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To find the secrets of the universe,  

think in terms of energy, frequency and vibration. 

Nikola Tesla 
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1 INTRODUCTION 

Renewable sources, in general, have been growing in the last decade becoming a more and more 

important component of the energy supply in many areas around the world. The reasons behind 

this growth are the growing demand, increasing fossil fuel prices and the necessity to reduce the 

greenhouse gas emissions. It can easily be predicted that these reasons will not disappear in the 

upcoming years even with intentions to increase energy efficiency and decrease fossil-based energy 

production(European Commission, n.d.). All this makes wind energy very attractive as an 

alternative, which is expected to grow in the years to come.  

Electricity is an instantaneous commodity that is consumed as and when produced. Though efficient 

technologies exist to store energy, the current technologies can only store a limited amount. Hence, 

the essential principle of power system management is to ensure the balance between the supply 

and demand sides at all grid points and at all times. Conventionally, this achieved by power stations 

to provide the power whenever and as much as the consumers need electricity.  

However, the wind is a natural and renewable energy source. Wind energy is produced by the wind, 

thus inherits the stochastic nature of wind.  

When there is a small penetration of wind into the power systems, the uncertain behaviour of the 

wind power generation is treated as just another uncertainty on the demand side, and the 

conventional power stations cover for this variability which requires additional energy and reduces 

the environmental benefits.  

Forecasting is one of the many possible solutions to this problem, as well as an interconnected grid, 

energy storage technologies, demand-side management such as electric vehicles. Forecasting aims 

to model the uncertainties inherited by the grid through wind power production and thus are a 

necessary and cost-effective element for the optimal integration of wind power into energy 

systems. However, forecasting is never accurate and literature suggests providing bounds for the 

forecast or confidence intervals. 

1.1 Task definition and goal 

The objective of this study is to propose novel indicators using methods to quantify ramp events 

from temporal wind production along with features of these events, generate forecasts using 
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Artificial Neural Networks(ANNs) the multivariate and spatiotemporal characteristics derived from 

Markov chains to generate probabilistic scenarios. 

The goal is to generate realistic sets of scenarios depending on previous wind power generations, 

creating a set of tools that could contribute to advancing the limits of wind power forecasting. The 

purpose of this study is to analyse the underlying patterns in wind power production looking from 

a zoomed out perspective. Also, the indicators explain the characteristics of an event. Instead of 

forecasting the raw data, we generate scenarios for the significant events. 

1.2 Literature review 

There are many studies in the literature on characteristics of wind power, correlations of wind and 

wind power, forecasting wind and wind power output, scenario generation. (Bianco et al., 2016) 

proposed a model to forecast ramp events as well. They modelled observed wind speeds into 

forecast models and converted this into power forecasts with the help of the power curve of the 

wind turbines. It suggests that the same method could be implemented for solar power plants. 

Another noteworthy one is a model-free forecast generation implemented with Generative 

Adversarial Networks(GAN)(Chen, Wang, Kirschen, & Zhang, 2018). GANs have two 

deconvolutional, one that starts ou generating random data and the out discriminates whether its 

input is coming from the generator or historical data. These two neural networks play a Nashville 

game while giving feedback to each other, both getting better over time until the generator 

generates data that is almost like a forecast so that the discriminator can not discriminate anymore. 

(Ming-jian Cui et al., 2015) proposed a probabilistic forecasting method, utilising a Neural 

Network(NN) to generate possible future scenarios, employing an objective function based on 

cumulative distribution functions and autocorrelation functions to train the NN, primarily teaching 

it their distribution. Again another (Karatepe & Corscadden, 2013) proposed a model to synthesised 

wind speed scenarios based on statistical parameters of wind and Markov chains. In contrast, (Kaut, 

2014) proposes a new heuristic to generate scenarios that use copulas instead of common 

correlation functions. (Mishra, Leinakse, & Palu, 2017) introduced the terminology for identification 

of ramp events, ramping behaviour analysis(RBA), which comprises the perspective used in this 

study. They also filtered and extracted events, and clustered them into groups. More studies exist 

on identifying ramp events (Mingjian Cui et al., 2016), (Bossavy, Girard, & Kariniotakis, 2013), 

(Bossavy, Girard, Kariniotakis, & Antipolis, 2013). 
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1.3 Outline 

In the first chapter, the main idea is introduced, the motivation behind this thesis is explained. 

Thesis’ task definition is clarified, and the goal is specified as well. Overviewed of the literature, 

which has already become a milestone in this field, and previous researcher related to this thesis 

task. In the overview part, we explained the essential concepts and methods which are related to 

the topic. Those will be compared with this thesis work to improve the result.  

Based on the defined tasks in the first chapter and drawn boundaries, we will search for the most 

efficient methods to apply in the second chapter to our data after introducing our data. That is used 

for further analysis are explained, and methods are built up as we go further. At the very end of this 

chapter, we will have a set of algorithms applied to our data, and that will enable us to progress 

within the next chapters.  

Since the chosen solution is already too wide to explain in the third chapter, explanation of the 

specific solution will take place in the third chapter with its boundaries and specific parameters. 

Implementation of the solution is going to be another task too. The result of this chapter is going 

to get the finalised algorithm to progress with experimentation section.  

