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Abstract
The thesis concerns a software development method for constructing programs

from models (given by textual as well as visual specifications). The advantage of the

method is that once a specification is complete and a computational goal is given,

the synthesis of programs can be performed automatically.

Flat languages are introduced as a class of declarative languages for specifying

single concepts as well as larger systems in a domain-specific manner. Given a prob-

lem statement, a program can be obtained from such a specification that computes

a required goal. Flat languages are structurally simple, however their expressive

power is sufficient to support hierarchy, inheritance and also control structures.

Higher-order attribute models are defined to provide the semantics of speci-

fications in flat languages. These attribute models can contain simple and higher-

order attribute dependencies. Simple dependencies have attributes as inputs whereas

higher-order dependencies also include subtasks that need to be solved during the

attribute evaluation. On the one hand, subtasks introduce exponential complexity,

on the other hand, they enable us to synthesize recursive, branching and looping

programs. We present higher-order attribute evaluation planning algorithm using a

concept of maximal linear branches. To synthesize efficient programs, an optimiza-

tion algorithm is given. A concrete flat language is described, and its semantics is

presented by means of higher-order attribute models.

The approach is implemented in the software system CoCoViLa that is intended

for the development and the usage of domain-specific languages. It adds another

powerful dimension to flat languages – visual specification of programs. Specifi-

cations are written in Java classes and realizations of attribute dependencies are

implemented as Java methods. This enables one to specify software declaratively

and also take the advantage of the full power of an imperative language.

Algorithm of attribute evaluation on higher-order attribute models can be ex-

plained also in terms of logic, and vice versa – theorems of intuitionistic propositional

calculus can be encoded in the form of higher-order attribute models. Hence it is

interesting to compare the algorithm implemented in CoCoViLa with well-known

theorem provers. This is done in the thesis, and the results show that only two of

the provers performed better than the CoCoViLa’s algorithms.
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Lühikokkuvõte
Tarkvara kasvav keerukus nõuab vahendeid, mis peaksid lihtsustama tarkvara-

arendust. Antud väitekiri käsitleb tarkvaraarenduse meetodit ja sellel põhinevaid

vahendeid, kus programmide konstrueerimisel kasutatakse tekstilisi ja visuaalseid

mudeleid. Nimetatud meetodi eeliseks on, et valminud spetsifikatsiooni järgi sünteesi-

takse programm täisautomaatselt. Töös on defineeritud lamedate keelte klass ja on

loodud nendele keeltele realiseerimise vahendid. Lamedad keeled on deklaratiivsed

keeled nii valdkonnaspetsiifiliste mõistete kui ka keeruliste süsteemide spetsifitsee-

rimiseks. Lamedate keelte struktuur on lihtne, samas on nad piisavalt väljendusrik-

kad hierarhia, pärimise, polümorfismi ja põhiliste juhtimisstruktuuride esitamiseks.

Töös on kirjeldatud kõrgemat järku atribuutmudelid lamedate keelte semantika

esitamiseks. Mudelid sisaldavad kahte liiki – lihtsaid ja kõrgemat järku – atribuut-

sõltuvusi. Lihtsate sõltuvuste sisenditeks on ainult atribuudid, kuid kõrgemat järku

sõltuvuste sisendites lisanduvad atribuutidele ka alamülesanded, mis atribuutide

arvutamisel peavad olema lahendatud. Ühest küljest, alamülesanded nõuavad ek-

sponentsiaalse keerukusega arvutusi semantika realiseerimisel, teisest küljest võimal-

davad nad sünteesida rekursiivseid, hargnevaid ning tsüklitega programme. On esi-

tatud kõrgemat järku atribuutide arvutamise algoritm. Sammude arvu mõttes mini-

maalsete programmide saamiseks on antud optimeerimisalgoritm. Töös on esitatud

konkreetne lame keel, mille avaldised on lihtsalt teisendatavad atribuutmudeliteks.

Pakutud meetod on realiseeritud Java-põhises valdkonnaspetsiifiliste keelte aren-

damisele orienteeritud tarkvarasüsteemis CoCoViLa. Süsteem võimaldab programme

spetsifitseerida visuaalselt, hõlbustades märgatavalt lamedate keelte kasutamist.

Mõistete spetsifitseerimine toimub Java klassides ning atribuutsõltuvuste realisat-

siooni kirjeldatakse Java meetoditega. Antud lähenemine võimaldab tarkvara spet-

sifitseerida deklaratiivselt, kombineerides seda imperatiivse keele võimalustega.

Kõrgemat järku atribuutmudelitel atribuutide arvutamise algoritmi saab esi-

tada abstraktselt ka loogika keeles ning vastupidi – intuitsionistliku lausearvutus-

loogika teoreeme saab sõnastada kõrgemat järku atribuutmudelite terminites.

Seetõttu on huvitav võrrelda antud töös realiseeritud algoritmi loogikas tuntud

tõestajatega. Võrdluse tulemused näitavad, et valitud teoreemide tõestamisel oli

ainult kaks tõestajat CoCoViLas realiseeritud algoritmist paremad.
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Chapter 1

Introduction

In this dissertation we describe a class of declarative specification languages

that we call flat languages and present a concrete implementation of a flat language.

We demonstrate through our implementation and experiments that flat languages

are useful in the model-based software development. Flat languages still support

hierarchy and inheritance. The term “flat” comes from the fact that any specification

written in a flat language can be unfolded into a flat representation.

We present a precise semantics of flat languages in terms of higher-order at-

tribute models. A specification in a flat language is, first, unfolded and translated

into attribute model, second, attribute evaluation planning is performed and, third,

evaluation algorithm is executed computing the specified goals. This approach fits

well into model-based software development paradigm: models are executable speci-

fications written using a declarative language, programs from such specifications are

constructed automatically.

Institute of Cybernetics has a large experience in developing program synthesis

tools. Structured synthesis of programs (SSP) proposed by Tyugu and Mints is

a deductive synthesis method developed since late 70’s. The method relies on the

implicative fragment of intuitionistic propositional logic – specifications are regarded

as logical theorems and programs are obtained from constructive proofs. SSP is

based on the idea that programs can be constructed from preprogrammed modules

taking into account only structural properties of programs being synthesized. It

has been implemented in several (including commercial) software systems, such as

XpertPriz, Priz, NUT, etc.

SSP has proved its usability over several decades, however some problems re-
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garding its implementations remained open. The major problems were as follows.

Older software systems were built for fixed platforms, consequently, the software

was hardly portable and also had memory limitations. Another problem was inter-

operability, that is, older systems were not flexible enough to easily communicate

with other software systems.

By the end of 90’s the Java programming language started gaining popularity. It

opened the horizon for highly portable multi-platform software, the ease of software

development and effective integration between different software systems. The first

attempt to implement a Java-based program synthesis system that included exten-

sions to the structural synthesis of programs was made by Sven Lämmermann from

the Royal Institute of Technology (Stockholm). The implementation remained on

the prototype stage, but the experience obtained was very valuable. That included

the annotation of Java classes with metainterfaces.

A new research project was started at the Institute of Cybernetics in 2003

constituting a new generation software system that relied on the ideas of structural

synthesis of programs. The idea was to use Java to overcome the limitations for older

systems and introduce a multi-platform model-based program synthesis framework

with emphasis on visual specifications. The initial author of the implementation was

Ando Saabas. The author of the present thesis joined the project in the beginning of

2004. A year later, in 2005, the software prototype was named CoCoViLa (Compiler-

Compiler for Visual Languages). In 2006, the Modeling and Simulation Group was

formed at the Institute of Cybernetics which aimed to further develop CoCoViLa

to overcome the prototype stage and make it useful for the real-world applications.

The author became the principal administrator and developer of the tool, and his

contributions are summarized in the implementation part of the current thesis.

The incentive of the theoretical part of the thesis is as follows. In 1968, Donald

Knuth introduced attribute grammars for the precise representation of semantics of

programming languages. Later, attribute grammars became widely used in com-

piler construction helping to attach semantic values to syntax constructions. This

approach motivated the author to take an advantage of attribute models for repre-

senting semantics of declarative domain specific languages. This required an exten-

sion of the attribute models by introduction of higher-order attribute dependencies.
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One of the main advantages is the algorithmic nature of methods for processing the

attributes. Structural synthesis of programs, for instance, as a pure logic-based tool,

was lacking a description of how to implement the derivation rules and program ex-

traction. Attribute evaluation algorithms, on the other hand, are more intuitive to

implement.

1.1 Problem statement

The thesis concentrates on the following problems:

• defining a class of declarative specification languages suitable for model-based

and automated program construction, and with a potential for visual repre-

sentation;

• choosing/developing a technique for representing semantics of such languages;

• designing and implementing a specification language of this class with required

extensions;

• performing experiments to show the practical applicability of the chosen ap-

proach.

1.2 Contributions

The main contributions of this work are:

• introduction of a concept of flat languages;

• method of higher-order attribute semantics for representing the semantics of

flat languages;

• efficient implementation of the method in a programming environment;

• testing the programming environment in numerous applications.
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1.3 Outline of the thesis

This thesis is organized as follows. Chapter 2 describes the related work and presents

a context of the research. In Chapter 3 we present the formal definition of flat lan-

guages and give several illustrative examples. Chapter 4 is dedicated to the definition

of attribute models. Simple and higher-order attribute models are introduced and

algorithms of attribute evaluation on attribute models are presented. In Chapter 5

we introduce the concrete instance of a flat language – the specification language

which consists of a core language and some extensions. We also define the semantics

of the core language in terms of attribute models. In Chapter 6 the implementation

of the proposed method of program construction is presented in the context of Co-

CoViLa programming environment. Chapter 7 demonstrates real-world applications

in CoCoViLa. The performance evaluation and comparisons to other software tools

is given in Chapter 8. In Chapter 9 we present conclusions.
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Chapter 2

Related work

The present chapter defines the context of the research by giving an overview of

the related work. The first section discusses program synthesis methods and some

developed systems. The next section explains which attribute techniques influenced

our work. The third section is about the model-based software development. Finally,

a brief summary of tools for implementing domain-specific (visual) languages is

given.

2.1 Program synthesis

Program synthesis is the derivation of a program to meet a given specification.

This section describes several approaches and tools for program synthesis. The

topic of this dissertation is closely related to the deductive synthesis (“proofs-as-

programs” paradigm) based on Curry-Howard isomorphism [30]. The deductive

synthesis allows to construct programs with proving its correctness with respect to

the given specification.

Manna and Waldinger introduced the deductive tableau method for synthesis

of functional programs in classical first-order logic [47, 48]. Deductive tableau is

a two-dimensional structure where each row contains a single assertion or a goal,

and one or more (optional) output terms which represent the program being con-

structed. AMPHION [42] is a knowledge-based software engineering system de-

veloped at NASA which incorporates deductive tableau method for automatically

constructing programs.

Structural synthesis of programs (SSP) is a deductive program synthesis method.
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SSP was first introduced by Tyugu [82] and further developed in cooperation with

Mints [60]. SSP is based on the idea that programs can be constructed from pre-

programmed modules taking into account only structural properties of programs

being synthesized. This method has been used in several (also commercial) systems,

such as XpertPriz, PRIZ [62] and NUT [87]. The foundation for SSP is the implica-

tive fragment of intuitionistic propositional calculus (IPC). For proving theorems in

the framework of SSP, instead of natural deduction, special structural synthesis rules

(SSR) are used that are admissible rules of the IPC. SSR rules are complete and any

intuitionistic propositional formula can be proved by SSR (special encoding of for-

mulas is required). Provability in IPC and, consequently, in SSP is polynomial-space

complete [78], however efficient proof strategies exist that for most of the practical

problems reduce the search to almost linear complexity [51]. The discussion how

SSP influenced on the current work will be continued in the following chapters.

As noted in [88], SSP is related to programming in type theories [59, 63]. Pro-

gramming in type theories focuses on verification of programs against specifications

and transformational development of specifications into programs. The type lan-

guages used can be very expressive compared to the language of structural synthe-

sis, the main objective of which has been efficient automatic synthesis, setting very

restrictive constraints on the type language. Nuprl [4] is a system developed at

Cornell University based on the Martin-Löf’s type theory [49] and the research of

Constable [6].

Lämmermann [40] extended structural synthesis of programs with more com-

plex specification mechanisms required for fully automated runtime composition of

service programs. First extension was the disjunction connective that enabled han-

dling of exceptions, i.e. exceptions are specified as proper outputs of preprogrammed

components and are handled as regular branches in the synthesized programs. Sec-

ond extension was the use (with some restrictions) of first-order quantification for

composing programs from components of different sources. Third extension was the

falsity constant needed to provide a way to specify program termination after ex-

ception handling. The work has been realized in the context of an object-oriented

programming language. Metainterfaces as logical specifications of classes have been

introduced. The results of Lämmermann’s thesis has influenced the present work,
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especially the implementation part.

Further we are going to describe two synthesis systems developed at Kestrel

Institute that utilize transformational synthesis (specification refinement into pro-

grams).

KIDS (Kestrel Interactive Development System) [75, 76] semi-automatic syn-

thesis tool that enables one to transform a formal specification into a correct and

efficient program by interactively applying a sequence of high-level transformations.

The system emphasizes the application of complex high-level transformations that

perform significant and meaningful actions. From the user’s point of view the system

allows the user to make high-level design decisions like, “design a divide-and-conquer

algorithm for that specification” or “simplify that expression in context”.

After KIDS, Specware [52, 77] is a next generation software system developed

at Kestrel Institute that uses notions and procedures based on category theory and

related mathematics to manipulate specifications. In Specware, abstract specifi-

cations define the input-output relations and related properties of software under

construction. Dependencies between components are defined using morphisms that

syntactically map symbols from one component into symbols or terms in another

component with some semantic restrictions. The abstract specifications are refined

into constructive forms and abstract sorts are refined into concrete data types. As

a final step, refined components are converted into components in some executable

programming language (e.g., C, C++, Lisp, or Java) using a code generator.

2.2 Attribute grammars

Attribute grammars have been initially introduced by Knuth in 1968 to add se-

mantics to context-free languages [38]. Context-free grammars describe syntax of

context-free languages. Attribute semantics is defined by decorating grammars with

attributes and specifying semantic functions for evaluation of attributes. This tech-

nique has been widely applied in automated systems for parser generation and com-

piler construction [22,28,68].

