
TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology

Department of Computer Engineering

IAY70LT
Hannes Kinks 132465 IASM

IMPLEMENTING NEURAL NETWORKS ON FIELD

PROGRAMMABLE GATE ARRAY
Master Thesis

Supervisor: Peeter Ellervee PhD
Co-Supervisor: Siavoosh Payandeh Azad MSc

Tallinn 2015

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Arvutitehnika instituut

IAY70LT
Hannes Kinks 132465 IASM

NÄRVIVÕRGU REALISEERIMINE

VÄLIPROGRAMMEERITAVAL LOOGIKAL
Magistritöö

Juhendaja: Peeter Ellervee PhD
Kaasjuhendaja: Siavoosh Payandeh Azad MSc

Tallinn 2015

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis has
been published or submitted for publication. All works and major viewpoints of the other
authors, data from other sources of literature and elsewhere used for writing this paper
have been referenced.

Author: Hannes Kinks

May 27, 2016

3

Abstract

The goal of the thesis is to provide an implementation for Feedforward Neural Network
(FANN) on a Field Programmable Gate Array (FPGA), that would be able to do image
recognition and classify subjects of a given set of greyscale faces. The FANN design
is modelled first in software and a reasonable configuration is chosen. Afterwards the
specifics and challenges of hardware implementation are analysed and the final FPGA
synthesizable design is presented. The second goal was to test how does optimizing the
network topology affect the performance of the hardware realization. In order to do that,
network topology optimization and connection pruning methods were examined. The
experimental results show that up to 64% of connections could be reduces in this case,
without a major loss of network’s accuracy. In effect, this decreases the number of clock
cycles needed to find the result by 15% on FPGA.

The thesis is in English and contains 52 pages of text, 5 chapters, 23 figures, 8 tables.

4

Annotatsioon

Lõputöö eesmärk on välja pakkuda närvivõrgu realisatsioon väliprogrammeeritaval loogikal
(FPGA), mis oleks võimeline teostama näotuvastust ja klassifitseerima isikuid etteantud
must-valgete fotode põhjal. Närvivõrk on esmalt koostatud Matlab-i abil tarkvaras, sell-
eks, et leida toimiv ehitus ja konfiguratsioon, mille põhjal oleks võimalik katsetusi läbi
viia ning viimaks riistvaraline lahendus leida. Järgmise sammuna analüüsitakse riist-
varalise realisatsiooni võimalikkust ja selle eripärasid. Viimaks esitatakse üks võimalik
lahendus närvivõrgu jooksutamiseks FPGA-l, koos alamkomponentide ja süsteemi üle-
sehitusega. Lõpplahendus eeldab eelnevalt treenitud närvivõrku (offline learning), loeb
sisendi sisemälust ning arvutamisprotsess toimub jadamisi. Võrreldes tarkvaralise lahen-
dusega leiab riistvaraline tulemus värvivõrgu väljundi 13 korda vähema taktide arvuga,
mis saaks olla eelduseks nii kiiremate kui ka ökonoomsemate närvinõrke kasutatavate
seadmete loomiseks.

Lõputöö teine põhieesmärk oli katsetada erinevaid närvivõrgu topoloogiaid ja optimeerida
ühenduste arvu. Tüüplahendused kasutavad sageli täielikult ühendatud võrgustikku, kuid
funktsionaalse närvivõrgu jaoks ei ole enamasti kõik ühendused vajalikud. Iga ühenduse
olemasolu tähendab aga ressursside kasutust, kas aja või riistvara hõivamise näol. Ühen-
duste optimeerimiseks katsetati kirjanduses välja pakutud kärpimis meetodit (pruning),
kui ka enda poolset lähenemist geneetiliste algoritmi abil. Antud eksperimentidest sel-
gus, et kuni 64% ulatuses on võimalik ühendusi kärpida, ilma, et olulist kadu närvivõrgu
klassifitseerimistäpsuses ei esineks (kuni 10%). Kärbitud ühendustega närvivõrku jook-
sutati ka riistvara simulatsioonis. Kuna riistvara realisatsioon arvutas tulemusi jadamisi,
siis riistvara hõive koha pealt erinevusi ei tekkinud, küll aga taktide arvu pealt hoiti kokku
15%.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 52 leheküljel, 5 peatükki, 23
joonist, 8 tabelit.

5

Glossary of Terms and Abbreviations

FPGA Field Programmable Gate Array
ASIC Application Specific Integrated Circuit
HDL Hardware Description Language
GPU Graphics Processing Unit
CPU Central Processing Unit
CLB Configurable Logic Block
LUT Lookup Table
LFSR Linear feedback shift register
RAM Random Access Memory
ANN Artificial Neural Network
FANN Feed-forward Artificial Neural Network
Genetic operator Functions used in genetic computing to diversify the solutions

(mutation) and combine them together (crossover). Mutation is
unary and crossover is binary operation.

Genotype Individuals full genetic information, set of rules that can be used
to generate phenotype.

Phenotype The individual itself that is the result of specific genotype.
PCA Principal Component Analysis
2DPCA Two-dimensional Principal Component Analysis
VHDL VHSIC Hardware Description Language
FSM Finite State Machine

6

Contents

1 Introduction 10
1.1 Background and motivation . 10
1.2 Problem and goal definition . 11
1.3 Methodology . 12

2 Theory 14
2.1 Artificial neural networks . 14

2.1.1 Artificial neuron . 14
2.1.2 Feedforward neural network . 19
2.1.3 Constructive Learning . 20

2.2 Evolutionary computation . 20
2.2.1 Genetic algorithms . 20

2.3 Field Programmable Gate Array basics 22
2.4 FPGA implementation of neural networks 23
2.5 Data representation and precision . 26
2.6 Activation function implementation . 26

3 Face recognition task 28
3.1 Neural network models . 28
3.2 Experiments with optimizing the network 29

3.2.1 Rounding the weights . 30
3.2.2 Pruning insignificant connections 31
3.2.3 Exploring layer connections with genetic algorithm 32
3.2.4 Optimization of individual connections with GA 35

3.3 Approximation of activation function . 37

4 Hardware realization 39
4.1 Design process . 39
4.2 Design choices . 40
4.3 Architecture . 41
4.4 Simulation and verification . 44

4.4.1 Xilinx Artix-7 FPGA overview 45
4.5 Results . 46

5 Conclusion 49

7

List of Figures

1 Exponential growth of computing [1] . 10
2 The ORL Database of Faces [2] . 13
3 Structure of biological neuron cell . 15
4 Artificial neuron with bias . 15
5 Typical activation functions used in ANNs 17
6 Feedforward neural network . 19
7 Simple Genetic Algorithm [3] . 21
8 Population of Simple Genetic Algorithm 22
9 Crossover operator . 22
10 Typical logic block [4] . 23
11 Sigmoid function Piecewise Linear Approximation with CRI (L=2). On

the left the initial approximation with three line segments and on the right
approximation after one iteration, resulting 5 line segments 27

12 Sigmoid function Lookup Table Approximation 28
13 The effect of rounding connections with floor on the accuracy of the network 31
14 An example result of pruning connections 32
15 Chosen individuals for comparison. The numbers below the layers show

how many neurons are in that layer. 34
16 Gene layout used for finding optimal balance between performance and

number of connections . 35
17 Performance of a partially connected network found with GA 36
18 Example of an optimized connection between input and hidden layer vi-

sualized as a graph . 37
19 Accuracy of neural network using LUT sigmoid approximations with dif-

ferent LUT sizes and ranges. A good choice would maximize the accu-
racy, while minimizing range and bit width. 38

20 Comparing neural network test accuracy with LUT and CRI approximation. 38
21 The development process of the hardware realization 40
22 General view of the datapath of the design 42
23 Controller’s state diagram . 43

8

List of Tables

1 Differences between Matlab and Coursera NN implementation 29
2 Description of variables optimized . 33
3 Results of optimizing the structure of the ANN with GA. Columns repre-

sent the ANN designs in comparison given in Figure 15. The values given
show the percentage of correct test data classifications. 34

4 Xilinx Artix-7 XC7A100T [5] . 46
5 Comparison of speed of the software and hardware design, both with

pruned and unpruned connections. 47
6 Power consumption of the neural network design 48
7 FPGA utilization . 48
8 FPGA utilization breakdown by components 48

9

1. Introduction

Even though computing power of processors has been increasing twofold every two years,
they still do not seem to be a match for brains in many areas. Of course brain and com-
puter intrinsically work through different principles and are not directly comparable. The
motivation behind computers architecture has been to perform mathematical calculations
while brains evolved to survive in its natural environment. Therefore more complex clas-
sification and estimation tasks, like speech and image recognition, planning and decision
making, which brains can naturally solve, has proven to be a challenge for traditional
mathematical approaches. At best, if computer is programmed accordingly to simulate
brain’s information processing, it can reach the level of an insect brain according to the
approximation of Figure 1. Therefore, in order to engineer computers that are able to
perform well in the real world, that is in its nature fuzzy and constantly changing, one of
the approaches is to take inspiration from what already works the best - the human brain.

