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Abstract 

The interconnection of wireless sensor networks with Internet could give a big benefit in 

data collection with further processing and ease to control and manage end devices. With 

the Internet protocol version 6 each end device connected to IPv6 network could have its 

worldwide unique address. To solve a problems how to interconnect wireless sensor 

networks with IPv6 and to define standards the Internet Engineering Task Force (IETF) 

established a special task group - IPv6 over Low power Wireless Personal Area Networks 

(6LoWPAN). In distributed wireless sensor networks synchronizing of the end devices is 

very attractive feature and critical in many industrial, medical and environmental 

applications. However there is no available good solution how to synchronize nodes in 

6LoWPAN network. The result of this thesis is to propose synchronization solution using 

core concepts of PTPv2, test 6LoWPAN data transfer capabilities, test and measure 

implemented synchronization solution. 

This MSc thesis reviews the main details of 6LoWPAN, describes hardware and software 

used to test realized synchronization process and data transfer capabilities. Implemented 

synchronization solution is described and measurements results are presented. The 

possible improvements are described in concluding section of this MSc thesis. 

This thesis is written in English and is 71 pages long, including 6 chapters, 20 figures and 

10 tables. 
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Annotatsioon 

Mõõtmiste sünkroniseerimine ja andmeedastus 6LoWPAN 

võrgus 

Traadita andurite võrgu ühendus Internetiga annab suurt kasu andmehõives koos hilisema 

töötlemisega, võimaldab lihtsustada lõppseadmete juhtimist ja haldamist. Interneti 

protokolli versioon 6  võimaldab anda unikaalse aadressi igale IPv6 võrguga ühendatud 

seadmele. Andurite sidumiseks traadita IPv6 võrguga on loodoud   spetsiaalne standard - 

IPv6 over Low power Wireless Personal Area Networks (6LoWPAN). Traadita andurite 

võrgus lõppseadmete sünkroniseerimine on väga oluline funktsioon ja kriitiline paljude 

tööstus-, meditsiini- ja keskkonna süsteemides. Siiski ei ole saadaval head lahendust, 

kuidas 6LoWPAN võrgus lõppseadmeid sünkroniseerida.  Selle lõputöö tulemusena on 

loodud töötav lahendus lõpseadmete sünkroniseerimiseks kasutades PTPv2 põhist ideed, 

testitud on 6LoWPAN andmeedastuse võimalusi, sünkrooniseerimese ja mõõtmiste 

resultaate. 

Antud magistritöö annab ülevaate 6LoWPAN detailidest, kirjeldab kasutatavat riist- ja 

tarkvara et testida valmistatud sünkroonimise protsessi ja andmeedastust. Looduud 

sünkroniseerimise lahendus on dokumenteeritud ja mõõtmiste tulemused esitatud. 

Võimalikud parandused on kirjeldatud käesoleva magistritöö kokkuvõttes. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 71 leheküljel, 6 peatükki, 20 

joonist, 10 tabelit. 
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1 Introduction 

A Wireless Sensor Network (WSN) or wireless personal area network (PAN) is a self-

configuring network consisting of sensor nodes communicating using radio signals. 

Sensor nodes are mainly small computers with reduced functionality and limited memory, 

low data rate, finite power source and one or more sensors. The main purpose of WSN is 

to collect data through its sensor nodes and send this data to other networks by means of 

gateway (or border router) for later processing. The following characteristics make WSNs 

attractive: 

 Wireless connection – the sensor nodes could be placed in locations that are 

difficult to access. It reduces the cost of installation and maintaining. Nodes could 

communicate with each other in order to exchange and process data. Multi-hop 

network could be deployed which gives greater area coverage. 

 Self-organization – nodes could be programmed to run neighbor discovery and 

arrange themselves into an ad-hoc network, this makes easy to deploy, expand 

and maintain network. The mesh network topology is robust to failures – if one 

node breaks down it will not influence the network. 

 Low-power – WSNs can be deployed in locations with no available power source. 

Low power radios, sleep modes and radio duty cycling make possible for node 

long life using battery source or energy harvesting techniques.  

A Wireless sensor networks become more useful and popular in such application areas as 

agriculture, medicine – remote patients monitoring, automotive, smart grid – enabling 

smart meters, home automation, environmental monitoring, tracking systems and 

different kinds of machine-to-machine communication. Usually such applications require 

lower power consumption for long battery life and low data rate. 

Wireless sensor networks are one of building blocks of the Internet of things. IoT is a 

network of physical objects that can interact with each other to share information, these 

objects are smart cities, -buildings, -industry, -health, -transport, -energy etc. IoT objects 
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are enabled by means of different technologies like RFID, nanoelectronics, sensing, cloud 

computing, storage and of course WSN. 

The interconnection of wireless sensor networks with Internet could give a big benefit in 

data collection with further processing and ease to control and manage end devices. With 

the Internet protocol version 6 each end device connected to IPv6 network could have its 

worldwide unique address. To solve a problems how to interconnect wireless sensor 

networks with IPv6 and to define standards the Internet Engineering Task Force (IETF) 

established a special task group - IPv6 over Low power Wireless Personal Area Networks 

(6LoWPAN) [1] [2] [3]. The new task group defined the fundamentals principles – header 

compression and encapsulation techniques which allow to send and receive IPv6 packets 

over IEEE 802.15.4 based networks. 