A survey of attribute grammar definitions and systems is given by Deransart et

al. [15] and a survey of attribute grammar-based specification languages is given by
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Paakki [67]. This is classics of compiler construction and language specification.

There have been attempts to improve/extend the concept of attribute gram-

mars. An extension called higher-order attribute grammars (HAGs) have been theo-

retically considered by Vogt and Swierstra [79]. They have defined a class of higher-

order attribute grammars as an extension of classical attribute grammars in the sense

that parts of the parse tree can be stored in an attribute, and a parse tree itself can

be changed by attribute evaluation. The strict separation between attributes and

parse trees is removed in HAGs. This adds considerable flexibility to the grammar.

Authors show that pure HAGs have expressive power equivalent to Turing machines.

The incremental attribute evaluation algorithm for HAGs is introduced that handles

the higher-order case. The problem why HAGs did not become widely used regard-

less their expressiveness is the fact that it is hard to reason about abstract syntax

trees, structure of which may change during the attribute evaluation.

The relation between attribute grammars and declarative programs has been in-

vestigated by several researchers. Deransart and Maluszynski [16] demonstrated the

relation with logic programs by introducing constructions which transform logic pro-

grams into semantically equivalent attribute grammars, and vice versa. Parigot et

al. [17] show close relation to functional programs by introducing notions of scheme

productions and conditional productions to add expressiveness to attribute gram-

mars. The result was a declarative language with the expressive power compared to

the most first-order functional languages [34].

The connection between attribute grammars and computational model intro-

duced by Tyugu [83] has been exploited by Penjam [69]. He shows how attribute

semantics of programming languages can be presented by means of computational

models and proves the semantic equivalence between attribute models and compu-

tational models, both being two similar approaches to program and compiler spec-

ification and implementation. The proposed approach has been implemented using

the NUT system. Productions were implemented as classes and semantic functions

as computational relations between variables (attributes). In the further research,

Meriste and Penjam [55,56] introduced attributed automata as an extension of finite

automata and a formal model for specification of software systems. An attributed

automaton is a state transition system with attributes and computational relations
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attached to states and transitions respectively. AAs can be used for implementation

of transformational and also reactive systems. In the former case one should be care-

ful about the existence of reachable final configurations whereas for the latter case

the termination is not important. Language recognizers is one of the application of

attributed automata. The latest research on interactive attributed automata is con-

cerned with the application to the modeling and implementation of domain-specific

languages in the context of interaction-centered multi-agent systems [53,54].

The work of Meriste and Penjam showed that it is convenient to apply the notion

of attributes not only to grammars, but also to other formalisms. In the present the-

sis we use attributes in the context of models of computations, rather than grammars

(in the last example of Section 3.5 we will briefly discuss how attribute grammars

can be represented using flat languages). Another difference of our approach from

attribute grammars is that attribute models presented in this thesis do not require

well-formedness property [15] for attribute evaluation (see Section 4.3).

2.3 Model-based software development

The languages that we define are suitable, first of all, in model-based software devel-

opment. Model-based software development in general can be defined as a methodol-

ogy that splits the construction of domain-specific software into two phases: domain

engineering and application engineering. During the first phase, the domain con-

cepts with high-level of abstraction are built directly using expert knowledge. The

second phase uses such domain concepts to build the actual software. In the pres-

ence of appropriate tools, model-based software development facilitates high-level

modeling of systems, code reuse and automated code generation.

The idea of model-based software development is not new. It has been around

for almost 30 years, but has not become a widely accepted paradigm. Its most

successful applications are in simulation software, there are well known specialized

products like Simulink [10].

One continuous effort in the field of model-based software development is pur-

sued in NASA [7]. Aerospace applications, including software for the International

Space Station (ISS), use model-based development extensively. NASA puts strict
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requirements on the model-based software development. As the authors say, the

production-quality program synthesis is the keystone for full-cycle model-based pro-

gramming. Without this capability, model-based programming is limited to being a

prototyping tool whose utility ends after detailed design, when the production code

is developed manually. Further, any subsequent upgrade or maintenance fix must be

made manually, directly on the software. In other words, the generated code should

be correct and reliable, and also modular and easily maintainable on a higher level,

i.e. on the level of models, not source code.

In the work by Sztipanovits et al., domain knowledge for the signal-processing

system is expressed as formal declarative models [1]. The approach stems from the

use of macro-dataflow computation model in the Multigraph Architecture, which

provides the framework for model-based synthesis of software in real-time, parallel-

computing environment. The models are defined using a frame language in a Lisp-

like syntax. Models can also be built graphically, using icons, ports and connections.

The techniques developed in [1] authors still use in their latest research [71].

Considerable amount of work is being done in improving the existing UML-

based approaches with the aim of providing automated support to the software

development [20] and language development [74]. This approach is also related to

Model Driven Architecture (MDA) advocated by the OMG group [64] and to the

development of domain specific languages (DSL) [57, 89], because they all have the

development of user friendly and automated problem solving tools as a goal. This

approach includes the usage of UML-based models and metamodels. It concentrates

either on the research of transformation rules for transforming an initial specification

(a model) into another model or an executable code [94], or on the development of

rules that represent the operational semantics [20] or even immediately perform the

required computations.

The paper by Dionisio de Niz [14] compares UML with the Architecture Analy-

sis and Design Language (AADL) in the context of model-based software engineering

of embedded systems. The paper points out the inconsistency of UML diagrams for

expressing different aspects of a system as a whole (e.g. it cannot fully define the

relationships between the diagrams). AADL developed in Carnegie Mellon Univer-

sity is a specification language (and also a SAE Standard) that allows to define the
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textual representations of software architecture and also to formally define the syn-

tax and semantics. In addition, AADL enables to represent the system graphically.

Descriptions in AADL can be verified by the syntactic and semantic analyzer for

consistency and correctness. The execution semantics of AADL language is defined

as hybrid automaton, which is a mathematical model for describing in unambiguous

way how software and physical processes interact.

In [35] Kelly and Tolvanen explain how model-based code generation can be

achieved. The proposed technique is called Domain-Specific Modeling (DSM). It

enables to specify models using elements created specifically to describe parts of a

particular domain. The DSM language follows domain abstractions and semantics

and allows modelers to work directly with domain concepts. The full code is gen-

erated from high-level specifications. The underlying formalism used to describe

models in one of the examples (digital wristwatch) is the state machine.

The important topic relevant to model-based software development is a gen-

erative programming paradigm. It is about manufacturing software products out

of components in an automated way [9]. The generative programming focuses on

software system families rather than one-of-a-kind systems. Such family members

can be automatically generated based on a common generative domain model that

includes implementation components and the configuration knowledge mapping be-

tween a specification and a finished system or component. The difference between

generative programming and program synthesis is that the latter focuses more on

the employment of formal methods (e.g. theorem proving) whereas the former uses

rewriting and transformational approach.

2.4 Domain-specific visual languages

Over the years of rapid growth of technologies and computing power lots of sys-

tems have emerged to help software developers to reduce time and effort in creating

complex software systems. In order to make programs more concise, easier to under-

stand, write and support, notions of higher levels of abstraction are required. Visual

programming/specification systems are important because visual representations of

problems in some particular domain enable one to use humans visual perception
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(and other cognitive processes) to examine a given picture and get a general under-

standing of it in a matter of seconds. Another aspect is that manipulating visual

objects is more natural for humans than dealing with textual notations.

Languages that are tailored for a particular domain are called domain-specific

languages (DSL) [90]. DSLs allow domain experts to express their knowledge and

specify problems using domain-specific notations and abstractions. Domain experts

may not be software engineers, thus, dealing with DSLs is more convenient than

using general-purpose languages to specify domain-specific problems, as such spec-

ifications contain too many details. Examples of well-known domain-specific lan-

guages are: SQL – database query language, Yacc grammars for parser generation,

XSLT – language for XML transformations, etc. Most of the DSLs are declarative.

Domain-specific visual languages (DSVL) give both benefits to the users –

declarative and visual way to specify domain problems. There are lots of underlying

concepts used to give syntax and semantics of visual languages, such as grammar-

based, logic-based, graph grammars, constraint based, etc.

A software development environment NUT [87], a predecessor of a tool devel-

oped in the context of this thesis, combines object-oriented programming, visual

programming, and automatic program construction paradigms. It enables users to

write classes in an object-oriented style and also to specify classes graphically by

drawing their schemes. Using the NUT’s scheme editor, a user can develop its own

graphical language and use it for specifying programs in his problem domain. The

(automatic) way from a graphical specification to expected results is the follow-

ing: graphical scheme → textual specification → constraint network → synthesized

algorithm → results of computation.

AToM3 [11, 12] (A Tool for Multi-Formalism and Meta-Modeling) is an inter-

active multi-paradigm modeling tool that relies on graph rewriting techniques and

graph grammars to perform the transformations between formalisms (defined in For-

malism Transformation Graph proposed by the authors) as well as for other tasks,

such as code generation and operational semantics specification. AToM3 has a meta-

modeling layer in which different formalisms are modeled graphically. AToM3 uses

the Object Constraint Language OCL [93] also used in the UML to express con-

straints in a textual form. In [13] authors show how AToM3 is used to build visual
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modeling environments for manipulating Causal Block Diagrams models to simulate

Ordinary Differential Equations and generate textual code for the object-oriented

continuous simulation language OOCSMP.

MetaEdit+ is a commercial CASE framework for rapid development and usage

of domain-specific visual languages [81]. In MetaEdit+ a domain-specific language

first has to be designed and implemented by a domain expert. Then the language

can be used by a user without a need to do any programming, problems are stated

visually. Code generators have to be defined on a metamodel using a built-in script-

ing language, which in a rather straightforward way transform models into some

external language.

The VLCC (Visual Language Compiler-Compiler) [8] is a grammar-based sys-

tem for automatic generation of visual programming environments. In VLCC, graph-

ical tools define visual languages to create both graphical objects and composi-

tion rules. The underlying grammar formalism in VLCC is the positional grammar

model, which is expressive, but also efficient to parse.

Moses [21] is a framework for defining syntax and semantics of DSVLs focused

on (but not limited to) the modeling of discrete-event systems. The abstract syntax

of visual languages is defined by attributed graphs and set of predicates over such

graphs to enable validation of structures and attribution. In a similar manner as our

implementation, Moses allows embedding program fragments into visual languages

to provide better functionality. The semantics of visual languages in Moses is speci-

fied in the form of an interpreter using Abstract State Machines [27] – a language for

formal specification of operation semantics. The framework also has a visual editor

used for creating visual notations and visual syntax checking.

2.5 Summary

In this chapter we defined the context of the thesis with respect to the given problem

statement. The foundation for our work from the automated program construction

standpoint has been set by various works on the structural synthesis of programs.

Attribute grammar techniques influenced the thesis in choosing notations and eval-

uation strategies. Model-based software development paradigm turned out to be
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very attractive approach for software engineering where our work fits well. Domain-

specific visual languages have proven their usefulness over several decades and the

current thesis tries to give precise semantics of such languages for developing soft-

ware in time-efficient and convenient way.
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Chapter 3

Flat languages

Our goal is to define a class of declarative languages that will have well-defined

semantic properties, to propose a theoretically sound method of implementation of

semantics of these languages, and to test it in practice.

We consider declarative languages where a text can be not only a specification

of a single program, but also a description of device or a system (its model) that

allows one to ask several different questions about the specified concept. This means

that a program can be obtained from a declarative specification and a goal (that

is, a problem statement describing what is needed). We have restricted the set of

specification languages considered here to structurally very simple languages that

we call flat languages.

Flat languages are declarative languages suitable for defining and composing

objects into descriptions of concepts by connecting their components using ports.

Such languages can be called flat, because they have little syntactic structure. For

instance, they are without explicit looping and branching statements (in general,

Turing-incomplete). However, these control structures – looping etc, can be them-

selves added as components. Flat languages allow creating hierarchical descriptions

which can be unfolded into flat forms. The meaning of specifications in flat languages

is hidden in the types of objects and in the way the objects are connected.

Specification languages in engineering domains (VHDL, SDL, etc) are declar-

ative languages where concepts (entities) are often connected by means of ports,

gates or channels. In essence, most of the declarative specification languages are flat

languages, although having some features that are difficult to express through the

local semantics of objects.
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3.1 Types

When designing a language, the issue of choosing an appropriate typing systems is

essential. There are two typing systems that can be distinguished: nominative (or

nominal) and structural typing [70]. The question is, how do typing systems handle

equivalence and subtyping and which one fits our needs. In structural approach,

an equality and a subtyping relations depend purely on the structure of types. In

nominative approach, these relations depend not only on structure of types but also

on explicitly given names (tags) of types.

In the example below, declarations of three types are given:

AndGate:(int out, int in1, int in2)

OrGate:(int out, int in1, int in2)

XorGate:(int result, int in1, int in2)

In a structural typing system, the three types would be equivalent, as the struc-

ture of types is identical. In a nominative typing system, the type XorGate would

not be equivalent, as the names out and result are different.

The second example is related to subtyping.

UnaryGate:(double out, double in1)

BinaryGate:(double out, double in1, double in2)

In a structural typing system, BinaryGate is a subtype of UnaryGate. In a nomi-

native system, to make BinaryGate the subtype of UnaryGate, one has to explicitly

declare the subtyping relation (here denoted by the “super” keyword):

BinaryGate:(super UnaryGate; double in2)

For our language, first, we need a separation of concepts, even if concepts share

the same structure, and, second, the subtyping should be explicit. Having such

criteria in mind it is obvious that nominative typing fits better, though there is a

trade-off for tidiness and elegance.

We define flat languages as follows. There is given a finite set of primitive types

(i.e. value types) and a countable set of names.

New types are defined by a construction

a : (t1, . . . , tn; a1 : s1, . . . , ak : sk),

26



where a is a name given to a new type and this type is called the compound type.

The construction ai : si defines a component of a, where ai is a unique name of the

component, i.e. ai �= aj for i �= j, and si is a name of a known type, i = 1, ..., k, j =

1, ..., k. We can refer to a component ai of the type a as a.ai.

The subtyping relation is defined on types: a type a is a subtype of compound

types t1, . . . , tn (the list of supertypes may be empty). Overriding of component

names is not allowed, i.e. components of a subtype cannot shadow components of

supertypes.

