
Tallinn 2019

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Martin Lahtein 178224IASM

EXTERNAL SIL SIMULATOR FOR

VALMATIC AUTOMATION SYSTEM

Master’s Thesis

Supervisor: Eduard Petlenkov

 PhD

Co-supervisor: Hando Nurga

 MSc

Tallinn 2019

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Martin Lahtein 178224IASM

VÄLINE TARKVARALINE SIMULAATOR

VALMATIC AUTOMAATJUHTIMIS-

SÜSTEEMILE

Magistritöö

Juhendaja: Eduard Petlenkov

 PhD

Kaasjuhendaja: Hando Nurga

 MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Martin Lahtein

22.04.2019

4

Abstract

Nacos Valmatic Platinum is an integrated alarm monitoring and control system (IAMCS)

developed by Wärtsilä Valmarine and used on marine vessels. Simulation of field devices

in factory acceptance tests are currently done by either using electronic circuits or

including the simulation software in the project itself. The aim of this thesis is to develop

a simulator that handles the problems of these methods. Using a virtual implementation

of Valmatic system and connecting to the IAMCS via OPC UA protocol solves both the

issues of scalability and transparency. The process of configuring a simulator for an

existing control system is simplified by automating most parts of the procedure, requiring

only the knowledge of standard tools used in Valmarine from the user.

This thesis is written in English and is 63 pages long, including 8 chapters, 23 figures and

6 tables.

5

Annotatsioon

Väline Tarkvaraline Simulaator Valmatic

Auomaatjuhtimissüsteemile

Nacos Valmatic Platinum on integreeritud alarmi-, monitoorimis- ja juhtimissüsteem

(IAMCS) arendatud Wärtsilä Valmarine poolt, mida kasutatakse laevadel.

Juhtimisseadmete simuleerimist süsteemi kasutuselevõtu testidel teostatakse peamiselt

kahel viisil – elektroonikaskeemidega või lisades simulatsioonitarkvara testitavale

projektile. Käesoleva töö eesmärk on luua simulaator, mis parandab nende meetodite

kasutamisel ilmnevad probleemid. Kasutades virtuaalset Valmatic süsteemi, ühendades

selle IAMCSga OPC UA kommunikatsiooniprotokolli kaudu, lahendatakse nii

skaleeruvuse kui simulatsiooni läbipaistvuse probleemid. Simulaatori ülesseadmise

protsess olemasoleva juhtimissüsteemi jaoks on suuremalt osalt automatiseeritud, seades

kasutaja teadmistele vaid nõude olla tuttav Valmarines kasutatud standardsete

tööriistadega.

Lõputöö on kirjutatud inglese keeles ning sisaldab teksti 63 leheküljel, 8 peatükki, 23

joonist, 6 tabelit.

6

List of abbreviations and terms

SIL Software-in-the-loop

HVAC Heating, ventilation, and air conditioning

I/O Input/output

PAC Process application controller

IAMCS Integrated alarm, monitoring, and control system

FIC Field interface controller

MFD Multi-functional display

HMI Human-machine interface

TCP/IP Transmission control protocol/Internet protocol

SCADA Supervisory control and data acquisition

RTU Remote telemetry unit

IED Intelligent electronic device

UDFB User-defined function block

NAT Network address translation

XML Extensible Markup Language

LCH Level control high

LCL Level control low

LAHH Level alarm high high

7

Table of contents

1 Introduction ... 11

2 Simulator requirements .. 13

3 Communications protocol .. 17

3.1 Modbus TCP/IP ... 17

3.2 IEC 60870-5-104 ... 18

3.3 DNP3 .. 18

3.4 MQTT ... 18

3.5 OPC Classic .. 19

3.6 OPC Unified Architecture ... 19

3.7 Conclusion .. 20

4 Simulation platform ... 21

4.1 MATLAB/Simulink .. 21

4.2 National Instruments LabVIEW .. 21

4.3 Inductive Automation Ignition ... 22

4.4 Valmatic .. 22

4.5 Conclusion .. 24

5 Performance testing.. 25

5.1 Simulation system structure ... 25

5.2 OPC UA configuration .. 26

5.2.1 Straton IEC OPC UA server parameters.. 28

5.2.2 DataHub OPC UA Bridge parameters ... 32

5.3 Test results .. 32

6 Simulator configuration steps ... 36

7 Simulation of oily bilge system .. 40

7.1 System description .. 40

7.2 Simulator setup ... 41

7.2.1 Simulation templates .. 45

7.3 Conclusion and shortcomings .. 48

8 Summary ... 50

8

References .. 52

Appendix 1 – Python script for simulator automatic configuration 54

Appendix 2 – IEC 61131-3 simulation programs ... 57

9

List of figures

Figure 1. Valmatic IAMCS Layout ... 13

Figure 2. Single-speed motor control UDFB and instance ... 14

Figure 3. Valmatic IAMCS layout with simulator ... 23

Figure 4. Simulation system configuration .. 25

Figure 5. Network connection between simulator and IAMCS 26

Figure 6. OPC UA Client-Server model [18] ... 27

Figure 7. OPC UA Subscription [9] ... 29

Figure 8. OPC UA Session [9] .. 30

Figure 9. Simulator test setup timing diagram ... 34

Figure 10. Oily bilge system HMI ... 41

Figure 11. Part of the IO channels export XML file ... 41

Figure 12. OPC UA Server on simulator PAC01 ... 43

Figure 13. Simulation templates from new library ... 44

Figure 14. OPC UA Clients in Cogent DataHub .. 44

Figure 15. Simulator HMI ... 46

Figure 16 Python script for automatic configuration .. 56

Figure 17. Pump control simulation template part 1 .. 57

Figure 18. Pump control simulation template part 2 .. 58

Figure 19. Pump control simulation template part 3 .. 59

Figure 20. Pump control simulation template part 4 .. 60

Figure 21. Pump control simulation template part 5 .. 61

Figure 22. Bilge well simulation template ... 62

Figure 23. Bilge settling tank simulation program ... 63

10

List of tables

Table 1. Straton IEC OPC UA server parameter value ranges...................................... 31

Table 2. Fixed parameter values requested by DataHub Clients 32

Table 3. Test system parameters .. 33

Table 4. OPC UA Server parameter values .. 37

Table 5. XML structure of OPC UA Server configuration file 43

Table 6. Single speed pump control signals ... 45

11

1 Introduction

Nacos Valmatic Platinum is an integrated alarm monitoring and control system (IAMCS)

developed by Wärtsilä Valmarine and used on marine vessels. It provides distributed

process control for systems that ensure safe and stable operation of the ship. The IAMCS

includes all field devices, from simple sensors, measuring some physical quantity, to

pumps and other actuators carrying out the control functions for machinery, HVAC and

power management systems. Other large systems such as main engines, fuel management

and propulsion are also interfaced to the IAMCS. Controllers in Valmatic are redundant

to ensure system operability in case of a failure in one of the controllers. The automation

system is described in further detail in the second chapter of this thesis.

Before delivering the developed control software to a vessel, the functionality is verified

by the client in a factory acceptance test. Currently, two methods are used for simulating

field devices – either by external electronic circuits connected to I/O modules or by

including simulation software inside the project itself. Both methods have significant

drawbacks.

Simulating with external circuits works well for smaller systems, but is not suitable for

extensive system testing, where large number of devices is involved. Since all the circuits

have to be implemented in hardware, this approach can become rather expensive.

Modifying simulation circuits for non-standard devices is hard and generally requires

creating a new circuit after all. Finally, the setup of hardware simulation is a very time-

consuming task. The advantage of this type of simulation is that the IAMCS is not altered

in any way and remains truthful to the system that is eventually used on the ship.

Including simulation programs inside the automation project itself introduces significant

alterations to the software that is eventually used on the vessel. This practice is not

allowed by some shipyards, because it reduces the simulation transparency and makes the

product credibility uncertain. The advantages of this approach are scalability and being

easily configurable.

12

The goal of this thesis is to develop a simulator that captures the benefits of both

approaches and solves their disadvantages. Therefore, the simulator has to be

implemented in software to deal with the scalability issue. Additionally, it must be

connected to the automation system externally, making as few alterations to the IAMCS

as possible. This makes the simulations more transparent for the client. Finally, the

simulator has to be easily configurable by all engineers involved in developing the control

software to reduce the time spent on simulator setup.

Main part of this thesis is divided into six chapters:

In chapter two, an overview of the Valmatic automation system is given and the

requirements for the simulator are established.

