
Tallinn 2018

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Alejandro Guerra Manzanares – IVCM 172627

APPLICATION OF FULL MACHINE

LEARNING WORKFLOW FOR MALWARE

DETECTION IN ANDROID ON THE BASIS

OF SYSTEM CALLS AND PERMISSIONS

Master’s Thesis

Supervisor: Hayretdin Bahsi,

Ph.D.

Sven Nõmm

Ph.D.

2

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Alejandro Guerra Manzanares

07.05.2018

3

Abstract

Mobile malware have increased attacks’ frequency and sophistication in last years.

Android OS is the main target of these attacks, as the most widely used smartphones

OS. Traditional antivirus techniques are ineffective on detecting unknown or new

malware. This situation puts Android users in a high-risky situation. Machine learning

has been used in numerous researches as an alternative method to detect malicious

applications overcoming antivirus problems. In this regard, machine learning

classification methods use features from known data, known as predictors, to predict the

malicious behaviour of unknown data. This thesis uses system calls and permissions as

features to detect malicious behaviour in Android environment. Feature selection is used

to select and build a Decision Tree algorithm classifier model aiming to minimize the

number of predictors of two different malware datasets. Old and new malware datasets

variability of predictors is analysed. Results showed that system calls provide greater

discriminatory power than permissions and that hybrid approach (combination of both

features) possess slightly greater discriminatory power than system calls alone. Feature

selection provided similar detection accuracy (97%) using 212 system calls than with 22

of them, allowing to reduce and minimize the number of predictors used to build the

model. Furthermore, it was also possible to build a classifier with a single feature and

obtain over 86% accuracy in cross-dataset testing. Analysis of features showed that

predictive variables have changed in malware over years, with new malware becoming

more like legitimate applications and thus reducing variables discriminatory power with

a few exceptions. Nevertheless, it is still possible to build a classifier to detect old and

new malware without the need of using mixed datasets as a training set. A single dataset

(old or new malware) could be used, depending on the number of features used, to build

the model. This research shows that depending on detection objectives and

requirements, different features and dataset should be used in order to accomplish them

with optimum malware detection performance.

This thesis is written in English and is 77 pages long, including 6 chapters, 31 figures

and 13 tables.

4

Annotatsioon

Täieliku masinõppe töövoo rakendamine pahavara tuvastamiseks

süsteemikutsete ja pääsuõiguste alusel

Antud töö on pühendatud Android opsüsteemi pahavara analüüsimiseks ja

tuvastamiseks. Viimaste aastate jooksul on muutunud nii pahavara keerukus ja selle abil

korraldatavate rünnakute sagedus. Seetõttu hüppeliselt suurenes risk Android

opsüsteemi kasutatavate nuttiseadmetele. Pahavara keerukuse tõttu paljud pööravad

pilku masinõpe meetodite poole. Pahavara käitumist kirjeldavate parameetrite alusel

arvutatakse tunnused, mille alusel treenitakse masinõpe klassifikaatoreid. Töö eripära

koosneb kahest komponendist. Esimene on tunnuste arvutamine, mille tulemuseks on

väiksem tunnuste hulk, kui avaldatud paljudes publikatsioonides. Nimelt 212 tunnusest

on saadud hulk mis koosneb vaid 22st. Selle saavutuse alusel võib treenida lihtsamaid

klassifikaatoreid. Teiseks eripära komponendiks on vana ja uue pahavara võrdlus, mis

kirjeldab kuidas muutuvad pahavara omadused võrreldes standartsete rakendustega. Töö

käigus oli demonstreeritud, et uus pahavara muutub sarnaseks tava rakendustega. Töö

tulemus: oli välja treenitud mitu klassifikaatorit mille täpsus on 97% ümbruses. Samuti

oli demonstreeritud, et vaid ühe tunnusega on võimalik treenida klassifikaator, mille

täpsus on 86% ringis. Töö näitab et tunnuste valik ja treenimis andmed tuleb valida

vastavalt tuvastatavale objektile ja lubatud keerukusele.

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 77 leheküljel, 6 peatükki, 31

joonist, 13 tabelit.

5

Table of contents

1 Introduction ... 7

2 Background Information.. 10

2.1 APK and Android Malware .. 10

2.2 Machine Learning ... 12

2.3 Related Work .. 13

2.3.1 Static malware analysis and detection ... 13

2.3.2 Dynamic malware analysis and detection ... 17

2.3.3 Hybrid malware analysis and detection ... 24

3 Methodology .. 26

3.1 Phase 1. Data Acquisition ... 26

3.1.1 Dataset ... 26

3.1.2 Android Emulation .. 27

3.1.3 Application’s feature: system calls .. 27

3.1.4 Application’s feature: Permissions .. 28

3.1.5 Feature extraction .. 29

3.1.6 System calls and permissions’ collection .. 30

3.1.7 Statistical hypothesis testing .. 31

3.2 Phase 2. Data pre-processing .. 38

3.2.1 Feature selection .. 38

3.3 Phase 3. Classification, Training and Validation ... 51

3.3.1 Malware detection: binary classification problem .. 51

3.3.2 Malware detection: performance ... 52

4 Malware detection – practical implementation ... 55

4.1 Classification algorithms .. 55

4.1.1 Decision Tree Algorithm ... 58

5 Malware Detection Model Validation ... 61

5.1 Selected system calls .. 61

5.2 Selected permissions... 62

6

5.3 Combination of features: permissions and system calls 64

5.4 Old vs. New Malware discrimination ... 65

5.5 Cross-dataset malware detection validation ... 67

5.5.1 Dynamic approach: System calls ... 68

5.5.2 Static approach: Permissions ... 69

5.5.3 Hybrid approach: system calls and permissions .. 70

5.6 Mixed malware detection validation .. 71

5.6.1 System call features ... 72

5.6.2 Permission features .. 72

5.6.3 Hybrid approach .. 72

5.7 Decision Tree graphs .. 74

5.7.1 System calls ... 74

5.7.2 Permissions .. 77

5.7.3 Hybrid trees ... 80

6 Conclusions ... 83

References .. 85

Appendix 1 – System call’s statistics ... 94

Appendix 2 – System calls’ Welch’s test ... 100

Appendix 3 – Permissions’ statistics .. 107

Appendix 4 – Permissions’ Chi Square Test .. 112

Appendix 5 – System calls’ Fisher Score values .. 117

Appendix 6 – Permissions’ Gini Index values ... 123

Appendix 7 – System call’s model validation .. 127

Appendix 8 – Permissions’ model validation ... 130

Appendix 9 – Hybrid model validation .. 132

Appendix 10 – Malware discrimination model validation ... 134

Appendix 11 – Cross-dataset malware model validation ... 137

Appendix 12 – Mixed malware detection validation.. 144

7

1 Introduction

Smartphones allow in their reduced size to perform thousands of activities that before

had to be implemented with computers or physically, saving time, money and effort to

the user. Mobile applications have promoted the use of mobile use and navigation. In

2017, 52,7% of global internet traffic was originated from mobile devices and it is

expected that by 2018 will reach 80% [1]. In 2017, 91.3% of social media users used

their mobile devices for their social media related activities and 90% of mobile device’s

time of use is spent in apps [2]. This growing trend is exploited by malware authors to

propagate their creations worldwide. According to McAfee [3], “2018 could be the year

of mobile malware”, an emerging threat statement based on their 16 million malware

infections detected in the third quarter of 2017 alone, twice the figure in 2016. This

spike was also confirmed by Kaspersky [3][4], which detected an 80% increase in

malware attacks and sophistication. McAfee report also states that Google Play store

has been target of malware campaigns almost since its inception and it is still under

siege [3]. Android Grabos was the latest malware campaign detected in Google Play,

which affected 144 apps stored in Google Play, infecting 17.5 million smartphones in

2017 before they were removed [3]. Notwithstanding that Android’s owner, Google, is

increasing new versions’ security features, they are still ineffective to protect or detect

even the most common malware [3][5]. Furthermore, antivirus software for mobile

devices has been proved to be inefficient detecting malware applications [6]. These

limitations come not only from malware obfuscation techniques but also from Android

OS itself which uses a filesystem-based sandbox to ensure that each installed

application have only access to its own data and not to other apps or user data, unless it

is explicitly permitted by the user. This directly affects Android antivirus software as

they are not capable of list other directories’ contents [6].

Android OS is the most widespread mobile operating system worldwide, it is run by

most of smartphone producers, as it is a highly customizable and open source, based on

Linux kernel. Over 87% of global smartphone devices use some kind of Android flavor

[7] but only 1% of them use the latest version, Android 8.0, that includes enhanced

8

security capabilities [8]. Android OS users download applications via App markets. The

official market is Google Play store, but there are many other third-party markets like

AndAppStore, GetJar, Handango, etc. that attract users by providing pay applications

for free. The main issue of application markets is security, especially in third-party

stores, which are less controlled. Apps’ stores are used by attackers to spread and infect

users’ devices with malware, especially trojan versions of widely-used and popular

applications. The estimated 4.5 billion of Android mobile users worldwide in 2017 are

posing as an enticing target for malware creators, that have evolved frequency and

sophistication of attacks. According to McAfee [3], in 2010, best malware campaign

could earn up to $300,000. Nowadays, it could potentially bring a revenue up to $2

million, being able to reach the billion-dollar figure by 2020 [3].

Android users are becoming more vulnerable and exposed to risks, posing unwillingly

as enticing targets to cybercriminals, involved in an extremely threatening situation.

Consequently, there is an important need of improvement in Android malware detection

in order to mitigate this fast-growing critical risk scenario for Android users.

Traditional malware detection approaches based on signatures fail to address new

malware detection and can be easily bypassed by old malware with obfuscation or other

stealth techniques [6]. New methods should be implemented to overcome these

limitations. Machine learning is a growing and emergent field in computer science that

involves the ability of a computer to learn from experience without the need of being

explicitly programmed to perform each action. Machine learning has been firstly tested

in the computer security field, and lately in mobile security with promising results, it

can help to improve malware detection mechanisms in mobile devices [9][10][11].

Machine learning models use data features of known data objects to make computers

learn and, based on that, make predictions about unknown data objects. Relevant

features about data objects should be selected from whole data features and prioritized

to achieve maximum prediction accuracy and avoid information redundancy.

Present research problem statement is resumed in the following points:

- Perform feature selection for malware detection in Android system.

9

- Minimize number of predictors.

 - Analyze the variability of selected predictors in old and new malware datasets.

This thesis aims to apply standard machine learning acquisition workflow to address

malware discrimination problem in Android, by selecting potentially discriminatory

features using a hybrid features approach, acquiring static and dynamic data such as

Android permissions and system calls from applications. Hybrid features are the most

comprehensive as they analyze the phenomena from various perspectives [12]. Android

permissions are the most static features used to analyze malware [12], they are explicitly

declared in AndroidManifest.xml file. As Android uses Linux Kernel, permissions are

the first obstacle to attackers. System calls are the most dynamic features used to

analyze malware [12]. System calls are used by applications to perform and request

specific tasks since they are not authorized to interact directly with Android operating

system [12]. After reviewed the state of the art of the application of machine learning to

the malware detection in mobile field, an Android sandboxed testing environment was

deployed using the conjunction of Linux O.S. and an Android emulator to gather both

static and dynamic features from applications. Feature selection was applied to find the

variables candidates of possessing higher discriminative power, which is a low-applied

technique in mobile malware detection and also testing the cumulative power of hybrid

features. Machine learning models were trained with different dataset combinations,

from the whole dataset composed by 1000 legitimate, 1000 old malware and 1000 new

malware and cross-validated, which supposes a novelty in model validation, using both

old and new malware samples. Accuracy is shown as performance’s metric and

evaluation. Our main contribution to this field is two-fold: application of feature

selection in detail for the considered features (system calls and permissions) and

perform detailed analysis for old and new datasets.

This document is structured as follows: section 2 deals with thesis’ background

information and related work; section 3 focus on present research methodology; chapter

4 talks about this thesis’ practical implementation of machine learning workflow;

chapter 5 shows validation metrics and main results while chapter 6 addresses the

conclusions that can be drawn from this research.

10

2 Background Information

2.1 APK and Android Malware

Android applications are installed in mobile devices by using an installation file called

Android Application Package or APK. APK files are a type of archive files, like zip

packages or java jar files, that consists in the following main components:

- AndroidManifest.xml → Application’s meta-data XML file. It includes

information related with application’s descriptions, package information and

security permissions. Security permissions is the access control that Android

uses in order to provide the app access to system data and features that it needs.

Permissions should be declared before they can use system data and features and

depending on how sensitive the data is, they will require explicit user approve

the request or be automatically granted [13].

- Classes.dex → File that contains the source code of an Android application

written in Java programming language compiled into .dex format (Dalvik

Executable). Dalvik is Android platform’s virtual machine that interprets and

executes .dex files, which are optimized for efficient storage and memory-

mappable execution. [14].

- Resources.arsc → binary XML file that contains precompiled application

resources.

- Resources folder (res/) → Folder that includes not pre-compiled resources that

application needs on runtime such as pictures, layout, use of a database and data

stored in the database, etc. [12].

- Assets (assets/) → optional folder that contains application assets that can be

retrieved by AssetManager.

- Libraries (lib/) → optional folder that contains compiled code that is specific for

different processors such as arm, mips, x86, etc.

- META-INF → folder that contains MANIFEST.MF file, APK signature, etc.

11

APK files zip all these files and folders into *.apk file which is used by Android to

install the application. This *.apk file can, with appropriate tools, be used to collect

interesting information for analyzing the application with static malware analysis

procedures, that is, without running or installing the application in any device. Dynamic

malware analysis requires installing and running the application in a device.

Android malware can pose multiple faces and threats. From the annoying but harmless

adware to sophisticated malware being able to hijack the mobile device and access

personal data [12]. In last years, there has been an important increase of profit-

motivated malware, mainly based in the form of premium messages sent by applications

without the will and awareness of the device user [12][15]. In relation with the social

engineering method used for its installation, Android malware can be mainly

categorized as repackaging, update attack and drive-by-download. But they are not

mutually exclusive, as malware can use different techniques to entice the user for

download [15]. Repackaging consists in the addition of malicious payload in a

legitimate (non-malware) and popular application. Malware authors download most-

downloaded popular applications from legitimate sources, disassemble them and attach

malicious payload to it, reassemble everything together and then submit them to official

or alternative Android markets. When the user downloads and installs this legitimate-

looking application it also installs malware in the device without notice. Over 80% of

Android malware is a repackaged application [15]. Update attack is a step-forward in

malware sophistication. Instead of attaching the whole payload into the application

code, it only encloses an update component that will download the entire malicious

payload at app’s runtime. This makes malware detection more difficult as static

scanning will not detect malicious payloads [15]. Malicious payload is included in the

“updated” app and not in the original one, which makes malware detection not efficient

in first instance. Finally, drive-by-download is a traditional social-engineering technique

applied to a new field, mobile devices. It consists in entice the user to download

interesting apps [15], which will perform other actions than the expected. As stated

before, Android malware shows evolving sophistication and quick development that

make them harder to detect [15]. Mobile anti-virus software can barely detect over 70%

of malware, and in some cases 20% of them. Development of new anti-mobile-malware

solutions is an imminent need [15].

12

2.2 Machine Learning

Machine learning claims to make computers learn from experience. “A computer

program is said to learn from experience E with respect to some class of tasks T and

performance measure P, if its performance at tasks in T, as measured by P, improves

with experience E” [16]. As an example, Arthur Lee Samuel, a pioneer in Artificial

Intelligence field and the one who coined the term “machine learning” in 1959, created

one of the first successful AI self-learning programs. Such a computer program that

learns to play checkers (T) “might improve its performance as measured by its ability to

win checkers games to win at the class of tasks involving playing checkers games,

through experience obtained by playing games against itself [16]. Since that, machine

learning applications have shown a huge expansión. Now, machine learning is

everywhere. Spam filters, credit card fraud detection, picture’s face recognition, search

engines, recommendation systems, data mining and handwriting recognition are just an

small example where machine learning is being applied nowadays. Most of machine

learning problems and algorithms fall in one of the following broad types:

- Supervised learning: where an outcome variable (dependent variable, y) is

predicted based on a set of predictors (independent variable, x). More

concretely, it involves the machine learning task of inferrinf a function from

labeled training data [17]. Labeled (also known as target or outcome) data is

used to train a computer (learn from known labeled samples) that will be used

predict the label of new unknown samples of data. Here, training examples or

instances are used to train the model, in relation to specific attributes, also

known as variables or features. Label of new data will be inferred from new data

attributes according with learnt ones. According to the type of predicted

variable, supervised machine learning algorithms can be classified as:

▪ Classification: when a categorical data is predicted (e.g.: spam

email).

▪ Regression: when a numerical measurement is predicted (e.g.:

price of housing).

- Unsupervised learning: where the expected outcome is to find the hidden

structure of unlabeled data trying to characterize it. Here, contrary to supervised

learning, there are no labels or target and the goal is to find and describe patterns

13

and associations among attributes [17]. Most used unsupervised learning

algorithms are known as:

▪ Clustering: where instances are grouped based on sharing certain

common characteristics that make them similar.

▪ Outlier detection: where the goal is to find data points that

deviate markedly from other members of the same sample.

- Semi-supervised learning: is the combination of supervised and unsupervised

learning. It is a technique to learn patterns in the form of a function based on

labeled and unlabeled training examples [17]. It is mainly used when it takes

important efforts to collect labeled data, needing to use unlabeled training

examples to learn a target function.

- Reinforcement learning: tries to find optimal actions in a concrete situation so as

to maximize a numerical reward which does not come inmeditaly with the

actions but delayed in time. [17]. Actions that yield highest reward are not

provided, they must be discovered by trying them (test-error).

2.3 Related Work

Machine learning models are pretended to overcome the limitations of the signature-

based methods to discriminate unknown malware from benign applications, a critical

detection that threatens Android users. Applications static and dynamic features have

been used in recent times to train, test and validate machine learning models with

promising results [18]. Static features are easy to extract and do not require to install or

run the application but are prone to be lured by obfuscation methods. On the other hand,

dynamic features provide more comprehensive information but they require to install

and run the application in a rooted device and are more difficult to extract. Hybrid

approaches provide the best set of information as they combine the advantages of both

approaches but they also sum up the complexity of extracting both types of features and

their combination.

2.3.1 Static malware analysis and detection

Static malware analysis involve the use of application’s static features which can be

collected without actually running the application, directly from *.apk file or with a

14

little manipulation. Android permissions are the most used static feature in static

malware analysis research papers. Android, running Linux kernel, implements an

important part of Linux security architecture.

A list of requested permissions is presented to the user before installation (Figure 1),

that will be performed once permissions are granted by the user [12]. There are 147

official Android permissions in Android 8.1 [19], also called as Android Oreo (API 27),

that are categorized into three protection level groups: normal, signature and dangerous

[20]. Researchers used permissions in different ways, usually combined with other static

features, as malware detection is easier to bypass by malware if only one feature set is

used [21].

Arp et al. [9] used a combination of static features such as requested permissions,

hardware components, app components and filtered intents from application’s manifest,

and restricted API calls, used permissions, suspicious API calls and network addresses

from disassembled code. They were embedded into a joint vector space and applied

linear Support Vector Machines (SVM) algorithm to discriminate malware/bening

applications. 93.9% malware detection accuracy was achieved with false positive rate of

1% with full Drebin dataset (123,453 benign applications and 5,560 malware samples)

and 95.9% with specific MalGenome Project dataset [15] which is embedded in full

Drebin dataset.

Peiravian and Zhu [22] combined requested permissions and API calls as features to

characterize malware, trained and tested three machine learning algorithms (Support

Vector Machines, Decision Tree and Bagging) with the collected features in 3 different

sets (only permissions, only API calls and combination of both). Their dataset was

composed by 610 malware samples and 1250 benign apk files. Best results were

Figure 1. Permission declaration inside AndroidManifest.xml

15

achieved using Bagging classifier combining both features in each of the tests (AUC

0.991).

Nezhadkamali et al. [21] used a combination of permissions, API functions and intents.

They used feature selection to find a subset of relevant features from their dataset. Their

dataset was composed by 1260 malware applications from well-known MalGenome

[15] dataset and 498 benign applications. They used various machine learning

techniques including SVM, Random Forest and Decision Tree algorithm. Best results

were achieved using information gain and Random Forest algorithm (98.6% accuracy).

Liu and Liu [23] used pairs of used and requested permissions by applications in order

to classify malware/benign applications. They used the frequency of occurrence of two

permissions as a pair, stating that it can reflect the app’s potential malicious activities.

Their dataset was compound by 28,548 benign apps downloaded from AppChina and

1,536 malicious apps, including MalGenome [15] and other samples collected by the

authors in a security company in China. Trained and tested Decision Tree algorithm 3

times: one with requested permissions, another one with requested permissions pairs

and last one with used permission pairs. First two classifiers are first layer and last one

is second layer. An application categorized as malware in any of the layers was

categorized as malware and not analyzed in following layer. They achieved an accuracy

of 0.985 in first layer and 0.986 in the whole process (first and second layer).

APK Auditor [24] is a permission-based Android malware assessment system. It

consists in three main components: an Android client, a signature database and a central

server that communicates with both and handles the analysis process. Dataset was

conformed by 6909 malware samples (from Contagio [25], Drebin and MalGenome

datasets) and 1853 benign applications downloaded from Google Play Store. They

trained and evaluated logistic regression algorithm. Overall accuracy of the system was

88.28%.

DroidMat [26] extracts requested permissions, intent messages passing and deployment

of components from AndroidManifest.xml. Additionally, they extract API calls for each

component. Dataset consists on 238 malware applications from Contagio dataset and

1500 benign applications downloaded from Google Play. Applied K-means, EM

16

clustering algorithms and k-Nearest Neighbors (kNN, with k=1) and Naïve Bayes as

classifiers. Best results were achieved with combination of k-means and kNN (0.9787

accuracy).

Aung and Zaw [27] used permissions as a unique feature to detect malware. They

performed feature selection using information gain, used k-Means as a clustering

algorithm and Random Forests, J48 Decision Tree and CART as classifiers. Their

dataset was composed by 500 samples. Best results were achieved using Random

Forests algorithm (91,75% accuracy).

PUMA [28] used permissions as a unique feature to detect malware. They extracted

them from the application’s manifest, processed it and trained different machine

learning algorithms (SimpleLogistic, NaiveBayes, BayesNet, SMO PolyKernel and

NormalizedPolyKernel, IBK, J48, RandomTree and RandomForest). Validated their

findings with k-fold cross validation (k=10). Their dataset was composed by 249

malware applications from VirusTotal and 1811 legitimate applications from Play Store.

Best results were achieved with Random Forests with 50 trees (86.41% accuracy).

Droid Detective [29] uses permission combinations to detect malware. It groups

permission combination profiles that are requested frequently by malwares but rarely by

benign applications and generates rule sets for identifying malware. Their dataset is

composed by 1260 malware samples from MalGenome Project and 741 benign

applications collected fom Google Play. Best results are achieved when using

combination of 6 permissions (87,53% accuracy).

Varma P. et al [30] used permission as a unique feature to detect malware. Their dataset

is composed by 1999 legitimate applications downloaded from Google Play between

2015-2016 and 1259 MalGenome Project malware samples. They trained and tested

Naïve Bayes, Decision Tree J48, Random Forest, Multi-class classifier and Multilayer

perceptron algorithms. Best results were achieved with multi-class classifier (99,9%

accuracy).

17

2.3.2 Dynamic malware analysis and detection

Dynamic malware analysis involves the collection of information about the application

at runtime, so it requires to install and monitor the application to collect desired data.

Dynamic features can be defined as application’s behavior in interaction with the

operating system or network connection [12]. System calls are the most used behavioral

feature in dynamic malware analysis research papers. Android, which runs Linux

kernel, has more than 200 system calls available [31] that are used by applications to

request services that they are not allow to perform directly from the operating system’s

kernel. System calls, also called kernel calls, provide functionalities such as network,

file or process related operations [32]. As shown in Figure 2, when an application

running on user space requests a service from the operating system (i.e. open a file)

using wrapper functions (such as open() and not invoking the system call directly), the

request is interpreted by glibc library and CPU switches from user mode to kernel mode

in order to execute the appropiate kernel function by looking into system call table.

Kernel, which has enough privileges to perform the task, understands the petition and

makes the request to the hardware. When the concrete task is performed, the result is

sent back to user space following the inverse order. As all requests go through upper

layers to Kernel before they are executed in hardware via system call interface,

monitoring and capturing system calls passing through system call interface provides a

good source of information about the behaviour of the application [32]. This task is

usally performed using strace, a debugging and diagnostic utility for Linux. This tool is

used to monitor interactions between Linux kernel and running processes, providing

information about system calls, signals and changes of process state [33]. Strace tool

uses at the same time a kernel system call ptrace, that allow process tracing [34].

In Android OS this process is slightly different and system calls are created by

information flowing through a multi-layered architecture, as can be seen in Figure 3.

When application on top architecture layer makes a request, that is transformed to the

corresponding service in the application framework. Next, Android runtime receives the

request from the service and executes it in the Dalvik VM. Upon execution, request is

transformed into a collection of library calls, which result in multiple system calls to the

Linux kernel. This generated sequence of system calls is low-level equivalent of the

18

high-level request. Flow of information goes to the opposite direction in a similar

fashion [35].

Crowdroid [32] uses system calls to detect anoumalosly behaving applications in the

form of trojan horses. It uses crowdsourcing to obtain the traces of application’s

behavior. A client, server and database architecture is used in order to process and

gather information. Crowdroid client, installed on user device, acquires data, by running

strace and sending the log file via internet to the server/database. The server/database

receives the log file, extracts system calls names and creates a system call feature

frequency vector (each element represents a count for the specific system call

requested). This system call feature vector is used as input of k-means clustering

algorithm, in order to create the normality model and detect anomalous behavior.

Dataset is composed by self-written malware and two malware applications from

VirusTotal (Steamy WIndow and Monkey Jump 2) and legitimate versions of them.

Figure 2. Linux User and Kernel space [32].

Figure 3. Abstraction layers of the Android architecture [35]

19

Detection rates are 100% in self-written malware and Steamy Window, 85% in the case

of Monkey Jump 2.

CSCdroid [36] uses strace to collect system calls produced by 1000 Monkey tool

pseudo user events in order to detect malware. This system calls are categorized using

different methods and Markov chain is used after to construct feature vectors that are

the input of SVM classifier algorithm. Dataset is composed by 1189 benign applications

and 1227 malicious applications from MalGenome dataset. Precision and True Positive

Ratio are over 0.95 in all categorization methods used.

MALINE [35] uses system call acquisition and process to discriminate malware

applications. It uses strace to collect system calls in a sandboxed environment using

strace tool. Strace log is then processed creating two feature vectors: one representing

system call frequency and another one representing system call dependency (pairs,

using dependency graphs). The number of system call was controlled by the number

Monkey events inserted (ranging from 1 to 5000). These vectors are used as input for

training, tested and cross-validated with different machine learning classifier algorithms

such as SVM, Random Forest, LASSO and Ridge regression. Dataset is composed by

legitimate applications downlodaded from Google Play and Drebin dataset as malware.

Best results were achieved with random forest algorithms in all cases (with accuracy

results over 90%).

Maestre Vidal et al. [37] used sequence alignment and system calls to discriminate

malware/benign applications during the boot process of the application. They used

strace tool to monitor program’s activity and assigned each system call a symbol. They

extract sequences of system calls and applied sequence alignment methods to them. The

analysis of the monitored data is driven by sequence alignment processes, which

compare the received sequences with a collection of samples of legitimate application

executions. The more completeness this dataset presents, the greater precision the

system offers. Malware dataset were 5130 samples from MalGenome and Drebin and

570 benign applications. Best results were achieved considering samples of the first

2000 system calls gathered when initializing the applications within the sandbox. True

Positive Ratio was 98.61% with False Positive Ratio of 6.88%.

20

Xiao et al. [38] collected applications’ system calls during the execution of 1000

Monkey testing tool injected events. Information gathered is processed to create two

vectors: frequency vector (each element represents the frequency of the corresponding

system call) and co-ocurrence matrix vector (co-ocurrence matrix is created from the

system call sequence, normalized and transformed into a vector). Both vectors are used

as input for Adaptative Regularization of Weight Vectors (AROW), kNN, Logistic

Regression, Naïve Bayes, Decision Tree, Random Forest and SVM classification

algorithms. Dataset is conformed by 1227 MalGenome malware dataset samples and

1189 legitimate applications from Google Play. When using co-ocurrence matrix vector,

TPR values for all machine learning algorithms achieved values over 0.95. On the other

side, Random Forest was the only algorithm that achieved TPR over 0.95 regarding

frequency vector input.

