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ABST RACT

This dissertation explores the theory of High-Level Decision Diagrams
(HLDD) in application to formal veriVcation and design error correction. We

start with methods for synthesizing the diagrams for representing digital systems
at higher behavioral, functional or register-transfer levels.
After that we show how the synthesized HLDDs can be used for high-level

veriVcation of digital systems. For this purpose, the HLDD model is appended
by characteristic polynomials that canonically describe the graph structure of
a diagram. These polynomials can be used for proving the equivalence between
two HLDDs which have the same functionality but may have diUerent structures.
To cope with the complexity of veriVcation problem, a novel method for prob-

abilistic equivalence checking of digital systems is developed, which is based on
extending the function domain and testing the polynomial values at random vec-
tors from this extended portion of the new domain. It is shown that probability
of getting the same results for diUerent polynomials is very small.
As soon as an error has been detected by the proposed approach, it must be

localized and Vxed. The characteristic polynomial-based method is developed
further to be applied to automated correction of design errors. We show how
realistic design errors can be represented by the redirection-based fault model.
The theoretical basis of the approach is presented with the key advantages being
the ability to handle multiple errors as well as the fact that the error correction
is not restricted by the input stimuli.
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ANNOTATS IOON

Käesolevas väitekirjas uuritakse kõrgtaseme otsustusdiagrammide (KTOD)
teooriat ja selle rakendamise võimalusi formaalse veriVtseerimise ja vigade

automaatse parandamise valdkonnas. Alustame meetoditega, mis võimaldavad
diagramme sünteesida käitumis-, funktsioonaalse või, register-siirde taseme digi-
taalsüsteemide kirjeldustest.
Seejärel näitame, kuidas sünteesitud KTOD-i rakendada süsteemide formaal-

seks veriVtseerimiseks. Seda eesmärki silmas pidades on KTOD mudelit täien-
datud karakteristlike polünoomide mõistega. Need polünoomid võimaldavad ka-
nooniliselt kirjeldada diagrammi graaV struktuuri ja neid saab rakendada ka-
he diagrammi, mis täidavad sama funktsiooni, aga millel on erinevad sisemised
struktuurid, ekvivalentsuse tõestamiseks.
VeriVtseerimisprobleemi keerukusega toime tulemaks on arendatud uudne tõe-

näosuslik ekvivalentsuskontrolli meetod, mille põhiideedeks on funktsiooni mää-
ramispiirkonna laiendamine ning polünoomide väärtuste võrdlemine juhuslikes
punktides, mis on võetud määramispiirkonna laiendatud osast. On näidatud, et
samade tulemuste saamise tõenäosus erinevate polünoomide puhul on väga väi-
ke.
Niipea kui viga on tuvastatud pakutud lähenemisega, tuleb ta lokaliseerida ja

parandada. Karakteristlikel polünoomidel põhinev meetod on arendatud edasi
automaatse vigade parandamise ülesande lahendamiseks. Näitame kuidas realist-
like disainivigu saab esitada ümbersuunamisel põhineva vigade mudeli abil. Lä-
henemisel on järmised eelised: on võimalik parandada mitu vigu korraga ning
parandamine ei ole sisendvektoritega piiratud.
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TH ES I S





1
I N T RODUCT ION

In this introductory chapter we give a brief overview of the domain ad-
dressed by the current thesis. We start with the motivation for this work, fol-

lowed by the problem formulation and the outline of main contributions. The
last section describes the organization of the thesis.

1.1 motivation

Nowadays we all are surrounded by digital devices. They are everywhere: at
home, at work, in our cars and our pockets. Wi-Fi hotspots, cell towers and even
space satellites are granting us Internet access even in most remote places of our
planet. Soon the cars will not need a driver [90]. Mobile phones are evolved into
a complex platform that replaced a dozen independent devices we used to have
just 15 years ago. People quickly got accustomed to such rapid progress and now
some of us even cannon imagine their lives without checking Facebook updates
every half an hour. All this is possible due to correct functioning of hundreds and
thousands of diUerent microelectronic devices, and behind this correctness there
is a hard work of hardware designers, veriVcation and test engineers.
Such a hard work is a must; the cost of an error is always high in the industry.

It cannot be Vxed by applying a patch, a hotVx or something like that, as software
developers are used to do. There are only two options: replace the malfunctioning
component or live with it. One can remember some cases, when companies were
obligated to withdraw already produced and sold devices due to bugs, like it
happened in 1994 with Pentium FDIV bug [52], an error in the Woating point
division implementation of Intel P5 Pentium CPU, that cost Intel approximately
half a billion dollars [49].
In the more critical Velds of application, like the aerospace industry, money

loss is even not the hardest consequence of bugs. Errors can make years of work
of thousands people useless, like the unit conversion problem of the Mars Cli-
mate Orbiter [95], where the Wight system calculated trajectory using the metric
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system while the entered data were in English units. As a result, four years of
design and nine months of waiting while the Orbiter reaches the Mars were lost.
Thus, hardware bugs must be located and Vxed at any cost before the device or

component production, and this makes the situation extremely challenging. On
the other hand, companies wish to release their products as quickly as possible
and, in less critical areas than aerospace or medical industries, manufacturers
cannot aUord to spend a lot of time and money on testing and debugging, oth-
erwise they will lose the competition with the concurring companies. Hence, we
always need veriVcation and error correction solutions that perform in reason-
able time to guarantee the product reliability at a competitive price.

1.2 problem formulation

Hardware design engineers are just humans and, as humans, they always will
make mistakes, no matter how advanced design methodologies we will use. Ab-
straction layers go higher, tools become more and more sophisticated, but bugs
still remain. We cannot avoid them at the design stage, but we can Vnd them and
Vx later, and this stage is called veriVcation. One can clearly see its important role
from the previous section.
The complexity of digital nanoelectronics designs has reached a level where it

is an immense challenge to guarantee their functional correctness. According to
statistics, around 70% of the project development cycle is devoted to design veri-
Vcation. Sometimes, in project teams there are twice more veriVcation engineers
than design engineers (usual ratio is one to one) [65].
At present, there is a variety of methods they can utilize. Most of them can

be divided into two large groups: simulation-based and formal methods. We dis-
cuss them in more detail in the next chapter and here we emphasize the common
disadvantage of such methods. They only detect the presence of an error, often
providing some sort of counterexample, describing the case, when the designed
circuit’s behavior is incorrect. But the true goal is to Vnd the root cause of the
error and Vx it. Such counterexamples contain too much information for a de-
signer to handle but still too little information to identify this root cause. At the
moment, this is mostly tedious manual work.
The aim of the current thesis is to make the process of Vxing bugs more auto-

mated. At present, there are only two notable method classes in this Veld, that
work at higher abstraction levels: resynthesis [21] and error matching [34]. We
discuss them in the next chapter as well. Neither of them can Vx all the errors.
The method presented here is also unable to do this. Probably, this task is im-
possible to solve, at least in reasonable time. However, each error, Vxed by such

22



1.3 thesis contribution

incomplete methods, saves hours of designer’s valuable time and makes devices
cheaper.

1.3 thesis contribution

The main contributions of this thesis are summarized as follows:
As the thesis addresses related, but diUerent problems, we can divide the contri-
butions of it into three groups.

• General contributions to the theory of HLDDs.

– A formal deVnition of HLDD as a data structure for modeling digital
system at higher levels is given.

– Characteristic polynomials are applied to canonically represent the
non-terminal part of HLDDs.

– An algorithm for normalizing diUerent variable sets is given.

– An algorithm of removing miscomparing states produced by auxil-
iary variables.

• Contributions to equivalence checking methodology.

– An algorithm of computing characteristic polynomial values at ran-
dom vectors on the given diagram, with speed-up achieved due to the
use of binomial coeXcients.

– A new measure of collision probability for this algorithm, more ac-
curate in the general case than Schwartz-Zippel theorem usually ap-
plied for similar tasks.

• Contributions to the problem of automated error correction.

– A novel HLDD-based error model.

– A new algorithm for Vxing edge-related errors on HLDDs by manip-
ulating characteristic polynomial values.

1.4 thesis structure

The thesis contains 7 chapters.
Chapter 2 provides background information on veriVcation and error correc-

tion and makes a review of state-of-the-art in the area addressed by the thesis. It
also contains a survey of related works for each of the topics.

23
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Chapter 3 consists of two parts. In the Vrst part we continue to provide back-
ground information, but this time we focus on various binary and word-level
diagram types. In the second part of the chapter we present HLDDs and methods
of translating hardware designs into the sets of HLDDs.
In Chapter 4 we study how to describe functions, represented by HLDDs,

canonically. We deVne characteristic polynomials, with aid of which we will re-
store the hidden canonicity of non-terminal part of HLDDs and present algo-
rithms of generating these polynomials and dealing with some side problems.
In Chapter 5 we propose a method for probabilistic equivalence checking based

on characteristic polynomials over HLDDs, give an estimation of collision and
solve a side problem on comparing the state diagrams as well. The feasibility
of this methodology is studied on the experiments with ITC99 benchmarks ap-
pended with some industrial designs.
Chapter 6 contains further study on characteristic polynomial properties ap-

plying them for solving the task of error localization and correction. An HLDD-
based error model is presented there and an algorithm that Vxes a subset of errors
from that model is also provided. The chapter is Vnished by the set of experi-
ments on mostly the same benchmarks as were used in the previous chapter.
Chapter 7 concludes the thesis and discusses the directions for further re-

search.
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2
BACKGROUND

In this chapter we give a brief overview of state-of-the art veriVcation and
error correction methods. In the Vrst section we describe simulation-based

veriVcation. After that, we introduce SAT/SMT solvers’ architectures. In the next
section we provide an overview of some formal methods. In section 2.4 we ex-
plain existing error correction solutions: resynthesis and error matching. Finally,
the last section summarizes given content.

2.1 simulation-based verification

The idea of simulation-based veriVcation is pretty simple and clear from its
name. Digital system simulation is a special case of the more general discrete
event simulation methods, which were initially developed in the 1960s [69]. Dis-
crete event simulation is a method of modeling a system, either real or hypo-
thetical, over time on a computer. A continuous time line is split into discrete
instants at which the system changes its state depending on some combination
of external stimulus and current state.
In simulation-based veriVcation the underlying system is a digital circuit. No-

wadays, it is the most commonly used veriVcation approach. We compare our
circuit implementation with the formal speciVcation or a reference design, if we
have one. Special software or hardware, called a test bench applies input stim-
uli, executes the designs and compares their results. Input stimuli can be either
generated on the Wy or read from some external source. The same holds for the
reference output. A typical architecture of the simulator is shown in Figure 2.1.
The front end is very much standard for most simulators and is a function

only of the input language. The main tasks for the back end are analysis, opti-
mization, and generation of code to simulate the input circuit; simulator’s speed
depends mostly on how well the back end solves these tasks. Together, the front
end and the back end compile the design into an internal representation of the
system. Then the simulation engine takes in the compiled design and computes
the behavior accordingly. Simulation control allows the user to interact with the
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Front End
    Parser
    Elaborator

Back End
    Analysis
    Optimisation
Code generation

Simulation engine Simulation control

user

Input circuit

compiler

simulator

Figure 2.1 – Major components of a simulator

simulator, like setting break points to pause a simulation, examining variable
values, etc.

There are two types of simulation engines: event-driven and cycle-based. The
former evaluates a gate whenever one or more of its inputs change values for
gate-level simulation. Similarly, at higher levels a block of statements is evalu-
ated whenever the variable values to which the block is sensitive are modiVed.
This value change is called an event. The more events circuit has, the slower
is simulation. In the latter type of simulators, the subcircuits are extracted ac-
cording to clock domains and at each triggering clock edge the corresponding
subcircuit is evaluated. In practice, most circuits have a lot of events, thus cycle-
based simulators usually run faster. However, they are not applicable when clock
domains in the circuit are not well deVned. Therefore, event-driven simulators is
the only choice, e.g., for asynchronous circuits.
Simulation is a completely general method: any hardware design can be sim-

ulated if we have enough time and computing power. The last remark points to
one of the main simulation drawbacks. Typically we use one single processor,
maybe with 2 or 4 cores to reproduce the hardware running millions of parallel
processes. Another drawback is the quality of our veriVcation. It is not feasible
to test all possible inputs and states exhaustively for any non-trivial system.
To address this issue three diUerent metrics can be adapted. Each of them es-

timates the accuracy of simulation with respect to one particular aspect of the
design and together they complement each other. Code coverage evaluates how
much of the implementation code was exercised by simulation. In parameter cov-
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2.2 sat and smt solvers

erage we Vrst identify parameter ranges for each functional unit and then com-
pute, how extensively we stressed each of these parameters. Finally, in functional
coverage we measure the amount of design features and operations that were
exercised. Note, that Vrst two metrics are functions of the implementation only,
while the latter is based on the speciVcation. Thus, in order to have fast and thor-
ough simulation we need to generate our test vectors so that the total number
of them would be as small as possible having the coverage measures as high as
possible.

2.2 sat and smt solvers

Before the computer era, mathematicians had little or no interest to the ques-
tions related to the computability. In most cases it was enough to discover that
a solution exists. On small, human manageable inputs there is not much diUer-
ence how many steps your algorithm requires, 2n or n3. Everything has changed
with the invention of the computers. Inspired by the increasing power of comput-
ing devices in the middle of XXth century, scientists started to dream about ma-
chines, solving tasks that would normally require "creative" approach, e.g., prove
mathematical theorems [44]. This was led to the rapid progress in mathematical
logic and theory of algorithms. Suddenly it appears that not all problems can be
solved algorithmically, and for some of those that can be solved researchers were
unable to propose anything better than some sort of brute force search. There
was required a theory, that would answer the questions like whether there is an
algorithm to handle a particular problem and how much resources it would need.
That is how the notion of computational complexity and the complexity theory,
which studies it, appear.

2.2.1 Computational Complexity

In this subsection we give just some basic deVnitions required to understand
the latter content. Space limitations do not allow us to discuss diUerent notions
of algorithm, the kinds of Turing machines, etc. For further information in these
topics please refer to [4].
Let us consider here an informal notion of algorithms, as something that can

be run on a computer. Then, computational complexity of an algorithm is the
number of basic operations it performs as a function of its input length. From
this sentence we see, that actually, this function depends not only on input, but
on the deVnition of these basic operations. And that is why this function is rarely
used and instead we use the big-oh notation:
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DeVnition 2.1. Let f , g : N→ N be two functions. Then we say that f = O(g)
if for some natural number c f (n) ≤ c · g(n) for every n ∈N.

This notation allows us get rid of low-level implementation details. Instead
of thoroughly computing the number of operations and obtaining results like
f (n) = 100n2 + 21n + 15n log n + 5 we may just say that f = O(n2). Assum-
ing, that each operation takes one unit of time to complete we may talk about
computation time.
DiUerent problems can be grouped into several complexity classes depending

on the number of steps it is required to solve them. Let us deVne some of these
classes.

DeVnition 2.2. We say that a problem belongs to class P if there exists c > 0, such
that it can be solved by an algorithm, whose complexity is O(nc).

DeVnition 2.3. Similarly, a problem belongs to class EXP if there exists c > 1
such that it can be solved by an algorithm, whose complexity is O(2nc

).

A bit diUerent from these classes is the next one:

DeVnition 2.4. A problem belongs to class NP, if there exists c > 0, such that for
every solution candidate there exist an algorithm checking whether this candidate
is a solution or not in O(nc) time.

It is easy to see that P ⊆ NP ⊆ EXP. The question whether the Vrst relation
is strict is still open an one of the most important questions of the contemporary
mathematics.

DeVnition 2.5. We say that a problem A is NP-hard, if any problem B ∈ NP can
be reduced to A in polynomial time. If A itself belongs to NP than we say that A
is NP-complete.

The Vrst known example of an NP-complete problem is Boolean SatisVability
Problem or SAT, which we study in the next subsection.

2.2.2 Boolean SatisVability Problem

In SAT, we study instances of Boolean formulae f : Bn → B, functions, whose
parameters are vectors of zeros and ones and each value is also either zero or one.
There are several ways to express these functions and one of them is so called
Conjunctive Normal Form (CNF). A function written in this form looks like the
following:

f (x1, . . . , xn) =
m∧

i=1

mi∨
j=1

lij
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where each lij is either xk or xk for some k ∈ {1, . . . , n}. Each set of disjunctions
is called a clause. The problem can be formulated as follows:

DeVnition 2.6. Given a Boolean formula in CNF form, determine whether this
formula is satisVable, i.e. there exists a variable assignment that evaluates it to 1.

This is an example of a decision problem: a problem, whose answer is either yes
or no. An algorithm, that solves such problem (i.e. always terminates with the
correct answer) is called a decision procedure. Not every problem has such proce-
dure, those, which does not have one, are called undecidable problems. Sometimes
we can Vnd an algorithm, such that if it returns 1, then the result is 1 and if it
returns 0 or does not terminate, then we cannot say anything about the real an-
swer. Those procedures are called sound. Another type are the complete ones: a
procedure of this type must always terminate and when the answer is 1, it re-
turns 1 (and may return 1 when the answer is 0). Thus, all decision procedures
are sound and complete.
Many decision and optimization problems from various Velds of mathematics

and engineering can be translated to SAT instances, like Traveling Salesman Prob-
lem, Graph Coloring, Integer Programming, etc. The NP-completeness of SAT
means that the algorithm that could eXciently decide all SAT instances is cur-
rently not known and probably there does not exist one. All known algorithms
have exponential complexity in the worst case. However, NP-complete problems
arise everywhere and require to be solved. Modern SAT solvers can eXciently
solve large enough subset of instances to be usable in practice. We present here
two main classes of such solvers.
First class of solvers employ a DPLL algorithm [31, 32], a method named after

its inventors, Martin Davis, Hilary Putnam, George Logemann and Donald W.
Loveland. It is based on Shannon expansion [86] of the Boolean Formula:

f (x1, . . . , xn) = x1 ∧ f (1, x2, . . . , xn) ∨ x1 ∧ f (0, x2, . . . , xn)

Two simple observations are applied as well:

• If there is a clause containing only one literal, then there is no choice than
setting this literal to 1. This is called unit propagation rule.