In the fourth, experimentation chapter, our chosen type of Neural Networks(NN), a GAN (Chen et 

al., 2018) and a common Long Short Term Memory(LSTM) will be used to develop our forecasts 

then using a multivariate copula simulation, a set of possible scenarios will be generated. Testing 

the finally implemented solution is going to be a task at the end of this chapter, and of course, 

evaluation is a must in this section. “What could be better?” and “How to make it more efficient?” 

are going the be answered in this part of the research.  

In the concluding chapter, future works will be mentioned based on what could be done differently 

in this thesis work. Moreover, of course, the summary is another must at the very the end of this 

thesis.  

All computational work done is made available through GitHub with the standard academic licence. 

Toolboxes used are Numpy, Scipy, Pysal, Tensorflow and Keras. 
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2 RAMP EVENTS 

The data for this analysis is obtained from Paldiski wind farm(Nelja Energia) located in Harju County, 

on the territory of the town Paldiski. It contains the power output of seventeen wind turbines, each 

of which has a capacity of 2,5MW. It has ten-minute resolution and starts from September ending 

at the end of December 2013. All data points coincide with each other date and time-wise for each 

turbine. Figure 2.1 represents the wind park power generation for September 2013 including all 

turbines. It shows that, even though the data has quite a lot fluctuation, there seems to be a time-

wise correlation between turbines. 

Firstly, it is translated into capacity factor values before any method applied. Definition of the 

capacity factor denoted in Equation (2.1) is the ratio of the net power generated to the optimum 

power that could have been generated at continuous full-power operation during a period of the 

time (U.S.NRC, 2015). Therefore values after translation range between one and zero according to 

how much potential generation achieved. 

𝐶𝑓 = 𝑃𝑔𝑒𝑛𝑛𝑒𝑡/𝑃𝑟𝑎𝑡𝑒𝑑 
(2.1) 

 
 

 

Figure 2.1 Wind park power output (capacity factor) data 
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2.1 Preprocessing of the data 

We presume that the data includes an unknown degree of noise looking at its erratic nature with 

many minor fluctuations. We are interested in significant changes rather than smaller, so we 

propose a chain of methods to apply to the data.  

2.1.1  Smoothing with B-splines 

Splines are piecewise polynomial curves that are differentiable up to a prescribed order. The curve 

𝑠(𝑥) is a spline of degree k-1 (or a spline of order k)with knots 𝑡0,..,𝑡𝑚, where 𝑡𝑖 ≤ 𝑡𝑖+1 and 𝑡𝑖 ≤

𝑡𝑖+𝑘 for all possible i, if 𝑠(𝑥) is k−r-1 times differentiable at any r-fold knot, and 𝑠(𝑥) is a polynomial 

of degree ≤ k over each knot interval [𝑡𝑖, 𝑡𝑖+1], for i=0,...,m-1. 

A spline of order k  𝑠(𝑥) is represented as an affine combination of coefficients 𝑐𝑖, with 𝐵𝑗,𝑘
𝑘  as the 

basis spline functions.  

𝑠(𝑥) =∑ 𝑐𝑖  𝐵𝑖
𝑘(𝑥) 

(2.2) 

When the knot sequence 𝑡𝑖 is 𝑡, biinfinite and strictly increasing in sequence, which means 𝑡𝑖 ≤ 𝑡𝑖+1 

for all i, 

𝐵𝑖
0(𝑥) = 1, 𝑖𝑓 𝑡𝑖 ≤ 𝑥 < 𝑡𝑖+1, 0 otherwise. (2.3) 

𝐵𝑖
𝑘(𝑥) = 𝛼𝑖

𝑘−1𝐵𝑖
𝑘−1(𝑥) + (1 − 𝛼𝑖+1

𝑘−1)𝐵𝑖+1
𝑘−1(𝑥) (2.4) 

where  

𝛼𝑖
𝑘−1 =

𝑥 − 𝑡𝑖
𝑡𝑖+𝑘− 𝑡𝑖

 (2.5) 

is the local parameter with respect to the support of 𝐵𝑖
𝑘−1(𝑥). (Prautzsch, Boehm, & Paluszny, 

2002). 

When we introduce a smoothing condition is to the interpolation, there exists a trade-off between 

closeness and smoothness of the fit, which after a certain point the interpolation turns into a simple 

least mean square regression.  
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Figure 2.2 Cubic B-spline interpolation of the data with different smoothness factor 

The structure of the algorithm we apply takes three arguments, the data, smoothness factor and 

the degree of the spline which are set to a default of 0.01 and 3, respectively. We choose to 

implement a cubic spline with the smoothness of 0.01 to be able to preserve the behaviour of the 

curve while smoothing out minor fluctuations. 

There is another option that would do this task, wavelets. Wavelets are quite popular in signal 

processing and compressing because they can represent localisations in time and frequency 

contrary to the traditional Fourier. Figure 2.3 that was plotted using a Haar mother wavelet which 

is a rectangular filter shows that Fourier transform is much more useful for our case. 
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Figure 2.3 Dataset filtered with Haar wavelet 

 

2.1.2 Spectral density analysis 

In electronics, control theory and statistics, the frequency domain means the analysis of 

mathematical functions or signals in reference to frequency rather than time. A given function or 

signal can be transformed to the time domain from the frequency domain, and vice versa with 

mathematical operators called transforms. In this study, we focus on Fourier transforms.  

The Fourier transform of a function contains all the information about the original signal, and with 

this information, it is possible to reconstruct the function entirely by an inverse Fourier transform. 

This information includes amplitude and phase of each frequency present in the function.  