Figure 1. Exponential growth of computing [1]

1.1. Background and motivation

The topic of the thesis stemmed from interest towards the function of the brain and ex-
ploring the field of artificial intelligence. In addition from the supervisor’s side there was

10

a general idea of experimenting with genetic algorithms to develop intelligent systems. In
parallel an example project of implementing face recognition on a FPGA was done [6].
The challenges that arose from the project were the basis of the thesis at hand. As the
number of configurable logic blocks and memory on a FPGA is limited, it is essential to
choose efficiently tuned network for making the implementation feasible.

Even though state of the art machine learning techniques often involve highly inter-
connected Deep Neural Networks with large number of layers, the need for sparse and
more simpler neural networks has not dissipated. Simple Feed-forward Neural Networks
(FANN) can be of great use in embedded systems when classifying or predicting data
with smaller dimensions. E.g. monitoring and security systems or smart home appli-
cations [7]. Furthermore, there are application areas, like embedded systems for space
applications, which require minimizing the overhead of used subsystems as much as pos-
sible. Therefore, refining FANN for FPGA usage has a potential use in these areas, but
there is currently a lack of formalized set of methods that would allow to do so.

1.2. Problem and goal definition

One of the problems with neural networks is the configuration due to their complexity.
Selecting and tuning neural network hyperparameters, finding good architecture and data
representation that works the best for given problem can be often very time consuming
task that requires lot of manual trial and error. Even when a fairly good network has
been found, it still usually contains a considerable amount of connection overhead. The
strength of neural networks is that they can automatically adapt to fit the problem, based
on the data that has been given, however the specifics of how the trained network finally
solves it, is very complex to understand. More connectivity is therefore used that can
be crucial for function, as the network itself balances out, which connections will be
more important. In software implementations of neural networks, this overhead will not
have a noticeable effect as parallel matrix multiplications are typically used. However,
when implementing neural networks directly on hardware, it is not clear, how does this
connection overhead affects the power consumption, speed and area.

The objective of the thesis at hand, firstly, is to provide guidance when designing sim-
ple Feedforward Artificial Neural Networks (FANNs) on lower end FPGAs. The final
outcome will be a neural network hardware realization that can classify images of faces.
Secondly, techniques of pruning the network are being explored with the intention of

11

minimizing speed and power requirements. Common existing methodologies and author’s
own approaches are described, experimented and compared with, giving an overview how
neural networks could be optimized and configured for making FPGA mapping feasible.

The practical task is broadly divided into two parts: The first part concentrates on mod-
elling the neural network in software to find a good configuration that the hardware re-
alization could be based on. Reasonably minimal and accurate neural network is the
prerequisite for an efficient FPGA implementation. Different network topology optimiza-
tion approaches are being experimented with, where pruning and evolutionary computing
is used. The results of these simulations can be used then in the hardware realization to
compare whether there is any benefit from pruning connections.

The second part explains how the FPGA implementation was designed and what are the
hardware specific challenges.

1.3. Methodology

A general overview will be given about the tools, methods and data used in this thesis.
The main idea is to train a Feedforward Neural Network to recognize faces and use it
as a benchmark to assess the performance of networks with different configuration. For
the faces, Cambridge AT&T Laboratories database of faces is used, mostly known as
The ORL Database of Faces. The images are in PGM format, greyscale, pixel values
ranging from 0-255 and 92x112 pixels in size. The dataset consists of 40 subjects, taken
in different times, with varying lightning and facial expressions [2]. All the images are
taken as portraits, on the same background (Figure 2.

The data is fed through dimensional reduction algorithm, Principal Component Analysis
(PCA). The training of the neural networks and experiments following it are all done in
Matlab R2015a with the addition of the following toolboxes: Neural Network Toolbox,
Optimization Toolbox, Global Optimization Toolbox and Fixed-Point Designer.

The hardware realization was done in VHDL using Vivado Design Suite 2015.4. For test-
ing Xilinx Artix-7 XC7A100T[5] Field Programmable Gate Array (FPGA) on a Digilent
Nexys 4 prototyping board was used.

During the development of the thesis the source code was managed by GIT version control

12

system. The whole project is available as a GIT repository [8].

Figure 2. The ORL Database of Faces [2]

13

2. Theory

In the following chapters there will be an overview of the basics, brief background and
the state of the art for the artificial neural networks, evolutionary programming and im-
plementing them on FPGAs.

2.1. Artificial neural networks

Artificial Neural Networks (ANN) are a class of statistical models inspired by the brain
research and the biological neural networks. The central idea of ANN is not to use fea-
ture engineering, where the rules and semantics of input data are previously specified by
human. Instead, it can adapt and train itself based on given examples. It can be used to
classify data, recognize patterns and predict. [9] Artificial neural networks became a new
paradigm in 1980s and nowadays it has already proven useful in numerous applications
like data mining, search engines, weather prediction, forecasting financial markets, mon-
itoring systems, giving medical diagnosis, voice and image recognition etc. The latter
includes also face recognition that is the goal of the thesis at hand.

2.1.1. Artificial neuron

The basic processing unit of a biological neural network is believed to be a neuron. Al-
ready in the beginning of 20th century it had been observed by anatomists of that time
that the cortex of a brain has similar cellular structure all over it. It was known that each
biological neuron cell consisted of cell body, dendrites and axons (Figure 3). Dendrites
are carrying input signal to cell body and after reaching a certain threshold, neuron fires
an output through axon. Neurons are connected to each other through synapses in be-
tween axons and the dendrites of other neurons. In 1978 Vernon Mountcastle proposed,
based on his observations, that all of the brain regions are performing actually the same
operation and the function that a specific region performs is related to the connections
between neurons[10]. Therefore in principle any brain region can be trained to classify
any type of information, for example visual recognition is no different from hearing in
terms of the underlying mechanism. To illustrate that, there has been experiments done
where newborn ferrets’ brain has been rewired so that the eyes send their signals to ar-

14

Figure 3. Structure of biological neuron cell

eas where hearing normally occurs. As a result these auditory areas develop functioning
visual pathways instead. [11] When applying this knowledge to the artificial intelligence
theory, we can make a presumption that pattern recognition can be effectively done on any
input information, by having a great enough number of interconnected artificial neurons.

Perceptron These observations of that time were used for creating perceptron in 1978
by Frank Rosenblatt [12]. Perceptron is a simplified, artificial neuron, that takes in a
vector of n inputs, which are being multiplied by their associated weights

∑n
i=0 xiwi and

gets the output y by feeding it to the activation function φ. This can also represented as a
dot product of two vectors.

y = φ

(
n∑

i=0

xiwi

)
= φ(wTx)

... ... Σ φ

Activation
function

y

Output

x1

Input
w1

Weights

xn wn

Bias
b · w0

Figure 4. Artificial neuron with bias

Graphically it can be represented as shown in Figure 4.

15

Bias Artificial neurons often also have an additional bias input b, with a value of 1. The
role of the bias is to provide a constant value in order to shift the activation function,
consequently allowing the representation of all linear functions. For example, to illustrate
that let us say that we have a artificial neuron with one input x and a bias. As n = 1 we
can expand as follows

φ

(
n∑

i=0

xiwi

)
= φ(x0w0 + x1w1)

if we have a linear activation function, then

φ(x) = x =⇒ y = φ(x0w0 + x1w1) = x0w0 + x1w1

and as the bias is always one we end up with a classical two variable linear equation

x0 = b = 1.0 =⇒ y = x0w0 + x1w1 = x1w1 + w0 = ax+ b

Activation function The weighted sum of neuron’s inputs will be given as an argument
to the activation function. By definition, activation function transforms neuron’s input
signals into output signal. Figuratively speaking, the activation function makes the final
decision, if and how how much should the neuron react to the received input information.
Classically there’s three types of activation functions: linear, threshold (step) and sigmoid
(soft-step) (Figure 5). Linear activation function can be used for example in linear re-
gression and linear classification. Binary or step function either outputs 0 or 1 and can
be used for classification of two sets. Sigmoid function is characterized by its S-shaped
curve. Around the midpoint it has a exponential growth, however its boundaries are fixed
where it decays to certain values. It is often used as it introduces non-linearity to the
network and is easily derivable for weight learning. Based on the output range sigmoid
functions divide into: logarithmic sigmoid, which is range from [0,1] and a scaled version
of it, hyperbolic tangent sigmoid, that is in the range of [-1,1].

The normalized exponential is known also as a softmax function, as it represents a smoothed
version of the max function[13]. It is not used on the output of the individual neurons like
the previous functions. Instead, is often used in the output layers for multiclass classifi-
cation. The function normalizes the outputs, essentially transforming levels of activation
into a probabilities in the value range of [0,1] that sum up to 1.