• If all occurrences of a variable in literals contain only one polarity, than
this is called pure literal. Such literals can always be assigned in a way
that evaluates all clauses containing them to 1 and these clauses can be
eliminated from the formula. This is called pure literal elimination.

The pseudocode of the DPLL procedure is given in Algorithm 2.1. By fxi we de-
note f (x1, . . . , xi−1, 1, xi+1, . . . n), and fxi means the substitution of 0 instead
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Algorithm 2.1 DPLL Procedure

1: function DPLL(Boolean formula f (x1, . . . , xn) in CNF form)
2: if f is empty then
3: return 1
4: end if
5: if f contains empty clause then
6: return 0
7: end if
8: for all unit clauses c in f do
9: UnitElimination(c, f )
10: end for
11: for all pure literals l in f do
12: AssignPureLiteral(l, f )
13: end for
14: Choose i from 1 to n
15: return xi ∧ DPLL( fxi) ∨ xi ∧ DPLL( fxi)
16: end function

of xi. In step 14 we can apply some heuristics aiming to simplify recurrent for-
mulas from the next step as much as possible. Proper choosing procedure can
drastically increase the solver’s speed.
Most modern DPLL-type solvers employ an additional technique called ConWict-

Driven Clause Learning (CDCL) [10, 74, 92]. Assume we had selected a sequence
of variables (step 14), which lead us to the state when we are required to return
0 (step 6). This state is called a conWict. Some other sequence could contain a sub-
sequence, which results in the same conWict. In order to avoid this, once we have
reached the conWicting state for the Vrst time, we produce a new clause, which
would prevent the same subsequence appear again, and add this clause to the
formula.
In addition to this, the original DPLL algorithm employs a chronological back-

tracking scheme, when, if the choice at line 14 was unsuccessful, we undo it and
continue the search from the previous position in the recursion stack. Alterna-
tively, the information contained in the new learned clauses allow CDCL-type
solvers jump to lower positions. This approach is called a non-chronological back-
tracking or backjumping [74].
Another class of algorithms employ stochastic local search techniques [85].

Here we start by picking a random assignment of variables. If it satisVes the
formula, then we stop the procedure returning 1. If not, we Wip variable values
one by one under some heuristic observations to obtain satisfying assignment at
the end. For example, WalkSAT algorithm examines the set of clauses that the
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initial assignment evaluates to 0, pick one of them, Wip a variable, that would
make this clause satisVed and the total number of unsatisVed clauses would be
reduced. These Wips can achieve local minima of unsatisVed clauses. In this case
the algorithm may restart with a new random assignment.
Generally, SAT instances obtained from "real life" problems, so called industrial

benchmarks, has some internal structure, and DPLL/CDCL algorithms with good
choice heuristics outperform the ones that exploit the local search technique,
while the latter class of algorithms is usually better with randomly generated
instances [61].

2.2.3 SatisVability Modulo Theories

As we have mentioned in the previous subsection, SAT is the NP-complete
complete problem, and any other problem from this class can be converted into it.
However, during the translation into the SAT instance we often lose the domain-
speciVc information of the initial task. For example, consider the following for-
mula:

a + b < 5∧ b + a < 6, a, b ∈N

We can see that it can be simpliVed to a + b < 5, but SAT solvers do not know
anything about commutativity of addition and need to rediscover it from the
structure of the resulting logic expression.
Hence, it would be great to combine the power of modern SAT solvers with

the expressiveness of the original domain, and this is the general idea of an SMT
solver. Let us continue with some deVnitions:

DeVnition 2.7. A Vrst-order logic formula is the expression that contains the fol-
lowing elements:

• Variables.

• Standard logical symbols, like operators ∨, ¬ and ∧, quantiVers ∀ and ∃ and
parenthesis.

• Non-logical symbols: functional (+, −, sin, log, etc.), predicate (=, ≤, ≈,
etc.) and constant (1, 5, 2.45e-10, etc) ones.

Also, the set of syntactical rules for constructing such formulae must be deVned. If
these rules were not violated then the formula is called well-formed.

Constants, variables and functions are called terms and simple predicates with-
out deeper propositional structure are atoms. In simple words, it is just an exten-
sion of Boolean expressions, where we put predicates instead of literals. However,
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Table 2.1 – Examples of SMT expressions and theories

Expression Theory

x1 ∧ (x2 ∨ x3) Propositional logic

x = y ∧ y = z =⇒ x = z Equality

2x + 3 > 5∨ 5y + 2z + 4x > 4 =⇒ 3y + 4z > x Linear Arithmetic

(a ∧ 0xF8)� 2 > b Bit-vectors

this formula does not mean anything without interpretation. We must Vx the do-
main set D, each constant symbol must refer to an element from D, each function
symbol f is substituted by the actual function f I : Dn → D, and each predicate
symbol P by predicate PI : Dn → {0, 1}.
SMT solvers operate instances of the Vrst-order logic formulas from a set of

Vxed domains or theories. This is the main diUerence between them and general
theorem provers that could Vnd non-standard interpretation to satisfy given for-
mula, and perform much slower thereafter. Some examples of theories, currently
supported by most of the solvers are given in Table 2.1
The general principle of deciding such formulae is given below. Consider well-

formed formula Φ(P1, . . . , Pn) of theory T , where P1, . . . , Pn are predicates.

1. Introduce new Boolean variables x1, . . . , xn. Replace predicates by literals
produced from these variables, obtaining the formula Φ(x1, . . . , xn) (called
a propositional skeleton).

2. Find a satisfying assignment α1, . . . , αn for the propositional skeleton with
a SAT solver, or determine that it is unsatisVable.

3. If Φ(x1, . . . , xn) not satisVable then return 0, else build an expression
Φα = Pα1 ∧ ...∧ Pαn , where Pαi = Pi if αi = 1 and Pαi = Pi otherwise.

4. Call a theory speciVc procedure for Φα. If it Vnds a satisfying assignment
then return 1, else go to step 2.

Let us continue with some examples of theories and their decision procedures.

Example 2.1. QuantiVer-free linear arithmetic (QF_LRA): in this theory predi-
cates are linear inequalities over real numbers. This task is pretty similar to linear
programming (LP): an optimization problem, where we need minimize or maxi-
mize a linear function under a set of linear constraints (inequalities). The only
diUerence from our case is the existence of such function, while we would be sat-
isVed with any point from the region deVned by those constraints. A variety of LP
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Algorithm 2.2 Bit Flattening

1: function BitFlatten(QF_BV formula f )
2: φ← PropositionalSkeleton( f )
3: X ← BooleanVariables(φ)
4: for all terms t of f do
5: for i← 1 to BitWidth(t) do
6: X ← {xti} ∪ X
7: end for
8: end for
9: for all atoms a of f do
10: φ← φ ∧ BitConstraint(a, X)
11: end for
12: for all terms t in f do
13: φ← φ ∧ BitConstraint(t, X)
14: end for
15: return φ
16: end function

solving algorithms exist, all of them are easily convertible to our problem. Most
notable ones are Simplex, Branch and Bound, Fourier-Motzkin variable elimina-
tion, Khachiyan’s Ellipsoid, and Karmarkar’s Interior Point methods [7]. Last two
of them have a polynomial complexity.
We may have inequalities over integers instead of reals. This case is harder,

Integer Linear Programming (QF_LIA) is NP-complete, like SAT.

Example 2.2. QuantiVer-free bit vectors (QF_BV): instances of this theory appear
naturally when we are trying to solve diUerent task related to hardware design.
Later we see some examples of these tasks. Unfortunately, in this case the general
method of splitting tasks between the SAT solver and the theory-speciVc solver
is hardly applicable. Instead, the technique called bit-Wattening is used, which, in
simple words, means that we convert everything into a SAT instance and solve
it with the SAT solver. The conversion procedure is presented in Algorithm 2.2.
In steps 10 and 13 it refers to function BitConstraint, which replace correspond-
ing atom or term with its representation in new Boolean variables deVned in
step 6. For example, it could be a circuit implementation of the given function or
predicate.

Other examples of theories include the theory of arrays, pointer logic, unin-
terpreted functions, etc. Some of them can be combined under certain conditions
to solve more complex formulae. SMT solvers made tremendous progress in last
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decade and now are widely used. In later sections we will get acquainted with
some of their applications.

2.2.4 Related Works

In 1948 Shannon discovered a new way of manipulating Boolean functions,
which was later called after him Shannon expansion [86]. Davis, Putnam, Loge-
mann and Loveland in their works [31, 32] proposed CNF formulae for satisVa-
bility testing and an algorithm to solve this problem, now known as DPLL, that
used Shannon expansion as a basis. According to [42], the Vrst paper contain-
ing systematic studies in computational complexity was [48] which laid out the
deVnitions of time and space complexity and proved some hierarchy theorems.
In 1971 Cook [26] and, independently, in 1973 Levin [68] proved a theorem that
Boolean satisVability problem is NP-complete. In 1972 Karp [55] published his
list of 21 NP-complete problems, in which he showed that SAT can be reduced
to 3SAT, where a CNF formula is allowed to have at most 3 literals per clause.
Since that time hundreds of diUerent NP-complete problems were discovered

[29, 38], but an important implication of Cook-Levin’s theorem is that researchers,
instead of trying to solve each his or her own problem can focus on just some
generic tasks, do their best trying to solve them and obtain results they need
by just translating the output to the languages of their problems. During the
years SAT solvers made tremendous progress, being now able to solve instances
of thousands of variables and millions of clauses [83], and became applicable to
solve some complex industrial tasks.
However, as most of the tasks the industry require to determine satisVabil-

ity use richer languages than propositional logic, e.g. Vrst-order theories, a tool
that would combine the power of SAT solvers and expressiveness of Vrst-order
logic would be appreciated. That was the motivation to implement Vrst SMT
solvers. The foundations of SMT can be traced back to early works 1970s and
1980s, like [13, 75, 88, 89]. Modern research in that Veld began in 1990s with in-
dependent attempts to integrate some decision procedures into SAT solvers [3,
46, 77]. During the last decade a number of eXcient SMT implementations ap-
pear [15, 33, 39] as well as veriVcation tools that utilize them [8, 63].

2.3 formal methods

We are already familiar with simulation-based veriVcation. This method is sim-
ple and widely used in practice. It makes us sure, that our design is bug-free at
certain isolated points, and this is the major disadvantage of the method. To over-
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come it we require formal techniques that can prove the design correctness for
larger sets of operational modes. In this section we describe some these tech-
niques.
The behavior of digital system is often modeled as a Vnite state machine (FSM).

DeVnition 2.8. The (Mealy-type) Vnite-state machine M is a tuple (X, Y, S, S0, δ,
λ), where X, Y and S are the sets of inputs, outputs and states, respectively, S0 ⊂ S
denotes the set of initial states, δ : X × S → S and λ : X × S → Y are the next-
state and the output functions, respectively. If output depends only on state, then
such machine is called Moore-type FSM.

A state s ∈ S is called reachable if there is a sequence of states s0 ∈ S0,
s1, . . . , sn = s and inputs x0, . . . xn−1 such that si = δ(si−1, xi−1) for i = 1..n.

2.3.1 Equivalence Checking

During the design cycle, diUerent levels of hardware design are produced. At
the moment, the most common approach is to implement the system at Register-
Transfer Level (RTL) using one of the hardware description languages (HDL) and
then convert it to the gate-level netlist using some of the EDA tools. Later we may
append this netlist with an additional functionality, like Design for Testability
structures, optimize the design, do some manual changes, etc. An approach to
describe the hardware at higher levels, like Transaction-Level Modeling (TLM) is
becoming more and more popular.
Once we have such variety of diUerent versions of the design, we need to be

sure, that all the versions do the same job, or, in other words, they are func-
tionally equivalent. The process of certiVcation that they are truly equivalent
is called equivalence checking. Consider the most common case of it: RTL ver-
sus gate-level description. We convert both versions of the design into FSMs
M1(X1, Y1, S1, S0,1, δ1, λ1) and M2(X2, Y2, S2, S0,2, δ2, λ2). Assume, that there is
only one initial state for both machines S0,1 = {s0,1} and S0,2 = {s0,2}, there is a
one-to-one mapping between inputs and between outputs, and timing is identical
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Figure 2.2 – Product machine for comparing two FSMs

for M1 and M2. Then we construct a product machine M = (X, Y, S, S0, δ, λ) =

M1 ×M2 in the following manner:

X = X1 = X2

S = S1 × S2

S0 = S0,1 × S0,2

Y = {0, 1}
δ(x, (s1, s2)) = (δ1(x, s1), δ2(x, s2))

λ(x, (s1, s2)) =

1 if λ1(x, s1) = λ2(x, s2)

0 otherwise

Figure 2.2 shows a schematic view of the resulting machine.
FSMs M1 and M2 are said to be functionally equivalent iU for all reachable

states s and input vectors x we have λ(s, x) = 1. To determine that we need to
relate states of the initial machines between each other. This is done by deter-
mining a characteristic function ρ : S→ {0, 1} such that

• ρ(s0) = 1 ∀s0 ∈ S0
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• if ρ(s) = 1 for some s ∈ S then ∀x ∈ X

– ρ(δ(x, s)) = 1

– λ(x, s) = 1

One can see from the last set of equations that the task of equivalence checking
can be split into two parts. First, a candidate for the function ρ must be chosen,
and second we should check the last two conditions for validity. The most com-
mon approach assumes a combinational equivalence checking paradigm: state
elements have 1:1 correspondence and we must demonstrate that the outputs as
well as the next-state functions of the correlated state elements are equivalent.
The correspondence between M1 and M2 can be either obtained from the nam-
ing conventions or, in case of absence of such conventions, it can be heuristically
guessed from their behaviors. Then we need to check the Boolean equivalence of
a set of combinational circuits. There are two widely used methods for the latter
task: Binary Decision Diagrams, which will be introduced in the next chapter and
SAT, where two circuits, expressed by Boolean functions f and g are combined
with an XOR gate1, the function f ⊕ g is translated into CNF form and passed to
SAT solver, which should verify its unsatisVability. If we check the higher levels,
then an SMT solver can be utilized instead.
It is important to mention, that in case of failing check we cannot distinguish

whether the systems are inequivalent or just the wrong ρ has been guessed, and
thus, described procedure is sound, but not complete. In practice, the incomplete-
ness of the combinational equivalence checking is often addressed by rejecting
all failing designs with a demand for design update with a valid register corre-
spondence and equivalent input/output behavior.

2.3.2 Model Checking

Checking the functional equivalence between two circuits is only one aspect
of formal veriVcation. Often the formal speciVcation is not available, or it is in-
complete, or the mapping between states cannot be determined. In these cases
model checking is required. It is a more general problem than equivalence check-
ing and its aim is to prove or disprove that the system implies some property,
which is a part of a speciVcation.

Example 2.3. Assume we have to design a traXc light controller. As usual, it
should show three colors, green (G), yellow (Y) and red (R), one at a time, with
the following sequence (..., G, Y, R, Y, G, ...). That are the properties of our system

1 the resulting circuit is called a miter
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and we need to check them in order to make sure our controller is implemented
correctly.

There are three common types of properties:

1. Safety property. These properties state that some undesired conditions must
not happen.

2. Liveness property. This property type ensures that some essential condi-
tions must be reached.

3. Fairness property. Here we ensure that some conditions happen repeatedly.

Returning to our example, the statement "R, G, and Y must be available" is the
liveness property, "one color at a time is permitted" is the safety property and
"the sequence (..., G, Y, R, Y, ...) should repeat" is the fairness property.
Often properties are expressed by Temporal Logic formulae where proposi-

tions are qualiVed in terms of time. Usual logic operators like ∨, ∧, ¬ are com-
plemented by temporal operators, like:

• Until: φ U ψ – ψ holds now or shall hold in the future and until that
moment φ has to hold. If ψ holds, φ does not have to.

• Release: φ R ψ – φ releases ψ if ψ is true until the Vrst position in which
φ is true (or forever φ is never true).

• Next: N φ – φ must hold at the next position.

• Future: F φ – φ must hold eventually in the future.

There are plenty of ways how we can check properties. First, we can encode
the property as an automaton, combine it with the system’s automaton in a sim-
ilar way as we did it for equivalence checking and then check whether some de-
sired or undesired states are reachable, or, in case of a fairness property, whether
there is some reachable cycle in the state transition graph.
The main disadvantage of this approach is that the number of states can be

prohibitively large, disallowing us to construct the automaton explicitly. Instead,
we can encode states and transitions between them with Boolean formulae. In
the case of Bounded Model Checking (BMC) we then unfold this representation,
making k consecutive copies, corresponding to consecutive time frames. Then
we check with a SAT solver, whether the given property holds during these k
steps. If the solver is able to generate us a counterexample then the property is
invalid, otherwise it still can be invalid, just k is not reasonably large to prove it.
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Thus, this method is complete but not sound. Again, SAT solver can be replaced
by SMT in case of high-level designs.
Another method is called symbolic simulation. We start with assigning values

to inputs, but leave some of them unassigned. Then, as in usual simulation we
propagate these values to the outputs and obtain some function over the unas-
signed variables. Then we may compare it with the desired function. Thus, one
symbolic simulation step can cover many usual simulation runs.
There is a lot of other model checking approaches, but describing all of them

is beyond the scope of the current thesis. In case of interest one can consider
reading [65] and [66].

