
Tallinn 2017

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Eren Cizmecioglu 146675IVEM

MODEL BASED TESTING OF PLC

FACTORY AUTOMATION SOFTWARE

Master’s thesis

Supervisor:

Co-Supervisor:

Alar Kuusik

PhD

Jüri Vain

PhD

Tallinn 2017

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Eren Cizmecioglu 146675IVEM

MUDELIPÕHINE PLC

TÖÖSTUSTARKVARA TESTIMINE

Magistritöö

Juhendaja:

Kaasjuhendaja:

Alar Kuusik

PhD

Jüri Vain

PhD

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Eren Cizmecioglu

15.05.2017

4

Abstract

This thesis describes author’s developments and engineering activities in the field of

model based testing of PLC-based automation systems. The work describes limitations

of PLC operation, its software debugging complexity and time consumption, which led

to the needs of developing newer and faster methods of PLC software testing. The

particular developments were strongly relying on a real factory robot arm controller

project. Its description and implementation is given to understand the model based testing

algorithm and the process. A model of the robot arm system was developed within the

Uppaal software framework and system verification was completed the with Uppaal

verification tool.

This thesis is written in English and is 57 pages long, including 6 chapters, 47 figures and

4 tables.

5

Annotatsioon

Mudelipõhine PLC Tööstustarkvara Testimine

Käesolev lõputöö kirjeldab autori arendusi ja inseneritegevust programmeeritavatel

tööstuskontrolleritel ehk PLC-del põhinevate automaatikasüsteemide mudelipõhise

testimise vallas. Töö kirjeldab PLC rakendamise ja tarkvara silumisega seotud piiranguid

ning sellest tulenevat ajamahukust, mis viis vajaduseni välja töötada uuemad ja kiiremad

meetodid PLC tarkvara testimiseks. Konkreetsed arendused tuginesid olulisel määral

reaalsele tehase robotkäe juhtimiskontrolleri projektile. Selle kirjeldus ja teostus on töös

esitatud selgitamaks mudelipõhise testimine algoritmi ja käiku. Robotkäe süsteemi mudel

töötati välja Uppaal tarkvararaamistikus ja süsteemi verifitseerimine teostati Uppaali

verifitseerimistööriistaga.

 Töö on kirjutatud inglise keele 57 leheküljel, sisaldab 6 peatükki, 47 joonist ja 4 tabelit.

6

List of abbreviations and terms

DPI

PLC

SUT

TA

TCTL

TS

Dots per inch

Programmable Logic Controller

System Under Test

Timed Automata

Timed Computation Tree Logic

Test Station

TTU

UPTA

Tallinn University of Technology

Uppaal Timed Automata

7

Table of contents

Author’s declaration of originality ... 3

Abstract ... 4

Annotatsioon Mudelipõhine PLC Tööstustarkvara Testimine ... 5

List of abbreviations and terms .. 6

Table of contents .. 7

List of figures ... 9

List of tables ... 11

1 Introduction ... 12

1.1 Problem statement .. 12

1.2 Implementation of factory automation systems .. 12

2 Industrial robots ... 15

2.1 Use examples of industrial robots .. 15

2.2 Palletizing robot of the particular automation solution .. 18

3 Programmable Logic Controllers and their properties .. 20

3.1 Programming logic and language types in PLC ... 21

3.2 PLC program software languages ... 23

3.3 Specific limitations of PLC programming .. 25

3.4 State-of-the-art methods to reduce PLC software errors 26

4 Implementation and testing of a PLC controlled production cell 28

4.1 Description of production testing cell .. 28

4.2 PLC Controller functions.. 31

4.3 PLC software implementation .. 31

4.4 Reliability experiments with the implemented system ... 44

5 Model Based Testing of Robot Arm Controller .. 50

5.1 Introduction to model based testing .. 50

5.2 Constructing the test model .. 52

5.3 Verifying the correctness of the test model .. 60

5.4 Generating tests from the verified test model ... 65

6 Summary .. 68

8

References .. 69

9

List of figures

Figure 1. Production Automation [3]. .. 13

Figure 2. Example fragment of a ladder program [4]. .. 14

Figure 3. Painting robot in operation [6]. ... 15

Figure 4. Assembly robots in car industry [6]. ... 16

Figure 5. Welding robot in operation [6]. ... 16

Figure 6. Material handling robot [6]. .. 17

Figure 7. Palletizing robot in operation [6]. ... 18

Figure 8. A set up of Universal Robot UR10s [9]. ... 19

Figure 9. Mitsubishi FX5U [10]. .. 20

Figure 10. Scan cycle of PLC. .. 22

Figure 11. Example of Ladder Diagram [11]. .. 24

Figure 12. Example of Function block diagram [11]. .. 24

Figure 13. Example of Statement list [11]. ... 25

Figure 14. Universal Robots UR10 [18]. .. 29

Figure 15. System relationship. .. 29

Figure 16. Test station. ... 30

Figure 17. GX Works3 sample screen. ... 31

Figure 18. High speed counter settings. ... 32

Figure 19. Response time settings. ... 33

Figure 20. PWM setting page. .. 33

Figure 21. General flow diagram. ... 35

Figure 22. Ethernet settings in ladder diagram. .. 36

Figure 23. Predefined protocol settings. ... 37

Figure 24. Request packet setting. .. 37

Figure 25. Response packet setting. ... 38

Figure 26. Protocol diagram between PLC and Robot. .. 39

Figure 27. State 999 in ladder diagram... 42

Figure 28. State 1000 in ladder diagram. ... 42

Figure 29. Details of multi states. ... 43

10

Figure 30. Test summary comparison. ... 48

Figure 31. Number of error reports from production. .. 49

Figure 32. Model based testing process[19]. .. 50

Figure 33. Example of a system of two Automata. .. 53

Figure 34. Multi-state diagram. .. 55

Figure 35. Declarations... 56

Figure 36. Model of main program. ... 57

Figure 37. gclock process. .. 58

Figure 38. Input_update process. ... 58

Figure 39. Input_update2 process. ... 59

Figure 40. Sample of tree of computation. ... 60

Figure 41. Simple computation tree. .. 61

Figure 42. Deadlock verification. ... 62

Figure 43. Time bounded deadlock verification. .. 62

Figure 44. Verification of first query.. 63

Figure 45. Verification of second query. .. 64

Figure 46. Verification of third query. ... 65

Figure 47. Test setup with Uppaal Tron [22]. .. 66

11

List of tables

Table 1. YY variable. ... 40

Table 2. ZZ variable. ... 40

Table 3. First test run. ... 45

Table 4. Second test run. .. 47

12

1 Introduction

1.1 Problem statement

The fourth industrial revolution is believed to significantly increase the productivity of

factories and industry in general [1]. The essential requirement for Industry 4.x is higher

level of integration of factory automation with other part of production chain including

logistics, resource management, and quality assurance. There is also pressure to lower

manufacturing costs, improve production quality and flexibility. In general, reducing the

amount of human labor improves the production quality and lowers the production costs

today, especially in machinery and electronics production. However, production

flexibility requirements add challenges to factory automation software development.

Because of massive use of robots, shorter manufacturing cycles and simultaneous

manufacturing of several products, an error free software development and feasible

solutions for validating software modification are of high demand.

According to NIST report, improving software testing quality would reduce the error

caused economic losses by 1/3 [2]. Today the majority of industrial manufacturing

equipment is controlled by programmable logic controllers (PLCs). Methodologies for

PLC software testing are rather weakly developed and used which makes fast software

verification a complex task. Current thesis focusses on the development of PLC software

testing methods for electronic manufacturing industry that will simplify releasing

software modifications and software debugging process. An initial target was electronics

production testing cell consisting of an arm robot, conveyors, and a test station.