3.2 Classes

Types of objects in a flat language are represented by classes. A class includes a

compound type as a part of it. A class is defined by a construction

c : (s, (p1, . . . , pm),S),

where

• c is the name of a class,

• s is its type, whereas c matches the name of type s and components of a type

are also the components of a class.

• p1, . . . , pm are the ports. A port p is a connection point of a class representing

one of its components or a whole instance of the class. Ports allow instances

of classes (objects) to bind together their components. If ai is a component of

class c and port p represents this component, then the name of port p is the

name of component ai.The intuition behind ports (by analogy with object-

oriented languages) is that they provide access to class attributes the same

way as “get” and “set” methods provide access to the fields of classes e.g. in

the Java language.

• S is a definition of the local semantics of the class that can be defined only

in terms of s, i.e. using only the components of s. Local semantics S is not

defined here, it depends on a concrete flat language.

27



3.3 Syntax

A text in a flat language is a specification of an object, a system or a process. Text

is a sequence of statements. The syntax of a flat language is given by a set of classes

and by the following simple rules in EBNF 1 as follows:

Text ::= {Statement;}
Statement ::= ObjectDeclaration|Binding

ObjectDeclaration ::= TypeName ObjectName

TypeName ::= Primitive|ClassName

Port ::= ObjectName|ObjectName.ComponentName

Binding ::= Port=Port

Statement is either an object declaration or a binding. Object is an instance

of a class. Binding is an equality between ports, where a port can be also a whole

object.

3.4 Semantics

Semantics of a flat language depends only on the semantics of its classes and on the

semantics of bindings. In this section we show only the semantics of bindings. Local

semantics of classes will be introduced in Chapter 5. Semantics of bindings is the

following:

a) if ports in a binding have one and the same primitive type, then the values of

bound components are considered to be equal.

b) if ports in a binding have one and the same compound type, then a bind-

ing is recursively defined also for all pairs of the respective components of a

type. Example: the binding p.x = q.y for the ports x and y that have the

type defined as a : (a1 : s1, . . . , ak : sk) defines also the bindings p.x.a1 =

q.y.a1, . . . , p.x.ak = q.y.ak as well as bindings for all components of the types

1For brevity, here and in further sections we use quotation marks for specifying terminal symbols
only when it is required to distinguish them from the syntax of EBNF

28



of a1, . . . , ak. If ports have different types, but have a common supertype, then

bindings are recursively defined for components of the supertype.

3.5 Examples

Let us look at a small example of a flat language that is for specifying reliability of

devices through the reliabilities of their components and the structure of a device.

Types are double, Basic, Parallel, Series. The type double is a primitive type for

numbers. The type Basic represents components of a device that have a value of

reliability, let it be a probability of a correct operation of a device or a component

during a given period of time. This probability is represented by a variable p that is

of the type double and is a component of an object of type Basic. Let us introduce

also another variable q that expresses a probability of error occurring during the

given period of time. The type Parallel represents a substructure of a device that

is composed of two parts denoted by part1 and part2 in such a way that if at

least one part works correctly, then the composition works correctly. These parts

are of type Basic. The type Series represents a substructure of a device that is

composed of two parts denoted by part1 and part2 in such a way that it operates

correctly if both parts operate correctly. These parts are of type Basic. This is a

rather typical example of a small domain-specific language in engineering. There

are some computations that can be performed on the objects of type Parallel and

Series. These computations and the notations introduced above are summarized in

Table 3.1.

Some words have to be said about the Computations column in Table 3.1. We

see equations there, and one may expect that these equations can be used in different

ways, not only for computing the value of a variable on the left side of an equation.

This column presents a computational semantics of the types to a user not interested

in an implementation of the language. The implementation can be made in several

ways. In particular, one could extract two assignments from the equation for Basic:

p:=1-q

q:=1-p,

or one can use a numeric equation solver for solving the equation. We postpone the
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Name of type Supertype Components Computations Comment

double primitive
numeric type

Basic double p p+ q = 1
double q

Parallel Basic Basic part1 q = part1.q ∗ part2.q
Basic part2

Series Basic Basic part1 p = part1.p ∗ part2.p
Basic part2

Table 3.1: An example of a flat language

discussion of the implementation now and return to it in Section 5.4.

We extend the flat language with the values of primitive types that are handled

as predefined objects.
An example written in the language of reliability is as follows:

Basic c1, c2, c3;

c1.p=0.99;

c2.p=0.97;

Series sr;

sr.part1=c1;

sr.part2=c2;

Parallel pr;

pr.part1=sr;

pr.part2=c3;

This is a description of five objects c1, c2, c3, sr, pr connected by means

of 4 equalities, and assignment of values to primitive objects c1.p, c2.p that are

components of objects c1 and c2. This specification can be presented visually, as

soon as one has means to represent objects of types Basic, Parallel, Series, as well

as a possibility to connect ports and to introduce values of primitive types. A visual

representation of the specification is shown in Figure 3.1. This text (or the scheme in

Figure 3.1) can be used as a specification of several computations. A computation is

defined as soon as a goal is given (cf. Prolog). A goal states the input and the output
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Figure 3.1: Visual specification in a flat language

of a computation. For example, the following two goals are interesting (although

there are more meaningful goals):

c3.p->pr.p and pr.p->c3.q

The first requires finding the resulting value pr.p of reliability of the device

pr depending on the reliability value c3.p of the component c3, and the second

requires finding the probability of error c3.q of the component c3 that gives the

given reliability of device pr. �
The following example demonstrates how attribute grammars can be imple-

mented using a flat language. The syntax of a context free language is given by

rules of the form:

p0 ← w1p1w2p2 . . . wkpk,

where p0, . . . , pk are nonterminal symbols of the language and w1, . . . , wk are possibly

empty sequences of terminal symbols. The semantics of the language is given by

means of an attribute grammar. First, we introduce a type tp for each nonterminal

symbol p that includes the attributes of the symbol p as its components. Then we

introduce types and classes for rules as follows. A type tr of a rule r has components

c0, . . . , ck with respective types tp0, . . . , tpk for its nonterminal symbols p0, . . . , pk. A

class of a rule r includes besides the type tr also attribute dependencies as defined in

the attribute grammar. By the definition of an attribute grammar, this flat language

is sufficient for expressing attribute semantics of any sentence of the given language.
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A specification in the flat language, let us call it an attribute model [69], can be

built from an abstract syntax tree of a text [15, 92]. This specification can be used

for computing the synthesized attribute of the nonterminal symbol representing the

whole text. This is a dynamic evaluation of attributes of a language given by an

attribute grammar. In order to be able to express attribute semantics of a language

by means of one single specification in a flat language and to compose a static

attribute evaluation algorithm, we have to extend the types of rules. �
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Chapter 4

Attribute models

In this chapter we present attribute models and describe algorithms for per-

forming computations on such models. The semantics of specifications can be given

by means of attribute models in three steps. First, a specification has to be trans-

lated into an attribute model. Second, given a goal containing some input attributes

and a set of target attributes, attribute evaluation is planned, and if it succeeds, it

produces an algorithm for computing values of intermediate and target attributes.

Third, having an evaluation algorithm, a program in any convenient (for a user)

programming language can be extracted for computing the values by executing it.

In our approach, all three steps are fully automated and allow to synthesize efficient

programs from declarative specifications.

4.1 Simple attribute models

In this section we give definitions of attributes, attribute dependencies and attribute

models in a conventional way, not relating them to syntax of a flat language.

Definition 4.1. Attribute aσ is a variable of a type σ.1

Definition 4.2. Simple attribute dependency is a functional dependency between

attributes.

Let us use the following notation for a simple attribute dependency:

x1, ..., xm → y1, ..., yn{f},
1We often omit type annotations of attributes for brevity.
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where f is a function of m arguments x1, . . . , xm computing a value of n-tuple

(y1, . . . , yn), i.e. x1, . . . , xm are the inputs and y1, . . . , yn are the outputs of the

attribute dependency. We say that the inputs and the outputs are bound by the

attribute dependency. It is important to notice that functions realizing attribute

dependencies are not defined in terms of attribute models and are assumed to be

given from the outside.

Definition 4.3. Simple attribute model is a pair 〈A,R〉, where A is a finite set of

attributes and R is a finite set of attribute dependencies binding these attributes.

Definition 4.4. An equality x = y of two attributes x and y having the same type

or a common supertype is a shorthand notation for two attribute dependencies x→
y{id} and y → x{id}, where id is a polymorphic identity function. If attributes are

not of primitive type, equality implies the equality of their respective components.

Two or more attribute models can be composed into a new attribute model by

binding some of their attributes by equalities.

Definition 4.5. For attribute models M1 = 〈A1, R1〉, . . . ,Mn = 〈An, Rn〉 and a set

of equalities S = {a = b, . . . , d = e} that bind some attributes of models M1, . . . ,Mn

we denote by ∪S(M1, . . . ,Mn) an attribute model with the set of attributes
⋃n

i=1Ai

and the set of attribute dependencies S ∪ (
⋃n

i=1Ri), and call it a composition of

M1, . . . ,Mn with bindings S.

Remark 4.1. When building a composition of attribute models, renaming of at-

tributes may be required. A straightforward way to do it is to add the name of a

model where an attribute came from to its name. This introduces composite names,

e.g. m.x,m.y for attributes x, y of an original model m.

4.2 Computational problems on attribute models

Definition 4.6. Let U and V be two sets of attributes of an attribute model M . A

computational problem on the attribute model M is denoted by

GM = U → V,
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where U is a set of input attributes (or just inputs) and V is a set of output attributes

(or outputs) of a computational problem GM .

The computational problem states a goal, that is, given values of attributes

from U , requires to find values of attributes of V using attribute dependencies of M .

For two computational problems G = U → V and G
′
= U

′ → V
′
, the com-

putational problem G is greater than the computational problem G
′
(denoted by

G 
 G
′
), if the following condition holds:

(U ⊂ U
′ ∧ V

′ ⊆ V ) ∨ (U ⊆ U
′ ∧ V

′ ⊂ V ).

The given definition is required for the evaluation algorithm, where, having

computed new attributes, computational problems get reduced to smaller problems

in comparison to initial ones.

4.3 Attribute evaluation planning

Planning is a term used in the field of artificial intelligence to describe algorithms

that define the behavior of agents in a particular environment [43]. In the context

of attribute models, planning algorithms determine the computational path starting

from some initial attributes to the target attributes.

We describe now a method that for a goal in the form of a computational

problem U → V on a simple attribute model decides (plans) whether there is a way

to compute values of attributes of V from given values of attributes of U , and in

the case of the positive answer produces an algorithm for solving the computational

problem (i.e. computing the values of target attributes).

Definition 4.7. Value propagation is a procedure that, for a given attribute modelM

and a set of attributes U ⊂ A, decides which attributes are computable from U and

produces a sequence of attribute dependencies. Constructed sequence of attribute

dependencies is an algorithm for evaluating the attributes that are computable on

the model M .
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Algorithm 4.1 valprop(U, V,R, algorithm)

{U is a set of inputs and an accumulator for newly computed attributes}
{V is a set of outputs of a computational problem}
{R is a set of attribute dependencies in the model}
{algorithm is an initially empty list of dependencies}
for all r ∈ R do {for each attribute dependency}

setcounter(r, #inputs(r)) {set counter to the number of inputs}
if counter(r) = 0 ∧ outputs(r) �⊆ U then {if not all outputs are computed}

U := U ∪ outputs(r)

algorithm := add(algorithm, r)

end if

end for

K := U {the set of computed attributes}
while ¬done ∧ V �⊆ U do {proceed while not all problem outputs are computed

or there are some dependencies remain unvisited}
done := true

for all k ∈ K do

for all r ∈ relations(k) do {k is an input for r}
setcounter(r, counter(r)− 1)

if counter(r) = 0∧ outputs(r) �⊆ U then {dependency is picked only if its

outputs were not previously computed}
N := N ∪ outputs(r)

algorithm := add(algorithm, r)

done := false

end if

end for

end for

K := N \ U {for the next iteration, only newly computed attributes

are required}
U := U ∪ N {add newly computed attributes into the set of all computed

attributes}
end while
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The idea for the value propagation planning algorithm that works in linear time

originated from the work by Dikovsky [18] and adapted by Tyugu for higher order

dataflow schemas [84]. Versions of this algorithm have also been presented in [72,86].

Algorithm 4.1 works step by step as follows. At each step it tries to find an attribute

dependency whose inputs are all known (initially given or computed) and some of

outputs are not computed. In the positive case, the attribute dependency will be

added to the algorithm being built and all its outputs will be added to the set of

computed attributes. In the negative case (if there is no such attribute dependency

and not all outputs of the problem have been found), the problem is unsolvable.

Initially the set of computed attributes equals to the set of given attributes U and

the algorithm (i.e., the sequence of attribute dependencies) is empty. The value

propagation procedure does not consider concrete values of attributes from the input

set U , it just assumes that attributes are computable. For each attribute dependency

the value propagation stores a counter indicating the number of unknown inputs.

If an attribute is or becomes computable, counter is decreased for each dependency

where such attribute is an input attribute. If for an attribute dependency a counter

is zero, such dependency can be added to the algorithm and its output attributes

become computable. It is easy to notice that due to the usage of counters the

algorithm works in linear time, i.e. each edge in the graph is visited only once.

The described method does not give a minimal algorithm for solving a problem

in general — the algorithm may include steps that are unnecessary for solving the

problem. The procedure of minimizing the algorithm will be discussed in Section 4.6.
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Figure 4.1: Bipartite graph of a simple attribute model
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Example. Let us consider the following simple attribute model with eight

attributes and six attribute dependencies:

〈A = {a, b, c, d, e, f, g, h},
R = {a→ c{f1};

a, e→ h{f2};
b, c→ d{f3};
d→ e{f4};
d, f → g{f5};
h→ f{f6}; }〉

It is always possible to present an attribute model in the form of a directed

bipartite graph, where edges correspond to directed bindings between attributes

and dependencies. Figure 4.1 shows it for the present example with additional

labels F1, . . . , F6 for attribute dependencies.

