
Tallinn 2017

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Eren Cizmecioglu 146675IVEM

MODEL BASED TESTING OF PLC

FACTORY AUTOMATION S OFTWARE

Masterôs thesis

Supervisor:

Co-Supervisor:

Alar Kuusik

PhD

Jüri Vain

PhD

Tallinn 2017

TALLINNA TEHNIKAÜLIK OOL

Infotehnoloogia teaduskond

Eren Cizmecioglu 146675IVEM

MUDELIPÕHINE PLC

TÖÖSTUSTARKVARA TESTIMINE

Magistritöö

Juhendaja:

Kaasjuhendaja:

Alar Kuusik

PhD

Jüri Vain

PhD

3

Authorôs declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Eren Cizmecioglu

15.05.2017

4

Abstract

This thesis describes authorôs developments and engineering activities in the field of

model based testing of PLC-based automation systems. The work describes limitations

of PLC operation, its software debugging complexity and time consumption, which led

to the needs of developing newer and faster methods of PLC software testing. The

particular developments were strongly relying on a real factory robot arm controller

project. Its description and implementation is given to understand the model based testing

algorithm and the process. A model of the robot arm system was developed within the

Uppaal software framework and system verification was completed the with Uppaal

verification tool.

This thesis is written in English and is 57 pages long, including 6 chapters, 47 figures and

4 tables.

5

Annotatsioon

Mudelip»hine PLC Tººstustarkvara Testimine

Käesolev lõputöö kirjeldab autori arendusi ja inseneritegevust programmeeritavatel

tööstuskontrolleritel ehk PLC-del põhinevate automaatikasüsteemide mudelipõhise

testimise vallas. Töö kirjeldab PLC rakendamise ja tarkvara silumisega seotud piiranguid

ning sellest tulenevat ajamahukust, mis viis vajaduseni välja töötada uuemad ja kiiremad

meetodid PLC tarkvara testimiseks. Konkreetsed arendused tuginesid olulisel määral

reaalsele tehase robotkäe juhtimiskontrolleri projektile. Selle kirjeldus ja teostus on töös

esitatud selgitamaks mudelipõhise testimine algoritmi ja käiku. Robotkäe süsteemi mudel

töötati välja Uppaal tarkvararaamistikus ja süsteemi verifitseerimine teostati Uppaali

verifitseerimistööriistaga.

 Töö on kirjutatud inglise keele 57 leheküljel, sisaldab 6 peatükki, 47 joonist ja 4 tabelit.

