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KBFI National Institute of Chemical Physics and Biophysics
(Keemilise ja Bioloogilise Fulsika Instituut)

INS Inelastic Neutron Scattering

RIXS Resonant Inelastic X-ray Scattering

THz Terahertz

LRO Long Range Order

SW Spin Wave

DM Dzyaloshinskii-Moriya

QCP Quantum Critical Point

CF Crystal Field

SIA Single-lon Anisotropy

1D One-Dimensional

3D Three-Dimensional
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Introduction

In the 1960s, the scientific community adopted the term “condensed matter” to identify
strongly correlated systems, in which physical properties are dictated by collective behav-
ior of interacting atoms [1, 2]. Since then, condensed matter physics has been developing
at a rapid pace, having become by far the largest subfield of physics by the end of the
twentieth century [3]. A lot of the research is focused specifically on magnetic materi-
als, where the interactions between atoms depend on their magnetic moments. These
interactions are commonly studied using spectroscopic techniques such as inelastic neu-
tron scattering (INS) and resonant inelastic X-ray scattering (RIXS), which are great tools
for probing magnetic excitations. In these studies, much of attention is directed towards
symmetry and, especially, the spontaneous symmetry breaking that accompanies phase
transitions in condensed matter [4]. While INS and RIXS provide excellent data on mag-
netic excitations, including dispersion in momentum space, they lack the sensitivity to
separate excitations whose energies are very similar [5]. Additionally, low-energy excita-
tions below 1meV are inaccessible for RIXS and are rather hard to detect by INS. These
limitations make it challenging to study weak interactions that may cause additional sym-
metry breaking and induce the emergence of novel properties. Here at the National Insti-
tute of Chemical Physics and Biophysics (KBFI), we use THz spectroscopy combined with
low temperatures and high magnetic fields to fill this gap by studying magnetic excitations
in the energy range of 0.4 - 25meV (3 - 200 cm™!). With the highest spectral resolution
of 0.015meV (0.12cm™ 1), our instruments exceed the energy resolution of INS by about
an order of magnitude [5]. By combining a Fourier-transform interferometer with a su-
perconducting magnet, we can study magnetic-field dependence of the THz spectrum in
a steady-state magnetic field up to 17 T, which is comparable to the strongest steady-state
field available for the neutron experiments [6].

In this study, we utilize the precision of THz spectroscopy and its ability to access
the low-energy spectrum of single-crystal samples to answer three separate questions:
1) Does the spin-lattice coupling induce symmetry breaking in a frustrated pyrochlore
Th,Ti,07? 2) Can we improve our understanding of magnetic ordering in a rare-earth
orthoferrite YFeO3? 3) Can we provide further evidence of the hidden Eg symmetry near
a quantum critical point (QCP) in a quasi-one-dimensional Ising spin chain?

The first question is tightly intertwined with the problem of geometric frustration of
spins on a pyrochlore lattice [7], which leads to exotic spin states, such as spin ice and spin
liquid. Tbh,Ti,O7 is an especially puzzling compound, where dynamic interplay between
the spins and the lattice is suspected to impede the formation of any kind of long-range
order (LRO). If such coupling exists, it would result in very subtle and hard-to-detect fea-
tures in the excitation spectrum. While earlier studies reported potential observations
of the dynamic spin-lattice effects [8, 9, 10], we aim to present unequivocal evidence by
studying the magnetic-field dependence of the spectrum, where these features should
stand out more clearly.

The second questions is related to the spontaneous symmetry breaking that is respon-
sible for multiferroic properties in certain materials [11]. These properties normally stem
from the “weak” Dzyaloshinskii-Moriya (DM) interactions that are rather hard to quantify.
Our goal is to study low-energy excitations to provide the most accurate description of the
magnetic interactions in YFeOs3, which is isostructural to some known multiferroics. A pre-
cise description of these interactions opens up possibilities to better model multiferroic
compounds, boosting research towards potential future applications.

The final question concerns emergent symmetries close to the quantum critical point
of an Ising spin chain. Namely, under certain conditions, the Ising chain is predicted to
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feature excitations with the energy ratios from the Eg affine Toda field theory [12]. Here
we focus on two quasi-one-dimensional materials that incorporate Co?* spin chains: a
ferromagnetic CoNb,O¢ and an antiferromagnetic BaCo,V,0g. Although the Eg spectrum
has been found in CoNb,Og by INS, the experiment was only partially successful, as most
of the excitation peaks remained obscured in the spectrum [13]. No such attempt has
ever been reported for BaCo,V,0g. Observation of the full Eg spectrum, if successful,
would not only mark the first ever experimental evidence of highly complex Eg symmetry,
but would also demonstrate the power of integrable field theory to describe the complex
symmetry that emerges near the QCP.

The results of this work were published in the American Physics Society’s journal Physics
Review B, as well as presented at various conferences.
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1 Experimental setup

All measurements discussed in this work were performed at KBFI in Tallinn, Estonia. The
transmission of THz radiation through single-crystal samples was measured using a Martin-
Puplett interferometer SPS-200, combined with either a liquid-helium-bath cryostat, or a
dilution refrigerator. In this chapter, we introduce both setups and describe the principles
of Fourier-transform spectroscopy, specifically with a Martin-Puplett interferometer.

1.1 TeslaFIR

TeslaFIR is a spectrometer that consists of a liquid-helium-bath cryostat and a Martin-
Puplett interferometer SPS-200, and is schematically shown in Fig. 1. In TeslaFIR, the
sample is placed in a vacuum chamber that is inserted into the bore of a 17-tesla super-
conducting magnet. The THz light beam travels from the Martin-Puplett interferometer
via light pipes through the sample and onto the detector (bolometer). The polarization
of the beam is controlled by a wire-grid polarizer directly in front of the sample, which is
rotated by an external motor. To reduce the heat load onto the bolometer, a filter wheel

E Martin-PupIett
interferometer

THz light beam

Liquid helium

Vacuum chamber

| _— Polarizer

Sample

— | Superconducting
magnet

Filter

——— Bolometer

Figure 1: A schematic drawing of TeslaFIR. The temperature of the main bath is reduced by pumping
liquid helium through a A-helix (not shown on the drawing), immersed into the liquid helium above
the superconducting magnet.

equipped with a set of low-pass filters with various cutoff frequencies is installed after
the sample. The filter wheel is rotated by another external motor, which makes it easy
to change the cutoff frequency during the experiment. The bolometer, separated from
the liquid helium by a vacuum chamber, operates at the base temperature of 300 mK,
which is reached using a separate 3He cooling stage. In this stage, the boiling tempera-
ture of liquid 3He is lowered by reducing its pressure with a charcoal sorption pump, kept
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at approximately 5 K. The sample temperature can be further reduced to around 2.5K by
pumping on the liquid helium in the main bath of the cryostat through a A-helix. This also
cools the magnet below the liquid helium superfluid transition temperature 7, = 2.17K,
which is needed for the operation above 15T.

In TeslaFIR, we can measure transmission in both Faraday and Voigt configurations,
where the applied magnetic field is either parallel or perpendicular to the direction of THz
light wavevector k. A comparison between Faraday and Voigt configurations is illustrated
in Fig. 2. In Voigt configuration, we use two mirrors to change the direction of the incident
light beam. An external motor then rotates the sample, which makes it possible to apply
the magnetic field in any direction in the plane perpendicular to the k vector. Only two
incident light polarizations can be used in Voigt configuration, as the reflection off the
mirror surface would otherwise ruin the linear polarization.

Faraday Voigt
Motor Motor
Motor
H

Polarizer Polarizer

sample Mirror
|rror
Sample

THz light beam THz light beam

Figure 2: A comparison between Faraday (left) and Voigt (right) configurations. An external motor
rotates the sample in the Voigt configuration, so that the magnetic field H can be applied in any
direction in the sample plane, perpendicularly to the rotation axis.

1.2 milliK-TeslaFIR

A schematic diagram of the spectrometer milliK-TeslaFIR, which consists of a dilution re-
frigerator and a Martin-Puplett interferometer SPS-200, is shown in Fig. 3. In millikK-
TeslaFIR, the sample is located at the end of the cold finger, which is inserted into the
bore of a 12-tesla superconducting magnet. The cold finger is in contact with the mixing
chamber of the 3He/*He cooling circuit, which is located in the inner vacuum chamber,
submerged in liquid helium. Below 0.87 K, the 3He/*He mixture in the mixing chamber
separates into two phases: a *He-rich phase at the top, which is almost pure *He, and a
dilute phase with 3He concentration of 6.6% at the bottom [14]. A diffusion pump continu-
ously pumps 3He out of the dilute phase via still, which causes some of 3He to move from
the concentrated phase into the dilute phase. The process of 3He crossing the bound-
ary between two phases is endothermic, which means heat is removed from the mixing
chamber, thus cooling the cryostat even further. 3He gas that passes through the diffusion
pump is subsequently returned into the circuit via heat exchangers, which cool it before
it enters the mixing chamber again. Due to the heating effect of the THz beam itself, the
lowest possible sample temperature is, to an extent, dependent on the cutoff frequency
of a low-pass filter used in the measurement. With the cutoff of 20 cm~!, we can reach a
stable sample temperature as low as 150 mK. A separate cooling stage, where the temper-
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Martin-Puplett
interferometer

To the 3He pump
THz light beam

3He return
|
__|—Liquid helium
Still — 1| — | Innervacuum
chamber
Heat exchanger — |
|l I ——+—Filter
Bolometer — | | | 1 Mixing chamber
L[4 S

| Cold finger

\

Superconducting

magnet — |
T—Sample

Mirrors

Figure 3: A schematic drawing of milliK-TeslaFIR. The dark blue color in the mixing chamber and
still represents the dilute phase of the 3He/*He mixture, the light blue color in the mixing chamber
represents the 3He-rich phase. The top part of still and the pumping lines only contain 3He gas.

ature of liquid *He is reduced by pumping on it with a charcoal absorber at 4.2K, keeps
the bolometer at 400 mK. No polarizer is used in the current setup.

1.3 Martin-Puplett interferometer

The Martin-Puplett interferometer used in all of our measurements is equipped with a
mercury lamp, which is the source of THz radiation, a wire-grid polarizer that acts as a
beamsplitter, two rooftop mirrors, one stationary and one moving, and two linear polar-
izers. A photo of the interferometer is shown in Fig. 4. Here, we are going to use Jones
vectors and Jones matrices [15] to describe the components and the work principle of the
interferometer.

According to Jones calculus, a polarization state of a light beam can be described by a

two-component vector
_ (Ev
E= ( EH) , (1)

where and Ey = E €9 and Ey; = E»e'? are the vertical and horizontal electric field com-
ponents perpendicular to the direction of beam propagation. Linear polarizers that pro-
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Figure 4: A photo of the Martin-Puplett interferometer used in all of the measurements. The fol-
lowing components are visible in the photo: 1. mercury lamp, 2. off-axis parabolic mirror, 3. linear
polarizer, 4. beamsplitter, 5. moving rooftop mirror, é. stationary rooftop mirror.

duce horizontally and vertically polarized beams are described by transmission matrices

Tvp = <(1) 8) Tup = <8 (1)), (2)

such that the resulting polarization state upon transmission is

1 0\ [E E

(0 9)(5)-5)
0 0\ (Ey 0

=3 9)(5)-(2)

For a beam reflected off a plane surface, the directions of both Ey and Ey stay the
same relative to the instrument, but the direction of propagation changes. The convention
we use here is that the vertical axis V is always normal to the instrument plane, with its
positive direction “up”, and the horizontal axis H is defined relative to V and the direction
of propagation according to the right-hand rule, as shown in Fig. 5. Therefore, if the
direction of propagation changes, so does the positive direction of the horizontal axis, and
Ey needs to be redefined. In our approach, Ey always changes its sign upon reflection.
The reflection matrix is then written as

1 0

which produces the reflected beam

() ) (8)- (%)

Using this notation, we can also define reflection matrices for the polarizers

Ryp = (8 _01> ; Rup = <(1) g) : (7)

18
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\
Ax
wm
AT

H k

Figure 5: Dependence of the reference frame orientation on the direction of beam propagation (in-
dicated by the wavevector k) in Jones calculus.

A rooftop mirror consists of two plane mirrors placed at a 90° angle relative to each
other, so that the beam is reflected twice, and the direction of propagation is reversed. If
the roof line is vertical, the beam reflection is equivalent to two consecutive reflections off
a plane surface. The corresponding reflection matrix is the product of two plane surface
reflection matrices

1 0\/1 O 1 0
RVRM:RR:(O 1) (0 1):<0 1)' ()

While a vertical rooftop mirror changes the direction of the horizontal component Ey rel-
ative to the instrument, the polarization stays the same relative to the direction of propa-
gation, which is why the result is the identity matrix. To describe a rooftop mirror placed
with its roof line at an arbitrary angle, we can use the rotation matrix

R(e):<cose sin9>7 (9)

—sin® cos@

which projects any vector onto a new coordinate system that is rotated clockwise by 6, as
shown in Fig. 6. In this case, we describe the reflection off a rooftop mirror with its roof
line at an angle 0 as three consecutive procedures: rotation of the coordinate system
by 6, reflection off a vertical rooftop mirror, and another rotation back to the original
orientation. The result is

—2cos0sin® cos?H —sin’0 (10)

cos“0 —sin“@  2cosBsinf
Ry = R(0)RvrmR(0) = ( ) |
The second rotation back to the original orientation happens in the new coordinate sys-
tem, where the propagation direction is reversed upon reflection, and therefore the same
matrix for clockwise rotation R(0) is used instead of R(—6). The horizontal rooftop mir-

ror is equivalent to 6 = 90°, which gives

Rurm = <_01 _01> : (1)

The wire-grid polarizer, which acts as a beamsplitter, is also described by a transmis-
sion and a reflection matrix. If we define the angle between Ey and the wires of the
beamsplitter as ¢, then the respective matrices are found in a similar manner: we first
rotate the coordinate system by ¢, then use the transmission/reflection matrix of a hor-
izontal polarizer (with vertical wires), and afterwards perform another rotation. As the
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H

Hl

Figure é: Rotation of a coordinate system by 6 with a rotation matrix R(6).

result, we get the matrices

Tlfs =R(—9)TupR(9) = (C(S)lsn¢ (sbind) C(?S:Z zn(P) "2
and
) .
Rgs =R(¢)RupR(9) = (_C(;:Sd) zn(]) C(isirf;r;(])) : (13)

Similarly to the case of a rooftop mirror, we multiply the reflection matrix Rgp in Eq. (13)
by the same clockwise rotation matrix R(¢) on the left, which is due to the change in the
direction of beam propagation. In case of transmission, however, we need to rotate the
coordinate system by —¢ to return to the original reference frame.

The beamsplitter in the Martin-Puplett interferometer is placed at the magic angle,
54.7° relative to the vertical axis, so that its projection appears to be at ¢ = +45° relative
to the polarization axis of the traveling beam. The transmission matrix is therefore

o 11 =FI
+450 1
-t 7). "
and the reflection matrix is
o 1 /1 441
450 1
- ). "

Lastly, we need to introduce a matrix that represents the phase change when a beam
travels a distance d, which is

_j2nd 1 0
Dd) = &% (O 1), (16)

where A is the wavelength.
Now that we have defined Jones matrices for all components of the interferometer,
we can describe the work principle according to the schematic diagram in Fig. 7:

@ An arbitrarily polarized parallel beam E; = (EV> is created by an off-axis parabolic
H

mirror, which directs the light from the source onto a linear polarizer.
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@

®

@

®

©

The beam passes through the linear polarizer, which creates a horizontally polarized
light beam
E2 = THpEl. (17)

Using either vertically or horizontally polarized light leads to the same result, as long
as both polarizers in Fig. 7 have the same polarization axis. The horizontally polar-
ized beam then falls onto the beamsplitter, which has the projection of its wires
appearing at a +45° angle.

Half of the light is reflected off the beamsplitter with the polarization

E; = RiP By = RS TpE. (18)

The reflected beam first travels the distance d; between the beamsplitter and the
moving rooftop mirror, gets reflected, and then travels the distance d; again back
to the beamsplitter. Both rooftop mirrors in the interferometer have a horizontal
roof line, so the beam that comes back to the beamsplitter is described by

Es = D(d;)RurmD(d1)E3 = D(d))RurmD(d; )Rggso TurE;. (19)

While half of the beam is reflected off the beamsplitter, the other half is transmitted
through, according to

Es = I 5 By = 15 TipE. (20)

The transmitted beam is described similarly to the reflected one, as it first travels
the distance d, from the beamsplitter to the stationary rooftop mirror with a phase
shift, then gets reflected and travels back, such that

Es = D(d2)RurmD(d2)Es = D(da) RurmD(d2) 5" TuapEs. (21)

For the beam E4, the beamsplitter wires still appear at a +45° angle. We can check
that none of the light gets reflected as the beam comes back to the beamsplitter,
since

o o o O
Ris® Ba = Rig™ D(di)RurmD(d)Ris™ TypEy = <o> : (22)

Therefore, the initially reflected part of the beam is now transmitted according to
TB+S450E4. The originally transmitted beam, however, now approaches the beam-
splitter from the opposite direction, which makes the wires appear to be at a -45°
angle. We can check that none of the light gets transmitted,

4co _4e0 ° 0
Tas” E¢ = Tyg"” D(d2)RurmD(d2)Tys” TupE) = <0> , (23)

and the beam is reflected according to RE§50E6. The two beams from @ and @
recombine, resulting in

E; :TBJrS450E4 + REéSOEﬁ
- {TB?SOD(dl)RHRMD(dl )Rys™ Tap +R§§50D(d2)RHRMD(d2)TB+s450THP} Ey
(24)
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Finally, the beam passes through another horizontal polarizer, which gives

Eg = TupE;
_ +45° +45° | p—45° +45°
= Tip [TBS D(dy)RurmD(dy )RS + Ry 35 D(do) RupD(da) Ty ] TipE.
(25)
Stationary rooftop mirrV\
Polarizer : .

; @ Moving
: rooftop mirror

Polarizer

Light source

Off-axis parabolic mirror e < ............. ‘

Figure 7: A schematic drawing of a Martin-Puplett interferometer.

Inserting the Jones matrices for the interferometer components from Egs. (2 - 16) into
Eq. (25) results in

0 0
ES:(O 1>><
.2mdy .2md)
1 1 -1 e T 0 -1 0 e T 0 1 1 n
4(\~1 1 0 i )\o -1 0 i) \-1 -1
.21dy .21dy
I =1\ (e 7 0 -1 0 e T 0 1 -1 «
1 -1 0 i 0 -1 0 i) \-1 1
0 0\ /[/Ey
0 1) \Eg)’
(26)

which, after performing the matrix multiplications, gives the output of the interferometer

1 0
Eou=Eg = EEH < Ay l.47rdz> . (27)
e A +e A
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We can further simplify Eq. (27) by using substitutions A =d| —d, and d = d| +d, as

1 o 0 _j2md 0
EOUK = §EH€ 2 <ei27rA +ei27{A> :EH€ 2 (C 27TA> . (28)

Since the intensity of the output light is proportional to the square of the norm of the
electric field vector, we get

2rA 1 47A
IOl]t < |Eout|2 = |EH|2COS2 T = §|E‘[{|2 (l +cos l) s (29)

which means that at every wavelength A the intensity is proportional to a cosine function
of the total path difference 2A between the two beams. The total intensity of the light,
which includes all wavelengths that pass through the interferometer simultaneously, is
found by integrating I, over the whole wavelength/frequency range [16]. The result is a
constant term I plus the variation term, which is a function of the moving mirror position
coordinate x = A,

I(x) = /0 B Iow(V)dV = Iy + /0 wl(\”/) cos (4mvx)dv, (30)

where ¥ = 1/ is the wavenumber, normally expressed in cm~!, and I(V) is the intensity
variation amplitude at a certain wavenumber. Performing a Fourier transform on Eq. (30)
results in

/.I’(x) cos (47mV'x) dx = / {/:I(\?)cos (47r\7x)d\7} cos (47mV'x) dx -
’ - 31
_ /0 1(¥)8(V - ¥)dv = I(¥),

where I'(x) = I(x) — Iy is a redefined intensity as a function of the moving mirror position
without the constant term. The result of Eq. (31) is the light intensity as a function of
wavenumber, or, in other words, the recorded spectrum.

The Fourier transform technique combined with a moving mirror that continuously
changes the path difference of the two beams makes it possible to detect all frequencies
simultaneously. The method increases energy throughput, as compared to spectrome-
ters that are equipped with prisms or gratings to create monochromatic light. Using a
wire-grid polarizer as the beamsplitter eliminates the internal reflections, which other-
wise occur inside other types of beamsplitters, such as a half-silvered mirror or a dielec-
tric beamsplitter used in the Michelson interferometer. Such internal reflections result in
a drop of the beamsplitter’s efficiency, which is periodic in frequency, with the period de-
termined by its thickness. A dielectric beamsplitter’s efficiency also drops significantly at
low frequencies due to low reflectivity. Using a wire-grid beamsplitter, therefore, ensures
a uniform efficiency across a wide frequency range [17].
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2 Crystal-field excitations in Tb,Ti> O~

Pyrochlore oxides of the type A3+B‘2‘+O7, where A31 is a rare-earth ion and B3 is usually
a transition metal, attract immense interest due to the geometrical frustration (Fig. 8)
inherent in the lattice of corner-sharing tetrahedra [7]. The frustration often results in the
formation of novel phases at low temperature, such as spin glass, spin ice, or spin liquid.
Tb,Ti,O7 is a special case of its own: with no LRO down to extremely low temperatures, it

9

Yﬁi ?

Figure 8: Geometrical frustration of antiferromagnetically coupled spins in a triangle (left) or tetra-
hedron (right) [7].

?

has been attributed properties of a spin liquid, spin glass, as well as the so-called quantum
spinice. Additionally, there is clear evidence of the coupling between magnetic and lattice
degrees of freedom in Tb, Ti» O7, which produces exotic magnetoelastic excitations modes,
and may be important in explaining the absence of the LRO.

In our study, we address the question of coupling between crystal field (CF) excitations
and the phonon modes. Our goal is to observe the effect of such vibronic coupling on the
THz spectrum of Th,Ti,O7 by applying the magnetic field in along the [111] direction and
thus enhancing the splitting of the ground and the first excited CF doublets. In the fol-
lowing chapter, we, first, show how the absorption coefficient is related to the magnetic
susceptibility in electrically insulating magnetic materials, such as Th,Ti,O;. We then de-
rive the expression for the magnetic susceptibility based on the linear response theory.
To calculate the absorption spectrum, it is necessary to determine the energy states of
the system under consideration. Therefore, we utilize the crystal-field theory to find the
correct Hamiltonian, which is used to calculate the energy states of magnetic Tb3* ions
in Tb,TioO7. We propose a model that describes the subtle changes in the spectrum and
relates them to the vibronic effects, which cause the symmetry breaking in the crystal.
Finally, we compare predictions made by the model to the experimental data from spec-
troscopic measurements of Th,Ti,O7 to assess its validity.

2.1 Response of a magnetic medium

2.1.1 Solution to Maxwell’s equations in an isotropic medium

First of all, we consider an electromagnetic wave propagating through an isotropic medium.
Electromagnetic processes in all media are governed by the Maxwell’s equations

V-D=p (32)
VxH:JJra—D (33)
ot
VxE:—a—B (34)
ot
V.B=0, (35)
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where Eis the electric field vector, B is the magnetic flux density, J = 6E is the free charge
current density (with 6 being the conductivity tensor), and p is the free charge density. D
and H are macroscopic quantities called the electric displacement and the magnetic field
strength vectors, which, in vacuum, are defined according to

D =¢gE
36
H= iB. (36)
Ho

In a medium, however, these quantities are found by spatial averaging of the microscopic
charges and current densities, as outlined in [18, Chap. 6.6]. This procedure leads to what
is called the constitutive relations

D=gE+(P+...)

He LB (M+.), (37)
Ho

where the parentheses include spatial averages of the bound charges and currents. Thus,
P is the electric polarization vector, which represents the macroscopically averaged elec-
tric dipole, and M is the magnetization vector, which represents the macroscopically av-
eraged magnetic dipole. Further terms, which include quadrupoles and higher order mo-
ment densities, are generally much smaller than P and M, and, therefore, are omitted in
the current approach.

Our goal here is to describe the linear response of a medium, where we assume that
the electric polarization and magnetization are strictly proportional to the applied fields.
Moreover, we assume that the medium is homogeneous and isotropic, which means that
the proportionality factors x¢ and x", called electric and magnetic susceptibilities, are
scalars, such that

P=¢gx°E
1 38
M=—x"B. (38)
Uo
Therefore, D and H are then also proportional to E and B according to
D=gE+P=¢g¢cE
1 1 39
H=—B-M=—B, (39)
Ho HoHt
where we define dielectric permittivity and magnetic permeability of a medium as
e=1+y°
1 (40)
o= T—

The effect of magnetization in dia- and paramagnetic materials is small compared to the
applied field, so it is usually assumed that ¥ < 1 and

u=1+x" (41)

In case of magnetic insulating materials that we focus on in this work, it is usually
correct to assume that there are no free charges (p = 0) or free currents (J = 0) present.
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This considerably simplifies Eq. (33) and Eq. (34), which then take the form

JE
VxH—soeW (42)
JH
VxE_—uouW. (43)

We are going to assume that the electromagnetic radiation propagating through the medium
can be decomposed into a set of plane waves with a frequency m and a wavevector k of

the form
H= Hoefi(a)tfk-r)

44
E — Eoefl(a)l‘fk-l‘). ( )
. J . .
This allows us to replace Vx by kx and 5 by —iw, and rewrite Egs. (42 - 43) as
kxH=—iwgeE (45)
kxE = iouuH. (46)
It is evident from Eqgs. (45 - 46) that E L H L k.
Combining Eq. (45) with Eq. (46) results in a wave equation
o2
kxkxH+ —euH =0, (47)
c

0

where ¢y = is the speed of light in vacuum. Let us rewrite the equation in tensor

form, using Levi-Civita symbol for the vector product,

2
0]
€ijik j€ximki Hm + ?EuHi =0 (48)
0
where H; stands for the i-th component of the H vector in Cartesian coordinates. Note the
Einstein’s notation of repeating indices a;b; = Zf’zl a;b; used from now on. We now apply
the property of invariance under cyclic permutation of the Levi-Civita symbol €;j; = €
and the identity €;j€xm = 6i18jm — 8imdj; to write

2

(0]
kiijj—kjiji—i—?euHi =0. (49)

0

Rewriting kjk;H; = k*H; = k> &;;H; and H; = &;;H allows us to take the vector component
H; outside of the parentheses to obtain

>
|:kl'kj - (kz -+ 28[.L> 6ij:| H/' =0, (50)
€0
which is a set of equations that only has a solution if
>
det |:k,'kj — <k2 + 28[.1) 6[j:| =0. (51)
€0

Let us now define the refractive index

N = 9

) (52)
(0]
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which, in general, is a complex quantity with its components N; = n; + ik;. Using this
definition, we rewrite Eq. (51) as

det [N;N; — (N> +&u) §;;] =0, (53)
where N = |N|. We can assume without the loss of generality that N || z and, therefore,
(N?+eu) (N* +ep)en =0, (54)
which has the solution
N = /epu. (55)

As we are going to demonstrate, the absorption coefficient is directly related to the
imaginary part of the refractive index. Specifically, in case of magnetic materials the ab-
sorption is determined by the imaginary part of the magnetic susceptibility. Using Eq. (40),
and assuming ¥ < 1, we can write

[ 1 1
= ~ 1 —y™

which leads to the expression for the refractive index in terms of magnetic susceptibility

Nmﬁ(l—&-;xm). (57)

2.1.2 Absorption coefficient
The absorption coefficient « is defined through the relation between incident light inten-
sity Iy and transmitted light intensity 7 over a distance d

[ =Ie . (58)
The light intensity is given by the real part of the Poynting vector [18]
S=ExH, (59)

which, according to the cycle-average theorem [19], averages to

= 1
SZEExH*, (60)

if both E and H have time-dependence of the form ¢ ~®. Here the star indicates the
complex conjugate. From Egs. (45 - 46) it follows that

(0] k
|E[ =+ Hou|H| = —eog[H], (61)

which, using the definition of the phase velocity in the medium, ¢ = w/k, leads to the
expression for the light intensity

< |
I=8] = Sepop[HJ”. (62)

For a plane wave propagating along the z axis, the magnetic field strength vector is equal
to H = Hoe (@ ~k) = Hye '@(~N2/0)  where we substitute k = ®N /co from Eq. (52).
Therefore, the light intensity of a plane wave is

20 Kz

1 20 _ 20
1= Sepou[HoPe ™ = fpe 0, (63)
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where k is the imaginary part of the refractive index and I is the light intensity at z = 0.
Comparing the result to the definition of the absorption coefficient in Eq. (58) yields
2m
o=""x. (64)
o
Inserting the expression for the refractive index from Eq. (57) and assuming that € is a real-
valued quantity, we arrive to the expression for the absorption coefficient as a function of
the magnetic susceptibility
w+\/€

€0

1 (65)

2.2 Linear response theory

The following section is aimed at finding the expression for magnetic susceptibility in Eq.
(65) based on the linear response theory, which is outlined in [20, Chap. 3]. In this
approach, we assume that the Hamiltonian of a system consists of two parts: a time-
independent part that describes the static state of the system, and a time-dependent
part that introduces a small perturbation. Any physical observable is then related to the
perturbation term in the Hamiltonian via a response function. If we express an observ-
able using the density-operator formalism, we can relate the response function to the
time-dependent part of the density operator. To find the explicit time dependence of
the density operator, we are going to utilize the Heisenberg and the interaction picture
versions of this operator. Once we know the explicit time dependence of the density op-
erator, we can express the response function in terms of the known observables and their
eigenvalues. The result is the Kubo formula, from which we can arrive to the expression
for the generalized susceptibility of the system. Finally, we will consider a specific case
of the magnetic susceptibility, where the external perturbation is the oscillating magnetic
field of an incident electromagnetic wave.