1.2 Implementation of factory automation systems

Today the majority of factory automation systems rely on PLCs. As shown in Figure 1

PLCs are used in production, packaging, logistics and warehousing.

13

There are many factory automation system providers in the market as Festo, ABB,

Mitsubishi and others. Typically, these systems also include industrial robots. Robots can

replace physical workers in almost every part of the modern production line. For example,

screwing, picking and placing, transporting goods, etc. It is possible to find different kind

of ready-made solutions in the market, but in some cases more flexibly controlled and

adjustable solutions are needed. This was the motivation for developing the custom-made

“Automated robot arm” system for an electronics factory. Importance of more advanced

PLC software debugging methods came out in practice during the implementation of the

real robot arm system which is more complex than traditional PLC controlled solutions.

In general, it is easier to create robust and error free automated system controlled with

just one PLC device. In the particular system PLC has to operate jointly with a PC based

Test Station and Arm Robot having its own motion controller.

PLC is a relevant and robust control solution for industrial applications but its specific

problem is that the programs have to be encoded using low-level ladder diagram shown

in Figure 2. It is very hard to debug ladder program code which is quite different from

high level programming languages as C, C++, Java etc.

Figure 1. Production Automation [3].

14

It is hard to detect software errors and possible run-time problems, if proper debugging is

impossible. Especially, in a case when different devices with own controller are integrated

into one system.

One proposed solution is model based testing on PLC software suggested by Darvas et

al. [5]. Model of the system will be created and this model will be tested over the complete

state space under possible input and output conditions. At the end it should be possible to

verify the software running on real hardware.

Figure 2. Example fragment of a ladder program [4].

15

2 Industrial robots

2.1 Use examples of industrial robots

Type of work is defining the application that the robot is intended to do. Different

requirements are needed for different applications. For example, an assembly robot will

have narrow workspace but will be quick and precise. Then again, a painting robot will

have a small workspace however will require wide angle and range of movement.

Depending upon the objective application, the robot will have a particular kind of

movement, linkage measurement, control law and program.

Industrial robots are the core components for the modern production, packaging, and

assembly. Some examples of industrial robots used in manufacturing process are

following:

Painting robot

Painting robots have been used for long years in automotive field from the first hydraulic

versions to the latest electronic models. Painting robots mostly have five or six axis

movement, three for the base movements and up to three for implement orientation [6].

Figure 3. Painting robot in operation [6].

16

Assembly robot

In the manufacturing world, assembly robots are widely used [6]. Assembly robots

increase the quality and production speed. They also save workers from boring and dull

assembly line work.

Welding robot

Robot welding is commonly used for resistance spot welding and arc welding in high

production applications, such as the automotive industry [6].

Figure 4. Assembly robots in car industry [6].

Figure 5. Welding robot in operation [6].

17

Material handling robot

Material handling robots can automate some of the most tedious, dull, and unsafe tasks

in a production line [7]. They are used for task that workers cannot handle easily as

carrying heavy load in couple of seconds.

Palletizing robot

Palletizing robots can be seen in numerous ventures including sustenance preparing,

assembling, and transporting. Robots perform stacking and emptying parts, boxes, or

different things from or to pallets.

Different end-of-arm-tooling styles permit adaptability of various sorts of robot

palletization. Sack grippers include a thing and bolster it on the base, while suction and

attractive grippers commonly handle more furrowed things and hold them from the top.

With this robots, you can expand the consistency of your stacking and emptying

processes.

Figure 6. Material handling robot [6].

18

2.2 Palletizing robot of the particular automation solution

In this particular factory use case palletizing robot has to carry electronic boards between

picking place, slots of Test Station and output conveyors. Important requirements to the

particular Robot were following: it should support any suitable communication protocol

to connect and send/receive data from an external controller (PLC), device should handle

objects with weight of at least 9 kg, the number of operational degrees of freedom is 180.

Regarding the communication standards of the Modbus protocol, CC-link and Profinet as

are widely used in industrial automation applications. Modbus is one preferred protocol

because it is open and it can be easily used with products of different vendors as Siemens,

Mitsubishi, Delta, Omron etc. Modbus protocol has 2 different substandard. Modbus

RTU and Modbus TCP/IP are different protocols for different media solutions. Modbus

RTU uses serial connection over RS485 or RS232. Nowadays it is not popular as any

more. Modbus TCP/IP is using Ethernet connection and conventional RJ45 cable

connectivity between devices. Because Modbus TCP/IP supports more features and

robust connectivity, it is a good choice for robot interfacing. TCP/IP protocol is important

because the server-client connections can be established with many devices on same time

to implement wider network and bigger system. There are several models of arm robots

directly supporting Modbus TCP/IP communication.

For this particular automation project Universal Robot UR10 [8] model was chosen. This

is a collaborative type robot and it supports Modbus and Profinet communication

protocols. It has own programming environment and over shared register space area it

Figure 7. Palletizing robot in operation [6].

19

can take orders from another device, in particular case from the PLC controller. Figure 8

shows Universal Robot UR10 model. The robot has own Linux based operating system

and programming interface to perform movements from a way point to another way point,

create and modify operations of special peripherals as gripper to vacuum boards. Whole

system setup and operation is described in Chapter 4.1.

Figure 8. A set up of Universal Robot UR10s [9].

20

3 Programmable Logic Controllers and their properties

Programmable logic controllers are widely used in industrial automation. There are many

companies manufacturing PLCs: Allan Bradley/Rockwell, Mitsubishi, Schneider

Electric, Siemens and others. Also, for this particular industrial automation project it was

decided to use a PLC because it can be easily connected to the sensors, motors and other

24V compliant inputs and outputs On the other hand, PLCs have special built-in modules

as high speed counters and communications interfaces.

Siemens and Mitsubishi devices were considered for this particular automation project.

Based on comparison of price versus features, stability, and support Mitsubishi FX5U

that is shown in the Figure 9 was chosen. Particular PLC has 64 input – output terminals

which is enough for this system. FX5U supports Modbus protocol, being it is able to

communicate with UR10 robot.

Figure 9. Mitsubishi FX5U [10].

21

3.1 Programming logic and language types in PLC

Program processing logic in PLC

PLC controllers are based on conventional microprocessors but their programming logic

is different due to industrial needs. A microcontroller has a standard software language

support as embedded C or C++, and it executes a program line by line. It cannot continue

with a new command before finishing execution of a current one. It is a bit different for

PLC controllers. All lines of the program are working in parallel and without any

dependency from each other in continuous scan cycle.

Signals from the sensor, button, limit switch etc. connected to the inputs are read and

stored in the input memory and the control program commands loaded in the program

memory of the PLC are executed in sequence. The results obtained according to the input

variables are transferred to the output memory.

The information in the output memory is transferred to the outputs on the shelf to execute

the work elements connected to the PLC outputs and inputs are read again. The time taken

for these operations to take place is called a scan cycle. The scan cycle repeats

continuously until the power of the PLC is turned off or until it is set to the STOP position.

The duration of a scan cycle depends on the PLC running speed, and the length of the

control program. Typically, the duration of a scan cycle is between 3 ms and 10 ms. If

this loop time is too long, very short time input spikes may not be detected.

22

Linear programming logic

Linear programming means that all commands are written in the same program area. The

command is executed according to the order of writing, and all commands goes to process

during a cycle. In this programming format, the program is organized in main program

and sub program format. Subprograms are either written in the program end command

(such as END, MEND) of the main program or in a special field.

In linear programming, when a subprogram is invoked from a subprogram constructions

can be used. However, this programming is usually not preferred as it compromises the

design and monitoring of the control system.