Let us try to solve a computational problem G1 = U : {a, b, f} → V : {g} on a

given attribute model. One of the outcomes of the value propagation in this example

is a sequence {F1, F3, F4, F2, F5}. From the produced evaluation algorithm it is clear

that computed variables e and h are not needed to solve the given computational

problem (i.e. to compute an attribute g). The process of minimizing this algorithm

will be explained in Section 4.6.

For another computational problem G2 = U : {a, b} → V : {g} that is greater

than G1 (i.e. G2 
 G1), an attribute evaluation algorithm produced by the value

propagation is a sequence {F1, F3, F4, F2, F6, F5}. �

4.4 Higher-order attribute models

Let A be a set of attributes and P a set of computational problems with inputs and

outputs from A.

Definition 4.8. Higher-order attribute dependency (hoad) is a functional depen-

dency that has inputs from A ∪ P and outputs from A.
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Higher-order attribute dependencies have the following form:

s1, . . . , sk, x1, . . . , xm → y1, . . . , yn{f},

where si ∈ P (i = 1, . . . , k) and si is called a subtask. Subtasks are the computa-

tional problems that have to be solved in order for a hoad to become usable in the

attribute evaluation.

Definition 4.9. State W of a planning process on an attribute model M is the

union of inputs of a computational problem and a set of attributes computable by

the planned part of an algorithm.

A subtask U → V is solvable on an attribute model M in the state W if a

problem U ∪W → V is solvable on M .

Definition 4.10. Higher-order attribute model is a pair 〈A,R ∪ Rho〉 where A is

a set of attributes, R is a set of simple attribute dependencies and Rho is a set of

higher-order attribute dependencies.

This extension makes a big difference in the following: higher-order attribute

models have expressive power that enables to synthesize recursive, branching and

cyclic programs where respective control structures, i.e. recursion, branching and

loops are preprogrammed and represented as higher-order attribute dependencies.

Detecting the solvability of a problem and synthesizing an algorithm on a higher-

order attribute model has exponential time complexity with respect to the number

of higher-order dependencies (see the remark in Section 4.5).

4.5 Evaluation of higher-order attributes

Let us distinguish two cases of higher-order attribute models: in the first case a model

contains a single higher-order attribute dependency (hoad) and in the second case

it has more than one hoad. The evaluation strategy is quite obvious in the first case:

first use only simple attribute dependencies and at the end use the higher-order one.

Thereafter, if still needed, use simple attribute dependencies again. Time complexity

of the search remains linear in this case with respect to size of an attribute model.
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In the second (general) case, when an attribute model M contains several

higher-order attribute dependencies, the strategy for construction of an evaluation

algorithm is as follows.

First, the procedure of simple value propagation is invoked using only attribute

dependencies that are not higher-order. If this does not solve the initial compu-

tational problem U → V (does not give values of all outputs of the problem), a

hoad is applied, if it is applicable. A hoad is applicable in a state of a planning

process if and only if all its inputs are given (i.e. are present in the state) and all its

subtasks are solvable and it computes values of some attributes that have not been

evaluated yet. A sequence of applicable attribute dependencies obtained in this way

is called maximal linear branch (mlb). It contains at most one hoad at the end of

the sequence. There are three possible outcomes of the procedure of finding a mlb:

1. After constructing a mlb the problem is solvable.

2. A mlb cannot be found and the problem is unsolvable.

3. A mlb can be found and the initial problem U → V is reduced to a smaller

problem U
′ → V

′
, where U

′
= U ∪ Y , V

′
= V \ Y , and Y is the set of outputs

of a hoad used in mlb.

This procedure (construction of mlb) is repeatedly applied until the problem is

solved or no more mlbs can be constructed.

It is important to notice that for applying a hoad we have to solve all its

subtasks. This means that the whole procedure of problem solving must be applied

for every subtask. This requires a search on an and-or tree of subtasks on the

attribute model. The root of a tree corresponds to the initial problem, and it is an

or-node, because there may be several possible mlbs for this problem. And-nodes

correspond to higher-order attribute dependencies and have one successor for its

each subtask, plus one successor for the reduced task that has to be solved after

applying the mlb. Or-nodes of the tree correspond to the subtasks that have to be

solved for their parent and-node. The search on the and-or tree is depth-first search

with backtracking.
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Algorithm 4.2 mlbsearch(W, R, Rho, algorithm, path)

{W is a state (set of computed attributes)}
{R, Rho are sets of simple and higher-order dependencies}
{algorithm and path are lists of dependencies}
MLB:

while Rs �= ∅ do
OR:

for all r ∈ {r′ | r′ ∈ Rs ∧ counter(r
′
) = 0 ∧ last(path) �= r

′} do
allsolved := true

add(path, r)

AND:

for all s ∈ subtasks(r) do

solved = valprop(W ∪ inputs(s), outputs(s), algorithms)

if ¬solved then

mlbsearch(R, Rho, algorithms, path)

solved = valprop(W ∪ inputs(s), outputs(s), algorithms)

allsolved := allsolved ∧ solved

if ¬allsolved then

continue OR

end if

end if

cache(algorithms, s)

end for

if allsolved then

algorithm := add(algorithm, r)

W := W ∪ outputs(r)

Rs := Rs \ {r}
continue MLB

end if

end for

break MLB

end while
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The planning algorithm for evaluating the attributes on higher-order attribute

models is shown in Algorithm 4.2.

Remark 4.2. It is useful to notice that specifications of attribute dependencies (and

higher-order attribute dependencies) can be considered as propositional formulas

where arrows denote implications and commas denote conjunctions. Building an

attribute evaluation algorithm for a particular computational problem with inputs

u1, . . . , um and outputs v1, . . . , vn corresponds then to a derivation of the formula

u1 ∧ . . . ∧ um ⊃ v1 ∧ . . . ∧ vn in the intuitionistic propositional calculus (IPC). This

correspondence is known as the Curry-Howard isomorphism [30]. We would like to

point out here that the evaluation of attributes considered in the present section

is an efficient algorithm of program construction in propositional logic program-

ming [61]. This approach gives also an algorithm of proof search for IPC, although

some transformation of propositional formulas to the suitable form will be needed

in the general case [51]. The proof search for IPC is PSPACE-complete [78], hence

the higher-order attribute evaluation also has exponential time complexity.

Example. In this example we will show the problem solving on higher-order

attribute models. Let us consider an attribute model with the following attribute

dependencies:

[y → a]→ b

[a→ b]→ x

x, y → a

and a goal in the form of a computational problem with no inputs and one out-

put {→ b} on this model. In fact, solutions (there can be more than one) of this

problem are equivalent to the derivation of a so-called Kripke’s formula ((((A →
B) → A) → A) → B) → B which is an intuitionistic analog of the classically valid

formula ((A → B) → A) → A known as the Peirce’s law. The idea of encoding

arbitrary intuitionistic propositional formulae into sets of formulas with at most one

subimplication on the left hand side of a outermost implication is described in [51].

For brevity, in this example we omit implementations of attribute dependencies
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and label dependencies as follows:

S1 : [y → a]

S2 : [a→ b]

R1 : S1 → b

R2 : S2 → x

F1 : x, y → a,

where S1 and S2 are subtasks, R1 and R2 are higher-order attribute dependencies

and F1 is a simple attribute dependency.

S0

R1

S1

R2

S2

R2

S2

R1

S1

S
′
0

R1

S1

∅ → b

∅

�

y → a

y

y, a → b

�

a → b

∅�

a, y → a

b

��
a

x
�

x → b

�
x

x, y → a

b

�

b

b

�

�

{}

{R1({})}

{F1}

{R1({F1})}

{R2({R1({})});R1({F1})}

Figure 4.2: Decorated and-or search tree of the example

Figure 4.2 shows a complete and-or search tree for a solution of the computa-

tional problem. Let us explain the tree traversal step by step. The root of a tree S0

is a top-level problem with a goal ∅ → b with an empty set of inputs. First, value

propagation is applied on S0 returning an empty sequence of attribute dependencies,

because the initial problem has no inputs. In order to find a mlb, a higher-order

attribute dependency has to be considered. Thus R1 is picked (first hoad in the

model). The only input of R1 is a subtask S1 that has to be solved. S1 has one

input y and one output a. Again, value propagation is applied in the context of S1

returning an empty sequence. In order to complete an mlb of S1, a hoad has to be

used again. R1 is ignored, because it has just been tried, thus R2 is picked. Subtask
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S2 of R2 has an input a and an output b. In addition, y from S1 is also available.

S2 cannot be solved, because value propagation returns an empty sequence (cannot

compute anything from y and a) and there are no other hoads that can be used,

consequently, mlb of S2 cannot be constructed. We do backtracking to the node S1

and then to the S0 and mark the backtracked branch by dashed lines. Back in S0,

second hoad R2 is chosen. S2 cannot be solved by value propagation, thus R1 is

used. S1 is solved trivially (i.e. mlb of S1 is empty), because an input a from S2

maps to the output a of S1. Mlb of S2 is successfully constructed and its sequence

contains one attribute dependency R1. The output of R1 is b and it is exactly what

is needed to solve S2. The subtask of R2 is solved and an output x of R2 becomes

available. Here is a tricky part. First mlb of S0 is constructed with the following

sequence of attribute dependencies: {R2({R1({})})}. Initial problem S0 : ∅ → b is

not solved. Knowing x, S0 is reduced to a new computational problem S
′
0 : x → b.

Again, value propagation is applied on S
′
0 returning an empty sequence. Then, R1 is

picked. In the context of S1, x and y are known. The former is propagated from S
′
0

and the latter is an input of S1. The required output is a. Value propagation returns

a sequence with one simple attribute dependency {F1}, i.e. a becomes known after

applying F1 with inputs x and y. The subtask S1 is solved. The output of R1 is b.

After using R1, the problem S
′
0 is solved, consequently S0 is solved. Finally, mlb of

S
′
0 is glued together with mlb of S0 and the full algorithm of computing the goal b

is as follows: {R2({R1({})});R1({F1})}. �

4.6 Optimization

A procedure that gives a minimal algorithm for solving a computational problem has

been briefly described in [51] and explained in more detail in Section 4.3.4 of [85]. In

the context of this work we call finding a minimal sequence of attribute dependencies

for solving a computational problem an optimization and extend this procedure to

work on higher-order attribute models.

For each attribute dependency included in an evaluation algorithm, the opti-

mization procedure (see Algorithm 4.3) checks, whether the computability of outputs

of a problem depend on the application of a particular attribute dependency. If not,
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an attribute dependency is excluded from the algorithm. Starting with the set of

output attributes of a computational problem, the procedure runs backwards from

the end of an algorithm. If one or more outputs of an attribute dependency are in

the set of goal attributes, dependency is kept in the algorithm and its inputs are

added into the set, otherwise dependency is removed. In the case of subtasks, the

optimization procedure recursively traverses the tree of subtasks and add relevant

attributes into the set of goals also reducing algorithms of corresponding subtasks

if needed. The optimization procedure has linear time complexity.

Example. We continue with example started in Section 4.3. The evaluation

algorithm {F1, F3, F4, F2, F5} for solving the computational problem G1 is obviously

not minimal, i.e. some attribute dependencies (F4, F2) are not required for com-

puting the output g. Once the optimization procedure is applied, the algorithm is

reduced to {F1, F3, F5}.
On the other hand, algorithm for solving the larger problem G2 requires all

steps produced by the value propagation from computing g. �

4.7 Summary

In the current chapter attribute models are described. Evaluation of attributes on

simple attribute models is done using the value propagation technique. Maximal

linear branches are introduced for attribute evaluation on higher-order attribute

models. The optimization procedure is presented for pruning unnecessary branches

and achieving more efficient goal-oriented evaluation algorithms.
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Algorithm 4.3 optimize(G, algorithm)

for all r ∈ reverse(algorithm) do {traverse the list backwards}
keep := false

for all v ∈ outputs(r) do

if v ∈ G then {keep the relation if one of its outputs is in the set of goals}
keep := true

G := G \ {v}
end if

end for

if keep then {add inputs into the set of goals}
G := G ∪ inputs(r)

for all s ∈ subtasks(r) do {add subtask’s outputs into the set of goals and

recursively optimize subtask’s algorithm}
Gs := outputs(s)

optimize(Gs, algorithms)

G := G ∪Gs

end for

else

algorithm := remove(r, algorithm)

end if

end for
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Chapter 5

The specification language

In this chapter we introduce our version of a flat language, we call it a speci-

fication language. The specification language consists of two layers. The first layer

is a core language presented in the following section. The core language includes

statements for specifying functional dependencies, inheritance, etc. The semantics

of specifications in the core language is a translation into attribute models. The

second layer constitutes extensions, that is, additional statements translatable into

the statements of the core language. In Section 5.6 we present a full-scale example

in the specification language.

5.1 Core language

The specification language that can be used for two purposes:

• As a program specification together with a goal.

• For specifying a new type.

In this section we present syntax of a subset of the specification language called

the core language. This language includes more features than presented in the

example given in Chapter 3. The main difference is the usage of programs as imple-

mentations of functional types. We assume that a concrete implementation of the

core language is based on some programming language that we call a base language.

We have an implementation of flat languages with Java as the base language, see

Section 6. However in this chapter we are not going to discuss the implementation

details and focus on syntax and semantics of the core language.
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Types in the core language are primitive types, compound types and functional

types:

• a primitive type is any type of the base language (including reference types of

Java in our implementation).

• a compound type is introduced by writing its specification in the core lan-

guage. In the general terms of flat languages, a compound type is included in

a class. In the core language, all components of a compound type are ports

and semantics S of a class is represented by functional dependencies.

• a functional type is a part of a functional dependency as defined below.

Specifications in the core language are written using five kinds of statements in

the following syntax:

Spec ::= specification CName [super Inh+] ′{′((Decl|Bind|V al|FuncDep);)∗′}′

Specifications start with a specification keyword, followed by a class name

(CName) and a list of superclasses starting with a keyword super and separated by

commas. The rest of the statements are enclosed between curly brackets.

1. Declaration of object:

Decl ::= Type Id[, Id]

Type ::= any|PrimitiveType|CName

This declaration specifies an object with a given Type, and its name given by

the identifier Id. The object as well as its components are called variables, and they

can be bound by functional dependencies. (A component b of an object a has a

compound name a.b.)

If any is written instead of a type, then type of the object remains undefined,

and it must be determined by some binding in a specification later, i.e. any is a type

variable.