2.2.1 Response function
We start with an operator B representing a physical observable. The ensemble average of
B in thermal equilibrium can be expressed in the density-operator formalism as

(B) =Tr{pB}, (66)

with Tr{ } standing for trace. The density operator is defined as
1 ~
p=ye Pt (67)

where B = 1/kgT, kgis the Boltzmann constant, T is the temperature, 2 = Tr{e*ﬁ’:’}
is the grand partition function, and H is the effective Hamiltonian. We introduce a time-
dependent external perturbation f(z) into the system by assuming that the Hamiltonian
has the form

H=Hy+H, (68)

where Hj is the time-independent (static) part and

~

A = —Af(r) (69)

is the time-dependent part, which is linear in perturbation f(¢). The proportionality fac-
tor A here is a constant operator. This operator could, for example, be the magnetic mo-
ment of the system, which couples to the time-dependent external magnetic field and
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introduces a correction to the Hamiltonian. As the result, both the partition function and
the density operator become time-dependent, and so does the ensemble average of the
physical observable B. Therefore, Eq. (66) now has the form

(B(1)) = Tr{p(1)B}. (70)

A linear response function ¢ is defined through the relation between (B(t)) and f(t)
1
B)~ B = [ omle— )50t 71

where (B) = (B(t = —)). The response function only depends on the time difference
t —t', and the perturbation is assumed to vanish in the limit lim f(¢') = 0. On the other
t/——oo

hand, from Eq. (70) it directly follows that

(B(1)) — (B) =Tr{(p(¢) — po)B}, (72)

where py is the static density operator with A = Hy. This implies that

/_t ol =Tr{(p(1) ~ po)B}. (73)

which is the expression we will use to find the response function @p4.

Next, to find the expression for p(¢), we are going to utilize the Heisenberg picture
and the interaction picture. A time-dependent operator such as 1§(t) can be written in the
Heisenberg picture as

B(t) =UTBU = '/" et/ (74)
where B is assumed to have no explicit time dependence. The operator U = e~ift/h jg
the so-called time-evolution operator, which normally (in the Schrédinger picture) deter-
mines the time evolution of an eigenstate. In the Heisenberg picture, however, the time
evolution is integrated in the operators, while the wave functions are static. Using the
relation between f?(t) and B from Eq. (74), we can rewrite Eq. (70) as

(B(r)) =Tr{p(1)B}
_ Tl'{p ([)e—iﬁr/hé(t)eiﬂt/h}
_ Tr{eiﬁt/hp (t)efilflt/hé(t)}
— Te{puB(o)},

where we used the property of trace invariance under cyclic permutations and defined
the Heisenberg version of the density operator

(75)

PH = eiI:It/hp (l‘)e—ilflt/h7 (76)
which has no explicit time dependence,

Ipu

The absence of time dependence in py is expected, because states are stationary in the
Heisenberg picture, and the density operator is directly related to the states [21]. Now,
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using the Heisenberg version of the density operator, we can find the equation of motion
for p(¢) according to

d d/ 2
p(t) (_eth/theth/h)

_ _%Ifleilflt/the—ilflt/h +eiﬁt/th %Ifle—iﬁt/h o
= —[A.p()]
= —=[Ho.p(1)] = 3 [P (1)].
In the interaction picture, the density operator is defined as
pilt) = "0 p(r)e T, (79)

where the time-evolution operator is generated using just the static part of the Hamilto-
nian Hy, as opposed to the whole Hamiltonian in the Heisenberg picture. Also note that
both p;(7) and p(¢) here are time-dependent. The equation of motion for p;(z) is found
according to

d d if —iHyt /h
0= 3 (o p(eye i)

_ %Ifloeiﬂot/hp(t)efiﬁoz/h +eiﬁoz/hdf;§t)eiﬂot/h+eiﬁot/hp(t) (_;go) e*iﬂof/h (80)

_ eiﬂot/h (;[1:10,[)(!)] 4 dl;gl)) e—ilflot/h7

which, after including the result from Eq. (78), simplifies to
Zpi(t) = =Ry p (1) 0, (81

The equation of motion for the density operator in the interaction picture only depends
on the perturbative part of the Hamiltonian, which is exactly what we need to isolate the
response to the external perturbation f(r).

To further isolate the linear response, we write the density operator as a sum of two
terms

p(t) =po+pi(1), (82)

where py is the time-independent part defined according to Eq. (67) with A = Hy, and
p(t) is the additional contribution due to f(r). We insert this expression for p(¢) into Eq.
(81) and get

d i 5 N o~
“pil6) = — e ML, po -+ p 1) o0

S X (83)
~ _%eiHOt/h m] ’po]efiHot/h’

where we drop the quadratic term Ay p; o< f(¢)?. If we insert the definition of A from Eq.
(69) and use the commutation relation [e~*0'/" py] = 0, we obtain

d I i n —iHyt /1
Epl(t) = %eHOI/h[A,Po]f(f)e Hot /b

o ) . (84)
— L[ e o] (1) = S 11 (0), pol (1),
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where we defined a time-dependent version of the operatorA in the interaction picture
Aj(r) = eHot/n Ag=iHot/hsimilar to Eq. (79).

Now that we have the equation of motion for the density operator in the interaction
picture, we can go back to our original density operator p(¢), and, according to the defi-
nition of p; in Eq. (79), write

if o N t »
p(t) _ e—zHot/hpI(t)etHof/h :e—zHOt/h </ ;{t,pl(t/)dt,JFPO) elHOt/h

oS oS i T d . oS
eszot/hp elH()t/h 71H0t/h <;l/ [A[([/),pg]dt> ezHgt/h

.y
A A g ) A (85)
_ e—iHot/heiHot/hp0+%/ E[e—iHOz/hAI(t/)eiHot/h’po}dt/
i [r .
—pot 3 [ A= 0.pol ()
where we utilized C oy
[ it = pu(t) [ = pu(6) ~ po (86)
and used the time-evolution operator to get
A"I([/ *[) _ e—iﬁot/hAI(t/)eiﬁof/h_ (87)

Note that ¢ is not the integration variable, and the time-evolution operator can be brought
inside the integral. We have thus derived the expression for p(z), which we plug into Eq.
(73) to obtain

[ ol f()dr = %Tr { [ A1), polB f(t’)dt’} . (88)

This result allows us to express the response function in terms of operators A and B. We
start by rearranging the right-hand side of Eq. (88), using the property of trace invariance
under cyclic permutations in addition to the commutation relation [e~"0/% pg] = 0, and
inserting the expression for A;(1' —t) from Eq. (87) to get

red [ W 0 pulbryar |
= [ Tr{A;(t' —1)poB — poA;(t' —t)B} f(¢')dt’
- /_’ Tr{e P01 A, (1) 00/ o B — poe P00/, (¢)e P01 BY £(i) e (89)
= [ i Tr{ poe’/"Be =0t /R4, (1) — poA, (') e /h Be~Hot /MY £ (1) !
= [ TelpolBi(0, A0l
Then, we rewrite Eq. (88) as

[ omt=)ar =+ [ TelpolByo), At 1 ar

= = [ B0 A or @
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where ()¢ stands for the ensemble average in thermal equilibrium, determined by Hy
according to Eq. (66). Finally, since both operators B; and A, in the interaction picture
are generated using the time-evolution operator with Ay in the exponent, we can drop
the indices and write the expression for the response function, also known as the Kubo
formula [22],

Pra(t 1) = L0t 1) {[B1).AC))). (51
The step function
0, ifx<0
9@){L ifx>0 (92)

is introduced to ensure the causality of the response function, i.e. that the response
vanishes for ¢’ > t. Note that the response function ¢4 only depends on the difference
t —t' > 0, and we can therefore selectt’ = 0, and for ¢ > 0 write

Pua(6) = L(B(),A]) = T Tr{p[B(1), AT} (99)

To calculate the response function, we need to know the eigenvalues and the eigen-
states of the unperturbed Hamiltonian Hy. Assuming that the states |et) are known, and
their corresponding eigenvalues are E,, we proceed to calculate the response function
by inserting the expression for E(r) from Eq. (74) into Eq. (93),

(pBA(t) %7Tr{e ﬁH[ th/hB —iAt/h A]}
17 ﬁH th/hBeszt/h AH(X>
7 g%

BEa (o] f11/1 Bo=il11/14 | o) — ¢ PBEa (or] Aot/ B~/ o) (94)

.m\
sl -

Ea OC‘ th/hB’a ><a/’efiﬁt/hA’\‘a>

> \
M-

%
L

7€_ﬁEO‘ <(X‘A€i1:[t/h |O£/> <a/|B‘e—i1:1t/h |OC>,

where we used the property of an orthonormal basis ¥, |@’) (&’| = 1. If an operator Q
has an eigenstate |y), such that Q|y) = a|y), then, according to the properties of bra

and ket vectors, (y| Q" = a* (y]. This allows us to write (a| e~ PH — ¢~PEa (a] and bring

the factor e PEa out of the bracket in Eq. (94). Furthermore, the time-evolution operator

U = e H1/M satisfies e~ ™H!/" | ) = e~Fat/M | o). We therefore apply the operator to the
JON ¥ . * Jo

bra vectors according to (| (e“H’/h> = (e_’E“’/h) (|, which gives us (o] e/ =

e'Eat/h (al. Using these relations, we can further simplify the response function as

— h —iE /t/h AN
OpA (1) Z Plafoifal/M (q|Blaye Ea'/" (o | A |at)
h z oo’ (95)
_ <O£|A ‘(X'>eiE0"t/h <(x’|1§\a> e—iEat/h}.
Since the sum is taken over all of the basis states, we can interchange « and o' in the
second term and, defining the population factor ng = 2~ le PEa write

Pua(6) = + X (0l B|a') (| A1) (ng — )P Far 1 (96)

oo’
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The result is a specific case of the Kubo formula, which still describes the response of
a system to the external perturbation from Eq. (69), but now also includes the existing
energy states of the system, and the corresponding thermal populations.

2.2.2 Generalized susceptibility

Susceptibility x4 is the response to the external perturbation in the frequency domain
that satisfies

N

(B(w)) = xpa(@) f (), (97)
where (B(w)) is the generalized Fourier transform defined as

B(w) = lim [ ((BG) - (B)) e e 'dr. (98)

e—0tJ—oo

To find x4, we insert the expression for (B(t)) — (B) from Eq. (71) and get

(B(w)) = lim [/ opa(t—1')f(t )e“/dt/] e e s, (99)

e—0t

Here we also replaced f(¢) by f(¢)e€" with the limit e — 0™ to ensure that the external
perturbation is added smoothly. Next, we use the substitution T =t — ¢’ to write

(B()) = lim [/ ©pa(T)f(t — T)esaf)df} e dr. (100)

e—0t.

Since f(r — 7) only depends on the difference ¢’ = r — 7, we can make another variable
change and separate two integrals

(B(w)) = hm/ opa(T “eimd’c/ F(ehe ar'. (101)

e—0t

Comparing the result to Eq. (97), we obtain the Fourier transform of f()

) = / f(r)e®dr (102)
and the susceptibility

Ha(@) = lim / Pua(1)e® e i, (103)

which is the generalized Fourier transform of the response function. The positive integra-
tion range makes it possible to use the form of @4 (¢) without the step function from Eq.
(93), with causality automatically ensured. Inserting the result from Eq. (96) into Eq. (103)
and calculating the integral, we obtain the final expression for the susceptibility

(a|Blo') (0| A| )
e—0T Qo Ey —Eq —hw —ihe

(no —ng). (104)

According to Eqg. (65), the absorption coefficient is proportional to the imaginary part of
the susceptibility. Thus, the absorption strength is proportional to the matrix elements
of the operators Ji between the states of a system. We can also see that the more the
phonon energy im matches the transition energy £, — E, the stronger is absorption.
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2.2.3 Magnetic susceptibility

A specific example of the perturbation f(¢) and the physical observable Bis, correspond-
ingly, an oscillating magnetic field and magnetization. If we consider a plane wave of the
form B? = Bpe " interacting with a magnetic atom, which has a magnetic moment m,
the perturbation term in the Hamiltonian is

H, = —m-B°. (105)

The magnetic moment of an atom can be expressed thorough the total angular momen-

tum J as
m= —g’rf‘B J, (106)

in which case

A = 8J/HB
7]

Comparing this expression for A; to Eq. (69) and taking f(t) = B® gives the form of
the operator A

J-B®. (107)

Al = —gJ;Bfi, (108)

where index i indicates the i-th component of a vector in Cartesian coordinates.
Considering the relation between the external perturbation and the physical observ-

able B from Eg. (97), and taking into account the relation of the magnetization to the

applied field from Eq. (38), we conclude that the correct form of the operator B is

B = poM'. (109)
Magnetization is defined as the magnetic moment per unit volume,

m _ 1g/us

VoV & J, (110)

where V is the unit volume per atom with magnetic moment m. This provides the expres-
sion of the physical observable B in terms of the angular momentum operator

" 1 A,
5 L Hogstin

== v (1)

Finally, inserting Eq. (108) and Eq. (111) into the expression for general susceptibility in
Eq. (104), we obtain the tensor components x{;’ of the magnetic susceptibility

2 ., o
= Hol&rke)” o, AL

) 12
14 f_>0+aa/Ea/*Ea*h0)*ihe aa oo (112)

, = (| Ji|a') /7 is the matrix element of the total angular momentum of an
(0104
atom between the states |a) and |a').

where J!

2.3 Crystal field theory

Our goal here is to describe the CF Hamiltonian in terms of Steven’s operators. We first
consider the electrostatic potential in a crystalline environment, which we express in terms
of spherical harmonics. We then proceed to substitute the spherical harmonics by the
real-valued tesseral harmonics, which we express in Cartesian coordinates. These, in turn,
have a direct correspondence to the Steven's operators, which allows us to express the CF

34



Hamiltonian in the desired form. An alternative approach would be to move directly from
spherical harmonics to the spherical tensor operators, and thus arrive to the Wybourne
operators, but we are not going to consider this approach here. It is possible to derive
Wybourne operators directly from Stevens operators and vice versa, as outlined in [1V,
Appendix B].

To describe energy levels of an ion inside a crystalline environment, we approximate
ions around it as point charges. Thus the electrostatic potential at the locationr = (, 0, ¢)
is

4qj
V(re,9)=Y 1 13
509 = LR, v .

where ¢; are the surrounding point charges at locations R; = (R}, 6;,¢;). If the angle
between r and R; is @, then we can apply the expansion [23]
1 o0

ﬂl 0
= P 114
(R;—1)] HZ:0R<4n+1> (08 @), (n4)
J

where R; > ris assumed. P,? are the Legendre polynomials defined as

1 dn
2'n! dun

PO(u) = (k> -1)". (15)
According to the spherical harmonic addition theorem [24], the Legendre polynomials can
also be written as

4 1

Y (D)"Y, "(6;,0,)Y:(6,9). (116)

P,?(cosa)) = 7(2114— 0
m=—n

The spherical harmonics Y, are defined as

m _ o ymtmy2 [t 1) (= m])! i) imo.
Y, (6,0) = (-1) \/ i ik |)P (cosB)e (117)
where, for m # 0,
|m|
P0) = (1= )2 P ), (mg)

Combining Egs. (113 - 114) and Eq. (116) leads to the expression of the electrostatic poten-
tial

ol 4
r 6 ¢ qu Z n+1 Zn (Zn:c_ 1) (_l)mYnim(ejv(pj)Ynm(ea(P)' (119)
J

In order to avoid imaginary quantities in the potential, it is convenient to define tesseral
harmonics [25] according to

ZnO - Yr?

1,
Zym = 7 ¥, "+ (=1)"y"), m>0 (120)
Zom = % (Y —(=1)"y,; ™), m<o.
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The Legendre polynomials then take the form

AT
PO (cosw) = D) Z Zun(0,0,)Zun(6,9), (121)
and the potential is
n 4
V(:0,9) Z%Z i 5 Y Gy 2000200, (22

We can separate the sum over all surrounding charges into a parameter

4 Zz1m(6j7¢j)

= i 123
Yom ; (2n+ 1) qj R;”Jrl) > (123)

and then rewrite the potential more conveniently as
(r,0,0) = Z Z " YomZom (0, 0). (124)

n=0m=-—n

To use the Stevens’ “operator equivalents” method, the tesseral harmonics Z,,, (and the
potential) are expressed in the Cartesian coordinates

V(x,y,z Z Z " YamZnm (X,,2). (125)

n=0m=—n

The symmetry of the system determines which terms should be considered in the sum.
For example, if the system is symmetric under inversion, then the terms with odd n will all
be equal to zero. Some of the more commonly occurring tesseral harmonics are explicitly
listed in Table 1. It is clear from the table that all of Z,,,, have the form

Jm

Z”m:Crn’

(126)

where C is a constant and f,,,(x,y,z) is a function of Cartesian coordinates.
When we consider the Hamiltonian of anionin a crystal field, we sum up contributions
from every optically active electron inside the potential according to

Hep =Y qiV (%i,91,2) = —e YV (%, 91,2), (127)
7 7

where e is the elementary charge, x;, y;, and z; are the coordinates of an i-th electron, and
X;,¥i, and Z; are the corresponding position operators. We therefore obtain the Hamil-
tonian proportional to Y; fn (£i,9i,2;). According to the Stevens’ “operator equivalents”
method [26], if we evaluate the CF Hamiltonian between states of constant angular mo-
mentum J, then there will be a simple relation between the matrix elements of operators
Y, fum(%i,9i,2:) and the angular momentum operators J~, J¥, J=. Specifically,

)| Y fum (R, 50 20) [y my) = 0, () (J,ml| O T my),
i

or
anm(xi>Yi7Zi) =0, <rn> 0:17 (128)
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Table 1: Some of the commonly occurring tesseral harmonics Z,, [25] with r> = x% + y2 +72.

1 /5[(B2-r
S NI (5}

Zyo = 3\/T {(355‘ —3012r2+3r4)}
16V n r#

Zor— 3\F[(7z2—r2)(x2—y2)}
8V r4

Zyz = 3\/% {Z(ﬁ —3xy2)}
8V « r4

Zis= 3\@ {Z@xzy—f)]

o8V 4

_ 3 35 [ -6y )Y
6V | r

3 [35 [y
AT r#

1 [13 [(2312° — 315242 + 1052%r* — 5¢°)

Zeo = —1] —
730V 7| 7
1 /2730 [(162* — 16(x? +y?)22 + (x* + 1)) (x* —y?)
Zer = — 3
64 T r
1 /2730 [ (1123 —3zr2) (x> — 3xy?)
Zez =25 z
32 T r
L2 13 (1122 = ) (x* — 6x%y> +y*)
%~ 32V 76

231 [ 26 [(x®—15x*y2 + 15x%y* —y0)
Zoo = — 5
64 \ 231x r

where O} are the Stevens’ operator equivalents, commonly known as Stevens operators,
which are the combinations of operators J/*, /¥, jz. Some of them are explicitly shown in
Table 2. To find the correct form of O, the position operators in }; fu (£:,9i,2;) must be
replaced by the corresponding angular momentum operators Jx, Jy, Jz, while accounting
for their commutation relations. 6, is a tabulated numerical factor [25], usually called
the Stevens factor; it depends on the quantum number 7, the angular momentum J, and
the number of electrons in the sum of Eq. (127). (r") is the radial integral of the wave
function, which is hard to calculate theoretically, and is usually taken as another numerical
parameter.
If we define a parameter
A" = —CeYm, (129)

where C is the same constant as in Eq. (126), then from Eqgs. (125 - 128) we obtain the
Hamiltonian

Hcr = i i A (") 6,01 (130)

n=0m=—n
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Table 2: Some of the commonly occurring Stevens operators O;' [25], where J+ = J, £ iJy.
09 =37>—J(J+1)

0} = % 2 +77]

09 =357} —=30J(J + 1)J? +2572 —6J(J+ 1) +3J*(J + 1)?

03 = % (12 =TT +1)=S) (UL +I2)+ (I3 +I2) (12 =T (T +1)=5)]

1
0; = i [+ + (L + 7))

0;% = _Tl (3 =)+ (3 -]
1
e =i
0,4 = - 73 —J4]

0 = 2318 —315J(J + 1)J7 + 7357} + 1057%(J + 1)2J?
—525J(J + 1)J? 429402 — 577 (J +1)° +40J*(J +1)* = 60J(J + 1)
0 =~ [(11F2 =3J(J + 1), = 59,) (3 +7)
+ ()11 =30+ 1)J,—59,)]
1
0} = i (1172 —J(J+1) = 38)(J% +J)
+ (I (12— J(J+1)—38)]

1
0f =3 [+

N

Both 6, and (+"') depend on the shape of the electron cloud around the ion inside the
crystal field, while A)} describes the crystalline environment created by the surrounding
charges. However, all three parameters are often combined into one, which is then nu-
merically fitted to the experimental spectra. Therefore, with the crystal-field parameter
B" = A" (r"") 6,,, the Hamiltonian can be expressed in a simple form

Hcrp =Y ByO;. (131)

nm

It is possible to determine which terms are equal to zero in Eq. (131) based on the
symmetry of the system. The symmetry of the electron cloud of a magnetic ion dictates
the symmetry of the Hamiltonian, and so does the distribution of surrounding charges.
Thus, if magnetic properties of an ion are determined by the unpaired electrons with
the orbital quantum number [, it follows from the Wigner-Eckart theorem [27] that the
Stevens factor 6, is equal to zero, unless n < 2/ and n is even [28]. For example, only terms
n=0,2,4,6 matter for the f-electrons with [ = 3. Moreover, the Hamiltonian must be
invariant under the same symmetry transformations that preserve the system. Therefore,
some of the remaining CF parameters B}’ will also be zero, depending on the symmetry
of the surrounding crystal field. The list of non-zero CF parameters up to n = 6 for each
symmetry group can be found in [29, Table 3].
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2.4 Crystal structure and magnetic ordering of Th,Ti, O~

Both Tb3* and Ti*t ions in Tb,Ti,O7 individually form a lattice of corner-sharing tetra-
hedra [30], often referred to as a pyrochlore lattice, shown in Fig. 9. The structure is
described by the cubic Fd3m space group, and the axes [111], [111], [111], and [111] are
all equivalent. The magnetic properties of Tb,Ti,O7 are determined by the Th3* ions, as
all the electron shells of Ti** and 02~ are filled and thus are not magnetic.

[111]

Figure 9: T3t ions (spheres) on the pyrochlore lattice of corner-sharing tetrahedra with marked
crystallographic axes.

Based on CF calculations [31] and INS studies [32], the strong easy-axis anisotropy con-
fines the magnetic moments J of Tb3* ions at low temperatures to point along the cubic
[L11] axis (or its equivalent), i.e. in our out of the center of a tetrahedron. This effectively
makes Th,Ti,O7 an Ising system, where spins can only have two states: pointing parallel
or antiparallel to [111]. In the presence of the strong easy-axis anisotropy, the macro-
scopic ordering depends on the sign of the exchange interaction parameter. In case of the
ferromagnetic exchange, the ground state of such a system is highly degenerate and fea-
tures a “two-in-two-out" spin configuration at every tetrahedron (the so-called spin ice),
while the antiferromagnetic exchange produces a nondegenerate “all-in/all-out" arrange-
ment [33]. The effective exchange interactions in Th,Ti,O7 are antiferromagnetic, which
can be deduced from the negative Curie-Weiss temperature [31]. However, even though
Tb,Ti,O7 develops short-range correlations below 100 K, it fails to achieve any LRO down
to at least 50 mK [34, 35] and, instead, exhibits properties of a spin liquid [36].

One possible explanation why Tb,Ti»O7 fails to develop a LRO is that the first excited
doublet of the CF levels is separated from the ground state doublet by only 1.5 meV. For
comparison, the separation in known spin-ice materials Ho,Ti;O7 and Dy, Ti,O7 is of the
order of 20 meV [37, 38, 39]. The small separation allows for the admixture of the excited
and the ground state doublets [40], which effectively turns Tb,Ti»O7 into a frustrated
Ising ferromagnet with quantum fluctuations transverse to the cubic [111] axis, otherwise
referred to as quantum spin ice. It was proposed that the quantum spin ice state would
feature a magnetization plateau at 20 mK with magnetic field applied along [111] [41], but
so far no experiment has been able to confirm its existence [42, 43, 44, 45, 46].

Additionally, the absence of a LRO could be related to the interplay between mag-
netic and lattice degrees of freedom. Early studies [47] report large magnetostriction in
Tb,Ti, O7 at low temperatures. Structural changes upon application of magnetic field have
been observed by X-ray diffraction [48] and polarized INS [49]. While magnetostriction can
be explained from a single ion perspective, it appears that the situation is more complex,
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as the magnetoelastic effects persist in the spin-liquid phase. Remarkably, it has been
demonstrated by INS [8, 9] through comparing dispersions of magnetic and phononlike
modes in the excitation spectrum that Th,Ti,O7 supports hybrid magnetoelastic excita-
tions. The phenomenon has also been observed in a THz spectroscopy study [10], which
addressed the intensity dependence on the incident light polarization of several spectral
components in a broad excitation region.

2.5 Vibronic coupling model in Tb,Ti,O;

Terbium ions Tb>* in Th,Ti,O7 are in a 7Fy state [31], meaning that there are eight f-
electrons, six of which are unpaired. The orbital quantum number of the electron cloud
is L = 3 and the total spin number from the unpaired electrons is S = 3. Therefore, the
total angular momentum quantum number is J = L+ S = 6, according to the LS coupling
scheme.

Each terbium ion is surrounded by eight oxygen ions, as shown in Fig. 10, with the
local symmetry of the 3m point group, or D3, in Schoenflies notation. If the cubic [111]
axis, which corresponds to the threefold symmetry axis of D3, is selected to be along z,
then the CF Hamiltonian from Eq. (131) that is invariant under all corresponding symmetry
transformations is

Hcr = BY0Y + B0+ B303 + BSOS + B2 0} + BS0S. (132)

The two lowest-energy states of such a system are two doublets with E, symmetry, sepa-
rated by 1.5 meV [9].

AT

Figure 10: Local D3, oxygen (red) environment around every terbium (purple) ion in Tb, Ti, O7, where
the cubic [111] axis corresponds the threefold rotation symmetry axis.

When we apply the magnetic field, we introduce a Zeeman interaction term in the
Hamiltonian
Hz = —gjupoH - J. (133)

Under the application of the magnetic field, the magnetic moments of Th3* ions reorient
towards the field. Applying the field along the [111] direction results in a “3-in/1-out, 3-
out/1-in" configuration [46] shown in Fig. 11. There are then two types of Tb3* sites in
every tetrahedron: site 1 where the magnetic moment is oriented along the field, and
three equivalent sites 2, 3, 4 with magnetic moment at an angle relative to the field. The
total Hamiltonian for each tetrahedron is

4
A=Y A+ A, (134)
k=1
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where we assume no interaction between Tb3™ ions.

[111]

Figure 11: Magnetic moments of Tb> (shown by arrows) in a tetrahedron at the positions 1, 2, 3,
and 4 with the magnetic field applied along the [111] axis.

A low-energy phonon that can couple to the first two doubly degenerate energy levels
is an acoustic phonon, which has T}, symmetry of the m3m (O, in Schoenflies notation)
point group [9, 10]. The coupling to the acoustic phonon occurs through quadrupolar
(n = 2) Stevens operators O%, where k = +1,42. Another phonon that can couple to the
first excited doublet is an optical phonon of 75, symmetry [10], which couples through
a quadrupolar operator 0‘2). Therefore, the symmetry-restricted Hamiltonian associated
with the vibronic coupling of phonons to the crystal-field energy levels is [IV]

Hyp, = D3OS +D3(04+05') + D3(03 + 057). (135)

Note that the operator 0(2) is already present in the Hamiltonian from Eq. (134), so coupling
to the optical phonon does not cause any symmetry breaking of the system, but merely
shifts its energy levels. It is the coupling to the acoustic 7j, phonon that breaks the sym-
metry, so that Tb3* ions at the positions 2, 3, and 4 become nonequivalent. As the result,
the total Hamiltonian that includes the vibronic coupling,

N

H =Y Hep+Hy+H, (136)

»
1=
N

will feature different eigenenergies and, hence, new features in the absorption spectrum.

2.6 Tbh,Ti;O7 results and discussion

A single crystal of Th, Ti; O;7 was grown by the floating zone method at ICMMO of the Paris-
Saclay University, CNRS. A photo of the sample that was used for the measurement, cut
from the larger single crystal, is shown in Fig. 12. We filed down one of the sample surfaces
at an angle of 2° in order to create a wedge shape and suppress interference fringes in
the spectrum. The bottom surface of the sample is perpendicular to the [111] axis, and
the average thickness is close to 0.22 mm.

We measured the absorption spectrum using TeslaFIR setup at 3K and 60K in the
frequency range of 5 - 80 cm~!, with the result shown in Fig. 13. Tb,Ti,O7 features very
strong absorption above 80 cm~!, with practically no transmitted signal. The signal is
already cut off at around 73 cm~! at 60K, so there is no spectrum plotted in that frequency
range. The magnetic field up to 15T was applied along the [111] crystallographic axis.
We observe a strong absorption region v; between 10 cm~! and 20 cm~! in zero field at
both temperatures. The absorption gets weaker as the temperature increases. v; shifts
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5 mm

[112]

[110]

Figure 12: The wedge-shaped Tb, Ti; O7 sample used in the measurement. The average sample thick-
ness is close to 0.22 mm, and the bottom surface is perpendicular to the cubic [111] axis.

towards higher energies with the application of the magnetic field, reaching 30 - 40 cm™!
in 15 T. Another strong absorption peak v is visible in the range of 70-80 cm~!, which also
seems to shift towards higher energies, as the magnetic field is applied. More peaks are
visible above 4 T: two hardening modes v3 and v4, one softening mode vs, and another
softening mode vg, which is only visible at 60K. As we see in Fig. 13(a), the difference
between two polarizations at 3K is negligible. There is no visible difference between two
polarizations at 60 K, and, therefore, only one of them is plotted.

