CO00] and the operations for rank width
of Definition 2.56 introduced by Courcelle and Kanté [CK07], and examines them through a categorical lens.
This time, the monoidal category 𝖡𝖦𝗋𝖺𝗉𝗁 specifies the categorical algebra and the operations for clique
and rank widths derive from compositions and monoidal products in 𝖡𝖦𝗋𝖺𝗉𝗁. This correspondence defines
functions from graphs with labels and graphs with multiple labels to morphisms 𝑛 → 0 in 𝖡𝖦𝗋𝖺𝗉𝗁. An 𝑛-
labelled graph (𝐺, 𝑙) corresponds to the morphism

(
[𝐺] , 𝐿, ¡, !, [()]

)
,where the entry (𝑖, 𝑗) of the matrix 𝐿

is 1 if and only if 𝑙(𝑖) = 𝑗. The matrix𝐿 is composed only of comonoid operations and symmetries. Similarly,
a graph (𝐺,𝐵) with multiple 𝑛-labels corresponds to the morphism

(
[𝐺] , 𝐵, ¡, !, [()]

)
.

(𝐺, 𝑙) →
𝑘𝐺

𝐿𝑛

and (𝐺,𝐵) →
𝑘𝐺

𝐵𝑛

The various presentations of the operations for clique width [CER93; CO00; CV03] and rank width [CK07;
CK09] define equivalent complexity measures. This becomes apparent when we express these operations as
compositions and monoidal products in 𝖡𝖦𝗋𝖺𝗉𝗁 and its categorical structure becomes the canonical choice
for the operations that define clique width and rank width. Chapter 6 proves this in detail.

The generating graphs for cliquewidth and rankwidth are the samemorphisms in𝖡𝖦𝗋𝖺𝗉𝗁. The 1-labelled
empty graph ∅1 is the discard map 1 ∶ 1 → 0, while the 1-labelled single vertex graph 𝗏1 is the vertex
generator 𝗏1 ∶ 1 → 0.

∅1 → 1 and 𝗏1 → 1

The operations for clique width derive from the categorical structure. The renaming 𝖱𝖾𝗇𝖺𝗆𝖾𝑛𝑗→𝑖(𝐺, 𝑙)
of label 𝑗 to label 𝑖 corresponds to precomposing the morphism 𝑔 that corresponds to the graph (𝐺, 𝑙) with
a matrix 𝑑𝑖,𝑗 ∶ 𝑛→ 𝑛 + 1 that joins the 𝑖𝑡ℎ and 𝑗𝑡ℎ outputs.

𝖱𝖾𝗇𝖺𝗆𝖾𝑛𝑗→𝑖(𝐺, 𝑙) → 𝑔𝑑𝑖,𝑗𝑛
𝑛 + 1

where 𝑑𝑖,𝑗∶=
𝑖𝑡ℎ

𝑖𝑡ℎ

𝑗𝑡ℎ

⋮

⋮

⋮

⋮

⋮

⋮

68 CHAPTER 4. INTERLUDE: TWO PERSPECTIVES ON GRAPHS

The creation of edges 𝖤𝖽𝗀𝖾𝑛𝑖,𝑗(𝐺, 𝑙) between the labels 𝑖 and 𝑗 is also a precomposition. We compose the
morphism 𝑎𝑖,𝑗 ∶ 𝑛 → 𝑛, which connects the 𝑖𝑡ℎ and 𝑗𝑡ℎ outputs through a cup, with the morphism 𝑔 that
corresponds to (𝐺, 𝑙).

𝖤𝖽𝗀𝖾𝑛𝑖,𝑗(𝐺, 𝑙) → 𝑔𝑎𝑖,𝑗𝑛
𝑛

where 𝑎𝑖,𝑗∶=

𝑖𝑡ℎ

𝑗𝑡ℎ

⋮

⋮

⋮

⋮

⋮

⋮

The disjoint union (𝐺, 𝑙)+(𝐻, 𝑙′) of an𝑚-labelled graph (𝐺, 𝑙) and an 𝑛-labelled graph (𝐻, 𝑙′) is themonoidal
product 𝑔 ⊗ ℎ of the corresponding morphisms.

(𝐺, 𝑙) + (𝐻, 𝑙′) →
𝑔

ℎ

𝑚

𝑛

These operations together are as expressive as the operation of precompositionwith a class of vertex-less
morphisms in 𝖡𝖦𝗋𝖺𝗉𝗁. In fact, these operations can construct all morphisms 𝑛→ 0where the connection to
the left boundary is a matrix 𝐿 only formed by the comonoid operations.

The operations for rank width are also derived from compositions and monoidal products in 𝖡𝖦𝗋𝖺𝗉𝗁.
The linear recolouring 𝖱𝖾𝖼𝗈𝗅𝑀 (𝐺,𝐵) of the graph (𝐺,𝐵) with multiple labels by a matrix𝑀 corresponds to
precomposing 𝑔, the morphism representing (𝐺,𝐵), with the matrix𝑀 .

𝖱𝖾𝖼𝗈𝗅𝑀 (𝐺,𝐵) → 𝑔𝑀𝑛
𝑛 + 1

The bilinear product (𝐺,𝐵) +𝑀,𝑃 ,𝑁 (𝐻,𝐶) of two graphs (𝐺,𝐵) and (𝐻,𝐶)with multiple labels is the com-
position that connects their corresponding morphisms, 𝑔 and ℎ, through 𝑃 and precomposes𝑀 and𝑁 to
the labels of 𝑔 and ℎ.

(𝐺,𝐵) +𝑀,𝑃 ,𝑁 (𝐻,𝐶) →

𝑔

ℎ

𝑀

𝑁

𝑃
𝑙

𝑚

𝑛

The operations of linear recolouring and bilinear product together define the operation of precomposi-
tion with a vertex-less morphism in 𝖡𝖦𝗋𝖺𝗉𝗁. In fact, these operations can construct all morphisms 𝑛 → 0 in
𝖡𝖦𝗋𝖺𝗉𝗁.

Chapter 5

A Monoidal Algebra for Branch Width

Different categorical algebras for graphs determine different composition operations. Compositions in the
category of cospans of hypergraphs join two hypergraphs by identifying some of their vertices. Section 4.1
derived the operations for tree width from compositions andmonoidal products in this category. Similarly, in
the category of bialgebra graphs, composing two graphsmeans connecting them along some dangling edges.
Section 4.3 derived the operations for clique and rank widths from compositions and monoidal products in
this category. What does monoidal width measure in these two cases?

Monoidal width in cospans of hypergraphs is equivalent to tree width. As recalled in Section 2.2, tree
width [RS86] is based on the corresponding notion of tree decomposition, whose underlying compositional
algebra is captured by cospan composition, and measures the structural complexity of graphs. The main
results of this chapter andChapter 6 validate the use ofmonoidalwidth as ameasure of structural complexity.

Tree width and branch width are equivalent graph complexity measures. We leverage this fact to show
equivalence between tree width and monoidal width in cospans of hypergraphs. Section 5.1 defines an in-
ductive version of branch decompositions as an intermediate step towards the main result in Section 5.2,
Theorem 5.16.

5.1 Inductive branch decompositions
Similarly to the Courcelle’s graph expressions recalled in Section 2.3 ([BC87, Definition 3.4] and [Cou90,
Definition 2.7]), monoidal decompositions in cospans of hypergraphs are also terms for hypergraphs, but
where the operations are compositions and monoidal product in 𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗. This contrasts with
the more combinatorial flavour of branch decompositions and makes translating between these two ap-
proaches technically involved. Following the intuitions behind Courcelle’s proof of equivalence between
tree width and width of graph expressions [Cou92a, Theorem 2.2], we introduce inductive branch decom-
positions as intermediate step between branch and monoidal decompositions. These add to branch de-
compositions the algebraic flavour of monoidal decompositions by relying on the inductive data structure
of binary trees. In the same way that graph expressions define graphs with sources [BC87, Proposition 3.6],
which appeared as rooted hypergraphs in Robertson and Seymour [RS90, Section 3], inductive decompo-
sitions define hypergraphs with sources. These are the unlabelled version of the relational structures with
constants recalled in Definition 2.53. Since tree and branch decompositions of relational structures are tree
and branch decompositions of their underlying hypergraph, we will work with the latter and consider the
category 𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗ of discrete cospans of hypergraphs instead of the category 𝗌𝖲𝗍𝗋𝗎𝖼𝗍𝜏 of discrete
cospans of relational structures.

Definition 5.1. A hypergraph with sources is a pair Γ = (𝐺,𝑋) of a hypergraph 𝐺 = (𝑉 ,𝐸) and a subset

69

70 CHAPTER 5. A MONOIDAL ALGEBRA FOR BRANCH WIDTH

𝑋 ⊆ 𝑉 of its vertices, called the sources. Given two graphs with sources Γ = (𝐺,𝑋) and Γ′ = (𝐺′, 𝑋′), we
say that Γ′ is a subgraph of Γ whenever 𝐺′ is a subgraph of 𝐺.

Note that the sources of a subhypergraph Γ′ of Γ need not to appear as sources of Γ, nor vice versa. In
fact, if Γ is obtained by identifying all the sources of a hypergraph Γ1 with some of the sources of another
hypergraph Γ2, the sources of Γ and Γ1 will be disjoint. A hypergraph with sources Γ = (𝐺,𝑋) can be seen
as a morphism 𝑔∶ 𝑋 → ∅ in 𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗: 𝑔 =∶ 𝑋 → 𝐺 ← ∅ ∶, where the legs of the cospan are
𝜄 ∶ 𝑋 → 𝑉 and ¡ ∶ ∅ → 𝑉 .
Example 5.2. Sources are marked vertices in the graph and are thought of as an interface that can be glued
with that of another graph. Two graphs sharing the sources, as illustrated below, can be “glued together”:

glued with gives .

These two graphs correspond to twomorphisms 𝑔1, 𝑔2 ∶ 1 → ∅ in𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗ that can be composed
to obtain the rightmost graph 1 � (𝑔1 ⊗ 𝑔2).

𝑔1 = 𝑔2 = ∪1 � (𝑔1 ⊗ 𝑔2) =

Definition 5.3. A binary tree 𝑇 ∈ Γ for a hypergraph Γ is defined inductively.

𝑇 ∶∶= (Γ) if |𝖾𝖽𝗀𝖾𝗌(Γ)| ≤ 1
∣ (𝑇1—Γ—𝑇2) if 𝑇1 ∈ Γ1 , 𝑇2 ∈ Γ2 and Γ1,Γ2 are subgraphs of Γ

An inductive branch decomposition of a hypergraph with sources Γ is a binary tree 𝑇 ∈ Γ satisfying
some conditions such that, identifying the common sources in Γ1 and Γ2, we obtain Γ.

Definition 5.4. An inductive branch decomposition of a hypergraph with sources Γ = ((𝑉 ,𝐸), 𝑋) is a binary
tree 𝑇 ∈ Γ where either Γ has at most one edge and 𝑇 = (Γ), or 𝑇 = (𝑇1—Γ—𝑇2) and 𝑇𝑖 ∈ 𝑇Γ𝑖 are
inductive branch decompositions of subhypergraphs Γ𝑖 = ((𝑉𝑖, 𝐸𝑖), 𝑋𝑖) of Γ such that:
• The edges are partitioned in two, 𝐸 = 𝐸1 ⊔ 𝐸2, and 𝑉 = 𝑉1 ∪ 𝑉2;
• The sources are those vertices shared with the original sources as well as those shared with the other
subhypergraph,𝑋𝑖 = (𝑉1 ∩ 𝑉2) ∪ (𝑋 ∩ 𝑉𝑖).

Remark 5.5. Note that 𝖾𝗇𝖽𝗌(𝐸𝑖) ⊆ 𝑉𝑖 and that not all subtrees of a decomposition 𝑇 are themselves de-
compositions: only those 𝑇 ′ that contain all the nodes in 𝑇 that are below the root of 𝑇 ′. We call these full
subtrees, 𝑇 ′ ≤ 𝑇 , and indicate with 𝜆(𝑇 ′) the subhypergraph of Γ that 𝑇 ′ is a decomposition of. We will
sometimes write Γ𝑖 = 𝜆(𝑇𝑖), 𝑉𝑖 = 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(Γ𝑖) and𝑋𝑖 = 𝗌𝗈𝗎𝗋𝖼𝖾𝗌(Γ𝑖). Then,

𝗌𝗈𝗎𝗋𝖼𝖾𝗌(Γ𝑖) = (𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(Γ1) ∩ 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(Γ2)) ∪ (𝗌𝗈𝗎𝗋𝖼𝖾𝗌(Γ) ∩ 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(Γ𝑖)) .

At every step in a decomposition, two graphs with sources are composed along the common boundary
identifying some sources of one graph with some sources of the other. The size of the biggest of these
boundaries determines the width of the decomposition.

5.1. INDUCTIVE BRANCH DECOMPOSITIONS 71

Definition 5.6. Thewidth of an inductive branch decomposition 𝑇 of a hypergraph with sources Γ = (𝐺,𝑋),
with sources𝑋, is defined inductively:

𝗐𝖽(𝑇)∶= |𝑋| if 𝑇 = (Γ) ,| max{𝗐𝖽(𝑇1),𝗐𝖽(𝑇2), |𝑋|} if 𝑇 = (𝑇1—Γ—𝑇2) .

Expanding this expression, we obtain

𝗐𝖽(𝑇) = max
𝑇 ′ full subtree of 𝑇

|𝗌𝗈𝗎𝗋𝖼𝖾𝗌(𝜆(𝑇 ′))|.
Equivalence with branch width

Inductive branch width coincides with branch width (Proposition 5.10). We show their equivalence by con-
structing, in Lemma 5.8, a branch decomposition from an inductive one and vice versa, in Lemma 5.9, pre-
serving the width. For defining these mappings, we find an explicit expression for the set of sources of
subgraphs 𝜆(𝑇0) corresponding to full subtrees 𝑇0 of a decomposition 𝑇 .

Lemma 5.7. Let 𝑇 be an inductive branch decomposition of a hypergraph with sources Γ and 𝑇0 be a full
subtree of 𝑇 . Then,

𝗌𝗈𝗎𝗋𝖼𝖾𝗌(𝜆(𝑇0)) = 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇0)) ∩
⎛⎜⎜⎝𝑋 ∪

⋃
𝑇 ′≹𝑇0

𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇 ′))
⎞⎟⎟⎠ ,

where 𝑇 ′ ≹ 𝑇0 denotes a full subtree 𝑇 ′ of 𝑇 whose intersection with 𝑇0 is empty.

Proof. Proceed by induction on the decomposition tree 𝑇 . If it is a leaf, 𝑇 = (Γ), then its subtree is also a
leaf, 𝑇0 = (Γ), and we are done.

If 𝑇 = (𝑇1—Γ—𝑇2), then either 𝑇0 is a full subtree of 𝑇1, or it is a full subtree of 𝑇2 or it coincides with 𝑇 .
If 𝑇0 coincides with 𝑇 , then their sources coincide and the statement holds because 𝗌𝗈𝗎𝗋𝖼𝖾𝗌(𝜆(𝑇0)) = 𝑋 =
𝑉 ∩𝑋. Suppose that 𝑇0 is a full subtree of 𝑇1. Then, by applying the induction hypothesis, Remark 5.5, and
using the fact that 𝜆(𝑇0) ⊆ 𝜆(𝑇1), we compute its sources

𝗌𝗈𝗎𝗋𝖼𝖾𝗌(𝜆(𝑇0))

= 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇0)) ∩
⎛⎜⎜⎝𝗌𝗈𝗎𝗋𝖼𝖾𝗌(𝜆(𝑇1)) ∪

⋃
𝑇 ′≤𝑇1,𝑇 ′≹𝑇0

𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇 ′))
⎞⎟⎟⎠

= 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇0)) ∩

((
𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇1)) ∩ (𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇2)) ∪𝑋)

)
∪
⋃
𝑇 ′
𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇 ′))

)

= 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇0)) ∩
⎛⎜⎜⎝𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇2)) ∪𝑋 ∪

⋃
𝑇 ′≤𝑇1,𝑇 ′≹𝑇0

𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇 ′))
⎞⎟⎟⎠

= 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇0)) ∩
⎛⎜⎜⎝𝑋 ∪

⋃
𝑇 ′≤𝑇 ,𝑇 ′≹𝑇0

𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇 ′))
⎞⎟⎟⎠

A similar computation can be done if 𝑇0 is a full subtree of 𝑇2.

72 CHAPTER 5. A MONOIDAL ALGEBRA FOR BRANCH WIDTH

Given an inductive branch decomposition 𝑇 , the branch decomposition †(𝑇) is obtained by forgetting
the labelling of its internal nodes and which node corresponds to the root.

Lemma 5.8. Let 𝑇 be an inductive branch decomposition of a hypergraph with sources Γ = (𝐺,𝑋). Then,
there is a branch decomposition †(𝑇) of its underlying hypergraph 𝐺 of bounded width: 𝗐𝖽(†(𝑇)) ≤

𝗐𝖽(𝑇).

Proof. A binary tree is, in particular, a subcubic tree. Then, we can define 𝑌 to be the unlabelled tree
underlying 𝑇 . If the label of a leaf 𝑙 of 𝑇 is a subhypergraph of Γ with one edge 𝑒𝑙, then we keep the
leaf, otherwise, if the subhypergraph is discrete, we remove the leaf 𝑙 from 𝑌 . Then, there is a bijection
𝑏∶ 𝗅𝖾𝖺𝗏𝖾𝗌(𝑌) → 𝖾𝖽𝗀𝖾𝗌(𝐺) such that 𝑏(𝑙)∶= 𝑒𝑙. Then, (𝑌 , 𝑏) is a branch decomposition of 𝐺 and we can
define †(𝑇)∶= (𝑌 , 𝑏).

By construction, if 𝑒 ∈ 𝖾𝖽𝗀𝖾𝗌(𝑌) then 𝑒 ∈ 𝖾𝖽𝗀𝖾𝗌(𝑇). Let {𝑣,𝑤} = 𝖾𝗇𝖽𝗌(𝑒) with 𝑣 parent of 𝑤 in 𝑇
and let 𝑇𝑤 the full subtree of 𝑇 with root 𝑤. Let {𝐸𝑣, 𝐸𝑤} be the (non-trivial) partition of 𝐸 induced by
𝑒. Then, for the edges sets, 𝐸𝑤 = 𝖾𝖽𝗀𝖾𝗌(𝜆(𝑇𝑤)) and 𝐸𝑣 =

⋃
𝑇 ′≹𝑇𝑤

𝖾𝖽𝗀𝖾𝗌(𝜆(𝑇 ′)), and, for the vertices sets,
𝖾𝗇𝖽𝗌(𝐸𝑤) ⊆ 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇𝑤)) and 𝖾𝗇𝖽𝗌(𝐸𝑣) ⊆

⋃
𝑇 ′≹𝑇𝑤

𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇 ′)). Using these inclusions and applying
Lemma 5.7,

𝗈𝗋𝖽(𝑒) 𝗐𝖽(𝑌 , 𝑏)
∶= |𝖾𝗇𝖽𝗌(𝐸𝑤) ∩ 𝖾𝗇𝖽𝗌(𝐸𝑣)| ∶= max

𝑒∈𝖾𝖽𝗀𝖾𝗌(𝑌)
𝗈𝗋𝖽(𝑒)

≤ |𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇𝑤)) ∩ ⋃
𝑇 ′≹𝑇𝑤

𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇 ′))| ≤ max
𝑇 ′<𝑇

|𝗌𝗈𝗎𝗋𝖼𝖾𝗌(𝜆(𝑇 ′))|
≤ |𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇𝑤)) ∩ (𝑋 ∪

⋃
𝑇 ′≹𝑇𝑤

𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇 ′)))| ≤ max
𝑇 ′≤𝑇

|𝗌𝗈𝗎𝗋𝖼𝖾𝗌(𝜆(𝑇 ′))|
= |𝗌𝗈𝗎𝗋𝖼𝖾𝗌(𝜆(𝑇𝑤))| = 𝗐𝖽(𝑇)

Given a branch decomposition (𝑌 , 𝑏) of a hypergraph𝐺, we pick an edge of 𝑌 and subdivide it to add an
extra vertex which will be the root. The labelling of the internal nodes comes as a consequence and define
an inductive branch decomposition (𝑌 , 𝑏) of the same width.

Lemma 5.9. Let (𝑌 , 𝑏) be a branch decomposition of a hypergraph 𝐺 and let Γ = (𝐺,𝑋) be a hypergraph
with sources 𝑋 whose underlying hypergraph is 𝐺. Then, there is a branch decomposition (𝑌 , 𝑏) of Γ of
bounded width: 𝗐𝖽((𝑌 , 𝑏)) ≤ 𝗐𝖽(𝑌 , 𝑏) + |𝑋|.
Proof. Proceed by induction on |𝖾𝖽𝗀𝖾𝗌(𝑌)|. If 𝑌 has no edges, then either 𝐺 has no edges and (𝑌 , 𝑏) = ()
or 𝐺 has only one edge 𝑒𝑙 and (𝑌 , 𝑏) = (𝑒𝑙). In either case, define (𝑌 , 𝑏)∶= (Γ) and 𝗐𝖽((𝑌 , 𝑏))∶= |𝑋| ≤
𝗐𝖽(𝑌 , 𝑏) + |𝑋|.

If 𝑌 has at least one edge 𝑒, then 𝑌 = 𝑌1
𝑒—𝑌2 with 𝑌𝑖 a subcubic tree. Let 𝐸𝑖 = 𝑏(𝗅𝖾𝖺𝗏𝖾𝗌(𝑌𝑖)) be the sets

of edges of𝐺 indicated by the leaves of 𝑌𝑖. Then,𝐸1 ⊔𝐸2 = 𝐸. By induction hypothesis, there are inductive
branch decompositions 𝑇𝑖∶= (𝑌𝑖, 𝑏𝑖) of Γ𝑖 = (𝐺𝑖,𝑋𝑖), where 𝑉1∶= 𝖾𝗇𝖽𝗌(𝐸1), 𝑉2∶= 𝖾𝗇𝖽𝗌(𝐸2) ∪ (𝑉 ⧵ 𝑉1),
𝑋𝑖∶= (𝑉1 ∩ 𝑉2) ∪ (𝑉𝑖 ∩ 𝑋) and 𝐺𝑖∶= (𝑉𝑖, 𝐸𝑖). Then, the tree (𝑌 , 𝑏)∶= (𝑇1—Γ—𝑇2) is an inductive branch
decomposition of Γ and, applying Lemma 5.7,

𝗐𝖽((𝑌 , 𝑏))
∶= max{𝗐𝖽(𝑇1), |𝑋|,𝗐𝖽(𝑇2)}
= max
𝑇 ′≤𝑇

|𝗌𝗈𝗎𝗋𝖼𝖾𝗌(𝜆(𝑇 ′))|

5.2. BOUNDING BRANCH WIDTH 73

≤ max
𝑇 ′≤𝑇

|𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝜆(𝑇 ′)) ∩ 𝖾𝗇𝖽𝗌(𝐸 ⧵ 𝖾𝖽𝗀𝖾𝗌(𝜆(𝑇 ′)))| + |𝑋|
= max
𝑒∈𝖾𝖽𝗀𝖾𝗌(𝑌)

𝗈𝗋𝖽(𝑒) + |𝑋|
∶=𝗐𝖽(𝑌 , 𝑏) + |𝑋|

Combining Lemmas 5.8 and 5.9, we obtain the equivalence between branch width and inductive branch
width.

Proposition 5.10. For hypergraphs with no sources, branch width and inductive branch width coincide.

5.2 Bounding branch width
Monoidal width in cospans of hypergraphs is equivalent to branch width (Theorem 5.16) and, as a conse-
quence, it is also equivalent to tree width (Corollary 5.17). In particular, the monoidal width of a hypergraph
is at most its branch width +1 and at least half of it. Proposition 5.13 shows the upper bound by mapping a
branch decomposition to a monoidal decomposition of the same hypergraph with bounded width. Similarly,
Proposition 5.15 defines a branch decomposition from a monoidal decomposition to show the lower bound.

The instantiation ofmonoidalwidth in cospans of hypergraphs needs an appropriateweight function. The
width of a tree decomposition depends on the number of vertices contained in each bag, thus we define the
weight function for 𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗ to count the number of vertices of the apex graph in each cospan.

Definition 5.11. For a morphism 𝑔∶ 𝑋 → 𝑌 in 𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗, the weight function 𝗐 is defined as
𝗐(𝑔)∶= |𝑉 |, where 𝑉 is the set of vertices of the apex of 𝑔, i.e. 𝑔 =∶ 𝑋 → 𝐺 ← 𝑌 ∶and 𝐺 = (𝑉 ,𝐸).

With this definition, the identity on 𝑋 weights |𝑋| and compositions along 𝑋 cost |𝑋|. This definition
gives a weight function.

Lemma 5.12. The function 𝗐 in Definition 5.11 satisfies the conditions in Definition 3.3 for a weight function
in the monoidal category 𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗.

Proof. For 𝑓 ∶ 𝑋 → 𝑌 , 𝑔∶ 𝑌 → 𝑍 and 𝑓 ′ ∶ 𝑋′ → 𝑌 ′ with sets of vertices 𝑉 ,𝑊 and 𝑉 ′, we can bound the
weights of 𝑓 � 𝑔 and 𝑓 ⊗ 𝑓 ′.

𝗐(𝑓 �𝑌 𝑔) 𝗐(𝑓 ⊗ 𝑓 ′)
∶= |𝑉 +𝑌 𝑊 | ∶= |𝑉 + 𝑉 ′|
≤ |𝑉 | + |𝑊 | + |𝑌 | = |𝑉 | + |𝑉 ′|

∶=𝗐(𝑓) + 𝗐(𝑔) + 𝗐(𝑌) ∶=𝗐(𝑓) + 𝗐(𝑓 ′)

A branch decomposition divides a hypergraph into one-edge subhypergraphs. Given a branch decompo-
sition of a hypergraph Γ with sources, the corresponding monoidal decomposition is defined by taking all
the one-edge subhypergraphs and composing them according to the tree structure of the branch decompo-
sition. For example, the monoidal decomposition shown below right corresponds to the inductive branch
decomposition of 3-clique at its left: the three edge generators are connected following the shape of
the branch decomposition.

74 CHAPTER 5. A MONOIDAL ALGEBRA FOR BRANCH WIDTH

†
→

Proposition 5.13. Let 𝑇 be an inductive branch decomposition of a hypergraph with sources Γ = (𝐺,𝑋). Let
𝑔∶= 𝜄 ∶ 𝑋 → 𝐺 ← ∅ ∶be the corresponding cospan and let 𝛾(𝐺) indicate the hyperedge size of 𝐺. Then,
there is a monoidal decomposition †(𝑇) ∈ 𝐷𝑔 of bounded width: 𝗐𝖽(†(𝑇)) ≤ max{𝗐𝖽(𝑇) + 1, 𝛾(𝐺)}.

Proof. Let 𝐺 = (𝑉 ,𝐸) and proceed by induction on the decomposition tree 𝑇 . If the tree 𝑇 = (Γ) is
composed of only one leaf, then the label Γ of this leaf must have at most one hyperedge with 𝛾(𝐺) end-
points and 𝗐𝖽(𝑇)∶= |𝑋|. We define the corresponding monoidal decomposition to also consist of only a
leaf, †(𝑇)∶= (𝑔), and obtain the desired bound 𝗐𝖽(†(𝑇)) = max{|𝑋|, 𝛾(𝐺)} = max{𝗐𝖽(𝑇), 𝛾(𝐺)}.

If 𝑇 = (𝑇1—Γ—𝑇2), then, by definition of inductive branch decomposition, 𝑇 is composed of two sub-
trees 𝑇1 and 𝑇2 that give branch decompositions of Γ1 = (𝐺1, 𝑋1) and Γ2 = (𝐺2, 𝑋2). There are three con-
ditions imposed by the definition on these subgraphs𝐺𝑖 = (𝑉𝑖, 𝐸𝑖): 𝐸 = 𝐸1 ⊔𝐸2 with𝐸𝑖 ≠ ∅, 𝑉1 ∪ 𝑉2 = 𝑉 ,
and 𝑋𝑖 = (𝑉1 ∩ 𝑉2) ∪ (𝑋 ∩ 𝑉𝑖). Let 𝑔𝑖 = 𝜄 ∶ 𝑋𝑖 → 𝐺𝑖 ← ∅ ∶be the morphism in 𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗
corresponding to Γ𝑖. Then, we decompose 𝑔 in terms of identities, the structure of 𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗, and
its subgraphs 𝑔1 and 𝑔2, separating their boundaries into𝑋1 ⧵𝑋2, (𝑋1 ∩𝑋2)⧵𝑋,𝑋1 ∩𝑋2 ∩𝑋, and𝑋2 ⧵𝑋1:

𝑔 =
𝑔1

𝑔2

By induction hypothesis, there are monoidal decompositions†(𝑇𝑖) of the morphisms 𝑔𝑖 of bounded width:
𝗐𝖽(†(𝑇𝑖)) ≤ max{𝗐𝖽(𝑇𝑖) + 1, 𝛾(𝐺𝑖)}. By Lemma 3.11, there is a monoidal decomposition (†(𝑇1)) of the
morphism in the above dashed box of bounded width: 𝗐𝖽((†(𝑇1))) ≤ max{𝗐𝖽(†(𝑇1)), |𝑋1|+ 1}. Using
this decomposition, we can define the monoidal decomposition given by the cuts in the figure above.

†(𝑇)∶= (((†(𝑇1))—⊗—𝟙𝑋2⧵𝑋1
)— �𝑋2

—†(𝑇2)).

We can bound its width by applying Lemma 3.11, the induction hypothesis and the relevant definitions of
width (|𝑋𝑖| ≤ 𝗐𝖽(𝑇𝑖) by Definitions 5.6 and 5.11).

𝗐𝖽(†(𝑇))
∶= max{𝗐𝖽((†(𝑇1))),𝗐𝖽(†(𝑇2)), |𝑋2|}
≤ max{𝗐𝖽(†(𝑇1)),𝗐𝖽(†(𝑇2)), |𝑋1| + 1, |𝑋2|}
≤ max{𝗐𝖽(𝑇1) + 1, 𝛾(𝐺1),𝗐𝖽(𝑇2) + 1, 𝛾(𝐺2), |𝑋1| + 1, |𝑋2|}
≤ max{max{𝗐𝖽(𝑇1),𝗐𝖽(𝑇2), |𝑋1|, |𝑋2|} + 1, 𝛾(𝐺1), 𝛾(𝐺2)}
≤ max{max{𝗐𝖽(𝑇1),𝗐𝖽(𝑇2), |𝑋|} + 1, 𝛾(𝐺)}

∶=max{𝗐𝖽(𝑇) + 1, 𝛾(𝐺)}

5.2. BOUNDING BRANCH WIDTH 75

The mapping from monoidal decompositions to inductive branch decompositions follows a similar idea
to the previous one and also proceeds by induction on the decomposition tree. It requires some extra bu-
reaucracy to handle the case of composition nodes, for which the following lemma is needed.

Lemma 5.14. Consider a hypergraph with sources Γ = ((𝑉 ,𝐸), 𝑋), a function 𝜙∶ 𝑉 → 𝑊 and define the
hypergraph with sources 𝜙(Γ)∶= ((𝜙(𝑉), 𝐸), 𝜙(𝑋)). Suppose there is an inductive branch decomposition 𝑇
of Γ. Then, there is an inductive branch decomposition 𝜙(𝑇) of 𝜙(Γ) of bounded width: 𝗐𝖽(𝜙(𝑇)) ≤ 𝗐𝖽(𝑇).

Proof. Proceed by induction on the decomposition tree 𝑇 . If 𝑇 = (Γ) is just a leaf, then define𝜙(𝑇)∶= (𝜙(Γ))
to be a leaf as well. Its width is bounded by that of 𝑇 : 𝗐𝖽(𝜙(𝑇))∶= |𝜙(𝑋)| ≤ |𝑋| ∶=𝗐𝖽(𝑇).

Otherwise, 𝑇 = (𝑇1—Γ—𝑇2) has two subtrees, where 𝑇𝑖 is an inductive branch decomposition of Γ𝑖 =
((𝑉𝑖, 𝐸𝑖), 𝑋𝑖). By the definition of inductive branch decomposition (Definition 5.4),𝐸 = 𝐸1⊔𝐸2, 𝑉 = 𝑉1∪𝑉2
and 𝑋𝑖 = (𝑉1 ∩ 𝑉2) ∪ (𝑋 ∩ 𝑉𝑖). Denote with 𝜙1 ∶ 𝑉1 → 𝑊 and 𝜙2 ∶ 𝑉2 → 𝑊 the compositions of 𝜙 with
the inclusions 𝜄1 ∶ 𝑉1 → 𝑉 and 𝜄2 ∶ 𝑉2 → 𝑉 . By induction hypothesis, there are inductive branch decompo-
sitions 𝜙𝑖(𝑇𝑖) of 𝜙𝑖(Γ𝑖) of bounded width, 𝗐𝖽(𝜙𝑖(𝑇𝑖)) ≤ 𝗐𝖽(𝑇𝑖). Define 𝜙(𝑇)∶= (𝜙1(𝑇𝑖)—𝜙(Γ)—𝜙2(𝑇2)) by
combining the inductive branch decompositions of 𝜙1(Γ1) and 𝜙2(Γ2). This is an inductive branch decom-
position of 𝜙(Γ) because 𝐸 = 𝐸1 ⊔ 𝐸2, 𝜙(𝑉) = 𝜙(𝑉1 ∪ 𝑉2) = 𝜙(𝜄1(𝑉1) ∪ 𝜄2(𝑉2)) = 𝜙1(𝑉1) ∪ 𝜙2(𝑉2), and
𝜙𝑖(𝑋𝑖) = 𝜙𝑖((𝑉1 ∩ 𝑉2) ∪ (𝑋 ∩ 𝑉𝑖)) = 𝜙((𝑉1 ∩ 𝑉2) ∪ (𝑋 ∩ 𝑉𝑖)) = (𝜙(𝑉1) ∩ 𝜙(𝑉2)) ∪ (𝜙(𝑋) ∩ 𝜙(𝑉𝑖)). The width
of 𝜙(𝑇) is bounded by that of 𝑇 :

𝗐𝖽(𝜙(𝑇))
∶= max{𝗐𝖽(𝜙1(𝑇1)),𝗐𝖽(𝜙2(𝑇2)), |𝜙(𝑋)|}
≤ max{𝗐𝖽(𝑇1),𝗐𝖽(𝑇2), |𝑋|}

∶=𝗐𝖽(𝑇)

Proposition 5.15. Let 𝑑 ∈ 𝐷𝑔 be a monoidal decomposition of a morphism 𝑔 = 𝑙∶ 𝑋 → 𝐺 ← 𝑌 ∶𝑟 in
𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗. Consider the hypergraph with sources Γ∶= (𝐺, 𝑙(𝑋) ∪ 𝑟(𝑌)) corresponding to 𝑔. Then,
there is an inductive branch decomposition(𝑑)ofΓof boundedwidth: 𝗐𝖽((𝑑)) ≤ 2⋅max{𝗐𝖽(𝑑), |𝑋|, |𝑌 |}.
Proof. Proceed by induction on 𝑑. If 𝑑 = (𝑔) is just a leaf, then define (𝑑) to be any inductive branch
decomposition of Γ. The width of an inductive branch decomposition of Γ is bounded by the number of
vertices ofΓ and, as a consequence, by thewidth of 𝑑: 𝗐𝖽((𝑑)) ≤ |𝑉 | ∶=𝗐𝖽(𝑑) ≤ 2⋅max{𝗐𝖽(𝑑), |𝑋|, |𝑌 |}.

Suppose that 𝑑 = (𝑑1— �𝐶 —𝑑2) starts with a composition node. Then, 𝑔 = 𝑔1 � 𝑔2 for two morphisms
𝑔1 = 𝑙1 ∶ 𝑋 → 𝐺1 ← 𝐶 ∶𝑟1 and 𝑔2 = 𝑙2 ∶ 𝐶 → 𝐺2 ← 𝑌 ∶𝑟2.

𝑉

𝑉1 𝑉2

𝑋 𝐶 𝑌

⌟𝑗1 𝑗2

𝑙1

𝑙

𝑙2𝑟1

𝑞

𝑟2

𝑟

By induction hypothesis, there are inductive branch decompositions (𝑑1) and (𝑑2) of the hypergraphs
with sources Γ1∶= (𝐺1, 𝑙1(𝑋) ∪ 𝑟1(𝐶)) and Γ2∶= (𝐺2, 𝑙2(𝐶) ∪ 𝑟2(𝑌)) of bounded width: 𝗐𝖽((𝑑1)) ≤ 2 ⋅
max{𝗐𝖽(𝑑1), |𝑋|, |𝐶|} and 𝗐𝖽((𝑑2)) ≤ 2 ⋅max{𝗐𝖽(𝑑2), |𝑌 |, |𝐶|}. We apply Lemma 5.14 to the decompo-
sitions (𝑑𝑖) and functions 𝑗𝑖 to obtain inductive branch decompositions 𝑗𝑖((𝑑𝑖)) of 𝑗𝑖(Γ𝑖) bounded width:
𝗐𝖽(𝑗𝑖((𝑑𝑖))) ≤ 𝗐𝖽((𝑑𝑖)). These two decompositions combine into an inductive branch decomposition

76 CHAPTER 5. A MONOIDAL ALGEBRA FOR BRANCH WIDTH

(𝑑)∶= (𝑗1((𝑑1))—Γ—𝑗2((𝑑2))). This is, indeed, an inductive branch decomposition of Γ because it sat-
isfies the condition on the edges and vertices, 𝐸 = 𝐸1 ⊔ 𝐸2 and 𝑉 = 𝑗1(𝑉1) ∪ 𝑗2(𝑉2), and the conditions on
the sources,

𝑗1(𝑙1(𝑋) ∪ 𝑟1(𝐶)) 𝑗2(𝑙2(𝐶) ∪ 𝑟2(𝑌))
= 𝑗1(𝑙1(𝑋)) ∪ 𝑗1(𝑟1(𝐶)) = 𝑗2(𝑙2(𝐶)) ∪ 𝑗2(𝑟2(𝑌))
= 𝑙(𝑋) ∪ 𝑞(𝐶) = 𝑞(𝐶) ∪ 𝑟(𝑌)
= 𝑙(𝑋) ∪ (𝑗1(𝑉1) ∩ 𝑗2(𝑉2)) = (𝑗1(𝑉1) ∩ 𝑗2(𝑉2)) ∪ 𝑟(𝑌)
= ((𝑙(𝑋) ∪ 𝑟(𝑌)) ∩ 𝑗1(𝑉1)) ∪ (𝑗1(𝑉1) ∩ 𝑗2(𝑉2)) = ((𝑙(𝑋) ∪ 𝑟(𝑌)) ∩ 𝑗2(𝑉2)) ∪ (𝑗1(𝑉1) ∩ 𝑗2(𝑉2))

in Definition 5.4. The width of (𝑑) is bounded.

𝗐𝖽((𝑑))
∶= max{𝗐𝖽(𝑗1((𝑑1))), |𝑙(𝑋) ∪ 𝑟(𝑌)|,𝗐𝖽(𝑗2((𝑑2)))}
≤ max{𝗐𝖽((𝑑1)), |𝑙(𝑋)| + |𝑟(𝑌)|,𝗐𝖽((𝑑2))}
≤ max{2𝗐𝖽(𝑑1), 2|𝑋|, 2|𝐶|, |𝑋| + |𝑌 |,𝗐𝖽(𝑑2), 2|𝐶|, 2|𝑌 |}
≤ 2 ⋅max{𝗐𝖽(𝑑1), |𝐶|,𝗐𝖽(𝑑2), |𝑋|, |𝑌 |}

∶=2 ⋅max{𝗐𝖽(𝑑), |𝑋|, |𝑌 |}
Suppose that 𝑑 = (𝑑1—⊗—𝑑2) starts with a monoidal product node. Then, 𝑔 = 𝑔1 ⊗ 𝑔2 for two mor-

phisms 𝑔1 = 𝑙1 ∶ 𝑋1 → 𝐺1 ← 𝑌1 ∶𝑟1 and 𝑔2 = 𝑙2 ∶ 𝑋2 → 𝐺2 ← 𝑌2 ∶𝑟2. By induction hypothesis, there
are inductive branch decompositions (𝑑1) and (𝑑2) of the hypergraphs with sources Γ1∶= (𝐺1, 𝑙1(𝑋1) ∪
𝑟1(𝑌1)) and Γ2∶= (𝐺2, 𝑙2(𝑋2) ∪ 𝑟2(𝑌2)) of bounded width: 𝗐𝖽((𝑑1)) ≤ 2 ⋅ max{𝗐𝖽(𝑑1), |𝑋1|, |𝑌1|} and
𝗐𝖽((𝑑2)) ≤ 2 ⋅ max{𝗐𝖽(𝑑2), |𝑋2|, |𝑌2|}. These decompositions combine into an inductive branch decom-
position(𝑑)∶= ((𝑑1)—Γ—(𝑑2)). This is, indeed, a decomposition of Γ because it satisfies the conditions
of Definition 5.4: 𝐸 = 𝐸1 ⊔𝐸2, 𝑉 = 𝑉1 ∪ 𝑉2 and 𝑙𝑖(𝑋𝑖) ∪ 𝑟𝑖(𝑌𝑖) = ((𝑙(𝑋) ∪ 𝑟(𝑌)) ∩ 𝑉𝑖) ∪ (𝑉1 ∩ 𝑉2). The width
of (𝑑) is bounded.

𝗐𝖽((𝑑))
≤ max{𝗐𝖽((𝑑1)), |𝑙(𝑋) ∪ 𝑟(𝑌)|,𝗐𝖽((𝑑2))}
≤ max{2𝗐𝖽(𝑑1), 2|𝑋1|, 2|𝑌1|, |𝑋| + |𝑌 |,𝗐𝖽(𝑑2), 2|𝑋2|, 2|𝑌2|}
≤ 2 ⋅max{𝗐𝖽(𝑑1),𝗐𝖽(𝑑2), |𝑋|, |𝑌 |}

∶=2 ⋅max{𝗐𝖽(𝑑), |𝑋|, |𝑌 |}
Theorem 5.16 summarises Propositions 5.10, 5.13 and 5.15.

Theorem5.16. Let𝐺 beagraphand 𝑔 =∶ ∅ → 𝐺 ← ∅ ∶be the correspondingmorphismof𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗.
Then, 1

2 ⋅ 𝖻𝗐𝖽(𝐺) ≤ 𝗆𝗐𝖽(𝑔) ≤ 𝖻𝗐𝖽(𝐺) + 1.

With this result and Theorem 2.30, we obtain equivalence with tree width.

Corollary 5.17. Tree width is equivalent to monoidal width in 𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗.

Chapter 6

A Monoidal Algebra for Rank Width

Chapter 5 showed that composition in cospans of hypergraphs captures the operation that underlies tree
decompositions. As a consequence, monoidal width in 𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗ is equivalent to tree width. This
chapter concerns rank width. As anticipated in Section 4.3, the operations for clique and rank widths derive
from the categorical algebra of the prop 𝖡𝖦𝗋𝖺𝗉𝗁. Here, we show that the prop 𝖡𝖦𝗋𝖺𝗉𝗁 captures the algebra
of composition underlying rank width, making monoidal width in this category equivalent to rank width and,
as a consequence, to clique width.

Rank width relies on the corresponding notion of rank decomposition, which we recalled in Section 2.2.
Clique width and rank width are equivalent graph complexity measures. We leverage this fact to show equiv-
alence between clique width and monoidal width in the category of bialgebra graphs. As an intermediate
step towards the main result of this chapter, Theorem 6.19 in Section 6.2, we introduce inductive rank de-
compositions in Section 6.1.

6.1 Inductive rank decompositions

As for branch decompositions, inductive rank decompositions are an intermediate step to add the inductive
flavour ofmonoidal decompositions to rank decompositions. Inductive rank decompositions are binary trees
and give expressions that define graphs whose interfaces are some marked “dangling edges”.

Definition 6.1. A graph with dangling edges is a pair Γ = ([𝐺] , 𝐵) of an adjacency matrix 𝐺 ∈ 𝖬𝖺𝗍ℕ(𝑘, 𝑘)
that records the connectivity of the graph and a matrix 𝐵 ∈ 𝖬𝖺𝗍ℕ(𝑘, 𝑛) that records the dangling edges
connected to 𝑛 boundary ports. Two graphs with dangling edges Γ = ([𝐺] , 𝐵) and Γ′ = (

[
𝐺′] , 𝐵′) are equal

if they encode the same graph with a different ordering on the vertices, i.e. there is a permutation matrix
𝑃 ∈ 𝖬𝖺𝗍ℕ(𝑘, 𝑘) such that 𝐺 = 𝑃 ⋅ 𝐺′ ⋅ 𝑃⊤ and 𝐵 = 𝑃 ⋅ 𝐵′.

We will sometimes write 𝐺 ∈ 𝖺𝖽𝗃𝖺𝖼𝖾𝗇𝖼𝗒(Γ) and 𝐵 = 𝗌𝗈𝗎𝗋𝖼𝖾𝗌(Γ).
A graph with dangling edges Γ = ([𝐺] , 𝐵) can be seen as a morphism 𝑛→ 0 in 𝖡𝖦𝗋𝖺𝗉𝗁.

𝑘𝐺

𝐵𝑛

77

78 CHAPTER 6. A MONOIDAL ALGEBRA FOR RANK WIDTH

Example 6.2. Two graphs with the same ports, as illustrated below, can be “glued” together:

glued with gives

These two graphs correspond to two morphisms 𝑔1, 𝑔2 ∶ 2 → 0 in 𝖡𝖦𝗋𝖺𝗉𝗁 that can be composed to obtain
the rightmost graph 2 � (𝑔1 ⊗ 𝑔2).

𝑔1 = 𝑔2 = ∪2 � (𝑔1 ⊗ 𝑔2) =

An inductive rank decomposition of Γ is a binary tree satisfying some conditions that ensure that com-
posing the dangling edges of Γ1 with those of Γ2 gives Γ.

Definition 6.3. A binary tree 𝑇 ∈ Γ for a graph Γ is defined inductively.

𝑇 ∶∶= (Γ) if |𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(Γ)| ≤ 1
∣ (𝑇1—Γ—𝑇2) if 𝑇1 ∈ Γ1 , 𝑇2 ∈ Γ2 and Γ1,Γ2 are subgraphs of Γ

Definition 6.4. An inductive rank decomposition of a graph with dangling edges Γ = ([𝐺] , 𝐵) is a binary tree
𝑇 ∈ 𝑇Γ where either: Γ has at most one vertex and 𝑇 = (Γ); or 𝑇 = (𝑇1—Γ—𝑇2) and 𝑇𝑖 ∈ 𝑇Γ𝑖 are inductive
rank decompositions of subgraphs Γ𝑖 = (

[
𝐺𝑖

]
, 𝐵𝑖) of Γ such that:

• The vertices are partitioned in two, [𝐺] =
[(

𝐺1 𝐶
𝟘 𝐺2

)]
;

• The dangling edges are those to the original boundary and to the other subgraph, 𝐵1 = (𝐴1 ∣ 𝐶) and
𝐵2 = (𝐴2 ∣ 𝐶⊤), where 𝐵 =

(
𝐴1
𝐴2

)
.

We will sometimes write Γ𝑖 = 𝜆(𝑇𝑖), 𝐺𝑖 = 𝖺𝖽𝗃𝖺𝖼𝖾𝗇𝖼𝗒(Γ𝑖) and 𝐵𝑖 = 𝗌𝗈𝗎𝗋𝖼𝖾𝗌(Γ𝑖).
Remark 6.5. Thanks to the equivalence relation on graphs with dangling edges, we can always assume that
the rows of 𝐺 and 𝐵 are ordered like the leaves of 𝑇 so that we can split 𝐵 horizontally to get 𝐴1 and 𝐴2.

At every step in a decomposition, two graphswith dangling edges are composed along a common bound-
ary. The most complex of these boundaries determines the width of the decomposition.

Definition 6.6. Thewidth of an inductive rank decomposition 𝑇 of a graphwith dangling edgesΓ = ([𝐺] , 𝐵),
with boundary matrix 𝐵, is defined inductively:

𝗐𝖽(𝑇)∶= 𝗋𝗄(𝐵) if 𝑇 = (Γ) ,| max{𝗐𝖽(𝑇1),𝗐𝖽(𝑇2), 𝗋𝗄(𝐵)} if 𝑇 = (𝑇1—Γ—𝑇2) .

Expanding this expression, we obtain

𝗐𝖽(𝑇) = max
𝑇 ′ full subtree of 𝑇

𝗋𝗄(𝗌𝗈𝗎𝗋𝖼𝖾𝗌(𝜆(𝑇 ′))).

6.1. INDUCTIVE RANK DECOMPOSITIONS 79

Equivalence with rank width

Rank width coincides with inductive rank width as inductive rank decompositions can be transformed into
rank decompositions while preserving their width (Lemma 6.8), and vice versa (Lemma 6.9). The width of
an inductive rank decomposition of a graph Γ is defined inductively. The next lemma, which is needed for
proving Lemma 6.8, shows that it can be computed “globally” by relating the boundaries and adjacency
matrices of the subgraphs of Γ in the decomposition to the boundary and adjacency matrices of Γ.

Lemma6.7. Let𝑇 be an inductive rank decomposition of a graphwith dangling edgesΓ = ([𝐺] , 𝐵). Consider
a full subtree 𝑇 ′ of 𝑇 that identifies the subgraph Γ′∶= 𝜆(𝑇 ′) = (

[
𝐺′] , 𝐵′). Then, the adjacency matrix of Γ

can be written as [𝐺] =
[(

𝐺𝐿 𝐶𝐿 𝐶
𝟘 𝐺′ 𝐶𝑅
𝟘 𝟘 𝐺𝑅

)]
, its boundary as 𝐵 =

(
𝐴𝐿
𝐴′
𝐴𝑅

)
and we can compute the rank of the

boundary of Γ′: 𝗋𝗄(𝐵′) = 𝗋𝗄(𝐴′ ∣ 𝐶⊤
𝐿
∣ 𝐶𝑅).

Proof. Proceed by induction on the decomposition tree 𝑇 . If it is just a leaf, 𝑇 = (Γ), then Γ has at most one
vertex, and Γ′ = ∅ or Γ′ = Γ. In both cases, the desired equality is true.

If 𝑇 = (𝑇1—Γ—𝑇2), then, by Definition 6.4, we can write the adjacency and boundary matrices of Γ in
terms of those of Γ1∶= 𝜆(𝑇1) = (

[
𝐺1

]
, 𝐵1) and Γ2∶= 𝜆(𝑇2) = (

[
𝐺2

]
, 𝐵2): [𝐺] =

[(
𝐺1 𝐶
𝟘 𝐺2

)]
, 𝐵 =

(
𝐴1
𝐴2

)
,

𝐵1 = (𝐴1 ∣ 𝐶) and 𝐵2 = (𝐴2 ∣ 𝐶⊤). Suppose that 𝑇 ′ is a full subtree of 𝑇1. Then, we can write
[
𝐺1

]
=[(

𝐺𝐿 𝐶𝐿 𝐷′

𝟘 𝐺′ 𝐷𝑅
𝟘 𝟘 𝐻𝑅

)]
, 𝐴1 =

(
𝐴𝐿
𝐴′
𝐹𝑅

)
and 𝐶 =

(
𝐸𝐿
𝐸′
𝐸𝑅

)
. It follows that 𝐵1 =

(
𝐴𝐿 𝐸𝐿
𝐴′ 𝐸′
𝐹𝑅 𝐸𝑅

)
and 𝐶𝑅 = (𝐷𝑅 ∣ 𝐸′).

By induction hypothesis, 𝗋𝗄(𝐵′) = 𝗋𝗄(𝐴′ ∣ 𝐸′ ∣ 𝐶⊤
𝐿

∣ 𝐷𝑅). The rank is invariant to permuting the order of
columns, thus 𝗋𝗄(𝐵′) = 𝗋𝗄(𝐴′ ∣ 𝐶⊤

𝐿
∣ 𝐷𝑅 ∣ 𝐸′) = 𝗋𝗄(𝐴′ ∣ 𝐶⊤

𝐿
∣ 𝐶𝑅). We proceed analogously if 𝑇 ′ is a full

subtree of 𝑇2.

An inductive rank decomposition defines a rank decomposition by forgetting the labelling of the internal
nodes and by forgetting the root node.

Lemma 6.8. Let 𝑇 be an inductive rank decomposition of a graph with dangling edges Γ. Then, there is a
rank decomposition †(𝑇) of 𝐺 of bounded width: 𝗐𝖽(†(𝑇)) ≤ 𝗐𝖽(𝑇).