2.3.3 Related Works

The birth of equivalence checking appeared when systems reached the com-
plexity degree at which it became infeasible to model hardware at the logic level.
In late 1970s IBM included RTL modeling into the design Wow of its mainframe
chips. At that time it was used mainly for faster simulation while the implemen-
tation still was done at the gate level. DiUerent models required to be checked
for equivalence and it was done [94]. Few years later, automatic logic synthe-
sis tools were introduced, but RTL vs. gate-level check still remained important,
due to possible bugs in logic synthesis software and as the synthesized netlist
is a subject of frequent manual intervention. In the early 1990s, IBM introduced
into their design Wow a possibility to include custom-made transistor-level cir-
cuit blocks, whose correctness must also be ensured [62]. Similar methodologies
were being adapted during the design of later versions of the Alpha microproces-
sor [11] and Intel’s microprocessors [73]. In the mid-1990s, after logic synthesis
tools had become widely available, the CAD tool vendors embedded the equiva-
lence checking into their software.
In 1993 Brand introduced a miter structure [14]. Later, in the second half of

1990s some register matching problem solutions were proposed [20, 40]. The
general case of sequential equivalence checking was studied in works like [27,
98].
Regarding the model checking paradigm, it appeared in early 1980s as well

with works of E. M. Clarke and E. A. Emerson [23, 25, 41], and of J. Sifakis and J. P.
Queille [78], where model checking of temporal logic formulae was studied. First
three of mentioned authors got a Turing Award in 2007 for their contribution in
the Veld. An automata-theoretic approach for property checking was proposed
in [105]. In the late 1980s the symbolic model checking (SMC) method was pro-
posed [22, 28] and in 1992 it was implemented in a tool called SMV [71]. In 1990
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Bryant and Seger adapted the symbolic simulation technique for the task [19].
At the end of the last century, the notions of bounded [9] and unbounded [87]
model checking using a SAT solver were introduced.

2.4 design error correction

In the previous sections we have seen a number of methods that are able to
detect errors. A common denominator of these methods is their output, given in
a form of counterexample, providing conditions in which the design under veri-
Vcation is incorrect. Two more steps are needed, bug localization and Vxing. At
the moment it is mostly manual tedious work. However, some automated meth-
ods also exist. Two classes of such methods can be distinguished: resynthesis and
error matching. A method of the former class, given an implementation and some
sort of information about its faulty behaviour (e.g. failing test vectors, property
etc.) tries to determine the changes the system would require to work correctly
under those conditions, that caused faulty responses. The latter methods suggest
Vx candidates according to some heuristic rules and check them against some
sort of a "golden model". Below we describe two representatives of these classes
and after that brieWy describe other ones.

2.4.1 Resynthesis

In 2005 Smith et al. presented a method of Vxing multiple design errors in a
gate-level netlist using SAT [93]. Consider we have a gate-level netlist C con-
taining AND, OR, NAND, NOR, XOR, XNOR and NOT gates. In addition to this
it can contain fault-free memory elements (D Wip-Wops) that can be reliably re-
set. We have simulated our design and some of the test vectors has failed. In
case of combinational circuit let VC = {v1, ...vk} be the set of failing test vec-
tors. For sequential designs we might obtain a set VS = {V1, ..., Vk} of test se-
quences, where each sequence Vj consists of mj consecutively simulated vectors
(vj1, . . . , vjmj).

Let our circuit contain r primary inputs X = (x1, . . . , xr) and t primary out-
puts Y = (y1, . . . , yt) = f (X). In case of sequential circuits with initial state
QI = (q1, . . . , qu) we have Y = f (X, QI). Let L = {l1, . . . , ln} be the set of all
circuit lines including stems and branches. We add a 2-to-1 multiplexer per each
line li, and connect li to its 0-input and two new lines, wi connected to its 1-input,
and si carrying the control signal. Thus we have obtained two new sets of lines,
W = {w1, . . . , wn} and S = {s1, . . . , sn}. Consider we are running the test vec-
tor vj. We denote the values of the sets X, Y, L and W at this vector by X j, Y j, Lj
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and V j, and for the single bits of these sets we put xj
i , yj

i , etc. Again, in the se-

quential case we use notations X jm and xjm
i for the input and similar ones for the

other sets when we execute a test vector vjm, where m = 1, . . . , mj. However, the
values of control signals remain unchanged for all vectors, so S = {s1, . . . , sn}
is used to indicate both variables and line names.
Our goal is to translate the problem of correcting system behavior for VC or

VS into a CNF formula ΦC or ΦS , respectively, an pass it to a SAT solver. Con-
sider the combinational case. For each test vector vj we must obtain the values

yj
1, . . . yj

t at the primary outputs, stimulating inputs with xj
1, . . . , xj

r. In order to

do so, we must replace some of the intermediate signals l j
i by correcting values

wj
i . We do not know, how much signals we need to correct, so we are trying

every value from 1 to some arbitrarily chosen N.
Now we can produce a CNF that summarizes these observations,

ΦC = Ep(S) ∧
k∧

j=1

(
Cj(Lj, W j, X j, Y j, S) ∧ xj

1 ∧ . . . ∧ xj
r ∧ yj

1 ∧ . . . ∧ yj
t

)
Here, Cj(Lj, W j, X j, Y j, S) models the circuit behavior with all added multiplex-
ers for the test vector vj

2, and Ep(S) is a cardinality constraint instructing the

SAT solver to replace exactly p lines l j
i1

, . . . l j
ip
by values wj

i1
, . . . , wj

ip
. E.g., Ep(S)

may be a circuit implementation of the predicate s1 + . . . + sn = p, translated to
CNF.
The formula ΦS for the sequential circuit S is the following

ΦS = Ep(S) ∧
k∧

j=1

mj∧
m=1

(
Cjm ∧

r∧
i=1

xjm
i ∧

u∧
i=1

qi ∧
t∧

i=1

yjm
i

)

Here everything is similar to the sequential case except the expression Cjm =

Cjm(Ljm, W jm, X jm, QI , Y jm, S). The diUerence is that now we are unrolling S
in time, replacing it with mj combinational circuits connected by its state signals
and then we are able to convert the new combinational circuit to CNF. Regard-
ing the signals S, now each signal si is branched to connect mj corresponding

multiplexers in order to Vx each of the lines l jm
i simultaneously.

Thus, we have obtained formulae ΦC or ΦS . We pass it to the SAT solver and if
it is satisVable (i.e. cardinality constraint is properly chosen), we get the values si
indicating where we should Vx our circuit and wj

i indicating by what we should
replace the wrong signals.

2 in simple words, Cj is just a CNF representation of the circuit functionality with new hardware
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2.4.2 Error Matching

The method presented in previous subsection has disadvantages that are not
easy to overcome. First of all, it relies on SAT solvers which do not scale that
well we would desire to, thus, modern designs with millions of gates are hard
to handle. Moreover, nowadays nobody designs at the gate level, so bugs mostly
appear at least at the RT level. Assume, a designer has put + instead of * and
we have discovered it with a couple of test vectors. But how much test vectors
do we need to turn addition back into multiplication? Maybe it is easier just to
replace addition by other operators, check the same vectors, tell the designer that
the desired output would be obtained if we replace "+" by "*", and let him decide,
whether to accept this solution or not.

With these simple observations we have come to the idea of automated de-
bug by error matching. The process of replacing design elements by other ones is
called mutation and these new elements are called mutants. Moreover, the idea is
easily applicable not only to hardware designs but to software programs as well.
So, this approach looks pretty simple until you start thinking about its implemen-
tation, when you realize that it is too time consuming to replace everything by
everything and we need to put some limits to the method.
Two simple observations help us to make the method more applicable in prac-

tice.

• It is not needed to check every design element, but the ones where the error
most likely appear; so, we rank these elements by some heuristically com-
puted suspiciousness and start to mutate the ones that got higher scores.
E.g., to rank the candidates we might do the following. During the simula-
tion we run several tests, some of them are passed, some of them not. Each
test executes only some subset of design, reducing the search space to cov-
ered code lines. Assume that the code line l was executed in t f failed and
tp passed test. Then its suspiciousness rank is computed by the following
formula

rl =
t f

t f + tp

• We should not try every mutant but only those that that more likely would
Vx the design. It means, that if we have a "+" operator put by mistake, then
the designer probably wanted to perform some arithmetic computations
and replacing it by bitwise AND would not help, so it is better to try other
arithmetic operators. Of course, one can think of cases where it is worth
to mutate arithmetic operators by logical ones or by other design elements,
but such situations are not so often in practice. E.g., in [79] authors deVne
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10 diUerent groups of mutation operators and Vx more than half of errors
from the Siemens benchmark suite [91].

Note, that the last limitation make the method inapplicable, for example, when
the error is hidden inside logical structure of the program, when some complex
conditions are separated among diUerent if-then-else operators, switch state-
ments, etc.
A kind of error matching approach, that does not rely on simulation was pre-

sented in [60]. Erroneous behavior is identiVed via failing assertions, or, alter-
natively, a reference implementation might be given. A program is viewed as a
set of components, which are executed depending on logical conditions. Com-
ponents are assignments of the form le f t-hand-side = right-hand-side, where
right-hand-side can contain errors. In order to cover bugs in logical conditions,
new temporary Boolean variables are introduced, one per each condition. Then,
new assignments of the form temp_var = condition are inserted before check-
ing the condition, which itself is substituted by temp_var in the actual check.
Then the smallest set of components that behave abnormally, called a diagno-

sis is computed, using a method presented in [82]. In general case this procedure
is undecidable, as the conditions, describing normal and abnormal behaviors of
a component involve quantiVers. In order to overcome this limitation, concrete
input values, for whose the speciVcation is violated, are computed using an SMT
solver, and the diagnosis is produced Vrst for these inputs. This approach is un-
sound as it may return false positives – the sets that are not a diagnosis for the
whole program. In this case just another diagnosis candidate need to be com-
puted.
Once the diagnosis is found, the components it contains need to be repaired.

This is done by substituting their right-hand sides by templates with unknown
parameters and letting an SMT solver compute values of these parameters. E.g.,
a template can be of a kind k0 + k1v1 + k2v2 where v1 and v2 are program vari-
ables and k0, k1 and k2 are parameters. This template deVnes a Vx as a linear
combination over the program’s variables. Generally, simple templates are tried
Vrst, and if they fail to repair the program, more complex ones are attempted.
Such usage of templates allows us to classify this method as the error matching
one.

2.4.3 Related Works

Automated design error correction methods for the logic level have been devel-
oped already decades ago. The error matching approaches [97, 106, 107] are of lit-
tle practical use when systems fail due to error cases which are not covered by the
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model. Resynthesis approaches [51, 70, 93] are more general and do not depend
to the same extent on the types of errors. However, they are relying on given in-
put stimuli and partial truth tables of the components to be corrected. Thus, the
resynthesis "Vxes" the bug only with respect to the input stimuli and potentially
replaces it by a more "diXcult" one. In general, the logic-level approaches are not
capable of coping with larger digital systems due to their complexity.
Recent works have extended the logic-level methods to the Register-Transfer

Level (RTL). In [21], Chang et al. propose a resynthesis approach at RTL. An error
matching approach based on mutation operators has been developed by Debroy
andWong for correcting Java and C programs [34]. A common denominator of all
these methods is their dependence on input stimuli and therefore, the resulting
corrections hold for the given set of stimuli but not necessarily for all possible
inputs.
During the last few years, the progress of SAT/SMT solvers inspired the ap-

pearance of fully formal error correction methods that do not rely on simulation.
E.g., in an error-matching-type method from [60] authors obtain the information
about erroneous behavior from failed assertions or a reference implementation;
in a resynthesis-type method from [45] authors Vx errors with respect to a refer-
ence implementation using the veriVcation tool UCLID [63].

2.5 summary

The aim of this chapter was to give a reader an overview of related Velds in
veriVcation and automated error correction, required for understanding the the-
sis domain and contribution. The evolution of the methods along with the basic
principles and applications was presented. We started the chapter with the brief
overview of simulation techniques as the most popular and wide-spread veriVca-
tion approach. Then we discussed SAT and SMT solvers, their architectures and
the related theory. After that we presented some state-of-the-art formal veriVca-
tion techniques. The last section was about automated methods of error diagnosis
and correction.
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3
DEC I S ION D IAGRAMS

In this chapter we introduce High-Level Decision Diagrams (HLDD) – the
main mathematical model we use to represent digital systems at higher levels.

But before we do it, we give a short overview of other types of decision diagrams.
Thus, the Vrst part of this chapter may be considered as a continuation of the
previous background chapter.
We start with the binary case, presenting Binary Decision Diagrams (BDDs)

as a way to represent propositional expressions. In Section 3.1 we give a gen-
eral deVnition and in Subsection 3.1.1 and 3.1.2 we discuss some of its subtypes:
Reduced Ordered Binary Decision Diagrams (ROBDD) and Structurally Synthe-
sized Binary Decision Diagrams (SSBDD), respectively. Next, in Section 3.2 we
switch to the higher level extensions of BDDs that is mostly used to operate
word-level arithmetic and logic expressions by presenting a deVnition and some
examples for some selected data structures. After that we continue with HLDDs.
We deVne this structure, summarize some of its notable properties, and Vnish the
section by presenting the methods of generating HLDDs from various types of
hardware descriptions. Some of the results presented in this section were pub-
lished [56, 99]. Section 3.4 provides an overview of notable works on discussed
topics and, Vnally, Section 3.5 concludes the chapter.

3.1 binary decision diagrams

Decision Diagrams serve as a basis for various task related to digital systems
design and test. We start our chapter with the discussion on their most famous
representative, BDDs, which are now extensively used in various Velds related
to hardware design and test. For example, in the previous chapter we mentioned
that BDDs (more precisely ROBDDs) can serve as a replacement of SAT solvers
in equivalence checking task. Other examples of their usage can be found in
Section 3.4.
A BDD which represents a Boolean function is a directed acyclic graph with

a single root node, where all nonterminal nodes are labeled by Boolean vari-
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ables (arguments of the function) and have always exactly two successor-nodes
whereas all terminal nodes are labeled by constants 0 or 1. For all non-terminal
nodes, a one-to-one correspondence exists between the values of the label vari-
able of the node and the successors of the node. This correspondence is deter-
mined by the Boolean function inherent to the graph. Let us continue with the
formal deVnitions of BDD.

DeVnition 3.1. A BDD that represents a Boolean function y = f (X), X =

{x1, x2, . . . , xn}, is a directed acyclic graph Gy = (V, E) with a single root node
v0 ∈ V, and two terminal nodes, vT

0 and vT
1 , where:

• Each non-terminal node is labeled by some variable x ∈ X. We denote the
variable of node v by xv.

• Terminal node vT
0 is labeled by constant 0, vT

1 is labeled by 1.

• Each non-terminal node has exactly two outgoing edges, labeled by 0 and 1,
respectively. We denote an edge from vertex u to v by (u, v, c) where c ∈
{0, 1}.

Γ(v) ∈ V denotes the set of successor nodes of v ∈ V, V = VN ∪VT consists
of two types of nodes: non-terminal VN and two terminal VT nodes, or leafs. The
designations v0 and v1 stand for the successors of vertex v for the values xv = 0
and xv = 1, respectively.

DeVnition 3.2. For the value of xv = c, c ∈ {0, 1}, we say the edge between
nodes v ∈ V and vc ∈ V is activated. Consider a situation where all the variables
x ∈ X are assigned by a Boolean vector α = (α1, . . . , αn) ∈ Bn to some value. The
edges activated by this vector form an activated path l(v0, vT) ⊂ V from the root
node v0 to one of the terminal nodes vT ∈ VT .

We say that a BDD Gy = (V, E) represents a Boolean function y = f (X),
iU for all the possible vectors α = (α1, . . . , αn) ∈ Bn a path l(v0, vT

c ) ∈ V is
activated so that y = f (α) = c, where c ∈ {0, 1}.

3.1.1 Reduced Ordered Binary Decision Diagrams

The most famous subclass of BDDs are Reduced Ordered Binary Decision Di-
agrams (ROBDDs). Comparing to other decision diagram types, ROBDDs are so
widely used that most of researchers talking about BDDs mean this particular
subclass.
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Figure 3.1 – Reduction operations: (a) Merge, (b) Eliminate

DeVnition 3.3. A BDD representing Boolean function f (X) is ordered, if for any
two variables xi, xj ∈ X, 1 ≤ i, j ≤ |X| a node labeled by xi precedes a node la-
beled xj in some path l(v0, vT) then in every other path containing vertices labeled
by the same variables xi precedes xj.

Assume we have 2 nodes v and w, such that xv = xw, v0 = w0 and v1 =

w1. Then we can remove either v or w, redirecting its incoming edges to the
remaining one. Such operation is calledmerge (Figure 3.1a). Assume now that we
have 2 nodes, t and u such that t0 = t1 = u. Then we can remove t redirecting
its incoming edges to u. This operation is called eliminate (Figure 3.1b).

DeVnition 3.4. An OBDD is reduced if we cannot apply operations "merge" and
"eliminate" any more.

The key property of ROBDD, the reason why it is so appreciated is that this is
a canonic representation of a Boolean function. That means that once we have
Vxed a variable order, we would obtain the same diagram for the same function
regardless how it does look like initially.
To build an ROBDD from a propositional expression we need to do the follow-

ing. As in the DPLL algorithm from the previous chapter, the basic idea is the
Shannon expansion:

f (x1, . . . , xn) = x1 ∧ fx1 ∨ x1 ∧ fx1

However, now we need to keep the variable order, which means, e.g., if for fx1

we choose x2 as the next variable for expansion, we must choose the same vari-
able expanding fx1 . So, for the subsequent variable xi we create a new node, two
outgoing edges and recursively apply this rule to f...xi and f...xi . If we apply this
procedure until we use all the variables then we get a binary tree, which requires
exponential size, instead of desired ROBDD. However, we can employ the follow-
ing observation: let σ1 and σ2 be two sequences of literals, such that fσ1 = fσ2
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Figure 3.2 – Three basic SSBDDs

and we have already built a BDD for fσ1 , then instead of calling recursion for fσ2

direct its incoming edges to the diagram corresponding to fσ1 .
1

Unfortunately, this observation does not always help and sometimes we end
up with the diagram of exponential size. There are functions, which produce
BDDs of polynomial size. Classic example is symmetric Boolean functions, the
ones whose values does not depend on the permutations of variables (thus the
value of such function is the same for all assignments that contain equal number
of zeroes and ones). There are, however, cases that always result in exponential
BDDs. At least one of the BDDs corresponding to the outputs of n-bit logic mul-
tiplier has size O(2n). Most of the functions lie in between of these two extreme
cases, which means that there is a variable ordering that would produce a com-
pact diagram. The problem of Vnding the best ordering is NP-hard. Even a more
relaxed version of this problem, for some c > 1 Vnd an ordering that produce a
diagram at most c times larger than the optimal one is NP-hard.