6

List of abbreviations and terms

DPI

PLC

SUT

TA

TCTL

TS

Dots per inch

Programmable Logic Controller

System Under Test

Timed Automata

Timed Computation Tree Logic

Test Station

TTU

UPTA

Tallinn University of Technology

Uppaal Timed Automata

7

Table of contents

Authorôs declaration of originality ... 3

Abstract ... 4

Annotatsioon Mudelipõhine PLC Tööstustarkvara Testimine ... 5

List of abbreviations and terms .. 6

Table of contents .. 7

List of figures ... 9

List of tables ... 11

1 Introduction ... 12

1.1 Problem statement .. 12

1.2 Implementation of factory automation systems .. 12

2 Industrial robots ... 15

2.1 Use examples of industrial robots .. 15

2.2 Palletizing robot of the particular automation solution .. 18

3 Programmable Logic Controllers and their properties .. 20

3.1 Programming logic and language types in PLC ... 21

3.2 PLC program software languages ... 23

3.3 Specific limitations of PLC programming .. 25

3.4 State-of-the-art methods to reduce PLC software errors 26

4 Implementation and testing of a PLC controlled production cell 28

4.1 Description of production testing cell .. 28

4.2 PLC Controller functions.. 31

4.3 PLC software implementation .. 31

4.4 Reliability experiments with the implemented system ... 44

5 Model Based Testing of Robot Arm Controller .. 50

5.1 Introduction to model based testing .. 50

5.2 Constructing the test model .. 52

5.3 Verifying the correctness of the test model .. 60

5.4 Generating tests from the verified test model ... 65

6 Summary .. 68

8

References .. 69

9

List of figures

Figure 1. Production Automation [3]. .. 13

Figure 2. Example fragment of a ladder program [4]. .. 14

Figure 3. Painting robot in operation [6]. ... 15

Figure 4. Assembly robots in car industry [6]. ... 16

Figure 5. Welding robot in operation [6]. ... 16

Figure 6. Material handling robot [6]. .. 17

Figure 7. Palletizing robot in operation [6]. ... 18

Figure 8. A set up of Universal Robot UR10s [9]. ... 19

Figure 9. Mitsubishi FX5U [10]. .. 20

Figure 10. Scan cycle of PLC. .. 22

Figure 11. Example of Ladder Diagram [11]. .. 24

Figure 12. Example of Function block diagram [11]. .. 24

Figure 13. Example of Statement list [11]. ... 25

Figure 14. Universal Robots UR10 [18]. .. 29

Figure 15. System relationship. .. 29

Figure 16. Test station. ... 30

Figure 17. GX Works3 sample screen. ... 31

Figure 18. High speed counter settings. ... 32

Figure 19. Response time settings. ... 33

Figure 20. PWM setting page. .. 33

Figure 21. General flow diagram. ... 35

Figure 22. Ethernet settings in ladder diagram. .. 36

Figure 23. Predefined protocol settings. ... 37

Figure 24. Request packet setting. .. 37

Figure 25. Response packet setting. ... 38

Figure 26. Protocol diagram between PLC and Robot. .. 39

Figure 27. State 999 in ladder diagram... 42

Figure 28. State 1000 in ladder diagram. ... 42

Figure 29. Details of multi states. ... 43

10

Figure 30. Test summary comparison. ... 48

Figure 31. Number of error reports from production. .. 49

Figure 32. Model based testing process[19]. .. 50

Figure 33. Example of a system of two Automata. .. 53

Figure 34. Multi-state diagram. .. 55

Figure 35. Declarations... 56

Figure 36. Model of main program. ... 57

Figure 37. gclock process. .. 58

Figure 38. Input_update process. ... 58

Figure 39. Input_update2 process. ... 59

Figure 40. Sample of tree of computation. ... 60

Figure 41. Simple computation tree. .. 61

Figure 42. Deadlock verification. ... 62

Figure 43. Time bounded deadlock verification. .. 62

Figure 44. Verification of first query.. 63

Figure 45. Verification of second query. .. 64

Figure 46. Verification of third query. ... 65

Figure 47. Test setup with Uppaal Tron [22]. .. 66

11

List of tables

Table 1. YY variable. ... 40

Table 2. ZZ variable. ... 40

Table 3. First test run. ... 45

Table 4. Second test run. .. 47

12

1 Introduction

1.1 Problem statement

The fourth industrial revolution is believed to significantly increase the productivity of

factories and industry in general [1]. The essential requirement for Industry 4.x is higher

level of integration of factory automation with other part of production chain including

logistics, resource management, and quality assurance. There is also pressure to lower

manufacturing costs, improve production quality and flexibility. In general, reducing the

amount of human labor improves the production quality and lowers the production costs

today, especially in machinery and electronics production. However, production

flexibility requirements add challenges to factory automation software development.

Because of massive use of robots, shorter manufacturing cycles and simultaneous

manufacturing of several products, an error free software development and feasible

solutions for validating software modification are of high demand.

According to NIST report, improving software testing quality would reduce the error

caused economic losses by 1/3 [2]. Today the majority of industrial manufacturing

equipment is controlled by programmable logic controllers (PLCs). Methodologies for

PLC software testing are rather weakly developed and used which makes fast software

verification a complex task. Current thesis focusses on the development of PLC software

testing methods for electronic manufacturing industry that will simplify releasing

software modifications and software debugging process. An initial target was electronics

production testing cell consisting of an arm robot, conveyors, and a test station.

1.2 Implementation of factory automation systems

Today the majority of factory automation systems rely on PLCs. As shown in Figure 1

PLCs are used in production, packaging, logistics and warehousing.