Proof. A binary tree is, in particular, a subcubic tree. Then, we define the rank decomposition corresponding
to an inductive rank decomposition 𝑇 by its underlying unlabelled tree 𝑌 from which we remove the leaves
of 𝑇 with empty label. The corresponding bijection 𝑟∶ 𝗅𝖾𝖺𝗏𝖾𝗌(𝑌) → 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝐺) between the leaves of 𝑌
and the vertices of 𝐺 is defined by the labels of the leaves in 𝑇 : if 𝑙 is a leaf in 𝑌 , then it is a leaf in 𝑇 with a
non-empty label: the subgraph Γ𝑙 of Γ with one vertex 𝑣𝑙. These subgraphs need to give Γ when composed
together, then, the function 𝑟 is a bijection with 𝑟(𝑙)∶= 𝑣𝑙. Thus, (𝑌 , 𝑟) is a branch decomposition of 𝐺 and
we can define †(𝑇)∶= (𝑌 , 𝑟).

By construction, the edges of 𝑌 are edges of 𝑇 so we can compute the order of the edges in 𝑌 from the
labellings of the nodes in 𝑇 . Consider an edge 𝑏 in 𝑌 and consider its endpoints in 𝑇 : let {𝑣, 𝑣𝑏} = 𝖾𝗇𝖽𝗌(𝑏)
with 𝑣 parent of 𝑣𝑏 in 𝑇 . The order of 𝑏 is related to the rank of the boundary of the subtree 𝑇𝑏 of 𝑇 with
root in 𝑣𝑏. Let 𝜆(𝑇𝑏) = Γ𝑏 = (

[
𝐺𝑏

]
, 𝐵𝑏) be the subgraph of Γ identified by 𝑇𝑏. We can express the adjacency

and boundary matrices of Γ in terms of those of Γ𝑏:

[𝐺] =
[(

𝐺𝐿 𝐶𝐿 𝐶
𝟘 𝐺𝑏 𝐶𝑅
𝟘 𝟘 𝐺𝑅

)]
and 𝐵 =

(
𝐴𝐿
𝐴′
𝐴𝑅

)
.

By Lemma 6.7, the boundary rank of Γ𝑏 can be computed by 𝗋𝗄(𝐵𝑏) = 𝗋𝗄(𝐴′ ∣ 𝐶⊤
𝐿
∣ 𝐶𝑅). By Definition 2.42,

the order of the edge 𝑏 is 𝗈𝗋𝖽(𝑏)∶= 𝗋𝗄(𝐶⊤
𝐿
∣ 𝐶𝑅), and we can bound it with the boundary rank of Γ𝑏: 𝗋𝗄(𝐵𝑏) ≥

80 CHAPTER 6. A MONOIDAL ALGEBRA FOR RANK WIDTH

𝗈𝗋𝖽(𝑏). These observations allow us to bound the width of the rank decomposition 𝑌 .

𝗐𝖽(𝑌 , 𝑟)
∶= max

𝑏∈𝖾𝖽𝗀𝖾𝗌(𝑌)
𝗈𝗋𝖽(𝑏)

≤ max
𝑏∈𝖾𝖽𝗀𝖾𝗌(𝑌)

𝗋𝗄(𝐵𝑏)

≤ max
𝑇 ′≤𝑇

𝗋𝗄(𝗌𝗈𝗎𝗋𝖼𝖾𝗌(𝜆(𝑇 ′)))

∶=𝗐𝖽(𝑇)

An inductive rank decomposition is almost the same as a rank decomposition but with a selected node,
the root, that points to the first step in the decomposition. We assign a root to a rank decomposition by pick-
ing an edge in the decomposition tree and subdividing it. The extra vertex added in this operation becomes
the root and determines the labelling of the internal nodes by proceeding bottom up from the leaves.

Lemma 6.9. Let Γ = ([𝐺] , 𝐵) be a graphwith dangling edges and (𝑌 , 𝑟) be a rank decomposition of𝐺. Then,
there is an inductive rank decomposition (𝑌 , 𝑟) of Γ of bounded width: 𝗐𝖽((𝑌 , 𝑟)) ≤ 𝗐𝖽(𝑌 , 𝑟) + 𝗋𝗄(𝐵).

Proof. Proceed by induction on the number of edges of the decomposition tree 𝑌 to construct an inductive
decomposition tree 𝑇 in which every non-trivial full subtree 𝑇 ′ has a corresponding edge 𝑏′ in the tree 𝑌 .

Suppose 𝑌 has no edges, then either 𝐺 = ∅ or 𝐺 has one vertex. In either case, we define an inductive
rank decomposition with just a leaf labelled with Γ, (𝑌 , 𝑟)∶= (Γ). We compute its width by definition:
𝗐𝖽((𝑌 , 𝑟))∶= 𝗋𝗄(𝐵) ≤ 𝗐𝖽(𝑌 , 𝑟) + 𝗋𝗄(𝐵).

If the decomposition tree has at least an edge, then it is composed of two subcubic subtrees, 𝑌 = 𝑌1
𝑏—𝑌2.

Let 𝑉𝑖∶= 𝑟(𝗅𝖾𝖺𝗏𝖾𝗌(𝑌𝑖)) be the set of vertices associated to 𝑌𝑖 and𝐺𝑖∶= 𝐺[𝑉𝑖] be the subgraph of𝐺 induced by
the set of vertices 𝑉𝑖. By induction hypothesis, there are inductive rank decompositions 𝑇𝑖 of Γ𝑖 = (

[
𝐺𝑖

]
, 𝐵𝑖)

in which every full subtree 𝑇 ′ has an associated edge 𝑏′. Associate the edge 𝑏 to both 𝑇1 and 𝑇2 so that
every subtree of 𝑇 has an associated edge in 𝑌 . We can use these decompositions to define an inductive
rank decomposition 𝑇 = (𝑇1—Γ—𝑇2) of Γ. Let 𝑇 ′ be a full subtree of 𝑇 corresponding to Γ′ = (

[
𝐺′] , 𝐵′).

By Lemma 6.7, we can compute the rank of its boundary matrix 𝗋𝗄(𝐵′) = 𝗋𝗄(𝐴′ ∣ 𝐶⊤
𝐿

∣ 𝐶𝑅), where 𝐴′,
𝐶𝐿 and 𝐶𝑅 are as in the statement of Lemma 6.7. The matrix 𝐴′ contains some of the rows of 𝐵, then its
rank is bounded by the rank of 𝐵 and we obtain 𝗋𝗄(𝐵′) ≤ 𝗋𝗄(𝐵) + 𝗋𝗄(𝐶⊤

𝐿
∣ 𝐶𝑅). The matrix (𝐶⊤

𝐿
∣ 𝐶𝑅)

records the edges between the vertices in 𝐺′ and the vertices in the rest of 𝐺, which, by Definition 2.42,
are the edges that determine 𝗈𝗋𝖽(𝑏′). This means that the rank of this matrix is the order of the edge 𝑏′:
𝗋𝗄(𝐶⊤

𝐿
∣ 𝐶𝑅) = 𝗈𝗋𝖽(𝑏′). With these observations, we can compute the width of 𝑇 .

𝗐𝖽(𝑇)
= max
𝑇 ′≤𝑇

𝗋𝗄(𝐵′)

= max
𝑇 ′≤𝑇

𝗋𝗄(𝐴′ ∣ 𝐶⊤𝐿 ∣ 𝐶𝑅)

≤ max
𝑇 ′≤𝑇

𝗋𝗄(𝐶⊤𝐿 ∣ 𝐶𝑅) + 𝗋𝗄(𝐵)

= max
𝑏∈𝖾𝖽𝗀𝖾𝗌(𝑌)

𝗈𝗋𝖽(𝑏) + 𝗋𝗄(𝐵)

∶=𝗐𝖽(𝑌 , 𝑟) + 𝗋𝗄(𝐵)

6.2. BOUNDING RANK WIDTH 81

By combining Lemmas 6.8 and 6.9 we obtain that rank decompositions and inductive ones give the same
complexity measure.

Proposition 6.10. For graphs with no dangling edges, rank width and inductive rank width coincide.

6.2 Bounding rank width
Monoidal width in the prop 𝖡𝖦𝗋𝖺𝗉𝗁 of graphs is equivalent to rank width: it is at most twice and at least a
half of rank width. Transforming an inductive rank decomposition into a monoidal decomposition gives the
upper bound, while a mapping in the other direction yields the lower bound. As for cospans of graphs, the
number of vertices in a graph gives its cost, so an appropriate weight function counts the number of vertices
in each morphism.

Definition 6.11. For a morphism 𝑔∶ 𝑛 → 𝑚 in𝖬𝖦𝗋𝖺𝗉𝗁, the weight function 𝗐 is defined as 𝗐(𝑔)∶= 𝗋𝗄(𝐺) +
𝗋𝗄(𝐿) + 𝗋𝗄(𝑅) + 𝗋𝗄(𝑃) + 𝗋𝗄(𝐹), where 𝑔 = ([𝐺] , 𝐿, 𝑅, 𝑃 , [𝐹]).

With this definition, the identity on 𝑛 weights 𝑛 because 𝗋𝗄(𝟙𝑛) = 𝑛, and composing along 𝑛 wires costs
𝑛. This defines a weight function.

Lemma 6.12. The function 𝗐 in Definition 6.11 satisfies the conditions for a weight function in Definition 3.3
in the monoidal category𝖬𝖦𝗋𝖺𝗉𝗁.

Proof. For morphisms 𝑔∶ 𝑛→ 𝑚, ℎ∶ 𝑚→ 𝑙 and 𝑔′ ∶ 𝑛′ → 𝑚′, in𝖬𝖦𝗋𝖺𝗉𝗁, given by 𝑔 = ([𝐺] , 𝐿, 𝑅, 𝑃 , [𝐹]),
ℎ = ([𝐻] ,𝑀, 𝑆,𝑄, [𝐸]) and 𝑔′ =

([
𝐺′] , 𝐿′, 𝑅′, 𝑃 ′,

[
𝐹 ′]), we recall the expressions for the composition

𝑔 � ℎ and the monoidal product 𝑔 ⊗ 𝑔′.

𝑔 � ℎ∶=
([(

𝐺 𝑅𝑀⊤

𝟘 𝐻+𝑀𝐹𝑀⊤

)]
,
(
𝐿
𝑀𝑃

)
,
(

𝑅𝑄⊤

𝑆+𝑀(𝐹+𝐹⊤)𝑄⊤

)
, 𝑄𝑃 ,

[
𝐸 +𝑄𝐹𝑄⊤

])
𝑔 ⊗ 𝑔′∶=

([
𝐺 ⊕𝐺′] , 𝐿 ⊕ 𝐿′, 𝑅 ⊕ 𝑅′, 𝑃 ⊕ 𝑃 ′,

[
𝐹 ⊕ 𝐹 ′])

We bound the ranks of these matrices individually.

𝗋𝗄
(
𝐺 𝑅𝑀⊤

𝟘 𝐻+𝑀𝐹𝑀⊤

)
≤ 𝗋𝗄(𝐺) + 𝗋𝗄(𝐻) + 𝑚 𝗋𝗄(𝐺 ⊕𝐺′) ≤ 𝗋𝗄(𝐺) + 𝗋𝗄(𝐺′)

𝗋𝗄
(
𝐿
𝑀𝑃

)
≤ 𝗋𝗄(𝐿) + 𝗋𝗄(𝑀) 𝗋𝗄(𝐿⊕𝐿′) ≤ 𝗋𝗄(𝐿) + 𝗋𝗄(𝐿′)

𝗋𝗄
(

𝑅𝑄⊤

𝑆+𝑀(𝐹+𝐹⊤)𝑄⊤

)
≤ 𝗋𝗄(𝑅) + 𝗋𝗄(𝑆) + 𝗋𝗄(𝑄) 𝗋𝗄(𝑅⊕𝑅′) ≤ 𝗋𝗄(𝑅) + 𝗋𝗄(𝑅′)

𝗋𝗄(𝑄𝑃) ≤ 𝗋𝗄(𝑃) 𝗋𝗄(𝑃 ⊕ 𝑃 ′) ≤ 𝗋𝗄(𝑃) + 𝗋𝗄(𝑃 ′)
𝗋𝗄(𝐸 +𝑄𝐹𝑄⊤) ≤ 𝗋𝗄(𝐹) + 𝗋𝗄(𝐸) 𝗋𝗄(𝐹 ⊕ 𝐹 ′) ≤ 𝗋𝗄(𝐹) + 𝗋𝗄(𝐹 ′)

With these inequalities, we bound the weights of compositions and monoidal products.

𝗐(𝑔 �𝑚 ℎ) ≤ 𝗐(𝑔) + 𝗐(ℎ) + 𝑚 𝗐(𝑔 ⊗ 𝑔′) ≤ 𝗐(𝑔) + 𝗐(𝑔′)

Given the inductive nature of both kinds of decompositions, themonoidal decomposition corresponding
to an inductive rank decomposition is constructed by induction. The inductive step relies on the factorisation
of morphisms 𝑛→ 0 as shown in Figure 6.1.

In order to show that such factorisation is always possible, Lemma 6.14 shows that any boundary matrix
can be split along the ranks 𝑟1 and 𝑟2.

82 CHAPTER 6. A MONOIDAL ALGEBRA FOR RANK WIDTH

𝑔𝑛 =

𝑘1

𝑘2

𝐺1

𝐺2

𝐴1

𝐴2

𝐶
𝑛 =

𝑘1

𝑘2

𝐿1

𝐿2

𝐺1

𝐺2

𝑁1

𝑁2

𝑆
𝑛

𝑟1

𝑟2

Figure 6.1: Splitting a graph with dangling edges optimally into subgraphs.

Remark 6.13. By Lemma 3.16, the rank of a composition of twomatrices is bounded by their ranks: 𝗋𝗄(𝐴⋅𝐵) ≤
min{𝗋𝗄(𝐴), 𝗋𝗄(𝐵)}. If, moreover, 𝐵 has full rank, then 𝗋𝗄(𝐴 ⋅ 𝐵) = 𝗋𝗄(𝐴).

Lemma 6.14. Let 𝐴𝑖 ∈ 𝖬𝖺𝗍ℕ(𝑘𝑖, 𝑛), for 𝑖 = 1, 2, and 𝐶 ∈ 𝖬𝖺𝗍ℕ(𝑘1, 𝑘2). Then, there are rank decompositions
of (𝐴1 ∣ 𝐶) and (𝐴2 ∣ 𝐶⊤) of the form
• (𝐴1 ∣ 𝐶) = 𝐿1 ⋅ (𝑁1 ∣ 𝑆 ⋅ 𝐿⊤2), and
• (𝐴2 ∣ 𝐶⊤) = 𝐿2 ⋅ (𝑁2 ∣ 𝑆⊤ ⋅ 𝐿⊤1).
This ensures that we can decompose the diagram below on the left-hand-side as the one on the right-hand-
side, where 𝑟1 = 𝗋𝗄(𝐴1 ∣ 𝐶) and 𝑟2 = 𝗋𝗄(𝐴2 ∣ 𝐶⊤).

𝐴1

𝐴2

𝐶

𝑛

𝑛

𝑘1

𝑘2

=

𝑁1

𝑁2

𝑆
𝐿1

𝐿2

𝑛

𝑛

𝑘1

𝑘2

𝑟1

𝑟2

Proof. Let 𝑟1 = 𝗋𝗄(𝐴1 ∣ 𝐶) and 𝑟2 = 𝗋𝗄(𝐴2 ∣ 𝐶⊤). We start by factoring (𝐴1 ∣ 𝐶) into 𝐿1 ⋅ (𝑁1 ∣ 𝐾1),

𝐴1

𝐶

𝑛
𝑘1

𝑘2
=

𝑁1

𝐾1

𝐿1

𝑛
𝑘1

𝑘2

𝑟1

where 𝐿1 ∈ 𝖬𝖺𝗍ℕ(𝑘1, 𝑟1), 𝑁1 ∈ 𝖬𝖺𝗍ℕ(𝑟1, 𝑛) and 𝐾1 ∈ 𝖬𝖺𝗍ℕ(𝑟1, 𝑘2). Then, we proceed with factoring
(𝐴2 ∣ 𝐾⊤1) and we show that 𝗋𝗄(𝐴2 ∣ 𝐾⊤1) = 𝗋𝗄(𝐴2 ∣ 𝐶⊤). Let 𝐿2 ⋅ (𝑁2 ∣ 𝐾2) be a rank factorisation of
(𝐴2 ∣ 𝐾⊤1),

𝐾⊤1

𝐴2

𝑟1
𝑘2

𝑛
=

𝐾2

𝑁2

𝐿2

𝑟1
𝑘2

𝑛

𝑟′

with 𝐿2 ∈ 𝖬𝖺𝗍ℕ(𝑘2, 𝑟′), 𝑁2 ∈ 𝖬𝖺𝗍ℕ(𝑟′, 𝑛) and 𝐾2 ∈ 𝖬𝖺𝗍ℕ(𝑟′, 𝑘1). We show that 𝑟′ = 𝑟2. By the first
factorisation, we obtain that 𝐶 = 𝐿1 ⋅𝐾1, and

(𝐴2 ∣ 𝐶⊤) = (𝐴2 ∣ 𝐾⊤1 ⋅ 𝐿⊤1) = (𝐴2 ∣ 𝐾⊤1) ⋅
(𝟙 𝟘

𝟘 𝐿⊤1

)
.

6.2. BOUNDING RANK WIDTH 83

Then, 𝑟′ = 𝑟2 because𝐿1 and, consequently,
(𝟙 𝟘

𝟘 𝐿⊤1

)
have full rank and we can apply Remark 6.13. By letting

𝑆 = 𝐾⊤2 , we obtain the desired factorisation.

Once the graph in Figure 6.1 has been split, the boundaries of its induced subgraphs have changed. This
means that we cannot apply the inductive hypothesis right away, but we need to first transform the inductive
rank decompositions of the old subgraphs into decompositions of the new ones, as shown in Lemma 6.15.
More explicitly, when𝑀 has full rank, if there is an inductive rank decomposition of Γ = ([𝐺] , 𝐵′ ⋅𝑀), which
corresponds to 𝑔 below left, we can obtain one of Γ′ = ([𝐺] , 𝐵′), which corresponds to 𝑔′ below right, of
the same width.

𝑔 =
𝐺

𝐵𝑀

⇝ 𝑔′ =
𝐺

𝐵𝑀 ′

Lemma 6.15. Let 𝑇 be an inductive rank decomposition of Γ = ([𝐺] , 𝐵 ⋅𝑀), with𝑀 that has full rank. Then,
there is an inductive rank decomposition 𝑇 ′ of Γ′ = ([𝐺] , 𝐵 ⋅𝑀 ′) such that 𝗐𝖽(𝑇) ≤ 𝗐𝖽(𝑇 ′) and such that
𝑇 and 𝑇 ′ have the same underlying tree structure. If, moreover,𝑀 ′ has full rank, then 𝗐𝖽(𝑇) = 𝗐𝖽(𝑇 ′).

Proof. Proceed by induction on the decomposition tree 𝑇 . If the tree 𝑇 is just a leaf with label Γ, then we
define the corresponding tree to be just a leaf with label Γ′: 𝑇 ′∶= (Γ′). Clearly, 𝑇 and 𝑇 ′ have the same
underlying tree structure. By Remark 6.13 and the fact that 𝑀 has full rank, we can relate their widths:
𝗐𝖽(𝑇 ′)∶= 𝗋𝗄(𝐵 ⋅𝑀 ′) ≤ 𝗋𝗄(𝐵) = 𝗋𝗄(𝐵 ⋅𝑀) ∶=𝗐𝖽(𝑇). If, moreover,𝑀 ′ has full rank, the inequality becomes
an equality and 𝗐𝖽(𝑇 ′) = 𝗐𝖽(𝑇).

If 𝑇 = (𝑇1—Γ—𝑇2), then the adjacency and boundary matrices of Γ can be expressed in terms of those
of its subgraphs Γ𝑖∶= 𝜆𝑖(𝑇𝑖) = (

[
𝐺𝑖

]
, 𝐷𝑖), by definition of inductive rank decomposition: 𝐺 =

(
𝐺1 𝐶
𝟘 𝐺2

)
,

𝐵 ⋅𝑀 =
(
𝐴1
𝐴2

)
⋅𝑀 =

(
𝐴1⋅𝑀
𝐴2⋅𝑀

)
, with𝐷1 = (𝐴1 ⋅𝑀 ∣ 𝐶) and𝐷2 = (𝐴2 ⋅𝑀 ∣ 𝐶⊤). The boundary matrices𝐷𝑖

of the subgraphsΓ𝑖 can also be expressed as a compositionwith a full-rankmatrix: 𝐷1 = (𝐴1 ⋅𝑀 ∣ 𝐶) = (𝐴1 ∣
𝐶) ⋅

(
𝑀 𝟘
𝟘 𝟙𝑘2

)
and𝐷2 = (𝐴2 ⋅𝑀 ∣ 𝐶⊤) = (𝐴2 ∣ 𝐶⊤) ⋅

(
𝑀 𝟘
𝟘 𝟙𝑘1

)
. Thematrices

(
𝑀 𝟘
𝟘 𝟙𝑘𝑖

)
have full rank because

all their blocks do. Let 𝐵1 = (𝐴1 ∣ 𝐶) and 𝐵2 = (𝐴2 ∣ 𝐶⊤). By induction hypothesis, there are inductive rank
decompositions 𝑇 ′

1 and 𝑇
′
2 of Γ

′
1 = (

[
𝐺1

]
, 𝐵1 ⋅

(
𝑀 ′ 𝟘
𝟘 𝟙𝑘2

)
) and Γ′2 = (

[
𝐺2

]
, 𝐵2 ⋅

(
𝑀 ′ 𝟘
𝟘 𝟙𝑘1

)
) with the same

underlying tree structure as 𝑇1 and 𝑇2, respectively. Moreover, their width is bounded, 𝗐𝖽(𝑇 ′
𝑖) ≤ 𝗐𝖽(𝑇𝑖),

and if, additionally,𝑀 ′ has full rank, 𝗐𝖽(𝑇 ′
𝑖) = 𝗐𝖽(𝑇𝑖). Then, we can use these decompositions to define

an inductive rank decomposition 𝑇 ′∶= (𝑇 ′
1—Γ′—𝑇 ′

2) of Γ
′ because its adjacency and boundary matrices can

be expressed in terms of those of Γ′𝑖 as in the definition of inductive rank decomposition: 𝐺 =
(
𝐺1 𝐶
𝟘 𝐺2

)
,

𝐵1 ⋅
(
𝑀 ′ 𝟘
𝟘 𝟙𝑘2

)
= (𝐴1 ⋅𝑀

′ ∣ 𝐶) and 𝐵2 ⋅
(
𝑀 ′ 𝟘
𝟘 𝟙𝑘1

)
= (𝐴2 ⋅𝑀

′ ∣ 𝐶⊤). Applying the induction hypothesis and
Remark 6.13, we compute the width of this decomposition.

𝗐𝖽(𝑇 ′)
∶= max{𝗋𝗄(𝐵 ⋅𝑀 ′),𝗐𝖽(𝑇 ′

1),𝗐𝖽(𝑇
′
2)}

≤ max{𝗋𝗄(𝐵),𝗐𝖽(𝑇1),𝗐𝖽(𝑇2)}
= max{𝗋𝗄(𝐵 ⋅𝑀),𝗐𝖽(𝑇1),𝗐𝖽(𝑇2)}

∶=𝗐𝖽(𝑇)

If, moreover,𝑀 ′ has full rank, the inequality becomes an equality and 𝗐𝖽(𝑇 ′) = 𝗐𝖽(𝑇).

84 CHAPTER 6. A MONOIDAL ALGEBRA FOR RANK WIDTH

With the above results, we construct a monoidal decomposition from an inductive rank decomposition
and show the upper bound on monoidal width.

Proposition 6.16. LetΓ = ([𝐺] , 𝐵) be a graphwith dangling edges and 𝑔∶ 𝑛→ 0 be themorphism in𝖡𝖦𝗋𝖺𝗉𝗁
corresponding to Γ. Let 𝑇 be a inductive rank decomposition of Γ. Then, there is a monoidal decomposition
†(𝑇) of 𝑔 of bounded width 𝗐𝖽(†(𝑇)) ≤ 2 ⋅ 𝗐𝖽(𝑇).

Proof. Proceed by induction on the decomposition tree 𝑇 . If the decomposition tree consists of just one
leaf with label Γ, then Γmust have at most one vertex, we can define†(𝑇)∶= (𝑔) to also be just a leaf, and
bound its width 𝗐𝖽(𝑇)∶= 𝗋𝗄(𝐺) = 𝗐𝖽(†(𝑇)).

If𝑇 = (𝑇1—Γ—𝑇2), thenwe can relate the adjacency andboundarymatrices ofΓ to those ofΓ𝑖∶= 𝜆(𝑇𝑖) =
(
[
𝐺𝑖

]
, 𝐵𝑖), by definition of inductive rank decomposition: 𝐺 =

(
𝐺1 𝐶
𝟘 𝐺2

)
, 𝐵 =

(
𝐴1
𝐴2

)
, 𝐵1 = (𝐴1 ∣ 𝐶) and

𝐵2 = (𝐴2 ∣ 𝐶⊤). By Lemma 6.14, there are rank decompositions of (𝐴1 ∣ 𝐶) and (𝐴2 ∣ 𝐶⊤) of the form:
(𝐴1 ∣ 𝐶) = 𝐿1 ⋅ (𝑁1 ∣ 𝑆 ⋅ 𝐿⊤2); and (𝐴2 ∣ 𝐶⊤) = 𝐿2 ⋅ (𝑁2 ∣ 𝑆⊤ ⋅ 𝐿⊤1). This means that we can write 𝑔 as
in Figure 6.1, with 𝑟𝑖 = 𝗋𝗄(𝐵𝑖). Then, 𝐵𝑖 = 𝐿𝑖 ⋅𝑀𝑖 with𝑀𝑖 that has full rank 𝑟𝑖. By Lemma 6.15, there is an
inductive rank decomposition 𝑇 ′

𝑖 of Γ
′
𝑖 = (

[
𝐺𝑖

]
, 𝐿𝑖), with the same underlying binary tree as 𝑇𝑖, such that

𝗐𝖽(𝑇𝑖) = 𝗐𝖽(𝑇 ′
𝑖). Let 𝑔𝑖 ∶ 𝑟𝑖 → 0 be the morphisms in 𝖡𝖦𝗋𝖺𝗉𝗁 corresponding to Γ′𝑖 and let 𝑏∶ 𝑛 → 𝑟1 + 𝑟2

be defined as

𝑏𝑛 𝑟1 + 𝑟2 =

𝑁1

𝑁2

𝑆
𝑛

𝑟1

𝑟2

.

By induction hypothesis, there aremonoidal decompositions†(𝑇 ′
𝑖) of themorphisms 𝑔𝑖 of boundedwidth:

𝗐𝖽(†(𝑇 ′
𝑖)) ≤ 2 ⋅𝗐𝖽(𝑇 ′

𝑖) = 2 ⋅𝗐𝖽(𝑇𝑖). Then, 𝑔 = 𝑏 �𝑟1+𝑟2 (𝑔1 ⊗ 𝑔2) and
†(𝑇)∶= (𝑏— �𝑟1+𝑟2 —(†(𝑇 ′

1)—⊗

—†(𝑇 ′
2))) is a monoidal decomposition of 𝑔. Its width can be computed.

𝗐𝖽(†(𝑇))
∶= max{𝗐(𝑏),𝗐(𝑟1 + 𝑟2),𝗐𝖽(†(𝑇 ′

1)),𝗐𝖽(
†(𝑇 ′

2))}
≤ max{𝗐(𝑏),𝗐(𝑟1 + 𝑟2), 2 ⋅ 𝗐𝖽(𝑇 ′

1), 2 ⋅ 𝗐𝖽(𝑇
′
2)}

= max{𝗐(𝑏), 𝑟1 + 𝑟2, 2 ⋅ 𝗐𝖽(𝑇1), 2 ⋅ 𝗐𝖽(𝑇2)}
≤ 2 ⋅max{𝑟1, 𝑟2,𝗐𝖽(𝑇1),𝗐𝖽(𝑇2)}

∶=2 ⋅ 𝗐𝖽(𝑇)

Each node in a monoidal decomposition of a graph 𝑔 determines a cut in 𝑔. This correspondence maps
monoidal decompositions to inductive rank decompositions. However, bounding their widths requires some
care because the splitting determined by a monoidal decomposition may be not the canonical one needed
to define an inductive rank decomposition of the same graph. Lemma 6.7 shows that this does notmatter as,
from the induced inductive rank decompositions, we can construct ones of the correct subgraphs by adding
some connections between the vertices as long as the complexity of these connections is bounded by the
boundary.

Given an inductive rank decomposition of Γ = ([𝐺] , (𝐿 ∣ 𝑅)), associated to 𝑔 below left, we construct
one of Γ′∶= (

[
𝐺 + 𝐿 ⋅ 𝐹 ⋅ 𝐿⊤

]
, (𝐿 ∣ 𝑅 + 𝐿 ⋅ (𝐹 + 𝐹⊤) ⋅ 𝑃⊤)), which corresponds to 𝑓 � 𝑔 below right, of at

6.2. BOUNDING RANK WIDTH 85

most the same width.

𝑔 =

𝑘𝐺

𝐿

𝑅

𝑃

𝑗

𝑚

𝑓 � 𝑔 =

𝑘𝐺

𝐿

𝑅

𝑃

𝐹
𝑗

𝑚

Lemma 6.17. Let 𝑇 be an inductive rank decomposition of Γ = ([𝐺] , (𝐿 ∣ 𝑅)), with 𝐺 ∈ 𝖬𝖺𝗍ℕ(𝑘, 𝑘),
𝐿 ∈ 𝖬𝖺𝗍ℕ(𝑘, 𝑗) and 𝑅 ∈ 𝖬𝖺𝗍ℕ(𝑘, 𝑚). Let 𝐹 ∈ 𝖬𝖺𝗍ℕ(𝑗, 𝑗), 𝑃 ∈ 𝖬𝖺𝗍ℕ(𝑚, 𝑗) and define the graph Γ′ by
precomposing with the adjacency matrix [𝐹], Γ′∶= (

[
𝐺 + 𝐿 ⋅ 𝐹 ⋅ 𝐿⊤

]
, (𝐿 ∣ 𝑅 + 𝐿 ⋅ (𝐹 + 𝐹⊤) ⋅ 𝑃⊤)). Then,

there is an inductive rank decomposition 𝑇 ′ of Γ′ such that 𝗐𝖽(𝑇 ′) ≤ 𝗐𝖽(𝑇).

Proof. Note that we can factor the boundary matrix of Γ′ as (𝐿 ∣ 𝑅 + 𝐿 ⋅ (𝐹 + 𝐹⊤) ⋅ 𝑃⊤) = (𝐿 ∣ 𝑅) ⋅(
𝟙𝑗 (𝐹+𝐹⊤)⋅𝑃⊤
𝟘 𝟙𝑚

)
. Then, we can bound its rank, 𝗋𝗄(𝐿 ∣ 𝑅 + 𝐿 ⋅ (𝐹 + 𝐹⊤) ⋅ 𝑃⊤) ≤ 𝗋𝗄(𝐿 ∣ 𝑅).

Proceed by induction on the decomposition tree 𝑇 .
If it is just a leaf with label Γ, then Γ has one vertex and we can define a decomposition for Γ′ to be also

just a leaf: 𝑇 ′∶= (Γ′). We can bound its width with the width of 𝑇 : 𝗐𝖽(𝑇 ′)∶= 𝗋𝗄(𝐿 ∣ 𝑅+𝐿 ⋅ (𝐹 +𝐹⊤) ⋅𝑃⊤) ≤
𝗋𝗄(𝐿 ∣ 𝑅) ∶=𝗐𝖽(𝑇).

If 𝑇 = (𝑇1—Γ—𝑇2), then there are two subgraphsΓ1 = (
[
𝐺1

]
, (𝐿1 ∣ 𝑅1 ∣ 𝐶)) andΓ2 = (

[
𝐺2

]
, (𝐿2 ∣ 𝑅2 ∣

𝐶)) such that 𝑇𝑖 is an inductive rank decomposition of Γ𝑖, and we can relate the adjacency and boundary
matrices of Γ to those of Γ1 and Γ2, by definition of inductive rank decomposition: [𝐺] =

[(
𝐺1 𝐶
𝟘 𝐺2

)]
and

(𝐿 ∣ 𝑅) =
(
𝐿1 𝑅1
𝐿2 𝑅2

)
. Similarly, we express the adjacency and boundary matrices of Γ′ in terms of the same

components:
[
𝐺 + 𝐿 ⋅ 𝐹 ⋅ 𝐿⊤

]
=

[(
𝐺1+𝐿1⋅𝐹 ⋅𝐿

⊤
1 𝐶+𝐿1⋅(𝐹+𝐹⊤)⋅𝐿⊤2

𝟘 𝐺2+𝐿2⋅𝐹 ⋅𝐿
⊤
2

)]
and (𝐿 ∣ 𝑅 + 𝐿 ⋅ (𝐹 + 𝐹⊤) ⋅ 𝑃⊤) =(

𝐿1 𝑅1+𝐿1⋅(𝐹+𝐹⊤)⋅𝑃⊤
𝐿2 𝑅2+𝐿2⋅(𝐹+𝐹⊤)⋅𝑃⊤

)
. We use these decompositions to define two subgraphs of Γ′ and apply the induction

hypothesis to them.

Γ′1∶= (
[
𝐺1 + 𝐿1 ⋅ 𝐹 ⋅ 𝐿⊤1

]
, (𝐿1 ∣ 𝑅1 + 𝐿1 ⋅ (𝐹 + 𝐹⊤) ⋅ 𝑃⊤ ∣ 𝐶 + 𝐿1 ⋅ (𝐹 + 𝐹⊤) ⋅ 𝐿⊤2))

=(
[
𝐺1 + 𝐿1 ⋅ 𝐹 ⋅ 𝐿⊤1

]
, (𝐿1 ∣ (𝑅1 ∣ 𝐶) + 𝐿1 ⋅ (𝐹 + 𝐹⊤) ⋅ (𝑃⊤ ∣ 𝐿⊤2)))

and

Γ′2∶= (
[
𝐺2 + 𝐿2 ⋅ 𝐹 ⋅ 𝐿⊤2

]
, (𝐿2 ∣ 𝑅2 + 𝐿2 ⋅ (𝐹 + 𝐹⊤) ⋅ 𝑃⊤ ∣ 𝐶⊤ + 𝐿2 ⋅ (𝐹 + 𝐹⊤) ⋅ 𝐿⊤1))

=(
[
𝐺2 + 𝐿2 ⋅ 𝐹 ⋅ 𝐿⊤2

]
, (𝐿2 ∣ (𝑅2 ∣ 𝐶⊤) + 𝐿2 ⋅ (𝐹 + 𝐹⊤) ⋅ (𝑃⊤ ∣ 𝐿⊤1)))

By induction, we have inductive rank decompositions 𝑇 ′
𝑖 of Γ

′
𝑖 such that 𝗐𝖽(𝑇

′
𝑖) ≤ 𝗐𝖽(𝑇𝑖). We defined Γ′𝑖 so

that 𝑇 ′∶= (𝑇 ′
1—Γ′—𝑇 ′

2)would be an inductive rank decomposition of Γ′. We can bound its width as desired.

𝗐𝖽(𝑇 ′)
∶= max{𝗐𝖽(𝑇 ′

1),𝗐𝖽(𝑇
′
2), 𝗋𝗄(𝐿 ∣ 𝑅 + 𝐿 ⋅ (𝐹 + 𝐹⊤) ⋅ 𝑃⊤)}

≤ max{𝗐𝖽(𝑇1),𝗐𝖽(𝑇2), 𝗋𝗄(𝐿 ∣ 𝑅 + 𝐿 ⋅ (𝐹 + 𝐹⊤) ⋅ 𝑃⊤)}
≤ max{𝗐𝖽(𝑇1),𝗐𝖽(𝑇2), 𝗋𝗄(𝐿 ∣ 𝑅)}

∶=𝗐𝖽(𝑇)

86 CHAPTER 6. A MONOIDAL ALGEBRA FOR RANK WIDTH

A monoidal decomposition defines by induction an inductive rank decomposition. The inductive step
relies on Lemma 6.15 and Lemma 6.7 to obtain, from an inductive rank decomposition of a graph 𝑔, one of
a graph constructed from 𝑔 by adding additional connections to the boundary or between the vertices in a
controlled manner.

Proposition 6.18. Let 𝑑 ∈ 𝐷𝑔 be amonoidal decomposition of amorphism 𝑔∶ 𝑛→ 𝑚 in𝖡𝖦𝗋𝖺𝗉𝗁 given by 𝑔 =
([𝐺] , 𝐿, 𝑅, 𝑃 , [𝐹]), and let Γ = ([𝐺] , (𝐿 ∣ 𝑅)) be its corresponding graph with dangling edges. Then, there
exist an inductive rank decomposition(𝑑) ofΓ of boundedwidth: 𝗐𝖽((𝑑)) ≤ 2⋅max{𝗐𝖽(𝑑), 𝗋𝗄(𝐿), 𝗋𝗄(𝑅)}.

Proof. Proceed by induction on the decomposition tree 𝑑. If it is just a leaf with label 𝑔, then its width is
defined to be the number 𝑘 of vertices of 𝑔, 𝗐𝖽(𝑑)∶= 𝑘. Pick any inductive rank decomposition of Γ and
define(𝑑)∶= 𝑇 . Surely, 𝗐𝖽(𝑇) ≤ 𝑘 ∶=𝗐𝖽(𝑑)

If 𝑑 = (𝑑1— �𝑗 —𝑑2) starts with a composition node, then 𝑔 is the composition of two morphisms:
𝑔 = 𝑔1 �𝑔2, with 𝑔𝑖 =

([
𝐺𝑖

]
, 𝐿𝑖, 𝑅𝑖, 𝑃𝑖,

[
𝐹𝑖

])
. Given the partition of the vertices determined by 𝑔1 and 𝑔2, we

can decompose 𝑔 in another way, by writing [𝐺] =
[(

𝐺1 𝐶

𝟘 𝐺2

)]
and 𝐵 = (𝐿 ∣ 𝑅) =

(
𝐿1 𝑅1
𝐿2 𝑅2

)
. Then, we have

that𝐺1 = 𝐺1,𝐿1 = 𝐿1, 𝑃 = 𝑃2 ⋅𝑃1,𝐶 = 𝑅1 ⋅𝐿
⊤
2 ,𝑅1 = 𝑅1 ⋅𝑃

⊤
2 ,𝐿2 = 𝐿2 ⋅𝑃1,𝑅2 = 𝑅2+𝐿2 ⋅(𝐹1+𝐹⊤1) ⋅𝑃

⊤
2 ,

𝐺2 = 𝐺2 +𝐿2 ⋅𝐹1 ⋅𝐿
⊤
2 , and 𝐹 = 𝐹2 +𝑃2 ⋅𝐹1 ⋅𝑃⊤2 . This corresponds to the following diagrammatic rewriting

using the equations of 𝖡𝖦𝗋𝖺𝗉𝗁.

𝑘1𝐺1

𝐿1

𝑅1

𝑃1

𝐹1𝑛
𝑗

𝑘2𝐺2

𝐿2

𝑅2

𝑃2

𝐹2 𝑚

=

𝑘1𝐺1

𝐿1

𝑛

𝑘2𝐺2

𝑅2

𝐹 𝑚

𝑃

𝐶⊤

𝑅
⊤

1 𝐿2

We define 𝐵1∶= (𝐿1 ∣ 𝑅1 ∣ 𝐶) and 𝐵2∶= (𝐿2 ∣ 𝑅2 ∣ 𝐶⊤). In order to build an inductive rank decomposition
of Γ, we need rank decompositions of Γ𝑖 = (

[
𝐺𝑖

]
, 𝐵𝑖). We obtain these in three steps. Firstly, we apply

induction to obtain inductive rank decompositions (𝑑𝑖) of Γ𝑖 = (
[
𝐺𝑖

]
, (𝐿𝑖 ∣ 𝑅𝑖)) such that 𝗐𝖽((𝑑𝑖)) ≤

2 ⋅ max{𝗐𝖽(𝑑𝑖), 𝗋𝗄(𝐿𝑖), 𝗋𝗄(𝑅𝑖)}. Secondly, we apply Lemma 6.17 to obtain an inductive rank decomposition
𝑇 ′
2 of Γ

′
2 = (

[
𝐺2 + 𝐿2 ⋅ 𝐹1 ⋅ 𝐿

⊤
2
]
, (𝐿2 ∣ 𝑅2 +𝐿2 ⋅ (𝐹1 +𝐹⊤1) ⋅𝑃

⊤
2)) such that 𝗐𝖽(𝑇

′
2) ≤ 𝗐𝖽((𝑑2)). Lastly, we

observe that (𝑅1 ∣ 𝐶) = 𝑅1 ⋅ (𝑃⊤2 ∣ 𝐿⊤2) and (𝐿2 ∣ 𝐶⊤) = 𝐿2 ⋅ (𝑃1 ∣ 𝑅⊤1). Then we obtain that 𝐵1 = (𝐿1 ∣

𝑅1) ⋅
(𝟙𝑛 𝟘 𝟘

𝟘 𝑃⊤2 𝐿⊤2

)
and𝐵2 = (𝐿2 ∣ 𝑅2 +𝐿2 ⋅ (𝐹1 +𝐹⊤1) ⋅𝑃

⊤
2) ⋅

(
𝑃1 𝟘 𝑅⊤1
𝟘 𝟙𝑚 𝟘

)
, and we can apply Lemma 6.15 to get

inductive rank decompositions 𝑇𝑖 of Γ𝑖 such that 𝗐𝖽(𝑇1) ≤ 𝗐𝖽((𝑑1)) and 𝗐𝖽(𝑇2) ≤ 𝗐𝖽(𝑇 ′
2) ≤ 𝗐𝖽((𝑑2)).

6.2. BOUNDING RANK WIDTH 87

If 𝑘1, 𝑘2 > 0, then we define (𝑑)∶= (𝑇1—Γ—𝑇2), which is an inductive rank decomposition of Γ because
Γ𝑖 satisfy the conditions in Definition 6.4. If 𝑘1 = 0, then Γ = Γ2 and we can define (𝑑)∶= 𝑇2. Similarly,
if 𝑘2 = 0, then Γ = Γ1 and we can define (𝑑)∶= 𝑇1. In any case, we can compute the width of (𝑑) (if
𝑘𝑖 = 0 then 𝑇𝑖 = () and 𝗐𝖽(𝑇𝑖) = 0) using the inductive hypothesis, Lemma 6.17, Lemma 6.15, the fact that
𝗋𝗄(𝐿) ≥ 𝗋𝗄(𝐿1), 𝗋𝗄(𝑅) ≥ 𝗋𝗄(𝑅2) and 𝑗 ≥ 𝗋𝗄(𝑅1), 𝗋𝗄(𝐿2) because 𝑅1 ∶ 𝑗 → 𝑘1 and 𝐿2 ∶ 𝑗 → 𝑘2.

𝗐𝖽(𝑇)
∶= max{𝗐𝖽(𝑇1),𝗐𝖽(𝑇2), 𝗋𝗄(𝐿 ∣ 𝑅)}
≤ max{𝗐𝖽((𝑑1)),𝗐𝖽(𝑇 ′

2), 𝗋𝗄(𝐿 ∣ 𝑅)}
≤ max{𝗐𝖽((𝑑1)),𝗐𝖽((𝑑2)), 𝗋𝗄(𝐿 ∣ 𝑅)}
≤ max{𝗐𝖽((𝑑1)),𝗐𝖽((𝑑2)), 𝗋𝗄(𝐿) + 𝗋𝗄(𝑅)}
≤ max{2 ⋅ 𝗐𝖽(𝑑1), 2 ⋅ 𝗋𝗄(𝐿1), 2 ⋅ 𝗋𝗄(𝑅1), 2 ⋅ 𝗐𝖽(𝑑2), 2 ⋅ 𝗋𝗄(𝐿2), 2 ⋅ 𝗋𝗄(𝑅2), 𝗋𝗄(𝐿) + 𝗋𝗄(𝑅)}
≤ 2 ⋅max{𝗐𝖽(𝑑1), 𝗋𝗄(𝐿1), 𝗋𝗄(𝑅1),𝗐𝖽(𝑑2), 𝗋𝗄(𝐿2), 𝗋𝗄(𝑅2), 𝗋𝗄(𝐿), 𝗋𝗄(𝑅)}
≤ 2 ⋅max{𝗐𝖽(𝑑1),𝗐𝖽(𝑑2), 𝑗, 𝗋𝗄(𝐿), 𝗋𝗄(𝑅)}

∶=2 ⋅max{𝗐𝖽(𝑑), 𝗋𝗄(𝐿), 𝗋𝗄(𝑅)}

If 𝑑 = (𝑑1— ⊗ —𝑑2) starts with monoidal product node, then 𝑔 is the monoidal product of two mor-
phisms: 𝑔 = 𝑔1 ⊗ 𝑔2, with 𝑔𝑖 =

([
𝐺𝑖

]
, 𝐿𝑖, 𝑅𝑖, 𝑃𝑖,

[
𝐹𝑖

])
∶ 𝑛𝑖 → 𝑚𝑖. By exlicitly computing the monoidal

product, we obtain that [𝐺] =
[(

𝐺1 𝟘
𝟘 𝐺2

)]
, 𝐿 =

(
𝐿1 𝟘
𝟘 𝐿2

)
, 𝑅 =

(
𝑅1 𝟘
𝟘 𝑅2

)
, 𝑃 =

(
𝑃1 𝟘
𝟘 𝑃2

)
and 𝐹 =

(
𝐹1 𝟘
𝟘 𝐹2

)
.

By induction, we have inductive rank decompositions (𝑑𝑖) of Γ𝑖∶= (
[
𝐺𝑖

]
, 𝐵𝑖), where 𝐵𝑖 = (𝐿𝑖 ∣ 𝑅𝑖), of

bounded width: 𝗐𝖽((𝑑𝑖)) ≤ 2 ⋅ max{𝗐𝖽(𝑑𝑖), 𝗋𝗄(𝐿𝑖), 𝗋𝗄(𝑅𝑖)}. Let 𝐵1∶= (𝐿1 ∣ 𝟘𝑛2 ∣ 𝑅1 ∣ 𝟘𝑚2
∣ 𝟘𝑘2) =

𝐵1 ⋅
(𝟙𝑛1 𝟘 𝟘 𝟘 𝟘

𝟘 𝟘 𝟙𝑚1 𝟘 𝟘

)
and 𝐵2∶= (𝟘𝑛1 ∣ 𝐿2 ∣ 𝟘𝑚1

∣ 𝑅2 ∣ 𝟘𝑘1) = 𝐵2 ⋅
(𝟘 𝟙𝑛2 𝟘 𝟘 𝟘

𝟘 𝟘 𝟘 𝟙𝑚2 𝟘

)
. By Lemma 6.15, we can

obtain inductive rank decompositions 𝑇𝑖 of Γ𝑖∶= (
[
𝐺𝑖

]
, 𝐵𝑖) such that 𝗐𝖽(𝑇𝑖) ≤ 𝗐𝖽((𝑑𝑖)). If 𝑘1, 𝑘2 > 0,

then we define (𝑑)∶= (𝑇1—Γ—𝑇2), which is an inductive rank decomposition of Γ because Γ𝑖 satisfy the
conditions in Definition 6.4. If 𝑘1 = 0, then Γ = Γ2 and we can define(𝑑)∶= 𝑇2. Similarly, if 𝑘2 = 0, then
Γ = Γ1 and we can define(𝑑)∶= 𝑇1. In any case, we can compute the width of(𝑑) (if 𝑘𝑖 = 0 then 𝑇𝑖 = ()
and 𝗐𝖽(𝑇𝑖) = 0) using the inductive hypothesis and Lemma 6.15.

𝗐𝖽(𝑇)
∶= max{𝗐𝖽(𝑇1),𝗐𝖽(𝑇2), 𝗋𝗄(𝐿 ∣ 𝑅)}
≤ max{𝗐𝖽((𝑑1)),𝗐𝖽((𝑑2)), 𝗋𝗄(𝐿 ∣ 𝑅)}
≤ max{𝗐𝖽((𝑑1)),𝗐𝖽((𝑑2)), 𝗋𝗄(𝐿) + 𝗋𝗄(𝑅)}
≤ max{2 ⋅ 𝗐𝖽(𝑑1), 2 ⋅ 𝗋𝗄(𝐿1), 2 ⋅ 𝗋𝗄(𝑅1), 2 ⋅ 𝗐𝖽(𝑑2), 2 ⋅ 𝗋𝗄(𝐿2), 2 ⋅ 𝗋𝗄(𝑅2), 𝗋𝗄(𝐿) + 𝗋𝗄(𝑅)}
≤ 2 ⋅max{𝗐𝖽(𝑑1), 𝗋𝗄(𝐿1), 𝗋𝗄(𝑅1),𝗐𝖽(𝑑2), 𝗋𝗄(𝐿2), 𝗋𝗄(𝑅2), 𝗋𝗄(𝐿), 𝗋𝗄(𝑅)}
≤ 2 ⋅max{𝗐𝖽(𝑑1),𝗐𝖽(𝑑2), 𝗋𝗄(𝐿), 𝗋𝗄(𝑅)}

∶=2 ⋅max{𝗐𝖽(𝑑), 𝗋𝗄(𝐿), 𝗋𝗄(𝑅)}

Propositions 6.10, 6.16 and 6.18 combine to the equivalence of monoidal width and rank width.

Theorem 6.19. Let 𝐺 be a graph and let 𝑔 =
(
[𝐺] , ¡, ¡, (), [()]

)
be the corresponding morphism in 𝖡𝖦𝗋𝖺𝗉𝗁.

Then, 1
2 ⋅ 𝗋𝗐𝖽(𝐺) ≤ 𝗆𝗐𝖽(𝑔) ≤ 2 ⋅ 𝗋𝗐𝖽(𝐺).

88 CHAPTER 6. A MONOIDAL ALGEBRA FOR RANK WIDTH

With this result and Theorem 2.39, we obtain equivalence with clique width.

Corollary 6.20. Clique width is equivalent to monoidal width in 𝖡𝖦𝗋𝖺𝗉𝗁.

Chapter 7

A Monoidal Courcelle-Makowsky Theorem

This chapter unifies the results of previous chapters to obtain a general strategy for proving fixed-parameter
tractability for problems on monoidal categories. We aim to bring the technique exposed in Section 2.3 for
checking formulae on relational structures to the categorical setting. As outlined in Section 2.3, the fixed-
parameter tractability result for relational structures relies on the two fundamental steps below.
1. Identifying generators and operations to express relational structures and graphs. The operations have

a cost that determines the width of structures.
2. Showing a preservation theorem. In fact, the preservation theorems recalled in Section 2.3 are composed

of a structural and a computational part.
(a) Showing that partial solutions can be combined into solutions for compound structures.
(b) Showing that combining partial solutions takes time that is constant in the size of the compound

structure but depends on its width.
Classical examples of this procedure are Courcelle’s theorems for treewidth [Cou90] and cliquewidth [CO00],
which we recalled in Sections 2.2 and 2.3.

Chapter 3 gives the first step of this procedure for monoidal categories. Depending on the choice of
operations and their cost, algebraic decompositions of relational structures give their algebraic width. In the
sameway, depending on the choice of monoidal category and its weight function, monoidal decompositions
of morphisms give their monoidal width. Once themonoidal category is fixed, the categorical structure gives
a canonical choice for the operations: compositions indexed by the objects andmonoidal product. Chapter 4
identifies the appropriate categories of relational structures and graphs to derive the operations for tree and
clique widths.

This chapter identifies the assumptions that correspond to preservation theorems for showing fixed-
parameter tractability for problems on monoidal categories. We exemplify this technique for computing
colimits compositionally.

7.1 Fixed-parameter tractability in monoidal categories

This section shows that compositional algorithms can solve functorial problems efficiently on inputs of boun-
dedmonoidal width (Theorem 7.6). As for the analogous result for checking formulae on relational structures
(Theorem 2.52), this result is a relatively straightforward consequence of its assumptions. In fact, the diffi-
cult part of showing fixed-parameter tractability lies in showing a preservation theorem, which Theorem2.52
assumes as hypothesis, and we make a similar assumption for Theorem 7.6. Nonetheless, this result is still
informative as it provides a general strategy for proving fixed-parameter tractability of problems onmonoidal
categories.

