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Introduction
In the 1960s, the scientific community adopted the term “condensed matter” to identifystrongly correlated systems, in which physical properties are dictated by collective behav-ior of interacting atoms [1, 2]. Since then, condensed matter physics has been developingat a rapid pace, having become by far the largest subfield of physics by the end of thetwentieth century [3]. A lot of the research is focused specifically on magnetic materi-als, where the interactions between atoms depend on their magnetic moments. Theseinteractions are commonly studied using spectroscopic techniques such as inelastic neu-tron scattering (INS) and resonant inelastic X-ray scattering (RIXS), which are great toolsfor probing magnetic excitations. In these studies, much of attention is directed towardssymmetry and, especially, the spontaneous symmetry breaking that accompanies phasetransitions in condensed matter [4]. While INS and RIXS provide excellent data on mag-netic excitations, including dispersion in momentum space, they lack the sensitivity toseparate excitations whose energies are very similar [5]. Additionally, low-energy excita-tions below 1meV are inaccessible for RIXS and are rather hard to detect by INS. Theselimitations make it challenging to study weak interactions that may cause additional sym-metry breaking and induce the emergence of novel properties. Here at the National Insti-tute of Chemical Physics and Biophysics (KBFI), we use THz spectroscopy combined withlow temperatures and highmagnetic fields to fill this gap by studyingmagnetic excitationsin the energy range of 0.4 – 25meV (3 – 200 cm−1). With the highest spectral resolutionof 0.015meV (0.12 cm−1), our instruments exceed the energy resolution of INS by aboutan order of magnitude [5]. By combining a Fourier-transform interferometer with a su-perconducting magnet, we can study magnetic-field dependence of the THz spectrum ina steady-state magnetic field up to 17 T, which is comparable to the strongest steady-statefield available for the neutron experiments [6].

In this study, we utilize the precision of THz spectroscopy and its ability to accessthe low-energy spectrum of single-crystal samples to answer three separate questions:1) Does the spin-lattice coupling induce symmetry breaking in a frustrated pyrochloreTb2Ti2O7? 2) Can we improve our understanding of magnetic ordering in a rare-earthorthoferrite YFeO3? 3) Can we provide further evidence of the hidden E8 symmetry neara quantum critical point (QCP) in a quasi-one-dimensional Ising spin chain?
The first question is tightly intertwined with the problem of geometric frustration ofspins on a pyrochlore lattice [7], which leads to exotic spin states, such as spin ice and spinliquid. Tb2Ti2O7 is an especially puzzling compound, where dynamic interplay betweenthe spins and the lattice is suspected to impede the formation of any kind of long-rangeorder (LRO). If such coupling exists, it would result in very subtle and hard-to-detect fea-tures in the excitation spectrum. While earlier studies reported potential observationsof the dynamic spin-lattice effects [8, 9, 10], we aim to present unequivocal evidence bystudying the magnetic-field dependence of the spectrum, where these features shouldstand out more clearly.
The second questions is related to the spontaneous symmetry breaking that is respon-sible for multiferroic properties in certain materials [11]. These properties normally stemfrom the “weak” Dzyaloshinskii–Moriya (DM) interactions that are rather hard to quantify.Our goal is to study low-energy excitations to provide themost accurate description of themagnetic interactions in YFeO3, which is isostructural to some knownmultiferroics. A pre-cise description of these interactions opens up possibilities to better model multiferroiccompounds, boosting research towards potential future applications.
The final question concerns emergent symmetries close to the quantum critical pointof an Ising spin chain. Namely, under certain conditions, the Ising chain is predicted to
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feature excitations with the energy ratios from the E8 affine Toda field theory [12]. Herewe focus on two quasi-one-dimensional materials that incorporate Co2+ spin chains: aferromagnetic CoNb2O6 and an antiferromagnetic BaCo2V2O8. Although the E8 spectrumhas been found in CoNb2O6 by INS, the experiment was only partially successful, as mostof the excitation peaks remained obscured in the spectrum [13]. No such attempt hasever been reported for BaCo2V2O8. Observation of the full E8 spectrum, if successful,would not only mark the first ever experimental evidence of highly complex E8 symmetry,but would also demonstrate the power of integrable field theory to describe the complexsymmetry that emerges near the QCP.The results of thisworkwere published in theAmerican Physics Society’s journalPhysics
Review B, as well as presented at various conferences.
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1 Experimental setup
All measurements discussed in this work were performed at KBFI in Tallinn, Estonia. Thetransmissionof THz radiation through single-crystal sampleswasmeasuredusing aMartin-Puplett interferometer SPS-200, combined with either a liquid-helium-bath cryostat, or adilution refrigerator. In this chapter, we introduce both setups and describe the principlesof Fourier-transform spectroscopy, specifically with a Martin-Puplett interferometer.
1.1 TeslaFIR
TeslaFIR is a spectrometer that consists of a liquid-helium-bath cryostat and a Martin-Puplett interferometer SPS-200, and is schematically shown in Fig. 1. In TeslaFIR, thesample is placed in a vacuum chamber that is inserted into the bore of a 17-tesla super-conducting magnet. The THz light beam travels from the Martin-Puplett interferometervia light pipes through the sample and onto the detector (bolometer). The polarizationof the beam is controlled by a wire-grid polarizer directly in front of the sample, which isrotated by an external motor. To reduce the heat load onto the bolometer, a filter wheel

Sample

Liquid helium

Bolometer

Superconducting
magnet

THz light beam

Polarizer

Filter

Vacuum chamber

Martin-Puplett
interferometer

Figure 1: A schematic drawing of TeslaFIR. The temperature of the main bath is reduced by pumping
liquid helium through a λ -helix (not shown on the drawing), immersed into the liquid helium above
the superconducting magnet.

equipped with a set of low-pass filters with various cutoff frequencies is installed afterthe sample. The filter wheel is rotated by another external motor, which makes it easyto change the cutoff frequency during the experiment. The bolometer, separated fromthe liquid helium by a vacuum chamber, operates at the base temperature of 300mK,which is reached using a separate 3He cooling stage. In this stage, the boiling tempera-ture of liquid 3He is lowered by reducing its pressure with a charcoal sorption pump, kept
15



at approximately 5 K. The sample temperature can be further reduced to around 2.5 K bypumping on the liquid helium in the main bath of the cryostat through a λ -helix. This alsocools the magnet below the liquid helium superfluid transition temperature Tλ = 2.17 K,which is needed for the operation above 15 T.In TeslaFIR, we can measure transmission in both Faraday and Voigt configurations,where the appliedmagnetic field is either parallel or perpendicular to the direction of THzlight wavevector k. A comparison between Faraday and Voigt configurations is illustratedin Fig. 2. In Voigt configuration, we use twomirrors to change the direction of the incidentlight beam. An external motor then rotates the sample, which makes it possible to applythe magnetic field in any direction in the plane perpendicular to the k vector. Only twoincident light polarizations can be used in Voigt configuration, as the reflection off themirror surface would otherwise ruin the linear polarization.

Polarizer

Motor

Polarizer

Motor

Sample

Mirror

Motor

Mirror
Sample

H

Faraday Voigt

THz light beam THz light beam

Figure 2: A comparison between Faraday (left) and Voigt (right) configurations. An external motor
rotates the sample in the Voigt configuration, so that the magnetic field H can be applied in any
direction in the sample plane, perpendicularly to the rotation axis.

1.2 milliK-TeslaFIR
A schematic diagram of the spectrometer milliK-TeslaFIR, which consists of a dilution re-frigerator and a Martin-Puplett interferometer SPS-200, is shown in Fig. 3. In milliK-TeslaFIR, the sample is located at the end of the cold finger, which is inserted into thebore of a 12-tesla superconducting magnet. The cold finger is in contact with the mixingchamber of the 3He/4He cooling circuit, which is located in the inner vacuum chamber,submerged in liquid helium. Below 0.87 K, the 3He/4He mixture in the mixing chamberseparates into two phases: a 3He-rich phase at the top, which is almost pure 3He, and adilute phasewith 3He concentration of 6.6% at the bottom [14]. A diffusion pump continu-ously pumps 3He out of the dilute phase via still, which causes some of 3He to move fromthe concentrated phase into the dilute phase. The process of 3He crossing the bound-ary between two phases is endothermic, which means heat is removed from the mixingchamber, thus cooling the cryostat even further. 3He gas that passes through the diffusionpump is subsequently returned into the circuit via heat exchangers, which cool it beforeit enters the mixing chamber again. Due to the heating effect of the THz beam itself, thelowest possible sample temperature is, to an extent, dependent on the cutoff frequencyof a low-pass filter used in the measurement. With the cutoff of 20 cm−1, we can reach astable sample temperature as low as 150mK. A separate cooling stage, where the temper-
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Bolometer

Heat exchanger

Still

Mixing chamber

Sample

To the 3He pump

3He return
THz light beam

Mirrors

Inner vacuum
chamber

Liquid helium

Superconducting
magnet

Cold finger

Filter

Martin-Puplett
interferometer

Figure 3: A schematic drawing of milliK-TeslaFIR. The dark blue color in the mixing chamber and
still represents the dilute phase of the 3He/4He mixture, the light blue color in the mixing chamber
represents the 3He-rich phase. The top part of still and the pumping lines only contain 3He gas.

ature of liquid 3He is reduced by pumping on it with a charcoal absorber at 4.2 K, keepsthe bolometer at 400mK. No polarizer is used in the current setup.
1.3 Martin-Puplett interferometer
The Martin-Puplett interferometer used in all of our measurements is equipped with amercury lamp, which is the source of THz radiation, a wire-grid polarizer that acts as abeamsplitter, two rooftop mirrors, one stationary and one moving, and two linear polar-izers. A photo of the interferometer is shown in Fig. 4. Here, we are going to use Jonesvectors and Jones matrices [15] to describe the components and the work principle of theinterferometer.According to Jones calculus, a polarization state of a light beam can be described by atwo-component vector

E =

(
EV
EH

)
, (1)

where and EV = E1eiφ1 and EH = E2eiφ2 are the vertical and horizontal electric field com-ponents perpendicular to the direction of beam propagation. Linear polarizers that pro-
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Figure 4: A photo of the Martin-Puplett interferometer used in all of the measurements. The fol-
lowing components are visible in the photo: 1. mercury lamp, 2. off-axis parabolic mirror, 3. linear
polarizer, 4. beamsplitter, 5. moving rooftop mirror, 6. stationary rooftop mirror.

duce horizontally and vertically polarized beams are described by transmission matrices
TVP =

(
1 0
0 0

)
THP =

(
0 0
0 1

)
, (2)

such that the resulting polarization state upon transmission is
TVPE =

(
1 0
0 0

)(
EV
EH

)
=

(
EV
0

)
(3)

or
THPE =

(
0 0
0 1

)(
EV
EH

)
=

(
0

EH

)
. (4)

For a beam reflected off a plane surface, the directions of both EV and EH stay thesame relative to the instrument, but the direction of propagation changes. The conventionwe use here is that the vertical axis V is always normal to the instrument plane, with itspositive direction “up”, and the horizontal axis H is defined relative toV and the directionof propagation according to the right-hand rule, as shown in Fig. 5. Therefore, if thedirection of propagation changes, so does the positive direction of the horizontal axis, and
EH needs to be redefined. In our approach, EH always changes its sign upon reflection.The reflection matrix is then written as

R =

(
1 0
0 −1

)
, (5)

which produces the reflected beam
RE =

(
1 0
0 −1

)(
EV
EH

)
=

(
EV
−EH

)
. (6)

Using this notation, we can also define reflection matrices for the polarizers
RVP =

(
0 0
0 −1

)
, RHP =

(
1 0
0 0

)
. (7)
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Figure 5: Dependence of the reference frame orientation on the direction of beam propagation (in-
dicated by the wavevector k) in Jones calculus.

A rooftop mirror consists of two plane mirrors placed at a 90◦ angle relative to eachother, so that the beam is reflected twice, and the direction of propagation is reversed. Ifthe roof line is vertical, the beam reflection is equivalent to two consecutive reflections offa plane surface. The corresponding reflection matrix is the product of two plane surfacereflection matrices
RVRM = RR =

(
1 0
0 −1

)(
1 0
0 −1

)
=

(
1 0
0 1

)
. (8)

While a vertical rooftop mirror changes the direction of the horizontal component EH rel-ative to the instrument, the polarization stays the same relative to the direction of propa-gation, which is why the result is the identity matrix. To describe a rooftop mirror placedwith its roof line at an arbitrary angle, we can use the rotation matrix
R(θ) =

(
cosθ sinθ

−sinθ cosθ

)
, (9)

which projects any vector onto a new coordinate system that is rotated clockwise by θ , asshown in Fig. 6. In this case, we describe the reflection off a rooftop mirror with its roofline at an angle θ as three consecutive procedures: rotation of the coordinate systemby θ , reflection off a vertical rooftop mirror, and another rotation back to the originalorientation. The result is
Rθ

RM = R(θ)RVRMR(θ) =
(

cos2 θ − sin2
θ 2cosθ sinθ

−2cosθ sinθ cos2 θ − sin2
θ

)
. (10)

The second rotation back to the original orientation happens in the new coordinate sys-tem, where the propagation direction is reversed upon reflection, and therefore the samematrix for clockwise rotation R(θ) is used instead of R(−θ). The horizontal rooftop mir-ror is equivalent to θ = 90◦, which gives
RHRM =

(
−1 0
0 −1

)
. (11)

The wire-grid polarizer, which acts as a beamsplitter, is also described by a transmis-sion and a reflection matrix. If we define the angle between EV and the wires of thebeamsplitter as φ , then the respective matrices are found in a similar manner: we firstrotate the coordinate system by φ , then use the transmission/reflection matrix of a hor-izontal polarizer (with vertical wires), and afterwards perform another rotation. As the
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Figure 6: Rotation of a coordinate system by θ with a rotation matrix R(θ).

result, we get the matrices
T φ

BS = R(−φ)THPR(φ) =
(

sin2
φ −cosφ sinφ

−cosφ sinφ cos2 φ

)
(12)

and
Rφ

BS = R(φ)RHPR(φ) =
(

cos2 φ cosφ sinφ

−cosφ sinφ −sin2
φ

)
. (13)

Similarly to the case of a rooftop mirror, we multiply the reflection matrix RHP in Eq. (13)by the same clockwise rotation matrixR(φ) on the left, which is due to the change in thedirection of beam propagation. In case of transmission, however, we need to rotate thecoordinate system by−φ to return to the original reference frame.The beamsplitter in the Martin-Puplett interferometer is placed at the magic angle,
54.7◦ relative to the vertical axis, so that its projection appears to be at φ =±45◦ relativeto the polarization axis of the traveling beam. The transmission matrix is therefore

T±45◦
BS =

1
2

(
1 ∓1
∓1 1

)
, (14)

and the reflection matrix is
R±45◦

BS =
1
2

(
1 ±1
∓1 −1

)
. (15)

Lastly, we need to introduce a matrix that represents the phase change when a beamtravels a distance d, which is
D(d) = e−i 2πd

λ

(
1 0
0 1

)
, (16)

where λ is the wavelength.Now that we have defined Jones matrices for all components of the interferometer,we can describe the work principle according to the schematic diagram in Fig. 7:
1 An arbitrarily polarized parallel beamE1 =

(
EV
EH

)
is created by an off-axis parabolic

mirror, which directs the light from the source onto a linear polarizer.
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2 The beampasses through the linear polarizer, which creates a horizontally polarizedlight beam
E2 = THPE1. (17)

Using either vertically or horizontally polarized light leads to the same result, as longas both polarizers in Fig. 7 have the same polarization axis. The horizontally polar-ized beam then falls onto the beamsplitter, which has the projection of its wiresappearing at a +45◦ angle.
3 Half of the light is reflected off the beamsplitter with the polarization

E3 = R+45◦
BS E2 = R+45◦

BS THPE1. (18)
4 The reflected beam first travels the distance d1 between the beamsplitter and themoving rooftop mirror, gets reflected, and then travels the distance d1 again backto the beamsplitter. Both rooftop mirrors in the interferometer have a horizontalroof line, so the beam that comes back to the beamsplitter is described by

E4 = D(d1)RHRMD(d1)E3 = D(d1)RHRMD(d1)R+45◦
BS THPE1. (19)

5 While half of the beam is reflected off the beamsplitter, the other half is transmittedthrough, according to
E5 = T+45◦

BS E2 = T+45◦
BS THPE1. (20)

6 The transmitted beam is described similarly to the reflected one, as it first travelsthe distance d2 from the beamsplitter to the stationary rooftop mirror with a phaseshift, then gets reflected and travels back, such that
E6 = D(d2)RHRMD(d2)E5 = D(d2)RHRMD(d2)T+45◦

BS THPE1. (21)
7 For the beam E4, the beamsplitter wires still appear at a +45◦ angle. We can checkthat none of the light gets reflected as the beam comes back to the beamsplitter,since

R+45◦
BS E4 = R+45◦

BS D(d1)RHRMD(d1)R+45◦
BS THPE1 =

(
0
0

)
. (22)

Therefore, the initially reflected part of the beam is now transmitted according to
T+45◦

BS E4. The originally transmitted beam, however, now approaches the beam-splitter from the opposite direction, which makes the wires appear to be at a -45◦angle. We can check that none of the light gets transmitted,
T−45◦

BS E6 = T−45◦
BS D(d2)RHRMD(d2)T+45◦

BS THPE1 =

(
0
0

)
, (23)

and the beam is reflected according to R−45◦
BS E6. The two beams from 4 and 6recombine, resulting in

E7 =T+45◦
BS E4 +R−45◦

BS E6

=
[
T+45◦

BS D(d1)RHRMD(d1)R+45◦
BS THP +R−45◦

BS D(d2)RHRMD(d2)T+45◦
BS THP

]
E1

(24)
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8 Finally, the beam passes through another horizontal polarizer, which gives
E8 = THPE7

= THP

[
T+45◦

BS D(d1)RHRMD(d1)R+45◦
BS +R−45◦

BS D(d2)RHRMD(d2)T+45◦
BS

]
THPE1.

(25)

Polarizer
Polarizer Movingrooftop mirror

Stationary rooftop mirror

Light source
Off-axis parabolic mirror

Beamsplitter

Figure 7: A schematic drawing of a Martin-Puplett interferometer.

Inserting the Jonesmatrices for the interferometer components from Eqs. (2 – 16) intoEq. (25) results in
E8 =

(
0 0
0 1

)
×

1
4

[(
1 −1
−1 1

)(
e−i 2πd1

λ 0

0 e−i 2πd1
λ

)(
−1 0
0 −1

)(
e−i 2πd1

λ 0

0 e−i 2πd1
λ

)(
1 1
−1 −1

)
+

(
1 −1
1 −1

)(
e−i 2πd2

λ 0

0 e−i 2πd2
λ

)(
−1 0
0 −1

)(
e−i 2πd2

λ 0

0 e−i 2πd2
λ

)(
1 −1
−1 1

)]
×(

0 0
0 1

)(
EV
EH

)
,

(26)which, after performing thematrix multiplications, gives the output of the interferometer
Eout ≡ E8 =

1
2

EH

(
0

e−i 4πd1
λ + e−i 4πd2

λ

)
. (27)

22



We can further simplify Eq. (27) by using substitutions ∆ = d1−d2 and d̄ = d1 +d2 as
Eout =

1
2

EHe−i 2π d̄
λ

(
0

e−i 2π∆

λ + ei 2π∆

λ

)
= EHe−i 2π d̄

λ

(
0

cos 2π∆

λ

)
. (28)

Since the intensity of the output light is proportional to the square of the norm of theelectric field vector, we get
Iout ∝ |Eout|2 = |EH |2 cos2 2π∆

λ
=

1
2
|EH |2

(
1+ cos

4π∆

λ

)
, (29)

which means that at every wavelength λ the intensity is proportional to a cosine functionof the total path difference 2∆ between the two beams. The total intensity of the light,which includes all wavelengths that pass through the interferometer simultaneously, isfound by integrating Iout over the whole wavelength/frequency range [16]. The result is aconstant term I0 plus the variation term, which is a function of themoving mirror positioncoordinate x≡ ∆,
I(x) =

∫
∞

0
Iout(ν̃)dν̃ = I0 +

∫
∞

0
I(ν̃)cos(4πν̃x)dν̃ , (30)

where ν̃ = 1/λ is the wavenumber, normally expressed in cm−1, and I(ν̃) is the intensityvariation amplitude at a certain wavenumber. Performing a Fourier transform on Eq. (30)results in ∫
I′(x)cos

(
4πν̃

′x
)

dx =
∫ [∫

∞

0
I(ν̃)cos(4πν̃x)dν̃

]
cos
(
4πν̃

′x
)

dx

=
∫

∞

0
I(ν̃)δ (ν̃− ν̃

′)dν̃ = I(ν̃ ′),
(31)

where I′(x) = I(x)− I0 is a redefined intensity as a function of the moving mirror positionwithout the constant term. The result of Eq. (31) is the light intensity as a function ofwavenumber, or, in other words, the recorded spectrum.The Fourier transform technique combined with a moving mirror that continuouslychanges the path difference of the two beams makes it possible to detect all frequenciessimultaneously. The method increases energy throughput, as compared to spectrome-ters that are equipped with prisms or gratings to create monochromatic light. Using awire-grid polarizer as the beamsplitter eliminates the internal reflections, which other-wise occur inside other types of beamsplitters, such as a half-silvered mirror or a dielec-tric beamsplitter used in the Michelson interferometer. Such internal reflections result ina drop of the beamsplitter’s efficiency, which is periodic in frequency, with the period de-termined by its thickness. A dielectric beamsplitter’s efficiency also drops significantly atlow frequencies due to low reflectivity. Using a wire-grid beamsplitter, therefore, ensuresa uniform efficiency across a wide frequency range [17].
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2 Crystal-field excitations in Tb2Ti2O7

Pyrochlore oxides of the type A3+
2 B4+

2 O7, where A3+ is a rare-earth ion and B3+ is usuallya transition metal, attract immense interest due to the geometrical frustration (Fig. 8)inherent in the lattice of corner-sharing tetrahedra [7]. The frustration often results in theformation of novel phases at low temperature, such as spin glass, spin ice, or spin liquid.Tb2Ti2O7 is a special case of its own: with no LRO down to extremely low temperatures, it

Figure 8: Geometrical frustration of antiferromagnetically coupled spins in a triangle (left) or tetra-
hedron (right) [7].

has been attributed properties of a spin liquid, spin glass, as well as the so-called quantumspin ice. Additionally, there is clear evidence of the coupling betweenmagnetic and latticedegrees of freedom in Tb2Ti2O7, which produces exoticmagnetoelastic excitationsmodes,and may be important in explaining the absence of the LRO.
In our study, we address the question of coupling between crystal field (CF) excitationsand the phonon modes. Our goal is to observe the effect of such vibronic coupling on theTHz spectrum of Tb2Ti2O7 by applying the magnetic field in along the [111] direction andthus enhancing the splitting of the ground and the first excited CF doublets. In the fol-lowing chapter, we, first, show how the absorption coefficient is related to the magneticsusceptibility in electrically insulating magnetic materials, such as Tb2Ti2O7. We then de-rive the expression for the magnetic susceptibility based on the linear response theory.To calculate the absorption spectrum, it is necessary to determine the energy states ofthe system under consideration. Therefore, we utilize the crystal-field theory to find thecorrect Hamiltonian, which is used to calculate the energy states of magnetic Tb3+ ionsin Tb2Ti2O7. We propose a model that describes the subtle changes in the spectrum andrelates them to the vibronic effects, which cause the symmetry breaking in the crystal.Finally, we compare predictions made by the model to the experimental data from spec-troscopic measurements of Tb2Ti2O7 to assess its validity.

2.1 Response of a magnetic medium
2.1.1 Solution to Maxwell’s equations in an isotropic medium
First of all, we consider an electromagneticwavepropagating through an isotropicmedium.Electromagnetic processes in all media are governed by the Maxwell’s equations

∇ ·D = ρ (32)
∇×H = J+

∂D
∂ t

(33)
∇×E =−∂B

∂ t
(34)

∇ ·B = 0, (35)
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whereE is the electric field vector,B is themagnetic flux density, J= σ̂E is the free chargecurrent density (with σ̂ being the conductivity tensor), and ρ is the free charge density. Dand H are macroscopic quantities called the electric displacement and the magnetic fieldstrength vectors, which, in vacuum, are defined according to
D = ε0E

H =
1
µ0

B.
(36)

In a medium, however, these quantities are found by spatial averaging of the microscopiccharges and current densities, as outlined in [18, Chap. 6.6]. This procedure leads to whatis called the constitutive relations
D = ε0E+(P+ ...)

H =
1
µ0

B− (M+ ...) ,
(37)

where the parentheses include spatial averages of the bound charges and currents. Thus,
P is the electric polarization vector, which represents the macroscopically averaged elec-tric dipole, and M is the magnetization vector, which represents the macroscopically av-eraged magnetic dipole. Further terms, which include quadrupoles and higher order mo-ment densities, are generally much smaller than P and M, and, therefore, are omitted inthe current approach.Our goal here is to describe the linear response of a medium, where we assume thatthe electric polarization and magnetization are strictly proportional to the applied fields.Moreover, we assume that the medium is homogeneous and isotropic, which means thatthe proportionality factors χe and χm, called electric and magnetic susceptibilities, arescalars, such that

P = ε0χ
eE

M =
1
µ0

χ
mB.

(38)
Therefore, D and H are then also proportional to E and B according to

D = ε0E+P = ε0εE

H =
1
µ0

B−M =
1

µ0µ
B,

(39)

where we define dielectric permittivity and magnetic permeability of a medium as
ε =1+χ

e

µ =
1

1−χm .
(40)

The effect of magnetization in dia- and paramagnetic materials is small compared to theapplied field, so it is usually assumed that χm� 1 and
µ ≈ 1+χ

m. (41)
In case of magnetic insulating materials that we focus on in this work, it is usuallycorrect to assume that there are no free charges (ρ = 0) or free currents (J = 0) present.
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This considerably simplifies Eq. (33) and Eq. (34), which then take the form
∇×H = ε0ε

∂E
∂ t

(42)
∇×E =−µ0µ

∂H
∂ t

. (43)
Weare going to assume that the electromagnetic radiation propagating through themediumcan be decomposed into a set of plane waves with a frequency ω and a wavevector k ofthe form

H = H0e−i(ωt−k·r)

E = E0e−i(ωt−k·r).
(44)

This allows us to replace ∇× by k× and ∂

∂ t
by−iω , and rewrite Eqs. (42 – 43) as

k×H =−iωε0εE (45)
k×E = iωµ0µH. (46)

It is evident from Eqs. (45 – 46) that E⊥H⊥ k.Combining Eq. (45) with Eq. (46) results in a wave equation
k×k×H+

ω2

c2
0

εµH = 0, (47)

where c0 =
1√

ε0µ0
is the speed of light in vacuum. Let us rewrite the equation in tensor

form, using Levi-Civita symbol for the vector product,
ni jkk jnklmklHm +

ω2

c2
0

εµHi = 0 (48)
whereHi stands for the i-th component of theH vector in Cartesian coordinates. Note theEinstein’s notation of repeating indices aibi ≡∑

3
i=1 aibi used from now on. We now applythe property of invariance under cyclic permutation of the Levi-Civita symbol ni jk = nki jand the identity nki jnklm = δilδ jm−δimδ jl to write

kik jH j− k jk jHi +
ω2

c2
0

εµHi = 0. (49)
Rewriting k jk jHi = k2Hi = k2δi jH j andHi = δi jH j allows us to take the vector component
H j outside of the parentheses to obtain[

kik j−
(

k2 +
ω2

c2
0

εµ

)
δi j

]
H j = 0, (50)

which is a set of equations that only has a solution if
det
[

kik j−
(

k2 +
ω2

c2
0

εµ

)
δi j

]
= 0. (51)

Let us now define the refractive index
N =

c0

ω
k, (52)
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which, in general, is a complex quantity with its components N j = n j + iκ j. Using thisdefinition, we rewrite Eq. (51) as
det
[
NiN j−

(
N2 + εµ

)
δi j
]
= 0, (53)

where N = |N|. We can assume without the loss of generality that N ‖ z and, therefore,(
N2 + εµ

)(
N2 + εµ

)
εµ = 0, (54)

which has the solution
N =
√

εµ. (55)
As we are going to demonstrate, the absorption coefficient is directly related to theimaginary part of the refractive index. Specifically, in case of magnetic materials the ab-sorption is determined by the imaginary part of themagnetic susceptibility. Using Eq. (40),and assuming χm� 1, we can write

√
µ =

√
1

1−χm ≈ 1+
1
2

χ
m, (56)

which leads to the expression for the refractive index in terms of magnetic susceptibility
N ≈
√

ε

(
1+

1
2

χ
m
)
. (57)

2.1.2 Absorption coefficientThe absorption coefficient α is defined through the relation between incident light inten-sity I0 and transmitted light intensity I over a distance d

I = I0e−αd . (58)
The light intensity is given by the real part of the Poynting vector [18]

S = E×H, (59)
which, according to the cycle-average theorem [19], averages to

S̄ =
1
2

E×H∗, (60)
if both E and H have time-dependence of the form e−iωt . Here the star indicates thecomplex conjugate. From Eqs. (45 – 46) it follows that

|E|= ω

k
µ0µ|H|= k

ω
ε0ε|H|, (61)

which, using the definition of the phase velocity in the medium, c = ω/k, leads to theexpression for the light intensity
I =

∣∣S̄∣∣= 1
2

cµ0µ|H|2. (62)
For a plane wave propagating along the z axis, the magnetic field strength vector is equalto H = H0e−i(ωt−kz) = H0e−iω(t−Nz/c0), where we substitute k = ωN/c0 from Eq. (52).Therefore, the light intensity of a plane wave is

I =
1
2

cµ0µ|H0|2e−
2ω
c0

κz
= I0e−

2ω
c0

κz
, (63)
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where κ is the imaginary part of the refractive index and I0 is the light intensity at z = 0.Comparing the result to the definition of the absorption coefficient in Eq. (58) yields
α =

2ω

c0
κ. (64)

Inserting the expression for the refractive index from Eq. (57) and assuming that ε is a real-valued quantity, we arrive to the expression for the absorption coefficient as a function ofthe magnetic susceptibility
α =

ω
√

ε

c0
χ

m
I . (65)

2.2 Linear response theory
The following section is aimed at finding the expression for magnetic susceptibility in Eq.(65) based on the linear response theory, which is outlined in [20, Chap. 3]. In thisapproach, we assume that the Hamiltonian of a system consists of two parts: a time-independent part that describes the static state of the system, and a time-dependentpart that introduces a small perturbation. Any physical observable is then related to theperturbation term in the Hamiltonian via a response function. If we express an observ-able using the density-operator formalism, we can relate the response function to thetime-dependent part of the density operator. To find the explicit time dependence ofthe density operator, we are going to utilize the Heisenberg and the interaction pictureversions of this operator. Once we know the explicit time dependence of the density op-erator, we can express the response function in terms of the known observables and theireigenvalues. The result is the Kubo formula, from which we can arrive to the expressionfor the generalized susceptibility of the system. Finally, we will consider a specific caseof the magnetic susceptibility, where the external perturbation is the oscillating magneticfield of an incident electromagnetic wave.
2.2.1 Response functionWe start with an operator B̂ representing a physical observable. The ensemble average of
B̂ in thermal equilibrium can be expressed in the density-operator formalism as

〈B̂〉= Tr{ρB̂}, (66)
with Tr{ } standing for trace. The density operator is defined as

ρ =
1
Z

e−β Ĥ , (67)
where β = 1/kBT , kBis the Boltzmann constant, T is the temperature, Z = Tr{e−β Ĥ}is the grand partition function, and Ĥ is the effective Hamiltonian. We introduce a time-dependent external perturbation f (t) into the system by assuming that the Hamiltonianhas the form

Ĥ = Ĥ0 + Ĥ1, (68)
where Ĥ0 is the time-independent (static) part and

Ĥ1 =−Â f (t) (69)
is the time-dependent part, which is linear in perturbation f (t). The proportionality fac-tor Â here is a constant operator. This operator could, for example, be the magnetic mo-ment of the system, which couples to the time-dependent external magnetic field and
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introduces a correction to the Hamiltonian. As the result, both the partition function andthe density operator become time-dependent, and so does the ensemble average of thephysical observable B̂. Therefore, Eq. (66) now has the form
〈B̂(t)〉= Tr{ρ(t)B̂}. (70)

A linear response function ϕ is defined through the relation between 〈B̂(t)〉 and f (t)

〈B̂(t)〉−〈B̂〉=
∫ t

−∞

ϕBA(t− t ′) f (t ′)dt ′, (71)
where 〈B̂〉 = 〈B̂(t = −∞)〉. The response function only depends on the time difference
t− t ′, and the perturbation is assumed to vanish in the limit lim

t ′→−∞

f (t ′) = 0. On the other
hand, from Eq. (70) it directly follows that

〈B̂(t)〉−〈B̂〉= Tr{(ρ(t)−ρ0)B̂}, (72)
where ρ0 is the static density operator with Ĥ = Ĥ0. This implies that∫ t

−∞

ϕBA(t− t ′) f (t ′)dt ′ = Tr{(ρ(t)−ρ0)B̂}, (73)
which is the expression we will use to find the response function ϕBA.Next, to find the expression for ρ(t), we are going to utilize the Heisenberg pictureand the interaction picture. A time-dependent operator such as B̂(t) can be written in theHeisenberg picture as

B̂(t) =U†B̂U = eiĤt/h̄B̂e−iĤt/h̄, (74)
where B̂ is assumed to have no explicit time dependence. The operator U ≡ e−iĤt/h̄ isthe so-called time-evolution operator, which normally (in the Schrödinger picture) deter-mines the time evolution of an eigenstate. In the Heisenberg picture, however, the timeevolution is integrated in the operators, while the wave functions are static. Using therelation between B̂(t) and B̂ from Eq. (74), we can rewrite Eq. (70) as

〈B̂(t)〉= Tr{ρ(t)B̂}
= Tr{ρ(t)e−iĤt/h̄B̂(t)eiĤt/h̄}
= Tr{eiĤt/h̄

ρ(t)e−iĤt/h̄B̂(t)}
= Tr{ρH B̂(t)},

(75)

where we used the property of trace invariance under cyclic permutations and definedthe Heisenberg version of the density operator
ρH = eiĤt/h̄

ρ(t)e−iĤt/h̄, (76)
which has no explicit time dependence,

∂ρH

∂ t
= 0. (77)

The absence of time dependence in ρH is expected, because states are stationary in theHeisenberg picture, and the density operator is directly related to the states [21]. Now,
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using the Heisenberg version of the density operator, we can find the equation of motionfor ρ(t) according to
d
dt

ρ(t) =
d
dt

(
−eiĤt/h̄

ρHeiĤt/h̄
)

=− i
h̄

ĤeiĤt/h̄
ρHe−iĤt/h̄ + eiĤt/h̄

ρH
i
h̄

Ĥe−iĤt/h̄

=− i
h̄
[Ĥ,ρ(t)]

=− i
h̄
[Ĥ0,ρ(t)]−

i
h̄
[Ĥ1,ρ(t)].