SCSdroid [39] focus on the use of system calls to discriminate malicious repackaged

applications (MRA’s) without the need of the original application. SCSdroid (System

Call Sequence Droid) uses thread-grained system call sequences during runtime rather

than process-grained sequences. SCSdroid authors advocate that if an MRA can be

camouflaged as a benign application, its malicious behavior would still appear in the

thread-grained system call sequences. A thread-grained system call sequence is the

system calls recorded for a thread, while a process-grained system call sequence is the

system calls recorded for a process. That is, the thread-grained system call sequences

mean that the system calls produced by the process and the child-threads forked from it

are independently recorded, while process-grained sequence means that the systemcalls

produced by the process and all its child-threads are recorded together. Authors state

that since malicious behavior always happens in a single thread, not across multiple

threads, it is difficult to identify the malicious behavior if the system calls from the

process and different threads are mixed together. SCSdroid first captures the system call

sequence of each thread at executing MRAs, using strace tool attached to main Android

process called Zygote, and then extracts the common subsequences (using Longest

Common Substring algorithm), which are the common parts of these captured system

call sequences. These extracted common subsequences can be only regarded as possibly

malicious behavior of MRAs because they may also exist in benign applications. After

that, Bayes Theorem is adopted to filter these non-discriminating common

subsequences and then find the common subsequences which indicates the truly

21

malicious behavior presenting in the MRAs. The key concept of SCSdroid is that MRAs

belonging to the same family, i.e., a group of MRAs which embed the same malicious

codes into benign applications, will have common malicious behavior. Dataset is

compound of 8 families of MRA’s from different malware sources and 400 benign

applications downloaded from Google and third-party markets, tested with VirusTotal

[40]. Overall detection accuracy was 95.97%.

Afonso et al. [41] combined system calls and Android API function calls in order to

discriminate malware from legitimate applications. They used MonkeyRunner tool to

create some pseudo random events and recorded Android API function calls with

APIMonitor [42] software and system calls with strace tool. They focused their analysis

on frequency of 74 Android API function calls and 90 system calls and created input

vectors to feed several machine learning algorithms (RandomForest, J.48,

SimpleLogistic, NaiveBayes, BayesNet Search algorithm, SMO Kernel and IBk).

Results were 10-fold cross-validated. Dataset is composed by 4552 malware samples

from MalGenome and other sources and 3831 benign applications from AndroidPIT

market. Best results were achieved with Random Forest with 100 trees (95.96%

accuracy).

Wahanggara and Prayudi [43] focused on the use of system calls and Support Vector

Machines algorithms to address the problem of malware detection. Dataset was formed

by 150 applications. Malware came from Contagio and legitimate applications were

downloaded from Google Play Store, with restrictions of 4 out of 5 starts rating and

mínimum of 100,000 users. Strace tool was used to gather applications’ sytem calls

three times for each application. Data was used to train and test SVM algorithm with

different kernels: radials basis function (RBF) kernel and polynomial kernel. 5-fold

cross validation was performed. Best results were achieved with polinomial kernel,

reaching 90% of accuracy.

Andromaly [44] is a behavioral Android malware detection framework that uses

applications’ behavioral traits (system calls included) at different levels in order to

discriminate between malware and legitimate applications. The basis of the malware

detection process consists of real-time, monitoring, collection, preprocessing and

analysis of various system metrics, such as CPU consumption, number of sent packets

22

through the Wi-Fi, number of running processes and battery level. All data gathered is

selected and reduced by applying feature selection in order to apply different machine

learning algorithms more efficiently: k-Means, Logistic regression, Histograms,

Decision Tree, Bayesian Networks and Naïve Bayes. Dataset was composed of 44

applications (20 benign games, 20 benign tools and 4 specific malicious applications).

Best results were achieved with Naïve Bayes and Decision Tree algorithms, over 87%

of accuracy.

Da et al. [45] focused their study on 23 selected system calls related with user rights in

categorized samples of applications (categorization according Google Play Store). They

collected frequency of each system call and normalized it. Then applied them as input

vector of Random Forests algorithm. Dataset was composed by 67 benign samples

downloaded from Google Play Store and 51 malware samples from Contagio dataset.

They performed 10-fold cross validation. Best results were achieved with Random

Forest 200 trees (98.03% of accuracy).

Multi-Level Anomaly Detector for Android Malware or MADAM [46] monitors device

actions, its interaction with the user and the running apps, by retrieving five groups of

features at four different levels of abstraction, namely the kernel-level (system calls),

application level, user-level and package-level. Depending on the features, it applies

signature-based approach detection or anomaly-based. Regarding to system calls, it

collects type and amount of the system calls issued, focusing on file operations and

network system calls (11 system calls) and detecting anomalous behaviour. Detection

used two parallel kNN classifiers and a behavioral signature-based detector. Malware

dataset was formed by 2784 applications from MalGenome, Contagio and VirusShare.

Benign dataset was formed by 9,804 applications downloaded from Play Store, tested

with VirusTotal. They achieved an accuracy of 96.9%.

Deep4MalDroid [47] focuses on the use of system call graphs to detect malware in

Android. This different approach uses a novel method called Component Traversal that

allows the automated execution of code routines of each Android app as completely as

possible (used to overcome the limitations of ADT Monkey pseudo injected events).

Then they extract Linux kernel system calls (using strace) and created weighted directed

graphs (system call pairs sequences that also take into account the frequency of each

23

system call). These are used as inputs on a deep learning algorithm (Stacked

AutoEncoders architecture), used as a classifier. They also tested this approach with

other machine learning algorithms such as SVM, Artificial Neural Network, Naïve

Bayes and Decision Tree. 10-fold cross validation was performed. Dataset is composed

by 3000 applications from Comodo Cloud Security Center: 1500 are malware and 1500

legitimate applications. Best results were achieved with Deep learning, composed by 3

layers with 200 neurons each (93,68%).

Singh and Hofmann [48] monitored system call behaviour of 278 legitimate

applications downloaded from Google Play and 216 malicious applications from

Contagio dataset. System calls’ frequencies vector was used to feed seven machine

learning classifiers (Decision Trees, K-nearest Neighbors, Random Forest, Gradient

Boosted Trees, Support Vector Machine, Neural Network and Deep Learning.). They

performed two experiments: one with 337 system calls vector and other with selected

system calls based on three feature selection methods (Chi-square, information gain and

correlation). 10-fold cross-validation was performed. Best results were achieved with

SVM algorithm using correlation (97.16%).

Ferrante et al. [49] combined memory usage, CPU and system calls to find malicous

sub-traces leading to discriminate malware from legitimate applications. In the learning

phase, they used clustering (KMeans++ algorithm) and then applied Random Forest

algorithm as a classifier. Dataset was formed by 1709 benign applications downloaded

from Google Play and 1523 malicious samples from Drebin dataset. Only selected

system calls were analyzed, from a prior study [49]. Best results were achieved with

Random Forest 50-500 trees (67% of accuracy).

Canfora et al. [50] focused on the collection system calls sequences generated by

applications when pseudo random events were injected (using Monkey) during 60

seconds. They also tested frequencies of system calls issued during that specific amount

of time (not sequences). SVM was trained and tested. Dataset is conformed by 1000

legitimate applications from Google Play and 1000 malware applications from Drebin.

Alternatively, they also tested permissions alone as a malware detection method. Best

results were obtained by using long sequences of system calls, achieving 97% of

accuracy.

24

2.3.3 Hybrid malware analysis and detection

Hybrid malware analysis combine the use of both static and dynamic features as a

group, used together to detect malware. Although it requires more complex processing

of the malware samples, they are the most comprehensive features as they analyze both

application installation file and application behavior at runtime [12]. This approach is

less profuse in scientific research than prior approaches.

Xiao et al. [51] used permissions (static), system calls (dynamic) and control flow

graphs (static) to detect malware. They tested different combinations of the features:

each one independently, combination of all features and also combination of the two

static features. They used collected data vectors as input to AROW and SVM

algorithms. Dataset 1188 benign applications downloaded from Google Play and 1179

malicious applications from MalGenome Project. Best results were achived using

combination of three features with AROW algorithm (TPR of 0.9905 with FPR of

0.0156).

MARVIN [52] is a system that learns to distinguish malicious from benign apps based

on a set of known malware and goodware. It assigns malice scores to unknown apps in a

range from 0 (benign) to 10 (malicious). It collects dynamic and static analysis,

network-level behavior and meta-information, like author fingerprints and application

lifetime. Core of the system uses one of two machine learning options: linear classifier

or SVM. They perform feature selection in order to reduce the number of features. As a

result of the learning phase, MARVIN computes malice scores of given application

samples. Dataset is composed by 124189 applications (10% of them labeled as malware

coming from MalGenome, Contagio and VirusTotal). MARVIN achieved 98.24% of

malicious apps with less than 0.04% false positives (using SVM algorithm).

Scientific research in Android malware detection is, as can be stated from this literature

review, profuse and varied in methods. Nevertheless, there are two main points missing:

- There is no feature selection or analysis in most of the studies. Only a tiny

amount of studies perform it and they do not provide detailed analysis on how

they select, analyze or choose appropiate features.

25

- There is no comparison between old and new malware. Most malware datasets

used to test and train are relatively old, with samples from 2010 to 2012 in most

cases. They do not test cross-malware testing, with new samples of malware.

This present research will focus on this two main lacking points detected on literature

review.

26

3 Methodology

This master’ thesis was developed in three phases: data acquisition, data pre-processing,

data processing and model validation. Briefly, data collection involves the collection

and gathering of all possible features from dataset while in pre-processing part features

are filtered using feature selection methods to select best features, eliminate redundancy

and avoid over-fitting. Finally, machine learning algorithms were trained and tested

with input vectors created from dataset, 70% of dataset was used as training data and

30% as test data, to validate the model.

3.1 Phase 1. Data Acquisition

3.1.1 Dataset

Dataset used in this thesis was downloaded from different sources, according to its

characteristics and usage. Dataset is composed by 3000 Android apps split as follows:

- 1000 benign apps were downloaded randomly from APKMirror [53].

- 1000 malware apps were selected randomly from Drebin malware dataset [9].

- 1000 malware apps were selected randomly from VirusTotal Academic malware

samples dataset [54].

Altough APKMirror provides signatures and file hashes in order to verify and ensure

that all their applications are trusted and legitimate applications, all benign applications

were tested with VirusTotal malware scanner in order to verifiy that they were not

detected as malware by VirusTotal scanner. All downloaded samples supported x86

architecture and were top-popular Android applications released between 2017 and

2018.

Drebin malware dataset [9] is composed by 5560 applications from 179 different

malware families. These samples were collected between August 2010 and October

27

2012. From 5560 applications, random applications were chosen that supported x86

CPU architecture. This malware dataset will labelled as old malware dataset.

VirusTotal Academic malware samples is composed by 10,908 applications. These

samples were detected and collected by VirusTotal between 2017 (3212 samples) and

2018 (7696 samples). From whole dataset, random applications were chosen that

supported x86 CPU architecture. This malware dataset will labelled as new malware

dataset.

3.1.2 Android Emulation

Each sample of the dataset was installed, executed, monitored, logged and uninstalled

using an Android emulator software running over a Linux environment. For this

experiment, an Ubuntu 16.04 LTS (Xenial Xerus) 64-bits OS was installed on an Intel

Core i5-2450M CPU @ 2.50Ghz x 4 with 6 GB of RAM. Android emulation tool used

was GenyMotion 2.11 (which uses Virtualbox as virtualization tool). Android Studio

3.0.1 was installed in the environment, in order to use Android SDK Tools with

GenyMotion software. Android SDK Tools are a complete set of development and

debugging tools for Android. The only restriction that GenyMotion imposed to

applications is CPU architecture: x86 support is needed in order to run the application in

GenyMotion software (ARM and other architectures are not supported). Altough

Android Studio 3.0.1 includes an emulation tool, Android Virtual Device Manager, it is

not rooted by default, slower and with more lag than GenyMotion (which is rooted by

default and lag-free). GenyMotion x86 architecture is great for performance but do not

allow to test ARM applications, as there is no option to change architecture [55].

Nevertheless, most of Android applications have x86 architecture version additonally to

default ARM architecture. All applications from whole dataset were installed and tested

in an emulated Samsung Galaxy S8 device running Android 7.0 (codename Nougat,

API 24), as can be seen in the screenshot below.

3.1.3 Application’s feature: system calls

System calls or kernel calls are used by applications to request services from the

operating system that it directly cannot achieve. Available system calls are listed

28

numerically in a table (syscall_table) inside the kernel, linking a specific number with

each specific system call. Although not all system calls provided by Linux kernel are

supported on all architectures or platforms or some of them are deprecated, there are

always more than 200 calls available [56]. These more than 200 system calls can be

used to perform different tasks and get desired output by applications and operating

system itself [57]. Linux architecture provides a layer over the kernel that provides

essential core libraries to perform such actions via API calls. They include system calls

for process management, time operations, system handling, filesystem etc. The best-

known and most used library is GNU C library, also known as libc or glibc library [58].

Nevertheless, although Android operating system is built on the Linux kernel, it is not

Linux as it does not support glibc and does not include the full set of standard Linux

utilities among other major differences [59]. Android OS uses standard Linux Kernel

with a patch of added “kernel enhancements” in order to provide some Android specific

features such as power management and inter-process communication (IPC) binder

[59]. As Android does not provide libc support, it uses a customised and optimized libc

implementation for embedded use, known as bionic [59], as native library. Faster and

smaller than glibc. It uses other native libraries such as SSL, SQLite, WebKit, etc. to

perform needed tasks.

For this thesis purpose, Android 7.0 device was emulated and system calls were

collected using strace tool. Strace tool can be used to trace system calls by attaching the

tool to a running process. The output of strace is a log file that provides the system calls

performed by the process during its execution (while strace was attached to it). Strace

uses at the same time a system call to perform this action, ptrace [60]. Android 7.0

Nougat is built on Linux Kernel 4.1. For this thesis purpose, first 2000 boot up

application system calls where collected and analyzed. Only Bionic x86 Nougat

implementation system calls were collected, summing up 212 available system calls

[61]. After collection, frequency vector (count of each system call) was created and

used as input to feed a machine learning classifier model.

3.1.4 Application’s feature: Permissions

Permissions are used in Android OS as a privacy resource to protect Android users from

unwanted actions. Applications must request permission to access sensitive user data

29

(e.g.: contacts and SMS) and also for certain system features (e.g.: camera and internet).

Depending on the feature requested, Android grants permission automatically or

prompts the user to approve the request [20]. Since Android 6.0, permissions are given

by users to applications at runtime, not before installation. Permissions are divided in

two categories: normal and dangerous. While a normal permission does not threatens

user privacy directly, permission is automatically accepted by the system without the

user awareness; dangerous permissions are those that could lead to the access of

sensitive data from the user, requiring the explicit acceptance of them by the user.

Permissions are located and explicitly defined in manifest file (AndroidManifest.xml),

requiring dangerous permissions the user explicit acceptance when running the

application. The user can accept or deny the permission request without stopping the

application, which will run with limited capabilities.

For this thesis purpose, requested permissions were collected from

AndroidManifest.xml file (included in every apk file) using Android Asset Packaging

Tool (aapt). A log file was created containing the requested permissions and analyzed

for each application. Android OS has 147 standard permissions [19]. Custom

permissions can be defined by app developers in order to share resources and

capabilities with other apps [62]. Only standard permissions were collected and

analyzed from dataset applications. After collection, a permission profile vector (binary

codification of each application set/unset) was created and used as input to feed a

machine learning classifier model.

3.1.5 Feature extraction

More concretelly, feature extraction was performed using two tools included in Android

SDK Tools: Android Debug Bridge (ADB) and Android Asset Packaging Tool (aapt).

Android Debug Bridge (ADB) is an Android SDK Tool used to communicate with

Android devices (virtualized or via USB port) that allows the user to perform multiple

features directly on the device via a command terminal from the computer: install

application packages, uninstall them, execute commands, etc. For this project, it has

been used to install and uninstall apk files and also to run strace tool command.

Everything was done with an automated script using bash programming language. Aapt

tool has been used to extract information from AndroidManifest.xml file, included inside

all apk formatted files.

30

3.1.6 System calls and permissions’ collection

An automated bash script was used to perform the following process over dataset apk’s

containing folder:

This process was performed for all 3000 random dataset samples that were compatible

with x86 architecture. Not architecture-compatible apps were discarded at step 2, being

unable to install them. This process was performed until 1000 legitimate, 1000 old

malware and 1000 new malware applications with 2000 boot syscalls were collected.

1. Selected random apk from folder (using randomising function).

2. Install application using Android Debug Bridge (adb) from Android Sdk

platform-tools folder (install command).

3. Get package name from AndroidManifest.xml using Android Asset Packaging

Tool (aapt) from Sdk build-tools folder and regular expression.

4. Extract static features (requested permissions) from AndroidManifest.xml using

aapt and regular expression. Saved in <package name>.perm file as plaintext.

5. Run application using monkey tool (executing

Android.intent.category.LAUNCHER).

6. Collect dynamic features (first 2000 system calls) using strace tool attached to

the main process run by monkey executed package name.

7. Stop application using SIGKILL to application’s main process.

8. Extract strace log from device to computer using adb tool pull option.

1. Selected
random apk

2. Install
application

3. Get
package

name

4. Extract static
features

5. Run
application

6. Collect
dynamic features

7. Stop
application

8. Extract
strace log from

device

9. Remove
data from

device

10. Uninstall
application

11. Save
dynamic and

static features

12. Restart
device

31

9. Remove strace log from device.

10. Uninstall application using adb (uninstall command).

11. Save dynamic and static features into classified folders according to package

name and randomized number.

12. Restart device.

After whole dataset information was collected, another script was created to read and

collect features data. Regarding system calls, information about all applications was

stored as CSV file, including package name, malware/legitimate classification and

frequency of each system call. Regarding permissions, another CSV file was created to

store information about this feature. It included package name, malware/legitimate

classification and binary codification of each present/absent permission.

3.1.7 Statistical hypothesis testing

Malware detection relies on the assumption that legitimate and malicious applications

have differential characteristics that allow us to discriminate between them. In order to

know whether this assumption is correct or not, providing rationalization of later steps,

statistical hypothesis testing is required. Statistical hypothesis testing involves three

main steps [63]:

1. Making an initial assumption.

2. Collection of evidence (data).

3. Based on the collected and available evidence (data), decide if initial assumption

was true or not.

3.1.7.1 System call hypothesis

Our initial assumption suggests that malware could be detected using system calls and

permissions. In order to know if that discrimination is possible, our first step is to check

wheter both kind of applications differ significantly in each of these parameters. That is,

if system calls and permissions are significantly different. Regarding system calls, as a

frequency count vector is used, means are compared, that could be translated that the

mean of each system call should be sensitively different from malware dataset to

32

legitimate dataset, allowing such a discrimination of samples. For this thesis purpose,

two competing hypothesis are stated for each system call in each of composed datasets:

H0: µL = µOM H0: µL = µNM

HA: µL ≠ µOM HA: µL ≠ µNM

where µL stands for mean of particular system call in legitimate applications; µOM for

mean of particular system call in old malware applications and µNM stands for mean of

particular system call in new malware applications.

H0 also called null hypothesis is tested for each call separetely. Null hypothesis stands

that the mean of each system call is the same for each application, indistinctable from

malware to legitimate applications. Contrary, HA states that they are different, making

them distinct from legitimate applications to malware applications. In statistics, it is

always assumed that null hypothesis is true so that alternative hypothesis will be only

chosen if it demonstrated that null hypothesis is false, being rejected. Sample data is

collected and statistical test applied in order to reject or not null hypothesis. For this

thesis, 3000 samples dataset of applications were used to collect the mean of each

system call both in legitimate (n=1000) and malware sub-datasets (n=1000 on both

malware datasets) and then applied Welch’s t-test. Results were analyzed to reject or not

our specific null hypothesis.

For each particular subset (legitimate, old malware and new malware), mean and

standard deviation of each particular system call was evaluated, as shown in Appendix

1. In order to test hypothesis, Welch’s t-test, also called z-test, was applied between

legitimate vs. old malware datasets and legitimate vs. new malware dataset for each of

the system calls. Z-test hypothesis testing of two population means was performed and

Z-test score was analyzed in order to reject or not null hypothesis. In this case, z-test

score for the comparison of two samples means is calculated with the following

equation:

𝑧 =
�̅�𝐿 − �̅�𝑀

√
𝜎𝐿

2

𝑛𝐿
−

𝜎𝑀
2

𝑛𝑀

33

In this stadistic test notation, �̅� corresponds to sample mean, 𝜎 to standard deviation

and 𝑛 to size of data sample. Once every z score test was calculated, z-score value was

analyzed using two-tailed z test (when H1 refers to µ1 ≠ µ2). Two-tailed z test

establishes two regions within a standard normal distribution curve: rejection region of

H0 and acceptance region of H0. If z score lies in rejection region, Null hypothesis is

rejected, thus accepting alternative hypothesis (H1) as true. Consequently, if z score lies

in acceptance or non rejection region, Null hypothesis is accepted and considered true.

Those regions are limited by already tabulated values, according to specific level of

significance (α), which refers to the probability of rejecting the null hypothesis when it

is true, that is, estimation error. For example, a significance level of 0.05 indicates a 5%

risk of concluding that a difference in means exist when there is no difference.

According to two-tailed z test, choosing a level of significance of 0.05 establishes an

acceptance region delimited by ±1.96 z score values, that corresponds to (-1.96, 1.96),

as shown in Figure 4. Then, decision rule establishes that if z score value is within this

gap, H0 is accepted as true, otherwise it is rejected, as can be seen in below figure

example.

Figure 4. Rejection area example using Z test score [64].

Depending on alpha or level of significance, rejection area is narrower or wider,

requiring higher or lower values of z score. Previous figure, right side table shows z

score value for each significance level, showing that for lower significance level (less

error), higher values of z score are needed. Z-test score were calculated on both cases

(Legitimate vs. Old Malware and Legitimate vs. New Malware) and degree of rejection

of null hypothesis was assessed, as shown in Appendix 2.

34

Results show that, regarding legitimate vs. old malware testing sample data:

- H0 is accepted in 59 system calls.

- H0 is rejected in 36 system calls. Thus accepting HA, meaning that means are

significatively different between legitimate and malware applications regarding

that specific system call.

- When there is not enough data, H0 is considered to be true (117 system calls).

Regarding those 36 system calls that reject H0, consequently being able to discriminate

between the two samples according to that system calls, level of significance is:

- Less than 0.05 (5% error) in 4 system calls.

- Less than 0.01 (1% error) in 3 system calls.

- Less than 0.001 (0.1% error) in 3 system calls.

- Less than 0.0001 (0.01% error) in 26 system calls.

In the other case, analyzing legitimate vs. new malware testing sample data scores:

- H0 is accepted in 57 system calls.

- H0 is rejected in 42 system calls. Thus accepting HA, meaning that means are

significatively different between legitimate and malware applications regarding

that specific system call.

- When there is not enough data, H0 is considered to be true (113 system calls).

Regarding those 42 system calls that reject H0, consequently being able to discriminate

between the two samples according to that system calls, level of significance is:

- Less than 0.05 (5% error) in 9 system calls.

- Less than 0.01 (1% error) in 4 system calls.

- Less than 0.001 (0.1% error) in 5 system calls.

- Less than 0.0001 (0.01% error) in 24 system calls.

35

As can be stated from previous calculations, there is a solid statistical fundation to

confirm that malware (on both datasets) and legitimate applications differ significantly

in system calls behaviour, posing it as potentially discriminatory feature that can be

used to detect malware from legitimate applications.

3.1.7.2 Android permissions hypothesis

Regarding permissions, as it is categorical or nominal data, in order to discriminate

between malware dataset and legitimate dataset the notion of connection should be

assessed as a discriminatory treat. For this thesis purpose, two competing hypothesis are

stated for each system call on each dataset (Legitimate vs. Old malware and Legitimate

vs. New Malware):

- H0 or null hypothesis: There is no connection between legitimate/malware

applications by observing whether a permission is set or unset.

- HA or alternative hypothesis: There is connection between legitimate/malware

applications by observing whether a permission is set or unset.

In order to establish this connection, the concept of proportion is introduced. H0 states

that the proportion of each permission is the same for each application, indistinctable

from malware to legitimate applications. Contrary, HA states that they are different,

making them distinct. In this case, a categorical statistical hypothesis test is applied in

order to accept or reject null hypothesis. For this thesis, 3000 samples dataset of

applications were used to collect the proportion of each permission in legitimate

(n=1000) and malware sub-datasets (n=1000 on both malware datasets) and then

applied 𝑋2 test (chi square test). Results were analyzed to reject or not our specific null

hypothesis.

For each particular subset (legitimate, old malware and new malware), frequency

(count) of each permission attribute (absent or present) was evaluated, as shown in

Appendix 3. 𝑋2 (Chi square) test is commonly used to test the relationship between

categorical variables. In this case it was applied between legitimate/old malware

datasets and legitimate/new malware dataset for each of the permissions. 𝑋2 test

hypothesis testing was used to test the connection or independence of two categorical

36

variables using crosstabulations (bivariate table) and its score was analysed in order to

reject or not null hypothesis. Given for each permission a cross tabulated observed

frequency count, like the following:

E.g.: READ_PHONE_STATE permission in L/O malware dataset:

Permission Legitimate dataset Old Malware Dataset

 Absent Present Absent Present

READ_PHONE_STATE 669 331 88 912

 Legitimate Malware

Absent 669 88 757

Present 331 912 1243

 1000 1000 2000

𝑋2 statistic is calculated from the previous table with the following equation:

𝑋2 = ∑
(𝑓𝑜 − 𝑓𝑒)2

𝑓𝑒

Where 𝑓𝑜 is the observed frequency (the observed counts in the cells) and 𝑓𝑒 is the

expected frequency if no relationship existed between the variables. This second table is

constructed as follows:

 Legitimate Malware

Absent 1000*757/2000 1000*757/2000 757

Present 1000*1243/2000 1000*1243/2000 1243

 1000 1000 2000

With all these previous data in tables, 𝑋2 is calculated and used to evaluate the

connection between the two variables. Using that information, confidence level (alpha)

and degrees of freedom, calculated as:

df = (n - 1)*(m - 1)

where n stands for number of rows and m stands for number of columns.

Probability value (p-value) can be found in Chi-square table, in order to state the

rejection or not of the null hypothesis [65]. If p-value is less than confidence level

(usually 0.05), it can be concluded that the variables are not independent and that there

37

is a statistical relationship between the categorical variables. 𝑋2 test score was

calculated on both cases (Legitimate vs. Old Malware and Legitimate vs. New

Malware) and degree of rejection of null hypothesis was assessed, as shown in

Appendix 4.

Results show that, regarding legitimate vs. old malware testing sample data:

- H0 is accepted in 47 permissions.

- H0 is rejected in 82 permissions. Thus accepting HA, meaning that permission

proportions are significatively different between legitimate and malware

applications regarding that specific permission.

- When there is not enough data, H0 is considered to be true (18 permissions).

Regarding those 82 system calls that reject H0, consequently being able to discriminate

between the two samples according to that system calls, level of significance is:

- Less than 0.05 (5% error) in 14 permissions.

- Less than 0.01 (1% error) in 7 permissions.

- Less than 0.001 (0.1% error) in 4 permissions.

- Less than 0.0001 (0.01% error) in 57 permissions.

In the other case, analyzing legitimate vs. new malware testing sample data values:

- H0 is accepted in 48 permissions.

- H0 is rejected in 79 permissions. Thus accepting HA, meaning that permission

proportions are significatively different between legitimate and malware

applications regarding that specific permission.

- When there is not enough data, H0 is considered to be true (20 permissions).

Regarding those 79 system calls that reject H0, consequently being able to discriminate

between the two samples according to that system calls, level of significance is:

- Less than 0.05 (5% error) in 15 permissions.

- Less than 0.01 (1% error) in 7 permissions.

38

- Less than 0.001 (0.1% error) in 6 permissions.

- Less than 0.0001 (0.01% error) in 51 permissions.

As a result, there is a solid statistical foundation (more than half of overall permissions

are significantly different) to confirm that malware and legitimate applications differ

significantly in permission settings, posing permissions as potentially discriminatory

feature that can be used to detect malware from legitimate applications.

3.2 Phase 2. Data pre-processing

Machine learning models rely on data quality to achieve its purpose: make computers

actually “learn” and predict accurately about the unknown. In order to create an accurate

prediction model, thus enhancing data quality, data pre-processing for data mining and

machine learning purposes is an important step that aims to transform the raw collected

data into a new better representation before processing. Feature selection is the first step

in classification process. Real data may contain features with different relevance and

importance for predicting class labels. Less relevant features could harm the accuracy of

the classification model and additionally be a source computational inefficiency [66].

Feature selection algorithms are designed to select the most informative features

regarding to the class label [66], what translates as choosing the best predictive features

that could provide as good or better accuracy whilst requiring less data acquisition and

processing than using all collected features [67]. Regarding this, feature selection, called

variable selection or attribute selection, methods help to identify and remove irrelevant

and redundant features from data that do not actually contribute in a positive way to the

accuracy of the predictive model and may, in fact, decrease or not affect the accuracy of

the proposed model. The objective of feature selection is three-fold: improve prediction

performance, supply faster and more cost-effective label predictors and provide a better

knowledge of the underlying process that generated the data [68].