13

There are many factory automation system providers in the market as Festo, ABB,

Mitsubishi and others. Typically, these systems also include industrial robots. Robots can

replace physical workers in almost every part of the modern production line. For example,

screwing, picking and placing, transporting goods, etc. It is possible to find different kind

of ready-made solutions in the market, but in some cases more flexibly controlled and

adjustable solutions are needed. This was the motivation for developing the custom-made

ñAutomated robot armò system for an electronics factory. Importance of more advanced

PLC software debugging methods came out in practice during the implementation of the

real robot arm system which is more complex than traditional PLC controlled solutions.

In general, it is easier to create robust and error free automated system controlled with

just one PLC device. In the particular system PLC has to operate jointly with a PC based

Test Station and Arm Robot having its own motion controller.

PLC is a relevant and robust control solution for industrial applications but its specific

problem is that the programs have to be encoded using low-level ladder diagram shown

in Figure 2. It is very hard to debug ladder program code which is quite different from

high level programming languages as C, C++, Java etc.

Figure 1. Production Automation [3].

14

It is hard to detect software errors and possible run-time problems, if proper debugging is

impossible. Especially, in a case when different devices with own controller are integrated

into one system.

One proposed solution is model based testing on PLC software suggested by Darvas et

al. [5]. Model of the system will be created and this model will be tested over the complete

state space under possible input and output conditions. At the end it should be possible to

verify the software running on real hardware.

Figure 2. Example fragment of a ladder program [4].

15

2 Industrial robots

2.1 Use examples of industrial robots

Type of work is defining the application that the robot is intended to do. Different

requirements are needed for different applications. For example, an assembly robot will

have narrow workspace but will be quick and precise. Then again, a painting robot will

have a small workspace however will require wide angle and range of movement.

Depending upon the objective application, the robot will have a particular kind of

movement, linkage measurement, control law and program.

Industrial robots are the core components for the modern production, packaging, and

assembly. Some examples of industrial robots used in manufacturing process are

following:

Painting robot

Painting robots have been used for long years in automotive field from the first hydraulic

versions to the latest electronic models. Painting robots mostly have five or six axis

movement, three for the base movements and up to three for implement orientation [6].

Figure 3. Painting robot in operation [6].

16

Assembly robot

In the manufacturing world, assembly robots are widely used [6]. Assembly robots

increase the quality and production speed. They also save workers from boring and dull

assembly line work.

Welding robot

Robot welding is commonly used for resistance spot welding and arc welding in high

production applications, such as the automotive industry [6].

Figure 4. Assembly robots in car industry [6].

Figure 5. Welding robot in operation [6].

17

Material handling robot

Material handling robots can automate some of the most tedious, dull, and unsafe tasks

in a production line [7]. They are used for task that workers cannot handle easily as

carrying heavy load in couple of seconds.

Palletizing robot

Palletizing robots can be seen in numerous ventures including sustenance preparing,

assembling, and transporting. Robots perform stacking and emptying parts, boxes, or

different things from or to pallets.

Different end-of-arm-tooling styles permit adaptability of various sorts of robot

palletization. Sack grippers include a thing and bolster it on the base, while suction and

attractive grippers commonly handle more furrowed things and hold them from the top.

With this robots, you can expand the consistency of your stacking and emptying

processes.

Figure 6. Material handling robot [6].

18

2.2 Palletizing robot of the particular automation solution

In this particular factory use case palletizing robot has to carry electronic boards between

picking place, slots of Test Station and output conveyors. Important requirements to the

particular Robot were following: it should support any suitable communication protocol

to connect and send/receive data from an external controller (PLC), device should handle

objects with weight of at least 9 kg, the number of operational degrees of freedom is 180.

Regarding the communication standards of the Modbus protocol, CC-link and Profinet as

are widely used in industrial automation applications. Modbus is one preferred protocol

because it is open and it can be easily used with products of different vendors as Siemens,

Mitsubishi, Delta, Omron etc. Modbus protocol has 2 different substandard. Modbus

RTU and Modbus TCP/IP are different protocols for different media solutions. Modbus

RTU uses serial connection over RS485 or RS232. Nowadays it is not popular as any

more. Modbus TCP/IP is using Ethernet connection and conventional RJ45 cable

connectivity between devices. Because Modbus TCP/IP supports more features and

robust connectivity, it is a good choice for robot interfacing. TCP/IP protocol is important

because the server-client connections can be established with many devices on same time

to implement wider network and bigger system. There are several models of arm robots

directly supporting Modbus TCP/IP communication.