In chapter three, suitable communications protocol for connecting the simulator to the

IAMCS is selected.

In chapter four, suitable platform for simulation implementation is selected.

In chapter five, the communications protocol is studied in more detail and the simulator

is tested for scalability performance requirements.

In chapter six, structured steps for setting up the simulator are proposed. Ways for

automating parts of this process are also studied.

In chapter seven, a simulator is set up for an existing automation system to demonstrate

feasibility of the solution and identify the limitations.

13

2 Simulator requirements

Valmatic automation system enforces redundancy on multiple levels. System bus network

is connected in ring topology to ensure operability in the case of a faulty cable. Process

application controllers (PAC) are redundant to increase reliability and enable updating

software without interrupting the process control. IAMCS layout is given on Figure 1.

Figure 1. Valmatic IAMCS Layout

14

Field devices are scanned with an interval of 20 ms. Standard PAC cycle time for control

logic is 400 ms or 800 ms, depending on application. Field interface controllers (FIC) are

used to establish communication between I/O modules and PACs. Serial line can be used

for interfacing with other systems. Multi-functional Displays (MFD) serve the purpose of

HMI.

Control programs for Valmatic projects are developed with programming languages

defined in IEC 61131-3 standard using Straton IEC Development Environment. In

addition to control logic, these programs handle communication with fieldbus devices,

system maintenance as well as interacting with HMIs and are executed cyclically by

Straton IEC Runtime software in PACs.

Device control programs are created with user-defined function blocks (UDFB), that

serve as templates for certain types of devices. These function blocks can have 4 types of

variables. Input variables are read-only and not used in Valmatic. Output variables are

write-only and are used for tags that handle displaying information on HMI. In-out

variables support both read and write functions and are used for both input and output

signal tags, as well as tags that are accessible from the HMI, such as device mode

selection, operator commands and timing parameters. UDFB structure and instance for

an automatically controlled single-speed motor is seen on Figure 2.

Figure 2. Single-speed motor control UDFB and instance

15

Before each production system is accepted by the customer for delivery, it must pass a

formal systems acceptance test. This test determines that the product is properly

constructed, meets key requirements and is ready for operational use. Additionally, the

test must be capable of being performed quickly without increasing the manufacturing

costs [1]. Therefore, the first requirement is to implement simulation logic in software,

which can be scaled to larger projects without increasing the cost. This type of simulation,

where the plant is modelled in software without physically connecting any of the I/O

signals, is called software-in-the-loop (SIL) simulation. It provides an inexpensive way

for validation of the control system [2]. Implementing the simulator in software requires

making automation system input and output signal tags accessible to the simulator. The

latter will read output signal tag values and execute simulation logic on that information

resulting in updating the values of input signal tags. E.g. activating feedback after a delay

when start command is given.

Second requirement for the simulator is to be externally connected to the automation

system. Running simulation programs in the same project as control programs can lead

to uncertainties about the product credibility and is not suitable for formal acceptance

testing. Establishing connection to the automation system via the system bus network

seen on Figure 1 can be done by using a suitable communications protocol that works on

TCP/IP. Setting up this connection should be done with as few adjustments to the existing

automation system as possible.

Performance requirements are defined by the ability of the system to detect signals that

are activated only for a certain period of time. Activating an output command for one

PAC cycle means the pulse length is 400 ms. These signals should be caught by the

simulator. Control system PACs are running with a fixed interval, which can vary by

some degree every cycle. They should be able to detect input signals generated by the

simulator, that are slightly longer than the cycle time – e.g. 500 ms signals for PACs with

400 ms cycle. This property must scale to 2000 signals per PAC without deteriorating the

performance. Number of PACs used in a project can be up to 40.

Final requirement is the possibility for every engineer to develop their own simulation

programs and configure them to the simulator. For most of the devices, standard

simulation templates can be developed, but every project varies in some way or another.

For these variations, new simulation programs are best to be written by the engineer who

16

develops control software for the same part. This means that the simulator programming

language should be familiar or easily learnable for all engineers working on the project.

List of requirements:

1. Software implementation of simulated plant

2. External connection to the automation system

3. Minimal changes to the automation system for simulator setup

4. Ability to detect fixed length signal pulses

a. 400 ms pulse output signals

b. 500 ms pulse input signals

5. Scalability

a. Up to 2000 signals per PAC

b. Up to 40 PACs

6. Easily configurable and usable by every software engineer

17

3 Communications protocol

This chapter gives an overview of fieldbus communication protocols supported by Straton

IEC that work on TCP/IP. Protocol suitability is determined on adoption and widespread

use in the industrial automation field to ensure sustainability of the solution, as well as

potential communication performance.

One of the main focuses on the development of SCADA protocols has been

interoperability. This means that devices made by different vendors can use the same

protocol to communicate with each other without any need for mapping between

protocols [3]. SCADA protocol with wide support from different vendors offers more

options for the simulator implementation environment in the next chapter. Widely used

SCADA protocols are Modbus, IEC 60870-5-104, DNP3, MQTT, OPC Classic and OPC

UA. Straton IEC supports every one of these protocols. For MQTT and OPC DA only

client functionality and for OPC UA only server functionality is supported.

3.1 Modbus TCP/IP

Modbus is an openly published network protocol developed by Modicon (now Schneider

Electric) in 1979. It is most widely used network protocol used in the industrial

manufacturing environment. Modbus devices communicate using a master-slave model

in which only the master can initiate transactions. Slaves respond by supplying the

requested data to the master, or by taking requested action [4]. Modbus TCP/IP embeds

Modbus packets in TCP segments and assigns TCP port 502 to the Modbus protocol. Data

from slaves is accessed by using function codes to read or write coils (single bit value) or

registers (16-bit value). Multiple data items located on consecutive addresses can be

accessed in a single query and 32-bit values (E.g. REAL data type in IEC 61131-3) can

be mapped to two consecutive registers [5]. Main benefit of Modbus protocol is wide

adoption in the industrial automation field, meaning that most engineers are familiar with

the protocol. Biggest drawback is the master-slave model. Requests are initiated by the

master periodically, even when the value of demanded variable has not changed. This

introduces unnecessary traffic to the network and may pose problems for scalability.

18

3.2 IEC 60870-5-104

IEC 60870-5 is a group of communication protocol standards for electric utility systems,

mainly power system automation, developed by the IEC Technical Committee 57. The

IEC 60870-5-101 companion standard profile defines data types, commands and other

communication details that are needed for communication with RTUs in electrical

systems. It is extended by IEC 60870-5-104 by using TCP/IP as the underlying transport

protocol [3]. This standard has limited support from vendors outside the electric utility

field. This narrows the number of options for simulation environments significantly.

Additionally, technical support and possibility for further development is also limited.

3.3 DNP3

DNP3 (Distributed Network Protocol Version 3) is a telecommunications standard that

defines communications between master stations, RTUs and other IEDs. It was developed

to achieve interoperability among systems in the electric utility industry and designed

specifically for SCADA applications. DNP3 supports multiple-slave, peer-to-peer and

multiple-master communications. It supports polled and quiescent operation modes. The

latter means that in the absence of change, the system remains in quiet state and the

outstation sends a response only to report a change in the system [6]. DNP3 has the same

issues as IEC 60870-5-104 by being used only by the electric utility industry.

3.4 MQTT

MQTT (Message Queueing Telemetry Transport) is a lightweight protocol extension to

TCP/IP. It avoids many of the overheads associated with Modbus by using a publish-

subscribe model. Nodes must register their interest in receiving information from a

publisher by contacting a broker. This protocol is designed for low bandwidth networks

and devices with limited processing capability [7]. Network bandwidth limitations are not

significant in Valmatic IAMCS. MQTT is designed for very specific applications and not

very widely adopted in the industrial automation field, compared to Modbus or OPC. This

limits the number of simulation environment options.

19

3.5 OPC Classic

Open Platform Communications (originally OLE for Process Control) Classic is a set of

standards that describe server-client software architecture to collect process data from

devices and pass them to SCADA systems. The Data Access (DA) specification proposes

a way to exchange real-time process data in a specified format that includes process value,

time stamp and reliability. Alarms and Events (A&E) specification defines an interface

for server and clients to exchange information on alarms, events and their

acknowledgements. Historical Data Access (HDA) specification enables querying for

data values and statistics within a specified time span. Commands specification provides

an interface for executing defined commands. OPC Classic has become a de-facto

standard accepted in the process and automation industry [8].