(78)

In the interaction picture, the density operator is defined as
ρI(t) = eiĤ0t/h̄

ρ(t)e−iĤ0t/h̄, (79)
where the time-evolution operator is generated using just the static part of the Hamilto-nian Ĥ0, as opposed to the whole Hamiltonian in the Heisenberg picture. Also note thatboth ρI(t) and ρ(t) here are time-dependent. The equation of motion for ρI(t) is foundaccording to

d
dt

ρI(t) =
d
dt

(
eiĤ0t/h̄

ρ(t)e−iĤ0t/h̄
)

=
i
h̄

Ĥ0eiĤ0t/h̄
ρ(t)e−iĤ0t/h̄ + eiĤ0t/h̄ dρ(t)

dt
eiĤ0t/h̄ + eiĤ0t/h̄

ρ(t)
(
− i

h̄
Ĥ0

)
e−iĤ0t/h̄

= eiĤ0t/h̄
(

i
h̄
[Ĥ0,ρ(t)]+

dρ(t)
dt

)
e−iĤ0t/h̄,

(80)

which, after including the result from Eq. (78), simplifies to
d
dt

ρI(t) =−
i
h̄

eiĤ0t/h̄[Ĥ1,ρ(t)]e−iĤ0t/h̄. (81)
The equation of motion for the density operator in the interaction picture only dependson the perturbative part of the Hamiltonian, which is exactly what we need to isolate theresponse to the external perturbation f (t).To further isolate the linear response, we write the density operator as a sum of twoterms

ρ(t) = ρ0 +ρ1(t), (82)
where ρ0 is the time-independent part defined according to Eq. (67) with Ĥ = Ĥ0, and
ρ(t) is the additional contribution due to f (t). We insert this expression for ρ(t) into Eq.(81) and get

d
dt

ρI(t) =−
i
h̄

eiĤ0t/h̄[Ĥ1,ρ0 +ρ1(t)]e−iĤ0t/h̄

≈− i
h̄

eiĤ0t/h̄[Ĥ1,ρ0]e−iĤ0t/h̄,

(83)

where we drop the quadratic term Ĥ1ρ1 ∝ f (t)2. If we insert the definition of Ĥ1 from Eq.
(69) and use the commutation relation [e−iĤ0t/h̄,ρ0] = 0, we obtain

d
dt

ρI(t) =
i
h̄

eiĤ0t/h̄[Â,ρ0] f (t)e−iĤ0t/h̄

=
i
h̄
[eiĤ0t/h̄Âe−iĤ0t/h̄,ρ0] f (t) =

i
h̄
[ÂI(t),ρ0] f (t),

(84)
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where we defined a time-dependent version of the operator Â in the interaction picture
ÂI(t) = eiĤ0t/h̄Âe−iĤ0t/h̄, similar to Eq. (79).Now that we have the equation of motion for the density operator in the interactionpicture, we can go back to our original density operator ρ(t), and, according to the defi-nition of ρI in Eq. (79), write

ρ(t) = e−iĤ0t/h̄
ρI(t)eiĤ0t/h̄ = e−iĤ0t/h̄

(∫ t

−∞

d
dt ′

ρI(t ′)dt ′+ρ0

)
eiĤ0t/h̄

= e−iĤ0t/h̄
ρ0eiĤ0t/h̄ + e−iĤ0t/h̄

(
i
h̄

∫ t

−∞

d
dt ′

[ÂI(t ′),ρ0]dt
)

eiĤ0t/h̄

= e−iĤ0t/h̄eiĤ0t/h̄
ρ0 +

i
h̄

∫ t

−∞

d
dt ′

[e−iĤ0t/h̄ÂI(t ′)eiĤ0t/h̄,ρ0]dt ′

= ρ0 +
i
h̄

∫ t

−∞

[ÂI(t ′− t),ρ0] f (t ′)dt ′,

(85)

where we utilized ∫ t

−∞

d
dt ′

ρI(t ′)dt ′ = ρI(t ′)|t−∞ = ρI(t)−ρ0 (86)
and used the time-evolution operator to get

ÂI(t ′− t) = e−iĤ0t/h̄ÂI(t ′)eiĤ0t/h̄. (87)
Note that t is not the integration variable, and the time-evolution operator can be broughtinside the integral. We have thus derived the expression for ρ(t), which we plug into Eq.(73) to obtain∫ t

−∞

ϕBA(t− t ′) f (t ′)dt ′ =
i
h̄

Tr
{∫ t

−∞

[ÂI(t ′− t),ρ0]B̂ f (t ′)dt ′
}
. (88)

This result allows us to express the response function in terms of operators Â and B̂. Westart by rearranging the right-hand side of Eq. (88), using the property of trace invarianceunder cyclic permutations in addition to the commutation relation [e−iĤ0t/h̄,ρ0] = 0, andinserting the expression for ÂI(t ′− t) from Eq. (87) to get
Tr
{∫ t

−∞

[ÂI(t ′− t),ρ0]B̂ f (t ′)dt ′
}

=
∫ t

−∞

Tr{ÂI(t ′− t)ρ0B̂−ρ0ÂI(t ′− t)B̂} f (t ′)dt ′

=
∫ t

−∞

Tr{e−iĤ0t/h̄ÂI(t ′)eiĤ0t/h̄
ρ0B̂−ρ0e−iĤ0t/h̄ÂI(t ′)eiĤ0t/h̄B̂} f (t ′)dt ′

=
∫ t

−∞

Tr{ρ0eiĤ0t/h̄B̂e−iĤ0t/h̄ÂI(t ′)−ρ0ÂI(t ′)eiĤ0t/h̄B̂e−iĤ0t/h̄} f (t ′)dt ′

=
∫ t

−∞

Tr{ρ0[B̂I(t), ÂI(t ′)]} f (t ′)dt ′.

(89)

Then, we rewrite Eq. (88) as∫ t

−∞

ϕBA(t− t ′) f (t ′)dt ′ =
i
h̄

∫ t

−∞

Tr{ρ0[B̂I(t), ÂI(t ′)]} f (t ′)dt ′

=
i
h̄

∫ t

−∞

〈[B̂I(t), ÂI(t ′)]〉0 f (t ′)dt ′,
(90)
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where 〈〉0 stands for the ensemble average in thermal equilibrium, determined by Ĥ0according to Eq. (66). Finally, since both operators B̂I and ÂI in the interaction pictureare generated using the time-evolution operator with Ĥ0 in the exponent, we can dropthe indices and write the expression for the response function, also known as the Kuboformula [22],
ϕBA(t− t ′) =

i
h̄

θ(t− t ′)〈[B̂(t), Â(t ′)]〉. (91)
The step function

θ(x) =

{
0, if x < 0
1, if x≥ 0

(92)
is introduced to ensure the causality of the response function, i.e. that the responsevanishes for t ′ > t. Note that the response function φBA only depends on the difference
t− t ′ > 0, and we can therefore select t ′ = 0, and for t > 0 write

ϕBA(t) =
i
h̄
〈[B̂(t), Â]〉= i

h̄
Tr{ρ[B̂(t), Â]}. (93)

To calculate the response function, we need to know the eigenvalues and the eigen-states of the unperturbed Hamiltonian Ĥ0. Assuming that the states |α〉 are known, andtheir corresponding eigenvalues are Eα , we proceed to calculate the response functionby inserting the expression for B̂(t) from Eq. (74) into Eq. (93),
ϕBA(t) =

i
h̄

1
Z

Tr{e−β Ĥ [eiĤt/h̄B̂e−iĤt/h̄, Â]}

=
i
h̄

1
Z ∑

α

〈α|e−β Ĥ [eiĤt/h̄B̂e−iĤt/h̄, Â] |α〉

=
i
h̄

1
Z ∑

α

e−βEα 〈α|eiĤt/h̄B̂e−iĤt/h̄Â |α〉− e−βEα 〈α| ÂeiĤt/h̄B̂e−iĤt/h̄ |α〉

=
i
h̄

1
Z ∑

αα ′
e−βEα 〈α|eiĤt/h̄B̂

∣∣α ′〉〈α ′∣∣e−iĤt/h̄Â |α〉

− e−βEα 〈α| ÂeiĤt/h̄ ∣∣α ′〉〈α ′∣∣ B̂e−iĤt/h̄ |α〉 ,

(94)

where we used the property of an orthonormal basis ∑α ′ |α ′〉〈α ′| = 1. If an operator Ω̂has an eigenstate |ψ〉, such that Ω̂ |ψ〉 = a |ψ〉, then, according to the properties of bra
and ket vectors, 〈ψ|Ω̂† = a∗ 〈ψ|. This allows us to write 〈α|e−β Ĥ = e−βEα 〈α| and bringthe factor e−βEα out of the bracket in Eq. (94). Furthermore, the time-evolution operator
U = e−iĤt/h̄ satisfies e−iĤt/h̄ |α〉 = e−iEα t/h̄ |α〉. We therefore apply the operator to the
bra vectors according to 〈α|(e−iĤt/h̄

)†
=
(

e−iEα t/h̄
)∗
〈α|, which gives us 〈α|eiĤt/h̄ =

eiEα t/h̄ 〈α|. Using these relations, we can further simplify the response function as
ϕBA(t) =

i
h̄

1
Z ∑

αα ′
e−βEα{eiEα t/h̄ 〈α| B̂

∣∣α ′〉e−iE
α ′ t/h̄ 〈

α
′∣∣ Â |α〉

−〈α| Â
∣∣α ′〉eiE

α ′ t/h̄ 〈
α
′∣∣ B̂ |α〉e−iEα t/h̄}.

(95)

Since the sum is taken over all of the basis states, we can interchange α and α ′ in thesecond term and, defining the population factor nα = Z −1e−βEα , write
ϕBA(t) =

i
h̄ ∑

αα ′
〈α| B̂

∣∣α ′〉〈α ′∣∣ Â |α〉(nα −nα ′)e
i(Eα−E

α ′ )t/h̄. (96)
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The result is a specific case of the Kubo formula, which still describes the response ofa system to the external perturbation from Eq. (69), but now also includes the existingenergy states of the system, and the corresponding thermal populations.
2.2.2 Generalized susceptibility
Susceptibility χBA is the response to the external perturbation in the frequency domainthat satisfies

〈B̂(ω)〉= χBA(ω) f (ω), (97)
where 〈B̂(ω)〉 is the generalized Fourier transform defined as

〈B̂(ω)〉= lim
n→0+

∫
∞

−∞

(
〈B̂(t)〉−〈B̂〉

)
eiωte−n tdt. (98)

To find χBA, we insert the expression for 〈B̂(t)〉−〈B̂〉 from Eq. (71) and get
〈B̂(ω)〉= lim

n→0+

∫
∞

−∞

[∫ t

−∞

ϕBA(t− t ′) f (t ′)en t ′dt ′
]

eiωte−n tdt. (99)
Here we also replaced f (t) by f (t)en t with the limit n → 0+ to ensure that the externalperturbation is added smoothly. Next, we use the substitution τ = t− t ′ to write

〈B̂(ω)〉= lim
n→0+

∫
∞

−∞

[∫
∞

0
ϕBA(τ) f (t− τ)en (t−τ)dτ

]
eiωte−n tdt. (100)

Since f (t− τ) only depends on the difference t ′ = t− τ , we can make another variablechange and separate two integrals
〈B̂(ω)〉= lim

n→0+

∫
∞

0
ϕBA(τ)e−n τ eiωτ dτ

∫
∞

−∞

f (t ′)eiωt ′dt ′. (101)
Comparing the result to Eq. (97), we obtain the Fourier transform of f (t)

f (ω) =
∫

∞

−∞

f (t)eiωtdt (102)
and the susceptibility

χBA(ω) = lim
n→0+

∫
∞

0
ϕBA(t)eiωte−n tdt, (103)

which is the generalized Fourier transform of the response function. The positive integra-tion range makes it possible to use the form of ϕBA(t) without the step function from Eq.(93), with causality automatically ensured. Inserting the result from Eq. (96) into Eq. (103)and calculating the integral, we obtain the final expression for the susceptibility
χBA(ω) = lim

n→0+
∑
αα ′

〈α| B̂ |α ′〉〈α ′| Â |α〉
Eα ′ −Eα − h̄ω− ih̄n

(nα −nα ′). (104)
According to Eq. (65), the absorption coefficient is proportional to the imaginary part ofthe susceptibility. Thus, the absorption strength is proportional to the matrix elementsof the operators Ĵi between the states of a system. We can also see that the more thephonon energy h̄ω matches the transition energy Eα ′ −Eα , the stronger is absorption.
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2.2.3 Magnetic susceptibilityA specific example of the perturbation f (t) and the physical observable B̂ is, correspond-ingly, an oscillating magnetic field and magnetization. If we consider a plane wave of theform Bω = B0e−iωt interacting with a magnetic atom, which has a magnetic moment m,the perturbation term in the Hamiltonian is
Ĥ1 =−m ·Bω . (105)

The magnetic moment of an atom can be expressed thorough the total angular momen-tum J as
m =−gJ µB

h̄
J, (106)

in which case
Ĥ1 =

gJ µB

h̄
J ·Bω . (107)

Comparing this expression for Ĥ1 to Eq. (69) and taking f (t) = Bω gives the form ofthe operator Â
Âi =−gJ µB

h̄
Ĵi, (108)

where index i indicates the i-th component of a vector in Cartesian coordinates.Considering the relation between the external perturbation and the physical observ-able B̂ from Eq. (97), and taking into account the relation of the magnetization to theapplied field from Eq. (38), we conclude that the correct form of the operator B̂ is
B̂i = µ0Mi. (109)

Magnetization is defined as the magnetic moment per unit volume,
M≡ m

V
=− 1

V
gJ µB

h̄
J, (110)

whereV is the unit volume per atomwith magnetic moment m. This provides the expres-sion of the physical observable B̂ in terms of the angular momentum operator
B̂i =− 1

V
µ0gJ µB

h̄
Ĵi. (111)

Finally, inserting Eq. (108) and Eq. (111) into the expression for general susceptibility inEq. (104), we obtain the tensor components χm
i j of the magnetic susceptibility

χ
m
i j =

µ0(gJ µB)
2

V
lim
n→0+

∑
αα ′

nα −nα ′

Eα ′ −Eα − h̄ω− ih̄n
Ji

αα ′J
j
α ′α , (112)

where Ji
αα ′ = 〈α| Ĵi |α ′〉/h̄ is the matrix element of the total angular momentum of anatom between the states |α〉 and |α ′〉.

2.3 Crystal field theory
Our goal here is to describe the CF Hamiltonian in terms of Steven’s operators. We firstconsider the electrostatic potential in a crystalline environment, whichweexpress in termsof spherical harmonics. We then proceed to substitute the spherical harmonics by thereal-valued tesseral harmonics, which we express in Cartesian coordinates. These, in turn,have a direct correspondence to the Steven’s operators, which allows us to express the CF
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Hamiltonian in the desired form. An alternative approach would be to move directly fromspherical harmonics to the spherical tensor operators, and thus arrive to the Wybourneoperators, but we are not going to consider this approach here. It is possible to deriveWybourne operators directly from Stevens operators and vice versa, as outlined in [ IV,Appendix B].To describe energy levels of an ion inside a crystalline environment, we approximateions around it as point charges. Thus the electrostatic potential at the location r= (r,θ ,φ)is
V (r,θ ,φ) = ∑

j

q j

|(R j− r)| , (113)
where q j are the surrounding point charges at locations R j = (R j,θ j,φ j). If the anglebetween r and R j is ω , then we can apply the expansion [23]

1
|(R j− r)| =

∞

∑
n=0

rn

R(n+1)
j

P0
n (cosω), (114)

where R j > r is assumed. P0
n are the Legendre polynomials defined as

P0
n (µ) =

1
2nn!

dn

dµn

(
µ

2−1
)n
. (115)

According to the spherical harmonic addition theorem [24], the Legendre polynomials canalso be written as
P0

n (cosω) =
4π

(2n+1)

n

∑
m=−n

(−1)mY−m
n (θ j,φ j)Y m

n (θ ,φ). (116)
The spherical harmonics Y m

n are defined as

Y m
n (θ ,φ) = (−1)(m+|m|)/2

√
(2n+1)

4π

(n−|m|)!
(n+ |m|)!P|m|n (cosθ)eimφ , (117)

where, for m 6= 0,
P|m|n (µ) = (1−µ

2)|m|/2 d|m|

dµ |m|
P0

n (µ). (118)
Combining Eqs. (113 – 114) and Eq. (116) leads to the expression of the electrostatic poten-tial

V (r,θ ,φ) = ∑
j

q j

∞

∑
n=0

rn

R(n+1)
j

n

∑
m=−n

4π

(2n+1)
(−1)mY−m

n (θ j,φ j)Y m
n (θ ,φ). (119)

In order to avoid imaginary quantities in the potential, it is convenient to define tesseralharmonics [25] according to
Zn0 = Y 0

n

Znm =
1√
2

(
Y−m

n +(−1)mY m
n
)
, m > 0

Znm =
i√
2

(
Y m

n − (−1)mY−m
n
)
, m < 0.

(120)
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The Legendre polynomials then take the form
P0

n (cosω) =
4π

(2n+1)

n

∑
m=−n

Znm(θ j,φ j)Znm(θ ,φ), (121)
and the potential is

V (r,θ ,φ) = ∑
j

q j

∞

∑
n=0

rn

R(n+1)
j

n

∑
m=−n

4π

(2n+1)
Znm(θ j,φ j)Znm(θ ,φ). (122)

We can separate the sum over all surrounding charges into a parameter
γnm = ∑

j

4π

(2n+1)
q j

Znm(θ j,φ j)

R(n+1)
j

, (123)
and then rewrite the potential more conveniently as

V (r,θ ,φ) =
∞

∑
n=0

n

∑
m=−n

rn
γnmZnm(θ ,φ). (124)

To use the Stevens’ “operator equivalents” method, the tesseral harmonics Znm (and thepotential) are expressed in the Cartesian coordinates
V (x,y,z) =

∞

∑
n=0

n

∑
m=−n

rn
γnmZnm(x,y,z). (125)

The symmetry of the system determines which terms should be considered in the sum.For example, if the system is symmetric under inversion, then the terms with odd n will allbe equal to zero. Some of the more commonly occurring tesseral harmonics are explicitlylisted in Table 1. It is clear from the table that all of Znm have the form
Znm =C

fnm

rn , (126)
whereC is a constant and fnm(x,y,z) is a function of Cartesian coordinates.Whenwe consider the Hamiltonian of an ion in a crystal field, we sumup contributionsfrom every optically active electron inside the potential according to

ĤCF = ∑
i

qiV (x̂i, ŷi, ẑi) =−e∑
i

V (x̂i, ŷi, ẑi), (127)
where e is the elementary charge, xi,yi, and zi are the coordinates of an i-th electron, and
x̂i, ŷi, and ẑi are the corresponding position operators. We therefore obtain the Hamil-tonian proportional to ∑i fnm(x̂i, ŷi, ẑi). According to the Stevens’ “operator equivalents”method [26], if we evaluate the CF Hamiltonian between states of constant angular mo-mentum J, then there will be a simple relation between the matrix elements of operators
∑i fnm(x̂i, ŷi, ẑi) and the angular momentum operators Ĵx, Ĵy, Ĵz. Specifically,〈

J,m′J
∣∣∑

i
fnm(x̂i, ŷi, ẑi) |J,mJ〉 ≡ θn 〈rn〉

〈
J,m′J

∣∣Om
n |J,mJ〉 ,

or
∑

i
fnm(xi,yi,zi)≡ θn 〈rn〉Om

n , (128)
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Table 1: Some of the commonly occurring tesseral harmonics Znm [25] with r2 = x2 + y2 + z2.

Z20 =
1
4

√
5
π

[
(3z2− r2)

r2

]
Z22 =

1
4

√
15
π

[
(x2− y2)

r2

]
Z40 =

3
16

√
1
π

[
(35z4−30z2r2 +3r4)

r4

]
Z42 =

3
8

√
5
π

[
(7z2− r2)(x2− y2)

r4

]
Z43 =

3
8

√
70
π

[
z(x3−3xy2)

r4

]
Z4−3 =

3
8

√
70
π

[
z(3x2y− y3)

r4

]
Z44 =

3
16

√
35
π

[
(x4−6x2y2 + y4)

r4

]
Z4−4 =

3
16

√
35
π

[
4(x3y− y3x)

r4

]
Z60 =

1
32

√
13
π

[
(231z6−315z4r2 +105z2r4−5r6)

r6

]
Z62 =

1
64

√
2730

π

[
(16z4−16(x2 + y2)z2 +(x2 + y2)2)(x2− y2)

r6

]
Z63 =

1
32

√
2730

π

[
(11z3−3zr2)(x3−3xy2)

r6

]
Z64 =

21
32

√
13
7π

[
(11z2− r2)(x4−6x2y2 + y4)

r6

]
Z66 =

231
64

√
26

231π

[
(x6−15x4y2 +15x2y4− y6)

r6

]

where Om
n are the Stevens’ operator equivalents, commonly known as Stevens operators,which are the combinations of operators Ĵx, Ĵy, Ĵz. Some of them are explicitly shown inTable 2. To find the correct form of Om

n , the position operators in ∑i fnm(x̂i, ŷi, ẑi)must bereplaced by the corresponding angular momentum operators Ĵx, Ĵy, Ĵz, while accountingfor their commutation relations. θn is a tabulated numerical factor [25], usually calledthe Stevens factor; it depends on the quantum number n, the angular momentum J, andthe number of electrons in the sum of Eq. (127). 〈rn〉 is the radial integral of the wavefunction, which is hard to calculate theoretically, and is usually taken as another numericalparameter.If we define a parameter
Am

n =−Ceγnm, (129)
where C is the same constant as in Eq. (126), then from Eqs. (125 – 128) we obtain theHamiltonian

ĤCF =
∞

∑
n=0

n

∑
m=−n

Am
n 〈rn〉θnOm

n . (130)
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Table 2: Some of the commonly occurring Stevens operators Om
n [25], where J± = Jx± iJy.

O0
2 = 3J2

z − J(J+1)

O2
2 =

1
2
[
J2
++ J2

−
]

O0
4 = 35J4

z −30J(J+1)J2
z +25J2

z −6J(J+1)+3J2(J+1)2

O2
4 =

1
4
[
(7J2

z − J(J+1)−5)(J2
++ J2

−)+(J2
++ J2

−)(7J2
z − J(J+1)−5)

]
O3

4 =
1
4
[
Jz(J3

++ J3
−)+(J3

++ J3
−)Jz

]
O−3

4 =
−i
4
[
Jz(J3

+− J3
−)+(J3

+− J3
−)Jz

]
O4

4 =
1
2
[
J4
++ J4

−
]

O−4
4 =

−i
2
[
J4
+− J4

−
]

O0
6 = 231J6

z −315J(J+1)J4
z +735J4

z +105J2(J+1)2J2
z

−525J(J+1)J2
z +294J2

z −5J3(J+1)3 +40J2(J+1)2−60J(J+1)

O3
6 =

1
4
[
(11J3

z −3J(J+1)Jz−59Jz)(J3
++ J3

−)

+ (J3
++ J3

−)(11J3
z −3J(J+1)Jz−59Jz)

]
O4

6 =
1
4
[
(11J2

z − J(J+1)−38)(J4
++ J4

−)

+ (J4
++ J4

−)(11J2
z − J(J+1)−38)

]
O6

6 =
1
2

[
J6
++ J6

−
]

Both θn and 〈rn〉 depend on the shape of the electron cloud around the ion inside thecrystal field, while Am
n describes the crystalline environment created by the surroundingcharges. However, all three parameters are often combined into one, which is then nu-merically fitted to the experimental spectra. Therefore, with the crystal-field parameter

Bm
n = Am

n 〈rn〉θn, the Hamiltonian can be expressed in a simple form

ĤCF = ∑
nm

Bm
n Om

n . (131)

It is possible to determine which terms are equal to zero in Eq. (131) based on thesymmetry of the system. The symmetry of the electron cloud of a magnetic ion dictatesthe symmetry of the Hamiltonian, and so does the distribution of surrounding charges.Thus, if magnetic properties of an ion are determined by the unpaired electrons withthe orbital quantum number l, it follows from the Wigner–Eckart theorem [27] that theStevens factor θn is equal to zero, unless n≤ 2l and n is even [28]. For example, only terms
n = 0,2,4,6 matter for the f -electrons with l = 3. Moreover, the Hamiltonian must beinvariant under the same symmetry transformations that preserve the system. Therefore,some of the remaining CF parameters Bm

n will also be zero, depending on the symmetryof the surrounding crystal field. The list of non-zero CF parameters up to n = 6 for eachsymmetry group can be found in [29, Table 3].
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2.4 Crystal structure and magnetic ordering of Tb2Ti2O7

Both Tb3+ and Ti4+ ions in Tb2Ti2O7 individually form a lattice of corner-sharing tetra-hedra [30], often referred to as a pyrochlore lattice, shown in Fig. 9. The structure isdescribed by the cubic Fd3̄m space group, and the axes [111], [1̄1̄1], [11̄1̄], and [1̄11̄] areall equivalent. The magnetic properties of Tb2Ti2O7 are determined by the Tb3+ ions, asall the electron shells of Ti4+ and O2− are filled and thus are not magnetic.

[010]

[100]

[001]

[111]

[111]

Figure 9: Tb3+ ions (spheres) on the pyrochlore lattice of corner-sharing tetrahedra with marked
crystallographic axes.