Energy (meV) Energy (meV)
1.0 20 3.0 40 50 6.0 7.0 8.0 9.0 1.0 20 3.0 40 50 6.0 7.0 80 9.0
T Kl T T T T T T H T T k T v T T T T
sa00l?) 3 " »,Qul ” toH ( )::)jo_w_/l\\_s% 1000
2000 N m 1800
T ’ m o
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—
0 l_/\ 0 n | L | R o 0
510 20 30 40 50 60 70 80 510 20 30 40 50 60 70 80
Wavenumber (cm™1) Wavenumber (cm™1)

Figure 13: Magnetic-field dependence of the absorption spectrum of Tb,Ti»O7 [IV] at a) 3K and b)
60K. The visible absorption modes are labeled vy,...,vs. Red and blue line colors in panel a) corre-
spond to the two orthogonal incident light polarizations H® || [112] and H? || [110], respectively.
Only the polarization H® || [112] is shown in panel b).

We can reproduce the experimental spectrum based on the linear response theory,
outlined in Chapter 2.2. First of all, we calculate the absorption coefficient, which is pro-
portional to the imaginary part of the susceptibility from Eq. (112), using the eigenstates
of the CF Hamiltonian without any vibronic coupling from Eq. (132). Most of the CF pa-
rameters are taken from the literature [9], and only Bg and Bg are adjusted to match
the transition frequency at 14cm~!. The full list of the parameter values is presented
in [IV, Table IV]. The theoretically calculated spectrum with the selected linewidth of
2.4cm™~ ! is shown is Fig. 14. It is clear that the main features of the spectrum, such as
the modes vy,...,Vs and their field dependence, are very well reproduced. The strongest
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absorption mode v; originates from Th3* ions at positions 2 - 4, which make a transition
from the ground CF level to the first excited level. v, is the transition to the second excited

60 K
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Figure 14: Theoretically calculated spectrum of Tb, Ti, O7 without the vibronic coupling (c)-(d), com-
pared to the measured spectrum (a)-(b). The 3K result is shown on the left, and the 60K result is on
the right.

CF level, which includes contributions from all four ions. The weaker modes appear from
transitions between different branches of the split CF doublets due to the applied mag-
netic field, with different contributions from Th3* ions at position 1 and ions at positions
2 - 4. There are, however, some modes predicted at 60 K, which we do not observe in
the measurement. The reason behind their absence could be the combination of their
small intensity and weak field dependence, which leads to their disappearance after the
baseline subtraction procedure.

To study the vibronic coupling effect on the THz spectrum, we calculate the absorp-
tion coefficient using eigenstates of the full Hamiltonian from Eq. (136), which includes
H,i,. We use a smaller linewidth of 0.5cm~! to better distinguish small features in the
spectrum. The contributions from quadrupolar operators 02il and Ozi2 are separated by
keeping either D; or D% equal to zero. The theoretically calculated spectrum with the vi-
bronic coupling through 05! is shown in Fig. 15, while the effect of 037 is plotted in Fig.
16. Panels (a) and (b) are same for both figures. With A, added to the total Hamiltonian,
Th3* ions at positions 2 - 4 are no longer equivalent, which results in the splitting of sev-
eral absorption modes in the spectrum. Specifically, a very clear splitting of the mode v,
is visible in Fig. 15 (c) and Fig. 15 (e), and some splitting of the mode v3 can be seen in Fig.
15 (c), Fig. 15 (e), Fig. 16 (g), and Fig. 15 (i). OIfl appears to have a larger overall effect on
the spectrum than OZﬂ, but the difference is, unfortunately, hard to quantify.

Although the change in the spectrum due to the vibronic coupling is relatively small,
we can clearly see from comparison of the calculated absorption spectrum to the exper-
imental result from Fig. 14 (a) that these features are, in fact, present in our measured
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Figure 15: The effect of the vibronic coupling through 05 on the theoretically calculated spectrum of
Tb, Ti»O7 for both polarizations at 3K (top) and 60K (bottom) with D% =0/[Iv].

data. The absorption lines at 60K are generally wider and less intense, which is probably
why the vibronic effect cannot be clearly seen in the measured spectrum at that temper-
ature. The low-temperature THz spectrum of Th,Ti,O7 is very well reproduces by a rather
simple Hamiltonian that includes the CF and Zeeman interaction. However, we can con-
clude that the spin-lattice effects in the form of the vibronic coupling are clearly present in
this material, exhibiting a subtle, but clear influence on the spectrum. The fine features of
the spectrum cannot be fully reproduced without including the vibronic coupling. There-
fore, we support the evidence that coupling between CF levels with the phonon modes
through quadrupolar operators must be considered in the study of the phase diagram of
Tb,Ti;O7, and may be important at explaining the lack of magnetic ordering at tempera-
tures below 1K. Finally, by studying the magnetic-field dependence of the spectrum up to
15T, we were able to refine the crystal-field parameters in the CF Hamiltonian.
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Figure 16: The effect of the vibronic coupling through 0% on the theoretically calculated spectrum of
Tb,Ti»O7 for both polarizations at 3K (top) and 60K (bottom) with D% =0/[Iv].
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3 Spin-wave excitations in YFeO;

Spin-wave (SW) theory often finds its application in the study of multiferroic materials. In
these materials, the coupling between electric and magnetic degrees of freedom allow
for the magnetic ordering in a material to be tuned by an external electric field, while the
electric polarization is sensitive to the applied magnetic field. Multiferroics are impor-
tant from both scientific and, potentially, industrial point of view, as they may eventually
find application in recording devices or spintronics [50, 51]. One class of materials that
have been reported to feature multiferroic properties are rare-earth orthoferrites, such
as GdFeOs, Dy 7Thg.3FeOs, or Dyg 75Gdg 25Fe03 [52, 53]. Using the SW theory, it is pos-
sible to model interactions between magnetic moments, and rather precisely describe
multiferroic effects.

Here we demonstrate the application of the SW theory to YFeO3, which is not a mul-
tiferroic itself, but has the similar orthorhombic structure. It is a relatively simple system
with only Fe3T ions carrying a finite magnetic moment. Nevertheless, being able to ac-
curately describe the physics within materials such as YFeOs is truly important, because
they serve as a stepping stone towards understanding isostructural multiferroics. Addi-
tionally, YFeOs3 features a very high Néel temperature of around Ty = 644K [54, 55, 56],
which could potentially be key to room-temperature applications. Our aim is to study the
magnetic-field dependence of the two low-energy excitations using THz spectroscopy. By
applying the magnetic field along all three crystallographic directions and following the
magnetic-field dependence of these excitation modes, we are able to determine interac-
tion parameters between spins and the spin configuration of YFeO3 more accurately than
it has ever been done before.

3.1 Linear spin-wave theory

3.1.1 Raising and lowering operators of a harmonic oscillator
A classical harmonic oscillator in one dimension is described by the Schrédinger equation

P
4+ —ma’? )y =Evy, (137)
2m 2

with the solution for the energy levels
1

Here @ is the angular oscillation frequency, m is the mass of a particle, p and £ are the
momentum and the position operators, andn =0, 1,2, ... is called the principle quantum
number.

The Hamiltonian can alternatively be expressed as

0 o N ~ .
R 1 !
2m 2 xo po) \xo po) 2

where xo = \/2h/m® and pg = v/2hmo are the characteristic length and momentum for
the system. This expression leads to the definition of operators

a=2 i,

Y0 PO (140)
X P
a'=——i—,

X0 Po



such that
N . 1
A =ho <a‘a+). (141)

H,d] = —howa (142)

and define a number operator

a'a=Nn, (143)
which is an observable with its eigenvalue corresponding to the number of particles in a
state. If @, is an eigenstate of a Hamiltonian H such that I:I(p,, = E,@,, and we define a
state y = a' ¢, then acting on that state with the Hamiltonian leads to

A(a'g,) = ([A,a"]| +a'H) ¢, = (hwd" +a"H) @,

. (144)
= (hw+E,)a @, = (E, +ho)y.
For a state v = a@, we similarly get
Hy = Hae, = ([A,4)+aH) @, = (—ho + E,)ae, = (E, — ho)y. (145)

The energy of the final state is either raised or lowered by i@ with respect to E,,, which is
why " and d are called the raising and the lowering operators. They can also be called the
creation and the annihilation operators, as they create or annihilate a quantum of energy.

3.1.2 Spin raising and lowering operators
Given hermitian spin operators §", §y, and §Z, we can define operators

St=8"+i

N . N (146)
ST =88
that satisfy the commutation relations
[SZ7§+] — ¢+
o N (147)
[SZ,S’] =-S

The operators are called spin raising and lowering operators, as they increase or decrease
the spin projection quantum number m; by 1. We can demonstrate this effect by acting
with $% on a state $* ¢,,,, which is created from an eigenstate of §° that satisfies $2¢,,, =
mg @y, and using the commutation relation above,

S8t @, = (ST +8M) @, = (mg+1)ST @y, (148)
Similarly, considering a state S O, we find

858" @, = (878 =87 ), = (ms—1)S™ @y, (149)
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3.1.3 Holstein-Primakoff approach

The linear SW theory is based on the technique introduced by Holstein and Primakoff [57],
which describes the spin waves (magnons) as independent harmonic oscillators. Accord-
ing to this technique, spin operators for a site j can be expressed through @' and 4, which
now represent the magnon creation and annihilation operators,

ATA

o

ata. (150)
a.a
o— AT Jj
Sj =V 2Saj -

§i=(s-dlay).
Operators 4t and 4 satisfy the commutation relation
|aj,}] = 8. (151)

We can show that the commutation relations from Eq. (147) still hold, as

A
A - a.aj . E

Il
7~ N\
[\®]
9%}
|
IS
<
IS
~
N——
IS
~
IS
<k
IS
~.

I
s
IS
~.
7 N
[\
[

I
IS
<
IS
~.
N———
IS
~.

. . 152
( 25&.;63‘,») a;aa;— ./25&}@,-) a‘a;a, (152

Knowing that [a aj, ZS—éj =0, and also that
[ajajaj} = ajdta; - alasa
' ' (153)
= [aj.af]a;=4;

according to Eq. (151), we find

[5:.81] = (w/zs—aja,) a; =St (154)

The second commutation relation [SZ,S‘] = —8§ is proven in a similar way.

Since magnons are collective excitations that occur in coupled spin systems, it is con-
venient to define Fourier transforms for the raising and lowering operators of a harmonic
oscillator
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where the sum is taken over R}, which is the location of the j-th site, and N is the total

number of spins in the system. In this case, &f, and dq are the creation and annihilation
operators of a magnon with a given wavevector q. It is possible to show that in a crystal
with a periodic arrangement of spins [58]

Ze R~ 5 (156)

Therefore, in a periodic crystal the magnon creation and annihilation operators satisfy the
commutation relation

. 1 . L 1 ; o
A Al —iqR; Jiq'R; | 5 AT —iq-R; iq‘R
[amaq,} =y ) e AR {aj,ak] = NE e RiMRIG
Jk Jk

| (157)
_ i(q'—q)R; _
= Nzel(q OR; _ Saq-
J
The inverse Fourier transforms of the two operators are
—iq- R
aj \F Ze
(158)
R;
aj= Ze'q
f

Substituting the spin operators from Eq. (150) into any Hamiltonian results in a rather
complex expression that requires a number of approximations to solve. Holstein and Pri-
makoff [57] suggested the following:

1. Replace the square root in Eq. (150) by 1 according to
-1 -x~1. (159)

2. Leave out the terms proportional to d;djd,tdk.

3. Leave out the terms proportional to 4! aJ 11

The first approximation is the so-called quasi-saturation condition, which implies that
the number of magnons is much smaller than the total number of spins, (n) = Z(&;éj) <
N. One should keep in mind that this approximation may introduce a significant error at
site j in case of a small S. However, the error in the total energy of the whole sample is

small [58], as long as
<Z 1—> ~N. (160)

The second approximation corresponds to the assumption that magnons do not interact
with each other, as the terms proportional to &;&jd,t&k describe magnon-magnon inter-
actions [5, 58]. We will utilize the first two approximations when we look into the Hamil-
tonian of a Heisenberg ferromagnet in Chapter 3.1.4. The third approximation is relevant
when we encounter terms such as magnetic dipole-dipole interactions [57], which we will
not consider here.
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The first approximation leads to the simplification of Eq. (150)
SF~2Sa;
$; ~V2sa! (161)
§i= (s—aja;).

As the result, inserting Eq. (158) into Eq. (161) allows us to rewrite the spin operators as

/ ZezqRJa

A AY . .
T[22 Y e aR 5
S~ N§’e ! idg (162)
g L Y e ila-dIRigia,
J N / qq
q.q

3.1.4 Magnon dispersion in a Heisenberg ferromagnet

We consider a Heisenberg ferromagnet in an external magnetic field as an example of a
coupled spin system. The Hamiltonian is a sum of the Heisenberg exchange term and the
Zeeman interaction term

H=Hy+H;=-]) S, SkfngZB S/, (163)
(Jk)

where J > 0 determines the strength of the ferromagnetic exchange interaction and (j, k)
indicates the summation over nearest-neighbor spins. If we choose the magnetic field
direction along z, the Hamiltonian can be rewritten as

=¥ { (8755 +5757) +s]sk} - By, (164)
J

Inserting the expressions for the spin operators from Eq. (162) gives

ﬁ = — — Z Z |: elq,aaAji&q/ + el<q7q/)Rjeilq/8dqu;;/
/,511 q
e Rigig, (1 teila—4)8 )} _JNZS (165)

—guBBNS+g“B LY e Malay.
J aq

where Z is the number of nearest neighbors at every spin site, and the higher-order terms
proportional to &Eﬁq/ﬁgéq/ were dropped according to the second approximation in Chap-
ter 3.1.3. We also used the fact that for the nearest neighbors Ry = R + 8, where |8] is
the nearest-neighbor distance. The Hamiltonian in Eq. (165) can be simplified to

A=- JSZ§ (e2ajaq + e P aga) — 2a}4a ) — INZS?
q
(166)
— gupBNS+gupBY " djdq.
q
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Next, we define a parameter

1

Ta= Y i, (167)
F)

which, for a centrosymmetric crystal, is real-valued and satisfies [58, 591

Yq = V—q (168)
and
Y % =0. (169)
q
Using Eq. (157) with Egs. (167) - (168) further simplifies the Hamiltonian to
A =Y [2JSZ(1 - vy) + gupBl djaq — INZS* — guupBNS. (170)
q

To find the magnon mode frequencies, we are looking for a Hamiltonian term from Eq. (141)
of the form .
A =Y hoyadq, (171)
q

which gives us
liwg = 2JSZ(1 — ¥q) + glsB. (172)

Here wyq is the frequency of a single ferromagnetic SW mode, which, in the absence of
the external magnetic field, has zero frequency at q = 0 (which corresponds to ¥, = 1),
and then grows linearly with B. The energy dependence on the wavevector q for a two-
dimensional Heisenberg ferromagnet on a square lattice with § = 1/2 is shown in Fig. 17.
The last two terms in Eq. (170) correspond to the exchange energy of all spins in the system
and their interaction with the external magnetic field. In the absence of magnons these
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Figure 17: SW energy dependence on the wave vector q for a Heisenberg ferromagnet with S = 1/2
on a square lattice. The blue line shows the dispersion along one of the edges of the square, while
the red line shows the result when the wavevector is pointing along the diagonal. In both cases the
result is a cosine function with the periodicity of 27t /8, where 8 = |8| is the distance between the
nearest spins. The energy is shown in units of J.

two terms combined indicate the total energy of a fully polarized Heisenberg ferromagnet
in the magnetic field. If we wish to study higher order processes such as magnon-magnon
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interactions, we cannot apply the approximation of Eq. (159). Instead we must expand
the spin operators in Eq. (150) and include higher order terms in the Hamiltonian.

Finally, in a crystal with a larger unit cell, the number of modes is equal to the number
of spins in that unit cell. Creation and annihilation operators are defined separately for
every spin in its local frame, which involves rotations of the coordinate system [5]. Sum-
mation in the Hamiltonian then includes summation over the number of possible modes.

3.2 Spin structure of YFeOs3

Below Ty, the iron spins S = 5/2 in YFeO3 have a G-type antiferromagnetic ordering along
the crystallographic a axis, as shown in Fig. 18 (a). Due to the DM interactions, however,
the spins are also canted, which results in a weak antiferromagnetism along the b axis, and
a weak ferromagnetic moment along c. There are four Fe3* spins in a unit cell of YFeO3,

Figure 18: A unit cell of YFeOs. Panel (a) shows the zero-field spin arrangement, with the spins
indicated by red arrows [60]. The large dark gray spheres indicate the location of the Y>* ions, and
the small light gray spheres correspond to the 02~ ions. Panel (b) only shows the location of the
magnetic Fe>* ijons (blue spheres) and the 0>~ ions (red spheres) that mediate DM interactions
between them [I]. Dotted lines indicate the exchange interaction between the nearest neighbors
(Jap, Je) and the next-nearest neighbors (J'). The unit cell in panel (b) is defined with a b/2 shift
relatively to panel (a), but the same atoms are shown.

resulting in four spin-wave modes, two of which fall into the THz range with zero-field
energies of 1.2meV (9.8 cm~1) and 2.4 meV (19.3 cm™!). The orientation of each spin is
described by two angles ¢ and 6, such that

S; = S(sin 6;cos ¢;, sin 6;sin ¢;, cos 6;). (173)
In zero field, the angles satisfy 0 =6, =0 =0, =0 and ¢+ 7= -3+ 7T = —¢s =

¢ =9.
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The model Hamiltonian for the spins is
. 1 1,
HZ—fJZS,"Sj—*J ZS,"SJ‘
2 Py 2 Py
_Ka Zsiaz _Kc ZSic2 (174)
i i
1
+§ZDij~(Si xS;j)—guptio ) H-S;,
ij i

where J = J. = J,;, and J' are the nearest-neighbor and the next-nearest-neighbor ex-
change interactions, shown in Fig. 18 (b), and the factors of 1/2 are included to avoid
double counting. K, and K, are the single-ion anisotropies (SIA) along a and ¢, H is the
external magnetic field, and D;; is the DM interaction vector of the form [61]

D;j o (R;—R,) x (R, —R}), (175)

where R, is the position of 02~ ion that couples spins S; and S;. The bonds between Y3+
and 0%~ ions that mediate the DM interactions are shown in Fig. 18 (b). We distinguish
two different magnitudes of the DM vectors: the interaction between nearest-neighbor
spins in the same ab plane D, and the interaction between nearest-neighbors along the
c axis D,.

3.3 YFeOj; results and discussion

Three single-crystal YFeO3; samples, shown in Fig. 19, were prepared at the Center for
Correlated Electron Systems of the Institute for Basic Science and at the Department of
Physics and Astronomy of the Seoul National University in Korea. Polycrystalline material
was prepared by solid-state reaction method, and the single crystals were then grown by
the floating zone method, as outlined in [I]. While sample B is not suitable for a Faraday
measurement due to its irregular cut, it was still measured in Voigt configuration with
H| H® | c.

SNy
e

Figure 19: YFeO3 samples with three different cuts, which have the following average thicknesses
and orientations: A - 0.86 mm, cut perpendicularly to the a axis; B - 0.54 mm, cut at a 19.75° angle
relative to the ac plane, such that the c axis lies in the plane of the cut, C - 0.80 mm, cut perpen-
dicularly to the c axis. All samples are slightly wedge-shaped to avoid interference fringes in the
spectrum.

The magnetic-field dependence of the spin-wave absorption coefficient agw, mea-
sured in TeslaFIR at 3K, is shown in Fig. 20. With the field applied along the a axis, we
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Figure 20: Magnetic-field dependence of the THz absorption spectrum of YFeO3 at T = 3K [I]. The
three panels correspond to three different directions of the applied magnetic field. Blue and red spec-
tra correspond to two different polarization of the THz light and the dashed lines show the theoret-
ical fit of the absorption peak positions. The third absorption mode marked by a star is of unknown
nature, and is not described by the SW theory.

Wavenumber (cm™

observe that both modes soften, reach their minimum energies at approximately 6.2T,
and start hardening with the further increase of the magnetic field. This behavior is con-
sistent with the spin-flop transition, which was previously reported above 7T [62]. We
also see a change in the absorption intensity, which increases for one polarization and
decreases for the other as the magnetic field goes up, which qualitatively agrees with our
theoretical calculations. The picture is quite different for the other two magnetic field di-
rections, where the modes either always harden, or show no change in the energy. There
exists a third absorption mode, marked by a star, which is not consistent with the SW the-
ory. It has been previously reported as an “impurity” mode, only present in single crystals
grown by the floating zone method [63, 64].

To evaluate the frequencies of the SW modes, we first minimize the energy of the
Hamiltonian from Eq. (174), E = <I:I>, for each direction of the applied magnetic field
with respect to eight angles {¢;, 6;}. The energy is evaluated assuming that the spins are
classical vectors, described by Eq. (173), with the length S = 5/2. The SW frequencies
are then calculated based on the linear SW theory outlined in Chapter 3.1. The calculated
frequencies are compared to the experimentally measured ones, and the loop is repeated
with adjusted parameters K, K., D,;,, and D, until the error is minimized. Note that we
are only adjusting the SIA and DM interaction parameter, while the values of J and J are
obtained from an earlier INS work [65] and are kept constant. The exchange interactions
are an order of magnitude stronger than the DM interactions, and two to three orders of
magnitude stronger than the SIA parameters in YFeO3 [65, 66]. Therefore, J and J' are
most accurately determined by studying the dispersion of the higher-energy excitations
up to 80 meV (645cm~"'), which is outside of our spectral range. In this study, we focus
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exclusively on the two lower-energy excitations, which appear at 9.8 cm~! and 19.3cm™!
in zero field. The positions of the SW absorption modes were simultaneously fitted for all
three directions of the external magnetic field, with the result shown by the dashed lines
in Fig. 20. The parameters for the spin Hamiltonian in Eq. (174) obtained from the fit are
presented in Table 3.

We compare our result with the results from two earlier INS works. Firstly, we observe
that the absorption line positions are very well reproduced with the exchange parameters
J =J. =Jy and J' determined by Hahn et al. [65], while the parameters used by Park et
al. [66] result in a worse overall fit. Choosing J. = J,;, is justified because the distances
between atoms in the same ab plane va+b/2 ~ 3.85 A is very similar to the distance
between two atoms in adjacent planes ¢/2 = 3.80 A. Secondly, we confirm that it is nec-
essary to include the DM interactions between ions in adjacent ab planes, as the overall
fit improves with nonzero D.. Finally, we determine all the interaction parameters with
greater precision than in the previous works. As a result, we find the angles for the spin
configuration in zero field to be 8 = 0.49667 and ¢ = 0.0035x, which means that the
canting is larger than previously reported by Hahn et al. (0 = 0.49837 and ¢ = 0.00107)
and is very close to what was estimated by by Park et al. (6 = 0.4972x and ¢ = 0.00327).

Thus, we have shown that, although INS is currently a perfect technique to quantify
the high-energy interactions between spins, THz spectroscopy can be crucial in precisely
determining the weaker DM interactions and SIA. Determining these with good accuracy
is necessary, as these are the interactions responsible for multiferroic properties of vari-
ous compounds. We have also been able to model the spin structure and SW excitations in
YFeOj3, which is a step towards modeling more complex systems, including multiferroics,
where Y37 is substituted by magnetic ions. Contrary to the earlier proposed model [65],
we determined that there indeed exists a finite DM interaction between neighboring
atoms along the c axis, which is important to include for the correct description of YFeOs.

Table 3: Spin Hamiltonian parameter values (meV). The two DM parameters of Hahn et al. [65] are

related to D, as D, = \/ D3 + D3.

Thiswork Hahnetal. [65] Parketal. [66]

J. —4.77 —4.77 -5.02

Jab —4.77 —4.77 —4.62

J —0.21 —0.21 —0.22

K, 0.0052 0.0055 0.0091
K. 0.0044 0.0031 0.0025
|Das| 0.136 0.079 0.121
|D.| 0.189 — 0.145
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4 Exotic excitations in Ising-chain compounds

The one-dimensional (1D) Ising model is one of the simplest, yet probably one of the most
studied models in physics. It provides an insight into a variety of phenomena, such as
quantum phase transitions, quantum criticality, or spin dynamics. In reality, however, it is
hard to find a material that can effectively be described by the 1D Ising-chain model. Such
a material would have to exhibit strong one-dimensionality, which means that the spin
chains must be rather well isolated. It is even harder to find a suitable material to study
the physics near the QCP, as the exchange interaction must be sufficiently low, so that we
can reach the QCP by applying the magnetic field available in laboratory conditions. Two
rare examples where it is possible are CoNb,Og and BaCo,V,Os.

In this study, we measure excitations in both CoNb,Og and BaCo,V,0g at different
values of the applied magnetic field. By studying the excitation energy dependence on the
field, we find a field value that corresponds to the 1D QCP in these compounds. According
to the earlier studies [12, 13], the excitation energies then follow specific ratios, which
are described by the quantum integrable field theory with the symmetry of the Eg Lie
algebra. Therefore, the goal of this chapter is: 1) to introduce the Ising-chain model and
define quantum criticality, 2) to give a basic explanations of what the Eg Lie algebra is,
and what it means for a spectrum to feature Eg excitations, and 3) to present the THz
spectroscopy results of CoNb,Og and BaCo,V;0g, which provide further evidence of the
Eg symmetry in these systems.

The connection between the Eg Lie algebra and the perturbed 1D Ising chain near the
QCP is, of course, much more intricate than we have the ability to describe here. It is,
however, not our goal to study the mathematics of the quantum field theory and asses
the relevance of the Eg Lie algebra in this context. That information can be found in other
sources [67, 68].

4.1 The Ising chain model

The Hamiltonian that describes spins in a 1D Ising chain is of the form

HA=-JY) SiSi—B.Y S, (176)
(i) i

where J is the exchange interaction between nearest-neighbor spins that favors their par-
allel (J > 0) or antiparallel (J < 0) alignment along the z axis, and B represents the influ-
ence of a transverse magnetic field perpendicular to z. For a chain of spins S = 1/2, the
critical point is at Bi’lD = J/2, where no energetically preferred direction for the spins
exists. A basic excitation in a 1D Ising chain with no external magnetic field (B, = 0) is the
creation of a pair of domain walls, called spinons, which can classically be visualized as a
spin flip shown in Fig. 21. In a purely 1D system, spinons can freely propagate along the
chain, as the configurations featured in Fig. 21 (b - d) are energetically degenerate.

While some of the existing spin systems can relatively accurately be described by the
1D model, they are only quasi-one-dimensional. In reality, the Ising chains are never iso-
lated, but experience some interchain coupling. The weak interchain coupling can be ap-
proximated as a local longitudinal magnetic field B| [13, 69], in which case the Hamiltonian
takes the form

A=-JY SiS5—B.Y Si—B) S (177)
(i) i i

The ferromagnetic or the antiferromagnetic order in a purely 1D magnet is only present
at zero temperature [4], so the interchain coupling stabilizes a three-dimensional (3D)
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Figure 21: a) A ferromagnetic 1D spin chain. b) One flipped spin corresponds to the creation of two
domain walls called spinons (marked with red dots). c) Three flipped neighboring spins still feature
one pair of spinons, now separated from each other. d) Domain walls can be moved further along
the chain, which is how spinons are free to propagate without additional energy.

long-range order for a finite temperature below the critical temperature T¢. If the small
longitudinal field acts to preserve the original spin orientation, the QCP is reached at a
higher applied field value BL > B‘ D The resulting phase diagram is depicted in Fig. 22.
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Figure 22: An illustrative phase diagram of a quasi-one-dimensional Ising chain with B‘ SD

B 1D
J_ [m].

With finite interchain coupling, the spinons at B; = 0 are no longer free to propagate
along the chain. Instead, they are confined into two-spinon bound states by a linear po-
tential V(x) = A|x|, where x is the coordinate along the chain, which results in discrete
energy levels. The relative motion of spinons is then described by the Schrédinger equa-
tion

nd*e
————+A = (E —2E 178
u gz Ao = (E-2E0)0, (178)
where A = 2B (8%)/¢, and ¢ is the lattice constant along the chain [13, 70]. 2Ej is the
threshold for creating a bound state, above which the excitation energies follow

1/3
h
EjZEoﬂj;Lz/s(“) . =123 (179)
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where z; are the negative zeros of the Airy function, Ai(z;) = 0. Application of a transverse
magnetic field B | gradually changes the excitation threshold, as well as the profile of the
confining potential [71], which causes changes in the excitation spectrum. As the field
approaches the QCP, we expect the emergence of quasiparticles that are described by
the Eg symmetry.

If the 1D Ising chain in a transverse field is near the QCP, it can be described using quan-
tum field theory, which provides an exact solution to the model. When a perturbation in
the form of a small longitudinal field is introduced, the model is not exactly solvable any
more. However, A. B. Zamolodchikov [12] predicted that in the scaling limit T — T¢ [4],
the model is described by a purely elastic scattering matrix of an integrable field theory
called “affine Toda field theory”. The theory is associated with the Eg Lie algebra [72] and
predicts a spectrum consisting of eight particles with specific mass ratios

m;=m
T V5+1

my = chosg = 5 m=1.61803m

m3 = 2mcos % ~ 1.98904m

n
my4 = 2my cos 30 ~ 2.40487m

2 (180)
ms = 2m; cos T75t =~ 2.9563m

me = 2m» cos% ~3.21834m
7
m7 = 4my cosgcos % ~3.89116m

T 2
mg = 4my cos 3 cos I ~ 4.78339m,

where the first two excitations follow the “golden ratio”, my /m; = (v/5+1)/2.

Because CoNb, O and BaCo,V,0Og are only quasi-one-dimensional, we can model them
using the Hamiltonian in Eq. (177), where the interchain interaction is approximated as
a small longitudinal field. This longitudinal field acts as the “perturbation” in Zamolod-
chikov’s model, which makes the model applicable in these materials. Bj_’3D > BTD also
holds for CoNb,O¢ and BaCo,V,0g, meaning that we are able to reach the critical field
BilD before entering the paramagnetic phase. This condition is necessary to realize the

Eg spectrum, which can only exist in the dashed area shown in Fig. 22.