89

90 CHAPTER 7. A MONOIDAL COURCELLE-MAKOWSKY THEOREM

The class of problems covered by this result is wider than computing the theory of relational structures.
The possible inputs are the morphisms of a fixed monoidal category 𝖢 and, for a morphism 𝑓 ∶ 𝐴 → 𝐵,
we seek to compute 𝐒(𝑓). We always assume that the input morphism 𝑓 is provided with a monoidal de-
composition 𝑑 ∈ 𝐷𝑓 . A divide-and-conquer algorithm requires that the mapping 𝐒 from inputs to solutions
respects the structure of the monoidal category 𝖢, i.e. it is a monoidal functor. For the divide-and-conquer
algorithm to be efficient, combining solutions must also respect the categorical structure. These assump-
tions recast the strategy outlined in Section 2.3, and recalled above, in the categorical setting. The two steps
below expand on this strategy to prove fixed-parameter tractability for problems on monoidal categories.
1. Find a monoidal category whose morphisms are the inputs to the problem we seek to solve. Although

we do not assume that the set of generators is finite, both the examples of structures with sources and
graphs with boundaries are finitely presented props.

2. Show that the problem 𝐒 is both structurally and computationally compositional.
(a) Show that the mapping 𝐒 from inputs to solutions defines a strong monoidal functor 𝐒∶ 𝖢 → 𝖣, for

some monoidal category 𝖣.
(b) Show that combining solutions 𝐒(𝑓1) and 𝐒(𝑓2) with the operations of the monoidal category 𝖣 de-

pends linearly on the sizes of 𝑓1 and 𝑓2, but may depend arbitrarily on the cost of the operation used
to combine them.

With these assumptions, there is a divide-and-conquer algorithm similar to Algorithm 1 in Section 2.3 that
computes solutions compositionally. It runs through the monoidal decomposition given as input starting
from the leaves and proceeding bottom-up: it computes the solutions on the leaves by brute-force and
combines them according to the operations that appear in the decomposition. Assumption 2b ensures that
the running time of this algorithm is linear in the size of the monoidal decomposition given as input, but
arbitrarily large on its monoidal width.

Definition 7.1. A problem on morphisms of a monoidal category 𝖢 is functorial if the mapping from mor-
phisms to solutions is a monoidal functor 𝐒∶ 𝖢 → 𝖣, for some monoidal category 𝖣.

The structural part of the preservation theorems recalled in Section 2.3 ensures that the mapping from
structures and graphs to their theories is functorial.

Lemma 7.2. Let ∼𝐴,𝐵 be a class of equivalence relations on the sets 𝖢(𝐴,𝐵) of morphisms of a monoidal
category 𝖢 that respects the categorical structure: if 𝑓 ∼𝐴,𝐵 𝑓 ′ and 𝑔 ∼𝐵,𝐶 𝑔′, then 𝑓 � 𝑔 ∼𝐴,𝐶 𝑓 ′ � 𝑔′; and,
if 𝑓 ∼𝐴,𝐵 𝑓 ′ and 𝑔 ∼𝐶,𝐷 𝑔′, then 𝑓 ⊗ 𝑔 ∼𝐴⊗𝐶,𝐵⊗𝐷 𝑓 ′ ⊗ 𝑔′. Then, quotienting the sets of morphisms of 𝖢
by these equivalence relations gives a monoidal category 𝖢∕ ∼ and a functor𝐐∶ 𝖢 → 𝖢∕ ∼.

Proof. This is a standard result. See, for example [Mac78, Section II.8].

Example 7.3. Recall from Section 4.1 that relational structures with 𝑛 constants can be seen as morphisms
𝑛 → 0 in the category of cospans of relational structures 𝗌𝖲𝗍𝗋𝗎𝖼𝗍𝜏 . This monoidal category is equivalent to
the finitely presented prop 𝗌𝖥𝗋𝗈𝖻𝜏 . In Section 4.3, morphisms 𝑛→ 0 in the category𝖬𝖦𝗋𝖺𝗉𝗁 are interpreted
as graphs with 𝑛 labels. The monoidal category𝖬𝖦𝗋𝖺𝗉𝗁 is equivalent to the finitely presented prop 𝖡𝖦𝗋𝖺𝗉𝗁.

With these interpretations formorphisms in 𝗌𝖥𝗋𝗈𝖻𝜏 and𝖡𝖦𝗋𝖺𝗉𝗁 inmind, we define logical equivalence for
morphisms in these two categories. Twomorphisms 𝑔 = 𝑐 ∶ 𝑚→ 𝐺 ← 𝑛 ∶𝑑 and 𝑔′ = 𝑐′ ∶ 𝑚→ 𝐺′ ← 𝑛 ∶𝑑′
in𝖢𝗈𝗌𝗉𝖺𝗇(𝖴𝖧𝖦𝗋𝖺𝗉𝗁)∗ areMSO logically equivalent when the corresponding structures with𝑚+𝑛 constants,
(𝐺, [𝑐, 𝑑]) and (𝐺′, [𝑐′, 𝑑′]), areMSO logically equivalent. Similarly, twomorphisms ([𝐺] , 𝐿, 𝑅, 𝑃 , [𝑆])∶ 𝑚→
𝑛 and

([
𝐺′] , 𝐿′, 𝑅′, 𝑃 , [𝑆]

)
∶ 𝑚 → 𝑛 in 𝖬𝖦𝗋𝖺𝗉𝗁 are MSO logically equivalent when their corresponding

𝑚 + 𝑛-labelled graphs, (𝐺, (𝐿 ∣ 𝑅)) and (𝐺′, (𝐿′ ∣ 𝑅′)), are MSO logically equivalent.
We can now apply the preservation theorems recalled in Section 2.3 to obtain that the operations in the

monoidal categories 𝗌𝖥𝗋𝗈𝖻𝜏 and 𝖡𝖦𝗋𝖺𝗉𝗁 preserve logical equivalence. By the Feferman-Vaught-Mostowski
(Theorem 2.59) and the Courcelle-Kanté (Theorem 2.60) preservation theorems, MSO logical equivalence

7.1. FIXED-PARAMETER TRACTABILITY IN MONOIDAL CATEGORIES 91

respects compositions and monoidal product in the monoidal categories 𝗌𝖥𝗋𝗈𝖻𝜏 and 𝖡𝖦𝗋𝖺𝗉𝗁. More in de-
tail, preservation by the disjoint union of relational structures corresponds to preservation by the monoidal
product in 𝗌𝖥𝗋𝗈𝖻𝜏 , while preservation by the disjoint union and fuse operations together gives preservation
by compositions in 𝗌𝖥𝗋𝗈𝖻𝜏 . Similarly, preservation by disjoint union of labelled graphs gives preservation by
monoidal product in 𝖡𝖦𝗋𝖺𝗉𝗁, while preservation by disjoint union, edge creation and bilinear product gives
preservation by compositions in 𝖡𝖦𝗋𝖺𝗉𝗁.

These considerations show that logical equivalence respects the structure of both monoidal categories
𝗌𝖥𝗋𝗈𝖻𝜏 and 𝖡𝖦𝗋𝖺𝗉𝗁, and we can apply Lemma 7.2 to obtain that MSO logical equivalence defines quotient
categories 𝗌𝖥𝗋𝗈𝖻𝜏∕ ≡𝑀𝑆𝑂 and 𝖡𝖦𝗋𝖺𝗉𝗁∕ ≡𝑀𝑆𝑂, and monoidal functors 𝐓∶ 𝗌𝖥𝗋𝗈𝖻𝜏 → 𝗌𝖥𝗋𝗈𝖻𝜏∕ ≡𝑀𝑆𝑂 and
𝐑∶ 𝖡𝖦𝗋𝖺𝗉𝗁 → 𝖡𝖦𝗋𝖺𝗉𝗁∕ ≡𝑀𝑆𝑂.

Asmentioned above, functorial problems canbe solvedby divide-and-conquer algorithms that go through
the monoidal decomposition given as input, starting from the leaves. For a problem to be functorial it is

Algorithm 2:𝖬𝗈𝗇𝗈𝗂𝖽𝖺𝗅𝖲𝗈𝗅𝗏𝖾
Data: a monoidal decomposition 𝑑 for a morphism 𝑓
Result: the value of 𝐒(𝑓)
if 𝑑 = (𝐺) then

compute 𝑠∶= 𝐒(𝑓) by brute force
else if 𝑑 = (𝑑1— �𝐶 —𝑑2) then

compute 𝑠1∶=𝖬𝗈𝗇𝗈𝗂𝖽𝖺𝗅𝖲𝗈𝗅𝗏𝖾(𝑑1)
compute 𝑠2∶=𝖬𝗈𝗇𝗈𝗂𝖽𝖺𝗅𝖲𝗈𝗅𝗏𝖾(𝑑2)
compute 𝑠∶= 𝑠1 �𝐒(𝐶) 𝑠2

else if 𝑑 = (𝑑1—⊗—𝑑2) then
compute 𝑠1∶=𝖬𝗈𝗇𝗈𝗂𝖽𝖺𝗅𝖲𝗈𝗅𝗏𝖾(𝑑1)
compute 𝑠2∶=𝖬𝗈𝗇𝗈𝗂𝖽𝖺𝗅𝖲𝗈𝗅𝗏𝖾(𝑑2)
compute 𝑠∶= 𝑠1 ⊗ 𝑠2

return 𝑠

not necessary that the generators of 𝖢 are finite. However, in the case of computing theories of relational
structures, finiteness is a necessary assumption. Algorithm 1 relies on precomputing all the solutions on the
generators and a table to combine them. This is possible if the generators and the reduction sets of the for-
mulae are finite. We use a slightly different strategy: Algorithm 2 computes the solutions on the generators
as needed.

The preservation theorems, Theorems 2.59 and 2.60, in Section 2.3 have a second computational part.
They show that the theories of structures and graphs can be composed in time that is constant in the size of
the input. Our result does not require this computational cost to be constant but at most linear in the size
of the inputs. The dependency on the cost of the operation can be arbitrarily large because, in the class of
inputs of bounded monoidal width, this cost is also bounded.

Definition 7.4. An algorithm that computes the solution 𝐒(𝑓) of a functorial problem on amonoidal category
𝖢 with weight function 𝗐∶  → ℕ is compositional if there is some function 𝑐 ∶ ℕ → ℕ such that:
1. computing 𝐒(𝑓) takes (𝑐(𝗐(𝑓)) ⋅ 𝗐(𝑓));
2. for 𝑓 ∶ 𝐴 → 𝐶 and 𝑔∶ 𝐶 → 𝐵 in𝖢, and given 𝑠 = 𝐒(𝑓) and 𝑡 = 𝐒(𝑔), computing the composition 𝑠�𝐒(𝐶) 𝑡

along the object 𝐒(𝐶) in 𝖣 takes (𝑐(𝗐(𝐶)) ⋅ (𝗐(𝑓) + 𝗐(𝐶) + 𝗐(𝑔)));
3. for 𝑓 and 𝑔 in 𝖢, and given 𝑠 = 𝐒(𝑓) and 𝑡 = 𝐒(𝑔), computing the monoidal product 𝑠 ⊗ 𝑡 in 𝖣 takes

(𝑐(0) ⋅ (𝗐(𝑓) + 𝗐(𝑔))).

92 CHAPTER 7. A MONOIDAL COURCELLE-MAKOWSKY THEOREM

For the problem of checking formulae on structures and graphs, having effectively smooth operations
implies having a compositional algorithm.

Example 7.5. Computing the logical equivalence classes of graphs and relational structures is equivalent to
computing their theories. When the operations are effectively smooth, the theories can be combined effi-
ciently with a look-up table (Definition 2.51). The look-up table is precomputed in finite time that is constant
in the size of the input, and its size also does not depend on the input, so it can be accessed in constant time.
Constant time is less than linear in the input size and the conditions in Definition 7.4 are satisfied.

Denote with 𝖢𝑘(𝐴,𝐵) the set of morphisms 𝐴 → 𝐵 in 𝖢 of monoidal width at most 𝑘 together with a
witness decomposition 𝑑 ∈ 𝐷𝑓 of width at most 𝑘.

𝖢𝑘(𝐴,𝐵)∶= {(𝑓, 𝑑) ∶ 𝑓 ∈ 𝖢(𝐴,𝐵) and 𝑑 ∈ 𝐷𝑓 and 𝗐𝖽(𝑑) ≤ 𝑘}

On this set, when Algorithm 2 is compositional and the input is provided with a monoidal decomposition,
the algorithm runs in time that is linear in the size of the input.

Theorem 7.6. Computing a functorial problem 𝐒 on 𝖢𝑘(𝐴,𝐵) with a compositional algorithm is linear in
𝗌𝗂𝗓𝖾(𝑑). Explicitly, given an optimal monoidal decomposition of 𝑓 , computing 𝐒(𝑓) takes(𝑘 ⋅ 𝑐(𝑘) ⋅ 𝗌𝗂𝗓𝖾(𝑑)),
for some 𝑐 ∶ ℕ → ℕ.

Proof. Let 𝑑 ∈ 𝐷𝑓 be a monoidal decomposition of a morphism 𝑓 ∶ 𝐴 → 𝐵 with 𝗐𝖽(𝑑) ≤ 𝑘. We show by
induction on 𝑑 that running Algorithm 2 takes (𝑘 ⋅ 𝑐(𝑘) ⋅ 𝗌𝗂𝗓𝖾(𝑑)).

Suppose that the decomposition is a leaf, 𝑑 = (𝑓). Then, the weight of 𝑓 is bounded by 𝑘, and the size of
the decomposition is 1. By hypothesis, 𝗐(𝑓) ∶=𝗐𝖽(𝑑) ≤ 𝑘, and computing 𝐒(𝑓) takes (𝑐(𝗐(𝑓)) ⋅ 𝗐(𝑓)) =
(𝑘 ⋅ 𝑐(𝑘) ⋅ 1) by Assumption 1.

Suppose that the first node is a composition, 𝑑 = (𝑑1— �𝐶 —𝑑2). Then, the widths of 𝑑1 and 𝑑2, and
the weight of 𝐶 are bounded by 𝑘 because the width of 𝑑 is: 𝗐𝖽(𝑑)∶= max{𝗐𝖽(𝑑1),𝗐(𝐶),𝗐𝖽(𝑑2)} ≤ 𝑘 by
hypothesis. We apply Assumption 2, the induction hypothesis and Lemma 3.5, to bound the time complexity
of computing 𝐒(𝑓) as the composition 𝐒(𝑓1) �𝐶 𝐒(𝑓2) in 𝖣.

(𝑐(𝗐(𝐶)) ⋅ (𝗐(𝑓1) + 𝗐(𝐶) + 𝗐(𝑓2))) + (𝑘 ⋅ 𝑐(𝑘) ⋅ 𝗌𝗂𝗓𝖾(𝑑1)) + (𝑘 ⋅ 𝑐(𝑘) ⋅ 𝗌𝗂𝗓𝖾(𝑑2))
= (𝑐(𝑘) ⋅ (𝑘 ⋅ 𝗌𝗂𝗓𝖾(𝑑1) + 𝑘 + 𝑘 ⋅ 𝗌𝗂𝗓𝖾(𝑑2)) + 𝑘 ⋅ 𝑐(𝑘) ⋅ 𝗌𝗂𝗓𝖾(𝑑1) + 𝑘 ⋅ 𝑐(𝑘) ⋅ 𝗌𝗂𝗓𝖾(𝑑2))
= (𝑘 ⋅ 𝑐(𝑘) ⋅ 𝗌𝗂𝗓𝖾(𝑑))

Suppose that the first node is a monoidal product, 𝑑 = (𝑑1— ⊗ —𝑑2). Then, the widths of 𝑑1 and 𝑑2
are bounded by 𝑘 because the width of 𝑑 is: 𝗐𝖽(𝑑)∶= max{𝗐𝖽(𝑑1),𝗐𝖽(𝑑2)} ≤ 𝑘 by hypothesis. We apply
Assumption 3, the induction hypothesis and Lemma 3.5, to calculate the time complexity of computing 𝐒(𝐹)
as the monoidal product 𝐒(𝑓1)⊗ 𝐒(𝑓2).

(𝑐(0) ⋅ (𝗐(𝑓1) + 𝗐(𝑓2))) + (𝑐(𝑘) ⋅ 𝗐(𝑓1)) + (𝑐(𝑘) ⋅ 𝗐(𝑓2))
= (𝑐(𝑘) ⋅ (𝗐(𝑓1) + 𝗐(𝑓2)))
= (𝑐(𝑘) ⋅ (𝑘 ⋅ 𝗌𝗂𝗓𝖾(𝑑1) + 𝑘 ⋅ 𝗌𝗂𝗓𝖾(𝑑2)))
= (𝑘 ⋅ 𝑐(𝑘) ⋅ 𝗌𝗂𝗓𝖾(𝑑))

7.2. COMPUTING COLIMITS COMPOSITIONALLY 93

7.2 Computing colimits compositionally
This section considers the problem of computing finite colimits in a category 𝖤 that admits them. This is a
functorial problem [RSW08] and we show that it satisfies the assumptions of Theorem 7.6. Diagrams, seen
as graph morphisms to the graph underlying 𝖤, are the objects of a category 𝖣𝗂𝖺𝗀(𝖤) with colimits. There
is a functor that takes a diagram as inputs and returns and object of 𝖤, its colimit. However, to make this
problem compositional, we need to lift this functor to discrete cospans.

The graph |𝖤|underlying the category𝖤 is an object of the category𝖦𝗋𝖺𝗉𝗁∞ of possibly infinite graphs and
their homomorphisms. We consider the slice category𝖦𝗋𝖺𝗉𝗁∞∕|𝖤|, where objects are diagrams 𝑑 ∶ 𝐺 → |𝖤|
and morphisms are commutative triangles. We restrict to finite diagrams, diagrams 𝑑 ∶ 𝐺 → |𝖤| where the
graph 𝐺 is finite.

Definition 7.7. The category 𝖣𝗂𝖺𝗀(𝖤) of diagrams in 𝖤 is the full subcategory of 𝖦𝗋𝖺𝗉𝗁∞∕|𝖤| on finite dia-
grams.

There is a functor colim∶ 𝖣𝗂𝖺𝗀(𝖤) → 𝖤 that assigns to each diagram 𝑑 an object in 𝖤 that is its colimit1.
This functor is unique up to isomorphism. In order to decompose diagrams, we consider discrete cospans of
them. A diagram 𝑑 ∶ 𝐺 → |𝖤| is discrete if the graph 𝐺 is discrete.

Definition 7.8. The category 𝖢𝖣𝗂𝖺𝗀(𝖤) is the full subcategory of 𝖢𝗈𝗌𝗉𝖺𝗇(𝖣𝗂𝖺𝗀(𝖤)) on discrete cospans of
diagrams in 𝖤.

Explicitly, objects are graph morphisms𝑋 → |𝖤|, i.e. functions𝑋 → 𝖮𝖻𝗃(𝖤) and morphisms are commu-
tative diagrams of graph homomorphisms.

𝐺

𝑋 |𝖤| 𝑌

𝑑
𝑣0

𝑥

𝑣1

𝑦

Composition is given by pushout and monoidal product by the coproduct.

Proposition 7.9 ([RSW05; RSW08]). The category 𝖢𝖣𝗂𝖺𝗀(𝖤) is equivalent to free strict symmetric monoidal
category on the monoidal signature composed of the generators of a Frobenius monoid (Figure 4.1) for every
vertex of |𝖤| and all the edges of |𝖤|, quotiented by the axioms of Frobenius monoids. These generators and
equations are in Figure 7.1.

Theorem 7.10 ([RSW08]). There is a monoidal functor 𝐂𝐨𝐥𝐢𝐦∶ 𝖢𝖣𝗂𝖺𝗀 → 𝖢𝗈𝗌𝗉𝖺𝗇(𝖤) from discrete cospans
of diagrams to cospans in 𝖤 that extends the colimit functor colim∶ 𝖣𝗂𝖺𝗀(𝖤) → 𝖤.

The functor𝐂𝐨𝐥𝐢𝐦makes the problemof computing colimits functorial. For some choices of the category
𝖤, we can show that there is a compositional algorithm for computing colimits.

Colimits in 𝖲𝖾𝗍. Computing the colimit of a finite diagram 𝑑 ∶ 𝐺 → |𝖲𝖾𝗍| by brute force means to take the
disjoint union of the sets 𝑑(𝑣) for 𝑣 ∈ 𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝐺) and then quotienting by the equivalence relation given by
the edges of 𝐺.

colim 𝑑 =

(⨆
𝑣∈𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝐺)

𝑑(𝑣)

)/
∼

1Note that we are using the axiom of choice in this definition.

94 CHAPTER 7. A MONOIDAL COURCELLE-MAKOWSKY THEOREM

𝐴
𝐴

𝐴
𝐴 𝐴

𝐴

𝐴
𝐴 𝑓𝐴 𝐵

for all objects 𝐴 and all morphisms 𝑓 ∶ 𝐴 → 𝐵 in 𝖤

= = =

= = =

= =

Figure 7.1

The equivalence relation ∼ is the transitive closure of a relation ∼0. Two elements in this union, 𝑎, 𝑏 ∈⨆
𝑣∈𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝐺) 𝑑(𝑣), are related, 𝑎 ∼0 𝑏, if and only if there are edges 𝑒1 = (𝑢, 𝑣1) and 𝑒2 = (𝑢, 𝑣2) of 𝐺 and

an element 𝑦 ∈ 𝑑(𝑢) that maps to 𝑎 and 𝑏: 𝑑(𝑒1)(𝑦) = 𝑎 and 𝑑(𝑒2)(𝑦) = 𝑏. We can encode these relations
as square boolean matrices 𝐸0 and 𝐸 whose dimension is the sum of the cardinalities of the images of the
functions in the diagram:

∑
𝑒∈𝖾𝖽𝗀𝖾𝗌(𝐺) |𝗂𝗆(𝑑(𝑒))|. As we do not have further information on the shape of the

colimit, we can bound this size with 𝑛 =
∑
𝑣∈𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌(𝐺) |𝑑(𝑣)|. The matrix 𝐸0 can be computed in(𝑛2) time,

it is symmetric and has all the diagonal elements equal to 1. This means that it represents a symmetric and
reflexive relation. Thematrix𝐸 needs to be computed from𝐸0 by transitive closure. A square booleanmatrix
𝐴 represents a transitive relation if and only if 𝐴 = 𝐴 ⋅ 𝐴. Then, computing 𝐸 from 𝐸0 means computing
𝐸𝑘+1 = 𝐸𝑘 ⋅𝐸𝑘 until convergence: 𝐸𝑘+1 = 𝐸𝑘. This procedure terminates in at most 𝑛2 steps and each step
takes (𝑛3) for matrix multiplication, which gives a running time of (𝑛5).

Cospans compose by pushout. To show Assumption 2, we need to bound the computational cost of
computing pushouts in 𝖲𝖾𝗍. The pushout 𝑈 +𝑌 𝑉 of 𝑢∶ 𝑌 → 𝑈 and 𝑣∶ 𝑌 → 𝑉 in 𝖲𝖾𝗍 is their disjoint union
𝑈 + 𝑉 quotiented by the equivalence relation generated by 𝑢 and 𝑣. As for generic colimits, 𝑎 ∼0 𝑏 if there
is a 𝑦 ∈ 𝑌 such that 𝑢(𝑦) = 𝑎 and 𝑣(𝑦) = 𝑏. The relation ∼0 can be easily made symmetric and reflexive,
while computing its transitive closure is a bit more computationally involved. We record the relation ∼0 in a
square boolean matrix𝐸0, but, this time, its size can be bound by 2 ⋅ |𝑌 | because |𝑌 | bounds the number of
elements in the images of both 𝑢 and 𝑣. By the same reasoning as above, we can compute its transitive closure
in(|𝑌 |5). With the computation of the disjoint union, thismakes(|𝑌 |5+|𝑈 |+|𝑉 |) ≤ (|𝑌 |5 ⋅(|𝑈 |+|𝑉 |))
and we have shown Assumption 2.

As just mentioned, computing disjoint unions takes (|𝑈 | + |𝑉 |), which satisfies Assumption 3 about
computing monoidal products.

We have shown that colimits in 𝖲𝖾𝗍 can be computed compositionally and Theorem 7.6 applies to this
problem.

Colimits in presheaves. Computing the colimit of a finite diagram in a (co)presheaf category [𝖢, 𝖲𝖾𝗍]means
computing the same colimit in 𝖲𝖾𝗍 for each object𝐴 in𝖢 and computing the corresponding uniquemorphism
for every morphism 𝑓 ∶ 𝐴 → 𝐵 in 𝖢. When the category 𝖢 is finite, this can be done in finite time. We
assume that this is the case and let 𝑠 be the maximum between the number of objects and the number of

7.2. COMPUTING COLIMITS COMPOSITIONALLY 95

morphisms.
Consider a diagram 𝑑 ∶ 𝐺 → |[𝖢, 𝖲𝖾𝗍]| in the presheaf category [𝖢, 𝖲𝖾𝗍]. This diagram determines func-

tors 𝐃𝑣∶= 𝑑(𝑣), for every vertex 𝑣 of 𝐺, and natural transformations 𝛾𝑒∶= 𝑑(𝑒), for every edge 𝑒 in 𝐺. For
every object 𝐴 in 𝖢, the diagram 𝑑 in [𝖢, 𝖲𝖾𝗍] determines a diagram 𝑑𝐴 ∶ 𝐺 → |𝖲𝖾𝗍| of the same shape in
𝖲𝖾𝗍, defined on vertices by 𝑑𝐴(𝑣)∶= 𝐃𝑣(𝐴) and on edges by 𝑑𝐴(𝑒)∶= 𝛾𝑒(𝐴). For a functor 𝐅∶ 𝖢 → 𝖲𝖾𝗍, we
let its cardinality to be the maximum cardinality of the sets in its image, |𝐅|∶= max𝐴∈𝖮𝖻𝗃(𝖢) |𝐅(𝐴)|.

The colimit of 𝑑 is computed component-wise: for every object 𝐴 of 𝖢, we compute the colimit in
𝖲𝖾𝗍 of the diagram 𝑑𝐴, and, for every morphism 𝑓 ∶ 𝐴 → 𝐵 in 𝖢, we compute the unique colimit func-
tion colim 𝑓 ∶ colim 𝑑𝐴 → colim 𝑑𝐵 . The time complexity of computing colim 𝑑𝐴 for each object 𝐴 is
(𝑛5

𝐴
), where 𝑛𝐴∶=

∑
𝑣∈𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌𝐺 |𝑑𝐴(𝑣)|. As a consequence, computing all these colimits takes (𝑠 ⋅ 𝑛5),

where 𝑛∶=
∑
𝑣∈𝗏𝖾𝗋𝗍𝗂𝖼𝖾𝗌𝐺 |𝐃𝑣|. The computation of the corresponding morphisms is irrelevant as it is lin-

ear in 𝑠 ⋅ 𝑛. When computing colim 𝑑, we recorded all the injections 𝜄𝐴𝑣 ∶ 𝑑𝐴(𝑣) → colim 𝑑𝐴, Then, for
each object 𝐴 of 𝖢 and each vertex 𝑣 of 𝐺, we define the colimit of 𝑓 thanks to the universal property:
colim 𝑓 (𝜄𝐴𝑣 (𝑥))∶= 𝜄

𝐵
𝑣 (𝐃𝑣𝑓 (𝑥)). The image on some elements in colim 𝑑𝐴 is computed more than once, but,

thanks to the universal property, all these values coincide and we have computed colim 𝑓 going through at
most 𝑠 ⋅ 𝑛 elements.

For compositions in 𝖢𝗈𝗌𝗉𝖺𝗇([𝖢, 𝖲𝖾𝗍]), we need to compute pushouts in [𝖢, 𝖲𝖾𝗍]. As explained above, we
can reuse the complexity bounds for 𝖲𝖾𝗍 and deduce that the time complexity of computing the pushout
𝐔 +𝐘 𝐕 of 𝐔 and 𝐕 along 𝐘 is (𝑠 ⋅ |𝐘|5(|𝐔| + |𝐕|)). Similarly, monoidal products in 𝖢𝗈𝗌𝗉𝖺𝗇([𝖢, 𝖲𝖾𝗍])
correspond to coproducts in [𝖢, 𝖲𝖾𝗍], and computing 𝐔 + 𝐕 takes (𝑠 ⋅ (|𝐔| + |𝐕|)).

Chapter 8

Conclusions

This thesis has defined monoidal width, a structural complexity measure of morphisms in monoidal cate-
gories based on the corresponding notion of monoidal decomposition. This interpretation is validated by
the results that show that monoidal width, in the monoidal category of graphs with vertex interfaces, is
equivalent to tree width, and, in the monoidal category of graphs with edge interfaces, is equivalent to
clique width. We have concluded with a fixed-parameter tractability result. Functorial problems that admit
a compositional algorithm can be computed in linear time on morphisms of bounded monoidal width. An
example of such a problem is computing colimits in presheaf categories.

Futurework Monoidal categories often represent process theories or semantic universes for programming
languages. Applications of monoidal width to such monoidal categories remain to be explored. There may
be problems on these monoidal categories that satisfy the assumptions for the monoidal fixed-parameter
tractability result and, for these problems, wewould obtain that they are tractable onmorphisms of bounded
monoidal width.

This work does not deal with the problem of finding efficient decompositions in general, which is, indeed,
an important problem. We do not expect to find a general purpose tractable algorithm for finding efficient
monoidal decompositions, as that would particularise to one for clique decompositions and it is still an open
problemwhether graphs of bounded clique width can be recognised in polynomial time [Oum08]. However,
this problem could be studied in some finitely presented props. The results about categories with biprod-
ucts in Section 3.3 are a first step in this direction as they construct, given unique⊗-decompositions of the
objects, minimal monoidal decompositions of morphisms.

Monoidal width can capture tree width and clique width by changing the categorical algebra that de-
scribes graphs. Twin width [Bon+21] is a recently defined graph width measure which is similar in flavour to
clique width but stronger, in the sense that bounded twin width graphs must have bounded clique width but
vice versa does not hold. Future work could look for a categorical algebra to capture twin width.

Game comonads [ADW17] capture decompositions with coalgebras. On the other hand, produoidal cate-
gories give the algebra for decompositions in monoidal categories [EHR23]. These lines of work suggest that
there might be some categorical structure that captures monoidal decompositions as well.

97

Bibliography

[AC09] Samson Abramsky and Bob Coecke. “Categorical QuantumMechanics”. In: Handbook of Quan-
tum Logic and Quantum Structures. Ed. by Kurt Engesser, Dov M. Gabbay, and Daniel Lehmann.
Amsterdam: Elsevier, 2009, pp. 261–323. ISBN: 978-0-444-52869-8. DOI: 10.1016/B978-0-
444-52869-8.50010-4.

[ADW17] Samson Abramsky, Anuj Dawar, and Pengming Wang. “The pebbling comonad in finite model
theory”. In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE.
2017, pp. 1–12. DOI: 10.1109/LICS.2017.8005129.

[AJP22] Samson Abramsky, Tomáš Jakl, and Thomas Paine. “Discrete density comonads and graph pa-
rameters”. In: Coalgebraic Methods in Computer Science. Ed. by Helle Hvid Hansen and Fabio
Zanasi. Springer International Publishing, 2022, pp. 23–44. ISBN: 978-3-031-10736-8. DOI: 10.
1007/978-3-031-10736-8_2.

[AM21] Samson Abramsky and Dan Marsden. “Comonadic semantics for guarded fragments”. In: 2021
36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 2021, pp. 1–13. DOI:
10.1109/LICS52264.2021.9470594.

[AM99] Samson Abramsky andGuyMcCusker. “Game Semantics”. In: Computational Logic. Ed. by Ulrich
Berger and Helmut Schwichtenberg. NATO ASI Series. Berlin, Heidelberg: Springer, 1999, pp. 1–
55. DOI: 10.1007/978-3-642-58622-4_1.

[AR23] Samson Abramsky and Luca Reggio. “Arboreal categories: An axiomatic theory of resources”. In:
Logical Methods in Computer Science 19.3 (Aug. 2023). DOI: 10.46298/lmcs-19(3:14)2023.

[AS21] Samson Abramsky and Nihil Shah. “Relating structure and power: Comonadic semantics for
computational resources”. In: Journal of Logic and Computation 31.6 (Aug. 2021), pp. 1390–1428.
ISSN: 0955-792X. DOI: 10.1093/logcom/exab048.

[BFP16] John C Baez, Brendan Fong, and Blake S Pollard. “A compositional framework for Markov pro-
cesses”. In: Journal of Mathematical Physics 57.3 (Mar. 2016), p. 033301. ISSN: 0022-2488. DOI:
10.1063/1.4941578.

[BM20] John C Baez and Jade Master. “Open petri nets”. In:Mathematical Structures in Computer Sci-
ence 30.3 (2020), pp. 314–341. DOI: 10.1017/S0960129520000043.

[BP17] John C Baez and Blake S Pollard. “A compositional framework for reaction networks”. In: Reviews
in Mathematical Physics 29.09 (2017), p. 1750028. DOI: 10.1142/S0129055X17500283.

[BC87] Michel Bauderon and Bruno Courcelle. “Graph expressions and graph rewritings”. In: Mathe-
matical Systems Theory 20.1 (1987), pp. 83–127. DOI: 10.1007/BF01692060.

[Bén67] Jean Bénabou. “Introduction to bicategories”. In: Reports of the Midwest Category Seminar.
Springer. 1967, pp. 1–77.

99

100 BIBLIOGRAPHY

[BB73] Umberto Bertele and Francesco Brioschi. “On non-serial dynamic programming”. In: Journal of
Combinatorial Theory, Series A 14.2 (1973), pp. 137–148.

[Blu+11] Christoph Blume, HJ Sander Bruggink, Martin Friedrich, and Barbara König. “Treewidth, path-
width and cospan decompositions”. In: Electronic Communications of the EASST 41 (2011). ISSN:
1863-2122. DOI: 10.14279/tuj.eceasst.41.643.

[Bod93a] Hans L Bodlaender. “A linear time algorithm for finding tree-decompositions of small treewidth”.
In: Proceedings of the twenty-fifth annual ACMsymposiumon Theory of computing. Ed. by S. Rao
Kosaraju, David S. Johnson, and Alok Aggarwal. 1993, pp. 226–234. DOI: 10.1145/167088.
167161.

[Bod93b] Hans L Bodlaender. “A tourist guide through treewidth”. In: Acta Cybernetica 11.1-2 (1993), pp. 1–
21.

[Bon+19a] Filippo Bonchi, Joshua Holland, Robin Piedeleu, Paweł Sobociński, and Fabio Zanasi. “Diagram-
matic algebra: from linear to concurrent systems”. In: Proceedings of the ACM on Programming
Languages 3.POPL (2019), 25:1–25:28. DOI: 10.1145/3290338.

[Bon+19b] Filippo Bonchi, Robin Piedeleu, Paweł Sobociński, and Fabio Zanasi. “Graphical Affine Algebra”.
In: 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 2019, pp. 1–12.
DOI: 10.1109/LICS.2019.8785877.

[BSS18] Filippo Bonchi, Jens Seeber, and Paweł Sobociński. “Graphical Conjunctive Queries”. In: 27th
EACSL Annual Conference on Computer Science Logic (CSL 2018). Ed. by Dan Ghica and Achim
Jung. Vol. 119. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, 13:1–13:23. ISBN: 978-3-95977-088-0. DOI: 10.
4230/LIPIcs.CSL.2018.13.

[BSZ14] FilippoBonchi, Paweł Sobociński, and Fabio Zanasi. “A categorical semantics of signal flowgraphs”.
In: International Conference on Concurrency Theory. Ed. by Paolo Baldan and Daniele Gorla.
Springer Berlin Heidelberg, 2014, pp. 435–450. ISBN: 978-3-662-44584-6. DOI: 10.1007/978-
3-662-44584-6_30.

[BSZ15] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. “Full abstraction for signal flow graphs”.
In: ACM SIGPLAN Notices. POPL ’15 50.1 (2015), pp. 515–526. ISSN: 0362-1340. DOI: 10.1145/
2775051.2676993.

[BSZ17] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. “Interacting Hopf algebras”. In: Journal of
Pure and Applied Algebra 221.1 (2017), pp. 144–184. ISSN: 0022-4049. DOI: 10.1016/j.jpaa.
2016.06.002.

[Bon+21] Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, andRémiWatrigant. “Twin-width I: tractable
FOmodel checking”. In: ACM Journal of the ACM 69.1 (2021), pp. 1–46. DOI: 10.1145/3486655.

[Bum21] Benjamin Merlin Bumpus. “Generalizing graph decompositions”. PhD thesis. University of Glas-
gow, 2021.

[BKM23] BenjaminMerlin Bumpus, Zoltan Kocsis, and Jade Edenstar Master. Structured Decompositions:
Structural and Algorithmic Compositionality. 2023. arXiv: 2207.06091 [math.CT].

[BK21] BenjaminMerlin Bumpus and ZoltanAKocsis. Spined categories: generalizing tree-width beyond
graphs. 2021. arXiv: 2104.01841 [math.CO].

[Car87] Aurelio Carboni. “Bicategories of partial maps”. In: Cahiers de topologie et géométrie différen-
tielle catégoriques 28.2 (1987), pp. 111–126.

BIBLIOGRAPHY 101

[CVP21] Titouan Carette, Marc de Visme, and Simon Perdrix. “Graphical Language with Delayed Trace:
Picturing Quantum Computing with Finite Memory”. In: 36th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021. IEEE, 2021, pp. 1–13.
DOI: 10.1109/LICS52264.2021.9470553.

[CS15] Apiwat Chantawibul and Paweł Sobociński. “Towards compositional graph theory”. In: Electronic
Notes in Theoretical Computer Science 319 (2015), pp. 121–136. ISSN: 1571-0661. DOI: 10.1016/
j.entcs.2015.12.009.

[CHP17] Florence Clerc, Harrison Humphrey, and Prakash Panangaden. “Bicategories of Markov pro-
cesses”. In: Models, Algorithms, Logics and Tools: Essays Dedicated to Kim Guldstrand Larsen
on the Occasion of His 60th Birthday (2017). Ed. by Luca Aceto, Giorgio Bacci, Giovanni Bacci,
Anna Ingólfsdóttir, Axel Legay, and Radu Mardare, pp. 112–124. DOI: 10.1007/978-3-319-
63121-9_6.

[CL07] Robin Cockett and Stephen Lack. “Restriction categories III: colimits, partial limits and extensiv-
ity”. In:Mathematical Structures in Computer Science 17.4 (2007), pp. 775–817. DOI: 10.1017/
S0960129507006056.

[CFS16] Bob Coecke, Tobias Fritz, and Robert W. Spekkens. “A mathematical theory of resources”. In:
Information and Computation 250 (2016), pp. 59–86. DOI: 10.1016/j.ic.2016.02.008.

[CS12] Bob Coecke and Robert W Spekkens. “Picturing classical and quantum Bayesian inference”. In:
Synthese 186 (2012), pp. 651–696. DOI: 10.1007/s11229-011-9917-5.

[Cou90] BrunoCourcelle. “Themonadic second-order logic of graphs. I. Recognizable sets of finite graphs”.
In: Information and computation 85.1 (1990), pp. 12–75. ISSN: 0890-5401. DOI: 10.1016/0890-
5401(90)90043-H.

[Cou92a] Bruno Courcelle. “The monadic second-order logic of graphs III: Tree-decompositions, minors
and complexity issues”. In: RAIRO-Theoretical Informatics and Applications 26.3 (1992), pp. 257–
286.

[Cou92b] Bruno Courcelle. “The monadic second-order logic of graphs VII: Graphs as relational struc-
tures”. In: Theoretical Computer Science 101.1 (1992), pp. 3–33. ISSN: 0304-3975. DOI: 10.1016/
0304-3975(92)90148-9.

[CER93] Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. “Handle-rewriting hypergraph gram-
mars”. In: Journal of computer and system sciences 46.2 (1993), pp. 218–270. ISSN: 0022-0000.
DOI: 10.1016/0022-0000(93)90004-G.

[CK07] Bruno Courcelle andMamadouMoustapha Kanté. “Graph operations characterizing rank-width
and balanced graph expressions”. In:Graph-Theoretic Concepts in Computer Science: 33rd Inter-
national Workshop, WG 2007, Dornburg, Germany, June 21-23, 2007. Revised Papers 33. Ed. by
Andreas Brandstädt, Dieter Kratsch, and HaikoMüller. Springer Berlin Heidelberg, 2007, pp. 66–
75. ISBN: 978-3-540-74839-7. DOI: 10.1007/978-3-540-74839-7_7.

[CK09] BrunoCourcelle andMamadouMoustaphaKanté. “Graphoperations characterizing rank-width”.
In: Discrete Applied Mathematics 157.4 (2009), pp. 627–640. ISSN: 0166-218X. DOI: 10.1016/
j.dam.2008.08.026.

[CMR00] Bruno Courcelle, Johann A Makowsky, and Udi Rotics. “Linear time solvable optimization prob-
lemson graphs of bounded clique-width”. In: Theory of Computing Systems 33.2 (2000), pp. 125–
150. ISSN: 1433-0490. DOI: 10.1007/s002249910009.

[CM02] Bruno Courcelle and Johann A. Makowsky. “Fusion in relational structures and the verification
of monadic second-order properties”. In: Mathematical Structures in Computer Science 12.2
(2002), pp. 203–235. DOI: 10.1017/S0960129501003565.

102 BIBLIOGRAPHY

[CO00] Bruno Courcelle and Stephan Olariu. “Upper bounds to the clique width of graphs”. In: Dis-
crete Applied Mathematics 101.1 (2000), pp. 77–114. ISSN: 0166-218X. DOI: 10.1016/S0166-
218X(99)00184-5.

[CV03] BrunoCourcelle andRémiVanicat. “Query efficient implementation of graphs of bounded clique-
width”. In: Discrete Applied Mathematics 131.1 (2003), pp. 129–150. ISSN: 0166-218X. DOI: 10.
1016/S0166-218X(02)00421-3.

[CO89] P-L Curien and AObtułowicz. “Partiality, cartesian closedness, and toposes”. In: Information and
Computation 80.1 (1989), pp. 50–95. ISSN: 0890-5401. DOI: 10.1016/0890-5401(89)90023-
0.

[DJR21] Anuj Dawar, Tomáš Jakl, and Luca Reggio. “Lovász-type theorems and game comonads”. In: 2021
36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 2021, pp. 1–13. DOI:
10.1109/LICS52264.2021.9470609.

[DFR22] Elena Di Lavore, Giovanni de Felice, and Mario Román. “Monoidal Streams for Dataflow Pro-
gramming”. In: Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence. 2022, pp. 1–14. DOI: 10.1145/3531130.3533365. arXiv: 2202.02061 [cs.LO].

[Di +21a] Elena Di Lavore, Alessandro Gianola, Mario Román, Nicoletta Sabadini, and Paweł Sobociński.
“A Canonical Algebra of Open Transition Systems”. In: Formal Aspects of Component Software.
Ed. by Gwen Salaün and Anton Wijs. Vol. 13077. Cham: Springer International Publishing, 2021,
pp. 63–81. ISBN: 978-3-030-90636-8. DOI: 10.1007/978-3-030-90636-8_4. arXiv: 2010.
10069v1 [math.CT].

[Di +23] Elena Di Lavore, Alessandro Gianola, Mario Román, Nicoletta Sabadini, and Paweł Sobociński.
“Span(Graph): a Canonical Feedback Algebra of Open Transition Systems”. In: Software and
Systems Modeling 22 (2023), pp. 495–520. DOI: 10.1007/s10270- 023- 01092- 7. arXiv:
2010.10069 [math.CT].

[DHS21] Elena Di Lavore, Jules Hedges, and Paweł Sobociński. “Compositional Modelling of Network
Games”. In: 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Ed. by Chris-
tel Baier and Jean Goubault-Larrecq. Vol. 183. Leibniz International Proceedings in Informat-
ics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2021, 30:1–
30:24. ISBN: 978-3-95977-175-7. DOI: 10.4230/LIPIcs.CSL.2021.30. arXiv: 2006.03493
[cs.GT].

[DR23] Elena Di Lavore and Mario Román. “Evidential Decision Theory via Partial Markov Categories”.
In: 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 2023, pp. 1–14.
DOI: 10.1109/LICS56636.2023.10175776.

[DS22] Elena Di Lavore and Paweł Sobociński. “Monoidal Width: Capturing Rank Width”. In: Proceed-
ings Fifth International Conference on Applied Category Theory, Glasgow, United King-
dom, 18-22 July 2022. Ed. by Jade Master and Martha Lewis. Vol. 380. Electronic Proceed-
ings in Theoretical Computer Science. Open Publishing Association, 2022, pp. 268–283. DOI:
10.4204/EPTCS.380.16.

[DS23] Elena Di Lavore and Paweł Sobociński. “Monoidal Width”. In: Logical Methods in Computer Sci-
ence 19 (3 Sept. 2023). DOI: 10.46298/lmcs-19(3:15)2023.

[Di +21b] Ivan Di Liberti, Fosco Loregian, Chad Nester, and Pawel Sobocinski. “Functorial semantics for
partial theories”. In: Proceedings of the ACM on Programing Languages 5.POPL (2021), pp. 1–
28. DOI: 10.1145/3434338.

[EHR23] Matt Earnshaw, James Hefford, and Mario Román. The Produoidal Algebra of Process Decom-
position. 2023. arXiv: 2301.11867 [cs.LO].

BIBLIOGRAPHY 103

[Ehr57] Andrzej Ehrenfeucht. “Application of games to some problems of mathematical logic”. In: Bul-
letin of the Polish Academy of Sciences Cl. III 5 (1957), pp. 35–37.

[Ehr61] Andrzej Ehrenfeucht. “An application of games to the completeness problem for formalized the-
ories”. In: Fundamenta Mathematicae 49.2 (1961), pp. 129–141. ISSN: 0016-2736.

[Fef57] Solomon Feferman. “Some recent work of Ehrenfeucht and Fraıssé”. In: Proceedings of the Sum-
mer Institute of Symbolic Logic, Ithaca (1957), pp. 201–209.

[FV59] Solomon Feferman and Robert L Vaught. “The first order properties of products of algebraic
systems”. In: Fundamenta Mathematicae 47 (1 1959), pp. 57–103. ISSN: 0016-2736.

[FS07] José Luiz Fiadeiro and Vincent Schmitt. “Structured co-spans: an algebra of interaction proto-
cols”. In: International Conference on Algebra and Coalgebra in Computer Science. Ed. by Till
Mossakowski, Ugo Montanari, and Magne Haveraaen. Springer. 2007, pp. 194–208. ISBN: 978-
3-540-73859-6. DOI: 10.1007/978-3-540-73859-6_14.

[Fon15] Brendan Fong. “Decorated Cospans”. In: Theory and Applications of Categories 30.33 (2015),
pp. 1096–1120.

[Fox76] Thomas Fox. “Coalgebras and cartesian categories”. In: Communications in Algebra 4.7 (1976),
pp. 665–667. DOI: 10.1080/00927877608822127.

[Fra55] Roland Fraïssé. “Sur quelques classifications des relations, basées sur les isomorphisms restraints,
I: Études générale”. In: Publications Scientifiques de l’Université d’Alger, Série A 2 (1955), pp. 15–
60.

[Fra57] Roland Fraïssé. “Sur quelques classifications des relations, basées sur des isomorphismes re-
streints, II: application aux relations d’ordre, et construction d’exemples montrant que ces clas-
sifications sont distinctes”. In: Publications Scientifiques de l’Université d’Alger, Série A 2 (1957),
pp. 273–295.

[Fri20] Tobias Fritz. “A Synthetic Approach toMarkov Kernels, Conditional Independence and Theorems
on Sufficient Statistics”. In: Advances in Mathematics 370 (2020), p. 107239. ISSN: 0001-8708.
DOI: 10.1016/j.aim.2020.107239.

[GH97] Fabio Gadducci and Reiko Heckel. “An inductive view of graph transformation”. In: International
Workshop on Algebraic Development Techniques. Springer. 1997, pp. 223–237. DOI: 10.1007/
3-540-64299-4_36.

[GHL99] Fabio Gadducci, Reiko Heckel, andMerce Llabrés. “A bi-categorical axiomatisation of concurrent
graph rewriting”. In: Electronic Notes in Theoretical Computer Science 29 (1999), pp. 80–100.
ISSN: 1571-0661. DOI: 10.1016/S1571-0661(05)80309-3.

[Gar23] Richard Garner. “Stream processors and comodels”. In: Logical Methods in Computer Science
19.1 (2023). DOI: 10.46298/lmcs-19(1:2)2023.

[GR00] Martin Charles Golumbic and Udi Rotics. “On the clique-width of some perfect graph classes”.
In: International Journal of Foundations of Computer Science 11.03 (2000), pp. 423–443. DOI:
10.1142/S0129054100000260.

[Gui80] René Guitart. “Tenseurs et machines”. In: Cahiers de topologie et géométrie différentielle 21.1
(1980), pp. 5–62.

[Hal76] Rudolf Halin. “S-functions for graphs”. In: Journal of geometry 8 (1976), pp. 171–186. DOI: 10.
1007/BF01917434.

[HV19] Chris Heunen and Jamie Vicary. Categories for Quantum Theory: An Introduction. Oxford Univer-
sity Press, Nov. 2019. ISBN: 9780198739623. DOI: 10.1093/oso/9780198739623.001.0001.

104 BIBLIOGRAPHY

[Hli+08] Petr Hliněnỳ, Sang-il Oum, Detlef Seese, and Georg Gottlob. “Width parameters beyond tree-
width and their applications”. In: The computer journal 51.3 (2008), pp. 326–362. DOI:10.1093/
comjnl/bxm052.

[JMS23] Tomáš Jakl, Dan Marsden, and Nihil Shah. “A categorical account of composition methods in
logic”. In: 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 2023,
pp. 1–14. DOI: 10.1109/LICS56636.2023.10175751.

[Jel10] Vít Jelínek. “The rank-width of the square grid”. In: Discrete Applied Mathematics 158.7 (2010),
pp. 841–850. ISSN: 0166-218X. DOI: 10.1016/j.dam.2009.02.007.

[JH90] He Jifeng and C. A. R. Hoare. “Categorical Semantics for Programming Languages”. In: Mathe-
matical Foundations of Programming Semantics. Ed. by M. Main, A. Melton, M. Mislove, and D.
Schmidt. Lecture Notes in Computer Science. New York, NY: Springer, 1990, pp. 402–417. DOI:
10.1007/BFb0040271.

[JS91] André Joyal and Ross Street. “The geometry of tensor calculus, I”. In: Advances in mathematics
88.1 (1991), pp. 55–112.

[Kat+00] Piergiulio Katis, Robert Rosebrugh, Nicoletta Sabadini, and Robert FC Walters. “An automata
model of distributed systems”. In: Proceedings of the Workshop on Trace Theory and Code Par-
allelization, Universita degli Studi di Milano. Vol. 125144. 2000.

[KSW99] Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. “On the algebra of feedback and
systems with boundary”. In: Rendiconti del Seminario Matematico di Palermo. 1999.

[KSW02] Piergiulio Katis, Nicoletta Sabadini, and Robert F. C. Walters. “Feedback, trace and fixed-point
semantics”. In: RAIRO-Theor. Informatics Appl. 36.2 (2002), pp. 181–194. DOI: 10.1051/ita:
2002009.

[KSW97a] Piergiulio Katis, Nicoletta Sabadini, and Robert FCWalters. “Bicategories of processes”. In: Jour-
nal of Pure and Applied Algebra 115.2 (1997), pp. 141–178. ISSN: 0022-4049. DOI: 10.1016/
S0022-4049(96)00012-6.

[KSW97b] Piergiulio Katis, Nicoletta Sabadini, and Robert FC Walters. “Span (Graph): A categorical algebra
of transition systems”. In: Algebraic Methodology and Software Technology: 6th International
Conference, AMAST’97 Sydney, Australia, December13–17, 1997 Proceedings 6. Springer. 1997,
pp. 307–321. DOI: 10.1007/BFb0000479.

[KSW04] Piergiulio Katis, Nicoletta Sabadini, and Robert FCWalters. “CompositionalMinimization in Span
(Graph): Some Examples”. In: Electronic Notes in Theoretical Computer Science 104 (2004),
pp. 181–197. DOI: 10.1016/j.entcs.2004.08.025.

[Lac04] Stephen Lack. “Composing props”. In: Theory andApplications of Categories 13.9 (2004), pp. 147–
163.

[Lam86] Joachim Lambek. “Cartesian Closed Categories and Typed 𝜆-Calculi”. In: Combinators and Func-
tional Programming Languages. Ed. by Guy Cousineau, Pierre-Louis Curien, and Bernard Robi-
net. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 1986, pp. 136–175. ISBN:
978-3-540-47253-7. DOI: 10.1007/3-540-17184-3_44.

[Law63] F William Lawvere. “Functorial semantics of algebraic theories”. In: Proceedings of the National
Academy of Sciences 50.5 (1963), pp. 869–872. DOI: 10.1073/pnas.50.5.869.

[Mac65] Saunders Mac Lane. “Categorical algebra”. In: Bulletin of the American Mathematical Society 71
(1965), pp. 40–106. DOI: 10.1090/S0002-9904-1965-11234-4.