Usually, there is no actual signal available, like it is in our case, but the discrete-time sequence of 

samples. The Fourier transform of a discrete-time signal x[n], n=0,..,N is called the discrete-time 

Fourier transform (DTFT), which provides a mathematical approximation of the full integral 

solution, and yields a periodic frequency spectrum. The DTFT of the sequence x[n] denoted in 
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Equation (2.6) is a function of a continuous frequency variable 𝜔 and 𝑋(𝑒𝑗𝜔) and is always periodic 

with period 2𝜋. (McClellan, Schafer, & Yoder, 2003) 

𝑋(𝑒𝑗𝜔) = ∑ 𝑥[𝑛]𝑒−𝑗𝜔𝑛
∞

𝑛=−∞

 (2.6) 

𝑥[𝑛] =
1

2𝜋
∫ 𝑋(𝑒𝑗𝜔)𝑒𝑗𝜔𝑛
𝜋

−𝜋

𝑑𝜔 
(2.7) 

Equation (2.7) represents the inverse DTFT of x[n] (McClellan et al., 2003). 

Discrete Fourier Transform(DFT) can be obtained from the DTFT if we evaluate Equation (2.6) at a 

discrete set of equally spaced frequencies.  

To be able to determine the spectrum of a sampled signal correctly using DFT, we have to select a 

finite number of samples for Fourier analysis. Then, it is possible to represent this selection as the 

multiplication of x[n] by another sequence w[n] which is called a window. 

In this study, the window we choose is a Blackman window plotted in Figure 2.4. Its time-domain 

representation is denoted in Equation (2.8). 

w(n) = 0.42 − 0.5cos (
2𝜋𝑛

𝑁 − 1
) + 0.08cos (

4𝜋𝑛

𝑁 − 1
) 0 ≤ n ≤ M− 1 (2.8) 

Where  N – the length of the Blackman window 

  M – N/2, if N is even, (N+1)/2 if N is odd (Agarwal, Singh, & Pandey, 2014) 

 

Figure 2.4 Blackman window and its frequency response from (Scipy.org) 



18 

 

Figure 2.5 Power spectral density (Welch-periodogram)of x[n] after interpolation with cubic splines, with 
the whole data as the time window using Blackman window 

 After inspecting Figure 2.5 Power spectral density (Welch-periodogram)of x[n] after interpolation 

with cubic splines, with the whole data as the time window using Blackman windowFigure 2.5, we 

choose the cut-off frequency 𝑓𝑠 as 0.2 Hz. A sample of the filtered signal with Blackman and its 

original can be seen in Figure 2.6. 

 

Figure 2.6 Filtered data with 0.2 Hz cut-off frequency 
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2.2 Ramp event definition 

When discrete time points are denoted as t and the time point after t as t+∆t, the wind output are 

represented as 𝑤(𝑡) and 𝑤(t + ∆t), respectively, and the difference between two consecutive 

wind power outputs is defined as a ramp, ∆𝑤; 

∆𝑤 = 𝑤(t + ∆t) − 𝑤(𝑡) 
(2.9) 

A positive value of ∆𝑤 is an increase in the wind power output which will be identified as an “up 

ramp”, while a negative value of ∆𝑤 stands for a decrease in the wind power output, hence a “down 

ramp”.  

A ramp event ∆𝑤𝑠 is defined as an event where a significant change in power production happens 

in a time period ∆t. The significance comes from the parameter T, which stands for an adjustable 

threshold to neglect ∆𝑤 values that are smaller than T. 

∆𝑤𝑠 = ∆𝑤, 𝑖𝑓 ∆𝑤 > 𝑇 
(2.10) 

When there are two or more consequential ∆𝑤𝑠, they get connected together and counted as one, 

even if there might be neglected ∆𝑤 in between.  

Values needed for further analysis are α which is the angle between the time interval and the 

change in amplitude, and the mean for every significant event. 

mean(∆𝑤𝑠) = [𝑤𝑠(𝑡) + 𝑤𝑠(t + ∆t)]/2 
(2.11) 

α(∆𝑤𝑠) = arctan (∆𝑤𝑠, ∆𝑡) (2.12) 

Algorithm I: Event extraction 

Inputs:  T, 𝒘(𝒕),t=1,...,N 

∆𝒘 = 𝒘(𝐭 + ∆𝐭) − 𝒘(𝒕) 

For 𝒊 ← 1 to length(∆𝒘) do: 

     If sign(∆𝒘[𝒊]) = sign(∆𝒘[𝒊 + 𝟏]): 

          concatenate(∆𝒘) 

For 𝒊 ← 1 to length(∆𝒘) do: 

     If ∆𝒘>T: 

          ∆𝒘𝒔 ← ∆𝒘 
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For 𝒊 ← 1 to length(∆𝒘𝒔) do: 

     If sign(∆𝒘𝒔[𝒊]) = sign(∆𝒘𝒔[𝒊 + 𝟏]): 

          concatenate(∆𝒘𝒔) 

Return 𝒘𝒔(𝒕), 𝒘𝒔(𝐭 + ∆𝐭),t, 𝐭 + ∆𝐭, ∆𝒘𝒔, 𝛂(∆𝒘𝒔), 𝐦𝐞𝐚𝐧(∆𝒘𝒔) 

End 

 