Based on CF calculations [31] and INS studies [32], the strong easy-axis anisotropy con-fines the magnetic moments J of Tb3+ ions at low temperatures to point along the cubic
[111] axis (or its equivalent), i.e. in our out of the center of a tetrahedron. This effectivelymakes Tb2Ti2O7 an Ising system, where spins can only have two states: pointing parallelor antiparallel to [111]. In the presence of the strong easy-axis anisotropy, the macro-scopic ordering depends on the sign of the exchange interaction parameter. In case of theferromagnetic exchange, the ground state of such a system is highly degenerate and fea-tures a “two-in-two-out" spin configuration at every tetrahedron (the so-called spin ice),while the antiferromagnetic exchange produces a nondegenerate “all-in/all-out" arrange-ment [33]. The effective exchange interactions in Tb2Ti2O7 are antiferromagnetic, whichcan be deduced from the negative Curie-Weiss temperature [31]. However, even thoughTb2Ti2O7 develops short-range correlations below 100 K, it fails to achieve any LRO downto at least 50mK [34, 35] and, instead, exhibits properties of a spin liquid [36].One possible explanation why Tb2Ti2O7 fails to develop a LRO is that the first exciteddoublet of the CF levels is separated from the ground state doublet by only 1.5meV. Forcomparison, the separation in known spin-ice materials Ho2Ti2O7 and Dy2Ti2O7 is of theorder of 20meV [37, 38, 39]. The small separation allows for the admixture of the excitedand the ground state doublets [40], which effectively turns Tb2Ti2O7 into a frustratedIsing ferromagnet with quantum fluctuations transverse to the cubic [111] axis, otherwisereferred to as quantum spin ice. It was proposed that the quantum spin ice state wouldfeature a magnetization plateau at 20mKwith magnetic field applied along [111] [41], butso far no experiment has been able to confirm its existence [42, 43, 44, 45, 46].Additionally, the absence of a LRO could be related to the interplay between mag-netic and lattice degrees of freedom. Early studies [47] report large magnetostriction inTb2Ti2O7 at low temperatures. Structural changes upon application ofmagnetic field havebeenobserved by X-ray diffraction [48] andpolarized INS [49]. Whilemagnetostriction canbe explained from a single ion perspective, it appears that the situation is more complex,
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as the magnetoelastic effects persist in the spin-liquid phase. Remarkably, it has beendemonstrated by INS [8, 9] through comparing dispersions of magnetic and phononlikemodes in the excitation spectrum that Tb2Ti2O7 supports hybrid magnetoelastic excita-tions. The phenomenon has also been observed in a THz spectroscopy study [10], whichaddressed the intensity dependence on the incident light polarization of several spectralcomponents in a broad excitation region.
2.5 Vibronic coupling model in Tb2Ti2O7

Terbium ions Tb3+ in Tb2Ti2O7 are in a 7F6 state [31], meaning that there are eight f -electrons, six of which are unpaired. The orbital quantum number of the electron cloudis L = 3 and the total spin number from the unpaired electrons is S = 3. Therefore, thetotal angular momentum quantum number is J = L+S = 6, according to the LS couplingscheme.Each terbium ion is surrounded by eight oxygen ions, as shown in Fig. 10, with thelocal symmetry of the 3̄m point group, or D3d in Schoenflies notation. If the cubic [111]axis, which corresponds to the threefold symmetry axis of D3d , is selected to be along z,then the CF Hamiltonian from Eq. (131) that is invariant under all corresponding symmetrytransformations is
ĤCF = B0

2O0
2 +B0

4O0
4 +B3

4O3
4 +B0

6O0
6 +B3

6O3
6 +B6

6O6
6. (132)

The two lowest-energy states of such a system are two doublets with Eg symmetry, sepa-rated by 1.5meV [9].

Figure 10: LocalD3d oxygen (red) environment around every terbium (purple) ion in Tb2Ti2O7, where
the cubic [111] axis corresponds the threefold rotation symmetry axis.

When we apply the magnetic field, we introduce a Zeeman interaction term in theHamiltonian
ĤZ =−gJ µBµ0H ·J. (133)

Under the application of the magnetic field, the magnetic moments of Tb3+ ions reorienttowards the field. Applying the field along the [111] direction results in a “3-in/1-out, 3-out/1-in" configuration [46] shown in Fig. 11. There are then two types of Tb3+ sites inevery tetrahedron: site 1 where the magnetic moment is oriented along the field, andthree equivalent sites 2, 3, 4 with magnetic moment at an angle relative to the field. Thetotal Hamiltonian for each tetrahedron is
Ĥ =

4

∑
k=1

Ĥk
CF + Ĥk

Z , (134)
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where we assume no interaction between Tb3+ ions.

Figure 11: Magnetic moments of Tb3+ (shown by arrows) in a tetrahedron at the positions 1, 2, 3,
and 4 with the magnetic field applied along the [111] axis.

A low-energy phonon that can couple to the first two doubly degenerate energy levelsis an acoustic phonon, which has T1u symmetry of the m3̄m (Oh in Schoenflies notation)point group [9, 10]. The coupling to the acoustic phonon occurs through quadrupolar(n = 2) Stevens operators Ok
2, where k =±1,±2. Another phonon that can couple to thefirst excited doublet is an optical phonon of T2u symmetry [10], which couples througha quadrupolar operator O0

2. Therefore, the symmetry-restricted Hamiltonian associatedwith the vibronic coupling of phonons to the crystal-field energy levels is [IV]
Ĥvib = D0

2O0
2 +D1

2(O
1
2 +O−1

2 )+D2
2(O

2
2 +O−2

2 ). (135)
Note that the operatorO0

2 is already present in theHamiltonian fromEq. (134), so couplingto the optical phonon does not cause any symmetry breaking of the system, but merelyshifts its energy levels. It is the coupling to the acoustic T1u phonon that breaks the sym-metry, so that Tb3+ ions at the positions 2, 3, and 4 become nonequivalent. As the result,the total Hamiltonian that includes the vibronic coupling,
Ĥ =

4

∑
k=1

Ĥk
CF + Ĥk

Z + Ĥk
vib, (136)

will feature different eigenenergies and, hence, new features in the absorption spectrum.
2.6 Tb2Ti2O7 results and discussion
A single crystal of Tb2Ti2O7 was grown by the floating zonemethod at ICMMOof the Paris-Saclay University, CNRS. A photo of the sample that was used for the measurement, cutfrom the larger single crystal, is shown in Fig. 12. We filed downone of the sample surfacesat an angle of 2◦ in order to create a wedge shape and suppress interference fringes inthe spectrum. The bottom surface of the sample is perpendicular to the [111] axis, andthe average thickness is close to 0.22mm.We measured the absorption spectrum using TeslaFIR setup at 3 K and 60 K in thefrequency range of 5 – 80 cm−1, with the result shown in Fig. 13. Tb2Ti2O7 features verystrong absorption above 80 cm−1, with practically no transmitted signal. The signal isalready cut off at around 73 cm−1 at 60 K, so there is no spectrumplotted in that frequencyrange. The magnetic field up to 15 T was applied along the [111] crystallographic axis.We observe a strong absorption region ν1 between 10 cm−1 and 20 cm−1 in zero field atboth temperatures. The absorption gets weaker as the temperature increases. ν1 shifts
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Figure 12: Thewedge-shaped Tb2Ti2O7 sample used in themeasurement. The average sample thick-
ness is close to 0.22mm, and the bottom surface is perpendicular to the cubic [111] axis.

towards higher energies with the application of themagnetic field, reaching 30 – 40 cm−1

in 15 T. Another strong absorption peak ν2 is visible in the range of 70-80 cm−1, which alsoseems to shift towards higher energies, as the magnetic field is applied. More peaks arevisible above 4 T: two hardening modes ν3 and ν4, one softening mode ν5, and anothersoftening mode ν6, which is only visible at 60 K. As we see in Fig. 13(a), the differencebetween two polarizations at 3 K is negligible. There is no visible difference between twopolarizations at 60 K, and, therefore, only one of them is plotted.
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Figure 13: Magnetic-field dependence of the absorption spectrum of Tb2Ti2O7 [IV] at a) 3 K and b)
60 K. The visible absorption modes are labeled ν1,...,ν6. Red and blue line colors in panel a) corre-
spond to the two orthogonal incident light polarizations Hω ‖ [1̄1̄2] and Hω ‖ [1̄10], respectively.
Only the polarization Hω ‖ [1̄1̄2] is shown in panel b).

We can reproduce the experimental spectrum based on the linear response theory,outlined in Chapter 2.2. First of all, we calculate the absorption coefficient, which is pro-portional to the imaginary part of the susceptibility from Eq. (112), using the eigenstatesof the CF Hamiltonian without any vibronic coupling from Eq. (132). Most of the CF pa-rameters are taken from the literature [9], and only B0
2 and B4

2 are adjusted to matchthe transition frequency at 14 cm−1. The full list of the parameter values is presentedin [IV, Table IV]. The theoretically calculated spectrum with the selected linewidth of2.4 cm−1 is shown is Fig. 14. It is clear that the main features of the spectrum, such asthe modes ν1,...,ν6 and their field dependence, are very well reproduced. The strongest
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absorption mode ν1 originates from Tb3+ ions at positions 2 – 4, which make a transitionfrom the ground CF level to the first excited level. ν2 is the transition to the second excited

Figure 14: Theoretically calculated spectrum of Tb2Ti2O7 without the vibronic coupling (c)-(d), com-
pared to the measured spectrum (a)-(b). The 3 K result is shown on the left, and the 60 K result is on
the right.

CF level, which includes contributions from all four ions. The weaker modes appear fromtransitions between different branches of the split CF doublets due to the applied mag-netic field, with different contributions from Tb3+ ions at position 1 and ions at positions2 – 4. There are, however, some modes predicted at 60 K, which we do not observe inthe measurement. The reason behind their absence could be the combination of theirsmall intensity and weak field dependence, which leads to their disappearance after thebaseline subtraction procedure.
To study the vibronic coupling effect on the THz spectrum, we calculate the absorp-tion coefficient using eigenstates of the full Hamiltonian from Eq. (136), which includes

Ĥvib. We use a smaller linewidth of 0.5 cm−1 to better distinguish small features in thespectrum. The contributions from quadrupolar operators O±1
2 and O±2

2 are separated bykeeping either D1
2 or D2

2 equal to zero. The theoretically calculated spectrum with the vi-bronic coupling through O±1
2 is shown in Fig. 15, while the effect of O±2

2 is plotted in Fig.16. Panels (a) and (b) are same for both figures. With Ĥvib added to the total Hamiltonian,Tb3+ ions at positions 2 – 4 are no longer equivalent, which results in the splitting of sev-eral absorption modes in the spectrum. Specifically, a very clear splitting of the mode ν4is visible in Fig. 15 (c) and Fig. 15 (e), and some splitting of the mode ν3 can be seen in Fig.15 (c), Fig. 15 (e), Fig. 16 (g), and Fig. 15 (i). O±1
2 appears to have a larger overall effect on

the spectrum than O±2
2 , but the difference is, unfortunately, hard to quantify.

Although the change in the spectrum due to the vibronic coupling is relatively small,we can clearly see from comparison of the calculated absorption spectrum to the exper-imental result from Fig. 14 (a) that these features are, in fact, present in our measured
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Figure 15: The effect of the vibronic coupling through O1
2 on the theoretically calculated spectrum of

Tb2Ti2O7 for both polarizations at 3 K (top) and 60 K (bottom) with D2
2 = 0 [IV].

data. The absorption lines at 60 K are generally wider and less intense, which is probablywhy the vibronic effect cannot be clearly seen in the measured spectrum at that temper-ature. The low-temperature THz spectrum of Tb2Ti2O7 is very well reproduces by a rathersimple Hamiltonian that includes the CF and Zeeman interaction. However, we can con-clude that the spin-lattice effects in the form of the vibronic coupling are clearly present inthis material, exhibiting a subtle, but clear influence on the spectrum. The fine features ofthe spectrum cannot be fully reproduced without including the vibronic coupling. There-fore, we support the evidence that coupling between CF levels with the phonon modesthrough quadrupolar operators must be considered in the study of the phase diagram ofTb2Ti2O7, and may be important at explaining the lack of magnetic ordering at tempera-tures below 1 K. Finally, by studying the magnetic-field dependence of the spectrum up to15 T, we were able to refine the crystal-field parameters in the CF Hamiltonian.
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Figure 16: The effect of the vibronic coupling through O2
2 on the theoretically calculated spectrum of

Tb2Ti2O7 for both polarizations at 3 K (top) and 60 K (bottom) with D1
2 = 0 [IV].
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3 Spin-wave excitations in YFeO3
Spin-wave (SW) theory often finds its application in the study of multiferroic materials. Inthese materials, the coupling between electric and magnetic degrees of freedom allowfor the magnetic ordering in a material to be tuned by an external electric field, while theelectric polarization is sensitive to the applied magnetic field. Multiferroics are impor-tant from both scientific and, potentially, industrial point of view, as they may eventuallyfind application in recording devices or spintronics [50, 51]. One class of materials thathave been reported to feature multiferroic properties are rare-earth orthoferrites, suchas GdFeO3, Dy0.7Tb0.3FeO3, or Dy0.75Gd0.25FeO3 [52, 53]. Using the SW theory, it is pos-sible to model interactions between magnetic moments, and rather precisely describemultiferroic effects.Here we demonstrate the application of the SW theory to YFeO3, which is not a mul-tiferroic itself, but has the similar orthorhombic structure. It is a relatively simple systemwith only Fe3+ ions carrying a finite magnetic moment. Nevertheless, being able to ac-curately describe the physics within materials such as YFeO3 is truly important, becausethey serve as a stepping stone towards understanding isostructural multiferroics. Addi-tionally, YFeO3 features a very high Néel temperature of around TN = 644 K [54, 55, 56],which could potentially be key to room-temperature applications. Our aim is to study themagnetic-field dependence of the two low-energy excitations using THz spectroscopy. Byapplying the magnetic field along all three crystallographic directions and following themagnetic-field dependence of these excitation modes, we are able to determine interac-tion parameters between spins and the spin configuration of YFeO3 more accurately thanit has ever been done before.
3.1 Linear spin-wave theory
3.1.1 Raising and lowering operators of a harmonic oscillatorA classical harmonic oscillator in one dimension is described by the Schrödinger equation(

p̂2

2m
+

1
2

mω
2x̂2
)

ψ = Eψ, (137)
with the solution for the energy levels

En = h̄ω

(
n+

1
2

)
. (138)

Here ω is the angular oscillation frequency, m is the mass of a particle, p̂ and x̂ are themomentum and the position operators, and n = 0,1,2, . . . is called the principle quantumnumber.The Hamiltonian can alternatively be expressed as
Ĥ =

p̂2

2m
+

1
2

mω
2x̂2 = h̄ω

[(
x̂
x0
− i

p̂
p0

)(
x̂
x0

+ i
p̂
p0

)
+

1
2

]
, (139)

where x0 =
√

2h̄/mω and p0 =
√

2h̄mω are the characteristic length and momentum forthe system. This expression leads to the definition of operators
â =

x̂
x0

+ i
p̂
p0

,

â† =
x̂
x0
− i

p̂
p0

,

(140)
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such that
Ĥ = h̄ω

(
â†â+

1
2

)
. (141)

Operators â† and â satisfy the commutation relations[
Ĥ, â†]= h̄ω â†[
Ĥ, â

]
=−h̄ω â[

â, â†]= 1

(142)

and define a number operator
â†â≡ N̂, (143)

which is an observable with its eigenvalue corresponding to the number of particles in astate. If ϕn is an eigenstate of a Hamiltonian Ĥ such that Ĥϕn = Enϕn, and we define astate ψ = â†ϕn, then acting on that state with the Hamiltonian leads to
Ĥ(â†

ϕn) =
([

Ĥ, â†]+ â†Ĥ
)

ϕn =
(
h̄ω â† + â†Ĥ

)
ϕn

= (h̄ω +En) â†
ϕn = (En + h̄ω)ψ.

(144)
For a state ψ = âϕn we similarly get

Ĥψ = Ĥâϕn = ([Ĥ, â]+ âĤ)ϕn = (−h̄ω +En)âϕn = (En− h̄ω)ψ. (145)
The energy of the final state is either raised or lowered by h̄ω with respect to En, which iswhy â† and â are called the raising and the lowering operators. They can also be called thecreation and the annihilation operators, as they create or annihilate a quantum of energy.
3.1.2 Spin raising and lowering operators
Given hermitian spin operators Ŝx, Ŝy, and Ŝz, we can define operators

Ŝ+ = Ŝx + iŜy

Ŝ− = Ŝx− iŜy (146)
that satisfy the commutation relations[

Ŝz, Ŝ+
]
= Ŝ+[

Ŝz, Ŝ−
]
=−Ŝ−.

(147)
The operators are called spin raising and lowering operators, as they increase or decreasethe spin projection quantum number ms by 1. We can demonstrate this effect by actingwith Ŝz on a state Ŝ+ϕms , which is created from an eigenstate of Ŝz that satisfies Ŝzϕms =
msϕms , and using the commutation relation above,

ŜzŜ+ϕms = (Ŝ+Ŝz + Ŝ+)ϕms = (ms +1)Ŝ+ϕms . (148)
Similarly, considering a state Ŝ−ϕms , we find

ŜzŜ−ϕms = (Ŝ−Ŝz− Ŝ−)ϕms = (ms−1)Ŝ−ϕms . (149)
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3.1.3 Holstein-Primakoff approachThe linear SW theory is based on the technique introduced by Holstein and Primakoff [57],which describes the spin waves (magnons) as independent harmonic oscillators. Accord-ing to this technique, spin operators for a site j can be expressed through â† and â, whichnow represent the magnon creation and annihilation operators,
Ŝ+j =

√
2S

√
1−

â†
j â j

2S
â j

Ŝ−j =
√

2Sâ†
j

√
1−

â†
j â j

2S

Ŝz
j =
(

S− â†
j â j

)
.

(150)

Operators â† and â satisfy the commutation relation[
â j, â

†
k

]
= δ jk. (151)

We can show that the commutation relations from Eq. (147) still hold, as
[
Ŝz

j, Ŝ
+
j

]
=

S− â†
j â j,
√

2S

√
1−

â†
j â j

2S
â j

=−
[

â†
j â j,

(√
2S− â†

j â j

)
â j

]

=

(√
2S− â†

j â j

)
â jâ

†
j â j− â†

j â j

(√
2S− â†

j â j

)
â j

=

(√
2S− â†

j â j
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â jâ

†
j â j−

(√
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â†
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(√
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(√
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j â j

)
â†

j â jâ j

=

(√
2S− â†

j â j

)[
â j, â

†
j â j

]
−
[

â†
j â j,
√

2S− â†
j â j

]
â j.

(152)

Knowing that [â†
j â j,
√

2S− â†
j â j

]
= 0, and also that[

â j, â
†
j â j

]
= â jâ

†
j â j− â†

j â jâ j

=
[
â j, â

†
j

]
â j = â j

(153)
according to Eq. (151), we find[

Ŝz
j, Ŝ

+
j

]
=

(√
2S− â†

j â j

)
â j = Ŝ+j . (154)

The second commutation relation [Ŝz, Ŝ−
]
=−Ŝ− is proven in a similar way.Since magnons are collective excitations that occur in coupled spin systems, it is con-venient to define Fourier transforms for the raising and lowering operators of a harmonicoscillator

â†
q =

1√
N ∑

j
e−iq·R j â†

j

âq =
1√
N ∑

j
eiq·R j â j,

(155)
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where the sum is taken over R j, which is the location of the j-th site, and N is the total
number of spins in the system. In this case, â†

q and âq are the creation and annihilationoperators of a magnon with a given wavevector q. It is possible to show that in a crystalwith a periodic arrangement of spins [58]
1
N ∑

j
ei(q−q′)·R j = δqq′ . (156)

Therefore, in a periodic crystal themagnon creation and annihilation operators satisfy thecommutation relation[
âq, â

†
q′

]
=

1
N ∑

j,k
e−iq·R j eiq′·Rl

[
â j, â

†
k

]
=

1
N ∑

j,k
e−iq·R j eiq′·Rl δ jk

=
1
N ∑

j
ei(q′−q)·R j = δqq′ .

(157)

The inverse Fourier transforms of the two operators are
â†

j =
1√
N ∑

q
e−iq·R j â†

q

â j =
1√
N ∑

q
eiq·R j âq.

(158)

Substituting the spin operators from Eq. (150) into any Hamiltonian results in a rathercomplex expression that requires a number of approximations to solve. Holstein and Pri-makoff [57] suggested the following:
1. Replace the square root in Eq. (150) by 1 according to√

1−
â†

j â j

2S
≈ 1. (159)

2. Leave out the terms proportional to â†
j â jâ

†
k âk.

3. Leave out the terms proportional to â†
j â jâ

†
k .

The first approximation is the so-called quasi-saturation condition, which implies thatthe number of magnons is much smaller than the total number of spins, 〈n〉= ∑〈â†
j â j〉�

N. One should keep in mind that this approximation may introduce a significant error atsite j in case of a small S. However, the error in the total energy of the whole sample issmall [58], as long as 〈
∑

j

√
1−

â†
j â j

2S

〉
≈ N. (160)

The second approximation corresponds to the assumption that magnons do not interactwith each other, as the terms proportional to â†
j â jâ

†
k âk describe magnon-magnon inter-actions [5, 58]. We will utilize the first two approximations when we look into the Hamil-tonian of a Heisenberg ferromagnet in Chapter 3.1.4. The third approximation is relevantwhen we encounter terms such as magnetic dipole-dipole interactions [57], which we willnot consider here.
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The first approximation leads to the simplification of Eq. (150)
Ŝ+j ≈

√
2Sâ j

Ŝ−j ≈
√

2Sâ†
j

Ŝz
j =
(

S− â†
j â j

)
.

(161)

As the result, inserting Eq. (158) into Eq. (161) allows us to rewrite the spin operators as
Ŝ+j ≈

√
2S
N ∑

q
eiq·R j âq

Ŝ−j ≈
√

2S
N ∑

q
e−iq·R j â†

q

Ŝz
j = S− 1

N ∑
q,q′

e−i(q−q′)·R j â†
qâq′ .

(162)

3.1.4 Magnon dispersion in a Heisenberg ferromagnetWe consider a Heisenberg ferromagnet in an external magnetic field as an example of acoupled spin system. The Hamiltonian is a sum of the Heisenberg exchange term and theZeeman interaction term
Ĥ = Ĥex+ ĤZ =−J ∑

〈 j,k〉
S j ·Sk−gµB ∑

j
B ·S j, (163)

where J > 0 determines the strength of the ferromagnetic exchange interaction and 〈 j,k〉indicates the summation over nearest-neighbor spins. If we choose the magnetic fielddirection along z, the Hamiltonian can be rewritten as
Ĥ =−J ∑

〈 j,k〉

[
1
2

(
Ŝ−j Ŝ+k + Ŝ+j Ŝ−k

)
+ Ŝz

jŜ
z
k

]
−gµBB∑

j
Ŝz

j. (164)
Inserting the expressions for the spin operators from Eq. (162) gives

Ĥ =− JS
N ∑

j,δδδ
∑
q,q′

[
e−i(q−q′)·R j eiq′·δδδ â†

qâq′ + ei(q−q′)·R j e−iq′·δδδ âqâ†
q′

− e−i(q−q′)·R j â†
qâq′

(
1+ e−i(q−q′)·δδδ

)]
− JNZS2

−gµBBNS+
gµBB

N ∑
j

∑
q,q′

e−i(q−q′)·R j â†
qâq′ ,

(165)

where Z is the number of nearest neighbors at every spin site, and the higher-order termsproportional to â†
qâq′ â

†
qâq′ were dropped according to the second approximation in Chap-ter 3.1.3. We also used the fact that for the nearest neighbors Rk = R j +δδδ , where |δδδ | isthe nearest-neighbor distance. The Hamiltonian in Eq. (165) can be simplified to

Ĥ =− JS∑
q

∑
δδδ

(
eiq·δδδ â†

qâq + e−iq·δδδ âqâ†
q−2â†

qâq

)
− JNZS2

−gµBBNS+gµBB∑
q

â†
qâq.

(166)

50



Next, we define a parameter
γq =

1
Z ∑

δδδ

eiq·δδδ , (167)
which, for a centrosymmetric crystal, is real-valued and satisfies [58, 59]

γq = γ−q (168)
and

∑
q

γq = 0. (169)
Using Eq. (157) with Eqs. (167) – (168) further simplifies the Hamiltonian to

Ĥ = ∑
q
[2JSZ(1− γq)+gµBB] â†

qâq− JNZS2−gµBBNS. (170)
Tofind themagnonmode frequencies, we are looking for aHamiltonian term fromEq. (141)of the form

Ĥ ′ = ∑
q

h̄ωqâ†
qâq, (171)

which gives us
h̄ωq = 2JSZ(1− γq)+gµBB. (172)

Here ωq is the frequency of a single ferromagnetic SW mode, which, in the absence ofthe external magnetic field, has zero frequency at q = 0 (which corresponds to γq = 1),and then grows linearly with B. The energy dependence on the wavevector q for a two-dimensional Heisenberg ferromagnet on a square lattice with S = 1/2 is shown in Fig. 17.The last two terms in Eq. (170) correspond to the exchange energy of all spins in the systemand their interaction with the external magnetic field. In the absence of magnons these
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Figure 17: SW energy dependence on the wave vector q for a Heisenberg ferromagnet with S = 1/2
on a square lattice. The blue line shows the dispersion along one of the edges of the square, while
the red line shows the result when the wavevector is pointing along the diagonal. In both cases the
result is a cosine function with the periodicity of 2π/δ , where δ = |δδδ | is the distance between the
nearest spins. The energy is shown in units of J.

two terms combined indicate the total energy of a fully polarized Heisenberg ferromagnetin the magnetic field. If we wish to study higher order processes such as magnon-magnon
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interactions, we cannot apply the approximation of Eq. (159). Instead we must expandthe spin operators in Eq. (150) and include higher order terms in the Hamiltonian.
Finally, in a crystal with a larger unit cell, the number of modes is equal to the numberof spins in that unit cell. Creation and annihilation operators are defined separately forevery spin in its local frame, which involves rotations of the coordinate system [5]. Sum-mation in the Hamiltonian then includes summation over the number of possible modes.

3.2 Spin structure of YFeO3

Below TN , the iron spins S = 5/2 in YFeO3 have a G-type antiferromagnetic ordering alongthe crystallographic a axis, as shown in Fig. 18 (a). Due to the DM interactions, however,the spins are also canted, which results in aweak antiferromagnetism along the b axis, anda weak ferromagnetic moment along c. There are four Fe3+ spins in a unit cell of YFeO3,

(a) (b)

Figure 18: A unit cell of YFeO3. Panel (a) shows the zero-field spin arrangement, with the spins
indicated by red arrows [60]. The large dark gray spheres indicate the location of the Y3+ ions, and
the small light gray spheres correspond to the O2− ions. Panel (b) only shows the location of the
magnetic Fe3+ ions (blue spheres) and the O2− ions (red spheres) that mediate DM interactions
between them [I]. Dotted lines indicate the exchange interaction between the nearest neighbors
(Jab, Jc) and the next-nearest neighbors (J′). The unit cell in panel (b) is defined with a b/2 shift
relatively to panel (a), but the same atoms are shown.

resulting in four spin-wave modes, two of which fall into the THz range with zero-fieldenergies of 1.2meV (9.8 cm−1) and 2.4meV (19.3 cm−1). The orientation of each spin isdescribed by two angles φ and θ , such that

Si = S(sinθi cosφi, sinθi sinφi, cosθi). (173)

In zero field, the angles satisfy θ1 = θ2 = θ3 = θ4 ≡ θ and φ1 +π = −φ3 +π = −φ4 =
φ2 ≡ φ .
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The model Hamiltonian for the spins is
Ĥ =− 1

2
J ∑

i, j
Si ·S j−

1
2

J′∑
i, j

Si ·S j

−Ka ∑
i

Sia
2−Kc ∑

i
Sic

2

+
1
2 ∑

i, j
Di j · (Si×S j)−gµBµ0 ∑

i
H ·Si,

(174)

where J = Jc = Jab and J′ are the nearest-neighbor and the next-nearest-neighbor ex-change interactions, shown in Fig. 18 (b), and the factors of 1/2 are included to avoiddouble counting. Ka and Kc are the single-ion anisotropies (SIA) along a and c, H is theexternal magnetic field, and Di j is the DM interaction vector of the form [61]
Di j ∝ (Ri−Ro)× (Ro−R j), (175)

where Ro is the position of O2− ion that couples spins Si and S j. The bonds between Y3+

and O2− ions that mediate the DM interactions are shown in Fig. 18 (b). We distinguishtwo different magnitudes of the DM vectors: the interaction between nearest-neighborspins in the same ab plane Dab, and the interaction between nearest-neighbors along the
c axis Dc.
3.3 YFeO3 results and discussion
Three single-crystal YFeO3 samples, shown in Fig. 19, were prepared at the Center forCorrelated Electron Systems of the Institute for Basic Science and at the Department ofPhysics and Astronomy of the Seoul National University in Korea. Polycrystalline materialwas prepared by solid-state reaction method, and the single crystals were then grown bythe floating zone method, as outlined in [I]. While sample B is not suitable for a Faradaymeasurement due to its irregular cut, it was still measured in Voigt configuration with
H ‖Hω ‖ c.

Figure 19: YFeO3 samples with three different cuts, which have the following average thicknesses
and orientations: A – 0.86mm, cut perpendicularly to the a axis; B – 0.54mm, cut at a 19.75◦ angle
relative to the ac plane, such that the c axis lies in the plane of the cut, C – 0.80mm, cut perpen-
dicularly to the c axis. All samples are slightly wedge-shaped to avoid interference fringes in the
spectrum.