The commands written in the main program can usually be used in the subprograms. In

the new version software "STEP 7 - Micro / WIN V3.0" developed for the programming

of Siemens S7-200 PLC class, the subprograms are written in the reserved areas for these

subprograms and therefore the main program end command (MEND) Program command

(RET), interrupt subprogram command (RETI) is not used [11]. Again, this software has

improved the features that allow the sub-program structured usage to work properly for

Figure 10. Scan cycle of PLC.

23

the new generation processors of S7-200 class (CPU 221, CPU 222, CPU 224 and CPU

226) [11].

Linear programming is usually used in small applications and low capable systems.

Advantages is you will program your application in one page without any dependency of

other code or functions and in small application it will be clear and easier way to reach

your target. On the other hand, it has disadvantages like in huge applications it will give

a confusing and misleading picture because of complexity of application.

Structured programming logic

Structured programming is divided into functions of large-scale programs, is a form of

programming that uses only one program part for tasks that provide same functionality.

The GX Works3 software, which is used to program the FX class PLCs produced by

Mitsubishi, is suitable for both linear and structured programming. For example, the GX

Works3 language program contains program parts that provide various functions of

organization, program, and function blocks. All program blocks can be thought of as

subprograms. Special sub-organizational blocks are also used for cutting sub-programs.

The system program executes the organizational blocks. The jump commands written to

the organization block determine which blocks to execute in a program cycle.

Structured programming is suitable for huge applications. It gave advantages as modules

can be re-used many times, thus it saves time, reduces complexity, and increase reliability.

3.2 PLC program software languages

Ladder diagram (LD)

Ladder diagram [12] is a graphical programming method similar to implementing

conventional electric control circuits of relays and contactors. The ladder plan has a

programming logic which is easy to come to the user in the form of energy symbol which

flows through the contacts from an energy source like the electric circuits. The vertical

line on the left side of the ladder program shows the energy source. Open contacts do not

allow for energy flow when closed contacts allow energy flow. The ladder plan method

is suitable for those who have more electricity training and beginners. Figure 11 shows a

program example written with ladder diagram method.

24

Function block diagram (FBD)

The FBD [13] method is a programming scheme based on the use of logic gates and

providing a semantic representation. The logic symbols used here are shown in boxes.

The symbols have input signals on the left side and output signals on the right side. This

method can be used more easily with digital electronics knowledge. Figure 12 shows the

program example written with FBD method.

Statement list (STL)

In the STL [13] method, commands with the same function according to the type and

brand of the PLC but with small differences in the software form are used. A command

consists of Mnemonic specifying the operation to be performed and operands indicating

Figure 11. Example of Ladder Diagram [11].

Figure 12. Example of Function block diagram [11].

25

the memory areas on which the operation is performed. This method offers a wide range

of programming possibilities since the instrument is the closest to the machine code. The

STL method addresses those parts that are prone to computer technology.

Programs written with STL, FBD and LADDER methods can be converted to each other's

styles, if they are written and compiled without errors. Figure 13 shows the program

example written with STL method.

Differences between programming languages of PLC can be concluded as follows: LD is

based on relay logic and FBD is based on electronic gates. Difference is you can use

function block with FBD and it will reduce of complexity in huge applications. STL is

different method than others and it uses text as programming method. STL doesn’t

support monitoring on Mitsubishi and old Siemens software environments, it is making

debug harder than usual.

3.3 Specific limitations of PLC programming

PLC controllers can be programmed with different ways. It gives flexibility to choose

most comfort way to programmer. Although PLC’s have high level of success in industry,

they have also weak points and problems on programming and debugging part.

IEC 61131-3 is standard of languages for PLCs published by International

Electrotechnical Commission (IEC). The IEC is an organization that prepares and

publishes international standards for all electrical, electronic and related technologies,

including controllers [14]. This standard defines common languages for PLCs and PLC

Figure 13. Example of Statement list [11].

26

producers are following this standard. Although there is a well-known standard for

programming, PLC programs cannot transfer to another PLC which is different brand.

This problem will be seen even between different models of same brand. PLC controllers

has various function and features as built in modules for different type of models. Every

brands have their own programming environment and accordingly, programs are not

interchangeable among to vendors and models. Solutions of similar problems for different

developers can be found easily but solution wouldn’t be applicable for every PLC’s.

On the other hand, Ladder diagrams are difficult to read. Troubleshoot is very important

part of PLC maintenance and Ladder diagrams are hard to find root cause of problems.

Most of the PLC models support monitoring future to maintenance systems but any of

them doesn’t support real time debugging as high level programming languages C++,

Java etc. Implementation is becoming increasingly complex because of short design

cycles and product specification [15]. Accordingly, detecting bugs, errors and unstable

parts in program takes very long time and getting to be harder.

3.4 State-of-the-art methods to reduce PLC software errors

Currently, there are no widely adopted systematic logic code development methodologies

to deal with PLC based control systems [8]. So, the control logic design phase is usually

omitted in current PLC programming development life cycle though it is essential to

reduce logic errors in an earlier stage of automation projects before the implementation

of control logic. Moreover, fast customer requirement changes require flexibility of

manufacturing system. To deal with these frequent configuration changes of modern

manufacturing systems, it is required that logic code can be generated automatically from

the design results without considering complicated control behavior [8].

To reach error-free ladder code, it is also essential to validate the designed control logic

of an automated manufacturing systems in an efficient method. Among several validation

ways, simulation methods are widely used as a result of mathematical formalisms have a

haul of solution area explosion because the size of system will increase. However, since

current simulation ways have primarily targeted on the general performance analysis of

producing systems like factory layouts, resource utilization, and throughput time. They

have limitations with respect to the modeling capabilities of detail logic for the

input/output signal-level management of automated manufacturing systems [8].

27

Therefore, current PLC ladder programming practices need a more integrated way to

design, simulate, and generate the ladder control logic.

There are some solutions for improving the quality of PLC programs, like scale models,

simulation tools, Human Machine Interfaces (HMI), or Supervisory Control and Data

Acquisition (SCADA) systems [16]. Several testing methods are analyzed by Adiego et

al. [17]. The use of scale models of real processes is extremely costly and tough to adapt

to completely different processes. There is no doubt that this is the most advanced way to

teach PLC controlled process, permitting project testing in an nearly real environment,

but the price and complexity usually prohibits its use. The use of leds and switches sets

is very confusing end uninteresting. This approach, solely valid once small processes are

thought of, severely reduces the motivation. Some HMI and SCADA systems allow this

feature however there are very pricy, not supposed for this purpose and frequently take

into account property protocols.

28

4 Implementation and testing of a PLC controlled production

cell

The following chapter describes implementation and testing of a particular robotized

production testing cell at an electronics factory. The system is more complex than

conventional PLC control systems, because it contains other active controllers. Therefore,

the PLC software debug turned out to be a complex task giving a motivation for Model

Checking based software testing for the further similar applications.

4.1 Description of production testing cell

The production test system (cell) consists of three parts: Test Station (TS), Robot, and

Controller. Controller is a Mitsubishi FX type PLC that handles synchronization of other

controllers, collects sensor readings, executes all actuators except robot arm ones. During

the normal operation the system has to be able to swap electronic boards in one hour, each

full operation cycle should take more than 40 seconds. Therefore, we can say that PLC

operates as a system Controller.

Significance of this robot arm is that there are electronic boards that should be tested

immediately after their composition. During this test Robot arm must be communicating

with test station in real time. This communication is important because it can cause wrong

results and synchronization of the test station and robot is crucial activity. Figure 14

shows Universal Robot UR10 which is controlled by PLC.

29

Figure 15 shows data connections between modules implemented as Modbus TCP/IP

connections and connection of sensors and actuators.

Figure 14. Universal Robots UR10 [18].

Figure 15. System relationship.

30

Test Station is an already existing device used in the production. Employees were loading

electronic assembly boards to the TS manually. TS has 3 slots to test several PCB boards

simultaneously. Figure 16 shows a simplified drawing of the TS.