Figure 2.7 Ramp events extracted from a small sample of the data with 0.04 T 

Table 2.1 Ramp events in Figure 2.7 

Event 𝒘𝒔(𝒕) ∆𝒘𝒔(𝐭 + ∆𝐭) t 𝐭 + ∆𝐭 ∆𝒘𝒔(𝒕) ∆𝒕 𝛂(∆𝒘𝒔) 𝐦𝐞𝐚𝐧(∆𝒘𝒔) 

1 0.104 0.172 3 9 0.067 6 6.428 0.138 

2 0.12 0.172 6 9 0.049 3 9.313 0.14 

3 0.1692 0.074 11 16 -0.095 5 -10.780 0.121 

4 0.048 0.169 21 24 0.120 3 21.867 0.109 

5 0.169 0.074 24 28 -0.094 4 -13.278 0.122 

6 0.074 0.184 28 34 0.109 6 10.314 0.129 

7 0.184 0.113 34 36 -0.070 2 -19.494 0.148 

Figure 2.8 Ramp events extracted from the small sample of the data with 0.08 T 

Table 2.2 Ramp events in Figure 2.8 
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Event 𝒘𝒔(𝒕) ∆𝒘𝒔(𝐭 + ∆𝐭) t 𝐭 + ∆𝐭 ∆𝒘𝒔(𝒕) ∆𝒕 𝛂(∆𝒘𝒔) 𝐦𝐞𝐚𝐧(∆𝒘𝒔) 

1 0.169 0.074 11 16 -0.095 5 -10.780 0.121 

2 0.048 0.169 21 24 0.120 3 21.867 0.109 

3 0.169 0.07 24 28 -0.094 4 -13.278 0.122 

The optimum T for meaningful event extraction is unknown, but we use the assumption of 10% of 

the nominal capacity, i.e. 0.01 T  as the threshold value. Given that the wind turbines not necessarily 

operate on full capacity in general, an alternative would be to cluster the input dataset to find the 

peak point that occurs the highest time, and this peak may be used as the nominal power.  

 

Figure 2.9 Ramp events extracted from the small sample of the data with 0.12 T  

After extracting events with different T values from data points of the same size, we observe that 

the bigger the T, the fewer events there is.  

Table 2.3 Ramp events in Figure 2.9 

Event 𝒘𝒔(𝒕) ∆𝒘𝒔(𝐭 + ∆𝐭) T 𝐭 + ∆𝐭 ∆𝒘𝒔 ∆𝒕 𝛂(∆𝒘𝒔) 𝐦𝐞𝐚𝐧(∆𝒘𝒔) 

1 0.048 0.169 21 24 0.120 3 21.867 0.109 

 

2.2.1 Ramp events after preprocessing the data 

We decided T to be 0.1 after several trials and concluded that it preserves the events best to our 

interest. It can be seen in Figure 2.1 that preprocessing alters the peak points slightly, most of the 

meaning in the data is preserved. 
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Figure 2.10 Events extracted after preprocessing our data 

2.3 Ramp events with Rainflow analysis 

Rainflow counting algorithm (Downing & Socie, 1982) was developed to be used in the analysis of 

fatigue data in order to reduce a spectrum of varying stress into a set of simple stress reversals. The 

input to the algorithm is a simple series of peaks and valleys (troughs), i.e., local maxima and 

minima, that form hysteresis loops.  Closed loops are full cycles, and unclosed loops are half cycles. 

The algorithm uses a change in slope as an indicator that the time series is going through a peak or 

valley. Only the magnitude of the peak or valley is then entered into the Rainflow counting 

algorithm. 

We introduced this algorithm to extract ramp events as an alternative method, with modifications 

to extract the starting and ending points of ramp events hence the time range, the starting and 

ending power of the events hence the amplitude, the angle of the event, and the cycle with some 

modification. It was created with the help of (Jennifer Rinker, n.d.). 

Table 2.4 Details of Rainflow cycles extracted from the small sample of the data 

Event 𝒘𝒔(𝒕) ∆𝒘𝒔(𝐭 + ∆𝐭) t 𝐭 + ∆𝐭 ∆𝒘𝒔(𝒕) ∆𝒕 𝒎𝒆𝒂𝒏(𝒘𝒔(𝒕)) Cycle 𝛂(∆𝒘𝒔) 

1 0.152 0.165 0 1 0.013 1 0.158 0.5 0.779 

2 0.165 0.12 1 2 -0.043 1 0.143 0.5 -2.496 

3 0.161 0.13 4 6 -0.030 2 0.145 1 -0.882 

4 0.199 0.16 8 10 -0.039 2 0.179 1 -1.134 

5 0.121 0.20 2 11 0.084 9 0.163 0.5 0.534 

6 0.205 0.06 11 18 -0.140 7 0.135 0.5 -1.152 

7 0.064 0.146 18 24 0.081 6 0.105 0.5 0.779 

8 0.146 0.088 24 28 -0.058 4 0.117 0.5 -0.83 

9 0.088 0.109 28 30 0.0216 2 0.098 0.5 0.618 
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2.4 Persistence analysis 

Persistence of an event is defined here as how repetitive that event is regarding one of its 

parameters. Persistance values are calculated for parameters ∆𝑤𝑠, ∆𝑡,mean(∆𝑤𝑠) and α(∆𝑤𝑠) are 

calculated from the extracted events, individually with their corresponding ranges. Bins are linearly 

spaced between the corresponding ranges to the defined number of bins which is set to a default 

of 100.  Bins divide the whole range for the parameter into equivalent ranges. Then if the value 

equals to the bin value or is in between with the consequential bin, then the persistance value is 

incremented one. Once all the events are visited, the accumulated persistence values are found.  