[Mac78] SaundersMac Lane. Categories for theWorkingMathematician. Graduate Texts inMathematics.
Springer New York, 1978, nil. DOI: 10.1007/978-1-4757-4721-8.

BIBLIOGRAPHY 105

[Mac63] Saunders MacLane. “Natural associativity and commutativity”. In: Rice Institute Pamphlet-Rice
University Studies 49.4 (1963).

[Mak04] Johann A. Makowsky. “Algorithmic uses of the Feferman–Vaught theorem”. In: Annals of Pure
and Applied Logic 126.1-3 (2004), pp. 159–213. ISSN: 0168-0072. DOI: 10.1016/j.apal.2003.
11.002.

[MP96] Johann A. Makowsky and Yachin B Pnueli. “Arity and alternation in second-order logic”. In: An-
nals of Pure and Applied Logic 78.1-3 (1996), pp. 189–202. ISSN: 0168-0072. DOI: 10.1016/
0168-0072(95)00013-5.

[Mog91] Eugenio Moggi. “Notions of Computation and Monads”. In: Information and Computation 93.1
(1991), pp. 55–92. DOI: 10.1016/0890-5401(91)90052-4.

[MS22] Yoàv Montacute and Nihil Shah. “The pebble-relation comonad in finite model theory”. In: Pro-
ceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science. Association
for Computing Machinery, 2022, pp. 1–11. ISBN: 9781450393515. DOI: 10 . 1145 / 3531130 .
3533335.

[Mos52] Andrzej Mostowski. “On direct products of theories”. In: The Journal of Symbolic Logic 17.1
(1952), pp. 1–31. DOI: 10.2307/2267454.

[MD12] Abbe Mowshowitz and Matthias Dehmer. “Entropy and the complexity of graphs revisited”. In:
Entropy 14.3 (2012), pp. 559–570. DOI: 10.3390/e14030559.

[MHH16] Koko Muroya, Naohiko Hoshino, and Ichiro Hasuo. “Memoryful geometry of interaction II: re-
cursion and adequacy”. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22,
2016. Ed. by Rastislav Bodík and Rupak Majumdar. ACM, 2016, pp. 748–760. DOI: 10.1145/
2837614.2837672.

[ÓD21] Adam Ó Conghaile and Anuj Dawar. “Game Comonads & Generalised Quantifiers”. In: 29th
EACSL Annual Conference on Computer Science Logic. Ed. by Christel Baier and Jean Goubault-
Larrecq. Vol. 183. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
SchlossDagstuhl–Leibniz-Zentrum für Informatik, 2021, 16:1–16:17. ISBN: 978-3-95977-175-7. DOI:
10.4230/LIPIcs.CSL.2021.16.

[Oli84] José NunoOliveira. “The formal semantics of deterministic dataflow programs”. PhD thesis. Uni-
versity of Manchester, UK, 1984.

[Oum05] Sang-Il Oum. “Graphs of bounded rank-width”. PhD thesis. Princeton University, 2005.

[Oum08] Sang-il Oum. “Approximating rank-width and clique-width quickly”. In: ACM Transactions on
Algorithms (TALG) 5.1 (2008), pp. 1–20. ISSN: 1549-6325. DOI: 10.1145/1435375.1435385.

[OS06] Sang-il Oum and Paul D. Seymour. “Approximating clique-width and branch-width”. In: Journal
of Combinatorial Theory, Series B 96.4 (2006), pp. 514–528. ISSN: 0095-8956. DOI: 10.1016/
j.jctb.2005.10.006.

[Pai20] Thomas Paine. “A pebbling comonad for finite rank and variable logic, and an application to
the equirank-variable homomorphismpreservation theorem”. In: ElectronicNotes in Theoretical
Computer Science 352 (2020), pp. 191–209. ISSN: 1571-0661. DOI: 10.1016/j.entcs.2020.
09.010.

[Pan99] Prakash Panangaden. “The Category ofMarkov Kernels”. In: Electronic Notes in Theoretical Com-
puter Science. PROBMIV’98, First International Workshop on Probabilistic Methods in Verifica-
tion 22 (Jan. 1999), pp. 171–187. ISSN: 1571-0661. DOI: 10.1016/S1571-0661(05)80602-4.

106 BIBLIOGRAPHY

[PO99] R Piziak and PL Odell. “Full rank factorization of matrices”. In: Mathematics magazine 72.3
(1999), pp. 193–201. DOI: 10.2307/2690882.

[PRS88] Pavel Pudlák, Vojtěch Rödl, and Petr Savický. “Graph complexity”. In: Acta Informatica 25.5
(1988), pp. 515–535. DOI: 10.1007/BF00279952.

[RS83] Neil Robertson and Paul D Seymour. “Graph minors. I. Excluding a forest”. In: Journal of Com-
binatorial Theory, Series B 35.1 (1983), pp. 39–61. ISSN: 0095-8956. DOI: 10 . 1016 / 0095 -
8956(83)90079-5.

[RS86] Neil Robertson and Paul D Seymour. “Graph minors. II. Algorithmic aspects of tree-width”. In:
Journal of algorithms 7.3 (1986), pp. 309–322. ISSN: 0196-6774. DOI: 10.1016/0196-6774(86)
90023-4.

[RS90] Neil Robertson and Paul D Seymour. “Graph minors. IV. Tree-width and well-quasi-ordering”.
In: Journal of Combinatorial Theory, Series B 48.2 (1990), pp. 227–254. ISSN: 0095-8956. DOI:
10.1016/0095-8956(90)90120-O.

[RS91] Neil Robertson and Paul D Seymour. “Graph minors. X. Obstructions to tree-decomposition”.
In: Journal of Combinatorial Theory, Series B 52.2 (1991), pp. 153–190. ISSN: 0095-8956. DOI:
10.1016/0095-8956(91)90061-N.

[RS04] Neil Robertson and Paul D Seymour. “Graph minors. XX. Wagner’s conjecture”. In: Journal of
Combinatorial Theory, Series B 92.2 (2004), pp. 325–357. ISSN: 0095-8956. DOI: 10.1016/j.
jctb.2004.08.001.

[RR88] EdmundRobinson andGiuseppeRosolini. “Categories of partialmaps”. In: Information and com-
putation 79.2 (1988), pp. 95–130. ISSN: 0890-5401. DOI: 10.1016/0890-5401(88)90034-X.

[Rom23] Mario Román. “Promonads and String Diagrams for Effectful Categories”. In:Proceedings Fifth
International Conference on Applied Category Theory, Glasgow, United Kingdom, 18-22
July 2022. Ed. by JadeMaster andMartha Lewis. Vol. 380. Electronic Proceedings in Theoretical
Computer Science. Open Publishing Association, 2023, pp. 344–361. DOI: 10.4204/EPTCS.
380.20.

[RSW04] Robert Rosebrugh, Nicoletta Sabadini, and Robert FCWalters. “Minimisation and minimal reali-
sation in Span (Graph)”. In:Mathematical Structures in Computer Science 14.5 (2004), pp. 685–
714. DOI: 10.1017/S096012950400430X.

[RSW05] Robert Rosebrugh, Nicoletta Sabadini, and Robert FCWalters. “Generic commutative separable
algebras and cospans of graphs”. In: Theory and applications of categories 15.6 (2005), pp. 164–
177.

[RSW08] Robert Rosebrugh, Nicoletta Sabadini, and Robert FCWalters. “Calculating colimits composition-
ally”. In: Concurrency, Graphs and Models: Essays Dedicated to Ugo Montanari on the Occasion
of His 65th Birthday. Ed. by Pierpaolo Degano, Rocco De Nicola, and José Meseguer. Vol. 5065.
Springer, 2008, pp. 581–592. ISBN: 978-3-540-68679-8. DOI: 10.1007/978-3-540-68679-
8_36.

[RB88] David E Rydeheard and Rod M Burstall. Computational category theory. Vol. 152. Prentice Hall
Englewood Cliffs, 1988.

[Sel11] Peter Selinger. “A survey of graphical languages for monoidal categories”. In:New structures for
physics. Springer, 2011, pp. 289–355. ISBN: 978-3-642-12821-9. DOI: 10.1007/978-3-642-
12821-9_4.

BIBLIOGRAPHY 107

[SK19] David Sprunger and Shin-ya Katsumata. “Differentiable Causal Computations via Delayed Trace”.
In: 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC,
Canada, June 24-27, 2019. IEEE, 2019, pp. 1–12. DOI: 10.1109/LICS.2019.8785670.

[Sta17] Sam Staton. “Commutative semantics for probabilistic programming”. In: European Symposium
on Programming. Springer Berlin Heidelberg, 2017, pp. 855–879. ISBN: 978-3-662-54434-1. DOI:
10.1007/978-3-662-54434-1_32.

[Şte86a] Gheorghe Ştefănescu. “An algebraic theory of flowchart schemes”. In: CAAP ’86. Ed. by Paul
Franchi-Zannettacci. Springer BerlinHeidelberg, 1986, pp. 60–73. ISBN: 978-3-540-39783-0. DOI:
10.1007/BFb0022659.

[Şte86b] Gheorghe Ştefănescu. Feedback Theories (a Calculus for IsomorphismClasses of Flowchart Schemes).
24. Institutul de Matematica, 1986.

[Ste21] Dario Maximilian Stein. “Structural Foundations for Probabilistic Programming Languages”. In:
University of Oxford (2021).

[UV08] Tarmo Uustalu and Varmo Vene. “Comonadic Notions of Computation”. In: Proceedings of the
NinthWorkshop on Coalgebraic Methods in Computer Science, CMCS 2008, Budapest, Hungary,
April 4-6, 2008. Ed. by Jiří Adámek and Clemens Kupke. Vol. 203. Electronic Notes in Theoretical
Computer Science. Elsevier, 2008, pp. 263–284. DOI: 10.1016/j.entcs.2008.05.029.

[Zan15] Fabio Zanasi. “Interacting Hopf Algebras - The Theory of Linear Systems”. PhD thesis. École Nor-
male Supérieure de Lyon, 2015.

Appendix A

Publications and academic activities

As customary in mathematics, all my publications list the authors in alphabetical order. Three of these pub-
lications [DHS21; DS22; DS23] contributed to the contents of this thesis. My contributions to these articles
have been to write most of the prose, statements and proofs. Most of my publications concern topics that
are too different from the topic of this thesis to be included in it coherently. I wrote themajority of the proofs
in [DR23], while my coauthors did in [DFR22]. However, all the authors have contributed evenly to the de-
velopment of the ideas present in both the articles. I contributed to the writing of the remaining articles [Di
+21a; Di +23; Fel+21].

Talks
Aug 2023: Applied Category Theory 2023 conference (distinguished).
Jul 2023: Coresources workshop.
Jun 2023: Logic in Computer Science 2023 Conference.
Jun 2023: Quantitative Logic workshop.
Jun 2023: Categories Networking Project Workshop.
Apr 2023: Italian Category Theory fest.
Aug 2022: Women in Logic 2022 workshop.
Jul 2022: Applied Category Theory 2022 Conference.
Jun 2022: Foundational Methods in Computer Science workshop.
May 2022: Comonads Meetup Seminar.
May 2022: Mathematical Foundations Seminar.
Dec 2021: Symposium on Compositional Structures 8.
Jan 2021: Computer Science Logic 2021 conference.

Academic service
May 2023: Member of the executive board of the Compositionality Journal.
Feb 2023: Teaching assistant for the category theory and applications course.
Sep 2022: Local co-organiser of the Symposium on Compositional Structures 9.
May 2022: Program committee member of the Applied Category Theory Conference.
Sep 2021: Co-organiser of the Adjoint school 2022 and 2023.
May 2021: Teaching assistant for the introductory course on category theory.

Events
Nov 2022: Academic visit to Jamie Vicary at the University of Cambridge.

109

110 APPENDIX A. PUBLICATIONS AND ACADEMIC ACTIVITIES

Aug 2022: Kleene Award and distinguished paper at LiCS2022.
Jun 2022: Academic visit to Fabio Gadducci at the University of Pisa.
Mar 2020: Participant in the Adjoint school supervised by Valeria de Paiva.

List of publications

[1] ElenaDi Lavore, AlessandroGianola,Mario Román,Nicoletta Sabadini, andPaweł Sobociński. “Span(Graph):
a Canonical Feedback Algebra of Open Transition Systems”. In: Software and Systems Modeling 22
(2023), pp. 495–520. DOI: 10.1007/s10270-023-01092-7. arXiv: 2010.10069 [math.CT].

[2] Elena Di Lavore and Mario Román. “Evidential Decision Theory via Partial Markov Categories”. In:
2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 2023, pp. 1–14. DOI:
10.1109/LICS56636.2023.10175776.

[3] Elena Di Lavore and Paweł Sobociński. “Monoidal Width”. In: Logical Methods in Computer Science
19 (3 Sept. 2023). DOI: 10.46298/lmcs-19(3:15)2023.

[4] Elena Di Lavore, Giovanni de Felice, and Mario Román. “Monoidal Streams for Dataflow Program-
ming”. In: Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science. 2022,
pp. 1–14. DOI: 10.1145/3531130.3533365. arXiv: 2202.02061 [cs.LO].

[5] Elena Di Lavore and Paweł Sobociński. “Monoidal Width: Capturing Rank Width”. In: Proceedings
Fifth International Conference on Applied Category Theory, Glasgow, United Kingdom, 18-22
July 2022. Ed. by Jade Master and Martha Lewis. Vol. 380. Electronic Proceedings in Theoretical
Computer Science. Open Publishing Association, 2022, pp. 268–283. DOI: 10.4204/EPTCS.380.16.

[6] Elena Di Lavore, Alessandro Gianola, Mario Román, Nicoletta Sabadini, and Paweł Sobociński. “A
Canonical Algebra of Open Transition Systems”. In: Formal Aspects of Component Software. Ed. by
Gwen Salaün and Anton Wijs. Vol. 13077. Cham: Springer International Publishing, 2021, pp. 63–
81. ISBN: 978-3-030-90636-8. DOI: 10.1007/978- 3- 030- 90636- 8_4. arXiv: 2010.10069v1
[math.CT].

[7] Elena Di Lavore, Jules Hedges, and Paweł Sobociński. “Compositional Modelling of Network Games”.
In: 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Ed. by Christel Baier and
Jean Goubault-Larrecq. Vol. 183. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2021, 30:1–30:24. ISBN: 978-3-95977-
175-7. DOI: 10.4230/LIPIcs.CSL.2021.30. arXiv: 2006.03493 [cs.GT].

[8] Giovanni de Felice, Elena Di Lavore, Mario Román, and Alexis Toumi. “Functorial Language Games
for Question Answering”. In: Electronic Proceedings in Theoretical Computer Science. Vol. 333. Open
Publishing Association, Feb. 2021, pp. 311–321. DOI: 10.4204/eptcs.333.21.

111

Author’s contributions to publications
We include the publications whose content is featured in this thesis. As customary in mathematics, authors
are listed in alphabetical order, and papers are assumed to be equal collaborations between all of the listed
authors.

Article 1

[DS23]: The author identified the significance of the work, wrote the statements and proofs of all the results,
prepared the figures, and wrote the manuscript.

[DS23] Elena Di Lavore and Paweł Sobociński. “Monoidal Width”. In: Logical Methods in Computer Sci-
ence 19 (3 Sept. 2023). DOI: 10.46298/lmcs-19(3:15)2023.

Article 2

[DS22]: The author wrote the statements and proofs of all the results, prepared the figures and wrote the
manuscript.

[DS22] Elena Di Lavore and Paweł Sobociński. “Monoidal Width: Capturing Rank Width”. In: Proceed-
ings Fifth International Conference on Applied Category Theory, Glasgow, United King-
dom, 18-22 July 2022. Ed. by Jade Master and Martha Lewis. Vol. 380. Electronic Proceed-
ings in Theoretical Computer Science. Open Publishing Association, 2022, pp. 268–283. DOI:
10.4204/EPTCS.380.16.

Article 3

[DHS21]: The authorwrote the statements andproofs of all the results, included concrete examples, prepared
the figures and wrote the manuscript.

[DHS21] Elena Di Lavore, Jules Hedges, and Paweł Sobociński. “Compositional Modelling of Network
Games”. In: 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Ed. by Chris-
tel Baier and Jean Goubault-Larrecq. Vol. 183. Leibniz International Proceedings in Informat-
ics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2021, 30:1–
30:24. ISBN: 978-3-95977-175-7. DOI: 10.4230/LIPIcs.CSL.2021.30. arXiv: 2006.03493
[cs.GT].

Logical Methods in Computer Science
Volume 19, Issue 3, 2023, pp. 15:1–15:46
https://lmcs.episciences.org/

Submitted Dec. 28, 2022
Published Sep. 04, 2023

MONOIDAL WIDTH

ELENA DI LAVORE AND PAWE�L SOBOCIŃSKI

Tallinn University of Technology, Tallinn, Estonia

Abstract. We introduce monoidal width as a measure of complexity for morphisms in
monoidal categories. Inspired by well-known structural width measures for graphs, like tree
width and rank width, monoidal width is based on a notion of syntactic decomposition:
a monoidal decomposition of a morphism is an expression in the language of monoidal
categories, where operations are monoidal products and compositions, that specifies this
morphism. Monoidal width penalises the composition operation along “big” objects, while it
encourages the use of monoidal products. We show that, by choosing the correct categorical
algebra for decomposing graphs, we can capture tree width and rank width. For matrices,
monoidal width is related to the rank. These examples suggest monoidal width as a
good measure for structural complexity of processes modelled as morphisms in monoidal
categories.

Contents

1. Introduction 2
2. Monoidal width 6
2.1. Monoidal width of copy 8
3. A monoidal algebra for tree width 10
3.1. Background: tree width and branch width 11
3.2. Hypergraphs with sources and inductive definition 12
3.3. Cospans of hypergraphs 15
3.4. String diagrams for cospans of hypergraphs 18
3.5. Tree width as monoidal width 19
4. Monoidal width in matrices 24
4.1. The prop of matrices 24
4.2. Monoidal width of matrices 25
5. A monoidal algebra for rank width 31
5.1. Background: rank width 31
5.2. Graphs with dangling edges and inductive definition 32
5.3. A prop of graphs 35

Key words and phrases: monoidal categories, tree width, rank width.
This research was supported by the ESF funded Estonian IT Academy research measure (project 2014-

2020.4.05.19-0001). The second author was additionally supported by the Estonian Research Council grant
PRG1210.

LOGICAL METHODS� IN COMPUTER SCIENCE DOI:10.46298/LMCS-19(3:15)2023
© E. Di Lavore and P. Sobociński
CC© Creative Commons

15:2 E. Di Lavore and P. Sobociński Vol. 19:3

5.4. Rank width as monoidal width 37
6. Conclusion and future work 44
References 44

1. Introduction

In recent years, a current of research has emerged with focus on the interaction of structure
— especially algebraic, using category theory and related subjects — and power, that is
algorithmic and combinatorial insights stemming from graph theory, game theory and related
subjects. Recent works include [ADW17,AS21,MS22].

The algebra of monoidal categories is a fruitful source of structure — it can be seen
as a general process algebra of concurrent processes, featuring a sequential (;) as well as a
parallel (⊗) composition. Serving as a process algebra in this sense, it has been used to
describe artefacts of a computational nature as arrows of appropriate monoidal categories.
Examples include Petri nets [FS18], quantum circuits [CK17, DKPvdW20], signal flow
graphs [FS18,BSZ21], electrical circuits [CK22,BS21], digital circuits [GJL17], stochastic
processes [Fri20,CJ19] and games [GHWZ18].

Given that the algebra of monoidal categories has proved its utility as a language for
describing computational artefacts in various applications areas, a natural question is to
examine its relationship with power : can monoidal structure help us to design efficient
algorithms? To begin to answer this question, let us consider a mainstay of computer science:
divide-and-conquer algorithms. Such algorithms rely on the internal geometry of the global
artefact under consideration to ensure the ability to divide, that is, decompose it consistently
into simpler components, inductively compute partial solutions on the components, and
then recombine these local results to obtain a global solution.

f g

f ′ g′
=

f g

f ′ g′

Figure 1. This morphism can be decomposed in two different ways: (f ⊗
f ′) ; (g ⊗ g′) = (f ; g)⊗ (f ′ ; g′).

Let us now return to systems described as arrows of monoidal categories. In applications,
the parallel (⊗) composition typically means placing systems side-by-side with no explicit
interconnections. On the other hand, the sequential (;) composition along an object typically
means communication, resource sharing or synchronisation, the complexity of which is
determined by the object along which the composition is performed. Based on examples in
the literature, our basic motivating intuition is:

An algorithmic problem on an artefact that is a ‘⊗’ lends itself to a divide-
and-conquer approach more easily than one that is a ‘;’.

Moreover, the “size” of the object along which the ‘;’ occurs matters; typically the “larger”
the object, the more work is needed in order to recombine results in any kind of divide-
and-conquer approach. An example is compositional reachability checking in Petri nets of

Vol. 19:3 MONOIDAL WIDTH 15:3

Rathke et. al. [RSS14]: calculating the sequential composition is exponential in the size of
the boundary. Another recent example is the work of Master [Mas22] on a compositional
approach to calculating shortest paths.

On the other hand, (monoidal) category theory equates different descriptions of systems.
Consider what is known as middle-four interchange, illustrated in Figure 1. Although
monoidal category theory asserts that (f ⊗ f ′) ; (g ⊗ g′) = (f ; g)⊗ (f ′ ; g′), considering the
two sides of the equations as decomposition blueprints for a divide-and-conquer approach,
the right-hand side of the equation is clearly preferable since it maximises parallelism by
minimising the size of the boundary along which composition occurs. This, roughly speaking,
is the idea of width – expressions in the language of monoidal categories are assigned a
natural number that measures “how good” they are as decomposition blueprints. The
monoidal width of an arrow is then the width of its most efficient decomposition. In concrete
examples, arrows with low width lend themselves to efficient divide-and-conquer approaches,
following a width-optimal expression as a decomposition blueprint.

The study of efficient decompositions of combinatorial artefacts is well-established,
especially in graph theory. A number of graph widths — by which we refer to related
concepts like tree width, path with, branch width, cut width, rank width or twin width
— have become known in computer science because of their relationship with algorithmic
properties. All of them share a similar basic idea: in each case, a specific notion of legal
decomposition is priced according to the most expensive operation involved, and the price
of the cheapest decomposition is the width.

Perhaps the most famous of these is tree width, a measure of complexity for graphs that
was independently defined by different authors [BB73,Hal76,RS86]. Every nonempty graph
has a tree width, which is a natural number. Intuitively, a tree decomposition is a recipe
for decomposing a graph into smaller subgraphs that form a tree shape. These subgraphs,
when some of their vertices are identified, need to compose into the original graph, as shown
in Figure 2. Courcelle’s theorem

Every property expressible in the monadic second order logic of graphs can be
verified in linear time on graphs with bounded tree width.

is probably the best known among several results that establish links with algorithms [Bod92,
BK08,Cou90] thus illustrating its importance for computer science.

G = (Y, t) =

Figure 2. A tree decomposition cuts the graph along its vertices.

Another important measure is rank width [OS06] — a relatively recent development that
has attracted significant attention in the graph theory community. A rank decomposition is
a recipe for decomposing a graph into its single-vertex subgraphs by cutting along edges.
The cost of a cut is the rank of the adjacency matrix that represents it, as illustrated in
Figure 3. An intuition for rank width is that it is a kind of “Kolmogorov complexity” for

15:4 E. Di Lavore and P. Sobociński Vol. 19:3

graphs, with higher rank widths indicating that the connectivity data of the graph cannot
be easily compressed. For example, while the family of cliques has unbounded tree width,
their connectivity rather simple: in fact, all cliques have rank width 1.

rk(1 1
1 1) = 1

Figure 3. A cut and its matrix in a rank decomposition.

Contribution. Building on our conference paper [DLS22], our goals are twofold. Firstly,
to introduce the concept of monoidal width and begin to develop techniques for reasoning
about it.

Before describing concrete, technical contributions, let us take a bird’s eye view. It
is natural for the seasoned researcher to be sceptical of a new abstract framework that
seeks to generalise known results. The best abstract approaches (i) simplify existing known
arguments, (ii) clean up the research landscape by connecting existing notions, or (iii)
introduce techniques that allow one to prove new theorems. This paper does not (yet) bring
strong arguments in favour of monoidal width if one uses these three points as yardsticks. Our
high-level, conceptual contribution is, instead, the fact that the algebra of monoidal categories
– already used in several contexts in theoretical computer science – is a multi-purpose algebra
for specifying decompositions of graph-like structures important for computer scientists.
There are several ways of making this work, and making these monoidal algebras of “open
graphs” explicit as monoidal categories is itself a valuable endeavour. Indeed, identifying a
monoidal category automatically yields a particular notion of decomposition: the instance of
monoidal width in the monoidal category of interest. This point of view therefore demystifies
ad hoc notions of decomposition that accompany each notion of width that we consider in
this paper. Moreover, having an explicit algebra is also useful because it suggests a data
structure — the expression in the language of monoidal categories — as a way of describing
decompositions.

The results in this paper can be seen as a “sanity check” of these general claims, but can
also be seen as taking the first technical steps in order to build towards points (i)-(iii) of
the previous paragraph. To this end we examine monoidal width in the presence of common
structure, such as coherent comultiplication on objects, and in a foundational setting such
as the monoidal category of matrices. Secondly, connecting this approach with previous
work, to examine graph widths through the prism of monoidal width. The two widths we
focus on are tree width and rank width. We show that both can be seen as instances of
monoidal width. The interesting part of this endeavour is identifying the monoidal category,
and thus the relevant “decomposition algebra” of interest.

Unlike the situation with graph widths, it does not make sense to talk about monoidal
width per se, since it is dependent on the choice of underlying monoidal category and thus
a particular “decomposition algebra”. The decomposition algebras that underlie tree and
rank decompositions reflect their intuitive understanding. For tree width, this is a cospan
category whose morphisms represent graphs with vertex interfaces, while for rank width it is
a category whose morphisms represent graphs with edge interfaces, with adjacency matrices
playing the role of tracking connectivity information within a graph. We show that the

Vol. 19:3 MONOIDAL WIDTH 15:5

monoidal width of a morphism in these two categories is bounded, respectively, by the branch
(Theorem 3.34) and rank width (Theorem 5.26) of the corresponding graph. In the first
instance, this is enough to establish the connection between monoidal width and tree width,
given that it is known that tree width and branch width are closely related. A small technical
innovation is the definition of intermediate inductive notions of branch (Definition 3.14)
and rank (Definition 5.7) decompositions, equivalent to the original definitions via “global”
combinatorial notions of graph decomposition. The inductive presentations are closer in
spirit to the inductive definition of monoidal decomposition, and allow us to give direct
proofs of the main correspondences.

String diagrams. String diagrams [JS91] are a convenient syntax for monoidal categories,

where a morphism f : X → Y is depicted as a box with input and output wires: fX Y .
Morphisms in monoidal categories can be composed sequentially, using the composition of
the category, and in parallel, using the monoidal structure. These two kinds of composition
are reflected in the string diagrammatic syntax: the sequential composition f ; g is depicted
by connecting the output wire of f with the input wire of g; the parallel composition f ⊗ f ′
is depicted by writing f on top of f ′.

f ; g = f gX Z f ⊗ f ′ =
f

f ′
X Y

X ′ Y ′

The advantage of this syntax is that all coherence equations for monoidal categories are
trivially true when written with string diagrams. An example is the middle-four interchange
law (f ⊗ f ′) ; (g ⊗ g′) = (f ; g) ⊗ (g ; g′). These two expressions have one representation
in terms of string diagrams, as shown in Figure 1. The coherence theorem for monoidal
categories [Mac78] ensures that string diagrams are a sound and complete syntax for
morphisms in monoidal categories.

Related work. This paper contains the results of [DLS21] and [DLS22] with detailed proofs.
We generalise the results of [DLS21] to undirected hypergraphs and provide a syntactic
presentation of the subcategory of the monoidal category of cospans of hypergraphs on
discrete objects.

Previous syntactical approaches to graph widths are the work of Pudlák, Rödl and
Savickỳ [PRS88] and the work of Bauderon and Courcelle [BC87]. Their works consider
different notions of graph decompositions, which lead to different notions of graph complexity.
In particular, in [BC87], the cost of a decomposition is measured by counting shared names,
which is clearly closely related to penalising sequential composition as in monoidal width.
Nevertheless, these approaches are specific to particular, concrete notions of graphs, whereas
our work concerns the more general algebraic framework of monoidal categories.

Abstract approaches to width have received some attention recently, with a number of
diverse contributions. Blume et. al. [BBFK11], similarly to our work, use (the category of)
cospans of graphs as a formal setting to study graph decompositions: indeed, a major insight
of loc. cit. is that tree decompositions are tree-shaped diagrams in the cospan category, and
the original graph is reconstructed as a colimit of such a diagram. Our approach is more
general, however, emphasising the relevance of the algebra of monoidal categories, of which
cospan categories are just one family of examples.

15:6 E. Di Lavore and P. Sobociński Vol. 19:3

The literature on comonads for game semantics characterises tree and path decompo-
sitions of relational structures (and graphs in particular) as coalgebras of certain comon-
ads [ADW17,AS21,MS22,AM21,CD21]. Bumpus and Kocsis [BK21,Bum21] and, later,
Bumpus, Kocsis and Master [BKM23] also generalise tree width to the categorical setting,
although their approach is conceptually and technically removed from ours. Their work
takes a combinatorial perspective on decompositions, following the classical graph theory
literature. Given a shape of decomposition, called the spine in [BK21], a decomposition
is defined globally as a functor out of that shape. This generalises the characterisation of
tree width based on Halin’s S-functions [Hal76]. In contrast, monoidal width is algebraic
in flavour, following Bauderon and Courcelle’s insights on tree decompositions [BC87].
Monoidal decompositions are syntax trees defined inductively and rely on the decomposition
algebra given by monoidal categories.

Synopsis. The definition of monoidal width is introduced in Section 2, together with a
worked out example. In Section 3 we recover tree width by instantiating monoidal width
in a suitable category of cospans of hypergraphs. We recall it in Section 3.3 and provide a
syntax for it in Section 3.4. Similarly, in Section 5 we recover rank width by instantiating
monoidal width in a prop of graphs with boundaries where the connectivity information
is stored in adjacency matrices, which we recall in Section 5.3. This motivates us to study
monoidal width for matrices over the natural numbers in Section 4.

2. Monoidal width

We introduce monoidal width, a notion of complexity for morphisms in monoidal categories
that relies on explicit syntactic decompositions, relying on the algebra of monoidal categories.
We then proceed with a simple, yet useful examples of efficient monoidal decompositions
in Section 2.1.

A monoidal decomposition of a morphism f is a binary tree where internal nodes are
labelled with the operations of composition ; or monoidal product ⊗, and leaves are labelled
with “atomic” morphisms. A decomposition, when evaluated in the obvious sense, results
in f . We do not assume that the set of atomic morphisms A is minimal, they are merely
morphisms that do not necessarily need to be further decomposed. We assume that A
contains enough atoms to have a decomposition for every morphism. In most cases, we will
take A to contain all the morphisms.

Definition 2.1 (Monoidal decomposition). Let C be a monoidal category and A be a subset
of its morphisms to which we refer as atomic. The set Df of monoidal decompositions of
f : A → B in C is defined inductively:

Df ::= (f) if f ∈ A
| (d1—⊗—d2) if d1 ∈ Df1 , d2 ∈ Df2 and f =C f1 ⊗ f2

| (d1— ;X —d2) if d1 ∈ Df1 : A→X , d2 ∈ Df2 : X→B and f =C f1 ; f2

In general, a morphism can be decomposed in different ways and decompositions that
maximise parallelism are deemed more efficient. The monoidal width of a morphism is the
cost of its cheapest monoidal decomposition.

Formally, each operation and atom in a decomposition is assigned a weight that will
determine the cost of the decomposition. This is captured by the concept of a weight function.

Vol. 19:3 MONOIDAL WIDTH 15:7

Definition 2.2. Let C be a monoidal category and let A be its atomic morphisms. A weight
function for (C,A) is a function w : A∪{⊗}∪Obj(C) → N such that w(X⊗Y) = w(X)+w(Y),
and w(⊗) = 0.

A prop is a strict symmetric monoidal category where objects are natural numbers and
the monoidal product on them is addition. If C is a prop, then, typically, we let w(1) := 1.
The idea behind giving a weight to an object X ∈ C is that w(X) is the cost paid for
composing along X.

Definition 2.3 (Monoidal width). Let w be a weight function for (C,A). Let f be in C and
d ∈ Df . The width of d is defined inductively as follows:

wd(d) := w(f) if d = (f)

max{wd(d1),wd(d2)} if d = (d1—⊗—d2)

max{wd(d1), w(X), wd(d2)} if d = (d1— ;X —d2)

The monoidal width of f is mwd(f) := mind∈Df
wd(d).

Example 2.4. Let f : 1 → 2 and g : 2 → 1 be morphisms in a prop such that mwd(f) =
mwd(g) = 2. The following figure represents the monoidal decomposition of f ;(f⊗f);(g⊗g);g
given by

(f— ;2 —(((f— ;2 —g)—⊗—(f— ;2 —g))— ;2 —g)).

f

f

f

g

g

g

Indeed, taking advantage of string diagrammatic syntax, decompositions can be illustrated
by enhancing string diagrams with additional annotations that indicate the order of decom-
position. Throughout this paper, we use thick yellow dividing lines for this purpose.

Given that the width of a decomposition is the most expensive operation or atom, the
above has width is 2 as compositions are along at most 2 wires.

Example 2.5. With the data of Example 2.4, define a family of morphisms hn : 1 → 1
inductively as h0 := f ;2 g, and hn+1 := f ;2 (hn ⊗ hn) ;2 g.

f

f

f

g

g

g

· · ·

· · ·
· · ·

· · ·

Each hn has a decomposition of width 2n where the root node is the composition along
the middle wires. However — following the schematic diagram above — we have that
mwd(hn) ≤ 2 for any n.

15:8 E. Di Lavore and P. Sobociński Vol. 19:3

2.1. Monoidal width of copy. Although monoidal width is a very simple notion, reasoning
about it in concrete examples can be daunting because of the combinatorial explosion in
the number of possible decompositions of any morphism. For this reason, it is useful to
examine some commonly occurring structures that one encounters “in the wild” and examine
their decompositions. One such situation is when the objects are equipped with a coherent
comultiplication structure.

Definition 2.6. Let C be a symmetric monoidal category, with symmetries X,Y : X⊗Y →
Y ⊗ X. We say that C has coherent copying if there is a class of objects ΔC ⊆ Obj(C),
satisfying

• X,Y ∈ ΔC iff X ⊗ Y ∈ ΔC;
• Every object X ∈ ΔC is endowed with a morphism X : X → X ⊗X;
• For every X,Y ∈ ΔC, X⊗Y = (X ⊗ Y) ; (1X ⊗ X,Y ⊗ 1Y) (coherence).

X ⊗ Y
X ⊗ Y

X ⊗ Y
=

X

Y

X

Y

X

Y

An example is any cartesian prop, where the copy morphisms are the universal ones
given by the cartesian structure: n := 〈1n, 1n〉 : n → n+ n. For props with coherent copy,
we assume that copy morphisms, symmetries and identities are atoms, X , X,Y , 1X ∈ A,
and that their weight is given by w(X) := 2 · w(X), w(X,Y) := w(X) + w(Y) and
w(1X) := w(X).

Example 2.7. Let C be a prop with coherent copy and suppose that 1 ∈ ΔC. This
implies that every n ∈ ΔC and there are copy morphisms n : n → 2n for all n. Let
γn,m := (n ⊗ 1m) ; (1n ⊗ n,m) : n+m → n+m+ n. We can decompose γn,m in terms
of γn−1,m+1 (in the dashed box), 1 and 1,1 by cutting along at most n+ 1 +m wires:

γn,m = (1n−1 ⊗ ((1 ⊗ 11) ; (11 ⊗ 1,1))) ;n+1+m (gn−1,m+1 ⊗ 11).

γn,m =
n

m

n

m

n

=

n− 1

1

m

n− 1

1

m

n− 1

1

This allows us to decompose n = γn,0 cutting along only n+ 1 wires. In particular, this
means that mwd(n) ≤ n+ 1.

The following lemma generalises the above example and is used in the proofs of some
results in later sections, Proposition 3.30 and Proposition 4.6.

Lemma 2.8. Let C be a symmetric monoidal category with coherent copying. Suppose
that A contains X for all X ∈ ΔC, and X,Y and 1X for all X ∈ Obj(C). Let

X := X1 ⊗ · · · ⊗ Xn, with Xi ∈ ΔC, f : Y ⊗ X ⊗ Z → W and let d ∈ Df . Let γX(f) :=

Vol. 19:3 MONOIDAL WIDTH 15:9

(1Y ⊗ X ⊗ 1Z) ; (1Y⊗X ⊗ X,Z) ; (f ⊗ 1X).

γX(f) := f

Y

X

Z

W

X

Then there is a monoidal decomposition CX(d) of γX(f) such that

wd(CX(d)) ≤ max{wd(d),w(Y) + w(Z) + (n+ 1) · max
i=1,...,n

w(Xi)}.

Proof. Proceed by induction on the number n of objects being copied. If n = 0, then we are
done because we keep the decomposition d and define CI(d) := d.

Suppose that the statement is true for any f ′ : Y ⊗ X ⊗ Z ′ → W . Let f : Y ⊗ X ⊗
Xn+1 ⊗ Z → W . By coherence of , we can rewrite γX⊗Xn+1

(f).

f

Y

X ⊗Xn+1

Z

W

X ⊗Xn+1

=

f
Y

X

Xn+1

Z

W

X

Xn+1

Let γX(f) be the morphism in the above dashed box. By the induction hypothesis, there is a
monoidal decomposition CX(d) of γX(f) of bounded width: wd(CX(d)) ≤ max{wd(d),w(Y)+
w(Xn+1 ⊗ Z) + (n + 1) · maxi=1,...,n w(Xi)}. We can use this decomposition to define a
monoidal decomposition CX⊗Xn+1

(d) of γX⊗Xn+1
(f) as shown below.

f
Y

X

Xn+1

Z

W

X

Xn+1

Note that the only cut that matters is the longest vertical one, the composition node along
Y ⊗X ⊗Xn+1 ⊗ Z ⊗Xn+1, because all the other cuts are cheaper. The cost of this cut
is w(Y) + w(Z) + 2 · w(Xn+1) + w(X) = w(Y) + w(Z) + w(Xn+1) +

∑n+1
i=1 w(Xi). With

this observation and applying the induction hypothesis, we can compute the width of the
decomposition CX⊗Xn+1

(d).

wd(CX⊗Xn+1
(d))

= max
{
w(Y) + w(Z) + w(Xn+1) +

n+1∑
i=1

w(Xi),wd(CX(d))
}

≤ max
{
w(Y) + w(Z) + (n+ 2) · max

i=1,...,n+1
w(Xi),wd(d),

w(Y) + w(Xn+1 ⊗ Z) + (n+ 1) · max
i=1,...,n

w(Xi)
}

15:10 E. Di Lavore and P. Sobociński Vol. 19:3

= max
{
w(Y) + w(Z) + (n+ 2) · max

i=1,...,n+1
w(Xi),wd(d)

}

3. A monoidal algebra for tree width

Our first case study is tree width of undirected hypergraphs. We show that monoidal width
in a suitable monoidal category of hypergraphs is within constant factors of tree width. We
rely on branch width, a measure equivalent to tree width, to relate the latter with monoidal
width.

After recalling tree and branch width and the bounds between them in Section 3.1, we
define the intermediate notion of inductive branch decomposition in Section 3.2 and show
its equivalence to that of branch decomposition. Separating this intermediate step allows a
clearer presentation of the correspondence between branch decompositions and monoidal
decompositions. Section 3.3 recalls the categorical algebra of cospans of hypergraphs and
Section 3.4 introduces a syntactic presentations of them. Finally, Section 3.5 contains the
main result of the present section, which relates inductive branch decompositions, and thus
tree decompositions, with monoidal decompositions.

Classically, tree and branch widths have been defined for finite undirected multihyper-
graphs, which we simply call hypergraphs. These have undirected edges that connect sets of
vertices and they may have parallel edges.

Definition 3.1. A (multi)hypergraph G = (V,E) is given by a finite set of vertices V , a
finite set of edges E and an adjacency function ends : E → ℘(V), where ℘(V) indicates the
set of subsets of V . A subhypergraph of G is a hypergraph G′ = (V ′, E′) such that V ′ ⊆ V ,
E′ ⊆ E and ends′(e) = ends(e) for all e ∈ E′.

Definition 3.2. Given two hypergraphs G = (V,E) and H = (W,F), a hypergraph homo-
morphism α : G → H is given by a pair of functions αV : V → W and αE : E → F such that,
for all edges e ∈ E, endsH(αE(e)) = αV (endsG(e)).

E F

℘(V) ℘(W)

fE

endsG endsH
℘(fV)

Hypergraphs and hypergraph homomorphisms form a category UHGraph, where composition
and identities are given by component-wise composition and identities.

Note that the category UHGraph is not the functor category [{• → •}, kl(℘)]: their
objects coincide but the morphisms are different.

Definition 3.3. The hyperedge size of a hypergraph G is defined as γ(G) := maxe∈edges(G)

|ends(e)|. A graph is a hypergraph with hyperedge size 2.

Definition 3.4. A neighbour of a vertex v is a vertex w distinct from v with an edge e
such that v, w ∈ ends(e). A path in a hypergraph is a sequence of vertices (v1, . . . , vn) such
that, for every i = 1, . . . , n − 1, vi and vi+1 are neighbours. A cycle in a hypergraph is a
path where the first vertex v1 coincides with the last vertex vn. A hypergraph is connected
if there is a path between every two vertices. A tree is a connected acyclic hypergraph. A
tree is subcubic if every vertex has at most three neighbours.

Vol. 19:3 MONOIDAL WIDTH 15:11

Definition 3.5. The set of binary trees with labels in a set Λ is either: a leaf (λ) with label
λ ∈ Λ; or a label λ ∈ Λ with two binary trees T1 and T2 with labels in Λ, (T1—λ—T2).

3.1. Background: tree width and branch width. Intuitively, tree width measures “how
far” a hypergraph G is from being a tree: a hypergraph is a tree iff it has tree width 1.
Hypergraphs with tree widths larger than 1 are not trees; for example, the family of cliques
has unbounded tree width.

The definition relies on the concept of a tree decomposition. For Robertson and Sey-
mour [RS86], a decomposition is itself a tree Y , each vertex of which is associated with a
subhypergraph of G. Then G can be reconstructed from Y by identifying some vertices.

Definition 3.6 [RS86]. A tree decomposition of a hypergraph G = (V,E) is a pair (Y, t)
where Y is a tree and t : vertices(Y) → ℘(V) is a function such that:

(1) Every vertex is in one of the components:
⋃

i∈vertices(Y) t(i) = V .

(2) Every edge has its endpoints in a component: ∀e ∈ E ∃i ∈ vertices(Y) ends(e) ⊆ t(i).
(3) The components are glued in a tree shape: ∀i, j, k ∈ vertices(Y) i� j � k ⇒ t(i)∩t(k) ⊆

t(j).

The cost is the maximum number of vertices of the component subhypergraphs.

Example 3.7. Consider the hypergraph G and its tree decomposition (Y, t) below. Its cost
is 3 as its biggest component has three vertices.

G = (Y, t) =

Definition 3.8 (Tree width). Given a tree decomposition (Y, t) of a hypergraph G, its width
is wd(Y, t) := maxi∈vertices(Y) |t(i)|. The tree width of G is given by the min-max formula:

twd(G) := min
(Y,t)

wd(Y, t).

Note that Robertson and Seymour subtract 1 from twd(G) so that trees have tree width
1. To minimise bureaucratic overhead, we ignore this convention.

We use branch width [RS91] as a technical stepping stone to relate monoidal width and
tree width. Before presenting its definition, it is important to note that branch width and
tree width are equivalent, i.e. they are within a constant factor of each other.

Theorem 3.9 [RS91, Theorem 5.1]. Branch width is equivalent to tree width. More precisely,
for a hypergraph G = (V,E),

max{bwd(G), γ(G)} ≤ twd(G) ≤ max{3
2
bwd(G), γ(G), 1}.

Branch width relies on branch decompositions, which, intuitively, record in a tree a way
of iteratively partitioning the edges of a hypergraph.

15:12 E. Di Lavore and P. Sobociński Vol. 19:3

Definition 3.10 [RS91]. A branch decomposition of a hypergraph G = (V,E) is a pair (Y, b)
where Y is a subcubic tree and b : leaves(Y) ∼= E is a bijection.

Each edge e in the tree Y determines a splitting of the hypergraph. More precisely, it
determines a two partition of the leaves of Y , which, through b, determines a 2-partition
{Ae, Be} of the edges of G. This corresponds to a splitting of the hypergraph G into two
subhypergraphs G1 and G2. Intuitively, the order of an edge e is the number of vertices that
are glued together when joining G1 and G2 to get G. Given the partition {Ae, Be} of the
edges of G, we say that a vertex v of G separates Ae and Be whenever there are an edge in
Ae and an edge in Be that are both adjacent to v.

Let (Y, b) be a branch decomposition of a hypergraph G. Let e be an edge of Y . The
order of e is the number of vertices that separate Ae and Be: ord(e) := |ends(Ae)∩ ends(Be)|.
Definition 3.11 (Branch width). Given a branch decomposition (Y, b) of a hypergraph
G = (V,E), define its width as wd(Y, b) := maxe∈edges(Y) ord(e).

The branch width of G is given by the min-max formula: bwd(G) := min(Y,b) wd(Y, b).

Example 3.12. If we start reading the decomposition from an edge in the tree Y , we can
extend the labelling to internal vertices by labelling them with the glueing of the labels of
their children.

G = (Y, b) =

In this example, there is only one vertex separating the first two subgraphs of the decom-
position. This means that the corresponding edge in the decomposition tree has order
1.

3.2. Hypergraphs with sources and inductive definition. We introduce a definition of
decomposition that is intermediate between a branch decomposition and a monoidal decom-
position. It adds to branch decompositions the algebraic flavour of monoidal decompositions
by using an inductive data type, that of binary trees, to encode a decomposition.

Our approach follows closely Bauderon and Courcelle’s hypergraphs with sources [BC87]
and the corresponding inductive definition of tree decompositions [Cou92]. Courcelle’s
result [Cou92, Theorem 2.2] is technically involved as it translates between a combinatorial
description of a decomposition to a syntactic one. Our results in this and the next sections
are similarly technically involved.

We recall the definition of hypergraphs with sources and introduce inductive branch
decompositions of them. Intuitively, the sources of a hypergraph are marked vertices that
are allowed to be “glued” together with the sources of another hypergraph. Thus, the
equivalence between branch decompositions and inductive branch decompositions formalises
the intuition that a branch decomposition encodes a way of dividing a hypergraph into
smaller subgraphs by “cutting” along some vertices.

Vol. 19:3 MONOIDAL WIDTH 15:13

Definition 3.13 [BC87]. A hypergraph with sources is a pair Γ = (G,X) where G = (V,E) is
a hypergraph and X ⊆ V is a subset of its vertices, called the sources (Figure 4). Given two
hypergraphs with sources Γ = (G,X) and Γ′ = (G′, X ′), we say that Γ′ is a subhypergraph
of Γ whenever G′ is a subhypergraph of G.

Note that the sources of a subhypergraph Γ′ of Γ need not to appear as sources of Γ,
nor vice versa. In fact, if Γ is obtained by identifying all the sources of Γ1 with some of the
sources of Γ2, the sources of Γ and Γ1 will be disjoint.

Figure 4. Sources are marked vertices in the graph and are thought of as
an interface that can be glued with that of another graph.

An inductive branch decomposition is a binary tree whose vertices carry subhypergraphs
Γ′ of the ambient hypergraph Γ. This set of all such binary trees is defined as follows

TΓ ::= () | (TΓ,Γ
′, TΓ)

where Γ′ ranges over the non-empty subhypergraphs of Γ. An inductive branch decomposition
has to satisfy additional conditions that ensure that “glueing” Γ1 and Γ2 together yields Γ.

Definition 3.14. Let Γ = ((V,E), X) be a hypergraph with sources. An inductive branch
decomposition of Γ is T ∈ TΓ where either:

• Γ is discrete (i.e. it has no edges) and T = ();
• Γ has one edge and T = (()—Γ—()). We will use the shorthand T = (Γ) in this case;
• T = (T1—Γ—T2) and Ti ∈ TΓi are inductive branch decompositions of subhypergraphs
Γi = ((Vi, Ei), Xi) of Γ such that:
– The edges are partitioned in two, E = E1 � E2 and V = V1 ∪ V2;
– The sources are those vertices shared with the original sources as well as those shared
with the other subhypergraph, Xi = (V1 ∩ V2) ∪ (X ∩ Vi).

Note that ends(Ei) ⊆ Vi and that not all subtrees of a decomposition T are themselves
decompositions: only those T ′ that contain all the nodes in T that are below the root of
T ′. We call these full subtrees and indicate with λ(T ′) the subhypergraph of Γ that T ′ is a
decomposition of. We sometimes write Γi = λ(Ti), Vi = vertices(Γi) and Xi = sources(Γi).
Then,

sources(Γi) = (vertices(Γ1) ∩ vertices(Γ2)) ∪ (sources(Γ) ∩ vertices(Γi)). (3.1)

Definition 3.15. Let T = (T1—Γ—T2) be an inductive branch decomposition of Γ =
(G,X), with Ti possibly both empty. Define the width of T inductively: wd(()) := 0, and
wd(T) := max{wd(T1),wd(T2), |sources(Γ)|}. Expanding this expression, we obtain

wd(T) = max
T ′ full subtree of T

|sources(λ(T ′))|.
The inductive branch width of Γ is defined by the min-max formula ibwd(Γ) := minT wd(T).

We show that this definition is equivalent to the original one by exhibiting a mapping
from branch decompositions to inductive branch decompositions that preserve the width

15:14 E. Di Lavore and P. Sobociński Vol. 19:3

and vice versa. Showing that these mappings preserve the width is a bit involved because
the order of the edges in a decomposition is defined “globally”, while, for an inductive
decomposition, the width is defined inductively. Thus, we first need to show that we can
compute the inductive width globally.

Lemma 3.16. Let Γ = (G,X) be a hypergraph with sources and T be an inductive branch
decomposition of Γ. Let T0 be a full subtree of T and let T ′ ≹ T0 denote a full subtree T ′ of
T such that its intersection with T0 is empty. Then,

sources(λ(T0)) = vertices(λ(T0)) ∩
⎛
⎝X ∪

⋃
T ′≹T0

vertices(λ(T ′))

⎞
⎠ .

Proof. Proceed by induction on the decomposition tree T . If it is empty, T = (), then its
subtree is also empty, T0 = (), and we are done.

If T = (T1—Γ—T2), then either T0 is a full subtree of T1, or it is a full subtree of T2, or
it coincides with T . If T0 coincides with T , then their boundaries coincide and the statement
is satisfied because sources(λ(T0)) = X = V ∩X. Now suppose that T0 is a full subtree of
T1. Then, by applying the induction hypothesis, Equation (3.1), and using the fact that
λ(T0) ⊆ λ(T1), we compute the sources of T0:

sources(λ(T0))

= vertices(λ(T0)) ∩
⎛
⎝sources(λ(T1)) ∪

⋃
T ′≤T1,T ′≹T0

vertices(λ(T ′))

⎞
⎠

= vertices(λ(T0)) ∩
⎛
⎝(vertices(λ(T1)) ∩ (vertices(λ(T2)) ∪X)) ∪

⋃
T ′≤T1,T ′≹T0

vertices(λ(T ′))

⎞
⎠

= vertices(λ(T0)) ∩
⎛
⎝vertices(λ(T2)) ∪X ∪

⋃
T ′≤T1,T ′≹T0

vertices(λ(T ′))

⎞
⎠

= vertices(λ(T0)) ∩
⎛
⎝X ∪

⋃
T ′≤T,T ′≹T0

vertices(λ(T ′))

⎞
⎠

A similar computation can be done if T0 is a full subtree of T2.

Lemma 3.17. Let Γ = (G,X) be a hypergraph with sources and G = (V,E) be its underlying
hypergraph. Let T be an inductive branch decomposition of Γ. Then, there is a branch
decomposition I†(T) of G such that wd(I†(T)) ≤ wd(T).

Proof. A binary tree is, in particular, a subcubic tree. Then, we can define Y to be the
unlabelled tree underlying T . The label of a leaf l of T is a subhypergraph of Γ with one
edge el. Then, there is a bijection b : leaves(T) → edges(G) such that b(l) := el. Then, (Y, b)
is a branch decomposition of G and we can define I†(T) := (Y, b).