Example. As the running example in this chapter we are going to use the

specification of alternating current circuits. In Section 5.6 the full specification will
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be demonstrated. Specification of a complex number that will be used for defining

alternating current has the following declaration of variables:

specification Complex {
double re, im, mod, arg;

...

}
�

2. Binding of variables:

Bind ::= V ar = V ar

V ar ::= Id[.V ar]

where variables must have the same type or a common supertype. A binding x = y

denotes a possibility to compute a value of a variable (x or y) in the case a value of

another variable is known. A binding x = y is extended to the respective components

of x and y, i.e. if x and y have a component a then x.a = y.a is introduced.

Example. Branch is a specification of a basic concept of circuits and a base

class for all circuit elements (Resistor, Capacitor, etc). Branch contains a declaration

of four variables of type Complex and an instance of the Ohm’s law followed by the

corresponding bindings. The rest of the specification will be presented later.

specification Branch {
Complex z, i, u, g;

Ohm law;

law.i = i;

law.z = z;

law.u = u;

...

}
�

3. Valuation:

V al ::= V ar = Const

where Const is an object of a primitive type.

Example. The specification of Branch also contains a variable PI to which the

value of a constant of primitive type is assigned.
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specification Branch {
...

double PI = Math.PI;

}
�

4. Functional dependency :

FuncDep ::= (SFuncDep|HOFuncDep)′{′Impl′}′

SFuncDep ::= [V arList] → V ar

HOFuncDep ::= Subtask[,Subtask]∗[, V arList] → V ar

Subtask ::= ′[′V arList → V arList′]′

V arList ::= V ar[′,′ V ar]∗

where the statement SFuncDep has one arrow and specifies a functional depen-

dency that represents computing a value of the variable on the right side of the

arrow (the result) from given values of variables on the left side (arguments). The

statement HOFuncDep has several arrows and specifies a higher-order functional

dependency (hofd). In this case there are also arguments that have a functional type.

These are the arguments in square brackets. These arguments are called subtasks.

Impl is a name of a program (a Java method in our implementation). This

program is an implementation of the functional dependency specified by this state-

ment. The type given by a functional dependency must be the same structural type

of the program given by its corresponding implementation, in particular, in the case

of a functional dependency with functional arguments the program must also have

procedural parameters of appropriate types.

Example. We can specify the Ohm’s law by means of functional dependen-

cies, where corresponding implementations will contain arithmetic expressions for

calculating correct values.

specification Ohm {
u, i -> r {resistance};
r, i -> u {voltage};
u, r -> i {current};

}
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�
Example. A higher-order functional dependency is used to specify a tabulating

procedure. I.e. if we need to calculate a circuit impedance depending on different

frequencies, a loop is required. We can introduce a hofd specifically for this purpose

with an implementation tabulate containing the realization of a loop:

[freq -> imp], min, max, step -> success {tabulate};

In general, tabulating procedures are specified as hofds, where inputs and outputs

of a subtask can be defined depending on a particular problem to solve. This is

achieved using binding of inputs and outputs of a subtask with other variables in a

specification. �
5. Inheritance:

Inherit ::= CName[′,′ CName]∗

This statement defines an inheritance relation. Overriding variables in sub-

classes is not allowed to avoid collisions of names.

Example. Branch is a base class of all circuit elements, including Capacitor,

Inductor, Resistor and also classes specifying connections – Series and Parallel, e.g.:

specification Capacitor super Branch {
...

}
specification Inductor super Branch {

...

}
...

�

5.2 Semantics

This section briefly presents the semantic rules that translate statements of the core

language into an attribute model. We employ the following definitions to simplify

the usage of semantic rules:

• V ar(C) – returns a set of names of components of a class C.
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• V ar(C)x – returns a set of names of components of a class C adding a prefix

“x.” to each name.

• Rel(C) – returns a set of relations of a class C.

• Rel(C)x – returns a set of relations of a class C and renames all variables

occurring in a relation by adding a prefix “x.”.

• Dom(x) – the domain of a variable x

• Common(x, y) – returns the least common supertype of two composite types

of variables x and y.

• x̄ – denotes a list, where x̄ = x1, . . . , xn.

Inference rules

We introduce two big-step inference rules. The rule Infr takes a list of state-

ments xs;x, where x is the last element of the list and xs is the rest, and applies a

semantic rule for x relying on the information already derived from xs. If the list of

statements is empty, the rule Empty is used.

Empty

()� 〈∅, ∅〉
Infr

xs� 〈A,R〉M x
M−→ 〈A′

, R
′〉

(xs;x)� 〈A ∪A
′
, R ∪R

′〉

〈A,R〉M denotes an attribute model with the name M . x
M−→ 〈A′

, R
′〉 means

that from the statement x and the model M a new model 〈A′
, R

′〉 is obtained the

name of which we are not interested in.

It is important to notice that classes are defined globally, so there is no need to

carry the information about types in the rules.

Declarations of variables

A declaration of variables is handled by three rules Prim, Any and Comp for

the variables of primitive, any and compound types respectively. The rule VarList

is for multiple variables declared in one line with the same type. Rules Prim and

Any simply add new attributes into the model. The rule Comp first adds a new

attribute x and all attributes corresponding to the components of a class C rewriting

their names by prefixing “x.”. Second, the rule rewrites all functional dependencies
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with new attribute names and adds new attribute dependencies x.c1, . . . , x.ck →
x, x → x.c1, . . . , x → x.ck meaning that if all components of x are computable,

then x is also computable, and vice-versa, any component of x can be computed

from x if x is computable.

Prim

p x
M−→ 〈{x}, ∅〉

(x �∈ AM ) Any

any x
M−→ 〈{x}, ∅〉

(x �∈ AM )

Comp

C x
M−→ 〈{x} ∪ V ar(C)x,

Rel(C)x ∪ {x.c1, . . . , x.ck → x,

x→ x.c1, . . . , x→ x.ck}〉

(x �∈ AM , ci ∈ V ar(C), i = 1, . . . , k)

VarList

t xi
M−→ 〈Ai, Ri〉, i = 1, . . . , n

t x1, . . . , xn
M−→ 〈

n⋃

i=1

Ai,

n⋃

i=1

Ri〉

Bindings of variables

The rule BindP handles the binding of variables of primitive types. It adds two

attribute dependencies into the model where realizations are the assignments to the

corresponding variables.

For the binding of two variables of compound type, the rule BindC is used.

First, it uses the function Common to derive the least common supertype C. Second,

for each component ci of C, a new binding is created between components ci of x

and y.

BindP

x = y
M−→ 〈∅, {x→ y{y := x}, y → x{x := y}}〉

(x, y ∈ AM , x, y are primitive)

BindC

C = Common(x, y)

ci ∈ V ar(C) (x.ci = y.ci)
M−→ 〈∅, Ri〉, i = 1, . . . , n

x = y
M−→ 〈∅, {x→ y{y := x}, y → x{x := y}} ∪

n⋃

i=1

Ri〉
(x, y ∈ AM , x, y are composite)
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Valuations

The valuation is a special case of binding. It is represented by an attribute

dependency with no inputs and an output x. The realization of this dependency is

an assignment of c to x.

Const

x = c
M−→ 〈∅, {→ x{x := c}}〉

(x ∈ AM , c ∈ Domprim(x))

Functional dependencies

The translation of functional dependencies into attribute dependencies is straight-

forward.

SFD

x1, . . . , xn → y{m} M−→ 〈∅, x1, . . . , xn → y{m}〉
(x1, . . . , xn, y ∈ AM )

HOFD

S̄, x̄→ y{m} M−→ 〈∅, S̄, x̄→ y{m}〉
(Si = [ā → b̄], and x̄, y, ā, b̄ ∈ AM )

Declarations of superclasses

The rule Inherit provides an attribute model of superclass C which is merged

into attribute model M of a subclass using the inference rule.

Inherit

super C
M−→ 〈V ar(C), Rel(C)〉

5.3 Specifying computational problems

The following statement allows one to ask various questions about a specified con-

cept:

Goal ::= V arList → V arList.

In other words, Goal is a specification of a computational problem for attribute

evaluation (see Section 4.2). List of variables on the left-hand side of the arrow are

inputs and on the right-hand side are outputs of a goal. It is assumed that values

of inputs are given from the outside, i.e. as arguments to a program generated from

a specification. An evaluation algorithm is optimized according to the outputs of a

goal (see Section 4.6).
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5.4 Extension of the core language

There is a standard extension of the core language that can be easily translated in

the latter by presenting new statements of the language as collections of statements

of the core language.

The standard extension of the core language includes the following new state-

ments:

1. Alias

Alias ::= alias [′(′Type′)′] Id ′ = (′V arList′)′

Alias defines a new variable with the name Id. This variable is a tuple of

variables listed in the parentheses. Type is an optional parameter. If it is given, it

explicitly states that all elements of an alias should be of the given type. A binding

of two aliases means the binding of their respective elements, with the restriction

that the number of elements should be equal and types of elements in each binding

should match (have a common supertype).

Example. The binding x = y in the specification below yields additional two

binding a = c and b = d.

int a, b, c, d;

alias x = (a, b);

alias y = (c, d);

x = y;
�

It is also possible to declare an alias in one statement and assign a list of its

components using the second statement. But assigning a list of variables can be

done only once in the specification (the structure of aliases cannot be changed).

AliasDecl ::= alias [′(′Type′)′] Id

AliasAssign ::= Id ′ = [′V arList′]′

For every alias declared in a specification, a special constant of type int is

automatically added providing a number of elements of an alias.

Example. Temp is a concept of a temperature with a variable t. The following

specification contains three instances of Temp. This example demonstrates how to

use a length constant to distribute a value among several variables.
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Temp t1, t2, t3;

alias (double) tempr = ( t1.t, t2.t, t3.t );

tempr.length -> tempr {init};

The realization of a functional dependency (init) is used to distribute initial

temperatures to the variables t by means of the alias tempr taking into account the

length of tempr. The following statements are implicit in the specification:

int tempr.length;

tempr.length = 3;

�

2. Alias with a wildcard

AliasW ::= alias [′(′Type′)′] Id ′ = (′ Wildcard ′)′

Wildcard ::= ∗.Id

Alias with a wildcard is a variable whose list of components depends on the

particular specification where such statement occurs. This list includes all variables

of the components defined in the same specification and names of such variables are

equal to the identifier specified in Wildcard. The order of components in the list is

not predefined, but it remains fixed during the computations. This alias is used for

distributing and collecting some values for all objects defined in a specification.

Example. The purpose of this example is to show the difference between

declaring aliases with explicit type and without.

specification A {
int x;

}
specification B {

String x;

}
specification Example {

A z;

B u, v;

alias (String) s = (*.x);

alias r = (*.x);

}
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The alias s contains the list of two elements (u.x, v.x) while the alias r contains

three elements (z.x, u.x, v.x). �

3. Accessing alias elements by indices

Most of the programming languages that support tuples have functions (e.g.

fst, snd) for accessing elements of tuples by their position from left to right. In our

flat language we define the possibility to refer to a variable in a tuple by its position

number starting with zero. In order to achieve this we need to extend the grammar

for V ar:

V ar ::= Id[.V ar] | Id.#[.V ar],

where # is a position number.

Example. This example demonstrates the feature. The binding z.0 = z.1

yields the binding x = y.

alias z = (x, y);

z.0 = z.1;

If x and y are also aliases, it is possible to refer to their components as well

(z.0.1 = z.1.0 produces b = c):

alias x = (a, b);

alias y = (c, d);

alias z = (x, y);

z.0.1 = z.1.0;

�
If a variable x has a compound type C containing, for instance, a component a,

and if x is the first element of an alias z, it is also possible to reference a component

x.a through z as z.0.a.

4. Accessing alias elements with a wildcard

TmpAlias ::= V ar′. ∗ .′[′(′Type′)′](#|Id)

This extension allows to construct and use temporary tuples from existing

aliases. This is demonstrated with an example.
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Example.

specification A {
int x;

}
specification B {

String x;

}
specification Example {

A u, v;

B t;

alias z = (t, u, v);

-> z.*.x {foo}; //(t.x, u.x, v.x)

-> z.*.(int)x {bar}; //(u.x, v.x)

}

To use such temporary tuples, elements of an alias should be either aliases or

have compound types. In the former case elements are accessed by position numbers,

in the latter case by component names. �
5. Equations

Equation ::= AExpr = AExpr

Equation is a shorthand for a set of functional dependencies that can be derived

from it. For example, I = U*R; will denote three functional dependencies: I, U →
R{f1}; U,R → I{f2}; I, R → U{f3}; with the corresponding implementations

derivable from the given equation: f1 : R = I/U; f2 : I = U ∗ R; f3 : U = I/R. We

keep open the class of arithmetic expressions that can be used in equations, because

this depends on the power of an equation solver for a particular flat language. (In

our implementation based on Java [23], the equations are solved analytically and are

restricted in such a way that they cannot include occurrences of one and the same

variable simultaneously on both sides of an equation. Besides arithmetic operations,

an equation may include only functions implemented in java.lang.Math class.)

5.5 Semantics of extensions

Extensions are translatable into the statements of the core language. However, in

order to give the semantics of the whole specification language in a uniform way, in
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this section we present the rules for direct translation of extensions into attribute

models.

Aliases

For an alias declaration without a list of components, two variables x and

x.length are created.

AliasEmpty
alias (t) x

M−−→ 〈{x, x.length}, ∅〉
(x �∈ A)

For a given list of components, the following attribute dependencies are created:

• a dependency → x.length{x.length := n} that provides length, that is, a

number of components bould by an alias;

• a dependency a1, . . . , an → x that computes an alias x if all its components

are computed;

• a set of dependencies x → a1, . . . , x → an that compute components of x

from x.

AliasDecl
alias (t) x = (a1, . . . , an)

M−−→ 〈{x, x.length},
{→ x.length{x.length := n}, a1, . . . , an → x, x → a1, . . . , x → an}〉

(x �∈ A, ∀ai(t ≡ type(ai))

AliasAssign
x = [a1, . . . , an]

M−−→ 〈∅,
{→ x.length{x.length := n}, a1, . . . , an → x, x → a1, . . . , x → an}〉

(x ∈ A, a1, . . . , an → x �∈ R)

Wildcards

In case of a wildcard, a function components(a)t returns a list of variables of

the components of compound types declared on the same specification that have a

name a and, optionally, a type t.