16

� Identity (Linear)
φ(x) = x

� Binary step

φ(x) =

0 for x < 0

1 for x ≥ 0

� Logarithmic sigmoid (Soft step)

φ(x) =
1

1 + e−x

� Hyperbolic tangent sigmoid (TanH, Tansig)

φ(x) =
2

1 + e−2x
− 1

� Normalized exponential (Softmax)

φ(x) =
ex∑
ex

Figure 5. Typical activation functions used in ANNs

Perceptron itself can only do linear classification, which at the time of its invention was
the main criticism over it. For example, it can successfully learn logical ’AND’ and

17

’OR’, yet classifying ’XOR’ is impossible, as the classes of it are not linearly separable.
However, if perceptrons are connected together into multiple layers, they can be far more
powerful.

Learning In order to make the neural network functional, it needs to have a set of
weights that correspond to the specific problem and set of data. To finds these weights,
neural networks need to be trained. The training data will be fed to the network, the
output will be evaluated against the expected output and the weights will be modified
accordingly, so that the output will get closer to the expected output value. In case of a
single neuron performing linear regression, it can be done as following [14]: Quadratic
loss function is a common choice for measuring how well our network performs. This
can be also thought of as a cost function that we have to minimize.

L(w) =
∑
i

(h(xi,w))− yi)2

Where w is the vector of weights in the network, h(xi,w) is the calculated output of a
layer and yi is the expected output. i shows the index of the current data sample. Next,
to minimize the error different optimization algorithms can be used, however the most
typical is the standard gradient descent:

w = w− γ∇wL(w)

Where the γ is the step size and ∇wL(w) is the gradient of loss function. From the
step size it depends, how fast and how accurately the algorithm is able to determine the
minima. If the step size is too big, the algorithm might not converge as it ’overshoots’
the minimum value. If the step size is too small, it takes long time to reach the minimum.
The correct step size is application and data dependent and choosing it usually takes a few
tries. The gradient of loss function in case of a two input neuron can be written out as
below, as the network function is h(xi,w) = w1x

(1)
i + w2x

(2)
i .

∇wL(w) =

(
∂L(w)

∂w1

,
∂L(w)

∂w2

)
=

(∑
i

2x
(1)
i h(xi,w),

∑
i

2x
(2)
i h(xi,w)

)

18

2.1.2. Feedforward neural network

To do non-linear regression and classification, multiple neurons and layers are needed.
Feedforward neural network (FNN) (Figure 6) is the earliest type of neural networks and
the most basic way the neurons can be connected together and organized into layers. The
output of one neuron is connected to the input of another neuron that is in the next layer.
The first layer of artificial neuron nodes is called the input layer and the last output layer.
The intermediate layers are called hidden layers. In feedforward neural network as the
name suggests, the information moves only forward, from one layer to another. There are
no feedback loops in the network opposed to recurrent neural networks (RNN).

The forward propagation of the signals is fairly simple as outputs of neurons are simply
passed along to the next layer’s inputs. However, for training we need to compare the
network’s output with the expected value and update the weights in the whole network.
This is done by transmitting intermediate errors backwards, thus leading to the name
backpropagation algorithm [15]. Instead of propagating the inputs forward, we propagate
the errors backward and update the weights in the process.

...

...
...

x1

x2

x3

xn

h1

hn

y1

yn

Input
layer

Hidden
layer

Ouput
layer

Figure 6. Feedforward neural network

19

2.1.3. Constructive Learning

The classical use of neural networks is done by deciding upon the architecture, setting up
the connections between neurons and layers statically before starting the training phase.
This however, does not guarantee the minimal network size needed. Constructive (or
generative) learning algorithms have another approach, where the network is started off
very small (usually with single neuron) and grown by adding neurons until satisfactory
solution is found [16]. The key benefits of this approach are the following [17]

� In addition to weight space, exploring the space of network topologies and thus
overcoming the limitation of fixed topology.

� Potential to construct a minimal solution, which matches the intrinsic complexity
of the underlying learning task.

� An approximation of the expected case complexity of the learning task.

� Trade-off possibilities (between the network size and accuracy for example.)

� Incorporating previous domain knowledge by learning construction on a simpler
task and applying the topology on a new, related task. [18]

2.2. Evolutionary computation

Evolutionary computation is a subfield of artificial intelligence characterized by using
techniques inspired from Darwinian principles and natural evolutionary processes. Tech-
niques categorized into the field include evolutionary algorithms like genetic algorithms,
differential evolution, evolutionary programming, neuroevolution and also algorithms that
are based on some naturally observed behaviours already emerged from biological evolu-
tion, like swarm intelligence, ant colony optimization, artificial life and bees algorithm.

2.2.1. Genetic algorithms

The origins of Genetic Algorithms are contributed to John Holland who published it dur-
ing 1970’s. Evolutionary algorithms are hugely inspired by evolution of lifeforms in the

20

nature, using the idea of survival of the fittest and knowledge obtained from genetics.
The algorithms are used as a search heuristic mostly in optimization problems and ma-
chine learning. They are more robust than deterministic search algorithms as they are
able to filter out some level of noise in the data and adapt to changes in input. One of the
problems can be getting stuck in local minima. Presently EA successfully being used in
areas such as computer-automated design[19], fault diagnosis in hardware [20], software
engineering etc.

John Holland’s genetic algorithm is known in literature as Simple Genetic Algorithm
(SGA) and it has the following components [21]:

� population of individuals
� individuals encoded as binary strings
� fitness function
� genetic operators: crossover and mutation
� selection mechanism

Figure 7. Simple Genetic Algorithm [3]

The algorithm of SGA can be seen on figure 7. It begins by generating initial population,
which consists of a set of individuals, each individual representing a possible solution to
a problem . Individuals are encoded as a finite length vector of bits, which corresponds to
chromosome that consists of biological genes (Figure 8).

After generating the initial population, the best solutions are selected using a fitness func-

21

Figure 8. Population of Simple Genetic Algorithm

tion, which determines individuals who performed better than the others. The selected
individuals will be then allowed to pass on their genes to next generation by organizing
them into pairs and combining their chromosomes using crossover operation (Figure 9).
With this operation there is a great chance that the attributes which made the parents the
best individuals are being carried over to the offspring and combining genes from both of
them can produce even fitter individuals.

Figure 9. Crossover operator

In addition to crossover there is a low probability of random changes happening in the
genes, called mutation. Mutation inhibits premature convergence and it helps maintain
diversity in the population. [22]

2.3. Field Programmable Gate Array basics

Field Programmable Gate Array (FPGA) is an integrated circuit designed in a way that
it can be reconfigured after manufacturing. Due to the possibility of directly describ-
ing hardware with HDLs, specifically for the task at hand without much overhead, their
performance is much higher than using CPU or GPU for solving the same tasks. Even
though Application Specific Integrated Circuits (ASICs) have even higher computational
capability and efficiency, they are expensive to manufacture. Therefore FPGA’s flexibil-
ity, coming from the ability to be reprogrammed multiple times, makes them often the
choice of platform for prototyping hardware or accelerating demanding computing tasks.
FPGA’s architecture commonly consists of an array of configurable logic blocks (CLBs)

22

Figure 10. Typical logic block [4]

(Figure 10), which are surrounded by configurable interconnection structure. CLB typ-
ically consists of a Lookup Table (LUT) with 4 inputs which essentially is a truth table
that can be defined to behave as any 4-input combinational function. LUTs themselves
are typically built out of SRAM bits to hold the configuration memory (LUT-mask) and
multiplexers that are used to select the according bit to be driven to the output.

For specific FPGAs’ the CLB architecture and even the terminology varies. E.g. Xilinx
divides the CLB further into slices and logic cells. [23]

The CLBs of most Xilinx FPGA’s can also be configured to behave as so called Dis-

tributed RAM that spreads out over number of LUTs rather than being located in a single
dedicated block. This gives them flexibility, however they are not area efficient and rather
small. In addition to logic blocks there are also a number of dedicated areas of Block RAM

which cannot be configured for other functionality, but are larger in size. Which RAM
to use depends on the memory requirements - for small sized memories the distributed
RAM is better as the usage of block RAM would be waste of space. On the other hand
using distributed RAM for bigger sized memories would cause extra wiring delays and the
available amount might not be sufficient. Also the reading of block RAM is synchronous
while distributed RAM is asynchronous.

2.4. FPGA implementation of neural networks

Parallelism in neural networks To fully exploit the power of neural networks, they
should be parallelized akin to their biological counterpart, but it can be made parallel on
hardware in different ways. In general, the only categorical statement that can be made is

23

that, except for networks of a trivial size, fully parallel implementation in hardware is not
feasible - virtual parallelism is necessary, and this, in turn, implies some sequential pro-
cessing [24]. Therefore, it needs some analysis at which stage we make the computation
happen parallel. According to [24] the types of parallelism are the following from higher
level to lower level:

� Training parallelism - Parallel training sessions running simultaneously.