3.2.1 Feature selection

There are three primary feature selection methods in machine learning classification

models, that are [66]:

39

- Filter models: involve the use of a mathematical criterion to evaluate the quality

of the feature and use it to filter out irrelevant features.

- Wrapper models: consists in the progressive and iterative addition of features

according to model accuracy output. An initial set of features F is used and

accuracy is evaluated. Next, another feature is added and accuracy is evaluated

in order to accept or reject the new added feature. This process is repeated

iteratively with all features [66].

- Embedded models: main idea is that the solutions to many classification

formulations provide important hints about the most relevant features to be used.

Recursive feature elimination is used. After each elimination of features, the

classifier is retrained on the new set of pruned features to re-estimate the

weights. Next iteration will eliminate features with least absolute weight. This

procedure is repeated until all remaining features are confirmed as sufficiently

relevant [66].

In this present research, filter model was selected as feature selection method because

wrapper model usually takes more time to execute and embedded models require some

hints about data, and we decided to start from scratch, without any hints about data.

Using this method, in practice, the features are evaluated independently of one another

and the most discriminative ones are selected. The method used depends on the nature

of the data attribute, whether it is categorical or numerical. System call feature selection

requires a mathematical criterion suitable for quantitative attributes while permissions

require one that works with categorical attributes.

3.2.1.1 System call feature selection

As demonstrated before, system calls are sensitive enought to discriminate between

malware and legitimate applications. Fisher score is oriented concretely on a classifier

construction, in order to test if the differences stated by statistical hypothesis testing are

sensitive enough to construct a machine learning classifier.

Fisher Score is a criterion designed for numeric features to describe the discriminative

power for classifier construction. Fisher Score (F) of a feature is calculated using the

following equation:

40

𝐹 =
∑ 𝑝𝑗(𝜇𝑗 − 𝜇)2𝑘

𝑗=1

∑ 𝑝𝑗𝜎𝑗
2𝑘

𝑗=1

Where 𝜇𝑗 and 𝜎𝑗 refer, respectively, to the mean and standard deviation of data points

belonging to class j for a particular feature and 𝑝𝑗 to the fraction of data points

belonging to class j. Whereas 𝜇 refers to the global mean of the data on the feature

under evaluation. The numerator quantifies the average interclass separation, whereas

the denominator quantifies the average intraclass separation. Thus, a larger Fisher score

value implies a greater discriminatory power of the attribute. Attributes with largest

Fisher score value should be selected to build the classifier model [66].

Fisher Score (F) criterion has been applied in this thesis to select best potentially

discriminatory features from system calls whole group of features. Fisher score has no

direct threshold that establish what features must be selected. Features are selected in

comparison with other Fisher score values, the higher, the better. In this particular case,

as can be seen in Appendix 5, as all F values were relatively low, selected features were

the ones with F over 0.15, resulting in:

- 21 system calls from legitimate vs. old malware dataset.

- 12 system calls from legitimate vs. new malware dataset.

These variables are, from feature selection point of view, candidates to provide the best

discriminatory power from the whole system call domain (212 system calls) regarding

malware detection. A deeper look inside those selected attributes state that 11 of them

are common in both datasets (showing different discriminatory power in each dataset).

Table 1 shows the selected system calls and its Fisher score value. Highlighted in red

are those common system calls while in green the specific ones.

System call Legitimate vs. Old Malware System call Legitimate vs. New Malware

 Mprotect 0.19452250717

Readlinkat 0.688956982862 Readlinkat 0.586917830628

Sigaltstack 0.228203557978 Sigaltstack 0.205008675264

Munmap 0.749835053001 Munmap 0.569561624686

Sigaction 0.290309155851 Sigaction 0.302835602324

41

clock_gettime 0.839285565601 clock_gettime 1.10628298947

Madvise 0.541897726902 Madvise 0.475477241315

Connect 0.673586005831 Connect 0.518975491867

Prctl 0.614407016018 Prctl 0.532512665818

Openat 0.216978053454 Openat 0.164595592304

mmap2 0.630509802457 mmap2 0.473747280576

Ppoll 0.30531528393 Ppoll 0.249381065644

Futex 0.300893946098

eventfd2 0.219313445317

Clone 0.206699686896

getdents64 0.15469663511

Recvfrom 0.181364659841

Sendto 0.194429708766

epoll_create1 0.228419526142

Close 0.173596597527

Getppid 0.21559412016

rt_sigprocmask 0.244162179462

Table 1. System calls and Fisher score value

As can be seen in Table 1, legitimate/old dataset has more system calls selected and in

general with higher values of Fisher Score than legitimate/new malware dataset (except

for sigaction and clock_gettime system calls which is actually lower). This implies that

separability is less obvious in legitimate/new malware dataset than in legitimate/old

dataset. Thus, malware system call behaviour is becoming more similar to legitimate

application, reducing its discriminatory power.

Although this general decrease of the discriminatory effect of some of the variables

(except two, that actually increase), 11 of them are showing especially good

discriminatory effect. A closer look on their purpose can highlight were in system call

behaviour this discriminatory effect relies on. From better to lower Fisher score they are

[69]:

- clock_gettime → retrieves the time of the clock.

- munmap → unmap files or devices into memory.

42

- readlinkat → read value of a symbolic link relative to a directory file descriptor.

- connect → initiate a connection on a socket.

- prctl → perform operations on a process.

- mmap2 → map files or devices into memory.

- madvise → give advice about use of memory.

- ppoll → wait for some event on a file descriptor.

- futex → provides a method for a program to wait for a value at a given address

to change, and a method to wake up anyone waiting on a particular address.

- sigaction → used to change the action taken by a process on receipt of a specific

signal.

- rt_sigprocmask → examine and change blocked signals.

- epoll_create1 → open an epoll (I/O event notification facility) file descriptor.

- sigaltstack → allows a process to define a new alternate signal stack and/or

retrieve the state of an existing alternate signal stack.

- eventfd2 → create a file descriptor for event notification.

- openat → open a file relative to a directory file descriptor.

- clone → create a child process.

- getppid → get process identification.

- recvfrom → receive a message from a socket.

- mprotect → set protection on a region of memory.

- sendto → send a message on a socket.

- close → close a file descriptor.

- getdents64 → get directory entries.

As can be stated, system calls’ candidates to possess best discriminatory power are

related with socket connection, process management or file operations. Nevertheless,

the best candidate is related with clock time, an interesting issue that will be further

analyzed in next section.

3.2.1.2 System calls: top discriminative feature

Clock_gettime, arises as the most potentially discriminatory feature from the ones

selected in this research using Fisher score value. Fisher score value for this specific

43

system call is very high (over 1 in L/N dataset), highlighting it as a potentially optimal

predictor. Figure 5 shows the scatter plot of clock_gettime combined with readlinkat

system call (second most potentially discriminatory feature).

Figure 5. Scatter plot clock_gettime vs. readlinkat

As can be stated from Figure 5, malware (old and new) differ significantly in the use of

clock_gettime and readlinkat from legitimate applications, creating a well defined area

where malware points are concentrated. This could be used by a classifier to create a

well defined decision boundary. This fact is also confirmed in Figure 6, where munmap,

the third best common system call, is plotted against clock_gettime. The same issue

appears, a well defined decision boundary is created by old malware, putting almost all

new malware behind it. Legitimate applications use of clock_gettime is much greater

than old malware and even more than new malware, which creates a significant

difference that could be used for classification issues.

44

Once again, plotting clock_gettime with any other rellevant feature, like mmap2 as can

be stated in Figure 7.

Figure 6. Scatter plot munmap vs. clock_gettime

Figure 7. Scatter plot mmap2 vs. clock:_gettime

45

Figure 8. Scatter plot clock_gettime vs. readlinkat vs. munmap

Figure 9. Scatter plot clock_gettime vs. mmap2 vs. connect

46

Figure 5, Figure 6 and Figure 7 point out that top selected system calls provide a good

separability for potential discrimination of legitimate applications from malware and

even old malware from new malware. Figure 8 and Figure 9 provide a 3D overview of

previous facts.

Separability regarding the combination of this system calls is stated from Figure 8 and

Figure 9, a well defined decision boundary appears to establish a good border for a

classifier model. However, this separability decreases if analysing other features, as

shown in Figure 10 and 11.

As can be seen on Figure 10 and Figure 11, separability decreases when using lower

discriminatory features from common selected features (Figure 10) and even more if not

common features are selected (Figure 11). Cloud of points become more mixed,

providing, consequently, less separability.

Figure 10. Scatter plot prctl vs. mmap2

47

Classifier construction and model validation will provide output for this hypothesis,

using mainly clock_gettime as most important feature could lead to a well classifier

model.

3.2.1.3 Permissions feature selection

Gin Index is a criterion used for categorical feature selection, but it can be also used

with numerical attributes via discretization process [66]. It is calculated using the

following equations:

(1) 𝐺(𝑣𝑖) = 1 − ∑ 𝑝𝑗
2

𝑘

𝑗=1

(2) 𝐺 = ∑
𝑛𝑖

𝑛

𝑘

𝑗=1

𝐺(𝑣𝑖)

Figure 11. Scatter plot futex vs. mprotect

48

𝐺(𝑣𝑖) refers to the Gini index of the value 𝑣𝑖 of a categorical attribute. In this equation

(1), 𝑣1 … 𝑣𝑟 refer to the r possible values of a particular categorical attribute and 𝑝𝑗 to

the fraction of data points containing attribute value 𝑣𝑖 that belong to the class j ∈ {1 . . .

k} for the attribute value 𝑣𝑖. If classes are distributed evenly for a particular attribute

value, Gini index value is 1 − 1/k. Contrarily, if all data points for an attribute value,

belong to the same class, Gini index value will be 0 [66]. Consequently, lower values of

the Gini index imply greater discriminative power. This value-specific Gini index is not

enough to measure the discriminative power of an attribute, needing it to be converted

to an attributewise Gini index (2). In this equation (2), the weighted average over the

different attribute values defines the overall Gini index for the specific attribute [66],

being 𝑛𝑖 the number of data points that take on the value 𝑣𝑖 for the attribute and 𝑛 is

defined as the whole dataset data number of points (∑ 𝑛𝑖
𝑟
𝑖=1). Again, lower values of

the Gini index imply greater discriminative power of the attribute. The attributes with

the lowest Gini index values may be selected for use with the classification algorithm.

Gini Index (G) criterion has been applied in this thesis to select best features from

permissions group of features. Gini index has no direct threshold that establish what

features must be selected. Features are selected in comparison with other Gini index

values, the lower, the better. In this particular case, as can be seen in Appendix 6, as all

G values were relatively high, selected features were the ones with G under 0.47,

resulting in:

- 13 permissions from legitimate vs. old malware dataset.

- 9 permissions from legitimate vs. new malware dataset.

This variables are, from feature selection point of view, the ones with best potentially

discriminatory power from the whole standard Android permissions domain (147

permissions) regarding malware detection. A deeper look inside those selected attributes

state that 4 are common in both datasets (showing different discriminatory power in

each dataset). Next table shows the selected permissions and its Gini Index value.

Highlighted in red are those common system calls while in green the specific ones.

49

Android Permission
Legitimate vs. Old

Malware
Android Permission

Legitimate vs. New

Malware

 VIBRATE 0.4412

 SYSTEM_ALERT_WINDOW 0.463627839885

 GET_TASKS 0.453245610181

 MOUNT_UNMOUNT_FILES

YSTEMS

0.444434031227

 GET_ACCOUNTS 0.465315938431

WAKE LOCK 0.450313191498 WAKE LOCK 0.385793353195

READ_PHONE_STATE 0.320627747885 READ_PHONE_STATE 0.446529030013

ACCESS_NETWORK_STATE 0.46061566122 ACCESS_NETWORK_STATE 0.408704620648

INSTALL_PACKAGES 0.421355286521 INSTALL_PACKAGES 0.407988872281

CAMERA 0.465936440235

USE_FINGERPRINT 0.466950959488

BIND_REMOTEVIEWS 0.468932554434

SEND_SMS 0.434005731136

READ_EXTERNAL_STORAGE 0.334183622631

ACCESS_FINE_LOCATION 0.469946356562

READ_LOGS 0.441188030605

BLUETOOTH 0.461664295186

READ_CONTACTS 0.428342100938

Unlike system calls, from Table 2 data it is not possible to infer that separability is less

obvious within legitimate/old dataset than legitimate/new dataset. There are 4 common

system calls, which vary its score from one dataset to the other. More specifically, one

reduces its discrimination power (READ_PHONE_STATE), but other 3 increase its

discrimination power (WAKE_LOCK, ACCESS_NETWORK_STATE, INSTALL

PACKAGES). This change is not significantly enough to support such separability

issue, unlike system calls.

Table 2. System calls and Fisher score value

50

A closer look on their purpose can highlight were in permissions this potentially

discriminatory effect relies on. From better to lower Gini Index they are [19]:

- READ_PHONE_STATE → Allows read only access to phone state, including

the phone number of the device, current cellular network information, the status

of any ongoing calls, and a list of any PhoneAccounts registered on the device.

Protection level: dangerous.

- READ_EXTERNAL_STORAGE → Allows an application to read from external

storage. Protection level: dangerous.

- WAKE_LOCK → Allows using PowerManager WakeLocks to keep processor

from sleeping or screen from dimming. Protection level: normal.

INSTALL_PACKAGES → Allows an application to install packages. Not for

use by third-party applications.

- ACCESS_NETWORK_STATE → Allows applications to access information

about networks. Protection level: normal.

- READ_CONTACTS → Allows an application to read the user's contacts data.

Protection level: dangerous.

- SEND_SMS → Allows an application to send SMS messages. Protection level:

dangerous.

- VIBRATE → Allows access to the vibrator. Protection level: normal.

- READ_LOGS → Allows an application to read the low-level system log files.

Not for use by third-party applications, because Log entries can contain the

user's private information.

- MOUNT_UNMOUNT_FILESYSTEMS → Allows mounting and unmounting

file systems for removable storage. Not for use by third-party applications.

- GET_TASKS → Deprecated in API level 21. No longer enforced.

- GET_ACCOUNTS → Allows access to the list of accounts in the Accounts

Service. Protection level: dangerous.

- SYSTEM_ALERT_WINDOW → Allows an app to create windows using the

type TYPE_APPLICATION_OVERLAY, shown on top of all other apps.

Protection level: signature.

- CAMERA → Required to be able to access the camera device. Protection level:

dangerous.

https://developer.android.com/reference/android/telecom/PhoneAccount.html
https://developer.android.com/reference/android/view/WindowManager.LayoutParams.html#TYPE_APPLICATION_OVERLAY

51

- USE_FINGERPRINT → Allows an app to use fingerprint hardware. Protection

level: normal.

- BIND_REMOTEVIEWS → Must be required by a RemoteViewsService, to

ensure that only the system can bind to it.

- BLUETOOTH → Allows applications to connect to paired bluetooth devices.

Protection level: normal.

- ACCESS_FINE_LOCATION → Allows an app to access precise location.

Protection level: dangerous.

As can be stated, candidates to best discriminatory requested Android permissions are

mainly permissions with associated dangerous protection level which characterizes

higher-risk permissions that could provide unauthorized access to user’s private data or

device information [70], thus needing to be specially approved by him/her.

3.3 Phase 3. Classification, Training and Validation

After data collection, pre-processing and statistical hypotheis testing, data, using

appropiated feature selection criteria, is conformed into input vectors and ready to be

processed and build a machine learning classification model.

3.3.1 Malware detection: binary classification problem

In this thesis’ case, that deals with malware detection, supervised learning is performed

in the form of a binary classification problem. Labeled samples or instances are

provided along with measurements of attributes that characterize each instance. These

attributes that characterise each sample are: system calls and permissions. System calls

are measured numerically (frequency or count of each system call) while permissions

are categorical (whether the specific permission is present or absent). The categorical

label of each instance defines whether if the application is malicious or not (two

possible options, binary classification). As a result, this classification problem aims to

discriminate between two classes or labels of instances, malware or legitimate

application, using feature input vectors in the form of frequency of system calls and

set/unset permissions. Classification problems require that from dataset of instances,

some of them should be used to train the model and the remaining as a validation or

testing. Training data is provided labeled while test data is used to test the system make

https://developer.android.com/reference/android/widget/RemoteViewsService.html

52

a prediction of the label. Then, both predicted and real label are compared and

classification performance and results are analyzed in the form of percentage of well

classified and bad classified instances.

In supervised machine learning, datasets are splitted into training/testing sets where

usually, 70% is used as training set for the machine learning classifier algorithm and

30% of them as validation or testing set. Nevertheless, k-fold cross-validation uses a

similar but more complete approach. K-fold cross-validation split data into k

consecutive folds (without shuffling by default) and performs k validation/training

cycles into the model. “Each fold is then used once as a validation while the k-1

remaining folds form the training set” [71]. The output is then k test results which

provide a better overall picture of the performance than the 70/30 split. Both approaches

are used in this thesis as model performance results.

3.3.2 Malware detection: performance

Regarding binary classification results and performance, they are usually assessed using

confusion matrix and performance metrics. Confusion matrix also known as error

matrix is a tabulated data that condenses the performance of a classification algorithm.

In this table, each row of the matrix represents the instances in a predicted class while

each column represents the instances in an actual class (or viceversa). An example of

confusion matrix is as follows:

Actual class

 Malware Legitimate

Predicted

class

Malware C11 C10

Legitimate C01 C00

Cells labelled values as C00 and C11 indicate correct predictions of the machine learning

model. C00 indicates an actual legitimate application predicted as legitimate application

and C11 an actual malware application predicted as malware application. Cells labelled

values as C01 and C10 indicate incorrect predictions or errors of the machine learning

model. C10 denotes actual malware applications that were predicted as legitimate

applications while C01 indicates actual legitimate applications that were classified as

malware by the model. More concretely, C11 correct predicted value is often called True

53

Positive (a positive value well predicted) while C00 is often called True Negative (a

negative value well predicted). Regarding errors, C01 is often called False Positive,

False alarm or Type I error while C10 is called False Negative, Miss or Type II error. In

our case, a false negative implies a security threat as malware application could not be

detected, posing the user in an imminent threat while false positive implies a wrong

classification, but not any kind of security threat to the user. Based on these concepts,

new measurements are created in order to verify algorithms performance. Precision

represents how correct the model is when it predicts a 1 or positive class [17], by using

the following equation:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Where TP stands for True Positive and FP for False Positive. Recall or True Positive

Ratio (TPR) or Sensitivity measures how many of the positive cases or 1 were identified

by the model [17], using the following equation:

𝑟𝑒𝑐𝑎𝑙𝑙 (𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Where FN stands for False Negative. Using this last metric, False Positive Ratio (FPR)

stands for the amount of positive samples wrongly classified as negative, using:

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

Ideally a good model should perform well on both precision and recall values [17],

obtaining high scores as a result and low scores in FPR. Accuracy measures the whole

amount of samples that were correctly classified over the total amount of samples, using

the following equation:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

Finally, F-score is a “comprehensive indicator which combines precision and recall

together by a harmonic mean way. Higher F-score value proves a better performance in

the system” [36]. It is calculated as follows:

54

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑝𝑟𝑐 ∗ 𝑟𝑐𝑙

𝑝𝑟𝑐 + 𝑟𝑐𝑙

where prc stands for precisión and rcl for recall values.

In this thesis’ case, malware detection machine learning classification model will be

assessed in the light of the previous metrics.

55

4 Malware detection – practical implementation

In order to implement this malware detection machine learning classification model,

Python was used as the base programming language and scikit-learn [72] library as

machine learning algorithm resource implementation. Scikit-learn is an open-source

Python library that provides “simple and efficient tools for data mining and data

analysis” [72]. The library is built on other well-known and widely used Python

mathematical libraries such as NumPy, SciPy and matplotlib. Scikit-learn can be used in

machine learning in Python, providing important resources in classification, regression,

clustering, dimensionality reduction, model selection and preprocessing of data [72].

For this thesis, scikit-learn was used to train and test machine learning used algorithms:

Decision Tree, Support Vector Machines, K-nearest neighbors and Logistic Regression,

and also to provide metrics output. Schematic of the whole model is described in Figure

12.

4.1 Classification algorithms

Machine learning classification problems use machine learning classification algorithms

in order to discriminate and classify testing samples from the different classes that the

problem deals with, according with training set used. As there are many options to build

Figure 12. Malware detection practical implementation workflow

56

a classification model, once built, it should be compared with other classifiers in order

to choose the best one. Key elements in this comparison are [73]:

- Predictive accuracy, that refers to the model’s ability to classify correctly every

new, unkwnown sample;

- Speed, referring to how quickly the model can process data;

- Robustness, which alludes to the model’s ability to make accurate predictions

even in the presence of ‘noise’ in data;

- Scalability, that mainly refers to the model’s ability to process increasingly

larger volumen of data or to the ability of processing data from different fields;

- Interpretability, that deals with the fact that how easy the model can be

understood or interpreted;

- Simplicity, which deals with the model’s ability to be not too complicated,

despite its efectiveness.

Classification algorithms use different mathematical approaches to deal with its

common class discrimination purpose. Briefly explained, the most used ones in

classification applications are [73][74]:

- Decision trees → it creates some conditions or questions based on the values of

the input features it receives to make predictions about discrete or continous

outputs.

- Bayesian classifiers/Naïve Bayes classifiers → based on Bayes’ Thorem, it

makes the assumption of independence (no relation) of all predictors to perform

classification.

- Support Vector Machines (SVM) → focus on points that are far away from an

hyperplane created by the training set. Works better with small datasets.

- Logistic Regression → uses the logistic or sigmoid function (from statistics) to

perform classification.

- Neural networks → inspired by biological neural networks of animal brains.

Uses “connection” between neurons and layers to perform classification.

- Random Forest → creates multiple decision trees and estimates the output based

on weighted outputs of them.

57

- K-nearest neighbor classifier → classification is performed by a assigning to

each point the most common class among itds k nearest neighbors.

For this thesis purpose, decision trees, logistic regression, k-nearest neighbor and

Support Vector Machines (SVM) algorithms were selected as competing classifier

models. Those are the most common ones used in malware detection as they provide

good feedback regarding the key elements of comparison previously stated. They all

have provided good predictive accuracy in prior studies with quick processing of data,

easy interpretability and simplicity of the built models. In order to select the best one,

four test data case scenarios were trained/tested using all models and results were

analyzed. Case scenarios and results are summarized in Table 3 (best results are

highlighted in green, second best results in lighter green).

Scenario Decision Tree Logistic Regression k-Nearest Neighbor SVM (linear kernel)

Test 1

Dataset used: L/O

Features: 21 syscalls

Validation: 70/30 split

Precision: 0.97

Recall: 0.97

F-score: 0.97

Precision: 0.97

Recall: 0.97

F-score: 0.97

Precision: 0.97

Recall: 0.97

F-score: 0.97

Precision: 0.97

Recall: 0.97

F-score: 0.97

Test 2

Dataset used: L/N

Features: 12 syscalls

Validation: 5-fold

Accuracy: 0.9015 Accuracy: 0.9005 Accuracy: 0.8995 Accuracy: 0.8960

Test 3

Dataset used: L/O

Features: 13 perms

Validation: 70/30 split

Accuracy: 0.9375 Accuracy: 0.9430 Accuracy: 0.9215 Accuracy: 0.9430

Test 4

Dataset used: L/N

Features: 9 perms

Validation: 5-fold

Precision: 0.91

Recall: 0.91

F-score: 0.91

Precision: 0.90

Recall: 0.90

F-score: 0.90

Precision: 0.90

Recall: 0.90

F-score: 0.90

Precision: 0.90

Recall: 0.90

F-score: 0.90

Table 3. Case scenarios, algorithms and results.

As can be seen from Table 3, comparing the different performance metrics of each row,

Decision Tree algorithm was the best overall classifier in the all 4 scenarios. As a result,

this thesis next steps will be built using Decision Tree algorithm as a classifier.

58

4.1.1 Decision Tree Algorithm

Decision trees are a non-parametric supervised machine learning algorithm used to

address classification and regression problems [75]. When the target variable is a

continous or numerical value, they are named Regression Trees. If the target is

categorical, then Classification Trees name is used. Usually both types are referred

together and called CART (Classification and Regression Tree). Non-parametric

involves that the model structure is not specified a priori neither based on underlying

assumptions but is instead only determined from acquired data (training dataset

features). It is one of the most understandable machine learning algorithms, as they use

simple decision rules, inferred from the data features of the training set, to predict the

target value of the test set. The classification process, is then, built using a set of

hierarchical decisions on the feature variables, in a tree-like structure or, more

technically, in a directed acyclic graph [66]. Decision trees are composed by nodes,

branches and leaves. A node is a decision point (also called split criterion) which is a

condition on one or more feature variables in the training data. A node divides the

training data into two or more parts [66], as can be seen in Figure 13. Branches are

symbolized by lines that connect decision nodes with other decision nodes (called

edges) or leaves. Leaves are end points of the tree where a final value is assigned (class

or numerical) for cases that fulfilled all conditions from the top node to that specific

leave [17].

Decision tree’s main goal is to find a split criterion so that the level of mixing of the

class variables in each brand of the three is minimal. Each node in the tree-like structure

represents a subset of the data characterized by the combination of the split criteria in

the nodes above it [17]. As a hierarchical decision, the most important or discriminatory

attribute is placed at the top (root node) and create branches for each possible value of

the attribute. Below it, each subsequent nodes decrease in importance, adding branches

and ending, always, in a leaf, which will determine the corresponding class label. In

general, a deeper tree involves more complex decision rules and a fitter model [75]. A

special case of decision tree is binary decision tree where all decisions in the tree are

two-valued, as can be seen in yellow highlight in left part of Figure 13.

59

Hunt’s algorithm is used to achieve the goal of every decision tree, to make the optimal

choice at the end of each node. Hunt’s algorithm is greedy and recursive. Greedy stands

for making at each step the most optimal decision and recursive means that larger

questions are split in smaller questions and these are resolved the same way. The

decision to split at each node is made using a metric called purity. In this regard, a node

is 100% impure when it splits data evenly 50/50 and 100% pure when all node’s data

belongs to a single class [76]. The goal is then, achieve maximum purity and avoid

impurity. To obtain it, Gini impurity and other metrics such as entropy or chi-square are

applied. Information gain is another metric used, in this case to decide what feature to

split at each step of the tree. The performance of a tree can be increased significantly

using pruning. Pruning is a technique that removes the branches that use low-

importance features, thus reducing tree’s complexity and increasing tree’s predictive

power by reducing overfitting [77].

Figure 13. Example of Decision Tree in invented malware detection scenario.

CART main advantages are:

- Simple to understand, interpret, visualize and draw.

60

- There is no significant need of data preprocessing as CART performs implicitly

some kind of feature selection.

- Works well with all types of data: categorical and numerical.

- Can handle multi-output problems.

- Its performance is not affected by nonlinear relationships between parameters.

- Can be validated using statistical tests, thus providing reliability to the model.

- The cost of using the tree is logarithmic in the number of data points in the

training set.

CART main disadvantages are:

- Overfitting: which involves the creation of over-complex trees that correspond

to an excessive fit of the model to the training data and may fail to fit additional

data correctly or predict future observations reliably. Pruning is required to solve

this problem.

- Unstability: small variations in the data might result in a completely different

tree being generated. Ensemble techniques are needed to solve this problem.

- Not optimal: greedy algorithms cannot guarantee to return the globally optimal

decision tree. Multiple trees should be created to reduce this problem

- Biased: can create biased trees if some classes dominate. Balanced data is

needed to solve this problem.

All functionalities designed to built and traing a decision tree model to deal with

classification and regression problems is included in scikit-learn Python library package

[75]. Scikit-learn will be used as a basis of the following tests to create, train and test

decision tree algorithm in malware detection using system calls and Android

permissions.

https://medium.com/towards-data-science/balancing-bias-and-variance-to-control-errors-in-machine-learning-16ced95724db

61

5 Malware Detection Model Validation

Next section will show different test and results with the collected dataset, that it is

composed by 1000 legitimate applications, 1000 old malware and 1000 new malware

samples. From both, dynamic features were collected in the form of system calls and

static features in the form of requested features contained in AndroidManifest.xml. The

discriminatory power is evaluated and assessed in the following sections.

5.1 Selected system calls

Previous steps have shown that from 212 system calls gathered, 21 shown good

potential discriminatory power in legitimate vs. old malware dataset and 11 in

legitimate vs. new malware dataset. Each whole dataset is composed by 2000 samples.