4.2 Eg Lie algebra

To give an idea of what it means for a spin system to feature the Eg spectrum, we review
the concept of a Lie algebra. In this chapter, which is based on [73], we define Lie algebras
and show how they are described in terms of their root systems, and how root diagrams
are constructed. We also demonstrate how a Dynkin diagram fully describes a Lie algebra,
and what the Dynkin diagram of the Eg Lie algebra looks like. Such a diagram can alterna-
tively be represented as a matrix, which is related to the mass ratios we observe in the Eg
spectrum.
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4.2.1 Lie groups and Lie algebras
Lie algebras are vector spaces that, as we are going to show, are closely related to Lie
groups. Therefore, let us start by defining a group [74]:

1. Agroup G is a set equipped with a binary operation o, which takes any two elements
of the group and produces another element of the group accordingtoo: G x G —
G.

2. There exists an identity element e € G, suchthateo f = foe = f,Vf € G.
3. For any element f € G there exists an inverse g = f*1 € G, suchthatgo f=e.

4. The binary operation defined above is associative, such that (fog)oh = fo(goh),
Vf,g,h€G.

A Lie group is, in turn, a group, whose operation o is differentiable. In other words, a Lie
group is continuous and smooth.
There always exists a vector space g that generates the group via a locally invertible
exponential map
exp:g—G. (181)

g is called a Lie algebra, and is defined as a vector space that satisfies the following con-
ditions [75]:

1. It is equipped with a bilinear operation, called the Lie bracket, that preserves the
algebra[-, - J:gxg—g.

2. The Lie bracket satisfies [X,X] =0, VX € g.
3. The Jacobi identity holds, [X,[Y,Z]| +[Y,[Z,X]| + [Z,[X,Y]] =0,VX,Y,Z € g.

Every element of the Lie algebra X € g, when exponentiated, generates a unique element
of the Lie group [73]

exp(X) =g €G. (182)

The identity element of G is thus generated by the origin (zero) of g.

A Lie algebra contains all of the necessary information about the Lie group, and it is
therefore sufficient to know the Lie algebra to fully describe the corresponding Lie group.
In reality, Lie groups usually represent continuous symmetry groups, while elements of
Lie algebras correspond to infinitesimal linear transformations. Such transformations can
be expressed as matrices acting on a vector space V. According to Ado’s theorem [73],
any finite-dimensional Lie algebra is linear, which means it is a subalgebra of a general
linear algebra gl(V'), defined over a vector space V. It also means that its elements can
be represented with m x m matrices, where m = dim(V). The general linear Lie group
GL(V) is then a set of invertible m x m matrices that are generated by the exponential of
matrices X € gl(V), which is defined as a Taylor series

X2 X3
eXp(X):1+X+7+?+.... (183)
When the elements of a Lie algebra X, Y € g are square matrices, then the Lie bracket
that satisfies all of the conditions from the definition of a Lie algebra is the commutator
[X,Y]=XY -YX.
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4.2.2 The adjoint representation
A map ¢ from one group G to another group H

0:G—H (184)

is called a homomorphism if it preserves the structure of a group and satisfies

@(goh)=(g)op(h) (185)

for all g,h € G. Since both G and H have their corresponding algebras g and b that are
related to the groups via an exponential map, there must be a corresponding homomor-
phism,

¢«:g—b, (186)

such that we get a commuting diagram [73]

G——H
¢

exp exp

0.
g———h

A representation p of a group G is a homomorphism
p:G— GL(V). (187)

In other words, it is the process of assigning a matrix to each element of the Lie group
such that Eq. (185) is satisfied. Since every group has a corresponding Lie algebra, there
must exist a representation p, for g:

p«:g—gl(V). (188)

A particularly important one is the adjoint representation, which we are going to use later
in order to define a root system. Since a Lie algebra is a vector space itself, the general
linear Lie group can also be defined over that vector space. The adjoint representation of
a Lie group is then a homomorphism

Ad: G — GL(g), (189)

where GL(g) is the general linear group over the vector space that is its Lie algebra. The
adjoint representation of a Lie algebra Ad,, more commonly denoted as ad, is similarly

ad:g— gl(g). (190)

The exact form of the adjoint representation of an element X € g, applied to an element
Y € g, is defined as the Lie bracket [75]
adyY = [X,Y]. (191)

To prove that ad is a representation, it is possible to show that it satisfies Eq. (185) accord-
ing to
[adX7ady]Z = adxadyZ— adyadXZ = adX [Y,Z] — ady [X,Z]

= [Xa [Y7ZH - [Y7 [XaZH = 7[23 [XvYH = HX;Y]aZ] (192)
= ad[X’y]Z7
where we used the Jacobi identity.
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4.2.3 Root system
It can be shown that there exist only nine types of so-called simple Lie algebras:

e four classical Lie algebras, sl,,1 1, §02,11, 95, 502,,, and
e five exceptional Lie algebras, g7, f4, ¢6, €7, ¢s,

where n is an integer called the rank of a Lie algebra. As we are going to demonstrate,
n corresponds to the dimension of a root system. Although we do not explicitly indicate
it, the implication is that the algebras are defined over complex numbers in all of our
examples, such that sl,, | = sl C.

For any semisimple algebra, i.e. an algebra that is a direct sum of the nine possible
simple algebras, there exists a subalgebra fh C g, which would diagonally act on a vector
of a finite-dimensional vector space v € V according to

p(H)v=o(H)v (193)

for any H € h. The eigenvalue o(H) is the weight of the representation p(H), and the
space V of all possible eigenvectors is the weight space. For the adjoint representation
specifically, we can perform a so-called Cartan decomposition into the diagonally acting
and weight spaces g

g9=h0(@Doa), (194)

where @ indicates the summation over all values of &, such that
adyX =[H,X]=oa(H)X (195)

forany H € h and X € g,. The weights of the adjoint representation are called roots, and
the weight spaces g, are, accordingly, root spaces. In fact, the root spaces of a semisimple
Lie algebra are one-dimensional, meaning that each one of them is only spanned by one
eigenvector.

As an example, let us consider a Lie algebra over the complex numbers sl3, which
consists of 3 x 3 matrices with a trace equal to zero, and is therefore 8-dimensional. We
then know that the diagonalizable subspace h C sl3 must be spanned by traceless matrices
of the form

aq 0 0
H=|0 a 0], (196)
0 0 as

where a; +a; + a3 = 0. The only matrix X that satisfies Eq. (195) is a matrix of all zeros,
except in the position (i, j). We therefore choose matrices E;; with 1in position (i,j) and
zeros everywhere as a basis, in which case

adHEij = [H,Eij} = (a,- —aj)E[j. (197)

Since a3 = —a; — ay is restricted, we can always express the roots (¢; —a;) in terms of
just two parameters instead of three. This allows us to map all possible roots on a two-
dimensional lattice shown in Fig. 23, where the coordinates on the axes k and [ correspond
to the coefficients for a; and a; in Eq. (197). For E 3, for instance, the equation reads

a; 0 0\ /0 0 1 00 1\ fa; 0 0O
adgEs=[0 a o][0o 0o o]={o 0o oll0 & o
0 0 a/)\0o 0 0 00 0/\0 0 a (198)

= (a1 —a3)E3 = (2a1 + a2)E13,
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Figure 23: The root system of sl3. Large markers correspond to the root spaces E;j, and the small
markers indicate where the location of weights ay, a;, and a3 would be.

and the root space spanned by E;3 is located at k =2,/ = 1.
A configuration of roots in the Euclidean space E is called a root system R, and it has
to satisfy the following conditions [73]:

1. Ris a finite set spanning [E.
2. If ais aroot, then —q is also a root. However, ka is not a root if k # +1.

3. If a is a root, then the reflection of any other root in its hyperplane o is also a
root, see Fig. 26.

4. For two roots «, 3, the real number

Mg = zgfc Z; (199)

is an integer, where (, ) is an inner product defined over the space E.

The inner product in condition 4 is called the Killing form, although we will not go into
its definition and properties specifically. We would like to mention, however, that we can
think of two roots as vectors in £ at an angle ¢ relative to each other. The Killing form is
then equivalent to the scalar product of these vectors

(B,a)=p-a=|Blla|cos¢. (200)
If we project vector 3 onto vector «, as shown in Fig. 24, then the projection B is
B-a o 1
=S = Snpad, 201
P = o] o] ~ 2" (200

which is a half-integer times «. Additionally, ng is

p-o_IB
ngg :27 :2|L||cosq). (202)
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Figure 24: Roots o and B shown as vectors in Euclidean space E, and the projection of 8 onto c.

Since ng,, is an integer, and so is ngg, we know that
ngaNap = 4cos® ¢ (203)

must be an integer too. It is clear that cos® ¢ # 1, because o and B would then be the
same root, so we are left with four options: 4cos? ¢ =0, 1,2, 3. Therefore, there are only
seven possible values of the angle between any two roots of a root system:

T AT rm 2T 37 5w
=323 2 "%

If we try to sketch a two-dimensional root system, where both conditions from Eq.
(201) and Eq. (204) are satisfied, i.e. the angle between any two roots is one of the seven
possible angles, and the projection of a root onto any other root is a half-integer of the
second root, then we will find that there are only four possible root systems. One of the
possibilities turns out to be the aforementioned root system of sl3 (that is called A,), and
the other three correspond to Lie algebras so4 (A| X A1), 05 that is equivalent to sp, (B>),
and the exceptional Lie algebra g, (G»). All of the possible two-dimensional root systems
are shown in Fig. 25.

Turns out that there is an easier way to convey information regarding the lengths of
roots and the angles between them than drawing the whole root system. All of that infor-
mation is contained in what is called a Dynkin diagram.

(204)

4.2.4 Dynkin diagram

Now let us come back to the condition 3 of a root system in Chapter 4.2.3, which stated
that a reflection in the hyperplane of a root @ maps R onto itself. The consequence of
this condition is that we can describe any one of the two-dimensional root systems by just
two roots, instead of drawing the whole diagram. For example, the two roots of g, shown
in Fig. 26 are sufficient to describe the root system. By condition 3, if we reflect « in the
hyperplane [3{ we will generate another root. The same is true for the reflection of 3
in the hyperplane o. We can then continue the process by reflecting the new roots and
eventually arrive to the diagram from Fig. 25 once again. The two roots that are sufficient
to describe the whole root system are called the simple roots. There are exactly n simple
roots in a Lie algebra, where n is the dimension of the root system (in our examples n = 2),
which is also called the rank of the Lie algebra.

For any two simple roots it is true that

a-B <o, (205)

which means that they cannot have an acute angle between them. Then, based solely on
the number of simple roots in a root system and the angles between them, it is possible to
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Figure 26: The two simple roots o and J3 of the Lie algebra g2 and their reflections (gray) from the
hyperplanes o and B+.

construct a Dynkin diagram, which contains all the information regarding the root system.
The diagram shows the simple roots as circles and the angle between them is indicated
by the number of lines, as shown in Fig. 27, where the arrow indicates the direction from
the long to the short root.

Dynkin diagrams are especially useful when dealing with Lie algebras of higher dimen-
sions. The lie algebra sl7, for example, has a three-dimensional root system B3z with eigh-
teen roots, which is quite hard to illustrate. Its Dynkin diagram shown in Fig. 28, however,
is rather simple. From that diagram we can read that the first simple root forms an angle
of 27 /3 with the second root, as they are connected by one line, and an angle of 7r/2 with
the third root, as they are not directly connected by any lines. The second root is at an
angle of 37t/4 with respect to the third root, and is the longer of the two.

The limited number of possible angles between simple roots results in a number of
restrictions on admissible Dynkin diagrams [73]. Consequently, we can list all admissible
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Figure 27: Dynkin diagrams for the Lie algebras of rank 2. The number of lines indicates the angle
between two simple roots ¢, and the arrow shows the direction from a long to a short root.

O—@=0B

Figure 28: Dynkin diagram of the root system B3, corresponding to the sl; Lie algebra.

Dynkin diagrams that correspond to irreducible root systems in Fig. 29. By irreducible root
systems we mean those that are not a direct sum of simpler root systems. Note that the
root system A; x A; of the Lie algebra so4 we mentioned earlier is not irreducible. The first
four diagrams in Fig. 29 correspond to the classical Lie algebras or rank n, while the other
five belong to the exceptional Lie algebras. We also mentioned that the Lie algebra so;
is equivalent to sp,. This conclusion can be reached by comparing corresponding Dynkin
diagrams in Fig. 29, as B, and C, would be exactly the same.

4.2.5 Eg and its Cartan matrix

The most complex example of a simple Lie algebra is ¢g. Its root system Eg is eight-
dimensional and contains 240 roots, which makes it impossible to depict fully in two di-
mensions. It is possible to show a projection of the roots in R® onto a plane R?, which
is highly complex, as can be seen in Fig. 31. However, there are only eight simple roots,
which can easily be depicted in the Dynkin diagram shown in Fig. 30. The diagram shows
that all of the roots that are connected by a line form an angle of ¢ = 27r/3, while the
ones that are not connected are at an angle of ¢ = 7 /2 relative to each other. Thus, root
1is at an angle of ¢ = 27/3 relative to root 3, and at an angle of ¢ = 7/2 relative to all
other roots. Root 4, for instance, forms an angle of ¢ = 27 /3 with roots 2, 3, and 5, and an
angle of ¢ = m/2 with the rest of the roots. In fact, using the properties of a root system,
it is possible to construct the whole root system with a total of 240 roots from just the
Dynking diagram. The root system will, in turn, tell us everything we need to know about
the Lie algebra, and, consequently, the 248-dimensional Eg Lie group.

A Dynkin diagram can alternatively be expressed as a matrix called the Cartan matrix

;- O

Aij=2
J )
oj- O

(206)

where @; and a; are the simple roots. There diagonal elements of the matrix are always
equal to 2, while the rest of the values tell us explicitly what the angles are between simple
roots. This way, a Cartan matrix carries all of the information about a Lie algebra in the
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D, O—O— --- (n>4)  soy
Gy =0 92
Fj O—CO—=0—->0 fa
Es €6
E; €7
Eg (43

Figure 29: All possible Dynkin diagrams of irreducible root systems and the corresponding Lie alge-
bras.

same way a Dynkin diagram does. For Eg, the matrix is

2 0 -1 0 0 0 0 0
0O 2 0 -1 0 0 0 0
1 0 2 -1 0 0 0 0
0 -1 -1 2 -1 0 0 0
A=1o 0 0 -1 2 -1 0 o0 (207)
O 0 0 0 -1 2 -1 0
O 0 0 0 0 -1 2 -l
O 0 0 0 0 0 -1 2

The masses of the Eg spectrum in Eq. (180) are the real-valued entries of the Perron-Frobenius
eigenvector y [77], which corresponds to the the lowest eigenvalue a in

Ay =ay. (208)
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Figure 30: Dynkin diagram of the Eg root system, showing the eight simple roots of the Lie algebra
and the angles between them.
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Figure 31: A projection of the eight-dimensional root system Eg onto a two-dimensional plane [76].
The black vertices correspond to the 240 roots, and the colored edges connect the nearest neighbors
in R8,
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4.3 CoNb,O¢ results

In CoNb,Og, the Co?t ions are arranged on zigzag chains running along the ¢ axis [78], as
shown in Fig. 32. The magnetic easy axis z lies in the ac plane at a 31° angle relative to
the c axis [79, 80, 81]. Below T = 2.95 K [82], the spins order ferromagnetically, and each
chain can be modeled with an effective spin-1/2 Hamiltonian in Eq. (176), where z is the
magnetic easy axis, and x || b is the hard axis. Due to a finite interchain coupling, CoNb,O¢
develops a 3D order below T, which can be suppressed by a transverse magnetic field
B® =53T[83].

Figure 32: The crystal structure of CONb,Og. Co** ions (blue spheres) are arranged on a zigzag
chain running along the c axis, each surrounded by six oxygen ions (red spheres) [13]. The magnetic
moments of Co®T (pink arrows) are arranged ferromagnetically in the ac plane.

The first evidence of the Eg symmetry in CoNb,Og was provided by an INS measure-
ment [13], where two excitations were observed with their energies approaching the “golden
ratio” at 5T, which is slightly below B13D = 5.3 T. The higher-energy excitations were not
detected, and their absence was explained by the overwhelming multi-particle contin-
uum, which obstructs single-particle excitations above m,. However, a later numerical
study [84] predicted that the single-particle excitations should manifest as sharp peaks
and must, therefore, still be visible above a relatively small multi-particle background.

Using the milliK-TeslaFIR spectrometer with the dilution refrigerator, we measured the
absorption spectra of CoNb;Og at 0.25K in the magnetic field range of O - 12T, applied
along the magnetic hard axis. Two single-crystal samples, which are shown in Fig. 33, were
grown by the floating zone technique as described in [11I] at the University of Cologne, In-
stitute of Physics Il. The samples were given a wedge shape with an average thickness
of 0.50 mm. They were arranged in a mosaic and measured simultaneously in order to
increase the effective surface area and, thus, signal-to-noise ratio. The magnetic-field de-

!‘ o gmm & &
| I 5 = ; 1
Figure 33: Two CoNb,Og samples, both with one surface perpendicular to the b axis, and wedge-

shaped with a 2° angle to avoid interference fringes in the spectrum. The samples have a similar
average thickness of 0.50 mm.

pendence of the absorption spectrum is shown in Fig. 34. The lowest-frequency excitation
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Figure 34: Magnetic-field dependence of the absorption spectrum of CoNb,Og for B || b at 0.25K.
The right panel shows only the spectra close to QCP, and the spectrum featuring the Eg excitations
at 4.75T is plotted in blue.

modes soften and reach their minimum frequency at around 5.5 T, which is in agreement

with the critical field of the 3D magnetic order BTD = 5.3 T. The critical field of the 1D
order BTD = 4.75T was determined by studying the magnetic-field dependence of the
Eg excitations and comparing their energy ratios with respect to m; with the theoretically
predicted values. Figure 35 shows how the ratios approach the theoretical values close to
QCP and almost exactly match them at 4.75T. This magnetic field value is quite close to
the earlier reported 5.0 T [13]. In addition to the two excitations m; and m,, we were also
able to detect single-particle excitations up to mg, as well as the two-particle excitations
m1 +my and my +my, as shown in Fig. 35. The energies of m3 and m; +m, are practically
the same, which makes the two peaks indistinguishable.

35 > B
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; 6
3.0 < m
"""""" I R
_________ P-ﬂ_._o__v_(_m#mﬁ
g2t - s-d-2w T,
> > a4 &V
8 b d_o Y A (my+m,)
c A o o -l mm mm mm mm mm e mmmm = mm 1 1
TRl el A m,
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1.54 A D o © BIlb ?
o o © ©
10+ -o0- 0—- 0O-0-0-0 —@ —O- =0~ — m,
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Magnetic field (Tesla)

Figure 35: The Eg spectrum of CoNb,Og [Ill]. Measured normalized energies of the Eg excitations
(markers) approach the theoretically predicted values (dashed lines) near the QCP, and match them
at 4.75T (solid markers).
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As the result, we report the first experimental observation of the Eg excitations up to
mg in CoNb,Og, as well as the two-particle excitations m +m; and m; + m,. We also con-
firm the numerical predictions that single excitations manifest as sharp peaks and stand
out from the relatively weak two-particle-excitation background.

4.4 BaCo,V,0g results

BaCo,V,0s features Co2™ ions, each surrounded by six oxygens in an octahedral environ-
ment, running in screw chains along the crystallographic ¢ axis with a fourfold rotational
symmetry [85, 86, 87], as shown in Fig. 36. The arrangement is described by an effective
spin-1/2 antiferromagnetic XXZ model [88]. The magnetic moments of Co?™ form a 5°
angle with the c¢ axis, and the magnetic easy axis z rotates by 90° around ¢ as we move
from one ion to the next along the chain [89].

a ) (-] (-]
' Anlso_tropy ° [+ ] Pl [+]
< axis ° — o =
|‘ / «2 =°o=> ° . =:=> °
\ ~5oort-olemOn o 0=%, °
o c axis b h o¢°=v o¢°=o
o (] " (]

Figure 36: The crystal structure of BaCo,V,0g [89]. Magnetic moments of Co®T (blue arrows) are
antiferromagnetically arranged in a screw chain, each surrounded by six oxygens (red).

Weak interchain coupling induces a 3D antiferromagnetic order with spins aligned
along z in BaCo,V;,0g below the Néel temperature Ty = 5.4K [90]. With a transverse
magnetic field applied along the crystallographic a (or, equivalently, b) axis, the antifer-
romagnetic order is suppressed at approximately 10T [91]. Interestingly, the situation is
quite different for the magnetic field applied along the [110] direction, where the antifer-
romagnetic order is present all the way up to 40 T [92], which is caused by the screw-chain
structure of BaCo,V,0g and the highly anisotropic nature of the effective fields in this ma-
terial.

A single crystal of BaCo;V,0g was grown at Institute of Physics Il of the University of
Cologne by the floating zone method as described in [91]. The sample that was cut out
for the measurement, approximately 0.76 mm thick, is shown in Fig. 37. The absorption

Figure 37: A BaCo,V,0g sample with the average thickness of 0.76 mm. The sample is wedge-
shaped with a 2° angle to avoid interference fringes in the spectrum.

spectra of BaCo,V,0g were measured in the TeslaFIR setup at 2.7 K with a transverse mag-
netic field up to 17 T applied along the crystallographic a axis, with the results shown in
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Fig. 38. The spectra are measured in the Voigt configuration, with the linearly polarized
THz light having the oscillating magnetic field along the applied static field, h® | B, . We
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Figure 38: Left panel shows the BaCo,V,0g absorption spectrum dependence on the transverse
magnetic field from O to 12 T applied along the a axis, measured with the h® || B, || a incident light

polarization at 2.7K. The right panel only shows the spectra close to BTD = 5.0T. The spectrum at

5T, featuring the Eg excitations, is shown in blue.

can confirm that the 3D antiferromagnetic ordering is suppressed at approximately 10T,
which is where the lowest-energy excitation reaches its minimum frequency. We deter-
mine BilD = 5.0T by following the energy ratios of the excitation peaks and observing
how they reach the theoretically predicted values at 5T, as shown in Fig. 39 (a). A simi-
lar critical field value of BTD = (4.7+0.3) T was recently reported by the nuclear mag-
netic resonance (NMR) studies of 13V nuclear spin relaxation [93]. Figure 39 (b) shows the
frequency-normalized absorption spectrum at the critical field BilD =5.0T, featuring the
single-particle Eg excitations from m to ms, as well as the two-particle excitations m; +m;
and m 4+ my. The overall shape of the spectrum matches the shape of the spin dynamic
structure factor D, shown in 39 (c), which is calculated based on Zamolodchikov’s model,
as outlined in Supplemental Material of [11]. We also observe that the excitation m; is split
into two peaks, which can be an indication of a weak orthorhombic anisotropy in the ab
plane [I1]. The splitting results in each of the two peaks having an area comparable to that
of my, but when we sum up the two, we get an excitation of higher intensity than m; in
agreement with the theory. Therefore, we report the first ever experimental observation
of the Eg excitation spectrum in an antiferromagnetic Ising chain, featuring single-particle
excitations from m; to ms and the two-particle excitations m; +m; and m; + m5. Studies
of the Eg excitation spectrum in BaCo,V,0g were recently extended by INS spectroscopy
and theoretical methods in [93].
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solid line is the sum of all contributions.
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Summary

We addressed the question of symmetry and magnetic ordering within three different
frameworks:

1. We studied crystal-field excitations of the Th3T ions in a pyrochlore Tb,Ti»O7. By
precisely measuring the magnetic-field dependence of these excitations, and com-
paring the result to the theoretically modeled spectra, we were able to detect en-
tanglement between the ground state and the first excited state via the so-called
vibronic coupling. We determined that this dynamic coupling between spin and
lattice degrees of freedom lowers the symmetry of the local atomic environment.

2. We utilized the ability of terahertz spectroscopy to track low-energy spin-wave exci-
tations in the applied magnetic field to model the magnetic ordering in an orthofer-
rite YFeOs. This was done by calculating the excitation frequencies using spin-wave
theory and fitting the theoretical values with the experimental data. As the result,
we demonstrated the means to accurately quantify "weak" Dzyaloshinskii-Moriya
interactions that are responsible for spontaneous symmetry breaking. Moreover,
we showed that the correct spin model of YFeO3; must include a Dzyaloshinskii-
Moriya interaction between two neighboring Y31 ions along the ¢ axis, which was
omitted in one of the earlier proposed models. We also report an overall larger
canting of spins in zero field than was previously estimated.

3. We measured the excitation spectra of two quasi-one-dimensional Ising spin chains:
CoNb,Og and BaCo,V,0g. The spectra were measured at different values of the ap-
plied transverse field, including those near the quantum critical point. By following
the normalized energies of the observed excitations, we were able to determine the
value of the one-dimensional critical field for both compounds. At that value, all of
the excitations simultaneously reach the theoretically predicted mass ratios from
the integrable field theory with the Eg symmetry. For the first time ever, we were
able to observe single-particle excitations of the Eg spectrum up to mig in CoNb,Og
and up to ms in BaCo,V,0g, as well as multi-particle excitations. Therefore, we
presented strong experimental evidence of the emerging Eg symmetry near the
guantum critical point.
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Abstract
Symmetry breaking revealed by THz spectroscopy of magnetic
excitations

Magnetic excitations provide valuable information on interactions within various mag-
netic materials, giving insight into magnetic ordering, symmetry, and spontaneous sym-
metry breaking upon phase transitions. A powerful technique to study magnetic excita-
tions is THz spectroscopy, which not only has superior spectral resolution to some widely
used spectroscopic techniques, such as inelastic neutron scattering or resonant inelastic
X-ray scattering, but can also probe low-energy excitations below 1 meV. In this work, we
use two THz spectrometers at the National Institute of Chemical Physics and Biophysics
in Tallinn to study magnetic excitations in a pyrochlore Tb,Ti,O7, an orthoferrite YFeOs,
and two quasi-one-dimensional Ising spin chains CoNb;Og and BaCo,V,0g. Our setup
combines a Martin-Puplett interferometer with either a liquid-helium-bath cryostat and
a 17-tesla superconducting magnet, or a dilution refrigerator, equipped with a 12-tesla
superconducting magnet. The available range of energies, temperatures, and magnetic
fields gives access to low-energy spin-wave modes in YFeO3 below and above the spin-
flop transition field, crystal-field excitations in Tb,Ti;O7, including transitions from the
ground state and between excited states, as well as confined spinons and other magnetic
excitations in Ising spin chains CoNb,Og and BaCo,V,Og in close proximity to and far away
from the quantum critical point.

Magnetic Th3* ions in Tb,Ti»O7 are arranged on a pyrochlore lattice of corner-sharing
tetrahedra. Th,Ti, Oy fails to develop any long-range magnetic order down to 50 mK, and
features a fluctuating spin-liquid state instead. Recent INS and THz spectroscopy stud-
ies showed that Th,Ti,O7 supports hybrid magnetoelastic excitations, which indicate an
interplay between spin and lattice degrees of freedom, resulting in dynamic symmetry
breaking of the local crystal field environment at the Tb3* site. To confirm the local sym-
metry breaking, we study magnetic-field dependence of the crystal-field excitations of
Th3* ions in the temperature range 3 - 60K, with the magnetic field applied along the
cubic [111] axis. We propose a model Hamiltonian that incorporates such vibronic cou-
pling and reproduces experimentally observed features in the absorption spectrum in the
applied magnetic field, thus providing strong evidence of the dynamic symmetry breaking
in Tb2Ti207.

YFeOs is isostructural to some known multiferroics with an orthorhombic structure.
With only Fe3* ions carrying a finite spin § = 5/2, it is a great model component that
gives insight into magnetic interactions and magnetic ordering in multiferroic materials. In
these materials, the relatively weak, as compared to the exchange couplings, Dzyaloshin-
skii-Moriya interactions are responsible for additional symmetry breaking, and the aris-
ing multiferroic properties. Therefore, it is highly important to model them accurately.
Previous inelastic neutron scattering works proposed two distinct models to describe the
Dzyaloshinskii-Moriya interaction in YFeO3 with different values of the exchange inter-
action parameters and single-ion anisotropies. We study the magnetic-field dependence
of the spin-wave modes in YFeO3 at 3K with the magnetic field applied along all three
crystallographic directions. Using the linear spin-wave theory, we calculate the spin-wave
excitation energies and fit them to the experimentally measured ones to find the correct
values of Dzyaloshinskii-Moriya interaction and single-ion anisotropy parameters. As the
result, we determine which model describes the interactions more accurately, as well as
refine the zero-field spin structure of YFeOs.