Test Station has palettes inside of slots and they are moving horizontally forward and

backward to place boards under test. Slots have handles on them to lock electronic boards

on palettes properly to protect any kind of damage. For one cycle of test, worker should

open empty slot and then open handles to unlock place of board under test. Then he can

place board to free palette and lock it by handles. Finally, he can close slot and start to

test.

Selected Robot (see chapter 2.2) should be a replacement of a human in this process and

work faster and more reliably. Particular Robot cannot handle all tasks of the production

testing cell.

New parts as a motor to control slots, motors to move handles, encoders to measure exact

position of motors and end switches were added to the TS. Control of the new peripheral

device is a task of Controller (PLC).

Figure 16. Test station.

31

4.2 PLC Controller functions

PLC is main Controller handling all tasks beside Robot’s tasks of PCB movements.

Modbus protocol over Ethernet communication is chosen to communicate between PLC-

Robot and PLC-Test Station. PLC will fetch status of slots from Test Station and related

to statuses PLC will decide what to do the process. It will give command to Robot to start

movements, vacuum and eject processes. Also the PLC has to control motors and read

sensors in system.

Since the Test Station works under Windows platform, a special windows service was

written to communicate with PLC using the Modbus protocol. This service is also sharing

information of slot statuses and condition of test station with PLC controller.

4.3 PLC software implementation

Controller is Mitsubishi FX5U and programming environment is “GX Works3”. Figure

17 shows a sample screen from implementation of the program.

Figure 17. GX Works3 sample screen.

32

PLC needs to be configured for activating High speed counters and PWM signals. Slot

motors have encoders and they will be connected to PLCs High speed counter module.

On the other hand, motor speed will be controlled by PWM signals from PLC. This

signals will be processed by motor controllers to regulate the speed of motor.

Figure 18 shows High speed counter settings for PLC. 3 channels are activated to read 3

encoders. Pulse input mode set to “2 Phase 4 Multiple” and it means it uses 2 input pins

for one channel and supports reverse direction. Without additional setting PLC will keep

position value of encoder in one integer register for every channel.

Another thing to be configured for encoders is input response time. The A and B channels

of encoder are connected to separate inputs of PLC and their response time should be

configured. In our case movements of motors are approximately 400 rpm. Encoder values

are very sensitive and reading cycle of inputs should be very fast. Response time for

inputs for encoders are set to minimum time which is 10 micro seconds to get the most

precise value that PLC can read. Figure 19 shows response time settings for inputs.

Figure 18. High speed counter settings.

33

Next step is configuring PWM settings for output. Output pins should be defined in

settings to activate and use them in program. PWM cycle setting should be configured

also in settings page. First 8 outputs support PWM outputs and 3 of them are needed to

use for 3 motors. Cycle of PWM signals set to 100ms and motor controllers support this

cycle value. Direction of motors are driven by another output pins. Figure 20 shows PWM

setting page for output pins.

Figure 19. Response time settings.

Figure 20. PWM setting page.

34

Flow diagram should be created firstly and it will be the basis of further implementation.

According to the flow diagram, skeleton of application will be created. Specific functions

for Mitsubishi FX5U will be added step by step.

System has 2 main loops - loading and unloading. Ideal system will be focusing on

making all slots empty. Unloading process has higher priority to reach his aim. Even if

there is empty slot and ready product on picking place, system is going to unload firstly

if there is a finished test in test station.

To reach this target flow diagram is created to see big picture. Figure 21 shows flow

diagram in general. It contains single and multi-states. Multi states will be explained later.

It contains initialize state, initializing blocks, and then loop of load and unload processes.

This diagram will be used also in section 5.2 for creating abstract Uppaal model of the

control program.

35

Figure 21. General flow diagram.

36

When PLC controller gets start input from HMI screen, firstly its connections are getting

ready and registers from old sessions are clearing. Connections have specific functions.

To set the connection a protocol should be defined. It is decided to use Modbus TCP/IP

for communication between all modules and it should be configured in PLC side as a

predefined protocol.

Figure 22 shows commands to open and close Ethernet connections. To open a connection

“SP.SOCOPEN” function should be used. It has 4 parameters; U, s1, s2, d. This

instruction opens a connection specified in (s1). The set values used for the open

processing is selected in (s2) +0. The result of the “SP.SOCOPEN” instruction can be

checked with the completion device, (d)+0 and (d)+1. To close a connection

“SP.SOCOPEN” function should be used. It has same parameters as “SP.SOCOPEN”.

This instruction closes a connection specified in (s1) (Disconnection of a connection).

The result of the “SP.SOCCLOSE” instruction can be checked with the completion

device, (d) +0 and (d) +1.

SD10680.0 is Boolean register that keeps status of first connection. If it is true, then

connection is alive. SD10680.1 keeps status of second connection. “start_input” and

“stop_input” are directly connected to HMI screen buttons to get command from operator

to start or stop.

To fetch holding registers over Modbus protocol, protocol should be defined. Figure 23

shows predefined protocol settings.

Figure 22. Ethernet settings in ladder diagram.

37

4 different Modbus protocols are defined in Figure 23. First protocol reads general outputs

from robot. Second protocol sends command to robot. These 2 protocols define 2-way

communication between PLC and robot. Third protocol reads registers of status of slots

and errors from Test Station. Fourth protocol reads special registers from Robot to detect

possible issues. Figure 24 shows request packet setting of reading holding registers for

robot communication.

Figure 23. Predefined protocol settings.

Figure 24. Request packet setting.

38

To request packet with Modbus TCP/IP protocol, inside of package “Transaction ID”,

“Protocol ID”, “Length”, “Module ID”, “Function code”, “Head holding register

number” and “Read points” should be define in correct order. It is standard for Modbus

TCP/IP protocol.

Figure 25 shows response packet setting of reading holding registers for robot

communication. To get response packet with Modbus TCP/IP protocol, inside of package

“Transaction ID”, “Protocol ID”, “Length”, “Module ID”, “Function code”, “Number

of read bytes” and “Device data” should be define in correct order. This processes have

done for all predefined protocols.

After all, there is another problem. PLC and robot can communicate over Modbus with

registers which are already defined in packet settings. But problem is PLC and robot

doesn’t know anything about each other and they should have another protocol to

understand each other. At that point upper level protocol comes in. Figure 26 shows the

protocol diagram between PLC and Robot.

Figure 25. Response packet setting.

39

Figure 26. Protocol diagram between PLC and Robot.

40

“1YYZZ” is the format of command which PLC sends to robot. 1 means action. YY is the

first destination and ZZ is the last destination.

Possible locations for YY;

Command Location

01 PPP

31 Slot 1

32 Slot 2

33 Slot 3

Possible locations for ZZ;

Command Location

31 Slot 1

32 Slot 2

33 Slot 3

61 Pass conveyor

62 Fail conveyor

63 Reject conveyor

To complete 1 cycle of command, firstly PLC sends command in “1YYZZ” format to

robot over register 128. When robot receives, it immediately sends same command to

PLC over register 129 to prove that robot got the command properly. On next state PLC

Table 1. YY variable.

Table 2. ZZ variable.

41

sends 0 to robot over register 128. When robot receives 0, it starts to execute command.

When execution is finished, robot sends 0 over register 129 to PLC to inform about the

termination of execution. When PLC receives 0, cycle of process is completed. This

sequence will be executed during state 1 and state 2 of PLC program.

When PLC and robot are connected properly, then PLC starts to initialize system. It

checks sensors and motors to be sure if everything works fine. Open and close sensors

for 3 slots, motor movements, open and close sensors for 3 slot handles and pneumatic

motor movements for slot handles should be checked during this initialization. Also max

encoder value should be set dynamically during initialization.