3.6 OPC Unified Architecture

The issue with OPC Classic is using different address space for every specification, which

cannot be merged together even if the same variable with its aggregated values is used.

OPC UA unifies all of these address spaces into one, characterizing the new object as

variables, events and methods, providing the functionalities of OPC-DA, OPC-HDA,

OPC-A&E and OPC-Commands. Security was also neglected in the development of OPC

Classic. OPC UA provides security on both the application and communication layers.

Former deals with user authentication and authorisation and the latter includes

confidentiality, integrity and application authentication [8]. Implementation of OPC UA

Communication Stack is not linked to any specific technology, which allows it to be

mapped to future technologies as necessary, without negating the basic design. OPC UA

supports two methods for data exchange between client and server. Read and write

services allow the client to read or write the values of one or more variables. The publish-

subscribe model uses monitored items to exchange data between client and server. The

three types of monitored items include subscription for data changes of variable values,

pre-defined events or aggregate values calculated based on current variable values in

client-defined time intervals [9]. OPC UA is accepted as an International Electrotechnical

Commission standard IEC 62541. Wide support from vendors in the automation industry

makes OPC UA a suitable option for the simulator. The publish-subscribe model provides

an efficient use of network bandwidth by reporting only changed values, improving

system scalability.

20

3.7 Conclusion

IEC 60870-5-104 and DNP3 are electric utility industry-specific protocols, with few

applications outside this field. MQTT is for limited network bandwidth uses, which is not

an issue for the Valmatic IAMCS. Modbus and OPC UA are meant for more general use

and have support from many vendors. OPC UA publish-subscribe model provides

superior performance over Modbus master-slave model. Straton supports only OPC UA

server functionalities, but there are many client options on the market, which are studied

in the next chapter.

21

4 Simulation platform

As described in chapter 2, the simulator will read output signal tag values from the

automation system, execute simulation logic on that information and then update the

values of input signal tags. Models for devices controlled by Valmatic are simple,

consisting mostly of Boolean algebra, timed delays and linear ramping of analog values.

In this chapter an overview of OPC UA compliant environments for the implementation

of simulation logic is given. Automated systems on a vessel may consist of many

duplicate devices, that have identical simulation logic. Programming them should be done

with object-oriented approach in a widely used language. Pricing of the third-party

software is considered to make the final decision.

4.1 MATLAB/Simulink

Simulink is a popular control system simulation software developed by MathWorks that

is covered in most engineering curriculums. In [10] is provided a solution for

communication with OPC UA servers using Open62541, an open-source implementation

of OPC UA in ISO C language. For continuous simulation, Simulink S-Functions are

used to execute the C code. MATLAB supports object-oriented programming and is

priced at €2000 for perpetual license [11]. Simulink is mainly used for testing controllers

designed for continuous process control. Systems controlled by Valmatic have simple

models and do not need such sophisticated simulation. Additionally, no official support

for OPC UA connections by MathWorks makes the sustainability of the solution

uncertain.

4.2 National Instruments LabVIEW

LabVIEW is systems engineering software for monitoring and control applications

developed by National Instruments. It provides a graphical programming interface for

enhanced visualization of the controlled process. Both OPC UA communications and

object-oriented programming are supported. Perpetual licence of LabVIEW costs $2999

22

with $660 added for OPC UA toolkit [12]. As with Simulink, LabVIEW’s graphical

programming interface is more suited for testing controllers for continuous processes and

not convenient for systems consisting of many devices and processes. One of the

requirements for the simulator was the ability for every software engineer to design their

own simulation programs. Since LabVIEW is not in the set of standard tools used by

Valmarine engineers, arming them with required knowledge would take a lot of time and

introduce additional costs for the company.

4.3 Inductive Automation Ignition

Ignition is a SCADA platform software developed by Inductive Automation. It provides

graphical HMI with an extensive library of symbols. Python scripts can be used for

component customization and tag handling for simulation logic. Connection to OPC UA

servers is supported. Licence pricing for Ignition starts from $10000 [13]. As with

LabVIEW, Ignition and Python are also not used as standard tools by Valmarine

engineers and would also require training. Ignition is also most expensive of the observed

options.

4.4 Valmatic

Another option is to use virtual implementation of Valmatic system for the simulator.

This means that PAC runtime, executing the simulation logic, is ran on a virtual machine.

Virtual MFD can be used for real-time human interaction with the simulation. Multiple

PACs can be used on the same simulation computer to distribute simulation programs by

systems or improve scalability. The number of virtual PACs is limited only by the

processing power of simulation computer. This concept is illustrated on Figure 3.

23

Valmatic supports only the configuration of OPC UA servers meaning that the

communication between the servers on automation and simulator PACs is established by

using third-party OPC UA server bridging software. One of the options on the market is

Skkynet DataHub UA Bridge. It provides the functionality of connecting to multiple

servers as a client, read data from one and write this data to another, forming a bridge.

Price of perpetual licence for this software is $1680 with $280 annual support plan [14].

This solution brings the benefit of using IEC 61131-3 defined programming languages,

that are familiar to every control engineer in Valmarine, reducing the adoption time

considerably.

Figure 3. Valmatic IAMCS layout with simulator

24

4.5 Conclusion

Training engineers to use new software can be a long and expensive process. Since neither

Simulink, LabVIEW nor Ignition are in the set of standard tools used by Valmarine

engineers, using any of them as simulation environment requires equipping engineers

with mandatory knowledge, before the simulator can be used efficiently. Using Valmatic

for simulation brings the benefit of familiar programming and configuration interfaces,

reducing the adaption time significantly. IEC 61131-3 defined programming languages

meet all of the requirements for device modelling. Even with using Skkynet DataHub UA

Bridge software for server bridging, this option is economically most reasonable.

25

5 Performance testing

In chapter 2, the requirements for performance were stated – automation system should

be able to detect signals with pulse length of 500 ms and simulator must detect signals

activated for one automation system PAC cycle. To confirm this property, a test system,

that generates required signals, was developed. In the first section, the simulation system

configuration and connection to automation system is covered. Second subchapter gives

an overview of configurable parameters on both the client and server side and suggests

optimal values for best performance. Finally, the tests results are analysed.

5.1 Simulation system structure

As depicted on Figure 3, the simulator computer may be running multiple virtual machine

PACs. The number of servers that DataHub OPC UA Bridge can connect to is not limited

but having too many bridges may deteriorate the performance during large system testing.

This issue can be mitigated by running multiple instances of DataHub OPC UA Bridge

and limiting the number of servers that one instance is connected to. This structure is

illustrated on Figure 4.

Figure 4. Simulation system configuration

26

PAC IP addresses are fixed in the Valmatic system, which results in identical addresses

for both IAMCS PACs and virtual PACs on simulator computer, that cannot be connected

directly into the same network. To mitigate this issue, network address translation (NAT)

can be used. NAT is a common security function for changing the IP address during

Ethernet packet transmission enabling a device to have different internal and external IP

addresses [15]. Two routers can be used to create a wide area network (WAN) between

the two local area networks (LAN). NAT rules can be configured for one of the systems

to translate their LAN IP addresses to WAN IP addresses that can be accessed by devices

in the other LAN. Figure 5 illustrates this concept.

5.2 OPC UA configuration

OPC Unified Architecture is built on a client-server model, where servers are used to

store data, that can be accessed by one or multiple clients. Two methods for data exchange

between clients and servers are offered – basic read/write operations and the publish-

subscribe model [9]. The purpose of this chapter is to study these models, choose most

suitable one among them and evaluate the optimal configuration for selected option.

Words starting with capital letters are used to describe terms and concepts only applicable

in the context of OPC Unified Architecture and are defined in OPC UA Specifications 1

through 14.

Figure 5. Network connection between simulator and IAMCS

27

Each OPC UA Server has an AddressSpace – a set of Nodes accessible by Clients using

OPC UA Services. Nodes are described by Attributes – E.g. Node ID, description, value,

value data type, etc. Node value Attribute is linked to a real object that is cyclically

sampled by the Server [16]. Two methods exist for the Client to access Node Attributes.

The Read Service is used to read one or more Attributes of one or more Nodes. Server

responds to Read request with queried information regardless of whether the Attribute

value has changed or not [17].

Publish-Subscribe model uses MonitoredItems to access Node Attributes.