� Layer parallelism - Multilayer networks layers are processed in parallel

� Node parallelism - Each individual node is processed in parallel.

� Weight parallelism - During the computation of weights, multiplications can be
done in parallel.

� Bit-level parallelism - Increasing word size of individual processors or making com-
munication between different functional units bit-parallel.

Weight multiplication in hardware One of the fundamental problems with implement-
ing parallel processing ANNs on FPGAs is due to the large number of connections be-
tween neurons. To calculate neuron’s input values, multiplication is required and making
it fully-parallel on the weight level it would mean one binary multiplier for each input.
If there is a fully connected layer with n inputs and l neurons, it requires n × l multipli-
ers. As we increase the input dimensionality for more complex problems and keep the
number of neurons in proportion to the inputs, the growth of multipliers needed becomes
quadratic.

There are broadly two ways to make the implementations of ANN feasible: either de-
crease the number of multipliers and lose in parallelism and performance, or decrease
the complexity of multipliers and lose in accuracy [25]. Typical solution for example is
to use time-division multiplexing (TDM) to share one multiplier per neuron across it’s
inputs [26].

Another approach, proposed in [25], is the use of stochastic computing, which uses proba-
bilistic properties of bit streams to find approximations. To multiply for example operands
0.12 and 0.3 together, it can be done as following: Let there be two streams of random

24

bits, A and B

A = {a0, . . . , an}; ai ∈ {0, 1}; n, i ∈ N

B = {b0, . . . , bn}; bi ∈ {0, 1}; n, i ∈ N

The random sequence of bits will be generated with a given probability according to the
operands. So the probability of 1 in the first stream will be 0.12 and for the second stream
0.3

p = Pai(1) = 0.12

q = Pbi(1) = 0.3

The product of these two probabilities is equal to the probability of 1 in an output stream
of logical AND taken from A and B.

p× q = Pai∧bi(1) = 0.36

In order to get a good estimation of the frequencies of ones in the stream and therefore
accurate enough multiplication result, the n has to be sufficiently large. Traditional binary
multiplication needs a state machine and an adder, while the complexity of the whole
operation is O(n2). With the stochastic method we need to generate random bit stream,
for which LFSR can be used, and only an AND gate to find the product.

Routing Arguably the main bottleneck for building a fully parallel ANN on hardware
would be the routing limits of FPGA. The problem stems from the FPGA architecture
itself and due to the high interconnectivity of ANNs themselves, as their size increases,
the routing limits are hit fast. As process technology improves, FPGA vendors are able
to build larger arrays of these identical tiles. As they do, routability degrades because
proportionally more interconnect is required on large device [27]. The additional problem
is that the routing utilization is difficult to measure and estimate when the FPGA capacity
limit is reached due to the interconnect usage [28]. Practically it means that at some point
the speed advantage the parallelism should provide, will be lost to due routing delays.

25

2.5. Data representation and precision

An important aspect to consider in a NN hardware implementation is the data representa-
tion - the number format and bit length that is used for the inputs, weights and activation
function. Mainly the format of weights is the trade-off point between accuracy of the net-
work and the hardware implementation costs, because that in turn decides the complexity
and area needs for multipliers and activation function. In commercial computers floating
point arithmetic is typically used as they can provide much higher accuracy in dynamic
ranges - with the use of exponents very large or small numbers can be represented. How-
ever by raising the magnitude, loss of precision will occur. Fixed point representation on
the other hand has a more limited precision and data range. The advantages are that the
precision and absolute error always stays the same, which is needed in some applications
e.g. finance. Secondly, fixed point arithmetic in hardware is also more closer to integer
operations - simpler, more area-efficient and faster. When the application at hand requires
arithmetic only in small fixed range, then fixed point implementation on FPGA can be
more feasible.

For neural network FPGA implementations the fixed point representation is often chosen
because of the lower implementation costs. Although the use of floating point have been
researched [29], it has been found that fixed point numbers with precision of 16 bits for
weights and 8 bit for activation function are sufficient [30], [31]. Also it should be noted
that learning requires more precision, as the back-propagation errors can more rapidly
accumulate.

To hold the data in memory, block RAM should be used as Distributed RAM would be
too small for non-trivial sized networks, including the approximate network needed for
image recognition.

2.6. Activation function implementation

Computation of activation functions directly by its formula is often not feasible in digital
systems due to the high area requirements and delay. Instead, approximation methods can
be used to trade off precision. Piecewise Linear (PWL) Approximation and Lookup Table
(LUT) Approximation will be discussed more in detail, however other methods also exist
like e.g. Truncated Series Expansion.

26

1. Piecewise Linear Approximation uses a series of linear segments to approximate the
activation function [32]. Different PWL schemes exist: A-law based approximation
[33], Approximation of Alippi and Storti–Gajani [34], second-order approximation
of Zhang, Vassiliadis and Delgado–Frias [35] and Centered Linear Approximation
(CRI) [36].

As an example, the CRI is a recursive computational scheme for the generation of
PWL. The simplest initial logarithmic sigmoid approximation with CRI is defined
by three line segments (Equation 1) and as the algorithm goes over its iterations the
segmentation increases as seen on Figure 11. Depending on how much precision is
needed, the sigmoid approximation can be divided into more segments, decreasing
the error.

H(z) =


1 for z ≥ L

1
2
· (1 + z

2
) for − L > z > L

0 for z ≤ −L

(1)

Where L is the given range in which the segmentation is carried out.

Figure 11. Sigmoid function Piecewise Linear Approximation with CRI (L=2). On the
left the initial approximation with three line segments and on the right approximation after
one iteration, resulting 5 line segments

2. Lookup Table Approximation maps input values to uniformly distributed set of out-
put values. This method results in a design with better performance in terms of
speed, as no arithmetic operations are needed. However, the area or memory re-
quirements would be higher due to the need of storing the mapped values. Relation
between the area requirements and precision is exponential [37], which makes this
method impractical if high precision is needed. The approximation for a LUT with
a width of 4 bits can be seen on Figure 12. In terms of average error, this method
also outperforms PWL schemes according to [38].

27

Figure 12. Sigmoid function Lookup Table Approximation

3. Face recognition task

3.1. Neural network models

In various stages of modelling neural network accuracy in software, two different models
were mainly used. One was mainly a comparison reference and the other one was used
for more precise simulation.

For evaluating the results of the experiments made, a reference network neural network
was taken, which worked already fairly well. It was generated with Matlab’s built in
function ’patternet’ and it is very close to the neural network used in [6]. The basic
structure of the network can be seen on the first example of Figure 3. The inputs were
preprocessed beforehand with 2DPCA to decrease the input dimensions. There are fully
connected hidden and output layer, both with 40 neurons, using tansig activation functions
and a bias. In addition normalization methods were used on the input data beforehand.
The average test accuracy of 10 experiments when using the ORL dataset was 83.5%.
However, in the best cases up to 98% accuracy can be achieved. The dataset was divided
into training and test set with 8:2 ratio. From further on, this neural network model will
be referenced as Matlab NN.

Matlab Neural Network Toolbox allows creating custom networks while specifying rela-
tions between layers, input sources, activation functions and allows modifying the weights,
however specifying individual connections is non-trivial and would still require getting
into the source code itself. For example, when setting the weights to zero and essentially

28

Matlab NN Coursera NN
Activation fn Tansig Logsig
Training Scaled conjugate gradient Gradient descent
Preprocessing 2DPCA 2DPCA
Layers 2 2
Hidden neurons 40 40
Avg. accuracy 83.5% 85%
Best accuracy 98% 92.5%

Table 1. Differences between Matlab and Coursera NN implementation

cutting them off, the default training methods will still retrain them. Due to these limita-
tions a custom neural network implementation was written as it was deemed to be easier
than rewriting the source code of existing tool. The ANN implementation is based on the
lessons of Coursera’s Machine Learning course [39]. It is a simple two layer feedforward
network, with gradient descent back propagation learning and regularization. The aver-
age test accuracy over 10 experiments was 85%. In the best cases, the accuracy was up to
92.5%. The dataset was divided into training and test set with 8:2 ratio as before. For the
purpose of testing optimization and pruning methods the lower accuracy in the best cases
was considered less relevant at this point. This neural network model will be referenced
as Coursera NN.

The main differences (and similarities) between these two models can be seen in Table
1. The input given for both networks is normalized beforehand in the range of [0, 1] and
preprocessed with 2DPCA. After that the values are being normalized once again, this
time with mapminmax function that maps the values in the range of [−1, 1]. The choice
for this range does not have a good argumentation over for example the range [0, 1] other
than simply performing slightly better. Possibly because the activation function’s point
of symmetry is where x = 0 and the inputs get then more evenly distributed in the range
where function derivative is the highest.