The magnetic-field dependence of the spin-wave absorption coefficient αSW, mea-sured in TeslaFIR at 3 K, is shown in Fig. 20. With the field applied along the a axis, we
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Figure 20: Magnetic-field dependence of the THz absorption spectrum of YFeO3 at T = 3 K [I]. The
three panels correspond to three different directions of the appliedmagnetic field. Blue and red spec-
tra correspond to two different polarization of the THz light and the dashed lines show the theoret-
ical fit of the absorption peak positions. The third absorption mode marked by a star is of unknown
nature, and is not described by the SW theory.

observe that both modes soften, reach their minimum energies at approximately 6.2 T,and start hardening with the further increase of the magnetic field. This behavior is con-sistent with the spin-flop transition, which was previously reported above 7 T [62]. Wealso see a change in the absorption intensity, which increases for one polarization anddecreases for the other as the magnetic field goes up, which qualitatively agrees with ourtheoretical calculations. The picture is quite different for the other two magnetic field di-rections, where the modes either always harden, or show no change in the energy. Thereexists a third absorption mode, marked by a star, which is not consistent with the SW the-ory. It has been previously reported as an “impurity” mode, only present in single crystalsgrown by the floating zone method [63, 64].To evaluate the frequencies of the SW modes, we first minimize the energy of theHamiltonian from Eq. (174), E = 〈Ĥ〉, for each direction of the applied magnetic fieldwith respect to eight angles {φi,θi}. The energy is evaluated assuming that the spins areclassical vectors, described by Eq. (173), with the length S = 5/2. The SW frequenciesare then calculated based on the linear SW theory outlined in Chapter 3.1. The calculatedfrequencies are compared to the experimentally measured ones, and the loop is repeatedwith adjusted parameters Ka, Kc, Dab, and Dc until the error is minimized. Note that weare only adjusting the SIA and DM interaction parameter, while the values of J and J′ areobtained from an earlier INS work [65] and are kept constant. The exchange interactionsare an order of magnitude stronger than the DM interactions, and two to three orders ofmagnitude stronger than the SIA parameters in YFeO3 [65, 66]. Therefore, J and J′ aremost accurately determined by studying the dispersion of the higher-energy excitationsup to 80meV (645 cm−1), which is outside of our spectral range. In this study, we focus
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exclusively on the two lower-energy excitations, which appear at 9.8 cm−1 and 19.3 cm−1

in zero field. The positions of the SW absorption modes were simultaneously fitted for allthree directions of the external magnetic field, with the result shown by the dashed linesin Fig. 20. The parameters for the spin Hamiltonian in Eq. (174) obtained from the fit arepresented in Table 3.We compare our result with the results from two earlier INS works. Firstly, we observethat the absorption line positions are very well reproduced with the exchange parameters
J = Jc = Jab and J′ determined by Hahn et al. [65], while the parameters used by Park et
al. [66] result in a worse overall fit. Choosing Jc = Jab is justified because the distancesbetween atoms in the same ab plane √a+b/2 ≈ 3.85Å is very similar to the distancebetween two atoms in adjacent planes c/2≈ 3.80Å. Secondly, we confirm that it is nec-essary to include the DM interactions between ions in adjacent ab planes, as the overallfit improves with nonzero Dc. Finally, we determine all the interaction parameters withgreater precision than in the previous works. As a result, we find the angles for the spinconfiguration in zero field to be θ = 0.4966π and φ = 0.0035π , which means that thecanting is larger than previously reported by Hahn et al. (θ = 0.4983π and φ = 0.0010π)and is very close to what was estimated by by Park et al. (θ = 0.4972π and φ = 0.0032π).Thus, we have shown that, although INS is currently a perfect technique to quantifythe high-energy interactions between spins, THz spectroscopy can be crucial in preciselydetermining the weaker DM interactions and SIA. Determining these with good accuracyis necessary, as these are the interactions responsible for multiferroic properties of vari-ous compounds. We have also been able tomodel the spin structure and SWexcitations inYFeO3, which is a step towards modeling more complex systems, including multiferroics,where Y3+ is substituted by magnetic ions. Contrary to the earlier proposed model [65],we determined that there indeed exists a finite DM interaction between neighboringatoms along the c axis, which is important to include for the correct description of YFeO3.
Table 3: Spin Hamiltonian parameter values (meV). The two DM parameters of Hahn et al. [65] are
related to Dab as Dab =

√
D2

1 +D2
2.

This work Hahn et al. [65] Park et al. [66]
Jc −4.77 −4.77 −5.02
Jab −4.77 −4.77 −4.62
J′ −0.21 −0.21 −0.22
Ka 0.0052 0.0055 0.0091
Kc 0.0044 0.0031 0.0025
|Dab| 0.136 0.079 0.121
|Dc| 0.189 − 0.145
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4 Exotic excitations in Ising-chain compounds
The one-dimensional (1D) Ising model is one of the simplest, yet probably one of themoststudied models in physics. It provides an insight into a variety of phenomena, such asquantum phase transitions, quantum criticality, or spin dynamics. In reality, however, it ishard to find a material that can effectively be described by the 1D Ising-chain model. Sucha material would have to exhibit strong one-dimensionality, which means that the spinchains must be rather well isolated. It is even harder to find a suitable material to studythe physics near the QCP, as the exchange interaction must be sufficiently low, so that wecan reach the QCP by applying the magnetic field available in laboratory conditions. Tworare examples where it is possible are CoNb2O6 and BaCo2V2O8.In this study, we measure excitations in both CoNb2O6 and BaCo2V2O8 at differentvalues of the appliedmagnetic field. By studying the excitation energy dependence on thefield, we find a field value that corresponds to the 1D QCP in these compounds. Accordingto the earlier studies [12, 13], the excitation energies then follow specific ratios, whichare described by the quantum integrable field theory with the symmetry of the E8 Liealgebra. Therefore, the goal of this chapter is: 1) to introduce the Ising-chain model anddefine quantum criticality, 2) to give a basic explanations of what the E8 Lie algebra is,and what it means for a spectrum to feature E8 excitations, and 3) to present the THzspectroscopy results of CoNb2O6 and BaCo2V2O8, which provide further evidence of the
E8 symmetry in these systems.The connection between the E8 Lie algebra and the perturbed 1D Ising chain near theQCP is, of course, much more intricate than we have the ability to describe here. It is,however, not our goal to study the mathematics of the quantum field theory and assesthe relevance of the E8 Lie algebra in this context. That information can be found in othersources [67, 68].
4.1 The Ising chain model
The Hamiltonian that describes spins in a 1D Ising chain is of the form

Ĥ =−J ∑
〈i, j〉

Sz
i S

z
j−B⊥∑

i
Sx

i , (176)
where J is the exchange interaction between nearest-neighbor spins that favors their par-allel (J > 0) or antiparallel (J < 0) alignment along the z axis, and B represents the influ-ence of a transverse magnetic field perpendicular to z. For a chain of spins S = 1/2, the
critical point is at Bc,1D

⊥ = J/2, where no energetically preferred direction for the spinsexists. A basic excitation in a 1D Ising chain with no external magnetic field (B⊥ = 0) is thecreation of a pair of domain walls, called spinons, which can classically be visualized as aspin flip shown in Fig. 21. In a purely 1D system, spinons can freely propagate along thechain, as the configurations featured in Fig. 21 (b – d) are energetically degenerate.While some of the existing spin systems can relatively accurately be described by the1D model, they are only quasi-one-dimensional. In reality, the Ising chains are never iso-lated, but experience some interchain coupling. The weak interchain coupling can be ap-proximated as a local longitudinalmagnetic fieldB‖ [13, 69], inwhich case theHamiltoniantakes the form
Ĥ =−J ∑

〈i, j〉
Sz

i S
z
j−B⊥∑

i
Sx

i −B‖∑
i

Sz
i . (177)

The ferromagnetic or the antiferromagnetic order in a purely 1D magnet is only presentat zero temperature [4], so the interchain coupling stabilizes a three-dimensional (3D)
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Figure 21: a) A ferromagnetic 1D spin chain. b) One flipped spin corresponds to the creation of two
domain walls called spinons (marked with red dots). c) Three flipped neighboring spins still feature
one pair of spinons, now separated from each other. d) Domain walls can be moved further along
the chain, which is how spinons are free to propagate without additional energy.

long-range order for a finite temperature below the critical temperature TC. If the smalllongitudinal field acts to preserve the original spin orientation, the QCP is reached at ahigher applied field valueBc,3D
⊥ > Bc,1D

⊥ . The resulting phase diagram is depicted in Fig. 22.

Figure 22: An illustrative phase diagram of a quasi-one-dimensional Ising chain with Bc,3D
⊥ >

Bc,1D
⊥ [III].

With finite interchain coupling, the spinons at B⊥ = 0 are no longer free to propagatealong the chain. Instead, they are confined into two-spinon bound states by a linear po-tential V (x) = λ |x|, where x is the coordinate along the chain, which results in discreteenergy levels. The relative motion of spinons is then described by the Schrödinger equa-tion
− h̄2

µ

d2ϕ

dx2 +λ |x|ϕ = (E−2E0)ϕ, (178)
where λ = 2B‖〈Sz〉/c̃, and c̃ is the lattice constant along the chain [13, 70]. 2E0 is thethreshold for creating a bound state, above which the excitation energies follow

E j = 2E0 + z jλ
2/3
(

h̄2

µ

)1/3

, j = 1,2,3, ..., (179)
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where z j are the negative zeros of theAiry function,Ai(z j)= 0. Application of a transversemagnetic field B⊥ gradually changes the excitation threshold, as well as the profile of theconfining potential [71], which causes changes in the excitation spectrum. As the fieldapproaches the QCP, we expect the emergence of quasiparticles that are described bythe E8 symmetry.
If the 1D Ising chain in a transverse field is near the QCP, it can be described using quan-tum field theory, which provides an exact solution to the model. When a perturbation inthe form of a small longitudinal field is introduced, the model is not exactly solvable anymore. However, A. B. Zamolodchikov [12] predicted that in the scaling limit T → TC [4],the model is described by a purely elastic scattering matrix of an integrable field theorycalled “affine Toda field theory”. The theory is associated with the E8 Lie algebra [72] andpredicts a spectrum consisting of eight particles with specific mass ratios

m1 = m

m2 = 2mcos
π

5
=

√
5+1
2

m≈ 1.61803m

m3 = 2mcos
π

30
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m4 = 2m2 cos
7π
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m5 = 2m2 cos
2π
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≈ 2.9563m

m6 = 2m2 cos
π

30
≈ 3.21834m

m7 = 4m2 cos
π

5
cos

7π

30
≈ 3.89116m

m8 = 4m2 cos
π

5
cos

2π

15
≈ 4.78339m,

(180)

where the first two excitations follow the “golden ratio”, m2/m1 = (
√

5+1)/2.
BecauseCoNb2O6 andBaCo2V2O8 are only quasi-one-dimensional, we canmodel themusing the Hamiltonian in Eq. (177), where the interchain interaction is approximated asa small longitudinal field. This longitudinal field acts as the “perturbation” in Zamolod-chikov’s model, which makes the model applicable in these materials. Bc,3D

⊥ > Bc,1D
⊥ alsoholds for CoNb2O6 and BaCo2V2O8, meaning that we are able to reach the critical field

Bc,1D
⊥ before entering the paramagnetic phase. This condition is necessary to realize the

E8 spectrum, which can only exist in the dashed area shown in Fig. 22.
4.2 E8 Lie algebra

To give an idea of what it means for a spin system to feature the E8 spectrum, we reviewthe concept of a Lie algebra. In this chapter, which is based on [73], we define Lie algebrasand show how they are described in terms of their root systems, and how root diagramsare constructed. We also demonstrate how a Dynkin diagram fully describes a Lie algebra,and what the Dynkin diagram of the E8 Lie algebra looks like. Such a diagram can alterna-tively be represented as a matrix, which is related to the mass ratios we observe in the E8spectrum.
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4.2.1 Lie groups and Lie algebras
Lie algebras are vector spaces that, as we are going to show, are closely related to Liegroups. Therefore, let us start by defining a group [74]:

1. A groupG is a set equippedwith a binary operation ◦, which takes any two elementsof the group and produces another element of the group according to ◦ : G×G→
G.

2. There exists an identity element e ∈ G, such that e◦ f = f ◦ e = f , ∀ f ∈ G.
3. For any element f ∈ G there exists an inverse g = f−1 ∈ G, such that g◦ f = e.
4. The binary operation defined above is associative, such that ( f ◦g)◦h = f ◦ (g◦h),
∀ f ,g,h ∈ G.

A Lie group is, in turn, a group, whose operation ◦ is differentiable. In other words, a Liegroup is continuous and smooth.There always exists a vector space g that generates the group via a locally invertibleexponential map
exp : g→ G. (181)

g is called a Lie algebra, and is defined as a vector space that satisfies the following con-ditions [75]:
1. It is equipped with a bilinear operation, called the Lie bracket, that preserves thealgebra [ · , · ]: g×g→ g.
2. The Lie bracket satisfies [X ,X ] = 0, ∀X ∈ g.
3. The Jacobi identity holds, [X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]] = 0, ∀X ,Y,Z ∈ g.

Every element of the Lie algebra X ∈ g, when exponentiated, generates a unique elementof the Lie group [73]
exp(X) = g ∈ G. (182)

The identity element of G is thus generated by the origin (zero) of g.A Lie algebra contains all of the necessary information about the Lie group, and it istherefore sufficient to know the Lie algebra to fully describe the corresponding Lie group.In reality, Lie groups usually represent continuous symmetry groups, while elements ofLie algebras correspond to infinitesimal linear transformations. Such transformations canbe expressed as matrices acting on a vector space V . According to Ado’s theorem [73],any finite-dimensional Lie algebra is linear, which means it is a subalgebra of a generallinear algebra gl(V ), defined over a vector space V . It also means that its elements canbe represented with m×m matrices, where m = dim(V ). The general linear Lie group
GL(V ) is then a set of invertible m×m matrices that are generated by the exponential ofmatrices X ∈ gl(V ), which is defined as a Taylor series

exp(X) = 1+X +
X2

2
+

X3

6
+ ... . (183)

When the elements of a Lie algebra X ,Y ∈ g are square matrices, then the Lie bracketthat satisfies all of the conditions from the definition of a Lie algebra is the commutator
[X ,Y ] = XY −Y X .
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4.2.2 The adjoint representationA map ϕ from one group G to another group H

ϕ : G→ H (184)
is called a homomorphism if it preserves the structure of a group and satisfies

ϕ(g◦h) = ϕ(g)◦ϕ(h) (185)
for all g,h ∈ G. Since both G and H have their corresponding algebras g and h that arerelated to the groups via an exponential map, there must be a corresponding homomor-phism,

ϕ∗ : g→ h, (186)
such that we get a commuting diagram [73]

G H

g h

ϕ

ϕ∗

exp exp

A representation ρ of a group G is a homomorphism
ρ : G→ GL(V ). (187)

In other words, it is the process of assigning a matrix to each element of the Lie groupsuch that Eq. (185) is satisfied. Since every group has a corresponding Lie algebra, theremust exist a representation ρ∗ for g:
ρ∗ : g→ gl(V ). (188)

A particularly important one is the adjoint representation, which we are going to use laterin order to define a root system. Since a Lie algebra is a vector space itself, the generallinear Lie group can also be defined over that vector space. The adjoint representation ofa Lie group is then a homomorphism
Ad : G→ GL(g), (189)

where GL(g) is the general linear group over the vector space that is its Lie algebra. Theadjoint representation of a Lie algebra Ad∗, more commonly denoted as ad, is similarly
ad : g→ gl(g). (190)

The exact form of the adjoint representation of an element X ∈ g, applied to an element
Y ∈ g, is defined as the Lie bracket [75]

adXY = [X ,Y ]. (191)
To prove that ad is a representation, it is possible to show that it satisfies Eq. (185) accord-ing to

[adX ,adY ]Z = adX adY Z− adY adX Z = adX [Y,Z]− adY [X ,Z]

= [X , [Y,Z]]− [Y, [X ,Z]] =−[Z, [X ,Y ]] = [[X ,Y ],Z]

= ad[X ,Y ]Z,
(192)

where we used the Jacobi identity.
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4.2.3 Root systemIt can be shown that there exist only nine types of so-called simple Lie algebras:
• four classical Lie algebras, sln+1, so2n+1, sp2n, so2n, and
• five exceptional Lie algebras, g2, f4, e6, e7, e8,

where n is an integer called the rank of a Lie algebra. As we are going to demonstrate,
n corresponds to the dimension of a root system. Although we do not explicitly indicateit, the implication is that the algebras are defined over complex numbers in all of ourexamples, such that sln+1 ≡ sln+1C.For any semisimple algebra, i.e. an algebra that is a direct sum of the nine possiblesimple algebras, there exists a subalgebra h ⊂ g, which would diagonally act on a vectorof a finite-dimensional vector space v ∈V according to

ρ(H)v = α(H)v (193)
for any H ∈ h. The eigenvalue α(H) is the weight of the representation ρ(H), and thespace V of all possible eigenvectors is the weight space. For the adjoint representationspecifically, we can perform a so-called Cartan decomposition into the diagonally acting hand weight spaces gα

g= h⊕ (
⊕

gα), (194)
where⊕ indicates the summation over all values of α , such that

adHX = [H,X ] = α(H)X (195)
for any H ∈ h and X ∈ gα . The weights of the adjoint representation are called roots, andtheweight spaces gα are, accordingly, root spaces. In fact, the root spaces of a semisimpleLie algebra are one-dimensional, meaning that each one of them is only spanned by oneeigenvector.As an example, let us consider a Lie algebra over the complex numbers sl3, whichconsists of 3×3 matrices with a trace equal to zero, and is therefore 8-dimensional. Wethen know that the diagonalizable subspaceh⊂ sl3 must be spannedby tracelessmatricesof the form

H =

a1 0 0
0 a2 0
0 0 a3

 , (196)
where a1 +a2 +a3 = 0. The only matrix X that satisfies Eq. (195) is a matrix of all zeros,except in the position (i, j). We therefore choose matrices Ei j with 1 in position (i, j) andzeros everywhere as a basis, in which case

adHEi j = [H,Ei j] = (ai−a j)Ei j. (197)
Since a3 = −a1− a2 is restricted, we can always express the roots (ai− a j) in terms ofjust two parameters instead of three. This allows us to map all possible roots on a two-dimensional lattice shown in Fig. 23, where the coordinates on the axes k and l correspondto the coefficients for a1 and a2 in Eq. (197). For E13, for instance, the equation reads

adHE13 =

a1 0 0
0 a2 0
0 0 a3

0 0 1
0 0 0
0 0 0

−
0 0 1

0 0 0
0 0 0

a1 0 0
0 a2 0
0 0 a3


= (a1−a3)E13 = (2a1 +a2)E13,

(198)
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Figure 23: The root system of sl3. Large markers correspond to the root spaces Ei j , and the small
markers indicate where the location of weights a1, a2, and a3 would be.

and the root space spanned by E13 is located at k = 2, l = 1.A configuration of roots in the Euclidean space E is called a root system R, and it hasto satisfy the following conditions [73]:
1. R is a finite set spanning E.
2. If α is a root, then−α is also a root. However, kα is not a root if k 6=±1.
3. If α is a root, then the reflection of any other root in its hyperplane α⊥ is also aroot, see Fig. 26.
4. For two roots α , β , the real number

nβα = 2
(β ,α)

(α,α)
(199)

is an integer, where ( , ) is an inner product defined over the space E.
The inner product in condition 4 is called the Killing form, although we will not go intoits definition and properties specifically. We would like to mention, however, that we canthink of two roots as vectors in E at an angle φ relative to each other. The Killing form isthen equivalent to the scalar product of these vectors

(β ,α)≡ β ·α = |β ||α|cosφ . (200)
If we project vector β onto vector α , as shown in Fig. 24, then the projection βα is

βα =
β ·α
|α|

α

|α| =
1
2

nβα α, (201)
which is a half-integer times α . Additionally, nβα is

nβα = 2
β ·α
α ·α = 2

|β |
|α| cosφ . (202)
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Figure 24: Roots α and β shown as vectors in Euclidean space E, and the projection of β onto α .

Since nβα is an integer, and so is nαβ , we know that
nβα nαβ = 4cos2

φ (203)
must be an integer too. It is clear that cos2 φ 6= 1, because α and β would then be thesame root, so we are left with four options: 4cos2 φ = 0,1,2,3. Therefore, there are onlyseven possible values of the angle between any two roots of a root system:

φ =
π

6
,

π

4
,

π

3
,

π

2
,

2π

3
,

3π

4
, or 5π

6
. (204)

If we try to sketch a two-dimensional root system, where both conditions from Eq.(201) and Eq. (204) are satisfied, i.e. the angle between any two roots is one of the sevenpossible angles, and the projection of a root onto any other root is a half-integer of thesecond root, then we will find that there are only four possible root systems. One of thepossibilities turns out to be the aforementioned root system of sl3 (that is called A2), andthe other three correspond to Lie algebras so4 (A1×A1), so5 that is equivalent to sp4 (B2),and the exceptional Lie algebra g2 (G2). All of the possible two-dimensional root systemsare shown in Fig. 25.Turns out that there is an easier way to convey information regarding the lengths ofroots and the angles between them than drawing the whole root system. All of that infor-mation is contained in what is called a Dynkin diagram.
4.2.4 Dynkin diagramNow let us come back to the condition 3 of a root system in Chapter 4.2.3, which statedthat a reflection in the hyperplane of a root α⊥ maps R onto itself. The consequence ofthis condition is that we can describe any one of the two-dimensional root systems by justtwo roots, instead of drawing the whole diagram. For example, the two roots of g2 shownin Fig. 26 are sufficient to describe the root system. By condition 3, if we reflect α in thehyperplane β⊥, we will generate another root. The same is true for the reflection of βin the hyperplane α⊥. We can then continue the process by reflecting the new roots andeventually arrive to the diagram from Fig. 25 once again. The two roots that are sufficientto describe the whole root system are called the simple roots. There are exactly n simpleroots in a Lie algebra, where n is the dimension of the root system (in our examples n = 2),which is also called the rank of the Lie algebra.For any two simple roots it is true that

α ·β ≤ 0, (205)
which means that they cannot have an acute angle between them. Then, based solely onthe number of simple roots in a root system and the angles between them, it is possible to
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Figure 25: The four existing two-dimensional root systems and their names.

α

β

α⊥
β⊥

Figure 26: The two simple roots α and β of the Lie algebra g2 and their reflections (gray) from the
hyperplanes α⊥ and β⊥.

construct a Dynkin diagram, which contains all the information regarding the root system.The diagram shows the simple roots as circles and the angle between them is indicatedby the number of lines, as shown in Fig. 27, where the arrow indicates the direction fromthe long to the short root.
Dynkin diagrams are especially useful when dealing with Lie algebras of higher dimen-sions. The lie algebra sl7, for example, has a three-dimensional root system B3 with eigh-teen roots, which is quite hard to illustrate. Its Dynkin diagram shown in Fig. 28, however,is rather simple. From that diagram we can read that the first simple root forms an angleof 2π/3with the second root, as they are connected by one line, and an angle of π/2withthe third root, as they are not directly connected by any lines. The second root is at anangle of 3π/4 with respect to the third root, and is the longer of the two.
The limited number of possible angles between simple roots results in a number ofrestrictions on admissible Dynkin diagrams [73]. Consequently, we can list all admissible
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Figure 27: Dynkin diagrams for the Lie algebras of rank 2. The number of lines indicates the angle
between two simple roots φ , and the arrow shows the direction from a long to a short root.

1 2 3

Figure 28: Dynkin diagram of the root system B3, corresponding to the sl7 Lie algebra.

Dynkin diagrams that correspond to irreducible root systems in Fig. 29. By irreducible rootsystems we mean those that are not a direct sum of simpler root systems. Note that theroot systemA1×A1 of the Lie algebra so4 wementioned earlier is not irreducible. The firstfour diagrams in Fig. 29 correspond to the classical Lie algebras or rank n, while the otherfive belong to the exceptional Lie algebras. We also mentioned that the Lie algebra so5is equivalent to sp4. This conclusion can be reached by comparing corresponding Dynkindiagrams in Fig. 29, as B2 andC2 would be exactly the same.
4.2.5 E8 and its Cartan matrix

The most complex example of a simple Lie algebra is e8. Its root system E8 is eight-dimensional and contains 240 roots, which makes it impossible to depict fully in two di-mensions. It is possible to show a projection of the roots in R8 onto a plane R2, whichis highly complex, as can be seen in Fig. 31. However, there are only eight simple roots,which can easily be depicted in the Dynkin diagram shown in Fig. 30. The diagram showsthat all of the roots that are connected by a line form an angle of φ = 2π/3, while theones that are not connected are at an angle of φ = π/2 relative to each other. Thus, root1 is at an angle of φ = 2π/3 relative to root 3, and at an angle of φ = π/2 relative to allother roots. Root 4, for instance, forms an angle of φ = 2π/3with roots 2, 3, and 5, and anangle of φ = π/2 with the rest of the roots. In fact, using the properties of a root system,it is possible to construct the whole root system with a total of 240 roots from just theDynking diagram. The root system will, in turn, tell us everything we need to know aboutthe Lie algebra, and, consequently, the 248-dimensional E8 Lie group.
A Dynkin diagram can alternatively be expressed as a matrix called the Cartan matrix

Ai j = 2
αi ·α j

α j ·α j
, (206)

where αi and α j are the simple roots. There diagonal elements of the matrix are alwaysequal to 2, while the rest of the values tell us explicitly what the angles are between simpleroots. This way, a Cartan matrix carries all of the information about a Lie algebra in the
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An (n≥ 1) sln+1

Bn (n≥ 2) so2n+1

Cn (n≥ 3) sp2n

Dn (n≥ 4) so2n

G2 g2

F4 f4

E6 e6

E7 e7

E8 e8

Figure 29: All possible Dynkin diagrams of irreducible root systems and the corresponding Lie alge-
bras.

same way a Dynkin diagram does. For E8, the matrix is

A =



2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2


. (207)

Themasses of theE8 spectrum in Eq. (180) are the real-valued entries of the Perron–Frobeniuseigenvector ψ [77], which corresponds to the the lowest eigenvalue a in
Aψ = aψ. (208)
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1 3 4 5 6 7 8

2

Figure 30: Dynkin diagram of the E8 root system, showing the eight simple roots of the Lie algebra
and the angles between them.

Figure 31: A projection of the eight-dimensional root system E8 onto a two-dimensional plane [76].
The black vertices correspond to the 240 roots, and the colored edges connect the nearest neighbors
in R8.
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4.3 CoNb2O6 results
In CoNb2O6, the Co2+ ions are arranged on zigzag chains running along the c axis [78], asshown in Fig. 32. The magnetic easy axis z lies in the ac plane at a 31◦ angle relative tothe c axis [79, 80, 81]. Below TC = 2.95 K [82], the spins order ferromagnetically, and eachchain can be modeled with an effective spin-1/2 Hamiltonian in Eq. (176), where z is themagnetic easy axis, and x ‖ b is the hard axis. Due to a finite interchain coupling, CoNb2O6develops a 3D order below TC, which can be suppressed by a transverse magnetic field
Bc,3D
⊥ = 5.3 T [83].

Figure 32: The crystal structure of CoNb2O6. Co2+ ions (blue spheres) are arranged on a zigzag
chain running along the c axis, each surrounded by six oxygen ions (red spheres) [13]. The magnetic
moments of Co2+ (pink arrows) are arranged ferromagnetically in the ac plane.

The first evidence of the E8 symmetry in CoNb2O6 was provided by an INS measure-ment [13], where twoexcitationswere observedwith their energies approaching the “goldenratio” at 5 T, which is slightly below Bc,3D
⊥ = 5.3 T. The higher-energy excitations were notdetected, and their absence was explained by the overwhelming multi-particle contin-uum, which obstructs single-particle excitations above m2. However, a later numericalstudy [84] predicted that the single-particle excitations should manifest as sharp peaksand must, therefore, still be visible above a relatively small multi-particle background.Using themilliK-TeslaFIR spectrometer with the dilution refrigerator, wemeasured theabsorption spectra of CoNb2O6 at 0.25 K in the magnetic field range of 0 – 12 T, appliedalong themagnetic hard axis. Two single-crystal samples, which are shown in Fig. 33, weregrown by the floating zone technique as described in [III] at the University of Cologne, In-stitute of Physics II. The samples were given a wedge shape with an average thicknessof 0.50mm. They were arranged in a mosaic and measured simultaneously in order toincrease the effective surface area and, thus, signal-to-noise ratio. The magnetic-field de-

Figure 33: Two CoNb2O6 samples, both with one surface perpendicular to the b axis, and wedge-
shaped with a 2◦ angle to avoid interference fringes in the spectrum. The samples have a similar
average thickness of 0.50mm.

pendence of the absorption spectrum is shown in Fig. 34. The lowest-frequency excitation
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Figure 34: Magnetic-field dependence of the absorption spectrum of CoNb2O6 for B ‖ b at 0.25 K.
The right panel shows only the spectra close to QCP, and the spectrum featuring the E8 excitations
at 4.75 T is plotted in blue.

modes soften and reach their minimum frequency at around 5.5 T, which is in agreementwith the critical field of the 3D magnetic order Bc,3D
⊥ = 5.3 T. The critical field of the 1D

order Bc,1D
⊥ = 4.75 T was determined by studying the magnetic-field dependence of the

E8 excitations and comparing their energy ratios with respect to m1 with the theoreticallypredicted values. Figure 35 shows how the ratios approach the theoretical values close toQCP and almost exactly match them at 4.75 T. This magnetic field value is quite close tothe earlier reported 5.0 T [13]. In addition to the two excitations m1 and m2, we were alsoable to detect single-particle excitations up to m6, as well as the two-particle excitations
m1 +m1 and m1 +m2, as shown in Fig. 35. The energies of m3 and m1 +m1 are practicallythe same, which makes the two peaks indistinguishable.

Figure 35: The E8 spectrum of CoNb2O6 [III]. Measured normalized energies of the E8 excitations
(markers) approach the theoretically predicted values (dashed lines) near the QCP, and match them
at 4.75 T (solid markers).
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As the result, we report the first experimental observation of the E8 excitations up to
m6 in CoNb2O6, as well as the two-particle excitations m1+m1 and m1+m2. We also con-firm the numerical predictions that single excitations manifest as sharp peaks and standout from the relatively weak two-particle-excitation background.
4.4 BaCo2V2O8 results
BaCo2V2O8 features Co2+ ions, each surrounded by six oxygens in an octahedral environ-ment, running in screw chains along the crystallographic c axis with a fourfold rotationalsymmetry [85, 86, 87], as shown in Fig. 36. The arrangement is described by an effectivespin-1/2 antiferromagnetic XXZ model [88]. The magnetic moments of Co2+ form a 5◦angle with the c axis, and the magnetic easy axis z rotates by 90◦ around c as we movefrom one ion to the next along the chain [89].

Figure 36: The crystal structure of BaCo2V2O8 [89]. Magnetic moments of Co2+ (blue arrows) are
antiferromagnetically arranged in a screw chain, each surrounded by six oxygens (red).