Exotic states of matter and complex symmetries often emerge in the proximity of the
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quantum critical point. In 1989, A. B. Zamolodchikov proposed that an Ising spin chain in
a transverse magnetic field near the quantum critical point, if perturbed by a small longi-
tudinal field, can be described by an integrable quantum field theory with the symmetry
of the Eg Lie algebra. The theory provides an exact solution, which features an excita-
tion spectrum of eight particles that follow specific mass ratios. The earlier attempt to
experimentally measure the Eg spectrum by inelastic neutron scattering only featured
two of the possible eight excitations in CoNb,Og. CoNb,Og is a realization of a quasi-
one-dimensional Ising spin chain, with a ferromagnetic arrangement of Co?>* spin. We
measured the THz absorption spectrum of CoNb,Og at 250 mK in the applied transverse
magnetic field up to 12T. Close to the quantum critical point, we report the observation
of the Eg spectrum with the single-particle excitations up to mg, as well as multi-particle
excitations. Additionally, we studied the absorption spectrum of BaCo,V,0g, which in-
corporates antiferromagnetic Co?™ spin chains. We performed the measurement at 2.7 K
in the applied transverse magnetic field up to 17 T. Near the quantum critical point, we
observe the Eg spectrum with the single-particle excitations up to ms together with the
multi-particle excitations. We, therefore, report strong evidence of the emergent Eg sym-
metry in both CoNb,O¢ and BaCo,V,0g.
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Kokkuvote
Siimmeetriarikkumiste avaldumine magnetergastuste teraherts-
spektrites

Magnetiliste ergastuste uurimine annab vaartuslikku teavet aine magnetmomentide va-
heliste vastasmojude, magnetilise korrapara ning sellega seotud simmeetriarikkumiste
kohta faasisiiretel. Antud t60s kasutatakse teraherts spektroskoopiat, mis vorreldes teiste
meetoditega, nagu mitteelastne neutronhajumine voi mitteelastne rontgenkiirguse haju-
mine, annab parema energialahutuse ning lisaks on voimeline méotma ergastusi ener-
giatel alla 1meV (0.24 THz). Keemilise ja Bioloogilise Fiitsika Instituudis kasutatavad tera-
herts-piirkonna spektromeetrid véimaldavad teha mo6tmisi magnetvaljades kuni 17 teslat
ja vaga madalatel temperatuuridel kuni ménisada millikelvinit. Selline energia-, magnet-
valja- ja temperatuurivahemik annab juurdepaasu kristallvaljaergastustele terbium tita-
naadis Th,Ti»O7, spinnlainetele Gtrium ortoferriidis YFeO3 ning Isingi spinnahela ergas-
tustele kvantkriitilise punkti I13hedal.

Terbium titanaadis Th,Ti»O7 paiknevad magnetilised T3+ ioonid tetraheedri tippudes
moodustades purokloori tiitipi kristallvore. Tb magnetmomendid ei korrastu ka tlimada-
lal temperatuuril, kuni 50 mK, vaid viibivad fluktueerivas spinnjaa olekus. Hiljutised mitte-
elastse neutronhajumise ja teraherts-uuringud naitasid, et Tb, Ti;O7-s on hiibriidsed mag-
netelastsed ergastused, mis viitavad magnetmomentide ja kristallvérevonkumiste vastas-
mojule. Meie mootsime Th, Ti,O7 neeldumisspektrite magnetvaljasoltuvuse temperatuu-
rivahemikus 3 - 60 K. Moodetud spektrite modellleerimiseks koostasime hamiltoniaani,
mis kirjeldab magnetmomentide ja kristallvérevonkumiste vastasmoju kristallvalja kaudu.
Vorreldes teoreetilist tulemust moéddetud spektriga, kinnitame vorevonkumistest pohjus-
tatud lokaalse kristallvalja diinaamilist simmeetriarikkumist.

Utrium ortoferriidi YFeO3 struktuur on sarnane ménede multiferroidide struktuurile.
Arvestades, et selles aines on ainult Fe** ioonidel nullist erinev spinn § = 5/2, véimal-
dab YFeO3 magnetiste vastasmojude ning korrastatuse uurimine paremini moista keeru-
lisema struktuuriga multiferroidide omadusi. Olulised on vahetusvastasmojudega vorrel-
des suhteliselt norgad Dzyaloshinskii-Moriya vastasmojud, mis pohjustavad magnetilise
struktuuri simmeetria rikkumist ja multiferroidsete omaduste tekkimist. Seega on nen-
de tipne modelleerimine eriti tahtis. Varasemad mitteelastse neutronhajumise uuringute
poolt pakutud kaks mudelit ei olnud kooskodlalised, sest sisaldasid erinevaid Dzyaloshins-
kii-Moriya vastasmojusid ja (ihe iooni anisotroopia parameetreid. Meie uurisime kahe
madalal energial oleva spinnlaine sageduste séltuvust magnetvaljast temperatuuril 3K,
rakendades magnetvalja kolme erineva kristalltelje suunas. Kasutades lineaarset spinn-
laine teooriat arvutasime ergastuste sagedused ning lahendasime tulemust eksperimen-
taalselt méddetud vaartustega. Lopptulemuseks tegime kindlaks, milline mudel kirjeldab
Dzyaloshinskii-Moriya vastasmojusid paremini, mairasime tapsemalt vastasmoju para-
meetrid ning tapsustasime spinnide korvalekaldenurkasid ideaalsest antiferromagnetili-
sest struktuurist.

Kvantkriitilise punkti lahedal tekivad tihti eksootilised aineolekud ning ilmuvad komp-
lekssed simmeetriad. 1989. aastal naitas A. B. Zamolodchikov, et Isingi spinnahelat ristises
magnetivaljas kvantkriitilise punkti lahedal ja vaikese pikimagnetvalja hairitusega kirjeldab
integreeritav kvantviljateooria, millel on Eg Lie algebra simmeetria. Teooria on tapselt la-
hendatav ning ennustab ergastusspektri, mis koosneb kaheksast osakesest kindlate massi-
suhetega. Eg spekter moodeti esimest korda koobalt niobaadi CoNb,O¢ ferromagnetilises
Co2* spinnide ahelas mitteelastse neutronhajumisega. Kahjuks oli siis véimalik niha vaid
kaht ergastust kaheksast. Meie mootsime CoNb,Og¢ spektrit temperatuuril 250 mK kuni
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12T ristimagnetvaljas. Kvantkriitilise punkti Iahedal leidsime kuus ergastust Eg teooriaga
maaratud massisuhetega ning ka nende mitmeosakese ergastused. Lisaks sellele uurisi-
me ka antiferromagnetilise Co?* spinnide ahelaga BaCo,V,0g spektrit temperatuuril 2.7 K
magnetvéljas kuni 17 T. BaCo,V,0g-s leidsime viis Eg osakest ja mitmeosakese ergastusi.

Meie t66 kinnitab veenvalt, et mélemas aines kvantkriitilise punkti lahedal tekib Eg siim-
meetria.
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We measured absorption of THz radiation in YFeOjs single crystals at a temperature of 3 K in the magnetic field
up to 17 T applied in all three crystallographic directions. Two spin-wave modes were observed at the I" point
with energies 1.2 meV (9.8 cm™!) and 2.4 meV (19.3 cm™!) in zero field. From the magnetic-field dependence
of mode energies, we have refined the previously proposed model [S. E. Hahn et al., Phys. Rev. B 89, 014420
(2014)] and quantified the parameters of Dzyaloshinskii-Moriya interactions and single-ion anisotropies.

DOI: 10.1103/PhysRevB.98.174417

I. INTRODUCTION

Strong coupling between electric and magnetic orders
in multiferroic materials is an interesting phenomenon that
allows for tuning of magnetic properties with the applied
electric field, and it can find applications in future recording
devices and spintronics [1,2]. Such a magnetoelectric effect
has been observed in rare-earth orthoferrites R FeO3, where
R is a rare-earth element. GdFeOs3, for example, obtains a
magnetically induced ferroelectric ground state below 2.5 K,
in which the magnetic moment can be controlled with the
electric field [3]. The same possibility has been reported [4]
for compounds Dy, ;Tby 3FeO3 and Dy, ;5Gdg 2sFeO3. While
GaFeO3; and AlFeO; do not belong to the group of rare-
earth orthoferrites, their rather similar noncentrosymmetric
orthorhombic structure also allows for spontaneous electric
polarization and results in multiferroic properties [5].

To fully understand such multiferroic behavior, it is nec-
essary to be able to accurately describe and quantify the
interactions inside these materials. Here we focus on an
orthoferrite YFeOs with a distorted perovskite structure of the
Pbnm symmetry group. Although the inversion symmetry of
this structure does not allow for multiferroicity, YFeO; is a
perfect model system for studying magnetic interactions. In
particular, all electron shells in Y+ are completely filled,
which means that the magnetic ordering comes exclusively
from the Fe** ions. Thus, modeling this compound allows us
to lay the foundation for understanding the magnetoelectric
mechanisms and spin dynamics in materials that exhibit more
complex behavior.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.
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The striking feature of orthoferrites is their high Néel
temperature Ty, which for YFeO; is reported [6-8] to be
approximately 644 K. This property could, in principle, re-
sult in room-temperature applications. Below Ty, the iron
spins § =5/2 order in an antiferromagnetic (AFM) state
I'4(G,, Fe, Ap), where the spins are canted, resulting in a
weak ferromagnetic (FM) component along the ¢ axis [9,10].
This spin structure is described by a combination of exchange
interactions, Dzyaloshinskii-Moriya (DM) interactions that
result in weak FM order, and single-ion anisotropies (SIA).
It has been shown [11] that with the magnetic field applied
along the a axis, the weak FM moment rotates away from the
c axis toward the field by 80° at around 7.0 T.

There are four spin-wave (SW) modes associated with
the four magnetic ions per unit cell in YFeOs. Two modes
have been observed at about 10 and 20 cm~! at the T" point
with Raman spectroscopy [12] and quasioptical techniques
[13,14]. Combining these observations with inelastic neutron
scattering (INS) measurements of SW dispersion at higher
energies led to the development of a simplified spin-state
model [15]. There the spin Hamiltonian had two types of
exchange interactions (those between nearest-neighbor and
next-nearest-neighbor spins), two DM coupling parameters
between atoms located in the ab plane, and two SIA constants.
From a later structural analysis with INS study of low-energy
excitations around a magnetic Brillouin zone center [16], it
followed that the model had to be improved by including ad-
ditional DM interactions between adjacent planes. However,
no extensive study of the magnetic-field dependence of SW
modes has been performed until now.

The current reexamination of YFeOs has two motivations.
First, THz spectroscopy has far greater sensitivity in fre-
quency than does inelastic neutron scattering. So it is much
better suited to study the low-frequency spin dynamics pro-
duced by spin-orbit coupling and to estimate the weak, as
compared to exchange couplings, DM and SIA interactions
in YFeOs. Second, we use this opportunity to incorporate
the more complex structure of the DM vectors. By applying

Published by the American Physical Society
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FIG. 1. Magnetic interactions in YFeOs;. Magnetic Fe ions are
blue and labeled 1 through 4; oxygen ions are red.

the magnetic field in the three crystallographic directions,
we obtain much more precise values for the DM and SIA
interactions in YFeOs than was previously possible.

II. THEORY

The magnetic unit cell of YFeO; contains four § =
5/2 Fe** ions. A sketch of the magnetic unit cell and the
exchange interactions between the spins is shown in Fig. 1.
We include three exchange interactions: J,, couple pairs of
spins {1, 4} and {2, 3} within the ab plane, J. couple pairs
{1,2} and {3, 4} along ¢, and J’ couple pairs {1, 3} and {2, 4}
in different layers separated by c/2.

In the absence of DM interactions, the exchange interac-
tions and SIA would stabilize a simple AFM state with spins
1 and 3 aligned along —a and spins 2 and 4 aligned along
a. An earlier work by Hahn et al. [15] assumed a simplified
model where two DM vectors were taken along b and c. Each
DM interaction was assumed to couple only nearest-neighbor
spins, {i, j} ={2,3} and {1, 4}, in the ab plane. The DM
vector D, then produces the tilt of the spins in the ab plane
away from the a axis, and D; produces the tilt of the spins
toward the ¢ axis [10]. They also included easy-axis SIA K,
and K. along the a and c axes, respectively. The spin state can
be written as

S; = S(sin6; cos ¢;, sin6; sin¢p;, cosb;). €))

In zero field the angles are 6; =60, =603 =60, =0 and ¢; +
T =—¢3+7 = —¢s = ¢ = ¢. This state has a net spin c-
component F, = (S; + S, + S3 + S4). =4S cosf per mag-
netic unit cell. It has no spin component perpendicular to the ¢
axis, but it has AF components along the a axis, G, = (S; —
S> +S3 — S4)., and the b axis, Ay, = (S; — S; — S3 + S4),.
The relations between spin vectors and angles are A,/ G, =
tan¢ and F./G, = (cos ¢ tan ).

Hahn et al. [15] fit the SW spectrum to obtain the exchange
interactions, SIA, and DM vectors. The set of parameters
was constrained to produce the zero-field spin state with

6 =0.4987 and ¢ = 0.001x. Because J,, and J. couple
sites that are bridged by one anion and separated by distances
VaZ+Db%/2~385 A and ¢/2~3.80 A, respectively,
these two antiferromagnetic coupling constants were set
equal to the single exchange constant J. By contrast, J'
couples sites that are bridged by two anions and by distance
Va?+ b2 +c2/2~541 A. So |J'| is expected to be much
smaller than |J|. Hahn et al estimated that J = —4.77
meV and J' = —0.21 meV. The SIA K, = 0.0055 meV
and K. = 0.0035 meV favor the spins to lie perpendicular
to the b axis. The DM vectors had estimated magnitudes
Dy = 0.074 meV and D, = 0.028 meV.

However, a symmetry analysis of the perovskite crystal
structure [17] revealed that the DM vectors are more complex
than assumed by Hahn et al. [15]. Rather than just two DM
vectors, each oxygen atom-mediated bond (Fig. 1) carries its
own local DM vector, including nearest neighbors {1, 2} and
{3, 4} on adjacent ab planes separated by +=c/2. While there
are still only two overall magnitudes for the DM vectors,
this more complex interaction structure could modify the
estimates for the microscopic parameters in YFeOs.

With the magnetic field H along m, the Hamiltonian of
YFeO; can be written as

1 1,
H:—EJ;S,wS]——EJ ;si.sj
—K,,ZSiaz—KCZSirz

1
+ 5 ZDU ~(Si x§;) — pspoH Zm Si, (2)
ij i
where the exchange interactions couple the spins indicated in
Fig. 1, and J,;, = J. = J. The factors of 1/2 avoid double
counting. Because the spectroscopic modes are evaluated at
wave vector q = 0, we do not include interactions between
spins in neighboring unit cells, e.g., between S; and S,
although these are next-nearest-neighbor interactions.
The orientation of the local vectors D;; is determined by
the condition that [18]

D;; o« (R; —Ry) x (R, —Ry), 3

where R, is the position of the oxygen atom that couples spins
i and j. Consequently, the DM vectors are given by [17]

D3 = Dup(—aps Babs Yab) AR = i(a/2v b/zv 0), (€]
D%, = Dup(ap, Bav» Yab), AR = £(—a/2,b/2,0), (5)

D41 = Dup(—cap, —Bab» Yavr), AR = x(—a/2,b/2,0),
(6)

D}y = Dup(ctap, —Bab: Yab)s AR = £(a/2,5/2,0), (7)
Dy = De(—a, Be, 0), AR ==£(0,0,¢/2), ®

D3y = De(ae, Be, 0), AR ==(0,0,¢/2), (©)]

where AR =R; —R; for D;; = —Dj;. The vectors are all
normalized so that 0‘2;; + ,83,) + ynzh =1 and af + ,Bf =1.
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FIG. 2. Magnetic-field dependence of SW absorption spectra of YFeOj; at 3 K. Panels (a), (b), and (c) correspond to the magnetic field H
applied along crystallographic axes a, b, and c, respectively. The spectra are shifted vertically in proportion to the magnitude of the applied
magnetic field, marked on the right side of the plot. In each panel, blue and red solid lines denote two orthogonal incident light polarizations,
where the oscillating electric- and magnetic-field vectors E“ and H” are aligned along different crystallographic axes. Dashed lines show the
absorption peak positions obtained from the theoretical fit. The impurity peak position in zero field is marked with a star.

Based on Eq. (3) and the structural analysis [16], oy, = 0.517,
Bap = 0.488, v = 0.703, o = 0.346, and B, = 0.938.

III. EXPERIMENT

‘We prepared polycrystalline YFeO; using Y,03 and Fe,03
by a standard solid-state reaction method. All the starting
materials were prepared in a stoichiometric ratio and mixed,
pelletized, and sintered several times. The final sintering
condition was set to 1400 °C for 24 h. Single crystals were
subsequently grown with a 4-mm-diameter feed rod of a cor-
rect composition by a floating-zone furnace (Crystal Systems,
Japan) under an oxygen atmosphere at a growth speed of
3 mm/h. We checked the quality of the samples using a single-
crystal diffractometer and bulk property measurements.

Three cuts of YFeO; single crystals, (100), (010), and
(001), with thicknesses slightly under 1 mm were prepared.
The intensity of transmitted THz radiation was detected in
the range from 5 to 40 cm™! using a Martin-Puplett inter-
ferometer, a mercury discharge lamp as a light source, and
a Si bolometer operated at 7 = 0.3 K. The polarization of
incident radiation was controlled by a wire-grid polarizer.
Measurements were performed in Faraday and Voigt con-
figurations, where the THz radiation propagates parallel or
perpendicular to the applied magnetic field, respectively. In a
Voigt configuration, the SW mode frequencies were measured
as a function of the sample orientation in fields just below
and above the observed spin-flop (SF) transition (i.e., 5 and
7 T). The sample was rotated around the ¢ axis such that

the magnetic-field vector was in the ab plane. The exact
alignment H || a was achieved by finding the orientation that
corresponds to the lowest frequency of the resonance peak.

Differential absorbance spectra were calculated from the
ratios of transmitted light intensities measured with and
without the applied magnetic field in the following way.
In a sample with negligible interference (i.e., wedged or
with high enough absorption), the transmitted light in-
tensity / is related to the incident light intensity I, via
I = Ip(1 — R)?>exp(—ad), where R is the reflection coef-
ficient, o is the absorption coefficient, and d is the sam-
ple thickness. Therefore, the absorption coefficient is de-
fined as o = —d~'In[(1 — R)"21/I;]. If we assume that
R does not depend on the applied magnetic field, we can
calculate the differential absorbance asw = ¢(H) — a(0) =
—d~'In[I(H)/1(0)] by dividing the transmitted intensity
spectrum measured in the magnetic field /(H) by the zero-
field spectrum 7 (0). Finally, a baseline, statistically calculated
from negative values of asw, is subtracted to reveal absorption
peaks in the zero-field spectrum.

IV. RESULTS

Using THz spectroscopy, we have measured two lowest
spin-wave modes at q = 0 for the magnetic field along the a,
b, and c axes, with results shown in Fig. 2. YFeO; undergoes a
spin-flop transition when the field is applied along the a axis.
While the spins are almost parallel to the a axis below Hsg,
they are almost parallel to the ¢ axis above Hsg.
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FIG. 3. Magnetic-field dependence of the absorption peak posi-
tions (symbols) with the field applied along the three crystallographic
axes and the theoretical fit result (solid lines). Dashed lines show the
fit with the simplified model, where D, = 0.

In addition to the two SW modes, there exists another mode
below 9 cm™!, which is especially pronounced in Figs. 2(a)
and 2(b), and it has been indicated with a star. This mode has
previously been reported [19,20] to be an impurity mode only
present in single crystals grown by the floating zone method.
The mode was assigned to Fe** atoms occupying Y37 sites,
and is not accounted for in the present model.

Since THz spectroscopy only measures the two low-
frequency modes below 3 meV, we use the SW spectrum
measured with INS [15] for frequencies up to 80 meV to
fix the exchange interactions J. = J,;, = —4.77 meV and
J' = —0.21 meV. That leaves the four “small” spin-orbit
parameters K,, K., Dy, and D, to be determined by optical
spectroscopy.

For each field direction and magnitude and set of param-
eters, we minimize the energy E = (H) as a function of the
eight angles 6; and ¢; for the four spins in the magnetic unit
cell. Based on the linear SW theory, we then evaluate the
frequencies of the two lowest SW modes for comparison with
the measured spectroscopic mode frequencies. This loop is
repeated until we achieve a minimum of x2.

The result of this procedure is presented in Fig. 3, which
shows a rather good agreement between the theory and the
experimental data. All of the coupling parameters are summa-
rized in Table I, where the values are compared to those from

TABLE 1. Spin Hamiltonian parameter values (meV). The two
DM parameters of Hahn et al. [15] are related to D,, as Dy, =

VD}+ D3.

This work  D.=0  Hahneral [15] Parketal [16]

Je —4.77 —4.77 —4.77 —5.02

Jab —4.77 —4.77 —4.77 —4.62

J' —0.21 —0.21 —-0.21 —-0.22

K, 0.0052 0.0055 0.0055 0.0091
K. 0.0044 0.0038 0.0031 0.0025

| Dyl 0.136 0.147 0.079 0.121
|D,| 0.189 0 0.145

earlier reports. The resulting values of K, and K, are quite
close to those predicted by Hahn ef al. [15]. Not surprisingly,
considering that the DM vectors are oriented away from the
¢ and b axes, the values for D,, and D, are larger than

/D? + D? estimated by Hahn et al. [15]. These parameters

correspond to the zero-field canted state with 6 = 0.49667
and ¢ = 0.00357, which is more canted than previously
predicted. When the field is applied along the a axis, these
parameters produce a SF field poHsg = 6.2 T.

We evaluated the validity of the more complex DM model
by also fitting the experimental data using a simplified model
from Hahn et al. [15], with D. =0 and oy, = 0. In this
case the four fitting parameters are Dy, D, K,, and K. The
result is plotted in Fig. 3 with dashed lines. While it is still
possible to fit the spectrum rather well with fixed D, = 0,
it does not match the experimental data as closely as the
more complex model that includes DM interaction between
adjacent planes. This is confirmed by the difference in y?
(0.462 against 0.168). The corresponding fit parameters are
specified in Table I in the second column. The values of D,
and D, are 0.139 and 0.048 meV, respectively.

i — Ba
25 — EY| ¢
L ---- Calculated

L 1
6 8 10 12 14 16 18 20 22
Wavenumber (cm™!)

FIG. 4. Zero-field spectra measured in six different polarizations
qualitatively showing the selection rules. The spectra are grouped
according to the direction of the oscillating magnetic field H”. For
each direction, only one mode is visible. The dashed lines show
arbitrarily scaled theoretical spectra. The impurity mode is marked
with a star.
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Figure 4 qualitatively shows the selection rules for YFeOs.
It is clear that the absorption intensity depends on the di-
rection of the oscillating magnetic field H” rather than the
electric field E”. The selection rules are well reproduced by
the theory, where in zero field the lower-frequency mode
is visible in polarizations with H” | a and H” | b, while
the higher-frequency mode occurs exclusively with H” || c.
While the theory qualitatively matches the experiment in the
whole magnetic-field range (selection rules change after
the spin flop), we have not been able to accurately reproduce
the absorption intensities. Thus, in Fig. 4 the higher-frequency
mode is predicted to have much higher intensity, while in
reality the intensities of the two modes are comparable. The
cause of this discrepancy remains unknown.

V. CONCLUSION

Two SW modes were measured by THz absorption spec-
troscopy and modeled by the Hamiltonian, Eq. (2). Our result
shows that it is necessary to account for the more complex
DM structure to accurately model the magnetic interactions
in YFeOs, which is confirmed by the overall quality of the
fits. With that in mind, we were able to fit the magnetic-field
dependence of the absorption spectra up to 17 T, from which
we precisely quantified the SIA and DM interactions. These
values are in good agreement with earlier reported INS data,
and are only slightly modified.

The obtained canting, with angles 6 = 0.4966r and ¢ =
0.00357, is considerably larger than that previously reported
by Hahn et al. [15] (0.49837 and 0.00107) and is very
close to what was estimated by Park et al. [16] (0.4972x
and 0.0032m). This larger canting results from the higher
magnitudes of the DM interaction vectors than previously
predicted. The new values of canting angles correspond better
to the experimentally observed [10] ratios F./G, = 0.0129
and A,/ G, = 0.0159 that correspond to 6 = 0.49597 and
¢ =0.00517.

It is worth noting that the spin flop occurs at woHsp =
6.2 T with the current set of parameters, which is lower
than the previously reported value of 7.0 T. Unfortunately,
it is hard to unambiguously determine the exact SF field
from the experimental data alone, as the lower SW mode
does not soften completely. Why does the lower, experimental
mode frequency not soften as much as predicted near Hsg?

There might be several explanations for this discrepancy. SW
theory does not include higher-order fluctuations that could
enhance the SW frequencies near Hgg. Because the predicted
drop in the lowest mode frequency is very steep, it will be
significantly lifted by crystal domains with slightly different
spin-flop fields. However, 6.2 T clearly matches the SF field
we observed much better than what is estimated using sets of
parameters from Hahn et al. [15] or Park et al. [16], which
is 9.0 and 15.9 T, respectively. This is a good indication that
fitting the magnetic-field dependence of THz spectra provides
a better estimation of the SIA and DM interaction parameters.

Therefore, we have shown that while INS is better suited
to estimate the stronger exchange couplings based on the SW
dispersion at high frequencies, THz spectroscopy is better
suited to study the “weak” spin-orbit induced DM and SIA
couplings at low frequencies and q = 0. Since these “weak”
interactions are responsible for a material’s multiferroic be-
havior, THz spectroscopy should prove useful in the future,
when this approach is extended to materials where Y>* is
substituted by other, possibly magnetic ions.

One of the challenges of our method is currently the limited
availability of large enough high-quality single crystals for
transmission measurements. The other limitation is the fact
that we cannot very well detect low-frequency modes that
soften close to the spin flop, as it is hard to measure below
5 cm~! with THz spectroscopy. While we are currently not
able to determine the cause of the discrepancy between the
theoretical and the measured absorption intensities, we hope
to find the answer in future measurements that would include
other orthoferrites.
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Near the transverse-field-induced quantum critical point of the Ising chain, an exotic dynamic spectrum
consisting of exactly eight particles was predicted, which is uniquely described by an emergent quantum
integrable field theory with the symmetry of the Eg Lie algebra, but rarely explored experimentally. Here we
use high-resolution terahertz spectroscopy to resolve quantum spin dynamics of the quasi-one-dimensional Ising
antiferromagnet BaCo,V,0g in an applied transverse field. By comparing to an analytical calculation of the
dynamical spin correlations, we identify Eg particles as well as their two-particle excitations.

DOI: 10.1103/PhysRevB.101.220411

Exotic states of matter, such as high-temperature super-
conductivity or magnonic Bose-Einstein condensation, can
emerge in the vicinity of a quantum critical point [1], which
identifies a zero-temperature phase transition tuned by an
external parameter, e.g., chemical substitution or applied mag-
netic field [2,3]. Quantum critical points are often character-
ized by enhanced many-body fluctuations together with diver-
gence of correlation length and complex emergent symmetry
[1,4-8]; thus it is generally a formidable task to precisely
describe the quantum many-body physics near a quantum
critical point. Exactly solvable models play a crucial role in
this regard, because a precise understanding of the quantum
many-body physics can be gained by rigorously analyzing
these models [4,6]. The one-dimensional (1D) spin-1/2 Ising
model in a transverse magnetic field is such a paradigmatic
example [1,4-9]. Considering only the exchange interaction
between the nearest-neighbor spins on a chain [10,11], this
model has been investigated most broadly in quantum mag-
netism, which provides deep insights into the fundamental
aspects of the quantum many-body physics [1,6-8]. In par-
ticular, highly unconventional dynamic properties have been
theoretically predicted to emerge near the transverse-field
Ising quantum critical point, either for equilibrium states upon
constant perturbations or for states far from equilibrium after
a quantum quench (see, e.g., Refs. [12—18]). Moreover, the
study of the transverse-field Ising quantum critical point is of
importance also in the context of quantum information [5,8]
and quantum simulation using ultracold atoms [19].

A remarkable prediction of an exotic dynamic spectrum
was made three decades ago for the transverse-field Ising
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chain perturbed by a small longitudinal field [12]. It is de-
scribed by the Hamiltonian

H= —JZS;’S;’+l —BLZS,-X - B, ZS;’, (1

with the x and z components S} and S, respectively, of the
spin-1/2 magnetic moment at the ith site on a 1D chain. The
first term is the Ising term with the ferromagnetic exchange
J > 0 between the nearest-neighbor spins. The second and
third terms describe the interactions of the spins with the
transverse field B, and the perturbative longitudinal field
By, respectively. Close to the transverse-field Ising quantum
critical point [see Fig. 1(b)], the excitation spectrum of this
model was predicted to be governed by a complex symmetry
which is described by a quantum integrable field theory with
the Eg symmetry (an exceptional simple Lie algebra of rank
8) [12], which, however, is rarely explored experimentally.
An analytical solution of the Eg excitation spectrum delivered
exactly eight particles (m; to mg), the existence of which
is uniquely determined by the specific ratios of their masses
(Table I) with the lowest mass scaling with the perturbative
longitudinal field; i.e., m; o |By |8/15 [12]. Further analysis on
the dynamic characteristics of the eight particles showed that
the single-particle spectral weight decreases monotonically
and drastically with increasing energy [Fig. 1(a)] [13,14].
Despite the apparent simplicity of the spin Hamiltonian in
Eq. (1), an experimental realization of the Eg spectrum, how-
ever, is very difficult, because several crucial criteria must be
simultaneously fulfilled: one-dimensionality of spin interac-
tions, strong Ising anisotropy, and a perturbative longitudinal
field.

In this work, we use high-resolution terahertz (THz)
spectroscopy to resolve Eg particles in an antiferromagnetic
Ising spin-chain material BaCo,V,0g, where all the crucial
criteria are found to be realized. By performing analytical

©2020 American Physical Society
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FIG. 1. (a) Normalized  dynamical structure  factor
D,.(m;, g = 0) at zero momentum transfer for the eight particles
with specific ratiosm;/m; (i = 1,2, ..., 8) [see Table I and Eq. (2)].
(b) Illustrative phase diagram of a quasi-one-dimensional Ising
antiferromagnet in a transverse magnetic field. In zero field a
three-dimensional (3D) Néel order is stabilized below Ty due to
perturbative interchain couplings. The quantum critical point of the
transverse-field Ising chain at Bim [corresponding to the vanishing
spin gap A(B )] is masked under the 3D Néel order (BilD < BfD ).
A paramagnetic phase is reached when the long-range order is
suppressed by B, > Bi‘m. The possible region to realize the Eg
dynamic spectrum is indicated by the dashed area. (c) The spin chain
in the quasi-one-dimensional Ising antiferromagnet BaCo,V,Og is
constituted by edge-sharing CoOg octahedra, running with a fourfold
screw axis along the crystallographic ¢ axis. In BaCo,V,0Os, the 3D
Néel order is formed below Ty &~ 5.5 K and BfD = 10T [21].

calculation of the spin dynamic structure factor using the
quantum integrable field theory of the Eg spectrum, we un-
ambiguously identify Eg single particles as well as their two-
particle excitations.