3.2. Experiments with optimizing the network

Common approach with neural networks is to make fully connected layers and let the
training phase utilize the connections as needed. This means that a number of connec-
tions can be redundant. The question that arose, was whether to include the individual
connections and weights optimization into the GA. When combining ANN and GA to-
gether, then essentially two different optimization methods are working in parallel. If the

29

training of ANN already modifies weights, the addition of GA does not have any sub-
stantial value. When looking into the weights of a trained neural networks, it is very
unlikely for any weight becoming zero due to the working of back propagation. However,
they can get very close to zero and insignificant. At this point they could be removed if
necessary. The first experiments goal was to see how pruning affects the performance of
ANN in general and whether there is a reason to proceed with more complex, evolutionary
optimization methods.

Another issue to consider is the way that the calculation of ANN weights will be imple-
mented. State of the art approach of running ANN on general-purpose computers is to use
matrix operations to speed up the process of calculating outputs in fully connected layers.
For further acceleration this can be parallel computed on GPU for example [40]. The
practice of engineering individual connections between layers is therefore unnecessary as
the matrices are representing fully connected layers and disconnecting a synapse would
just mean zero valued weight in a corresponding location. This would not however bring
any computational gain.

Based on that reasoning it is rational to optimize the individual connections only if its
number has an effect on the performance. That is in the case if computing the weight
updates separately. If computing them one by one serially, then it affects the time and if
done fully parallel, the area.

Initially the vectorized approach was focus on, where matrix operations are used, there-
fore in this experiment the individual connections were left out and the topology was
explored only on layer level.

3.2.1. Rounding the weights

The experiment was done by taking mean of 10 training results and rounding down the
weights to nearest ten thousandth, thousandth, hundredth and so on, as described in Al-
gorithm 1. This essentially rounds the insignificant weights to zero and by reducing the

30

accuracy, the amount of memory necessary to hold the weight values reduces as well.

for i=1:n of experiments do
net = train(net);
tempnet = net;
for j=0:4 do

tempnet.weights = floor(net.weights * pow(10,j))/pow(10,j);
acc = validate(tempnet);

end
end

Algorithm 1: Rounding down the weights

It can be seen from the Figure 13 that rounding weights down to hundredths has a very
marginal effect on the accuracy of the network (increasing the error by 0.25%). As the
weights with zero values can be considered unconnected, this will mean the removal of
around 2% of the connections. Therefore, the gain from pruned connections itself is
low with this approach, however it shows that there can be room for optimization when
pruning further with better methods.

0 1 2 3 4
0

20

40

60

80

100

Decimal places

A
cc

ur
ac

y

Figure 13. The effect of rounding connections with floor on the accuracy of the network

3.2.2. Pruning insignificant connections

This experiment was done by using the methodology proposed in [41]. The Coursera
NN was first trained, then pruned so that more important connections remain and finally

31

Figure 14. An example result of pruning connections

trained once again to balance out the weights for the lost connections. The pruning was
done by changing weights that were below a certain threshold to zero. The accuracy of
pruned connection compared to the original is plotted on Figure 14.

3.2.3. Exploring layer connections with genetic algorithm

Another approach is using genetic algorithm to optimize neural networks for the task
at hand. The intention was to find a network for implementing on hardware, that has
a better performance and more optimal topology. Focus here was mainly the general
topology - connections between layers, activation functions and the number of neurons,
while individual connections and more specific hyperparameters were left out. Table 2
represents the variables being optimized or ’gene’ in the context of genetics. To explore
topologies with different number of hidden layers, the GA was given an argument m for
maximum number of layers to test. This also determines the length of the gene, as for
example layers’ connection matrix has a quadratic growth when the number of layers is
being increased. After that the gene’s first field designates how many layers are actually
being used. This however means that also a great number of fields in the gene would be
left unused if the number of layers is less than the maximum.

Before evaluating each individual with a cost function, the values from generated gene
will be read and a neural network will be built based on it. After that it trains the network,
measures the time of training and finally the results are evaluated by the cost function.
It can happen that from the generated gene no valid network can be constructed, in this
case a high cost value will be assigned to eliminate them from the gene pool. The cost is

32

Field Number of
layers

Number of
neurons

Bias connec-
tions

Transfer func-
tions

Layer connec-
tions

Input connec-
tions

Field size 1 m m m m ×m m
Value type Integer Integer Binary Enumerated Binary Binary
Description Number of

hidden layers
used (out of
the possible
number m)
in the current
individual.

Number of
neurons in
each hidden
layer

Specifies in
which layers
the bias input
is being used.

1 - tansig
2 - logsig
3 - purelin
4 - softmax

Specifies the
connections
between
hidden layers

Specifies to
which hid-
den layers
are inputs
connected to

Table 2. Description of variables optimized

calculated as following:

C =

1000 for invalid network

t+ (1− e
n
) · 100 for valid network

where
t - time of training (s)
e - number of errors
n - number of classes

First of all, to make the networks comparable with the reference network, it was tested
whether the same example with similar results could be generated using by giving the
gene as an input.

The GA optimization process generated different architectures with good performance,
though compared with hand engineered reference, there was no significant gain. In Table
3 there can be seen the generated networks and their corresponding classification accura-
cies both with raw data and preprocessing with 2DPCA.

1. reference network

2. GA generated

3. 2nd individual with removed feedbacks

4. GA generated

In general the results tended to converge still to very simplistic structures, not too different
from manually configured standard designs. Part of the problem here can be also the

33

Figure 15. Chosen individuals for comparison. The numbers below the layers show how
many neurons are in that layer.

1 2 3 4
2dpca 93.38 % 94.58 % 94.40 % 94.10 %
raw 88.48 % 93.40 % 93.70 % 44.70 %

Table 3. Results of optimizing the structure of the ANN with GA. Columns represent the
ANN designs in comparison given in Figure 15. The values given show the percentage of
correct test data classifications.

choice of the data set. It is possible that with more diverse data set, with higher variance,
the optimal structure would be more complex.

In addition the best performing individuals often had still redundant or questionable prop-
erties present. E.g. feedback loops or layers without outputs. Because the cost function
did not prohibit such phenomena, once they appeared, they persisted into later genera-
tions.

For the purpose of implementing simple and minimal neural network on a FPGA, the last
GA generated individual (Figure 15) could be of use when coupled with feature extraction.
It has only one output layer with softmax activation function and has no hidden layers.
Compared to the reference network, it therefore needs 40 neurons less and the weights
associated with it, while showing similar performance.

34

Figure 16. Gene layout used for finding optimal balance between performance and num-
ber of connections

3.2.4. Optimization of individual connections with GA

Genetic algorithm was also applied on individual connection level to find a good trade off
between network size and prediction accuracy. Due to the need of having control over the
neural network’s connections, the Coursera NN (Section 3.1) was used.

The gene used for this experiment consisted of the fields shown on Figure 16. First field
specifies the number of neurons as an integer, then values ai in the range [0,1] will follow
for each connection and each layer. The very last field gives the probability of connections
forming (P (connection)), that is used to compare the individual connections. The actual
connectivity is then decided, based on these probabilities as seen on Algorithm 2.

if ai => P (connection) then
connectioni = true

else
connectioni = false

end
Algorithm 2: Finding connectivity of the network

The necessity for the ’base’ probability value, that decides whether the connection will
be made, is to have a higher variance in the population. If the connection would be taken
directly from the gene, the mutation in the GA does not happen often enough to create the
necessary variance. As a result the better performing individuals were quickly sorted out
and became highly similar, depending on the random genes they started with. Therefore,
when running the experiment multiple times, the results were completely different each
time. Another possible approach to solve this problem might have been to make the
mutation rate higher, but then it might have been more like a random search.

The gene defines one specific individual, with specific connections that are reproducible.

35

Figure 17. Performance of a partially connected network found with GA

However, the resulting cost can be different each time, due to taking network error and
training time into account. As the initial weights are randomly initialized each time, the
trained networks always differ slightly from each other. Also the training time depends
on CPU utilization at that specific moment.

Calculation of cost function was done as following:

C = α · connectionsPercentage + β · errorPercentage + γ · trainingTime

Where α, β and γ are coefficients for modifying the weight of each component. Connec-
tion percentage is a value in the range [0,100] that shows how many connections between
neurons were kept intact compared to the fully connected network. The fully connected
network would have the biggest cost with value of 100. Error percentage shows how many
misclassifications happened during the testing phase, with values in the range of [0,100].
In case none of the input data could be classified correctly, the cost would be 100. Train-
ing time was the time in seconds that took to train the neural network. Coefficients can
be used to increase the importance of one or another factor in the optimal solution. It was
observed from the experiments that the β coefficient should be considerably higher for
finding networks with acceptable accuracy (>70%).

An example of the result found with this method was a network with 17% of the con-
nections intact. The performance of such network can be seen on Figure 17, with test
accuracy being at 86%. To have a better grasp on the optimized network, the connections
can be visualized as seen on 18. It shows a graph of individual connections between input
(224 nodes) and hidden layer (40 nodes) with total of 1502 synapses. If it was a fully
connected, the number of synapses would be 224 · 40 = 8960.