3.1.2 Structurally Synthesized Binary Decision Diagrams

Structurally Synthesized Binary Decision Diagrams (SSBDDs) form another spe-
cial subclass of BDDs. Historically, this data structure is a predecessor of HLDDs,
which were invented as a generalization of SSBDDs for higher abstraction levels.
SSBDDs are used for test generation, fault simulation, design error diagnosis, etc.
Three basic diagrams, A(x), C(x, y) and D(x, y), corresponding to Boolean

functions f1(x) = x, f2(x, y) = x ∧ y and f3(x, y) = x ∨ y, respectively, are
depicted in Figure 3.2. In SSBDDs it is allowed to label a node not only by a
variable but by its negation as well, i.e. any single literal can be a node label.
Generally, SSBDD is a graph generated from an arbitrary Boolean formula f
and graphs A, C, D by applying the following algorithm, called a superposition
procedure.

1 This technique is called dynamic programming.
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Figure 3.3 – Three representations of x1 ∧ x2 ∨ x3: (a) Gate-level circuit, (b) ROBDD, (c)
SSBDD

1. Convert f to Negation Normal Form (NNF) – a representation of Boolean
formula where only ∨,∧,¬ and parenthesis are allowed and negation of
subformulas larger than single variable is prohibited.

2. If f = l where l is single literal, return A(l), if f = l1 ∧ l2 or f = l1 ∨ l2,
where l1 and l2 are literals, return C(l1, l2) or D(l1, l2) respectively.

3. If f = g ∧ h, where g and h are propositional expressions, then apply
current procedure recursively to g and h and let these two recursive calls
return us graphs G and H, respectively. Then in the graph C(g, h) perform
a graph superposition – replace the node g by the graph G in the following
way:

• Remove terminals in G.

• Redirect all incoming edges of 1-terminal in G to g1 = h.

• Redirect all incoming edges of 0-terminal in G to g0 = 0.

• Remove g.

After that do the same for the node h and the graph H.

4. If f = g ∨ h where g and h are propositional expressions, then, again,
call the current procedure recursively for g and h and perform the graph
superposition for D(g, h) and diagrams G and H.

An example of diUerent representations of a Boolean function is given in Fig-
ure 3.3.
Note, that not every path in SSBDD can be activated by a particular variables’

assignment. Two nodes labeled by the same variable can appear in the path,
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which means that once we moved towards 1-edge for the Vrst node, we cannot
choose 0-edge for the second one. A path that can be activated by an assignment
of the variables is called feasible, otherwise it is infeasible.

3.2 word-level extensions

In this section we give a short overview of diUerent types of word-level dia-
grams. As we have seen in Subsection 3.1.1, ROBDDs fail to represent outputs of
an n-bit multiplier in a compact way. On the other hand, modern systems con-
tain a lot of diUerent arithmetic circuits, which need to be veriVed. To address
this issue, several data structures, inspired by BDDs, but treating the functions in
diUerent ways, were proposed. An n-bit arithmetic circuit is usually modeled as
a function f : Bn → Z. All of the presented data structures are canonical with
respect to particular variable ordering.
Multiplicative Binary Moment Diagrams (*BMD) [18]. This is a directed acyclic

graph with a single root node, where each non-terminal node is labeled by a
Boolean variable, edges are labelled by pairs < c1, c2 >, where c1 ∈ B and
c2 ∈ Z, and terminal nodes by integer constants. There can be any number of
terminals. *BMD is based on Boole-Shannon expansion: f = (1− x) fx + x fx,
rearranged in the following way: f = fx + x( fx − fx). Note, that if we expand
f in this way to the end, we obtain a polynomial, where maximum degree of a
single variable is 1. To build a *BMD from polynomial P : Bn → Z we can apply
the following recursive procedure.

1. Create node labeled by x, the Vrst variable in the order.

2. Create two outgoing edges, labeled by < 0, c0 > and < 1, c1 >, where c0

and c1 are the greatest common divisors of the coeXcients in Px and Px

respectively.

3. If we have already built a *BMD for Px then link the edge < 0, c0 > with
this diagram (analogue of the merge operation for ROBDDs). Otherwise
recursively create the *BMD for Px.

4. Repeat the last step for < 1, c1 > and Px.

Edge-Valued Binary Decision Diagrams (EVBDD) [64]. The basis of this struc-
ture is the following decomposition f = c + x( fx + cx) + (1− x) fx, where c
and cx are integer constants. So, an EVBDD is a tuple (c, f ) where c is a constant
value and f is a directed acyclic graph consisting of two types of nodes:

• There is a single terminal node with value 0 (denoted by 0).
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Figure 3.4 – Examples of (a) *BMD and (b) EVBDD. Both represent the function 8− 20z +
2y + 4yz + 12x + 24xz + 15xy.

• A non-terminal node v is a 4-tuple (x, l, r, cx) where x is a binary variable,
l is a left child corresponding to fx, r is a right child, corresponding to fx,
and cx is an integer constant.

Constant c is usually represented in a graph as dangling edge to the root node.
An EVBDD is reduced if there is no non-terminal node v with l = r and cx = 0,
and there are no two non-terminal nodes u and v such that u = v.
Multiple-valued Decision Diagrams (MDD) [72]. This is a direct extension of

BDDs to the case of n-valued logic, so each node has n outgoing edges and there
are n terminals. Similar observations regarding variable ordering and reductions
of redundancies can lead us to the notion of Reduced Ordered MDDs, which is a
canonical representation of a function f : {0, 1, . . . , n− 1}k → {0, 1, . . . , n− 1},
just like an ROBDD is a canonical representation of a Boolean function.

3.3 high-level decision diagrams

BDDs and Word-level DDs are good in representing diUerent components of a
system, but often we need to describe the system as a whole at higher levels, like
behavioral or RTL. For this purpose High-Level Decision Diagrams were intro-
duced [101, 102]. Until now this data structure was successfully applied in many
areas related to hardware design and test (see Section 3.4), but formal veriVcation
was not among them. In current work we obviate this disadvantage by applying
it for equivalence checking and error correction.
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Consider a digital system (Z, F) as a network of subsystems or components
where Z is the set of variables (Boolean, Boolean vectors or integers), which
represent connections between components, inputs and outputs of the network.
Let Z = X ∪ Y, where X is the set of function arguments and Y is the set of
function values where Q = X ∩ Y is the set of state variables. D(z) denotes
the Vnite set of all possible values for z ∈ Z and D(Z′) is the set of all possible
vectors for all Z′ ⊆ Z. Obviously, if Z′ = {z′1, . . . , z′n} then D(Z′) = D(z′1)×
. . .×D(z′n). Let F be a set of discrete functions: yk = fk(Xk)where yk ∈ Y, fk ∈
F, and Xk ⊆ X (k iterates over all elements in F).

DeVnition 3.5. The high-level decision diagram representing the function fk :
D(Xk) → D(yk) is a directed acyclic multigraph G = (V, E) with one root node
and a set of terminal nodes where:

• Each non-terminal node is labeled by some input or control variable x ∈ X.
2 We shall denote the variable of node v by xv.

• Each terminal node w is labeled by some function gw : D(Xw) → D(yk)

(possibly a constant or a single variable) where Xw ⊆ Xk.

• Each edge e from node v to u is labeled by some constant c ∈ D(xv). We
denote such edge by (v, u, c).

• Each two edges e1 = (v, u1, c1) and e2 = (v, u2, c2) going from the same
source node are labeled by diUerent constants c1 6= c2.

• If the node v is labeled by xv then the number of edges going from this node
is |D(xv)|.

In simple words, HLDD is a data structure similar to BDD, but with many
edges originating from a particular node and a number of functions at the end,
instead of constants 0 and 1. We shall denote the set of terminal nodes by VT ,
the set of non-terminal nodes by VN and the set of all successors of the node v
by Γ(v). For non-terminal nodes v ∈ VN an onto function exists between the
values c ∈ D(xv) of labels xv and the successors vc ∈ Γ(v) of v. By vc we denote
the successor of v for the value xv = c. The edge (v, vc, c), which connects nodes
v and vc, is called activated iU there exists an assignment xv = c. Activated edges,
which connect vi and vj, make up an activated path l(vi, vj) ⊆ V. An activated
path l(v0, vT) from the root node v0 to a terminal node vT is called full activated
path and vT itself is activated terminal node. Without loss of generality we assume
further that each variable has at least two values, i.e. ∀z ∈ Z, |D(z)| > 1.

2 Some of these variables are in fact atomic predicates but are treated as Boolean variables as there
is no diUerence between a variable and a predicate in current context.

52



3.3 high-level decision diagrams

Remark 3.1. Each BDD is an HLDD as well, with two terminal vertices labeled by
constant functions 0 and 1, and D(x) = {0, 1} for every variable x.

The nodes of HLDDmay represent diUerent high-level functional components
of a system. In RTL description we usually partition the system into control and
data parts. Non-terminal nodes in HLDDs correspond to control paths and they
are labeled by control variables or logical conditions, whereas terminal nodes
correspond to data paths, and they are labeled by the data or functions on data.
Before we can apply HLDDs for our purposes we need to obtain them from

other types of hardware descriptions. We present here HLDD generation algo-
rithms from the following hardware description types: HDL source code, net-
work of components [99] and microprocessor instruction sets [104].

3.3.1 Synthesis of HLDDs from Procedural Descriptions

Consider a procedure representing a behavior level description of a digital
system. The procedure can be represented by a Wow graph which is a directed
graph, and a path can be deVned as in graph theory. A path can be represented by
a sequence of assignment statements and conditional expressions (i.e. assertions).
A path is executable (or feasible) if there are input data such that the program
is executed along that path. Otherwise, it is un-executable (or infeasible). For
deciding the feasibility of program paths, symbolic execution of programs and
constraint solving techniques are used [109]. In this paper, a procedure similar to
symbolic execution is used for HLDD synthesis.
In the following we assume that all the assignment statements correspond to

updating of the corresponding data-path registers during a current cycle. Based
on that we introduce a "simpliVed" cycle-based symbolic execution procedure.
First, the states are inserted into the Wow graph of the procedure under analy-

sis in a similar way as the algorithmic state machines are marked by states during
synthesis of FSM [30]. For example, in the graph in Figure 3.5 there are six states
s0, s1, . . . , s5, inserted in such a way that during the state transfer each data vari-
able can be changed only once. A global state variable q is introduced to map the
states to values of q. For example, g = i for the state si.
As a result of cycle based symbolic execution the path trees are created only

for the restricted regions between neighboring states, avoiding in this way the
explosion of paths. As a result of tracing all the transfers in the Wow graph a table
is constructed where each row corresponds to a path between neighboring states
of the procedure. An example of the result of cycle based symbolic execution of
the procedure in Figure 3.5 is presented in Table 3.1.
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Figure 3.5 – A procedure under symbolic execution

Table 3.1 – Results of symbolic execution

Constraints
Assignment statements

q xA xB xC

0 A = B + C; q = 1

1 0 A = ¬A + 1; q = 4

1 1 B = B + C; q = 2

2 0 C = A + B; q = 5

2 1 C = ¬C; q = 3

3 0 C = A + B; q = 5

3 1 A = ¬C + B; q = 5

4 0 B = ¬B
4 0 0 A = A + B + C; q = 5

4 0 1 q = 5

4 1 C = ¬C; q = 5
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Table 3.2 – Results of symbolic execution for variable A

q xA xB xC A
0 B + C
1 0 ¬A + 1

3 1 ¬C + B
4 0 0 A + B + C

For all the left-hand side variables A, B, C and q in Table 3.1 we create HLDDs
which describe the cycle-based behavior of these variables during execution of
the procedure in Figure 3.5.
Consider a table created as the result of symbolic execution as a set of tuples

N = Ni, Ni = (Ci, Si) where Ci is a logical condition (a set of constraints), and
Si is a set of assignment statements. Each assignment s ∈ Si in a form zi,s = Ei,s,
where zi,s is a variable and Ei,s is an algebraic expression, will be fulVlled iU the
set of constraints Ci is satisVed. By collecting all the assignments s from N for a
left-hand variable z we can represent the behavior of the variable z as

z = ∨CiEi,s (3.1)

where Ci may have a logic value 0 or 1. It is easy to realize that the set of all con-
straints Ci in N satisVes the requirements for orthogonality and completeness.
In Table 3.2 the behavior of the variable A is explicitly highlighted. Based on the
Table 3.2 the formula (3.1) for the data variable A can be derived as

A = (q = 0)(B + C) ∨ (q = 1)(xA = 0)(¬A + 1) ∨
(q = 3)(xC = 1)(¬C + B) ∨ (q = 4)(xA = 0)(xC = 0)(A + B + C)

From the formula (3.1), a HLDD for the variable y can be derived in a similar
way as BDDs are derived by using Shannon factorization. The only diUerence
is that instead of Boolean factorization we may use multi-valued factorization,
depending on the possible number of values of the constraint variable.
The HLDDs created by factorization of the formulas (3.1) for all the four vari-

ables A, B, C and q are depicted in Figure 3.6. Here, z′ denotes the previous value
of the variable z ∈ Z.
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Figure 3.6 – HLDDs for the procedure in Figure 3.5.

3.3.2 Synthesis of HLDDs by Iterative Superposition

The description of a system is usually given as a network of components de-
scribed in a hardware description language. HDLs can be classiVed into procedu-
ral and non-procedural languages. In the procedural case for each procedure (e.g.
process in VHDL) the HLDD model can be created as in the previous section. In
non-procedural cases we can create the formulas (3.1) as the basis for HLDDs
in a more straightforward way without symbolic execution, since the pairs of
constraints and assignments are then given directly. In many cases where the
system is described as a network of components or subsystems represented al-
ready as a set of HLDDs, the whole model can be further compressed by iterative
superposition in a similar way as SSBDDs are created.
Let us have a set of HLDDs G = Gk where each is representing a digital

function zk = fk(Zk). If a terminal node v0 in a graph Gk is labeled by a data
variable xv0 which is represented by another graph G(xv0) then the procedure is
trivial: the node v0 in Gk can be simply substituted by the graph G(xv0).

Example 3.1. Consider a data path in Figure 3.7 and the descriptions of the
operations of the components in Table 3.3. Variables R1 and R2 represent regis-
ters, IN represents the input bus, integer variables y1, y2, y3, y4 represent control
signals, M1, M2, M3 are multiplexers, and the functions R1 + R2 and R1 · R2
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M1

M2 *

+R1

R2

IN

M3

y1 y2 y3 y4

a

b

c

d

e

Figure 3.7 – RTL data path of a digital system

Table 3.3 – Functions of the blocks of system in Figure 3.7.

y1 M1/a y2 M2/b y3 M3/e y4 R2

0 R1 0 R1 0 M1 + R2 0 0

1 IN 1 IN 1 IN 1 R2

2 R1 2 M3

3 M2 · R2

represent adder and multiplier, respectively. The superposition procedure of two
graphs for the register input logic R2 and the multiplexer M3 (internal variable
e) is illustrated in Figure 3.8, and the whole single fully compressed HLDD for
the data-path in Figure 3.7 is depicted in Figure 3.9.
Each node in the HLDD represents a subcircuit of the system (e.g. the nodes

y1, y2, y3, y4 represent multiplexers and decoders). The bold path in Figure 3.9
shows the active mode of the system for input control vector (y1, y2, y3, y4) =
(1, 0, 3, 2), which means that during this clock cycle the system calculates the
multiplication R2 = R1 · R2. The structural relationships between the HLDD
and the original system are highlighted by dotted lines in Figure 3.9.

Superposition of a non-terminal node v labeled by xv in Gk by the graph G(xv)

is only then possible when all the values c ∈ D(xv) have one-to-one mapping to
the terminal nodes of G(xv) labeled by constant values from the same set D(xv).
The procedure is as follows:

1. The node v will be removed from Gk.
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Figure 3.8 – Superposition of HLDDs.

Figure 3.9 – Full HLDD model for the data path in Figure 3.7

2. All the edges in G(xv) that were connected to terminal nodes vT
c ∈ G(xv)

will be cut and then connected, correspondingly, to the successors vc of the
node v in Gk.

3. All the incoming edges of v in Gk will be now incoming edges for the root
node v0 in G(xv).

Note, that this procedure corresponds exactly (!) to the superposition procedure
developed for SSBDDs with the only diUerence in the ranges of values for c (bi-
nary vs. integer).
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Table 3.4 – Microprocessor instructions

# Instruction Behaviour # Instruction Behaviour

I1: MVI A,D A = IN I6: MOV A,M A = IN

I2: MOV R,A R = A I7: ADD R A = A + R

I3: MOV M,R OUT = R I8: ORA R A = A ∨ R

I4: MOV M,A OUT = A I9: ANA R A = A ∧ R

I5: MOV R,M R = IN I10: CMA A A = ¬A

I

X

R

A
1,2,5-10

3

4

OUT

I

R

A

IN
1,3,4,6-10

2

5

R

I

A + R

IN

A
7

1,6

2-5

A

A ∨ R

A ∧ R

¬A

8

9

10

Figure 3.10 – HLDDs for the processor from Table 3.4

3.3.3 Synthesis of HLDDs from Microprocessor Instructions

Microprocessor instruction sets can be given as a set of 4-tuples (i, f , X, y)
where i is instruction number, f is operation name, X is a list of operands and y
is the result destination (register or memory cell).

Example 3.2. A simple instruction set of a hypothetical microprocessor is shown
in Table 3.4. Here A and R are registers, M is a memory cell address, D is a con-
stant.