1.1 Motivation 

In distributed wireless sensor networks synchronizing of the nodes is very desirable 

property. In many industrial, medical and environmental applications accurate 

timestamping is critical for later data analysis or for making decision of control in real-

time systems. Time synchronization is used in the design and operation of measurement, 

control, and communication systems. These systems share a common feature in that they 

interact with devices or processes that themselves operate based on real-world time [4]. 

Also time synchronization is very important in wireless sensor networks in which 

protocols and applications require precise time, for example, forming an energy-efficient 

radio schedule, conducting in-network processing (data fusion, data suppression, data 

reduction, etc.), distributing an acoustic beamforming array, performing acoustic ranging 

(i.e., measuring the time of flight of sound), logging causal events during system 

debugging, and querying a distributed database [5]. 

In spite of ubiquitous usage of time synchronization, there is hard to find any realization 

for 6LoWPAN networks. But I believe that with a growing popularity of IoT the interest 

to this topic among engineers and businesses will increase. 
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1.2 Thesis tasks 

Before starting the work on thesis I defined main goals to be accomplished, additionally 

some goals were established in process. Below is the list of goals: 

 In details study 6LoWPAN technology. 

 Get familiar with synchronization protocols and choose to work with. 

 Review available hardware and software solutions for 6LoWPAN and choose 

ones to work with. 

 Deploy 6LoWPAN test environment. 

 Implement synchronization protocol. 

 Test and measurements of implemented synchronization solution and capabilities 

of 6LoWPAN based network. 
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2 6LoWPAN in details 

Every end device connected to IPv6 network could have its own worldwide unique 

address. 6LoWPAN emerged to solve a problems of interconnecting wireless sensor 

networks with IPv6. 6LoWPAN is a networking technology or better to say adaptation 

layer that allows to efficiently transmit IPv6 packets within small link layer frames, such 

as defined by IEEE 802.15.4 standard. 

The main characteristics of 6LoWPAN are following: 

 Low bandwidth - data rates of 250 kbps for physical layer employing 2.4GHz 

band. 

 Mesh or star network topology. 

 Small packet size - the maximum physical layer frame is 127 bytes. 

 Several addressing modes - either IEEE 64-bit extended addresses or (after an 

association event) 16-bit addresses unique within the PAN. 

 Large number of devices. 

 Unreliable devices due to variety of reasons: uncertain radio connectivity, battery 

drain, device lockups, physical tampering, etc. 

 Sleeping mode – devices may use sleeping mode to save energy, however they 

are unreliable to communicate during sleep periods. 

 Security – IEEE 802.15.4 describe only link-layer AES based security. 

 Open standards including TCP, UDP, HTTP, COAP, MQTT, and websockets. 

 End-to-end IP addressable nodes. 

In this chapter the main parts of 6LoWPAN will be explained more detailed. I will 

describe the basics of Internet protocol version 6, 6LoWPAN network architecture, 

topology and protocol stack, also IEEE 802.15.4 will be reviewed. 
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2.1 Internet protocol version 6 

Internet protocol version 6 or simply IPv6 [6] is a last version of Internet protocol, it is 

not compatible with well-known Internet protocol version 4 (IPv4). IPv6 uses addresses 

of length 128 bits, when IPv4 address is 32 bit long, however version 4 is still main 

Internet protocol and will remain for long time. According to ISO/OSI [7] network model 

IPv6 is located in layer 3 – network layer. The data handled by this layer is called packet. 

Generally IPv6 packet consists of control information needed to deliver data for recipient 

and of course useful data that should be transmitted. 

2.1.1 IPv6 header 

For better understanding of how 6LoWPAN uses IPv6 some details regarding IPv6 header 

should be studied. The header has a fixed size of 40 octets (320 bits) followed by upper 

layer (transport layer, however it could be lower layer data, like ICMPv6) data and 

optionally extension headers might be used. Comparing to IPv4 header, there are several 

fields in IPv6 header that give some improvements: 

 The number of fields is reduced from 12 to 8 

 The fixed header size of 40 bytes is aligned with 64 bits, this allows routers to 

faster forward hardware-based packets 

 Addresses length increased from 32 bits to 128 bits 

In the Figure 1 the IPv6 header fields are shown. The fields in header are: 

1. Version – in our case version 6 

2. Traffic class –  affect the treatment of packets in routers, for example priority 

3. Flow label – affect the treatment of packets in routers 

4. Payload length – indicates the length of subsequent data 

5. Next header – indicated the subsequent protocol, for example TCP or UDP 

6. Hop limit – defines maximum number of hops that header should pass, going from 

one network node to the next 

7. 8. Source and destination addresses – 128 bit long address of packet source and 

destination 
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The extension headers are always started with the basic IPv6 header following with chain 

of extension headers. The field next header is used to indicate following extension header. 