By construction, e ∈ edges(Y) if and only if e ∈ edges(T). Let {v, w} = ends(e) with
v parent of w in T and let Tw the full subtree of T with root w. Let {Ev, Ew} be the
(non-trivial) partition of E induced by e. Then, for the edges sets, Ew = edges(λ(Tw))
and Ev =

⋃
T ′≹Tw

edges(λ(T ′)), and, for the vertices sets, ends(Ew) ⊆ vertices(λ(Tw)) and

Vol. 19:3 MONOIDAL WIDTH 15:15

ends(Ev) ⊆
⋃

T ′≹Tw
vertices(λ(T ′)). Using these inclusions and applying Lemma 3.16,

ord(e) wd(Y, b)

:= |ends(Ew) ∩ ends(Ev)| := max
e∈edges(Y)

ord(e)

≤ |vertices(λ(Tw)) ∩
⋃

T ′≹Tw

vertices(λ(T ′))| ≤ max
T ′<T

|sources(λ(T ′))|

≤ |vertices(λ(Tw)) ∩ (X ∪
⋃

T ′≹Tw

vertices(λ(T ′)))| ≤ max
T ′≤T

|sources(λ(T ′))|

= |sources(λ(Tw))| = wd(T)

Lemma 3.18. Let Γ = (G,X) be a hypergraph with sources and G = (V,E) be its underlying
hypergraph. Let (Y, b) be a branch decomposition of G. Then, there is a branch decomposition
I(Y, b) of Γ such that wd(I(Y, b)) ≤ wd(Y, b) + |X|.
Proof. Proceed by induction on |edges(Y)|. If Y has no edges, then either G has no edges
and (Y, b) = () or G has only one edge el and (Y, b) = (el). In either case, define I(Y, b) := (Γ)
and wd(I(Y, b)) := |X| ≤ wd(Y, b) + |X|.

If Y has at least one edge e, then Y = Y1
e
—Y2 with Yi a subcubic tree. Let Ei =

b(leaves(Yi)) be the sets of edges of G indicated by the leaves of Yi. Then, E1 � E2 = E.
By induction hypothesis, there are inductive branch decompositions Ti := I(Yi, bi) of
Γi = (Gi, Xi), where V1 := ends(E1), V2 := ends(E2)∪(V \V1), Xi := (V1∩V2)∪(Vi∩X) and
Gi := (Vi, Ei). Then, the tree I(Y, b) := (T1—Γ—T2) is an inductive branch decomposition
of Γ and, by applying Lemma 3.16,

wd(I(Y, b))
:= max{wd(T1), |X|,wd(T2)}
= max

T ′≤T
|sources(λ(T ′))|

≤ max
T ′≤T

|vertices(λ(T ′)) ∩ ends(E \ edges(λ(T ′)))|+ |X|
= max

e∈edges(Y)
ord(e) + |X|

:=wd(Y, b) + |X|
Combining Lemma 3.17 and Lemma 3.18 we obtain:

Proposition 3.19. Inductive branch width is equivalent to branch width.

3.3. Cospans of hypergraphs. We work with the category UHGraph of undirected hyper-
graphs and their homomorphisms (Definition 3.1). The monoidal category Cospan(UHGraph)
of cospans is a standard choice for an algebra of “open” hypergraphs. Hypergraphs are
composed by glueing vertices [RSW05,GH97,Fon15]. We do not need the full expressivity
of Cospan(UHGraph) and restrict to Cospan(UHGraph)∗, where the objects are sets, seen as
discrete hypergraphs.

Definition 3.20. A cospan in a category C is a pair of morphisms in C that share the
same codomain, called the head, f : X → E and g : Y → E. When C has finite colimits,
cospans form a symmetric monoidal category Cospan(C) whose objects are the objects of C

15:16 E. Di Lavore and P. Sobociński Vol. 19:3

and morphisms are cospans in C. More precisely, a morphism X → Y in Cospan(C) is an

equivalence class of cospans X
f→ E

g← Y , up to isomorphism of the head of the cospan. The

composition of X
f→ E

g← Y and Y
h→ F

l← Z is given by the pushout of g and h. Intuitively,
the pushout of g and h “glues” E and F along the images of g and h (see Example 3.23).
The monoidal product is given by component-wise coproducts.

We can construct the category of cospans of hypergraphs Cospan(UHGraph) because the
category of hypergraphs UHGraph has all finite colimits.

Proposition 3.21. The category UHGraph has all finite colimits and they are computed
pointwise.

Proof. Let D : J → UHGraph be a diagram in UHGraph. Then, every object i in J determines
a hypergraph Gi := D(i) = (Vi, Ei, endsi) and every f : i → j in J, gives a hypergraph homo-
morphism D(f) = (fV , fE). Let the functors UE : UHGraph → Set and UV : UHGraph → Set
associate the edges, resp. vertices, component to hypergraphs and hypergraph homomor-
phisms: for a hypergraph G = (V,E), UE(G) := E and UV (G) := V ; and, for a morphism
f = (fV , fE), UE(f) := fE and UV (f) := fV .

(
Vi

fV→ Vj

)

(
i

f→ j
) (

Gi
(fV ,fE)−→ Gj

)

(
Ei

fE→ Ej

)

D

UV

UE

The category Set has all colimits, thus there are E0 := colim(D;UE) and V0 := colim(D;UV).
Let ci : Vi → V0 and di : Ei → E0 be the inclusions given by the colimits. Then, for any
i, j ∈ Obj(J) the following diagrams commute:

Vi Vj

V0

fV

ci cj

Ei Ej

E0

fE

di dj

By definition of hypergraph morphism, fE ; endsj = endsi ; ℘(fV), and, by functoriality of ℘,
℘(fV) ; ℘(cj) = ℘(ci). This shows that ℘(V0) is a cocone over D ;UE with morphisms given
by endsi ; ℘(ci). Then, there is a unique morphism ends : E0 → ℘(V0) that commutes with
the cocone morphisms: di ; ends = endsi ; ℘(ci).

Ei Ej ℘(Vi) ℘(Vj)

E0 ℘(V0)

di

fE

endsi

dj

endsj

℘(ci)

℘(fV)

℘(cj)
ends

Vol. 19:3 MONOIDAL WIDTH 15:17

This shows that the pairs (ci, di) are hypergraph morphisms and, with the hypergraph
defined by G0 := (V0, E0, ends), form a cocone over D in UHGraph. Let H = (VH , EH , endsH)
be another cocone over D with morphisms (ai, bi) : Gi → H.

Gi Gj

G0 H

Df

(ci,di)
(ai,bi) (cj ,dj)

(aj ,bj)

We show that G0 is initial by constructing a morphism (hV , hE) : G0 → H and showing that
it is the unique one commuting with the inclusions.

By applying the functors UE and UV to the diagram above, we obtain the following
diagrams in Set, where hV : V0 → VH and hE : E0 → EH are the unique morphism from the
colimit cone.

Vi Vj

V0 VH

fV

ci
ai cj

aj

hV

Ei Ej

E0 EH

fE

di
bi dj bj

hE

We show that (hV , hE) is a hypergraph morphism. The object ℘(VH) is a cocone over
D ;UE in (at least) two ways: with morphisms di ; ends ; ℘(hV) and morphisms bi ; endsH .
By initiality of E0, there is a unique morphism E0 → ℘(VH) and it must coincide with
hE ; endsH and ends ; ℘(hV).

E0 EH

℘(V0) ℘(VH)

hE

ends endsH

℘(hV)

This proves that (hV , hE) is a hypergraph morphism. It is, moreover, unique because
any other morphism with this property would have the same components. In fact, let
(h′V , h

′
E) : G0 → H be another hypergraph morphism that commutes with the cocones, i.e.

(ci, di) ; (h
′
V , h

′
E) = (ai, bi). Then, its components must commute with the respective cocones

in Set, by functoriality of UE and UV : ci ; h
′
V = ai and di ; h

′
E = bi. By construction, V0

and E0 are the colimits of D ;UV and D ;UE , so there are unique morphisms to any other
cocone over the same diagrams. This means that h′V = hV and h′E = hE , which shows the
uniqueness of (hV , hE).

Definition 3.22. The category Cospan(UHGraph)∗ is the full subcategory of
Cospan(UHGraph) on discrete hypergraphs. Objects are sets and a morphism g : X → Y is
given by a hypergraph G = (V,E) and two functions, ∂X : X → V and ∂Y : Y → V .

Composition in Cospan(UHGraph)∗ is given by identification of the common sources: if
two vertices are pointed by a common source, then they are identified.

Example 3.23. The composition of two morphisms with a single edge along a common
vertex gives a path of length two, obtained by identifying the vertex v of the first morphism

15:18 E. Di Lavore and P. Sobociński Vol. 19:3

= = =

= = =

= =

Figure 5. Generators and axioms of a special Frobenius monoid.

with the vertex u of the second.

u v u v

=

u v

3.4. String diagrams for cospans of hypergraphs. We introduce a syntax for the
monoidal category Cospan(UHGraph)∗, which we will use for proving some of the results in
this section. We will show that the syntax for Cospan(UHGraph)∗ is given by the syntax of
Cospan(Set) together with an extra “hyperedge” generator en : n → 0 for every n ∈ N. This
result is inspired by the similar one for cospans of directed graphs [RSW05].

It is well-known that the category Cospan(Set) of finite sets and cospans of functions
between them has a convenient syntax given by the walking special Frobenius monoid [Lac04].

Proposition 3.24 [Lac04]. The skeleton of the monoidal category Cospan(Set) is isomorphic
to the prop sFrob, whose generators and axioms are in Figure 5.

In order to obtain cospans of hypergraphs from cospans of sets, we need to add generators
that behave like hyperedges: they have n inputs and these inputs can be permuted without
any effect.

Definition 3.25. Define UHedge to be the prop generated by a “hyperedge” generator
en : n → 0 for every n ∈ N such that permuting its inputs does not have any effect:

∀n ∈ N
n

such that ∀ permutation σ : n → n σ
n

n =
n

The syntax for cospans of graphs is defined as a coproduct of props.

Definition 3.26. Define the prop FGraph as a coproduct: FGraph := sFrob+ UHedge.

We will show that every morphism g : n → m in FGraph corresponds to a morphism in
Cospan(UHGraph)∗.

Vol. 19:3 MONOIDAL WIDTH 15:19

Example 3.27. The string diagram below corresponds to a hypergraph with two left sources,
one right source and two hyperedges. The number of endpoints of each hyperedge is given
by the arity of the corresponding generator in the string diagram. Two hyperedges are
adjacent to the same vertex when they are connected by the Frobenius structure in the
string diagram, and a hyperedge is adjacent to a source when it is connected to an input or
output in the string diagram.

�

Proposition 3.28. There is a symmetric monoidal functor S : FGraph → Cospan(UHGraph)∗.

Proof. By definition, FGraph := sFrob + UHedge is a coproduct. Therefore, it suffices to
define two symmetric monoidal functors S1 : sFrob → Cospan(UHGraph)∗ and S2 : UHedge →
Cospan(UHGraph)∗ for constructing the functor S := [S1,S2].

The category of cospans of finite sets embeds into the category of cospans of undirected hy-
pergraphs, and in particular Cospan(Set) ↪→ Cospan(UHGraph)∗. By Proposition 3.24, there
is a functor sFrob → Cospan(Set), which gives us a functor S1 : sFrob → Cospan(UHGraph)∗.

For the functor S2, we need to define it on the generators of UHedge and show that
it preserves the equations. We define S2(en) to be the cospan of graphs n → (n, {e}) ← ∅
given by 1n : n → n and ¡n : ∅ → n. With this assignment, we can freely extend S2 to
a monoidal functor UHedge → Cospan(UHGraph)∗. In fact, it preserves the equations of
UHedge because permuting the order of the endpoints of an undirected hyperedge has no
effect by definition.

In order to instantiate monoidal width in Cospan(UHGraph)∗, we need to define an
appropriate weight function.

Definition 3.29. Let A be all morphisms of Cospan(UHGraph)∗. Define the weight function
as follows. For an object X, w(X) := |X|. For a morphism g ∈ A, w(g) := |V |, where V is
the set of vertices of the apex of g, i.e. g = X → G ← Y and G = (V,E).

3.5. Tree width as monoidal width. Here we show that monoidal width in the monoidal
category Cospan(UHGraph)∗, with the weight function given in Definition 3.29, is equivalent
to tree width. We do this by bounding monoidal width by above with branch width +1 and
by below with half of branch width (Theorem 3.34). We prove these bounds by defining
maps from inductive branch decompositions to monoidal decompositions that preserve the
width (Proposition 3.30), and vice versa (Proposition 3.33).

The idea behind the mapping from inductive branch decompositions to monoidal
decompositions is to take a one-edge hypergraph for each leaf of the inductive branch
decomposition and compose them following the structure of the decomposition tree. The
3-clique has a branch decomposition as shown on the left. The corresponding monoidal

15:20 E. Di Lavore and P. Sobociński Vol. 19:3

decomposition is shown on the right.

B†�→

Proposition 3.30. Let Γ = (G,X) be a hypergraph with sources and T be an inductive

branch decomposition of Γ. Let g := X
ι→ G ← ∅ be the corresponding cospan. Then, there

is a monoidal decomposition B†(T) ∈ Dg such that wd(B†(T)) ≤ max{wd(T) + 1, γ(G)}.
Proof. Let G = (V,E) and proceed by induction on the decomposition tree T . If the
tree T = (Γ) is composed of only a leaf, then the label Γ of this leaf must have only one
hyperedge with γ(G) endpoints and wd(T) := |X|. We define the corresponding monoidal
decomposition to also consist of only a leaf, B†(T) := (g), and obtain the desired bound
wd(B†(T)) = max{|X|, γ(G)} = max{wd(T), γ(G)}.

If T = (T1—Γ—T2), then, by definition of branch decomposition, T is composed of two
subtrees T1 and T2 that give branch decompositions of Γ1 = (G1, X1) and Γ2 = (G2, X2).
There are three conditions imposed by the definition on these subgraphs Gi = (Vi, Ei):
E = E1�E2 with Ei �= ∅, V1∪V2 = V , and Xi = (V1∩V2)∪ (X∩Vi). Let gi = Xi → Gi ← ∅
be the cospan given by ι : Xi → Vi and corresponding to Γi. Then, we can decompose g in
terms of identities, the structure of Cospan(UHGraph)∗, and its subgraphs g1 and g2:

g =
g1

g2

By induction hypothesis, there are monoidal decompositions B†(Ti) of gi whose width
is bounded: wd(B†(Ti)) ≤ max{wd(Ti) + 1, γ(Gi)}. By Lemma 2.8, there is a monoidal
decomposition C(B†(T1)) of the morphism in the above dashed box of bounded width:
wd(C(B†(T1))) ≤ max{wd(B†(T1)), |X1|+ 1}. Using this decomposition, we can define the
monoidal decomposition given by the cuts in the figure above.

B†(T) := ((C(B†(T1))—⊗—1X2\X1
)— ;X2

—B†(T2)).

We can bound its width by applying Lemma 2.8, the induction hypothesis and the relevant
definitions of width (Definition 3.11 and Definition 3.29).

wd(B†(T))

:= max{wd(C(B†(T1))),wd(B†(T2)), |X2|}
= max{wd(B†(T1)),wd(B†(T2)), |X1|+ 1, |X2|}
≤ max{wd(T1) + 1, γ(G1),wd(T2) + 1, γ(G2), |X1|+ 1, |X2|}
≤ max{max{wd(T1),wd(T2), |X1|, |X2|}+ 1, γ(G1), γ(G2)}
≤ max{max{wd(T1),wd(T2), |X|}+ 1, γ(G)}
:=max{wd(T) + 1, γ(G)}

Vol. 19:3 MONOIDAL WIDTH 15:21

The mapping B follows the same idea of the mapping B† but requires extra care: we
need to keep track of which vertices are going to be identified in the final cospan. The
function φ stores this information, thus it cannot identify two vertices that are not already
in the boundary of the hypergraph. The proof of Proposition 3.33 proceeds by induction
on the monoidal decomposition and constructs the corresponding branch decomposition.
The inductive step relies on φ to identify which subgraphs of Γ correspond to the two
subtrees in the monoidal decomposition, and, consequently, to define the corresponding
branch decomposition.

Remark 3.31. Let f : A → C and g : B → C be two functions. The union of the images of f
and g is the image of the coproduct map [f, g] : A+B → C, i.e. im(f)∪im(g) = im([f, g]). The
intersection of the images of f and g is the image of the pullback map 〈f ∧ g〉 : A×C B → C,
i.e. im(f) ∩ im(g) = im(〈f ∧ g〉).
Remark 3.32. Let f : A → C, g : B → C and φ : C → V such that ∀ c �= c′ ∈ C φ(c) =
φ(c′) ⇒ c, c′ ∈ im(f). We have that im(〈f ;φ∧g ;φ〉) ⊇ im(〈f∧g〉;φ). Then, im(〈f ;φ∧g ;φ〉) =
im(〈f ∧ g〉 ; φ) because their difference is empty:

im(〈f ∧ g〉 ; φ) \ im(〈f ; φ ∧ g ; φ〉)
= {v ∈ V : ∃a ∈ A ∃b ∈ B φ(f(a)) = φ(g(b)) ∧ f(a) /∈ im(g) ∧ g(b) /∈ im(f)} = ∅

Proposition 3.33. Let h = A
∂A→ H

∂B← B with H = (W,F). Let φ : W → V such that
∀ w �= w′ ∈ W φ(w) = φ(w′) ⇒ w,w′ ∈ im(∂A) ∪ im(∂B) (glueing property). Let d be a
monoidal decomposition of h. Let Γ := ((im(φ), F), im(∂A ; φ) ∪ im(∂B ; φ)). Then, there is
an inductive branch decomposition B(d) of Γ such that wd(B(d)) ≤ 2 ·max{wd(d), |A|, |B|}.
Proof. Proceed by induction on the decomposition tree d. If it is just a leaf, d = (h) and
H has no edges, F = ∅, then the corresponding inductive branch decomposition is empty,
B(d) := (), and we can compute its width: wd(B(d)) := 0 ≤ 2 ·max{wd(d), |A|, |B|}.

If the decomposition is just a leaf d = (h) but H has exactly one edge, F = {e}, then the
corresponding branch decomposition is just a leaf as well, B(d) := (Γ), and we can compute
its width: wd(B(d)) := |im(∂A ; φ) ∪ im(∂B ; φ)| ≤ |A|+ |B| ≤ 2 ·max{wd(d), |A|, |B|}.

If the decomposition is just a leaf d = (h) and H has more than one edge, |F | > 1,
then we can let B(d) be any inductive branch decomposition of Γ. Its width is not greater
than the number of vertices in Γ, thus we can bound its width wd(B(d)) ≤ |im(φ)| ≤
2 ·max{wd(d), |A|, |B|}.

If d = (d1— ;C —d2), then di is a monoidal decomposition of hi with h = h1 ;C h2. We

can give the expressions of these morphisms: h1 = A
∂1
A→ H1

∂1← C and h2 = C
∂2→ H2

∂2
B← B,

with Hi = (Wi, Fi), and obtain the following diagram, where ιi : Wi → W are the functions
induced by the pushout and we define φi := ιi ; φ.

V

W

A W1 W2 B

C

φ

∂1
A

ι1

φ1

ι2

φ2

∂2
B

∂1 ∂2

15:22 E. Di Lavore and P. Sobociński Vol. 19:3

We show that φ1 satisfies the glueing property in order to apply the induction hypothesis to
φ1 and H1: let w �= w′ ∈ W1 such that φ1(w) = φ1(w

′). Then, ι1(w) = ι1(w
′) or φ(ι1(w)) =

φ(ι1(w
′)) ∧ ι1(w) �= ι1(w

′). Then, w,w′ ∈ im(∂1) or ι1(w), ι1(w
′) ∈ im(∂A ; φ) ∪ im(∂B ; φ).

Then, w,w′ ∈ im(∂1) or w,w
′ ∈ im(∂1

A). Then, w,w
′ ∈ im(∂1) ∪ im(∂1

A). Similarly, we can
show that φ2 satisfies the same property. Then, we can apply the induction hypothesis to
get an inductive branch decomposition B(d1) of Γ1 = ((im(φ1), F1), im(∂1

A ; φ1) ∪ im(∂1 ; φ1))
and an inductive branch decomposition B(d2) of Γ2 = ((im(φ2), F2), im(∂2

B ; φ2) ∪ im(∂2 ;
φ2)) with bounded width: wd(B(d1)) ≤ 2 · max{wd(d1), |A|, |C|} and wd(B(d2)) ≤ 2 ·
max{wd(d2), |B|, |C|}.

We check that we can define an inductive branch decomposition of Γ from B(d1) and
B(d2).
• F = F1 � F2 because the pushout is along discrete hypergraphs.
• im(φ) = im(φ1)∪ im(φ2) because im([ι1, ι2]) = W and im(φ1)∪ im(φ2) = im(ι1 ; φ)∪ im(ι2 ;
φ) = im([ι1, ι2] ; φ) = im(φ).

• im([∂1
A, ∂1] ; φ1) = im(φ1) ∩ (im(φ2) ∪ im(∂A ; φ) ∪ im(∂B ; φ)) because

im(φ1) ∩ (im(φ2) ∪ im(∂A ; φ) ∪ im(∂B ; φ))

= (by definition of φi)

im(ι1 ; φ) ∩ (im(ι2 ; φ) ∪ im(∂A ; φ) ∪ im(∂B ; φ))

= (because im(∂B) = im(∂2
B ; ι2) ⊆ im(ι2))

im(ι1 ; φ) ∩ (im(ι2 ; φ) ∪ im(∂A ; φ))

= (by Remark 3.31)

im(ι1 ; φ) ∩ im([ι2, ∂A] ; φ)

= (by Remark 3.31)

im(〈ι1 ; φ ∧ [ι2, ∂A] ; φ〉)
= (by Remark 3.32)

im(〈ι1 ∧ [ι2, ∂A]〉 ; φ)
= (because pullbacks commute with coproducts)

im([〈ι1 ∧ ι2〉, 〈ι1 ∧ ∂A〉] ; φ)
= (because ∂A = ∂1

A ; ι1)

im([〈ι1 ∧ ι2〉, ∂A] ; φ)
= (because ∂1 ; ι1 = ∂2 ; ι2 is the pushout map of ∂1 and ∂2)

im([∂1 ; ι1, ∂
1
A ; ι1] ; φ)

= (by property of the coproduct)

im([∂1, ∂
1
A] ; φ1)

• im([∂2, ∂
2
B] ; φ2) = im(φ2)∩ (im(φ1)∪ im(∂A ; φ)∪ im(∂B ; φ)) similarly to the former point.

Then, B(d) := (B(d1)—Γ—B(d2)) is an inductive branch decomposition of Γ and

wd(B(d))
:= max{wd(B(d1)), |im([∂A, ∂B])|,wd(B(d2))}
≤ max{2 · wd(d1), 2 · |A|, 2 · |C|, |A|+ |B|,

Vol. 19:3 MONOIDAL WIDTH 15:23

2 · wd(d2), 2 · |B|}
≤ 2 ·max{wd(d1), |A|, |C|,wd(d2), |B|}
:=2 ·max{wd(d), |A|, |B|}

If d = (d1—⊗—d2), then di is a monoidal decomposition of hi with h = h1 ⊗ h2. Let

hi = Xi
∂i
X→ Hi

∂i
Y← Yi with Hi = Fi

s,t

⇒ Wi. Let ιi : Wi → W be the inclusions induced
by the monoidal product. Define φi := ιi ; φ. We show that φ1 satisfies the glueing
property: Let w �= w′ ∈ W1 such that φ1(w) = φ1(w

′). Then, ι1(w) = ι1(w
′) or φ(ι1(w)) =

φ(ι1(w
′))∧ι1(w) �= ι1(w

′). Then, ι1(w), ι1(w
′) ∈ im(∂A ;φ)∪ im(∂B ;φ) because ιi are injective.

Then, w,w′ ∈ im(∂1
A) ∪ im(∂1

B). Similarly, we can show that φ2 satisfies the same property.
Then, we can apply the induction hypothesis to get B(di) inductive branch decomposition
of Γi = ((im(φi), Fi), im([∂i

A, ∂
i
B] ; φi)) such that wd(B(di)) ≤ 2 ·max{wd(di), |Ai|, |Bi|}.

We check that we can define an inductive branch decomposition of Γ from B(d1) and
B(d2).
• F = F1 � F2 because the monoidal product is given by the coproduct in Set.
• im(φ) = im(φ1)∪ im(φ2) because im([ι1, ι2]) = W and im(φ1)∪ im(φ2) = im(ι1 ; φ)∪ im(ι2 ;
φ) = im([ι1, ι2] ; φ) = im(φ).

• im([∂1
A, ∂

1
B] ; φ1) = im(φ1) ∩ (im(φ2) ∪ im(∂A ; φ) ∪ im(∂B ; φ)) because

im(φ1) ∩ (im(φ2) ∪ im(∂A ; φ) ∪ im(∂B ; φ))

= (by definition of φi)

im(ι1 ; φ) ∩ (im(ι2 ; φ) ∪ im(∂A ; φ) ∪ im(∂B ; φ))

= (by Remark 3.31 and property of the coproduct)

im(ι1 ; φ) ∩ im([ι2, [∂A, ∂B]] ; φ)

= (by Remark 3.31)

im(〈ι1 ; φ ∧ [ι2, [∂A, ∂B]] ; φ〉)
= (by Remark 3.32)

im(〈ι1 ∧ [ι2, [∂A, ∂B]]〉 ; φ)
= (because pullbacks commute with coproducts)

im([〈ι1 ∧ ι2〉, 〈ι1 ∧ [∂A, ∂B]〉] ; φ)
= (because 〈ι1 ∧ ι2〉 = ¡)

im(〈ι1 ∧ [∂A, ∂B]〉 ; φ)
= (because ∂A = ∂1

A + ∂2
A and ∂B = ∂1

B + ∂2
B)

im([∂1
A ; ι1, ∂

1
B ; ι1] ; φ)

= (by property of the coproduct)

im([∂1
A, ∂

1
B] ; φ1)

• im([∂2
A, ∂

2
B] ; φ2) = im(φ2)∩ (im(φ1)∪ im(∂A ; φ)∪ im(∂B ; φ)) similarly to the former point.

Then, B(d) := (B(d1)—Γ—B(d2)) is an inductive branch decomposition of Γ and

wd(B(d))
:= max{wd(B(d1)), |im([∂A, ∂B])|,wd(B(d2))}

15:24 E. Di Lavore and P. Sobociński Vol. 19:3

≤ max{2 · wd(d1), 2 · |A1|, 2 · |B1|, |A|+ |B|,
2 · wd(d2), 2 · |A2|, 2 · |B2|}

≤ 2 ·max{wd(d1), |A|,wd(d2), |B|}
:=2 ·max{wd(d), |A|, |B|}

where we applied the induction hypothesis and Definition 3.29.

Combining Theorem 3.9, Proposition 3.19, Proposition 3.30, and Proposition 3.33, we
obtain the following.

Theorem 3.34. Branch width is equivalent to monoidal width in Cospan(UHGraph)∗. More
precisely, let G be a hypergraph and g = ∅ → G ← ∅ be the corresponding morphism of
Cospan(UHGraph)∗. Then, 1

2 · bwd(G) ≤ mwd(g) ≤ bwd(G) + 1.

With Theorem 3.9, we obtain:

Corollary 3.35. Tree width is equivalent to monoidal width in Cospan(UHGraph)∗.

4. Monoidal width in matrices

We have just seen that instantiating monoidal width in a monoidal category of graphs yields
a measure that is equivalent to tree width. Now, we turn our attention to rank width, which
is more linear algebraic in flavour as it relies on treating the connectivity of graphs by means
of adjacency matrices. Thus, the monoidal category of matrices is a natural example to
study first. We relate monoidal width in the category of matrices over the natural numbers,
which we introduce in Section 4.1, to their rank (Section 4.2).

The rank of a matrix is the maximum number of its linearly independent rows (or, equiv-
alently, columns). Conveniently, it can be characterised in terms of minimal factorisations.

Lemma 4.1 [PO99]. Let A ∈ MatN(m,n) be an m by n matrix with entries in the natural
numbers. Then rk(A) = min{k ∈ N : ∃B ∈ MatN(k, n) ∃C ∈ MatN(m, k) A = C ·B}.

4.1. The prop of matrices. The monoidal category MatN of matrices with entries in the
natural numbers is a prop whose morphisms from n to m are m by n matrices.

Definition 4.2. MatN is the prop whose morphisms n → m are m by n matrices with entries
in the natural numbers. Composition is the usual product of matrices and the monoidal
product is the biproduct A⊗B :=

(
A 0
0 B

)
.

Let us examine matrix decompositions enabled by this algebra. A matrix A can be
written as a monoidal product A = A1 ⊗ A2 iff the matrix has blocks A1 and A2, i.e.

A =
(

A1 0
0 A2

)
. On the other hand, a composition is related to the rank: the statement of

Lemma 4.1 can be read in the category MatN as rk(A) = min{k ∈ N : A = B ;k C}.
Theorem 4.3 [Zan15]. Let Bialg be the prop whose generators and axioms are given in
Figure 6. There is an isomorphism of categories Mat : Bialg → MatN.

Every morphism f : n → m in Bialg corresponds to a matrix A = Mat(f) ∈ MatN(m,n):
we can read the (i, j)-entry of A off the diagram of f by counting the number of paths from
the jth input to the ith output.

Vol. 19:3 MONOIDAL WIDTH 15:25

= = =

= = =

= = = =

Figure 6. Generators and axioms of a bialgebra.

Example 4.4. The matrix
(

1 0
1 2
0 0

)
∈ MatN(3, 2) corresponds to

For matrices A ∈ MatN(m,n), B ∈ MatN(m, p) and C ∈ MatN(l, n), we indicate with
(A | B) ∈ MatN(m,n + p) and with

(
A
C

) ∈ MatN(m + l, n) the matrices obtained by
concatenating A with B horizontally or with C vertically.

In order to instantiate monoidal width in Bialg, we need to define an appropriate weight
function: the natural choice for a prop is to assign weight n to compositions along the object
n.

Definition 4.5. The atoms for Bialg are its generators (Figure 6) with the symmetry
and identity on 1: A = { 1, 1, 1, 1, 1,1, 11}. The weight function w : A ∪ {⊗} ∪
Obj(Bialg) → N has w(n) := n, for any n ∈ N, and w(g) := max{m,n}, for g : n → m ∈ A.

4.2. Monoidal width of matrices. We show that the monoidal width of a morphism
in the category of matrices Bialg, with the weight function in Definition 4.5, is, up to 1,
the maximum rank of its blocks. The overall strategy to prove this result is to first relate
monoidal width directly with the rank (Proposition 4.8) and then to improve this bound by
prioritising ⊗-nodes in a decomposition (Proposition 4.10). Combining these two results
leads to Theorem 4.13. The shape of an optimal decomposition is given in Figure 7: a matrix

A =

⎛
⎝

A1 0 ··· 0
0 A2 ··· 0
...

...
. . .

...
0 0 ··· Ak

⎞
⎠ can be decomposed as A = (M1 ;N1)⊗ (M2 ;N2)⊗ · · · ⊗ (Mk ;Nk),

where Aj = Mj ;Nj is a rank factorisation as in Lemma 4.1.
The characterisation of the rank of a matrix in Lemma 4.1 hints at some relationship

between the monoidal width of a matrix and its rank. In fact, we have Proposition 4.8,

15:26 E. Di Lavore and P. Sobociński Vol. 19:3

M1 N1

M2 N2

...

Mk Nk

Figure 7. Generic shape of an optimal decomposition in Bialg.

which bounds the monoidal width of a matrix with its rank. In order to prove this result, we
first need to bound the monoidal width of a matrix with its domain and codomain, which is
done in Proposition 4.6.

Proposition 4.6. Let P be a cartesian and cocartesian prop. Suppose that 11, 1, 1, 1,

1 ∈ A and w(11) ≤ 1, w(1) ≤ 2, w(1) ≤ 2, w(1) ≤ 1 and w(1) ≤ 1. Suppose
that, for every g : 1 → 1, mwd(g) ≤ 2. Let f : n → m be a morphism in P. Then
mwd(f) ≤ min{m,n}+ 1.

Proof. We proceed by induction on k = max{m,n}. There are three base cases.

• If n = 0, then f = m because 0 is initial by hypothesis, and we can compute its width,
mwd(f) = mwd(

⊗
m 1) ≤ w(1) ≤ 1 ≤ 0 + 1.

• If m = 0, then f = n because 0 is terminal by hypothesis, and we can compute its width,
mwd(f) = mwd(

⊗
m 1) ≤ w(1) ≤ 1 ≤ 0 + 1.

• If m = n = 1, then mwd(f) ≤ 2 ≤ 1 + 1 by hypothesis.

For the induction steps, suppose that the statement is true for any f ′ : n′ → m′ with
max{m′, n′} < k = max{m,n} and min{m′, n′} ≥ 1. There are three possibilities.

(1) If 0 < n < m = k, then f can be decomposed as shown below because n+1 is uniform
and morphisms are copiable because P is cartesian by hypothesis.

fn m

= fn
m− 1

1

= fn

m− 1

1

=
f

f
n

m− 1

1

This corresponds to f = n ;(1n⊗h1);n+1 (h2⊗11), where h1 := f ;(m−1⊗11) : n → 1
and h2 := f ; (1m−1 ⊗ 1) : n → m− 1.

Then, mwd(f) ≤ max{mwd(n ; (1n ⊗ h1)), n+ 1,mwd(h2 ⊗ 11)}. So, we want to
bound the monoidal width of the two morphisms appearing in the formula above. For
the first morphism, we apply the induction hypothesis because h1 : n → 1 and 1, n < k.

Vol. 19:3 MONOIDAL WIDTH 15:27

For the second morphism, we apply the induction hypothesis because h2 : n → m− 1
and n,m− 1 < k.

mwd(n ; (1n ⊗ h1)) mwd(h2 ⊗ 11)

≤ (by Lemma 2.8) = (by Definition 2.3)

max{mwd(h1), n+ 1} mwd(h2)

≤ (by induction hypothesis) ≤ (by induction hypothesis)

max{min{n, 1}+ 1, n+ 1} min{n,m− 1}+ 1

= (because 0 < n) = (because n ≤ m− 1)

n+ 1 n+ 1

Then, mwd(f) ≤ n+ 1 = min{m,n}+ 1 because n < m.
(2) If 0 < m < n = k, we can apply Item 1 to Pop with the same assumptions on the set of

atoms because Pop is also cartesian and cocartesian. We obtain that mwd(f) ≤ m+ 1 =
min{m,n}+ 1 because m < n.

(3) If 0 < m = n = k, f can be decomposed as in Item 1 and, instead of applying
the induction hypothesis to bound mwd(h1) and mwd(h2), one applies Item 2. Then,
mwd(f) ≤ m+ 1 = min{m,n}+ 1 because m = n.

We can apply the former result to Bialg and obtain Proposition 4.8 because the width
of 1 × 1 matrices, which are numbers, is at most 2. This follows from the reasoning
in Example 2.5 as we can write every natural number k : 1 → 1 as the following composition:

. . .

Lemma 4.7. Let k : 1 → 1 in Bialg. Then, mwd(k) ≤ 2.

Proposition 4.8. Let f : n → m in Bialg. Then, mwdf ≤ rk(Matf) + 1. Moreover, if f
is not ⊗-decomposable, i.e. there are no f1, f2 both distinct from f s.t. f = f1 ⊗ f2, then
rk(Matf) ≤ mwdf .

Proof. We prove the second inequality. Let d be a monoidal decomposition of f . By
hypothesis, f is non ⊗-decomposable. Then, there are two options.

(1) If the decomposition is just a leaf, d = (f), then f must be an atom. We can check
the inequality for all the atoms: w() = 2 ≥ rk(Matf) = 2, w(1) = w(1) =
2 ≥ rk(Matf) = 1 or w(1) = w(1) = 1 ≥ rk(Matf) = 0. Then, wd(d) = w(f) ≥
rk(Matf).

(2) If d = (d1— ;k —d2), then there are g : n → k and h : k → m such that f = g ; h. By
Lemma 4.1, k ≥ rk(Matf). Then, wd(d) ≥ k ≥ rk(Matf).

We prove the first inequality. By Lemma 4.1, there are g : n → r and h : r → m such that
f = g ; h with r = rk(Matf). Then, r ≤ m,n by definition of rank. By Lemma 4.7, we
can apply Proposition 4.6 to obtain that mwd(g) ≤ min{n, r}+ 1 = r + 1 and mwd(h) ≤
min{m, r}+ 1 = r + 1. Then, mwd(f) ≤ max{mwd(g), r,mwd(h)} ≤ r + 1.

The bounds given by Proposition 4.8 can be improved when we have a ⊗-decomposition
of a matrix, i.e. we can write f = f1 ⊗ . . .⊗ fk, to obtain Proposition 4.10. The latter relies
on Lemma 4.9, which shows that discarding inputs or outputs cannot increase the monoidal
width of a morphism in Bialg.

15:28 E. Di Lavore and P. Sobociński Vol. 19:3

Lemma 4.9. Let f : n → m in Bialg and d ∈ Df . Let fD := f ; (1m−k ⊗ k) and
fZ := (1n−k′ ⊗ k′) ; f , with k ≤ m and k′ ≤ n.

fD := fn m− k , fZ := fn− k m .

Then there are D(d) ∈ DfD and Z(d) ∈ DfZ such that wd(D(d)) ≤ wd(d) and wd(Z(d)) ≤
wd(d).

Proof. We show the inequality for fD by induction on the decomposition d. The inequality for
fZ follows from the fact that Bialg coincides with its opposite category. If the decomposition
has only one node, d = (f), then f is an atom and we can check these cases by hand in
the table below. The first column shows the possibilities for f , while the second and third
columns show the decompositions of fD for k = 1 and k = 2.

f k = 1 k = 2

=

= =

=

= =

=

If the decomposition starts with a composition node, d = (d1— ;—d2), then f = f1 ; f2,
with di monoidal decomposition of fi.

fn m− k = f1 f2n m− k

By induction hypothesis, there is a monoidal decomposition D(d2) of f2 ; (1m−k ⊗ k)
such that wd(D(d2)) ≤ wd(d2). We use this decomposition to define a decomposition
D(d) := (d1— ;—D(d2)) of fD. Then, D(d) is a monoidal decomposition of f ; (1m−k ⊗ k)
because f ; (1m−k ⊗ k) = f1 ; f2 ; (1m−k ⊗ k).

If the decomposition starts with a tensor node, d = (d1— ⊗—d2), then f = f1 ⊗ f2,
with di monoidal decomposition of fi : ni → mi. There are two possibilities: either k ≤ m2

or k > m2. If k ≤ m2, then f ; (1m−k ⊗ k) = f1 ⊗ (f2 ; (1m2−k ⊗ k)).

fn m− k =
f1

f2

n1

n2

m1

m2 − k

By induction hypothesis, there is a monoidal decomposition D(d2) of f2 ; (1m−k ⊗ k) such
that wd(D(d2)) ≤ wd(d2). Then, we can use this decomposition to define a decomposition
D(d) := (d1— ⊗ —D(d2)) of fD. If k > m2, then f ; (1m−k ⊗ k) = (f1 ; (1m1−k+m2 ⊗

k−m2))⊗ (f2 ; m2).

fn m− k =
f1

f2

n1

n2

m1 − k +m2

By induction hypothesis, there are monoidal decompositions D(di) of f1 ;(1m1−k+m2⊗ k−m2)
and f2 ; m2 such that wd(D(di)) ≤ wd(di). Then, we can use these decompositions to define
a monoidal decomposition D(d) := (D(d1)—⊗—D(d2)) of fD.

Vol. 19:3 MONOIDAL WIDTH 15:29

Proposition 4.10. Let f : n → m in Bialg and d′ = (d′1— ;k —d′2) ∈ Df . Suppose there
are f1 and f2 such that f = f1 ⊗ f2. Then, there is d = (d1— ⊗ —d2) ∈ Df such that
wd(d) ≤ wd(d′).

Proof. By hypothesis, d′ is a monoidal decomposition of f . Then, there are g and h such
that f1 ⊗ f2 = f = g ; h. By Proposition 4.8, there are monoidal decompositions di of fi
with wd(di) ≤ ri + 1, where ri := rk(Matfi). By properties of the rank, r1 + r2 = rk(Matf)
and, by Lemma 4.1, rk(Matf) ≤ k.

There are two cases: either both ranks are non-zero, or at least one is zero. If ri > 0,
then r1 + r2 ≥ max{r1, r2}+ 1. If there is ri = 0, then fi = ;0 and we may assume that
f1 = ;0 . Then, we can express f2 in terms of g and h.

f2 =
f2

=
f2

f1
= g h

By Lemma 4.9, mwd((1 ⊗) ; g) ≤ mwd(g) and mwd(h ; (1 ⊗)) ≤ mwd(h). We compute
the widths of the decompositions in these two cases.

Case ri > 0 Case r1 = 0

wd(d′) wd(d′)

= max{wd(d′1), k,wd(d′2)} = max{wd(d′1), k,wd(d′2)}
≥ k ≥ max{mwd(g), k,mwd(h)}
≥ rk(Matf) ≥ max{mwd((1 ⊗) ; g), k,mwd(h ; (1 ⊗))}
= r1 + r2 ≥ mwd(f2)

≥ max{r1, r2}+ 1 = wd(d2)

≥ max{wd(d1),wd(d2)} = wd(d)

= wd(d)

We summarise Proposition 4.10 and Proposition 4.8 in Corollary 4.11.

Corollary 4.11. Let f = f1⊗. . .⊗fk in Bialg. Then, mwd(f) ≤ maxi=1,...,k rk(Mat(fi))+1.
Moreover, if fi are not ⊗-decomposable, then maxi=1,...,k rk(Mat(fi)) ≤ mwdf .

Proof. By Proposition 4.10 there is a decomposition of f of the form d = (d1—⊗— · · · (dk−1—⊗
—dk)), where we can choose di to be a minimal decomposition of fi. Then, mwd(f) ≤ wd(d) =
maxi=1,...,k wd(di). By Proposition 4.8, wd(di) ≤ ri+1. Then, mwd(f) ≤ max{r1, . . . , rk}+1.
Moreover, if fi are not ⊗-decomposable, Proposition 4.8 gives also a lower bound on their
monoidal width: rk(Mat(fi)) ≤ mwdfi; and we obtain that maxi=1,...,k rk(Mat(fi)) ≤
mwdf .

The results so far show a way to construct efficient decompositions given a ⊗-decomposi-
tion of the matrix. However, we do not know whether ⊗-decompositions are unique.
Proposition 4.12 shows that every morphism in Bialg has a unique ⊗-decomposition.

Proposition 4.12. Let C be a monoidal category whose monoidal unit 0 is both initial and
terminal, and whose objects are a unique factorisation monoid. Let f be a morphism in C.
Then f has a unique ⊗-decomposition.

15:30 E. Di Lavore and P. Sobociński Vol. 19:3

Proof. Suppose f = f1 ⊗ · · · ⊗ fm = g1 ⊗ · · · ⊗ gn with fi : Xi → Yi and gj : Zj → Wj non
⊗-decomposables. Suppose m ≤ n and proceed by induction on m. If m = 0, then f = 10

and gi = 10 for every i = 1, . . . , n because 0 is initial and terminal.
Suppose that f̄ := f1 ⊗ . . .⊗ fm−1 has a unique ⊗-decomposition. Let A1 ⊗ . . .⊗ Aα

and B1 ⊗ . . .⊗Bβ be the unique ⊗-decompositions of X1 ⊗ . . .⊗Xm = Z1 ⊗ . . .⊗ Zn and
Y1 ⊗ . . .⊗ Ym = W1 ⊗ . . .⊗Wn, respectively. Then, there are x ≤ α and y ≤ β such that
A1⊗ . . .⊗Ax = X1⊗ . . .⊗Xm−1 and B1⊗ . . .⊗By = Y1⊗ . . .⊗Ym−1. Then, we can rewrite
f̄ in terms of gis:

f1

fm−1

X1

Xm−1

Y1

Ym−1

...
=

f1

fm−1

fm

X1

Xm−1

Y1

Ym−1

...

=

g1

gk−1

gk

gn

...

...

=

g1

gk−1

...

By induction hypothesis, f̄ has a unique ⊗-decomposition, thus it must be that k = m− 1,
for every i < m− 1 fi = gi and fm−1 = (1 ⊗) ; gk ; (1 ⊗). Then, we can express fm in
terms of gm, . . . , gn:

fmXm Ym =

f1

fm−1

fmXm Ym

...

=

g1

gm−1

gm

gn

...

...

=

gm−1

gm

gn

...

By hypothesis, fm is not ⊗-decomposable and m ≤ n. Thus, n = m, fm−1 = gm−1 and
fm = gm.

Our main result in this section follows from Corollary 4.11 and Proposition 4.12, which
can be applied to Bialg because 0 is both terminal and initial, and the objects, being a free
monoid, are a unique factorisation monoid.

Theorem 4.13. Let f = f1⊗ . . .⊗fk be a morphism in Bialg and its unique ⊗-decomposition
given by Proposition 4.12, with ri = rk(Mat(fi)). Then max{r1, . . . , rk} ≤ mwd(f) ≤
max{r1, . . . , rk}+ 1.

Note that the identity matrix has monoidal width 1 and twice the identity matrix has
monoidal width 2, attaining both the upper and lower bounds for the monoidal width of a
matrix.

Vol. 19:3 MONOIDAL WIDTH 15:31

5. A monoidal algebra for rank width

After having studied monoidal width in the monoidal category of matrices, we are ready
to introduce the second monoidal category of “open graphs”, which relies on matrices to
encode the connectivity of graphs. In this setting, we capture rank width: we show that
instantiating monoidal width in this monoidal category of graphs is equivalent to rank width.

After recalling rank width in Section 5.1, we define the intermediate notion of inductive
rank decomposition in Section 5.2, and show its equivalence to that of rank decomposition.
As for branch decompositions, adding this intermediate step allows a clearer presentation of
the correspondence between rank decompositions and monoidal decompositions. Section 5.3
recalls the categorical algebra of graphs with boundaries [CS15,DLHS21]. Finally, Section 5.4
contains the main result of the present section, which relates inductive rank decompositions,
and thus rank decompositions, with monoidal decompositions.

Rank decompositions were originally defined for undirected graphs [OS06]. This mo-
tivates us to consider graphs rather than hypergraphs as in Section 3. As mentioned in
Definition 3.3, a finite undirected graph is a finite undirected hypergraph with hyperedge
size 2. More explicitly,

Definition 5.1. A graph G = (V,E) is given by a finite set of vertices V , a finite set of
edges E and an adjacency function ends : E → ℘≤2(V), where ℘≤2(V) indicates the set of
subsets of V with at most two elements. The same information recorded in the function
ends can be encoded in an equivalence class of matrices, an adjacency matrix [G]: the sum
of the entries (i, j) and (j, i) of this matrix records the number of edges between vertex i
and vertex j; two adjacency matrices are equivalent when they encode the same graph, i.e.
[G] = [H] iff G+G� = H +H�.

5.1. Background: rank width. Intuitively, rank width measures the amount of informa-
tion needed to construct a graph by adding edges to a discrete graph. Constructing a clique
requires little information: we add an edge between any two vertices. This is reflected in the
fact that cliques have rank width 1.

Rank width relies on rank decompositions. In analogy with branch decompositions, a
rank decomposition records in a tree a way of iteratively partitioning the vertices of a graph.

Definition 5.2 [OS06]. A rank decomposition (Y, r) of a graph G is given by a subcubic
tree Y together with a bijection r : leaves(Y) → vertices(G).

Each edge b in the tree Y determines a splitting of the graph: it determines a two
partition of the leaves of Y , which, through r, determines a 2-partition {Ab, Bb} of the
vertices of G. This corresponds to a splitting of the graph G into two subgraphs G1 and
G2. Intuitively, the order of an edge b is the amount of information required to recover G
by joining G1 and G2. Given the partition {Ab, Bb} of the vertices of G, we can record the
edges in G beween Ab and Bb in a matrix Xb. This means that, if vi ∈ Ab and vj ∈ Bb, the
entry (i, j) of the matrix Xb is the number of edges between vi and vj .

Definition 5.3 (Order of an edge). Let (Y, r) be a rank decomposition of a graph G. Let b
be an edge of Y . The order of b is the rank of the matrix associated to it: ord(b) := rk(Xb).

Note that the order of the two sets in the partition does not matter as the rank is
invariant to transposition. The width of a rank decomposition is the maximum order of the
edges of the tree and the rank width of a graph is the width of its cheapest decomposition.

15:32 E. Di Lavore and P. Sobociński Vol. 19:3

Definition 5.4 (Rank width). Given a rank decomposition (Y, r) of a graph G, define its
width as wd(Y, r) := maxb∈edges(Y) ord(b). The rank width of G is given by the min-max
formula:

rwd(G) := min
(Y,r)

wd(Y, r).

5.2. Graphs with dangling edges and inductive definition. We introduce graphs
with dangling edges and inductive rank decomposition of them. These decompositions
are an intermediate notion between rank decompositions and monoidal decompositions.
Similarly to the definition of inductive branch decomposition (Section 3.2), they add to rank
decompositions the algebraic flavour of monoidal decompositions by using the inductive
data type of binary trees to encode a decomposition.

Intuitively, a graph with dangling edges is a graph equipped with some extra edges that
connect some vertices in the graph to some boundary ports. This allows us to combine graphs
with dangling edges by connecting some of their dangling edges. Thus, the equivalence
between rank decompositions and inductive rank decompositions formalises the intuition
that a rank decomposition encodes a way of dividing a graph into smaller subgraphs by
“cutting” along some edges.

Definition 5.5. A graph with dangling edges Γ = ([G] , B) is given by an adjacency matrix
G ∈ MatN(k, k) that records the connectivity of the graph and a matrix B ∈ MatN(k, n)
that records the “dangling edges” connected to n boundary ports. We will sometimes write
G ∈ adjacency(Γ) and B = sources(Γ).

Example 5.6. Two graphs with the same ports, as illustrated below, can be “glued”
together:

glued with gives

A rank decomposition is, intuitively, a recipe for decomposing a graph into its single-
vertex subgraphs by cutting along its edges. The cost of each cut is given by the rank of the
adjacency matrix that represents it.

rk(1 1
1 1) = 1

Decompositions are elements of a tree data type, with nodes carrying subgraphs Γ′
of the ambient graph Γ. In the following Γ′ ranges over the non-empty subgraphs of Γ:
TΓ ::= (Γ′) | (TΓ—Γ′—TΓ). Given T ∈ TΓ, the label function λ takes a decomposition
and returns the graph with dangling edges at the root: λ(T1—Γ—T2) := Γ and λ((Γ)) := Γ.

The conditions in the definition of inductive rank decomposition ensure that, by glueing
Γ1 and Γ2 together, we get Γ back.

Definition 5.7. Let Γ = ([G] , B) be a graph with dangling edges, where G ∈ MatN(k, k)
and B ∈ MatN(k, n). An inductive rank decomposition of Γ is T ∈ TΓ where either: Γ is
empty and T = (); or Γ has one vertex and T = (Γ); or T = (T1—Γ—T2) and Ti ∈ TΓi are
inductive rank decompositions of subgraphs Γi = ([Gi] , Bi) of Γ such that:

• The vertices are partitioned in two, [G] =
[(

G1 C
0 G2

)]
;

Vol. 19:3 MONOIDAL WIDTH 15:33

• The dangling edges are those to the original boundary and to the other subgraph, B1 =

(A1 | C) and B2 = (A2 | C�), where B =
(

A1
A2

)
.

We will sometimes write Γi = λ(Ti), Gi = adjacency(Γi) and Bi = sources(Γi). We can
always assume that the rows of G and B are ordered like the leaves of T so that we can
actually split B horizontally to get A1 and A2.

Remark 5.8. The perspective on rank width and branch width given by their inductive
definitions emphasises an operational difference between them: a branch decompositon
gives a recipe to construct a graph from its one-edge subgraphs by identifying some of their
vertices; on the other hand, a rank decomposition gives a recipe to construct a graph from
its one-vertex components by connecting some of their “dangling” edges.

Definition 5.9. Let T = (T1—Γ—T2) be an inductive rank decomposition of Γ = ([G] , B),
with Ti possibly both empty. Define the width of T inductively: if T is empty, wd(()) := 0;
otherwise, wd(T) := max{wd(T1),wd(T2), rk(B)}. Expanding this expression, we obtain

wd(T) = max
T ′ full subtree of T

rk(sources(λ(T ′))).

The inductive rank width of Γ is defined by the min-max formula irwd(Γ) := minT wd(T).

We show that the inductive rank width of Γ = ([G] , B) is the same as the rank width of
G, up to the rank of the boundary matrix B.

Before proving the upper bound for inductive rank width, we need a technical lemma
that relates the width of a graph with that of its subgraphs and allows us to compute it
“globally”.