36

Figure 18. Example of an optimized connection between input and hidden layer visual-
ized as a graph

3.3. Approximation of activation function

For finding a good approximation of activation function, LUT and CRI methods (ex-
plained in more detail in Section 2.6) were experimented with. For the LUT approxima-
tion it was necessary to find out what was the table size needed to hold the values without
losing too much in accuracy of the network. In addition a decision needs to be made for
the range in which the LUT stores the values. For example, when choosing the range
[-5,5] and LUT table width of 4 bit, the function H(z) will be split into 24 segments in
the given range, while H(z) = 0 when z < −5 and H(z) = 1 when z > 5. The Figure
19 shows the approximations with different range and bit widths. The choice of trade-off
should minimize bit widht and range, while maximizing the accuracy of the network. The
example highlighted gave 95.25% accuracy over the whole dataset, while regular sigmoid
function gave 97.75% (calculated without restrictions on range or bit width). The 2.50%
loss of accuracy can be considered marginal and therefore a reasonable choice. As the
ranges are encoded in binary, the range can actually be increased up to 8, because the bits
needed for encoding the numbers would be the same as for 6.

Secondly, the CRI approximation produced accurate results in a neural network already
with the initial 3-segment function described in Equation 1, without the need for any
further iterations. The two methods are compared with the regular sigmoid function on
a test dataset on figure 20. In this sample run all three cases the accuracy of 92.5% was
reached, with CRI method even having a slightly better result than the original. From
the training process it can be seen that the LUT method lags behind the CRI, but for the
trained network both have relatively similar accuracy.

37

Figure 19. Accuracy of neural network using LUT sigmoid approximations with different
LUT sizes and ranges. A good choice would maximize the accuracy, while minimizing
range and bit width.

Figure 20. Comparing neural network test accuracy with LUT and CRI approximation.

38

4. Hardware realization

The final part of the work at hand was to implement a neural network on a FPGA. The first
reason of this was to take advantage of the speed increase that the use of FPGA can pro-
vide. Secondly, as the objective was to experiment with optimizing the network, hardware
realization was needed for observing the results in power consumption and speed.

The hardware was written in VHDL, which is a language for describing digital electronic
systems. The choice of VHDL over for example Verilog or SystemC came from having
previous experience with it. VHDL is designed to write down the structure of a system
and its functionality using typical programming language forms. What makes VHDL
(and other hardware description languages) different from other programming languages
is the notion of time and concurrent statements. This makes it possible to also simulate
the design in software to verify its functionality. Finally, the description can be used to
synthesize hardware or configure a FPGA.

4.1. Design process

The design process can be formally best described with a Waterfall or V-model in terms
of development model used in this project. Even though it was not chosen consciously in
the beginning, it was a somewhat natural choice as the development was carried out by
an individual and it was small sized project with fixed requirements. Also Waterfall and
V-model are still the development models used most often in the hardware design [42]
opposed to agile methodologies in software development. V-model puts an emphasize on
testing and verification, which was also a substantial part of the development in this case.

V-model usually starts with a concept of operation and a practical need for the system
by someone. Whether it is achieved is checked by client or user acceptance. In this case
the goal was to answer a research question instead, which means the development model
is somewhat mixed with scientific method instead. As an concept there was research
questions posed in the beginning which by the end should be either verified or dismissed
by the end by analysing the results of experiments.

As a result the design process with those mixed aspects can be visualized as seen on
Figure 21.

39

Figure 21. The development process of the hardware realization

4.2. Design choices

Offline against online learning The hardware design is limited at this point only to
the neural network structure itself, without having capabilites of learning. The training
process has to be carried out on software and the weights of a trained network must be
transferred to the BRAM of the FPGA. Therefore, it is called offline training, as opposed
to online training (for example [43]), where learning happens on FPGA itself. The choice
was made with the intention to start with crucial components of the system and expand
in the future as needed. For running the experiments with modified weights, the offline
learning is sufficient and better suited for its simplicity.

Parallelism When designing the hardware for ANN, there are many ways to approach
the parallelism and there are also many limitations that come with it as it was explained
in the section 2.4. The main parallelization approaches applicable for the design at hand
were the node, weight or bit-level parallelism. The advantages of pruning weights should
come apparent mostly with either fully weight parallel design or when weight calculation
is fully serial. In the first case the trade-off is mostly area-wise and in the second case
it is the time we are trading off. In addition it can affect the power consumption. The
fully weight-parallel design would quickly hit the area and routing limits on the FPGA,
therefore this approach was discarded and serial computation of weights was chosen. For
node level parallelism calculations could be done on 2..N neurons in parallel, while the
weight calculations are still happening in a serial manner for each neuron. Each parallel
process would need its own multiplier in this case. Even though this approach could be
feasible and possibly a path for further research, for first implementation it was decided

40

to make the calculations on one neuron at a time. Therefore, the only parallelism present
in this design is bit-level.

Precision For representing real numbers in hardware, fixed-point was used due to easier
implementation on the FPGA. The number format used is Q3.4 with a signed bit (total 8
bits). More in-depth reasoning about the choice of fixed-point representation can be seen
in Section 2.5 and 3.3. The word length 8 bits has been said to be enough for activation
function. During the multiplication of weight and input, the word length will be doubled
for getting accurate enough results. The integer part was decided based on how big range
does the activation function need to give good enough results. From the Figure 19, it can
be seen that the range [−6; 6] is large enough and this can be represented with 3 bits +
signed bit. This way the actual range will be even higher: [−8; 8]. Finally, the fraction
part is left with 4 bits. Although a certain number format was chosen and has been taken
as an example here, the implementation was made in a generic manner so that the word
and fraction sizes could be changed if needed.

Activation function Logarithmic sigmoid function approximated by using LUT was
used for the activation function. It was decided on as the LUT approximation was found
to be sufficiently accurate (tested in Section 3.3) and as FPGAs’ CLBs use LUTs any-
way to implement the logic, it should be a straight forward approach. However, CRI
approximation would be a feasible option as well.

4.3. Architecture

Overview The general overview over the design can be see on Figure 22. All the data
is stored in three BRAMs: image, weight and results. The main computational unit is the
neuron, which calculates the results for all the neurons one by one. The neuron outputs
are stored in results BRAM. The multiplexer before the neuron is used to select the input
depending which layer is being calculated. The inputs are initially read from image BRAM

until the first layer has been calculated, after that the new inputs will be the results of last
layer and read from results BRAM. The neural network design uses bias as well, therefore
for the first input of each node, 1 needs to be read. During the calculation of last layer, the
outputs of neuron will be read by max component, which finds the output with the highest
value (essentially playing the role of a competitive transfer function). The index of the

41

maximum value will correspond to the predicted class. The display component is then
used to convert the index for displaying on the 7-segment display. The controller runs the
Finite State Machine (FSM) controlling the whole calculation process with the trigger of
start input signal.

Figure 22. General view of the datapath of the design

Controller The controller is a Moore FSM with the states shown on Figure 23. The
beginning state is the idle state and until no input signal is given, the FSM stays in this
state. Upon giving the start signal it moves to the init state, where BRAMs are being
enabled for reading. In the next read state input and weight values will be read from
BRAM. Next calculate state follows, where the neuron is enabled for weight and input
multiplication. Until all the inputs have been read, the states will alter between read and
calculate. During each iteration a counter will be incremented that keeps track of the
inputs. If the counter has reached to the number of inputs there are, the FSM continues
with write_back state. During the write back, the output value received from the neuron
will be written back into results BRAM. After that, in the next_node state the previous
sum and input counter will be reset back to 0. Also another counter for keeping track of
neurons is being incremented at this point. Until the counter value is below the number of
neurons in the layer, it continues with the read state to start with the process of calculating
the result for the next neuron. When all of the outputs of neurons have been calculated
and stored, the FSM moves on to the next_layer state. Similar pattern repeats here: the
neuron counter gets reset back to 0 and layer counter is being incremented. After all the
layers have been gone through, the FSM returns to its initial idle state. After returning to

42

the idle state, the found result will remain on the display. When reset signal is given, then
the FSM switches to reinit state where the result value is cleared from the display.

Figure 23. Controller’s state diagram

Neuron The functionality of the neuron can be summarized with the VHDL code snip-
pet on Algorithm 3. If the neuron is enabled, the input will be multiplied by weight
and cumulated to the sum according to

∑n
i=0 xiwi. Finally, on the enabling of activa-

tion function the total sum will be input to the sigmoid function LUT approximation and
corresponding output will be found.