MonitoredItems are entities in the Server created by the Client that monitor some real-

world process via AddressSpace Nodes. Upon the detection of a data change or an

event/alarm occurrence, a Notification is generated and transferred to the Client by a

Subscription. A Subscription is an endpoint in the Server used for Notification publishing

to Clients. Clients control the publishing rate by sending Publish Requests [18]. Figure 6

illustrates both the Read Service and the Publish-Subscribe model.

Figure 6. OPC UA Client-Server model [18]

28

Clients can write new values to Server Node Attributes by using the Write Service.

Servers determine the value for Node AccessLevel Attribute that indicates if Clients are

enabled to use the Write Service to alter the values of Node Attributes [16].

Valmatic simulations have many binary signals, that change value infrequently.

Requesting the values of these unchanged variables is unnecessary and causes extra load

on the network. The Publish-Subscribe model sends only Attribute values that have

changed, reducing the size of transferred messages significantly. The Pub-Sub model is

used for data exchange between automation system and simulator to ensure best

performance.

Both the Server configured in Straton IEC and Clients configured in DataHub OPC UA

Bridge present a set of parameters that describe the Publish-Subscribe model of

communication. The purpose of next subchapters is to study these parameters in detail

and propose values for optimal communication performance.

5.2.1 Straton IEC OPC UA server parameters

Establishing a connection between a Client and a Server requires opening a

SecureChannel, a communication channel that ensures the confidentiality and integrity of

all Messages exchanged with the Server [19]. This channel is used to secure the data

coming from application Sessions, logical connections between Clients and Servers that

are used to manage state information. Examples of state information are Subscriptions,

user credentials and continuation points for operations that span multiple requests [18].

The routine work of information, settings and commands transmission between Clients

and Servers is the responsibility of Sessions. The number of Sessions should be limited

by the Server application for protection against rogue Clients and denial of service attacks

[17].

Parameter “Max. sessions” limits the number of clients that can be connected to the server

simultaneously. Value should be equal or greater than the number of required bridges to

this server.

Each MonitoredItem identifies the Node Attribute to monitor in the Server AddressSpace

and the Subscription to use for periodical Notification publishing. Notifications are data

structures that describe the occurrence of data changes and Events. Most important

29

parameters defined for MonitoredItems are the sampling interval, filter rule and queue

size. The rate at which the Server is sampling its underlying source for data changes is

defined by the sampling interval. Every time a MonitoredItem is sampled, it is evaluated

by the Server against the defined filter criteria – E.g. deadband calculation. If this

evaluation produces a positive result, a Notification is generated and queued for transfer

by the Subscription. The size of the queue is defined when the MonitoredItem is created.

Most relevant parameter for a Subscription is the Publishing Interval – a cyclic rate at

which the Subscription attempts to send a NotificationMessages to the Client [17]. The

minimum value of publishing interval is limited to 100 ms on Straton IEC OPC Servers.

This concept is illustrated on Figure 7.

NotificationMessages contain a list of Notifications that have not been sent to the Client

yet. Publish Requests produced by the Client are queued to the Session upon reception.

Each publishing cycle, one request is de-queued and processed by a Subscription related

to this Session, if there are any unreported Notifications. When there are not, the Publish

Request is not de-queued from the Session, and the Server waits until the next cycle and

checks again for Notifications. At the beginning of a publishing cycle, if there are

unreported Notifications but no Publish requests queued, the Server enters a wait state for

a Publish Request to be received and processes it immediately upon reception [17].

 Subscriptions have a keep-alive counter that counts the number of consecutive publishing

cycles in which there have been no Notifications to report to the Client. When the

Figure 7. OPC UA Subscription [9]

30

MaxKeepAliveCount parameter value is reached, a Publish request is de-queued and used

to return a keep-alive message to inform the Client that the Subscription is still active.

Subscriptions have a lifetime counter that counts the number of consecutive publishing

cycles in which there have been no available Publish Requests. When the LifetimeCount

parameter value is reached, the Subscription is closed [17]. Subscriptions inside a Session

are illustrated on Figure 8.

Normally the number of created Subscriptions should be minimal, but two exceptions to

this rule exist:

a) Items that are monitored require different Publishing Intervals.

b) Total number of MonitoredItems exceeds the enabled limit of MonitoredItems per

Subscription set by the Server.

The number of Subscriptions created by a client is determined by the parameter “Max.

MonitoredItem per Subscription”. The value of this parameter should always be greater

than or equal to the total number of items to be monitored.

Parameter “Max. Subscriptions per Session” limits the number of subscriptions that can

be created within a Session. Value for this parameter should enable creating enough

Subscriptions to monitor all required items.

Filling the publish queue with infinite number of requests should be limited by a Server

application. When a Server receives a new Publish Request that exceeds this limit, it shall

de-queue the oldest and return a Publish Response with the result set to

Figure 8. OPC UA Session [9]

31

“Bad_TooManyPublishRequests”. If a Client receives this Service result for a Publish

Request, it shall wait until a response is received for one of the active requests before

sending another Publish Request [17]. The size of Publish Request queue is set by “Max.

PublishRequest per Session” parameter. The value should be greater or equal to the

number of created Subscriptions for the Session.

Final configurable parameter “Max. DataChangedValue per MonitoredItem” determines

the size of MonitoredItem queue seen on Figure 7. Two policies for managing new

Notifications when the queue is full exist and are selected by discardOldest parameter

when creating a MonitoredItem. If the value for this parameter is TRUE, the Server

discards the oldest Notification from the queue and inserts the new one. Setting the

parameter value to FALSE makes the Server replace the last Notification added to the

queue with the most recent one. Parameter maxNotificationsPerPublish determines the

number of Notifications sent in a single Publish response with value 0 indicating no limit.

If the queue size is one, it becomes a buffer that always contains the newest Notification.

In this case of sampling interval of the MonitoredItem being faster than the publishing

interval of the Subscription, the MonitoredItem will be over sampling and the Client will

always receive the most up-to-date value [17]. In the context of the simulator, only the

latest value is of interest to us and therefore the value for this parameter should be equal

to 1.

Table 1 contains the parameter value ranges of OPC UA servers created in Straton IEC.

Table 1. Straton IEC OPC UA server parameter value ranges

Parameter Value range

Max. sessions 1 – 100

Max. Subscriptions per Session 0 – 100

Max. MonitoredItem per Subscription 0 – 65535

Max. PublishRequest per Session 1 – 100

Max. DataChangedValue per MonitoredItem 1 – 100

32

5.2.2 DataHub OPC UA Bridge parameters

The “Maximum Update Rate (milliseconds)” parameter is used to define values for both

the sampling and publishing intervals and is limited to a minimum of 10 ms. Note that

Straton IEC OPC UA Servers limit the minimum value of publishing interval to 100 ms.

Therefore, a request for an update rate of 10 ms would result in sampling interval of 10

ms and publishing interval of 100 ms.

Parameter “Monitored Item Queue Size” determines how many Notifications are stored

in the queue as discussed in 0. The value should match “Max. DataChangedValue per

MonitoredItem” configured for the OPC UA Server.

Parameter “Max Request Item Count” regulates the number of MonitoredItems per

Subscription and is covered in 0. The value should be equal to the one configured for

“Max. MonitoredItem per Subscription” in the OPC UA Server.

Table 2 contains some of the fixed parameter values requested by DataHub Clients when

creating a Subscription.

Table 2. Fixed parameter values requested by DataHub Clients

MaxKeepAliveCount 1

LifetimeCount 1000

discardOldest FALSE

maxNotificationsPerPublish 0

5.3 Test results

In the second chapter, performance requirements for the simulator were stated as the

ability to detect with 400 ms and 500 ms pulses by the simulator and automation system

respectively. To confirm this property, a test system was set up with the configuration

seen on Figure 4 and Figure 5. Automation system PACs were configured to run with a

cycle of 400 ms. No execution time limits were set for virtual controllers in the simulator.

33

Test programs in both the automation system and simulator have 1 input and 1 output

variable. The program in automation system was configured to toggle the output signal

every cycle – resulting in a square wave signal with 800 ms period. Simulator test

program was configured to generate output pulses with a period of 1000 ms. Both

programs count the number of times the input signal is activated. 1000 instances of these

programs were created to meet the requirement of 2000 for total number of signals. The

output of each instance was bridged to an input of the instance on the other side with

DataHub OPC UA Bridge. The number of generated signals by both sides is 100 and is

compared to the number of input signals counted on the other side.

OPC UA Server and Client parameter values used in the test are presented in Table 3.