In short, the persistence value for one parameter of one event is the number of events that has the 

value for that parameter between the same two bins.  

Table 2.5 Ranges of bins of the corresponding event parameters 

Event parameter  begins ends 

∆𝒘𝒔 -1 1 

∆𝒕 1 max(∆𝑡) 

𝐦𝐞𝐚𝐧(∆𝒘𝒔) min(mean(∆𝑤𝑠)) max(mean(∆𝑤𝑠)) 

𝛂(∆𝒘𝒔) -90° 90° 

 

Algorithm III: Persistence 

Inputs:  X, bins 

For 𝒊 ← 0 to length(bins) do: 

     For 𝒊 ← 0 to length(array) do: 

          If bins[i] ≤ X < bins[i+1]: 

               persistance +1 

For 𝒊 ← 0 to length(bins) do: 

     For 𝒊 ← 0 to length(array) do: 

          If bins[i] ≤ X < bins[i+1]: 

               P[X] = persistance 

End 
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To be able to get consistent results for spatial analysis, all turbine outputs are concatenated, 

processed with ramp extraction method and Rainflow Analysis; then persistence values are parted 

accordingly to corresponding turbines. 

Table 2.6 Persistence values for events in Table 2.1 

 Event ∆𝒘𝒔 ∆𝒕 𝛂(∆𝒘𝒔) 𝐦𝐞𝐚𝐧(∆𝒘𝒔) 𝑷(∆𝒘𝒔) 𝑷(∆𝒕) 𝑷(𝛂(∆𝒘𝒔)) 𝑷(𝐦𝐞𝐚𝐧(∆𝒘𝒔)) 

1 -0.044 1 -23.557 0.143 3058 24948 1467 848 

2 0.076 5 8.600 0.167 3934 2033 498 853 

3 0.046 1 24.512 0.182 3047 24948 1527 926 

4 -0.141 7 -11.373 0.135 2211 388 706 852 

5 0.082 6 7.744 0.105 3934 884 353 676 

6 -0.058 4 -8.306 0.117 4735 4581 590 759 

Table 2.7 Persistence values for events in Table 2.4 Details of Rainflow cycles extracted from the small 

sample of the data 

Event ∆𝒘𝒔(𝒕) ∆𝒕 𝛂(∆𝒘𝒔) 𝐦𝐞𝐚𝐧(∆𝒘𝒔) Cycle 𝑷(∆𝒘𝒔) 𝑷(∆𝒕) 𝑷(𝛂(∆𝒘𝒔)) 𝑷(𝐦𝐞𝐚𝐧(∆𝒘𝒔)) 
Total 
Cycle 

1 -0.0436 1 -23.557 0.1434 0.5 3058 24948 1467 848 10.5 

2 0.0756 5 8.597 0.1678 0.5 3934 2033 498 853 1 

3 0.0456 1 24.5129 0.1828 1 3047 24948 1527 926 1.5 

4 -0.1408 7 -11.372 0.1352 1 2211 388 706 852 1 

5 0.0816 6 7.74471 0.1056 0.5 3934 884 353 676 0.5 

6 -0.0584 4 -8.3065 0.1172 0.5 4735 4581 590 759 2 
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3 SCENARIO GENERATION 

In this section, we will focus on the generation of forecasts, probabilistic models and scenario 

generation depending on them.  

3.1 Artificial neural networks(ANNs) 

In the first section, the primary explanation about ANNs will take place. In this section, the basics 

of ANN will be introduced. The contribution of ANN to this work will be evaluated. 

Starting from the second section, recurrent neural networks, capsule networks and generative 

adversarial networks will be briefly explained for forecasting, and the contribution of these 

architectures to this work will be explained.  

3.1.1 Basics with ANNs 

To be able to explain what an ANN is, we should introduce some concepts first. Then we will 

progress towards ANN. As the most basic definition, ANNs are biologically inspired networks that 

mimic the human brain. The smallest sub-unit in the human brain is a neuron. In the ANN 

terminology, those are called as perceptrons. In the following sub-section the smallest sub-units of 

networks will be explained and after that will have a better understanding of how ANN works and 

why those are powerful and robust structures.  

Perceptrons 

Perceptron (as shown in Figure 3.1) is one of the artificial neuron models as already mentioned. In 

this part, the perceptron will be explained as an idea, and the mathematics behind will be studied.  

 

Figure 3.1 The representation of perceptron (Nielsen, 2015). 
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The working mechanism of a perceptron is quite simple, it takes inputs and produces output. Input 

and output are in binary form. Weights 𝑤𝑖 is used to express the output. Sum of the multiplied 

inputs by their weights give a result to determine the output as explained in Equation (3.1) (Nielsen, 

2015). We can see that perceptron is able to make a decision based on our defined threshold. If the 

result is bigger than the threshold, then the perceptron gives out a 1. 

𝑜𝑢𝑡𝑝𝑢𝑡 =

{
 

 0 𝑖𝑓 ∑ 𝑤𝑗𝑥𝑗 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑗

1 𝑖𝑓 ∑ 𝑤𝑗𝑥𝑗 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑗 }

 

 
 (3.1) 

𝑤. 𝑥 =∑ 𝑤𝑗𝑥𝑗
𝑗

 (3.2) 

 𝑜𝑢𝑡𝑝𝑢𝑡 = {
0 𝑖𝑓 𝑤. 𝑥 + 𝑏 ≤ 0
1 𝑖𝑓𝑤. 𝑥 + 𝑏 > 0

} (3.3) 

Where  w is a vectorial representation of the weight, 

x is a vectorial representation of the input, 

b is bias and 𝑏 ≡ −𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. 