For this test, different number of features, from the ones with better potential

discriminatory power, were selected and used to train and test a decision tree model

using same dataset. Table 4 shows accuracy metric performance for each different

model (range 0-1), using 5-fold cross validation. Appendix 7 shows a more complete

picture of this analysis, including classification confusion matrix using 70-30% split.

features Legitimate vs. Old Malware Dataset

(accuracy value)

Legitimate vs. New Malware Dataset

(accuracy value)

Best feature*

0.8695

0.8910

 3 best common features**

0.9005

0.8770

 6 best common

features***

0.9120

0.8850

 11 common features

0.9305

0.8905

 22 features****

0.9660

0.9075

 All features (212)*****

0.9700

0.9270

Table 4. System calls model accuracy performance

62

*Best feature: clock_gettime

**3 best common features: clock_gettime, readlinkat and munmap.

***6 best common features: clock_gettime, readlinkat, munmap, connect, prctl and mmap2.

****21 features of L/O and mprotect.

*****All system calls gathered, without performing feature selection.

Table 4 shows that:

- A single feature (the one with higher Fisher score value) is capable of

discriminate between malware and legitimate applications (in both datasets) with

an accuracy over 87%. Providing also relatively low values of False Negatives.

- In L/O dataset, discriminative power increases gradually when more features are

added but 22 best Fisher score features provide as good prediction as whole

system call domain, 212 features (~ 97%). The importance of feature selection

provides here optimum output with less information.

- In L/N dataset, best single feature has more discriminative power alone than

using from 2 to 11 top Fisher score features. This single feature has more

discriminative power in L/N dataset than in L/O dataset, confirming the increase

in discriminatory power suggested by its Fisher score value from L/O dataset to

L/N dataset (from ~0.8 to ~1.1).

- Unlike L/O dataset, 22 best Fisher score does not provide in L/N dataset similar

accuracy obtained with whole system call domain. This fact, combined with a

general lower accuracy values in L/N dataset than in L/O dataset suggests that

separability between legitimate and malware applications is higher in L/O

dataset than in L/N dataset.

5.2 Selected permissions

Previous steps have shown that from 147 standard Android permissions, a total amount

of 13 shown potential good discriminatory power in legitimate vs. old malware dataset

and 9 in legitimate vs. new malware dataset. For this test, different number of features,

from the ones with potential better discriminatory power, will be selected and used to

train and test a decision tree model using same dataset. Table 5 shows accuracy metric

performance for each different model (range 0-1), using 5-fold cross validation.

63

Appendix 8 shows a more complete picture of this analysis, including classification

confusion matrix using 70-30% split.

features Legitimate vs. Old Malware Dataset

(accuracy value)

Legitimate vs. New Malware Dataset

(accuracy value)

Best feature of L/O

dataset*

0.7905

0.6635

 Best feature of L/N

dataset**

0.6420

0.7310

 2 best features of L/O

dataset***

0.8880

0.6635

 2 best features of L/N

dataset****

0.6995

0.7310

 4 common features

0.8580

0.8460

 9 features of L/N dataset

0.8955

0.8940

 13 features of L/O dataset

0.9350

0.9065

 18 features*****

0.9410

0.9170

 All features (147)******

0.9505

0.9210

Table 5. Permissions model accuracy performance

*READ_PHONE_STATE permission

**WAKE_LOCK permission

***READ_PHONE_STATE and READ_EXTERNAL_STORAGE permissions

****WAKE_LOCK and INSTALL_PACKAGES permissions

*****13 features of L/0 and VIBRATE, SYSTEM_ALERT_WINDOW, GET_TASKS,

MOUNT_UNMOUN_FILESYSTEMS, GET_ACCOUNTS.

******All permissions, without performing feature selection.

Table 5 shows that:

- Unlike system calls, there is no single or two best common features capable to

discriminate with good accuracy on both datasets, as those best features vary

within datasets. As can be seen, using one or two features, greater discriminatory

power is achieved when they are used in its own dataset and not in the other

dataset (e.g.: best feature in L/O shows 79% accuracy in L/O dataset and 66%

64

accuracy when they are used in L/N dataset), stating that best permissions, in

this case, cannot be used cross-dataset detection with acceptable results.

- When using 4 common features, good discriminatory power is achieved in both

datasets (~ 85%). From that minimum number of features, increased

discriminatory values are obtained in both datasets when more features are

added.

- In this case, in both datasets, when using 18 best Gini index features show

similar accuracy as using all features (~ 95% in L/O dataset and ~ 92% in L/N

dataset). The importance of feature selection provides here optimum output with

less information.

- Compared to system calls, in L/O dataset, permissions provide lower top

discrimination value (~ 95%) than in system calls (~ 97%). Regarding L/N

dataset, maximum discrimination power is almost the same (~ 92%). This

suggests that separability between legitimate and malware applications is higher

in L/O dataset than in L/N dataset, but lower than in system calls case.

5.3 Combination of features: permissions and system calls

Previous tests used just a set of features, or system calls (numerical) or permissions

(categorical). Following tests use mixing of features in order to find whether the results

improve by the addition of another type of feature. For this test, different number of

features, from the ones with better discriminatory power of each variable, will be

selected and used to train and test a decision tree model using same dataset. Table 6

shows accuracy metric performance for each different model (range 0-1), using 5-fold

cross validation. Appendix 9 shows a more complete picture of this analysis, including

classification confusion matrix using 70-30% split.

features Legitimate vs. Old Malware Dataset

(accuracy value)

Legitimate vs. New Malware Dataset

(accuracy value)

Best system call + best

permission L/O*

0.8965

0.9070

 Best system call + best

permission L/N**

0.8800

0.8900

 2 best system calls L/O +

2 best permissions L/O

dataset***

0.9450

0.8990

 2 best system calls L/N +

2 best permissions L/N

dataset****

0.9035

0.8950

65

All common system calls

and permissions

0.9505

0.9210

 22 system calls + 18

permissions

0.9740

0.9390

 All features (212+147)

0.9765

0.9400

Table 6. Hybrid model accuracy performance

*clock_gettime system call and READ_PHONE_STATE permission

**clock_gettime system call and WAKE_LOCK permission

***clock_gettime and munmap system calls and READ_PHONE_STATE and READ_EXTERNAL_STORAGE

permissions.

****clock_gettime and readlinkat system calls and WAKE_LOCK and INSTALL_PACKAGES permissions.

Table 6 shows that:

- When using combination of each best feature of both domains, accuracies are

slightly better than using system calls alone. System calls alone provide more or

less the same discrimination power than when it is used combined with

permissions in L/O dataset. In L/N dataset, permissions have a slightly greater

influence, improving detection ratio by 1-2% than system calls alone. Thus, in

general, system calls provide better classification performance than permissions.

- Maximum accuracy in L/N dataset is improved using hybrid approach (~ 94%)

than static or dynamic approaches alone (~ 92%). In this case, hybrid approach

shows an improvement not applied to L/O dataset.

- Using all features selected (40) provide the same discriminatory power than

using 357 features (all permissions and system calls) in both datasets (~ 97% in

L/O and 94% in L/N dataset). Feature selection arises as an important fact that

provides optimum results with less information.

5.4 Old vs. New Malware discrimination

As was stated in previous sections, old and new malware show similarities, as they have

common features that allow discriminate them from legitimate applications. This

experimental model eliminate legitimate applications from the stage and use a dataset

66

composed only by malware: 1000 old and 1000 new malware applications. New

malware was labelled as 0 and old malware as 1. As for the other tests, different number

of features, from the ones with better discriminatory power, will be selected and used to

train and test a decision tree model using same dataset. Table 7 shows accuracy metric

performance for each different model (range 0-1), using 5-fold cross validation.

Appendix 10 shows a more complete picture of this analysis, including classification

confusion matrix using 70-30% split.

Feature Number of features
New vs. Old Malware

Dataset (accuracy value)

System calls

Best system call*

0.6460

 Common system calls (11)

0.8175

 22 selected system calls

0.8955

 All system calls (212)

0.8990

Permissions

Best permission of L/O dataset**

0.6270

 Best permission of L/N dataset***

0.5890

 Common permissions (4)

0.6655

 18 selected permissions

0.9310

 All permissions (147)

0.9430

Hybrid (system calls +

permissions)

2 best system calls L/O + 2 best permissions L/O

dataset****

0.7825

 2 best system calls L/N + 2 best permissions L/N

dataset*****

0.7720

 All common system calls and permissions (11+4)

0.8190

 22 system calls + 18 permissions (40)

0.9300

 All features (212+147)

0.9345

Table 7. Old. vs. New Malware discrimination accuracy performance

*clock_gettime

**READ_PHONE_STATE

***WAKE_LOCK

67

****clock_gettime and munmap system calls and READ_PHONE_STATE and READ_EXTERNAL_STORAGE

permissions.

*****clock_gettime and readlinkat system calls and WAKE_LOCK and INSTALL_PACKAGES permissions

Table 7 shows that:

- Malware itself can be discriminated from old samples to new samples using a

small amount of features, also used to discriminate between legitimate and

malware applications.

- Unlike legitimate vs. malware detection, permissions can be used with best

accuracy when discriminating between different malware (~ 94%) than system

calls (~ 90%) and similar with hybrid approach (~ 94%). Permissions appear to

be the most important discriminative variable in this case, having higher

detection ratio than system calls. Thus, separability between malware

permissions is greater than malware from legitimate applications.

- Using hybrid approach, system calls provide good accuracies to the model when

a small amount of permissions are used. When more than common permissions

are used, system calls does not provide any significant improvement than

permissions alone.

- When using 18 selected permissions, it can be stated that they provide the same

discrimination power than all features combined (system calls and permissions)

and all selected features combined (~ 94%), stating the importance of

permissions in this particular case.

5.5 Cross-dataset malware detection validation

This experimental setup analyzes the accuracy of different scenarios using system calls

and permissions. For each feature, different number of features are selected and the

model is trained. Training is performed with one dataset (e.g.: legitimate/old malware

dataset) and testing is performed with the other dataset (e.g.: legitimate/new malware

dataset). Accuracy metric performance results are shown in Table 8, Table 9 and Table

10 for each model (range 0-1). In this case 70-30 split was performed as training/testing

split and all datasets shuffled prior of the random selection of training/testing samples.

Results regarding training and testing with same dataset are included as a reference (5-

68

fold cross validated). Appendix 11 shows a more complete picture of this analysis,

including classification confusion matrix using 70-30% split.

5.5.1 Dynamic approach: System calls

System Calls

(using best feature)*

*clock_gettime

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy)

Old Dataset

0.8695

0.9166

 New Dataset

0.795

0.8910

System Calls

(using 3 best features)*

*clock_gettime,

munmap and readlinkat

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy)

Old Dataset

0.9025

0.8833

 New Dataset

0.815

0.8820

System Calls

(using 11 common

features)

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy)

Old Dataset

0.9305

0.8100

 New Dataset

0.865

0.8905

System Calls

(using 22 selected

features)

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy)

Old Dataset

0.9650

0.7330

 New Dataset

0.8766

0.9075

System Calls

(using all features)

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy)

Old Dataset

0.9700

0.7150

 New Dataset

0.8450

0.9270

Table 8. Dynamic approach: system call results

Table 8 shows that:

- If a small amount of features is used (1-3 best features), classification accuracies

are better using old dataset as a training set for detecting both old and new

malware (~ 90%).

69

- If more than 3 best features are used (from 11 to all system call domain),

classification results are better using new dataset as a training or learning set for

detecting both old and new malware.

- Best cross-dataset results are provided when using 3-11 selected common

system calls (over ~ 80% in all cases), stating the importance of feature

selection.

- This tables show that it is possible to obtain acceptable accuracy results in cross-

dataset detection using a single training dataset, altough best results are achieved

when testing with same dataset.

5.5.2 Static approach: Permissions

Permissions

(using best feature L/O

dataset)*

*READ_PHONE_STATE

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy)

Old Dataset

0.7905

0.6633

 New Dataset

0.7850

0.6635

Permissions

(using best feature L/N

dataset)*

*WAKE_LOCK

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy)

Old Dataset

0.6420

0.7450

 New Dataset

0.6783

0.7310

Permissions

(using 4 common

features)

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy)

Old Dataset

0.8580

0.8400

 New Dataset

0.8800

0.8460

Permissions

(using 18 features)

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy)

Old Dataset

0.9410

0.7100

 New Dataset

0.8716

0.9170

Permissions

(using all features)

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy)

Old Dataset

0.9505

0.6500

 New Dataset

0.7916

0.9245

Table 9. Static approach: permission results

70

Table 9 shows that:

- Unlike system calls, when a small amount of features are used (1-4), detection

performance is low (not higher than 80% in any case) with no significant

difference in malware discrimination by using one set or another as a training

set.

- When using 4 common features, best overall across dataset performance is

achieved, over 84% of discrimination in all cases.

- When using all features, its discriminative power decreases across datasets,

having only significant discriminative power when testing with the same dataset.

5.5.3 Hybrid approach: system calls and permissions

Hybrid

(best syscall and best

L/O dataset permission)*

*clock_gettime and

READ_PHONE_STATE

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy)

Old Dataset

0.8985

0.9200

 New Dataset

0.8700

0.9070

Hybrid

(using best syscall and

best L/N dataset

permission)*

*clock_gettime and

WAKE_LOCK

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy)

Old Dataset

0.8800

0.9033

 New Dataset

0.8066

0.8835

Hybrid

(using 11 common

syscalls + 4 common

permissions)

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy)

Old Dataset

0.9500

0.8660

 New Dataset

0.9016

0.9210

Hybrid

(using 22 selected

syscalls + 18 selected

permissions)

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy)

Old Dataset

0.9740

0.7066

 New Dataset

0.9116

0.9390

Hybrid

(using all dynamic and

static features)

Training \ Testing Old Dataset (accuracy) New Dataset (accuracy)

Old Dataset

0.9765

0.6966

 New Dataset

0.8983

0.9400

Table 10. Hybrid approach: system call+permission results

71

Table 10 shows that:

- The combination of best system call and best permission from L/O dataset

provides the best accuracy results in cross-dataset performance, using the less

amount of features (2). System call discriminatory power is empowered with

best L/O dataset permission to provide improved cross-dataset accuracies than

using system call alone in some specific cases.

- When using a small amount of features combined (from 2 to 15 features), old

dataset provides better discriminative power as a training set than new dataset in

cross-dataset performance.

- When using more than 15 features, new dataset provides better discriminative

power as a training set than new dataset in cross-dataset performance.

- Combination of all selected features (40) provide greater performance (over

91%) than all 357 features combined (over 89%). Feature selection allows to

achieve optimum results with lower amount of data.

5.6 Mixed malware detection validation

This experimental setup analyzes the accuracy of different scenarios using system calls,

permissions and hybrid approach. One mixed malware dataset is created from old

malware dataset and new malware dataset (500 applications of each one selected

randomly) and used as training/testing tested in different scenarios. This pretends to

simulate real conditions where it is not possible to classify if a malware sample belongs

to old or new dataset. For each feature, different number of features are selected and the

model is trained with them. Accuracy results are shown in next the following tables. In

this case 70-30 split was performed as training/testing split and all datasets shuffled

prior of the random selection of training/testing samples. Appendix 12 shows a more

complete picture of this analysis, including classification confusion matrix using 70-

30% split.

72

5.6.1 System call features

Training

set

clock_gettime

(accuracy)

11 common

(accuracy)
22 selected (accuracy) All features (accuracy)

Old

Dataset

0.8966

0.9000

0.8450

0.866

 Mixed

malware

Dataset

0.8675

0.8805

0.9080

0.9195

New

Dataset

0.8516

0.9133

0.9400

0.9266

 *5-fold cross validation againsta same dataset.

Table 11. Mixed malware: system call results

5.6.2 Permission features

Training

set

READ_PHONE

_STATE (accuracy)

WAKE_LOCK

(accuracy)

4 common

(accuracy)

18 selected

(accuracy)

All features

(accuracy)

Old

Dataset

0.7300

0.6533

0.8550

0.8466

0.8316

Mixed

malware

Dataset

0.7265

0.6780

0.8525

0.9160

0.9225

 New

Dataset

0.7150

0.6550

0.846

0.9016

0.8700

 *5-fold cross validation againsta same dataset.

Table 12. Mixed malware: permission results

5.6.3 Hybrid approach

Training

set

Clock_gettime &

READ_PHONE_STATE

(accuracy)

Clock_gettime &

WAKE_LOCK

(accuracy)

11 common

syscalls & 4

common perms

(accuracy)

22 selected

syscalls & 18

selected

permissions

All syscalls &

all permissions

(accuracy)

Old

Dataset

0.9116

0.9150

0.9366

0.8650

0.8533

 Mixed

malware

Dataset

0.8965

0.8730

0.9300

0.9415

0.9375

 New

Dataset

0.9133

0.8800

0.9450

0.9433

0.9266

 *5-fold cross validation againsta same dataset.

Table 13. Mixed malware: hybrid results

73

Table 11 show that, regarding system calls:

- As stated before, if only the most important feature is used, training with old

dataset provides better overall cross-dataset detection (~ 90%) than training with

just new or mixed malware dataset (below 87% on both cases).

- When more features are used, training with new malware datasets provide better

overall cross-dataset detection (over 91%) than training with old or mixed.

- Best results are achieved training with new dataset and using 22 selected

features (94% accuracy). Feature selection arises as an important model builder.

Table 12 shows that, regarding permissions:

- Using a small amount (1-4) of permissions does not provide good accuracies

(below 86% in all cases), no matter the training set used.

- Best cross-datasets detection results are achieved using mixed malware dataset.

When using 18 features, 91% accuracy is achieved, slightly below than the 92%

accuracy achieved with all permissions. This states the importance of feature

selection to create good predictive models with less data.

- In general, permissions alone show less discriminative power (92% accuracy)

than system calls alone (94% accuracy).

Table 13 shows that, regarding hybrid approach:

- In general, hybrid approach provides better overall results than using static or

dynamic features alone. Regarding that, system calls are shown to be the most

discriminative feature and when combined with permissions they provide

slightly better results in accuracies when system calls alone does not provide

good detection ratios.

- Best results in this case are achieved training with new malware dataset and

using from 15 to 40 features combinated (over 94%).

- Using all features domain (357) does not provide better accuracy (~ 92%) than

using selected features. Feature selection arises, again, as an important step in

model building and improvement in accuracies.

74

5.7 Decision Tree graphs

As was previously stated, Decision Tree is a hierarchical set of decisions that place in

root node the most important or discriminatory feature of the dataset. In order to check

how decision trees were implemented in this malware detection project, nine random

test trees were plotted and analysed, using all available features. Pruning was not

performed, so trees structure shown are more complex or deep than if pruning (remove

unimportant branches) were performed. Next diagrams show the trees’ structure.

5.7.1 System calls

5.7.1.1 Legitimate / Old Malware Dataset Trained Decision Tree

Figure 14. Decision Tree L/O Dataset

This decision tree uses as root node a clock_gettime decision rule, the most important

feature selected also by Fisher score:

75

Figure 15. Decision Tree L/O Dataset root node

5.7.1.2 Legitimate / New Malware Dataset Trained Decision Tree

Figure 16. Decision Tree L/N Dataset

Again, if we look at first layers on left side of the tree, we can state that root node is

placed by clock_gettime, the most discriminative feature in this present research for

malware detection:

76

Figure 17. Decision Tree L/N Dataset root node

5.7.1.3 Old Malware / New Malware Dataset Trained Decision Tree

Figure 18. Decision Tree O/N Malware Dataset

77

By looking again top node or root, we can see now that it is not clock_gettime this time,

as this comparison was not analyzed by Fisher score. Nevertheless, top node is placed

by another import selected feature, getppid which is the most discriminant feature in this

particular all-malware dataset (discrimination across malware).

Figure 19. Decision Tree O/N Malware Dataset root node

5.7.2 Permissions

5.7.2.1 Legitimate / Old Malware Dataset Trained Decision Tree

Figure 20. Decision Tree L/O Malware Dataset

78

This particular tree places as top node READ_PHONE_STATE, the one that was

already highlighted as the best Gini index predictor in L/O dataset. Next two decision

points or branches are placed by the second and third better Gini index values, as can be

seen in the following picture:

Figure 21. Decision Tree L/O Malware Dataset root node

5.7.2.2 Legitimate / New Malware Dataset Trained Decision Tree

Figure 22. Decision Tree L/N Malware Dataset

Top node is placed by WAKE_LOCK permission, the most discriminative one stated by

Gini index in feature selection performed by this research.

79

Figure 23. Decision Tree L/N Malware Dataset root node

5.7.2.3 Old Malware / New Malware Dataset Trained Decision Tree

Figure 24. Decision Tree O/N Malware Dataset

In cross-malware tree, top node is placed by READ_CONTACTS, which is the best

discriminative permission across malware.

Figure 25. Decision Tree O/N Malware Dataset root node

80

5.7.3 Hybrid trees

5.7.3.1 Legitimate / Old Malware Dataset Trained Decision Tree

Figure 26. Decision Tree L/O Malware Dataset

Using permissions and system calls together, root node is placed by a system call, the

most discriminative feature stated by this resarch, clock_gettime system call.

Figure 27. Decision Tree L/O Malware Dataset root node

81

5.7.3.2 Legitimate / New Malware Dataset Trained Decision Tree

Figure 28. Decision Tree L/N Malware Dataset

Once again, top node is placed by a system call, clock_gettime:

Figure 29. Decision Tree L/N Malware Dataset root node

82

5.7.3.3 Old Malware / New Malware Dataset Trained Decision Tree

Figure 30. Decision Tree O/N Malware Dataset

This last picture shows again that system calls have more discriminant power than

permissions when using together:

Figure 31. Decision Tree O/N Malware Dataset root node

83

6 Conclusions

In this thesis, applicability of dynamic features (system calls) and static features

(permissions) were investigated with respect to build a classifier for detect malware in

Android environment. Feature selection methods provided a reduced number of features

in system calls and permission whole domains that were used to train and test

classification models. System calls analysis stated that they are distributed with greater

differentiation between legitimate and malware applications than permissions, providing

greater discriminative power. Analysis of feature selection states that best predictive

variables have changed in the two malware datasets used in this research, with a time

difference of 8 years between them (2010 to 2018). In this regard, in some variables

malware has become more similar to legitimate applications, reducing the

discriminative power of such variables while others have increased its discriminative

impact. In this last case, when using only one specific feature, old malware used as

training set could create a well-defined decision boundary against legitimate

applications that could be used to accurately predict unknown new malware samples.

This fact provides the possibility to train classifiers only with old malware that will

accurately discriminate new malware, overcoming the efforts of new malware to

become undetectable by becoming similar to legitimate applications. From the point of

view of malware detection, accuracy results show that it is possible to detect malware

minimizing the features used, obtaining good accuracy results using a small number of

features as predictors (from 1 to 40 features) with as good or better than using all

features. More specifically, results show that if using a single feature as predictor,

training with old dataset could provide better results in detecting both new and old

malware, as old dataset creates a well-defined decision boundary where new malware

lies behind it. When more features are used as predictors, new dataset as training set

provides better results in cross-dataset performance accuracy. This finding points out

that depending on features selected, it would be preferable to use a different dataset to

train the model to get optimal predictions. Regarding dataset used, mixed malware

dataset does not provide significant difference in performance than using old or new

84

datasets separately. Old vs. new malware comparison provided that permissions are a

better feature to discriminate between malware samples than system calls. This fact

suggests that new malware evolved to become more similar to legitimate applications

regarding permissions than system calls, increasing separability from old malware in

this feature, but not as much in its dynamic behaviour.

Feature selection has been highlighted as a key point in malware detection, allowing to

minimize features used with optimal detection accuracies in cross-malware datasets.

This fact may lead to build faster and less complex classifiers that focus on main

predictors, that may vary depending on dataset used and detection needs. This research

shows that depending on detection objectives and requirements, different features and

dataset should be used in order to accomplish them with optimal malware detection

performance.

85

References

[1] Go-Globe. “Mobile vs. Desktop Internet Usage – Statistics and Trends”, Nov, 2016.

[Online]. Available: https://www.go-globe.hk/blog/mobile-vs-desktop-internet-usage/

[Accessed: March 1, 2018].

[2] J. Stevens. “Internet Stats & Facts for 2017”. Aug, 2017. [Online]. Available:

https://hostingfacts.com/internet-facts-stats-2016/ [Accessed: March 1, 2018].

[3] McAfee. “McAfee Mobile Threat Report Q1, 2018”. Mar, 2018. [Online].

Available: https://www.mcafee.com/es/resources/reports/rp-mobile-threat-report-

2018.pdf. [Accessed: March 31, 2018]

[4] Kaspersky. “Mobile malware evolution 2017”. Mar, 2018. [Online]. Available:

https://securelist.com/mobile-malware-review-2017/84139/. [Accessed: March 31,

2018].

[5] Trendmicro. “2017 Mobile Threat Landscape”. Feb, 2018. [Online]. Available:

https://www.trendmicro.com/vinfo/us/security/research-and-analysis/threat-

reports/roundup/2017-mobile-threat-landscape. [Accessed: April 1, 2018].

[6] R. Fedler, J. Schütte and M. Kulicke. “On the Efectiveness of Malware Protection

on Android. An Evaluation of Android Antivirus Apps”. Fraunhofer, AISEC. Apr,

2013.

[7] Statista. “Global mobile OS market share in sales to end users from 1st quarter 2009

to 2nd quarter 2017”. 2018. [Online]. Available:

https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-

operating-systems/. [Accessed: April 1, 2018].

https://www.go-globe.hk/blog/mobile-vs-desktop-internet-usage/
https://hostingfacts.com/internet-facts-stats-2016/
https://www.mcafee.com/es/resources/reports/rp-mobile-threat-report-2018.pdf
https://www.mcafee.com/es/resources/reports/rp-mobile-threat-report-2018.pdf
https://securelist.com/mobile-malware-review-2017/84139/
https://www.trendmicro.com/vinfo/us/security/research-and-analysis/threat-reports/roundup/2017-mobile-threat-landscape
https://www.trendmicro.com/vinfo/us/security/research-and-analysis/threat-reports/roundup/2017-mobile-threat-landscape
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/

86

[8] Statista. “Distribution of Android operating systems used by Android phone owners

in February 2018, by platform versions”. 2018. [Online]. Available:

https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-

devices-with-android-os/. [Accessed: April 1, 2018].

[9] D. Arp, M. Spreitzenbarth, M. Huebner, H. Gascon and K. Rieck. "Drebin: Efficient

and Explainable Detection of Android Malware in Your Pocket", 21th Annual Network

and Distributed System Security Symposium (NDSS), February 2014.

[10] Z. Yuan, Y. Lu, Z. Wang and Y. Xue. “Droid-Sec: Deep Learning in Android

Malware Detection”, in SIGCOMM Computer Communication Review, vol. 44, number

4, pp. 371-372, October 2014.

[11] J. Sahs and L. Khan. “A Machine Learning Approach to Android Malware

Detection”, in Intelligence and security informatics conference (eisic), 2012 european.

IEEE, 2012.

[12] A. Feizollah, N.B. Anuar, R. Salleh and A. Wahid. “A review on feature selection

in mobile malware detection”, in Digital Investigation, vol. 13, pp. 22-37, March 2015.

[13] Android. “App Permissions”, 2018. [Online]. Available:

https://developer.android.com/guide/topics/permissions/index.html. [Accessed: April 3,

2018].

[14] Android. “Glossary”, 2018. [Online]. Available:

https://developer.android.com/guide/appendix/glossary.html. [Accessed: April 3, 2018].

[15] Y. Zhou and X. Jiang. “Dissecting Android Malware: Characterization and

Evolution”, in 2012 IEEE Symposium on Security and Privacy, San Francisco, CA,

2012, pp. 95-109.

[16] T. M. Mitchell. “Machine Learning”, McGraw-Hill, 1997.

https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
https://www.tu-braunschweig.de/Medien-DB/sec/pubs/2014-ndss.pdf
https://www.tu-braunschweig.de/Medien-DB/sec/pubs/2014-ndss.pdf
https://developer.android.com/guide/topics/permissions/index.html
https://developer.android.com/guide/appendix/glossary.html

87

[17] M. Hoogendoorn and B. Funk. “Machine Learning for the Quantified Self”,

Springer, 2018.

[18] B. Baskaran and A. Ralescu. “A Study of Android Malware Detection Techniques

and Machine Learning”, in MAICS: The Modern Artificial Intelligence and Cognitive

Science Conference, 2016, pp. 15-23.

[19] Android. “Manifest.permission”, 2018. [Online]. Available:

https://developer.android.com/reference/android/Manifest.permission.html. [Accessed:

April 3, 2018].

[20] Android. “Permissions Overview”, 2018. [Online]. Available:

https://developer.android.com/guide/topics/permissions/overview.html. [Accessed:

April 1, 2018].

[21] M. Nezhadkamali, S. Soltani and S.A.H. Seno. “Android malware detection based

on overlapping of static features”, in 7th International Conference on Computer and

Knowledge Engineering (ICCKE 2017), 2017.

[22] N. Peiravian and X. Zhu. “Machine Learning for Android Malware Detection

Using Permission and API Calls”, in IEEE 25th International Conference on Tools with

Artificial Intelligence, 2013.