Weak interchain coupling induces a 3D antiferromagnetic order with spins alignedalong z in BaCo2V2O8 below the Néel temperature TN = 5.4 K [90]. With a transversemagnetic field applied along the crystallographic a (or, equivalently, b) axis, the antifer-romagnetic order is suppressed at approximately 10 T [91]. Interestingly, the situation isquite different for the magnetic field applied along the [110] direction, where the antifer-romagnetic order is present all the way up to 40 T [92], which is caused by the screw-chainstructure of BaCo2V2O8 and the highly anisotropic nature of the effective fields in this ma-terial.A single crystal of BaCo2V2O8 was grown at Institute of Physics II of the University ofCologne by the floating zone method as described in [91]. The sample that was cut outfor the measurement, approximately 0.76mm thick, is shown in Fig. 37. The absorption

Figure 37: A BaCo2V2O8 sample with the average thickness of 0.76mm. The sample is wedge-
shaped with a 2◦ angle to avoid interference fringes in the spectrum.

spectra of BaCo2V2O8 weremeasured in the TeslaFIR setup at 2.7 K with a transversemag-netic field up to 17 T applied along the crystallographic a axis, with the results shown in
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Fig. 38. The spectra are measured in the Voigt configuration, with the linearly polarizedTHz light having the oscillating magnetic field along the applied static field, hω ‖ B⊥. We
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Figure 38: Left panel shows the BaCo2V2O8 absorption spectrum dependence on the transverse
magnetic field from 0 to 12 T applied along the a axis, measured with the hω ‖ B⊥ ‖ a incident light
polarization at 2.7 K. The right panel only shows the spectra close to Bc,1D

⊥ = 5.0 T. The spectrum at
5 T, featuring the E8 excitations, is shown in blue.

can confirm that the 3D antiferromagnetic ordering is suppressed at approximately 10 T,which is where the lowest-energy excitation reaches its minimum frequency. We deter-mine Bc,1D
⊥ = 5.0 T by following the energy ratios of the excitation peaks and observinghow they reach the theoretically predicted values at 5 T, as shown in Fig. 39 (a). A simi-lar critical field value of Bc,1D

⊥ = (4.7± 0.3) T was recently reported by the nuclear mag-netic resonance (NMR) studies of 15V nuclear spin relaxation [93]. Figure 39 (b) shows thefrequency-normalized absorption spectrum at the critical field Bc,1D
⊥ = 5.0 T, featuring thesingle-particleE8 excitations fromm1 tom5, aswell as the two-particle excitationsm1+m1and m1 +m2. The overall shape of the spectrum matches the shape of the spin dynamicstructure factorDxx, shown in 39 (c), which is calculated based on Zamolodchikov’smodel,as outlined in Supplemental Material of [II]. We also observe that the excitation m1 is splitinto two peaks, which can be an indication of a weak orthorhombic anisotropy in the abplane [II]. The splitting results in each of the two peaks having an area comparable to thatof m2, but when we sum up the two, we get an excitation of higher intensity than m2 inagreement with the theory. Therefore, we report the first ever experimental observationof the E8 excitation spectrum in an antiferromagnetic Ising chain, featuring single-particleexcitations from m1 to m5 and the two-particle excitations m1 +m1 and m1 +m2. Studiesof the E8 excitation spectrum in BaCo2V2O8 were recently extended by INS spectroscopyand theoretical methods in [93].
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Figure 39: The E8 spectrum of BaCo2V2O8 compared to the theoretical calculations [II]. (a) Mea-
sured excitation energy ratios (symbols) change with the applied magnetic field and simultaneously
reach the theoretically predicted values (dashed lines) at Bc,1D

⊥ = 5.0 T (solid markers). (b) Mea-
sured frequency-normalized absorption spectrum at Bc,1D

⊥ = 5.0 T with the indicated E8 excitations.
(c) Theoretically calculated spin dynamic structure factor Dxx. The dashed lines show contributions
from single-particle excitations (red), m1 +m1 excitation (blue), and m1 +m2 excitation (green). The
solid line is the sum of all contributions.

72



Summary
We addressed the question of symmetry and magnetic ordering within three differentframeworks:

1. We studied crystal-field excitations of the Tb3+ ions in a pyrochlore Tb2Ti2O7. Byprecisely measuring the magnetic-field dependence of these excitations, and com-paring the result to the theoretically modeled spectra, we were able to detect en-tanglement between the ground state and the first excited state via the so-calledvibronic coupling. We determined that this dynamic coupling between spin andlattice degrees of freedom lowers the symmetry of the local atomic environment.
2. We utilized the ability of terahertz spectroscopy to track low-energy spin-wave exci-tations in the applied magnetic field to model themagnetic ordering in an orthofer-rite YFeO3. This was done by calculating the excitation frequencies using spin-wavetheory and fitting the theoretical values with the experimental data. As the result,we demonstrated the means to accurately quantify "weak" Dzyaloshinskii–Moriyainteractions that are responsible for spontaneous symmetry breaking. Moreover,we showed that the correct spin model of YFeO3 must include a Dzyaloshinskii-Moriya interaction between two neighboring Y3+ ions along the c axis, which wasomitted in one of the earlier proposed models. We also report an overall largercanting of spins in zero field than was previously estimated.
3. Wemeasured the excitation spectra of two quasi-one-dimensional Ising spin chains:CoNb2O6 and BaCo2V2O8. The spectra weremeasured at different values of the ap-plied transverse field, including those near the quantum critical point. By followingthe normalized energies of the observed excitations, wewere able to determine thevalue of the one-dimensional critical field for both compounds. At that value, all ofthe excitations simultaneously reach the theoretically predicted mass ratios fromthe integrable field theory with the E8 symmetry. For the first time ever, we wereable to observe single-particle excitations of the E8 spectrum up to m6 in CoNb2O6and up to m5 in BaCo2V2O8, as well as multi-particle excitations. Therefore, wepresented strong experimental evidence of the emerging E8 symmetry near thequantum critical point.
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[63] A. M. Balbashov, A. G. Berezin, J. V. Bobryshev, P. J. Marchukov, I. V. Nikolaev, E. G.Rudashevsky, J. Paches, and L. Půst, “Orthogonal magnetic impurity in antiferromag-net YFeO3 single crystal: magnetic resonance and magnetisation measurements,” J.
Magn. Magn. Mater., vol. 104-107, pp. 1037–1038, 1992.

[64] A. M. Balbashov, G. V. Kozlov, A. A. Mukhin, and A. S. Prokhorov, Submillimeter spec-
troscopy of antiferromagnetic dielectrics: Rare-earth orthoferrites, ch. 2, pp. 56–98.World Scientific, 1995.

[65] S. E. Hahn, A. A. Podlesnyak, G. Ehlers, G. E. Granroth, R. S. Fishman, A. I. Kolesnikov,E. Pomjakushina, and K. Conder, “Inelastic neutron scattering studies of YFeO3,” Phys.
Rev. B, vol. 89, p. 014420, 2014.

[66] K. Park, H. Sim, J. C. Leiner, Y. Yoshida, J. Jeong, S. Yano, J. Gardner, P. Bourges,M. Klicpera, V. Sechovský, M. Boehm, and J.-G. Park, “Low-energy spin dynamicsof orthoferrites AFeO3 (A = Y, La, Bi),” J. Phys.: Condens. Matter, vol. 30, no. 23,p. 235802, 2018.
[67] D. Borthwick and S. Garibaldi, “Did a 1-dimensionalmagnet detect a 248-dimensionalLie algebra?,” Not. Amer. Math. Soc., vol. 58, pp. 1055–1066, 2011.
[68] M.Oshikawa, “Experimental observations of the universal cascade of bound states inquantum ising chain in amagnetic field and E8 symmetry,” Journal Club for Condensed

Matter Physics, 2020.
[69] S. T. Carr and A. M. Tsvelik, “Spectrum and correlation functions of a quasi-one-dimensional quantum Ising model,” Phys. Rev. Lett., vol. 90, p. 177206, 2003.
[70] Z.Wang,M. Schmidt, A. K. Bera, A. T.M. N. Islam, B. Lake, A. Loidl, and J. Deisenhofer,“Spinon confinement in the one-dimensional Ising-like antiferromagnet SrCo2V2O8,”

Phys. Rev. B, vol. 91, p. 140404, Apr 2015.
[71] Z. Wang, J. Wu, S. Xu, W. Yang, C. Wu, A. K. Bera, A. T. M. N. Islam, B. Lake, D. Kamen-skyi, P. Gogoi, H. Engelkamp, N. Wang, J. Deisenhofer, and A. Loidl, “From confinedspinons to emergent fermions: Observation of elementary magnetic excitations in atransverse-field Ising chain,” Phys. Rev. B, vol. 94, p. 125130, 2016.
[72] V. Fateev and A. Zamolodchikov, “Conformal field theory and purely elastic S-matrices,” Int. J. Mod. Phys. A, vol. 05, pp. 1025–1048, 1990.
[73] W. Fulton and J. Harris, Representation Theory - A First Course. Springer, 1991.
[74] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group Theory: Applications to the

Physics of Condensed Matter. Berlin Heidelberg: Springer-Verlag, 2008.
[75] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory. GraduateTexts in Mathematics 9, Springer-Verlag New York, 1 ed., 1972.
[76] J. G. Moxness, “3D polytope hulls of E8 421, 241, and 142,” 2020. TheoryOfEvery-thing.org.
[77] G. Mussardo, Statistical Field Theory: An Introduction to Exactly Solved Models in

Statistical Physics. Oxford Graduate Texts, Oxford University Press, 2009.
80



[78] T. Hanawa, K. Shinkawa, M. Ishikawa, K. Miyatani, K. Saito, and K. Kohn, “Anisotropicspecific heat of CoNb2O6 inmagnetic fields,” J. Phys. Soc. Jpn., vol. 63, no. 7, pp. 2706–2715, 1994.
[79] C. Heid, H. Weitzel, P. Burlet, M. Bonnet, W. Gonschorek, T. Vogt, J. Norwig, andH. Fuess, “Magnetic phase diagramof CoNb2O6: A neutron diffraction study,” Journal

of Magnetism and Magnetic Materials, vol. 151, no. 1, pp. 123–131, 1995.
[80] S. Kobayashi, S. Mitsuda, M. Ishikawa, K. Miyatani, and K. Kohn, “Three-dimensionalmagnetic ordering in the quasi-one-dimensional isingmagnet CoNb2O6 with partiallyreleased geometrical frustration,” Phys. Rev. B, vol. 60, pp. 3331–3345, 1999.
[81] S. Kobayashi, S. Mitsuda, and K. Prokes, “Low-temperature magnetic phase tran-sitions of the geometrically frustrated isosceles triangular Ising antiferromagnetCoNb2O6,” Phys. Rev. B, vol. 63, p. 024415, 2000.
[82] W. Scharf, H. Weitzel, I. Yaeger, I. Maartense, and B. Wanklyn, “Magnetic structuresof CoNb2O6,” Journal of Magnetism and Magnetic Materials, vol. 13, no. 1, pp. 121–124, 1979.
[83] A. W. Kinross, M. Fu, T. J. Munsie, H. A. Dabkowska, G. M. Luke, S. Sachdev, andT. Imai, “Evolution of quantum fluctuations near the quantum critical point of thetransverse field Ising chain system CoNb2O6,” Phys. Rev. X, vol. 4, p. 031008, 2014.
[84] J. A. Kjäll, F. Pollmann, and J. E. Moore, “Bound states and E8 symmetry effects inperturbed quantum Ising chains,” Phys. Rev. B, vol. 83, p. 020407, 2011.
[85] R. Wichmann and H. Müller-Buschbaum, “Neue Verbindungen mit SrNi2V2O8-Struktur: BaCo2V2O8 und BaMg2V2O8,” Z. anorg. allg. Chem., vol. 534, no. 3, pp. 153–158, 1986.
[86] Z. He, D. Fu, T. Kyômen, T. Taniyama, and M. Itoh, “Crystal growth and magneticproperties of BaCo2V2O8,” Chem. Mater., vol. 17, no. 11, pp. 2924–2926, 2005.
[87] Z. He, T. Taniyama, and M. Itoh, “Large magnetic anisotropy in the quasi-one-dimensional system BaCo2V2O8,” Applied Physics Letters, vol. 88, no. 13, p. 132504,2006.
[88] S. Kimura, H. Yashiro, K. Okunishi, M. Hagiwara, Z. He, K. Kindo, T. Taniyama, andM. Itoh, “Field-induced order-disorder transition in antiferromagnetic BaCo2V2O8driven by a softening of spinon excitation,” Phys. Rev. Lett., vol. 99, p. 087602, 2007.
[89] Q. Faure, S. Takayoshi, S. Petit, V. Simonet, S. Raymond, L.-P. Regnault,M. Boehm, J. S.White, M.Månsson, C. Röegg, P. Lejay, B. Canals, T. Lorenz, S. C. Furuya, T. Giamarchi,and B. Grenier, “Topological quantum phase transition in the Ising-like antiferromag-netic spin chain BaCo2V2O8,” Nat. Phys., vol. 14, p. 716, 2018.
[90] Y. Kawasaki, J. L. Gavilano, L. Keller, J. Schefer, N. B. Christensen, A. Amato, T. Ohno,Y. Kishimoto, Z. He, Y. Ueda, and M. Itoh, “Magnetic structure and spin dynamicsof the quasi-one-dimensional spin-chain antiferromagnet BaCo2V2O8,” Phys. Rev. B,vol. 83, p. 064421, 2011.

81



[91] S. K. Niesen, G. Kolland, M. Seher, O. Breunig, M. Valldor, M. Braden, B. Grenier, andT. Lorenz, “Magnetic phase diagrams, domain switching, and quantum phase transi-tion of the quasi-one-dimensional Ising-like antiferromagnet BaCo2V2O8,” Phys. Rev.
B, vol. 87, p. 224413, 2013.

[92] S. Kimura, K. Okunishi, M. Hagiwara, K. Kindo, Z. He, T. Taniyama, M. Itoh, K. Koyama,and K. Watanabe, “Collapse of magnetic order of the quasi one-dimensional Ising-like antiferromagnet BaCo2V2O8 in transverse fields,” Journal of the Physical Society
of Japan, vol. 82, no. 3, p. 033706, 2013.

[93] H. Zou, Y. Cui, X.Wang, Z. Zhang, J. Yang, G. Xu, A. Okutani, M. Hagiwara,M.Matsuda,G. Wang, G. Mussardo, K. Hódsági, M. Kormos, Z. He, S. Kimura, R. Yu, W. Yu, J. Ma,and J. Wu, “E8 spectra of quasi-one-dimensional antiferromagnet BaCo2V2O8 undertransverse field,” Phys. Rev. Lett., vol. 127, p. 077201, 2021.
[94] E. Jones, T. Oliphant, P. Peterson, et al., “SciPy: Open source scientific tools forPython,” 2001–. http://www.scipy.org/ [Online; accessed August 4, 2022].
[95] K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, vol-umetric and morphology data,” J. Appl. Cryst., vol. 44, pp. 1272–1276, 2011.

82



Acknowledgements
First and foremost, I would like to thank Michelle Mueller, who has been by my side thiswhole time, and offered unconditional support throughout my PhD journey. I am alsoextremely grateful to my friends and family, who always back me and keep me positive.I would like to thank my supervisors Toomas Rõõm and Urmas Nagel, without whomnone of this would have been possible. Thank you for your support and invaluable contri-bution to this work. I also wish to thank all of the members of the THz group at KBFI forall your help and good time working together.I am grateful to all of the collaborators, especially Randy Fishman, Yann Alexanian,Rafik Ballou, Sophie de Brion, Zhao Zhang, and Jianda Wu for their theoretical work andcalculations, aswell asHasung Sim, Kisoo Park, Je-GeunPark, ClaudiaDecorse, and ThomasLorenz for growing high-quality crystals for the THz measurements. Special thanks to ZheWang, who started most of the fruitful collaborations that led to the results of this work.Finally, I am thankful to everyone who I have had pleasure to work with, whether on theprojects presented here, or the ones whose results are yet to be published.I would like to acknowledge the open-source SciPy library [94] for Python that wasused to analyze and visualize the experimental results of thiswork, andVesta software [95]that was used to model crystal structures of the studied materials.This work has been supported by the institutional research funding IUT23-3 and per-sonal research funding Grant No. PRG736 of the Estonian Ministry of Education and Re-search, the European Regional Development Fund Project No. TK134, and also partiallysupported by ASTRA “TUT Institutional Development Programme for 2016-2022” Gradu-ate School of Functional Materials and Technologies (2014-2020.4.01.16-0032).

83



Abstract
Symmetry breaking revealed by THz spectroscopy of magnetic
excitations
Magnetic excitations provide valuable information on interactions within various mag-netic materials, giving insight into magnetic ordering, symmetry, and spontaneous sym-metry breaking upon phase transitions. A powerful technique to study magnetic excita-tions is THz spectroscopy, which not only has superior spectral resolution to some widelyused spectroscopic techniques, such as inelastic neutron scattering or resonant inelasticX-ray scattering, but can also probe low-energy excitations below 1meV. In this work, weuse two THz spectrometers at the National Institute of Chemical Physics and Biophysicsin Tallinn to study magnetic excitations in a pyrochlore Tb2Ti2O7, an orthoferrite YFeO3,and two quasi-one-dimensional Ising spin chains CoNb2O6 and BaCo2V2O8. Our setupcombines a Martin-Puplett interferometer with either a liquid-helium-bath cryostat anda 17-tesla superconducting magnet, or a dilution refrigerator, equipped with a 12-teslasuperconducting magnet. The available range of energies, temperatures, and magneticfields gives access to low-energy spin-wave modes in YFeO3 below and above the spin-flop transition field, crystal-field excitations in Tb2Ti2O7, including transitions from theground state and between excited states, as well as confined spinons and other magneticexcitations in Ising spin chains CoNb2O6 and BaCo2V2O8 in close proximity to and far awayfrom the quantum critical point.

Magnetic Tb3+ ions in Tb2Ti2O7 are arranged on a pyrochlore lattice of corner-sharingtetrahedra. Tb2Ti2O7 fails to develop any long-range magnetic order down to 50mK, andfeatures a fluctuating spin-liquid state instead. Recent INS and THz spectroscopy stud-ies showed that Tb2Ti2O7 supports hybrid magnetoelastic excitations, which indicate aninterplay between spin and lattice degrees of freedom, resulting in dynamic symmetrybreaking of the local crystal field environment at the Tb3+ site. To confirm the local sym-metry breaking, we study magnetic-field dependence of the crystal-field excitations ofTb3+ ions in the temperature range 3 – 60 K, with the magnetic field applied along thecubic [111] axis. We propose a model Hamiltonian that incorporates such vibronic cou-pling and reproduces experimentally observed features in the absorption spectrum in theappliedmagnetic field, thus providing strong evidence of the dynamic symmetry breakingin Tb2Ti2O7.YFeO3 is isostructural to some known multiferroics with an orthorhombic structure.With only Fe3+ ions carrying a finite spin S = 5/2, it is a great model component thatgives insight intomagnetic interactions andmagnetic ordering inmultiferroicmaterials. Inthese materials, the relatively weak, as compared to the exchange couplings, Dzyaloshin-skii–Moriya interactions are responsible for additional symmetry breaking, and the aris-ing multiferroic properties. Therefore, it is highly important to model them accurately.Previous inelastic neutron scattering works proposed two distinct models to describe theDzyaloshinskii–Moriya interaction in YFeO3 with different values of the exchange inter-action parameters and single-ion anisotropies. We study the magnetic-field dependenceof the spin-wave modes in YFeO3 at 3 K with the magnetic field applied along all threecrystallographic directions. Using the linear spin-wave theory, we calculate the spin-waveexcitation energies and fit them to the experimentally measured ones to find the correctvalues of Dzyaloshinskii–Moriya interaction and single-ion anisotropy parameters. As theresult, we determine which model describes the interactions more accurately, as well asrefine the zero-field spin structure of YFeO3.Exotic states of matter and complex symmetries often emerge in the proximity of the
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quantum critical point. In 1989, A. B. Zamolodchikov proposed that an Ising spin chain ina transverse magnetic field near the quantum critical point, if perturbed by a small longi-tudinal field, can be described by an integrable quantum field theory with the symmetryof the E8 Lie algebra. The theory provides an exact solution, which features an excita-tion spectrum of eight particles that follow specific mass ratios. The earlier attempt toexperimentally measure the E8 spectrum by inelastic neutron scattering only featuredtwo of the possible eight excitations in CoNb2O6. CoNb2O6 is a realization of a quasi-one-dimensional Ising spin chain, with a ferromagnetic arrangement of Co2+ spin. Wemeasured the THz absorption spectrum of CoNb2O6 at 250mK in the applied transversemagnetic field up to 12 T. Close to the quantum critical point, we report the observationof the E8 spectrum with the single-particle excitations up to m6, as well as multi-particleexcitations. Additionally, we studied the absorption spectrum of BaCo2V2O8, which in-corporates antiferromagnetic Co2+ spin chains. We performed the measurement at 2.7 Kin the applied transverse magnetic field up to 17 T. Near the quantum critical point, weobserve the E8 spectrum with the single-particle excitations up to m5 together with themulti-particle excitations. We, therefore, report strong evidence of the emergent E8 sym-metry in both CoNb2O6 and BaCo2V2O8.
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Kokkuvõte
Sümmeetriarikkumiste avalduminemagnetergastuste teraherts-
spektrites
Magnetiliste ergastuste uurimine annab väärtuslikku teavet aine magnetmomentide va-heliste vastasmõjude, magnetilise korrapära ning sellega seotud sümmeetriarikkumistekohta faasisiiretel. Antud töös kasutatakse teraherts spektroskoopiat, mis võrreldes teistemeetoditega, nagu mitteelastne neutronhajumine või mitteelastne röntgenkiirguse haju-mine, annab parema energialahutuse ning lisaks on võimeline mõõtma ergastusi ener-giatel alla 1meV (0.24 THz). Keemilise ja Bioloogilise Füüsika Instituudis kasutatavad tera-herts-piirkonna spektromeetrid võimaldavad tehamõõtmisi magnetväljades kuni 17 teslatja väga madalatel temperatuuridel kuni mõnisada millikelvinit. Selline energia-, magnet-välja- ja temperatuurivahemik annab juurdepääsu kristallväljaergastustele terbium tita-naadis Tb2Ti2O7, spinnlainetele ütrium ortoferriidis YFeO3 ning Isingi spinnahela ergas-tustele kvantkriitilise punkti lähedal.

Terbium titanaadis Tb2Ti2O7 paiknevadmagnetilised Tb3+ ioonid tetraheedri tippudesmoodustades pürokloori tüüpi kristallvõre. Tb magnetmomendid ei korrastu ka ülimada-lal temperatuuril, kuni 50mK, vaid viibivad fluktueerivas spinnjää olekus. Hiljutised mitte-elastse neutronhajumise ja teraherts-uuringud näitasid, et Tb2Ti2O7-s on hübriidsedmag-netelastsed ergastused, mis viitavad magnetmomentide ja kristallvõrevõnkumiste vastas-mõjule. Meie mõõtsime Tb2Ti2O7 neeldumisspektrite magnetväljasõltuvuse temperatuu-rivahemikus 3 – 60 K. Mõõdetud spektrite modellleerimiseks koostasime hamiltoniaani,mis kirjeldabmagnetmomentide ja kristallvõrevõnkumiste vastasmõju kristallvälja kaudu.Võrreldes teoreetilist tulemust mõõdetud spektriga, kinnitame võrevõnkumistest põhjus-tatud lokaalse kristallvälja dünaamilist sümmeetriarikkumist.
Ütrium ortoferriidi YFeO3 struktuur on sarnane mõnede multiferroidide struktuurile.Arvestades, et selles aines on ainult Fe3+ ioonidel nullist erinev spinn S = 5/2, võimal-dab YFeO3 magnetiste vastasmõjude ning korrastatuse uurimine paremini mõista keeru-lisema struktuuriga multiferroidide omadusi. Olulised on vahetusvastasmõjudega võrrel-des suhteliselt nõrgad Dzyaloshinskii–Moriya vastasmõjud, mis põhjustavad magnetilisestruktuuri sümmeetria rikkumist ja multiferroidsete omaduste tekkimist. Seega on nen-de täpnemodelleerimine eriti tähtis. Varasemadmitteelastse neutronhajumise uuringutepoolt pakutud kaks mudelit ei olnud kooskõlalised, sest sisaldasid erinevaid Dzyaloshins-kii–Moriya vastasmõjusid ja ühe iooni anisotroopia parameetreid. Meie uurisime kahemadalal energial oleva spinnlaine sageduste sõltuvust magnetväljast temperatuuril 3 K,rakendades magnetvälja kolme erineva kristalltelje suunas. Kasutades lineaarset spinn-laine teooriat arvutasime ergastuste sagedused ning lähendasime tulemust eksperimen-taalselt mõõdetud väärtustega. Lõpptulemuseks tegime kindlaks, milline mudel kirjeldabDzyaloshinskii–Moriya vastasmõjusid paremini, määrasime täpsemalt vastasmõju para-meetrid ning täpsustasime spinnide kõrvalekaldenurkasid ideaalsest antiferromagnetili-sest struktuurist.
Kvantkriitilise punkti lähedal tekivad tihti eksootilised aineolekud ning ilmuvad komp-lekssed sümmeetriad. 1989. aastal näitas A. B. Zamolodchikov, et Isingi spinnahelat ristisesmagnetiväljas kvantkriitilise punkti lähedal ja väikese pikimagnetvälja häiritusega kirjeldabintegreeritav kvantväljateooria, millel onE8 Lie algebra sümmeetria. Teooria on täpselt la-hendatav ning ennustab ergastusspektri, mis koosneb kaheksast osakesest kindlatemassi-suhetega.E8 spekter mõõdeti esimest korda koobalt niobaadi CoNb2O6 ferromagnetilisesCo2+ spinnide ahelas mitteelastse neutronhajumisega. Kahjuks oli siis võimalik näha vaidkaht ergastust kaheksast. Meie mõõtsime CoNb2O6 spektrit temperatuuril 250mK kuni
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12 T ristimagnetväljas. Kvantkriitilise punkti lähedal leidsime kuus ergastust E8 teooriagamääratud massisuhetega ning ka nende mitmeosakese ergastused. Lisaks sellele uurisi-me ka antiferromagnetilise Co2+ spinnide ahelaga BaCo2V2O8 spektrit temperatuuril 2.7 Kmagnetväljas kuni 17 T. BaCo2V2O8-s leidsime viis E8 osakest ja mitmeosakese ergastusi.Meie töö kinnitab veenvalt, et mõlemas aines kvantkriitilise punkti lähedal tekib E8 süm-meetria.
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We measured absorption of THz radiation in YFeO3 single crystals at a temperature of 3 K in the magnetic field
up to 17 T applied in all three crystallographic directions. Two spin-wave modes were observed at the � point
with energies 1.2 meV (9.8 cm−1) and 2.4 meV (19.3 cm−1) in zero field. From the magnetic-field dependence
of mode energies, we have refined the previously proposed model [S. E. Hahn et al., Phys. Rev. B 89, 014420
(2014)] and quantified the parameters of Dzyaloshinskii-Moriya interactions and single-ion anisotropies.

DOI: 10.1103/PhysRevB.98.174417

I. INTRODUCTION

Strong coupling between electric and magnetic orders
in multiferroic materials is an interesting phenomenon that
allows for tuning of magnetic properties with the applied
electric field, and it can find applications in future recording
devices and spintronics [1,2]. Such a magnetoelectric effect
has been observed in rare-earth orthoferrites R FeO3, where
R is a rare-earth element. GdFeO3, for example, obtains a
magnetically induced ferroelectric ground state below 2.5 K,
in which the magnetic moment can be controlled with the
electric field [3]. The same possibility has been reported [4]
for compounds Dy0.7Tb0.3FeO3 and Dy0.75Gd0.25FeO3. While
GaFeO3 and AlFeO3 do not belong to the group of rare-
earth orthoferrites, their rather similar noncentrosymmetric
orthorhombic structure also allows for spontaneous electric
polarization and results in multiferroic properties [5].

To fully understand such multiferroic behavior, it is nec-
essary to be able to accurately describe and quantify the
interactions inside these materials. Here we focus on an
orthoferrite YFeO3 with a distorted perovskite structure of the
Pbnm symmetry group. Although the inversion symmetry of
this structure does not allow for multiferroicity, YFeO3 is a
perfect model system for studying magnetic interactions. In
particular, all electron shells in Y3+ are completely filled,
which means that the magnetic ordering comes exclusively
from the Fe3+ ions. Thus, modeling this compound allows us
to lay the foundation for understanding the magnetoelectric
mechanisms and spin dynamics in materials that exhibit more
complex behavior.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

The striking feature of orthoferrites is their high Néel
temperature TN , which for YFeO3 is reported [6–8] to be
approximately 644 K. This property could, in principle, re-
sult in room-temperature applications. Below TN , the iron
spins S = 5/2 order in an antiferromagnetic (AFM) state
�4(Ga, Fc,Ab), where the spins are canted, resulting in a
weak ferromagnetic (FM) component along the c axis [9,10].
This spin structure is described by a combination of exchange
interactions, Dzyaloshinskii-Moriya (DM) interactions that
result in weak FM order, and single-ion anisotropies (SIA).
It has been shown [11] that with the magnetic field applied
along the a axis, the weak FM moment rotates away from the
c axis toward the field by 80◦ at around 7.0 T.

There are four spin-wave (SW) modes associated with
the four magnetic ions per unit cell in YFeO3. Two modes
have been observed at about 10 and 20 cm−1 at the � point
with Raman spectroscopy [12] and quasioptical techniques
[13,14]. Combining these observations with inelastic neutron
scattering (INS) measurements of SW dispersion at higher
energies led to the development of a simplified spin-state
model [15]. There the spin Hamiltonian had two types of
exchange interactions (those between nearest-neighbor and
next-nearest-neighbor spins), two DM coupling parameters
between atoms located in the ab plane, and two SIA constants.
From a later structural analysis with INS study of low-energy
excitations around a magnetic Brillouin zone center [16], it
followed that the model had to be improved by including ad-
ditional DM interactions between adjacent planes. However,
no extensive study of the magnetic-field dependence of SW
modes has been performed until now.

The current reexamination of YFeO3 has two motivations.
First, THz spectroscopy has far greater sensitivity in fre-
quency than does inelastic neutron scattering. So it is much
better suited to study the low-frequency spin dynamics pro-
duced by spin-orbit coupling and to estimate the weak, as
compared to exchange couplings, DM and SIA interactions
in YFeO3. Second, we use this opportunity to incorporate
the more complex structure of the DM vectors. By applying

2469-9950/2018/98(17)/174417(6) 174417-1 Published by the American Physical Society
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FIG. 1. Magnetic interactions in YFeO3. Magnetic Fe ions are
blue and labeled 1 through 4; oxygen ions are red.

the magnetic field in the three crystallographic directions,
we obtain much more precise values for the DM and SIA
interactions in YFeO3 than was previously possible.

II. THEORY

The magnetic unit cell of YFeO3 contains four S =
5/2 Fe3+ ions. A sketch of the magnetic unit cell and the
exchange interactions between the spins is shown in Fig. 1.
We include three exchange interactions: Jab couple pairs of
spins {1, 4} and {2, 3} within the ab plane, Jc couple pairs
{1, 2} and {3, 4} along c, and J ′ couple pairs {1, 3} and {2, 4}
in different layers separated by c/2.

In the absence of DM interactions, the exchange interac-
tions and SIA would stabilize a simple AFM state with spins
1 and 3 aligned along −a and spins 2 and 4 aligned along
a. An earlier work by Hahn et al. [15] assumed a simplified
model where two DM vectors were taken along b and c. Each
DM interaction was assumed to couple only nearest-neighbor
spins, {i, j} = {2, 3} and {1, 4}, in the ab plane. The DM
vector D2 then produces the tilt of the spins in the ab plane
away from the a axis, and D1 produces the tilt of the spins
toward the c axis [10]. They also included easy-axis SIA Ka

and Kc along the a and c axes, respectively. The spin state can
be written as

Si = S(sin θi cos φi, sin θi sin φi, cos θi ). (1)

In zero field the angles are θ1 = θ2 = θ3 = θ4 ≡ θ and φ1 +
π = −φ3 + π = −φ4 = φ2 ≡ φ. This state has a net spin c-
component Fc = (S1 + S2 + S3 + S4)c = 4S cos θ per mag-
netic unit cell. It has no spin component perpendicular to the c

axis, but it has AF components along the a axis, Ga = (S1 −
S2 + S3 − S4)a , and the b axis, Ab = (S1 − S2 − S3 + S4)b.
The relations between spin vectors and angles are Ab/Ga =
tan φ and Fc/Ga = (cos φ tan θ )−1.