Lemma 5.10. Let T be an inductive rank decomposition of Γ = ([G] , B). Let T ′ be a full
subtree of T and Γ′ := λ(T ′) with Γ′ = ([G′] , B′). The adjacency matrix of Γ can be written

as [G] =

[(
GL CL C
0 G′ CR
0 0 GR

)]
and its boundary as B =

(
AL

A′
AR

)
. Then, rk(B′) = rk(A′ | C�

L | CR).

Proof. Proceed by induction on the decomposition tree T . If it is just a leaf, T = (Γ), then
Γ has at most one vertex, and Γ′ = ∅ or Γ′ = Γ. In both cases, the desired equality is true.

If T = (T1—Γ—T2), then, by the definition of inductive rank decomposition, λ(Ti) =

Γi = ([Gi] , Bi) with [G] =
[(

G1 C
0 G2

)]
, B =

(
A1
A2

)
, B1 = (A1 | C) and B2 = (A2 | C�).

Suppose that T ′ ≤ T1. Then, we can write [G1] =

[(
GL CL D′
0 G′ DR
0 0 HR

)]
, A1 =

(
AL

A′
FR

)
and

C =

(
EL

E′
ER

)
. It follows that B1 =

(
AL EL

A′ E′
FR ER

)
and CR = (DR | E′). By induction hypothesis,

rk(B′) = rk(A′ | E′ | C�
L | DR). The rank is invariant to permuting the order of columns,

thus rk(B′) = rk(A′ | C�
L | DR | E′) = rk(A′ | C�

L | CR). We proceed analogously if
T ′ ≤ T2.

The above result allows us to relate the width of rank decompositions, which is computed
“globally”, to the width of inductive rank decompositions, which is computed “locally”, with
the following bound.

Proposition 5.11. Let Γ = ([G] , B) be a graph with dangling edges and (Y, r) be a rank
decomposition of G. Then, there is an inductive rank decomposition I(Y, r) of Γ such that
wd(I(Y, r)) ≤ wd(Y, r) + rk(B).

15:34 E. Di Lavore and P. Sobociński Vol. 19:3

Proof. Proceed by induction on the number of edges of the decomposition tree Y to construct
an inductive decomposition tree T in which every non-trivial full subtree T ′ has a correspond-
ing edge b′ in the tree Y . Suppose Y has no edges, then either G = ∅ or G has one vertex.
In either case, we define an inductive rank decomposition with just a leaf labelled with Γ,
I(Y, r) := (Γ). We compute its width by definition: wd(I(Y, r)) := rk(B) ≤ wd(Y, r)+ rk(B).

If the decomposition tree has at least an edge, then it is composed of two subcubic

subtrees, Y = Y1
b
—Y2. Let Vi := r(leaves(Yi)) be the set of vertices associated to Yi and

Gi := G[Vi] be the subgraph of G induced by the set of vertices Vi. By induction hypothesis,
there are inductive rank decompositions Ti of Γi = ([Gi] , Bi) in which every full subtree T ′
has an associated edge b′. Associate the edge b to both T1 and T2 so that every subtree of
T has an associated edge in Y . We can use these decompositions to define an inductive
rank decomposition T = (T1—Γ—T2) of Γ. Let T ′ be a full subtree of T corresponding
to Γ′ = ([G′] , B′). By Lemma 5.10, we can compute the rank of its boundary matrix
rk(B′) = rk(A′ | C�

L | CR), where A′, CL and CR are defined as in the statement of
Lemma 5.10. The matrix A′ contains some of the rows of B, then its rank is bounded by the
rank of B and we obtain rk(B′) ≤ rk(B) + rk(C�

L | CR). The matrix (C�
L | CR) records the

edges between the vertices in G′ and the vertices in the rest of G, which, by definition, are
the edges that determine ord(b′). This means that the rank of this matrix is the order of the
edge b′: rk(C�

L | CR) = ord(b′). With these observations, we can compute the width of T .

wd(T)

= max
T ′≤T

rk(B′)

= max
T ′≤T

rk(A′ | C�
L | CR)

≤ max
T ′≤T

rk(C�
L | CR) + rk(B)

= max
b∈edges(Y)

ord(b) + rk(B)

:=wd(Y, r) + rk(B)

Proposition 5.12. Let T be an inductive rank decomposition of Γ = ([G] , B) with G ∈
MatN(k, k) and B ∈ MatN(k, n). Then, there is a rank decomposition I†(T) of G such that
wd(I†(T)) ≤ wd(T).

Proof. A binary tree is, in particular, a subcubic tree. Then, the rank decomposition
corresponding to an inductive rank decomposition T can be defined by its underlying
unlabelled tree Y . The corresponding bijection r : leaves(Y) → vertices(G) between the
leaves of Y and the vertices of G can be defined by the labels of the leaves in T : the label of
a leaf l of T is a subgraph of Γ with one vertex vl and these subgraphs need to give Γ when
composed together. Then, the leaves of T , which are the leaves of Y , are in bijection with
the vertices of G: there is a bijection r : leaves(Y) → vertices(G) such that r(l) := vl. Then,
(Y, r) is a branch decomposition of G and we can define I†(T) := (Y, r).

By construction, the edges of Y are the same as the edges of T so we can compute
the order of the edges in Y from the labellings of the nodes in T . Consider an edge b in
Y and consider its endpoints in T : let {v, vb} = ends(b) with v parent of vb in T . The
order of b is related to the rank of the boundary of the subtree Tb of T with root in vb. Let
λ(Tb) = Γb = ([Gb] , Bb) be the subgraph of Γ identified by Tb. We can express the adjacency

Vol. 19:3 MONOIDAL WIDTH 15:35

and boundary matrices of Γ in terms of those of Γb:

[G] =

[(
GL CL C
0 Gb CR
0 0 GR

)]
and B =

(
AL

A′
AR

)
.

By Lemma 5.10, the boundary rank of Γb can be computed by rk(Bb) = rk(A′ | C�
L | CR).

By definition, the order of the edge b is ord(b) := rk(C�
L | CR), and we can bound it with

the boundary rank of Γb: rk(Bb) ≥ ord(b). These observations allow us to bound the width
of the rank decomposition Y that corresponds to T .

wd(Y, r)

:= max
b∈edges(Y)

ord(b)

≤ max
b∈edges(Y)

rk(Bb)

≤ max
T ′≤T

rk(sources(λ(T ′)))

:=wd(T)

Combining Proposition 5.11 and Proposition 5.12 we obtain:

Proposition 5.13. Inductive rank width is equivalent to rank width.

5.3. A prop of graphs. Here we recall the algebra of graphs with boundaries and its
diagrammatic syntax [DLHS21]. Graphs with boundaries are graphs together with some
extra “dangling” edges that connect the graph to the left and right boundaries. They
compose by connecting edges that share a common boundary. All the information about
connectivity is handled with matrices.

Remark 5.14. The categorical algebra of graphs with boundaries is a natural choice for
capturing rank width because it emphasises the operation of splitting a graph into parts
that share some edges. This contrasts with the algebra of cospans of graphs (Section 3.3),
in which graphs are split into subgraphs that share some vertices. The difference in the
operation that is emphasised by these two algebras reflects the difference between rank width
and tree or branch width pointed out in Remark 5.8.

Definition 5.15 [DLHS21]. A graph with boundaries g : n → m is a tuple g =
([G] , L,R, P, [F]) of an adjacency matrix [G] of a graph on k vertices, with G ∈ MatN(k, k);
matrices L ∈ MatN(k, n) and R ∈ MatN(k,m) that record the connectivity of the vertices
with the left and right boundary; a matrix P ∈ MatN(m,n) that records the passing wires
from the left boundary to the right one; and a matrix F ∈ MatN(m,m) that records the
wires from the right boundary to itself. Graphs with boundaries are taken up to an equiv-
alence making the order of the vertices immaterial. Let g, g′ : n → m on k vertices, with
g = ([G] , L,R, P, [F]) and g′ = ([G′] , L′, R′, P, [F]). The graphs g and g′ are considered equal
iff there is a permutation matrix σ ∈ MatN(k, k) such that g′ = (

[
σGσ�] , σL, σR, P, [F]).

Graphs with boundaries can be composed sequentially and in parallel [DLHS21], forming
a symmetric monoidal category MGraph.

The prop Grph provides a convenient syntax for graphs with boundaries. It is obtained
by adding a cup and a vertex generators to the prop of matrices Bialg (Figure 6).

15:36 E. Di Lavore and P. Sobociński Vol. 19:3

Definition 5.16 [CS15]. The prop of graphs Grph is obtained by adding to Bialg the
generators ∪ : 0 → 2 and v : 1 → 0 with the equations below.

and such that = and = .

These equations mean, in particular, that the cup transposes matrices (Figure 8, left)
and that we can express the equivalence relation of adjacency matrices as in Definition 5.1:
[G] = [H] iff G+G� = H +H� (Figure 8, right).

C
=

C�
[G] = [H] iff

G
=

H

Figure 8. Adding the cup.

Proposition 5.17 [DLHS21, Theorem 23]. The prop of graphs Grph is isomorphic to the
prop MGraph.

Proposition 5.17 means that the morphisms in Grph can be written in the following
normal form

k

G

L

R

P

F
n

m

.

The prop Grph is more expressive than graphs with dangling edges (Definition 5.5): its
morphisms can have edges between the boundaries as well. In fact, graphs with dangling
edges can be seen as morphisms n → 0 in Grph.

Example 5.18. A graph with dangling edges Γ = ([G] , B) can be represented as a morphism
in Grph

g = ([G] , B, ¡, !, [()]) = k

G

Bn

,

where ! : n → 0 and ¡ : 0 → k are the unique maps to and from the terminal and initial object
0. We can now formalise the intuition of glueing graphs with dangling edges as explained in
Example 5.6. The two graphs there correspond to g1 and g2 below left and middle. Their
glueing is obtained by precomposing their monoidal product with a cup, i.e. ∪2 ; (g1 ⊗ g2),

Vol. 19:3 MONOIDAL WIDTH 15:37

as shown below right.

g1 = g2 = ∪2 ; (g1 ⊗ g2) =

Definition 5.19. Let the set of atomic morphisms A be the set of all the morphisms of Grph.
The weight function w : A ∪ {⊗} ∪ Obj(Grph) → N is defined, on objects n, as w(n) := n;
and, on morphisms g ∈ A, as w(g) := k, where k is the number of vertices of g.

Note that, the monoidal width of g is bounded by the number k of its vertices, thus we
could take as atoms all the morphisms with at most one vertex and the results would not
change.

5.4. Rank width as monoidal width. We show that monoidal width in the prop Grph,
with the weight function given in Definition 5.19, is equivalent to rank width. We do this
by bounding monoidal width by above with twice rank width and by below with half of
rank width (Theorem 5.26). We prove these bounds by defining maps from inductive rank
decompositions to monoidal decompositions that preserve the width (Proposition 5.23), and
vice versa (Proposition 5.25).

The upper bound (Proposition 5.23) is established by associating to each inductive rank
decomposition a suitable monoidal decomposition. This mapping is defined inductively,
given the inductive nature of both these structures. Given an inductive rank decomposition
of a graph Γ, we can construct a decomposition of its corresponding morphism g as shown
by the first equality in Figure 9. However, this decomposition is not optimal as it cuts along

gn =

k1

k2

G1

G2

A1

A2

C
n =

k1

k2

L1

L2

G1

G2

N1

N2

S
n

r1

r2

Figure 9. First step of a monoidal decomposition given by an inductive
rank decomposition

the number of vertices k1 + k2. But we can do better thanks to Lemma 5.21, which shows

15:38 E. Di Lavore and P. Sobociński Vol. 19:3

that we can cut along the ranks, r1 = rk(A1 | C) and r2 = rk(A2 | C�), of the boundaries of
the induced subgraphs to obtain the second equality in Figure 9. First, recall some facts
about ranks.

Remark 5.20. By Lemma 4.1, the rank of a composition of two matrices is bounded by their
ranks: rk(A ·B) ≤ min{rk(A), rk(B)}. If, moreover, B has full rank, then rk(A ·B) = rk(A).

Lemma 5.21. Let Ai ∈ MatN(ki, n), for i = 1, 2, and C ∈ MatN(k1, k2). Then, there are
rank decompositions of (A1 | C) and (A2 | C�) of the form (A1 | C) = L1 · (N1 | S · L�

2),
and (A2 | C�) = L2 · (N2 | S� · L�

1). This ensures that we can decompose the diagram
below on the left-hand-side as the one on the right-hand-side, where r1 = rk(A1 | C) and
r2 = rk(A2 | C�).

A1

A2

C

n

n

k1

k2

=

N1

N2

S
L1

L2

n

n

k1

k2

r1

r2

Proof. Let r1 = rk(A1 | C) and r2 = rk(A2 | C�). We start by factoring (A1 | C) into
L1 · (N1 | K1),

A1

C

n
k1

k2
=

N1

K1

L1

n
k1

k2

r1

where L1 ∈ MatN(k1, r1), N1 ∈ MatN(r1, n) and K1 ∈ MatN(r1, k2). Then, we proceed with
factoring (A2 | K�

1) and we show that rk(A2 | K�
1) = rk(A2 | C�). Let L2 · (N2 | K2) be a

rank factorisation of (A2 | K�
1),

K�
1

A2

r1
k2

n
=

K2

N2

L2

r1
k2

n

r′

with L2 ∈ MatN(k2, r
′), N2 ∈ MatN(r

′, n) and K2 ∈ MatN(r
′, k1). We show that r′ = r2. By

the first factorisation, we obtain that C = L1 ·K1, and

(A2 | C�) = (A2 | K�
1 · L�

1) = (A2 | K�
1) ·

(
1 0
0 L�

1

)
.

Then, r′ = r2 because L1 and, consequently,
(

1 0
0 L�

1

)
have full rank. By letting S = K�

2 , we

obtain the desired factorisation.

Once we have performed the cuts in Figure 9 on the right, we have changed the boundaries
of the induced subgraphs. This means that we cannot apply the inductive hypothesis right
away, but we need to transform first the inductive rank decompositions of the old subgraphs
into decompositions of the new ones, as shown in Lemma 5.22. More explicitly, when M has
full rank, if we have an inductive rank decomposition of Γ = ([G] , B ·M), which corresponds
to g below left, we can obtain one of Γ′ = ([G] , B ·M ′), which corresponds to g′ below right,
of at most the same width.

g =
G

BM

� g′ =
G

BM ′

Vol. 19:3 MONOIDAL WIDTH 15:39

Lemma 5.22. Let T be an inductive rank decomposition of Γ = ([G] , B ·M), with M that
has full rank. Then, there is an inductive rank decomposition T ′ of Γ′ = ([G] , B ·M ′) such
that wd(T) ≤ wd(T ′) and such that T and T ′ have the same underlying tree structure. If,
moreover, M ′ has full rank, then wd(T) = wd(T ′).

Proof. Proceed by induction on the decomposition tree T . If the tree T is just a leaf with label
Γ, then we define the corresponding tree to be just a leaf with label Γ′: T ′ := (Γ′). Clearly,
T and T ′ have the same underlying tree structure. By Remark 5.20 and the fact that M has
full rank, we can relate their widths: wd(T ′) := rk(B ·M ′) ≤ rk(B) = rk(B ·M) :=wd(T).
If, moreover, M ′ has full rank, the inequality becomes an equality and wd(T ′) = wd(T).

If T = (T1—Γ—T2), then the adjacency and boundary matrices of Γ can be expressed
in terms of those of its subgraphs Γi := λi(Ti) = ([Gi] , Di), by definition of inductive rank

decomposition: G =
(

G1 C
0 G2

)
, B ·M =

(
A1
A2

)
·M =

(
A1·M
A2·M

)
, with D1 = (A1 ·M | C) and

D2 = (A2 ·M | C�). The boundary matrices Di of the subgraphs Γi can also be expressed

as a composition with a full-rank matrix: D1 = (A1 · M | C) = (A1 | C) ·
(

M 0
0 1k2

)
and

D2 = (A2 ·M | C�) = (A2 | C�) ·
(

M 0
0 1k1

)
. The matrices

(
M 0
0 1ki

)
have full rank because

all their blocks do. Let B1 = (A1 | C) and B2 = (A2 | C�). By induction hypothesis,

there are inductive rank decompositions T ′
1 and T ′

2 of Γ′
1 = ([G1] , B1 ·

(
M ′ 0
0 1k2

)
) and

Γ′
2 = ([G2] , B2 ·

(
M ′ 0
0 1k1

)
) with the same underlying tree structure as T1 and T2, respectively.

Moreover, their width is bounded, wd(T ′
i) ≤ wd(Ti), and if, additionally, M ′ has full rank,

wd(T ′
i) = wd(Ti). Then, we can use these decompositions to define an inductive rank

decomposition T ′ := (T ′
1—Γ′—T ′

2) of Γ
′ because its adjacency and boundary matrices can

be expressed in terms of those of Γ′
i as in the definition of inductive rank decomposition:

G =
(

G1 C
0 G2

)
, B1 ·

(
M ′ 0
0 1k2

)
= (A1 ·M ′ | C) and B2 ·

(
M ′ 0
0 1k1

)
= (A2 ·M ′ | C�). Applying

the induction hypothesis and Remark 5.20, we compute the width of this decomposition.

wd(T ′)
:= max{rk(B ·M ′),wd(T ′

1),wd(T
′
2)}

≤ max{rk(B),wd(T1),wd(T2)}
= max{rk(B ·M),wd(T1),wd(T2)}
:=wd(T)

If, moreover, M ′ has full rank, the inequality becomes an equality and wd(T ′) = wd(T).

With the above ingredients, we can show that rank width bounds monoidal width from
above.

Proposition 5.23. Let Γ = ([G] , B) be a graph with dangling edges and g : n → 0 be the
morphism in Grph corresponding to Γ. Let T be an inductive rank decomposition of Γ. Then,
there is a monoidal decomposition R†(T) of g such that wd(R†(T)) ≤ 2 · wd(T).
Proof. Proceed by induction on the decomposition tree T . If it is empty, then G must also
be empty, R†(T) = () and we are done. If the decomposition tree consists of just one leaf
with label Γ, then Γ must have one vertex, we can define R†(T) := (g) to also be just a leaf,
and bound its width wd(T) := rk(G) = wd(R†(T)).

15:40 E. Di Lavore and P. Sobociński Vol. 19:3

If T = (T1—Γ—T2), then we can relate the adjacency and boundary matrices of
Γ to those of Γi := λ(Ti) = ([Gi] , Bi), by definition of inductive rank decomposition:

G =
(

G1 C
0 G2

)
, B =

(
A1
A2

)
, B1 = (A1 | C) and B2 = (A2 | C�). By Lemma 5.21, there are

rank decompositions of (A1 | C) and (A2 | C�) of the form: (A1 | C) = L1 · (N1 | S · L�
2);

and (A2 | C�) = L2 · (N2 | S� · L�
1). This means that we can write g as

gn =

k1

k2

G1

G2

A1

A2

C
n =

k1

k2

L1

L2

G1

G2

N1

N2

S
n

r1

r2
,

with ri = rk(Bi). Then, Bi = Li ·Mi with Mi that has full rank ri. By taking M ′ = 1 in
Lemma 5.22, there is an inductive rank decomposition T ′

i of Γ′
i = ([Gi] , Li), with the same

underlying binary tree as Ti, such that wd(Ti) = wd(T ′
i). Let gi : ri → 0 be the morphisms

in Grph corresponding to Γ′
i and let b : n → r1 + r2 be defined as

bn r1 + r2 =

N1

N2

S
n

r1

r2

.

By induction hypothesis, there are monoidal decompositions R†(T ′
1) and R†(T ′

2) of g1 and
g2 of bounded width: wd(R†(T ′

i)) ≤ 2 · wd(T ′
i) = 2 · wd(Ti). Then, g = b ;r1+r2 (g1 ⊗ g2) and

R†(T) := (b— ;r1+r2 —(R†(T ′
1)—⊗—R†(T ′

2))) is a monoidal decomposition of g. Its width
can be computed.

wd(R†(T))

:= max{w(b),w(r1 + r2),wd(R†(T ′
1)),wd(R†(T ′

2))}
≤ max{w(b),w(r1 + r2), 2 · wd(T ′

1), 2 · wd(T ′
2)}

= max{w(b), r1 + r2, 2 · wd(T1), 2 · wd(T2)}
≤ 2 ·max{r1, r2,wd(T1),wd(T2)}
:=2 · wd(T)

Proving the lower bound is similarly involved and follows a similar proof structure.
From a monoidal decomposition we construct inductively an inductive rank decomposition
of bounded width. The inductive step relative to composition nodes is the most involved and
needs two additional lemmas, which allow us to transform inductive rank decompositions of
the induced subgraphs into ones of two subgraphs that satisfy the conditions of Definition 5.7.

Applying the inductive hypothesis gives us an inductive rank decomposition of Γ =
([G] , (L | R)), which is associated to g below left, and we need to construct one of Γ′ :=

Vol. 19:3 MONOIDAL WIDTH 15:41

(
[
G+ L · F · L�] , (L | R+ L · (F + F�) · P�)), which is associated to f ; g below right, of

at most the same width.

g =
k

G

L

R

P

j

m

f ; g =
k

G

L

R

P

F
j

m

Lemma 5.24. Let T be an inductive rank decomposition of Γ = ([G] , (L | R)), with
G ∈ MatN(k, k), L ∈ MatN(k, j) and R ∈ MatN(k,m). Let F ∈ MatN(j, j), P ∈ MatN(m, j)
and define Γ′ := (

[
G+ L · F · L�] , (L | R+L · (F +F�) ·P�)). Then, there is an inductive

rank decomposition T ′ of Γ′ such that wd(T ′) ≤ wd(T).

Proof. Note that we can factor the boundary matrix of Γ′ as (L | R+L ·(F+F�) ·P�) = (L |
R) ·

(
1j (F+F�)·P�
0 1m

)
. Then, we can bound its rank, rk(L | R+L · (F +F�) ·P�) ≤ rk(L | R).

Proceed by induction on the decomposition tree T . If it is just a leaf with label Γ, then
Γ has one vertex and we can define a decomposition for Γ′ to be also just a leaf: T ′ := (Γ′).
We can bound its width with the width of T : wd(T ′) := rk(L | R + L · (F + F�) · P�) ≤
rk(L | R) :=wd(T).

If T = (T1—Γ—T2), then there are two subgraphs Γ1 = ([G1] , (L1 | R1 | C)) and
Γ2 = ([G2] , (L2 | R2 | C)) such that Ti is an inductive rank decomposition of Γi, and we
can relate the adjacency and boundary matrices of Γ to those of Γ1 and Γ2, by definition

of inductive rank decomposition: [G] =
[(

G1 C
0 G2

)]
and (L | R) =

(
L1 R1
L2 R2

)
. Similarly,

we express the adjacency and boundary matrices of Γ′ in terms of the same components:[
G+ L · F · L�] =

[(
G1+L1·F ·L�

1 C+L1·(F+F�)·L�
2

0 G2+L2·F ·L�
2

)]
and (L | R + L · (F + F�) · P�) =(

L1 R1+L1·(F+F�)·P�

L2 R2+L2·(F+F�)·P�

)
. We use these decompositions to define two subgraphs of Γ′ and

apply the induction hypothesis to them.

Γ′
1 :=(

[
G1 + L1 · F · L�

1

]
, (L1 | R1 + L1 · (F + F�) · P� | C + L1 · (F + F�) · L�

2))

=(
[
G1 + L1 · F · L�

1

]
, (L1 | (R1 | C) + L1 · (F + F�) · (P� | L�

2)))

and

Γ′
2 :=(

[
G2 + L2 · F · L�

2

]
, (L2 | R2 + L2 · (F + F�) · P� | C� + L2 · (F + F�) · L�

1))

=(
[
G2 + L2 · F · L�

2

]
, (L2 | (R2 | C�) + L2 · (F + F�) · (P� | L�

1)))

15:42 E. Di Lavore and P. Sobociński Vol. 19:3

By induction, we have inductive rank decompositions T ′
i of Γ′

i such that wd(T ′
i) ≤ wd(Ti).

We defined Γ′
i so that T ′ := (T ′

1—Γ′—T ′
2) would be an inductive rank decomposition of Γ′.

We can bound its width as desired.

wd(T ′)

:= max{wd(T ′
1),wd(T

′
2), rk(L | R+ L · (F + F�) · P�)}

≤ max{wd(T1),wd(T2), rk(L | R+ L · (F + F�) · P�)}
≤ max{wd(T1),wd(T2), rk(L | R)}
:=wd(T)

In order to obtain the subgraphs of the desired shape we need to add some extra
connections to the boundaries. This can be done thanks to Lemma 5.22, by taking M = 1.
We are finally able to prove the lower bound for monoidal width.

Proposition 5.25. Let g = ([G] , L,R, P, [F]) in Grph and d ∈ Dg. Let Γ = ([G] , (L |
R)). Then, there is an inductive rank decomposition R(d) of Γ s.t. wd(R(d)) ≤ 2 ·
max{wd(d), rk(L), rk(R)}.
Proof. Proceed by induction on the decomposition tree d. If it is just a leaf with label g,
then its width is defined to be the number k of vertices of g, wd(d) := k. Pick any inductive
rank decomposition of Γ and define R(d) := T . Surely, wd(T) ≤ k :=wd(d)

If d = (d1— ;j —d2), then g is the composition of two morphisms: g = g1 ; g2, with
gi = ([Gi] , Li, Ri, Pi, [Fi]). Given the partition of the vertices determined by g1 and g2, we

can decompose g in another way, by writing [G] =
[(

G1 C
0 G2

)]
and B = (L | R) =

(
L1 R1

L2 R2

)
.

Then, we have that G1 = G1, L1 = L1, P = P2 ·P1, C = R1 ·L�
2 , R1 = R1 ·P�

2 , L2 = L2 ·P1,
R2 = R2 + L2 · (F1 + F�

1) · P�
2 , G2 = G2 + L2 · F1 · L�

2 , and F = F2 + P2 · F1 · P�
2 . This

corresponds to the following diagrammatic rewriting using the equations of Grph.

k1

G1

L1

R1

P1

F1n
j

k2

G2

L2

R2

P2

F2 m

=

k1

G1

L1

n

k2

G2

R2

F m

P

C�

R
�
1 L2

We define B1 := (L1 | R1 | C) and B2 := (L2 | R2 | C�). In order to build an inductive rank
decomposition of Γ, we need rank decompositions of Γi = (

[
Gi

]
, Bi). We obtain these in

three steps. Firstly, we apply induction to obtain inductive rank decompositionsR(di) of Γi =
([Gi] , (Li | Ri)) such that wd(R(di)) ≤ 2 ·max{wd(di), rk(Li), rk(Ri)}. Secondly, we apply

Vol. 19:3 MONOIDAL WIDTH 15:43

Lemma 5.24 to obtain an inductive rank decomposition T ′
2 of Γ

′
2 = (

[
G2 + L2 · F1 · L�

2

]
, (L2 |

R2 + L2 · (F1 + F�
1) · P�

2)) such that wd(T ′
2) ≤ wd(R(d2)). Lastly, we observe that (R1 |

C) = R1 · (P�
2 | L�

2) and (L2 | C�) = L2 · (P1 | R�
1). Then we obtain that B1 = (L1 |

R1) ·
(

1n 0 0
0 P�

2 L�
2

)
and B2 = (L2 | R2 + L2 · (F1 + F�

1) · P�
2) ·

(
P1 0 R�

1
0 1m 0

)
, and we can

apply Lemma 5.22, with M = 1, to get inductive rank decompositions Ti of Γi such that
wd(T1) ≤ wd(R(d1)) and wd(T2) ≤ wd(T ′

2) ≤ wd(R(d2)). If k1, k2 > 0, then we define
R(d) := (T1—Γ—T2), which is an inductive rank decomposition of Γ because Γi satisfy the
two conditions in Definition 5.7. If k1 = 0, then Γ = Γ2 and we can define R(d) := T2.
Similarly, if k2 = 0, then Γ = Γ1 and we can define R(d) := T1. In any case, we can
compute the width of R(d) (if ki = 0 then Ti = () and wd(Ti) = 0) using the inductive
hypothesis, Lemma 5.24, Lemma 5.22, the fact that rk(L) ≥ rk(L1), rk(R) ≥ rk(R2) and
j ≥ rk(R1), rk(L2) because R1 : j → k1 and L2 : j → k2.

wd(T)

:= max{wd(T1),wd(T2), rk(L | R)}
≤ max{wd(R(d1)),wd(T

′
2), rk(L | R)}

≤ max{wd(R(d1)),wd(R(d2)), rk(L | R)}
≤ max{wd(R(d1)),wd(R(d2)), rk(L) + rk(R)}
≤ max{2 · wd(d1), 2 · rk(L1), 2 · rk(R1), 2 · wd(d2), 2 · rk(L2), 2 · rk(R2), rk(L) + rk(R)}
≤ 2 ·max{wd(d1), rk(L1), rk(R1),wd(d2), rk(L2), rk(R2), rk(L), rk(R)}
≤ 2 ·max{wd(d1),wd(d2), j, rk(L), rk(R)}
:=2 ·max{wd(d), rk(L), rk(R)}

If d = (d1— ⊗—d2), then g is the monoidal product of two morphisms: g = g1 ⊗ g2,
with gi = ([Gi] , Li, Ri, Pi, [Fi]) : ni → mi. By exlicitly computing the monoidal product, we

obtain that [G] =
[(

G1 0
0 G2

)]
, L =

(
L1 0
0 L2

)
, R =

(
R1 0
0 R2

)
, P =

(
P1 0
0 P2

)
and F =

(
F1 0
0 F2

)
.

By induction, we have inductive rank decompositions R(di) of Γi := ([Gi] , Bi), where
Bi = (Li | Ri), of bounded width: wd(R(di)) ≤ 2 · max{wd(di), rk(Li), rk(Ri)}. Let

B1 := (L1 | 0n2 | R1 | 0m2 | 0k2) = B1 ·
(

1n1 0 0 0 0
0 0 1m1 0 0

)
and B2 := (0n1 | L2 | 0m1 | R2 |

0k1) = B2 ·
(

0 1n2 0 0 0
0 0 0 1m2 0

)
. By taking M = 1 in Lemma 5.22, we can obtain inductive

rank decompositions Ti of Γi := ([Gi] , Bi) such that wd(Ti) ≤ wd(R(di)). If k1, k2 > 0, then
we define R(d) := (T1—Γ—T2), which is an inductive rank decomposition of Γ because
Γi satisfy the two conditions in Definition 5.7. If k1 = 0, then Γ = Γ2 and we can define
R(d) := T2. Similarly, if k2 = 0, then Γ = Γ1 and we can define R(d) := T1. In any case, we
can compute the width of R(d) (if ki = 0 then Ti = () and wd(Ti) = 0) using the inductive
hypothesis and Lemma 5.22.

wd(T)

:= max{wd(T1),wd(T2), rk(L | R)}
≤ max{wd(R(d1)),wd(R(d2)), rk(L | R)}
≤ max{wd(R(d1)),wd(R(d2)), rk(L) + rk(R)}
≤ max{2 · wd(d1), 2 · rk(L1), 2 · rk(R1), 2 · wd(d2), 2 · rk(L2), 2 · rk(R2), rk(L) + rk(R)}

15:44 E. Di Lavore and P. Sobociński Vol. 19:3

≤ 2 ·max{wd(d1), rk(L1), rk(R1),wd(d2), rk(L2), rk(R2), rk(L), rk(R)}
≤ 2 ·max{wd(d1),wd(d2), rk(L), rk(R)}
:=2 ·max{wd(d), rk(L), rk(R)}

From Proposition 5.23, Proposition 5.25 and Proposition 5.13, we obtain the main result
of this section.

Theorem 5.26. Let G be a graph and let g = ([G] , ¡, ¡, (), [()]) be the corresponding
morphism in Grph. Then, 1

2 · rwd(G) ≤ mwd(g) ≤ 2 · rwd(G).

6. Conclusion and future work

We defined monoidal width for measuring the complexity of morphisms in monoidal categories.
The concrete examples that we aimed to capture are tree width and rank width. In fact, we
have shown that, by choosing suitable categorical algebras, monoidal width is equivalent to
these widths. We have also related monoidal width to the rank of matrices over the natural
numbers.

Our future goal is to leverage the generality of monoidal categories to study other
examples outside the graph theory literature. In the same way Courcelle’s theorem gives
fixed-parameter tractability of a class of problems on graphs with parameter tree width
or rank width, we aim to obtain fixed-parameter tractability of a class of problems on
morphisms of monoidal categories with parameter monoidal width. This result would rely
on Feferman-Vaught-Mostowski type theorems specific to the operations of a particular
monoidal category C or particular class of monoidal categories, which would ensure that the
problems at hand respect the compositional structure of these categories.
Conjecture. Computing a compositional problem on the set of morphisms Ck(X,Y) with k-
bounded monoidal width with a compositional algorithm is linear in w. Explicitly, computing
the solution on f ∈ Ck(X,Y) takes O(c(k) · w(f)), for some more than exponential function
c : N → N.

References

[ADW17] Samson Abramsky, Anuj Dawar, and Pengming Wang. The pebbling comonad in finite model
theory. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pages 1–12. IEEE, 2017. doi:10.1109/LICS.2017.8005129.

[AM21] Samson Abramsky and Dan Marsden. Comonadic semantics for guarded fragments. In 2021
36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–13. IEEE,
2021. doi:10.1109/LICS52264.2021.9470594.

[AS21] Samson Abramsky and Nihil Shah. Relating structure and power: Comonadic semantics for
computational resources. Journal of Logic and Computation, 31(6):1390–1428, 2021. doi:
10.1093/logcom/exab048.

[BB73] Umberto Bertelè and Francesco Brioschi. On non-serial dynamic programming. Journal of
Combinatorial Theory, Series A, 14(2):137–148, 1973. doi:10.1016/0097-3165(73)90016-2.

[BBFK11] Christoph Blume, HJ Sander Bruggink, Martin Friedrich, and Barbara König. Treewidth,
pathwidth and cospan decompositions. Electronic Communications of the EASST, 41, 2011.
doi:10.14279/tuj.eceasst.41.643.

[BC87] Michel Bauderon and Bruno Courcelle. Graph expressions and graph rewritings. Mathematical
Systems Theory, 20(1):83–127, 1987. doi:10.1007/BF01692060.

[BK08] Hans L Bodlaender and Arie MCA Koster. Combinatorial optimization on graphs of bounded
treewidth. The Computer Journal, 51(3):255–269, 2008. doi:10.1093/comjnl/bxm037.

Vol. 19:3 MONOIDAL WIDTH 15:45

[BK21] Benjamin Merlin Bumpus and Zoltan A Kocsis. Spined categories: generalizing tree-width
beyond graphs, 2021. arXiv:2104.01841.

[BKM23] Benjamin Merlin Bumpus, Zoltan Kocsis, and Jade Edenstar Master. Structured decomposi-
tions: Structural and algorithmic compositionality, 2023. arXiv:2207.06091.

[Bod92] Hans L Bodlaender. A tourist guide through treewidth. Technical report, 1992.
[BS21] Guillaume Boisseau and Pawe�l Sobociński. String diagrammatic electrical circuit theory.

In Kohei Kishida, editor, Proceedings of the Fourth International Conference on Applied
Category Theory, Cambridge, United Kingdom, 12-16th July 2021, volume 372 of Electronic
Proceedings in Theoretical Computer Science, pages 178–191. Open Publishing Association,
2021. doi:10.4204/EPTCS.372.13.

[BSZ21] Filippo Bonchi, Pawe�l Sobociński, and Fabio Zanasi. A survey of compositional signal flow
theory. In Michael Goedicke, Erich J. Neuhold, and Kai Rannenberg, editors, Advancing
Research in Information and Communication Technology - IFIP’s Exciting First 60+ Years,
Views from the Technical Committees and Working Groups, volume 600 of IFIP Advances
in Information and Communication Technology, pages 29–56. Springer, 2021. doi:10.1007/
978-3-030-81701-5_2.

[Bum21] Benjamin Merlin Bumpus. Generalizing graph decompositions. PhD thesis, University of
Glasgow, 2021.

[CD21] Adam Ó Conghaile and Anuj Dawar. Game comonads & generalised quantifiers. In Christel
Baier and Jean Goubault-Larrecq, editors, 29th EACSL Annual Conference on Computer
Science Logic (CSL 2021), volume 183 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 16:1–16:17, Dagstuhl, Germany, 2021. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.CSL.2021.16.

[CJ19] Kenta Cho and Bart Jacobs. Disintegration and Bayesian Inversion via String Diagrams.
Mathematical Structures in Computer Science, pages 1–34, March 2019. doi:10.1017/

S0960129518000488.
[CK17] Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course in Quan-

tum Theory and Diagrammatic Reasoning. Cambridge University Press, 2017. doi:10.1017/
9781316219317.

[CK22] Cole Comfort and Aleks Kissinger. A graphical calculus for lagrangian relations. In Kohei
Kishida, editor, Proceedings of the Fourth International Conference on Applied Category
Theory, Cambridge, United Kingdom, 12-16th July 2021, volume 372 of Electronic Proceedings
in Theoretical Computer Science, pages 338–351. Open Publishing Association, 2022. doi:
10.4204/EPTCS.372.24.

[Cou90] Bruno Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite graphs.
Information and computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

[Cou92] Bruno Courcelle. The monadic second-order logic of graphs III: Tree-decompositions, minors
and complexity issues. RAIRO-Theoretical Informatics and Applications, 26(3):257–286, 1992.
doi:10.1051/ita/1992260302571.

[CS15] Apiwat Chantawibul and Pawe�l Sobociński. Towards compositional graph theory. Electronic
Notes in Theoretical Computer Science, 319:121–136, 2015. doi:10.1016/j.entcs.2015.12.
009.

[DKPvdW20] Ross Duncan, Aleks Kissinger, Simon Perdrix, and John van de Wetering. Graph-theoretic
simplification of quantum circuits with the ZX-calculus. Quantum, 4:279, 2020. doi:10.22331/
q-2020-06-04-279.

[DLHS21] Elena Di Lavore, Jules Hedges, and Pawe�l Sobociński. Compositional modelling of network
games. In Christel Baier and Jean Goubault-Larrecq, editors, 29th EACSL Annual Conference
on Computer Science Logic (CSL 2021), volume 183 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 30:1–30:24, Dagstuhl, Germany, 2021. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.CSL.2021.30.

[DLS21] Elena Di Lavore and Pawe�l Sobociński. Monoidal Width: Unifying Tree Width, Path Width
and Branch Width, 2021. arXiv:2202.07582.

[DLS22] Elena Di Lavore and Pawe�l Sobociński. Monoidal Width: Capturing Rank Width, to appear
in ACT 2022. arXiv:2202.07582.

15:46 E. Di Lavore and P. Sobociński Vol. 19:3

[Fon15] Brendan Fong. Decorated cospans. Theory and Applications of Categories, 30(33):1096–1120,
2015.

[Fri20] Tobias Fritz. A synthetic approach to Markov kernels, conditional independence and theorems
on sufficient statistics. Advances in Mathematics, 370:107239, 2020.

[FS18] Brendan Fong and David I Spivak. Seven sketches in compositionality: An invitation to applied
category theory, 2018. arXiv:1803.05316.

[GH97] Fabio Gadducci and Reiko Heckel. An inductive view of graph transformation. In
Francesco Parisi Presicce, editor, International Workshop on Algebraic Development Techniques,
pages 223–237. Springer, 1997. doi:10.1007/3-540-64299-4_36.

[GHWZ18] Neil Ghani, Jules Hedges, Viktor Winschel, and Philipp Zahn. Compositional game theory. In
Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 472–481.
ACM, 2018. doi:10.1145/3209108.3209165.

[GJL17] Dan R. Ghica, Achim Jung, and Aliaume Lopez. Diagrammatic semantics for digital circuits.
In Valentin Goranko and Mads Dam, editors, 26th EACSL Annual Conference on Computer
Science Logic, CSL 2017, August 20-24, 2017, Stockholm, Sweden, volume 82 of LIPIcs, pages
24:1–24:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.
CSL.2017.24.

[Hal76] Rudolf Halin. S-functions for graphs. Journal of Geometry, 8(1):171–186, 1976. doi:10.1007/
BF01917434.

[JS91] André Joyal and Ross Street. The geometry of tensor calculus, I. Advances in mathematics,
88(1):55–112, 1991. doi:10.1016/0001-8708(91)90003-P.

[Lac04] Stephen Lack. Composing props. Theory and Applications of Categories, 13(9):147–163, 2004.
[Mac78] Saunders Mac Lane. Categories for the Working Mathematician. Graduate Texts in Mathe-

matics. Springer New York, 1978. doi:10.1007/978-1-4757-4721-8.
[Mas22] Jade Master. How to compose shortest paths, 2022. arXiv:2205.15306.
[MS22] Yoàv Montacute and Nihil Shah. The pebble-relation comonad in finite model theory. In

Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pages 1–11. ACM, 2022. doi:10.1145/3531130.3533335.

[OS06] Sang-il Oum and Paul D. Seymour. Approximating clique-width and branch-width. Journal of
Combinatorial Theory, Series B, 96(4):514–528, 2006. doi:10.1016/j.jctb.2005.10.006.

[PO99] R Piziak and PL Odell. Full rank factorization of matrices. Mathematics magazine, 72(3):193–
201, 1999. doi:10.1080/0025570X.1999.11996730.

[PRS88] Pavel Pudlák, Vojtěch Rödl, and Petr Savickỳ. Graph complexity. Acta Informatica, 25(5):515–
535, 1988. doi:10.1007/bf00279952.

[RS86] Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic aspects of tree-width.
Journal of Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

[RS91] Neil Robertson and Paul D. Seymour. Graph minors. X. Obstructions to tree-decomposition.
Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991. doi:10.1016/0095-8956(91)
90061-n.

[RSS14] Julian Rathke, Pawe�l Sobociński, and Owen Stephens. Compositional reachability in Petri
nets. In Joël Ouaknine, Igor Potapov, and James Worrell, editors, International Workshop
on Reachability Problems, Lecture Notes in Computer Science, pages 230–243. Springer, 2014.
doi:10.1007/978-3-319-11439-2_18.

[RSW05] Robert Rosebrugh, Nicoletta Sabadini, and Robert FC Walters. Generic commutative separable
algebras and cospans of graphs. Theory and applications of categories, 15(6):164–177, 2005.

[Zan15] Fabio Zanasi. Interacting Hopf Algebras - The Theory of Linear Systems. PhD thesis, École
Normale Supérieure de Lyon, 2015.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

J. Master & M. Lewis (Eds.): Fifth International

Conference on Applied Category Theory (ACT 2022).

EPTCS 380, 2023, pp. 268–283, doi:10.4204/EPTCS.380.16

© Elena Di Lavore and Paweł Sobociński

This work is licensed under the

Creative Commons Attribution License.

Monoidal Width: Capturing Rank Width

Elena Di Lavore
Tallinn University of Technology

Paweł Sobociński
Tallinn University of Technology

Monoidal width was recently introduced by the authors as a measure of the complexity of decom-

posing morphisms in monoidal categories. We have shown that in a monoidal category of cospans

of graphs, monoidal width and its variants can be used to capture tree width, path width and branch

width. In this paper we study monoidal width in a category of matrices, and in an extension to a dif-
ferent monoidal category of open graphs, where the connectivity information is handled with matrix

algebra and graphs are composed along edges instead of vertices. We show that here monoidal width

captures rank width: a measure of graph complexity that has received much attention in recent years.

1 Introduction

Many applications of category theory rely on monoidal categories as algebras of processes [26, 15, 28,

18, 10, 25, 11, 17, 23, 27]. Morphisms are compound processes, defined as parallel and sequential

compositions of simpler process components. The compositional nature of this modelling allows a com-

positional computation of the underlying semantics. But how efficient is this computation? Given two

processes f and g, we can compute their semantics separately. However, computing the semantics of

their sequential composition f ;g often requires an additional cost [36]. Indeed, the semantics of sequen-

tial composition often means resource sharing or synchronisation along the common boundary. This in

turn carries a computational burden, dependent on the size of the boundary. On the other hand, com-

puting the semantics of a parallel composition f ⊗ f ′ typically does not involve any resource sharing,

as indicated by the wiring of the string diagrams, and thus typically does not require significant addi-

tional computational resources. Taking this into account, the choice of the recipe for a morphism in

terms of parallel and sequential compositions influences the cost of computing its semantics. As shown

in Figure 1, where vertical cuts represent sequential compositions and horizontal cuts represent parallel

compositions, the same morphism can be defined in different ways with possibly different computational

costs. Given a morphism, it is thefore desirable to find the least costly recipe of decomposing it in terms

f g

f ′ g′
=

f g

f ′ g′

Figure 1: Two monoidal decompositions of the same morphism, the right one being the cheapest.

of more primitive components. We can rephrase the original question: what is the most efficient way to

decompose a morphism in a monoidal category?

The authors recently proposed monoidal width [22] as a way of assigning a natural number to a

morphism of a monoidal category, representing – roughly speaking – the cost of its most efficient de-

composition. In turn, this is related to the cost of computing the semantics of this morphism.

Computing efficient decompositions is not a new problem. The graph theory literature abounds [6,

29, 38, 37, 39, 33, 20, 2, 3, 16] with notions of complexity of graphs that ultimately measure the difficulty

Elena Di Lavore and Paweł Sobociński 269

of decomposing a graph into smaller components by cutting along the vertices or the edges of the graph.

Measures such as tree width [6, 29, 38], path width [37], branch width [39], clique width [20] and rank

width [33] are motivated by algorithmic considerations. Probably the best known among several results

that etablish links with algorithms [8, 9, 19], the following shows the importance of tree width.

Theorem (Courcelle [19]). Every property expressible in the monadic second order logic of graphs can
be tested in linear time on graphs with bounded tree width.

The different notions of complexity for graphs vastly differ in low-level “implementation details” but

they all share a similar underlying idea: that of defining decompositions and suitably measuring their

efficiency. One of our contributions is to exhibit monoidal width as a unifying framework for graph

measures based on a notion of decomposition. In fact, by choosing a suitable algebra of composition

for graphs — i.e. choosing the right monoidal cateory — we recover some of these known measures as

particular instances of monoidal width. We have previously captured [22] tree width, path width and

branch width by instantiating monoidal width and two variants in a category of cospans of graphs.

In this paper we focus on rank width [33] – a relatively recent development that has attracted signifi-

cant attention in the graph theory community. A rank decomposition is a recipe for decomposing a graph

into its single-vertex subgraphs by cutting along its edges. The cost of a cut is the rank of the adjacency

matrix that represents it, as shown in Figure 2. A useful intuition for rank width is that it is a kind of

“Kolmogorov complexity” for graphs. For example, although the family of cliques has unbounded tree

width, the connectivity of cliques is quite simple to describe: and, in fact, all cliques have rank width 1.

rank

(
1 1

1 1

)
= 1

Figure 2: A cut and its matrix in a rank decomposition.

To capture rank width as an instance of monoidal width, rather than taking cospans, we work in a

different monoidal category of graphs. First introduced in [14], it was recently used [21] as a syntax

for network games. This approach to computing with “open graphs” is more linear algebraic, building

modularly on the theory of bialgebra, well known to be closely related to matrix algebra [41]. Indeed,

the connectivity of graphs is handled with adjacency matrices, and boundary connections are matrices.

Related work. This manuscript, although self-contained, complements our previous work [22], where

we considered tree width, path width and branch width as instances of monoidal width.

Previous syntactical approaches to graph widths are the work of Pudlák, Rödl and Savickỳ [35] and

the work of Bauderon and Courcelle [5]. Their works consider different notions of graph decompositions,

which lead to different notions of graph complexity. In particular, in [5], the cost of a decomposition is

measured by counting shared names, which is clearly closely related to penalising sequential composi-

tion as in monoidal width. Nevertheless, these approaches are specific to particular, concrete notions of

graphs, whereas our work concerns the more general algebraic framework of monoidal categories.

Recent abstract approaches focus on other graph widths. The work of Blume et. al. [7], characterises

tree and path decompositions in terms of colimits. Abramsky et. al. [24] give a coalgebraic character-

ization of tree width of relational structures (and graphs in particular). Bumpus and Kocsis [13] also

generalise tree width to the categorical setting, although their approach is far removed from ours.

270 Monoidal Width: Capturing Rank Width

Synopsis. Monoidal width is recalled in Section 2. In Section 3, we study the monoidal width of

matrices. Section 4 recalls rank width and gives an equivalent recursive definition of it that will be useful

as an intermediate step towards our main result, which is presented in Section 5.

Preliminaries. We use string diagrams [30, 40]: sequential and parallel compositions of f and g are

drawn as in Figure 3, left and middle, respectively. Much of the bureaucracy, e.g. the interchange law

(f ;g)⊗(f ′ ;g′)= (f ⊗ f ′) ;(g⊗g′), disappears (Figure 3, right). Props [32, 31] are important examples of

f g
f
g

f g

f ′ g′

Figure 3: String diagrammatic notation.

monoidal categories. They are symmetric strict monoidal, with natural numbers as objects, and addition

as monoidal product on objects. Roughly speaking, morphisms can be thought of as processes, and the

objects (natural numbers) keep track of the number of inputs or outputs of a process.

2 Monoidal width

This section recalls the concept of monoidal width from [22]. Monoidal width records the cost of the

most efficient way one can decompose a morphism into its atomic components, thus capturing—roughly

speaking—its intrinsic structural complexity. A decomposition is a binary tree whose internal nodes are

labelled with compositions or monoidal products, and whose leaves are labelled with atomic morphisms.

Definition 2.1 (Monoidal decomposition [22]). Let C be a monoidal category and A be a subset of its

morphisms referred to as atomic. The set D f of monoidal decompositions of f : A → B in C is defined:

D f ::= (f) if f ∈ A

| (d1,⊗, d2) if d1 ∈ D f1
, d2 ∈ D f2

and f = f1 ⊗ f2

| (d1, ;X , d2) if d1 ∈ D f1 : A→X , d2 ∈ D f2 : X→B and f = f1 ; f2

The cost of a decomposition depends on the operations and atoms present: each operation and each

atomic morphism is associated with a cost, which we call weight. Roughly speaking, sequential compo-

sition is priced according to the size of the object the composition occurs over, while monoidal products

are free. Finally, the weight of an atom is the application-specific cost of computing its semantics.

Definition 2.2 (Weight function [22]). Let C be a monoidal category and let A be a set of atoms for C.

A weight function for (C,A) is a function w : A ∪{⊗}∪Obj(C)→ N such that

• w(X ⊗Y) = w(X)+w(Y),

• w(⊗) = 0.

Example 2.3. Let 1 : 1 → 2 and 1 : 2 → 1 be the diagonal and codiagonal morphisms in a carte-
sian and cocartesian prop1 s.t. w(1) = w(1) = 2. The following figure represents the monoidal
decomposition of ; (⊗) ; (⊗) ; given by (, ;2, (((, ;2,),⊗,), ;2,)).

1In a cartesian prop the ⊗ satisfies the universal property of products. Dually, in a cocartesian prop, the ⊗ satisfies the

universal property of the coproduct.

Elena Di Lavore and Paweł Sobociński 271

The width of a decomposition is the cost of the most expensive node in the decomposition tree.

Definition 2.4 (Width of a monoidal decomposition [22]). Let w be a weight function for (C,A). Let f
be in C and d ∈ D f . The width of d is defined recursively as follows:

wd(d) := w(f) if d = (f)

max{wd(d1),wd(d2)} if d = (d1,⊗, d2)

max{wd(d1), w(X), wd(d2)} if d = (d1, ;X , d2)

As sketched in Example 2.3, decompositions can be seen as labelled trees (S,μ) where S is a tree

and μ : vertices(S)→ A ∪{⊗}∪Obj(C) is a labelling function. With this we can restate the width as:

wd(d) = wd(S,μ) := max
v∈vertices(S)

w(μ(v))

which may be familiar to those aquainted with graph widths.

Monoidal width is simply the width of the cheapest decomposition.

Definition 2.5 (Monoidal width [22]). Let w be a weight function for (C,A) and f be in C. Then the

monoidal width of f is mwd(f) := mind∈D f wd(d).

Example 2.6. With the data of Example 2.3, define a family of morphisms n : 1 → 1 inductively:
• 1 := 1;

• 2 := ;2 ;

• n+1 := ;2 (n⊗1) ;2 for n ≥ 2.

. . .

Each n has a monoidal decomposition of width n: the root node is the composition along the n wires in
the middle. However, mwd(n) = 2 for any n, with an optimal decomposition shown above.

2.1 The width of copying

Before we begin with the original technical contributions of this paper in Section 3, we need to recall

a technical result from [22] about decomposing copy morphisms. We consider symmetric monoidal

categories equipped with such morphisms and show that copying n wires costs at most n+1.

Definition 2.7 (Copying). Let X be a symmetric monoidal category with symmetries given by X ,Y .