[23] X. Liu and J. Liu. “A Two-layered Permission-based Android Malware Detection

Scheme”, in IEEE International Conference on Mobile Cloud Computing, Services, and

Engineering, 2014.

[24] K. A. Talha, D. I. Alper and C. Aydin. “APK Auditor: Permission-based Android

malware detection system”, in Digital Investigation, vol. 13, March, 2015, pp. 1-14.

[25] Contagio. “Contagio Malware Dump”, 2018. [Online]. Available:

http://contagiodump.blogspot.com. [Accessed: April 5, 2018].

https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/guide/topics/permissions/overview.html
http://contagiodump.blogspot.com/

88

[26] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee and K.-P. Wu. “DroidMat: Android

Malware Detection through Manifest and API Calls Tracing”, in Information Security

(Asia JCIS), 2012 Seventh Asia Joint Conference, 2012, pp. 62-69.

[27] Z. Aung and W. Zaw. “Permission-Based Android Malware Detection”, in

International Journal of Scientific & Technology Research, vol.2, number 3, March

2013.

[28] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. Garcia Bringas and G.

Alvarez. “PUMA: Permission Usage to detect Malware in Android”, in International

Joint Conference CISIS’12-ICEUTE´12-SOCO´12 Special Sessions, 2012, pp 289-298.

[29] S. Liang and X. Du. “Permission-Combination-based Scheme for Android Mobile

Malware Detection”, in IEEE Mobile and Wireless Networking Symposium, 2014.

[30] R. V. Varma P., K. P. Raj and K. V. Subba Raju. “Android mobile security by

detecting and classification of malware based on permissions using machine learning

algorithms”, in International conference on I-SMAC (IoT in Social, Mobile, Analytics

and Cloud), 2017.

[31] Google. “Android platform bionic C library supported syscalls”, 2018. [Online].

Available:

https://android.googlesource.com/platform/bionic/+/cd58770/libc/SYSCALLS.TXT.

[Accessed: March 3, 2018].

[32] I. Burguera, U. Zurutuza and S. Nadjm-Tehrani, “Crowdroid: Behavior-Based

Malware Detection System for Android”, in Proceedings of the 1st ACM Workshop on

Security and Privacy in Smartphones and Mobile Devices, 2011, pp. 15.

[33] Strace. “Strace – Linux syscall tracer”, 2018. [Online]. Available: https://strace.io/.

[Accessed: March 2, 2018].

[34] M. Kerrisk. “Linux Programmer’s Manual - Ptrace”, 2018. [Online]. Available:

http://man7.org/linux/man-pages/man2/ptrace.2.html. [Accessed: March 2, 2018].

https://link.springer.com/book/10.1007/978-3-642-33018-6
https://link.springer.com/book/10.1007/978-3-642-33018-6
https://android.googlesource.com/platform/bionic/+/cd58770/libc/SYSCALLS.TXT
https://strace.io/
http://man7.org/linux/man-pages/man2/ptrace.2.html

89

[35] M. Dimjasevic, S. Atzeni, and I. Ugrina, “Evaluation of Android Malware

Detection Based on System Calls,” In Proc. ACM on International Workshop on

Security And Privacy Analytics, New Orleans, LA, USA , 2016, pp. 1-8.

[36] S. Zhang and X. Xiao. “CSCdroid: Accurately Detect Android Malware via

Contribution-Level-based System Call Categorization”, in IEEE

Trustcom/BigDataSE/ICESS, 2017.

[37] J. Maestre Vidal, A.L. Sandoval Orozco, L. J. García Villalba. “Malware Detection

in Mobile Devices by Analyzing Sequences of System Calls”, in World Academy of

Science, Engineering and Technology International Journal of Computer, Electrical,

Automation, Control and Information Engineering Vol:11, No:5, 2017.

[38] X. Xiao, X. Xiao, Y. Jiang, X. Liu and R. Ye. “Identifying Android malware with

system call co-occurrence matrices”, in Transactions on Emerging Telecommunications

Technologies, 2016, pp. 675-684.

[39] Y.-D. Lin, Y.-C. Lai, C.-H. Chen and H.-C. Tsai. “Identifying android malicious

repackaged applications by thread-grained system call sequences”, in Computers &

Security, 2013, pp. 340-350.

[40] VirusTotal. “VirusTotal a free online virus, malware and URL scanner”. [Online].

Available at: https://www.virustotal.com/. [Accessed: April 4, 2018].

[41] V. M. Afonso, M. F. de Amorim, A. R. A. Grégio, G. B. Junquera and P. L. de

Geus. “Identifying Android malware using dynamically obtained features”, in Journal of

Computer Virology and Hacking Techniques 2014, pp. 1–9.

[42] APIMonitor. “Droidbox – APIMonitor.wiki”. [Online]. Available:

https://code.google.com/archive/p/droidbox/wikis/APIMonitor.wiki. [Accessed: April 4,

2018].

https://www.virustotal.com/
https://code.google.com/archive/p/droidbox/wikis/APIMonitor.wiki

90

[43] V. Wahanggara and Y. Prayudi. “Malware Detection Through Call System on

Android Smartphone Using Vector Machine Method”, in Fourth International

Conference on Cyber Security, Cyber Warfare, and Digital Forensic, 2015.

[44] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer and Y. Weiss."’Andromaly’: a

behavioral malware detection framework for android devices”, in Journal of Intelligent

lnformation Systems, 2012, pp.161-190.

[45] C. Da, Z. Hongmei and Z. Xiangli. “Detection of Android Malware Security on

System Calls”, in IEEE Advanced Information Management, Communicates, Electronic

and Automation Control Conference (IMCEC), 2016.

[46] A. Saracino, D. Sgandurra, G. Dini and F. Martinelli. “MADAM: Effective and

Efficient Behavior-based Android Malware Detection and Prevention” in IEEE

Transactions on Dependable and Secure Computing, vol. 15, 2018, pp. 83-97.

[47] S. Hou, A. Saas, L. Chen and Y. Ye. “Deep4MalDroid: A Deep Learning

Framework for Android Malware Detection Based on Linux Kernel System Call

Graphs”, in IEEE/WIC/ACM International Conference on Web Intelligence Workshops,

2016.

[48] L. Singh and M. Hofmann. “Dynamic Behavior Analysis of Android Applications

for Malware Detection”, in International Conference on Intelligent Communication and

Computational Techniques (ICCT), 2017.

[49] A. Ferrante, E. Medvet, F. Mercaldo, J. Milosevic and C. A. Visaggio. “Spotting

the Malicious Moment: Characterizing Malware Behavior Using Dynamic Features”, in

11th International Conference on Availability, Reliability and Security, 2016.

[50] G. Canfora, E. Medvet, F. Mercaldo and C.A. Visaggio. “Detecting Android

Malware using Sequences of System Calls”, in Proceedings of the 3rd International

Workshop on Software Development Lifecycle for Mobile, 2015, pp. 13-20.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7861599
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7861599
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8858
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8858

91

[51] X. Xiao, P. Fu, X. Xiao, Y. Jiang, Q. Li and R. Lu. “Two Effective Methods to

Detect Mobile Malware”, in 4th International Conference on Computer Science and

Network Technology, 2015.

[52] M. Lindorfer, M. Neugschwandtner and C. Platzer. “MARVIN: Efficient and

Comprehensive Mobile App Classification Through Static and Dynamic Analysis”, in

IEEE 39th Annual International Computers, Software & Applications Conference,

2015.

[53] APKMirror. “APKMirror.com”. [Online]. Available: https://www.apkmirror.com/.

[Accessed: January 7, 2018].

[54] VirusTotal. “How to use VirusTotal Community”. [Online]. Available:

https://www.virustotal.com/es/documentation/virustotal-community/ [Accessed:

February 20, 2018].

[55] A. Mullis. “Android virtual devices: AVD Manager versus Genymotion“,

November 20, 2015. [Online]. Available: https://www.androidauthority.com/android-

virtual-devices-avd-manager-versus-genymotion-653093/. [Accessed: March 31, 2018].

[56] W. Mauerer. “Professional Linux Kernel Architecture”, Wiley Publishing, 2015.

[57] Google. “Git repositories on Android: Android x86 Kernel”. [Online]. Available:

https://android.googlesource.com/kernel/x86/+/android-x86-anthracite-3.10-nougat-

mr1-wear-release/include/linux/ [Accessed: February 20, 2018].

[58] GNU. “The GNU C Library (glibc)”. [Online]. Available:

https://www.gnu.org/software/libc/libc.html [Accessed: February 21, 2018].

[59] Google. “Android Anatomy and Physiology”. [Online]. Available:

https://web.archive.org/web/20160408053917/http://androidteam.googlecode.com/files/

Anatomy-Physiology-of-an-Android.pdf [Accessed: February 22, 2018].

https://www.apkmirror.com/
https://www.virustotal.com/es/documentation/virustotal-community/
https://www.androidauthority.com/android-virtual-devices-avd-manager-versus-genymotion-653093/
https://www.androidauthority.com/android-virtual-devices-avd-manager-versus-genymotion-653093/
https://android.googlesource.com/kernel/x86/+/android-x86-anthracite-3.10-nougat-mr1-wear-release/include/linux/
https://android.googlesource.com/kernel/x86/+/android-x86-anthracite-3.10-nougat-mr1-wear-release/include/linux/
https://www.gnu.org/software/libc/libc.html
https://web.archive.org/web/20160408053917/http:/androidteam.googlecode.com/files/Anatomy-Physiology-of-an-Android.pdf
https://web.archive.org/web/20160408053917/http:/androidteam.googlecode.com/files/Anatomy-Physiology-of-an-Android.pdf

92

[60] M. Kerrisk. “Linux Programmer’s Manual: ptrace”. [Online]. Available:

http://man7.org/linux/man-pages/man2/ptrace.2.html [Accessed: March 22, 2018].

[61] Google. “Git repositories on Android: Nougat Syscalls.txt”. [Online]. Available:

https://android.googlesource.com/platform/bionic/+/nougat-mr1.1-release/

libc/SYSCALLS.TXT [Accessed: January 30, 2018].

[62] Android. “Define a custom app Permission”. [Online]. Available:

https://developer.android.com/guide/topics/permissions/defining.html [Accessed:

February 30, 2018].

[63] Eberly College of Science. “Hypothesis Testing”. [Online]. Available:

https://onlinecourses.science.psu.edu/statprogram/node/136 [Accessed: February 30,

2018].

[64] Boston University School of Public Health. “Hypothesis testing for Means and

Proportions”. [Online]. Available: http://sphweb.bumc.bu.edu/otlt/MPH-

Modules/BS/BS704_HypothesisTest-Means-Proportions/BS704_HypothesisTest-

Means-Proportions3.html [Accessed: February 30, 2018].

[65] Y. Narathy. “Chi-square Distribution Table”. [Online]. Available:

https://people.smp.uq.edu.au/YoniNazarathy/stat_models_B_course_spring_07/distribut

ions/chisqtab.pdf [Accessed: April 28, 2018].

[66] C. C. Aggarwal. “Data Mining: The textbook”, Springer, 2015.

[67] J. Brownlee. “An introduction to feature selection”. Oct, 2014. [Online].

Available: https://machinelearningmastery.com/an-introduction-to-feature-selection/

[Accessed: February 30, 2018].

[68] I. Guyon and A. Elisseeff. “An Introduction to Variable and Feature Selection” in

Journal of Machine Learning Research 3, pp. 1157-1182, 2003.

[69] Die.net. “Linux Man Pages”. [Online]. Available: https://linux.die.net/man/

[Accessed: March 20, 2018].

http://man7.org/linux/man-pages/man2/ptrace.2.html
https://android.googlesource.com/platform/bionic/+/nougat-mr1.1-release/%20libc/SYSCALLS.TXT
https://android.googlesource.com/platform/bionic/+/nougat-mr1.1-release/%20libc/SYSCALLS.TXT
https://developer.android.com/guide/topics/permissions/defining.html
https://onlinecourses.science.psu.edu/statprogram/node/136
http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_HypothesisTest-Means-Proportions/BS704_HypothesisTest-Means-Proportions3.html
http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_HypothesisTest-Means-Proportions/BS704_HypothesisTest-Means-Proportions3.html
http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_HypothesisTest-Means-Proportions/BS704_HypothesisTest-Means-Proportions3.html
https://people.smp.uq.edu.au/YoniNazarathy/stat_models_B_course_spring_07/distributions/chisqtab.pdf
https://people.smp.uq.edu.au/YoniNazarathy/stat_models_B_course_spring_07/distributions/chisqtab.pdf
https://machinelearningmastery.com/an-introduction-to-feature-selection/
https://linux.die.net/man/

93

[70] Google. “<permission>”. [Online]. Available:

https://developer.android.com/guide/topics/manifest/permission-element [Accessed:

January 30, 2018].

[71] Scikit-learn. “sklearn.model_selection.KFold”. [Online]. Available: http://scikit-

learn.org/stable/modules/generated/sklearn.model_selection.KFold.html [Accessed:

January 30, 2018].

[72] Scikit-learn. “Scikit-learn: Machine learning in Python”. [Online]. Available:

http://scikit-learn.org [Accessed: January 30, 2018].

[73] F. Gorunescu. “Data Mining”, Springer, 2011.

[74] Sifium. “Types of classification algorithms in machine learning”, Feb, 2017.

[Online]. Available: https://medium.com/@sifium/machine-learning-types-of-

classification-9497bd4f2e14 [Accessed: February 30, 2018].

[75] Scikit-learn. “Decision Trees”. [Online]. Available: http://scikit-

learn.org/stable/modules/tree.html [Accessed: January 28, 2018].

[76] T. Plapinger. “What is a decision tree?”, Jul, 2017. [Online]. Available:

https://towardsdatascience.com/what-is-a-decision-tree-22975f00f3e1 [Accessed:

January 28, 2018].

[77] P. Gupta. “Decision Trees in Machine Learning”, May, 2017. [Online]. Available:

https://towardsdatascience.com/decision-trees-in-machine-learning-641b9c4e8052

[Accessed: January 28, 2018].

https://developer.android.com/guide/topics/manifest/permission-element
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
http://scikit-learn.org/
https://medium.com/@sifium/machine-learning-types-of-classification-9497bd4f2e14
https://medium.com/@sifium/machine-learning-types-of-classification-9497bd4f2e14
http://scikit-learn.org/stable/modules/tree.html
http://scikit-learn.org/stable/modules/tree.html
https://towardsdatascience.com/what-is-a-decision-tree-22975f00f3e1
https://towardsdatascience.com/decision-trees-in-machine-learning-641b9c4e8052

94

Appendix 1 – System call’s statistics

Next table shows the mean value and standard deviation for each dataset composed by

1000 applications and 212 system calls:

System Call Legitimate Dataset Old Malware Dataset New Malware Dataset

 Mean Std Dev Mean Std Dev Mean Std Dev

sched_get_priority_min 0.004 0.0894 0.002 0.0632 0.002 0.0632

Lseek 0.852 4.8925 0.6235 3.4842 0.916 4.0779

Pipe 0.004 0.0894 0.002 0.0632 0.002 0.0632

epoll_ctl 1.072 1.5965 1.317 1.6645 1.402 1.8194

rt_sigtimedwait 0.0 0.0 0.0 0.0 0.0 0.0

Setfsuid 0.0 0.0 0.0 0.0 0.0 0.0

Tee 0.0 0.0 0.0 0.0 0.0 0.0

Uname 0.026 0.4973 0.014 0.3547 0.013 0.3519

Kill 0.0 0.0 0.0005 0.0224 0.0 0.0

Swapoff 0.0 0.0 0.0 0.0 0.0 0.0

Readahead 0.0 0.0 0.0 0.0 0.0 0.0

clock_getres 0.005 0.0705 0.0025 0.0499 0.0025 0.0499

Preadv 0.0 0.0 0.0 0.0 0.0 0.0

setresgid32 0.0 0.0 0.0 0.0 0.0 0.0

Gettid 0.225 6.4683 0.1125 4.5751 0.1125 4.5751

Sethostname 0.0 0.0 0.0 0.0 0.0 0.0

timer_delete 0.0 0.0 0.0 0.0 0.0 0.0

Umask 0.02 0.3682 0.01 0.2606 0.01 0.2606

sched_getaffinity 0.0 0.0 0.0 0.0 0.0 0.0

Writev 12.449 39.6861 12.952 29.2155 27.3565 86.0063

sched_setparam 0.0 0.0 0.0 0.0 0.0 0.0

Fchmod 0.026 0.2265 0.013 0.1607 0.096 0.5242

_llseek 30.889 130.2178 18.2055 93.0928 19.8055 96.0433

Getpid 0.371 4.3746 0.278 3.7406 0.7905 8.1252

setreuid32 0.0 0.0 0.0 0.0 0.0 0.0

signalfd4 0.0 0.0 0.0 0.0 0.0 0.0

epoll_wait 0.001 0.0316 0.0005 0.0224 0.0005 0.0224

Capset 0.0 0.0 0.0 0.0 0.0 0.0

Personality 0.0 0.0 0.0 0.0 0.0 0.0

delete_module 0.0 0.0 0.0 0.0 0.0 0.0

95

dup3 0.0 0.0 0.0 0.0 0.0 0.0

sched_setaffinity 0.0 0.0 0.0 0.0 0.0 0.0

Read 48.165 155.4994 29.188 111.8058 53.328 175.6358

Getppid 0.313 0.4637 0.159 0.3657 0.3645 0.4813

getgid32 0.0 0.0 0.0 0.0 0.0 0.0

Capget 0.0 0.0 0.0 0.0 0.0 0.0

getgroups32 0.0 0.0 0.0 0.0 0.0 0.0

Readlinkat 13.326 15.7562 25.346 18.8199 25.246 19.6004

sched_rr_get_interval 0.0 0.0 0.0 0.0 0.0 0.0

Setfsgid 0.0 0.0 0.0 0.0 0.0 0.0

Renameat 0.845 5.4607 0.8825 4.3868 0.6685 4.0679

Fsync 1.296 5.7327 1.242 4.6054 1.0835 4.388

geteuid32 3.167 6.6419 3.0705 6.2316 2.236 6.2344

Unshare 0.0 0.0 0.0 0.0 0.0 0.0

epoll_pwait 8.954 28.6496 13.287 33.3084 27.833 65.453

Recvfrom 13.748 78.436 109.2905 243.8441 43.038 121.0542

sched_get_priority_max 0.004 0.0894 0.002 0.0632 0.002 0.0632

Symlinkat 0.0 0.0 0.0 0.0 0.0 0.0

Settimeofday 0.0 0.0 0.0 0.0 0.0 0.0

timer_create 0.0 0.0 0.0 0.0 0.0 0.0

Sendto 1.093 4.9121 9.5155 20.8756 3.6615 9.7667

Mkdirat 2.597 3.5359 2.01 2.6885 2.123 2.9339

Lgetxattr 0.0 0.0 0.0 0.0 0.0 0.0

Linkat 0.0 0.0 0.0 0.0 0.0 0.0

Shutdown 0.0 0.0 0.0 0.0 0.001 0.0316

epoll_create1 0.338 0.4876 0.1715 0.3861 0.3705 0.4901

getresuid32 0.0 0.0 0.0 0.0 0.0 0.0

Adjtimex 0.0 0.0 0.0 0.0 0.0 0.0

Sync 0.0 0.0 0.0 0.0 0.0 0.0

Syslog 0.0 0.0 0.0 0.0 0.0 0.0

Fchownat 0.0 0.0 0.0 0.0 0.0 0.0

setgid32 0.0 0.0 0.0 0.0 0.0 0.0

setregid32 0.0 0.0 0.0 0.0 0.0 0.0

fadvise64_64 0.0 0.0 0.0 0.0 0.0 0.0

Getsockname 0.008 0.1412 0.0075 0.1202 0.0075 0.1159

Close 45.603 25.6286 55.4745 25.6668 54.606 26.2713

Flock 0.442 5.0194 0.221 3.5561 0.428 3.7184

Lsetxattr 0.0 0.0 0.0 0.0 0.0 0.0

Pwritev 0.0 0.0 0.0 0.0 0.0 0.0

Llistxattr 0.0 0.0 0.0 0.0 0.0 0.0

Tgkill 0.0 0.0 0.0 0.0 0.001 0.0316

getegid32 0.0 0.0 0.0 0.0 0.0 0.0

pselect6 0.0 0.0 0.0 0.0 0.0 0.0

96

rt_sigprocmask 12.602 27.3517 40.095 62.0614 18.9485 37.9334

accept4 0.0 0.0 0.0 0.0 0.0 0.0

Reboot 0.0 0.0 0.0 0.0 0.0 0.0

Fremovexattr 0.0 0.0 0.0 0.0 0.0 0.0

setgroups32 0.0 0.0 0.0 0.0 0.0 0.0

Setsid 0.0 0.0 0.0 0.0 0.0 0.0

Exit 0.0 0.0 0.0 0.0 0.0 0.0

timerfd_create 0.0 0.0 0.0 0.0 0.0 0.0

Sigaltstack 0.129 0.6873 0.5385 0.95 0.515 0.9358

inotify_rm_watch 0.0 0.0 0.0 0.0 0.0 0.0

Munmap 55.594 51.9374 92.9135 57.0101 90.9865 58.753

Socketpair 0.006 0.1094 0.004 0.0894 0.016 0.1782

Setrlimit 0.001 0.0316 0.0005 0.0224 0.001 0.0316

Getitimer 0.0 0.0 0.0 0.0 0.0 0.0

Fchmodat 2.603 5.9088 2.4865 4.8525 2.2015 4.6682

Setpgid 0.0 0.0 0.0 0.0 0.0 0.0

Getrandom 0.042 0.4672 0.021 0.331 0.021 0.331

Getcwd 0.032 0.3674 0.016 0.2603 0.016 0.2603

fstatfs64 0.003 0.0706 0.0015 0.05 0.0015 0.05

fstatat64 56.303 92.9289 56.6735 73.6869 60.771 89.0602

rt_sigsuspend 0.0 0.0 0.0 0.0 0.0 0.0

inotify_add_watch 0.042 0.2055 0.0215 0.1485 0.0285 0.1694

getresgid32 0.0 0.0 0.0 0.0 0.0 0.0

timer_settime 0.0 0.0 0.0 0.0 0.0 0.0

Fchdir 0.0 0.0 0.0 0.0 0.0 0.0

timer_gettime 0.0 0.0 0.0 0.0 0.0 0.0

Getpeername 0.0 0.0 0.0 0.0 0.0 0.0

Sigaction 0.614 2.2466 2.6615 4.3166 2.5725 4.0622

Getsid 0.0 0.0 0.0 0.0 0.0 0.0

Mknodat 0.086 1.0033 0.043 0.7107 0.043 0.7107

Setsockopt 0.057 0.939 0.055 0.7007 0.041 0.6851

Munlockall 0.0 0.0 0.0 0.0 0.0 0.0

Msync 0.113 1.7367 0.0565 1.2294 0.0565 1.2294

process_vm_readv 0.0 0.0 0.0 0.0 0.0 0.0

pipe2 0.096 0.7327 0.058 0.5564 0.1045 1.024

set_thread_area 0.0 0.0 0.0 0.0 0.0005 0.0224

Times 0.0 0.0 0.0 0.0 0.0 0.0

prlimit64 0.0 0.0 0.0 0.0 0.0 0.0

pwrite64 14.041 30.3444 12.956 27.4921 9.469 27.4994

Vfork 0.016 0.1725 0.0105 0.1319 0.023 0.2499

Nanosleep 0.057 1.2457 0.0285 0.8813 0.0285 0.8813

Sendmsg 0.0 0.0 0.005 0.0773 0.004 0.0631

Clone 11.936 9.0007 8.7695 7.6508 9.131 7.8919

97

Flistxattr 0.0 0.0 0.0 0.0 0.0 0.0

Getcpu 0.0 0.0 0.0 0.0 0.0 0.0

Splice 0.0 0.0 0.0 0.0 0.0 0.0

rt_sigaction 0.07 2.2125 0.035 1.5649 0.035 1.5649

clock_gettime 749.879 466.3368 426.187 479.1833 389.67 497.0268

Ugetrlimit 0.014 0.1944 0.022 0.1831 0.0485 0.2432

umount2 0.0 0.0 0.0 0.0 0.0 0.0

rt_sigreturn 0.0 0.0 0.0 0.0 0.004 0.1581

rt_sigpending 0.0 0.0 0.0 0.0 0.0 0.0

Setxattr 0.0 0.0 0.0 0.0 0.0 0.0

Getpgid 0.0 0.0 0.0 0.0 0.0 0.0

Brk 0.0 0.0 0.0 0.0 0.0 0.0

Fsetxattr 0.0 0.0 0.0 0.0 0.0 0.0

Acct 0.0 0.0 0.0 0.0 0.0 0.0

clock_settime 0.0 0.0 0.0 0.0 0.0 0.0

Getsockopt 3.665 12.9546 3.212 9.616 3.683 11.0707

exit_group 0.0 0.0 0.0 0.0 0.0 0.0

Getpriority 0.094 0.3304 0.048 0.2402 0.048 0.2402

Listxattr 0.0 0.0 0.0 0.0 0.0 0.0

Sysinfo 0.0 0.0 0.0 0.0 0.0 0.0

Removexattr 0.0 0.0 0.0 0.0 0.0 0.0

Faccessat 22.461 22.7219 18.258 18.8957 17.8985 21.8602

Dup 3.502 3.1366 3.871 3.6028 3.682 3.1831

Fdatasync 5.344 11.2058 5.3635 10.8609 3.89 10.1719

Setns 0.0 0.0 0.0 0.0 0.0 0.0

Mprotect 169.244 255.1326 268.415 300.745 295.302 312.3796

Listen 0.008 0.1093 0.0045 0.0805 0.0045 0.0805

fchown32 0.0 0.0 0.0 0.0 0.0 0.0

getuid32 19.574 27.4583 21.417 25.6297 32.1925 48.4912

init_module 0.0 0.0 0.0 0.0 0.0 0.0

sched_yield 1.865 8.0529 1.302 6.6048 1.5675 11.058

statfs64 0.268 0.7498 0.261 0.6464 0.1805 0.6066

ftruncate64 0.213 1.4077 0.1065 1.0011 0.114 1.0213

Fgetxattr 0.0 0.0 0.0 0.0 0.0 0.0

Ptrace 0.0 0.0 0.0 0.0 0.0 0.0

Vmsplice 0.0 0.0 0.0 0.0 0.0 0.0

fcntl64 20.851 38.314 20.108 35.4502 15.495 35.3675

Swapon 0.0 0.0 0.0 0.0 0.0 0.0

Fallocate 0.0 0.0 0.0 0.0 0.0 0.0

Execve 0.0 0.0 0.0 0.0 0.0 0.0

Socket 0.456 1.8166 0.7525 1.3602 0.766 1.4924

wait4 0.001 0.0316 0.0005 0.0224 0.122 0.6067

Chdir 0.219 6.9219 0.1095 4.8958 0.1095 4.8958

98

Madvise 52.268 40.0585 78.3115 43.9307 79.094 47.256

fstat64 60.813 43.9699 69.8725 42.8535 65.273 41.3114

Mount 0.0 0.0 0.0 0.0 0.0 0.0

timerfd_gettime 0.0 0.0 0.0 0.0 0.0 0.0

rt_sigqueueinfo 0.0 0.0 0.0 0.0 0.0 0.0

Getrusage 0.0 0.0 0.0 0.0 0.0 0.0

timerfd_settime 0.0 0.0 0.0 0.0 0.0 0.0

sched_setscheduler 0.016 0.1891 0.008 0.1339 0.008 0.1339

Utimensat 0.0 0.0 0.0 0.0 0.0075 0.2036

Bind 0.016 0.2318 0.0085 0.1656 0.0085 0.1656

eventfd2 0.324 0.4765 0.1645 0.3761 0.3635 0.4851

Connect 0.285 0.458 0.665 0.599 0.649 0.6227

getdents64 3.693 4.2697 2.436 3.4342 7.343 84.2587

Readv 0.0 0.0 0.0 0.0 0.0 0.0

Mremap 0.073 0.9485 0.0365 0.6717 0.0365 0.6717

pread64 47.026 77.9913 51.9545 68.7889 48.6345 81.9527

setuid32 0.0 0.0 0.0 0.0 0.0 0.0

Prctl 43.82 34.3746 68.4385 39.9062 68.3895 41.6805

stat64 0.009 0.2023 0.0045 0.1431 0.0045 0.1431

Recvmmsg 0.0 0.0 0.0 0.0 0.0 0.0

Chroot 0.366 11.5681 0.183 8.182 0.183 8.182

sched_getparam 0.004 0.0894 0.002 0.0632 0.002 0.0632

truncate64 0.0 0.0 0.0 0.0 0.0 0.0

setresuid32 0.0 0.0 0.0 0.0 0.0 0.0

Write 33.224 145.0314 22.8055 119.0203 48.8405 158.9098

Munlock 0.009 0.1641 0.0045 0.1161 0.0045 0.1161

Setpriority 0.024 0.2131 0.0265 0.1918 0.0495 0.2409

Recvmsg 0.0 0.0 0.0 0.0 0.0 0.0

inotify_init1 0.042 0.2006 0.0215 0.145 0.0285 0.1664

Mincore 0.0 0.0 0.0 0.0 0.0 0.0

Sendfile 0.0 0.0 0.0 0.0 0.0 0.0

Sendmmsg 0.0 0.0 0.0 0.0 0.0 0.0

timer_getoverrun 0.0 0.0 0.0 0.0 0.0 0.0

restart_syscall 0.0 0.0 0.001 0.0316 0.005 0.0705

Truncate 0.0 0.0 0.0 0.0 0.0 0.0

Lremovexattr 0.0 0.0 0.0 0.0 0.0 0.0

Openat 47.721 25.2029 59.808 28.6254 57.8275 26.8831

Waitid 0.0 0.0 0.0 0.0 0.0 0.0

Getxattr 0.0 0.0 0.0 0.0 0.0 0.0

sched_getscheduler 0.006 0.1094 0.003 0.0774 0.003 0.0774

Ioctl 144.14 89.137 145.575 101.0203 152.9925 103.7091

clock_nanosleep 0.0 0.0 0.0 0.0 0.0 0.0

Unlinkat 2.044 9.9126 1.9375 7.4045 1.875 7.4984

99

clock_adjtime 0.0 0.0 0.0 0.0 0.0 0.0

set_tid_address 0.0 0.0 0.0 0.0 0.0 0.0

Setitimer 0.0 0.0 0.0 0.0 0.0 0.0

Gettimeofday 33.914 77.6484 19.896 58.4256 17.184 57.4809

Futex 92.637 61.6389 67.264 52.7577 87.2165 61.9276

mmap2 99.496 60.6225 140.0055 65.1437 138.424 68.6594

sendfile64 0.0 0.0 0.0 0.0 0.0 0.0

Mlockall 0.0 0.0 0.0 0.0 0.0 0.0

Ppoll 0.042 0.2006 0.2565 0.4435 0.2315 0.4242

Mlock 0.044 0.9023 0.022 0.6384 0.022 0.6384

100

Appendix 2 – System calls’ Welch’s test

Next table shows the relation between Welch’s test or z test score on both analyzed

cases (Legitimate vs. Old Malware and Legitimate vs. New Malware) and degree of

rejection of null hypothesis (green coloured), if applied, or not (red coloured). If statistic

could not be calculated (not enough data to statistic test), null value is indicated (orange

coloured).