Table 3. Test system parameters

Server parameters Value

Max. Sessions 1

Max. Subscriptions per Session 1

Max. MonitoredItem per Subscription 2000

Max. PublishRequest per Session 1

Max DataChangedValue per MonitoredItem 1

Client (Bridge) parameters Value

Maximum Update Rate (milliseconds) 10

Monitored Item Queue Size 1

Max Request Item Count 2000

34

Figure 9 illustrates the test setup from simulator’s point of view.

The results came out positive as every single pulse out of the total 200 000 pulses

(2000 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ∙ 100
𝑝𝑢𝑙𝑠𝑒𝑠

𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒
) generated was detected. Reducing the pulse duration

produced by the simulator below 450 ms starts to introduce an error in the number of

detections. The error increases as the pulse duration approaches 400 ms – the cycle time

programmed for the PACs of the automation system.

“Max. Subscriptions per Session”, “Max MonitoredItem per Subscription” and “Max

Request Item Count” parameters were changed to increase the number of created

Subscriptions to 4, with 500 MonitoredItems per Subscription. This alteration had no

significant impact on the performance. Therefore, the requirement for the values of these

parameters is for the product of “Max. MonitoredItem per Subscription” (Which is equal

to “Max Request item Count”) and “Max. Subscriptions per Session” to be greater than

the number of desired tags in the OPC UA Server.

The test system was extended to 3 PACs with still 2000 signals per PAC totalling in 6000

bridges. The results were unaffected by this adjustment. Since the simulator is connected

to system bus through one Ethernet port, the network speeds were observed during the

Figure 9. Simulator test setup timing diagram

35

test - each PAC used 2-3 Mbps of network bandwidth. The sum was increasing linearly

with the number of PACs. Lowest speed limitations are set in the firewalls at 300 Mbps.

Simple calculations show that the system could be scaled up to 100 PACs which is much

more than used in any of the real projects and thus can be the confirmation for simulator’s

scalability.

36

6 Simulator configuration steps

The number of simulated devices can be in the hundreds, requiring thousands of signals

to be bridged between OPC UA Servers and cannot be configured manually. The purpose

of this chapter is to propose structured steps to set up the simulator for an existing

automation system and provide insights for automating this process using configuration

files available on the existing system.

Requirements for configuring a simulator for an existing project:

1. Simulator project

a. I/O signal tags

b. Simulation logic

2. OPC UA Servers on automation system PACs and simulator PACs

3. Bridge signals between OPC UA Servers

I/O signal tags are available on the existing project and should be exported from there.

Simulation logic can be implemented by creating UDFB templates for each type of

simulated device. I/O signal tags can then be connected to instantiate the programs for a

single device, similarly to the control template depicted on Figure 2. It was stated in

chapter 4.4 that the number of virtual PACs on the simulator computer is not limited.

Pairing every automation system PAC with a single virtual PAC in simulator computer

by means of having same signal tags and devices simplifies OPC UA Server setup

significantly. This means that the OPC UA Servers on these PACs will be identical,

requiring only one configuration for a pair of PACs (Automation system PAC and

simulator PAC). Every one of these requirements can be met by using a copy of existing

automation system project as the basis for the simulator:

1. I/O signal tags are already defined

2. UDFB instances have already been created

3. Number of PACs is equal in both projects

37

Using this approach, the setup procedure can be divided into 4 steps:

1. OPC UA Server setup on existing project

2. Creating a copy of existing project to be the basis of simulator project

3. Replacing device control templates with simulation templates in the simulator

project

4. Configure DataHub OPC UA Bridge between the two projects

To configure the simulator, 3 XML files have to be exported from the existing project.

1. I/O channel configuration data, that has tag names and types for all physical

signals to field devices.

2. Serial I/O configuration data, that includes all tag names and types for signals

transmitted over serial communication channels (E.g. Modbus, Profibus, NMEA,

etc.)

3. UDFB configuration data, consisting of UDFB instances of all control programs

that can be used to select desired devices that need to be simulated and configure

a DataHub OPC UA Bridge for the signals.

First two files will be used to set up OPC UA Servers.

In first step, OPC UA Servers are configured for all PACs. Required parameters, their

values with source comments are presented in Table 4.

Table 4. OPC UA Server parameter values

Server parameter Value Source / Comment

Max. sessions 1 One bridge to all Servers

Max. Subscriptions per Session 1 All MonitoredItems in one

Subscription

Max. MonitoredItem per Subscription Calc. Calculated from the

number of total tags added

to the Server

Max. PublishRequest per Session 1 Equal to the number of

created Subscriptions

Max. DataChangedValue per MonitoredItem 1 Keep only the newest value

in Notification queue

All I/O channel and serial I/O signal tags use complex L3_BI, L3_AI, L3_BO or L3_AO

data types used to communicate both the value and signal state. The corresponding IEC

61131-3 value type is BOOL for binary, REAL for analog signals and UINT for signal

38

state. Since Straton IEC OPC UA Servers do not support complex data types, the value

and state have to be included as separate tags.

OPC UA Server Nodes are described by 4 parameters:

NAME - variable name in IEC database (Real Object)

TAG – Node ID in the OPC UA Server

MODE – determines access rights for the client (Read, Write, Read/Write)

TYPE – data type used for Node Value Attribute

Using the ID and channel type elements in I/O and serial I/O signal export files, values

for all parameters of the nodes can be defined. The module_ID element is used to get

PAC number that owns the signal to generate separate import file for each PAC.

After creating a Node for every signal value and state, a copy of the project can be made

to be used as a basis for the simulator project. This ensures that all signals are already

defined for the project and included in the OPC UA Servers for which the IP address is

the only change to be made.

Every control program in Valmatic is created as an UDFB that is instantiated for a single

device by attaching corresponding I/O signals. Since the copied project includes instances

for all devices, simply changing the UDFB library of control templates to simulation

templates is the simplest way to configure simulation logic to the project. The drawback

of this approach is that the structure of the simulation template must be identical to the

control template, limiting some of the potential features.

Final step is to bridge the data between automation system OPC UA Servers and simulator

OPC UA Servers. Cogent DataHub offers the possibility of loading user-defined

configuration files on startup. Bridge function is used to define a bridge between two

nodes in different OPC UA Servers. The syntax is described as follows:

(bridge source destination flags multiply add srcmin srcmax dstmin dstmax)

bridge – function identifier

source – starting point node address identifier

destination – ending point node address identifier

39

flags – bit-coded parameter

1 – Forward bridge from source to destination

2 – Inverse bridge from destination to source

16 – Clamp output to the minimum

32 – Clamp output to the maximum

256 – Nodes are copied without transformation

512 – Apply linear transformation to nodes

1024 – Map node values to a range

4096 – Bridge is disabled

Bits for 256, 512 and 2014 are mutually exclusive.

multiply – Multiplier value for linear transformation

add – Adder value for linear transformation

srcmin – Minimum range map value for source node

srcmax – Maximum range map value for source node

dstmin – Minimum range map value for destination node

dstmax – Maximum range map value for destination node

The nodes between automation system OPC UA Server and simulator OPC UA Server

are bridged without transformation meaning the flag value is equal to 257. An example

of a bridge function instance could look like this:

(bridge “SIMPAC01:PAC01.InputSignals/K1442_InputCH.Value”

“REALPAC01:PAC01.InputSignals/K1442_InputCH.Value” 257 1 0 0 0 0 0)

Exporting all UDFB instances as an XML file enables a filter (e.g. automatically

controlled pumps) to be applied and extract signals that are used for desired devices.

These signal names, along with the PAC number that owns them can then be combined

to create the OPC UA bridge configuration file.

40

7 Simulation of oily bilge system

This chapter serves as the proof of concept for the research and development done in the

preceding parts of the thesis. Oily bilge system is configured to serve as a part of the

existing automation system to be simulated. Previously proposed configuration steps are

followed to identify possible shortcomings in this approach.

7.1 System description

The main bilge system is arranged to drain any watertight compartment other than ballast,

oil or water tanks and discharge the contents directly overboard.

These watertight compartments are collectively referred to as bilge wells that are

connected to the main bilge line via an automatically controlled valve. Wells that collect

bilge water from rooms with operating machinery cannot be emptied directly overboard.

The contents of these wells are contaminated with oil and other chemicals and are pumped

to an oily water separator before being discharged overboard or collected to specific tanks

and handed over to suitable facilities when in port. Discharging oil from a ship is harshly

regulated by national treaties and will result in large fines for both the crew and company

[20]. Normally bilge pumps are redundant to enable stand-by operation if one of the

pumps fails. There is a valve between bilge pumps and the main line as well as between

the settling tank and pumps. Every bilge well is equipped with three binary level sensors.