For this particular automation project Universal Robot UR10 [8] model was chosen. This

is a collaborative type robot and it supports Modbus and Profinet communication

protocols. It has own programming environment and over shared register space area it

Figure 7. Palletizing robot in operation [6].

19

can take orders from another device, in particular case from the PLC controller. Figure 8

shows Universal Robot UR10 model. The robot has own Linux based operating system

and programming interface to perform movements from a way point to another way point,

create and modify operations of special peripherals as gripper to vacuum boards. Whole

system setup and operation is described in Chapter 4.1.

Figure 8. A set up of Universal Robot UR10s [9].

20

3 Programmable Logic Controllers and their properties

Programmable logic controllers are widely used in industrial automation. There are many

companies manufacturing PLCs: Allan Bradley/Rockwell, Mitsubishi, Schneider

Electric, Siemens and others. Also, for this particular industrial automation project it was

decided to use a PLC because it can be easily connected to the sensors, motors and other

24V compliant inputs and outputs On the other hand, PLCs have special built-in modules

as high speed counters and communications interfaces.

Siemens and Mitsubishi devices were considered for this particular automation project.

Based on comparison of price versus features, stability, and support Mitsubishi FX5U

that is shown in the Figure 9 was chosen. Particular PLC has 64 input ï output terminals

which is enough for this system. FX5U supports Modbus protocol, being it is able to

communicate with UR10 robot.

Figure 9. Mitsubishi FX5U [10].

21

3.1 Programming logic and language types in PLC

Program processing logic in PLC

PLC controllers are based on conventional microprocessors but their programming logic

is different due to industrial needs. A microcontroller has a standard software language

support as embedded C or C++, and it executes a program line by line. It cannot continue

with a new command before finishing execution of a current one. It is a bit different for

PLC controllers. All lines of the program are working in parallel and without any

dependency from each other in continuous scan cycle.

Signals from the sensor, button, limit switch etc. connected to the inputs are read and

stored in the input memory and the control program commands loaded in the program

memory of the PLC are executed in sequence. The results obtained according to the input

variables are transferred to the output memory.

The information in the output memory is transferred to the outputs on the shelf to execute

the work elements connected to the PLC outputs and inputs are read again. The time taken

for these operations to take place is called a scan cycle. The scan cycle repeats

continuously until the power of the PLC is turned off or until it is set to the STOP position.

The duration of a scan cycle depends on the PLC running speed, and the length of the

control program. Typically, the duration of a scan cycle is between 3 ms and 10 ms. If

this loop time is too long, very short time input spikes may not be detected.

22

Linear programming logic

Linear programming means that all commands are written in the same program area. The

command is executed according to the order of writing, and all commands goes to process

during a cycle. In this programming format, the program is organized in main program

and sub program format. Subprograms are either written in the program end command

(such as END, MEND) of the main program or in a special field.

In linear programming, when a subprogram is invoked from a subprogram constructions

can be used. However, this programming is usually not preferred as it compromises the

design and monitoring of the control system.

The commands written in the main program can usually be used in the subprograms. In

the new version software "STEP 7 - Micro / WIN V3.0" developed for the programming

of Siemens S7-200 PLC class, the subprograms are written in the reserved areas for these

subprograms and therefore the main program end command (MEND) Program command

(RET), interrupt subprogram command (RETI) is not used [11]. Again, this software has

improved the features that allow the sub-program structured usage to work properly for

Figure 10. Scan cycle of PLC.

23

the new generation processors of S7-200 class (CPU 221, CPU 222, CPU 224 and CPU

226) [11].

Linear programming is usually used in small applications and low capable systems.

Advantages is you will program your application in one page without any dependency of

other code or functions and in small application it will be clear and easier way to reach

your target. On the other hand, it has disadvantages like in huge applications it will give

a confusing and misleading picture because of complexity of application.