BaCo,V,0g is a magnetic insulator with a tetragonal crys-
tal structure [20,21]. Based on the magnetic cobalt ions, the

spin chains in BaCo,V,0g are constituted by edge-sharing
CoOg octahedra, running with a fourfold screw axis along
the crystallographic ¢ axis [Fig. 1(c)]. High-quality single
crystals of BaCo,V,0g were grown using the floating-zone
method [21]. The crystal structure and magnetic properties
were characterized by x-ray diffraction, magnetization, heat
capacity, and dilatometry measurements [21]. For the optical
experiment, single crystals were oriented at room temperature
using x-ray Laue diffraction and cut perpendicular to the
tetragonal a axis with a typical surface area of 4 x 4 mm?
and a thickness of 0.76 mm. Using a Sciencetech SPS200
Martin-Puplett type spectrometer with a 0.3 K bolometer,
THz transmission measurements were carried out down to
2.7 K (below Ty &~ 5.5 K) in a cryostat equipped with a
superconducting magnet for applying fields up to 17 T. An
external field B, was applied parallel to the tetragonal a
axis, while the THz electromagnetic waves propagated along
the other tetragonal a axis in Voigt configuration. A rotat-
able polarizer was placed in front of the sample for tuning
polarization of the THz waves. The change of absorption
coefficient Ao due to magnetic excitations was derived by
taking the zero-field transmission spectrum at 10 K (slightly
above Ty) as a reference spectrum; see the Supplemental
Material [22].

An easy-axis anisotropy along the ¢ axis in BaCo,V;,0s
was evidenced by magnetization measurements [21], and
further confirmed by investigations of quantum spin dynam-
ics [23-26]. By precisely comparing to the exact results of
Bethe ansatz, the quantum spin dynamics in BaCo,V;,0s
can be nicely described by a 1D spin-1/2 antiferromag-
netic Heisenberg-Ising model with a strong Ising anisotropy
[23,24]. Below Ty ~ 5.5 K, a three-dimensional (3D) Néel-
type antiferromagnetic order [Fig. 1(b)] is stabilized due
to the presence of small perturbative interchain couplings
[21,24,27-29]. In an applied transverse magnetic field along
the a axis, the 3D order is suppressed above Bj_‘3D = 10T [see
Fig. 1(b)] [21].

The interchain couplings strongly influence the quantum
spin dynamics below 7y. As illustrated in Fig. 2(a), a spin-
flip excitation, which corresponds to AS = =1, fractionalizes
into two spinons each with a fractional quantum number
of spin-1/2. In the Néel-ordered phase, the spinons cannot
propagate freely on the chain, but are confined into two-spinon
bound states due to the inter-chain couplings. The confining
potential increases linearly with the distance between the
two spinons [Fig. 2(b)], leading to the discrete levels of
spinon-pair bound states, in contrast to spinon continuum of a
decoupled chain. Figure 2(c) shows the zero-field absorption
spectrum of BaCo,V;,0g below a strong optical phonon band
[22,24]. The absorption spectrum exhibits five sharp peaks
with their eigenenergies following a linear dependence on

TABLE I. Analytically predicted mass ratios of the Eg particles (m; to mg) and the derived onsets of the multiparticle continua (2m,,

m; + m,, m; + m3, 3m,, and 2m,) [12,13,14].

Single m, m; my mg my mg
Multi 2m, m; +m;, m; +m;3 3my 2m,
m;/m, 1.618 1.989 2 2.405 2.618 2.956 2.989 3 3218 3.236 3.891 4783
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FIG. 2. (a) The interchain couplings in the 3D Néel-ordered phase effectively exert a staggered perturbative longitudinal field (—1)'B), on
the ith spin of the neighboring chain. The two-spinon excitations (red sphere) are confined due to the staggered field. (b) The corresponding
confining potential increases linearly with the distance between the two spinons, which leads to the discrete levels of two-spinon bound
states with energies m;, my, ms, - - - .(c) The zero-field absorption spectrum exhibits a series of peaks, measured with 4°||a. Aa and w denote
absorption coefficient and wave number, respectively. (d) The energies of the peaks follow a linear dependence on ¢;, the negative zeros of the
Airy function A;(—¢;) = 0, which evidences the confinement of spinons due to the staggered longitudinal fields [24,27,28,30]. (e) Evolution of
the absorption spectra in finite transverse fields B, || h“. The spectra are shifted vertically by constants proportional to the transverse fields for
clarity. The spectra below Bim = 10 T in the Néel-ordered phase are complex and exhibit several peaks, while above BTD in the field-induced
paramagnetic phase [see Fig. 1(b)] the main features of the spectra are two sharp peaks.

¢ [see Fig. 2(d)]; the negative zeros of the Airy function
Ai(—¢;) = 0, which nicely confirms the confined spinon-pair
excitations reported previously [24,27,28,30]. Another im-
portant implication of this observation is that the interchain
couplings provide an effective longitudinal field, which is
perturbative and staggered with the peculiar form of (—1)'B),
corresponding to the spin S; on the ith site of the chain. Such
a staggered longitudinal field is crucial for the realization
of the Eg spectrum, because via the transformation S7 —
(—l)iS;"', we can map our antiferromagnetic chain into the
ferromagnetic model in Eq. (1).

While all the aforementioned criteria are found to be
fulfilled in BaCo,V,0g at zero field, it is necessary that they
remain fulfilled when applying an external transverse field. In
particular, to maintain the collective effects of the staggered
fields, the 3D order should not be suppressed before the
1D quantum critical point is reached, i.e., Bi'D < Bj_’m, as
illustrated in Fig. 1(b). As we will show below, this condition
is indeed realized in BaCo, V,0g.

In a transverse field applied along the crystallographic a
axis (B_|| a), we measured the absorption spectra at 2.7 K
below Ty with the linearly polarized THz magnetic field 4%
along the same orientation (i.e., h“|| B_|| a), see Fig. 2(e)
(also see Supplemental Material [22]). As indicated by the
arrows in Fig. 2(e), the m; mode observed at 0.4 THz in
zero field softens monotonically with increasing field until
reaching the minimum frequency of 0.18 THz at 10 T, which
is followed by a continuous increase in higher fields (e.g., 0.22
THz at 13 T). The evolution of the lowest-lying mode m;
reflects the field dependence of the spin excitation gap, which
provides the spectroscopic evidence for the suppression of
the long-range order above Bim = 10 T, consistent with pre-
vious thermodynamic measurements [21]. The Néel-ordered
and the paramagnetic phases are contrasted by their spin
dynamic spectra, which is similar to the behavior reported
in an isostructural compound [31]. Below BCLSD, the low-
field spectra are characterized by several peaks with different
intensities at different energies [22]. In contrast, in the field-
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FIG. 3. (a) The ratios of the excitation energies (symbols) increase monotonically as the transverse field approaches 5 T from below, and
at 5 T simultaneously reach the theoretically expected values (dashed and dotted lines) for the Eg single- and two-particle excitations m,, ms,
2m;, my, m; + my, and ms (see Table I). At Bim = 5T, the absorption spectrum in (b) is in excellent agreement with (c) the analytically
calculated spin dynamic structure factor D™ (w, ¢ = 0) for the quantum integrable model of the Eg dynamic spectrum (solid line) [see Eq. (2)].
The dashed and dotted lines show the separate contributions of the single-particle (m; to mg) and two-particle (2m,; and m; + m,) excitations,
respectively [22]. Due to a strong phonon band [24], the spectrum in (b) cannot be resolved at higher energies for me to mg. The spectra in (c)

are broadened with a full width at half maximum of 0.1m;.

induced paramagnetic phase the spectra are dominated by two
sharp peaks (e.g., 0.26 and 0.99 THz at 16 T). In addition,
a small splitting of the m; peak (about 0.1 meV) is resolved
above 5 T but disappears above 10 T, indicating the existence
of a weak orthorhombic ab-plane anisotropy in the 3D ordered
phase [21,32], while no splitting of the higher-energy peaks
can be resolved.

The transverse-field dependence of the spin dynamics in
the Ising chain systems has been the subject of previous
reports, based on experimental studies and/or on numerical
simulations; see, e.g., Refs. [29,31,33]. Here, we focus on the
discussion of the Eg dynamics that was predicted to emerge
only in the vicinity of the transverse-field Ising quantum crit-
ical point. Figure 3(a) shows the energy ratios of the higher-
frequency excitations with respect to the corresponding m;
mode at each field. With increasing field, we observe a contin-
uous increase of all the ratios, and at 5 T, they simultaneously
reach the expected values for my, m3 and 2m;, my, m; + my,
and ms of the Eg dynamic spectrum (see Table I), as indicated

by the dashed and dotted lines. Above 5 T, the ratios deviate
again from those values of the Eg spectrum. This strongly indi-
cates that we have experimentally realized the Eg spectrum at
5T [Fig. 3(b)], which also provides the dynamic evidence that
Bi'D = 5T corresponds to the 1D quantum critical field, with
the required condition B'® < B consistently fulfilled.
The value of the 1D critical field agrees with the result of a
detailed numerical simulation [33]. At the same time, Fig. 3(b)
presents a very crucial feature that the two-particle continua
(2m; and m; 4+ my) are characterized by a relatively narrow
peak at the onset energies. This observation shows that the
continua are not so overwhelming that the higher-energy Eg
particles (m3, my, and ms) can still be resolved, in contrast
to the conventional intuitive understanding that the high-
energy Eg particles are hidden in a featureless 2m; continuum
[34].

To further elaborate on the dynamic characteristics, we per-
form analytical calculations of the quantum integrable model
of the Eg dynamic spectrum [6,12-14]. Corresponding to the
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transverse THz magnetic field in the Voigt configuration, we
calculate the transverse dynamic structure factor,

XX oo del X
D™ (w, g=0) = Z/ N L1 A 010 A, (0 A0 @)

- Ag, (0))*8(w — Efa})s(Plai}),  (2)

for energy transfer @ and zero momentum transfer g = 0, as
the wavelength of THz spectroscopy is much greater than the
lattice constants of BaCo,V,0s5. In Eq. (2), N = ]_[,.8:1 n;!,
a;(i=1,---,n) labels a particle with a corresponding mass
among m; to mg, 6; is the corresponding rapidity, and
o” is the Pauli matrix associated with the spin component
S§* = 0*/2. The ground state and the n-particle excited state
are denoted by (0| and |A,, (01)A4,(02) - --A,, (6n)), respec-
tively, for n =1,2,3---. The total energy and momentum
of the n-particle excited state are Ef{a;} = ) ., a;cosh;
and P{a;} = >_;_, a;sinh6;, respectively (see Supplemental
Material [22]). In particular, we derive the dynamical response
in the two-particle channels, |A, (61)A4,(62)), {aiax} =
{mym,, mymy, myms, mym,}, and in the three-particle channel,
A (010, (62)A 0, (6)), {arazas} = {mimymy} (see Table I).

The obtained dynamic structure factor is presented in
Fig. 3(c) up to the energy of 3.3m,; with the peaks broadened
by a full width at half maximum of 0.1m;, which is in accord
with the spectral range of our experiment. The lowest-energy
m; scaling with the perturbative longitudinal field is set as
unit. The contributions of the single-particle excitations (m;
to mg) and of the two-particle continua (2m; and m; + m;)
are separately plotted as dashed and dotted lines, respectively,
while the higher-energy continua with smaller spectral weight
are omitted for clarity [22]. The analytical results disclose
very peculiar many-body dynamic characteristics. First and
foremost, the multiparticle continua are not overwhelming but
possess even smaller spectral weight compared with the high-
energy Eg single particles. Thus, the single-particle excitations
with clearly recognized peaks stand well above the multi-
particle continua, profoundly in contrast to the conventional
intuitive understanding [34]. Hence, the higher-energy Eg sin-
gle particles above 2m; should be experimentally resolvable.
Furthermore, the multiparticle continuum is not featureless,
but exhibits a relatively narrow peaklike maximum just above
the onset energy, which is followed by an extended tail. While
the peak of 2m; merges coincidently with that of ms into a
single peak and thus cannot be discriminated experimentally,
a pronounced peak due to m; + my; is clearly discernible.
Although the higher-energy multiparticle continua exhibit a

similar feature, their spectral weight is very small and hardly
recognized in the overall dynamic-structure-factor spectrum
[22].

As compared in Figs. 3(b) and 3(c), overall excellent agree-
ment is achieved between the experimentally observed spec-
trum at Bi'D = 5T and the precise dynamic structure factor
of the Eg dynamics for the single- and two-particle excitations.
We emphasize that there are no free-tuning parameters in the
field-theory calculation. The agreement between experiment
and theory is achieved not only on the energy ratios but also
on the relative spectral weights. Although the intensity of
the observed m; peak seems to be relatively low due to the
splitting, the ratio of the integrated spectral weight Iy /I &
0.61 is in good agreement with the theoretically predicted
value of 0.52 [see Fig. 1(a)].

These results show that the Eg dynamic spectrum is re-
alized in the quasi-one-dimensional antiferromagnetic chain
BaCo,V;,0g at 5 T, where a 1D transverse-field Ising quan-
tum critical point is evidenced to be hidden under the 3D
ordered phase. Our results also imply that the Eg spectrum
can generally exist near the quantum critical points of the
universality class of the transverse-field Ising chain [33]. The
identification of the Eg particles and their multiparticle exci-
tations demonstrates the emergence of the complex symmetry
in the vicinity of a quantum critical point and the power of
the integrable quantum field theory to describe the complex
quantum critical dynamics. Our results in general shed light
on the studies of nonequilibrium dynamics in the 1D models
[12,18], the quantum simulations in an optical lattice [19], and
the deterministic manipulation of quantum many-body states
[5].

Note added in Proof. A recent inelastic neutron scattering
experiment provided further evidence for the Eg spectrum in
BaCo,V,0g [35].
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Close to the quantum critical point of the transverse-field Ising spin-chain model, an exotic dynamic spectrum
was predicted to emerge upon a perturbative longitudinal field. The dynamic spectrum consists of eight particles
and is governed by the symmetry of the Eg Lie algebra. Here we report on high-resolution terahertz spectroscopy
of quantum spin dynamics in the ferromagnetic Ising-chain material CoNb,Og. At 0.25 K in the magnetically
ordered phase we identify characteristics of the first six Eg particles, m; to me, and the two-particle (m; + my)
continuum in an applied transverse magnetic field of B! = 4.75 T, before the three-dimensional magnetic order
is suppressed above B3P & 5.3 T. The observation of the higher-energy particles (mj to ms) above the low-energy
two-particle continua features quantum many-body effects in the exotic dynamic spectrum.

DOI: 10.1103/PhysRevB.102.104431

I. INTRODUCTION

Since its invention in 1920 the Ising spin-chain
model [1-3] has been demonstrated to be extremely useful
to rigorously illustrate basic concepts, thus the study of
Ising spin chains is still a very lively research field [4-36].
For example, a quantum phase transition occurs in the
transverse-field Ising-chain model

H=-J) S8, -BY S (1)
i i

when the spin gap A is closed at the critical field B, =
J/2 with J being the exchange interaction between the
nearest-neighbor spin-1/2 magnetic moments S; on a chain
(see Fig. 1). The transverse-field Ising-chain quantum crit-
ical point is characterized by a peculiar thermodynamic
property: With decreasing temperature at the critical field,
the Griineisen parameter converges [29,37,38], in contrast
to the divergent behavior for a generic quantum critical
point [39].

The quantum spin dynamics also exhibits exotic features
close to this quantum critical point. When the transverse-field
Ising chain is perturbed by a small longitudinal field B, via
the Zeeman interaction —B; )", S7, it was predicted that an
exotic dynamic spectrum emerges around B, exhibiting eight
particles with specific mass ratios (see Fig. 4) [9]. This exotic
spectrum is uniquely described by a quantum integrable field
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theory with the symmetry of the Eg Lie algebra [9,10]. (Intro-
ductory discussions of the Eg Lie algebra in mathematics and
in the relevant context of quantum field theory can be found in
Refs. [40,41].) As this model cannot be represented by single-
particle states but is featured by many-body interactions, it
is challenging to find an exact analytical solution beyond the
quantum critical point.

Despite its celebrity in mathematics [40,41], the Eg sym-
metry has rarely been explored experimentally. Until 2010
the first piece of experimental evidence for the Eg dy-
namic spectrum was reported based on inelastic neutron
scattering measurements of the ferromagnetic Ising chains
in CoNb,Og¢ [15]. Constituted by edge-shared CoOg octa-
hedra, the effective spin-1/2 chains in CoNb,Og run along
the crystallographic ¢ axis in a zigzag manner (see inset
of Fig. 1), with the Ising easy axes lying in the crystallo-
graphic ac plane [12,13,23]. Due to small but finite interchain
couplings, a three-dimensional (3D) magnetic order devel-
ops below Ty = 2.85 K, which can be suppressed by an
applied transverse field of BP ~ 5.3 T along the b axis (see
Fig. 1 for an illustration) [12,13,23,42]. By following the
low-lying spin excitations in the transverse field (B || b), two
modes were found with an energy ratio being the golden ratio
a1+ ﬁ)/Z ~ 1.618 at 5 T [15], which corresponds to the
predicted mass ratio my/m; of the first two Eg particles [9].
The two excitations were interpreted as the low-lying Eg
particles, although the higher-energy Eg particles were not
resolved [15]. The required effective longitudinal field for
realizing the Eg dynamic spectrum is provided by interchain
interactions in the ordered phase, and the corresponding one-
dimensional (1D) quantum critical point at B!® ~ 5 T [15] is
located below the 3D quantum phase transition at B3> ~ 5.3 T
(see Fig. 1) [19,23].

The absence of the higher-energy Eg particles m3 to mg
in the inelastic neutron scattering spectra was assumed to

Published by the American Physical Society
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FIG. 1. Illustration of phase diagram for a quasi-one-
dimensional (quasi-1D) ferromagnetic Ising-chain system in
an applied transverse field. For a 1D ferromagnet, a long-range
order is formed only at zero temperature, whereas a 3D order can
be stabilized at a finite temperature T in the presence of interchain
couplings. The 1D and 3D long-range orders can be suppressed
by an applied transverse field at B!P and B3P, respectively. When
B!P < B3P the Ey dynamic spectrum could be realized around B!P
as illustrated by the dashed area. Inset shows the zigzag spin chain
constituted by edge-shared CoOg octahedra in CoNb,Og.

be a consequence of an overwhelming (m; + m;) contin-
uum [15], since it is energetically more favorable to excite
two m; particles, as m3 < 2m; < my, ms, mg. This notion
may be more natural for noninteracting particles, but it is not
necessarily applicable to the concerned quantum many-body
system [17,35,36]. Using the time-evolving block decimation,
a numerical study [17] showed that the higher-energy Eg par-
ticles up to ms should stand out as sharp peaks in the dynamic
spectrum, whereas the (m; + m;) continuum contributes a
relatively small background. Moreover, the two-particle con-
tinuum (m; + my) was found to be characterized by a peaklike
maximum at the onset energy, and thus potentially resolvable
on top of the (m; + m) continuum.

Very recently the findings of the numerical simulations
were supported by rigorous quantum field theory analysis
of the dynamic spectra of the two-particle continua [35,36],
which revealed that the spectral weight of the (m; + m;)
continuum decreases considerably with increasing energy,
becoming relatively weak particularly at the energies where
the higher-energy particles are predicted to appear. Moreover,
it showed that the two-particle continua, such as (m; + m;)
and (m; + my), are not featureless but characterized by a
peaklike maximum at the onset energies which is followed
by an extended tail towards higher energies [35,36]. These
theoretical results clearly showed the exotic dynamic features
of this quantum many-body system, in contrast to the conven-
tional understanding drawing from a single-particle picture.
Motivated by these theoretical results, we experimentally re-
visited the spin dynamic spectrum in CoNb,Og by performing
high-resolution terahertz spectroscopy in an applied trans-
verse magnetic field. We identify not only the two lowest
Eg particles but also the higher-energy ones up to mg, as
well as the peaklike maximum of the two-particle continuum
(m; + my), confirming the theoretical predictions of the 1D
quantum many-body system [17,35,36].

II. EXPERIMENTAL DETAILS

Single crystals of CoNb,Og were grown by the floating-
zone technique, following the procedure reported in Ref. [43],
with few modifications. We used polycrystalline powders of
Co304 (chemical purity 99.9985%) and Nb,Os (99.9985%)
as starting materials. Two powder reactions were performed
in air at 1200°C and 1250°C, respectively, each for 12 h.
The powder was pressed to a cylindrical rod at 50 MPa,
then sintered at 1275°C. A centimeter-sized single crystal
was grown in an atmosphere of 80% O,/20% Ar and small
overpressure with a growth speed of 3 mm/h and a relative
rotation of the rods of 30 rpm. X-ray powder diffraction
measurements verified phase purity. Laue images confirmed
single crystallinity, and were used for cutting b-axis-oriented
platelike samples of about 3 mm in diameter and a thickness
of 0.5 mm for the optical measurements. On smaller samples
magnetic susceptibility measurements were performed in a
100-mT field B || b down to 1.8 K confirming the magnetic
transitions at 2.9 and 1.9 K [13,23].

Using a Sciencetech SPS200 Martin-Puplett-type spec-
trometer, field-dependent terahertz transmission measure-
ments were carried out at 4 K (above 7¢) and 0.25 K (below
T¢) with a liquid-helium bath cryostat and a *He - “He dilution
fridge, respectively, using bolometers operating at 0.3 and
0.4 K as detectors. For the 4 K experiment, a rotatable polar-
izer was placed in front of the sample for tuning polarization
of the terahertz waves [35,44]. For the 0.25 K measurements
the sample cell was attached to the cold finger of the dilu-
tion fridge (Oxford Instruments), which was equipped with a
superconducting solenoid for applying a magnetic field. The
sample cell was filled with “He gas at room temperature to
provide cooling of the sample. The radiation was filtered with
a 0.6-THz low-pass filter at 4 K before the radiation entered
the vacuum can of the dilution unit. A frequency resolution of
6 GHz was achieved in the measurements. For the optical ex-
periments, the terahertz radiation propagated in the direction
of the external magnetic field which was applied parallel to
the b axis of the CoNb, Oy single crystals.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Zero-field absorption spectra are displayed in Fig. 2 for
0.25 K with unpolarized terahertz radiation, and for 4 K with
the terahertz electric field e® || ¢ and the terahertz magnetic
field h* || a, and with the polarization (e || a, h* || ¢). At4 K
the spectrum of (e” || ¢, h* || a) exhibits two peaks at 0.22
and 0.48 THz, respectively, which are denoted by M and 2M.
The nomenclature hereafter for the zero-field excitations is
discriminated from that of the Eg particles. Around the 2M
peak one can observe a broad continuumlike feature which
extends towards higher frequency. These features are similar
to those reported for a different polarization (e“ || a, h* || b)
in Ref. [18], where the M and 2M peaks were assigned as the
one- and two-pair spinon excitations, respectively. In contrast,
these features are absent for the polarization (e® || a, K || ¢)
(see Fig. 2).

Compared with the 4 K spectrum, the 0.25 K one be-
low T exhibits more peaks, which are labeled by M; (i =
1,2,3,...,7) with increasing frequency. The energies of M;

104431-2
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FIG. 2. Absorption spectra measured in zero field at 0.25 K (be-
low T.) with unpolarized terahertz radiation, and at 4 K (above T)
for the terahertz polarizations (e“ || ¢, h* || @) and (e || a, h* || ¢).
Inset shows that the eigenenergies of the modes M, to M5 observed at
0.25 K follow a linear dependence on ¢; which are the negative zeros
of the Airy function Ai(—¢;) = 0. The linear dependence is expected
for confined-spinon excitations. The different nomenclature for these
zero-field excitations is used in order to discriminate them from the
Ej particles close to the 1D critical field B!® = 4.75 T (see below).

are shown in the inset of Fig. 2 as a function of ¢;, the
negative zeros of the Airy function Ai(—¢;) = 0. The linear
dependence on ¢; reflects the spinon confinement in a linear
confining potential [8,31], which is set up by the interchain
couplings in the magnetically ordered phase [15,18,24,27—
29,35]. Above M7 one can see a broader peak around 0.49
THz (labeled 2M;) and a broad continuum at higher en-
ergy (labeled M, 4+ M,), consistent with the observation in
Ref. [18]. The 2M, peak corresponds to a kinetic bound state
of two pairs of spinons in neighboring chains, which is located
below the excitation continuum of two independent pairs of
spinons (M + M) [15,18]. This bound state was found at the
Brillouin zone boundary ¢ = 7 by inelastic neutron scatter-
ing [15]. Due to the zigzag configuration of the chains (see
inset of Fig. 1) [34], this mode is folded to the zone center
(¢ = 0) and thus detected by the terahertz spectroscopy. We
emphasize that the spinon dynamics and the Eg spectrum are
about very different physics. The former is about the spin
dynamics of the gapped phase at zero field, whereas the latter
emerges only around the field-induced quantum critical point.

An ideal way to study the Eg dynamic spectrum would
be to first drive an Ising-chain system with an applied trans-
verse field to the quantum critical point, and then monitor
the evaluation of the spin dynamics by switching on and

tuning a perturbative longitudinal field. However, such tuning
can hardly be realized in a solid-state material, where an
effective longitudinal field is an internal field determined by
the interchain couplings. Since the transverse field will com-
pete with the interchain couplings, the 1D quantum critical
point may not be reached before the 3D order is suppressed
(e.g., in SrCo,V;,0g [24,32]). To realize the Eg spectrum,
the 1D quantum critical point should be hidden in the 3D
ordered phase as illustrated in Fig. 1, which is fulfilled in
the Ising-chain ferromagnet CoNb,O¢ [15,19] and in the
Ising-chain antiferromagnet BaCo, V,0Os [28,35,36]. This also
indicates that the observation of a spinon confinement in zero
field does not necessarily imply a realization of the Fg dy-
namic spectrum around the quantum critical field. Therefore,
it is necessary to carry out field-dependent measurements
below 7.

The evolution of the absorption spectra of CoNb,Og in an
applied transverse field along the b axis is presented in Fig. 3
for fields just below 5 T, at which the inelastic neutron scatter-
ing experiment [15] revealed the lowest two Eg particles, m;
and m,. With far more than two peaks, the absorption spectra
exhibit very rich features. At 4.75 T one observes several
well-defined sharp peaks at 0.16, 0.26, 0.32, 0.40, 0.47, and
0.51 THz, which are labeled m;, my, . .., mg, respectively, as
indicated by the arrows. A relatively broad peak is observed
at 0.43 THz as marked by the asterisk. The frequencies of m;
and my are slightly greater than the reported values of 0.12 and
0.18 THz, respectively, for the finite g-vector (3.6,0,0) by the
inelastic neutron scattering experiment [15]. This difference
may result from a weak dispersion perpendicular to the chain
direction.

The field dependence of these modes can be clearly
tracked, as indicated by the arrows in Figs. 3(a) and 3(b).
Normalized to the m; energy in each field, the eigenenergies
of these modes are presented as a function of the applied
field in Fig. 4. The energy ratios of these modes increase
monotonically with increasing field. At 4.75 T the predicted
ratios (dashed lines, see Refs. [9,10]) for the Eg particles
up to mg and for the onset energies of the two-particle con-
tinua (m; + m;) and (m; + my) are simultaneously reached,
evidencing the observation of the Eg dynamic spectrum.
The onset of the (m; + m;) continuum is very close to the
ms3 peak (*1.989m;) [9], so they cannot be distinguished
from each other in the experimental spectrum. The observed
features are consistent with the previous predictions from
the numerical simulations [17] and the quantum field-theory
analysis [35,36]. Moreover, the field-theory analysis [35,36]
showed that the two-particle continua are not featureless but
characterized by a peaklike maximum at the onset energies
followed by a continuous decrease of spectral weight towards
higher energy, which allows the identification of the continua
by their peaklike maxima. Therefore, these experimental re-
sults provide unambiguous evidence for the observation of
the high-energy Eg particles, which also points to a hidden
1D quantum critical point at BgD =4.75 T confirming the
scenario illustrated in Fig. 1 and discussed above. The value
of BIP is close to the reported 5 T in Ref. [15].

Previous theoretical analysis also predicted that the in-
tensity of the Eg particles decreases monotonically with
increasing energy [10,11,17,35,36]. Indeed, this trend is
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S ously reached at B!P = 4.75 T, evidencing the observation of the

0.2 0.3 0.4 0.5
Frequency (THz)

FIG. 3. (a) Absorption spectra of CoNb,O¢ measured at 0.25 K
in various applied transverse magnetic fields, B || b. Ax and w denote
absorption coefficient and wave number, respectively, in the unit of
cm~!. The arrows indicate the modes m;, m,, ..., mg at 4.75 T and
their field-dependent evolution. The asterisk () marks the onset of
the (m; + my) continuum. At 4.75 T the circles (o) mark the satellite
peaks. The spectra in higher fields are shifted upward by a constant
for clarity. (b) Absorption spectra measured at 5 T for 0.25 and 4 K
below and above T¢, respectively. For 0.25 K the arrows indicate
those modes marked by arrows in (a). The black arrow at the 4 K
spectrum marks a broader band observed due to the zone-folding ef-
fect. The down-pointing triangle (V) indicates a mode which similar
to m; is present both above and below 7¢. The 0.25 K spectrum is
shifted upward for clarity.

obeyed by the first four particles (m; to my), as shown in
the 4.75 T spectrum in Fig. 3(a). However, the ms and mg
peaks appear to be slightly stronger. This cannot be simply
attributed to the underlying continua (m; + m3) or (my + my)
whose spectral weight is even smaller than the high-energy
tails of the (m; + m;) and (m; 4+ my) continua [17,35,36]. The
apparent enhancement of the ms and m¢ peaks is contributed
by the low-lying spin excitation at the Brillouin-zone bound-
ary (¢ = m) [21,22]. This relatively broad band is detected
also in the disordered phase above T, as indicated by the
arrow in the 4 K spectrum in Fig. 3(b), which is observed

high-energy Ej particles in CoNb,Og.

due to the zone-folding effects [34]. It is a coincidence that
this band is located in the energy range around the ms and mg
peaks. The substantially reduced intensity of the high-energy
Eg particles could be below the resolution limit of the previous
inelastic neutron scattering experiment [15], which thus were
not resolved at that time. For the same reason the m; and mg
modes are not resolved here either.