Hahn et al. [15] fit the SW spectrum to obtain the exchange
interactions, SIA, and DM vectors. The set of parameters
was constrained to produce the zero-field spin state with

θ = 0.498π and φ = 0.001π . Because Jab and Jc couple
sites that are bridged by one anion and separated by distances√

a2 + b2/2 ≈ 3.85 Å and c/2 ≈ 3.80 Å, respectively,
these two antiferromagnetic coupling constants were set
equal to the single exchange constant J . By contrast, J ′
couples sites that are bridged by two anions and by distance√

a2 + b2 + c2/2 ≈ 5.41 Å. So |J ′| is expected to be much
smaller than |J |. Hahn et al. estimated that J = −4.77
meV and J ′ = −0.21 meV. The SIA Ka = 0.0055 meV
and Kc = 0.0035 meV favor the spins to lie perpendicular
to the b axis. The DM vectors had estimated magnitudes
D1 = 0.074 meV and D2 = 0.028 meV.

However, a symmetry analysis of the perovskite crystal
structure [17] revealed that the DM vectors are more complex
than assumed by Hahn et al. [15]. Rather than just two DM
vectors, each oxygen atom-mediated bond (Fig. 1) carries its
own local DM vector, including nearest neighbors {1, 2} and
{3, 4} on adjacent ab planes separated by ±c/2. While there
are still only two overall magnitudes for the DM vectors,
this more complex interaction structure could modify the
estimates for the microscopic parameters in YFeO3.

With the magnetic field H along m, the Hamiltonian of
YFeO3 can be written as

H = −1

2
J

∑
i,j

Si · Sj − 1

2
J ′ ∑

i,j

Si · Sj

−Ka

∑
i

Sia
2 − Kc

∑
i

Sic
2

+ 1

2

∑
i,j

Dij · (Si × Sj ) − μBμ0H
∑

i

m · Si , (2)

where the exchange interactions couple the spins indicated in
Fig. 1, and Jab = Jc ≡ J . The factors of 1/2 avoid double
counting. Because the spectroscopic modes are evaluated at
wave vector q = 0, we do not include interactions between
spins in neighboring unit cells, e.g., between S1 and S1,
although these are next-nearest-neighbor interactions.

The orientation of the local vectors Dij is determined by
the condition that [18]

Dij ∝ (Ri − Ro) × (Ro − Rj ), (3)

where Ro is the position of the oxygen atom that couples spins
i and j . Consequently, the DM vectors are given by [17]

D32 = Dab(−αab, βab, γab ), �R = ±(a/2, b/2, 0), (4)

D′
32 = Dab(αab, βab, γab ), �R = ±(−a/2, b/2, 0), (5)

D41 = Dab(−αab,−βab, γab ), �R = ±(−a/2, b/2, 0),

(6)

D′
41 = Dab(αab,−βab, γab ), �R = ±(a/2, b/2, 0), (7)

D12 = Dc(−αc, βc, 0), �R = ±(0, 0, c/2), (8)

D34 = Dc(αc, βc, 0), �R = ±(0, 0, c/2), (9)

where �R = Ri − Rj for Dij = −Dji . The vectors are all
normalized so that α2

ab + β2
ab + γ 2

ab = 1 and α2
c + β2

c = 1.
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FIG. 2. Magnetic-field dependence of SW absorption spectra of YFeO3 at 3 K. Panels (a), (b), and (c) correspond to the magnetic field H
applied along crystallographic axes a, b, and c, respectively. The spectra are shifted vertically in proportion to the magnitude of the applied
magnetic field, marked on the right side of the plot. In each panel, blue and red solid lines denote two orthogonal incident light polarizations,
where the oscillating electric- and magnetic-field vectors Eω and Hω are aligned along different crystallographic axes. Dashed lines show the
absorption peak positions obtained from the theoretical fit. The impurity peak position in zero field is marked with a star.

Based on Eq. (3) and the structural analysis [16], αab = 0.517,
βab = 0.488, γab = 0.703, αc = 0.346, and βc = 0.938.

III. EXPERIMENT

We prepared polycrystalline YFeO3 using Y2O3 and Fe2O3

by a standard solid-state reaction method. All the starting
materials were prepared in a stoichiometric ratio and mixed,
pelletized, and sintered several times. The final sintering
condition was set to 1400 ◦C for 24 h. Single crystals were
subsequently grown with a 4-mm-diameter feed rod of a cor-
rect composition by a floating-zone furnace (Crystal Systems,
Japan) under an oxygen atmosphere at a growth speed of
3 mm/h. We checked the quality of the samples using a single-
crystal diffractometer and bulk property measurements.

Three cuts of YFeO3 single crystals, (100), (010), and
(001), with thicknesses slightly under 1 mm were prepared.
The intensity of transmitted THz radiation was detected in
the range from 5 to 40 cm−1 using a Martin-Puplett inter-
ferometer, a mercury discharge lamp as a light source, and
a Si bolometer operated at T = 0.3 K. The polarization of
incident radiation was controlled by a wire-grid polarizer.
Measurements were performed in Faraday and Voigt con-
figurations, where the THz radiation propagates parallel or
perpendicular to the applied magnetic field, respectively. In a
Voigt configuration, the SW mode frequencies were measured
as a function of the sample orientation in fields just below
and above the observed spin-flop (SF) transition (i.e., 5 and
7 T). The sample was rotated around the c axis such that

the magnetic-field vector was in the ab plane. The exact
alignment H ‖ a was achieved by finding the orientation that
corresponds to the lowest frequency of the resonance peak.

Differential absorbance spectra were calculated from the
ratios of transmitted light intensities measured with and
without the applied magnetic field in the following way.
In a sample with negligible interference (i.e., wedged or
with high enough absorption), the transmitted light in-
tensity I is related to the incident light intensity I0 via
I = I0(1 − R)2 exp(−αd ), where R is the reflection coef-
ficient, α is the absorption coefficient, and d is the sam-
ple thickness. Therefore, the absorption coefficient is de-
fined as α = −d−1 ln[(1 − R)−2I/I0]. If we assume that
R does not depend on the applied magnetic field, we can
calculate the differential absorbance αSW ≡ α(H ) − α(0) =
−d−1 ln[I (H )/I (0)] by dividing the transmitted intensity
spectrum measured in the magnetic field I (H ) by the zero-
field spectrum I (0). Finally, a baseline, statistically calculated
from negative values of αSW, is subtracted to reveal absorption
peaks in the zero-field spectrum.

IV. RESULTS

Using THz spectroscopy, we have measured two lowest
spin-wave modes at q = 0 for the magnetic field along the a,
b, and c axes, with results shown in Fig. 2. YFeO3 undergoes a
spin-flop transition when the field is applied along the a axis.
While the spins are almost parallel to the a axis below HSF,
they are almost parallel to the c axis above HSF.
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FIG. 3. Magnetic-field dependence of the absorption peak posi-
tions (symbols) with the field applied along the three crystallographic
axes and the theoretical fit result (solid lines). Dashed lines show the
fit with the simplified model, where Dc = 0.

In addition to the two SW modes, there exists another mode
below 9 cm−1, which is especially pronounced in Figs. 2(a)
and 2(b), and it has been indicated with a star. This mode has
previously been reported [19,20] to be an impurity mode only
present in single crystals grown by the floating zone method.
The mode was assigned to Fe3+ atoms occupying Y3+ sites,
and is not accounted for in the present model.

Since THz spectroscopy only measures the two low-
frequency modes below 3 meV, we use the SW spectrum
measured with INS [15] for frequencies up to 80 meV to
fix the exchange interactions Jc = Jab = −4.77 meV and
J ′ = −0.21 meV. That leaves the four “small” spin-orbit
parameters Ka , Kc, Dab, and Dc to be determined by optical
spectroscopy.

For each field direction and magnitude and set of param-
eters, we minimize the energy E = 〈H〉 as a function of the
eight angles θi and φi for the four spins in the magnetic unit
cell. Based on the linear SW theory, we then evaluate the
frequencies of the two lowest SW modes for comparison with
the measured spectroscopic mode frequencies. This loop is
repeated until we achieve a minimum of χ2.

The result of this procedure is presented in Fig. 3, which
shows a rather good agreement between the theory and the
experimental data. All of the coupling parameters are summa-
rized in Table I, where the values are compared to those from

TABLE I. Spin Hamiltonian parameter values (meV). The two
DM parameters of Hahn et al. [15] are related to Dab as Dab =√

D2
1 + D2

2 .

This work Dc = 0 Hahn et al. [15] Park et al. [16]

Jc −4.77 −4.77 −4.77 −5.02
Jab −4.77 −4.77 −4.77 −4.62
J ′ −0.21 −0.21 −0.21 −0.22
Ka 0.0052 0.0055 0.0055 0.0091
Kc 0.0044 0.0038 0.0031 0.0025
|Dab| 0.136 0.147 0.079 0.121
|Dc| 0.189 0 0.145

earlier reports. The resulting values of Ka and Kc are quite
close to those predicted by Hahn et al. [15]. Not surprisingly,
considering that the DM vectors are oriented away from the
c and b axes, the values for Dab and Dc are larger than√

D2
1 + D2

2 estimated by Hahn et al. [15]. These parameters
correspond to the zero-field canted state with θ = 0.4966π

and φ = 0.0035π , which is more canted than previously
predicted. When the field is applied along the a axis, these
parameters produce a SF field μ0HSF = 6.2 T.

We evaluated the validity of the more complex DM model
by also fitting the experimental data using a simplified model
from Hahn et al. [15], with Dc = 0 and αab = 0. In this
case the four fitting parameters are D1, D2, Ka , and Kc. The
result is plotted in Fig. 3 with dashed lines. While it is still
possible to fit the spectrum rather well with fixed Dc = 0,
it does not match the experimental data as closely as the
more complex model that includes DM interaction between
adjacent planes. This is confirmed by the difference in χ2

(0.462 against 0.168). The corresponding fit parameters are
specified in Table I in the second column. The values of D1

and D2 are 0.139 and 0.048 meV, respectively.

FIG. 4. Zero-field spectra measured in six different polarizations
qualitatively showing the selection rules. The spectra are grouped
according to the direction of the oscillating magnetic field Hω. For
each direction, only one mode is visible. The dashed lines show
arbitrarily scaled theoretical spectra. The impurity mode is marked
with a star.
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Figure 4 qualitatively shows the selection rules for YFeO3.
It is clear that the absorption intensity depends on the di-
rection of the oscillating magnetic field Hω rather than the
electric field Eω. The selection rules are well reproduced by
the theory, where in zero field the lower-frequency mode
is visible in polarizations with Hω ‖ a and Hω ‖ b, while
the higher-frequency mode occurs exclusively with Hω ‖ c.
While the theory qualitatively matches the experiment in the
whole magnetic-field range (selection rules change after
the spin flop), we have not been able to accurately reproduce
the absorption intensities. Thus, in Fig. 4 the higher-frequency
mode is predicted to have much higher intensity, while in
reality the intensities of the two modes are comparable. The
cause of this discrepancy remains unknown.

V. CONCLUSION

Two SW modes were measured by THz absorption spec-
troscopy and modeled by the Hamiltonian, Eq. (2). Our result
shows that it is necessary to account for the more complex
DM structure to accurately model the magnetic interactions
in YFeO3, which is confirmed by the overall quality of the
fits. With that in mind, we were able to fit the magnetic-field
dependence of the absorption spectra up to 17 T, from which
we precisely quantified the SIA and DM interactions. These
values are in good agreement with earlier reported INS data,
and are only slightly modified.

The obtained canting, with angles θ = 0.4966π and φ =
0.0035π , is considerably larger than that previously reported
by Hahn et al. [15] (0.4983π and 0.0010π ) and is very
close to what was estimated by Park et al. [16] (0.4972π

and 0.0032π ). This larger canting results from the higher
magnitudes of the DM interaction vectors than previously
predicted. The new values of canting angles correspond better
to the experimentally observed [10] ratios Fc/Ga = 0.0129
and Ab/Ga = 0.0159 that correspond to θ = 0.4959π and
φ = 0.0051π .

It is worth noting that the spin flop occurs at μ0HSF =
6.2 T with the current set of parameters, which is lower
than the previously reported value of 7.0 T. Unfortunately,
it is hard to unambiguously determine the exact SF field
from the experimental data alone, as the lower SW mode
does not soften completely. Why does the lower, experimental
mode frequency not soften as much as predicted near HSF?

There might be several explanations for this discrepancy. SW
theory does not include higher-order fluctuations that could
enhance the SW frequencies near HSF. Because the predicted
drop in the lowest mode frequency is very steep, it will be
significantly lifted by crystal domains with slightly different
spin-flop fields. However, 6.2 T clearly matches the SF field
we observed much better than what is estimated using sets of
parameters from Hahn et al. [15] or Park et al. [16], which
is 9.0 and 15.9 T, respectively. This is a good indication that
fitting the magnetic-field dependence of THz spectra provides
a better estimation of the SIA and DM interaction parameters.

Therefore, we have shown that while INS is better suited
to estimate the stronger exchange couplings based on the SW
dispersion at high frequencies, THz spectroscopy is better
suited to study the “weak” spin-orbit induced DM and SIA
couplings at low frequencies and q = 0. Since these “weak”
interactions are responsible for a material’s multiferroic be-
havior, THz spectroscopy should prove useful in the future,
when this approach is extended to materials where Y3+ is
substituted by other, possibly magnetic ions.

One of the challenges of our method is currently the limited
availability of large enough high-quality single crystals for
transmission measurements. The other limitation is the fact
that we cannot very well detect low-frequency modes that
soften close to the spin flop, as it is hard to measure below
5 cm−1 with THz spectroscopy. While we are currently not
able to determine the cause of the discrepancy between the
theoretical and the measured absorption intensities, we hope
to find the answer in future measurements that would include
other orthoferrites.
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Near the transverse-field-induced quantum critical point of the Ising chain, an exotic dynamic spectrum
consisting of exactly eight particles was predicted, which is uniquely described by an emergent quantum
integrable field theory with the symmetry of the E8 Lie algebra, but rarely explored experimentally. Here we
use high-resolution terahertz spectroscopy to resolve quantum spin dynamics of the quasi-one-dimensional Ising
antiferromagnet BaCo2V2O8 in an applied transverse field. By comparing to an analytical calculation of the
dynamical spin correlations, we identify E8 particles as well as their two-particle excitations.

DOI: 10.1103/PhysRevB.101.220411

Exotic states of matter, such as high-temperature super-
conductivity or magnonic Bose-Einstein condensation, can
emerge in the vicinity of a quantum critical point [1], which
identifies a zero-temperature phase transition tuned by an
external parameter, e.g., chemical substitution or applied mag-
netic field [2,3]. Quantum critical points are often character-
ized by enhanced many-body fluctuations together with diver-
gence of correlation length and complex emergent symmetry
[1,4–8]; thus it is generally a formidable task to precisely
describe the quantum many-body physics near a quantum
critical point. Exactly solvable models play a crucial role in
this regard, because a precise understanding of the quantum
many-body physics can be gained by rigorously analyzing
these models [4,6]. The one-dimensional (1D) spin-1/2 Ising
model in a transverse magnetic field is such a paradigmatic
example [1,4–9]. Considering only the exchange interaction
between the nearest-neighbor spins on a chain [10,11], this
model has been investigated most broadly in quantum mag-
netism, which provides deep insights into the fundamental
aspects of the quantum many-body physics [1,6–8]. In par-
ticular, highly unconventional dynamic properties have been
theoretically predicted to emerge near the transverse-field
Ising quantum critical point, either for equilibrium states upon
constant perturbations or for states far from equilibrium after
a quantum quench (see, e.g., Refs. [12–18]). Moreover, the
study of the transverse-field Ising quantum critical point is of
importance also in the context of quantum information [5,8]
and quantum simulation using ultracold atoms [19].

A remarkable prediction of an exotic dynamic spectrum
was made three decades ago for the transverse-field Ising

*wujd@sjtu.edu.cn
†zhewang@ph2.uni-koeln.de

chain perturbed by a small longitudinal field [12]. It is de-
scribed by the Hamiltonian

H = −J
∑

i

Sz
i Sz

i+1 − B⊥
∑

i

Sx
i − B||

∑
i

Sz
i , (1)

with the x and z components Sx
i and Sz

i , respectively, of the
spin-1/2 magnetic moment at the ith site on a 1D chain. The
first term is the Ising term with the ferromagnetic exchange
J > 0 between the nearest-neighbor spins. The second and
third terms describe the interactions of the spins with the
transverse field B⊥ and the perturbative longitudinal field
B||, respectively. Close to the transverse-field Ising quantum
critical point [see Fig. 1(b)], the excitation spectrum of this
model was predicted to be governed by a complex symmetry
which is described by a quantum integrable field theory with
the E8 symmetry (an exceptional simple Lie algebra of rank
8) [12], which, however, is rarely explored experimentally.
An analytical solution of the E8 excitation spectrum delivered
exactly eight particles (m1 to m8), the existence of which
is uniquely determined by the specific ratios of their masses
(Table I) with the lowest mass scaling with the perturbative
longitudinal field; i.e., m1 ∝ |B‖|8/15 [12]. Further analysis on
the dynamic characteristics of the eight particles showed that
the single-particle spectral weight decreases monotonically
and drastically with increasing energy [Fig. 1(a)] [13,14].
Despite the apparent simplicity of the spin Hamiltonian in
Eq. (1), an experimental realization of the E8 spectrum, how-
ever, is very difficult, because several crucial criteria must be
simultaneously fulfilled: one-dimensionality of spin interac-
tions, strong Ising anisotropy, and a perturbative longitudinal
field.

In this work, we use high-resolution terahertz (THz)
spectroscopy to resolve E8 particles in an antiferromagnetic
Ising spin-chain material BaCo2V2O8, where all the crucial
criteria are found to be realized. By performing analytical
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FIG. 1. (a) Normalized dynamical structure factor
Dxx (mi, q = 0) at zero momentum transfer for the eight particles
with specific ratios mi/m1 (i = 1, 2, . . . , 8) [see Table I and Eq. (2)].
(b) Illustrative phase diagram of a quasi-one-dimensional Ising
antiferromagnet in a transverse magnetic field. In zero field a
three-dimensional (3D) Néel order is stabilized below TN due to
perturbative interchain couplings. The quantum critical point of the
transverse-field Ising chain at Bc,1D

⊥ [corresponding to the vanishing
spin gap �(B⊥)] is masked under the 3D Néel order (Bc,1D

⊥ < Bc,3D
⊥ ).

A paramagnetic phase is reached when the long-range order is
suppressed by B⊥ > Bc,3D

⊥ . The possible region to realize the E8

dynamic spectrum is indicated by the dashed area. (c) The spin chain
in the quasi-one-dimensional Ising antiferromagnet BaCo2V2O8 is
constituted by edge-sharing CoO6 octahedra, running with a fourfold
screw axis along the crystallographic c axis. In BaCo2V2O8, the 3D
Néel order is formed below TN ≈ 5.5 K and Bc,3D

⊥ = 10 T [21].

calculation of the spin dynamic structure factor using the
quantum integrable field theory of the E8 spectrum, we un-
ambiguously identify E8 single particles as well as their two-
particle excitations.

BaCo2V2O8 is a magnetic insulator with a tetragonal crys-
tal structure [20,21]. Based on the magnetic cobalt ions, the

spin chains in BaCo2V2O8 are constituted by edge-sharing
CoO6 octahedra, running with a fourfold screw axis along
the crystallographic c axis [Fig. 1(c)]. High-quality single
crystals of BaCo2V2O8 were grown using the floating-zone
method [21]. The crystal structure and magnetic properties
were characterized by x-ray diffraction, magnetization, heat
capacity, and dilatometry measurements [21]. For the optical
experiment, single crystals were oriented at room temperature
using x-ray Laue diffraction and cut perpendicular to the
tetragonal a axis with a typical surface area of 4 × 4 mm2

and a thickness of 0.76 mm. Using a Sciencetech SPS200
Martin-Puplett type spectrometer with a 0.3 K bolometer,
THz transmission measurements were carried out down to
2.7 K (below TN ≈ 5.5 K) in a cryostat equipped with a
superconducting magnet for applying fields up to 17 T. An
external field B⊥ was applied parallel to the tetragonal a
axis, while the THz electromagnetic waves propagated along
the other tetragonal a axis in Voigt configuration. A rotat-
able polarizer was placed in front of the sample for tuning
polarization of the THz waves. The change of absorption
coefficient �α due to magnetic excitations was derived by
taking the zero-field transmission spectrum at 10 K (slightly
above TN ) as a reference spectrum; see the Supplemental
Material [22].

An easy-axis anisotropy along the c axis in BaCo2V2O8

was evidenced by magnetization measurements [21], and
further confirmed by investigations of quantum spin dynam-
ics [23–26]. By precisely comparing to the exact results of
Bethe ansatz, the quantum spin dynamics in BaCo2V2O8

can be nicely described by a 1D spin-1/2 antiferromag-
netic Heisenberg-Ising model with a strong Ising anisotropy
[23,24]. Below TN ≈ 5.5 K, a three-dimensional (3D) Néel-
type antiferromagnetic order [Fig. 1(b)] is stabilized due
to the presence of small perturbative interchain couplings
[21,24,27–29]. In an applied transverse magnetic field along
the a axis, the 3D order is suppressed above Bc,3D

⊥ = 10 T [see
Fig. 1(b)] [21].

The interchain couplings strongly influence the quantum
spin dynamics below TN . As illustrated in Fig. 2(a), a spin-
flip excitation, which corresponds to �S = ±1, fractionalizes
into two spinons each with a fractional quantum number
of spin-1/2. In the Néel-ordered phase, the spinons cannot
propagate freely on the chain, but are confined into two-spinon
bound states due to the inter-chain couplings. The confining
potential increases linearly with the distance between the
two spinons [Fig. 2(b)], leading to the discrete levels of
spinon-pair bound states, in contrast to spinon continuum of a
decoupled chain. Figure 2(c) shows the zero-field absorption
spectrum of BaCo2V2O8 below a strong optical phonon band
[22,24]. The absorption spectrum exhibits five sharp peaks
with their eigenenergies following a linear dependence on

TABLE I. Analytically predicted mass ratios of the E8 particles (m1 to m8) and the derived onsets of the multiparticle continua (2m1,
m1 + m2, m1 + m3, 3m1, and 2m2) [12,13,14].

Single m2 m3 m4 m5 m6 m7 m8

Multi 2m1 m1 + m2 m1 + m3 3m1 2m2

mi/m1 1.618 1.989 2 2.405 2.618 2.956 2.989 3 3.218 3.236 3.891 4.783
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FIG. 2. (a) The interchain couplings in the 3D Néel-ordered phase effectively exert a staggered perturbative longitudinal field (−1)iB|| on
the ith spin of the neighboring chain. The two-spinon excitations (red sphere) are confined due to the staggered field. (b) The corresponding
confining potential increases linearly with the distance between the two spinons, which leads to the discrete levels of two-spinon bound
states with energies m1, m2, m3, · · · .(c) The zero-field absorption spectrum exhibits a series of peaks, measured with hω||a. �α and ω denote
absorption coefficient and wave number, respectively. (d) The energies of the peaks follow a linear dependence on ζi, the negative zeros of the
Airy function Ai(−ζi ) = 0, which evidences the confinement of spinons due to the staggered longitudinal fields [24,27,28,30]. (e) Evolution of
the absorption spectra in finite transverse fields B⊥ ‖ hω. The spectra are shifted vertically by constants proportional to the transverse fields for
clarity. The spectra below Bc,3D

⊥ = 10 T in the Néel-ordered phase are complex and exhibit several peaks, while above Bc,3D
⊥ in the field-induced

paramagnetic phase [see Fig. 1(b)] the main features of the spectra are two sharp peaks.

ζi [see Fig. 2(d)]; the negative zeros of the Airy function
Ai(−ζi ) = 0, which nicely confirms the confined spinon-pair
excitations reported previously [24,27,28,30]. Another im-
portant implication of this observation is that the interchain
couplings provide an effective longitudinal field, which is
perturbative and staggered with the peculiar form of (−1)iB||
corresponding to the spin Sz

i on the ith site of the chain. Such
a staggered longitudinal field is crucial for the realization
of the E8 spectrum, because via the transformation Sz

i →
(−1)iSz

i , we can map our antiferromagnetic chain into the
ferromagnetic model in Eq. (1).

While all the aforementioned criteria are found to be
fulfilled in BaCo2V2O8 at zero field, it is necessary that they
remain fulfilled when applying an external transverse field. In
particular, to maintain the collective effects of the staggered
fields, the 3D order should not be suppressed before the
1D quantum critical point is reached, i.e., Bc,1D

⊥ < Bc,3D
⊥ , as

illustrated in Fig. 1(b). As we will show below, this condition
is indeed realized in BaCo2V2O8.

In a transverse field applied along the crystallographic a
axis (B⊥|| a), we measured the absorption spectra at 2.7 K
below TN with the linearly polarized THz magnetic field hω

along the same orientation (i.e., hω|| B⊥|| a), see Fig. 2(e)
(also see Supplemental Material [22]). As indicated by the
arrows in Fig. 2(e), the m1 mode observed at 0.4 THz in
zero field softens monotonically with increasing field until
reaching the minimum frequency of 0.18 THz at 10 T, which
is followed by a continuous increase in higher fields (e.g., 0.22
THz at 13 T). The evolution of the lowest-lying mode m1

reflects the field dependence of the spin excitation gap, which
provides the spectroscopic evidence for the suppression of
the long-range order above Bc,3D

⊥ = 10 T, consistent with pre-
vious thermodynamic measurements [21]. The Néel-ordered
and the paramagnetic phases are contrasted by their spin
dynamic spectra, which is similar to the behavior reported
in an isostructural compound [31]. Below Bc,3D

⊥ , the low-
field spectra are characterized by several peaks with different
intensities at different energies [22]. In contrast, in the field-
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FIG. 3. (a) The ratios of the excitation energies (symbols) increase monotonically as the transverse field approaches 5 T from below, and
at 5 T simultaneously reach the theoretically expected values (dashed and dotted lines) for the E8 single- and two-particle excitations m2, m3,
2m1, m4, m1 + m2, and m5 (see Table I). At Bc,1D

⊥ = 5 T, the absorption spectrum in (b) is in excellent agreement with (c) the analytically
calculated spin dynamic structure factor Dxx (ω, q = 0) for the quantum integrable model of the E8 dynamic spectrum (solid line) [see Eq. (2)].
The dashed and dotted lines show the separate contributions of the single-particle (m1 to m6) and two-particle (2m1 and m1 + m2) excitations,
respectively [22]. Due to a strong phonon band [24], the spectrum in (b) cannot be resolved at higher energies for m6 to m8. The spectra in (c)
are broadened with a full width at half maximum of 0.1m1.

induced paramagnetic phase the spectra are dominated by two
sharp peaks (e.g., 0.26 and 0.99 THz at 16 T). In addition,
a small splitting of the m1 peak (about 0.1 meV) is resolved
above 5 T but disappears above 10 T, indicating the existence
of a weak orthorhombic ab-plane anisotropy in the 3D ordered
phase [21,32], while no splitting of the higher-energy peaks
can be resolved.

The transverse-field dependence of the spin dynamics in
the Ising chain systems has been the subject of previous
reports, based on experimental studies and/or on numerical
simulations; see, e.g., Refs. [29,31,33]. Here, we focus on the
discussion of the E8 dynamics that was predicted to emerge
only in the vicinity of the transverse-field Ising quantum crit-
ical point. Figure 3(a) shows the energy ratios of the higher-
frequency excitations with respect to the corresponding m1

mode at each field. With increasing field, we observe a contin-
uous increase of all the ratios, and at 5 T, they simultaneously
reach the expected values for m2, m3 and 2m1, m4, m1 + m2,
and m5 of the E8 dynamic spectrum (see Table I), as indicated

by the dashed and dotted lines. Above 5 T, the ratios deviate
again from those values of the E8 spectrum. This strongly indi-
cates that we have experimentally realized the E8 spectrum at
5 T [Fig. 3(b)], which also provides the dynamic evidence that
Bc,1D

⊥ = 5 T corresponds to the 1D quantum critical field, with
the required condition Bc,1D

⊥ < Bc,3D
⊥ consistently fulfilled.

The value of the 1D critical field agrees with the result of a
detailed numerical simulation [33]. At the same time, Fig. 3(b)
presents a very crucial feature that the two-particle continua
(2m1 and m1 + m2) are characterized by a relatively narrow
peak at the onset energies. This observation shows that the
continua are not so overwhelming that the higher-energy E8

particles (m3, m4, and m5) can still be resolved, in contrast
to the conventional intuitive understanding that the high-
energy E8 particles are hidden in a featureless 2m1 continuum
[34].

To further elaborate on the dynamic characteristics, we per-
form analytical calculations of the quantum integrable model
of the E8 dynamic spectrum [6,12–14]. Corresponding to the
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transverse THz magnetic field in the Voigt configuration, we
calculate the transverse dynamic structure factor,

Dxx(ω, q=0) =
∞∑

n=0

∫ +∞

−∞

dθ1 · · · dθn

N (2π )n−2 |〈0|σ x|Aa1 (θ1)Aa2 (θ2)

× · · · Aan (θn)〉|2δ(ω − E{ai})δ(P{ai}), (2)

for energy transfer ω and zero momentum transfer q = 0, as
the wavelength of THz spectroscopy is much greater than the
lattice constants of BaCo2V2O8. In Eq. (2), N = ∏8

i=1 ni!,
ai(i = 1, · · · , n) labels a particle with a corresponding mass
among m1 to m8, θi is the corresponding rapidity, and
σ x is the Pauli matrix associated with the spin component
Sx = σ x/2. The ground state and the n-particle excited state
are denoted by 〈0| and |Aa1 (θ1)Aa2 (θ2) · · · Aan (θn)〉, respec-
tively, for n = 1, 2, 3 · · · . The total energy and momentum
of the n-particle excited state are E{ai} = ∑n

i=1 ai cosh θi

and P{ai} = ∑n
i=1 ai sinh θi, respectively (see Supplemental

Material [22]). In particular, we derive the dynamical response
in the two-particle channels, |Aa1 (θ1)Aa2 (θ2)〉, {a1a2} =
{m1m1, m1m2, m1m3, m2m2}, and in the three-particle channel,
|Aa1 (θ1)Aa2 (θ2)Aa3 (θ3)〉, {a1a2a3} = {m1m1m1} (see Table I).