Structured programming logic

Structured programming is divided into functions of large-scale programs, is a form of

programming that uses only one program part for tasks that provide same functionality.

The GX Works3 software, which is used to program the FX class PLCs produced by

Mitsubishi, is suitable for both linear and structured programming. For example, the GX

Works3 language program contains program parts that provide various functions of

organization, program, and function blocks. All program blocks can be thought of as

subprograms. Special sub-organizational blocks are also used for cutting sub-programs.

The system program executes the organizational blocks. The jump commands written to

the organization block determine which blocks to execute in a program cycle.

Structured programming is suitable for huge applications. It gave advantages as modules

can be re-used many times, thus it saves time, reduces complexity, and increase reliability.

3.2 PLC program software languages

Ladder diagram (LD)

Ladder diagram [12] is a graphical programming method similar to implementing

conventional electric control circuits of relays and contactors. The ladder plan has a

programming logic which is easy to come to the user in the form of energy symbol which

flows through the contacts from an energy source like the electric circuits. The vertical

line on the left side of the ladder program shows the energy source. Open contacts do not

allow for energy flow when closed contacts allow energy flow. The ladder plan method

is suitable for those who have more electricity training and beginners. Figure 11 shows a

program example written with ladder diagram method.

24

Function block diagram (FBD)

The FBD [13] method is a programming scheme based on the use of logic gates and

providing a semantic representation. The logic symbols used here are shown in boxes.

The symbols have input signals on the left side and output signals on the right side. This

method can be used more easily with digital electronics knowledge. Figure 12 shows the

program example written with FBD method.

Statement list (STL)

In the STL [13] method, commands with the same function according to the type and

brand of the PLC but with small differences in the software form are used. A command

consists of Mnemonic specifying the operation to be performed and operands indicating

Figure 11. Example of Ladder Diagram [11].

Figure 12. Example of Function block diagram [11].

25

the memory areas on which the operation is performed. This method offers a wide range

of programming possibilities since the instrument is the closest to the machine code. The

STL method addresses those parts that are prone to computer technology.

Programs written with STL, FBD and LADDER methods can be converted to each other's

styles, if they are written and compiled without errors. Figure 13 shows the program

example written with STL method.

Differences between programming languages of PLC can be concluded as follows: LD is

based on relay logic and FBD is based on electronic gates. Difference is you can use

function block with FBD and it will reduce of complexity in huge applications. STL is

different method than others and it uses text as programming method. STL doesnôt

support monitoring on Mitsubishi and old Siemens software environments, it is making

debug harder than usual.

3.3 Specific limitations of PLC programming

PLC controllers can be programmed with different ways. It gives flexibility to choose

most comfort way to programmer. Although PLCôs have high level of success in industry,

they have also weak points and problems on programming and debugging part.

IEC 61131-3 is standard of languages for PLCs published by International

Electrotechnical Commission (IEC). The IEC is an organization that prepares and

publishes international standards for all electrical, electronic and related technologies,

including controllers [14]. This standard defines common languages for PLCs and PLC

Figure 13. Example of Statement list [11].

26

producers are following this standard. Although there is a well-known standard for

programming, PLC programs cannot transfer to another PLC which is different brand.

This problem will be seen even between different models of same brand. PLC controllers

has various function and features as built in modules for different type of models. Every

brands have their own programming environment and accordingly, programs are not

interchangeable among to vendors and models. Solutions of similar problems for different

developers can be found easily but solution wouldnôt be applicable for every PLCôs.

On the other hand, Ladder diagrams are difficult to read. Troubleshoot is very important

part of PLC maintenance and Ladder diagrams are hard to find root cause of problems.

Most of the PLC models support monitoring future to maintenance systems but any of

them doesnôt support real time debugging as high level programming languages C++,

Java etc. Implementation is becoming increasingly complex because of short design

cycles and product specification [15]. Accordingly, detecting bugs, errors and unstable

parts in program takes very long time and getting to be harder.