The field dependence of the relatively small satellite peaks,
marked by the circles in Fig. 3(a), can be clearly followed as
well. With decreasing field from 4.75 T one can see a reduc-
tion of the satellite-peak intensity and a concomitant merging
of these peaks into the corresponding main ones. Above 7, in
the disordered phase [Fig. 3(b)], these satellite peaks disap-
pear; thus, they reflect dynamic properties of the 3D ordered
phase in the transverse field. In addition, as marked by the
triangles in Fig. 3(b), one can observe a peak at 0.2 THz both
in the ordered and in the disordered phases. Thus, this mode
should result from the 1D spin fluctuations possibly as a zone-
boundary excitation observed due to subleading interactions
within the zigzag chain [34].

To conclude, by performing high-resolution terahertz spec-
troscopy of the Ising-chain compound CoNb,Og below and
above the magnetic ordering temperature in an applied trans-
verse field, we have revealed the dynamic features that were
predicted to emerge around the transverse field-induced quan-
tum critical point governed by the Eg symmetry. In particular,
the high-energy Eg particles, which would be unresolvable
according the picture of noninteraction particles, have been
identified above the low-energy two-particle continua, featur-
ing the quantum many-body effects. We have also observed
features beyond the Eg dynamics, which appeals for a theoret-
ical study of a realistic model for CoNb,Og.
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Condensed matter magneto-optical investigations can be a powerful probe of a material’s microscopic
magnetoelectric properties. This is because subtle interactions between electric and magnetic multipoles on a
crystal lattice show up in predictable and testable ways in a material’s optical response tensor, which dictates the
polarization state and absorption spectrum of propagating electromagnetic waves. Magneto-optical techniques
are therefore strong complements to probes such as neutron scattering, particularly when spin-lattice coupling
effects are present. Here we perform a magneto-optical investigation of vibronic spin-lattice coupling in the
magnetically frustrated pyrochlore Tb,Ti,O;. Coupling of this nature involving quadrupolar mixing between the
Tb*" electronic levels and phonons in Tb,Ti,O; has been a topic of debate for some time. This is particularly
due to its implication for describing the exotic spin-liquid phase diagram of this highly debated system. A
manifestation of this vibronic effect is observed as splitting of the ground and first excited crystal field doublets
of the Tb** electronic levels, providing a fine structure to the absorption spectra in the terahertz (THz) frequency
range. In this investigation, we apply a static magnetic field along the cubic [111] direction while probing with
linearly polarized THz radiation. Through the Zeeman effect, the magnetic field enhances the splitting within the
low-energy crystal field transitions revealing new details in our THz spectra. Complementary magneto-optical
quantum calculations including quadrupolar terms show that indeed vibronic effects are required to describe our
observations at 3 K. A further prediction of our theoretical model is the presence of a novel magneto-optical
birefringence as a result of this vibronic process. Essentially, spin-lattice coupling within Tb,Ti,O; may break
the optical isotropy of the cubic system, supporting two different electromagnetic wave propagations within
the crystal. Together our results reveal the significance of considering quadrupolar spin-lattice effects when
describing the spin-liquid ground state of Tb,Ti,O;. They also highlight the potential for future magneto-optical
investigations to probe complex materials where spin-lattice coupling is present and reveal new magneto-optical

activity in the THz range.

DOI: 10.1103/PhysRevB.102.134428

I. INTRODUCTION

Interplay between spin and lattice degrees of freedom is
the premise behind a range of intriguing phenomena in con-
densed matter systems. When we consider the fundamental
role lattice geometry plays in the formation of conventional
periodic magnetic order, this notion is perhaps unsurprising.
Nevertheless, when energetically favorable compensations be-
tween these degrees of freedom occur, we often find novel and
potentially functional material properties emerge. A case in
point is found in the spin-Peirls transition of antiferromagnetic
quantum spin chains where—in order to lower the total energy
of the system—the lattice periodically contracts or dimerizes,
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“Present address: Fakultit Physik, Technische Universitit Dort-
mund, 44221 Dortmund, Germany
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thus favoring the formation of spin singlets, along with a
global energy gap of their excitations [1]. Another example
is that of type II multiferroics, where the lattice reacts to a
low-symmetry magnetic ordering by breaking its inversion
symmetry and inducing a polar ferroelectric phase as a re-
sult of concomitant structural deformations [2]. Spin-lattice
effects are also present in magnetically frustrated systems
where relaxations in the elastic degrees of freedom can lift
the degeneracy of magnetic configurations promoting a long-
range Néel order [3,4]. On the other hand, a dynamic interplay
between the spins and lattice of a frustrated system can be
perpetually destabilizing, inhibiting any type of order [5].
Indeed, this scenario seems to be the case in magnetically
frustrated Tb,Ti,O7, which fails to develop any long-range
magnetic order or static frustrated configuration. Rather, a
fluctuating spin liquid behavior is observed, persisting down
to temperatures as low as 50 mK [6]. A precise description of
this peculiar magnetic ground state remains a hotly debated

©2020 American Physical Society
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FIG. 1. Tb,Ti,O; cubic structure with the Tb** network. Upper
part: Cross section viewed along the [111] direction showing the
connection between tetrahedra. Lower part: one single tetrahedron.
Two orthogonal linear polarizations of the incident light beam with
k || [111] are shown in the upper corners, where the electric field
vector E and magnetic field vector H® oscillate parallel to [112] or
[110]. The static magnetic field H, shown in black, is applied perpen-
dicular to the THz polarization plane along one of the diagonals of
the cube, the [111] direction.

topic, although it is believed that spin-lattice effects play an
important role [7-10].

In Tb,Ti,O7, magnetic Tb** ions are arranged in a network
of corner-sharing tetrahedra, forming the so-called pyrochlore
lattice shown in Fig. 1. Among rare-earth pyrochlores,
Tb, Ti, O is possibly the least understood, despite having been
studied for over two decades. It certainly exhibits noticeable
spin-lattice coupling effects. These are observable in x-ray
diffraction experiments [11] and manifest as giant magne-
tostriction [12], elastic softening [7], and pressure-induced
magnetic ordering [13]. More recently, inelastic neutron scat-
tering [9,10,14] and THz spectroscopy [15] measurements
have highlighted the presence of vibronic coupling as a result
of symmetry-allowed hybridization between phonons and the
Tb>* crystal electric field (CF) states both within the ground
and first excited doublets. In particular, these couplings in-
volve quadrupolar operators that depend on the phonon mode
inducing the local dynamical strains. Additionally, it is now
well established that the phase diagram of Tb,Ti,O7 is ex-
tremely sensitive to off-stoichiometry compositions [16] and
that Tby,, Ti;_,O74, enters a quadrupolar ordered phase be-
low 500 mK for x > —0.0025 [16]. Evidently, quadrupolar
and spin-lattice effects play an important role in the ground
state of Tb,Ti,O7 and should be considered in any attempt to
understand the spin-liquid behavior of this compound.

In this study we focus on transitions between the
low energy Tb** CF excitations in Tb,Ti;O;, performing
magneto-optical observations of their modulation by an ap-
plied magnetic field. The first excited CF doublet is separated
from the ground state doublet by A ~ 1.5 meV (0.37 THz,
12 ecm™') [17-19], and several other higher energy CF excita-
tions also fall within the THz energy range [20]. To the best
of our knowledge, no extensive magnetic-field dependence of
the CF levels in Tb,Ti;O; has been previously performed.
Our experimental results are compared to quantitative theo-
retical magneto-optical calculations incorporating a quantum
mechanical vibronic coupling model. Magneto-optical stud-
ies of vibronic processes in magnetic molecules have a long
history within the physical chemistry community [21-23].
Within condensed matter physics, magneto-optical investiga-
tions are routinely applied to the study of coupled dielectric
and magnetic order parameters of multiferroics [24-26]. Yet
the combination of these ideas to probe novel spin-lattice
effects in frustrated magnets has so far remained largely unex-
plored. The aim of this paper is to provide better insight into
the magnetoelastic couplings and emerging hybrid excitations
in frustrated Tb,Ti,O; using magneto-optical and quanti-
tative theoretical techniques. Hence, we aim at broadening
our knowledge on the microscopic mechanisms responsible
for the spin liquid and quadrupolar phases it exhibits while
highlighting the potential for further magneto-optical investi-
gations of complex magnetic materials.

II. EXPERIMENTAL DETAILS

A large single crystal of Tb,Ti,O7 was grown by the float-
ing zone method using similar experimental parameters as in
Ref. [27]. A plaquette, 220 um thick and 4 mm in diameter,
was shaped with the [111] direction of the cubic pyrochlore
lattice normal to the sample surface. A wedge with an angle
of ~2° was used to avoid interference fringes in the spectra.
Another piece of the single crystal cut in close proximity to the
plaquette was used for specific heat measurements. The spe-
cific heat data revealed a behavior similar to results published
for a Tby4, Tiy—,O7 composition with x = 0.0025 [16]—quite
close to the spin liquid phase but with a quadrupolar ordering
temperature of 400 mK.

Terahertz transmission magneto-optical measurements
were performed by Fourier transform spectroscopy using a
Martin-Puplett interferometer based at the National Institute
of Chemical Physics and Biophysics in Tallinn. The Tb,Ti, O
sample was mounted inside of a superconducting magnet
within a liquid helium bath cryostat. The transmitted THz
signal was detected by a sensitive Si bolometer cooled to
300 mK using pumped *He in a separate cryogenic closed
circuit. The spectral bandwidth of the setup is 3-200 cm™!
(0.4-25 meV). The bandwidth was further limited to 80 cm™!
due to strong sample absorption at high energies.

The polarization of the incident THz radiation is controlled
by an aluminum wire-grid polarizer in front of the sample.
The spectra were measured in the Faraday configuration with
a static magnetic field up to 15 T applied along the [111] axis
and the wave vector k || [111] to the magnetic field vector
H. At each field value, the spectrum was measured with two
orthogonal polarizations, where the oscillating electric and
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magnetic fields {E“, H*} were either along {[112], [110]} or
{[110], [112]}, as shown in Fig. 1.

The spectral absorption « of a sample with thickness d
is determined by o = —(1/d)In[(1 — R)™2I/1Iy] where I is
the incident light intensity, / is the transmitted intensity at
the detector, and R is the reflection coefficient at the sample
surface. To reveal excitations that have magnetic-field depen-
dent energies and/or intensities, a differential absorption is
calculated by o; — aref = —(1/d) In(l;/Let). Here I; and It
are the transmitted light intensities detected at two different
values of the magnetic field strength. Here, for /s we use a
reference spectrum measured at O T. The primary contribution
to the reflection coefficient is the dielectric response of the
phonon spectrum in the infrared range (100-1000 cm~1) [15].
We can then safely assume that the reflection coefficient is
independent of the magnetic field strength. Therefore, the
reflectivity in the differential absorption «; — oef naturally
cancels out in the THz range for Tb,Ti,O;. To deal with
negative values in «; — oqer generated by spectral features in
the reference spectrum (o) that disappear under magnetic
field, we subtract a statistically calculated baseline from all
of the measured spectra. The baseline is created by taking the
lowest value intensity at each frequency point from the set
of measured spectra. Performing the baseline subtraction then
corrects for any negative artifacts. The collection of baseline-
corrected spectra together with the reference spectrum is what
we define as the differential absorption Aw(H) that depends
on the magnetic field strength.

III. THz SPECTROSCOPY RESULTS

The magnetic-field dependence of the differential absorp-
tion spectrum of Tb,Ti,O5 is shown in Fig. 2 at two different
temperatures, 3 K and 60 K. The two different THz polar-
izations do not show any significant differences and are only
plotted at 3 K. A wide absorption band (designated v;) is
observed centered at 14 cm™!, in agreement with previous
THz studies [15,20]. It corresponds to the transition between
the Tb>*+ ground state doublet and the first excited CF doublet.
‘When the magnetic field is increased above 5 T, the absorption
band appears to broaden with a slight decrease in amplitude
and a shift to higher energy. At approximately the same field
value, weaker excitations emerge. Two of them (v; above
20 cm™! and v, around 10 cm™!) harden with increasing
magnetic field, while another one (vs) softens and disappears
below 5 cm™!. Another broad absorption band (1) is seen at
75 cm™! at fields below 6 T, which most likely corresponds to
a transition from the ground-state level to the second excited
CF level.

At 60 K, v is still present but with a lower intensity due
to thermal depopulation of the ground state. It splits into two
different branches in high fields. On the other hand, vs, v4,
and vs are no longer observed at 60 K, while v, has a new
component (vg) that softens with magnetic field.

Combined intensity maps of the field dependence of the
differential absorption are shown in Figs. 3(a) and 3(b) for
the measurements at 3 K and 60 K, respectively. Together
the results demonstrate a high degree of modulation in the
CF energy-level scheme of Tb** ions in Tb,Ti,O7 within a
magnetic field. In order to better understand this modulation
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FIG. 2. H || [111] magnetic-field dependence of the differential
absorption Aw(H) in Tb,Ti,O; measured at (a) 3 K and (b) 60 K,
with the reference absorption measured in zero field for two different
THz polarizations (blue: H® along [112], red: H® along [110]). The
spectra are offset vertically in proportion to H. Shaded areas below
the curves are included as a guide to the eye to highlight the different
absorption bands.

and to determine the contribution from spin-lattice effects,
we now turn to a comparison with theoretically calculated
spectra.

IV. THEORETICAL ABSORPTION CALCULATIONS

In order to understand the Tb,Ti,O7 absorption spectra, we
use linear response theory, where the sample response to the
THz wave of angular frequency w is described by the complex
magnetic susceptibility tensor [ x (w)]. Here only the magnetic
part of the THz wave is considered. Omitting possible electric
effects is valid here since all the relevant CF transitions occur
within the first multiplet, i.e., between states of the same
parity. Without vibronic coupling, the compound remains in
the cubic symmetry and the susceptibility tensor is diagonal.
The absorption of a propagating THz wave with wave vector
Kk is then written [28]

" nw "
Aa(w) = 2k" (w) =~ TX (w) (€Y

as derived by solving Maxwell equations in an isotropic
medium with weak dissipation. Here c is the speed of light
in vacuum, n is the refractive index of the medium, and k is
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FIG. 3. Experimental and calculated THz absorption as a function of magnetic field applied along the [111] direction of Tb,Ti,O;. The
panels show the experimental results for 3 K (a) and 60 K (b), and the theoretical calculations for 3 K (c¢) and 60 K (d). The four Tb>* sites on
the tetrahedron (one with the field along its threefold axis shown in black and the three remaining sites shown in red) and the corresponding
field dependence of the calculated energy of their absorption branches at 3 K are presented in the middle panels (e). The different observed

branches are labeled v, to vg.

the wave number. Here and further, the notations prime and
double prime refer, respectively, to the real and imaginary part
of a quantity. The wave vector can be written as k = ku where
u is a vector perpendicular to the wavefront. In the isotropic
case that includes the cubic symmetry relevant to pyrochlore
compounds, the Poynting vector of the electromagnetic wave
S = Re[E® x @ is collinear with k outside and inside the
material. Here H® stands for the complex conjugate of H®.
The refractive index n is considered constant since the main
contribution comes from optical phonons that are at energies
higher than the measured THz range (see Ref. [15] and supple-
mentary material therein). This is generally the case in oxides
below 80 cm~! where absorption is low and very few phonons
are present. In our calculations we used n = 7.7 as deduced
from the dielectric constant of Tb,Ti»O7 at 6 K [15].

We now introduce vibronic couplings, which arise from
dynamical strains that break the local symmetry. Thus,
the four Tb** sites of a tetrahedron become inequivalent
and the whole tetrahedron has to be considered. At this
scale, the magnetic susceptibility tensor remains diagonal but
becomes slightly anisotropic, quite similarly to birefringent
crystals in optics. When a static magnetic field is applied along
the [111] cubic direction, nondiagonal components appear
in the susceptibility tensor. Two normal modes (indexed by
o = {1, 2} with different absorption are then derived from the
Maxwell’s equations. They are characterized by their wave
vectors k, and their Poynting vectors S, = Re[E{ x Higj]
that are no longer collinear. The THz wave polarization in
the material characterized by the magnetic induction B® =

mo(1 + [x(w))HH® is no longer collinear with H®. This is
illustrated in Fig. 4. A similar effect has been predicted by
considering electric quadrupole and magnetic dipole mixing
in antiferromagnets [29]. To our knowledge, this example
involving vibronic processes in a frustrated magnet has not
been previously reported.

The total absorption in the crystal will then contain contri-
butions of these two modes. The transmitted intensity is given

FIG. 4. THz wave propagation in an anisotropic medium. The
wave, linearly polarized along B® (blue), is decomposed into
the two—orthogonal and linearly polarized for simplicity of the
picture—normal modes polarized along B{ and BY (green). Inside
the crystal the two waves are normal modes, and the rays propa-
gate independently in the direction of their Poynting vector S; and
S, (red) with wave vector k; and k,, respectively, which have the
same direction (orange). At the output face, in vacuum, the Poynting
vectors are collinear again.
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by
I = e 9Re[sy1] + e 22“Re[sy2]
+ e—(k;’+k§’)dRe[eiAk’dsu + e—iAk’dSZIL 2)

where Ak’ = kj —k and s o Ef x HY. The last term in
Eq. (2) is similar to an interference term when the two normal
modes are not orthogonal. The case of orthogonal modes has
been developed in Ref. [30] and the associated absorption is
written as:

2k} (w)Re[s11] + 2k5 (w)Re[s)2]
Re[s11] + Re[sz]

When k| = k, = k, the isotropic case [equation (1)] is recov-
ered.

Equation (3) allows us to calculate the differential absorp-
tion for the wave vector of the two normal modes k,. These
are functions of the complex magnetic susceptibility tensor
components x;; which are given by:

Aca(w) =

3

wo(gsup)? Py — P
ijlw) =
xij(@) v %;(Em—E,l—ha))z—‘rl"z

where g, is the Landé factor, V is the sample volume, E,,
and E, is the energy of the different electronic levels, P,
and P, are the thermal populations of initial and final states,
and Ji, is the matrix element of the angular momentum in
the i direction between electronic states |n) and |m) of their
angular momentum in the i direction. One single linewidth
I' is used for simplicity. The energy levels are determined
by diagonalizing the corresponding Hamiltonian. We will
consider only those levels that fall within the THz energy
range at low temperatures—i.e., the ground, first, and second
levels. The Hamiltonian consists of several terms. The first
one, the CF Hamiltonian, describes the effects of the charges
surrounding each Tb>* ion on its electronic states in its local
D3, symmetry. These ions generate four Bravais lattices from
each of the four vertices of an initial Tb tetrahedron, the basic
element of the pyrochlore structure. The axis of the threefold
symmetry for each ion is parallel to a distinct member of the
family of (111) diagonals of the cubic structure characterizing
the global symmetry of the material. By selecting this local
threefold axis as the quantization z axis and the local twofold
axis as the x axis which gives rise to the point group D34, the
CF Hamiltonian is written for each ion in the same form

Her = BIOY + BYOY + BIO] + BO? + B O} + BSOS,
5)

where the expansion in Stevens equivalent operators
(quadrupolar 03, hexadecapolar OF, O3, and hexacontatetrap-
olar 62, 62) terms is given by the local D3; symmetry of the
Tb>* ions. For correspondence with Wybourne and angular
momentum operators, see Appendices A and B.

When a static magnetic field H is applied along the [111]
direction of the pyrochlore cubic lattice, one Tb*>* ion out of
four has its threefold axis along the magnetic field, while the
three remaining sites have their threefold axes at the same
colatitude (polar angle) from the magnetic field and behave

TABLE I. CF parameters used in the CF Hamiltonian.

B} meV K

B ~0.26 -3.0

B 4.5 %1073 5.2x 1072
B} —4.1 %1072 —48x 107!
B —45x10°6 ~52% 107
B —12x 107 —14 %107
BS —1.4 x 107* -1.6 x 1073

similarly. The corresponding Zeeman Hamiltonian is given by
Hz = —gspnpoH -7, (©6)

where g,ugj is the Tb*>* ion’s total magnetic moment
(J = 6). Finally, the total Hamiltonian for noninteracting
tetrahedra is given by

4
H=> Hep+H. (D
k=1

As shown in Eq. (5), the CF Hamiltonian is described in a
local frame for each Tb>* ion, while the Zeeman term is better
described in the global cubic frame. Therefore, the Stevens
equivalent operators must be rotated from the local frame
associated to each Tb ion, to the global cubic frame.

The results of the calculations using the Hamiltonian of
Eq. (4) (without vibronic coupling) are shown in Fig. 3. The
CF parameters were chosen from the literature [14] except
for BY and B3 which were slightly adjusted to match the
14 cm™! transition observed at 3 K and 0 T (see Table I and
Appendix B). Wave functions for the ground and first excited
doublets are given in Appendix C. An effective Landé factor
gs ~ 1.4 is deduced from the magnetic-field dependence of
the measured spectra. The obtained value is slightly lower
than g; = 1.5 expected for a pure Tb>* jon ground multi-
plet and reveals the J-mixing effects seen in the intermediate
coupling regime [14]. A single linewidth of 2.4 cm™! is used,
in agreement with the zero-field data. We find no significant
dependence on the polarization of the THz radiation in the
calculated spectra, consistent with experiment. The calculated
absorption has two contributions when the applied static mag-
netic field is varied [see panel (e) in Fig. 3]: one from the Tb>*
site (1) that has its local threefold axis along the magnetic
field direction, the other one from the three other sites (2—
4) on the tetrahedron that have their local threefold axes at
109.5 degrees relative to the applied magnetic field. When the
magnetic field is increased, the ground and first excited CF
levels—both of which are doublets—split into two branches:
a softening lower-frequency branch and a hardening higher-
frequency branch that decreases (respectively increases) in
energy with increased magnetic field. The second CF level is
a singlet and its energy increases with the magnetic field.

As seen in Fig. 3, the agreement with the experimental
data is already remarkable. The field dependence of the main
excitations v and v, is well reproduced at 3 K. The first one
originates entirely from sites 2—4 and corresponds to the tran-
sition to their first CF level. The second one has contributions
from all sites and is the transition to the second CF level.
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FIG. 5. Calculated absorption as a function of magnetic field applied along [111] at 3 K and 60 K for two THz polarizations with no vibron
[(a),(b)], with a vibron associated with (921 [(c)—(f)], and a vibron associated with (9% [(g)-(j)] quadrupolar operators.

Weaker features in the absorption maps are also reasonably
well reproduced: v; for the transition to the first CF level
(upper branch for sites 2—4 and lower branch for site 1) and
vy for the transition within the initial ground doublet for sites
2-4. Also note the peculiar magnetic-field dependence of vs:
For a field lower than 3 T it is the equivalent of v4 for site
(1), but above 3 T, the transition to the first excited CF level
occurs, producing the only excitation decreasing in energy
with the magnetic field. A third branch starting at 14 cm™!
and increasing more rapidly under magnetic field than the
other branches [visible in Fig. 3(e)] is calculated to be very
weak in intensity. It is not visible in either of the calculated or
measured absorption maps [Figs. 3(c) and 3(a)].

With our theoretical basis for the field dependence of the
CF energy scheme we also reproduce the 60 K results: the
main branches, v; at 14 cm~! and v, at 70 cm™', as well as
a new branch decreasing from 75 cm™! (vg). Noticeably, two
additional weak and rather flat branches are calculated around
65 cm~! and 14 cm™! but not observed in the THz absorption
spectra.

As the next step, we have performed calculations including
spin-lattice effects through vibronic couplings between the
Tb** crystal field excitations and transverse phonon modes. It
has been shown that there are two vibronic processes present:
one that couples the first excited Tb** CF level with a silent
optical phonon of 75, symmetry and another one that involves
an acoustic phonon coupled to both the ground and first
excited CF levels [15]. In particular, these spin-lattice cou-
plings were shown to involve the Tb>* quadrupolar degrees of
freedom and give rise to the following symmetry-constrained

vibronic Hamiltonian
Hop = DIOY + D303 + O; ) + D3(D2 + O07%) (8

when the vibronic coupling is assumed isotropic in the plane
perpendicular to the threefold axis. Note that the quadrupo-
lar operator O is already present in the CF Hamiltonian. It
accounts for the coupling to the silent optical phonon and
will not change the symmetry of the system but will sim-
ply renormalize its energy eigenvalues. On the other hand,
OF operators with m = £1, +2, associated with the acoustic
phonons, are not present in the CF Hamiltonian. They induce
a splitting of the ground and first excited CF doublets as de-
scribed in Ref. [15]. The associated wave functions are given
in Appendix C. The resulting susceptibility tensor is no longer
diagonal and the crystal becomes slightly birefringent.

The influence of both terms (Dé and D%) of the acoustical
vibronic coupling on the calculated absorption spectra is pre-
sented in Fig. 5. A smaller linewidth of 0.5 cm~! was used
in the calculation to better distinguish the different branches
that appear due to the vibronic coupling. The Tb>* sites
2-4 are no longer equivalent and the associated branches
are split into two or three components that are more or less
distinguishable. This is particularly true for the lower-energy
branch at 3 K just below v;, where two groups of lines are
now clearly observed in agreement with the experimental
data for vs. At 60 K absorption branches are more spread
out and therefore less intense. We suspect this could be an
explanation for the absence of the flatter bands in the ex-
perimental data. Their combination of weak intensity and
moderate field dependence would cancel them out in our back-
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ground subtraction analysis method. Furthermore, we also
note the slight polarization dependence that shows up at both
temperatures.

V. DISCUSSION

A comparison of the experimental and the simulated
magneto-optical THz spectra demonstrates that the low-
energy dynamics of Tb,Ti,O7 is well captured by a simple
Hamiltonian with only CF and Zeeman contributions. How-
ever, our results also indicate that including spin-lattice effects
by way of vibronic coupling provides an improved agree-
ment between theory and experiment with the addition of
several weaker branches at both 3 K and 60 K. Although
subtle, these features are clearly evident in the experimental
data, particularly for the transition assigned v4. They provide
strong evidence that spin-lattice coupling is at play within the
energy and time scales relevant to the ground state of this
quantum spin liquid. In particular, the vibronic couplings of
quadrupolar origin will lower the symmetry of the dynam-
ical susceptibility tensor, which, without external magnetic
field, becomes slightly orthorhombic. This implies a dynamic
modulation of the local CF environment that describes the
magnetic behavior including the potential for entanglement
between the different CF levels.

Our results confirm that entanglement between the ground
and first excited CF states through the vibronic process is
of utmost importance in understating the phase diagram of
Tb,Ti,O7 at lower temperatures, as was already suggested in
Ref. [15]. It is difficult to unambiguously quantify the strength
of the quadrupolar couplings associated with O} and O3.
However, according to the observed splittings of the different
branches, the Dé and/or D% terms fall within the energy range
0-10 peV. Note that these operators, having E, symmetry
in the local D3y environment, have E; @ Ty, @ Tp, symme-
try in the global cubic environment. From a symmetry point
of view, they are equivalent to a combination of tetragonal
and trigonal stress. Nothing clearly distinguishes one operator
from the other, except for their strength. As can be seen in
Figs. 5(c), 5(¢) 5(g), and 5(h), operator OF' has a larger effect
on the splitting of the different branches than O3 does. As
a matter of fact, the matrix elements of Ozi' between the
ground and first excited states are five times larger than those
of O] at zero applied magnetic field, which would imply five
times larger vibronic effects for equal D} and D? parameters.
This is consistent with the oscillator strength associated with
each of the quadrupolar operators, which depends on the
structure of the ground and excited doublet states. Note that
all of these operators act on the transverse components of
the Tb>* angular momentum. It is then possible that these
vibronic couplings have some role to play in the low tem-
perature phase diagram of Tby,Ti;_,O74, below 1 K, where
a spin liquid or a quadrupolar ordered phase is observed
[31].

Finally, due to the high magnetic fields used in this study,
we have been able to refine with greater precision the crystal
field parameters (see Table I) and the Landé factor g; ~ 1.4.
Within the energy range probed, there is no sign of spin waves
down to 3 K, which could be present due to a possible ordered
magnetic state as observed by neutron diffraction at 40 mK

TABLE II. Values of A}’ parameters involved in the CF Hamilto-
nian of the studied pyrochlore.

AV % 29 ¥ 28
12 1/8 =352 1/16  —105/8  /231/16

[32]. Indeed our analysis is in perfect agreement with the
measured “3-in/1-out, 3-out/1-in” spin orientation per tetra-
hedron induced by the magnetic field applied along [111] as
well as the proposed dynamical Jahn-Teller model [32]. Our
results and analysis allow us to give a more precise description
of these spin-lattice couplings.

VI. CONCLUSION

By performing magneto-optical THz spectroscopy mea-
surements of Tb,Ti,O7, we have showed the magnetic field
dependent evolution of the low energy CF level scheme for
Tb3*. Using a simple-model Hamiltonian that incorporates
CF and Zeeman contributions, we were able to reproduce the
overall field-dependent trends observed in the experiments,
in particular the multiple branches that can be attributed to
transitions between the different levels for each site in the
elementary tetrahedra. However, finer structure observed in
the experiment cannot be captured by the simple model and
is only reproduced after the inclusion of a vibronic spin-
lattice coupling process where the ground and first excited
CF doublets are hybridized with acoustic phonons by way
of quadrupolar Stevens equivalent operators. The results add
further support to the growing evidence that spin-lattice cou-
pling and quadrupolar terms are important when describing
the frustrated ground state of Tb,Ti,O7, a topic that is still
under debate. Finally, we also predict that under an external
magnetic field, these couplings induce a novel birefringent
response of this otherwise cubic pyrochlore. While this effect
has not been tested, a direct measurement would provide
further support to the vibronic model. We suggest that this
highlights the potential for future magneto-optical investiga-
tions aimed at probing complex magnetic phases where spin
and lattice degrees of freedom are present. It also open new
routes to design magneto-optically active materials.
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TABLE 1V. CF B}’ parameters (in meV) refined in different recent studies, together with those used in this work. *LS-coupling scheme.