The obtained dynamic structure factor is presented in
Fig. 3(c) up to the energy of 3.3m1 with the peaks broadened
by a full width at half maximum of 0.1m1, which is in accord
with the spectral range of our experiment. The lowest-energy
m1 scaling with the perturbative longitudinal field is set as
unit. The contributions of the single-particle excitations (m1

to m6) and of the two-particle continua (2m1 and m1 + m2)
are separately plotted as dashed and dotted lines, respectively,
while the higher-energy continua with smaller spectral weight
are omitted for clarity [22]. The analytical results disclose
very peculiar many-body dynamic characteristics. First and
foremost, the multiparticle continua are not overwhelming but
possess even smaller spectral weight compared with the high-
energy E8 single particles. Thus, the single-particle excitations
with clearly recognized peaks stand well above the multi-
particle continua, profoundly in contrast to the conventional
intuitive understanding [34]. Hence, the higher-energy E8 sin-
gle particles above 2m1 should be experimentally resolvable.
Furthermore, the multiparticle continuum is not featureless,
but exhibits a relatively narrow peaklike maximum just above
the onset energy, which is followed by an extended tail. While
the peak of 2m1 merges coincidently with that of m3 into a
single peak and thus cannot be discriminated experimentally,
a pronounced peak due to m1 + m2 is clearly discernible.
Although the higher-energy multiparticle continua exhibit a

similar feature, their spectral weight is very small and hardly
recognized in the overall dynamic-structure-factor spectrum
[22].

As compared in Figs. 3(b) and 3(c), overall excellent agree-
ment is achieved between the experimentally observed spec-
trum at Bc,1D

⊥ = 5 T and the precise dynamic structure factor
of the E8 dynamics for the single- and two-particle excitations.
We emphasize that there are no free-tuning parameters in the
field-theory calculation. The agreement between experiment
and theory is achieved not only on the energy ratios but also
on the relative spectral weights. Although the intensity of
the observed m1 peak seems to be relatively low due to the
splitting, the ratio of the integrated spectral weight Im2/Im1 ≈
0.61 is in good agreement with the theoretically predicted
value of 0.52 [see Fig. 1(a)].

These results show that the E8 dynamic spectrum is re-
alized in the quasi-one-dimensional antiferromagnetic chain
BaCo2V2O8 at 5 T, where a 1D transverse-field Ising quan-
tum critical point is evidenced to be hidden under the 3D
ordered phase. Our results also imply that the E8 spectrum
can generally exist near the quantum critical points of the
universality class of the transverse-field Ising chain [33]. The
identification of the E8 particles and their multiparticle exci-
tations demonstrates the emergence of the complex symmetry
in the vicinity of a quantum critical point and the power of
the integrable quantum field theory to describe the complex
quantum critical dynamics. Our results in general shed light
on the studies of nonequilibrium dynamics in the 1D models
[12,18], the quantum simulations in an optical lattice [19], and
the deterministic manipulation of quantum many-body states
[5].

Note added in Proof. A recent inelastic neutron scattering
experiment provided further evidence for the E8 spectrum in
BaCo2V2O8 [35].
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Close to the quantum critical point of the transverse-field Ising spin-chain model, an exotic dynamic spectrum
was predicted to emerge upon a perturbative longitudinal field. The dynamic spectrum consists of eight particles
and is governed by the symmetry of the E8 Lie algebra. Here we report on high-resolution terahertz spectroscopy
of quantum spin dynamics in the ferromagnetic Ising-chain material CoNb2O6. At 0.25 K in the magnetically
ordered phase we identify characteristics of the first six E8 particles, m1 to m6, and the two-particle (m1 + m2)
continuum in an applied transverse magnetic field of B1D

c = 4.75 T, before the three-dimensional magnetic order
is suppressed above B3D

c ≈ 5.3 T. The observation of the higher-energy particles (m3 to m6) above the low-energy
two-particle continua features quantum many-body effects in the exotic dynamic spectrum.

DOI: 10.1103/PhysRevB.102.104431

I. INTRODUCTION

Since its invention in 1920 the Ising spin-chain
model [1–3] has been demonstrated to be extremely useful
to rigorously illustrate basic concepts, thus the study of
Ising spin chains is still a very lively research field [4–36].
For example, a quantum phase transition occurs in the
transverse-field Ising-chain model

H = −J
∑

i

Sz
i Sz

i+1 − B
∑

i

Sx
i (1)

when the spin gap � is closed at the critical field Bc =
J/2 with J being the exchange interaction between the
nearest-neighbor spin-1/2 magnetic moments Si on a chain
(see Fig. 1). The transverse-field Ising-chain quantum crit-
ical point is characterized by a peculiar thermodynamic
property: With decreasing temperature at the critical field,
the Grüneisen parameter converges [29,37,38], in contrast
to the divergent behavior for a generic quantum critical
point [39].

The quantum spin dynamics also exhibits exotic features
close to this quantum critical point. When the transverse-field
Ising chain is perturbed by a small longitudinal field Bz via
the Zeeman interaction −Bz

∑
i Sz

i , it was predicted that an
exotic dynamic spectrum emerges around Bc, exhibiting eight
particles with specific mass ratios (see Fig. 4) [9]. This exotic
spectrum is uniquely described by a quantum integrable field
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theory with the symmetry of the E8 Lie algebra [9,10]. (Intro-
ductory discussions of the E8 Lie algebra in mathematics and
in the relevant context of quantum field theory can be found in
Refs. [40,41].) As this model cannot be represented by single-
particle states but is featured by many-body interactions, it
is challenging to find an exact analytical solution beyond the
quantum critical point.

Despite its celebrity in mathematics [40,41], the E8 sym-
metry has rarely been explored experimentally. Until 2010
the first piece of experimental evidence for the E8 dy-
namic spectrum was reported based on inelastic neutron
scattering measurements of the ferromagnetic Ising chains
in CoNb2O6 [15]. Constituted by edge-shared CoO6 octa-
hedra, the effective spin-1/2 chains in CoNb2O6 run along
the crystallographic c axis in a zigzag manner (see inset
of Fig. 1), with the Ising easy axes lying in the crystallo-
graphic ac plane [12,13,23]. Due to small but finite interchain
couplings, a three-dimensional (3D) magnetic order devel-
ops below TC = 2.85 K, which can be suppressed by an
applied transverse field of B3D

c ≈ 5.3 T along the b axis (see
Fig. 1 for an illustration) [12,13,23,42]. By following the
low-lying spin excitations in the transverse field (B ‖ b), two
modes were found with an energy ratio being the golden ratio
(1 + √

5)/2 ≈ 1.618 at 5 T [15], which corresponds to the
predicted mass ratio m2/m1 of the first two E8 particles [9].
The two excitations were interpreted as the low-lying E8

particles, although the higher-energy E8 particles were not
resolved [15]. The required effective longitudinal field for
realizing the E8 dynamic spectrum is provided by interchain
interactions in the ordered phase, and the corresponding one-
dimensional (1D) quantum critical point at B1D

c ≈ 5 T [15] is
located below the 3D quantum phase transition at B3D

c ≈ 5.3 T
(see Fig. 1) [19,23].

The absence of the higher-energy E8 particles m3 to m8

in the inelastic neutron scattering spectra was assumed to
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FIG. 1. Illustration of phase diagram for a quasi-one-
dimensional (quasi-1D) ferromagnetic Ising-chain system in
an applied transverse field. For a 1D ferromagnet, a long-range
order is formed only at zero temperature, whereas a 3D order can
be stabilized at a finite temperature TC in the presence of interchain
couplings. The 1D and 3D long-range orders can be suppressed
by an applied transverse field at B1D

c and B3D
c , respectively. When

B1D
c < B3D

c the E8 dynamic spectrum could be realized around B1D
c

as illustrated by the dashed area. Inset shows the zigzag spin chain
constituted by edge-shared CoO6 octahedra in CoNb2O6.

be a consequence of an overwhelming (m1 + m1) contin-
uum [15], since it is energetically more favorable to excite
two m1 particles, as m3 � 2m1 < m4, m5, m8. This notion
may be more natural for noninteracting particles, but it is not
necessarily applicable to the concerned quantum many-body
system [17,35,36]. Using the time-evolving block decimation,
a numerical study [17] showed that the higher-energy E8 par-
ticles up to m5 should stand out as sharp peaks in the dynamic
spectrum, whereas the (m1 + m1) continuum contributes a
relatively small background. Moreover, the two-particle con-
tinuum (m1 + m2) was found to be characterized by a peaklike
maximum at the onset energy, and thus potentially resolvable
on top of the (m1 + m1) continuum.

Very recently the findings of the numerical simulations
were supported by rigorous quantum field theory analysis
of the dynamic spectra of the two-particle continua [35,36],
which revealed that the spectral weight of the (m1 + m1)
continuum decreases considerably with increasing energy,
becoming relatively weak particularly at the energies where
the higher-energy particles are predicted to appear. Moreover,
it showed that the two-particle continua, such as (m1 + m1)
and (m1 + m2), are not featureless but characterized by a
peaklike maximum at the onset energies which is followed
by an extended tail towards higher energies [35,36]. These
theoretical results clearly showed the exotic dynamic features
of this quantum many-body system, in contrast to the conven-
tional understanding drawing from a single-particle picture.
Motivated by these theoretical results, we experimentally re-
visited the spin dynamic spectrum in CoNb2O6 by performing
high-resolution terahertz spectroscopy in an applied trans-
verse magnetic field. We identify not only the two lowest
E8 particles but also the higher-energy ones up to m6, as
well as the peaklike maximum of the two-particle continuum
(m1 + m2), confirming the theoretical predictions of the 1D
quantum many-body system [17,35,36].

II. EXPERIMENTAL DETAILS

Single crystals of CoNb2O6 were grown by the floating-
zone technique, following the procedure reported in Ref. [43],
with few modifications. We used polycrystalline powders of
Co3O4 (chemical purity 99.9985%) and Nb2O5 (99.9985%)
as starting materials. Two powder reactions were performed
in air at 1200◦C and 1250◦C, respectively, each for 12 h.
The powder was pressed to a cylindrical rod at 50 MPa,
then sintered at 1275◦C. A centimeter-sized single crystal
was grown in an atmosphere of 80% O2/20% Ar and small
overpressure with a growth speed of 3 mm/h and a relative
rotation of the rods of 30 rpm. X-ray powder diffraction
measurements verified phase purity. Laue images confirmed
single crystallinity, and were used for cutting b-axis-oriented
platelike samples of about 3 mm in diameter and a thickness
of 0.5 mm for the optical measurements. On smaller samples
magnetic susceptibility measurements were performed in a
100-mT field B ‖ b down to 1.8 K confirming the magnetic
transitions at 2.9 and 1.9 K [13,23].

Using a Sciencetech SPS200 Martin-Puplett-type spec-
trometer, field-dependent terahertz transmission measure-
ments were carried out at 4 K (above TC) and 0.25 K (below
TC) with a liquid-helium bath cryostat and a 3He - 4He dilution
fridge, respectively, using bolometers operating at 0.3 and
0.4 K as detectors. For the 4 K experiment, a rotatable polar-
izer was placed in front of the sample for tuning polarization
of the terahertz waves [35,44]. For the 0.25 K measurements
the sample cell was attached to the cold finger of the dilu-
tion fridge (Oxford Instruments), which was equipped with a
superconducting solenoid for applying a magnetic field. The
sample cell was filled with 4He gas at room temperature to
provide cooling of the sample. The radiation was filtered with
a 0.6-THz low-pass filter at 4 K before the radiation entered
the vacuum can of the dilution unit. A frequency resolution of
6 GHz was achieved in the measurements. For the optical ex-
periments, the terahertz radiation propagated in the direction
of the external magnetic field which was applied parallel to
the b axis of the CoNb2O6 single crystals.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Zero-field absorption spectra are displayed in Fig. 2 for
0.25 K with unpolarized terahertz radiation, and for 4 K with
the terahertz electric field eω ‖ c and the terahertz magnetic
field hω ‖ a, and with the polarization (eω ‖ a, hω ‖ c). At 4 K
the spectrum of (eω ‖ c, hω ‖ a) exhibits two peaks at 0.22
and 0.48 THz, respectively, which are denoted by M and 2M.
The nomenclature hereafter for the zero-field excitations is
discriminated from that of the E8 particles. Around the 2M
peak one can observe a broad continuumlike feature which
extends towards higher frequency. These features are similar
to those reported for a different polarization (eω ‖ a, hω ‖ b)
in Ref. [18], where the M and 2M peaks were assigned as the
one- and two-pair spinon excitations, respectively. In contrast,
these features are absent for the polarization (eω ‖ a, hω ‖ c)
(see Fig. 2).

Compared with the 4 K spectrum, the 0.25 K one be-
low TC exhibits more peaks, which are labeled by Mi (i =
1, 2, 3, . . . , 7) with increasing frequency. The energies of Mi
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FIG. 2. Absorption spectra measured in zero field at 0.25 K (be-
low Tc) with unpolarized terahertz radiation, and at 4 K (above Tc)
for the terahertz polarizations (eω ‖ c, hω ‖ a) and (eω ‖ a, hω ‖ c).
Inset shows that the eigenenergies of the modes M1 to M7 observed at
0.25 K follow a linear dependence on ζi which are the negative zeros
of the Airy function Ai(−ζi ) = 0. The linear dependence is expected
for confined-spinon excitations. The different nomenclature for these
zero-field excitations is used in order to discriminate them from the
E8 particles close to the 1D critical field B1D

c = 4.75 T (see below).

are shown in the inset of Fig. 2 as a function of ζi, the
negative zeros of the Airy function Ai(−ζi ) = 0. The linear
dependence on ζi reflects the spinon confinement in a linear
confining potential [8,31], which is set up by the interchain
couplings in the magnetically ordered phase [15,18,24,27–
29,35]. Above M7 one can see a broader peak around 0.49
THz (labeled 2M1) and a broad continuum at higher en-
ergy (labeled M1 + M1), consistent with the observation in
Ref. [18]. The 2M1 peak corresponds to a kinetic bound state
of two pairs of spinons in neighboring chains, which is located
below the excitation continuum of two independent pairs of
spinons (M1 + M1) [15,18]. This bound state was found at the
Brillouin zone boundary q = π by inelastic neutron scatter-
ing [15]. Due to the zigzag configuration of the chains (see
inset of Fig. 1) [34], this mode is folded to the zone center
(q = 0) and thus detected by the terahertz spectroscopy. We
emphasize that the spinon dynamics and the E8 spectrum are
about very different physics. The former is about the spin
dynamics of the gapped phase at zero field, whereas the latter
emerges only around the field-induced quantum critical point.

An ideal way to study the E8 dynamic spectrum would
be to first drive an Ising-chain system with an applied trans-
verse field to the quantum critical point, and then monitor
the evaluation of the spin dynamics by switching on and

tuning a perturbative longitudinal field. However, such tuning
can hardly be realized in a solid-state material, where an
effective longitudinal field is an internal field determined by
the interchain couplings. Since the transverse field will com-
pete with the interchain couplings, the 1D quantum critical
point may not be reached before the 3D order is suppressed
(e.g., in SrCo2V2O8 [24,32]). To realize the E8 spectrum,
the 1D quantum critical point should be hidden in the 3D
ordered phase as illustrated in Fig. 1, which is fulfilled in
the Ising-chain ferromagnet CoNb2O6 [15,19] and in the
Ising-chain antiferromagnet BaCo2V2O8 [28,35,36]. This also
indicates that the observation of a spinon confinement in zero
field does not necessarily imply a realization of the E8 dy-
namic spectrum around the quantum critical field. Therefore,
it is necessary to carry out field-dependent measurements
below Tc.

The evolution of the absorption spectra of CoNb2O6 in an
applied transverse field along the b axis is presented in Fig. 3
for fields just below 5 T, at which the inelastic neutron scatter-
ing experiment [15] revealed the lowest two E8 particles, m1

and m2. With far more than two peaks, the absorption spectra
exhibit very rich features. At 4.75 T one observes several
well-defined sharp peaks at 0.16, 0.26, 0.32, 0.40, 0.47, and
0.51 THz, which are labeled m1, m2, . . . , m6, respectively, as
indicated by the arrows. A relatively broad peak is observed
at 0.43 THz as marked by the asterisk. The frequencies of m1

and m2 are slightly greater than the reported values of 0.12 and
0.18 THz, respectively, for the finite q-vector (3.6,0,0) by the
inelastic neutron scattering experiment [15]. This difference
may result from a weak dispersion perpendicular to the chain
direction.

The field dependence of these modes can be clearly
tracked, as indicated by the arrows in Figs. 3(a) and 3(b).
Normalized to the m1 energy in each field, the eigenenergies
of these modes are presented as a function of the applied
field in Fig. 4. The energy ratios of these modes increase
monotonically with increasing field. At 4.75 T the predicted
ratios (dashed lines, see Refs. [9,10]) for the E8 particles
up to m6 and for the onset energies of the two-particle con-
tinua (m1 + m1) and (m1 + m2) are simultaneously reached,
evidencing the observation of the E8 dynamic spectrum.
The onset of the (m1 + m1) continuum is very close to the
m3 peak (≈1.989m1) [9], so they cannot be distinguished
from each other in the experimental spectrum. The observed
features are consistent with the previous predictions from
the numerical simulations [17] and the quantum field-theory
analysis [35,36]. Moreover, the field-theory analysis [35,36]
showed that the two-particle continua are not featureless but
characterized by a peaklike maximum at the onset energies
followed by a continuous decrease of spectral weight towards
higher energy, which allows the identification of the continua
by their peaklike maxima. Therefore, these experimental re-
sults provide unambiguous evidence for the observation of
the high-energy E8 particles, which also points to a hidden
1D quantum critical point at B1D

c = 4.75 T confirming the
scenario illustrated in Fig. 1 and discussed above. The value
of B1D

c is close to the reported 5 T in Ref. [15].
Previous theoretical analysis also predicted that the in-

tensity of the E8 particles decreases monotonically with
increasing energy [10,11,17,35,36]. Indeed, this trend is
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FIG. 3. (a) Absorption spectra of CoNb2O6 measured at 0.25 K
in various applied transverse magnetic fields, B ‖ b. �α and ω denote
absorption coefficient and wave number, respectively, in the unit of
cm−1. The arrows indicate the modes m1, m2, . . . , m6 at 4.75 T and
their field-dependent evolution. The asterisk (∗) marks the onset of
the (m1 + m2) continuum. At 4.75 T the circles (◦) mark the satellite
peaks. The spectra in higher fields are shifted upward by a constant
for clarity. (b) Absorption spectra measured at 5 T for 0.25 and 4 K
below and above TC , respectively. For 0.25 K the arrows indicate
those modes marked by arrows in (a). The black arrow at the 4 K
spectrum marks a broader band observed due to the zone-folding ef-
fect. The down-pointing triangle (�) indicates a mode which similar
to m1 is present both above and below TC . The 0.25 K spectrum is
shifted upward for clarity.

obeyed by the first four particles (m1 to m4), as shown in
the 4.75 T spectrum in Fig. 3(a). However, the m5 and m6

peaks appear to be slightly stronger. This cannot be simply
attributed to the underlying continua (m1 + m3) or (m2 + m2)
whose spectral weight is even smaller than the high-energy
tails of the (m1 + m1) and (m1 + m2) continua [17,35,36]. The
apparent enhancement of the m5 and m6 peaks is contributed
by the low-lying spin excitation at the Brillouin-zone bound-
ary (q = π ) [21,22]. This relatively broad band is detected
also in the disordered phase above Tc, as indicated by the
arrow in the 4 K spectrum in Fig. 3(b), which is observed

FIG. 4. Field dependence of the energies of the observed modes
m1, . . . , m6 and of the maxima for (m1 + m1) and (m1 + m2),
normalized to the m1 energy in each field. All the ratios exhibit
a monotonic increase with increasing field. The predicted ratios
(dashed lines; see Refs. [9,10]) for the E8 particles are simultane-
ously reached at B1D

c = 4.75 T, evidencing the observation of the
high-energy E8 particles in CoNb2O6.

due to the zone-folding effects [34]. It is a coincidence that
this band is located in the energy range around the m5 and m6

peaks. The substantially reduced intensity of the high-energy
E8 particles could be below the resolution limit of the previous
inelastic neutron scattering experiment [15], which thus were
not resolved at that time. For the same reason the m7 and m8

modes are not resolved here either.
The field dependence of the relatively small satellite peaks,

marked by the circles in Fig. 3(a), can be clearly followed as
well. With decreasing field from 4.75 T one can see a reduc-
tion of the satellite-peak intensity and a concomitant merging
of these peaks into the corresponding main ones. Above Tc in
the disordered phase [Fig. 3(b)], these satellite peaks disap-
pear; thus, they reflect dynamic properties of the 3D ordered
phase in the transverse field. In addition, as marked by the
triangles in Fig. 3(b), one can observe a peak at 0.2 THz both
in the ordered and in the disordered phases. Thus, this mode
should result from the 1D spin fluctuations possibly as a zone-
boundary excitation observed due to subleading interactions
within the zigzag chain [34].

To conclude, by performing high-resolution terahertz spec-
troscopy of the Ising-chain compound CoNb2O6 below and
above the magnetic ordering temperature in an applied trans-
verse field, we have revealed the dynamic features that were
predicted to emerge around the transverse field-induced quan-
tum critical point governed by the E8 symmetry. In particular,
the high-energy E8 particles, which would be unresolvable
according the picture of noninteraction particles, have been
identified above the low-energy two-particle continua, featur-
ing the quantum many-body effects. We have also observed
features beyond the E8 dynamics, which appeals for a theoret-
ical study of a realistic model for CoNb2O6.
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Condensed matter magneto-optical investigations can be a powerful probe of a material’s microscopic
magnetoelectric properties. This is because subtle interactions between electric and magnetic multipoles on a
crystal lattice show up in predictable and testable ways in a material’s optical response tensor, which dictates the
polarization state and absorption spectrum of propagating electromagnetic waves. Magneto-optical techniques
are therefore strong complements to probes such as neutron scattering, particularly when spin-lattice coupling
effects are present. Here we perform a magneto-optical investigation of vibronic spin-lattice coupling in the
magnetically frustrated pyrochlore Tb2Ti2O7. Coupling of this nature involving quadrupolar mixing between the
Tb3+ electronic levels and phonons in Tb2Ti2O7 has been a topic of debate for some time. This is particularly
due to its implication for describing the exotic spin-liquid phase diagram of this highly debated system. A
manifestation of this vibronic effect is observed as splitting of the ground and first excited crystal field doublets
of the Tb3+ electronic levels, providing a fine structure to the absorption spectra in the terahertz (THz) frequency
range. In this investigation, we apply a static magnetic field along the cubic [111] direction while probing with
linearly polarized THz radiation. Through the Zeeman effect, the magnetic field enhances the splitting within the
low-energy crystal field transitions revealing new details in our THz spectra. Complementary magneto-optical
quantum calculations including quadrupolar terms show that indeed vibronic effects are required to describe our
observations at 3 K. A further prediction of our theoretical model is the presence of a novel magneto-optical
birefringence as a result of this vibronic process. Essentially, spin-lattice coupling within Tb2Ti2O7 may break
the optical isotropy of the cubic system, supporting two different electromagnetic wave propagations within
the crystal. Together our results reveal the significance of considering quadrupolar spin-lattice effects when
describing the spin-liquid ground state of Tb2Ti2O7. They also highlight the potential for future magneto-optical
investigations to probe complex materials where spin-lattice coupling is present and reveal new magneto-optical
activity in the THz range.

DOI: 10.1103/PhysRevB.102.134428

I. INTRODUCTION

Interplay between spin and lattice degrees of freedom is
the premise behind a range of intriguing phenomena in con-
densed matter systems. When we consider the fundamental
role lattice geometry plays in the formation of conventional
periodic magnetic order, this notion is perhaps unsurprising.
Nevertheless, when energetically favorable compensations be-
tween these degrees of freedom occur, we often find novel and
potentially functional material properties emerge. A case in
point is found in the spin-Peirls transition of antiferromagnetic
quantum spin chains where—in order to lower the total energy
of the system—the lattice periodically contracts or dimerizes,

*sophie.debrion@neel.cnrs.fr
†Present address: Fakultät Physik, Technische Universität Dort-

mund, 44221 Dortmund, Germany

thus favoring the formation of spin singlets, along with a
global energy gap of their excitations [1]. Another example
is that of type II multiferroics, where the lattice reacts to a
low-symmetry magnetic ordering by breaking its inversion
symmetry and inducing a polar ferroelectric phase as a re-
sult of concomitant structural deformations [2]. Spin-lattice
effects are also present in magnetically frustrated systems
where relaxations in the elastic degrees of freedom can lift
the degeneracy of magnetic configurations promoting a long-
range Néel order [3,4]. On the other hand, a dynamic interplay
between the spins and lattice of a frustrated system can be
perpetually destabilizing, inhibiting any type of order [5].
Indeed, this scenario seems to be the case in magnetically
frustrated Tb2Ti2O7, which fails to develop any long-range
magnetic order or static frustrated configuration. Rather, a
fluctuating spin liquid behavior is observed, persisting down
to temperatures as low as 50 mK [6]. A precise description of
this peculiar magnetic ground state remains a hotly debated

2469-9950/2020/102(13)/134428(11) 134428-1 ©2020 American Physical Society
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FIG. 1. Tb2Ti2O7 cubic structure with the Tb3+ network. Upper
part: Cross section viewed along the [111] direction showing the
connection between tetrahedra. Lower part: one single tetrahedron.
Two orthogonal linear polarizations of the incident light beam with
k ‖ [111] are shown in the upper corners, where the electric field
vector Eω and magnetic field vector Hω oscillate parallel to [1̄1̄2] or
[1̄10]. The static magnetic field H, shown in black, is applied perpen-
dicular to the THz polarization plane along one of the diagonals of
the cube, the [111] direction.

topic, although it is believed that spin-lattice effects play an
important role [7–10].

In Tb2Ti2O7, magnetic Tb3+ ions are arranged in a network
of corner-sharing tetrahedra, forming the so-called pyrochlore
lattice shown in Fig. 1. Among rare-earth pyrochlores,
Tb2Ti2O7 is possibly the least understood, despite having been
studied for over two decades. It certainly exhibits noticeable
spin-lattice coupling effects. These are observable in x-ray
diffraction experiments [11] and manifest as giant magne-
tostriction [12], elastic softening [7], and pressure-induced
magnetic ordering [13]. More recently, inelastic neutron scat-
tering [9,10,14] and THz spectroscopy [15] measurements
have highlighted the presence of vibronic coupling as a result
of symmetry-allowed hybridization between phonons and the
Tb3+ crystal electric field (CF) states both within the ground
and first excited doublets. In particular, these couplings in-
volve quadrupolar operators that depend on the phonon mode
inducing the local dynamical strains. Additionally, it is now
well established that the phase diagram of Tb2Ti2O7 is ex-
tremely sensitive to off-stoichiometry compositions [16] and
that Tb2+xTi2−xO7+y enters a quadrupolar ordered phase be-
low 500 mK for x � −0.0025 [16]. Evidently, quadrupolar
and spin-lattice effects play an important role in the ground
state of Tb2Ti2O7 and should be considered in any attempt to
understand the spin-liquid behavior of this compound.

In this study we focus on transitions between the
low energy Tb3+ CF excitations in Tb2Ti2O7, performing
magneto-optical observations of their modulation by an ap-
plied magnetic field. The first excited CF doublet is separated
from the ground state doublet by � ≈ 1.5 meV (0.37 THz,
12 cm−1) [17–19], and several other higher energy CF excita-
tions also fall within the THz energy range [20]. To the best
of our knowledge, no extensive magnetic-field dependence of
the CF levels in Tb2Ti2O7 has been previously performed.
Our experimental results are compared to quantitative theo-
retical magneto-optical calculations incorporating a quantum
mechanical vibronic coupling model. Magneto-optical stud-
ies of vibronic processes in magnetic molecules have a long
history within the physical chemistry community [21–23].
Within condensed matter physics, magneto-optical investiga-
tions are routinely applied to the study of coupled dielectric
and magnetic order parameters of multiferroics [24–26]. Yet
the combination of these ideas to probe novel spin-lattice
effects in frustrated magnets has so far remained largely unex-
plored. The aim of this paper is to provide better insight into
the magnetoelastic couplings and emerging hybrid excitations
in frustrated Tb2Ti2O7 using magneto-optical and quanti-
tative theoretical techniques. Hence, we aim at broadening
our knowledge on the microscopic mechanisms responsible
for the spin liquid and quadrupolar phases it exhibits while
highlighting the potential for further magneto-optical investi-
gations of complex magnetic materials.

II. EXPERIMENTAL DETAILS

A large single crystal of Tb2Ti2O7 was grown by the float-
ing zone method using similar experimental parameters as in
Ref. [27]. A plaquette, 220 μm thick and 4 mm in diameter,
was shaped with the [111] direction of the cubic pyrochlore
lattice normal to the sample surface. A wedge with an angle
of ∼2◦ was used to avoid interference fringes in the spectra.
Another piece of the single crystal cut in close proximity to the
plaquette was used for specific heat measurements. The spe-
cific heat data revealed a behavior similar to results published
for a Tb2+xTi2−xO7 composition with x = 0.0025 [16]—quite
close to the spin liquid phase but with a quadrupolar ordering
temperature of 400 mK.

Terahertz transmission magneto-optical measurements
were performed by Fourier transform spectroscopy using a
Martin-Puplett interferometer based at the National Institute
of Chemical Physics and Biophysics in Tallinn. The Tb2Ti2O7

sample was mounted inside of a superconducting magnet
within a liquid helium bath cryostat. The transmitted THz
signal was detected by a sensitive Si bolometer cooled to
300 mK using pumped 3He in a separate cryogenic closed
circuit. The spectral bandwidth of the setup is 3–200 cm−1

(0.4–25 meV). The bandwidth was further limited to 80 cm−1

due to strong sample absorption at high energies.
The polarization of the incident THz radiation is controlled

by an aluminum wire-grid polarizer in front of the sample.
The spectra were measured in the Faraday configuration with
a static magnetic field up to 15 T applied along the [111] axis
and the wave vector k ‖ [111] to the magnetic field vector
H. At each field value, the spectrum was measured with two
orthogonal polarizations, where the oscillating electric and
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magnetic fields {Eω, Hω} were either along {[1̄1̄2], [1̄10]} or
{[1̄10], [1̄1̄2]}, as shown in Fig. 1.