During the computation of the product, the precision gets doubled to 16 bits to hold the
multiplication result. This precision is also kept while finding the sum. When the sum is
given as an input to the activation function, it gets truncated back to 8 bits. The truncation

43

is made in a symmetrical manner to keep the Q3.4 format. In the event of overflow
(when the sum is either larger than 8 or less than -8) the output will be saturated to the
minimum/maximum value.

sum_in = sum;
activation_function: logsig port map(clk, act_ena, sum_in, y);
process (clk) is
begin

if (rising_edge(clk)) then
if (res = ’1’) then

sum <= (others => ’0’);
elsif (ena = ’1’) then

sum <= sum_in + (signed(x) * signed(w));
end if;

end if;
end process;

Algorithm 3: Neuron VHDL code

4.4. Simulation and verification

The ANN design uses offline learning and the input is preloaded into memory. Therefore,
in order to simulate the design, the input and weight BRAM had to be initialized with
values. The values are specified in a ’coefficient’ file (a text file with a .coe extension)
which Xilinx Vivado Design Suite uses to load the memory locations. To generate these
’coefficient’ files Matlab scripts were used.

To get the weight coefficients, Coursera network model (explained in Section 3.1) was
trained and the adjusted weight values were converted to hexadecimal numbers and ex-
ported to the ’coefficient’ file. The same process applies when networks with pruned
connections are tested with the hardware design. For getting the image data into a ’coeffi-
cient’ file, similar script was made in Matlab. A number identifying an image is given to
the script and it will fetch the image, feed it through the 2DPCA preprocessing and write
the data into the coefficient file, naming it according to the image identificator so that it
can be easily checked whether the prediction matches the image class.

The golden model To verify and debug the hardware design, a reference model was
made in Matlab to compare with. The reference model has to follow the hardware imple-

44

mentation’s algorithm exactly, use the same data format and output intermediate values
for comparing. Algorithm 4 describes the general algorithm that the ANN follows, with
the addition of writing intermediate values into file. The files can be then used for de-
bugging by reading them in during simulation and comparing with values that hardware
design produces. Another option is to write the same intermediate values of the hard-
ware design during the simulation into files and use software like diff tool to compare
the results side by side. Both approaches were tried and due to the limitations of VHDL
simulation in Vivado, the second one worked the best.

for l = 1:layers do
for n = 1:neurons do

sum = 0;
for i = 1:inputs do

sum = sum + input * weight;
output = sigmoidApproximation(sum);
write_file(input);
write_file(weight);
write_file(sum);

end
write_file(output);

end
if l == layers then

if output > max then
max = output;
max_index = n;

end
end

end
classification_result=max_index;

Algorithm 4: The algorithm for reference model

4.4.1. Xilinx Artix-7 FPGA overview

For testing the synthesized design, Xilinx Artix-7 XC7A100T[5] was chosen as the tar-
get. The choice was due to the access to this specific trainer board and its support for
Xilinx Vivado Design Suite. Artix-7 uses 28nm technology and the specifications of the

45

FPGA Model XC7A100T
Logic cells 101440
Slice LUTSs 63400
DSP48E1 Slices 240
Distributed RAM (Kb) 1188
Block RAM (Kb) 4860
I/O Pins 300

Table 4. Xilinx Artix-7 XC7A100T [5]

XC7A100T model can be see on Table 4. Generally speaking the Artix-7 series is de-
signed to be a low-cost and low-power option in the FPGA market. Due to its small
form factor and low-power performance requirements it can very well be used to develop
battery powered image recognition devices for example.

4.5. Results

In this section results are presented to answer the following questions:

1. How does the hardware realization perform compared to software realization?

2. How does the connection pruning affect the performance?

The aspects of performance under focus are:

� operation speed

� area utilization

� power consumption

Operation speed To compare the operation speed of the hardware implementation, ex-
periments were run first in software, on a Intel Core i7-4820K CPU running on 3.70 Ghz.
The average speed of calculating the neural network outputs was measured in Matlab and
based on that the number of clock cycles was calculated. The experiments were run both

46

Connections Time Clock speed Clock cycles
Software
original 100.00% 63.00 µs 3700 Mhz 2.331 · 105

Software
pruned 45.78% 33.00 µs 3700 Mhz 1.221 · 105

Hardware
original 100.00% 55.80 µs 324 Mhz 1.808 · 104

Hardware
pruned 45.78% 47.47 µs 324 Mhz 1.538 · 104

Table 5. Comparison of speed of the software and hardware design, both with pruned and
unpruned connections.

with fully connected network and a pruned one, with 45.78% of the connections remain-
ing. It took approximately 230 thousand clock cycles for the CPU to calculate the result
and the pruned design was almost twice as fast.

When running the same network on FPGA, the actual time that took to calculate the
result was not that much shorter than in software due to the fact that the clock speed of
the FPGA was 13 times slower. Nevertheless, this on the other hand means that the clock
cycles needed for reaching the result was also 10 times less on the FPGA and more power
efficiency can be achieved without compromising the speed.

When using the pruned weights and modifying the design to skip the zero values, 85%
faster operation can be achieved on the FPGA. The current ’connection skipping’ tech-
nique in hardware was implemented fairly straight-forward, thus if more effort was in-
vested on pipelining the calculation process, additional gains could be possible. The full
table of comparison can be seen on Table 5.

Area and Power consumption In the comparison of area and power consumption the
differences were not observable between the fully connected and pruned design. The
reason is that the design processes the connections serially and by increasing or decreasing
the number of connections, the area does not change, only the operation time does. In
terms of the power consumption, in theory there should be differences as the switching
activity would be lower with the pruned connections. However, the difference was not
observable in the power analysis of Xilinx Vivado Design Suite, even though simulation
activity was taken into account when executing the analysis. This means that the decrease
in power is so minuscule in this case that it gets rounded off and can be discarded. One
way to confirm could be scaling up or duplicating the design on the FPGA in order to

47

Power (W)

Dynamic

Clocks 0.002
Signals 0.002
Logic 0.002
BRAM 0.003
I/O 0.002
Total 0.011

Static 0.097
Total 0.108

Table 6. Power consumption of the neural network design

Resource Utilization Available %
LUT 381 63400 0.60 %
FF 199 126800 0.16 %
BRAM 4 135 2.96 %
IO 18 210 8.57 %
BUFG 1 32 3.13 %

Table 7. FPGA utilization

make the difference observable. However, this can be considered as future works at this
point.

The power analysis results can be see on Table 6. The Table 7 shows the area utilization
of Lookup Tables, Flip Flops, Block RAMs, Input Output buffers and Global buffers and
on Table 8 a utilization breakdown of different components is shown. In addition the
Appendix 1 on page 52 includes a screenshot of the device slice utilization view.

Slice LUTs
(Logic) Slice Registers DPSs BRAM LUT as Memory

Controller 279 136 0 0 0
Neuron 51 16 0 0 0
Display 13 34 0 0 0
Max 12 9 0 0 0
Weight memory 13 4 0 3 0
Image memory 0 0 0 0.5 0
Results memory 0 0 0 0.5 0
Total 381 199 0 4 0

Table 8. FPGA utilization breakdown by components

48

5. Conclusion

In this work a Feedforward Artifical Neural Network was first built in software, that would
be able to do image detection and classify subjects by inputting a predefined set of faces.
Couple of methods were explored, including pruning and genetic algorithms, in order to
optimize the neural network’s topology. The purpose was to see, how does the decreased
number of connections affect the performance of the network in hardware. In the next
step, different aspects of the neural network implementation were analysed to make the
hardware realization feasible: parallelization of the design, multiplication of weights, data
representation and precision, routing and also approximation of activation function, that
was also modelled in software in order to find a good solution. Finally, a design was
chosen to be implemented on FPGA using VHDL hardware description language. The
neural network is implemented in this case in a serial manner, without online learning and
a image that has been preloaded to the memory.

As a result, the FPGA realization used 7% of the clock cycles that it would take the CPU
to find the output. This can mean decreased power consumption or faster operation time.
It was also tested how would reduced connections affect the performance, by skipping the
redundant weights during calculation. Due to the serial design of the neural network, the
circuitry itself did not change. Therefore, no changes in area or power consumption were
observed. However, it was found that the number clock cycles can be reduced by 15% by
trading off the network’s accuracy.

The work serves also as a generic guide to implementing a synthesizable Feedforward
Artificial Neural Network by going through all the essential steps required. The neural
network configuration is described, including the components of hardware.

49

References

[1] K. Ray, The Singularity Is Near: When Humans Transcend Biology. 2005.

[2] “The orl database of faces.” http://www.cl.cam.ac.uk/research/dtg/attarchive/
facedatabase.html.

[3] P. Gang, I. Iimura, H. Tsurusawa, and S. Nakayama, “Genetic local search based on genetic recombi-
nation: A case for traveling salesman problem,” in Parallel and Distributed Computing: Applications
and Technologies (K.-M. Liew, H. Shen, S. See, W. Cai, P. Fan, and S. Horiguchi, eds.), vol. 3320 of
Lecture Notes in Computer Science, pp. 202–212, Springer Berlin Heidelberg, 2005.

[4] “File:clb block diagram.png.” https://en.wikibooks.org/wiki/File:CLB_Block_
Diagram.pngs.

[5] “Artix-7 series fpgas overview.” http://www.xilinx.com/support/documentation/
data_sheets/ds180_7Series_Overview.pdf.