**Intermediate coupling scheme.

BY BY B} BY B} B¢
Ref. [37] —0.34 4.9 x 1073 43 x 1072 —7.9 x 107° 1.3 %107 —1.1 x 107*
Ref. [38] —-0.28 5.0x 1073 3.4 %1072 —7.5%x107° 1.1x10™* —12x10*
Ref. [39] —0.73 4.1 x 1073 5.9 x 1072 —12x10°° —5.0x 1074 —8.5x 107*
Ref. [42] —0.28 5.7 %1073 4.6 x 1072 —8.0 x 1076 1.6 x 1074 —1.3x10™*
Ref. [14]* —0.28 4.7 x 1073 4.1 %1072 —4.5 x 1076 1.2 x 1074 —14x10™*
Ref. [14]%* —0.27 5.6 x 1073 3.9 x 1072 —6.9x 107 1.7 x 1074 —14x10™*
This work —0.26 4.5 %1073 —4.1 x 1072 —4.5 % 1076 —1.2 x 10™* —1.4 x 10™*

ject No. B05). SciPy library [33] for Python was used for the
data analysis and representation, and the crystal structure was
modeled in Vesta software [34].
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APPENDIX A: STEVENS EQUIVALENT OPERATORS

The Stevens equivalent operators (’5’” used in equations (5)
and (8) can be expressed as functions of the angular momen-
tum operators T ¢y, and J+ of the rare earth ground multiplet.
Here we give their correspondence together with the one for
Stevens equivalent operators using the x, y, z, notation. These
operators are tabulated in Refs. [35,36]. We will use

X=JU+DI
where T is the identity operator. It follows that
N =0,=3T.-X

1 o
= ~(TTy + 1T,
2( e+ JJ2)

~ ~ 1 ~an s
OEI = O)'z = E(JZJ,V + J\‘IZ)

0} =20,_p = %(E +P)=-T
0y? =20, =~ = ) = 13, + 70,

05 = [30X — 2511772 + [3X> — 6X]

03 = %[J?(JE + )+ @+ P

0! = %(ﬁ‘ +7%)

O = 231J° — [315X — 7351\7}
+ [105X2 — 525X + 294117>
— [5X7 — 40X? + 60X]

1 . —
03 = Z[{111? — BX 4+ 59DLYT + )

+ T3+ )T = BX +59DT.)]

1
= 5(J“i +7°)
APPENDIX B: CRYSTAL FIELD PARAMETERS
LITERATURE REVIEW

In the pyrochlore literature, there exists mainly two ways
to write the crystal field (CF) Hamiltonian of the rare earth
element: with Stevens equivalent operators O as in this study
and in Refs. [37-39] and with the Wybourne operators [40,41]

C,’,’,, as in Refs. [14,17,19,42]. The Wybourne operators are
defined as
~ 4 ~
o= [ 2 _gm, (B1)
2n+1

where f’;’" are the spherical harmonics operators. The CF
Hamiltonian for the D3, point group relevant for the rare earth
element in the pyrochlore compounds is then

+ WG
(B2)

HE = WG+ WitCo + Wi (C2, — CF) +
+WP(C05 = C3) + W (Co6 + CF).

TABLE V. Wave functions of the ground and first excited dou-
blets, obtained by diagonalization of the CF Hamiltonian [equation
(5)] without vibronic coupling (D} = D} = 0). The value in brakets
following the wave-function name is its associated eigenenergy.

WH00) [0 [whHa3s)  phHa3s)
16)
|5) 0.35 —0.89
4) ~091 ~0.37
13)
12) 0.18 —0.25
1) —0.13 —0.14
0)
|—1) —-0.13 —0.11
| —2) —0.18 0.25
|-3)
| —4) 0.91 0.37
| —=5) 0.35 —0.89
|- 6)
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TABLE VI. Wave functions of the ground and first excited doublets, obtained by diagonalization of the CF Hamiltonian [equation (5)] with
a vibronic coupling parameter D} = —9.1 x 107> meV. The value in brakets following the wave-function name is its associated eigenenergy.
Only coefficients of wave functions >1072 are shown.

[¥1)(0.0) [¥2)(2.76) [¥3)(13.8) [¥4)(16.6)
16)
|5) —0.30 —0.09 — 0.12¢ —0.14 4+ 0.64i —0.13 — 0.59i
|4) —0.44 — 0.43i —0.09 + 0.67i —0.14 + 0.09i —0.17 4+ 0.27i
|3) —0.01i —-0.02
|2) —0.14 —0.06 — 0.08i —0.04 4+ 0.19i —0.03 — 0.16i
|1) —0.06 — 0.06i —0.01 4+ 0.10{ —0.06 + 0.04i —0.05 4 0.08i
|0
| —1) 0.08 0.06 + 0.08i —0.02 4+ 0.07i —0.02 — 0.09¢
| —2) —0.10 — 0.10i —0.01 4+ 0.11{ 0.16 — 0.10i 0.09 — 0.14i
| —3) 0.01 —0.02
| —4) —0.62 —0.41 -0.54 0.04 —0.17i 0.07 4+ 0.31i
| —5) 0.21 4 0.20i 0.02 — 0.15¢ —0.55+0.36i —0.334-0.51i
| —6)
where W, are the Wybourne crystal field parameters. Note Appendix A
that, in the literature, these quantities are often denoted B, — -
the same way (except with an index exchange) as the Stevens O = 0,())Oy, (B4)

crystal field parameters B}'. Here, we prefer a different nota-
tion to avoid confusion. —

The Stevens operators O are then derived from the
‘Wybourne operators [43]

where the matrix element 6,(J) are tabulated for the ground
multiplet of all trivalent 4/ ions in Refs. [35,36] and repro-
duced here for Tb>* in Table III. The relationship between the
Stevens and Wybourne crystal field parameters is then

— . By = n0,())W,". (BS)
O =o'

—m

+(=1)"Ch), (B3) N
We can now compare the CF parameters obtained in different
studies for Tb,Ti,O7 (Table IV).

where the proportionality factors A)' are reproduced in Ta- One can be surprised that the sign of our B} and B} pa-

ble II for those which are involved in the CF Hamiltonian
of the studied pyrochlore. Then, within the Hilbert space
restricted to the ground multiplet J, this Stevens operator
can be expressed as_a function of the associated Stevens
equivalent operators O used in this study and reproduced in

rameters are different from those of most of the literature.
However, as pointed out by Bertin et al. [37], when the
sign of these two parameters are exchanged, there is no ef-
fect on the Hamiltonian eigenvalues. This property is only
true without magnetic field, which is the case for all the

TABLE VII. Wave functions of the ground and first excited doublets, obtained by diagonalization of the CF Hamiltonian [equation (5)] with
a vibronic coupling parameter D3 = —9.1 x 107 meV. The value in brakets following the wave-function name is its associated eigenenergy.
Only coefficients of wave functions > 1072 are shown.

[11)(0.0) [¥2)(1.07) [¥3)(13.7) [¥4)(14.3)
16)
15) —0.23 4 0.12 0.14 — 0.19 —0.44 — 0.46i —0.19 +0.59
14) —0.19 4+ 0.61i 0.10 4 0.64i —0.26 — 0.01i —0.12 — 0.25i
13) —0.01
12) —0.12 + 0.07i 0.07 — 0.10i —0.12 — 0.13i —0.05+0.16i
1) —0.03 4+ 0.08i 0.01 4 0.09i —0.08 —0.04 — 0.07i
10)
|—1) 0.08 — 0.04i —0.05 + 0.07i —0.05 — 0.06i —0.03 +0.08i
|—2) —0.04 +0.13; 0.02 +0.12i 0.18 0.07 4 0.15i
| —3) —0.01
| —4) —0.56 + 0.30i 0.38 — 0.53i 0.17 +0.18i 0.08 — 0.26i
| —5) 0.07 — 0.25i —0.04 — 0.23i —0.63 — 0.03 —0.27 — 0.56i
| —6)
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previous neutrons and optical studies, but does not hold un-
der an applied magnetic field. Indeed, we find much better
agreement between our experimental results and calculations
with B3 < 0 and B3 > 0; the eigenenergies at zero magnetic
field are strictly identical when changing the sign of these two
parameters.

APPENDIX C: WAVE FUNCTIONS FOR
CRYSTAL-FIELD STATES

The wave functions for the ground and first excited dou-
blets are given in the included Tables V, VI, VII, without and
with the vibronic coupling.

[1] R. Comes, M. Lambert, H. Launois, and H. R. Zeller, Evidence
for a peierls distortion or a kohn anomaly in one-dimensional
conductors of the type K,Pt(CN),Bry 3 - tH,O, Phys. Rev. B
8, 571 (1973).

[2] D. Khomskii, Classifying multiferroics: Mechanisms and
effects, Physics 2, 20 (2009).

[3] S.-H. Lee, C. Broholm, T. H. Kim, W. Ratcliff, and S-W.
Cheong, Local Spin Resonance and Spin-Peierls-Like Phase
Transition in a Geometrically Frustrated Antiferromagnet,
Phys. Rev. Lett. 84, 3718 (2000).

[4] O. Tchernyshyov, R. Moessner, and S. L. Sondhi, Order by
Distortion and String Modes in Pyrochlore Antiferromagnets,
Phys. Rev. Lett. 88, 067203 (2002).

[51J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Magnetic
pyrochlore oxides, Rev. Mod. Phys. 82, 53 (2010).

[6] J. S. Gardner, A. Keren, G. Ehlers, C. Stock, E. Segal, J. M.
Roper, B. Fik, M. B. Stone, P. R. Hammar, D. H. Reich, and
B. D. Gaulin, Dynamic frustrated magnetism in Tb,Ti,O; at 50
mK, Phys. Rev. B 68, 180401 (2003).

[7] Y. Nakanishi, T. Kumagai, M. Yoshizawa, K. Matsuhira, S.
Takagi, and Z. Hiroi, Elastic properties of the rare-earth di-
titanates R,Ti,O; (R = Tb, Dy, and Ho), Phys. Rev. B 83,
184434 (2011).

[8] P. Bonville, I. Mirebeau, A. Gukasov, S. Petit, and J. Robert,
Tetragonal distortion yielding a two-singlet spin liquid in py-
rochlore Tb,Ti,O7, Phys. Rev. B 84, 184409 (2011).

[9] S. Guitteny, J. Robert, P. Bonville, J. Ollivier, C. Decorse,
P. Steffens, M. Boehm, H. Mutka, I. Mirebeau, and S. Petit,
Anisotropic Propagating Excitations and Quadrupolar Effects
in Tb,Ti, O7, Phys. Rev. Lett. 111, 087201 (2013).

[10] T. Fennell, M. Kenzelmann, B. Roessli, H. Mutka, J. Ollivier,
M. Ruminy, U. Stuhr, O. Zaharko, L. Bovo, A. Cervellino,
M. K. Haas, and R. J. Cava, Magnetoelastic Excitations in the
Pyrochlore Spin Liquid Tb,Ti,O7, Phys. Rev. Lett. 112, 017203
(2014).

[11] J. P. C. Ruff, Z. Islam, J. P. Clancy, K. A. Ross, H. Nojiri,
Y. H. Matsuda, H. A. Dabkowska, A. D. Dabkowski, and B. D.
Gaulin, Magnetoelastics of a Spin Liquid: X-Ray Diffraction
Studies of Tb,Ti,O7 in Pulsed Magnetic Fields, Phys. Rev. Lett.
105, 077203 (2010).

[12] I. V. Aleksandrov, B. V. Lidskii, L. G. Mamsurova, M. G.
Neigauz, K. S. Pigal’skii, K. K. Pukhov, N. G. Trusevich, and
L. G. Shcherbakova, Crystal field effects and the nature of the
giant magnetostriction in terbium dititanate, Sov. Phys. JETP
62, 1287 (1985).

[13] I. Mirebeau, I. N. Goncharenko, P. Cadavez-Peres, S. T.
Bramwell, M. J. P. Gingras, and J. S. Gardner, Pressure-induced
crystallization of a spin liquid, Nature (London) 420, 54 (2002).

[14] M. Ruminy, E. Pomjakushina, K. lida, K. Kamazawa, D. T.
Adroja, U. Stuhr, and T. Fennell, Crystal-field parameters of the
rare-earth pyrochlores Tb,Ti,O; (R = Tb, Dy, and Ho), Phys.
Rev. B 94, 024430 (2016).

[15] E. Constable, R. Ballou, J. Robert, C. Decorse, J.-B. Brubach, P.
Roy, E. Lhotel, L. Del-Rey, V. Simonet, S. Petit, and S. deBrion,
Double vibronic process in the quantum spin ice candidate
Tb,Ti,O7 revealed by terahertz spectroscopy, Phys. Rev. B 95,
020415(R) (2017).

[16] T. Taniguchi, H. Kadowaki, H. Takatsu, B. Fék, J. Ollivier, T.
Yamazaki, T. J. Sato, H. Yoshizawa, Y. Shimura, T. Sakakibara,
T. Hong, K. Goto, L. R. Yaraskavitch, and J. B. Kycia,
Long-range order and spin-liquid states of polycrystalline
Tby4, Tir—,O74y, Phys. Rev. B 87, 060408(R) (2013).

[17] M. ]. P. Gingras, B. C. den Hertog, M. Faucher, J. S. Gardner,
S. R. Dunsiger, L. J. Chang, B. D. Gaulin, N. P. Raju, and
J. E. Greedan, Thermodynamic and single-ion properties of
Tb** within the collective paramagnetic-spin liquid state of the
frustrated pyrochlore antiferromagnet Tb,Ti,O7, Phys. Rev. B
62, 6496 (2000).

[18] J. S. Gardner, B. D. Gaulin, A. J. Berlinsky, P. Waldron, S. R.
Dunsiger, N. P. Raju, and J. E. Greedan, Neutron scattering
studies of the cooperative paramagnet pyrochlore Tb,Ti,O,
Phys. Rev. B 64, 224416 (2001).

[19] I. Mirebeau, P. Bonville, and M. Hennion, Magnetic excitations
in Tb,Sn,0; and Tb,Ti,O; as measured by inelastic neutron
scattering, Phys. Rev. B 76, 184436 (2007).

[20] T. T. A. Lummen, I. P. Handayani, M. C. Donker, D. Fausti,
G. Dhalenne, P. Berthet, A. Revcolevschi, and P. H. M. van
Loosdrecht, Phonon and crystal field excitations in geometri-
cally frustrated rare earth titanates, Phys. Rev. B 77, 214310
(2008).

[21] Dennis J. Caldwell, Vibronic theory of circular dichroism,
J. Chem. Phys. 51, 984 (1969).

[22] Timothy A. Keiderling, Observation of magnetic vibrational
circular dichroism, J. Chem. Phys. 75, 3639 (1981).

[23] M. Pawlikowski and T. A. Keiderling, Vibronic coupling effects
in magnetic vibrational circular dichroism. a model formal-
ism for doubly degenerate states, J. Chem. Phys. 81, 4765
(1984).

[24] A. M. Kalashnikova, R. V. Pisarev, L. N. Bezmaternykh, V. L.
Temerov, A. Kirilyuk, and Th. Rasing, Optical and magneto-
optical studies of a multiferroic GaFeO3; with a high Curie
temperature, J. Exp. Theor. Phys. Lett. 81, 452 (2005).

[25] A. Pimenov, A. A. Mukhin, V. Yu. Ivanov, V. D. Travkin, A. M.
Balbashov, and A. Loidl, Possible evidence for electromagnons
in multiferroic manganites, Nat. Phys. 2, 97 (20006).

[26] S. Miyahara and N. Furukawa, Theory of magneto-optical
effects in helical multiferroic materials via toroidal magnon
excitation, Phys. Rev. B 89, 195145 (2014).

[27] S. Petit, P. Bonville, J. Robert, C. Decorse, and I. Mirebeau,
Spin liquid correlations, anisotropic exchange, and symmetry
breaking in Tb,Ti,O7, Phys. Rev. B 86, 174403 (2012).

[28] Laura Chaix, Dynamical magnetoelectric coupling in multifer-
roic compounds : iron langasites and hexagonal manganites,
Ph.D. thesis, Université de Grenoble (2014).

134428-10



TERAHERTZ MAGNETO-OPTICAL INVESTIGATION OF ...

PHYSICAL REVIEW B 102, 134428 (2020)

[29] E. B. Graham and R. E. Raab, Magnetic effects in antiferro-
magnetic crystals in the electric quadrupole-magnetic dipole
approximation, Philosophical Magazine B 66, 269 (1992).

[30] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics
(John Wiley & Sons, Ltd, 1991).

[31] H. Takatsu, S. Onoda, S. Kittaka, A. Kasahara, Y. Kono,
T. Sakakibara, Y. Kato, B. Fik, J. Ollivier, J. W. Lynn, T.
Taniguchi, M. Wakita, and H. Kadowaki, Quadrupole Order in
the Frustrated Pyrochlore Tb,, , Ti;_,O7.,, Phys. Rev. Lett. 116,
217201 (2016).

[32] A. P. Sazonov, A. Gukasov, H. B. Cao, P. Bonville, E.
Ressouche, C. Decorse, and 1. Mirebeau, Magnetic structure
in the spin liquid Tb,Ti,O7 induced by a [111] magnetic field:
Search for a magnetization plateau, Phys. Rev. B 88, 184428
(2013).

[33] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T.
Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser,
J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman,
N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson,
C. J. Carey, I Polat, Y. Feng, E. W. Moore, J. VanderPlas, D.
Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero,
C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P.
van Mulbregt, and SciPy 1.0 Contributors, SciPy 1.0: funda-
mental algorithms for scientific computing in python, Nature
Methods 17, 261 (2020).

[34] K. Momma and F. Izumi, VESTA 3 for three-dimensional visu-
alization of crystal, volumetric and morphology data, J. Appl.
Cryst. 44, 1272 (2011).

[35] K. W. H. Stevens, Matrix elements and operator equivalents
connected with the magnetic properties of rare earth ions, Proc.
Phys. Soc. Sec. A 65, 209 (1952).

[36] M. T. Hutchings, Point-charge calculations of energy levels of
magnetic ions in crystalline electric fields, Solid State Phys. 16,
227 (1964).

[37] A Bertin, Y Chapuis, P Dalmas de Réotier, and A Yaouanc,
Crystal electric field in the R,Ti,O; pyrochlore compounds,
J. Phys.: Condens. Matter 24, 256003 (2012).

[38] V. V. Klekovkina and B. Z. Malkin, Crystal field and magnetoe-
lastic interactions in Tb,Ti,O7, Optics and Spectroscopy 116,
849 (2014).

[39] J. Zhang, K. Fritsch, Z. Hao, B. V. Bagheri, M. J. P. Gingras,
G. E. Granroth, P. Jiramongkolchai, R. J. Cava, and B. D.
Gaulin, Neutron spectroscopic study of crystal field excita-
tions in Tb,Ti,O; and Tb,Sn,07, Phys. Rev. B 89, 134410
(2014).

[40] G. Racah, Theory of complex spectra. II, Phys. Rev. 62, 438
(1942).

[41] B. G. Wybourne, Spectroscopic Properties of Rare Earths
(Interscience Publishers, New York, 1965).

[42] A. J. Princep, H. C. Walker, D. T. Adroja, D. Prabhakaran, and
A. T. Boothroyd, Crystal field states of Tb** in the pyrochlore
spin liquid Tb,Ti,O; from neutron spectroscopy, Phys. Rev. B
91, 224430 (2015).

[43] A.J. Kassman, Relationship between the coefficients of the ten-
sor operator and operator equivalent methods, J. Chem. Phys.
53,4118 (1970).

134428-11



Curriculum Vitae

1. Personal data

Name Kirill Amelin
Date and place of birth 23 May 1991, Tallinn, Estonia
Nationality Estonian

2. Contact information

Address National Institute of Chemical Physics and Biophysics (KBFI)
Akadeemia tee 23, 12618 Tallinn, Estonia

Phone +372 55515006

E-mail kirill.amelin@kbfi.ee

3. Education

2017-... Tallinn University of Technology, School of Science,

Engineering Physics, PhD

2014-2016 KTH Royal Institute of Technology, School of Electrical Engineering,
Electrophysics, MSc

2010-2014 Tallinn University of Technology, Faculty of Science,
Engineering Physics, BSc

4. Language competence

Russian native
Estonian fluent
English fluent
Swedish intermediate

5. Professional employment

2017- ... National Institute of Chemical Physics and Biophysics (KBFI), Junior Researcher
2017 The European Organization for Nuclear Research (CERN), Trainee

2016-2017  National Institute of Chemical Physics and Biophysics (KBFI), Engineer
2014-2016  KTH Royal Institute of Technology, Technician

6. Computer skills
e Operating systems: Windows, MacOS, Linux
e Document preparation: Microsoft Office, Latex
e Programming languages: Python, Matlab, Wolfram Mathematica

e Scientific packages: matplotlib, NumPy, SciPy, Pandas, Origin

126



7. Defended theses

e 2016, Analysis of ICRH of H and He-3 minorities in D and D-T plasmas in JET, MSc, su-
pervisor Prof. Thomas Jonsson, KTH Royal Institute of Technology, Division of Fusion
Plasma Physics

e 2014, The influence of different surface treatments on heterojunction properties in
Cu,ZnSnS4/CdS solar cells, supervisor Prof. Jiiri Krustok, Tallinn University of Tech-
nology, Department of Materials Science

10. Field of research

e FIELD OF RESEARCH: 4. Natural Sciences and Engineering; 4.10. Physics and Techni-
cal Physics; CERCS SPECIALITY: P260 Condensed matter: electronic structure, elec-
trical, magnetic and optical properties, supraconductors, magnetic resonance, re-
laxation, spectroscopy; SPECIALITY: THz spectrometry of low dimensional and strongly
correlated electron and spin systems, high magnetic fields, low temperature

11. Scientific work

Papers

1. K. Amelin, U. Nagel, R. S. Fishman, Y. Yoshida, Hasung Sim, Kisoo Park, Je-Geun Park,
and T. R66m, “Terahertz absorption spectroscopy study of spin waves in orthoferrite
YFeOj3 in a magnetic field,” Phys. Rev. B, vol. 98, p. 174417, Nov 2018.

2. Z. Zhang, K. Amelin, X. Wang, H. Zou, J. Yang, U. Nagel, T. R66m, T. Dey, A. A. Nu-
groho, T. Lorenz, J. Wu, and Z. Wang, “Observation of Eg particles in an Ising chain
antiferromagnet,” Phys. Rev. B, vol. 101, p. 220411, Jun 2020.

3. K. Amelin, J. Engelmayer, J. Viirok, U. Nagel, T. R66m, and Z. Wang, “Experimental
observation of quantum many-body excitations of Eg symmetry in the Ising chain
ferromagnet CoNb,QOg,” Phys. Rev. B, vol. 102, p. 104431, Sep 2020.

4. K.Amelin, Y. Alexanian, U. Nagel, T. R66m, J. Robert, J. Debray, V. Simonet, C. Decorse,
Z.Wang, R. Ballou, E. Constable, and S. de Brion “Terahertz magneto-optical investi-
gation of quadrupolar spin-lattice effects in magnetically frustrated Tb, Ti;O7,” Phys.
Rev. B, vol. 102, p. 13442, Oct 2020.

Conference presentations

1. K. Amelin. lon cyclotron resonance heating of plasma in a fusion reactor, Graduate
School of Functional Materials and Technology (GSFMT) Scientific Conference, 7-8
March 2017, Tartu, Estonia

2. K. Amelin. Study of magnetism-driven order by THz absorption spectroscopy, 3rd
Grandmaster PhD Workshop in Physics, 19-23 February 2018, Vienna, Austria

3. K. Amelin. THz absorption spectroscopy study of spin waves in orthoferrite YFeOs,
American Physics Society March Meeting, 5-9 March 2018, Los Angeles, USA

4. K. Amelin. THz absorption spectroscopy study of spin waves in orthoferrite YFeOs in
a magnetic field, The European Magnetic Field Laboratory (EMFL) summer school,
26-30 September 2018, Arles, France

127



. K. Amelin. THz absorption spectroscopy study of spin waves in orthoferrite YFeO3 in
a magnetic field, Graduate School of Functional Materials and Technology (GSFMT)
Scientific Conference, 1-2 February 2019, Tartu, Estonia

. K. Amelin. Spin structure models of YFeO3 from THz spectroscopy study, American
Physics Society March Meeting, 4-8 March 2019, Boston, USA

7. K. Amelin. “Special frequency region": opportunities and limitations behind Fourier-
transform terahertz spectroscopy, Centre of Excellence “Emerging orders in quan-
tum and nanomaterials" EQUIiTANT Seminar, 14-15 June 2019, Vehendi, Estonia

. K. Amelin. THz absorption spectroscopy study of spin waves in orthoferrite YFeOs,
4th Grandmaster PhD Workshop in Physics, 1-7 September 2019, Split, Croatia

. K. Amelin. THz spectroscopy study of the rare-earth pyrochlore Tb,Ti»O7, Graduate
School of Functional Materials and Technology (GSFMT) Scientific Conference, 4-5
February 2020, Tallinn, Estonia

. K. Amelin. THz spectroscopy study of the rare-earth pyrochlore Th,Ti,O7, American
Physics Society March Meeting (CANCELLED), 2-6 March 2020, Denver, USA

. K. Amelin. Magnetoelectric SmFe3(BO3)4 as a model system of quantum optics, In-
ternational Conference on Low Energy Electrodynamics in Solids (CANCELLED), 27
June-2 July 2020, Portland, ME, USA

128



Elulookirjeldus

1. Isikuandmed

Nimi Kirill Amelin
Siinniaeg ja -koht 23.05.1991, Tallinn, Eesti
Kodakondsus Eesti

2. Kontaktandmed

Aadress Keemilise ja Bioloogilise Fiitisika Instituut
Akadeemia tee 23, 12618 Tallinn, Eesti
Telefon +372 55515006

E-post kirill.amelin@kbfi.ee
3. Haridus
2017-... Tallinna Tehnikalilikool, Loodusteaduskond,

Tehniline Flitisika, doktoridpe

2014-2016 KTH Royal Institute of Technology, School of Electrical Engineering,
Electrophysics, MSc

2010-2014 Tallinna Tehnikatlikool, Matemaatika-loodusteaduskond,
Tehniline Fulsika, BSc

4. Keelteoskus

vene keel emakeel
eesti keel korgtase
inglise keel korgtase
rootsi keel kesktase

5. Teenistuskaik

2017- ... Keemilise ja Bioloogilise Fiiisika Instituut, Nooremteadur
2017 Euroopa Tuumauuringute Keskus (CERN), Praktikant
2016-2017 Keemilise ja Bioloogilise Fllsika Instituut, Insener
2014-2016  KTH Royal Institute of Technology, Tehnik

6. Arvutioskus
e Operatsioonisisteemid: Windows, MacOS, Linux
e Kontoritarkvara: Microsoft Office, Latex
e Programmeerimiskeeled: Python, Matlab, Wolfram Mathematica
e Teadustarkvara paketid: matplotlib, NumPy, SciPy, Pandas, Origin
7. Kaitstud loputood

e 2016, Analysis of ICRH of H and He-3 minorities in D and D-T plasmas in JET, MSc,
juhendaja Prof. Thomas Jonsson, KTH Royal Institute of Technology, Division of Fu-
sion Plasma Physics

129



e 2014, Erinevate pinnat66tluste moju heterollemineku omadustele
Cu,ZnSnS,/CdS paikesepatareides, BSc, juhendaja Prof. Jiri Krustok, Tallinna Tehnikadi-
likool, Materjaliteaduse Instituut

10. Teadustdo pohisuunad

e VALDKOND: 4. Loodusteadused ja tehnika; 4.10. Flilisika; CERCS ERIALA: P260 Tahke
aine: elektrooniline struktuur, elektrilised, magneetilised ja optilised omadused,
ulijuhtivus, magnetresonants, spektroskoopia; POHISUUND: madalamé&duliste ja
tugevalt korreleeritud elektron- ja spinnsiisteemide infrapuna ja THz-spektromeetria,
tugevad magnetvaljad, madalad temperatuurid

11. Teadustegevus
Teadusartiklite, konverentsiteeside ja konverentsiettekannete loetelu on toodud ingliskeelse
elulookirjelduse juures.

130



ISSN 2585-6901 (PDF)
ISBN 978-9949-83-896-7 (PDF)



	List of publications
	Author's contributions to the publications
	Abbreviations
	Symbols
	Units
	Introduction
	Experimental setup
	TeslaFIR
	milliK-TeslaFIR
	Martin-Puplett interferometer

	Crystal-field excitations in Tb2Ti2O7
	Response of a magnetic medium
	Solution to Maxwell's equations in an isotropic medium
	Absorption coefficient

	Linear response theory
	Response function
	Generalized susceptibility
	Magnetic susceptibility

	Crystal field theory
	Crystal structure and magnetic ordering of Tb2Ti2O7
	Vibronic coupling model in Tb2Ti2O7
	Tb2Ti2O7 results and discussion

	Spin-wave excitations in YFeO3
	Linear spin-wave theory
	Raising and lowering operators of a harmonic oscillator
	Spin raising and lowering operators
	Holstein-Primakoff approach
	Magnon dispersion in a Heisenberg ferromagnet

	Spin structure of YFeO3
	YFeO3 results and discussion

	Exotic excitations in Ising-chain compounds
	The Ising chain model
	E8 Lie algebra
	Lie groups and Lie algebras
	The adjoint representation
	Root system
	Dynkin diagram
	E8 and its Cartan matrix

	CoNb2O6 results
	BaCo2V2O8 results

	Summary
	List of Figures
	List of Tables
	References
	Acknowledgements
	Abstract
	Kokkuvõte
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Curriculum Vitae
	Elulookirjeldus