During initialization, firstly slot is opening with constant speed slowly until getting the

signal from the end sensor of the slot and then it configures max encoder value. Next it

opens slot handles by pneumatic motors until reach end sensor of handles. Then it closes

slot handles when reaching the close sensor. Finally, slot closes when slot reaches the

close sensor of the slot. This process repeats for all slots. If there is a problem during

initialization, then system stops and shows error message on the HMI screen.

After initializing, system goes in to loop which it begins the real processes. State 999 is

the beginning of loop and after every successful cycle the system comes to state 999. In

state 999 system checks if there is something to unload. PLC checks every slot status

from Test Station over Modbus communication. If there is nothing to unload, then system

goes to state 1000. In state 1000, PLC checks picking place sensor if there is something

to load. If yes, then PLC checks if there are any empty slots in Test station by Modbus

registers. If yes, it loads the product to empty slot, else it goes back to state 999 and checks

if there is something to unload. Basically, in the idle mode PLC goes between state 999

and state 1000. Figure 27 shows state 999 in program. And Figure 28 shows the state

1000 in program.

42

Multi states represent details about unloading and loading states. Figure 29 shows details

of multi states. This diagram will help also to create Uppaal model in section 5.2 later.

Figure 27. State 999 in ladder diagram.

Figure 28. State 1000 in ladder diagram.

43

State 1001 is executed if there is something to unload from slot 1 and according to result

it goes to deeper state. If pass it goes to state 1010, if fail it goes to state 1020 and if reject

it goes to state 1030. In state 1010 it checks if M1500 is high for slot 1. If not, it goes to

state 1500 to open the slot. When slot movement is done, M1500 Boolean register gets

true. If M1500 is high, then it checks if handles sensors are open. If not, it sets register

slot1_handle_open and when it reaches to end sensor, it resets register

slot1_handle_open. Then it goes to next step, state 1.

Figure 29. Details of multi states.

44

State 1 and state 2 are communication states between PLC and robot. In state one PLC

will send command 10131 according to protocol agreement and it means load from

picking place to slot 1. In state one PLC will expect to get same command back from

Robot in register 129. When PLC gets command back, it will go to state 2. PLC will send

0 as command to Robot and PLC will wait for 0 as feedback from Robot. Robot will load

electronic board from picking place to slot 1 and when it is done, robot will send 0 to

PLC. Then PLC will complete communication process successfully and goes to state

1011. This state is for closing slot. PLC will check if slot1_handle_sensor is high. If not,

it will activate pneumatic motor to close handles. When it reaches to sensor, it will check

if M1501 is high. If not, it will go to state 1501 to close slot. When close movement is

done, it will go to state 1011 back and M1501 will be high.

Once the cycle of unloading slot1 is completed it will go to state 999 to check if there is

unloading. This process is same for every slots.

4.4 Reliability experiments with the implemented system

Implementation is done and system correctness has to be validated by testing. There are

several methods to test such systems but one of the important point is why and what

should be tested.

One of the current project aims is to show that the system does not fail when operating

non-stop all day around. When choosing the test method, that point should be taken into

account. Robot arm project team decided to make stress test on all system to prove the

robustness of software and hardware combination.

Stress testing is a test method to force limits of newly developed application or newly

bought products to check the robustness of the system. This method will show either

software and hardware related bugs reveal after the development increment.

This test will include real scenario of using robot arm in production. If it will be

successfully passed, robot can be use in real production. Explanation of test scenario;

Firstly system will initialize itself, after initialization operator will place a board to

product picking place. Robot will take product from picking place and it places the

product to first empty slot. In this case it will be first slot. Actions should be like this for

cycle of one product in the following order: opening slot, opening handles, picking board

45

from picking place, eject board on slot, closing handles, closing slot, test is starting, test

finished, open slot, open handles, picking board from slot, eject board to correct conveyor

according to test result. This cycle is expected cycle for a product but it has huge

dependencies on the working environment conditions, hardware, or software bugs.

Summary of the first test run
In this scenario target is testing 25 electronic board in a row.

Automation test summary:

R
U
N
 Slot Number

1 (ID) 2 (ID) 3 (ID)

1 10 PASS 9 PASS 7
Handle Error;
"Drop" Unit
PASS

2 8 PASS 5 PASS

3 6 PASS

4 4
Test Fail
Stucked in
Conveyer

5 3

Don't fit on
guiding Pins
Push down
manually
Fail

2 PASS

6 4 Fail

7 10

Test Fail
Stucked in
Conveyer

1) Restart System
2) removed pins on all pallets from PTC side
3) replaced: Samtec, DIB saver, PTC ($$$)
4) Conveyer Adjustments
5) 3rd slot "drop" issue fixing

… 2 hours later...

Table 3. First test run.

46

8 2

Stucked inReady
for Test
Status…
test PASS
Fail on
Conveyer
(missing
Target)
Fixed by Said

1 PASS 5

Stucked in
Ready for Test
Status…
Broken PTC in
DUT ($$$)

9 4 PASS 3

Stucked inReady
for Test Status…
Broken PTC in DUT
($$$)

7 PASS

10 6 PASS

11 8 PASS 9 PASS

12 10 PASS

13 1 PASS 4
Stucked in Ready
for Test Status…

14 2 PASS

15 7
Stucked in
Ready for Test
Status…

Andrey Called

16

The tests have been done for 25 electronic boards and summary is very bad. Before testing

each unit had its own unit tests and there were not any major problems. After stress tests

it is obvious that the system is not ready to go production. During 8th run of slot 3 and 9th

run of slot 2 PTC connectors of boards got broken and it costs a lot. Most of the errors

are related to mechanical parts and the test report summary should be analyzed carefully

to find which of the failures is related to PLC program and the algorithm.

First run of slot 3 had a problem with slot handles and PLC program does not have error

handling mechanism for this problem and program crashed. Root cause of the problem is

slot handle sensors for slot 3. Position of sensors are changed little bit and sensors cannot

detect correct position of handle motors. It caused an endless movement command for

handle motors. PLC expect to get sensor feedback when handles open until end the point.

This bug should be solved.

47

8th and 15th runs of slot 1, 9th and 13th runs of slot 2, lastly 8th run of slot 3 have same

error; “Stocked in ready for Test Status”. It means test stations slot received electronic

board successfully and waiting slot to be closed to start testing. Root cause of the problem

is a bug in the Test station but PLC program does not have error handling mechanism for

this problem as well and the program crashed. PLC should raise an error message on HMI

side to inform operator about this status. This feature should be added.

Summary of second test run
In this scenario target is testing 70 electronic boards in a row.

Automation test summary:

R
U
N
 Slot Number

1 (ID) 2 (ID) 3 (ID)

1 2 PASS 1 PASS 3 PASS

2 8 PASS

3 3 PASS 11 PASS

4 6 PASS 4 PASS

5 20 PASS 21 PASS

6 22 PASS 5 PASS

7 25 PASS 23 PASS 24 PASS

8 10 PASS

9 26 PASS 27 Stucked on Conveyer 48 PASS

10 28 PASS 40 PASS 29
Stucked on
Conveyer

11 41 PASS ##
Rejected (not
registered)

42 PASS

12 44 PASS 43 PASS 45 PASS

13 47 PASS 46 PASS 12 PASS

14 13 PASS

15 14
Stucked on
Conveyer

16 Stucked on Conveyer 17 PASS

16 Increasing the slope for Conveyer

17 47 PASS 18
Test plan didn't
load

19 PASS

18 Call Andrey

19 19 PASS 47 Stucked on Conveyer 18

Rejected (not
registered)
Stucked on
Conveyer

Table 4. Second test run.