Translating such instruction sets to HLDDs is fairly easy. Instruction number
serves as a state variable and we create the set of HLDDs for each of the registers
and for the output bus depending on the instruction behavior. Resulting DDs for
the processor from Table 3.4 is shown in Figure 3.10
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3.4 related works

In 1959 C.Y.Lee introduced a method for representing digital circuits by Binary
Decision Programs [67]. In 1976 the same model called alternative graphs [100]
was introduced for test generation purposes. Independently the same model was
introduced into the Veld of test generation by Akers [2] under the name of Binary
Decision Diagrams (BDD).
In 1986 Bryant in his seminal paper [81] proposed ROBDDs and showed how

most Boolean algebra operations can be eXciently implemented on this structure.
At the moment this paper is one of the most cited papers in computer science. To-
day the theory of BDDs is developing quickly with the main purpose of eXcient
manipulation of logic expressions [2, 35, 81]. Its application domain include digi-
tal circuit design and veriVcation, sensitivity and probabilistic analysis of digital
circuits, Vnite-state system analysis, etc. [17].
However, disadvantages of the proposed structure were revealed soon. In 1991

Bryant proved that at least one of the diagrams produced from the circuit im-
plementation of integer multiplication is exponential in size with respect to the
number of input bits, while the circuit itself has polynomial size [16]. Billig and
Wegener in 1996 proved the NP-completeness of Vnding good variable orderings
for building a BDD [12].
A number of alternative representations targeting mostly arithmetic functions

have been proposed. In 1992 Lai and Sastry proposed EVBDDs [64], which was
the Vrst word-level data structure for representing functions f : Bn → Z. How-
ever, it still was not able to model multiplication eXciently. This problem was
solved by Bryant and Chain in their paper [18] introducing *BMDs. Several ex-
tensions of this structure have been proposed since then, e.g. Hybrid Decision
Diagrams (HDD) [24] and Kronecker multiplicative binary moment diagrams
(K*BMD) [36]. A good survey on diUerent word-level diagrams and their capa-
bilities to model basic arithmetic functions can be found in [50].
In 1980s hardware design process moved from gate-level to RTL. In order to

solve various tasks related to this process a structure, capable to represent sys-
tems at the same level they were designed, was desired. In 1988 High-Level Deci-
sion Diagrams (HLDD) were proposed by Ubar as such structure [101, 102]. Since
then HLDDs were applied to high-level test generation [99], simulation [54], fault
diagnosis [80], dependability evaluation [103], etc.
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3.5 summary

The Vrst part of this chapter continued to acquaint the reader with the back-
ground theory, focused this time on diUerent decision diagrams. We discussed
general BDDs, ROBDDs and SSBDDs. After that an overview of some represen-
tatives of word-level diagrams were given: *BMDs, EVBDDs and MDDs.
Then we proceeded with the section describing HLDDs – the basis of our fur-

ther research. We gave a formal deVnition of this class of diagrams, which is the
Vrst contribution of the thesis. In the following few subsections we presented
algorithms of compiling HDL sources, networks of components and micropro-
cessor instruction sets into the sets of HLDDs.
A brief survey of related works concluded the chapter.
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4
CHARACT ER I S T I C POLYNOM IAL S

High-Level Decision Diagrams have been used in many Velds related to VLSI
design and test, but, unfortunately, formal veriVcation is not among them,

due to uncanonicity of the HLDD representation. This chapter addresses this is-
sue developing a polynomial-based path analysis technique that is able to restore
the lost canonicity for the control part of the graph. Main results of this chapter
was published in [56], except the Section 4.4 which appeared in [58].

In Section 4.1 we formulate the problem and observe some initial approaches
to solve it. In Section 4.2 we deVne characteristic polynomials: the main tool we
use in this and the next chapters to solve equivalence checking and error correc-
tion problems. The next section provides an algorithm of obtaining polynomials
from an HLDD, Section 4.5 is a short survey of similar works and Section 4.6
summarizes the chapter contents.

4.1 initial observations

HLDDs generated from diUerent sources generally preserve the structure of
the original description, which allows making them compact. However, variables
in a path usually appear in the same order their corresponding modules or condi-
tions appear in the source, so, they can be before or after each other in the same
diagram. We could deVne similar transformations as for ROBDDs, but we must
pay at least the same price – possible exponential blow-up. Is there some way
to extract canonical properties of the underlying discrete function of the HLDD
without changing the variable order?

Example 4.1. Consider the diagram from Example 3.1, shown in Figure 3.9. Sup-
pose in some other system implementing the same functionality we have ob-
tained diUerent diagrams, like the ones depicted in Figures 4.1 - 4.3. Figure 4.1
shows the result of swapping around variables y1 and y3. In Figure 4.2 we intro-

duce a new variable x. The subgraph after the edge x 0→ y3 is the same as shown

in the original diagram from Figure 3.9; the subgraph after x 1→ y1 is the same
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Figure 4.1 – Variables in diUerent order

as in the previous diagram with reversed order of y1 and y3. Easy to see that in
all these cases the actual function is the same.

Figure 4.2 – Redundant node x

The case shown in Figure 4.3 is a bit more complicated, because here we see a
function with another argument set. This means that the argument sets should
be somehow normalized in such case. Later in Section 4.4 we show how to deal
with this, but Vrst let us try to solve a simpler case, when variables are the same

Figure 4.3 – Variable’s decomposition

Consider again the digital system (Z, F), where Z = X ∪ Y represented by
the set of HLDDs G = {Gk : k = 1..|F|}. A function f ∈ F is split by its dia-
gram G ∈ G into two parts: a graph and terminal-node functions. To compute
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f (α) for some variable assignment α we Vrst activate a path to particular ter-
minal node and then compute the Vnal value using the terminal node function.
Usually these terminal node functions are simple word-level arithmetic or logic
expressions, so, building its canonic representation is generally not a problem.
We might use structures like *BMD or EVBDD presented in the previous chap-
ter. We can even choose diUerent diagrams for diUerent functions, depending
on the diagram sizes for certain function types. Alternatively, we may consider
comparing these functions with an SMT solver.
Thus, we need to describe the paths from source to terminals in a way it would

be the same for all diagrams with the same functionality, like the ones we have
seen in Figures 4.1 and 4.2.
So, let f ∈ F, G = (V, E) ∈ G is the HLDD representation of f and let

Di designate a subset of D(X), such that assignments from it will activate the
terminal node vT

i ∈ VT ⊂ V, so D(X) is being partitioned to non-intersecting
sets D1, ..., Dt, where t = |VT|. More formally,

t⋃
i=1

Di = D(X)
∧
∀i, j(i 6= j⇒ Di ∩ Dj = ∅)

For each such subset Di we deVne a characteristic function χi : D(X) → {0, 1},
i.e. α ∈ D(X) ∧ χi(α1, . . . , αn) = 1 ⇔ (α1, . . . , αn) ∈ Di. Our goal is to get an
algebraic expression for f . Let α ∈ D(X) be some assignment to input and con-
trol variables and χi : D(X) → {0, 1} be the characteristic function of the set
Di, i.e. χi(α1, . . . , αn) = 1 ⇔ (α1, . . . , αn) ∈ Di HLDD may be seen as graph
representation of the following algorithm:

begin

if α ∈ D1 then f (X) = g1(X1) endif

. . .

if α ∈ Dt then f (X) = gt(Xt) endif

end

Here, Xi ⊆ X, i = 1..t. As a shorthand for the algorithm we will use a formula

f (X) = caset
i=1 χi(X)→ gi(Xi) (4.1)

In the next section we deduce a more algebraic representation of this expression.
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4.2 from characteristic functions to characteristic polynomi-
als

Suppose we have two diagrams G1 and G2 with the same sets of variables
and terminal nodes, but diUerent control structures and wish to prove that they
are equivalent. As we saw in the previous section, it is suXcient to show that
the function (4.1) for both diagrams is the same. Our assumption implies that
everything in (4.1) is the same except characteristic functions χi(X). Without
loss of generality we may assume that D(xi) = {1, . . . , |D(xi)|}. If not we
deVne a bijective mapping h : D(zi) → {1, . . . , |D(xi)|} and use the values of
this function instead of their originals. Then the following theorem takes place:

Theorem 4.1. The characteristic function of the set Di, χi(X), can be represented
by a unique polynomial Pi : Qn → Q of degree at most ∑n

j=1 (
∣∣D(xj)

∣∣− 1) where
we have for each vector α = (α1, ..., αn) ∈ D(X)

χi(α1, ..., αn) = Pi(α1, ..., αn)

.

Proof. We have D(X) diUerent vectors in Qn. The sought-for polynomial should
be equal to 1 for vectors from Di and to 0 for vectors from D(X)\Di. In numer-
ical analysis the Lagrange interpolation polynomial is well-known [5]: consider
we have measured the values for some function f : [a, b]→ R at points x0, ..., xn

and obtained results are y0, ..., yn, then we can interpolate them to the whole seg-
ment [a, b] by a polynomial of degree at most n:

f (x) ≈ P(x) =
n

∑
i=0

yi
(x− x0)...(x− xi−1)(x− xi+1)...(x− xn)

(xi − x0)...(xi − xi−1)(xi − xi+1)...(xi − xn)

If f is a polynomial of such degree then we get the exact result, otherwise there
will be some error. Note that for x = x0, ..., xn we will always get the exact
result: P(xi) = yi = f (xi) and it is a polynomial of lowest degree that gives
such result. This is the property we are interested in the current paper. Although
in numerical analysis textbooks only the case of one-variable function is usually
studied, these results can be easily transferred to the multiple-variable case. So,
our sought-for polynomial Pi is the Lagrange polynomial that evaluates to 1 for
each vector from Di and to 0 for each vector from D(X)\Di:

Pi(x1, ..., xn) = ∑
(α1,...,αn)∈Di

n

∏
j=1

|D(xj)|
∏
k=1
k 6=αj

xj − k
αj − k

(4.2)
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The degree of this polynomial is at most ∑n
i=1 (|D(xi)| − 1). Let us prove that

this is the only polynomial of such degree:

• The basis. Let n = 1. Assume we have 2 polynomials, P(x1) and Q(x1),
deg P = deg Q = |D(x1)| − 1 and ∀(i ∈ 1..|D(x1)|) P(i) = Q(i). Then
the polynomial P−Q has |D(x1)| roots: 1, 2, . . . , |D(x1)|, which could be
only in case P ≡ Q.

• The induction step. The proof is similar to the basis case one: assume we
have 2 polynomials, P(x1, ..., xn) and Q(x1, ..., xn), deg P = deg Q =

∑n
i=1 (|D(xi)| − 1). After assigning values to x1 we get |D(x1)| pairs of

(n − 1)-variable polynomials. They are pairwise equal by induction hy-
pothesis. Thus, the polynomial function P− Q : Q → Q[x2, ..., xn] of de-
gree at most |D(x1)| − 1 has |D(x1)| roots in Q[x2, ..., xn]. Thus, P ≡ Q.

Corollary 4.1. Two diagrams G1 and G2 are equivalent iU they have equal sets of
control variables, terminal nodes and the polynomial representations (4.2) of char-
acteristic functions for any two corresponding terminal nodes are the same.

We shall call the right side of formula (4.2) the characteristic polynomial of the
node vT

i . The formula 4.1 now can be rewritten in the following way

f (X) =
t

∑
i=1

Pi(X)gi(Xi) =
t

∑
i=1

gi(Xi)

 ∑
(α1,...,αn)∈Di

n

∏
j=1

|D(xj)|
∏
k=1
k 6=αj

xj − k
αj − k

 (4.3)

The last equation would be the complete representation of f if we could explicitly
enumerate vectors α ∈ Di, but the only input we have is G, so we need to be
able to obtain characteristic polynomials from it. The next section shows how to
do this.

4.3 from hldds to characteristic polynomials

HLDDs are directed and acyclic multigraphs, thus their vertices can be easily
arranged in topological order, which means that if v < w for some v, w ∈ V,
then there is no paths from w to v. Then we might iteratively grow up our poly-
nomials starting from P ≡ 1 in the source node. Keeping in mind these observa-
tions one could come up with something like Algorithm 4.1. Would it return us
desired characteristic polynomials? Not really. There is a special case we should
handle before we can apply it.
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Algorithm 4.1 Obtaining characteristic polynomials from an HLDD

1: function HLDD2CP(HLDD G = (V, E))
2: order all nodes in G topologically
3: T ← array of ordered nodes
4: for i← 1..(|V| − 1) do
5: PT[i] ← 0
6: end for
7: PT[0] = 1
8: for k← 0..(|V| − 1) do
9: v← T[k]
10: for all w ∈ Γ(v) do
11: i← c(v,w)

12: Pw ← Pw + Pv ∏|
D(v)|

j=1
j 6=i

xv−j
i−j

13: end for
14: end for
15: return {PvT |vT ∈ VT}
16: end function

In Algorithm 4.1 we grow up our polynomial for all the paths from the source
node to terminals. Once we are in vertex v we have full polynomial Pv and use
it for the descendants of v. But what if node’s variable, xv, has appeared before
in some of the predecessors of v? Then Algorithm 4.1 will take into account in-
feasible paths which we should avoid. Such paths could appear if we generate an
HLDD using the method described in Subsection3.3.2, the method from Subsec-
tion 3.3.1 is guaranteed to produce diagrams free of such paths. However, unlike
the case of SSBDDs, this is a quite rare problem at higher levels, even if we use
the superposition procedure to obtain an HLDD. A variable appearing twice in a
path generally means a designer checks the corresponding condition twice. For
example, the author has never seen such paths in the diagrams generated from
real designs.
However, nobody prohibits designers to check conditions as many times as

they need and we should be able to handle such situations. If we encounter the
same variable two times in a path we can duplicate all variables between the
occurrences of this variable and make an equivalent diagram without such re-
dundancies. Let some path contain nodes labeled by variables x0, x1, ..., xk, x0.
We should produce a new diagram, where this chain would be replaced by two
new chains, x0, x1, ..., xk and x1, ..., xk, x0. The following theorem will help us:
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Theorem 4.2. Suppose an HLDD containing a chain of non-terminal nodes labeled
by variables x0, x1, ..., xk, x0 was transformed in the following way:

• Remove nodes labeled x0, x1, ..., xk, x0

• Add 2(k + 1) nodes labeled x1, ..., xk, x0 (the Vrst chain) and x0, x1, ..., xk
(the second chain).

• All connections from and to the nodes of the Vrst chain will remain the same.

• All connections from and to x0 occurrence in the second chain will remain the
same.

• Connections from other nodes to x1, ..., xk in the second chain will be removed

Then the result is equivalent to original diagram.

Proof. We shall prove that the second diagram contain all paths from the Vrst
one that could be activated and vice versa.⇒:

• Obviously, all paths not containing mentioned nodes remain unchanged.

• All paths containing the Vrst occurrence of the x0 can be activated in the
second chain.

• All paths containing the second occurrence of the x0 or only intermediate
nodes x1, ..., xk can be found in the Vrst chain.

⇐: The similar check for all possible paths in our two chains shows that they
can be activated in the Vrst diagram.

Example 4.2. Figure 4.4 illustrates the transformation described above. Some ver-
tex and all edge labels are not shown because they are not important in current con-
text. We have a path x → y→ z→ x that is being split in two chains x → y→ z
and y→ z→ x:

Now we can prove the following theorem:

Theorem 4.3. The Algorithm 4.1 produces the set of characteristic polynomials for
the diagram G if G does not contain infeasible paths.

Proof. Let L be a set of all paths from the root node to some terminal node vT .
Each path l ∈ L activated by the assignment (xv1 = α1, ..., xvk = αm) will be
represented in the result polynomial by the following summand:

m

∏
j=1

∣∣∣D(xvj )
∣∣∣

∏
k=1
k 6=ij

xvj − k
αj − k

(4.4)
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y z x
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Figure 4.4 – Removing duplicate variables

(This can be easily proven by induction). The resulting polynomial will be the
sum of these summands over all paths from L. As G does not contain infeasi-
ble paths, all variables in l are diUerent. So, m ≤ n. The only diUerence be-
tween summands in (4.2) and (4.4) is the bound of the Vrst product sign: gen-
erally, the path l should not contain all variables; some of them may be miss-
ing. This means that one path actually represents |D(x̃1) × ...× D(x̃n−m)| as-
signments {(xv1 = α1, ..., xvm = αm, x̃1 = αm+1, . . . , x̃n−m = αn}, where
{x̃1, ..., x̃n−m} = X\{xv1 , ..., xvm} But we have

∑
(αm+1,...,αn)∈D(x̃1)×...×D(x̃n−m)

n−m

∏
j=1

|D(x̃j)|
∏
k=1

k 6=αm+j

x̃j − k
αm+j − k


 = 1 (4.5)

This is the Lagrange polynomial that evaluates to 1 for all possible values from
D(x̃1)× ...× D(x̃n−m). The simplest polynomial with such property is the con-
stant 1, so they should coincide with each other. Multiplying this polynomial
with our summand gives us the sum of D(x̃1)× ...× D(x̃n−m) summands each
representing certain assignment for the whole set of variables. Finally, adding
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them together results in the formula (4.2) (none of the summands will appear
twice, because all paths have the same source node and thus assignments of cor-
responding paths will diUer for at least one variable; otherwise they would never
branch oU).