Level control high (LCH) signal commands the opening of corresponding valves and

starting of one of the pumps. Level control low (LCL) signal commands the pump to be

stopped and valves closed. In case the water level in a bilge well rises above LCH limit,

level alarm high high (LAHH) alarm is triggered in the IAMCS. In case of an emergency

condition, even oily bilge water can be discharged directly overboard.

The oily bilge system used as an example is reduced to 9 bilge wells with a valve for each,

one pump, one settling tank and a valve between the latter two. This results in a total of

89 signals divided between two PACs. The system is illustrated on the user-interface

presented on Figure 10.

41

7.2 Simulator setup

As the first step, all I/O signals were exported from the existing project. The XML

structure is presented on Figure 11. Following the instructions stated in chapter 6, a

Python script was developed to generate an XML import file for the OPC UA Server and

a configuration file for DataHub OPC UA Bridge.

<?xml version="1.0" encoding="iso-8859-1" ?>

<IoChDescription>

 <IoCh SFB_TYPE = "Input/Output Channel"

 PLC_NO = "2"

 INTCHANNEL = "0"

 ID = "BO_FZ1"

 YARD_ID = ""

 CRUPD_NAME = "true"

 CRUPD_REM = "true"

 CRUPD_YARD = "true"

 REF_CNT = "8"

 MACH_GRP = "0"

 NAME_1 = "Blackout Firezone 1"

 CH_TYPE = "DI"

 CH_SPEC = "CC=Alm/Evt :Superv"

 AO_SUPERV = "false"

 MODULE_ID = "010103"

 MODULETYPE = "VM-BI.16-SUP"

 ...

Figure 11. Part of the IO channels export XML file

Figure 10. Oily bilge system HMI

42

Python programming language version 3.7 was selected for automating parts of the

simulator configuration [21]. Python combines the power of general-purpose

programming languages with the ease of use of domain-specific scripting languages like

MATLAB. It has vast number of libraries for data processing and enables direct

interaction with the code, using a terminal [22]. Python 3.7 comes with built-in XML

handling submodules such as the ElementTree XML processor that is extended by lxml

library [23]. The latter has two big advantages over other available XML processing tools.

First is the ease of programming, since it is based on the ElementTree package, that was

developed to simplify and streamline XML processing. The lxml package also boosts the

performance, improving the experience of working with large xml files [24].

A single Python script was developed to parse the data from XML file of exported IO list

from the existing project and generate import files for both Straton OPC UA Servers and

DataHub OPC UA Bridge configuration. Module IDs consist of 6 digits and are used to

identify the signal location in the system. First two digits represent the PAC number,

middle two digits show the FIC number and final two digits are for the I/O module. The

script iterates through the signals in the IO lists and counts the number of PACs used in

the project. This number is used to create a loop that generates an XML file for each PAC.

For each PAC, the IO list is iterated one more time to count the number of signals handled

by the controller. This value is used for the “Max. MonitoredItem” parameter in Server

configuration.

43

The XML structure consists of 6 levels of elements, that are described in Table 5.

Table 5. XML structure of OPC UA Server configuration file

Level Name Attributes / Comments

1 (Root) K5project Version

2 Fieldbus -

3 K5BusOPCUA_s Attributes describing the

OPC UA Server, including

the ones in Table 4.

4 Fieldbusmaster IP address and port number

for the Server.

5 Fieldbusslave Used to divide Server

Nodes into logical groups.

6 Fieldbusvar A Node in the server,

described by the attributes

presented in Chapter 6.

Nodes are split into two categories at the fifth, fieldbusslave level – input and output

signals. This is not necessary but improves the manual management of nodes when the

need arises.

For bridge configuration, the values of output signals were forwarded from automation

system server to simulator server. Input signal values, states as well as readback state of

output signals were bridged from the simulator to the automation system. After the

Servers were configured on existing project, it was copied to be the basis for the simulator.

The IP addresses were changed manually.

Figure 12. OPC UA Server on simulator PAC01

44

Control templates were swapped with simulation templates from another library. Creating

the latter with identical name and structure as the control templates ensures that the

project can be generated without making any additional changes. This is explained in

more detail in the next subchapter.

A Cogent DataHub Client was configured for each Server, seen on Figure 14.

Bridge configuration file generated by the Python script is loaded on every startup of

Cogent DataHub.

Figure 13. Simulation templates from new library

Figure 14. OPC UA Clients in Cogent DataHub

45

7.2.1 Simulation templates

Example oily bilge system uses two kinds of automatically controlled devices – a single

speed pump and single-acting valves. The pump is controlled by 5 input and 3 output

signals that are described in Table 6.

Table 6. Single speed pump control signals

Signal Type Function

Remote In Manual switch in device control cabinet, used to

select between local and remote modes.

Running In Indication of motor running state.

Blackout In Indication of supply power failure for the device.

Fail In Minor failure in the device, control functionalities

are retained.

Tripped In Major failure in the device, motor has stopped

and cannot be started.

Start Out Start command for the device.

Stop Out Stop command for the device.

Reset Out Command to reset failed state alarms after they

have been resolved.

Having identical structure for control and simulation templates is limiting the number of

simulation features but is suitable for scenarios where the device can be simulated only

by input and output signals and without human interaction. To add the feature for different

simulation scenarios the HMI configuration is changed. This enables giving commands

for the device from simulator HMI and is illustrated on Figure 15. Buttons were added to

the user interface to activate blackout signals.

46

Figure 15. Simulator HMI

Simulation templates for the pump, bilge wells and bilge settling tank are included in

Appendix 2. Template for single-acting valve follows closely the pump template and is

not included.

In addition to feedback activation according to output signals, pump simulation template

has a total of seven supplementary user-triggered functions.

Local and Remote commands are used to select how the device is controlled by toggling

the remote input signal of the pump. A device in remote control mode can be controlled

by either operator commands from the HMI or commands from auto logic. Locally

controlled pump is switched on and off from a local motor control panel.

“LocalStateChange” command is used to toggle running feedback signal if the device is

in local control mode.

Fail signal is used to indicate that the device is experiencing a minor failure, maintaining

the possibility of control, but informing the operator with an alarm. After the failure has

been fixed, the alarm is rectified by the “Reset” command seen on Figure 10.

47

Tripped signal is used to indicate that the pump is experiencing a major failure and has

stopped running. Control option is restored after the failure has been fixed and alarm reset

by the operator.

“UnexpStateChange” command is used to simulate feedback fault and toggle the signal

if the device is in remote control mode. The device should change state only if another

signal confirms a reason for the feedback fault, e.g. blackout or tripped. Operator is

informed of this state by an alarm.

It was noted earlier that for each I/O signal in Valmatic system both the value and state

are used. In case of a faulty signal, the latter informs the operator of the possible source

for failure, e.g. sensor failure, IO module failure, earth fault etc. A faulty signal should be

ignored by the system. “SensorFail” command is used to manipulate the signal states.

Blackout signal indicates that the power supply to the device is flawed. This can be caused

by a tripped circuit breaker or stopped generator. All working devices will enter their

normal state (stopped for motors) with indication that the state change was caused by a

blackout. After power supply has been restored, devices are restarted automatically, if

configured to do so by the operator. In the example oily bilge project, the devices are

divided into two fire zones, for both of which a blackout can be simulated.

Bilge well valve auto control template was replaced by well volume simulation template.

Well volume is ramped up if the valve is closed or pump stopped. Upon reaching 85%

capacity, high level signal is activated. Volume is ramped down if the valve is opened

and pump running. Low level signal is activated if the value has dropped down to 5%.

Valve identifier index is used to set a different filling rate for every well.

Final simulation program was created for bilge settling tank. Volume is ramped up if at

least one bilge well valve is opened, settling tank valve is opened and the pump is running.

Volume is ramped down if any of these conditions is not met. Reaching 95% capacity,

high alarm is activated that informs the system to stop filling the settling tank.

48

7.3 Conclusion and shortcomings

Oily bilge system was simulated for three scenarios – normal operation with bilge well

valves and bilge pump in auto modes, unexpected close of bilge settling tank valve and

finally blackout restore for both fire zones. All tests worked as expected without notable

peculiarities in system behaviour. This confirms that the automatic generation of OPC

UA Servers and bridges work correctly. I/O signal tags are connected to right UDFBs and

properly bridged between Servers.