3.4 State-of-the-art methods to reduce PLC software errors

Currently, there are no widely adopted systematic logic code development methodologies

to deal with PLC based control systems [8]. So, the control logic design phase is usually

omitted in current PLC programming development life cycle though it is essential to

reduce logic errors in an earlier stage of automation projects before the implementation

of control logic. Moreover, fast customer requirement changes require flexibility of

manufacturing system. To deal with these frequent configuration changes of modern

manufacturing systems, it is required that logic code can be generated automatically from

the design results without considering complicated control behavior [8].

To reach error-free ladder code, it is also essential to validate the designed control logic

of an automated manufacturing systems in an efficient method. Among several validation

ways, simulation methods are widely used as a result of mathematical formalisms have a

haul of solution area explosion because the size of system will increase. However, since

current simulation ways have primarily targeted on the general performance analysis of

producing systems like factory layouts, resource utilization, and throughput time. They

have limitations with respect to the modeling capabilities of detail logic for the

input/output signal-level management of automated manufacturing systems [8].

27

Therefore, current PLC ladder programming practices need a more integrated way to

design, simulate, and generate the ladder control logic.

There are some solutions for improving the quality of PLC programs, like scale models,

simulation tools, Human Machine Interfaces (HMI), or Supervisory Control and Data

Acquisition (SCADA) systems [16]. Several testing methods are analyzed by Adiego et

al. [17]. The use of scale models of real processes is extremely costly and tough to adapt

to completely different processes. There is no doubt that this is the most advanced way to

teach PLC controlled process, permitting project testing in an nearly real environment,

but the price and complexity usually prohibits its use. The use of leds and switches sets

is very confusing end uninteresting. This approach, solely valid once small processes are

thought of, severely reduces the motivation. Some HMI and SCADA systems allow this

feature however there are very pricy, not supposed for this purpose and frequently take

into account property protocols.

28

4 Implementation and testing of a PLC controlled production

cell

The following chapter describes implementation and testing of a particular robotized

production testing cell at an electronics factory. The system is more complex than

conventional PLC control systems, because it contains other active controllers. Therefore,

the PLC software debug turned out to be a complex task giving a motivation for Model

Checking based software testing for the further similar applications.

4.1 Description of production testing cell

The production test system (cell) consists of three parts: Test Station (TS), Robot, and

Controller. Controller is a Mitsubishi FX type PLC that handles synchronization of other

controllers, collects sensor readings, executes all actuators except robot arm ones. During

the normal operation the system has to be able to swap electronic boards in one hour, each

full operation cycle should take more than 40 seconds. Therefore, we can say that PLC

operates as a system Controller.

Significance of this robot arm is that there are electronic boards that should be tested

immediately after their composition. During this test Robot arm must be communicating

with test station in real time. This communication is important because it can cause wrong

results and synchronization of the test station and robot is crucial activity. Figure 14

shows Universal Robot UR10 which is controlled by PLC.

29

Figure 15 shows data connections between modules implemented as Modbus TCP/IP

connections and connection of sensors and actuators.

Figure 14. Universal Robots UR10 [18].

Figure 15. System relationship.

30

Test Station is an already existing device used in the production. Employees were loading

electronic assembly boards to the TS manually. TS has 3 slots to test several PCB boards

simultaneously. Figure 16 shows a simplified drawing of the TS.

Test Station has palettes inside of slots and they are moving horizontally forward and

backward to place boards under test. Slots have handles on them to lock electronic boards

on palettes properly to protect any kind of damage. For one cycle of test, worker should

open empty slot and then open handles to unlock place of board under test. Then he can

place board to free palette and lock it by handles. Finally, he can close slot and start to

test.

Selected Robot (see chapter 2.2) should be a replacement of a human in this process and

work faster and more reliably. Particular Robot cannot handle all tasks of the production

testing cell.

New parts as a motor to control slots, motors to move handles, encoders to measure exact

position of motors and end switches were added to the TS. Control of the new peripheral

device is a task of Controller (PLC).

Figure 16. Test station.

31

4.2 PLC Controller functions

PLC is main Controller handling all tasks beside Robotôs tasks of PCB movements.