System Call
Legitimate vs.

Old Malware

Reject Null

Hypothesis

Legitimate vs.

New Malware

Reject Null

Hypothesis

sched_get_priority_min 0.577672893 0.57767289

Lseek 1.203028112 -0.31776043

Pipe 0.577672893 0.57767289

epoll_ctl -3.35920016
Yes with α=0.001 and

p = 0.000782
-4.31122938

Yes with α=0.0001

and p < 0.00001

rt_sigtimedwait null null

setfsuid null null

tee null null

uname 0.621237041 0.67479824

kill -0.70586555 null

swapoff null null

readahead null null

clock_getres 0.915299082 0.91529908

preadv null null

setresgid32 null null

gettid 0.449029547 0.44902955

sethostname null null

timer_delete null null

umask 0.701027886 0.70102789

sched_getaffinity null null

writev
-0.32277216

-4.9768951

Yes with α=0.0001

and p < 0.00001

sched_setparam null null

fchmod 1.480269752 -3.87641892 Yes with α=0.0001

_llseek
2.505674149

Yes with α=0.05 and

p = 0.012224
2.16612685

Yes with α=0.05 and

p = 0.030304

getpid 0.510948802 -1.43755456

101

setreuid32 null null

signalfd4 null null

epoll_wait 0.408204751 0.40820475

capset null null

personality null null

delete_module null null

dup3 null null

sched_setaffinity null null

read 3.133353112
Yes with α=0.01 and

p = 0.001729
-0.69600165

getppid 8.246335691
Yes with α=0.0001

and p < 0.00001
-2.4367732

Yes with α=0.05 and

p = 0.014851

getgid32 null null

capget null null

getgroups32 null null

readlinkat -15.4862132
Yes with α=0.0001

and p < 0.00001
-14.9888673

Yes with α=0.0001

and p < 0.00001

sched_rr_get_interval null null

setfsgid null null

renameat -0.16929849 0.81967172

fsync 0.23222089 0.93081511

geteuid32 0.335062023

3.23188737
Yes with α=0.01 and

p = 0.00123

unshare null null

epoll_pwait
-3.1187604

Yes with α=0.01 and

p = 0.001821
-8.3557529

Yes with α=0.0001

and p < 0.00001

recvfrom
-11.795177

Yes with α=0.0001

and p < 0.00001
-6.42128104

Yes with α=0.0001

and p < 0.00001

sched_get_priority_max 0.577672893 0.57767289

symlinkat null null

settimeofday null null

timer_create null null

sendto -12.4193868
Yes with α=0.0001

and p < 0.00001
-7.42958313

Yes with α=0.0001

and p < 0.00001

mkdirat 4.178955277
Yes with α=0.0001

and p = 0.000029
3.26234992

Yes with α=0.01 and

p = 0.001105

lgetxattr null null

linkat null null

shutdown null -1.00072078

epoll_create1 8.465563367
Yes with α=0.0001

and p < 0.00001
-1.4865904

getresuid32 null null

adjtimex null null

102

sync null null

syslog null null

fchownat null null

setgid32 null null

setregid32 null null

fadvise64_64 null null

getsockname 0.08526729 0.08655462

close -8.60636194
Yes with α=0.0001

and p < 0.00001
-7.7571543

Yes with α=0.0001

and p < 0.00001

flock 1.136097036 0.07087279

lsetxattr null null

pwritev null null

llistxattr null null

tgkill null -1.00072078

getegid32 null null

pselect6 null null

rt_sigprocmask -12.8190496
Yes with α=0.0001

and p < 0.00001
-4.29145044

Yes with α=0.0001

and p = 0.000018

accept4 null null

reboot null null

fremovexattr null null

setgroups32 null null

setsid null null

exit null null

timerfd_create null null

sigaltstack -11.0438705
Yes with α=0.0001

and p < 0.00001
-10.5129786

Yes with α=0.0001

and p < 0.00001

inotify_rm_watch null null

munmap -15.302532
Yes with α=0.0001

and p < 0.00001
-14.2723198

Yes with α=0.0001

and p < 0.00001

socketpair 0.447653407 -1.51231425

setrlimit 0.408204751 0

getitimer null null

fchmodat 0.4818302 1.68605217

setpgid null null

getrandom 1.159819529 1.15981953

getcwd 1.123702878 1.12370288

fstatfs64 0.548294544 0.54829454

fstatat64 -0.09878932 -1.09770256

rt_sigsuspend null null

inotify_add_watch 2.556863137
Yes with α=0.05 and

p = 0.010564
1.60298392

getresgid32 null null

103

timer_settime null null

fchdir null null

timer_gettime null null

getpeername null null

sigaction -13.3054876
Yes with α=0.0001

and p < 0.00001
-13.3417634

Yes with α=0.0001

and p < 0.00001

getsid null null

mknodat 1.105948429 1.10594843

setsockopt 0.053981126 0.43529028

munlockall null null

msync 0.839685706 0.83968571

process_vm_readv null null

pipe2 1.306134824 -0.21347451

set_thread_area null -0.70586555

times null null

prlimit64 null null

pwrite64 0.837944479

3.53052865
Yes with α=0.001 and

p = 0.000415

vfork 0.800947527 -0.72898373

nanosleep 0.590623386 0.59062339

sendmsg -2.04545774
Yes with α=0.05 and

p = 0.040855
-2.00461341

Yes with α=0.05 and

p = 0.04507

clone 8.476541826
Yes with α=0.0001

and p < 0.00001
7.40999343

Yes with α=0.0001

and p < 0.00001

flistxattr null null

getcpu null null

splice null null

rt_sigaction 0.408413126 0.40841313

clock_gettime 15.30862261
Yes with α=0.0001

and p < 0.00001
16.7131788

Yes with α=0.0001

and p < 0.00001

ugetrlimit -0.94731311

-3.50407153
Yes with α=0.001 and

p = 0.000458

umount2 null null

rt_sigreturn null -0.80007025

rt_sigpending null null

setxattr null null

getpgid null null

brk null null

fsetxattr null null

acct null null

clock_settime null null

getsockopt 0.887912555 -0.03340316

exit_group null null

104

getpriority 3.561077717
Yes with α=0.001 and

p = 0.000369
3.56107772

Yes with α=0.001 and

p = 0.000369

listxattr null null

sysinfo null null

removexattr null null

faccessat 4.497484228
Yes with α=0.0001

and p < 0.00001
4.57589706

Yes with α=0.0001

and p < 0.00001

dup -2.44277525
Yes with α=0.05 and

p = 0.014606
-1.27373559

fdatasync -0.03951474 3.03816325

setns null null

mprotect -7.95176191
Yes with α=0.0001

and p < 0.00001
-9.88352343

Yes with α=0.0001

and p < 0.00001

listen 0.815349465 0.81534946

fchown32 null null

getuid32 -1.551624

-7.16064468
Yes with α=0.0001

and p < 0.00001

init_module null null

sched_yield 1.709418529 0.68772835

statfs64 0.223603033

2.8689857
Yes with α=0.01 and

p = 0.004119

ftruncate64 1.949679661 1.8000973

fgetxattr null null

ptrace null null

vmsplice null null

fcntl64

0.450122912

3.2482551

Yes with α=0.01 and

p = 0.001161

swapon null null

fallocate null null

execve null null

socket -4.13155473
Yes with α=0.0001

and p = 0.000036
-4.16970603

Yes with α=0.0001

and p = 0.000031

wait4 0.408204751

-6.29829625
Yes with α=0.0001

and p < 0.00001

chdir 0.408418476 0.40841848

madvise -13.8525535
Yes with α=0.0001

and p < 0.00001
-13.6934859

Yes with α=0.0001

and p < 0.00001

fstat64 -4.66601939
Yes with α=0.0001

and p < 0.00001
-2.33768036

Yes with α=0.05 and

p = 0.019439

mount null null

timerfd_gettime null null

rt_sigqueueinfo null null

getrusage null null

timerfd_settime null null

105

sched_setscheduler 1.091820623 1.09182062

utimensat null -1.16488617

bind 0.832539202 0.8325392

eventfd2 8.308830557
Yes with α=0.0001

and p < 0.00001
-1.83696242

connect -15.9365216
Yes with α=0.0001

and p < 0.00001
-14.8910533

Yes with α=0.0001

and p < 0.00001

getdents64 7.254383525
Yes with α=0.0001

and p < 0.00001
-1.36811067

readv null null

mremap 0.99309778 0.99309778

pread64 -1.49868521 -0.44960895

setuid32 null null

prctl

-14.7808404

Yes with α=0.0001

and p < 0.00001 -14.3809775

Yes with α=0.0001

and p < 0.00001

stat64 0.574272569 0.57427257

recvmmsg null null

chroot 0.408419002 0.408419

sched_getparam 0.577672893 0.57767289

truncate64 null null

setresuid32 null null

write 1.756039343

-2.29539196
Yes with α=0.05 and

p = 0.021733

munlock 0.707911111 0.70791111

setpriority -0.27574468

-2.50718653
Yes with α=0.05 and

p = 0.012176

recvmsg null null

inotify_init1 2.619065538
Yes with α=0.01 and

p = 0.008819
1.63796695

mincore null null

sendfile null null

sendmmsg null null

timer_getoverrun null null

restart_syscall -1.00072078

-2.24275011
Yes with α=0.05 and

p = 0.024961

truncate null null

lremovexattr null null

openat

-10.0218241

Yes with α=0.0001

and p < 0.00001 -8.67299164

Yes with α=0.0001

and p < 0.00001

waitid null null

getxattr null null

sched_getscheduler 0.707911111 0.70791111

ioctl -0.33682749 -2.04707487 Yes with α=0.05 and

106

p = 0.040658

clock_nanosleep null null

unlinkat 0.272195852 0.42997444

clock_adjtime null null

set_tid_address null null

setitimer null null

gettimeofday

4.561787918

Yes with α=0.0001

and p < 0.00001 5.47617955

Yes with α=0.0001

and p < 0.00001

futex

9.889374752

Yes with α=0.0001

and p < 0.00001 1.96178954

Yes with α=0.05 and

p = 0.049797

mmap2

-14.3955245

Yes with α=0.0001

and p < 0.00001 -13.4400783

Yes with α=0.0001

and p < 0.00001

sendfile64 null null

mlockall null null

ppoll -13.9352536
Yes with α=0.0001

and p < 0.00001
-12.77069

Yes with α=0.0001

and p < 0.00001

mlock 0.629419829 0.62941983

107

Appendix 3 – Permissions’ statistics

Next table shows the count (frequency) of each permission attribute for each dataset

composed by 1000 application samples:

 Legitimate Dataset Old Malware Dataset New Malware Dataset

Permission Absent Present Absent Present Absent Present

ADD_VOICEMAIL 1000 0 1000 0 1000 0

USE_SIP 996 4 1000 0 971 29

ACCESS_NOTIFICATION_POLIC

Y
1000 0 1000 0 1000 0

CAMERA 676 324 891 109 848 152

REQUEST_DELETE_PACKAGES 1000 0 1000 0 1000 0

BIND_CONDITION_PROVIDER_S

ERVICE
1000 0 1000 0 1000 0

BIND_QUICK_SETTINGS_TILE 965 35 1000 0 1000 0

MASTER_CLEAR 998 2 999 1 1000 0

BIND_DEVICE_ADMIN 978 22 1000 0 861 139

GET_ACCOUNTS_PRIVILEGED 995 5 1000 0 1000 0

READ_SYNC_SETTINGS 882 118 995 5 967 33

FACTORY_TEST 1000 0 997 3 1000 0

SET_ALWAYS_FINISH 1000 0 999 1 999 1

READ_CALENDAR 928 72 998 2 959 41

BIND_CARRIER_SERVICES 997 3 1000 0 1000 0

CHANGE_CONFIGURATION 981 19 983 17 867 133

SET_TIME 999 1 1000 0 997 3

PERSISTENT_ACTIVITY 998 2 996 4 971 29

USE_FINGERPRINT 876 124 1000 0 971 29

GET_PACKAGE_SIZE 955 45 995 5 945 55

ACCESS_LOCATION_EXTRA_CO

MMANDS
976 24 836 164 930 70

CONTROL_LOCATION_UPDATE

S
1000 0 997 3 999 1

SEND_RESPOND_VIA_MESSAGE 979 21 1000 0 986 14

CLEAR_APP_CACHE 986 14 996 4 949 51

BIND_INPUT_METHOD 983 17 999 1 998 2

WRITE_GSERVICES 1000 0 999 1 999 1

SIGNAL_PERSISTENT_PROCESS 1000 0 999 1 995 5

108

ES

BIND_VOICE_INTERACTION 1000 0 1000 0 1000 0

BIND_REMOTEVIEWS 883 117 1000 0 998 2

BATTERY_STATS 979 21 985 15 947 53

READ_VOICEMAIL 1000 0 1000 0 1000 0

SET_WALLPAPER_HINTS 987 13 993 7 957 43

BIND_NFC_SERVICE 994 6 1000 0 1000 0

REQUEST_IGNORE_BATTERY_O

PTIMIZATIONS
974 26 1000 0 996 4

RESTART_PACKAGES 988 12 929 71 911 89

CALL_PRIVILEGED 997 3 999 1 989 11

CAPTURE_SECURE_VIDEO_OUT

PUT
999 1 1000 0 998 2

DISABLE_KEYGUARD 954 46 956 44 927 73

DELETE_PACKAGES 994 6 976 24 953 47

CHANGE_COMPONENT_ENABL

ED_STATE
999 1 990 10 993 7

BIND_APPWIDGET 996 4 998 2 973 27

RECORD_AUDIO 827 173 967 33 872 128

READ_PHONE_NUMBERS 1000 0 1000 0 1000 0

VIBRATE 432 568 319 681 768 232

WRITE_SECURE_SETTINGS 974 26 978 22 982 18

UNINSTALL_SHORTCUT 1000 0 1000 0 1000 0

WRITE_CALL_LOG 970 30 1000 0 958 42

ACCESS_CHECKIN_PROPERTIES 1000 0 998 2 998 2

PACKAGE_USAGE_STATS 951 49 1000 0 948 52

GLOBAL_SEARCH 993 7 999 1 1000 0

CHANGE_WIFI_STATE 795 205 920 80 759 241

BROADCAST_STICKY 943 57 992 8 933 67

KILL_BACKGROUND_PROCESSE

S
958 42 985 15 898 102

BIND_INCALL_SERVICE 997 3 1000 0 1000 0

SET_TIME_ZONE 1000 0 999 1 969 31

BLUETOOTH_ADMIN 872 128 977 23 942 58

BLUETOOTH_PRIVILEGED 996 4 1000 0 999 1

BIND_TEXT_SERVICE 1000 0 1000 0 1000 0

MANAGE_DOCUMENTS 967 33 1000 0 997 3

BIND_VR_LISTENER_SERVICE 1000 0 1000 0 1000 0

SET_WALLPAPER 951 49 811 189 936 64

WAKE_LOCK 141 859 425 575 603 397

WRITE_CALENDAR 949 51 987 13 964 36

BIND_SCREENING_SERVICE 999 1 1000 0 1000 0

BIND_AUTOFILL_SERVICE 996 4 1000 0 1000 0

109

REQUEST_INSTALL_PACKAGES 963 37 1000 0 1000 0

SET_PREFERRED_APPLICATION

S
999 1 981 19 999 1

NFC 927 73 1000 0 969 31

CALL_PHONE 895 105 923 77 865 135

BIND_PRINT_SERVICE 1000 0 1000 0 1000 0

INTERNET 16 984 19 981 39 961

BIND_VPN_SERVICE 982 18 1000 0 997 3

READ_SMS 917 83 778 222 800 200

ANSWER_PHONE_CALLS 997 3 1000 0 1000 0

MEDIA_CONTENT_CONTROL 978 22 1000 0 999 1

BROADCAST_PACKAGE_REMO

VED
999 1 998 2 998 2

BIND_VISUAL_VOICEMAIL_SER

VICE
998 2 1000 0 1000 0

BIND_NOTIFICATION_LISTENER

_SERVICE
953 47 1000 0 989 11

REORDER_TASKS 980 20 999 1 963 37

MODIFY_AUDIO_SETTINGS 893 107 981 19 941 59

READ_PHONE_STATE 669 331 88 912 342 658

WRITE_SETTINGS 860 140 889 111 828 172

BIND_CARRIER_MESSAGING_SE

RVICE
998 2 1000 0 1000 0

BIND_WALLPAPER 991 9 1000 0 997 3

DUMP 990 10 998 2 998 2

UPDATE_DEVICE_STATS 1000 0 987 13 993 7

SEND_SMS 935 65 637 363 772 228

ACCESS_COARSE_LOCATION 643 357 520 480 709 291

READ_EXTERNAL_STORAGE 464 536 980 20 581 419

SYSTEM_ALERT_WINDOW 828 172 941 59 582 418

CHANGE_WIFI_MULTICAST_ST

ATE
938 62 998 2 959 41

BIND_MIDI_DEVICE_SERVICE 999 1 1000 0 1000 0

EXPAND_STATUS_BAR 975 25 996 4 960 40

WRITE_APN_SETTINGS 995 5 953 47 955 45

BIND_TV_INPUT 1000 0 1000 0 1000 0

SET_ALARM 998 2 1000 0 1000 0

WRITE_CONTACTS 931 69 970 30 928 72

PROCESS_OUTGOING_CALLS 966 34 963 37 904 96

RECEIVE_BOOT_COMPLETED 502 498 454 546 658 342

MODIFY_PHONE_STATE 989 11 984 16 964 36

BIND_TELECOM_CONNECTION_

SERVICE
998 2 1000 0 1000 0

110

RECEIVE_MMS 968 32 981 19 955 45

GET_TASKS 882 118 853 147 617 383

READ_INPUT_STATE 1000 0 999 1 1000 0

READ_CALL_LOG 945 55 1000 0 938 62

READ_SYNC_STATS 948 52 999 1 969 31

CAPTURE_AUDIO_OUTPUT 998 2 1000 0 997 3

REQUEST_COMPANION_RUN_IN

_BACKGROUND
1000 0 1000 0 1000 0

RECEIVE_WAP_PUSH 996 4 982 18 956 44

MOUNT_UNMOUNT_FILESYSTE

MS
976 24 960 40 745 255

REQUEST_COMPANION_USE_D

ATA_IN_BACKGROUND
1000 0 1000 0 1000 0

ACCESS_WIFI_STATE 414 586 470 530 505 495

INSTANT_APP_FOREGROUND_S

ERVICE
1000 0 1000 0 1000 0

ACCESS_FINE_LOCATION 604 396 359 641 717 283

BIND_DREAM_SERVICE 992 8 1000 0 1000 0

ACCESS_NETWORK_STATE 37 963 227 773 386 614

BROADCAST_WAP_PUSH 977 23 999 1 975 25

BODY_SENSORS 996 4 1000 0 972 28

DIAGNOSTIC 999 1 999 1 984 16

STATUS_BAR 992 8 999 1 998 2

READ_LOGS 946 54 678 322 893 107

BLUETOOTH 794 206 972 28 915 85

READ_FRAME_BUFFER 998 2 999 1 997 3

INSTALL_SHORTCUT 993 7 1000 0 999 1

SET_PROCESS_LIMIT 998 2 999 1 1000 0

WRITE_VOICEMAIL 1000 0 1000 0 1000 0

CAPTURE_VIDEO_OUTPUT 995 5 1000 0 998 2

TRANSMIT_IR 998 2 1000 0 972 28

CHANGE_NETWORK_STATE 897 103 933 67 794 206

WRITE_SYNC_SETTINGS 877 123 986 14 965 35

ACCOUNT_MANAGER 998 2 999 1 972 28

LOCATION_HARDWARE 997 3 1000 0 1000 0

BIND_ACCESSIBILITY_SERVICE 957 43 1000 0 972 28

GET_ACCOUNTS 561 439 753 247 806 194

RECEIVE_SMS 907 93 837 163 758 242

MOUNT_FORMAT_FILESYSTEM

S
999 1 998 2 1000 0

DELETE_CACHE_FILES 999 1 941 59 998 2

WRITE_EXTERNAL_STORAGE 219 781 275 725 268 732

BIND_CHOOSER_TARGET_SERV 973 27 1000 0 1000 0

111

ICE

MANAGE_OWN_CALLS 1000 0 1000 0 1000 0

REBOOT 996 4 996 4 997 3

INSTALL_PACKAGES 563 437 912 88 935 65

SET_DEBUG_APP 999 1 999 1 995 5

INSTALL_LOCATION_PROVIDER 1000 0 999 1 1000 0

SET_ANIMATION_SCALE 1000 0 999 1 998 2

READ_CONTACTS 734 266 357 643 836 164

BROADCAST_SMS 966 34 999 1 960 40

112

Appendix 4 – Permissions’ Chi Square Test

Next table shows the relation between, 𝑋2 test score on both analyzed cases

(Legitimate vs. Old Malware and Legitimate vs. New Malware) and degree of rejection

of null hypothesis (green coloured), if applied, or not (red coloured). If statistic could

not be calculated (not enough data to statistic test), null value is indicated (orange

coloured).

Permission
Legitimate vs.

Old Malware

Reject Null

Hypothesis

Legitimate vs.