Real-time human interaction with the simulation was not stated as a requirement for the

simulator but was added as an extra feature to the solution. This enables engineers to

simulate different scenarios and run more sophisticated tests by adding only one

additional step to the configuration process.

The requirement of being easily configurable by all engineers working on control

software is a rather subjective as everyone’s level of experience is different. When

designing the configuration steps, no assumptions were made for user knowledge apart

from being familiar with the set of standard tools used in Valmarine. OPC UA Server and

Client parameters are selected by the setup automation script, leaving the user only with

the task of importing the generated files.

Currently, the most time-consuming task in the configuration process is creating UDFB

templates for simulation programs. As with control templates they can be standardized

for most of the devices.

Although the simulator meets all the requirements, there exist ways to improve the

solution.

Using Skkynet’s Cogent DataHub OPC UA Bridge introduces an issue of third-party

dependence on further development of the product as well as fixing potential bugs in the

software. This can be solved in the future if COPA-DATA develops OPC UA Client

support for Straton IEC, this would also simplify the simulator configuration process.

Simulator user-interface inputs are limited to 8 for each device and all devices using the

same template will have same commands. Additionally, some scenarios take 2 slots to

indicate active selection, e.g. switching control fail ON and OFF. The list of available

49

scenarios should be reduced to 8 most important ones and indication for active situation

developed without needing two separate HMI inputs.

The networking solution of using two firewalls and NAT can be improved in two ways.

First is to implement NAT in software. Second is to establish a way to deviate from

standard Valmatic IP addresses without changing them manually every time after new

software is downloaded and still preserving all functionalities of a working system. This

would reduce the amount of additional hardware required for simulator setup.

Finally, the feature of simulating with redundant PACs was not analysed. Current solution

uses single PAC as the source of control signal values. Cogent DataHub offers a way to

configure redundant OPC UA Servers and switch between them if data quality from one

is bad.

50

8 Summary

There are two distinct ways for simulating field devices in Valmatic factory acceptance

tests – hardware electronic circuits and including simulation software to the project itself.

Former brings the benefit of keeping the IAMCS truthful to the system that will

eventually be used on the vessel, but is not suitable for comprehensive system testing,

where the number of involved devices is large. Software simulations are scalable and

easily configurable but alter the IAMCS significantly.

The objective of this thesis was to capture the advantages of both approaches and solve

their limitations. The requirement was to develop an externally connected SIL simulator

for the Valmatic automation system, that meets the scalability requirements and is easily

configurable by all engineers involved in the project.

Implementing the simulator in software requires the communication of I/O signals

between the IAMCS and simulator. General adoption in the industrial automation field to

ensure sustainability of the solution and assessment of performance were main factors in

the communications protocol selection process. OPC UA is widely acknowledged by the

process and automation fields and accepted as International Electrotechnical Commission

standard IEC 62541. Additionally, the performance of OPC UA publish-subscribe model

proved to be superior over other general use protocols, such as Modbus.

Virtual implementation of Valmatic system was selected as the simulator platform for

one major argument – Every engineer is familiar with IEC 61131-3 programming

languages reducing the adoption time significantly. These languages also meet the

requirements for device model complexity, which mostly consists of Boolean algebra,

timed delays and linear ramping of analog values. The simulation logic is executed by

virtual machine controllers on a single simulator computer. This choice came with the

downside of Valmatic not supporting the configuration of OPC UA clients. OPC UA

servers are configured on both the IAMCS and simulator and Skkynet Cogent DataHub

OPC UA Bridge is used to communicate data between them. Valmatic uses fixed IP

addresses for its controllers, requiring NAT to be used for connecting the two networks.

51

The simulator was tested for performance and scalability requirements – being able to

detect fixed length input and output signal pulses with 2000 signals per controller and up

to 40 controllers in the system. Configuration parameters that describe the OPC UA

communication model were theoretically analysed and values for optimal performance

were suggested. The simulator passed tests for both requirements.

The number of simulated devices can be in the hundreds, requiring thousands of signals

to be bridged between OPC UA servers and cannot be configured manually. A set of

structured steps for setting up the simulator was proposed, without making any

assumptions for the user knowledge, apart from being familiar with the set of standard

tools used in Valmarine. OPC UA server and bridge configurations and parameter values

were generated automatically by a Python script, leaving the user only with the task of

importing the produced files.

Finally, feasibility of the solution was confirmed by setting up the simulator for an

existing oily bilge collection control system. The result worked as expected, without any

peculiarities in system behaviour, confirming the correctness of automatically generated

configuration. Real-time human interaction with the simulation was added as an extra

feature to enable engineers run more sophisticated tests. This was done by connecting a

virtual HMI to the Valmatic system running on the simulator computer.

Although the solution meets all the requirements, it is still the first attempt to solve the

problems of current simulation methods and ways for improvement exist. Future work

involves removing DataHub OPC UA Bridge from the solution once OPC UA client

functionality has been developed for Valmatic. NAT should be implemented in software

instead of hardware firewalls, as in current solution. Finally, options for running

simulations on redundant controllers should be studied.

52

References

[1] A. Kossiakoff, W. N. Sweet, S. J. Seymour and S. M. Biemer, Systems

Engineering Principles And Practice, Hoboken, New Jersey: John Wiley & Sons,

2011.

[2] W. H. Kwon and S.-G. Choi, “Real-Time Distributed Software-In-The-Loop

Simulation for Distributed Control Systems,” in International Symposium on

Computer Aided Control System Design, Kohala Coast, HI, USA, 1999.

[3] T. Teodorowicz, “Comparison of SCADA protocols and implementation of IEC

104 and MQTT in MOSAIK,” University of Münster, Münster, 2017.

[4] J. Makhija, “Comparison of protocols used in remote monitoring: DNP 3.0, IEC

870-5-101 & Modbus,” IIT Bombay, Mumbai, 2003.

[5] Modbus-IDA, 24 October 2006. [Online]. Available:

http://www.modbus.org/docs/

Modbus_Messaging_Implementation_Guide_V1_0b.pdf. [Accessed 26 February

2019].

[6] G. Clarke and D. Reynders, Practical Modern SCADA Protocols: DNP3, 60870.5

and Related Systems, Oxford: Newnes, 2004.

[7] C. Johnson, “Securing the Participation of Safety-Critical SCADA Systems in the

Industrial Internet of Things,” in International Conference on System Safety and

Cyber Security, London, 2016.

[8] M. H. Schwarz and J. Börcsök, “A Survey on OPC and OPC-UA: About the

standard, developments and investigations,” in XXIV International Conference on

Information, Communication and Automation Technologies (ICAT), Sarajevo,

2013.

[9] S. Cavalieri and F. Chiacchio, “Analysis of OPC UA performances,” Computer

Standards & Interfaces, vol. 36, no. 1, pp. 165-177, 2013.

[10] H. Elfaham, F. Palm, S. Grüner and U. Epple, “Full Integration of

MATLAB/Simulink with Control Application Development using OPC Unified

Architecture,” in 2016 IEEE 4th International Conference on Industrial

Informatics, Poitiers, 2016.

[11] “MathWorks MATLAB,” The MathWorks, Inc., 2019. [Online]. Available:

https://uk.mathworks.com/products/matlab.html. [Accessed 10. 02. 2019].

[12] “National Instruments LabView,” National Instruments, 2019. [Online].

Available: http://www.ni.com/en-us/shop/labview/labview-details.html. [Accessed

11. 02. 2019].

[13] “Inductive Automation Ignition,” Inductive Automation, 2019. [Online].

Available: https://inductiveautomation.com/ignition/. [Accessed 11. 02. 2019].

[14] “Cogent DataHub,” Skkynet, 2019. [Online]. Available:

https://cogentdatahub.com/. [Accessed 15. 02. 2019].

[15] Moxa Inc., “Industrial Secure Router User's Manual,” Author, Taipei, 2018.

53

[16] OPC Foundation, “OPC Unified Architecture Specification Part 3: Address Space

Model Release 1.04,” Author, 2017.

[17] OPC Foundation, “OPC Unified Architecture Specification Part 4: Services

Release 1.04,” Author, 2017.

[18] OPC Foundation, “OPC Unified Architecture Specification Part 1: Overview and

Concepts,” Author, 2017.

[19] OPC Foundation, “OPC Unified Architecture Specification part 2: Security Model

Release 1.04,” Author, 2018.

[20] D. A. Taylor, Introduction to Marine Engineering 2nd Edition, Oxford: Elsevier

Butterworth-Heinemann, 1996.