Example 4.3. Let us now Vnd the characteristic polynomials for the HLDD that
evaluates the next state for variable C from Figure 3.6. First of all we change the
labels of edges labeled by 0 to 5 for the one going from node q and to 2 for others.
We have 4 paths to the Vrst terminal node: (q = 5), (q = 1), (q = 3, xC = 1),
(q = 4, xA = 2). Thus,

P1(q, xA, xB, xC) =
(q− 1)(q− 2)(q− 3)(q− 4)
(5− 1)(5− 2)(5− 3)(5− 4)

+

(q− 5)(q− 2)(q− 3)(q− 4)
(1− 5)(1− 2)(1− 3)(1− 4)

+

(q− 5)(q− 1)(q− 2)(q− 4)(xC − 2)
(3− 5)(3− 1)(3− 2)(3− 4)(1− 2)

+

(q− 5)(q− 1)(q− 2)(q− 3)(xA − 1)
(4− 5)(4− 1)(4− 2)(4− 3)(2− 1)

=

−1
6

q4xA −
1
4

q4xC +
3
4

q4 +
11
6

q3xA + 3q3xC −
53
6

q3

−41
6

q2xA −
49
4

q2xC +
143
4

q2 +
61
6

qxA

+
39
2

qxC −
173

3
q− 5xA − 10xC + 31

For the second node we have two paths (q = 2, xB = 2) and (q = 3, xC = 2),
so the second polynomial will be

P2(q, xA, xB, xC) =
(q− 5)(q− 1)(q− 3)(q− 4)(xB − 1)
(2− 5)(2− 1)(2− 3)(2− 4)(2− 1)

+

(q− 5)(q− 1)(q− 2)(q− 4)(xC − 1)
(3− 5)(3− 1)(3− 2)(3− 4)(2− 1)

=

−1
6

q4xB +
1
4

q4xC −
1
12

q4 +
13
6

q3xB − 3q3xC +
5
6

q3

−59
6

q2xB +
49
4

q2xC −
29
12

q2 +
107
6

qxB −
39
2

qxC

+
5
3

q− 10xB + 10xC
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Finally, paths (q = 2, xB = 2) and (q = 4, xA = 1) give us the third polynomial:

P3(q, xA, xB, xC) =
(q− 5)(q− 1)(q− 3)(q− 4)(xB − 2)
(2− 5)(2− 1)(2− 3)(2− 4)(1− 2)

+

(q− 5)(q− 1)(q− 2)(q− 3)(xA − 2)
(4− 5)(4− 1)(4− 2)(4− 3)(1− 2)

=

1
6

q4xA +
1
6

q4xB −
2
3

q4 − 11
6

q3xA −
13
6

q3xB + 8q3

+
41
6

q2xA +
59
6

q2xB −
100
3

q2 − 61
6

qxA −
107

6
qxB

+56q + 5xA + 10xB − 30

Thus, we can compare the control parts of HLDDs by computing their charac-
teristic polynomial sets. The only remaining issue belongs to the case shown in
Figure 4.3. If variable sets are diUerent, then functions are diUerent by deVnition,
so we cannot apply our method unless we make those sets the same. The next
section presents an algorithm created for this purpose.

4.4 normalization of set of variables

Assume we have two digital systems doing the same operations but their pro-
cedural descriptions contain diUerent variables with diUerent dimensions. From
the HLDD point of view this means that if we assign the same bits to our con-
trol variables then we will reach the same terminal node. How to compare two
HLDDs, if the sets of control variables are not same but there exists one-to-one
mapping between bits of these variables? The answer is to make those sets the
same: we just need to split variables forth and use the superposition procedure
producing the diagrams we can compare. Let X = (x1, ..., xn), Y = (y1, ...ym)

be two sets of variables, where ∑n
i=1 dim xi = ∑m

j=1 dim yj (dim t means the
length of variable t in bits). We need to obtain a set Z of variables where ∀t ∈
(X ∪Y)∃zi, ..., zj(t = zi ∪ ...∪ zj) using Algorithm 4.2.

After running this algorithmwe receive the sought for set Z = (z1, ...zk). Each
variable t from X and Y will be represented by a tree-like HLDD (Figure 4.3)
representing some function f (zi, ..., zj), where D(t) ⊆ D( f (zi, ..., zj)). Using
the superposition procedure and characteristic polynomials we can now check if
our diagrams are equivalent or not.
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Algorithm 4.2 Normalisation algorithm

1: Z ← ∅
2: while X 6= ∅ do
3: xi ← GetFirstVariable(X)
4: yj ← GetFirstVariable(Y)
5: if dim xi > dim yj then
6: t← yj
7: u← xi\t
8: Z ← Z ∪ {t}
9: X ← X\{xi}
10: Y ← Y\{yj}
11: X ← X ∪ {u}
12: else if dim xi < dim yj then
13: t← xi
14: u← yj\t
15: Z ← Z ∪ {t}
16: X ← X\{xi}
17: Y ← Y\{yj}
18: Y ← Y ∪ {u}
19: else
20: Z ← Z ∪ {xi}
21: X ← X\{xi}
22: Y ← Y\{yj}
23: end if
24: end while

4.5 related works

There are works studying similar polynomials for diUerent diagram types.
In [1] and [53] authors studied the characteristic polynomials of BDDs. In [37]
the method was applied to MDDs. These methods are not much known, as in the
binary case ROBDDs are mostly used, which are canonical and do not require
equivalence tests rather than direct comparison.
Regarding the case of multivalued logic, Reduced Ordered MDDs are canoni-

cal as well and do not require further equivalence checking either. General MDD
structure, however, is not that Wexible as HLDD. Generating an MDD from a gen-
eral circuit design could be a challenge, except for the designs exploitingMultiple-
Valued Logic Field Programmable Gate Arrays (MVL FPGA) technology, where a
mapping between the MDD and the circuit can be easily obtained [72].
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4.6 summary

HLDDs cannot be applied directly, like BDDs, in formal veriVcation, as it is
not a canonical data structure. We need algorithms comparing diUerent HLDDs
expressing the same functionality and this can be established using characteris-
tic polynomials with a combination of canonic word-level diagrams applied to
terminal node functions.
A characteristic polynomial is a formal way to express, what subset of diagram

paths lead to a particular terminal node. Unlike BDD and MDD models, certain
obstacles exist preventing the direct use of these polynomials. Some designs may
result in diagrams, permitting multiple occurrences of a variable in a path. An
algorithm of transforming these diagrams into the equivalent ones without the
presence of multiple variables is given.
Another obstacle is the possibility of splitting n-bit variable into a number

of variables of lesser bitwidth, resulting in functions that cannot be equivalent
mathematically as they depend on diUerent variable sets. In order to overcome
this obstacle we must normalize the variable sets and the algorithm of such nor-
malization is given.
Having these problems resolved we can compute characteristic polynomials

and compare them for the corresponding terminal node pairs checking the equiv-
alence of the graph structures of HLDDs. An algorithm of producing the set of
polynomials from an HLDD is provided along with the proof of its correctness.
All mentioned algorithms provide a way to transform an uncanonical HLDD

into a fully canonical structure, making it possible to apply HLDDs for equiva-
lence checking at the higher levels, and form the main contribution of the current
chapter.
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5
P ROBAB I L I S T I C EQU I VALENCE CH ECK I NG

In this chapter we will see how to apply characteristic polynomials for equiv-
alence checking. The main obstacle preventing computing them directly is

their size. To overcome this we developed a probabilistic technique based on
characteristic polynomials, which allow us to compare diagrams with a negligible
chance to get a collision. The Vrst section of the chapter addresses the problem
of mapping states. Next, in Section 5.2 we present our probabilistic technique.
After that, in Section 5.3 we give an estimation of the probability of collision.
Section 5.4 provides some experimental results and Section 5.5 concludes the
chapter.

5.1 mapping state variables

In Subsection 2.3.1 we described the task of combinational equivalence check-
ing between RTL and low-level descriptions. It consists of two subtasks: Vrst we
propose a function ρ that relate state elements from one level to ones from an-
other level, assuming that such 1:1 relationship exists; then we check outputs and
next state functions using SAT/SMT solvers or BDDs.
Our task is slightly diUerent. We compare two diUerent high-level descriptions,

e.g. behavioral vs. RTL or software model vs. RTL, etc. In this case we also need
the Vrst step: map variables and states (some HLDD variables correspond to sys-
tem registers which are part of the state space when we check RTL vs. gate-level
description), but we cannot assume 1:1 relationship anymore.
When we implement some computations, we may use temporary variables to

store intermediate results, e.g. to make code more clear. Such temporary variables
aUect the state variable and make systems harder to compare. Thus, in order to
apply methods of guessing candidates for ρ, developed for state-of-the-art equiv-
alence checking approach [66], we must Vrst get rid of such temporary variables.
Here we present a technique to remove them and make systems implementing
the same algorithms at diUerent levels directly comparable. Consider the follow-
ing example.
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Example 5.1. A hypothetical digital system, according to its speciVcation pre-
sented in Listing 1, consists of a variable x and four inputs: in_x, a, b and c.
Depending on conditions c_a, c_b and c_c the value at x should be increased by
a, b or c while the value of x is less than some numeric constant some_num.

Listing 1 – System SpeciVcation

x := in_x;
while x < some_num loop
if c_b and not c_a and not c_c then
x := x + b;

else if c_c and not c_a and not c_b then
x := x + c;

else if c_a and not c_b and not c_c then
x := x + a;

end if;
end loop; �
Listing 2 shows the RTL implementation of the system. In the design process

from speciVcation to RTL, additional details appear in the description, e.g. new
variables: reg_t and state. We see, that from the algorithmic point of view, reg_t
is unnecessary here. It is needed just to store the intermediate result of addition,
and then it transfers the value back to reg_x. The order of checking predicate
values is also changed. We also injected a little copy-paste error there to make
equivalence checking fail later in our case-study: condition c_c should hold when
we are adding in c, not the negation of c_c.

First of all we generate HLDDs using methods described in Section 3.3. Fig-
ure 5.1 depicts the Wowchart for Listing 1 with inserted states. After the symbolic
execution procedure we will obtain the set of two diagrams shown in Figure 5.2a.
The system implementation results in three graphs from Figure 5.2b.

Register reg_x takes value reg_t at state s3, and reg_t takes its value at the
previous state, s2. Let us denote the fact that some variable a takes value f (A)

at state s, where A is some set of variables, by a s
= f (A). So, we have reg_x

s3=

reg_t s2= f (reg_x, in_a, ...). As s3 is the next state for s2 and there are no actions

at s3 any more, we can remove variable reg_t and action s3, having reg_x s2=

f (reg_x, in_a, ...). Then we remap states to make them compatible with speciV-
cation states (i.e. rename s4 to s3) and obtain two new diagrams that we already
can compare with the speciVcation ones. The new state diagram appears to be
exactly the same as in the speciVcation, so in Figure 5.3 we show only the one
for register reg_x.

76



5.1 mapping state variables

Listing 2 – System Implementation

case state is
when s0 =>
reg_x <= in_x;
state := s1;

when s1 =>
if reg_x < some_num then
state := s2;

else
state := s4;

end if;
when s2 =>
state := s3;
if c_a and not c_b and not c_c then
reg_t <= reg_x + in_a;

else if c_b and not c_a and not c_c then
reg_t <= reg_x + in_b;

else if not c_c and not c_a and not c_b then --bug, should be if
c_c

reg_t <= reg_x + in_c;
else
reg_t <= reg_x;

end if;
when s3 =>
reg_x <= reg_t;
state := s2;

when s4 =>
state := s0;

end case; �
Let us now generalize this approach. Consider we have two sets of variables,

Zspec and Zimpl . A subset of Zspec can be mapped to some subset of Zimpl , as we
a talking about the same algorithms, and auxiliary variables remain in both sets.
Then, for each such variable za and for each appearance of it in the right side of
an assignment expression, where at the left side there is a mapped variable zm

try to do the following:

1. If zm
sm= f (za, ...) and za

sa= g(...), where the next state for sa is sm or if there
are some intermediate states between sa and sm, there are no modiVcations
of the variable zm depends on, then replace the Vrst expression with zm

sm=

f (g(...), ...).
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BEGIN
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Figure 5.1 – Flowchart for Listing 1
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Figure 5.3 – A modiVed HLDD for reg_x.

2. If zm
sm= f (za, ...) and za

sa= g(...), and the transition sa → sm is enabled
only when some predicate P is true, then replace the Vrst expression with
the statement if P then zm

sm= f (g(...), ...).

3. If the statement za
sa= g(...) is not used any more then remove it. If state sa

contains no more actions then remove it.

So, if all auxiliary variables are successfully removed and variable sets and states
mapped, then we are ready to proceed to the second part of the equivalence
checking process – comparing the diagrams.

5.2 polynomial values at random points

Consider two digital system S1 = (Z1, F1) and S2 = (Z2, F2). All neces-
sary mappings end normalizations are done, so Z1 = Z2 = Z and we have
translated both systems to into the sets of HLDDs G1 and G2. We are compar-
ing two graphs, G1 ∈ G1 and G2 ∈ G2, which represent functions f (1)(X) =

∑t
i=1 P(1)

i (X)g(1)i (Xi) and f (2)(X) = ∑t
i=1 P(2)

i (X)g(2)i (Xi).
As it was shown in the previous chapter, we check non-terminal and terminal

parts of HLDDs separately, the former with characteristic polynomials and the
latter with existing methods, like canonic word-level diagrams (alternatively, we

can create QF_BV theory instances in form g(1)i ≡ g(2)i for each pair of corre-

sponding terminal node functions g(1)i and g(2)i and check these instances with
arbitrary SMT solver). Regarding the non-terminal part, the explicit computation
of characteristic polynomials for a large modern digital system would take huge
amount of time and memory.
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Algorithm 5.1 Compute characteristic polynomial value at random point

1: function RandomPoint(HLDD G = (V, E), r ∈ Rn)
2: order all nodes in G topologically
3: T ← array of ordered nodes
4: for i← 1..(|V| − 1) do
5: yT[i] ← 0
6: end for
7: yT[0] = 1
8: for k← 0..(|V| − 1) do
9: v← T[k]
10: for all w ∈ Γ(v) do
11: i← c(v,w)

12: yw ← yw + yv ∏|
D(v)|

j=1
j 6=i

rv−j
i−j

13: end for
14: end for
15: return {yvT |vT ∈ VT}
16: end function

Consider a diagram G containing a path of length n in a form v0 → v1 →
. . . → vn−1 from the source node v0 to one of the terminals vn−1 ∈ VT . This
path would add to the polynomial Pvn−1 the following summand:

n−1

∏
j=0

∣∣∣D(xvj )
∣∣∣

∏
k=1

k 6=αvj

xvj − k
αvj − k

Here, αvj is the assignment to xvj . It is n-variable polynomial where degree of
each variable xvj is |D(xvj)| − 1. Thus, in the worst case, when none of its mono-
mials equals to 0, we need |D(xv0)| · . . . · |D(xvn−1)| memory cells to store its
coeXcients. Easy to see that in the worst case this number is exponential to the
size of original diagram.
Fortunately, we can extract a lot of useful information about the polynomial

without computing an analytical form of it. The idea is to treat the polynomial
as a usual function P : Rn → R and to evaluate its value at some random
point r = (r1, ..., rn) ∈ Rn. Algorithm 5.1 presents the procedure, that, given
a diagram G and random vector r returns characteristic polynomial values at r.
Note, that it is almost the same algorithm as Algorithm 4.1 except the line 12
where instead of variable xv we use its random assignment value rv.
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Although the algorithm is mathematically correct, in the real life computations
we cannot use real numbers. We might generate random vectors of integers or
Woating point numbers. Using Woating point numbers implies performing calcu-
lations with an error ε > 0. In case of choosing integer vectors we face two
problems: Vrst of all, at line 12 we do a lot of multiplications which would cause
overWows. Secondly, as the computation includes divisions, to implement support
of rational numbers. Fortunately, the following lemma takes place.

Lemma 5.1. Let t, d, i ∈N where i < d. Then

d

∏
j=1
j 6=i

t− j
i− j

∈ Z (5.1)

Proof. If t ≤ d then the result of the left-side expression in (5.1) is either 1 or 0.
Assume t > d. Then we have

(t− 1) · ... · (t− (i− 1))(t− (i + 1)) · ... · (t− d)
(i− 1) · ... · (i− (i− 1))(i− (i + 1)) · ... · (i− d)

=

(t− 1) · (t− 2) · . . . · (t− (i− 1))
1 · . . . · (i− 1)

× (t− (i + 1)) · . . . · (t− d)
(−1) · . . . · (i− d)

=

(−1)d−i (t− 1) · ((t− 1)− 1) · . . . · ((t− 1)− (i− 1) + 1)
1 · . . . · (i− 1)

×

(t− (i + 1)) · . . . · (t− d)
1 · . . . · (d− i)

=

(−1)d−i
(

t− 1
i− 1

)
(t− (i + 1)) · . . . · (t− d)

1 · . . . · (d− i)
=

(−1)d−i
(

t− 1
i− 1

)
(t− i− 1) · . . . · (t− i− 1− (d− i) + 1)

1 · . . . · (d− i)
=

(−1)d−i
(

t− 1
i− 1

)(
t− i− 1

d− i

)
As t is at least d + 1 and i is at most d then t− 1 ≥ d > i− 1 and t− i− 1 ≥
d + 1− i− 1 = d− i, so the binomial coeXcients are correctly deVned. Thus,

d

∏
j=1
j 6=i

t− j
i− j

= (−1)d−i
(

t− 1
i− 1

)(
t− i− 1

d− i

)
∈ Z (5.2)

This result allows us to propose the next method.
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1. Generate n random integer numbers, r1, . . . , rn ∈ Z, where ∀i ri < p for
some large number p. As vectors from D(X) only select one of the paths,
in order to avoid this we also need to select numbers that exceed the cor-
responding variable’s domain cardinality: ∀i ri > |D(xi)|. For simplifying
further computations we strengthen a bit the last condition, by choosing
numbers that exceed the maximum cardinality of the domains. Thus, the
Vnal condition looks like ∀i maxn

j=1 |D(xj)| < ri < p.