48

20 12 PASS 32 Stucked on Conveyer 31 PASS

21 33 PASS 35 PASS 34 PASS

22 15 PASS 37 PASS 36 PASS

23 38 PASS 39 PASS

24 33 PASS 32 Stucked on Conveyer

25 16 FAIL: BS_PWR

26 50

Rejected (not
registered)
Stucked on
Conveyer

33 Stucked on Conveyer 34 PASS

27 36 PASS 16 PASS 31 PASS

28

29

Second test is done after all known bugs are fixed. Fixing the bugs took ca 1 week. The

system was not operational during this time showing the importance of high quality

software validation. Test summary shows there is a significant change between the first

test and the second test but still a lot known bugs were detected.

16

64

9

11

F I R S T T E S T S E C O N D T E S T

TEST SUMMARY COMPARISON

Successful run Error

Figure 30. Test summary comparison.

49

 Second summary seems much better but all system is still not ready to work in production

full time. Errors should be analyzed as in first test summary to get a clear picture. Most

of the errors are “Stucked on conveyor” and it is because of mechanical design problem

of conveyors. Over 75 electronic board tests, there was only one software error resulting

exception “Test plan didn’t load”. Root cause of the problem is because the Test Station

and PLC do not handle any error about this unexpected situation. A solution is that PLC

should get loading status of test plan from Test Station and place it to reject conveyor by

directing Robot.

After last tests still result is not good enough to use system in production. Our target is

error free system and we cannot be sure about it by present test results. Manual test

doesn’t give precise result, there can be still bugs that we cannot predict. According to

manual tests all bugs in system are fixed but there are some reports from production

operators that there are still unexpected behaviors. Figure 31 shows number of reports

from operators for 1 week. At this point there is a need to verify program and whole

system to find any kind of errors and bugs. Proposed solution is model based testing to

create model of the system and test any kind of input output sequences to catch the errors.

0

1

2

3

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Number of error reports

Error report

Figure 31. Number of error reports from production.

50

5 Model Based Testing of Robot Arm Controller

5.1 Introduction to model based testing

Model-based testing automates the design of the test cases and the generation of the

traceability matrix. More accurately, instead of writing hundreds of test cases manually,

an abstract model of the system under test, is written by test designer, and then the model-

based testing tool generates cases from that model. The overall time of test design is

reduced. besides, variety of test suites from the same model can be generated simply by

using different test selection criteria. The model-based testing process is divided into the

five main steps, as shown in Figure 32.

Figure 32. Model based testing process[19].

51

1. Modelling the SUT and its environment.

2. Generating abstract tests from the model

3. Concretizing the abstract tests to make them executable.

4. Executing the tests on the SUT

5. Analyzing results

In any testing process, step 4 and 5 are a normal step, they are even in manual testing.

Step 3 is like the adaptor stage of keyword-based testing, where the meaning of each

keyword is distinct. The first two steps differentiate model-based testing from other type

of testing.

The first step is to write a model of the system that is wanted to be tested. It is called an

abstract model. This is because it should be simpler and smaller than SUT itself. It ought

to focus on only the key aspects that we would like to test and must omit many other

details of the SUT. While writing the model, it must be also annotated with requirements

to clearly specify the relationship between the requirements and the model.

Afterwards, it is desirable to use some tools to investigate that model is steady and has

the desired actions. Most modeling systems deliver some verification tools, some

interactive tools allow us to find out the model behavior and check whether it is what we

expect or not.

The second step is to generate abstract tests of the model. some test selection criteria must

be chosen, in order to say which tests will be generated from the model, because there are

an infinite number of test variations.

The main output of this step is a set of abstract tests, which are sequences of operations

from the model. Since the model uses a simplified view of the SUT, these abstract tests

lack some of the detail needed by the SUT and are not directly executable.

The third step of model based testing is to transform the abstract tests into executable

concrete tests. This may be done by a transformation tool, which uses various templates

and mappings to translate each abstract test case into an executable test script.

Alternatively, it may be done by test adapter that wraps arounds the SUT and implements

52

each abstract operation in terms of the lower-level SUT facilities. Either way, the goal of

this step is to bridge the gap between the abstract tests and the concrete SUT by adding

in the low-level SUT details that were not mentioned in the abstract model.

The fourth step is to execute the concrete tests on the system under test. With online

model-based testing, the tests will be executed as they are produced, so the model-based

testing tool will manage the test execution process and record the results. With offline

model-based testing, we have just generated a set of concrete test scripts in some existing

language, so we can continue to use our existing test execution tools and practices.

The fifth step is to analyze the results of the test executions and take corrective action.

For each test that reports a failure, we must determine the fault that caused that failure.

Again, this is similar to the traditional test analysis process. As usual, when a test fails,

we may find that it is due to a fault in the SUT or we may find that it is due to a fault in

the test case itself. Since we are using model-based testing, a fault in the test case must

be due to a fault in the adaptor code or in the model. So this is another place where we

get feedback about the correctness of the model.

To finish this section, let us step back and take a more philosophical view of model-based

testing.

It is always the case that test design is based on some kind of model of expected behavior,

but with manual test design, this model is usually just an informal mental model. By

making the model explicit, in a notation that can be used by model-based testing tools,

we are able to generate tests automatically, generate an arbitrary number of tests, as well

as obtain more systematic coverage of the model. These changes can increase both the

quality and quantity of our test suites.

5.2 Constructing the test model

There are multiple different formalisms used for building conformance testing models.

Uppaal Timed Automata (UTA) [20] is decided to be used in the light of the fact that the

53

formalism naturally supports state transitions and time and there exists a group of tools

that support model construction and verification.

UTA used for the specification of the requirements are defined as a closed network of

extended timed automata that are called processes. The processes are combined into a

single system by the parallel composition known from the process algebra CCS. An

example of a system of two automata comprised of 3 locations and 2 transitions each is

given in Figure 33.

The nodes of the automata are called locations and the directed edges transitions. The

state of an automaton consists of its current location and assignments to all variables,

including clocks. The initial locations of the automata are graphically denoted by an

additional circle inside the location.

Synchronous communication between the processes is by hand-shake synchronization

links that are called channels. A channel relates a pair of edges labelled with symbols for

input actions denoted by e.g. chA? and chB? in Figure 33, and output actions denoted by

chA! and chB!, where chA and chB are the names of the channels.

In Figure 33, there is an example of a model that represents a synchronous remote

procedure call. The calling process Process_i and the called process Process_j both

include three locations and two synchronized transitions. Process_i, initially at location

Start_i, initiates the call by executing the send action chA! that is synchronized with the

receive action chA? in Process_j, that is initially at location Start_j. The location

Operation denotes the situation where Process_j computes the output y. Once done, the

control is returned to Process_i by the action chB!

Figure 33. Example of a system of two Automata.

54

The duration of the execution of the result is specified by the interval [lb, ub] where the

upper bound ub is given by the invariant cl<=ub, and the lower bound lb by the guard

condition cl>=lb of the transition Operation→Stop_j. The assignment cl=0 on the

transition Start_j→Operation ensures that the clock cl is reset when the control reaches

the location Operation. The global variables x and y model the input and output arguments

of the remote procedure call, and the computation itself is modelled by the function f(x)

defined in the declarations section of the Uppaal model.

The inputs and outputs of the test system are modelled using channels labelled in a special

way described later. Asynchronous communication between processes is modelled using

global variables accessible to all processes.

Formally the Uppaal timed automata are defined as follows. Let S denote a finite alphabet

of actions a, b, … and C a finite set of real-valued variables p, q, r, denoting clocks. A

guard is a conjunctive formula of atomic constraints of the form p ~ n for p ϵ C, ~ϵ {≤, ≥,

=, >, <} and n ϵ N+. We use G(C) to denote the set of clock guards. A timed automaton

A is a tuple {N, l0, E, I} where N is a finite set of locations (graphically denoted by nodes),

l0 ϵ N is the initial location, E ϵ N x G(C) x ∑ x 2C x N is the set of edges (an edge is

denoted by an arc) and I : N → G(C) assigns invariants to locations (here we restrict to

constraints in the form: p ≤ n or p < n, n ϵ N+. Without the loss of generality, we assume

that guard conditions are in conjunctive form with conjuncts including besides clock

constraints also constraints on integer variables. Similarly, to clock conditions, the

propositions on integer variables k are of the form k ~ n for n ϵ N, ~ϵ {≤, ≥, =, >, <}. For

the formal definition of Uppaal TA full semantics we refer the reader to [20].