Wildcard
l̄ = components(a)t R

′
= {x → a

′ | a
′ ∈ l̄}

alias (t) x = (∗.a) M−−→ 〈{x}, {l̄ → x} ∪ R
′ 〉

(x �∈ A)

Equations

For an equation, vars returns a set of variables that must exist in A and solve

produces a set of attribute dependencies where each variable is an output of a de-

pendency in a set R
′
.

Equation
xs = vars(aexpr) R

′
= solve(aexpr)

aexpr
M−−→ 〈∅, R

′ 〉
(xs ⊆ A)
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5.6 Example: electrical circuits

5.6.1 Definitions

The goal of this example section is to demonstrate the use of the extended core lan-

guage for specifying a problem domain which has a precise mathematical descrip-

tion – alternating current circuits. For describing a circuit we will need complex

numbers for representing the current, voltage, impedance and conductivity. The

specification of a complex type is as follows:

specification Complex {
double re, im, arg, mod;

mod^2 = re^2 + im^2;

im = mod * sin(arg);

}

where the relations between attributes are given by equations instead of functional

dependencies.

The basic concept for building a circuit is a branch. It is a superclass for all

circuit elements. Complex variables z, i, u, g are the impedance, current, voltage

and conductivity respectively. Frequency is f . The complex Ohm’s law is specified

by the first two equations and the last two equations specify the relation between

impedance and conductivity. (The constant PI is going to be used in the specifica-

tions below, Math.PI is a constant from Java API.)

specification Branch {
Complex z, i, u, g;

double f;

u.mod = i.mod * z.mod;

u.arg = i.arg + z.arg;

g.mod * z.mod = 1;

g.arg + z.arg = 0;

double PI = Math.PI;

}

The specifications of capacitor, inductor and resistor are as follows:

60



specification Capacitor super Branch {
double omega, C;

g.re = 0;

g.im = omega * C;

omega = 2 * PI * f;

}

specification Inductor super Branch {
double omega, L;

z.re = 0;

z.im = omega * L;

omega = 2 * PI * f;

}

specification Resistor super Branch {
double r;

z.re = r;

z.im = 0;

}

Types of series and parallel connections of elements contain two components

(x1, x2) that can be bound with any variable of a subtype of the branch type.

specification Ser super Branch {
Branch x1, x2;

z.re = x1.z.re + x2.z.re;

z.im = x1.z.im + x2.z.im;

i = x1.i;

i = x2.i;

f = x1.f;

f = x2.f;

}

specification Par super Branch {
Branch x1, x2;

g.re = x1.g.re + x2.g.re;

g.im = x1.g.im + x2.g.im;

u = x1.u;

u = x2.u;

f = x1.f;

f = x2.f;

}

5.6.2 Specifying a computational problem

Having specified all basic elements of circuits, it is possible to specify, for example,

a RLC circuit (see Figure 5.1) and try to solve computational problems on it.
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specification RLCseries {
Capacitor cap;

cap.C = 0.0001;

Inductor ind;

ind.L = 0.1;

Ser ser1;

ser1.i.re = 1;

ser1.i.arg = 0;

Resistor res;

res.r = 0.5;

Ser ser2;

ser1.x1 = cap;

ser1.x2 = ind;

ser1 = ser2.x2;

ser2.x1 = res;

}
(a) Specification of RLC circuit

�
(b) Visual representation

Figure 5.1: Specification of a RLC circuit

One computational problem could be to compute a value of impedance ser2.z.mod

having provided a frequency of a current. The specification of RLC can be extended

to include a goal and statements for setting and distributing a frequency among

circuit components.

specification Example1 extends RLCseries {
double f;

alias (double) fs = (*.f);

fs.length, f -> fs {distr};
f -> ser2.z.mod;

}

Alias fs is constructed using a wildcard to include variables f of the underlying

components of a circuit. The alternative way is to explicitly add elements to an

alias (however, the order might be different):

alias (double) fs = (cap.f, ind.f, ser1.f, res.f, ser2.f);

The goal of the computational problem is specified by the statement f -> ser2.z.mod.

Given a value to the variable f and invoking the planning procedure, an attribute

evaluation algorithm is the following:

...

fs_LENGTH = 5;

double[] alias_fs_936 = distr(fs_LENGTH, f);
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cap.f = ((java.lang.Double)alias_fs_936[0]).doubleValue();

ind.f = ((java.lang.Double)alias_fs_936[1]).doubleValue();

ser1.f = ((java.lang.Double)alias_fs_936[2]).doubleValue();

res.f = ((java.lang.Double)alias_fs_936[3]).doubleValue();

ser2.f = ((java.lang.Double)alias_fs_936[4]).doubleValue();

ser2.x1.z.im = res.z.im;

ser1.x2.z.re = ind.z.re;

res.z.re= res.r;

ser2.x1.z.re = res.z.re;

cap.omega= ((2 * cap.PI) * cap.f);

ind.omega= ((2 * ind.PI) * ind.f);

cap.g.im= (cap.omega * cap.C);

ind.z.im= (ind.omega * ind.L);

cap.g.mod=Math.pow( (Math.pow(cap.g.re, 2) + Math.pow(cap.g.im, 2)), 1.0/(2));

ser1.x2.z.im = ind.z.im;

cap.g.arg=Math.asin(( cap.g.im/cap.g.mod));

cap.z.mod=( 1/cap.g.mod);

cap.z.arg=( 0-cap.g.arg);

cap.z.im= (cap.z.mod * Math.sin(cap.z.arg));

cap.z.re=Math.pow( Math.pow(cap.z.mod, 2)-Math.pow(cap.z.im, 2), 1.0/(2));

ser1.x1.z.im = cap.z.im;

ser1.x1.z.re = cap.z.re;

ser1.z.im= (ser1.x1.z.im + ser1.x2.z.im);

ser1.z.re= (ser1.x1.z.re + ser1.x2.z.re);

ser2.x2.z.im = ser1.z.im;

ser2.x2.z.re = ser1.z.re;

ser2.z.im= (ser2.x1.z.im + ser2.x2.z.im);

ser2.z.re= (ser2.x1.z.re + ser2.x2.z.re);

ser2.z.mod=Math.pow( (Math.pow(ser2.z.re, 2) + Math.pow(ser2.z.im, 2)), 1.0/(2));

The algorithm contains Java API method calls, however we do not show and

explain the actual implementation until the next chapter.

5.6.3 Computational problem with a loop

The previous example showed how to compute circuit’s impedance providing a value

of frequency and distributing it over the components using the alias. In the current

example, a computational problem is to find the resonance given a range of frequen-

cies. A loop is required to solve this problem. We can use a higher-order functional

dependency and add it to the extended specification of RLCseries.

specification Example2 extends RLCseries {
double min, step, max, result;

[ ser2.f -> ser2.z.mod, ser2.z.arg ], min, step, max -> result {tabulate};
min, step, max -> result;

}

The main goal is to compute a result variable that denotes the resonance fre-

quency. This goal however requires solving a subtask: compute ser2.z.mod and

ser2.z.arg from a given value of ser2.f. From the previous example we know
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that the specification contains enough information to solve the subtask and its algo-

rithm is almost the same as the evaluation algorithm for the goal f -> ser2.z.mod,

but without the distribution of the frequency. Inputs min, step, max denote re-

spectively the starting frequency value, the frequency increment at each iteration

and the final value. The value of ser2.z.arg closest to zero will signify the res-

onance. The realization of the higher-order function tabulate is given in pseudo-

code:

for k = min to max do

(mod, arg)← subtask(k)

writetable(k,mod, arg)

k ← k + step

if abs(arg) < minarg then

minarg := abs(arg)

f := k

end if

end for

return f

If the main computational problem is given inputs min = 40.0, max = 55.0

and step = 0.1, after invoking the planning and executing the evaluation algorithm,

the following table is produced:

φ ser2.z.mod ser2.z.arg

40.00 14.66 -1.5377

40.10 14.50 -1.5363

. . .

50.20 0.53 -0.3144

50.30 0.50 -0.0733

50.40 0.51 0.1759

50.50 0.54 0.4048

. . .

and the resonance frequency is 50.3. This is the value the function tabulate returns

and it is assigned to the variable result. In order to get more precise frequency

value, smaller step is required.
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The given example shows that it is possible to specify the problem domain using

our specification language with very little effort. The concepts are implemented in

the bottom-up manner starting with simplest things and developing more complex

concepts using inheritance.
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Chapter 6

Implementation

The implementation of the the specification language introduced in the previous

chapter has been done in the CoCoViLa framework [5]. It is a Java language based

software platform focused on the development of visual domain-specific languages

and automatic synthesis of programs. CoCoViLa is being developed in the Software

Department of the Institute of Cybernetics. The initial design and implementation

was made by Ando Saabas [72]. The general programming technology was described

in [23, 24]. The author of the present dissertation contributed to the project by

implementing the higher-order attribute semantics, planning strategies, program

extraction and a number of language and user interface improvements. In the current

Chapter, these contributions will be presented and discussed.

Our goal is to provide a tool for developing domain-specific languages (DSLs).

This tool will be used for specifying domain concepts (e.g. Complex, Branch, etc.

in Section 5.6) and performing computations for solving given problems. A DSL

developed in CoCoViLa is a specification language from Chapter 5 extended with

domain-specific concepts.

6.1 Metaclasses

The first question that has to be answered is how the specification language is im-

plemented in CoCoViLa. The specification language allows to describe concepts in

terms of compound types and define the computability of variables using bindings

and functional dependencies. Functional dependencies as described in Section 5.1

have realizations which are not expressible using the specification language (except
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equations). In our implementation, realizations of functional dependencies includ-

ing higher-order ones are Java methods. However, methods in Java, which is an

object-oriented language, cannot exist without Java classes. Our design (beginning

with [72]) was to wrap the specification of a concept into a Java class with the same

name and include the realization of functional dependencies as methods in this class.

That is, a specification of a concept becomes a meta-level specification of a corre-

sponding Java class. We call such Java classes metaclasses and the corresponding

specifications – metainterfaces. In CoCoViLa, metainterface is the central part of a

concept that determines the behavior of the object (instance of a metaclass).

Example. A concept Foo with a functional dependency with a realization

doSomething has the following metaclass:

public class Foo {
/*@

specification Foo {
int x, y;

...

x -> y {doSomething};
}

@*/

public int doSomething( int value ) {
return ...;

}
}
�

It is useful to notice that metainterfaces in metaclasses are included as comments

(denoted by /*@ and @*/), so that CoCoViLa can use the information provided by

metainterfaces, but the Java compiler can ignore it during the process of compilation.

Example. To make the example more concrete, we present a realization of the

higher-order functional dependency from the example in Section 5.6. It is important

to notice that a metainterface and a Java class have separate name spaces. Only

class and method names are available in a metainterface. In the current implemen-

tation, however, one should not declare Java class members with same identifiers as

metainterface variables to avoid collision of names during the code generation.

public class Table {
/*@

specification Table {
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...

[ ser2.f -> ser2.z.mod, ser2.z.arg ], min, step, max -> success {tabulate};
}

@*/

public boolean tabulate(Subtask s, double from, double inc, double to) {
for(double k = from; k < to; k += inc) {

System.out.println(k + " " + s.run(k));

}
return true;

}
...

}

The role of an interface Subtask and the corresponding method run will be

explained later in this Chapter. �

6.2 Visual representation of the specification language

CoCoViLa provides a functionality for visual representation of specifications. A con-

cept together with its visual representation specified in CoCoViLa is called a visual

class. Visual classes are used to compose schemes in the visual environment of

CoCoViLa. For each visual class the following elements are defined:

• Java class that includes a specification (a metaclass);

• visual image – a vector and/or raster graphics to be used in a scheme;

• set of ports – ports indicate which components of a class can be visually

connected to other components in a scheme;

• fields – components the values of which can be given in a scheme;

• icon image – a small raster picture that is placed on a toolbar.

The collection of visual classes for a domain is called a package. Descriptions

of packages are stored in the XML-based format described in [72]. Each package

implements a domain-specific visual language (DSVL). The hierarchy of languages

is shown in Figure 6.1.

For composition of schemes, three operations are defined:

69



�����

���	
����


��������


�
��

�
��

�

�
��

�
��

�

�
��

�
��

�






Figure 6.1: The hierarchy of languages in CoCoViLa

• Instantiating a visual object from a visual class. This corresponds to the dec-

laration of a variable in the specification language.

��������	
����
�
�����	
�
��
��	
��	�

• Connecting two ports. This corresponds to the binding of two variables.

���������	
��

• Providing a value to a field. This is a valuation in the specification language,

i.e. an assignment of a constant to a variable (a value may or may not be

shown in a scheme).

��������������

Composed schemes can be saved and loaded. The format of scheme files with

an extension .syn is also XML-based and described in [72].
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Figure 6.2: Scheme Editor window

6.3 CoCoViLa Scheme Editor

The Scheme Editor is a tool for visually creating schemes and executing them. To

execute a scheme means to solve a computational problem specified by a scheme and

a given goal, i.e. to synthesize an evaluation algorithm, to extract a program from

the algorithm and invoke the program. Scheme Editor is also able to work purely on

the specification level, i.e. without any schemes, statements in a flat language can

be given textually.

The Figure 6.2 depicts the main window of the Scheme Editor. For each visual

language (package), the workspace is automatically generated from the correspond-

ing XML description allowing a user to compose, edit and use schemes in com-

putations through package-specific menus and toolbars. The File menu allows to

save, load and export schemes. The Edit menu contains items for undo/redo actions,

cloning, searching, selecting and deleting the visual objects. The View menu enables

to hide or show the grid, ports and names of visual objects. The Package menu is

used for loading and closing the packages. Through the Scheme menu it is possible

to open a specification window, a window for manual extension of a specification, a

scheme options dialog, and to instantly run a composed scheme using several modes

editable in this menu. The Options menu is for changing program’s settings and the
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Figure 6.3: Object Property window of inductor object

way it looks. The Tools menu allows accessing extra features, such as an editor of

decision tables, a threads dialog and an algorithm viewer.