[21] Python Software Foundation, [Online]. Available: http://www.python.org.

[Accessed 26. 03. 2019].

[22] A. C. Müller and S. Guido, Introduction to Machine Learning with Python,

Sebastopol, CA: O'Reilly Media, Inc., 2017.

[23] lxml development team, “lxml - XML and HTML with Python,” 2019. [Online].

Available: https://lxml.de/. [Accessed 28 03 2019].

[24] J. W. Shipman, Python XML processing with lxml, Socorro, NMEX: New

Mexico Tech, 2013.

54

Appendix 1 – Python script for simulator automatic

configuration

import lxml.etree as ET

Type_Dict = {'DI': {'Value': {'Var':'_InputCH.Value', 'Type':'BOOL'},

'State': {'Var':'_InputCH.State', 'Type':'UINT16'}},

'DO': {'Value': {'Var':'_OutputCH.BoCmdValue', 'Type':'UINT16'},

'State': {'Var':'_OutputCH.BoReadbackState',

 'Type':'UINT16'}},

'AI': {'Value': {'Var':'_InputCH.Value', 'Type':'FLOAT32'},

'State': {'Var':'_InputCH.State', 'Type':'UINT16'}},

'AO': {'Value': {'Var':'_OutputCH.Value', 'Type':'FLOAT32'},

'State': {'Var':'_OutputCH.AoReadbackState',

 'Type':'UINT16'}}}

IO_List_tree = ET.parse("ExportIoCh.xml")

IO_List_root = IO_List_tree.getroot()

PAC_List = []

#Make a list of used PACs in imported I/O-list

for IoCh in IO_List_root:

if IoCh.get('MODULE_ID')[:2] not in PAC_List:

PAC_List.append(IoCh.get('MODULE_ID')[:2])

#Generate an OPC UA Server import file for each PAC

for pac_no in range(1, len(PAC_List) + 1):

filename = "PAC0"+str(pac_no)+"_UA_Import.xml"

signal_count = 0

for IoCh in IO_List_root:

if int(IoCh.get('MODULE_ID')[:2]) == pac_no:

signal_count += 1

n = 1

ip_addr = "10.10.1." + str(pac_no)

root = ET.Element("K5project", version="1.1")

networks = ET.SubElement(root, "networks")

fieldbus = ET.SubElement(root, "fieldbus")

server = ET.SubElement(fieldbus, "K5BusOPCUA_s", K5ID=str(n),

NAME="Straton OPC UA Server PAC0"+str(pac_no),
MAX_SESSION="1", MAX_SUBSCRIPTION="1",
MAX_MONITOREDITEM=str(signal_count),
MAX_PUBLISHREQUESTPERSESSION="1",
MAX_DATACHANGEDVALUE="1", LOGTRACE="1",
LOGTRACE_FILE="", PASSWORD="", USE_CERTIFICAT="1",
CTL="PKI/CA", SC="stratonopc.der",
SPK="stratonopc.pem",CRL="stratonopc.crl",__F="-1")

n += 1

fbmaster = ET.SubElement(server, "fieldbusmaster", K5ID=str(n),
IP=str(ip_addr), PORT="4840", SECURITYPOLICY="1", __F="-1")

n += 1

55

fbslavein = ET.SubElement(fbmaster, "fieldbusslave", K5ID=str(n),
NAME="InputChannels",__F="-1")

n += 1

fbslaveout = ET.SubElement(fbmaster, "fieldbusslave", K5ID=str(n),
NAME="OutputChannels",__F="-1")

n += 1

for IoCh in IO_List_root:

Ch_Type = IoCh.get('CH_TYPE')

Ch_ID = IoCh.get('ID')

Ch_Pac= int(IoCh.get('MODULE_ID')[:2])

if (Ch_Type == 'DI' or Ch_Type == 'AI') and Ch_Pac == pac_no:

fbvarval = ET.SubElement(fbslavein, 'fieldbusvar',

K5ID = str(n),

NAME = Ch_ID+Type_Dict[Ch_Type]['Value']['Var'],

TAG = Ch_ID+Type_Dict[Ch_Type]['Value']['Var'],

MODE = '2',

TYPE = Type_Dict[Ch_Type]['Value']['Type'])

n += 1

fbvarval = ET.SubElement(fbslavein, 'fieldbusvar',

K5ID = str(n),

NAME = Ch_ID + ype_Dict[Ch_Type]['State']['Var'],

TAG = Ch_ID + Type_Dict[Ch_Type]['State']['Var'],

MODE = '2',

TYPE = Type_Dict[Ch_Type]['State']['Type'])

n += 1

if (Ch_Type == 'DO' or Ch_Type == 'AO') and Ch_Pac == pac_no:

fbvarval = ET.SubElement(fbslaveout, 'fieldbusvar',

K5ID = str(n),

NAME=Ch_ID+Type_Dict[Ch_Type]['Value']['Var'],

TAG = Ch_ID+Type_Dict[Ch_Type]['Value']['Var'],

MODE = '2',

TYPE = Type_Dict[Ch_Type]['Value']['Type'])

n += 1

fbvarval = ET.SubElement(fbslaveout, 'fieldbusvar',

K5ID = str(n),

NAME = Ch_ID + Type_Dict[Ch_Type]['State']['Var'],

TAG = Ch_ID + Type_Dict[Ch_Type]['State']['Var'],

MODE = '2',

TYPE = Type_Dict[Ch_Type]['State']['Type'])

n += 1

tree = ET.ElementTree(root)

tree.write(filename, xml_declaration=True, encoding="iso-8859-1",

 standalone=True, pretty_print=True)

#Generate Cogent DataHub OPC UA Bridge configuration file

bridge_cfg = open("Custom_OPC_UA_Bridges.cfg","w")

bridge_cfg.write(";;; Point-to-point Bridging\n")

for IoCh in IO_List_root:

Ch_Pac = IoCh.get('MODULE_ID')[:2]

Ch_ID = IoCh.get('ID')

Ch_Type = IoCh.get('CH_TYPE')

56

if Ch_Type == 'DI' or Ch_Type == 'AI':

bridge_cfg.write('(bridge "SIMPAC' + Ch_Pac + ':PAC' + Ch_Pac +
'.InputChannels/' + Ch_ID + Type_Dict[Ch_Type]['Value']['Var'] +
'"' +' "REALPAC' + Ch_Pac + ':PAC' + Ch_Pac + '.InputChannels/'
+ Ch_ID +Type_Dict[Ch_Type]['Value']['Var'] + '" 257 1 0 0 0 0
0)\n')

bridge_cfg.write('(bridge "SIMPAC' + Ch_Pac + ':PAC' + Ch_Pac +
'.InputChannels/' + Ch_ID +Type_Dict[Ch_Type]['State']['Var'] +
'"' +' "REALPAC' + Ch_Pac + ':PAC' + Ch_Pac + '.InputChannels/'
+ Ch_ID +Type_Dict[Ch_Type]['State']['Var'] + '" 257 1 0 0 0 0
0)\n')

if Ch_Type == 'DO' or Ch_Type == 'AO':

bridge_cfg.write('(bridge "REALPAC' + Ch_Pac + ':PAC' + Ch_Pac +
'.OutputChannels/' + Ch_ID +Type_Dict[Ch_Type]['Value']['Var'] +
'"' +' "SIMPAC' + Ch_Pac + ':PAC' + Ch_Pac + '.OutputChannels/'
+ Ch_ID +Type_Dict[Ch_Type]['Value']['Var'] + '" 257 1 0 0 0 0
0)\n')

bridge_cfg.write('(bridge "SIMPAC' + Ch_Pac + ':PAC' + Ch_Pac +
'.OutputChannels/' + Ch_ID +Type_Dict[Ch_Type]['State']['Var'] +
'"' +' "REALPAC' + Ch_Pac + ':PAC' + Ch_Pac + '.OutputChannels/'
+ Ch_ID +Type_Dict[Ch_Type]['State']['Var'] + '" 257 1 0 0 0 0
0)\n')

Figure 16 Python script for automatic configuration

57

Appendix 2 – IEC 61131-3 simulation programs

Figure 17. Pump control simulation template part 1

58

Figure 18. Pump control simulation template part 2

59

Figure 19. Pump control simulation template part 3

60

Figure 20. Pump control simulation template part 4

61

Figure 21. Pump control simulation template part 5

62

Figure 22. Bilge well simulation template

63

Figure 23. Bilge settling tank simulation program