According to flow diagram of Robot Arm Controller, model of system can be created.

Figure 21 general flow diagram and Figure 34 multi states diagram shows details of

system to create model.

55

Figure 34. Multi-state diagram.

56

State changes, conditions and actions can be seen in diagrams. First thing is creating

declarations of variables which will be used in models. Figure 35 shows some part of

declarations.

Sensors, inputs, outputs, Modbus registers, some registers which uses for feedback

variables, and global variables for model are defined in declarations file. Then model can

start to be created. Figure 36 shows model of the main program.

Figure 35. Declarations.

57

Figure 36. Model of main program.

58

Model has other processes synchronously works with it. They are gclock, Input_update,

Input_update2, Motor1, Motor2, Robot and Test_station. “gclock” is global clock defined

5ms according to one cycle of PLC and input response sense. Figure 37 shows gclock

process with TU which is time unit dependency for global clock.

Input_update process is updating input array which is in use in model. Source of inputs

is input_buffer array which user gives to Uppaal and it updates input array by global clock

to simulate system real time. Figure 38 shows Input_update process.

Ch1 is channel variable and global clock updates this channel by Ch1! action. It triggers

Input_update process and other processes by Ch1? condition. It provides synchronization

between all processes.

Input_update2 process is updating Boolean variables which describe slot statuses of Test

station. Source of process is ts_rx registers which is provided by user to Uppaal and

originally PLC fetches it over Modbus communication from Test station. Figure 39 shows

Input_update2 process.

Figure 37. gclock process.

Figure 38. Input_update process.

59

One of the most important point of the model is parameterized pattern. In current flow

diagram there are some repetitive cycles for different slots and in the Uppaal model. They

can be reduced to 1 action by using input parameters for processes. Input_update2 process

automatically duplicate itself per every slots by parameter concrete values. It gets id_t

parameter as input and it includes array of [0,1,2]. This array is representation of slots

and every of them symbolize one of the slots. According to input number it reproduces

variables which it uses in condition and actions. On the other hand, loading and unloading

flows are parameterized also. In flow diagram every slot has separate action to unload

and load process. In Uppaal model only one action is used for every slot and it checks

id_slot variable to process action for correct slot. Lastly, general inputs are parts of

parameterized pattern. By one input array we read all inputs and process them by iterating

over the elements of array.

Figure 39. Input_update2 process.

60

5.3 Verifying the correctness of the test model

Model-checking is a promising method for the verification and validation of software

systems. The method is applied to software requirement specification and design

specification and aims to increase the reliability and productivity from early stages of the

software development. As the number of the success cases increases, the method becomes

one of the basic tools for the use in the development of a wide variety of software [21].

Linear Temporal Logic (LTL) or Computation Tree Logic can be used for model

checking. Uppaal verification tool supports CTL commands and we will use CTL for

verification. CTL is propositional temporal logic with explicit quantification over

possible futures. Figure 40 shows sample of tree of computation.

Timed Computation Tree Logic (TCTL) is sufficiently expressive to allow for the

formulation of an important set of real-time system properties. Formulae in TCTL are

either state or path formulae. TCTL extends CTL with atomic clock, the set of clocks in

the timed automaton under consideration.

Figure 40. Sample of tree of computation.

61

Figure 41 shows some examples how the TCTL formulas are interpreted on a simple

computation tree that represents traces of an hypothetical model M. Starting from an

initial location a:

A<>ϕ (inevitable) true if local condition ϕ (e.g., valid in yellow locations) is reachable in

all execution paths

E<>ϕ (possible) true if local condition ϕ (e.g., valid in a red location) is reachable in at

least one execution path.

A[]ϕ (always) is true if local condition ϕ holds in all locations of all execution paths not

valid for given example assuming the initial location is a.

ϕΨ (leads-to) is true if all paths involving a location where condition ϕ is valid include

thereafter a location where is valid

The TCTL model-checking algorithm with UPTA is built upon the method of model

checking TA. Regarding to algorithm, proper queries should be created to execute model

checking. First, we will check deadlocks in the model. System shouldn’t have any

deadlocks. Following query will provide us result of verification if there is any deadlock

in model;

A[] not deadlock

Figure 41. Simple computation tree.

62

Model is always in progress during its execution and even if there is not any deadlock,

varication wouldn’t finish until manually stop it. Because verification tool will check

deadlocks over infinite time horizon of the model it will stop only when this horizon is

set or verification is manually stopped. Figure 42 shows verification settings screen

during deadlock verification.

Another method is using time bounded deadlock check. The query is shown below;

E<> gclk < Const imply deadlock

Additional clock gclk used to check time of verification and Const is time bound of the

verification. This query checks if there is any deadlock during defined time bound and

Const defined as 500 cycle. Figure 43 shows time bounded deadlock verification result.

This query proves that there isn’t any deadlock in model and then other properties of the

model can be checked.

Figure 42. Deadlock verification.

Figure 43. Time bounded deadlock verification.

63

Next queries will check specific states and conditions to verify model if it’s reaching both

conditions in some cases. Following query will provide us result of verification if model

can go state 20 and TS slot 1 status should be “ready”;

E<> program.s20 && slot_ready[1]

State 20 has task to close slots and slot handles after loading board process. And if slot 1

is ready on same time, it means system is closing slot 1 after loading process. Figure 44

shows verification result of query.

Figure 44. Verification of first query.

64

As seen in Figure 44, the query property is satisfied successfully and model can reach

this conditions simultaneously. Next query will check if system can reach state 2 and

receive command 10132 from Robot.;

E<> program.s2 && robot_rx==10132

State 2 communicates with Robot and Robot should send back same command what PLC

sends to it, so verification tool will check after PLC sends 10132 command if robot will

send it back. Figure 45 shows verification result of query.

As seen in Figure 45 the query property is satisfied successfully by model execution.

Next query will check if system reaches state 2002 and slot handles activates for slot 3;

E<> program.s2002 && slot_handle_close[2]==1

State 2002 is part of the initialization and responsible for closing slot and handles. In

this state verification tool will check if slot handles for slot 3 closes correctly during

initialization. Figure 46 shows verification result of query.

Figure 45. Verification of second query.

65

Firstly “E<> program.s2002 && slot_handle_close[2]==1” query executed accidently

and it raised verification error. Problem is 3rd slot is “slot_handle_close[2]” and

“slot_handle_close[3]” is out of range. Array expects range of [0,1,2]. Then with

correct query, property satisfied successfully.

Other properties can be verified as well when the model is refined during program

updates. But for current model the most critical conditions are verified with Uppaal

verification tool as demonstrated above.

5.4 Generating tests from the verified test model

Model-based testing is testing on a model that describes how the system is required to

behave. The model, built in a suitable machine interpretable formalism, can be used to

automatically generate the test cases, either offline or online, and can also be used as an

oracle that checks if the SUT passes the tests. Offline test generation means that tests are

generated before test execution and executed when needed. In the case of online test

generation the model is executed in lock step with the IUT. The communication between

the Tester and the SUT involves controllable inputs of the SUT and observable outputs

of the SUT. For example, we can command the robot to move its manipulator to specified

position, and we can observe if and when the robot achieves the goal.

There are multiple different formalisms used for building models of the requirements.