In the Figure 6.2 the package for simulating alternating current circuits pre-

sented in Section 5.6 is loaded. Canvas, the area for composing schemes contains

instances of a capacitor and an inductor connected serially and a resistor in parallel

connection. Other components on a scheme are used for drawing charts, extracting

values and running a process. For each visual object on a canvas, the pop-up menu

is accessible by a right-click of a mouse allowing to manipulate an object (delete,

clone, rotate, reorder, etc.) and also access the corresponding Object Property Win-

dow. A list of defined fields for inductor is shown in the Figure 6.3. This window

also enables to specify a computational problem by defining inputs and outputs of

a goal.

A scheme has a corresponding textual specification included into an automat-

(a) Specification of a scheme (b) Generated code of a program

Figure 6.4: Specification window
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Figure 6.5: Algorithm visualizer window

ically generated metaclass. Users can open the specification window (Figure 6.4a),

review and edit the specification of a scheme. Both UI buttons Compute Goal and

Compute All start the planning procedure, the former button also employs the op-

timization procedure. The generated code, that is, the source text of a program to

be executed is shown in the second tab of the window (Figure 6.4b). The code can

be edited, compiled and executed at runtime. If Propagate is checked, values are

sent back to the scheme and can be shown during the execution. The third tab Run

results shows the list of computed values of a program and contains UI buttons for

re-executing a program one or more times.

Viewing and editing specifications is not always needed. In this case users can

run schemes from the menu Scheme → Run. For larger schemes it is sometimes

hard to review long specifications and the generated code. For helping developers

to debug their programs, Algorithm visualizer window can be used (Figure 6.5).

It shows the pseudo-code of generated programs with appropriate indentation for

nested subtasks.

The dataflow in Scheme Editor is shown in Figure 6.6 and reflects the high-level

architectural design of CoCoViLa. The rectangular nodes correspond to the data,

elliptic nodes represent program modules. The central part is the Specification. It

is automatically generated from a Scheme or typed manually. The specification

is passed to the Parser which constructs the corresponding Attribute model. The

Planner takes attribute model as its input and produces the Algorithm for evalu-
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ating the attributes. The Generator outputs the Java source code taking necessary

information from an algorithm and a specification. The source code is compiled and

executed. A running program can communicate with a scheme and a specification

via a specialized CoCoViLa’s API.

Algorithm

��
Planner

��

Generator

��
Attribute model

��

Java source code

��
Parser

��

Compiler

��
Editor

��

Specification

��

��

��

��

Compiled classes

��
Scheme ��

�� ��Translator

��

Program runner

Figure 6.6: Dataflow of CoCoViLa

6.4 Additional features

A number of important features have been implemented by the author extending

both the specification language and CoCoViLa’s user interface. The description of

some features is given in the present section.

• Static variables. A specification variable can be declared with static

modifier. This will prevent the code generator to create copies of a static

variable in the subtask environments.
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• Constants. Constant values cannot be overridden during computations. For

example: const double PI = Math.PI;. In Java code, a constant will be a

class member with final static modifiers.

• Independent subtasks. This feature changes the logic needed for repre-

senting the semantics of specifications (see [51]), but it can be easily explained

in terms of attribute models. It has been implemented also in earlier SSP

systems. Subtasks in higher-order attribute dependencies are called dependent

because solving a subtask may require to utilize attributes from an outer con-

text. Independent subtasks change the notion of subtasks in the following way.

Besides defining input and output attributes of a subtask, a third argument

should also be given, that is, the name of a context (i.e. a compound type) on

whose attribute model a subtask should be solved.

IndependentSubtask ::= [Context � V arList → V arList]

The synthesized algorithm of an independent subtask is cached and can be

used in different specifications without re-invoking the planning procedure.

• Calling planner from Java. Independent subtasks allow defining com-

putational contexts, this could also be useful for tasks, where specifications

are constructed at runtime. In this case, the planner can be called from the

Java code using a special method computeModel() in class ProgramContext

of CoCoViLa API. The method has the following signature:

Object[] computeModel(String context, String[] inputNames,

String[] outputNames, Object[] inputValues)

The evaluation algorithm of a subtask is planned and executed at runtime and

the method returns computed values to the calling program.

• Multiports. A connection to an ordinary port in a scheme constitutes a

binding between two variables. If a port represents an alias, it can only be

connected to another port with an alias of the same structure. In some cases,

the structure of an alias may not be known and should be defined in a scheme.

Another type of ports is required. Multiport is such a ports that represents
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an alias that is declared but not initialized in the specification of an object.

Each connection to such port does not create a binding, a connected variable

becomes an element of the alias behind the multiport. A multiport with no

connections corresponds to an empty alias. Connections between two multi-

ports are not allowed.

• Scheme superclass. In certain cases schemes in a package need additional

functionality for manipulating objects on a canvas. For instance, an alias

with a wildcard has to be defined for binding variables of the objects. This

alias could also be an input or output of a functional dependency. Such a

specification and realizations of functional dependencies can be written in a

metaclass. From the CoCoViLa’s UI, a scheme can inherit this metaclass.

In this case, a wildcard will work with objects defined in a scheme. Multiple

schemes can inherit the same superclass to reuse its specification and methods.

• Scheme specification extension. Specifications of schemes can also be

extended without using superclasses. An extension of a specification is written

in a special window and saved in XML file of a scheme. Such extensions are

scheme-specific and cannot be shared between the schemes. This feature is

well suitable for fast debugging and testing of a scheme by providing values of

variables of objects in a scheme and specifying equations, bindings and goals.

Functional dependencies can only be written for methods implemented in a

superclass of a scheme (if there has been defined one).

6.5 Planning strategies

Computational problems from different domains have different natures. Some prob-

lems can be solved without the use of subtasks, some problems require nested and/or

repetitive subtasks, others may need subtasks executed sequentially. In other words,

there is no general strategy to solve any problem in an optimal way. Thus, different

heuristics can be used for tweaking the planner.
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6.5.1 Depth-first search

By default, the planning algorithm works almost as described in Chapter 4. It

is the depth-first search on the and-or tree of subtasks. The difference is that it

has a restriction on branches of subtasks. There can be at most one occurrence

of a particular subtask in one branch, i.e. the repetition of nested subtasks is not

allowed.

6.5.2 Incremental depth-first search

Incremental depth-first search algorithm employs the depth limiting strategy. The

algorithm starts with the depth limit equal to one and increments the bound at

each iteration. It allows to find the shallowest goal state faster than the ordinary

depth-first search. Also, the algorithm prunes unnecessary branches, i.e. on each

iteration it does not visit all states from the previous depth.

6.5.3 Allowing subtask repetitions

Some problems require the repetition of subtasks for solving a computational prob-

lem, that is, when subtasks need to be solved using same subtasks in the same

branch. This setting requires limiting the depth of a search tree, otherwise the plan-

ning may not terminate in case of a depth-first search. Choosing a correct depth in

some cases is crucial for the search time. When the maximum depth of a search tree

that is sufficient for solving a problem is unknown, it is suggested to use incremental

depth-first search planning algorithm.
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Chapter 7

Applications

This Chapter describes real-world applications that have been developed by

experts in various domains with participation of the author of the present thesis.

The contribution of the author has been in participation of design of applications,

consulting and also adaptation of CoCoViLa and introduction of some new features

to suite the needs of new domains, e.g. independent subtasks, extension of alias

construct, multiports, decision tables, etc. These examples should demonstrate the

applicability of the results obtained in this thesis for real-life applications in different

problem domains.

7.1 Composition of web services: X-Road

In the context of this work, first, the automatic web service composition method-

ology was proposed and, second, this methodology was applied for developing an

experimental software package in CoCoViLa for the maintenance and extension of

an existing Estonian e-government information system called the X-Road. Several

papers have been published covering various aspects of this methodology and appli-

cation [44,45,46,50].

X-Road guarantees the secure access to most of the national databases of Es-

tonia by means of web services through domain-specific portals available to the

residents having national identification number. X-Road allows the usage not only

of atomic services but also a compound ones (i.e. composed chains of services). Co-

CoViLa provides good infrastructure for service developers to perform automatic

composition with the very little effort. The syntactic model of the operational part

of X-Road has been created and transformed into the format of CoCoViLa. The

model is represented visually on a scheme and includes about 300 atomic services
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Figure 7.1: X-Road model in CoCoViLa

(with corresponding metaclasses) and about 600 connections to semantic resources,

see Figure 7.1. In the figure, services are represented by ovals and data resources

by squares. Users can provide input data to initial services on the scheme and state

a goal for finding a chain of services to compose a complex service. CoCoViLa au-

tomatically synthesizes a program that generates a BPEL or OWL-S description of

a desired complex service. The program is synthesized only if the final services are

composable from the initial ones and all required data are made available. This

guarantees the correctness of composed services. This application shows that Co-

CoViLa provides good visual support for model maintenance and is able to handle

large-scale models while keeping synthesis time at a significantly low level.
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7.2 Simulation of hydraulic systems

Modeling and simulation of hydraulic-mechanical systems (e.g automatically regu-

lated fluid power systems of stationary and mobile machines, steering mechanisms

of cars and ships, drives of robots, etc.) has been investigated in Tallinn Univer-

sity of Technology for several decades. Before CoCoViLa, older systems were used

(NUT, Priz, etc) that had considerable limitations on memory usage and the ex-

pressiveness of the specification language. CoCoViLa has enabled the researchers

to take the modeling and simulations of hydraulic-mechanical systems to a much

higher level, providing improved usage of aliases (no restrictions on the nestedness),

independent subtasks, “out of the box” memory management due to Java VM and

better visualization capabilities.

Hydraulic elements (hydraulic motor, pump, resistors, volume elasticities, tubes,

interface elements, etc.) from older packages [25] for modeling and simulating hy-

draulic systems have been implemented in CoCoViLa [26]. Some of the elements are

visible in the scrollable toolbar in Figure 7.2. The developed package includes also

visual classes for drawing charts and a simulation engine based on iterative methods

(Runge-Kutta) for solving ordinary differential equations. This package enables one

to hierarchically construct mathematical models of large and complicated hydraulic

systems that include thousands of variables, equations and functions. The package is

used to simulate steady state conditions and the dynamic behavior of the hydraulic

load-sensing systems.

Figure 7.2 shows an example of a simulation of steady-state conditions. The

Scheme Editor contains a scheme that represents the multi-pole model of a hydraulic-

mechanical load-sensing system. The second window contains the corresponding

textual specification of the model. The unfolded model of this problem includes

1988 variables and 4532 attribute dependencies. The generated simulation program

extracted from the attribute evaluation algorithm is a Java class that has 4958 lines

of Java code. Attribute evaluation planning and code generation for this example

takes about half a seconds on a typical 2.0 GHz laptop. The window in the fore-

ground contains the result of this simulation – a 3D chart with calculated 1000x1000

points. It shows the efficiency coefficient of the load sensing system depending on the

displacement of the directional valve and the load moment of the hydraulic motor.
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Figure 7.2: Simulation of a hydraulic-mechanical load-sensing system

7.3 Simulations in cyber-security

The work on appying response measures against cyber attacks rises from the fact

that the number of computer systems connected to the Internet and infected with

malware is increasing, as a consequence, leading to the higher probability of large-

scale denial-of-service attacks. Graph-based Automated Denial-of-Service Attack

Response (GrADAR) [33] is an approach where the selection of responses is made

according to an estimation of an impact of particular counter-attack measures. Co-
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Figure 7.3: Visual specification of a response analysis problem in GrADAR package

CoViLa was used to create a GrADAR software package for visual modeling of

graphs representing networks containing information such as dependencies between

resources and their availability and to implement algorithms for automatic selection

and application of responce measures. This is a joint work between the following or-

ganizations – Fraunhofer Institute for Communication, Information Processing and

Ergonomics FKIE (Germany), Cooperative Cyber Defence Centre of Excellence and

Institute of Cybernetics (Tallinn, Estonia) [37].

Figure 7.3 shows a scheme in CoCoViLa representing a network of resources with

connections for propagating workload and availability values (red and green arrows).

The goal is to analyze the effect of response measures. CoCoViLa allows not only to

enter the parameter values of components using the graphical user interface, but also

due to absence of restrictions on the usage of Java language and libraries, it allows
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Figure 7.4: Visual specification and expert table editor

integration with other software, e.g. back-end managements systems to receive live

values into the running program synthesized from the scheme.

7.4 Graded security expert system

This section concerns a work [36] in the field of modeling of graded security measures

which are used e.g. in banking and energy sectors. The graded security model is

intended to help determine reasonable or optimal sets of security measures accord-

ing to the given security requirements. An expert system with visual specification

language for security system description shown in Figure 7.4 has been implemented

as a software package in CoCoViLa. The system together with visual components

and optimization algorithm for calculation of Pareto curves, includes a set of rules
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(knowledge modules) in the form of decision tables that help handling the expert

knowledge. Expert tables have been implemented in the context of this application

but designed to be functional in other problem domains that require handling of the

expert knowledge.

7.5 Functional constraint networks

Figure 7.5: Visual specification of FCN

In the context of the work by J. Sanko and J. Penjam on inductive approach for

automatic program construction from formal specifications represented by functional

constraint networks (FCNs) [73], a package prototype in CoCoViLa has been imple-

mented. Using the package, first, a functional constraint network is visually specified

in a scheme (Figure 7.5) that describes an input-output behavior of a program to be

synthesized. Second, a state transition machine (STM) that represents all possible

solutions (if any exist) to the specified computational problem, is automatically de-

rived from a given FCN. Thereafter, a search algorithm that employs evolutionary

computation technique, in particular, differential evolution, is recursively applied on
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a STM to produce a set of programs that satisfy the specified input-output behav-

ior. Each program generated by traversing a STM is transformed into JavaScript

code and verified at runtime using SUN Java’s built-it JavaScript interpreter. As a

result of the computation, one or more programs closer corresponding to the given

specification are returned.

7.6 Educational packages

It should be also mentioned that a number of analytical and simulation packages for

neural networks, electrical and logical circuits, mechanical drives, attack-trees, etc.

have been implemented in CoCoViLa and used for educational purposes in several

undergraduate and graduate courses at Tallinn University of Technology.

86



Chapter 8

Planner’s benchmarking

This Chapter provides an evaluation of CoCoViLa planner’s performance and

analysis of its efficiency for program construction. The experiment is performed in

comparison with several logic theorem provers.