Perceptrons can be used as an elementary function. For instance, if there is a perceptron which has 

two inputs and one output. Both inputs has one value, the given weights are -2, and the bias value 

is 3. The output value is going to be (−2) ∗ 1 + (−2) ∗ 1 + 3 = −1. Since -1 is smaller than 0 

output value of the perceptron is going to be 0. In this case, our perceptron behaves as NAND logic 

gate. It is also possible to program the perceptrons as AND, OR gate. NAND gates are used 

universally for computations. Hence a perceptron can be a universal computation unit(Nielsen, 

2015). 

Sigmoid Neurons 

In most cases, we want the change in the output of the network to be in accordance with the change 

in the weights or bias. The problem with perceptrons is that when there is a change in a weight or 

bias, it might affect the entire result, even to a point where correct outputs become incorrect. There 

is another model of neuron that overcomes this problem and allows us to change weights and bias 

effectively so that its output changes but does not cause dramatic changes in entire output. They 

function similarly with perceptrons. This small change in the behaviour of the neuron makes quite 

a difference in the network, gives it a chance to learn better. 
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Let’s assume that presented neuron in Figure 3.1 is sigmoid neuron. Sigmoid neuron also has inputs, 

weights, bias, and output. The only thing is that the input of the sigmoid neuron can get any values 

in a range of 0 to 1. Since the input not binary, the output gets calculated by using Equation (3.4) 

by using a sigmoid function which is given in Equation (3.5).  

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝜎(𝑤. 𝑥 + 𝑏) (3.4) 

𝜎(𝑧) ≡
1

1 + 𝑒−𝑧
 (3.5) 

If we use Equation (3.5) in Equation(3.4), the Equation (3.6) will give the output of a sigmoid neuron.  

𝑜𝑢𝑡𝑝𝑢𝑡 =
1

1 + exp (−∑ 𝑤𝑗𝑥𝑗 − 𝑏𝑗 )
 (3.6) 

3.1.2 Neural network architecture 

Perceptrons can be connected as layers to each other as shown in Figure 3.2. The leftmost layer is 

called input layer that corresponds to inputs. In the middle, we have a hidden layer. The reason for 

calling it as the hidden layer is because while the information just passes on it, there is no “real 

world” meaning for humans to comprehend. There might be several hidden layers depending on 

the application. The rightmost layer is output layer which makes decisions. This concept is called 

multilayer perceptrons (MLPs). 

This concept takes the input from the first layer and passes on to the hidden layer, and finally to 

the output layer which makes the decision as mentioned. This kind of straight network is called a 

feed-forward network. There is no connection between neurons in the same layer, and the 

information always goes straight. However, some networks have neurons which are connected to 

each other in the same layers, and those are called as recurrent neural networks (RNNs). Since in 

our task we use RNN type network, it is explained in the next section. 
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Figure 3.2 Multilayer perceptrons 

Assume that we have an input in a 25-by-25 matrix. Then the hidden layer consists of 25𝑥25 = 625 

neurons. If we have complex tasks, then we can use more hidden layers. If there are many neurons 

in a layer, it makes the network memory greater, but if there are many layers, then it makes the 

network more powerful.  

Gradient descent 

Gradient descent is an optimisation algorithm used to find the values of parameters (coefficients) 

of a function (f) that minimises a cost function (cost). Gradient descent is best used when the 

parameters cannot be calculated analytically (e.g. using linear algebra) and must be searched for 

by an optimisation algorithm. 

Gradient descent is an optimisation algorithm that used to find the parameters that are not linear. 

Gradient descent aims to minimise the cost function. To achieve that, it finds values of parameters 

of a function y. With the help of this function, the cost function gets minimised. After minimisation 

of the cost function, weights and biases of the network get updated and generate a better pattern. 

Therefore gradient descent is the essential parameter in a network. Let’s say that y(x) the desired 

output of a network where x represents inputs of the network. The cost function can be written as 

shown in Equation (3.7). 

𝐶(𝑤, 𝑏) ≡
1

2𝑛
∑‖𝑦(𝑥) − 𝑎‖2

𝑥

 (3.7) 

 Where  w represents all the weights in network, 

   b all biases, 
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   n total number of inputs, 

   x is the input vector of the network,  

   a is the output vector of the network, 

   C is the quadratic cost function of mean squared error (MSE). 

Since 𝑎 = 𝑤. 𝑥 + 𝑏, the output value of the network depends on the weight and bias factor on the 

independent value of the input, if we find the correct values of weight and bias parameters, our 

output value of the network will be equal to the input value. Once we get this stage, see Equation 

(3.7),  ‖𝑦(𝑥) − 𝑎‖ part of the function will be zero, but in reality, it is hardly possible to get it equal 

to zero. Therefore, cost function tries to minimize it. During this training phase, updating the 

weights and biases with the reaction of the algorithm helps to make the cost function get closer to 

zero. When the cost function is closer to zero, then the system will take the weights and biases as 

learned parameters and use for the test data or predict/classify the inputs (Nielsen, 2015). 