The spectral absorption α of a sample with thickness d
is determined by α = −(1/d ) ln[(1 − R)−2I/I0] where I0 is
the incident light intensity, I is the transmitted intensity at
the detector, and R is the reflection coefficient at the sample
surface. To reveal excitations that have magnetic-field depen-
dent energies and/or intensities, a differential absorption is
calculated by αi − αref = −(1/d ) ln(Ii/Iref ). Here Ii and Iref

are the transmitted light intensities detected at two different
values of the magnetic field strength. Here, for Iref we use a
reference spectrum measured at 0 T. The primary contribution
to the reflection coefficient is the dielectric response of the
phonon spectrum in the infrared range (100–1000 cm−1) [15].
We can then safely assume that the reflection coefficient is
independent of the magnetic field strength. Therefore, the
reflectivity in the differential absorption αi − αref naturally
cancels out in the THz range for Tb2Ti2O7. To deal with
negative values in αi − αref generated by spectral features in
the reference spectrum (αref ) that disappear under magnetic
field, we subtract a statistically calculated baseline from all
of the measured spectra. The baseline is created by taking the
lowest value intensity at each frequency point from the set
of measured spectra. Performing the baseline subtraction then
corrects for any negative artifacts. The collection of baseline-
corrected spectra together with the reference spectrum is what
we define as the differential absorption �α(H ) that depends
on the magnetic field strength.

III. THz SPECTROSCOPY RESULTS

The magnetic-field dependence of the differential absorp-
tion spectrum of Tb2Ti2O7 is shown in Fig. 2 at two different
temperatures, 3 K and 60 K. The two different THz polar-
izations do not show any significant differences and are only
plotted at 3 K. A wide absorption band (designated ν1) is
observed centered at 14 cm−1, in agreement with previous
THz studies [15,20]. It corresponds to the transition between
the Tb3+ ground state doublet and the first excited CF doublet.
When the magnetic field is increased above 5 T, the absorption
band appears to broaden with a slight decrease in amplitude
and a shift to higher energy. At approximately the same field
value, weaker excitations emerge. Two of them (ν3 above
20 cm−1 and ν4 around 10 cm−1) harden with increasing
magnetic field, while another one (ν5) softens and disappears
below 5 cm−1. Another broad absorption band (ν2) is seen at
75 cm−1 at fields below 6 T, which most likely corresponds to
a transition from the ground-state level to the second excited
CF level.

At 60 K, ν1 is still present but with a lower intensity due
to thermal depopulation of the ground state. It splits into two
different branches in high fields. On the other hand, ν3, ν4,
and ν5 are no longer observed at 60 K, while ν2 has a new
component (ν6) that softens with magnetic field.

Combined intensity maps of the field dependence of the
differential absorption are shown in Figs. 3(a) and 3(b) for
the measurements at 3 K and 60 K, respectively. Together
the results demonstrate a high degree of modulation in the
CF energy-level scheme of Tb3+ ions in Tb2Ti2O7 within a
magnetic field. In order to better understand this modulation

FIG. 2. H ‖ [111] magnetic-field dependence of the differential
absorption �α(H ) in Tb2Ti2O7 measured at (a) 3 K and (b) 60 K,
with the reference absorption measured in zero field for two different
THz polarizations (blue: Hω along [1̄1̄2], red: Hω along [1̄10]). The
spectra are offset vertically in proportion to H . Shaded areas below
the curves are included as a guide to the eye to highlight the different
absorption bands.

and to determine the contribution from spin-lattice effects,
we now turn to a comparison with theoretically calculated
spectra.

IV. THEORETICAL ABSORPTION CALCULATIONS

In order to understand the Tb2Ti2O7 absorption spectra, we
use linear response theory, where the sample response to the
THz wave of angular frequency ω is described by the complex
magnetic susceptibility tensor [χ (ω)]. Here only the magnetic
part of the THz wave is considered. Omitting possible electric
effects is valid here since all the relevant CF transitions occur
within the first multiplet, i.e., between states of the same
parity. Without vibronic coupling, the compound remains in
the cubic symmetry and the susceptibility tensor is diagonal.
The absorption of a propagating THz wave with wave vector
k is then written [28]

�α(ω) = 2k′′(ω) ≈ nω

c
χ ′′(ω) (1)

as derived by solving Maxwell equations in an isotropic
medium with weak dissipation. Here c is the speed of light
in vacuum, n is the refractive index of the medium, and k is
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FIG. 3. Experimental and calculated THz absorption as a function of magnetic field applied along the [111] direction of Tb2Ti2O7. The
panels show the experimental results for 3 K (a) and 60 K (b), and the theoretical calculations for 3 K (c) and 60 K (d). The four Tb3+ sites on
the tetrahedron (one with the field along its threefold axis shown in black and the three remaining sites shown in red) and the corresponding
field dependence of the calculated energy of their absorption branches at 3 K are presented in the middle panels (e). The different observed
branches are labeled ν1 to ν6.

the wave number. Here and further, the notations prime and
double prime refer, respectively, to the real and imaginary part
of a quantity. The wave vector can be written as k = ku where
u is a vector perpendicular to the wavefront. In the isotropic
case that includes the cubic symmetry relevant to pyrochlore
compounds, the Poynting vector of the electromagnetic wave
S = Re[Eω × Hω] is collinear with k outside and inside the
material. Here Hω stands for the complex conjugate of Hω.
The refractive index n is considered constant since the main
contribution comes from optical phonons that are at energies
higher than the measured THz range (see Ref. [15] and supple-
mentary material therein). This is generally the case in oxides
below 80 cm−1 where absorption is low and very few phonons
are present. In our calculations we used n = 7.7 as deduced
from the dielectric constant of Tb2Ti2O7 at 6 K [15].

We now introduce vibronic couplings, which arise from
dynamical strains that break the local symmetry. Thus,
the four Tb3+ sites of a tetrahedron become inequivalent
and the whole tetrahedron has to be considered. At this
scale, the magnetic susceptibility tensor remains diagonal but
becomes slightly anisotropic, quite similarly to birefringent
crystals in optics. When a static magnetic field is applied along
the [111] cubic direction, nondiagonal components appear
in the susceptibility tensor. Two normal modes (indexed by
α = {1, 2} with different absorption are then derived from the
Maxwell’s equations. They are characterized by their wave
vectors kα and their Poynting vectors Sα = Re[Eω

α × Hω
α ]

that are no longer collinear. The THz wave polarization in
the material characterized by the magnetic induction Bω =

μ0(1 + [χ (ω)])Hω is no longer collinear with Hω. This is
illustrated in Fig. 4. A similar effect has been predicted by
considering electric quadrupole and magnetic dipole mixing
in antiferromagnets [29]. To our knowledge, this example
involving vibronic processes in a frustrated magnet has not
been previously reported.

The total absorption in the crystal will then contain contri-
butions of these two modes. The transmitted intensity is given

FIG. 4. THz wave propagation in an anisotropic medium. The
wave, linearly polarized along Bω (blue), is decomposed into
the two—orthogonal and linearly polarized for simplicity of the
picture—normal modes polarized along Bω

1 and Bω
2 (green). Inside

the crystal the two waves are normal modes, and the rays propa-
gate independently in the direction of their Poynting vector S1 and
S2 (red) with wave vector k1 and k2, respectively, which have the
same direction (orange). At the output face, in vacuum, the Poynting
vectors are collinear again.
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by

I = e−2k′′
1 d Re[s11] + e−2k′′

2 d Re[s22]

+ e−(k′′
1 +k′′

2 )d Re[ei�k′d s12 + e−i�k′d s21], (2)

where �k′ = k′
1 − k′

2 and sij ∝ Eω
i × Hω

j . The last term in
Eq. (2) is similar to an interference term when the two normal
modes are not orthogonal. The case of orthogonal modes has
been developed in Ref. [30] and the associated absorption is
written as:

�α(ω) = 2k′′
1 (ω)Re[s11] + 2k′′

2 (ω)Re[s22]

Re[s11] + Re[s22]
. (3)

When k1 = k2 ≡ k, the isotropic case [equation (1)] is recov-
ered.

Equation (3) allows us to calculate the differential absorp-
tion for the wave vector of the two normal modes kα . These
are functions of the complex magnetic susceptibility tensor
components χi j which are given by:

χi j (ω) = μ0(gJμB)2

V

∑
mn

Pn − Pm

(Em − En − h̄ω)2 + � 2

[i� + (Em − En − h̄ω)]Ji
nmJ j

mn, (4)

where gJ is the Landé factor, V is the sample volume, Em

and En is the energy of the different electronic levels, Pn

and Pm are the thermal populations of initial and final states,
and Ji

nm is the matrix element of the angular momentum in
the i direction between electronic states |n〉 and |m〉 of their
angular momentum in the i direction. One single linewidth
� is used for simplicity. The energy levels are determined
by diagonalizing the corresponding Hamiltonian. We will
consider only those levels that fall within the THz energy
range at low temperatures—i.e., the ground, first, and second
levels. The Hamiltonian consists of several terms. The first
one, the CF Hamiltonian, describes the effects of the charges
surrounding each Tb3+ ion on its electronic states in its local
D3d symmetry. These ions generate four Bravais lattices from
each of the four vertices of an initial Tb tetrahedron, the basic
element of the pyrochlore structure. The axis of the threefold
symmetry for each ion is parallel to a distinct member of the
family of 〈111〉 diagonals of the cubic structure characterizing
the global symmetry of the material. By selecting this local
threefold axis as the quantization z axis and the local twofold
axis as the x axis which gives rise to the point group D3d , the
CF Hamiltonian is written for each ion in the same form

ĤCF = B0
2Ô0

2 + B0
4Ô0

4 + B3
4Ô3

4 + B0
6Ô0

6 + B3
6Ô3

6 + B6
6Ô6

6,

(5)

where the expansion in Stevens equivalent operators
(quadrupolar Ô0

2, hexadecapolar Ô0
4, Ô3

4, and hexacontatetrap-
olar Ô0

6, Ô6
6) terms is given by the local D3d symmetry of the

Tb3+ ions. For correspondence with Wybourne and angular
momentum operators, see Appendices A and B.

When a static magnetic field H is applied along the [111]
direction of the pyrochlore cubic lattice, one Tb3+ ion out of
four has its threefold axis along the magnetic field, while the
three remaining sites have their threefold axes at the same
colatitude (polar angle) from the magnetic field and behave

TABLE I. CF parameters used in the CF Hamiltonian.

Bq
k meV K

B0
2 −0.26 −3.0

B0
4 4.5 × 10−3 5.2 × 10−2

B3
4 −4.1 × 10−2 −4.8 × 10−1

B0
6 −4.5 × 10−6 −5.2 × 10−5

B3
6 −1.2 × 10−4 −1.4 × 10−3

B6
6 −1.4 × 10−4 −1.6 × 10−3

similarly. The corresponding Zeeman Hamiltonian is given by

ĤZ = −gJμBμ0H · Ĵ, (6)

where gJμBĴ is the Tb3+ ion’s total magnetic moment
(J = 6). Finally, the total Hamiltonian for noninteracting
tetrahedra is given by

Ĥ =
4∑

k=1

Ĥk
CF + Ĥk

Z . (7)

As shown in Eq. (5), the CF Hamiltonian is described in a
local frame for each Tb3+ ion, while the Zeeman term is better
described in the global cubic frame. Therefore, the Stevens
equivalent operators must be rotated from the local frame
associated to each Tb ion, to the global cubic frame.

The results of the calculations using the Hamiltonian of
Eq. (4) (without vibronic coupling) are shown in Fig. 3. The
CF parameters were chosen from the literature [14] except
for B0

2 and B4
2 which were slightly adjusted to match the

14 cm−1 transition observed at 3 K and 0 T (see Table I and
Appendix B). Wave functions for the ground and first excited
doublets are given in Appendix C. An effective Landé factor
gJ ≈ 1.4 is deduced from the magnetic-field dependence of
the measured spectra. The obtained value is slightly lower
than gJ = 1.5 expected for a pure Tb3+ ion ground multi-
plet and reveals the J-mixing effects seen in the intermediate
coupling regime [14]. A single linewidth of 2.4 cm−1 is used,
in agreement with the zero-field data. We find no significant
dependence on the polarization of the THz radiation in the
calculated spectra, consistent with experiment. The calculated
absorption has two contributions when the applied static mag-
netic field is varied [see panel (e) in Fig. 3]: one from the Tb3+

site (1) that has its local threefold axis along the magnetic
field direction, the other one from the three other sites (2–
4) on the tetrahedron that have their local threefold axes at
109.5 degrees relative to the applied magnetic field. When the
magnetic field is increased, the ground and first excited CF
levels—both of which are doublets—split into two branches:
a softening lower-frequency branch and a hardening higher-
frequency branch that decreases (respectively increases) in
energy with increased magnetic field. The second CF level is
a singlet and its energy increases with the magnetic field.

As seen in Fig. 3, the agreement with the experimental
data is already remarkable. The field dependence of the main
excitations ν1 and ν2 is well reproduced at 3 K. The first one
originates entirely from sites 2–4 and corresponds to the tran-
sition to their first CF level. The second one has contributions
from all sites and is the transition to the second CF level.
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FIG. 5. Calculated absorption as a function of magnetic field applied along [111] at 3 K and 60 K for two THz polarizations with no vibron
[(a),(b)], with a vibron associated with O1

2 [(c)–(f)], and a vibron associated with O2
2 [(g)–(j)] quadrupolar operators.

Weaker features in the absorption maps are also reasonably
well reproduced: ν3 for the transition to the first CF level
(upper branch for sites 2–4 and lower branch for site 1) and
ν4 for the transition within the initial ground doublet for sites
2–4. Also note the peculiar magnetic-field dependence of ν5:
For a field lower than 3 T it is the equivalent of ν4 for site
(1), but above 3 T, the transition to the first excited CF level
occurs, producing the only excitation decreasing in energy
with the magnetic field. A third branch starting at 14 cm−1

and increasing more rapidly under magnetic field than the
other branches [visible in Fig. 3(e)] is calculated to be very
weak in intensity. It is not visible in either of the calculated or
measured absorption maps [Figs. 3(c) and 3(a)].

With our theoretical basis for the field dependence of the
CF energy scheme we also reproduce the 60 K results: the
main branches, ν1 at 14 cm−1 and ν2 at 70 cm−1, as well as
a new branch decreasing from 75 cm−1 (ν6). Noticeably, two
additional weak and rather flat branches are calculated around
65 cm−1 and 14 cm−1 but not observed in the THz absorption
spectra.

As the next step, we have performed calculations including
spin-lattice effects through vibronic couplings between the
Tb3+ crystal field excitations and transverse phonon modes. It
has been shown that there are two vibronic processes present:
one that couples the first excited Tb3+ CF level with a silent
optical phonon of T2u symmetry and another one that involves
an acoustic phonon coupled to both the ground and first
excited CF levels [15]. In particular, these spin-lattice cou-
plings were shown to involve the Tb3+ quadrupolar degrees of
freedom and give rise to the following symmetry-constrained

vibronic Hamiltonian

Ĥvib = D0
2Ô0

2 + D1
2

(
Ô1

2 + Ô−1
2

) + D2
2

(
Ô2

2 + Ô−2
2

)
(8)

when the vibronic coupling is assumed isotropic in the plane
perpendicular to the threefold axis. Note that the quadrupo-
lar operator Ô0

2 is already present in the CF Hamiltonian. It
accounts for the coupling to the silent optical phonon and
will not change the symmetry of the system but will sim-
ply renormalize its energy eigenvalues. On the other hand,
Ôm

2 operators with m = ±1,±2, associated with the acoustic
phonons, are not present in the CF Hamiltonian. They induce
a splitting of the ground and first excited CF doublets as de-
scribed in Ref. [15]. The associated wave functions are given
in Appendix C. The resulting susceptibility tensor is no longer
diagonal and the crystal becomes slightly birefringent.

The influence of both terms (D1
2 and D2

2) of the acoustical
vibronic coupling on the calculated absorption spectra is pre-
sented in Fig. 5. A smaller linewidth of 0.5 cm−1 was used
in the calculation to better distinguish the different branches
that appear due to the vibronic coupling. The Tb3+ sites
2–4 are no longer equivalent and the associated branches
are split into two or three components that are more or less
distinguishable. This is particularly true for the lower-energy
branch at 3 K just below ν1, where two groups of lines are
now clearly observed in agreement with the experimental
data for ν4. At 60 K absorption branches are more spread
out and therefore less intense. We suspect this could be an
explanation for the absence of the flatter bands in the ex-
perimental data. Their combination of weak intensity and
moderate field dependence would cancel them out in our back-
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ground subtraction analysis method. Furthermore, we also
note the slight polarization dependence that shows up at both
temperatures.

V. DISCUSSION

A comparison of the experimental and the simulated
magneto-optical THz spectra demonstrates that the low-
energy dynamics of Tb2Ti2O7 is well captured by a simple
Hamiltonian with only CF and Zeeman contributions. How-
ever, our results also indicate that including spin-lattice effects
by way of vibronic coupling provides an improved agree-
ment between theory and experiment with the addition of
several weaker branches at both 3 K and 60 K. Although
subtle, these features are clearly evident in the experimental
data, particularly for the transition assigned ν4. They provide
strong evidence that spin-lattice coupling is at play within the
energy and time scales relevant to the ground state of this
quantum spin liquid. In particular, the vibronic couplings of
quadrupolar origin will lower the symmetry of the dynam-
ical susceptibility tensor, which, without external magnetic
field, becomes slightly orthorhombic. This implies a dynamic
modulation of the local CF environment that describes the
magnetic behavior including the potential for entanglement
between the different CF levels.

Our results confirm that entanglement between the ground
and first excited CF states through the vibronic process is
of utmost importance in understating the phase diagram of
Tb2Ti2O7 at lower temperatures, as was already suggested in
Ref. [15]. It is difficult to unambiguously quantify the strength
of the quadrupolar couplings associated with O1

2 and O2
2.

However, according to the observed splittings of the different
branches, the D1

2 and/or D2
2 terms fall within the energy range

0–10 μeV. Note that these operators, having Eg symmetry
in the local D3d environment, have Eg ⊕ T1g ⊕ T2g symme-
try in the global cubic environment. From a symmetry point
of view, they are equivalent to a combination of tetragonal
and trigonal stress. Nothing clearly distinguishes one operator
from the other, except for their strength. As can be seen in
Figs. 5(c), 5(e) 5(g), and 5(h), operator O±1

2 has a larger effect
on the splitting of the different branches than O±2

2 does. As
a matter of fact, the matrix elements of O±1

2 between the
ground and first excited states are five times larger than those
of O1

2 at zero applied magnetic field, which would imply five
times larger vibronic effects for equal D1

2 and D2
2 parameters.

This is consistent with the oscillator strength associated with
each of the quadrupolar operators, which depends on the
structure of the ground and excited doublet states. Note that
all of these operators act on the transverse components of
the Tb3+ angular momentum. It is then possible that these
vibronic couplings have some role to play in the low tem-
perature phase diagram of Tb2+xTi2−xO7+y below 1 K, where
a spin liquid or a quadrupolar ordered phase is observed
[31].

Finally, due to the high magnetic fields used in this study,
we have been able to refine with greater precision the crystal
field parameters (see Table I) and the Landé factor gJ ≈ 1.4.
Within the energy range probed, there is no sign of spin waves
down to 3 K, which could be present due to a possible ordered
magnetic state as observed by neutron diffraction at 40 mK

TABLE II. Values of λm
n parameters involved in the CF Hamilto-

nian of the studied pyrochlore.

λ0
2 λ0

4 λ3
4 λ0

6 λ3
6 λ6

6

1/2 1/8 −√
35/2 1/16 −√

105/8
√

231/16

[32]. Indeed our analysis is in perfect agreement with the
measured “3-in/1-out, 3-out/1-in” spin orientation per tetra-
hedron induced by the magnetic field applied along [111] as
well as the proposed dynamical Jahn-Teller model [32]. Our
results and analysis allow us to give a more precise description
of these spin-lattice couplings.

VI. CONCLUSION

By performing magneto-optical THz spectroscopy mea-
surements of Tb2Ti2O7, we have showed the magnetic field
dependent evolution of the low energy CF level scheme for
Tb3+. Using a simple-model Hamiltonian that incorporates
CF and Zeeman contributions, we were able to reproduce the
overall field-dependent trends observed in the experiments,
in particular the multiple branches that can be attributed to
transitions between the different levels for each site in the
elementary tetrahedra. However, finer structure observed in
the experiment cannot be captured by the simple model and
is only reproduced after the inclusion of a vibronic spin-
lattice coupling process where the ground and first excited
CF doublets are hybridized with acoustic phonons by way
of quadrupolar Stevens equivalent operators. The results add
further support to the growing evidence that spin-lattice cou-
pling and quadrupolar terms are important when describing
the frustrated ground state of Tb2Ti2O7, a topic that is still
under debate. Finally, we also predict that under an external
magnetic field, these couplings induce a novel birefringent
response of this otherwise cubic pyrochlore. While this effect
has not been tested, a direct measurement would provide
further support to the vibronic model. We suggest that this
highlights the potential for future magneto-optical investiga-
tions aimed at probing complex magnetic phases where spin
and lattice degrees of freedom are present. It also open new
routes to design magneto-optically active materials.
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TABLE IV. CF Bm
n parameters (in meV) refined in different recent studies, together with those used in this work. *LS-coupling scheme.

**Intermediate coupling scheme.

B0
2 B0

4 B3
4 B0

6 B3
6 B6

6

Ref. [37] −0.34 4.9 × 10−3 4.3 × 10−2 −7.9 × 10−6 1.3 × 10−4 −1.1 × 10−4

Ref. [38] −0.28 5.0 × 10−3 3.4 × 10−2 −7.5 × 10−6 1.1 × 10−4 −1.2 × 10−4

Ref. [39] −0.73 4.1 × 10−3 5.9 × 10−2 −12 × 10−6 −5.0 × 10−4 −8.5 × 10−4

Ref. [42] −0.28 5.7 × 10−3 4.6 × 10−2 −8.0 × 10−6 1.6 × 10−4 −1.3 × 10−4

Ref. [14]* −0.28 4.7 × 10−3 4.1 × 10−2 −4.5 × 10−6 1.2 × 10−4 −1.4 × 10−4

Ref. [14]** −0.27 5.6 × 10−3 3.9 × 10−2 −6.9 × 10−6 1.7 × 10−4 −1.4 × 10−4

This work −0.26 4.5 × 10−3 −4.1 × 10−2 −4.5 × 10−6 −1.2 × 10−4 −1.4 × 10−4

ject No. B05). SciPy library [33] for Python was used for the
data analysis and representation, and the crystal structure was
modeled in Vesta software [34].
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APPENDIX A: STEVENS EQUIVALENT OPERATORS

The Stevens equivalent operators Ôm
n used in equations (5)

and (8) can be expressed as functions of the angular momen-
tum operators Ĵx,y,z and Ĵ+,− of the rare earth ground multiplet.
Here we give their correspondence together with the one for
Stevens equivalent operators using the x, y, z, notation. These
operators are tabulated in Refs. [35,36]. We will use

X̂ = J (J + 1)̂I,

where Î is the identity operator. It follows that

Ô0
2 = Ôz2 = 3Ĵz − X̂

Ô1
2 = Ôxz = 1

2
(ĴzĴx + Ĵx Ĵz )

Ô−1
2 = Ôyz = 1

2
(ĴzĴy + ĴyĴz )

Ô2
2 = 2Ôx2−y2 = 1

2
(Ĵ2

+ + Ĵ2
−) = Ĵ2

x − Ĵ2
y

Ô−2
2 = 2Ôxy = − i

2
(Ĵ2

+ − Ĵ2
−) = Ĵx Ĵy + ĴyĴx

Ô0
4 = 35Ĵ4

z − [30X̂ − 25Î]Ĵ2
z + [3X̂ 2 − 6X̂ ]

Ô3
4 = 1

4
[Ĵz(Ĵ3

+ + Ĵ3
−) + (Ĵ3

+ + Ĵ3
−)Ĵz]

Ô4
4 = 1

2
(Ĵ4

+ + Ĵ4
−)

Ô0
6 = 231Ĵ6

z − [315X̂ − 735Î]Ĵ4
z

+ [105X̂ 2 − 525X̂ + 294Î]Ĵ2
z

− [5X̂ 3 − 40X̂ 2 + 60X̂ ]

Ô3
6 = 1

4
[{11Ĵ3

z − (3X̂ + 59Î )Ĵz}(Ĵ3
+ + Ĵ3

−)

+ (Ĵ3
+ + Ĵ3

−){11Ĵ3
z − (3X̂ + 59Î )Ĵz}]

Ô6
6 = 1

2
(Ĵ6

+ + Ĵ6
−)

APPENDIX B: CRYSTAL FIELD PARAMETERS
LITERATURE REVIEW

In the pyrochlore literature, there exists mainly two ways
to write the crystal field (CF) Hamiltonian of the rare earth
element: with Stevens equivalent operators Ôm

n as in this study
and in Refs. [37–39] and with the Wybourne operators [40,41]
Ĉn

m, as in Refs. [14,17,19,42]. The Wybourne operators are
defined as

Ĉn
m =

√
4π

2n + 1
Ŷ m

n , (B1)

where Ŷ m
n are the spherical harmonics operators. The CF

Hamiltonian for the D3d point group relevant for the rare earth
element in the pyrochlore compounds is then

Ĥ(Wy)
CF = W 2

0 Ĉ2
0 + W 4

0 Ĉ4
0 + W 4

3

(
Ĉ4

−3 − Ĉ4
3

) + W 6
0 Ĉ6

0

+ W 6
3

(
Ĉ6

−3 − Ĉ6
3

) + W 6
6

(
Ĉ6

−6 + Ĉ6
6

)
, (B2)

TABLE V. Wave functions of the ground and first excited dou-
blets, obtained by diagonalization of the CF Hamiltonian [equation
(5)] without vibronic coupling (D1

2 = D2
2 = 0). The value in brakets

following the wave-function name is its associated eigenenergy.

|ψ0
+〉(0.0) |ψ0

−〉(0.0) |ψ1
+〉(13.5) |ψ1

−〉(13.5)

|6〉
|5〉 0.35 −0.89
|4〉 −0.91 −0.37
|3〉
|2〉 0.18 −0.25
|1〉 −0.13 −0.14
|0〉
| − 1〉 −0.13 −0.11
| − 2〉 −0.18 0.25
| − 3〉
| − 4〉 0.91 0.37
| − 5〉 0.35 −0.89
| − 6〉
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TABLE VI. Wave functions of the ground and first excited doublets, obtained by diagonalization of the CF Hamiltonian [equation (5)] with
a vibronic coupling parameter D1

2 = −9.1 × 10−3 meV. The value in brakets following the wave-function name is its associated eigenenergy.
Only coefficients of wave functions >10−2 are shown.

|ψ1〉(0.0) |ψ2〉(2.76) |ψ3〉(13.8) |ψ4〉(16.6)

|6〉
|5〉 −0.30 −0.09 − 0.12i −0.14 + 0.64i −0.13 − 0.59i
|4〉 −0.44 − 0.43i −0.09 + 0.67i −0.14 + 0.09i −0.17 + 0.27i
|3〉 −0.01i −0.02
|2〉 −0.14 −0.06 − 0.08i −0.04 + 0.19i −0.03 − 0.16i
|1〉 −0.06 − 0.06i −0.01 + 0.10i −0.06 + 0.04i −0.05 + 0.08i
|0〉
| − 1〉 0.08 0.06 + 0.08i −0.02 + 0.07i −0.02 − 0.09i
| − 2〉 −0.10 − 0.10i −0.01 + 0.11i 0.16 − 0.10i 0.09 − 0.14i
| − 3〉 0.01 −0.02
| − 4〉 −0.62 −0.41 − 0.54 0.04 − 0.17i 0.07 + 0.31i
| − 5〉 0.21 + 0.20i 0.02 − 0.15i −0.55 + 0.36i −0.33 + 0.51i
| − 6〉

where W n
m are the Wybourne crystal field parameters. Note

that, in the literature, these quantities are often denoted Bn
m,

the same way (except with an index exchange) as the Stevens
crystal field parameters Bm

n . Here, we prefer a different nota-
tion to avoid confusion.

The Stevens operators ̂̃Om
n are then derived from the

Wybourne operators [43]

̂̃Om
n = (λm

n )−1(Ĉn
−m + (−1)mĈn

m

)
, (B3)

where the proportionality factors λm
n are reproduced in Ta-

ble II for those which are involved in the CF Hamiltonian
of the studied pyrochlore. Then, within the Hilbert space
restricted to the ground multiplet J , this Stevens operator
can be expressed as a function of the associated Stevens
equivalent operators Ôm

n used in this study and reproduced in

Appendix A

̂̃Om
n = θn(J )Ôm

n , (B4)

where the matrix element θn(J ) are tabulated for the ground
multiplet of all trivalent 4 f ions in Refs. [35,36] and repro-
duced here for Tb3+ in Table III. The relationship between the
Stevens and Wybourne crystal field parameters is then

Bm
n = λm

n θn(J )W m
q . (B5)

We can now compare the CF parameters obtained in different
studies for Tb2Ti2O7 (Table IV).

One can be surprised that the sign of our B3
4 and B3

6 pa-
rameters are different from those of most of the literature.
However, as pointed out by Bertin et al. [37], when the
sign of these two parameters are exchanged, there is no ef-
fect on the Hamiltonian eigenvalues. This property is only
true without magnetic field, which is the case for all the

TABLE VII. Wave functions of the ground and first excited doublets, obtained by diagonalization of the CF Hamiltonian [equation (5)] with
a vibronic coupling parameter D2

2 = −9.1 × 10−3 meV. The value in brakets following the wave-function name is its associated eigenenergy.
Only coefficients of wave functions >10−2 are shown.

|ψ1〉(0.0) |ψ2〉(1.07) |ψ3〉(13.7) |ψ4〉(14.3)

|6〉
|5〉 −0.23 + 0.12i 0.14 − 0.19i −0.44 − 0.46i −0.19 + 0.59i
|4〉 −0.19 + 0.61i 0.10 + 0.64i −0.26 − 0.01i −0.12 − 0.25i
|3〉 −0.01
|2〉 −0.12 + 0.07i 0.07 − 0.10i −0.12 − 0.13i −0.05 + 0.16i
|1〉 −0.03 + 0.08i 0.01 + 0.09i −0.08 −0.04 − 0.07i
|0〉
| − 1〉 0.08 − 0.04i −0.05 + 0.07i −0.05 − 0.06i −0.03 + 0.08i
| − 2〉 −0.04 + 0.13i 0.02 + 0.12i 0.18 0.07 + 0.15i
| − 3〉 −0.01
| − 4〉 −0.56 + 0.30i 0.38 − 0.53i 0.17 + 0.18i 0.08 − 0.26i
| − 5〉 0.07 − 0.25i −0.04 − 0.23i −0.63 − 0.03i −0.27 − 0.56i
| − 6〉
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previous neutrons and optical studies, but does not hold un-
der an applied magnetic field. Indeed, we find much better
agreement between our experimental results and calculations
with B3

4 < 0 and B3
6 > 0; the eigenenergies at zero magnetic

field are strictly identical when changing the sign of these two
parameters.

APPENDIX C: WAVE FUNCTIONS FOR
CRYSTAL-FIELD STATES

The wave functions for the ground and first excited dou-
blets are given in the included Tables V, VI, VII, without and
with the vibronic coupling.
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