Modbus protocol over Ethernet communication is chosen to communicate between PLC-

Robot and PLC-Test Station. PLC will fetch status of slots from Test Station and related

to statuses PLC will decide what to do the process. It will give command to Robot to start

movements, vacuum and eject processes. Also the PLC has to control motors and read

sensors in system.

Since the Test Station works under Windows platform, a special windows service was

written to communicate with PLC using the Modbus protocol. This service is also sharing

information of slot statuses and condition of test station with PLC controller.

4.3 PLC software implementation

Controller is Mitsubishi FX5U and programming environment is ñGX Works3ò. Figure

17 shows a sample screen from implementation of the program.

Figure 17. GX Works3 sample screen.

32

PLC needs to be configured for activating High speed counters and PWM signals. Slot

motors have encoders and they will be connected to PLCs High speed counter module.

On the other hand, motor speed will be controlled by PWM signals from PLC. This

signals will be processed by motor controllers to regulate the speed of motor.

Figure 18 shows High speed counter settings for PLC. 3 channels are activated to read 3

encoders. Pulse input mode set to ñ2 Phase 4 Multipleò and it means it uses 2 input pins

for one channel and supports reverse direction. Without additional setting PLC will keep

position value of encoder in one integer register for every channel.

Another thing to be configured for encoders is input response time. The A and B channels

of encoder are connected to separate inputs of PLC and their response time should be

configured. In our case movements of motors are approximately 400 rpm. Encoder values

are very sensitive and reading cycle of inputs should be very fast. Response time for

inputs for encoders are set to minimum time which is 10 micro seconds to get the most

precise value that PLC can read. Figure 19 shows response time settings for inputs.

Figure 18. High speed counter settings.

33

Next step is configuring PWM settings for output. Output pins should be defined in

settings to activate and use them in program. PWM cycle setting should be configured

also in settings page. First 8 outputs support PWM outputs and 3 of them are needed to

use for 3 motors. Cycle of PWM signals set to 100ms and motor controllers support this

cycle value. Direction of motors are driven by another output pins. Figure 20 shows PWM

setting page for output pins.

Figure 19. Response time settings.

Figure 20. PWM setting page.

34

Flow diagram should be created firstly and it will be the basis of further implementation.

According to the flow diagram, skeleton of application will be created. Specific functions

for Mitsubishi FX5U will be added step by step.

System has 2 main loops - loading and unloading. Ideal system will be focusing on

making all slots empty. Unloading process has higher priority to reach his aim. Even if

there is empty slot and ready product on picking place, system is going to unload firstly

if there is a finished test in test station.

To reach this target flow diagram is created to see big picture. Figure 21 shows flow

diagram in general. It contains single and multi-states. Multi states will be explained later.

It contains initialize state, initializing blocks, and then loop of load and unload processes.

This diagram will be used also in section 5.2 for creating abstract Uppaal model of the

control program.

35

Figure 21. General flow diagram.

36

When PLC controller gets start input from HMI screen, firstly its connections are getting

ready and registers from old sessions are clearing. Connections have specific functions.

To set the connection a protocol should be defined. It is decided to use Modbus TCP/IP

for communication between all modules and it should be configured in PLC side as a

predefined protocol.

Figure 22 shows commands to open and close Ethernet connections. To open a connection

ñSP.SOCOPENò function should be used. It has 4 parameters; U, s1, s2, d. This

instruction opens a connection specified in (s1). The set values used for the open

processing is selected in (s2) +0. The result of the ñSP.SOCOPENò instruction can be

checked with the completion device, (d)+0 and (d)+1. To close a connection

ñSP.SOCOPENò function should be used. It has same parameters as ñSP.SOCOPENò.

This instruction closes a connection specified in (s1) (Disconnection of a connection).

The result of the ñSP.SOCCLOSEò instruction can be checked with the completion

device, (d) +0 and (d) +1.

SD10680.0 is Boolean register that keeps status of first connection. If it is true, then

connection is alive. SD10680.1 keeps status of second connection. ñstart_inputò and

ñstop_inputò are directly connected to HMI screen buttons to get command from operator

to start or stop.

To fetch holding registers over Modbus protocol, protocol should be defined. Figure 23

shows predefined protocol settings.

Figure 22. Ethernet settings in ladder diagram.