[6] S. K. Dwived and S. P. Azad, “Hardware implementation of face recognition using low precision
representation.”.

[7] M. B. I. Reaz, F. Assim, Awss; Choong, M. S. Husn, and F. Mohd-Yasin, “Prototyping of smart home:
A multiagent approach,” 2006.

[8] “Git repository of the thesis’ source files.” https://bitbucket.org/hkinks/thesis.

[9] M. Koit and T. Roosmaa, Tehisintellekt. Tartu Ülikool, Arvutiteaduse Instituut, 2011.

[10] V. B. Mountcastle, “Modality and topographic properties of a single neurons of cat’s somatic sensory
cortex",” Journal of neurophysiology, vol. 20, pp. 408–434, 1957.

[11] A. Angelucci, “Experimental retinal projections to the ferret auditory thalamus : morphology, devel-
opment and effects on auditory cortical organization,” 1997.

[12] F. Rosenblatt, “The perceptron – a perceiving and recognizing automaton,” 1957.

[13] C. M. Bishop, Pattern Recognition and Machine Learning. Information science and statistics,
Springer, 1st ed. 2006. corr. 2nd printing ed., 2006.

[14] “Artificial neural networks: Mathematics of backpropagation.” http://briandolhansky.
com/blog/artificial-neural-networks-linear-regression-part-1.

[15] “Artificial neural networks: Mathematics of backpropagation.” http://briandolhansky.
com/blog/2013/9/27/artificial-neural-networks-backpropagation-part-4.

[16] S. I. Gallant, Neural network learning and expert systems. MIT Press, 1993.

[17] R. Parekh, J. Yang, and V. Honavar, “Constructive neural-network learning algorithms for pattern
classification,” IEEE Transactions on Neural Networks, vol. 11, pp. 436–451, Mar 2000.

[18] S. Thrun, “Lifelong learning : a case study,” Tech. Rep. CMU-CS-95-208, Carnegie-Mellon Univer-
sity.Computer science. Pittsburgh (PA US), 1995.

[19] Y. Li, K. Ang, G. Chong, W. Feng, K. Tan, and H. Kashiwagi, “Cautocsd-evolutionary search and op-
timisation enabled computer automated control system design,” International Journal of Automation
and Computing, vol. 1, no. 1, pp. 76–88, 2004.

[20] J. Anita and P. Vanathi, “Multiple fault diagnosis and test power reduction using genetic algo-
rithms,” in Eco-friendly Computing and Communication Systems (J. Mathew, P. Patra, D. Pradhan,
and A. Kuttyamma, eds.), vol. 305 of Communications in Computer and Information Science, pp. 84–
92, Springer Berlin Heidelberg, 2012.

[21] M. Srinivas and L. Patnaik, “Genetic algorithms: a survey,” Computer, vol. 27, pp. 17–26, June 1994.

[22] “Genetic algorithms.” http://www.doc.ic.ac.uk/~nd/surprise_96/journal/
vol1/hmw/article1.html.

[23] A. Cosoroaba, “Achieve higher performance with virtex-5 fpgas,” Xcell journal, 2006.

[24] J. C. R. Amos R. Omondi, FPGA Implementations of Neural Networks. Springer, 1 ed., 2006.

[25] S. L. Bade and B. L. Hutchings, “Fpga-based stochastic neural networks-implementation,” in FPGAs
for Custom Computing Machines, 1994. Proceedings. IEEE Workshop on, pp. 189–198, Apr 1994.

[26] D. Hammerstrom, “A vlsi architecture for high-performance, low-cost, on-chip learning,” in Neural
Networks, 1990., 1990 IJCNN International Joint Conference on, pp. 537–544 vol.2, June 1990.

50

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
https://en.wikibooks.org/wiki/File:CLB_Block_Diagram.pngs
https://en.wikibooks.org/wiki/File:CLB_Block_Diagram.pngs
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://bitbucket.org/hkinks/thesis
http://briandolhansky.com/blog/artificial-neural-networks-linear-regression-part-1
http://briandolhansky.com/blog/artificial-neural-networks-linear-regression-part-1
http://briandolhansky.com/blog/2013/9/27/artificial-neural-networks-backpropagation-part-4
http://briandolhansky.com/blog/2013/9/27/artificial-neural-networks-backpropagation-part-4
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol1/hmw/article1.html
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol1/hmw/article1.html

[27] A. E. Gamal, “Two-dimensional stochastic model for interconnections in master slice integrated cir-
cuits,” IEEE Transactions on Circuits and Systems, vol. 28, pp. 127–138, Feb 1981.

[28] S. Trimberger, “Effects of fpga architecture on fpga routing,” in Design Automation, 1995. DAC ’95.
32nd Conference on, pp. 574–578, 1995.

[29] K. R. Nichols, M. A. Moussa, and S. M. Areibi, “Feasibility of floating-point arithmetic in fpga based
artificial neural networks,” in In CAINE, pp. 8–13, 2002.

[30] J. L. Holi and J. N. Hwang, “Finite precision error analysis of neural network hardware implementa-
tions,” IEEE Transactions on Computers, vol. 42, pp. 281–290, Mar 1993.

[31] J. L. Holt and T. E. Baker, “Back propagation simulations using limited precision calculations,” in
Neural Networks, 1991., IJCNN-91-Seattle International Joint Conference on, vol. ii, pp. 121–126
vol.2, Jul 1991.

[32] K. Basterretxea, J. M. Tarela, and I. del Campo, “Approximation of sigmoid function and the derivative
for hardware implementation of artificial neurons,” IEE Proceedings - Circuits, Devices and Systems,
vol. 151, pp. 18–24, Feb 2004.

[33] D. J. Myers and R. A. Hutchinson, “Efficient implementation of piecewise linear activation function
for digital vlsi neural networks,” Electronics Letters, vol. 25, pp. 1662–1663, Nov 1989.

[34] C. Alippi and G. Storti-Gajani, “Simple approximation of sigmoidal functions: realistic design of
digital neural networks capable of learning,” in Circuits and Systems, 1991., IEEE International Sym-
poisum on, pp. 1505–1508 vol.3, Jun 1991.

[35] M. Zhang, S. Vassiliadis, and J. G. Delgado-Frias, “Sigmoid generators for neural computing using
piecewise approximations,” IEEE Transactions on Computers, vol. 45, pp. 1045–1049, Sep 1996.

[36] K. Basterretxea, J. M. Tarela, and I. del Campo, “Approximation of sigmoid function and the derivative
for hardware implementation of artificial neurons,” IEE Proceedings - Circuits, Devices and Systems,
vol. 151, pp. 18–24, Feb 2004.

[37] A. H. Namin, K. Leboeuf, H. Wu, and M. Ahmadi, “Artificial neural networks activation function hdl
coder,” in Electro/Information Technology, 2009. eit ’09. IEEE International Conference on, pp. 389–
392, June 2009.

[38] M. T. Tommiska, “Efficient digital implementation of the sigmoid function for reprogrammable logic,”
IEE Proceedings - Computers and Digital Techniques, vol. 150, pp. 403–411, Nov 2003.

[39] “Machine learning | coursera.” https://www.coursera.org/learn/
machine-learning.

[40] L. Wang, W. Wu, J. Xiao, and Y. Yi, “Large scale artificial neural network training using multi-gpus,”
CoRR, vol. abs/1511.04348, 2015.

[41] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and connections for efficient neural
networks,” CoRR, vol. abs/1506.02626, 2015.

[42] “Hardware development with waterfall/v-model.” http://intland.com/blog/
hardware-development-with-waterfallv-model/.

[43] R. Gadea, J. Cerdá, F. Ballester, and A. Mocholí, “Artificial neural network implementation on a single
fpga of a pipelined on-line backpropagation,” in Proceedings of the 13th International Symposium on
System Synthesis, ISSS ’00, (Washington, DC, USA), pp. 225–230, IEEE Computer Society, 2000.

51

https://www.coursera.org/learn/machine-learning
https://www.coursera.org/learn/machine-learning
http://intland.com/blog/hardware-development-with-waterfallv-model/
http://intland.com/blog/hardware-development-with-waterfallv-model/

Appendix 1

52

	Introduction
	Background and motivation
	Problem and goal definition
	Methodology

	Theory
	Artificial neural networks
	Artificial neuron
	Feedforward neural network
	Constructive Learning

	Evolutionary computation
	Genetic algorithms

	Field Programmable Gate Array basics
	FPGA implementation of neural networks
	Data representation and precision
	Activation function implementation

	Face recognition task
	Neural network models
	Experiments with optimizing the network
	Rounding the weights
	Pruning insignificant connections
	Exploring layer connections with genetic algorithm
	Optimization of individual connections with GA

	Approximation of activation function

	Hardware realization
	Design process
	Design choices
	Architecture
	Simulation and verification
	Xilinx Artix-7 FPGA overview

	Results

	Conclusion