We say that X has coherent copying if there is a class of objects CX ⊆ Obj(X), satifying X ,Y ∈ CX

iff X ⊗Y ∈ CX , such that every X in CX is endowed with a morphism X : X → X ⊗X . Moreover,

X⊗Y = (X ⊗ Y) ; (X ⊗ X ,Y ⊗ Y) for every X ,Y ∈ CX.

An example is any cartesian prop with n : n → n+ n given by the cartesian structure. We take

X , the symmetries X ,Y and the identities X as atomic for all objects X ,Y , i.e. the set of atomic

morphisms is A = { X , X ,Y , X : X ,Y ∈ CX}. The weight function is w(X) := 2 ·w(X),
w(X ,Y) := w(X)+w(Y) and w(X) := w(X). In a prop, we take w(n) := n. Note that w(X⊗Y) =
2 ·w(X ⊗Y) = 2 · (w(X)+w(Y)), but utilising coherence we can do better, as illustrated below.

Example 2.8. Let C be a prop with coherent copying and consider n : n → 2n. Let γn,m := (n ⊗
m) ; (n ⊗ n,m) : n+m → n+m+n. We can decompose γn,m in terms of γn−1,m+1 (in the dashed

box), 1 and 1,1 by cutting along at most n+1+m wires:

272 Monoidal Width: Capturing Rank Width

γn,m =
n

m

n

m

n

=

n−1

1

m

n−1

1

m

n−1

1

This allows us to decompose n = γn,0 cutting along at most n+1 wires. In particular, mwd(n) ≤
n+1.

The following result is a technical generalisation of the argument presented in Example 2.8.

Lemma 2.9 ([22]). Let X be a symmetric monoidal category with coherent copying. Suppose that A
contains X for X ∈CX, and X ,Y and X for X ∈Obj(X). Let X :=X1⊗·· ·⊗Xn, f : Y ⊗X⊗Z →W
and let d ∈ D f . Let γ(f) := (Y ⊗ X ⊗ Z) ; (Y⊗X ⊗ X ,Z) ; (f ⊗ X).

γ(f) := f

Y

X

Z

W

X

There is a decomposition C (d) of γ(f) of bounded width:

wd(C (d))≤ max{wd(d),w(Y)+w(Z)+(n+1) · max
i=1,...,n

w(Xi)}.

3 Monoidal width in matrices

= = =

= = =

= = = =

Figure 4: Bialgebra axioms

Given the ubiquity of matrix algebra, matrices are an obvious case study. Theorem 3.12 shows that

the monoidal width of a matrix is, up to 1, the maximum of the ranks of its blocks.

Consider the monoidal category MatN of matrices with entries in the natural numbers. The objects

are natural numbers and morphisms from n to m are m by n matrices. Composition is the usual product

Elena Di Lavore and Paweł Sobociński 273

of matrices and the monoidal product is the biproduct: A⊗B := (A 0
0 B). Let us examine matrix decom-

positions enabled by this algebra. A matrix A can be written as a monoidal product A = A1 ⊗A2 iff the

matrix has blocks A1 and A2, i.e. A =
(

A1 0
0 A2

)
. On the other hand, a composition is related to the rank.

Lemma 3.1 ([34]). Let A : n → m in MatN. Then min{k ∈ N : A = B ;k C}= rank(A).

We first introduce a convenient syntax for matrices.

Proposition 3.2 ([41]). The category MatN is isomorphic to the prop Bialg, generated by : 1 → 2,
: 1 → 0, : 2 → 1 and : 0 → 1 and quotiented by bialgebra axioms (Figure 4).

For the uninitiated reader, let us briefly explain this correspondence. Every morphism f : n → m
in Bialg corresponds to a matrix A = Mat(f) ∈ MatN(m,n): we can read the (i, j)-entry of A off the

diagram of f by counting the number of paths from the jth input to the ith output.

Example 3.3. The matrix
(

1 0
1 2
0 0

)
∈MatN(3,2) corresponds to

Definition 3.4. The atomic morphisms A are the generators of Bialg, with the symmetry and identity on

1: A = { , , , , , 1}. The weight w : A ∪{⊗}∪Obj(Bialg)→ N has w(n) := n, for any

n ∈ N, and w(g) := max{m,n}, for g : n → m ∈ A .

3.1 Monoidal width in Bialg

The characterisation of the rank of a matrix in Lemma 3.1 hints at some relationship between the

monoidal width of a matrix and its rank. In fact, we have Proposition 3.7, which bounds the monoidal

width of a matrix with its rank. In order to prove this result, we first need to bound the monoidal width

of a matrix with its domain and codomain, which is done in Proposition 3.5.

Proposition 3.5. Let P be a cartesian and cocartesian prop. Suppose that 1, 1, 1, 1, 1 ∈ A
and w(1)≤ 1, w(1)≤ 2, w(1)≤ 2, w(1)≤ 1 and w(1)≤ 1. Suppose that, for every g : 1 →
1, mwd(g)≤ 2. Let f : n → m be a morphism in P. Then mwd(f)≤ min{m,n}+1.

Proof sketch. The proof proceeds by induction on max{m,n}. The base cases are easily checked. The

inductive step relies on the fact that, applying Lemma 2.9, if n < m, we can decompose f as shown below

by cutting at most n+1 wires or, if m < n, in the symmetric way by cutting at most m+1 wires.

fn m = fn
m−1

1

=
f

f
n

m−1

1

We can apply the former result to Bialg and obtain Proposition 3.7 because the width of 1×1 matri-

ces, which are numbers, is at most 2. This follows from the reasoning in Example 2.6 as we can write

every natural number k : 1 → 1 as the following composition:

274 Monoidal Width: Capturing Rank Width

. . .

Lemma 3.6. Let k : 1 → 1 in Bialg. Then, mwd(k)≤ 2.

Proposition 3.7. Let f : n → m in Bialg. Then, mwd f ≤ rank(Mat f) + 1. Moreover, if f is not ⊗-
decomposable, i.e. there are no f1, f2 both distinct from f s.t. f = f1 ⊗ f2, then rank(Mat f)≤mwd f .

Proof sketch. This result follows from Lemma 3.1 and Proposition 3.5, which we can apply thanks to

Lemma 3.6.

The bounds given by Proposition 3.7 can be improven when we have a ⊗-decomposition of a matrix,

i.e. we can write f = f1 ⊗ . . .⊗ fk, to obtain Proposition 3.9. The latter relies on Lemma 3.8, which

shows that discarding inputs or outputs cannot increase the monoidal width of a morphism in Bialg.

Lemma 3.8. Let f : n→m in Bialg and d ∈D f . Let fD := f ;(m−k⊗ k) and fZ := (n−k′ ⊗ k′) ; f ,
where k : k → 0 is the discard morphism with k ≤ m and k′ : 0 → k is the zero morphism with k′ ≤ n.

fD := fn m− k , fZ := fn− k m .

Then there are D(d) ∈ D fD and Z (d) ∈ D fZ such that wd(D(d))≤ wd(d) and wd(Z (d))≤ wd(d).

Proof sketch. By induction. The base cases are easy. If f = f1 ; f2, use the inductive hypothesis on f2.

fn m− k = f1 f2n m− k

The f = f1 ⊗ f2 case is similar.

Proposition 3.9. Let f : n → m in Bialg and d′ = (d′
1, ;k, d′

2) ∈ D f . Suppose there are f1 and f2 such
that f = f1 ⊗ f2. Then, there is d = (d1,⊗, d2) ∈ D f such that wd(d)≤ wd(d′).

Proof sketch. By Lemma 3.1, rank(Mat f1) + rank(Mat f2) = rank(Mat(f1 ⊗ f2)) ≤ k and, by Propo-

sition 3.7, there is a monoidal decomposition di of fi such that wd(di) ≤ rank(Mat fi) + 1. Then,

wd(d) :=wd((d1,⊗, d2))≤ max{rank(Mat f1), rank(Mat f2)}+1 ≤ rank(Mat f1)+ rank(Mat f2) when-

ever rank(Mat f1), rank(Mat f2)> 0. We apply Lemma 3.8 to obtain the same result if rank(Mat f1) = 0

or rank(Mat f2) = 0.

We summarise Proposition 3.9 and Proposition 3.7 in Corollary 3.10.

Corollary 3.10. Let f = f1⊗ . . .⊗ fk in Bialg. Then, mwd(f)≤maxi=1,...,k rank(Mat(fi))+1. Moreover,
if fi are not ⊗-decomposable, then maxi=1,...,k rank(Mat(fi))≤mwd f .

Proof. By Proposition 3.9 there is a decomposition of f of the form d = (d1,⊗, · · ·(dk−1,⊗, dk)), where

we can choose di to be a minimal decomposition of fi. Then, mwd(f) ≤ wd(d) = maxi=1,...,kwd(di).
By Proposition 3.7, wd(di) ≤ ri + 1. Then, mwd(f) ≤ max{r1, . . . ,rk}+ 1. Moreover, if fi are not

⊗-decomposable, Proposition 3.7 gives also a lower bound on their monoidal width: rank(Mat(fi)) ≤
mwd fi; and we obtain that maxi=1,...,k rank(Mat(fi))≤mwd f .

The results so far show a way to construct efficient decompositions given a ⊗-decomposition of the

matrix. However, we do not know whether ⊗-decompositions are unique. Proposition 3.11 shows that

every morphism in Bialg has a unique ⊗-decomposition.

Elena Di Lavore and Paweł Sobociński 275

Proposition 3.11. Let C be a monoidal category whose monoidal unit 0 is both initial and terminal,
and whose objects are a unique factorization monoid. Let f be a morphism in C. Then f has a unique
⊗-decomposition.

Our main result in this section follows from Corollary 3.10 and Proposition 3.11, which can be

applied to Bialg because 0 is both terminal and initial, and the objects, being a free monoid, are a unique

factorization monoid.

Theorem 3.12. Let f = f1 ⊗ . . .⊗ fk be a morphism in Bialg and its unique ⊗-decomposition given by
Proposition 3.11, with ri = rank(Mat(fi)). Then max{r1, . . . ,rk} ≤mwd(f)≤ max{r1, . . . ,rk}+1.

Proof. This result is obtained by applying Corollary 3.10 to the ⊗-decomposition given by Proposi-

tion 3.11, which can be applied because, in Bialg, 0 is both terminal and initial, and the objects, being a

free monoid, are a unique factorization monoid.

Note that the identity matrix has monoidal width 1 and twice the identity matrix has monoidal width

2, attaining both the upper and lower bounds for the monoidal width of a matrix.

4 Graphs and rank width

Here we recall rank width [33] for undirected graphs.

Definition 4.1. An undirected graph G = (V,E,ends) is given by a set of edges E, a set of vertices V
and a function ends : E →℘≤2(V) that gives the endpoints of each edge. We consider graphs up to
isomorphism, or abstract graphs, thus the set of vertices can be fully characterised by its cardinality. An

abstract graph can be equivalently given by an adjacency matrix [G], where G ∈MatN(n,n) and n is the

number of vertices. The equivalence class of adjacency matrices is defined by the equivalence relation

G ∼ H iff G+G� = H +H�.

We will refer to abstract undirected graphs as simply graphs.

Definition 4.2. A path in a graph G is a sequence of edges (e1, . . . ,ek) together with a sequence of

distinct vertices (v1, . . . ,vk+1) of G such that, for every i = 1, . . . ,k, ends(ei) = {vi,vi+1}. A tree is a

graph such that there is a unique path between any two of its vertices. Two vertices v and w in a graph G
are neighbours if G has an edge between them. The leaves of a tree are those vertices with at most one

neighbour. A subcubic tree is a tree where each vertex has between one and three neighbours.

A rank decomposition for a graph G is a tree whose leaves are labelled with the vertices of G.

Definition 4.3 ([33]). A rank decomposition (Y,r) of a graph G is given by a subcubic tree Y together

with a bijection r : leaves(Y)→ vertices(G).

Each edge b in the tree Y determines a splitting of the graph: it determines a two partition of the

leaves of Y , which, through r, determines a two partition {Ab,Bb} of the vertices of G. This corresponds

to a splitting of the graph G into two subgraphs G1 and G2. Intuitively, the order of an edge b is the

amount of information required to recover G by joining G1 and G2. Given the partition {Ab,Bb} of the

vertices of G, we can record the edges in G beween Ab and Bb in a matrix Xb. This means that, if vi ∈ Ab
and v j ∈ Bb, the entry (i, j) of the matrix Xb is the number of edges between vi and v j.

Definition 4.4 (Order of an edge). Let (Y,r) be a rank decomposition of a graph G. Let b be an edge of

Y . The order of b is the rank of the matrix associated to it: ord(b) := rank(Xb).

276 Monoidal Width: Capturing Rank Width

Note that the order of the two sets in the partition does not matter as the rank is invariant to transpo-

sition. The width of a rank decomposition is the maximum order of the edges of the tree and the rank

width of a graph is the width of its cheapest decomposition.

Definition 4.5 (Rank width). Given a rank decomposition (Y,r) of a graph G, define its width as

wd(Y,r) := maxb∈edges(Y) ord(b). The rank width of G is given by the min-max formula:

rwd(G) := min
(Y,r)

wd(Y,r).

4.1 Graphs with dangling edges

As intermediate step between rank decompositions and monoidal decompositions, we introduce recursive

rank decompositions of graphs with dangling edges and we prove that they give a notion of width that

is equivalent to rank width. Similar recursive characterisations were done for tree decompositions in [4]

and for path and branch decompositions in [22]. We first need a notion of graph that is equipped with

some “open” edges along which it can be glued with other graphs.

Definition 4.6. A graph with dangling edges Γ=([G] ,B) is given by an adjacency matrix G∈MatN(k,k)
that records the connectivity of the graph and a matrix B ∈MatN(k,n) that records the “dangling edges”

connected to n boundary ports. We will sometimes write G ∈ adjacency(Γ) and B = boundary(Γ).

Example 4.7. Two graphs with the same ports, as illustrated below, can be “glued” together:

glued with gives

Decompositions are elements of a tree data type, with nodes carrying subgraphs Γ′ of the ambient

graph Γ. In the following Γ′ ranges over the non-empty subgraphs of Γ: TΓ ::= (Γ′) | (TΓ, Γ′, TΓ).
Given T ∈ TΓ, the label function λ takes a decomposition and returns the graph with dangling edges at

the root: λ (T1, Γ, T2) := Γ and λ (Γ) := Γ.

Definition 4.8 (Recursive rank decomposition). Let Γ = ([G] ,B) be a graph with dangling edges, where

G ∈MatN(k,k) and B ∈MatN(k,n). A recursive rank decomposition of Γ is T ∈ TΓ where either: Γ has

at most one vertex and T = (Γ); or T = (T1, Γ, T2) and Ti ∈ TΓi are recursive rank decompositions of

subgraphs Γi = ([Gi] ,Bi) of Γ such that:

• The vertices are partitioned in two, [G] =
[(

G1 C
0 G2

)]
;

• The dangling edges are those to the original boundary and to the other subgraph, B1 = (A1 |C) and

B2 = (A2 |C�), where B =
(

A1
A2

)
.

As with before, the recursive rank width of a graph is the width of its cheapest decomposition.

Definition 4.9. Let T be a recursive rank decomposition of Γ = ([G] ,B). Define the width of T recur-

sively: if T = (Γ), wd(T) := rank(B), and, if T = (T1, Γ, T2), wd(T) := max{wd(T1),wd(T2), rank(B)}
Expanding this expression, we obtain wd(T) = maxT ′ subtree of T rank(boundary(λ (T ′))). The recursive
rank width of Γ is defined by the min-max formula rrwd(Γ) := minT wd(T).

We show that recursive rank width is the same as rank width, up to the rank of the boundary of the

graph.

Proposition 4.10. Let Γ = ([G] ,B) be a graph with dangling edges and (Y,r) be a rank decomposition
of G. Then, there is a recursive rank decomposition I (Y,r) of Γ s.t. wd(I (Y,r))≤ wd(Y,r)+ rank(B).

Elena Di Lavore and Paweł Sobociński 277

Before proving the lower bound for recursive rank width, we need a technical lemma that relates the

width of a graph with that of its subgraphs.

Lemma 4.11. Let T be a recursive rank decomposition of Γ = ([G] ,B). Let T ′ be a subtree of T and

Γ′ := λ (T ′) with Γ′ = ([G′] ,B′). The adjacency matrix of Γ can be written as [G] =

[(
GL CL C
0 G′ CR
0 0 GR

)]
and

its boundary as B =

(
AL
A′
AR

)
. Then, rank(B′) = rank(A′ |C�

L |CR).

Proposition 4.12. Let T be a recursive rank decomposition of Γ = ([G] ,B) with G ∈ MatN(k,k) and
B ∈MatN(k,n). Then, there is a rank decomposition I †(T) of G such that wd(I †(T))≤ wd(T).

From Proposition 4.12 and Proposition 4.10 we conclude the following result.

Theorem 4.13. Let Γ = ([G] ,B). Then, rwd(G)≤ rrwd(Γ)≤ rwd(G)+ rank(B).

5 Monoidal width and rank width

This section contains our main results. We prove that monoidal width in the prop of graphs Grph [14]

corresponds to rank width, up to a constant multiplicative factor of 2.

We start by introducing the algebra of graphs with boundaries and its diagrammatic syntax [21]. A

graph with boundaries is a graph together with two matrices L and R that record the connectivity of the

vertices with the left and right boundary, a matrix P that records the passing wires from the left boundary

to the right one and a matrix F that records the wires from the right boundary to itself.

Definition 5.1 ([21]). A graph with boundaries g : n→m is defined as g= ([G] ,L,R,P, [F]), where [G] is

the adjacency matrix of a graph on k vertices, with G ∈MatN(k,k); L ∈MatN(k,n), R ∈MatN(k,m), P ∈
MatN(m,n) and F ∈ MatN(m,m) recording connectivity information as explained above. Graphs with

boundaries are taken up to an equivalence making the order of the vertices immaterial. Let g,g′ : n → m
on k vertices, with g = ([G] ,L,R,P, [F]) and g′ = ([G′] ,L′,R′,P, [F]). The graphs g and g′ are considered

equal iff there is a permutation matrix σ ∈MatN(k,k) such that g′ = (
[
σGσ�] ,σL,σR,P, [F]).

Graphs with boundaries can be composed sequentially and in parallel [21], forming a symmetric

monoidal category BGraph. The prop Grph provides a convenient syntax for graphs with boundaries. It

is obtained by adding a cup and a vertex generators to the prop of matrices Bialg (Figure 4).

Definition 5.2 ([14]). The prop of graphs Grph is obtained by adding to Bialg the generators ∪ : 0 → 2

and v : 1 → 0 with the equations below.

and such that = and = .

These equations mean, in particular, that the cup transposes matrices (Figure 5, left) and that we can

express the equivalence relation of adjacency matrices: G ∼ H iff G+G� = H +H� (Figure 5, right).

Proposition 5.3 ([21], Theorem 23). The prop of graphs Grph is isomorphic to the prop BGraph.

278 Monoidal Width: Capturing Rank Width

C
=

C� G ∼ H iff
G

=
H

Figure 5: Adding the cup.

Proposition 5.3 means that the morphisms in Grph can be written in the following normal form

k

G

L

R

P

F
n

m

.

The prop Grph is more expressive than graphs with dangling edges (Definition 4.6): its morphisms

can have edges between the boundaries as well. In fact, graphs with dangling edges can be seen as

morphisms n → 0 in Grph.

Example 5.4. A graph with dangling edges Γ = ([G] ,B) can be represented as a morphism in Grph

g = ([G] ,B,¡,!, [()]) =
k

G

Bn
.

We can now formalise the intuition of glueing graphs with dangling edges as explained in Example 4.7.
The two graphs there correspond to g1 and g2 below left and middle. Their glueing is obtained by
precomposing their monoidal product with a cup, i.e. ∪2 ; (g1 ⊗g2), as shown below right.

g1 = g2 = ∪2 ; (g1 ⊗g2) =

5.1 Rank width in open graphs

The technical content of our main result (Theorem 5.12) is split in two: an upper and a lower bound.

As in the prop of matrices Bialg, the cost of composing along n wires is n. All morphisms in Grph are

chosen as atomic. One could restrict this to those with at most one vertex without affecting the results.

Definition 5.5. Let the set of atomic morphisms A be the set of all the morphisms of Grph. The weight
function w : A ∪{⊗}∪Obj(Grph)→N is defined, on objects n, as w(n) := n; and, on morphisms g∈A ,

as w(g) := k, where k is the number of vertices of g.

Elena Di Lavore and Paweł Sobociński 279

Note that the monoidal width of g is bounded by the number of its vertices.

The upper bound (Proposition 5.8) is established by associating to each recursive rank decomposi-

tion a suitable monoidal decomposition. This mapping is defined inductively, given the inductive nature

of both these structures. Given a recursive rank decomposition of a graph Γ, we can construct a de-

composition of its corresponding morphism g as shown by the first equality in Figure 6. However, this

gn =

k1

k2

G1

G2

A1

A2

C
n =

k1

k2

L1

L2

G1

G2

N1

N2

S
n

r1

r2

Figure 6: First step of a monoidal decomposition given by a recursive rank decomposition

decomposition is not optimal as it cuts along the number of vertices k1 +k2. But we can do better thanks

to Lemma 5.6, which shows that we can cut along the ranks, r1 = rank(A1 |C) and r2 = rank(A2 |C�),
of the boundaries of the induced subgraphs to obtain the second equality in Figure 6.

A1

A2

C

n

n

k1

k2

=

N1

N2

S
L1

L2

n

n

k1

k2

r1

r2

Lemma 5.6. Let Ai ∈MatN(ki,n), for i = 1,2, and C ∈MatN(k1,k2). Then, there are rank decomposi-
tions of (A1 |C) and (A2 |C�) of the form (A1 |C) = L1 · (N1 | S ·L�

2), and (A2 |C�) = L2 · (N2 | S� ·L�
1).

Once we have performed the cuts in Figure 6 on the right, we have changed the boundaries of the

induced subgraphs. This means that we cannot apply the inductive hypothesis right away, but we need

to transform first the recursive rank decompositions of the old subgraphs into decompositions of the

new ones, as shown in Lemma 5.7. More explicitly, when M has full rank, if we have a recursive

rank decomposition of Γ = ([G] ,B′ ·M), which corresponds to g below left, we can obtain one of Γ′ =
([G] ,B′), which corresponds to g′ below right, of the same width.

g =
G

B′M

� g′ =
G

B′

Lemma 5.7. Let T be a recursive rank decomposition of Γ = ([G] ,B) and B = B′ ·M, with M that has
full rank. Then, there is a recursive rank decomposition T ′ of Γ′ = ([G] ,B′) such that wd(T) = wd(T ′)
and such that T and T ′ have the same underlying tree structure.

With the above ingredients, we can show that rank width bounds monoidal width from above.

280 Monoidal Width: Capturing Rank Width

Proposition 5.8. Let Γ = ([G] ,B) be a graph with dangling edges and g : n → 0 be the morphism in
Grph corresponding to Γ. Let T be a recursive rank decomposition of Γ. Then, there is a monoidal
decomposition R†(T) of g such that wd(R†(T))≤ 2 ·wd(T).

Proof sketch. The proof proceeds by induction on T . The base cases are easily checked and the inductive

step relies on the decomposition of g in Figure 6, which we can write thanks to Lemma 5.6. Applying

the inductive hypothesis and Lemma 5.7, the width of this decomposition can be bounded by max{r1 +
r2,2 ·wd(T1),2 ·wd(T2)} ≤ 2 ·wd(T), where T = (T1, Γ, T2).

Proving the lower bound is similarly involved and follows a similar proof structure. From a monoidal

decomposition we construct inductively a recursive rank decomposition of bounded width. The inductive

step relative to composition nodes is the most involved and needs two additional lemmas, which allow

us to transform recursive rank decompositions of the induced subgraphs into ones of two subgraphs that

satisfy the conditions of Definition 4.8.

Applying the inductive hypothesis gives us a recursive rank decomposition of Γ = ([G] ,(L | R)),
which is associated to g below left, and we need to construct one of Γ′ := (

[
G+L ·F ·L�] ,(L | R+L ·

(F +F�) ·P�)), which is associated to f ; g below right, of at most the same width.

g =
k

G

L

R

P

j m
� f ; g =

k

G

L

R

P

F
j m

Lemma 5.9. Let T be a recursive rank decomposition of Γ = ([G] ,(L | R)). Let F ∈ MatN(j, j), P ∈
MatN(m, j) and define Γ′ := (

[
G+L ·F ·L�] ,(L | R+L ·(F +F�) ·P�)). Then, there is a recursive rank

decomposition T ′ of Γ′ of bounded width: wd(T ′)≤ wd(T).

In order to obtain the subgraphs of the desired shape we need to add some extra connections to the

boundaries. We have a recursive rank decomposition of Γ = ([G] ,B), which corresponds to g below left,

and we need one of Γ′ = ([G] ,B ·M), which corresponds to g′ below right, of at most the same width.

g =
G

B

� g′ =
G

BM

The following result and its proof are very similar to Lemma 5.7.

Lemma 5.10. Let T be a recursive rank decomposition of Γ = ([G] ,B) and let B′ = B ·M. Then, there
is a recursive rank decomposition T ′ of Γ′ = ([G] ,B′) such that wd(T ′)≤ wd(T) and such that T and T ′

have the same underlying tree structure. Moreover, if M has full rank, then wd(T ′) = wd(T).

Proposition 5.11. Let g = ([G] ,L,R,P, [F]) in Grph and d ∈ Dg. Let Γ = ([G] ,(L | R)). Then, there is a
recursive rank decomposition R(d) of Γ s.t. wd(R(d))≤ 2 ·max{wd(d), rank(L), rank(R)}.

Proof sketch. The proof proceeds by induction on d. The base case is easily checked, while the inductive

steps are a bit more involved. If d = (d1, ; j, d2), then there are gi = ([Gi] ,Li,Ri,Pi, [Fi]) such that g =

Elena Di Lavore and Paweł Sobociński 281

g1 ; g2 and we can write g as follows.

k1

G1

L1

R1

P1

F1n
j

k2

G2

L2

R2

P2

F2 m

=

k1

G1

L1

n

k2

G2

R2

F m
P

C�
R�

1 L2

In order to build a recursive rank decomposition of Γ, we need recursive rank decompositions of Γi =
(
[
Gi
]
,Bi), but we can obtain recursive rank decompositions of Γi = ([Gi] ,(Li | Ri)) by applying only in-

duction. Thanks to Lemma 5.9, we obtain a recursive rank decomposition of Γ′
2 =(

[
G2 +L2 ·F1 ·L�

2

]
,(L2 |

R2 +L2 · (F1 +F�
1) ·P�

2)). Lastly, we apply Lemma 5.10 to get recursive rank decompositions Ti of Γi.

Thanks to these, we can bound the width of T := (T1, Γ, T2):

wd(T)≤ 2 ·max{wd(d1),wd(d2), j, rank(L), rank(R)} :=2 ·max{wd(d), rank(L), rank(R)}.
If d = (d1,⊗, d2), we proceed similarly.

From Proposition 5.8, Proposition 5.11 and Theorem 4.13, we obtain our main result.

Theorem 5.12. Let G be a graph and let g = ([G] ,¡,¡,(), [()]) be the corresponding morphism of Grph.
Then, 1

2
· rwd(G)≤mwd(g)≤ 2 · rwd(G).

6 Conclusions and future work

We have shown that monoidal width, in a suitable category of graphs composable along “open” edges,

yields rank width; a well-known measure from the graph theory literature.

Our goal with this line of research is to develop a generic, abstract “decomposition theory”. We will

study other graph widths like clique width [20] and twin width [12], as well as go beyond graphs: e.g.

by focussing on tree width for hypergraphs and relational structures [1], branch width for matroids and

widths for directed graphs. A part of “decomposition theory” means going beyond width as a mere num-

ber – in fact we believe that in each case the identification of a suitable monoidal category as an algebra
of open graph structures is itself a worthwhile contribution. Indeed, having such an algebra means that

a decomposition, rather than an ad hoc concept-specific construction, becomes more of a mathematical

object in its own right. Such compositional algebras will add to the quiver of compositional structures of

applied category theory; for example serving as syntax for more sophisticated applications [21].

Acknowledgements. Elena Di Lavore and Paweł Sobociński were supported by the European Union

through the ESF funded Estonian IT Academy research measure (2014-2020.4.05.19-0001). This work

was also supported by the Estonian Research Council grant PRG1210.

282 Monoidal Width: Capturing Rank Width

References

[1] Samson Abramsky, Anuj Dawar, and Pengming Wang. The pebbling comonad in finite model theory. In

2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–12. IEEE, 2017.

doi:10.1103/PhysRevLett.65.3373.

[2] D. Adolphson and T. C. Hu. Optimal linear ordering. SIAM Journal on Applied Mathematics, 25(3):403–423,

1973. doi:10.1137/0123021.

[3] Dorit Aharonov, Zeph Landau, and Johann Makowsky. The quantum fft can be classically simulated, 2006.

arXiv:quant-ph/0611156.

[4] Stefan Arnborg, Bruno Courcelle, Andrzej Proskurowski, and Detlef Seese. An algebraic theory of graph

reduction. Journal of the ACM (JACM), 40(5):1134–1164, 1993. doi:10.1016/0095-8956(91)90061-N.

[5] Michel Bauderon and Bruno Courcelle. Graph expressions and graph rewritings. Mathematical Systems
Theory, 20(1):83–127, 1987. doi:10.1007/BF01692060.

[6] Umberto Bertelè and Francesco Brioschi. On non-serial dynamic programming. J. Comb. Theory, Ser. A,

14(2):137–148, 1973. doi:10.1016/0097-3165(73)90016-2.

[7] Christoph Blume, HJ Sander Bruggink, Martin Friedrich, and Barbara König. Treewidth, pathwidth and

cospan decompositions. Electronic Communications of the EASST, 41, 2011.

[8] Hans L Bodlaender. A tourist guide through treewidth. Technical report, 1992.

[9] Hans L Bodlaender and Arie MCA Koster. Combinatorial optimization on graphs of bounded treewidth. The
Computer Journal, 51(3):255–269, 2008. doi:10.1093/comjnl/bxm037.

[10] Guillaume Boisseau and Paweł Sobociński. String diagrammatic electrical circuit theory. CoRR,

abs/2106.07763, 2021. URL: https://arxiv.org/abs/2106.07763, arXiv:2106.07763.

[11] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. A survey of compositional signal flow theory. In

Michael Goedicke, Erich J. Neuhold, and Kai Rannenberg, editors, Advancing Research in Information and
Communication Technology - IFIP’s Exciting First 60+ Years, Views from the Technical Committees and
Working Groups, volume 600 of IFIP Advances in Information and Communication Technology, pages 29–

56. Springer, 2021. doi:10.1007/978-3-030-81701-5_2.

[12] Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width i: tractable fo model

checking. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 601–

612. IEEE, 2020. doi:10.1109/FOCS.2015.63.

[13] Benjamin Merlin Bumpus and Zoltan A Kocsis. Spined categories: generalizing tree-width beyond graphs.

arXiv preprint arXiv:2104.01841, 2021.

[14] Apiwat Chantawibul and Paweł Sobociński. Towards compositional graph theory. Electronic Notes in Theo-
retical Computer Science, 319:121–136, 2015. doi:10.1016/j.entcs.2015.12.009.

[15] Kenta Cho and Bart Jacobs. Disintegration and Bayesian Inversion via String Diagrams. Mathemat-
ical Structures in Computer Science, pages 1–34, March 2019. arXiv:1709.00322, doi:10.1017/

S0960129518000488.

[16] Maria Chudnovsky and Paul Seymour. A well-quasi-order for tournaments. Journal of Combinatorial Theory,
Series B, 101(1):47–53, 2011. doi:10.1016/j.jctb.2010.10.003.

[17] Bob Coecke and Aleks Kissinger. Picturing Quantum Processes - A first course in Quantum Theory and
Diagrammatic Reasoning. Cambridge University Press, 2017. doi:10.1017/9781316219317.

[18] Cole Comfort and Aleks Kissinger. A graphical calculus for lagrangian relations. CoRR, abs/2105.06244,

2021. URL: https://arxiv.org/abs/2105.06244, arXiv:2105.06244.

[19] Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Information
and computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

[20] Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete Applied Mathe-
matics, 101(1-3):77–114, 2000. doi:10.1016/S0166-218X(99)00184-5.

Elena Di Lavore and Paweł Sobociński 283

[21] Elena Di Lavore, Jules Hedges, and Paweł Sobociński. Compositional modelling of network games. In 29th
EACSL Annual Conference on Computer Science Logic (CSL 2021). Schloss Dagstuhl-Leibniz-Zentrum für

Informatik, 2021.

[22] Elena Di Lavore and Paweł Sobociński. Monoidal Width: Unifying Tree Width, Path Width and Branch

Width, 2022. arXiv:2202.07582.

[23] Ross Duncan, Aleks Kissinger, Simon Perdrix, and John van de Wetering. Graph-theoretic simplification of

quantum circuits with the zx-calculus. Quantum, 4:279, 2020. doi:10.22331/q-2020-06-04-279.

[24] Tomás Feder and Moshe Y Vardi. The computational structure of monotone monadic snp and constraint

satisfaction: A study through datalog and group theory. SIAM Journal on Computing, 28(1):57–104, 1998.

doi:10.1016/0196-6774(86)90023-4.

[25] Brendan Fong and David I Spivak. Seven sketches in compositionality: An invitation to applied category

theory, 2018. arXiv:1803.05316.

[26] Tobias Fritz. A synthetic approach to Markov kernels, conditional independence and theorems on sufficient

statistics. Advances in Mathematics, 370:107239, 2020. doi:10.1016/j.aim.2020.107239.

[27] Neil Ghani, Jules Hedges, Viktor Winschel, and Philipp Zahn. Compositional game theory. In Anuj Dawar

and Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 472–481. ACM, 2018. doi:10.1145/3209108.

3209165.

[28] Dan R. Ghica, Achim Jung, and Aliaume Lopez. Diagrammatic semantics for digital circuits. In Valentin

Goranko and Mads Dam, editors, 26th EACSL Annual Conference on Computer Science Logic, CSL 2017,
August 20-24, 2017, Stockholm, Sweden, volume 82 of LIPIcs, pages 24:1–24:16. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.CSL.2017.24.

[29] Rudolf Halin. S-functions for graphs. Journal of geometry, 8(1-2):171–186, 1976. doi:10.1007/

BF01917434.

[30] André Joyal and Ross Street. The geometry of tensor calculus, i. Advances in mathematics, 88(1):55–112,

1991. doi:10.1016/0001-8708(91)90003-P.

[31] Stephen Lack. Composing PROPs. Theor. App. Categories, 13(9):147–163, 2004.

[32] Saunders Mac Lane. Categorical algebra. Bull. Amer. Math. Soc., 71:40–106, 1965. doi:10.2307/1993828.

[33] Sang-il Oum and Paul D. Seymour. Approximating clique-width and branch-width. Journal of Combinatorial
Theory, Series B, 96(4):514–528, 2006. doi:10.1016/j.jctb.2005.10.006.

[34] R Piziak and PL Odell. Full rank factorization of matrices. Mathematics magazine, 72(3):193–201, 1999.

doi:10.1080/0025570X.1999.11996730.

[35] Pavel Pudlák, Vojtěch Rödl, and Petr Savickỳ. Graph complexity. Acta Informatica, 25(5):515–535, 1988.

[36] Julian Rathke, Paweł Sobociński, and Owen Stephens. Compositional reachability in petri nets. In

International Workshop on Reachability Problems, pages 230–243. Springer, 2014. doi:10.1007/

978-3-319-07734-5_9.

[37] Neil Robertson and Paul D. Seymour. Graph minors. I. excluding a forest. Journal of Combinatorial Theory,
Series B, 35(1):39–61, 1983. doi:10.1016/0095-8956(83)90079-5.

[38] Neil Robertson and Paul D. Seymour. Graph minors. II. algorithmic aspects of tree-width. Journal of algo-
rithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

[39] Neil Robertson and Paul D. Seymour. Graph minors. X. obstructions to tree-decomposition. Journal of
Combinatorial Theory, Series B, 52(2):153–190, 1991. doi:10.1016/0095-8956(91)90061-N.

[40] Peter Selinger. A survey of graphical languages for monoidal categories. In New structures for physics, pages

289–355. Springer, 2010. doi:10.1090/conm/134/1187296.

[41] Fabio Zanasi. Interacting Hopf Algebras - The Theory of Linear Systems. PhD thesis, École Normale

Supérieure de Lyon, 2015.

Compositional Modelling of Network Games
Elena Di Lavore
Department of Software Science, Tallinn University of Technology, Estonia
elena.di@taltech.ee

Jules Hedges
Department of Computer and Information Sciences, University of Strathclyde, Glasgow, UK
jules.hedges@strath.ac.uk

Paweł Sobociński
Department of Software Science, Tallinn University of Technology, Estonia
pawel.sobocinski@taltech.ee

Abstract
The analysis of games played on graph-like structures is of increasing importance due to the
prevalence of social networks, both virtual and physical, in our daily life. As well as being relevant
in computer science, mathematical analysis and computer simulations of such distributed games are
vital methodologies in economics, politics and epidemiology, amongst other fields. Our contribution
is to give compositional semantics of a family of such games as a well-behaved mapping, a strict
monoidal functor, from a category of open graphs (syntax) to a category of open games (semantics).
As well as introducing the theoretical framework, we identify some applications of compositionality.

2012 ACM Subject Classification Theory of computation → Categorical semantics

Keywords and phrases game theory, category theory, network games, open games, open graphs,
compositionality

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.30

Funding Elena Di Lavore and Paweł Sobociński are supported by the ESF funded Estonian IT
Academy research measure (project 2014-2020.4.05.19-0001).

1 Introduction

Compositionality concerns finding homomorphic mappings

Syntax → Semantics. (1)

This important concept originated in formal logic [20, 21], and is at the centre of formal
semantics of programming languages [23]. In recent years, there have been several 2-
dimensional examples [6, 4, 1], where both Syntax and Semantics are symmetric monoidal
categories. Usually Syntax is freely generated from a (monoidal) signature, possibly modulo
equations. This opens up the possibility of recursive definitions and proofs by structural
induction, familiar from our experience with ordinary, 1-dimensional syntax.

In this paper, we consider an instance of (1) that is—at first sight—quite different from
the usual concerns of programming and logic: network games [5], also known as graphical
games. Network games involve agents that play concurrently, and share information based
on an underlying, ambient network topology. Indeed, the utility of each player typically
depends on the structure of the network. An interesting application is social networks [10],
but they also feature in economics [11], politics [22] and epidemiology [16], amongst other
fields. (These games should not be confused with classes of dynamic games played on graphs,
such as parity games and pursuit games, which are not within the scope of this paper.)

© Elena Di Lavore, Jules Hedges, and Paweł Sobociński;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 30; pp. 30:1–30:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

30:2 Compositional Modelling of Network Games

In formal accounts of network games, graphs represent network topologies. Players are
identified with graph vertices, and their utility is influenced only by their choices and those
of their immediate neighbours. Network games are thus “games on graphs”. An example is
the majority game: players “win” when they agree with the majority of their neighbours.

In what way do such games fit into the conceptual framework of (1)? Our main con-
tribution is the framing of certain network games as monoidal functors from a suitable
category of open graphs Grph [7], our Syntax, to the category of open games Game [13],
our Semantics. Given a network game N (e.g. the majority game), such games are functors

FN : Grph → Game (2)

that, for any closed graph Γ ∈ Grph, yield the game FN (Γ), which is the game N played on Γ.
However, compositionality means that such games are actually “glued together” from simpler,
open games. In fact, FN maps each vertex of Γ to an open game called the utility-maximising
player, and the connectivity of Γ is mapped, following the rules of N , to structure in Game.

Our contribution thus makes the intuitively obvious idea that the data of network games
is dependent on their network topology precise. Concrete descriptions of network games,
given a fixed topology, are often quite involved: our approach means that they can be derived
in a principled way from basic building blocks. In some cases, the compositional description
can also help in the mathematical analysis of games. For example, in the case of the majority
game, the right decomposition of a network topology Γ as an expression in Grph can yield
a recipe for the Nash equilibrium of FN (Γ) in Game in terms of the equilibria of the open
games obtained via FN from the open graphs in the decomposition. As it happens when
solving optimization problems, a compositional analysis of the equilibria is possible only
when the game has optimal substructure, which is the case for the majority game (but is not
the case in general). Nevertheless, compositional modelling is valuable for the understanding
of the structure of the system. It allows, for example, to modify a part of a system while
keeping the analysis done for the rest of the system, as we show in Example 31.

Technically, we proceed as follows. We introduce monoid network games (Definition 7)
that make common structure of all of our motivating examples explicit, and that we believe
cover the majority of network games studied in the literature. Roughly speaking, monoid
network games are parametrised wrt (i) a monoid that aggregates information from neighbours
and (ii) functions that govern how that information is propagated in the network. While we
are able to model all network games, the structure of monoid network games allows us to
characterise them as functors in a generic fashion.

Our category of open graphs Grph (Definition 18) is an extension of the approach of [7],
from undirected graphs to undirected multigraphs. Multigraphs allow us to model games
on networks where some links are stronger than others, cf. Example 30. Our Grph is
different from other notions of “open graph” in the literature, e.g. via cospans [9], in that
it is centred on the use of adjacency matrices, which are commonly used in graph theory
to encode connectivity. Adjacency matrices give an explicit presentation of the graphs that
allows an explicit description of the games played on them. Moreover, the emphasis on the
matrix algebra means that Grph has the structure of commutative bialgebra—equivalent to
the algebra of ordinary N matrices [15, 24]—but also additional structure that captures the
algebraic content of adjacency matrices. Given that Grph has a presentation in terms of
generators and equations, to obtain (2) it suffices to define it on the generators and check
that Grph-equations are respected in Game. This is our main result, Theorem 27.

E. Di Lavore, J. Hedges, and P. Sobociński 30:3

In addition to the presentation of Grph in terms of generators and equations, we charac-
terise it as another category (Theorem 23) that makes clear its status as a category of “open
graphs”. The result can be understood as a kind of normal form for the morphisms of Grph,
useful to describe concrete instantiations of FN for arbitrary open graphs (Theorem 29).

Our work is a first step towards a more principled way of defining games parametrised
by graphs. We would like to remark that the methodology that we present to define games
on networks is more general than the particular instance worked out in this paper. Indeed,
future work will extend both the notions of graphs (e.g. by considering directed graphs),
as well as the kinds of games played on them (e.g. stochastic games, repeated games).
While we do identify some applications, we believe that compositional reasoning is severely
under-rated in traditional game theory, and that its adoption will lead to both more flexible
modelling frameworks, as well as more scalable mathematical analyses.

Structure of the paper

We introduce our running examples in §2 and unify them under the umbrella of monoid
network games. Next, we recall the basics of open games in §3 and identify the building
blocks needed for (2). In §4 we introduce the category Grph of open, undirected multigraphs,
and give a combinatorial characterisation, which is useful in applications. The construction
of FN is in §5, and several applications of our compositional framework are given in §6.

2 Network games

In this section we introduce motivating examples for our compositional framework and
introduce a notion of game called the monoid network game that unifies them.

Network games [5, 14] are parametric wrt a network topology, usually represented by
a graph. Players are the vertices, and the possible connections between the players are
represented by the edges. Moreover, each player’s payoff is affected only by the choices of
its immediate neighbours on the graph. We use undirected multigraphs to model network
topologies.

� Definition 1. An undirected multigraph is G = (VG, EG), where VG is the set of vertices and
EG is a sym. multi-relation on VG: a function EG : VG × VG → N st EG(vi, vj) = EG(vj , vi).

A common way of capturing the connectivity of a graph is via adjacency matrices, which
play an important role in graph theory. They are also crucial for our compositional account.

Assuming an ordering on the set of vertices of a graph, square matrices A with entries
from N can record connections between vertex i and j in Aij : a 0-entry signifies no edge,
and non-zero entries count the connections. Ordinary matrices are too concrete to uniquely
represent connectivity since edges between i and j can be recorded in the (i, j)th entry or the
(j, i)th entry. One could use symmetric matrices or triangular matrices. For us, it is better
to equate matrices that encode the same connectivity: A ∼ A′ iff A + AT = A′ + A′T .

� Definition 2. An adjacency matrix is an equivalence class [A] of matrices with entries
in the natural numbers. The equivalence relation is given by

A ∼ A′ ⇐⇒ A + AT = A′ + A′T .

A finite multigraph can also be defined as (kG, [A]) where kG ∈ N and [A] a kG ×kG adjacency
matrix. Let G(n) be the set of multigraphs with n vertices, enumerated as v1, . . . , vn.

CSL 2021

30:4 Compositional Modelling of Network Games

� Definition 3 (Network game). An n-player network game N consists of, for each player
1 ≤ i ≤ n, a set of choices Xi and a payoff ui : G(n) × ∏n

j=1 Xj → R, such that each player’s
payoff is affected only by its own and its neighbours’ choices: for each G ∈ G(n), each player
i, each j �= i such that (vi, vj) /∈ EG, each x−j ∈ ∏n

k �=j Xk, and each xj , x′
j ∈ Xj

ui(G, xj , x−j) = ui(G, x′
j , x−j)

(The notation x−j, standard in game theory, means a tuple with the jth element missing.)
The set of strategies is

∏n
i=1 Xi and its elements x ∈ ∏n

i=1 Xi are strategy profiles.

The best response, for a graph G ∈ G(n), is a relation BN on the set of strategies, defined
by

(x, x′) ∈ BN ⇔ ∀1 ≤ i ≤ n. ∀yi ∈ Xi. ui(G, x[i �→ x′
i]) ≥ ui(G, x[i �→ yi])

A Nash equilibrium, for G ∈ G(n), is a strategy profile x s.t. for each player 1 ≤ i ≤ n,
ui(G, x) ≥ ui(G, x[i �→ x′

i]) for each x′
i ∈ Xi. It is a fix-point of the best response relation.

We now recall three important examples of network games.

� Example 4 (Majority game). Each player has two choices, Xi = {Y, N}. A player receives
a utility of 1 if its choice is the majority choice of its neighbours, and 0 otherwise, i.e.

ui(G, x) =

{
1 if |{vj | (vi, vj) ∈ EG and xi = xj}| ≥ |{vj | (vi, vj) ∈ EG and xi �= xj}|
0 otherwise.

Nash equilibria are strategy profiles where players take the majority choice of their neighbours.

� Example 5 (Best-shot public goods game). Each player has two choices, Xi = {Y, N},
interpreted as investing or not investing in a public good. The investor bears a cost 0 < c < 1,
and gives a utility of 1 to themselves and every neighbour. The players are already partially
satisfied with the current situation and assign a utility of 1 − c + ε, with 0 < ε < c, to the
situation where neither the player nor its neighbours invest. The utility functions thus are:

ui(G, x) =

⎧⎪⎪⎨
⎪⎪⎩

1 − c if xi = Y

1 if xi = N and xj = Y for some (vi, vj) ∈ EG

1 − c + ε otherwise.

The Nash equilibrium is when no player invests, an example of a ‘tragedy of the commons’.

� Example 6 (Weakest-link public goods game). Each player’s choice is an investment,
valued in R+. The cost to the player given by an increasing cost function c : R+ → R+ where
c(0) = 0, and utility is the minimum level of investment of the player and all neighbours:

ui(G, x) = min
j=i or (vi,vj)∈EG

xj − c(xi).

A necessary condition for Nash equilibrium is that no player invests more than its neighbours.

In Examples 4, 5 and 6 every player has the same set of choices, and the utility depends
in a uniform way on neighbours’ choices. We collect these, and other examples in the
literature, under the umbrella of monoid network games. Most examples in the literature can
be collected in two classes [5, ch. 5], namely games on networks with constrained continuous
actions or with binary actions. Provided that weights are natural numbers, the latter can be
expressed as monoid network games. To express the former as monoid network games, we

E. Di Lavore, J. Hedges, and P. Sobociński 30:5

need to additionally ask that the parameters appearing in the utility functions of the players
be constant. However, we can still express games of this class with different parameters for
different players by composing different monoid network games. This is shown in Example 32.

Network games that do not fall into this category can be nevertheless expressed in a
compositional way as illustrated in Fig. 1. If a game can be described in the form of a
a monoid network game, we can say more: such games are a monoidal functor from the
category of syntax to the category of semantics. The details are in Section 5.

To the best of our knowledge, the following has not previously appeared in the literature.

� Definition 7 (Monoid network game). A monoid network game is N = (X, M, f, g) where:
X is the set of choices for each player
M = (M, ⊕, e) is a commutative monoid
f : X → M and g : X × M → R are functions such that each utility function has the form

ui(G, x) = g

⎛
⎝xi,

⊕
(vi,vj)∈EG

f(xj)

⎞
⎠ .

Examples 4, 5, 6 are indeed examples of monoid network games:
The majority game (Example 4) has the monoid (N, +, 0) × (N, +, 0), counting the

Y and N ‘votes’. Define f : {Y, N} → N2 by f(Y) = (1, 0) and f(N) = (0, 1), and
g : {Y, N} × N2 → R is:

g(x, (n1, n2)) =

⎧⎪⎪⎨
⎪⎪⎩

1 if x = Y and n1 ≥ n2

1 if x = N and n1 ≤ n2

0 otherwise.

The best-shot public goods game (Example 5) is a monoid network game with the
monoid Bool = ({Y, N}, ∨, N), where ∨ is logical or, f : Bool → Bool is the identity,
and g : Bool × Bool → R:

g(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1 − c if x = Y

1 if x = N and y = Y

1 − c + ε if x = N and y = N

The weakest-link public goods game (Example 6) has the monoid R∞
+ = ({R+ ∪

{∞}, min, ∞), f the embedding R+ ↪→ R∞
+ , and g : R+ ×R∞

+ → R is g(x, y) = min(x, y)−
c(x).

3 Open games

Open games were introduced in [13] as a compositional approach to game theory.

� Definition 8 (Open game). Let X, Y, R, S, Σ be sets. An open game G : (X
S) Σ

� (Y
R) has:

(i) PG : Σ × X → Y , called play function
(ii) CG : Σ × X × R → S, called coplay function
(iii) BG : X × (Y → R) → P(Σ2), called best response function.

Roughly speaking, an open game is a process that (i) given a strategy and observation,
decides a move, and (ii) given a strategy, observation, and a utility, returns a coutility

CSL 2021

30:6 Compositional Modelling of Network Games

to the environment. Coutility is not a concept of classical game theory, but it enables
compositionality by incorporating the fact that players reason about the future consequences
of their actions. Finally, (iii), the best response function, which, given a context for the
game returns a relation on the set of strategies. A strategy σ is related to another strategy
σ′ if the latter is a best response to the former.

An open game is a process that receives observations (X) “from the past”, and the util-
ity (R) “from the future”. It outputs moves (Y) covariantly and coutility (S) contravariantly.

GX
S

Y
R

Open games are morphisms in a symmetric monoidal category Game. In order to formally
define composition and monoidal product of games, it is useful to rephrase the definition in
terms of lenses [19]. The detailed definitions are given in [13].

� Definition 9 (Game). Game is the symmetric monoidal category with pairs of sets (X
S)

as objects and (equivalence classes of) open games G : (X
S) Σ

� (Y
R) as morphisms.

We give some intuitions. Composition, shown below left, is sequential play: H · G is
thought of as H happening after G, observing the moves of G and feeding back its coutility as
G’s utility. The monoidal product of open games represents two games played independently.
The games are placed side by side with no connections, as shown below right.

G HX
S

Z
Q

R

Y
G1

X1

S1

Y1

R1G2

X2

S2

Y2

R2

Classical games are scalars in Game, i.e. open games (1
1) � (1

1). The fix-points of
the best response functions of scalars in Game are the Nash equilibria of the games they
represent.

Next we define specific open games used in our compositional account of network games.
The first is the Utility Maximising Player, modelling typical players of classical game theory.

� Definition 10 (Utility Maximising Player). Let X and Y be sets and argmax : RY → P(Y)
take a function κ : Y → R to the subset of Y where κ is maximised. Define D to be:

D : (X
1) Y X

� (Y
R)⎧⎪⎪⎨

⎪⎪⎩
PD(f, x) = f(x)
CD(f, x, r) = ∗
BD(x, κ) = {(y, y′) ∈ Y X × Y X : y′(x) ∈ argmax(κ)}

maxX Y
R

The category of sets and functions Set embeds into Game in two ways. In our account
of network games, these embeddings encode how neighbours influence each other’s utilities.

� Definition 11. Let X, Y be sets and f : X → Y a function. Its covariant lifting is defined:

f∗ : (X
1) 1

� (Y
1)⎧⎪⎪⎨

⎪⎪⎩
Pf∗(∗, x) = f(x)
Cf∗(∗, x, ∗) = ∗
Bf∗(x, ∗) = {(∗, ∗)}

fX Y

E. Di Lavore, J. Hedges, and P. Sobociński 30:7

K

max

max

u1(G)

un(G)

...