New Malware

Reject Null

Hypothesis

ADD_VOICEMAIL null null null null

USE_SIP 4.008016032 0.045284408 19.2571367 1.1424E-05

ACCESS_NOTIFICATION_POLICY null null null null

CAMERA 136.2542391 1.7555E-31 81.563334 1.6973E-19

REQUEST_DELETE_PACKAGES null null null null

BIND_CONDITION_PROVIDER_

SERVICE
null null null null

BIND_QUICK_SETTINGS_TILE 35.62340967 2.39393E-09 35.6234097 2.3939E-09

MASTER_CLEAR 0.333834084 0.563410114 2.002002 0.1570916

BIND_DEVICE_ADMIN 22.24469161 2.40021E-06 92.4685641 6.8403E-22

GET_ACCOUNTS_PRIVILEGED 5.012531328 0.025164486 5.01253133 0.02516449

READ_SYNC_SETTINGS 110.6158851 7.18217E-26 51.7551997 6.287E-13

FACTORY_TEST 3.00450676 0.083033246 null null

SET_ALWAYS_FINISH 1.00050025 0.317189492 1.00050025 0.31718949

READ_CALENDAR 68.76034913 1.11186E-16 9.01369876 0.00267964

BIND_CARRIER_SERVICES 3.00450676 0.083033246 3.00450676 0.08303325

CHANGE_CONFIGURATION 0.113147771 0.736588514 92.5324675 6.6229E-22

SET_TIME 1.00050025 0.317189492 1.00200401 0.31682608

PERSISTENT_ACTIVITY 0.668672685 0.413514753 23.8863677 1.0219E-06

USE_FINGERPRINT 132.196162 1.35542E-30 63.8732302 1.3269E-15

GET_PACKAGE_SIZE 32.82051282 1.01073E-08 1.05263158 0.30490179

ACCESS_LOCATION_EXTRA_

COMMANDS 115.0720962 7.58877E-27 23.6208167 1.1731E-06

CONTROL_LOCATION_UPDATES 3.00450676 0.083033246 1.00050025 0.31718949

113

SEND_RESPOND_VIA_MESSAGE 21.22283982 4.08863E-06 1.42493639 0.2325926

CLEAR_APP_CACHE 5.606009642 0.017898978 21.769032 3.0752E-06

BIND_INPUT_METHOD 14.35138468 0.000151668 11.9556843 0.00054481

WRITE_GSERVICES 1.00050025 0.317189492 1.00050025 0.31718949

SIGNAL_PERSISTENT_PROCESSES 1.00050025 0.317189492 5.01253133 0.02516449

BIND_VOICE_INTERACTION null null null null

BIND_REMOTEVIEWS 124.2697823 7.35343E-29 118.165288 1.5952E-27

BATTERY_STATS 1.018329939 0.31291548 14.3695097 0.00015022

READ_VOICEMAIL null null null null

SET_WALLPAPER_HINTS 1.818181818 0.177529852 16.5343915 4.7776E-05

BIND_NFC_SERVICE 6.018054162 0.014160251 6.01805416 0.01416025

REQUEST_IGNORE_BATTERY_

OPTIMIZATION 26.34245187 2.85934E-07 16.3790186 5.1856E-05

RESTART_PACKAGES 43.75561715 3.72047E-11 61.8251399 3.7535E-15

CALL_PRIVILEGED 1.002004008 0.316826082 4.60365415 0.03190389

CAPTURE_SECURE_VIDEO_OUTPUT 1.00050025 0.317189492 0.33383408 0.56341011

DISABLE_KEYGUARD 0.046538685 0.829199566 6.51361023 0.0107052

DELETE_PACKAGES 10.96446701 0.000928757 32.5803607 1.1436E-08

CHANGE_COMPONENT_ENABLED_

STATE 7.404360346 0.006506597 4.51807229 0.0335386

BIND_APPWIDGET 0.668672685 0.413514753 17.3331804 3.1366E-05

RECORD_AUDIO 106.0709376 7.11424E-25 7.91945233 0.00489061

READ_PHONE_NUMBERS null null null null

VIBRATE 27.22604182 1.81004E-07 235.2 4.3789E-53

WRITE_SECURE_SETTINGS 0.341530055 0.558947374 1.48726529 0.22264125

UNINSTALL_SHORTCUT null null null null

WRITE_CALL_LOG 30.45685279 3.41375E-08 2.0746888 0.14976048

ACCESS_CHECKIN_PROPERTIES 2.002002002 0.157091601 2.002002 0.1570916

PACKAGE_USAGE_STATS 50.23065095 1.36696E-12 0.09384825 0.75934075

GLOBAL_SEARCH 4.518072289 0.0335386 7.02458605 0.00803981

CHANGE_WIFI_STATE 63.93534858 1.2857E-15 3.73980643 0.0531306

BROADCAST_STICKY 38.17928841 6.45338E-10 0.85975652 0.35380684

KILL_BACKGROUND_PROCESSES 13.16466668 0.000285278 26.9396552 2.0991E-07

BIND_INCALL_SERVICE 3.00450676 0.083033246 3.00450676 0.08303325

SET_TIME_ZONE 1.00050025 0.317189492 31.488065 2.0067E-08

BLUETOOTH_ADMIN 78.97592756 6.28714E-19 29.0452988 7.0705E-08

BLUETOOTH_PRIVILEGED 4.008016032 0.045284408 1.80451128 0.17916806

BIND_TEXT_SERVICE null null null null

MANAGE_DOCUMENTS 33.55363498 6.93257E-09 25.4582485 4.5206E-07

BIND_VR_LISTENER_SERVICE null null null null

SET_WALLPAPER 93.47666422 4.11018E-22 2.11038733 0.14630228

WAKE_LOCK 198.747234 3.91938E-45 456.826587 2.358E-101

WRITE_CALENDAR 23.30836777 1.37998E-06 2.70382321 0.10010793

114

BIND_SCREENING_SERVICE 1.00050025 0.317189492 1.00050025 0.31718949

BIND_AUTOFILL_SERVICE 4.008016032 0.045284408 4.00801603 0.04528441

REQUEST_INSTALL_PACKAGES 37.69740194 8.26145E-10 37.6974019 8.2615E-10

SET_PREFERRED_APPLICATIONS 16.36363636 5.22787E-05 0 1

NFC 75.76543851 3.19444E-18 17.8919182 2.3381E-05

CALL_PHONE 4.738935432 0.029487313 4.26136364 0.03898861

BIND_PRINT_SERVICE null null null null

INTERNET 0.26172301 0.608938888 9.89016125 0.00166165

BIND_VPN_SERVICE 18.16347124 2.0273E-05 10.8279795 0.00099978

READ_SMS 74.74636104 5.35243E-18 56.3436514 6.0849E-14

ANSWER_PHONE_CALLS 3.00450676 0.083033246 3.00450676 0.08303325

MEDIA_CONTENT_CONTROL 22.24469161 2.40021E-06 19.3969783 1.0617E-05

BROADCAST_PACKAGE_

REMOVED 0.333834084 0.563410114 0.33383408 0.56341011

BIND_VISUAL_VOICEMAIL_

SERVICE 2.002002002 0.157091601 2.002002 0.1570916

BIND_NOTIFICATION_LISTENER_

SERVICE 48.13108039 3.98657E-12 23.0121808 1.6098E-06

REORDER_TASKS 17.37289155 3.07176E-05 5.2189145 0.02234249

MODIFY_AUDIO_SETTINGS 65.59265471 5.5445E-16 15.1357885 0.00010005

READ_PHONE_STATE 717.4890085 4.7062E-158 213.88388 1.9523E-48

WRITE_SETTINGS 3.831443807 0.050299587 3.88868635 0.04861243

BIND_CARRIER_MESSAGING_

SERVICE 2.002002002 0.157091601 2.002002 0.1570916

BIND_WALLPAPER 9.040683074 0.00264037 3.01810865 0.08233944

DUMP 5.365526492 0.020538587 5.36552649 0.02053859

UPDATE_DEVICE_STATS 13.08505284 0.000297661 7.02458605 0.00803981

SEND_SMS 263.9770755 2.33149E-59 106.243914 6.5196E-25

ACCESS_COARSE_LOCATION 31.08386727 2.47117E-08 9.94411571 0.00161364

READ_EXTERNAL_STORAGE 663.2655095 2.9118E-146 27.4335529 1.6259E-07

SYSTEM_ALERT_WINDOW 62.49525865 2.67087E-15 145.48864 1.6793E-33

CHANGE_WIFI_MULTICAST_STATE 58.10950413 2.47926E-14 4.51402572 0.03361803

BIND_MIDI_DEVICE_SERVICE 1.00050025 0.317189492 1.00050025 0.31718949

EXPAND_STATUS_BAR 15.43064084 8.55892E-05 3.57781753 0.05855603

WRITE_APN_SETTINGS 34.82862107 3.60041E-09 32.8205128 1.0107E-08

BIND_TV_INPUT null null null null

SET_ALARM 2.002002002 0.157091601 2.002002 0.1570916

WRITE_CONTACTS 16.16374157 5.80956E-05 0.0686711 0.79328157

PROCESS_OUTGOING_CALLS 0.131426193 0.716957872 31.6248457 1.8702E-08

RECEIVE_BOOT_COMPLETED 4.616938393 0.031657696 49.9507389 1.5765E-12

MODIFY_PHONE_STATE 0.938596985 0.332638923 13.6178928 0.00022404

BIND_TELECOM_CONNECTION_

SERVICE 2.002002002 0.157091601 2.002002 0.1570916

115

RECEIVE_MMS 3.400436624 0.065179164 2.28268871 0.1308249

GET_TASKS 3.65831113 0.055790158 187.017559 1.4235E-42

READ_INPUT_STATE 1.00050025 0.317189492 null null

READ_CALL_LOG 56.55526992 5.46408E-14 0.44482572 0.50480243

READ_SYNC_STATS 50.41137308 1.2467E-12 5.54329996 0.01855157

CAPTURE_AUDIO_OUTPUT 2.002002002 0.157091601 0.20050125 0.65431655

REQUEST_COMPANION_RUN_IN

_BACKGROUND
null null null null

RECEIVE_WAP_PUSH 9.008180899 0.002687738 34.1530055 5.0944E-09

MOUNT_UNMOUNT_

FILESYSTEMS 4.132231405 0.042073838 222.263875 2.9013E-50

REQUEST_COMPANION_USE_

DATA_IN_BACKGROUND
null null null null

ACCESS_WIFI_STATE 6.357547155 0.011688302 16.6713809 4.4446E-05

INSTANT_APP_FOREGROUND_

SERVICE
null null null null

ACCESS_FINE_LOCATION 120.2145738 5.67751E-28 28.4717585 9.5075E-08

BIND_DREAM_SERVICE 8.032128514 0.00459548 8.03212851 0.00459548

ACCESS_NETWORK_STATE 157.5373551 3.906E-36 365.181517 2.0958E-81

BROADCAST_WAP_PUSH 20.41160594 6.24499E-06 0.08538251 0.77013152

BODY_SENSORS 4.008016032 0.045284408 18.2926829 1.8943E-05

DIAGNOSTIC 0 1 13.3487586 0.00025859

STATUS_BAR 5.469055193 0.019356087 3.61809045 0.05715444

READ_LOGS 235.2478776 4.27487E-53 18.9746655 1.3247E-05

BLUETOOTH 153.3428193 3.22367E-35 58.879713 1.6761E-14

READ_FRAME_BUFFER 0.333834084 0.563410114 0.20050125 0.65431655

INSTALL_SHORTCUT 7.024586051 0.008039805 4.51807229 0.0335386

SET_PROCESS_LIMIT 0.333834084 0.563410114 2.002002 0.1570916

WRITE_VOICEMAIL null null null null

CAPTURE_VIDEO_OUTPUT 5.012531328 0.025164486 1.29023009 0.25600555

TRANSMIT_IR 2.002002002 0.157091601 22.8764805 1.7275E-06

CHANGE_NETWORK_STATE 8.331726133 0.003895862 40.6071358 1.8613E-10

WRITE_SYNC_SETTINGS 93.0999761 4.97183E-22 53.2167842 2.987E-13

ACCOUNT_MANAGER 0.333834084 0.563410114 22.8764805 1.7275E-06

LOCATION_HARDWARE 3.00450676 0.083033246 3.00450676 0.08303325

BIND_ACCESSIBILITY_SERVICE 43.94481349 3.37766E-11 3.28565483 0.06988774

GET_ACCOUNTS 81.79240385 1.51158E-19 138.736246 5.0301E-32

RECEIVE_SMS 21.95025803 2.79809E-06 79.6055757 4.5713E-19

MOUNT_FORMAT_FILESYSTEMS 0.333834084 0.563410114 1.00050025 0.31718949

DELETE_CACHE_FILES 57.80068729 2.90068E-14 0.33383408 0.56341011

WRITE_EXTERNAL_STORAGE 8.430515455 0.003689757 6.51709822 0.01068422

BIND_CHOOSER_TARGET_

SERVICE 27.36948809 1.68062E-07 27.3694881 1.6806E-07

116

MANAGE_OWN_CALLS null null null null

REBOOT 0 1 0.1433589 0.70496438

INSTALL_PACKAGES 314.5788539 2.19672E-70 368.044511 4.9885E-82

SET_DEBUG_APP 0 1 2.67469074 0.10195513

INSTALL_LOCATION_

PROVIDER
1.00050025 0.317189492 null null

SET_ANIMATION_SCALE 1.00050025 0.317189492 2.002002 0.1570916

READ_CONTACTS 286.6315962 2.69473E-64 30.8221004 2.828E-08

BROADCAST_SMS 31.66848419 1.82866E-08 0.50517808 0.47723371

117

Appendix 5 – System calls’ Fisher Score values

Next table shows Fisher Score (F) values for each of the system calls gathered (212

different system calls). As all F values were relatively lower, F values over 0.15 were

selected for the model as most discriminative features (highlighted in green).

Feature
Legitimate vs.

Old Malware Dataset

Legitimate vs.

New Malware Dataset

System Call Fisher Score Fisher Score

sched_get_priority_min 0.001002 0.001002

Lseek 0.00432 0.000246

Pipe 0.001002 0.001002

epoll_ctl 0.022145 0.034015

rt_sigtimedwait 0.0 0.0

Setfsuid 0.0 0.0

Tee 0.0 0.0

Uname 0.001146 0.001367

Kill 0.000501 0.0

Swapoff 0.0 0.0

Readahead 0.0 0.0

clock_getres 0.002513 0.002513

Preadv 0.0 0.0

setresgid32 0.0 0.0

Gettid 0.000605 0.000605

Sethostname 0.0 0.0

timer_delete 0.0 0.0

Umask 0.001475 0.001475

sched_getaffinity 0.0 0.0

Writev 0.000297 0.030974

sched_setparam 0.0 0.0

Fchmod 0.006586 0.018156

_llseek 0.018914 0.013497

Getpid 0.000619 0.002673

setreuid32 0.0 0.0

signalfd4 0.0 0.0

epoll_wait 0.000501 0.000501

capset 0.0 0.0

118

personality 0.0 0.0

delete_module 0.0 0.0

dup3 0.0 0.0

sched_setaffinity 0.0 0.0

Read 0.029663 0.000865

Getppid 0.215594 0.011583

getgid32 0.0 0.0

Capget 0.0 0.0

getgroups32 0.0 0.0

Readlinkat 0.688957 0.586918

sched_rr_get_interval 0.0 0.0

Setfsgid 0.0 0.0

Renameat 7.3e-05 0.001886

Fsync 0.000138 0.002351

geteuid32 0.00024 0.022809

Unshare 0.0 0.0

epoll_pwait 0.017214 0.090745

Recvfrom 0.181365 0.062184

sched_get_priority_max 0.001002 0.001002

Symlinkat 0.0 0.0

Settimeofday 0.0 0.0

timer_create 0.0 0.0

Sendto 0.19443 0.0743

Mkdirat 0.050058 0.026801

Lgetxattr 0.0 0.0

Linkat 0.0 0.0

Shutdown 0.0 0.001002

epoll_create1 0.22842 0.004416

getresuid32 0.0 0.0

Adjtimex 0.0 0.0

Sync 0.0 0.0

Syslog 0.0 0.0

Fchownat 0.0 0.0

setgid32 0.0 0.0

setregid32 0.0 0.0

fadvise64_64 0.0 0.0

Getsockname 1.7e-05 1.9e-05

Close 0.173597 0.133066

Flock 0.003877 1.4e-05

Lsetxattr 0.0 0.0

Pwritev 0.0 0.0

llistxattr 0.0 0.0

tgkill 0.0 0.001002

119

getegid32 0.0 0.0

pselect6 0.0 0.0

rt_sigprocmask 0.244162 0.028797

accept4 0.0 0.0

reboot 0.0 0.0

fremovexattr 0.0 0.0

setgroups32 0.0 0.0

setsid 0.0 0.0

exit 0.0 0.0

timerfd_create 0.0 0.0

sigaltstack 0.228204 0.205009

inotify_rm_watch 0.0 0.0

munmap 0.749835 0.569562

socketpair 0.000501 0.00316

setrlimit 0.000501 0.0

getitimer 0.0 0.0

fchmodat 0.000577 0.007452

setpgid 0.0 0.0

getrandom 0.004041 0.004041

getcwd 0.003793 0.003793

fstatfs64 0.000902 0.000902

fstatat64 2.5e-05 0.002523

rt_sigsuspend 0.0 0.0

inotify_add_watch 0.01944 0.006394

getresgid32 0.0 0.0

timer_settime 0.0 0.0

fchdir 0.0 0.0

timer_gettime 0.0 0.0

getpeername 0.0 0.0

sigaction 0.290309 0.302836

getsid 0.0 0.0

mknodat 0.003674 0.003674

setsockopt 8e-06 0.000546

munlockall 0.0 0.0

msync 0.002117 0.002117

process_vm_readv 0.0 0.0

pipe2 0.004685 6.9e-05

set_thread_area 0.0 0.000501

times 0.0 0.0

prlimit64 0.0 0.0

pwrite64 0.00156 0.028428

vfork 0.001743 0.000785

nanosleep 0.001047 0.001047

120

sendmsg 0.004202 0.004032

clone 0.2067 0.144596

flistxattr 0.0 0.0

getcpu 0.0 0.0

splice 0.0 0.0

rt_sigaction 0.000501 0.000501

clock_gettime 0.839286 1.106283

ugetrlimit 0.001913 0.020537

umount2 0.0 0.0

rt_sigreturn 0.0 0.000641

rt_sigpending 0.0 0.0

setxattr 0.0 0.0

getpgid 0.0 0.0

brk 0.0 0.0

fsetxattr 0.0 0.0

acct 0.0 0.0

clock_settime 0.0 0.0

getsockopt 0.002224 3e-06

exit_group 0.0 0.0

getpriority 0.038071 0.038071

listxattr 0.0 0.0

sysinfo 0.0 0.0

removexattr 0.0 0.0

faccessat 0.052051 0.045545

dup 0.010601 0.003208

fdatasync 3e-06 0.020859

setns 0.0 0.0

mprotect 0.122002 0.194523

listen 0.001894 0.001894

fchown32 0.0 0.0

getuid32 0.005198 0.072634

init_module 0.0 0.0

sched_yield 0.007319 0.000724

statfs64 0.000117 0.021252

ftruncate64 0.011447 0.009486

fgetxattr 0.0 0.0

ptrace 0.0 0.0

vmsplice 0.0 0.0

fcntl64 0.000439 0.023472

swapon 0.0 0.0

fallocate 0.0 0.0

execve 0.0 0.0

socket 0.049884 0.045093

121

wait4 0.000501 0.04142

chdir 0.000501 0.000501

madvise 0.541898 0.475477

fstat64 0.046783 0.011793

mount 0.0 0.0

timerfd_gettime 0.0 0.0

rt_sigqueueinfo 0.0 0.0

getrusage 0.0 0.0

timerfd_settime 0.0 0.0

sched_setscheduler 0.003581 0.003581

utimensat 0.0 0.001359

bind 0.002055 0.002055

eventfd2 0.219313 0.006673

connect 0.673586 0.518975

getdents64 0.154697 0.00188

readv 0.0 0.0

mremap 0.002962 0.002962

pread64 0.00516 0.000385

setuid32 0.0 0.0

prctl 0.614407 0.532513

stat64 0.00099 0.00099

recvmmsg 0.0 0.0

chroot 0.000501 0.000501

sched_getparam 0.001002 0.001002

truncate64 0.0 0.0

setresuid32 0.0 0.0

write 0.007722 0.009752

munlock 0.001505 0.001505

setpriority 0.00017 0.011328

recvmsg 0.0 0.0

inotify_init1 0.020383 0.006626

mincore 0.0 0.0

sendfile 0.0 0.0

sendmmsg 0.0 0.0

timer_getoverrun 0.0 0.0

restart_syscall 0.001002 0.005051

truncate 0.0 0.0

lremovexattr 0.0 0.0

openat 0.216978 0.164596

waitid 0.0 0.0

getxattr 0.0 0.0

sched_getscheduler 0.001505 0.001505

ioctl 0.000202 0.00734

122

clock_nanosleep 0.0 0.0

unlinkat 0.000207 0.000508

clock_adjtime 0.0 0.0

set_tid_address 0.0 0.0

setitimer 0.0 0.0

gettimeofday 0.061082 0.092552

futex 0.300894 0.007721

mmap2 0.63051 0.473747

sendfile64 0.0 0.0

mlockall 0.0 0.0

ppoll 0.305315 0.249381

mlock 0.001189 0.001189

123

Appendix 6 – Permissions’ Gini Index values

Next table shows Gini Index (G) values for each of the permissions gathered (147

different permissions). As all G were relatively high, G values under 0.47 were selected

for the model as most discriminative features (highlighted in green).

Feature
Legitimate vs.

Old Malware Dataset

Legitimate vs.

New Malware Dataset

Permission Gini Index Gini Index

ADD_VOICEMAIL 0.5 0.5

USE_SIP 0.498998 0.495186

ACCESS_NOTIFICATION_POLICY 0.5 0.5

CAMERA 0.465936 0.479609

REQUEST_DELETE_PACKAGES 0.5 0.5

BIND_CONDITION_PROVIDER_SERVICE 0.5 0.5

BIND_QUICK_SETTINGS_TILE 0.491094 0.491094

MASTER_CLEAR 0.499917 0.499499

BIND_DEVICE_ADMIN 0.494439 0.476883

GET_ACCOUNTS_PRIVILEGED 0.498747 0.498747

READ_SYNC_SETTINGS 0.472346 0.487061

FACTORY_TEST 0.499249 0.5

SET_ALWAYS_FINISH 0.49975 0.49975

READ_CALENDAR 0.48281 0.497747

BIND_CARRIER_SERVICES 0.499249 0.499249

CHANGE_CONFIGURATION 0.499972 0.476867

SET_TIME 0.49975 0.499749

PERSISTENT_ACTIVITY 0.499833 0.494028

USE_FINGERPRINT 0.466951 0.484032

GET_PACKAGE_SIZE 0.491795 0.499737

ACCESS_LOCATION_EXTRA_COMMANDS 0.471232 0.494095

CONTROL_LOCATION_UPDATES 0.499249 0.49975

SEND_RESPOND_VIA_MESSAGE 0.494694 0.499644

CLEAR_APP_CACHE 0.498598 0.494558

BIND_INPUT_METHOD 0.496412 0.497011

WRITE_GSERVICES 0.49975 0.49975

SIGNAL_PERSISTENT_PROCESSES 0.49975 0.498747

BIND_VOICE_INTERACTION 0.5 0.5

124

BIND_REMOTEVIEWS 0.468933 0.470459

BATTERY_STATS 0.499745 0.496408

READ_VOICEMAIL 0.5 0.5

SET_WALLPAPER_HINTS 0.499545 0.495866

BIND_NFC_SERVICE 0.498495 0.498495

REQUEST_IGNORE_BATTERY_OPTIMIZATIONS 0.493414 0.495905

RESTART_PACKAGES 0.489061 0.484544

CALL_PRIVILEGED 0.499749 0.498849

CAPTURE_SECURE_VIDEO_OUTPUT 0.49975 0.499917

DISABLE_KEYGUARD 0.499988 0.498372

DELETE_PACKAGES 0.497259 0.491855

CHANGE_COMPONENT_ENABLED_STATE 0.498149 0.49887

BIND_APPWIDGET 0.499833 0.495667

RECORD_AUDIO 0.473482 0.49802

READ_PHONE_NUMBERS 0.5 0.5

VIBRATE 0.493193 0.4412

WRITE_SECURE_SETTINGS 0.499915 0.499628

UNINSTALL_SHORTCUT 0.5 0.5

WRITE_CALL_LOG 0.492386 0.499481

ACCESS_CHECKIN_PROPERTIES 0.499499 0.499499

PACKAGE_USAGE_STATS 0.487442 0.499977

GLOBAL_SEARCH 0.49887 0.498244

CHANGE_WIFI_STATE 0.484016 0.499065

BROADCAST_STICKY 0.490455 0.499785

KILL_BACKGROUND_PROCESSES 0.496709 0.493265

BIND_INCALL_SERVICE 0.499249 0.499249

SET_TIME_ZONE 0.49975 0.492128

BLUETOOTH_ADMIN 0.480256 0.492739

BLUETOOTH_PRIVILEGED 0.498998 0.499549

BIND_TEXT_SERVICE 0.5 0.5

MANAGE_DOCUMENTS 0.491612 0.493635

BIND_VR_LISTENER_SERVICE 0.5 0.5

SET_WALLPAPER 0.476631 0.499472

WAKE_LOCK 0.450313 0.385793

WRITE_CALENDAR 0.494173 0.499324

BIND_SCREENING_SERVICE 0.49975 0.49975

BIND_AUTOFILL_SERVICE 0.498998 0.498998

REQUEST_INSTALL_PACKAGES 0.490576 0.490576

SET_PREFERRED_APPLICATIONS 0.495909 0.5

NFC 0.481059 0.495527

CALL_PHONE 0.498815 0.498935

BIND_PRINT_SERVICE 0.5 0.5

INTERNET 0.499935 0.497527

125

BIND_VPN_SERVICE 0.495459 0.497293

READ_SMS 0.481313 0.485914

ANSWER_PHONE_CALLS 0.499249 0.499249

MEDIA_CONTENT_CONTROL 0.494439 0.495151

BROADCAST_PACKAGE_REMOVED 0.499917 0.499917

BIND_VISUAL_VOICEMAIL_SERVICE 0.499499 0.499499

BIND_NOTIFICATION_LISTENER_SERVICE 0.487967 0.494247

REORDER_TASKS 0.495657 0.498695

MODIFY_AUDIO_SETTINGS 0.483602 0.496216

READ_PHONE_STATE 0.320628 0.446529

WRITE_SETTINGS 0.499042 0.499028

BIND_CARRIER_MESSAGING_SERVICE 0.499499 0.499499

BIND_WALLPAPER 0.49774 0.499245

DUMP 0.498659 0.498659

UPDATE_DEVICE_STATS 0.496729 0.498244

SEND_SMS 0.434006 0.473439

ACCESS_COARSE_LOCATION 0.492229 0.497514

READ_EXTERNAL_STORAGE 0.334184 0.493142

SYSTEM_ALERT_WINDOW 0.484376 0.463628

CHANGE_WIFI_MULTICAST_STATE 0.485473 0.498871

BIND_MIDI_DEVICE_SERVICE 0.49975 0.49975

EXPAND_STATUS_BAR 0.496142 0.499106

WRITE_APN_SETTINGS 0.491293 0.491795

BIND_TV_INPUT 0.5 0.5

SET_ALARM 0.499499 0.499499

WRITE_CONTACTS 0.495959 0.499983

PROCESS_OUTGOING_CALLS 0.499967 0.492094

RECEIVE_BOOT_COMPLETED 0.498846 0.487512

MODIFY_PHONE_STATE 0.499765 0.496596

BIND_TELECOM_CONNECTION_SERVICE 0.499499 0.499499

RECEIVE_MMS 0.49915 0.499429

GET_TASKS 0.499085 0.453246

READ_INPUT_STATE 0.49975 0.5

READ_CALL_LOG 0.485861 0.499889

READ_SYNC_STATS 0.487397 0.498614

CAPTURE_AUDIO_OUTPUT 0.499499 0.49995

REQUEST_COMPANION_RUN_IN_BACKGROUND 0.5 0.5

RECEIVE_WAP_PUSH 0.497748 0.491462

MOUNT_UNMOUNT_FILESYSTEMS 0.498967 0.444434

REQUEST_COMPANION_USE_DATA_IN_BACKGROU

ND

0.5 0.5

ACCESS_WIFI_STATE 0.498411 0.495832

INSTANT_APP_FOREGROUND_SERVICE 0.5 0.5

126

ACCESS_FINE_LOCATION 0.469946 0.492882

BIND_DREAM_SERVICE 0.497992 0.497992

ACCESS_NETWORK_STATE 0.460616 0.408705

BROADCAST_WAP_PUSH 0.494897 0.499979

BODY_SENSORS 0.498998 0.495427

DIAGNOSTIC 0.5 0.496663

STATUS_BAR 0.498633 0.499095

READ_LOGS 0.441188 0.495256

BLUETOOTH 0.461664 0.48528

READ_FRAME_BUFFER 0.499917 0.49995

INSTALL_SHORTCUT 0.498244 0.49887

SET_PROCESS_LIMIT 0.499917 0.499499

WRITE_VOICEMAIL 0.5 0.5

CAPTURE_VIDEO_OUTPUT 0.498747 0.499677

TRANSMIT_IR 0.499499 0.494281

CHANGE_NETWORK_STATE 0.497917 0.489848

WRITE_SYNC_SETTINGS 0.476725 0.486696

ACCOUNT_MANAGER 0.499917 0.494281

LOCATION_HARDWARE 0.499249 0.499249

BIND_ACCESSIBILITY_SERVICE 0.489014 0.499179

GET_ACCOUNTS 0.479552 0.465316

RECEIVE_SMS 0.494512 0.480099

MOUNT_FORMAT_FILESYSTEMS 0.499917 0.49975

DELETE_CACHE_FILES 0.48555 0.499917

WRITE_EXTERNAL_STORAGE 0.497892 0.498371

BIND_CHOOSER_TARGET_SERVICE 0.493158 0.493158

MANAGE_OWN_CALLS 0.5 0.5

REBOOT 0.5 0.499964

INSTALL_PACKAGES 0.421355 0.407989

SET_DEBUG_APP 0.5 0.499331

INSTALL_LOCATION_PROVIDER 0.49975 0.5

SET_ANIMATION_SCALE 0.49975 0.499499

READ_CONTACTS 0.428342 0.492294

BROADCAST_SMS 0.492083 0.499874

127

Appendix 7 – System call’s model validation

features Legitimate vs. Old Malware Dataset Legitimate vs. New Malware Dataset

Best feature*

5-fold accuracy: 0.8695±0.01

70-30 confusion matrix

Pred\True 1 0

1 265 41 306

0 29 265 294

 294 306 600

5-fold accuracy: 0.8910±0.02

70-30 confusion matrix

Pred\True 1 0

1 300 39 339

0 27 234 261

 327 273 600

2 best features of L/O

dataset**

5-fold accuracy: 0.8985±0.03

70-30 confusion matrix

Pred\True 1 0

1 255 31 286

0 36 278 314

 291 309 600

5-fold accuracy: 0.8785±0.03

70-30 confusion matrix

Pred\True 1 0

1 254 34 292

0 38 274 308

 288 312 600

2 best features of L/N

dataset**

5-fold accuracy: 0.8985±0.02

70-30 confusion matrix

Pred\True 1 0

1 283 35 318

0 27 255 282

 310 290 600

5-fold accuracy: 0.8920±0.02

70-30 confusion matrix

Pred\True 1 0

1 283 39 322

0 23 255 278

 306 294 600

3 best common

features***

5-fold accuracy: 0.9005±0.01

70-30 confusion matrix

Pred\True 1 0

1 261 29 290

0 31 279 310

 292 308 600

5-fold accuracy: 0.8770±0.02

70-30 confusion matrix

Pred\True 1 0

1 263 32 295

0 39 266 305

 302 298 600

6 best common

features****

5-fold accuracy: 0.9120±0.02

70-30 confusion matrix

5-fold accuracy: 0.8850±0.03

70-30 confusion matrix

128

Pred\True 1 0

1 293 23 316

0 25 259 284

 318 282 600

Pred\True 1 0

1 259 35 294

0 37 269 306

 296 304 600

11 common features

5-fold accuracy: 0.9305±0.03

70-30 confusion matrix

Pred\True 1 0

1 299 15 314

0 24 262 286

 323 277 600

5-fold accuracy: 0.8905±0.03

70-30 confusion matrix

Pred\True 1 0

1 282 32 314

0 32 254 286

 314 286 600

12 features of L/N dataset

5-fold accuracy: 0.9315±0.01

70-30 confusion matrix

Pred\True 1 0

1 287 22 309

0 19 272 291

 306 294 600

5-fold accuracy: 0.8950±0.03

70-30 confusion matrix

Pred\True 1 0

1 283 29 312

0 33 255 288

 316 284 600

21 features of L/O dataset

5-fold accuracy: 0.9670±0.01

70-30 confusion matrix

Pred\True 1 0

1 298 11 309

0 10 281 291

 308 292 600

5-fold accuracy: 0.9065±0.02

70-30 confusion matrix

Pred\True 1 0

1 261 31 292

0 24 284 308

 285 315 600

22 features*****

5-fold accuracy: 0.9660±0.01

70-30 confusion matrix

Pred\True 1 0

1 303 11 314

0 10 276 286

 313 287 600

5-fold accuracy: 0.9075±0.04

70-30 confusion matrix

Pred\True 1 0

1 272 24 296

0 36 268 304

 308 292 600

All features******

5-fold accuracy: 0.9700±0.01

70-30 confusion matrix

Pred\True 1 0

1 295 7 302

0 8 290 298

5-fold accuracy: 0.9270±0.01

70-30 confusion matrix

Pred\True 1 0

1 279 21 300

0 19 281 300

129

 303 297 600

 298 302 600

*Best feature: clock_gettime

** 2 best features:

 - Legitimate vs. Old Malware: clock_gettime and munmap.

 - Legitimate vs. New Malware: clock_gettime and readlinkat.