37

4 different Modbus protocols are defined in Figure 23. First protocol reads general outputs

from robot. Second protocol sends command to robot. These 2 protocols define 2-way

communication between PLC and robot. Third protocol reads registers of status of slots

and errors from Test Station. Fourth protocol reads special registers from Robot to detect

possible issues. Figure 24 shows request packet setting of reading holding registers for

robot communication.

Figure 23. Predefined protocol settings.

Figure 24. Request packet setting.

38

To request packet with Modbus TCP/IP protocol, inside of package ñTransaction IDò,

ñProtocol IDò, ñLengthò, ñModule IDò, ñFunction codeò, ñHead holding register

numberò and ñRead pointsò should be define in correct order. It is standard for Modbus

TCP/IP protocol.

Figure 25 shows response packet setting of reading holding registers for robot

communication. To get response packet with Modbus TCP/IP protocol, inside of package

ñTransaction IDò, ñProtocol IDò, ñLengthò, ñModule IDò, ñFunction codeò, ñNumber

of read bytesò and ñDevice dataò should be define in correct order. This processes have

done for all predefined protocols.

After all, there is another problem. PLC and robot can communicate over Modbus with

registers which are already defined in packet settings. But problem is PLC and robot

doesnôt know anything about each other and they should have another protocol to

understand each other. At that point upper level protocol comes in. Figure 26 shows the

protocol diagram between PLC and Robot.

Figure 25. Response packet setting.

39

Figure 26. Protocol diagram between PLC and Robot.

40

ñ1YYZZò is the format of command which PLC sends to robot. 1 means action. YY is the

first destination and ZZ is the last destination.

Possible locations for YY;

Command Location

01 PPP

31 Slot 1

32 Slot 2

33 Slot 3

Possible locations for ZZ;

Command Location

31 Slot 1

32 Slot 2

33 Slot 3

61 Pass conveyor

62 Fail conveyor

63 Reject conveyor

To complete 1 cycle of command, firstly PLC sends command in ñ1YYZZò format to

robot over register 128. When robot receives, it immediately sends same command to

PLC over register 129 to prove that robot got the command properly. On next state PLC

Table 1. YY variable.

Table 2. ZZ variable.

41

sends 0 to robot over register 128. When robot receives 0, it starts to execute command.

When execution is finished, robot sends 0 over register 129 to PLC to inform about the

termination of execution. When PLC receives 0, cycle of process is completed. This

sequence will be executed during state 1 and state 2 of PLC program.

When PLC and robot are connected properly, then PLC starts to initialize system. It

checks sensors and motors to be sure if everything works fine. Open and close sensors

for 3 slots, motor movements, open and close sensors for 3 slot handles and pneumatic

motor movements for slot handles should be checked during this initialization. Also max

encoder value should be set dynamically during initialization.

During initialization, firstly slot is opening with constant speed slowly until getting the

signal from the end sensor of the slot and then it configures max encoder value. Next it

opens slot handles by pneumatic motors until reach end sensor of handles. Then it closes

slot handles when reaching the close sensor. Finally, slot closes when slot reaches the

close sensor of the slot. This process repeats for all slots. If there is a problem during

initialization, then system stops and shows error message on the HMI screen.

After initializing, system goes in to loop which it begins the real processes. State 999 is

the beginning of loop and after every successful cycle the system comes to state 999. In

state 999 system checks if there is something to unload. PLC checks every slot status

from Test Station over Modbus communication. If there is nothing to unload, then system

goes to state 1000. In state 1000, PLC checks picking place sensor if there is something

to load. If yes, then PLC checks if there are any empty slots in Test station by Modbus

registers. If yes, it loads the product to empty slot, else it goes back to state 999 and checks

if there is something to unload. Basically, in the idle mode PLC goes between state 999

and state 1000. Figure 27 shows state 999 in program. And Figure 28 shows the state

1000 in program.

42

Multi states represent details about unloading and loading states. Figure 29 shows details

of multi states. This diagram will help also to create Uppaal model in section 5.2 later.

Figure 27. State 999 in ladder diagram.

Figure 28. State 1000 in ladder diagram.