...

...

Figure 1 Open game representing a network game N played on a multigraph G

Similarly, its contravariant lifting is the following:

f∗ : (1
Y) 1

� (1
X)⎧⎪⎪⎨

⎪⎪⎩
Pf∗(∗, ∗) = ∗
Cf∗(∗, ∗, x) = f(x)
Bf∗(∗, x) = {(∗, ∗)}

f XY

To obtain Examples 4, 5 and 6 as scalars in Game, players are taken to be utility-
maximising players. The connectivity of the multigraph G determines their utility functions
as contravariant liftings ui(G), while the context K sends back the choices of all players:

K :
(

Xn

Xn×···×Xn

) 1
� (1

1)
CK(x) = (x, . . . , x).

The respective games are then obtained as the composition illustrated in Fig. 1. In this way,
we obtain a compositional description of any network game. If a game can be described in
the form of a a monoid network game, we can say more: such games are a monoidal functor
from Grph, defined in the next section, to Game. The details are in Section 5.

4 Open graphs

We extend the compositional approach to graph theory of [7] from simple graphs to
undirected multigraphs, identifying a “syntax” of network games as the arrows of a prop1

Grph, generated from a monoidal signature and equations. We also provide a characterisation
of Grph that explains its arrows as “open graphs”. Differently from other approaches [3, 9],
Grph uses adjacency matrices (Definition 2). Indeed, the presentation includes generators

: 0 → 1, : 2 → 1, : 1 → 0, : 1 → 2 (BIALG)

and the equations of Fig. 2. The prop B generated by this data is isomorphic [15, 24] to
the prop of matrices with entries from N, with composition being matrix multiplication. To
convert between the two, think of the matrix as recording the numbers of paths: indeed, the
(i, j)th entry in the matrix is the number of paths from the ith left port to the jth right port.

1 A prop [17, 15] is a symmetric strict monoidal category where the objects are N, and m ⊗ n := m + n.

CSL 2021

30:8 Compositional Modelling of Network Games

= =

= =

= =

= =

= =

Figure 2 Commutative bialgebra equations, yielding prop B.

= = =

Figure 3 Equations of ∪, which together with the equations of Fig. 2 yield prop BU.

� Example 12. The following string diagram in B corresponds to the 3 × 2 matrix
(2 1

0 1
1 0

)
.

Next, we add a “cup” generator denoted

: 2 → 0 (U)

with its equations given in Fig. 3.

� Definition 13. Let BU be the prop obtained from (BIALG) and (U), quotiented by
equations in Figs. 2 and 3, where the empty diagram is the identity on the monoidal unit.

Just as B captures ordinary matrices, BU captures adjacency matrices:

� Proposition 14. For n ∈ N, the hom-set [n, 0] of BU is in bijection with n × n adjacency
matrices, in the sense of Definition 2.

We have seen that the relationship between matrices and diagrams in B is that the former
encode the path information from the latter. Thus an m × n matrix is a diagram from m to
n. Adding the cup and the additional equations means that, in general, a diagram from n to
0 in BU “encapsulates” an n × n matrix that expresses connectivity information in a similar
way to adjacency matrices. We now give a concrete derivation to demonstrate this.

E. Di Lavore, J. Hedges, and P. Sobociński 30:9

� Example 15. The equivalence relation of adjacency matrices is captured by the equations
of Fig. 3. Consider matrices A = (0 1

1 0) ∼ (0 2
0 0) = A′. The morphism in BU is obtained by

constructing their diagram in B as in Example 12 and “plugging” them in the following.

2

As shown below, the two diagrams obtained are equated by the axioms of BU.

A2 = = = = = A′2

The prop BU can be given a straightforward combinatorial characterisation as the prop Adj.

� Definition 16 (Adj). A morphism α : m → n in the prop Adj [7] is a pair (B, [A]), where
B ∈ MatN(m, n) is a matrix, while [A], with A ∈ MatN(m, m), is an adjacency matrix. The
components of Adj morphisms can be read off a “normal form” for BU arrows, as follows.

B

A

m n

Composition in Adj becomes intuitive when visualised with string diagrams.

(B, [A]) ◦ (B′, [A′]) = (BB′, [A + BA′BT])

B

A

B′

A′
l

m
n =

B

A

B′

A′B BT

l n

=
BB′

A + BA′BT

l n

� Proposition 17. BU is isomorphic to the prop Adj. �

The proof is similar to the case for Z2 [7]. An extension of BU with just one additional
generator and no additional equations yields the prop Grph of central interest for us.

� Definition 18. The prop Grph is obtained from the generators in (BIALG) and (U)
together with a generator : 0 → 1. The equations are those of Figs. 2 and 3.

CSL 2021

30:10 Compositional Modelling of Network Games

As we shall see, arrows 0 → 0 in Grph are precisely finite undirected multigraphs taken up
to isomorphism: the additional generator plays the role of a graph vertex.

� Example 19. For example, the first of the following represents a multigraph with two
vertices, connected by a single edge. The second one, two vertices connected by two edges.
The third one, is a multigraph with three vertices and two edges between them.

While the arrows [0, 0] are (iso classes of) multigraphs, general arrows can be understood
as open graphs. Roughly speaking, they are graphs together with interfaces, and data that
specifies the connectivity of the graph to its interfaces. We make this explicit below. Indeed,
we shall see (Theorem 23) that the prop A, defined below, is isomorphic to Grph – for this
reason we use Grph string diagrams to illustrate its structure.

� Definition 20 (The prop A). A morphism Γ: m → n in the prop A is defined by

Γ = (k, [A] , B, C, D, [E]) (3)

where k ∈ N, A ∈ MatN(m, m), B ∈ MatN(m, n), C ∈ MatN(m, k), D ∈ MatN(k, n) and
E ∈ MatN(k, k). Similarly to Adj (Definition 16), the components of (3) can be read off a
“normal form” for arrows of Grph, as visualised below right.

Tuples (3) are taken up to an equivalence re-
lation that captures the fact that the order of
the vertices is immaterial. Let Γ ∼ Γ′ iff they
are morphisms of the same type, Γ, Γ′ : m →
n with k vertices, and there is a permuta-
tion matrix P ∈ Mat(k, k) such that Γ′ =
(k, [A] , B, CP T , PD,

[
PEP T

]
). The justifica-

tion for this equivalence is the equality of the
following two string diagrams in Grph, below
(for the details, see Appendix A on page 18).

A

B

D

C

E

k

m n

A

B

D

C

E

k

m n =

P

A

B

D

C

E

k

m n

It is worthwhile to give some intuition for the components of (3). The idea is that an arrow
Γ specifies a multigraph G = (k, [E]), and:

B specifies connections between the two boundaries, bypassing G

C specifies connections between the left boundary and G

D specifies connections between G and the right boundary
A specifies connections between the interfaces on the left boundary. This allows Γ to
introduce connections between the vertices of an “earlier” open graph Δ. See Example 21.

E. Di Lavore, J. Hedges, and P. Sobociński 30:11

�−→ (0, [()] , ¡, (), ¡, [()]) �−→ (0, [0] , !, !, (), [()])

�−→ (0, [02] , (1
1) , (), ¡, [()]) �−→ (0, [0] , (1 1), !, ¡, [()])

�−→ (0, [(0 1
0 0)] , !, !, (), [()]) �−→ (1, [()] , ¡, ¡, 1, [0])

Figure 4 Image of θ on the generators

Defining composition in A is straightforward, given the above intuitions, but the details
are rather tedious: see Lemma 33 in Appendix A.

� Example 21. In a composite Δ ; Γ, Γ may introduce edges between the vertices of Δ.
Indeed, the first diagram in Example 19 can be decomposed:

; =

� Example 22. The following show the role of A-morphism components, when isolated. The
leftmost open graph has only left-side ports. It introduces a self-loop and two connections.
The second has only connections between the left and right interfaces; the first left port is
connected twice to the first right port, the second port is disconnected, and the third left
port is connected to the second and third right ports. The third open graph has one vertex
connected to the two left ports. The fourth has three vertices connected to the right ports,
following the specification in the second. The rightmost (closed) multigraph has its vertices
connected according to the specification of the leftmost vertex-less open graph. We write !
for matrices without columns, ¡ for matrices without rows and () for the empty matrix.

(0,[A],!,!,¡,[()]) (0,[0],B,!,¡,[()]) (1,[0],!,C,!,[0]) (3,[()],¡,¡,D,[0]) (2,[()],(),¡,!,[E])

A=(1 0
2 0) B=

(2 0 0
0 0 0
0 1 1

)
C=(1

1) D=
(2 0 0

0 0 0
0 1 1

)
E=(1 0

2 0)

The main result in this section is the following.

� Theorem 23. There is an isomorphism of props θ : Grph → A.

The remainder of this section builds a proof of the above, summarised in the diagram below.

BU

∼= (Proposition 17)

��

�� Grph ∼= BU +
{ }

θ

��

{ }
��

∼= (Lemma 25)

��
Adj �� A ∼= Adj + bP (Proposition 26) bP��

First, note that Grph is the coproduct BU+
{ }

in the category of props, where
{ }

is the free prop on a single generator 0 → 1. Next, we characterise
{ }

as bP, defined

CSL 2021

30:12 Compositional Modelling of Network Games

below, in Lemma 25. Given that BU ∼= Adj, as shown in Proposition 17, to show the
existence of θ it suffices to show that A satisfies the universal property of the coproduct
Adj + bP, which is Proposition 26. The action of θ on the generators of Grph is in Fig. 4.

� Definition 24 (bP). The prop of bound permutations bP has as morphisms m → m + k

pairs [(k, P)] where k ∈ N and P ∈ MatN(m + k, m + k) is a permutation matrix. Such
pairs are identified to ensure that the order of the lower k rows of P is immaterial. Roughly
speaking, considering P as a permutation of m+k inputs to m+k outputs, in [(k, P)] the final
k inputs are “bound”. Explicitly, (k, P) ∼ (k, P ′) iff there is a permutation σ ∈ MatN(k, k)
st P =

(
1m 0
0 σ

)
P ′. Composition is defined:

(l, Q) ◦ (k, P) = (k + l,
(

P 0
0 1l

)
Q)

P
Q

m

k

l

m

k

l

Identities are identity matrices idn = (0, 1n). The fact that bP is a prop is Lemma 34 in
Appendix A.

� Lemma 25. bP is isomorphic to
{ }

.

Proof. Let us call φ = (0, (1)) : 0 → 1, which is a morphism in bP. We show directly that, for
any other prop P that contains a morphism v : 0 → 1, there is a unique prop homomorphism
α# : bP → P such that α#(φ) = v. The details are given as Lemma 35 in Appendix A. �

Given the results of Proposition 17 and Lemma 25, we obtain the isomorphism θ : Grph →
A, thereby completing the proof of Theorem 23, by showing that:

� Proposition 26. A satisfies the universal property of the coproduct Adj + bP.

Proof. In order to show that A is a coproduct Adj + bP, we define the two inclusions.

i1 : Adj −→ A
n �−→ n

(B, [A]) �−→ (0, [A] , B, !, ¡, [()])
B

A
�−→ B

A

i2 : bP −→ A
n �−→ n

(k, P) �−→ (k, [0n] , P
[1,n]
∗ , 0nk, P

[n+1,n+k]
∗ , [0k])

P

m

k

m

k

�−→ P
k

m m

k

We indicate with P
[1,n]
∗ the first n rows of the matrix P and, similarly, with P

[n+1,n+k]
∗

the rows between the n + 1-th and the n + k-th. It is not difficult to show that these are
indeed homomorphism, the details are given as Claim 36 in Appendix A.

Now, we show that, for any other prop C with prop homomorphisms Adj f1−→ C f2←− bP,
there exists a unique prop homomorphism H : A → C such that H ◦ i1 = f1 and H ◦ i2 = f2.

H : A −→ C
n �−→ n

(k, [A] , B, C, D, [E]) �−→ f1 ((B
D) , [(A C

0 E)]) ◦ (1m ⊗ f2(k, 1k))

E. Di Lavore, J. Hedges, and P. Sobociński 30:13

We verify that H is a homomorphism in Lemma 37 in Appendix A. Next, we confirm that
H ◦ i1 = f1 and H ◦ i2 = f2, where two functor boxes [8] for f1 and f2 are coloured:

H ◦ i1(B, [A]) = H(0, [A] , B, !, ¡, [()])

= f1(B, [A]) ◦ (1m ⊗ f2(0, 10))

⎛
⎜⎝ B

A

f1

f2

⎞
⎟⎠ = f1(B, [A])

⎛
⎜⎝ B

A

f1
⎞
⎟⎠

H ◦ i2(k, P) = H(k, [0n] , P
[1,n]
∗ , 0nk, P

[n+1,n+k]
∗ , [0k])

= f1(P, [0n+k])◦(1n ⊗f2(k, 1k))

⎛
⎝

P
k

f1

f2

m

n

⎞
⎠ = P ◦f2(k, 1n+k)

⎛
⎝

P
k

f2

m

n

⎞
⎠

= f2(k, P)

⎛
⎜⎜⎝ P

k

f2

m

n

⎞
⎟⎟⎠

Moreover, H is the unique prop homomorphism with these properties. In fact, suppose
there is H ′ : A → C such that H ′ ◦ i1 = f1 and H ′ ◦ i2 = f2. Then:

H ′(k, [A] , B, C, D, [E]) =H ′(i1((B
D) , [(A C

0 E)]) ◦ (1m ⊗ i2(k, 1k)))
=H ′i1((B

D) , [(A C
0 E)]) ◦ (H ′(1m) ⊗ H ′i2(k, 1k))

=f1((B
D) , [(A C

0 E)]) ◦ (1m ⊗ f2(k, 1k)) = H(k, [A] , B, C, D, [E]).�

5 Games on graphs via functorial semantics

Here we show that monoid network games N define monoidal functors FN : Grph →
Game, which is our main contribution. To every open graph Γ, FN associates an open game,
where N is played on Γ. We give an explicit account of the FN -image of open graphs Γ,
using Theorem 23. We also explain how FN acts on closed graphs, giving classical games.

Since Grph is given by generators and equations, it suffices to define FN on the generators
and show that the equations are respected. Fix a monoid network game N = (X, M, f, g).

On objects, FN (1) = (M
M). Thus, for n ∈ Grph, we have FN (n) =

(
Mn

Mn

)
The vertex : 0 → 1 is mapped to the open game FN () : (1

1) X
� (M

M) defined
ΣFN () = X

PFN ()(xi, ∗) = f(xi)
CFN ()(xi, ∗, m) = ∗
(xi, x′

i) ∈ BFN ()(∗, κ : M → M)
iff x′

i ∈ arg max
x′′

i
:X

g(x′′
i , κ(f(x′′

i)))

max

f

g

M

M

X

X

R

The generators (BIALG) are mapped to the bialgebra structure on (M, M) induced by
the monoid action of M . Specifically, they are:

CSL 2021

30:14 Compositional Modelling of Network Games

FN () : (M
M) 1

�

(
M2

M2

)
{

P(∗, m) = (m, m)
C(∗, m1, m2, m3) = m2 ⊕ m3

M

M

M

M

M

M
⊕

FN () : (M
M) 1

� (1
1){

P(∗, m) = ∗
C(∗, m, ∗) = e

M

M e

FN () :
(

M2

M2

) 1
� (M

M){
P(∗, m1, m2) = m1 ⊕ m2

C(∗, m1, m2, m3) = (m1, m1) M

M

M

M

M

M ⊕ FN () : (1
1) 1

� (M
M){

P(∗, ∗) = e

C(∗, ∗, m) = ∗

M

M

e

where each of these open games is built from lifted functions (Definition 11).
: 2 → 0 is mapped to the following open game (see [13])

FN () :
(

M2

M2

)
1
� (1

1){
P(∗, m1, m2) = ∗
C(∗, m1, m2, ∗) = (m2, m1)

M

M

M

M

To prove that FN is a symmetric monoidal functor it suffices to show that the equations of
Grph are respected; this is a straightforward but somewhat lengthy computation.

� Theorem 27. FN defines a symmetric monoidal functor Grph → Game.

Proof. See Appendix B, on page 23. �

Note that FN does not respect axioms (C1) or (C2) of [7], so it does not define a
functor ABUV → Game in the terminology of loc. cit. This, together with the increased
expressivity of multigraphs over simple graphs, motivates our extension from ABUV to
Grph.

Theorem 23 gives a convenient “normal form” for the arrows of Grph, which we use
to give an explicit description of the image of any (open) graph Γ under FN . First, we
specialise to closed graphs that yield ordinary network games. This result—a sanity check
for our compositional framework—is a corollary of the more general Theorem 29, proved
subsequently.

� Corollary 28. Let N = (X, M, f, g) be a monoid network game, and consider Γ : 0 → 0 in
Grph, an undirected multigraph with k vertices. Then the game FN (Γ) : (1

1) Xk

� (1
1) has:

ΣFN (Γ) = Xk as its strategy profiles,
BFN (Γ)(∗, ∗) ⊆ Xk × Xk is the best response relation of N played on Γ.

Note that while the expressions in the statement of Theorem 29 below may seem involved,
they are actually derived in an entirely principled, compositional manner from the generators
of Grph. Indeed, the proof is by structural induction on the morphisms of Grph.

� Theorem 29. Let N = (X, M, f, g) be a monoid network game. Let Γ : i → j be a
morphism in Grph with k vertices st θ(Γ) = (k, [A] , B, C, D, [E]), where A : i × i, B : i × j,
C : i × k, D : k × j and E : k × k. Then the open game FN (Γ) :

(
Mi

Mi

)
Xk

�

(
Mj

Mj

)
has:

set of strategy profiles Σ(FN (Γ)) = Xk

play function PFN (Γ) : Xk × M i → M j given by PFN (Γ)(σ, x) = BT x ⊕ DT f(σ)
coplay function CFN (Γ) : Xk×M i×M j → M i is CFN (Γ)(σ, x, r) = (A+AT)x⊕Br⊕Cf(σ)

E. Di Lavore, J. Hedges, and P. Sobociński 30:15

best response relation BFN (Γ) : M i × (M j → M j) → P(Xk × Xk) is
(σ, σ′) ∈ BFN (Γ)(x, κ) iff, for all k,

σ′
k ∈ argmax

s∈X
g

(
s, (CT)k

∗x ⊕ Dk
∗κ

(
BT x ⊕ DT f(σ [k �→ s])

) ⊕ (E + ET)k
∗f(σ [k �→ s])

)
Proof. See Appendix B on page 23. �

6 Examples

We return to examples: the majority (Example 4), the best-shot public goods (Example 5)
and the weakest-link public goods (Example 6) games, and demonstrate various applications
of our framework. We first show that to compute the Nash equilibrium of the majority game
played on interconnected cliques is to calculate equilibria of its clique subgames.

� Example 30 (Majority game). In the majority game the best response can be decomposed
into the best responses of its components. Let N be the monoid network game for the
majority game, defined on pg. 5, and consider a graph composed of N cliques, as follows:

each vertex of each clique can be connected to at most one vertex of another clique,
in each clique there is at least one vertex not connected to any vertex outside its clique.

Such graphs decompose as N open graphs, each a clique with some boundary connections.
We omit the details and give, instead, an illustrative example: below left is a picture of three
connected cliques, while the schematic on the right is the corresponding expression in Grph.

� Γ4

Γ3

Γ5

It is easy to show that the choice of each clique does not depend on the choices of other
cliques. Indeed, the Nash equilibria of the majority game played on connected cliques in our
sense are those strategy profiles where, in every clique, all players make the same choice. In
particular, there are 2N Nash equilibria.

In some cases, players can take into account the choice of another player with a different
intensity. This can be modelled by changing the number of edges between the vertices. Let
us consider the above example with some of the vertices connected multiple times. This
modification of the network—illustrated below—reflects in a modification of the equilibria,
which are now strategy profiles in which every player takes the same choice.

In the best-shot public goods game (Example 5), the Nash equilibrium is when no player
invests. In Example 31, we show how the compositional description is useful to adapt the
model to a slightly different situation. We can imagine that one of the players now has access
to incentives to invest in the public good. This scenario is represented by modifying the
game and allowing one player to interact with the environment, which is the source of the
incentives for this player. This modification “opens” the game to one of type (1

1) → (X
R):

as a result, the Nash equilibrium changes. This is a simple model of a common economic
situation, ‘solving’ a social dilemma by external intervention, for example by regulation [12].

CSL 2021

30:16 Compositional Modelling of Network Games

� Example 31 (Best-shot public goods game). Consider the best-shot public goods game
played on a graph that contains a vertex connected to all other vertices. Removing the
central vertex from this graph leaves an open graph that we will call Γ.

p S FN (Γ)

Mk

⊕
Mk

X

R

M

M

Here, FN (Γ) is the best-shot public goods game played on the open graph Γ, p is the
central player that has been substituted, and S is the external open game that influences p.
The utility function of player p and the coplay function of S are as follows.

up(Γ, x) =

⎧⎪⎪⎨
⎪⎪⎩

1 − c + δ if xp = 1
1 − ε if xp = 0 ∧ ∃(p, j) ∈ EΓ xj = 1
1 − c if ∀j xj = 0

S : (X
R) 1

� (1
1)

C(∗, x, ∗) =

{
δ if x = 1
−ε if x = 0

The addition of the open game S and the modification of player p modifies the Nash
equilibrium to be the strategy profile where only the central player invests. The idea is that
the “external” agent S incentivises the central player p to invest.

Our last example illustrates a common situation where the compositional description
of a game does not allow a compositional analysis of the best response. However, in this
case, compositionality can be used to obtain a variant of the weakest-link public goods game
(Example 6) where different cost functions are used in different parts of the graph G. The
desired game is obtained by composing such open games according to the structure of G.

� Example 32 (Weakest-link public goods game). Consider the weakest-link public goods
game played on a connected graph G. Suppose that players have different cost functions.
We partition them according to their cost functions, and use this partition to decompose the
G into an expression in Grph, as illustrated for a particular example below:

� Γ1

Γ2

Γ3

While the definition above uses our compositional techniques, the Nash equilibrium is
calculated on the resulting closed game, and is a strategy profile where every player invests
equally, with utility depending on individual cost functions. While it may be unsatisfying,
this failure of Nash equilibria to be compositional can be seen as an inherent feature of game
theory. In particular it is already present in the theory of open games; the passage from
graphs to games is nevertheless fully compositional.

7 Conclusions

Our contribution is a compositional account of network games via strict monoidal functors.
This adds a class of network games to the games that have been expressed in compositional
game theory [13, 2]. Of independent interest is our work on the category Grph, extending [7].
This is an approach to “open graphs” that, as we have seen, is compatible with the structure
of open games, and in future work we will identify other uses of this category.

E. Di Lavore, J. Hedges, and P. Sobociński 30:17

We also intend to extend the class of open graphs to directed open graphs. The motivation
for this is that, in some network games, interactions between players are not bidirectional.
Consider, for example, a variant of the majority game where there is an “influencer”: a player
whose choice affects the choices of other players, but is not in turn conversely affected.

We will also extend the menagerie of games that can be played on a graph. We plan
to study games with more generic utility functions, incomplete information, and repeated
games. It could also prove interesting to study natural transformations between the functors
that define games, and explore the game theoretical relevance of such transformations.

References
1 John C Baez and Brendan Fong. A compositional framework for passive linear networks, 2015.

arXiv preprint: https://arxiv.org/abs/1504.05625.
2 Joe Bolt, Jules Hedges, and Philipp Zahn. Bayesian open games, 2019. arXiv preprint:

https://arxiv.org/abs/1910.03656.
3 Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Sobocinski, and Fabio Zanasi. Rewrit-

ing modulo symmetric monoidal structure. In Martin Grohe, Eric Koskinen, and Natarajan
Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 710–719. ACM, 2016.
doi:10.1145/2933575.2935316.

4 Filippo Bonchi, Pawel Sobocinski, and Fabio Zanasi. The calculus of signal flow diagrams I:
linear relations on streams. Inf. Comput., 252:2–29, 2017. doi:10.1016/j.ic.2016.03.002.

5 Yann Bramoullé, Andrea Galeotti, and Brian Rogers. The Oxford handbook of the economics
of networks. Oxford University Press, 2016.

6 Roberto Bruni, Hernán C. Melgratti, and Ugo Montanari. A connector algebra for P/T nets
interactions. In Concurrency Theory (CONCUR ‘11), volume 6901 of LNCS, pages 312–326.
Springer, 2011. doi:10.1007/978-3-642-23217-6_21.

7 Apiwat Chantawibul and Paweł Sobociński. Towards compositional graph theory. In Proceed-
ings of MFPS’15, volume 319 of ENTCS, pages 121–136, 2015. doi:10.1016/j.entcs.2015.
12.009.

8 J. R. B. Cockett and R. A. G. Seely. Linearly distributive functors. Journal of Pure and
Applied Algebra, 143(1-3):155–203, 1999.

9 Brendan Fong. Decorated cospans. Theory and Applications of Categories, 30(33):1096–1120,
2015.

10 James H Fowler and Nicholas A Christakis. Dynamic spread of happiness in a large social
network: longitudinal analysis over 20 years in the framingham heart study. BMJ, 337, 2008.
doi:10.1136/bmj.a2338.

11 Andrea Galeotti. Talking, searching and pricing. International Economic Review, 51(4):1159–
1174, 2010. doi:10.1111/j.1468-2354.2010.00614.x.

12 Andrea Galeotti, Benjamin Golub, and Sanjeev Goyal. Targeting interventions in networks.
Forthcoming in Econometrica, 2019.

13 Neil Ghani, Jules Hedges, Viktor Winschel, and Philipp Zahn. Compositional game theory. In
Proceedings of Logic in Computer Science (LiCS) 2018. ACM, 2018. doi:10.1145/3209108.
3209165.

14 Matthew Jackson and Yves Zenou. Games on networks. In Handbook of game theory with
economic applications, volume 4, chapter 3, pages 95–163. Elsevier, 2015. doi:10.1016/
B978-0-444-53766-9.00003-3.

15 Stephen Lack. Composing PROPs. Theor. App. Categories, 13(9):147–163, 2004.
16 Qiu Li, MingChu Li, Lin Lv, Cheng Guo, and Kun Lu. A new prediction model of infectious

diseases with vaccination strategies based on evolutionary game theory. Chaos, Solitons &
Fractals, 104:51–60, 2017. doi:10.1016/j.chaos.2017.07.022.

17 Saunders Mac Lane. Categorical algebra. Bull. Amer. Math. Soc., 71:40–106, 1965.

CSL 2021

30:18 Compositional Modelling of Network Games

18 Saunders Mac Lane. Categories for the Working Mathematician. Springer-Verlag New York,
1978.

19 Frank Joseph Oles. A Category-theoretic Approach to the Semantics of Programming Languages.
PhD thesis, Syracuse University, Syracuse, NY, USA, 1982. AAI8301650.

20 Alfred Tarski. The concept of truth in the languages of the deductive sciences. Prace
Towarzystwa Naukowego Warszawskiego, Wydzial III Nauk Matematyczno-Fizycznych, 34(13-
172):198, 1933.

21 Alfred Tarski and Robert L Vaught. Arithmetical extensions of relational systems. Compositio
mathematica, 13:81–102, 1957.

22 Giorgio Topa. Social Interactions, Local Spillovers and Unemployment. The Review of
Economic Studies, 68(2):261–295, April 2001. doi:10.1111/1467-937X.00169.

23 Glynn Winskel. The formal semantics of programming languages: an introduction. MIT press,
1993.

24 Fabio Zanasi. Interacting Hopf Algebras: the theory of linear systems. PhD thesis, École
Normale Supérieure, 2015.

A Proofs for Section 4

Details for definition 20. By naturality of the symmetries, the vertex generators commute
with any permutation matrix P : k

P = k .
Thus, we can show that Γ = (k, [A] , B, C, D, [E]) and Γ′ =

(k, [A] , B, CP T , PD,
[
PEP T

]
) represent the same open graph.

A

B

D

C

E

k

m n =

P

A

B

D

C

E

k

m n =

A

B

D

C

E

k

P

P T

P P T

m n

�

� Lemma 33. A is a prop.

Proof. We start by proving that A is a category. The diagram below can be rewritten, using
the axioms of B, as a diagram of the form shown in Definition 20. The components of the
normal form obtained in this way give the algebraic definition of the composition.

Γ′◦Γ =
(

k + k′,
[
A + BA′BT

]
, BB′,

(
C + B(A′ + A′T)DT |BC ′) ,

(
DB′
D′

)
,
[(

E+DA′DT DC′

0 E′

)])

A

B

D

C

E

k

m

A′

B′

D′

C ′

E′

k′

n p

Identities are defined in the obvious way: 1n = (0, [0n] , 1n, !, ¡, [()]).
The definition of composition is coherent with the equivalence classes because, whenever

Γ ∼ Γ0 with matrix P and Γ′ ∼ Γ′
0 with matrix P ′, Γ′ ◦ Γ ∼ Γ′

0 ◦ Γ0 with matrix
(

P 0
0 P ′

)
.

Composition is associative because the matrices relative to the vertices are []-equivalent.
Clearly, composition is unital and we proved that A is a category. Now we prove that it is
monoidal.

E. Di Lavore, J. Hedges, and P. Sobociński 30:19

Lead by the interpretation of the matrices that define a morphism, we define monoidal
product as follows.

Γ ⊗ Γ′ =
(
k + k′,

[(
A 0
0 A′

)]
,
(

B 0
0 B′

)
,
(

C 0
0 C′

)
,
(

D 0
0 D′

)
,
[(

E 0
0 E′

)])
The monoidal unit is the empty diagram: I = (0, [()] , (), (), (), [()])

The monoidal product is well-defined on equivalence classes because, whenever Γ ∼ Γ0
with matrix P and Γ′ ∼ Γ′

0 with matrix P ′, Γ ⊗ Γ′ ∼ Γ0 ⊗ Γ′
0 with matrix

(
P 0
0 P ′

)
. Clearly,

monoidal product is strictly associative and unital. Therefore, the pentagon and the triangle
equations [18] hold trivially. The monoidal product is a bifunctor because (Γ0◦Γ)⊗(Γ′

0◦Γ0) ∼
(Γ0 ⊗ Γ′

0) ◦ (Γ ⊗ Γ′) with permutation matrix P =
(

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)
.

Thus, A is a monoidal category. Finally, we prove that it is symmetric. Let σm,n indicate
the symmetry: σm,n = (0, [0] ,

(
0 1m
1n 0

)
, !, ¡, [()])

Clearly, the symmetry is its own inverse: σm,n ◦ σn,m = 1m+n.
Moreover, σ is natural as σn,n′ ◦ (Γ ⊗ Γ′) ∼ (Γ′ ⊗ Γ) ◦ σm,m′ with permutation matrix
P = (0 1

1 0).
Lastly, the symmetry satisfies the hexagon equations. Thus, A is a symmetric monoidal
category whose objects are natural numbers. In other words, it is a prop. �

� Lemma 34. bP is a prop.

Proof. The proof proceeds exactly as the previous one. We will use diagrammatic calculus
of Mat for the permutation matrix of the morphisms in order to make the proofs more
readable. We start by proving that bP is a category. Composition is well-defined on
equivalence classes by the monoidal structure of Mat. Let (k, P) ∼ (k,

(
1m 0
0 σ

)
P) = (k, P ′)

and (l, Q) ∼ (l,
(

1m+k 0
0 ρ

)
Q) = (l, Q′).

P ′
Q′

m

k

l

m

k

l

=
P

Qσ

ρ

m

k

l

m

k

l

=
P

Qσ

ρ

m

k

l

m

k

l

∼
P

Q

m

k

l

m

k

l

with permutation matrix
(1m 0 0

0 σ 0
0 0 ρ

)
. Composition is clearly associative and unital because it

is associative and unital in Mat. The monoidal product is defined with a symmetry on the
left because we need to keep track of which of the inputs are bound.

(k, P) ⊗ (k′, P ′) = (k + k′,

(
1m 0 0 0
0 0 1m′ 0
0 1k 0 0
0 0 0 1k′

) (
P 0
0 P ′

)
)

P

P ′

m

m′

k

k′

m

k

m′

k′

The monoidal unit is the empty diagram: I = (0, ()). The monoidal product is well-defined
on equivalence classes by naturality of the symmetries in Mat. Let (k, P) ∼ (k,

(
1m 0
0 σ

)
P) =

(k, P ′) and (l, Q) ∼ (l,
(1n 0

0 ρ

)
Q) = (l, Q′).

P ′

Q′

m

n

k

l

m

k

n

l

=
P

Q

σ

ρ

m

n

k

l

m

k

n

l

=
P

Q
σ

ρ

m

n

k

l

m

k

n

l

∼
P

Q

m

n

k

l

m

k

n

l

with permutation matrix
(1m+n 0 0

0 σ 0
0 0 ρ

)
. The monoidal product is a functor because we can

change the order in which we enumerate the vertices and because symmetries are natural in

CSL 2021

30:20 Compositional Modelling of Network Games

Mat.

P
Q

P ′
Q′

m

m′

k′

m

k

lk

l

l′

m′

k′

l′

∼

P
Q

P ′
Q′

m

m′

k

m

k

l

k′

l

l′

m′

k′

l′

=

P
Q

P ′

Q′

m

m′

k

m

k

l

k′

l

l′

m′

k′

l′

with matrix

(
1m+m′+k 0 0 0

0 0 1k′ 0
0 1l 0 0
0 0 0 1l′

)
. The monoidal product is clearly unital. The symmetry is

lifted from Mat: σm,n = (0,
(

0 1m
1n 0

)
). The symmetry is its own inverse and it satisfies the

hexagon equations because it does so in Mat.
Therefore, bP is a prop. �

� Lemma 35. bP is isomorphic to the free prop on one generator 0 → 1.

Proof. Define α# : bP −→ P to be α#(k, P) = P ◦ (1m ⊗ ⊗
k v), where P ∈ P is the product

of the symmetries that form P in bP. Diagrammatically, P

m

k

m

k

α#

= Pk

m m

k

.

We prove that α# is well-defined on equivalence classes. Let (k, P) ∼ (k,
(

1m 0
0 σ

)
P) = (k, P ′).

P ′
m

k

m

k

α#

= P ′
k

m m

k

= P
σ

k

m m

k

= Pk

m m

k

= P

m

k

m

k

α#

We show graphically that α# is a prop homomorphism

α#(I) = = I α#(1n) = n = 1n α#(0, σ) = σ = σ

α#((l, Q) ◦ (k, P)) =
P

Q
k

l

m m

k

l

=
P

Q
k

l

m m

k

l

= α#(l, Q) ◦ α#(k, P)

α#((k, P) ⊗ (k′, P ′)) =
P

P ′

k

k′

m

m′

m

k

m′

k′

=
P

P ′

k

k′

m

m′

m

k

m′

k′

= α#(k, P) ⊗ α#(k′, P ′)

and, by its definition,
α#(φ) = v

Moreover, α# is the unique morphism bP → P with this property. In fact, suppose there is
β : bP → P such that β(φ) = v. Then,

β(k, P) =β((0, P) ◦ ((0, 1n) ⊗ (k, 1k))) = β(0, P) ◦ (β(0, 1n) ⊗ β(k, 1k))

=P ◦ (1n ⊗
⊗

k

v) = a#(k, P)

Then bP is isomorphic to the free prop over one generator 0 → 1. �

E. Di Lavore, J. Hedges, and P. Sobociński 30:21

� Claim 36. The following are prop homomorphisms.

i1 : Adj −→ A
n �−→ n

(B, [A]) �−→ (0, [A] , B, !, ¡, [()])
B

A
�−→ B

A

i2 : bP −→ A
n �−→ n

(k, P) �−→ (k, [0n] , P
[1,n]
∗ , 0nk, P

[n+1,n+k]
∗ , [0k])

P

m

k

m

k

�−→ Pk

m m

k

Proof. We prove graphically that they are prop homomorphisms.

i1(I) = = I i1(1n) = n = 1n i1(σ, [()]) = σ = σ

i1((B′, [A′]) ◦ (B, [A])) = B

A

B′

A′
= i1(B′, [A′]) ◦ i1(B, [A])

i1((B, [A]) ⊗ (B′, [A′])) =

B

A

B′

A′

= i1(B, [A]) ⊗ i1(B′, [A′])

i2(I) = = I i2(1n) = n = 1n i2(0, σ) = σ = σ

i2((l, Q) ◦ (k, P)) =
P

Q
k

l

m m

k

l

=
P

Q
k

l

m m

k

l

= i2(l, Q) ◦ i1(k, P)

i2((k, P) ⊗ (k′, P ′)) =
P

P ′

k

k′

m

m′

m

k

m′

k′

=
P

P ′

k

k′

m

m′

m

k

m′

k′

= i2(k, P) ⊗ i2(k′, P ′)

�

� Lemma 37. H, defined on page 12, is a prop homomorphism.
Proof. Recall that H : A → C is identity on objects and H(k, [A] , B, C, D, [E]) =
f1 ((B

D) , [(A C
0 E)]) ◦ (1m ⊗ f2(k, 1k)). By calling w = ((B

D) , [(A C
0 E)]), which is a morphism in

Adj, we can depict the image of H diagrammatically.

A

B

D

C

E

k

m n �−→ wk

f1

f2

m
n w

m

k

n = A

B

D

C

E

m n

k

We need to prove that H is well-defined on equivalence classes. Let Γ =
(k, [A] , B, C, D, [E]) ∼ (k, [A] , B, CP T , PD,

[
PEP T

]
) = Γ′.

H(Γ′) = w′
k

f1

f2

m
n = wk

P

f1

f2

m
n = wk

P

f1

f2

m
n

= wk
P

f1

f2

m
n = wk

f1

f2

m
n = H(Γ)

CSL 2021

30:22 Compositional Modelling of Network Games

We prove that H is a prop homomorphism. Clearly, H is identity on objects. Moreover, it
preserves composition, as it is shown by the diagrams.

H(Γ′) ◦ H(Γ) = wk

f1

f2

m

w′
k′

f1

f2

n
p = wk

f1

f2

m

w′

k′

f1

f2

n
p

= wk

f1

f2

m

w′

k′

n
p = H(Γ′ ◦ Γ)

H preserves identities: H(1n) = f1

f2

n = n = 1n.

H preserves monoidal product. This is also more clearly seen with string diagrams.

H(Γ) ⊗ H(Γ′) =
wk

f1

f2

m
n

w′
k′

f1

f2

m′
n′

=
w

f1

m
n

w′

k

k′

f1
f2

f2

m′

n′

=
w

f1

m
n

w′

k

k′

f2

m′

n′

=
wf1

m
n

w′

k

k′

f2

m′

n′

= H(Γ ⊗ Γ′)

It is easy to show that H preserves monoidal unit and symmetries.

H(I) = f1

f2

= = I H(σm,n) =
f1

f2

m

mn

n

=
m

mn

n

= σm,n

�

E. Di Lavore, J. Hedges, and P. Sobociński 30:23

B Proofs for Sections 5

Proof of Theorem 27. FN respects the equations of Grph because both the tuples(
, , ⊕ , e

)
and

(
, , ⊕ , e

)
satisfy the commutative bialgebra

axioms in figure 2, and they both interact as in figure 3 with the cup .

We explain in detail that the functor FN preserves associativity of the black monoid, the
rest of the equations are written with the same convention. We write on the left-most and
right-most sides morphisms in Grph that, by associativity, they must be equal. In the centre,
we write the morphisms in Game to which they are mapped (indicated with �→) by the
functor FN . These morphisms are equal in Game by associativity of the monoid operation
⊕ on M and coassociativity of copying. Thus, we can say that FN preserves associativity of
the black monoid.

�→

⊕
⊕

=

⊕
⊕

�→ �→

e

⊕

= �→

�→

⊕

=

⊕

�→ �→

⊕

e

=
e

e

�→

and similarly for their transposed versions. �

Proof of Theorem 29. The proof proceeds by structural induction on Γ.
It is straightforward to check from the definition of FN that the generators of Grph are sent
to open games of the required form.
We need to check that composition is of the form as in the statement. We compute explicitly
its play, coplay and best response functions.

PFN (Γ′◦Γ)((σ, σ′), x) = PFN (Γ′)(σ′, BT x ⊕ DT f(σ)) = (BB′)T x ⊕ (
DB′
D′

)T
f(

(
σ

σ′
)

)

CFN (Γ′◦Γ)((σ, σ′), x, q) = CFN (Γ)(σ, x, CFN (Γ′)(σ′, PFN (Γ)(σ, x), q))

= ((A + BA′BT) + (A + BA′BT)T)x ⊕ BB′q ⊕ (C + B(A′ + A′T)DT |BC ′)f(
(

σ

σ′
)

)

(ρ, ρ′) ∈ BFN (Γ′◦Γ)(x, κ)

⇔(σ, σ′) ∈ BFN (Γ)(x, κ ◦ FN (Γ′)τ) ∧ (τ , τ ′) ∈ BFN (Γ′)(FN (Γ)σ ◦ x, κ)
⇔∀a = 1, ..., k + k′

s ∈ argmax
s∈X

g
(

s,
(

CT +D(A′+A′T)BT

C′T BT

)a

∗
x

⊕ (
DB′
D′

)a

∗ κ((BB′)T x ⊕ (B′T DT |D′T)f(ρ [a �→ ρ′
a]))

⊕
(

E+ET +D(A′+A′T)DT DC′

C′T DT E′+E′T

)a

∗
f(ρ [a �→ ρ′

a])
)

CSL 2021

30:24 Compositional Modelling of Network Games

Similarly, we show that monoidal product has the desired form.

PFN (Γ⊗Γ′)((σ, σ′), (x, x′)) =
(

B 0
0 B′

)T
(

x

x′
)

⊕ (
D 0
0 D′

)T
f(

(
σ

σ′
)

)

CFN (Γ⊗Γ′)((σ, σ′), (x, x′), (r, r′))

=
((

A 0
0 A′

)
+

(
A 0
0 A′

)T
) (

x

x′
)

⊕ (
B 0
0 B′

) (
r

r′
)

⊕ (
B 0
0 B′

)
f(

(
σ

σ′
)

)

(ρ, ρ′) ∈ BFN (Γ′⊗Γ)((x, x′), 〈κ, κ′〉)
⇔∀a = ..., k + k′ ρ′

a ∈ argmax
s∈X

g
(

s,
((

C 0
0 C′

)T
)a

∗

(
x

x′
)

⊕
((

D 0
0 D′

)T
)a

∗
〈κ, κ′〉((B 0

0 B′
)T

(
x

x′
)

⊕ (
D 0
0 D′

)T
f(ρ [a �→ s])) ⊕

((
E 0
0 E′

)
+

(
E 0
0 E′

)T
)a

∗
f(ρ [a �→ s])

)
�

Elena Di Lavore November 7, 2023
Born in Milano, Italy, 13/08/1995 elenatalita@gmail.com
Address: Akadeemia tee 21/1, Tallinn 12611, Estonia +393665334335

PhD candidate in theoretical computer science under the supervision of Professor Pawe�l Sobociński.

Publications

[1] Elena Di Lavore, Alessandro Gianola, Mario Román, Nicoletta Sabadini, and Pawe�l Sobociński.
“Span(Graph): a Canonical Feedback Algebra of Open Transition Systems”. In: Software and
Systems Modeling 22 (2023), pp. 495–520. doi: 10.1007/s10270-023-01092-7. arXiv: 2010.10069
[math.CT].

[2] Elena Di Lavore and Mario Román. “Evidential Decision Theory via Partial Markov Categories”. In:
2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 2023, pp. 1–14.
doi: 10.1109/LICS56636.2023.10175776.

[3] Elena Di Lavore and Pawe�l Sobociński. “Monoidal Width”. In: Logical Methods in Computer Science
19 (3 Sept. 2023). doi: 10.46298/lmcs-19(3:15)2023.

[4] Elena Di Lavore and Pawe�l Sobociński. “Monoidal Width: Capturing Rank Width”. In: Proceedings
Fifth International Conference on Applied Category Theory, Glasgow, United Kingdom, 18-22 July
2022. Ed. by Jade Master and Martha Lewis. Vol. 380. Electronic Proceedings in Theoretical
Computer Science. Open Publishing Association, 2023, pp. 268–283. doi: 10.4204/EPTCS.380.16.

[5] Elena Di Lavore, Giovanni de Felice, and Mario Román. “Monoidal Streams for Dataflow
Programming”. In: Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer
Science. 2022, pp. 1–14. doi: 10.1145/3531130.3533365. arXiv: 2202.02061 [cs.LO].

[6] Elena Di Lavore, Alessandro Gianola, Mario Román, Nicoletta Sabadini, and Pawe�l Sobociński. “A
Canonical Algebra of Open Transition Systems”. In: Formal Aspects of Component Software. Ed. by
Gwen Salaün and Anton Wijs. Vol. 13077. Cham: Springer International Publishing, 2021, pp. 63–81.
isbn: 978-3-030-90636-8. doi: 10.1007/978-3-030-90636-8_4. arXiv: 2010.10069v1 [math.CT].

[7] Elena Di Lavore, Jules Hedges, and Pawe�l Sobociński. “Compositional Modelling of Network
Games”. In: 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Ed. by
Christel Baier and Jean Goubault-Larrecq. Vol. 183. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2021, 30:1–30:24.
isbn: 978-3-95977-175-7. doi: 10.4230/LIPIcs.CSL.2021.30. arXiv: 2006.03493 [cs.GT].

[8] Giovanni de Felice, Elena Di Lavore, Mario Román, and Alexis Toumi. “Functorial Language Games
for Question Answering”. In: Electronic Proceedings in Theoretical Computer Science. Vol. 333.
Open Publishing Association, Feb. 2021, pp. 311–321. doi: 10.4204/eptcs.333.21.

Note. As customary in mathematics, all my publications list the authors in alphabetical order.

Awards

Kleene Award to the best student paper [5], ACM/IEEE Sym. Log. Comp. Sci. 2022
Exemptions for High Academic Performance (Politecnico di Milano) 2015–2017
Best Freshers Award (Politecnico di Milano) . 2015

Academic commitments

• (since May 2023) Member of the executive board of the Compositionality journal.

• (September 2022) Local co-organiser of the 9th Symposium on Compositional Structures.

• (May 2022) Program committee member of the Applied Category Theory conference.

• (2021–2023) Co-organiser of the Applied Category Theory Adjoint School.

• Reviewer for conferences (LiCS, MFPS, ...) and journals (TAC, RAIRO, MSCS, ...).

Education

Tallinn University of Technology Estonia
PhD 2019–2023

– Thesis: Monoidal Width
Supervisor: Professor Pawe�l Sobociński

– Teaching experience as TA for the introductory course on Category Theory

University of Oxford United Kingdom
MSc in Mathematics and Foundations of Computer Science 2018–2019

– Thesis: Subgame Perfection in Compositional Game Theory
Supervisors: Dr Jules Hedges, Dr Jamie Vicary

– Mark: Merit

Università di Pisa Italy
BSc in Mathematics 2017–2018

– Thesis: Data-driven Estimation for Nash Equilibria
Supervisor: Professor Giancarlo Bigi

– Mark: 110 cum laude / 110

Politecnico di Milano Italy
BSc in Mathematical Engineering 2014–2017

– Thesis: Floquet Theory Applied to a Perturbed Wave Equation
Supervisor: Professor Gianni Arioli

– Mark: 110 cum laude / 110

– Studies abroad: Erasmus program at Linnaeus University, Växjö, Sweden

Other skills

Language skills: Italian (native speaker), English (C1).

Programming languages: basic knowledge of Idris, Matlab, C, R.

Elena Di Lavore November 7, 2023
Sünniaeg ja -koht: Milano, Itaalia, 13/08/1995 elena.di@taltech.ee
Aadress: Akadeemia tee 21/1, Tallinn 12611, Estonia +393665334335

Teoreetilise arvutiteaduse doktorant, juhendaja professor Pawe�l Sobociński.

Publikatsioonid

[1] Elena Di Lavore, Alessandro Gianola, Mario Román, Nicoletta Sabadini, and Pawe�l Sobociński.
“Span(Graph): a Canonical Feedback Algebra of Open Transition Systems”. In: Software and
Systems Modeling 22 (2023), pp. 495–520. doi: 10.1007/s10270-023-01092-7. arXiv: 2010.10069
[math.CT].

[2] Elena Di Lavore and Mario Román. “Evidential Decision Theory via Partial Markov Categories”. In:
2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 2023, pp. 1–14.
doi: 10.1109/LICS56636.2023.10175776.

[3] Elena Di Lavore and Pawe�l Sobociński. “Monoidal Width”. In: Logical Methods in Computer Science
19 (3 Sept. 2023). doi: 10.46298/lmcs-19(3:15)2023.

[4] Elena Di Lavore and Pawe�l Sobociński. “Monoidal Width: Capturing Rank Width”. In: Proceedings
Fifth International Conference on Applied Category Theory, Glasgow, United Kingdom, 18-22 July
2022. Ed. by Jade Master and Martha Lewis. Vol. 380. Electronic Proceedings in Theoretical
Computer Science. Open Publishing Association, 2023, pp. 268–283. doi: 10.4204/EPTCS.380.16.

[5] Elena Di Lavore, Giovanni de Felice, and Mario Román. “Monoidal Streams for Dataflow
Programming”. In: Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer
Science. 2022, pp. 1–14. doi: 10.1145/3531130.3533365. arXiv: 2202.02061 [cs.LO].

[6] Elena Di Lavore, Alessandro Gianola, Mario Román, Nicoletta Sabadini, and Pawe�l Sobociński. “A
Canonical Algebra of Open Transition Systems”. In: Formal Aspects of Component Software. Ed. by
Gwen Salaün and Anton Wijs. Vol. 13077. Cham: Springer International Publishing, 2021, pp. 63–81.
isbn: 978-3-030-90636-8. doi: 10.1007/978-3-030-90636-8_4. arXiv: 2010.10069v1 [math.CT].

[7] Elena Di Lavore, Jules Hedges, and Pawe�l Sobociński. “Compositional Modelling of Network
Games”. In: 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Ed. by
Christel Baier and Jean Goubault-Larrecq. Vol. 183. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2021, 30:1–30:24.
isbn: 978-3-95977-175-7. doi: 10.4230/LIPIcs.CSL.2021.30. arXiv: 2006.03493 [cs.GT].

[8] Giovanni de Felice, Elena Di Lavore, Mario Román, and Alexis Toumi. “Functorial Language Games
for Question Answering”. In: Electronic Proceedings in Theoretical Computer Science. Vol. 333.
Open Publishing Association, Feb. 2021, pp. 311–321. doi: 10.4204/eptcs.333.21.

Märkus. Nagu matemaatikas kombeks, on kõigis minu väljaannetes autorid kirjas perekonnanimede
tähestikulises järjekorras.

Autasud

Kleene Award to the best student paper [5], ACM/IEEE Sym. Log. Comp. Sci. 2022
Exemptions for High Academic Performance (Politecnico di Milano) 2015–2017
Best Freshers Award (Politecnico di Milano) . 2015

Teadustegevus

• (alates mai 2023) Ajakirja Compositionality tegevjuhatuse liige.

• (september 2022) Kohalise kaaskorraldaja 9th Symposium on Compositional Structures.

• (mai 2022) Programmkomitee liige Applied Category Theory konverentsil.

• (2021–2023) Kaaskorraldaja koolis Applied Category Theory Adjoint School.

• Referent konverentsidel (LiCS, MFPS, ...) ja ajakirjades (TAC, RAIRO, MSCS, ...).

Haridus

Tallinna Tehnikaülikool Eesti
Doktorantuur 2019–2023

– Töö pealkiri: Monoidal Width
Juhendaja: Professor Pawe�l Sobociński

– Õpetamiskogemus õppeassistendine aines sissejuhatus kategooriateooriasse

University of Oxford Ühendkuningriik
Magistrikraad Matemaatikas ja arvutiteaduse alustes 2018–2019

– Töö pealkiri: Subgame Perfection in Compositional Game Theory
Juhendajad: Dr Jules Hedges, Dr Jamie Vicary

– Hinne: Merit

Università di Pisa Itaalia
Bakalaureusekraad Matemaatikas 2017–2018

– Töö pealkiri: Data-driven Estimation for Nash Equilibria
Juhendaja: Professor Giancarlo Bigi

– Hinne: 110 cum laude / 110

Politecnico di Milano Itaalia
Bakalaureusekraad Ravamdusmatemaatikas 2014–2017

– Töö pealkiri: Floquet Theory Applied to a Perturbed Wave Equation
Juhendaja: Professor Gianni Arioli

– Hinne: 110 cum laude / 110

– Õpingud välismaal: Erasmus programm Linnéuniversitetet, Växjö, Rootsi

Muud oskused

Keelteoskus: itaalia keel (emakeel), inglise keel (C1).

Programmeerimiskeeled (algteadmised): Idris, Matlab, C, R.

ISSN 2585-6901 (PDF)
ISBN 978-9916-80-076-8 (PDF)

	Blank Page
	Blank Page