8.1 Problem statement

It has been noted in Section 4.5 that our planning of an attribute evaluation al-

gorithm logically corresponds to a derivation of an intuitionistic propositional for-

mula. Therefore, it is reasonable to compare the planner with other intuitionistic

logic provers. Looking at the planning algorithm we see that the complexity of

search increases significantly when subtasks have to be solved in a nested way, and

especially when one and the same subtask has to be used repeatedly in one and

the same branch. We are going to formulate increasingly complex tasks to solve

for CoCoViLa, and respective (logically equivalent) theorems for other provers and

compare the proof times. It should also be mentioned that program synthesizers

have already been used for proving logical theorems [29,91].

The Kripke’s formula ((((A → B) → A) → A) → B) → B used in Section 4.5

can be extended in such a was that its proof will include two applications of one and

the same subtask in a branch. This will be used as a building block for developing

more complex tasks.

The original formula contains nested implications and has to be encoded in a

suitable format to reduce the depth of nestedness of implications to one (to precisely

match the form of attribute dependencies in attribute models). Such encoding has
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been used in structural synthesis of programs [51, 60]. Tammet [80] applied the

similar procedure called labelling to reduce the depth of a formula.

For any propositional formula G containing subformula F , the encoding is done

using the equivalence replacement theorem (X ↔ F ) → (G ↔ GF [X]), where

GF [X] is the formula with variable X substituted for F in G. After replacing a

subformula with a variable, new formulas have to be added into the sequent to

preserve the derivability of initial formula. The present example deals only with

implicational fragment, thus only the replacement of a subformula (U → V ) is

considered. To replace (U → V ) with X, the following formulas should be added:

X → (U → V ), (U → V )→ X. The first formula is equivalent to X&U → V . Note

that in SSP such formulas are called axioms.

The Kripke’s formula is encoded as follows:

• Formula is represented in the sequent notation to explicitly show a goal B:

((((A→ B)→ A)→ A)→ B) � B.

• Subformula (A→ B) is replaced by X and new formulas are added:

(A→ B)→ X,

X&A→ B,

((X → A)→ A)→ B � B

• Subformula (X → A) is replaced by Y :

(X → A)→ Y,

Y&X → A,

(A→ B)→ X,

X&A→ B,

(Y → A)→ B � B

The proof of the theorem using the rules of structural synthesis can be found

in [51]. The proof shows that formulas (X → A) → Y and X&A → B are not

needed to derive a goal B. The sequent is developed further:
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• Formulas (X → A)→ Y and X&A→ B are removed.

• A new variable G is introduced in the following formulas:

(Y&G→ A)→ B,

(A→ B&G)→ X

This ensures that the second formula has to be used only after the first in the

derivation tree to keep the complexity of proof at a higher level.

• A new variable U is added into the following formula:

Y&X&U → A

• A new variable Z is added into the formula:

(A→ (B&G&Z))→ X

• Two assertions U and Z are added to the sequent. The necessity of variables

U and Z will be explained later.

The final sequent has the following form:

(Y&G→ A)→ B,

(A→ (B&G&Z))→ X,

Y&X&U → A,

U,

Z � B

The derivation of the sequent using intuitionistic system GJ’ formulated by

Mints [58] is presented in Figure 8.1.

The idea behind this set of formulas was to construct a theorem in such a way

that it would be possible to make a copy of the set of formulas (by renaming the

variables) and include a copied set into existing sequent. Variables G, U and Z help

to achieve this, their equivalences will bind copies of the set of formulas and they

are all needed to guarantee the deep nestedness of proofs of subtasks by forcing an
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A � A �→
A � Y &G → A

B � B

Z � Z G � G � &
Z,G � G&Z

� &
B,Z,G � B&G&Z

→�
(Y &G → A) → B,Z,G,A � B&G&Z

�→
(Y &G → A) → B,Z,G � A → (B&G&Z)

X � X

Y � Y U � U � &
X, Y � X&Y

� &
U,X, Y � X&Y &U A � A

→�
X&Y &U → A,U,X, Y � A

→�
(Y &G → A) → B, (A → (B&G&Z)) → X,X&Y &U → A,U, Z, Y,G � A

& �
(Y &G → A) → B, (A → (B&G&Z)) → X,X&Y &U → A,U, Z, Y &G � A

�→
(Y &G → A) → B, (A → (B&G&Z)) → X,X&Y &U → A,U, Z � Y &G → A B � B

→�
(Y &G → A) → B, (A → (B&G&Z)) → X,X&Y &U → A,U, Z � B

Figure 8.1: Proof of extended formula in intuitionistic sequent calculus GJ′

order on the application of the derivation rules (to preserve the highest complexity

of a proof). For two sets (copies) of formulas, variable Z1 of the first set is bound by

equivalence with variable B2 of the second set and Y1 is bound with U2. The n-level

sequent has the following form:

(Y1&G1 → A1)→ B1,

(A1 → (B1&G1&Z1))→ X1,

Y1&X1&U1 → A1,

Z1 ↔ B2,

Y1 ↔ U2,

. . .

(Yn&Gn → An)→ Bn,

(An → (Bn&Gn&Zn))→ Xn,

Yn&Xn&Un → An,

Zn−1 ↔ Bn,

Yn−1 ↔ Un,

U1,

Zn � B1,

where n ≥ 2

For example, in CoCoViLa, the specification of a second-level sequent is as

follows:

/*@ specification Kripke2
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boolean A1,B1,X1,Y1,Z1,G1,U1;

[Y1, G1 -> A1] -> B1 {f1};
[A1 -> B1, Z1, G1] -> X1 {f2};
X1, Y1, U1 -> A1 {f3};
boolean A2,B2,X2,Y2,Z2,G2,U2;

[Y2, G2 -> A2] -> B2 {f1};
[A2 -> B2, Z2, G2] -> X2 {f2};
X2, Y2, U2 -> A2 {f3};
Z1 = B2;

Y1 = U2;

U1, Z2 -> B1;

@*/

Due to the fact that CoCoViLa is not a theorem prover, but a program synthesizer,

this specification contains some redundant information (i.e. variable declarations and

function names f# in realizations of attribute dependencies) not relevant to the prob-

lem under consideration. This information should be ignored by the reader because

the generated code, extracted from the proof is not executed (there are no methods

f#() in the corresponding Java class). However, one could assign some computa-

tional meaning to this specification. A computational meaning of initial Kripke’s

formula and realizations of formulas in the specification have been demonstrated by

Lämmermann [39].

The complexity of proof search in intuitionistic logic is PSPACE-complete [78].

We expected that the time of proof search would grow exponentially with the growth

of the nestedness of subtasks in a proof.

The goal of this experiment is to check and compare the performance of Co-

CoViLa planner to various intuitionistic logic automated theorem provers publicly

available for download on the Internet. The following theorem provers were used

in the benchmark (referred on ILTP library homepage [32]): STRIP [41], iLean-

CoP [66], iLeanSeP [31], iLeanTAP [65], LJT [19], Gandalf [80], PITP [2].

8.2 Measurements

The experiment was conducted on a 2.0 GHz laptop with 2 GB of RAM and a

desktop version of Ubuntu 10.04 operating system. The decision was made to set

the time bound for the proof search to one and a half hours.
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8.3 Results

The results of the benchmark are summarized in the Table 8.1. Time is shown in

seconds. Dashes mean that a prover was not able to solve a given problem within

the time bound.

• CoCoViLa. The planner was tested with two strategies, depth-first search

with and without incremental deepening (DFS and IDFS correspondingly).

The initial results were not very promosing due to the design of problem spec-

ification. CoCoViLa is a visual framework and the first attempt was to rep-

resent a single level of Kripke’s sequent as a separate component with visual

representation. The n-level sequent was constructed visually in a scheme bind-

ing variables using aliases. This approach created unnecessary overhead and

the decision was made to write specifications textually the same way it was

done for the rest of contestants. First, the IDFS strategy was tested. The

results are presented in the first row. In CoCoViLa, proof trees for n-level se-

quents had the maximum depth of n+2. Because of the fact that the solution

to Kripke’s sequent requires the repetitive usage of subtasks in same branches,

the second strategy (DFS) needed the restriction on the depth of search trees.

The depth limit was set to n+ 2 for each n-level sequent.

• STRIP. This is a C implementation of decision procedure based on contraction-

free sequent calculus for propositional formulas. The rule-prec stategy which

was the default configuration was used for the proof search. To a provable

formula STRIP generated its proof tree, but it was also able only to check

the derivability of a formula. In case of unprovable formula, it produced a

Kripke countermodel. Our test showed that checking derivability was much

more efficient than generating a proof. In fact, STRIP was able to generate

a proof tree only up to 2-level Kripke’s sequent within the time bound. The

derivability check succeeded in proving 6-level sequent which took a bit more

than one hour.

• iLeanCoP. This is an automated theorem prover for intuitionistic first-order

logic based on the clausal connection calculus for intuitionistic logic imple-
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mented in Prolog. Version 1.2 was used in the benchmark running under

ECLiPSe Prolog system version 5.10. The prover does not generate proof

trees. Suprisingly, iLeanCoP was able to handle only the first-level sequent.

• iLeanSeP. This is another automated theorem prover from the Lean family.

It is based on a single-succedent intuitionistic sequent calculus. SWI-Prolog

version 5.7.8 was used for running the prover. This prover also does not output

proof trees. The prover showed similar results to iLeanCoP being able to prove

only the first-level sequent.

• iLeanTAP. It is the first-order theorem prover based on semantic tableaux

method. For some reason it did not perform well even with the first-level

sequent.

• LJT. Roy Dyckhoff’s intuitionistic theorem prover based on the Vorobjev-

Hudelmaier calculus [19] implemented in Prolog. Without possibility to gen-

erate proof trees, it demonstrated good performance being able to decide the

provability of 6-level sequent in less than a minute and also prove the 7-level

sequent within the time bound.

• Gnonclassic/GInt. Tanel Tammet’s intuitionistic version of award-winning

Gandalf system is a predicate-level theorem prover based on resolution calculi

due to Maslov and Mints. It is implemented in Scheme and compiled into C

for efficiency. Gandalf demonstrated an exceptional performance showing the

best timings, especially for high-level sequents. The time measured included

program start-up, formula parsing and preparations. For provable formulas,

Gandalf always generates and outputs proof trees.

• PITP. This is a tableau prover for intuitionistic propositional logic with

O(n logn)-SPACE decision procedure implemented in C++. Version 3.1 was

used in the test. The prover only checks the provability of formulas with-

out generating proof trees. The timing in the table was taken from prover’s

statistics and stated to be clean proof search time. Preparations took some

additional time not reflected in the table. It also appeared that the prover’s

efficiency highly depended on the order of formulas. We were able to generate
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Level of extended Kripke formula

Tool 1 2 3 4 5 6 7 10

CoCoViLa (IDFS) <0.01 <0.01 0.02 0.55 18.82 793.6 – –

CoCoViLa (DFS) <0.01 <0.01 <0.01 0.05 1.18 36.24 1579.6 –

STRIP (check) <0.01 <0.01 <0.01 0.34 28.75 3781.3 – –

STRIP (prove) <0.01 34.87 – – – – – –

iLeanCoP 0.01 – – – – – – –

iLeanSeP 0.02 – – – – – – –

iLeanTAP – – – – – – – –

LJT <0.01 <0.01 0.01 0.05 1.04 35.15 1572.28 –

Gandalf 0.01 0.02 0.08 0.19 0.36 0.53 0.88 7.550

PITP <0.01 0.01 0.01 0.05 0.68 15.73 343.5 –

Table 8.1: Performance evaluation of various theorem provers

a 300-level sequent with a particular order of formulas and pure search time

was about ten seconds. However, this result was not included in the table.

8.4 Analysis

From the results in Table 8.1 it is clear that the problem had exponential complexity.

CoCoViLa showed similar performance to the most of the provers on lower level

sequents and average performance (which was expected) in comparison to the highly-

optimized theorem provers such as Gandalf and PITP. However, only two theorem

provers (besides CoCoViLa) were generating proof trees. In other words, the big

disadvantage of provers not generating proof trees is that they cannot be used for

program construction.

The real-world programs that we have dealt with so far contained the nestedness

of subtasks at most of depth three and such problems were solved by the planner

in a matter of milliseconds. Our experience has shown that the higher subtask

dependency leads to very complex and incomprehensible specifications that are hard

to design, implement and especially debug.
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Chapter 9

Conclusions

The main research interest of this thesis was focused on the software devel-

opment methodology for constructing programs from specifications in efficient and

convenient way.

We introduced the flat languages as a class of declarative languages for spec-

ifying simple concepts as well as larger systems. From such specifications, given a

problem statement, a program can be obtained that computes a required goal. The

advantage of flat languages is on the one hand their structural simplicity, and on the

other hand their expressive power that is enough to support hierarchy, inheritance,

polymorphism and also control structures. Many domain-specific languages are in

essence flat languages.

The semantics of specifications in flat languages was given by means of higher-

order attribute models. It included three steps that are completely automated:

1. translation of a specification into an attribute model;

2. attribute evaluation planning after having defined a computational problem

with a set of input and target attributes;

3. extraction and execution of a program for computing the attributes.

To describe higher-order attribute evaluation planning algorithm, a concept

of maximal linear branches was used. An optimization algorithm was given for

synthesizing more efficient programs.

We presented an instance of a flat language – the specification language that

consists of the core language translatable into attribute models and extensions that
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include tuples, wildcards and equations. The specification language is built on top of

Java language. This enables us to use primitive and object types of Java in the spec-

ifications and specifications themselves are embedded into Java classes. This gives

natural and flexible interoperability between models and the actual code. By means

of higher-order functional dependencies (that correspond to higher-order attribute

dependencies once translated into attribute models) it is possible to synthesize pro-

grams with loops, recursion and conditionals.

A considerable part of this work was focused on the implementation. As a

result, the CoCoViLa system gained some new functionality and is able to handle

large applications.

The algorithm of attribute evaluation on higher-order attribute models can be

explained also in terms of logic, and vice versa – theorems of intuitionistic proposi-

tional calculus can be encoded in the form of higher-order attribute models. Hence

it was interesting to compare the algorithm implemented in CoCoViLa with well-

known theorem provers. This was accomplished the thesis, and as the results have

shown, for a given task only two of the provers performed considerably better than

the CoCoViLa’s algorithms.
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