Our choice is Uppaal timed automata (TA) [20] because the formalism naturally supports

state transitions and time and there exists the Uppaal Tron [22] tool that supports online

model-based testing. The overall test setup used in the context of model-based testing

with Uppaal Tron as the test engine and dTron as the adapter generation framework is

given in Figure 47. The model contains the specifications of the SUT and the

environment. The adapter is responsible for translating abstract model inputs and outputs

to program inputs and outputs. The dTron layer allows the adapter to be distributed across

Figure 46. Verification of third query.

66

multiple computers while ensuring that time progress in distributed tester models still

stays valid.

The test configuration used in this work consists of test execution environment dTron and

one or many test adapters that transform abstract input/output symbols of the model to

input/output data of the robot. The setup is outlined in Fig. 1. Uppaal Tron is used as a

primary test execution engine. Uppaal Tron simulates interactions between the SUT and

its environment by having two model components – the environment and the

implementation model. The interactions between these component models are monitored

during model execution. When the environment model initiates an input action i Tron

triggers input data generation in the adapter and the actual test data is written to the robot

interface. In response to that, the robot software produces output data that is transformed

back to model output o. Thereafter, the equivalence between the output returned and the

output o specified in the model is checked. The run continues if there is no conformance

violation, i.e. exists an enabled transition in the model with parameters equivalent to those

passed by the robot. In addition to input/output conformance, Uppaal Tron also checks

for timing conformance. We refer the reader to [20] for the details on that relation.

Generation of test runs:

a) In offline test generation Uppaal model checker generates symbolic test sequences

that witness satisfaction of some property to be covered by given test case. These

sequences (they include test inputs and expected outputs) are executed by test

execution environment, e.g..Uppaal Tron or DTRON.

Figure 47. Test setup with Uppaal Tron [22].

67

b) Alternatively for online Conformance testing random walk strategy can be used

on SUT model, where the test stimuli are selected on-the-fly and the reactions

from SUT are compared with those predicted by SUT model. According to the

Figure 47 an adapter is needed to convert symbolic test inputs and outputs to the

executable ones. Online conformance testing suites for duration tests, and is

feasible for regression testing.

The test adapters for given case study can be created with proper input - output

connections between PLC and PC which runs Uppaal Tron. The test passes if during

the test run the conformance relation between the test model and real behavior is not

violated. Otherwise, test fail is reported and the diagnostic trace exposed by Tron for

error analysis.

68

6 Summary

The thesis was focusing on development model checking based PLC software testing

solution. The motivation was derived from the actual needs of quicker debug of complex

PLC controlled systems.

Certain industrial robot applications were described including original factory automation

solution developed by the author of thesis. This particular robot system contains of Test

Station, Universal Robots UR10, Mitsubishi FX5U PLC controller, sensors and motors.

Implementation of PLC software is described and it gives specific proprieties and

commands for Mitsubishi FX5U type PLC. Test station, Robot and PLC had stress test in

whole system and results showed there is a need for new solution to debug and test PLC

software.

Model checking with Uppaal tool was performed. Accent of work is combining formal

methods allowing to prove correctness of design against both functional and

dependability requirements. The given approach is illustrated in Uppaal model. It

contains PLC software and simulation processes of Test station and Robot. The

correctness of the control system is successfully verified using Uppaal verification tool.

Further work should focus on connecting Uppaal verification tool to real hardware. For

that approach, Uppaal Tron extension is needed for allowing Uppaal model to use with

other environments. Additionally, physical adapter is needed to connect input outputs of

the PLC controller to PC. This adapter can be build according to PLC specifications. With

Uppaal Tron, verification can be done by comparison between Uppaal model and real-

time PLC input outputs.

69

References

[1] J. Bloem, “The Fourth Industrial Revolution Things to Tighten the Link Between

it and ot,” VINT Res. Rep., pp. 1–39, 2014.

[2] M. Newman, “Software errors cost US economy $59.5 billion annually,” NIST

Assesses Tech. Needs Ind. to Improv., 2002.

[3] “Advantech factory automation.” [Online]. Available:

http://www.rrfloody.com/AdvantechFA.html. [Accessed: 15-Mar-2017].

[4] “Ladder Logic Examples and PLC Programming Examples.” [Online]. Available:

http://www.plcacademy.com/ladder-logic-examples/. [Accessed: 15-Mar-2017].

[5] D. Darvas, B. Fernández Adiego, A. Vörös, T. Bartha, E. Blanco Viñuela, and V.

M. González Suárez, “Formal Verification of Complex Properties on PLC

Programs,” Springer, Berlin, Heidelberg, 2014, pp. 284–299.

[6] “Industrial robots: What are the different types?” [Online]. Available:

http://blog.robotiq.com/bid/63528/what-are-the-different-types-of-industrial-

robots. [Accessed: 19-Mar-2017].

[7] “Material Handling Robot.” [Online]. Available:

https://www.robots.com/applications/material-handling. [Accessed: 19-Mar-

2017].

[8] K. Hee, “Object-Oriented Modeling, Simulation and Automatic Generation of

PLC Ladder Logic,” in Programmable Logic Controller, InTech, 2010.

[9] “Universal Robotics UR10.” [Online]. Available:

http://fab.cba.mit.edu/content/tools/universal_robot_arms/index.html. [Accessed:

23-Apr-2017].

[10] “FX5U-64MT-ESS | Mitsubishi FX5U FX5U-64MT-ESS.” [Online]. Available:

http://www.999mitsubishi.com/mitsubishi-fx5u-fx5u-64mt-ess. [Accessed: 15-

Mar-2017].

[11] “ELEKTRIK-ELEKTRONIK TEKNOLOJISI PLC PROGRAMLAMA

TEKNIKLERI 523EO0053,” 2011.

[12] S. S. Peng and M. C. Zhou, “Ladder Diagram and Petri-Net-Based Discrete-

Event Control Design Methods,” IEEE Trans. Syst. Man Cybern. Part C

(Applications Rev., vol. 34, no. 4, pp. 523–531, Nov. 2004.

[13] K.-H. John and M. Tiegelkamp, IEC 61131-3: Programming industrial

automation systems : concepts and programming languages, requirements for

programming systems, decision-making aids. Springer, 2010.

[14] B. Rexroth Corporation, “Understanding the IEC61131-3 Programming

Languages.”

[15] Z. Aspar, M. Khalil-Hani, and N. Shaikh-Husin, “Deadlock detection and

avoidance using Signal Interpreted Petri Nets,” in 2012 IEEE International

Conference on Circuits and Systems (ICCAS), 2012, pp. 150–155.

[16] J. Martins, C. Lima, H. Martínez, and A. Grau, “A Matlab/Simulink framework

for PLC controlled processes.”

[17] B. F. Adiego, D. Darvas, J. C. Tournier, E. B. Viñuela, and V. M. González

Suárez, “Bringing automated model checking to plc program development - A

70

CERN case study,” in Advances in the Astronautical Sciences, 2014, vol. 12, pp.

394–399.

[18] “AksIMTM supports Universal Robots for smart factory automation.” [Online].

Available: http://www.renishaw.com/en/aksim-supports-universal-robots-for-

smart-factory-automation-factory-automation--40903. [Accessed: 15-Mar-2017].

[19] M. Utting and B. Legeard, Practical model-based testing : a tools approach.

Morgan Kaufmann Publishers, 2006.

[20] J. Bengtsson and W. Yi, “Timed Automata: Semantics, Algorithms and Tools,”

Springer Berlin Heidelberg, 2004, pp. 87–124.

[21] S. Nakajima, “Model-Checking Verification for Reliable Web Service.”

[22] K. G. Larsen, M. Mikucionis, B. Nielsen, and A. Skou, “Testing Real-Time

Embedded Software using UPPAAL-TRON An Industrial Case Study.”