For the further information about how gradient works let’s keep the function simple and call it as 

𝑣 and cost function 𝐶(𝑣) instead of 𝐶(𝑤, 𝑏). Assume that 𝑣 changes small amount ∆𝑣, in the 𝑣 

direction. This small change will affect the cost function as shown in Equation (3.8), and gradient of 

cost function can be expressed as shown in Equation (3.9).  

∆𝐶 ≈
𝜕𝐶

𝜕𝑣
∆𝑣 (3.8) 

∇𝐶 ≡ (
𝜕𝐶

𝜕𝑣
∆𝑣 )

𝑇

 (3.9) 

 Where   ∇𝐶 is the gradient vector, 

   T is the transpose operation. 

∆𝐶 can be written as shown in Equation (3.10). 

∆𝐶 ≈ ∇𝐶. ∆𝑣 (3.10) 
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3.2 Recurrent neural networks (RNNs) 

RNNs might be less potent than feed-forward networks but they are applicable in some cases which 

require communication between each neuron as it is in our task. 

3.2.1 Forecasting with Long-short term memory (LSTM)  

LSTM is a specified RNN architecture, and it is one of the most applicable networks for forecast time 

series. RNN is possibly the closest network that mimics the human brain. As it can be understood 

from the term “long-short”, the aim of this network is to model temporal sequences and their long-

term dependencies. LSTM uses stochastic gradient descent as an optimisation tool. The reason 

behind RNN outperforms than feed-forward networks is it contains cyclic connections. Thanks to 

these connections it is easier to model sequence data (Beaufays, Sak, & Senior, 2014). 

 

Figure 3.3 One cell LSTM memory block (Graves et al., 2009) 

An LSTM type hidden layer has subnets that are recurrently connected as shown in Figure 3.3. These 

subnets have a set of cells whose activation is controlled by an input gate, forget gate and output 

gate. Gates affect the cells ability to store and access information for a long term. What it means is 

that when an input is absent, the input gate stays closed, and there is no overwriting on the 

activation cell. Cell activation is available as long as output gate stays open, and forget gate switches 

on and off the recurrent connection of the cell (Graves et al., 2009).  

The architecture of LSTM that we used in this thesis work is deep LSTM (DLSTM) which has two 

LSTM in the architecture. As it can be seen in representation below, each LSTM forwards its output 

to next step and takes it as input to itself too. 
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𝐼𝑁𝑃𝑈𝑇 → 𝐿𝑆𝑇𝑀↶ ⟶ 𝐿𝑆𝑇𝑀↶ ⟶𝑂𝑈𝑇𝑃𝑈𝑇 

As an architecture, this can be considered as a feed-forward network. Within this configuration, 

networks can learn parameters from input at different time scales (Hermans & Schrauwen, 2013). 

Keras (Keras) is used for this task.   

(Pascanu et al., 2013) 

We implemented a simple LSTM network with two LSTM layers and a fully connected output layer. 

The outputs in Figure 3.4, Figure 3.5 and Figure 3.6 shows forecasts for  

∆𝒘𝒔, ∆𝒕 and 𝛂(∆𝒘𝒔) which are the most important features of events. The forecasts are following 

the real inputs behaviour which we concluded that this structure was satisfactory for this work.  

Many adjustments can be made for this network. The number of iterations, the number of epochs, 

the number of layers and the neuron size in the layers, batch size, a different kind of activation 

function and a different kind of an optimiser, adding a classifier that would make it a supervised 

machine learning structure are few of the many.  

 

Figure 3.4 Forecast with LSTM for time ranges 
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Figure 3.5 Forecast with LSTM for changes in amplitude  

 

 

Figure 3.6 Forecast with LSTM for the angle of events 
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3.3 Forecasting with Generative adversarial network (GAN) 

The generative adversarial network consists of two networks, generative one and discriminator 

one. These two networks compete, one tries to overcome the other one. Therefore, it is called 

adversarial. It is proposed by (Goodfellow et al., 2014).  

 

Figure 3.7 GAN working principle (Chen et al., 2018) 

According to (Goodfellow et al., 2014) GAN’s generator model uses an adversarial process. Both 

networks get trained at the same time. Data distribution is captured by the generator model, and 

the discriminator model estimates the data whether it came from the generator model or the 

historical data. Training procedure of the generator network aims to maximise the probability of 

discriminator to make a mistake.  

Backpropagation (Rumelhart, Hinton, & Williams, 1986) method can be used while training the 

entire system. Dropout (Srivastava et al. , 2014) took place to prevent overfitting and to memorise 

the data in the network. 

In this network, the generator produces as good made up data as it can, then sends it to the 

discriminator. While generator expects discriminator to accept it, discriminator defines the data 

either it comes from historical data or discriminator. In this game, if discriminator does not accept 

the data which comes from the generator, then the generator gets feedback to produce better fake 

data. This competition allows both networks to readjust themselves. At one point, it gets harder for 

the discriminator to predict, and the generator to generate better. In this stage, we get a model 

which is very close the real dataset which discriminator does not understand if it is real or fake. 
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Since this network is compatible with many artificial intelligence tasks and scenario generation is 

one of these tasks, it makes this system applicable to our task. It helps to create a model which can 

apply scenario generation. Therefore, this network will be using for the scenario generation task.  

Both networks use a type of ANN which is called multilayer perceptron (MLP). This concept is 

explained in the previous section. Both networks uses backpropagation and dropout methods while 

training. For the sample which comes from the generative model is used forward propagation 

(Goodfellow et al., 2014).  