2. Evaluate binomial coeXcients from Lemma 5.1 modulo p.

3. Apply Algorithm 5.1 using just obtained binomial coeXcients at step 12
and doing all computations modulo p as well.

As it is more convenient to use prime number moduli, from now we suppose that
p ∈ P. For example, if we are doing our computations using traditional 32-bit
integers, we can choose p = 4294967291, which is the closest prime number
from below to 232 = 4294967296.
Usage of binomial coeXcients allows us to utilize some of their well-known

properties to speed-up our computations. It is easy to see that(
n
k

)
=

n
k

(
n− 1
k− 1

)
(5.3)(

n
k

)
=

n− k + 1
k

(
n

k− 1

)
(5.4)

Consider the lines 10-13 of Algorithm 5.1. We iterate over all descendants of v,
which means that c takes values from 1 to |D(xv)|. According to Lemma 5.1 we
need to compute the following expression with the arbitrary sign at line 12:(

rv − 1
c− 1

)(
rv − c− 1
|D(xv)| − 1

)
mod p (5.5)

The Vrst multipliers in (5.5) form the sequence 1 = (rv−1
0 ), (rv−1

1 ), . . . , ( rv−1
|D(xv)|−1),

so the property (5.4) is applicable to pairs of its consequent elements. The se-
quence of second multipliers, ( rv−2

|D(xv)|), (
rv−3

|D(xv)|−1), . . . , (rv−|D(xv)|−1
0 ) = 1 allows

us to utilize the property (5.3) for consequent pairs downwards.
Algorithm 5.2 presents the optimized version of Algorithm 5.1. The function

from line 10, ComputeBinomialCoe f f icients(v), is used to calculate and store
in memory binomial coeXcients for the descendants of v in just described way.
Easy to see that we can compute expressions (5.5) for the whole set Γ(v) by

using 2|D(xv)| divisions and 3|D(xv)| multiplications in Zp. As |D(xv)| equals
the number of outgoing edges of v and we iterate over all vertices at line 8 the
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Algorithm 5.2 Algorithm 5.1 with optimizations

1: function RandomPointOpt(HLDD G = (V, E), r ∈ Zn
p)

2: order all nodes in G topologically
3: T ← array of ordered nodes
4: for i← 1..(|V| − 1) do
5: yT[i] ← 0
6: end for
7: yT[0] = 1
8: for k← 0..(|V| − 1) do
9: v← T[k]
10: ComputeBinomialCoe f f icients(v)
11: for all w ∈ Γ(v) do
12: d←

(
yv(−1)|D(xv)|−c(rv−1

c−1 )(
rv−c−1
|D(xv)|−c)

)
mod p

13: yw ← (yw + d) mod p
14: end for
15: end for
16: return {yvT |vT ∈ VT}
17: end function

total number of divisions and multiplications is O(|E|). Thus we have proven
the following theorem:

Theorem 5.1. The complexity of Algorithm 5.2 is O(|E|).

5.3 collision probability

If we are dealing with randomized algorithms we should estimate the probabil-
ity Pr of getting a collision: let P and Q be diUerent characteristic polynomials;
what is the probability of (P−Q)(r1, . . . , rn) ≡ 0 (mod p) for some uniformly
distributed random numbers r1, . . . , rn ∈ {maxn

j=1 |D(xj)|+ 1, . . . , p− 1}?
Let dmax = maxn

j=1 |D(xj)|. We can use the basic formula of probability the-
ory:

Pr =
number of acceptable try-outs

number of all try-outs

The denominator’s value is obviously (p− dmax − 1)n. Let a designate the value
of the numerator. Our goal is to Vnd its upper bound.

Lemma 5.2. Let F is a Veld, P(x1, . . . , xn) ∈ F[x1, . . . , xn], d1, . . . , dn are max-
imum degrees of x1, . . . , xn correspondingly and M is a Vnite subset of F, where
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m = |M|. Then the number of possible solutions of the equation P(t1, . . . , tn) = 0,
where ti ∈ M for all i = 1, . . . , n, is at most

(mn − 1)d
n(m− 1)

where d = ∑n
j=1 dj – maximum possible degree of P.

Proof. Let a is the sought for number of solutions, variables are ordered in a way
that d1 ≤ . . . ≤ dn and let us assign some values to t2, ..., tn. We have two
possible results:

1. P becomes a one-variable polynomial with degree at most d1 and thus has
at most d1 roots.

2. P collapses to a trivial equation 0 = 0. That means that if we treat P as the
one-variable polynomial in (F[x2, ..., xn])[x1], all its coeXcients after the
substitution must be equal to 0.

It is easy to see that these two results are independent. Thus, a ≤ d1mn−1 + a′,
where a′ denotes the number of vectors which lead to the second case. There we
should solve the similar problem, this time for vectors of length n − 1 and the
system of equations Pj(t2, . . . , tn) = 0, where j = 0, . . . , d1. It is easy to see that
the maximum number of solutions will be achieved if the system has only one
non-trivial equation. This gives us the following estimation:

a ≤ d1mn−1 + a′ ≤ d1mn−1 + d2mn−2 + a′′ ≤
n

∑
i=1

dimn−i

≤ 1
n

(
n

∑
i=1

di

)
·
(

n−1

∑
i=0

mi

)
=

mn − 1
m− 1

· d
n

The last inequality here is Chebyshev’s sum inequality.

According to (4.2) our polynomial P − Q belongs to Q[x1, . . . , xn], but we
intend to use Zp for our computations. In order to apply Lemma 5.2 we need
a polynomial from Zp[x1, . . . , xn]. However, it is easy to check that if divide
numerators by denominators in rational coeXcients of P and Q according to
Zp rules and then evaluate the value for some assignment, the result would be
the same as if we do it in a proposed way using binomial coeXcients. Thus,
Lemma 5.2 helps us to estimate the probability of a collision:

Pr =
a

(p− dmax − 1)n ≤
((p− dmax − 1)n − 1)d

n(p− dmax − 1)n(p− dmax − 2)
<

d
n(p− dmax − 2)
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Assuming that d
n � p (we always can choose such p) we get Pr ≈ 0. E.g., con-

sider two large diagrams with 1000000 8-bit variables. The probability of getting
a collision in this case for p = 4294967291 is only

Pr =
28 · 1000000

1000000 · (4294967291− 28 − 2)
= 0.0000000596

Remark 5.1. In order to estimate the probability of collision in similar cases
one may use Schwartz-Zippel theorem [84, 110] which states, that for given
n-variable polynomial P 6≡ 0 the probability that P(t1, . . . , tn) = 0, where
(t1, . . . , tn) ∈ S for some Vnite set S does not exceed the value deg P

|S| . E.g. this
theorem was cited in [37]. Although our result is slightly less accurate in the
worst case, when d1 = d2 = . . . = dn = dmax = deg (P−Q) and d = ndmax

(it would give us an estimate Pr < deg (P−Q)
p−dmax−2 , while Schwartz-Zippel bound is

Pr ≤ deg (P−Q)
p−dmax−1 ), in the general case our estimation is much better, achieving al-

most n times lesser value when the degree of polynomial diUerence is maximum
possible (equals to d)1.

5.4 experiments

In this section we present the experiments to assess the proposed method. The
Vrst set of experiments is based on the motivational examples shown in the pre-
vious sections. In Section 4.1 we made several transformations to obtain Fig. 4.2
from Fig. 3.9. Assume we made a mistake during that transformation and the
edge from y3 to R1 + R2 is redirected to R1 · R2.
Then this error should aUect characteristic polynomials for both terminal nodes.

First of all we generate a random vector (x, y1, y2, y3, y4) = (766319080, 2130684362,
4026180015, 3459714997, 3086748849). Next, for every variabe z ∈ {x, y1, y2, y3,
y4} we deVne a mapping hz : D(z) → {1, . . . , |D(z)|} in the following way:
hz(k) = k if k 6= 0 and hz(0) = |D(z)|. Then, we compute characteristic poly-
nomials for two selected nodes from Figure 3.9, after that we apply the same
procedure to Figure 4.2 to check whether we obtain the same values and, Vnally,
we try to detect the error for the diagram with redirected edge. At the end of the
computation we get (PR1+R2 , PR1·R2 ) = (2400174328, 3598364564) for both correct
diagrams, while the corresponding values for the diagram with error are equal
to (541580543, 1161991058).

1 A polynomial generally achieves maximum possible degree when the diagram contains a path
ending in the corresponding terminal node, for which a variable that would not label any of its
nodes does not exist.
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Table 5.1 – Equivalence checking experimental results.

Benchmark Diagrams Nodes
Terminal

Edges
Simulated

Polynomials Time Avg. Time
Nodes Errors

b00 4 35 16 42 206 886 0.004882 2.4× 10−5

b02 2 16 9 24 124 822 0.003201 2.6× 10−5

b03 15 137 54 187 730 3102 0.021511 2.9× 10−5

b04 12 58 30 59 158 630 0.002925 1.9× 10−5

b06 5 44 18 77 301 1347 0.00529 1.8× 10−5

b09 5 44 18 62 228 864 0.003747 1.6× 10−5

HC11 98 979 326 8856 166554 1891929 104.456 6.2× 10−4

CRC 35 234 86 282 770 2704 0.020822 2.7× 10−5

Consider our other example from the beginning of current chapter. One can
remember that we injected an error there, the unnecessary inversion of the
last occurrence of c_c. We compare the bottommost diagram from Figure 5.2a
with the HLDD from Figure 5.3. First, we generate a random vector r = (state,
c_a, c_b, c_c) = (3410646289, 3410646289, 3410646289, 1572882280). The char-
acteristic polynomial values of the terminal nodes of implementation diagram
from Figure 5.3 are presented here: (in_x, reg_x, reg_x + in_a, reg_x + in_b,
reg_x + in_c) = (4090461347, 4216261509, 2982678470, 1627467403, 4263000411).
The speciVcation diagram for variable x gives us, however, the following output:
(in_x, x, x + b, x + c, x + a) = (4090461347, 4216261509, 1627467403, 4263000411,
2982678470). We see that values at x/reg_x and x + c/reg_x + in_c diUer from
each other.
Table 5.1 displays results for a more comprehensive experiment. We generated

several diagrams for circuits from the ITC99 benchmark set [30], supplemented
with a commercial processor core HC11 [47] from Green Mountain Inc. and a
VERTIGO benchmark CRC (Circular Redundancy Check) [43]. First Vve columns
provide some information about the complexity of the benchmark circuits: name
of circuit, number of graphs (each graph represents a subcircuit) , number of
internal and terminal nodes in the model, and number of edges in all graphs. Col-
umn 6 represents the number of errors we simulated for each circuit, succeeded
by the column showing the number of polynomials used for representing the
circuits and evaluated during the simulation. The simulated errors are similar to
the one we started this section with: we tried to redirect each edge to every pos-
sible node and checked the polynomial values (here the word "possible" means
that the diagram should remain acyclic). As it turned out, all these errors were
detected using only one random vector. The run times (in seconds) on each set
of diagrams are provided in column 8. Finally, the last column shows the average
time per error. Experiments were carried out on a computer with Intel Core 2
Duo P7550 2.26 GHz processor and 2 GB RAM.
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5.5 summary

Since the number of simulated errors is well correlated with the structural
complexity of the model, we can evaluate the scalability of the proposed method
by the correlation between the number of simulated errors and the average time
of the veriVcation run (i.e. the average time of simulating an error). Since the
number of simulated errors for the most complex circuit HC11 is in range of 280
- 1300 times higher than for other circuits, and the average error simulation time
for HC11 is only in the range of 30-40 times higher than for other circuits, we can
conclude that the proposed polynomial HLDD-based approach of equivalence
checking is well scalable in the case when the partitioning of the veriVcation
model is well balanced.

5.5 summary

This chapter addresses the equivalence checking problem at higher levels. We
started it with the short discussion on the problem of mapping states of the
comparing systems and proposed an algorithm that removes auxiliary variables,
which is the Vrst contribution of the current chapter.

The next contribution is the algorithm of computing polynomial values at
given random vector on given diagram. Usage of Lemma 5.1 allows to speed up
the basic approach and obtain the algorithm that computes the values in O(|E|)
time.
Proposing the probabilistic algorithm we were required to give an estimation

of the collision probability and two such estimates were provided; one based on
the Schwartz-Zippel theorem and another one developed by the author, where
the latter gives better estimation for our case and forms the third contribution of
the chapter.
The experimental results performed on the subset of ITC’99 benchmarks sup-

plemented with some industrial designs are reported in the last section. These
benchmarks prove the feasibility of proposed methodology detecting mismatched
diagrams in milliseconds.
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6
AU TOMAT ED ERROR CORRECT ION

In the previous chapter the probabilistic method of detecting design errors
was presented. However, the root cause of error must be diagnosed and the

bugs corrected. Here we present a method that is able to correct a subset of design
errors detected by probabilistic equivalence checking algorithm on HLDDs. The
main results of this chapter were published in [57, 59].
Section 6.1 describes an underlying model of design errors, Section 6.2 presents

the main algorithm, Section 6.3 provides the experimental results to assess this
method and Section 6.4 concludes the chapter.

6.1 error modeling

Before we start Vxing errors, we must Vrst understand what a design error is.
Consider the case of design given as HDL source code. Rich syntax of modern
languages means a variety of ways the bug can appear in the design and a variety
of ways it can be Vxed. Enumerating all such ways is an immense challenge. On
the other hand, using the set of HLDDs is a simple and strict way to describe
digital systems that removes all syntactic sugar of HDL, but remains pretty close
to it – one can easily track the correspondences between diagram nodes and
design statements. Thus it is better to model errors in HLDDs, Vx them and bring
Vxes back into the design.
Each HLDD represents the full behavior of a variable of the system and each

path in the HLDD describes the behavior of the variable during a speciVc mode
of operation of the system. Such splitting down of the behavior of a digital sys-
tem into a set of well manageable atomic behaviors of variables resembles pro-
gram slicing [108]. Activating paths on HLDDs is equivalent to dynamic program
slicing [6] and providing eXcient modeling for cause-eUect relationships when
handling system errors. Each path in a HLDD represents the possible locations
of error causes during the related mode of operation of the system. The causes
can be related either to the nodes on the path, or to the edges between the nodes.
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automated error correction

Once an error has been detected and located in an HLDD, a subgraph of HLDD,
which contains the possible causes of the error will be Vxed.

Consider a buggy design, translated into HLDDs. Its errors should somehow
appear in the diagrams. It appears that, unlike the case of HDL source, there is not
so much choice. Something can be wrong with intermediate nodes. Something
can be wrong with their interconnections. Finally, something can be wrong with
terminal node functions. Thus, we can deVne three classes of HLDD errors:

• Node-related errors.

• Edge-related errors.

• Errors in terminal node functions.

These errors are distinguished by the procedure of Vxing them. A node-related
error class contains two subclasses: missing nodes and unnecessary nodes. They
can be Vxed by either adding or removing a node (with its edges) to/from the
diagram, respectively. Edge-related errors could be of three types:

• There is an additional edge.

• An edge is missing.

• Edge directs to the wrong node.

As we do not consider veriVcation of terminal node functions here, modeling
their bugs is also behind the scope of current thesis.
Let us check how our error model correlates with others. There are not so

much high-level models available. One of them is microprocessor error model
presented in [96]. Consider some microprocessor, like one described in Example
3.2. Its faults can be divided into the following classes:

f1: no source is selected;

f2: a wrong source (operation) is selected;

f3: more than one source (operations) is selected;

f4: no destination is selected;

f5: instead of, or in addition to the selected correct destination, one or more
other destinations are selected.

f6: one or more micro-orders not activated;

f7: micro-orders are erroneously activated;
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6.2 error correction

f8: a diUerent set of microinstructions is activated instead of, or in addition to
the given microinstructions;

f9: one or more cells are stuck at 0 or 1;

f10: one or more cells fail to make a 0→ 1 or 1→ 0 transition;

f11: two or more pairs of cells are coupled;

f12: one or more lines can be stuck at 0 or 1;

f13: one or more lines may form a wired-OR or wired-AND function due to
shorts or spurious coupling.

f14: data processing functional fault model, still left open.

In [104] this model was reduced to 3 HLDD fault classes:

d1: the output edge for xv = c of a node v is broken (models F1, F4, F6);

d2: the output edge for xv = c of a node v is always activated (F3, F5, F7, F8);

d3: instead of the edge for xv = c of a node v, another edge for xv = d, or a set
of edges { d } is activated (F2, F5, F8, F9-F14).

Class D1 means missing node in our model, D2 can be viewed as either all
edges direct to vc or all edges except (v, vc, c) are missing, D3 means that edge
labeled by c is pointing to vd instead of vc, i.e. edge directs to a wrong node. In
case of multiple new destinations d a new node that models combined behavior
of all descendants vd should be introduced, then we may say that the edge is
pointing to this new node.
As we see, the model from [96] can be reduced to a subset of our model. Cur-

rent thesis is focused on Vxing edge-related errors. An extension of this method
to node-related errors is currently under development.

6.2 error correction

As we saw in previous section, edge-related errors could be of three types, ad-
ditional unnecessary edge, missing edge and edge with wrong destination node.
First two types of errors are detectable by HLDD deVnition. There is a one-to-
one correspondence between edges going from a node and values of the node
variable. So, if the sets D(x) and D′(x) do not match for some variable x in
graphs G and G′ then the error is detected. The last type is detectable by using
polynomials, as described in previous chapter.
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Fixing the Vrst type of bugs is quite trivial. As we have all the information
about the error before calculating polynomials, we just remove unnecessary edges
and compute the polynomial values to check that the diagrams are equivalent
now. The second type of errors is also detectable before the computations and
this case can be easily turned into the third one. One way to do this is to add a
new dummy terminal vertex, direct the new edges there and then redirect them
to the correct nodes. So, the rest of the paper describes the last case.
Let r = (r1, . . . , rn) ∈ Zn

p. Suppose we are computing characteristic polyno-
mials for the diagram G using this vector. During the computation, when we are
moving from a parent node v to one of its child nodes through an edge (v, w, c),
we are multiplying the value Pv by the number

p(v,w,c) = (−1)|D(v)|−c
(

rv − 1
c− 1

)(
rv − c− 1
|D(v)| − c

)
mod p

For every node v ∈ VN by Gv we denote a subgraph of G with root node v
and all its descendant nodes. Also, for every pair of nodes v, w, such as w is the
descendant of v, we denote by Gv

w a subgraph with the root node v, the only
terminal node w and all nodes that lie in diUerent paths from v to w. It is known
that all such relationships between pairs (v, w) produce a transitive closure of
the graph G, which we, as usual, denote by G+ = (V, E+). Every graph Gv

w has
its own characteristic polynomial. Let the values of these polynomials at point r
be the edge labels of the graph G+. We denote these labels by P(v,w) for every
(v, w) ∈ E+. These values can be easily computed in polynomial time. Note, that
∀(v ∈ V) P(v,v) = 1.