***3 best common features: clock_gettime, readlinkat and munmap.

****6 best common features: clock_gettime, readlinkat, munmap, connect, prctl and mmap2.

*****21 features of L/O and mprotect.

******All system calls gathered, without performing feature selection.

130

Appendix 8 – Permissions’ model validation

features Legitimate vs. Old Malware Dataset Legitimate vs. New Malware Dataset

Best feature of L/O

dataset*

5-fold accuracy: 0.7905±0.03

70-30 confusion matrix

Pred\True 1 0

1 271 98 269

0 30 201 231

 301 299 600

5-fold accuracy: 0.6635±0.04

70-30 confusion matrix

Pred\True 1 0

1 196 100 296

0 98 206 304

 294 306 600

Best feature of L/N

dataset**

5-fold accuracy: 0.6420±0.02

70-30 confusion matrix

Pred\True 1 0

1 125 46 171

0 169 260 429

 294 306 600

5-fold accuracy: 0.7310±0.05

70-30 confusion matrix

Pred\True 1 0

1 186 44 230

0 117 253 370

 303 297 600

2 best features of L/O

dataset***

5-fold accuracy: 0.8880±0.01

70-30 confusion matrix

Pred\True 1 0

1 272 35 307

0 36 257 293

 308 292 600

5-fold accuracy: 0.6635±0.03

70-30 confusion matrix

Pred\True 1 0

1 192 103 295

0 99 206 305

 291 309 600

2 best features of L/N

dataset****

5-fold accuracy: 0.6995±0.04

70-30 confusion matrix

Pred\True 1 0

1 278 172 450

0 8 142 150

 286 314 600

5-fold accuracy: 0.7310±0.05

70-30 confusion matrix

Pred\True 1 0

1 183 42 225

0 119 256 375

 302 298 600

4 common features

5-fold accuracy: 0.8580±0.03

70-30 confusion matrix

5-fold accuracy: 0.8460±0.02

70-30 confusion matrix

131

Pred\True 1 0

1 262 67 329

0 23 248 271

 285 315 600

Pred\True 1 0

1 281 63 344

0 29 227 256

 310 290 600

9 features of L/N dataset

5-fold accuracy: 0.8955±0.02

70-30 confusion matrix

Pred\True 1 0

1 285 42 327

0 21 252 273

 306 294 600

5-fold accuracy: 0.8940±0.02

70-30 confusion matrix

Pred\True 1 0

1 267 25 292

0 38 270 308

 305 295 600

13 features of L/O dataset

5-fold accuracy: 0.9350±0.02

70-30 confusion matrix

Pred\True 1 0

1 294 16 310

0 20 270 290

 314 286 600

5-fold accuracy: 0.9065±0.03

70-30 confusion matrix

Pred\True 1 0

1 296 35 331

0 22 247 269

 318 282 600

18 features*****

5-fold accuracy: 0.9410±0.02

70-30 confusion matrix

Pred\True 1 0

1 284 17 301

0 19 280 299

 303 297 600

5-fold accuracy: 0.9170±0.01

70-30 confusion matrix

Pred\True 1 0

1 274 33 307

0 19 274 293

 293 307 600

All features******

5-fold accuracy: 0.9505±0.02

70-30 confusion matrix

Pred\True 1 0

1 281 15 296

0 14 290 304

 295 305 600

5-fold accuracy: 0.9210±0.02

70-30 confusion matrix

Pred\True 1 0

1 284 28 312

0 20 268 288

 304 296 600

*READ_PHONE_STATE permission

**WAKE_LOCK permission

***READ_PHONE_STATE and READ_EXTERNAL_STORAGE permissions

****WAKE_LOCK and INSTALL_PACKAGES permissions

*****13 features of L/0 and VIBRATE, SYSTEM_ALERT_WINDOW, GET_TASKS,

MOUNT_UNMOUN_FILESYSTEMS, GET_ACCOUNTS.

******All permissions, without performing feature selection.

132

Appendix 9 – Hybrid model validation

features Legitimate vs. Old Malware Dataset Legitimate vs. New Malware Dataset

Best system call + best

permission L/O*

5-fold accuracy: 0.8965±0.02

70-30 confusion matrix

Pred\True 1 0

1 278 50 338

0 10 262 272

 288 312 600

5-fold accuracy: 0.9070±0.02

70-30 confusion matrix

Pred\True 1 0

1 274 37 311

0 17 272 289

 291 309 600

Best system call + best

permission L/N**

5-fold accuracy: 0.8800±0.02

70-30 confusion matrix

Pred\True 1 0

1 294 48 342

0 23 235 258

 317 283 600

5-fold accuracy: 0.8900±0.03

70-30 confusion matrix

Pred\True 1 0

1 293 45 338

0 23 239 262

 316 284 600

2 best system calls L/O +

2 best permissions L/O

dataset***

5-fold accuracy: 0.9450±0.01

70-30 confusion matrix

Pred\True 1 0

1 302 19 321

0 15 264 279

 317 283 600

5-fold accuracy: 0.8990±0.02

70-30 confusion matrix

Pred\True 1 0

1 272 35 307

0 25 268 293

 297 303 600

2 best system calls L/N +

2 best permissions L/N

dataset****

5-fold accuracy: 0.9035±0.03

70-30 confusion matrix

Pred\True 1 0

1 286 36 322

0 21 257 278

 307 293 600

5-fold accuracy: 0.8950±0.03

70-30 confusion matrix

Pred\True 1 0

1 269 40 309

0 23 268 291

 292 308 600

All common system calls

and permissions

5-fold accuracy: 0.9505±0.02

70-30 confusion matrix

5-fold accuracy: 0.9210±0.02

70-30 confusion matrix

133

Pred\True 1 0

1 284 16 300

0 14 286 300

 298 302 600

Pred\True 1 0

1 278 31 309

0 17 274 291

 295 305 600

22 system calls + 18

permissions

5-fold accuracy: 0.9740±0.01

70-30 confusion matrix

Pred\True 1 0

1 308 7 315

0 5 280 285

 313 287 600

5-fold accuracy: 0.9390±0.02

70-30 confusion matrix

Pred\True 1 0

1 277 22 299

0 14 287 301

 291 309 600

All features (212+147)

5-fold accuracy: 0.9765±0.02

70-30 confusion matrix

Pred\True 1 0

1 311 9 320

0 7 273 280

 318 282 600

5-fold accuracy: 0.9400±0.01

70-30 confusion matrix

Pred\True 1 0

1 273 21 294

0 18 288 306

 291 309 600

*clock_gettime system call and READ_PHONE_STATE permission

**clock_gettime system call and WAKE_LOCK permission

***clock_gettime and munmap system calls and READ_PHONE_STATE and READ_EXTERNAL_STORAGE

permissions.

****clock_gettime and readlinkat system calls and WAKE_LOCK and INSTALL_PACKAGES permissions.

134

Appendix 10 – Malware discrimination model validation

features New vs. Old Malware Dataset

Best system call*

5-fold accuracy: 0.6460±0.05

70-30 confusion matrix

Pred\True 1 0

1 91 15 106

0 197 297 494

 288 312 600

Best permission of L/O dataset**

5-fold accuracy: 0.6270±0.03

70-30 confusion matrix

Pred\True 1 0

1 274 197 471

0 28 101 129

 302 298 600

Best permission of L/N dataset***

5-fold accuracy: 0.5890±0.04

70-30 confusion matrix

Pred\True 1 0

1 184 113 297

0 127 176 303

 311 289 600

2 best system calls L/O + 2 best permissions L/O dataset****

5-fold accuracy: 0.7825±0.05

70-30 confusion matrix

Pred\True 1 0

1 259 79 338

0 51 211 262

 310 290 600

2 best system calls L/N + 2 best permissions L/N dataset*****

5- fold accuracy: 0.7720±0.03

70-30 confusion matrix

135

Pred\True 1 0

1 235 79 314

0 55 231 286

 290 310 600

Common system calls (11)

5-fold accuracy: 0.8175±0.05

70-30 confusion matrix

Pred\True 1 0

1 245 57 302

0 53 245 298

 298 302 600

Common permissions (4)

5-fold accuracy: 0.6655±0.04

70-30 confusion matrix

Pred\True 1 0

1 262 175 437

0 25 138 163

 287 313 600

All common system calls and permissions (11+4)

5-fold accuracy: 0.8190±0.03

70-30 confusion matrix

Pred\True 1 0

1 231 53 284

0 55 261 316

 286 314 600

22 selected system calls

5-fold accuracy: 0.8955±0.02

70-30 confusion matrix

Pred\True 1 0

1 264 43 307

0 20 273 293

 284 316 600

18 selected permissions

5-fold accuracy: 0.9310±0.01

70-30 confusion matrix

Pred\True 1 0

1 272 21 293

0 18 289 307

136

 290 310 600

22 system calls + 18 permissions (40)

5-fold accuracy: 0.9300±0.03

70-30 confusion matrix

Pred\True 1 0

1 274 12 286

0 29 285 314

 303 297 600

All system calls (212)

5-fold accuracy: 0.8990±0.02

70-30 confusion matrix

Pred\True 1 0

1 273 36 309

0 30 261 291

 303 297 600

All permissions (147)

5-fold accuracy: 0.9430±0.03

70-30 confusion matrix

Pred\True 1 0

1 288 18 306

0 16 278 294

 304 296 600

All features (212+147)

5-fold accuracy: 0.9345±0.02

70-30 confusion matrix

Pred\True 1 0

1 277 16 293

0 23 284 307

 300 300 600

*clock_gettime

**READ_PHONE_STATE

***WAKE_LOCK

****clock_gettime and munmap system calls and READ_PHONE_STATE and READ_EXTERNAL_STORAGE

permissions.

*****clock_gettime and readlinkat system calls and WAKE_LOCK and INSTALL_PACKAGES permissions

137

Appendix 11 – Cross-dataset malware model validation

Dynamic approach: System calls

System Calls

(using best feature)*

*clock_gettime

Training \ Testing Old Dataset New Dataset

Old Dataset 0.8695±0.01

Accuracy: 0.9166

70-30 confusion matrix

Pred\True 1 0

1 280 31 311

0 19 270 289

 299 301 600

New Dataset

Accuracy: 0.795

70-30 confusion matrix

Pred\True 1 0

1 201 24 225

0 99 276 375

 300 300 600

0.8910±0.02

System Calls

(using 3 best

features)*

*clock_gettime,

munmap and

readlinkat

Training \ Testing Old Dataset New Dataset

Old Dataset 0.9025±0.03

Accuracy: 0.8833

70-30 confusion matrix

Pred\True 1 0

1 234 9 243

0 61 296 357

 295 305 600

New Dataset

Accuracy: 0.815

70-30 confusion matrix

Pred\True 1 0

1 211 20 231

0 91 278 369

0.8820±0.02

138

 302 298 600

System Calls

(using 11 common

features)

Training \ Testing Old Dataset New Dataset

Old Dataset 0.9305±0.03

Accuracy: 0.81

70-30 confusion matrix

Pred\True 1 0

1 198 12 210

0 102 288 390

 300 300 600

New Dataset

Accuracy: 0.865

70-30 confusion matrix

Pred\True 1 0

1 232 10 242

0 71 287 258

 303 297 600

0.8905±0.03

System Calls

(using 22 selected

features)

Training \ Testing Old Dataset New Dataset

Old Dataset 0.9650±0.01

Accuracy: 0.733

70-30 confusion matrix

Pred\True 1 0

1 145 4 149

0 156 295 451

 301 299 600

New Dataset

Accuracy: 0.8766

70-30 confusion matrix

Pred\True 1 0

1 242 16 258

0 58 284 342

 300 300 600

0.9075±0.04

System Calls

(using all features)

Training \ Testing Old Dataset New Dataset

Old Dataset 0.9700±0.01

Accuracy: 0.715

70-30 confusion matrix

139

Pred\True 1 0

1 130 3 133

0 168 299 467

 298 302 600

New Dataset

Accuracy: 0.845

70-30 confusion matrix

Pred\True 1 0

1 217 8 225

0 85 290 375

 302 298 600

0.9270±0.01

Static approach: Permissions

Permissions

(using best feature L/O

dataset)*

*READ_PHONE_STATE

Training \ Testing Old Dataset New Dataset

Old Dataset 0.7905±0.02

Accuracy: 0.6633

70-30 confusion matrix

Pred\True 1 0

1 194 96 290

0 106 204 310

 300 300 600

New Dataset

Accuracy: 0.785

70-30 confusion matrix

Pred\True 1 0

1 276 105 381

0 24 195 219

 300 300 600

0.6635±0.04

Permissions

(using best feature

L/N dataset)*

*WAKE_LOCK

Training \ Testing Old Dataset New Dataset

Old Dataset 0.6420±0.02

Accuracy: 0.745

70-30 confusion matrix

Pred\True 1 0

1 184 42 226

0 111 263 374

 295 305 600

140

New Dataset

Accuracy: 0.6783

70-30 confusion matrix

Pred\True 1 0

1 137 38 175

0 155 270 425

 292 308 600

0.7310±0.05

Permissions

(using 4 common

features)

Training \ Testing Old Dataset New Dataset

Old Dataset 0.8580±0.03

Accuracy: 0.84

70-30 confusion matrix

Pred\True 1 0

1 275 69 344

0 27 229 256

 302 298 600

New Dataset

Accuracy: 0.88

70-30 confusion matrix

Pred\True 1 0

1 277 50 327

0 22 251 273

 299 301 600

0.8460±0.02

Permissions

(using 18 features)

Training \ Testing Old Dataset New Dataset

Old Dataset 0.9410±0.02

Accuracy: 0.71

70-30 confusion matrix

Pred\True 1 0

1 142 11 153

0 161 286 447

 303 297 600

New Dataset

Accuracy: 0.8716

70-30 confusion matrix

Pred\True 1 0

1 242 14 256

0 63 281 344

0.9170±0.01

141

 305 295 600

Permissions

(using all features)

Training \ Testing Old Dataset New Dataset

Old Dataset 0.9505±0.02

Accuracy: 0.65

70-30 confusion matrix

Pred\True 1 0

1 90 5 95

0 205 300 505

 295 305 600

New Dataset

Accuracy: 0.7916

70-30 confusion matrix

Pred\True 1 0

1 189 13 202

0 112 286 398

 301 299 600

0.9245±0.02

Hybrid approach: mixing system calls and permissions

Hybrid

(using best syscall and

best L/O dataset

permission)*

*clock_gettime and

READ_PHONE_STATE

Training \ Testing Old Dataset New Dataset

Old Dataset 0.8985±0.02

Accuracy: 0.92

70-30 confusion matrix

Pred\True 1 0

1 286 28 314

0 20 266 286

 306 294 600

New Dataset

Accuracy: 0.87

70-30 confusion matrix

Pred\True 1 0

1 253 32 285

0 46 269 315

 299 301 600

0.9070±0.02

Hybrid Training \ Testing Old Dataset New Dataset

142

(using best syscall

and best L/N dataset

permission)*

*clock_gettime and

WAKE_LOCK

Old Dataset 0.8800±0.02

Accuracy: 0.9033

70-30 confusion matrix

Pred\True 1 0

1 272 29 301

0 29 270 299

 301 299 600

New Dataset

Accuracy: 0.8066

70-30 confusion matrix

Pred\True 1 0

1 220 39 259

0 77 264 341

 297 303 600

0.8835±0.02

Hybrid

(using 11 common

syscalls + 4 common

permissions)

Training \ Testing Old Dataset New Dataset

Old Dataset 0.9500±0.02

Accuracy: 0.866

70-30 confusion matrix

Pred\True 1 0

1 228 8 236

0 72 292 364

 300 300 600

New Dataset

Accuracy: 0.9016

70-30 confusion matrix

Pred\True 1 0

1 258 12 270

0 47 283 330

 305 295 600

0.9210±0.02

Hybrid

(using 22 selected

syscalls + 18 selected

permissions)

Training \ Testing Old Dataset New Dataset

Old Dataset 0.9740±0.01

Accuracy: 0.7066

70-30 confusion matrix

Pred\True 1 0

1 120 3 123

0 176 301 477

143

 296 304 600

New Dataset

Accuracy: 0.9116

70-30 confusion matrix

Pred\True 1 0

1 249 4 253

0 49 298 347

 298 302 600

0.9390±0.02

Hybrid

(using all Dynamic

and static features)

Training \ Testing Old Dataset New Dataset

Old Dataset 0.9765±0.02

Accuracy: 0.6966

70-30 confusion matrix

Pred\True 1 0

1 119 2 121

0 180 299 479

 299 301 600

New Dataset

Accuracy: 0.8983

70-30 confusion matrix

Pred\True 1 0

1 242 4 246

0 57 297 354

 299 301 600

0.9400±0.01

144

Appendix 12 – Mixed malware detection validation

System call best feature: clock_gettime

Training

\

Testing

Old Dataset Mixed Malware Dataset New Dataset

Old

Dataset

Accuracy: 0.8966

70-30 confusion matrix

Pred\True 1 0

1 274 36 310

0 26 264 290

 300 300 600

Mixed

malware

Dataset

Accuracy: 0.895

70-30 confusion matrix

Pred\True 1 0

1 273 33 306

0 30 264 294

 303 297 600

Accuracy: 0.8675±0.01*

70-30 confusion matrix

Pred\True 1 0

1 263 44 307

0 35 258 293

 298 302 600

Accuracy: 0.9133

70-30 confusion matrix

Pred\True 1 0

1 278 27 305

0 25 270 295

 303 297 600

New

Dataset

Accuracy: 0.8516

70-30 confusion matrix

Pred\True 1 0

1 250 39 289

0 50 261 311

 300 300 600

*5-fold cross validation againsta same dataset.

145

System call 11 common features

Training

\

Testing

Old Dataset Mixed Malware Dataset New Dataset

Old

Dataset

Accuracy: 0.9

70-30 confusion matrix

Pred\True 1 0

1 248 7 255

0 53 292 345

 301 299 600

Mixed

malware

Dataset

Accuracy: 0.9616

70-30 confusion matrix

Pred\True 1 0

1 289 12 301

0 11 288 299

 300 300 600

Accuracy: 0.8805±0.03*

70-30 confusion matrix

Pred\True 1 0

1 266 46 312

0 34 254 288

 300 300 600

Accuracy: 0.9383

70-30 confusion matrix

Pred\True 1 0

1 265 7 272

0 30 298 328

 295 305 600

New

Dataset

Accuracy: 0.9133

70-30 confusion matrix

Pred\True 1 0

1 259 8 267

0 44 289 333

 303 297 600

System call: 22 selected features

Training

\

Testing

Old Dataset Mixed Malware Dataset New Dataset

Old

Dataset

Accuracy: 0.845

70-30 confusion matrix

Pred\True 1 0

1 209 3 212

0 90 298 388

 299 301 600

146

Mixed

malware

Dataset

Accuracy: 0.975

70-30 confusion matrix

Pred\True 1 0

1 290 4 294

0 11 295 306

 301 299 600

Accuracy: 0.9080±0.03*

70-30 confusion matrix

Pred\True 1 0

1 279 28 307

0 26 267 293

 305 295 600

Accuracy: 0.9366

70-30 confusion matrix

Pred\True 1 0

1 268 6 274

0 32 294 326

 300 300 600

New

Dataset

Accuracy: 0.94

70-30 confusion matrix

Pred\True 1 0

1 272 9 281

0 27 292 319

 299 301 600

System call: All features (212)

Training

\

Testing

Old Dataset Mixed Malware Dataset New Dataset

Old

Dataset

Accuracy: 0.866

70-30 confusion matrix

Pred\True 1 0

1 223 2 225

0 78 297 375

 301 299 600

Mixed

malware

Dataset

Accuracy: 0.9766

70-30 confusion matrix

Pred\True 1 0

1 296 5 301

0 9 290 299

 305 295 600

Accuracy: 0.9195±0.02*

70-30 confusion matrix

Pred\True 1 0

1 278 20 298

0 27 275 302

 305 295 600

Accuracy: 0.9583

70-30 confusion matrix

Pred\True 1 0

1 288 10 298

0 15 287 302

 303 297 600

147

New

Dataset

Accuracy: 0.9266

70-30 confusion matrix

Pred\True 1 0

1 265 6 271

0 38 291 329

 303 297 600

Permission feature: READ_PHONE_STATE

Training

\

Testing

Old Dataset Mixed Malware Dataset New Dataset

Old

Dataset

Accuracy: 0.73

70-30 confusion matrix

Pred\True 1 0

1 236 99 335

0 63 202 265

 299 301 600

Mixed

malware

Dataset

Accuracy: 0.7966

70-30 confusion matrix

Pred\True 1 0

1 281 98 379

0 24 197 221

 305 295 600

Accuracy: 0.7265±0.02*

70-30 confusion matrix

Pred\True 1 0

1 241 105 346

0 60 194 254

 301 299 600

Accuracy: 0.6783

70-30 confusion matrix

Pred\True 1 0

1 205 99 304

0 94 202 296

 299 301 600

New

Dataset

Accuracy: 0.715

70-30 confusion matrix

Pred\True 1 0

1 227 99 326

0 72 202 274

 299 301 600

*5-fold cross validation againsta same dataset.

148

Permission feature: WAKE_LOCK

Training

\

Testing

Old Dataset Mixed Malware Dataset New Dataset

Old

Dataset

Accuracy: 0.6533

70-30 confusion matrix

Pred\True 1 0

1 146 52 198

0 156 246 402

 302 298 600

Mixed

malware

Dataset

Accuracy: 0.635

70-30 confusion matrix

Pred\True 1 0

1 131 50 181

0 169 250 419

 300 300 600

Accuracy: 0.6780±0.03*

70-30 confusion matrix

Pred\True 1 0

1 150 45 195

0 151 254 405

 301 299 600

Accuracy: 0.745

70-30 confusion matrix

Pred\True 1 0

1 179 31 210

0 122 268 390

 301 299 600

New

Dataset

Accuracy: 0.655

70-30 confusion matrix

Pred\True 1 0

1 145 52 197

0 155 248 403

 300 300 600

Permission feature: 4 common permissions

Training

\

Testing

Old Dataset Mixed Malware Dataset New Dataset

Old

Dataset

Accuracy: 0.855

70-30 confusion matrix

Pred\True 1 0

1 275 60 335

0 27 238 265

149

 302 298 600

Mixed

malware

Dataset

Accuracy: 0.8616

70-30 confusion matrix

Pred\True 1 0

1 284 62 346

0 21 233 254

 305 295 600

Accuracy: 0.8525±0.02*

70-30 confusion matrix

Pred\True 1 0

1 276 65 341

0 28 231 259

 304 296 600

Accuracy: 0.85

70-30 confusion matrix

Pred\True 1 0

1 273 61 334

0 29 237 366

 302 298 600

New

Dataset

Accuracy: 0.846

70-30 confusion matrix

Pred\True 1 0

1 278 65 343

0 27 230 257

 305 295 600

Permission feature: 18 selected permissions

Training

\

Testing

Old Dataset Mixed Malware Dataset New Dataset

Old

Dataset

Accuracy: 0.8466

70-30 confusion matrix

Pred\True 1 0

1 219 7 226

0 85 289 374

 304 296 600

Mixed

malware

Dataset

Accuracy: 0.9566

70-30 confusion matrix

Pred\True 1 0

1 290 15 305

0 11 284 295

 301 299 600

Accuracy: 0.9160±0.04*

70-30 confusion matrix

Pred\True 1 0

1 281 30 311

0 23 266 289

 304 296 600

Accuracy: 0.9366

70-30 confusion matrix

Pred\True 1 0

1 281 17 298

0 21 281 302

 302 298 600

150

New

Dataset

Accuracy: 0.9016

70-30 confusion matrix

Pred\True 1 0

1 248 6 254

0 53 293 346

 301 299 600

Permission feature: All permissions

Training

\

Testing

Old Dataset Mixed Malware Dataset New Dataset

Old

Dataset

Accuracy: 0.8316

70-30 confusion matrix

Pred\True 1 0

1 203 3 206

0 98 296 394

 301 299 600

Mixed

malware

Dataset

Accuracy: 0.9566

70-30 confusion matrix

Pred\True 1 0

1 289 12 301

0 14 285 299

 303 297 600

Accuracy: 0.9225±0.03*

70-30 confusion matrix

Pred\True 1 0

1 276 20 296

0 26 278 304

 302 298 600

Accuracy: 0.945

70-30 confusion matrix

Pred\True 1 0

1 289 17 306

0 16 278 294

 305 295 600

New

Dataset

Accuracy: 0.87

70-30 confusion matrix

Pred\True 1 0

1 231 6 237

0 72 291 363

 303 297 600

151

Hybrid: clock_gettime and READ_PHONE_STATE

Training

\

Testing

Old Dataset Mixed Malware Dataset New Dataset

Old

Dataset

Accuracy: 0.9116

70-30 confusion matrix

Pred\True 1 0

1 284 33 317

0 20 263 283

 304 296 600

Mixed

malware

Dataset

Accuracy: 0.9283

70-30 confusion matrix

Pred\True 1 0

1 289 28 317

0 15 268 283

 304 296 600

Accuracy: 0.8965±0.01*

70-30 confusion matrix

Pred\True 1 0

1 278 33 311

0 25 264 289

 303 297 600

Accuracy: 0.925

70-30 confusion matrix

Pred\True 1 0

1 287 31 318

0 14 268 282

 301 299 600

New

Dataset

Accuracy: 0.9133

70-30 confusion matrix

Pred\True 1 0

1 282 33 315

0 19 266 285

 301 299 600

Hybrid: clock_gettime and WAKE_LOCK

Training

\

Testing

Old Dataset Mixed Malware Dataset New Dataset

Old

Dataset

Accuracy: 0.915

70-30 confusion matrix

Pred\True 1 0

1 281 28 309

0 23 268 291

152

 304 296 600

Mixed

malware

Dataset

Accuracy: 0.8966

70-30 confusion matrix

Pred\True 1 0

1 261 22 283

0 40 277 317

 301 299 600

Accuracy: 0.8730±0.02*

70-30 confusion matrix

Pred\True 1 0

1 262 37 299

0 39 262 301

 301 299 600

Accuracy: 0.9166

70-30 confusion matrix

Pred\True 1 0

1 281 28 309

0 22 269 291

 303 297 600

New

Dataset

Accuracy: 0.88

70-30 confusion matrix

Pred\True 1 0

1 266 34 300

0 38 262 300

 304 296 600

Hybrid: 11 common syscalls + 4 common permissions

Training

\

Testing

Old Dataset Mixed Malware Dataset New Dataset

Old

Dataset

Accuracy: 0.9366

70-30 confusion matrix

Pred\True 1 0

1 269 6 275

0 32 293 325

 301 299 600

Mixed

malware

Dataset

Accuracy: 0.965

70-30 confusion matrix

Pred\True 1 0

1 287 8 295

0 13 292 305

 300 300 600

Accuracy: 0.9300±0.02*

70-30 confusion matrix

Pred\True 1 0

1 287 20 307

0 16 277 293

 303 297 600

Accuracy: 0.9683

70-30 confusion matrix

Pred\True 1 0

1 288 7 295

0 12 293 305

 300 300 600

153

New

Dataset

Accuracy: 0.945

70-30 confusion matrix

Pred\True 1 0

1 273 6 279

0 27 294 321

 300 300 600

Hybrid: 22 selected syscalls + 18 selected permissions

Training

\

Testing

Old Dataset Mixed Malware Dataset New Dataset

Old

Dataset

Accuracy: 0.865

70-30 confusion matrix

Pred\True 1 0

1 223 4 227

0 77 296 373

 300 300 600

Mixed

malware

Dataset

Accuracy: 0.99

70-30 confusion matrix

Pred\True 1 0

1 299 3 302

0 3 295 298

 302 298 600

Accuracy: 0.9415±0.03*

70-30 confusion matrix

Pred\True 1 0

1 282 16 298

0 20 282 302

 302 298 600

Accuracy: 0.9716

70-30 confusion matrix

Pred\True 1 0

1 293 6 299

0 11 290 301

 304 296 600

New

Dataset

Accuracy: 0.9433

70-30 confusion matrix

Pred\True 1 0

1 273 5 278

0 29 293 322

 302 298 600

154

Hybrid: all features

Training

\

Testing

Old Dataset Mixed Malware Dataset New Dataset

Old

Dataset

Accuracy: 0.8533

70-30 confusion matrix

Pred\True 1 0

1 217 5 222

0 83 295 378

 300 300 600

Mixed

malware

Dataset

Accuracy: 0.9883

70-30 confusion matrix

Pred\True 1 0

1 298 3 301

0 4 295 299

 302 298 600

Accuracy: 0.9375±0.02*

70-30 confusion matrix

Pred\True 1 0

1 289 25 314

0 17 269 286

 306 294 600

Accuracy: 0.9616

70-30 confusion matrix

Pred\True 1 0

1 289 7 296

0 16 288 304

 305 295 600

New

Dataset

Accuracy: 0.9266

70-30 confusion matrix

Pred\True 1 0

1 269 8 277

0 36 287 323

 305 295 600

*5-fold cross validation againsta same dataset.