After training the network for 500 iterations which are quite low for a network to converge, the 

discriminator loss (Figure 3.9) diverges from a meaningful value. Even though it can be seen in 

Figure 3.8 that the probabilistic distribution functions of generated and real samples seem close, 

generated values were too far away from the real values. Either this network needs to be deeper 

with more layers which is a complicated task, or it is not suitable for our data.  

 

Figure 3.8 Distribution functions of the generator(blue) and the discriminator(orange) 
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Algorithm 1 GAN minibatch stochastic gradient descent training  

Input: k is a hyperparameter which identifies the number of steps that will be applied to the discriminator, and it is 
defined as k=1. 

     for number of training iterations do 

          for k steps do 

              Sample minibatch if m noise samples {𝑧(1), … , 𝑧(𝑚} from noise prior 𝑝𝑔(𝑧), 

              Sample minibatch of m examples {𝑥(1), … , 𝑥(𝑚} from data generating a distribution 𝑝𝑑𝑎𝑡𝑎(𝑥). 

              Update the discriminator by increasing its stochastic gradient: 

                        ∇𝜃𝑑
1

𝑚
∑ [𝑙𝑜𝑔𝐷(𝑥(𝑖)) + log (1 − 𝐷 (𝐺(𝑧(𝑖))))]𝑚
𝑖=1 . 

          end for 

          Sample minibatch if m noise samples {𝑧(1), … , 𝑧(𝑚} from noise prior 𝑝𝑔(𝑧), 

          Update the generator by decreasing its stochastic gradient:     

                        ∇𝜃𝑔
1

𝑚
∑ log (1 − 𝐷(𝐺(𝑧(𝑖))))𝑚
𝑖=1  

     end for                        

  

  

Figure 3.9 Discriminator loss 



36 

3.4 Scenarios with Monte Carlo Markov Chains(MCMC) 

3.4.1 Markov Chains 

A first-order Markov chain is the realization of the stochastic process in the discrete data x where 

every discrete point is attained to a discrete state value S=1,...,m. Here, the state of the process 

depends only on the previous state and a conditional probability.  

3.4.2 Spatial Markov 

A shapefile in Figure 3.10 is made with 17 random turbines chosen from Paldiski wind farm using 

the open source geographic information system, QGIS. A commonly-used type of weights is Queen-

contiguity weights, which reflects adjacency relationships as a binary indicator variable denoting 

whether or not a polygon shares an edge or a vertex with another polygon. These weights are 

symmetric. The neighbouring relationships are shown in Figure 3.11. 

Spatial Markov can show the correlations between the features of the events we extracted. Most 

importantly, it can help show the correlations between turbine locations and can be used for long 

and short-term probabilistic scenario generations for different turbines. We implemented LISA 

Markov which is based on Moran’s I and show the transition probabilities while placing each areas 

behaviour into quantiles based on whether they behave similarly to their neighbours or not,and a 

basic spatial Markov which can show the relationship between the global and regional relationships 

of transition dynamics(Pysal, n.d.). 

 

Figure 3.10 Representation of areas defined for each turbine in the shapefile used in spatial analysis with 
corresponding numbers 
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Figure 3.11 Neighbouring relationships based on weights with Queen principal 
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4 CONCLUSIONS 

We have improved the wind ramping behaviour analysis by introducing new indicators for events. 

We introduced forecasting events with extracted indicators rather than raw data. The advantage 

here is that there is more meaning in the forecasts we generate from the point of significant ramp 

events rather than small fluctuations in the generation, which was our thesis goal.  

4.1 Future work 

As a possible future implementation, Capsule networks could be added to the structure of GAN to 

make it able to converge with a smaller amount of data. Also, features can clustered in a 

multidimensional way and scenarios can be generated using a GAN architecture that includes a 

classifier discriminator that would draw its classes from these clusters.  

4.2 Summary  

In the first chapter, we introduced the main idea and the motivation behind this thesis work. Thesis’ 

task definition is clarified, and the goal is specified as well. Overviewed of the literature, which has 

already become a milestone in this field, and previous researcher related to this thesis task. In the 

overview part, we explained the essential concepts and methods which are related to the topic.  

Based on the defined tasks in the first chapter and drawn boundaries, after introducing our data, 

we filtered it from smaller fluctuations using cubic B-spline polynomials and Fourier transform. 

After smoothing our data, we defined what a significant ramp event is and what the features we 

will extract. We also introduced an alternative method that can be used for event extraction which 

is called Rainflow counting that is typically used for fatigue analysis. These extracted features are 

used for further analysis which was explained and methods were built up as we went further. After 

event extraction, we defined a new indicator called persistence, and we calculated them according 

to the event parameters. At the very end of this chapter, we had a set of algorithms applied to our 

data, and that enabled us to progress within the next chapters.  
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Explanation of the concept, NNs took place in the third chapter with its boundaries and specific 

parameters. The result of this chapter is going to get the finalised algorithm to progress with 

experimentation section.  

In the fourth chapter, our chosen type of Neural Networks(NN), a GAN (Chen et al., 2018) and a 

common Long Short Term Memory(LSTM) were tested to develop our forecast. LSTM model 

performed better than GAN for now. After generation of forecasts, we proposed to use a 

multivariate MCMC, to generate a set of possible scenarios.  

In the concluding chapter, future works will be mentioned based on what more could be done 

within the scope of this thesis work. “What could be better?” and “How to make it more efficient?” 

are going the be answered in this part of the research.  

Moreover, of course, the summary is another must at the very the end of this thesis.  
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