Theorem 6.1. Let G = (V, E) be an HLDD, v ∈ VN , w, w′ ∈ V and v0 be the
root node. If we redirect an edge (v, w, c) to the new destination w′, then, for every
terminal node vT , the value P(v0,vT) changes by the following expression:

∆P(v0,vT) = P(v0,v) · p(v,w,c) ·
(

P(w′,vT) − P(w,vT)

)
. (6.1)

Proof. A characteristic polynomial for some pair of vertices is a way to express
paths from one vertex to another. Redirecting an edge means removing the edge
(v, w, c) and adding the new edge (v, w′, c), so all paths through (v, w, c) disap-
pear and the new paths through (v, w′, c) appear instead. Each path v0

c0−→ v1
c1−→

. . .
cn−1−−→ vn

cn−→ vT adds p(v0,v1,c0)p(v1,v2,c1) . . . p(vn,vT ,cn) to the polynomial value.
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So, we have to subtract those products, that contain p(v,w,c) and add the products
for the new paths:

∆P(v0,vT) =

∑
{l(v0,vT)|

(v,w′,c)∈l(v0,vT)}

(
∏

e∈l(v0,v)
pe

)
p(v,w,c) ∏

e∈l(w′,vT)

pe −

∑
{l(v0,vT)|

(v,w,c)∈l(v0,vT)}

(
∏

e∈l(v0,v)
pe

)
p(v,w,c) ∏

e∈l(w,vT)

pe =

p((v,w,c))

(
∑

{l(v0,v)}
∏

e∈l(v0,v)
pe

)
× ∑

{l(w′,vT)}
∏

e∈l(w′,vT)

pe − ∑
{l(w,vT)}

∏
e∈l(w,vT)

pe

 =

P(v0,v) · p(v,w,c) ·
(

P(w′,vT) − P(w,vT)

)
.

Corollary 6.1. Assume we have redirected an edge (v, w, c) to some new node w′

and calculated the new value Pnew
(v,vT)

. Then, for some node u 6= v, w, ∆P(u,vT) =

P(u,v)

(
Pnew
(v,vT)

− Pold
(v,vT)

)
, where Pold

(v,vT)
denotes the value of corresponding charac-

teristic polynomial before modifying the diagram.

Proof. As P(v,vT) = ∑vc∈Γ(v) p(v,vc,c)P(vc,vT), then using Theorem 6.1 we obtain

∆P(u,vT) = P(u,v)p(v,w,c)

(
P(w′,vT) − P(w,vT)

)
=

P(u,v) ∑
vd∈Γ(v)

(v,vd,d) 6=(v,w′,c)

p(v,vd,d)P(vd,vT) −

P(u,v) ∑
vd∈Γ(v)

(v,vd,d) 6=(v,w,c)

p(v,vd,d)P(vd,vT) +

P(u,v)

(
p(v,w′,c)P(w′,vT) − p(v,w,c)P(w,vT)

)
=

P(u,v)

(
Pnew
(v,vT) − Pold

(v,vT)

)
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Let G1 = (V1, E1) and G2 = (V2, E2) be two diagrams with diUerent sets of
characteristic polynomials, giving us diUerent values at vector r. Let S1 and S2

be these sets of values. The goal of the error correction procedure is to make
these two sets equal. For that purpose we redirect up to k edges from one node to
another, and recalculate the values in S2, where the choice of k is empirical. The
algorithm contains 4 steps:

1. Choose a subset E′2 of E2 where |E′2| ≤ k.

2. Choose a subset W ′2 ⊂ V2, |W ′2| = |E′2| and redirect all e = (v, w, c) ∈ E′2
to their new destinations w′ ∈W ′2, making sure that the new edges would
not produce any cycles.

3. Recalculate the values from S2, obtaining a new set S′2.

4. If S′2 = S1 generate a new random vector r′, recalculate S′2 and S1 using
the new vector. If the equality holds then Vnish, otherwise go to step 1.

For the Vrst two steps a variety of algorithms from exhaustive search to ad-
vanced heuristics can be applied. In our implementation we use the following
method. First of all, giving a new destination to an edge aUects certain subset
of terminal nodes (maybe the full set VT), so we choose only those sets E′2 and
W ′2 that aUect values of failed nodes leaving correct values intact. It is easy to
see, which value is aUected by redirection and which not if we have computed
relationships of the transitive closure. After that we applied the next observa-
tion: assume, that for some subsets E′2 and W ′2 of length l < k some, but not all
failed values were Vxed. Probably, this means that we need to add more elements
to those sets, so that these elements would Vx the rest of the values. Thus, we
suspend the search of solution among other l-elemental subsets and switch to
supersets of E′2 and W ′2. As you will see in the next section this method is quite
fast.
For the 3rd step we apply Algorithm 6.1, which uses the results obtained in

Theorem 6.1 and Corollary 6.1. It is easy to see, that the redirection of one partic-
ular edge does not aUect any polynomial value for vertices that lie after its source
node v. On the other hand, polynomial values for nodes, that are located before v
are about to change. That is why in the for-cycle at line 8 we iterate through the
set of errors starting from the ones that are located closer to terminals according
to topological order. At line 12 we store the current polynomial value for further
use and at the next line we apply Theorem 6.1 for graph Gv

vT , keeping in mind
that P(v,v) = 1. This operation changes polynomial values for all vertices that
appear before v in topological order. But we do not need to update all of them,
only the values we are going to use further should be changed. Those values are:
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6.2 error correction

Algorithm 6.1 Recalculate characteristic polynomial values

1: function RecalculatePolynomials(G = (V, E), E′ ⊂ E, W ′ ⊂W)
Require: |E′| = |W ′|
2: order all nodes in G topologically
3: order all edges in E′ topologically by source nodes
4: order all nodes in W ′ according to E′ ordering
5: T[1 . . . |E′|]← array of ordered edges from E′

6: U[1 . . . |W ′|]← array of ordered nodes from W ′

7: v0 ← rootnode
8: for i = |E′| downto 1 do
9: e = (v, w, c)← T[i]
10: w′ ← U[i]
11: for all vt ∈ VT do
12: Pold

(v,vt)
= P(v,vt)

13: P(v,vt) ← P(v,vt) + pe(P(w′,vt) − P(w,vt))
14: end for
15: updated = ∅
16: for all (v1, w1, c1) ∈ {T[1], . . . , T[i− 1]} do
17: w′1 ← corresponding vertex from W ′

18: UpdateValues(w′1, v, updated)
19: UpdateValues(w1, v, updated)
20: UpdateValues(v1, v, updated)
21: end for
22: UpdateValues(v0, v, updated)
23: end for
24: return {P(v0,vt) | vt ∈ VT}
25: end function

26: procedure UpdateValues(v, w, updated)
27: if v /∈ updated then
28: for all vt ∈ VT do
29: P(v,vt) ← P(v,vt) + P(v,w)(P(w,vt) − Pold

(w,vt)
)

30: end for
31: updated = updated ∪ {v}
32: end if
33: end procedure

• Source, old and new destination nodes for each error that still remains
unprocessed. We do this at lines 16-21, using the function UpdateValues.
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case x is

...

when state_b =>

a := b;

when state_c =>

a := c;

...

end case

case x is

...

when state_b =>

a := b;

when state_c =>

a := b;

...

end case

⇒

x

b

c

state_b

state_c

a⇒x

b

c

state_b

state_ca

Figure 6.1 – Fix by replacing the right side of assignment

Note, that some destination node wi may appear after the node v in topo-
logical order, in this case P(wi ,v) = 0 and P(wi ,vT) remain intact.

• The root node. However, in this case if there is some edge with source v0

in E′, then it is already updated at the previous step. Otherwise we update
it at line 22.

In function UpdateValues we check Vrst whether the polynomial values for ver-
tex v was not updated before, and if not then apply Corollary 6.1.
So, after i-th iteration of the external cycle we obtain the polynomial values

of graph Gv0
vT with |E′| − i + 1 redirected edges, and thus, after |E′| steps we get

desired output.
The complexity of Algorithm 6.1 can be found in rather straightforward way.

The function UpdateValues has one cycle of length |VT|, in which we per-
form elementary addition and multiplication operations, thus its complexity is
O(|VT|). The main algorithm has the outer cycle of length |E′| ≤ k and two in-
ner cycles of lengths |VT| and |E′|. The second inner cycle contain the third one,
hidden inside the functionUpdateValues. Thus, overall complexity isO(k2|VT|).
This speeds up the polynomial recalculation process, comparing to the straight-
forward way of applying Algorithm 5.2 each time we redirect an edge, as the
latter approach result a procedure of complexity O(k ∗ |E|) = O(k ∗ |V|2).
Generally, each intermediate node has a corresponding condition inside some

if, case, while, etc, statement. Redirecting its outgoing edge(s) means making
changes either in this condition or, if we move the edge from one terminal node
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6.3 experiments

Table 6.1 – Error Correction experimental results.

Benchmark Diagrams Nodes
Terminal

Edges Bugs Time Avg. Time
Nodes

b00 4 35 16 42 4 0.032 0.008

b01 3 26 13 44 5 0.022 0.0044

b02 2 16 9 24 4 0.015 0.0038

b03 15 137 54 187 14 0.468 0.033

b04 12 58 30 59 11 0.041 0.0037

b06 5 44 18 77 8 0.163 0.02

b09 5 44 18 62 4 0.027 0.0068

b10 15 127 57 266 13 0.17 0.013

b13 24 178 94 252 14 0.065 0.0046

HC11 98 979 326 8856 14 5.905 0.42

CRC 35 234 86 282 14 3.657 0.28

UART 421 1747 872 9706 14 0.325 0.023

to another, in the assignment statement of the variable, that behavior is expressed
by the diagram. Figure 6.1 provides an example of the latter case. Thus, our
method is able to Vx inconsistencies in the control part of design and in-
correct assignment statements, including state transitions.

6.3 experiments

In this section we present the experiments which had the goal to investigate
the feasibility of the method and to estimate the average time cost needed for
repairing design errors in the HLDD based design description.
Let us Vrst check, how our method would Vx the bug from Example 5.1, where

we forgot to remove inversion in condition c_c from the third if statement. This
condition corresponds to the bottommost node labelled by c_c. We denote it by
c_c3. In Section 5.4 we got the following results of equivalence checking proce-
dure: for vector r = (state, c_a, c_b, c_c) = (3410646289, 3410646289, 3410646289,
1572882280) the characteristic polynomial values of the terminal nodes of imple-
mentation diagram (Figure 5.3) were (in_x, reg_x, reg_x + in_a, reg_x + in_b,
reg_x + in_c) = (4090461347, 4216261509, 2982678470, 1627467403, 4263000411),
while the speciVcation ones were (in_x, x, x + b, x + c, x + a) = (4090461347,
4216261509, 1627467403, 4263000411, 2982678470). After searching among possi-
ble Vx candidates we Vnd that swapping around edges 1 and 0 from c_c3 would
produce the desired output: (in_x, reg_x, reg_x + in_a, reg_x + in_b, reg_x +

in_c) = (4090461347, 4216261509, 1627467403, 4263000411, 2982678470).

97



automated error correction

Let us now switch to the real designs. Again, as in the previous chapter, we
generated HLDDs for circuits from the ITC99 benchmark set [30], supplemented
with a commercial processor core HC11 [47] from Green Mountain Inc., a VER-
TIGO benchmark CRC (Circular Redundancy Check) [43] and a top-level design
of communication controller UART16750 [76] from the OpenCores community.
Then we randomly selected some diagrams from the design, some edges in these
diagrams, with no more then 3 edges per single graph, and redirected these edges
to new, again, randomly selected destinations. After that we applied described al-
gorithms to Vx the bugs. The only information about the speciVcation was poly-
nomial values and terminal node mapping from correct graphs to the faulty ones
(faulty graphs may have diUerent topological order) which was enough to restore
the correct circuit.
Table 6.1 summarizes results of our experiments. First Vve columns provide

some information about the complexity of benchmark circuits: name of circuit,
number of graphs (each graph represents a subcircuit) , number of internal and
terminal nodes in the model, and number of edges in all graphs. Column 6 rep-
resents the number of errors we injected for each circuit, keeping the maximum
number of bugs per graph to 3. The run times (in seconds) on each set of dia-
grams are provided in column 7. Finally, the last column shows the average time
required to Vx one bug. Experiments were carried out on a computer with Intel
Core 2 Duo P7350 2.0 GHz processor and 3 GB RAM.

6.4 summary

Contemporary HDL languages have rich syntax and trying to enumerate all
error types a designer can make writing code is a complex task. Luckily, HDL
designs can be compiled into the set of HLDDs the variety of HDL bugs can be
translated into a few atomic HLDD error classes. This HLDD-based error model
is the Vrst contribution of the current chapter.
A subclass of our model, edge-related errors can be automatically Vxed. The

straightforward way to do it is to redirect all edges to all possible new destina-
tions and recalculate polynomials. Fortunately, we can apply certain Vlters allow-
ing us to throw away the redirections that certainly would not Vx the diagram
and organize the search in order to Vnd the whole set of Vxes faster. This is the
second contribution of this chapter.
Cashing intermediate results and using results of Theorem 6.1 and Corollary 6.1

allow us to recalculate polynomial values on the Wy. The algorithm of fast recal-
culating polynomial values is the third contribution of this chapter.
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6.4 summary

It is important to note that proposed method is fully formal and does not rely
on simulation results as most of the other error correction methods do.
This chapter also reports the experimental results performed on the subset of

ITC’99 benchmarks supplemented with some industrial designs. These results
prove the feasibility of proposed methodology making multiple Vxes in just few
seconds for most complex designs.
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7
CONCLUS IONS AND F U T U RE WORK

The aim of the thesis is to propose a novel methodology for equivalence check-
ing and automated error correction at higher abstraction levels. The pro-

posed methodology appends the theory of high-level decision diagrams, served
as a basis for representing digital systems in this work, with canonical char-
acteristic polynomials. Their mathematical properties allow developing new al-
gorithms for manipulating discrete functions represented by HLDDs and apply
them for solving these tasks.

This chapter summarizes the thesis, bringing together its contributions and
discusses the promising directions of further research.

7.1 conclusions

The thesis presents a new approach of equivalence checking and error correc-
tion and uses High-Level Decision Diagrams as the key data structure for mod-
eling digital systems, originally presented in some traditional form, like HDL
source code. An HLDD translator compiles the design into a set HLDDs, using,
depending on original description, the symbolic execution or iterative superposi-
tion procedure or a combination of them. Then, given two HLDD sets, represent-
ing one system at diUerent levels we are able, after some preparation, compute
characteristic polynomial values at a random point and perform the equivalence
checking. In case of a failing check we can automatically Vx some subset of er-
rors.

The feasibility of proposed methodology is proven by the set of experiments
done for each of the two tasks addressed by the thesis. ITC99 benchmarks and
larger industrial designs have been used to assess presented methods.
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conclusions and future work

7.1.1 Contributions

As the thesis addresses related, but diUerent problems, we can divide the con-
tributions of it into three groups.

• General contributions for the theory of HLDDs.

– A formal deVnition of HLDD as a data structure for modeling digital
system at higher levels is given.

– Characteristic polynomials are applied to canonically represent the
non-terminal part of HLDDs.

– An algorithm for normalizing diUerent variable sets is given.

– An algorithm of removing miscomparing states produced by auxil-
iary variables.

• Contributions to equivalence checking methodology.

– An algorithm of computing characteristic polynomial values at ran-
dom vectors on the given diagram, with speed-up achieved due to the
use of binomial coeXcients

– A new measure of collision probability for this algorithm, more ac-
curate in the general case than Schwartz-Zippel theorem usually ap-
plied for similar tasks.

• Contributions to the problem of automated error correction.

– A novel HLDD-based error model.

– A new algorithm for Vxing edge-related errors on HLDDs by manip-
ulating characteristic polynomial values.

The feasibility of the proposed methods was proven by the presented experimen-
tal results.

7.1.2 Advantages

The proposed method of analyzing discrete functions by manipulating char-
acteristic polynomial values over HLDDs achieves very promising results in the
Veld of formal veriVcation. Its fast probabilistic algorithms allow comparing HLDDs
in milliseconds and Vxing errors in seconds. The close correspondence between
HLDDs and original representations permits easily bring Vxes back into the de-
sign, saving valuable time for design and veriVcation engineers. Presented tech-
niques are fully formal and do not rely on simulation in any extent. All proposed
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7.2 future work

approaches work completely at higher levels, in compliance with modern ten-
dencies in the area of electronic design automation.

The most important drawback of HLDDs, their uncanonicity, is now success-
fully resolved enabling their use in areas, where canonical representations are
required, like the case of formal veriVcation addressed by this thesis. This re-
sult gives a way for very interesting and promising ideas of further investigation
of HLDD properties and their application in various other Velds. Some of these
ideas are listed in the next section.

7.2 future work

This section outlines the issues, which require further research in order to
improve and advance the proposed techniques and discovers new possible Velds
of application for the theory of HLDDs.

The proposed error correction algorithm is targeting edge-related errors on
HLDDs. The next step is to extend it for covering node-related ones. Fixing a
node-related error generally means that we append the design implementation
with a small piece of missing functionality. At Vrst glance, the task seems harder
than Vxing edge-related errors, but not so much, as clauses similar to Theorem 6.1
can be proven for node related-errors as well, and the problem is just to develop
eXcient Vltering procedure that would restrict the search space.

Another promising direction is to cover partially speciVed systems, where a
full HLDD model for speciVcation cannot be constructed. In this case two ideas
can be investigated: incorporate partial HLDDs into the set of implementation
diagrams and compare the result with the unaltered set; develop the theory of
characteristic polynomials further making possible not only to test the equiva-
lence relation but inclusion as well.

In this thesis we studied the problem of equivalence checking. Another Veld
of formal veriVcation is model checking. It is possible to express PSL properties
with the extended HLDD model called THLDD [54]. It would be interesting to
try to adapt proposed techniques to this Veld.

In the theory of HLDDs one of the most promising ideas is to apply this struc-
ture to model software programs, as the development of system software and
hardware design are quickly merging at the moment. One of the direct results
would be paralleling sequential programs. In addition to this, software analogues
of methods developed for various Velds of hardware design and test can be inves-
tigated.
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