These headers give flexibility, as example, enable security by ciphering data in packet, 

enable authentication, support of communication using fragmented packets, mobility 

extension header is used to support mobile IPv6 service. 

2.1.2 IPv6 addresses 

An IPv6 addresses according to Classless Inter-Domain Routing (CIDR) procedure are 

divided into a host and network part. An IPv6 addresses are using hexadecimal notation, 

divided into blocks of 16 bit each and separated by colon, in total 8 groups; foremost 

zeros can be eliminated;  blocks of successive zeros can be replaced by ‘::’, this can be 

done only once. 

An IPv6 network prefix specify some fixed bits and some non-fixed bits which can be 

used to create new sub-prefixes or to determine full IPv6 addresses assigned to the hosts. 

An IPv6 address is always linked to its interface, but never to a system (for example a 

PC). A host’s interface in the local area network is identified by an interface identifier 

(IID), which is determined by the last 64 bits of IPv6 address. 

An IPv6 addresses could be divided into four categories: unicast, anycast, multicast and 

reserved. Reserved addresses are maintained by IANA and listed in IANA IPv6 Special-

Purpose Address Registry [8]. 

Below on the Figure 2 is shown graphical representation of routing methods: unicast, 

anycast and multicast. 

 

Figure 1. IPv6 header format [24].  
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Multicast addresses always start with prefix FF00::/8. Multicast addresses are only visible 

inside of its subnetwork, or with other configuration – worldwide. Multicast packets are 

sent from single host to multiple receivers. 

Anycast addresses are used to transmit data packet from one source to the nearest 

destination from a group of interfaces. Anycast address does not have special prefix. 

Unicast addresses always start with prefix FE80::/10. Unicast addresses could be sub-

divided into Link-Local addresses and Global unicast addresses: 

 Link-Local: only accessible in the own subnet, the router does not forward the 

packets to other networks. This type addresses consist of the prefix and the 

interface identifier (IDD). 

 Global unicast: same as IPv4 public addresses, they are worldwide unique and 

they used to send a packet from one subnet to any destination in Internet. 

2.1.3 Auto configuration in IPv6 

An IPv6 addresses capacity is so huge that literally every device could have its own global 

unicast IPv6 address. One of advantages of Internet protocol version 6 is simplified 

address auto configuration mechanism. A new technique, which is not present in IPv4, is 

now allowed in IPv6 due to huge amount of available addresses is SLAAC – stateless 

address auto configuration. This mechanism is described in RFC4862 [9], it allows device 

to automatically generate an IPv6 address using a border router which gives connectivity 

to the network. With advantage of SLAAC wireless sensors could be added to network 

without any human intervention to configure IP devices, routers and servers. 

Neighbour Discovery Protocol (NDP) [10] is used to auto configure addresses for end-

devices. This protocol defines four messages: 

 

Figure 2. Routing methods. 
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 Router Advertisement 

 Router Solicitation  

 Neighbour Advertisement 

 Neighbour Solicitation 

The router is periodically sending Router Advertisement message containing 

configuration information to its end devices. If a node wants to join the network, it assigns 

itself a link-local address and sends out this address in Neighbour Solicitation message to 

all devices in given subnet to check if this address is not in use by other device. After that, 

node is waiting for some predefined time, if no Neighbour Advertisement message is 

received during given timeframe, node assumes that this address is unique. Now node 

sends Router Advertisement message to router and it replies with Router Advertisement 

message containing correct network prefix. Using this process any node in subnet can 

assign itself a worldwide unique IPv6 address. 

2.2 IEEE 802.15.4 

The 6LoWPAN allows to send and receive IPv6 packets over IEEE 802.15.4 based 

networks. The IEEE 802.15.4 [11] is a standard for low-rate wireless networks, it is 

maintained by IEEE 802.15 working group. This technical standard specifies the physical 

layer (PHY) and media access control (MAC) sublayer specifications for low-rate 

wireless connectivity with portable, fixed and moving devices with limited power 

consumption requirements. Physical layers are using license-free bands in a variety of 

geographic regions. The goal of IEEE 802.15.4 is to offer lower network layers of 

wireless personal area network to low cost, low power consumption, low complexity and 

low data rate wireless devices. 

The IEEE 802.15.4 standard defines two types of devices that can participate in network. 

First one is full-function device (FFD) and second is reduce-function device (RFD). A 

full-function device is capable to serve as personal area network coordinator. A reduce-

function device is not capable to serve as personal area network coordinator. An RFD is 

able to communicate only with FFD, while FFD can communicate with RFDs and other 

FFDs. An RFD is an end device while FFD is border router in wireless sensor network. 
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2.2.1 IEEE 802.15.4 PHY 

The PHY layer provides interface between the MAC layer and the physical radio channel. 

The physical layer is responsible for the following tasks [11]: 

 Activation and deactivation of the radio transceiver 

 Energy detection (ED) within the current channel 

 Link quality indicator (LQI) for received packets 

 Clear channel assessment (CCA) for carrier sense multiple access with collision 

avoidance (CSMA-CA) 

 Channel frequency selection 

 Data transmission and reception 

 Precision ranging for ultra-wide band (UWB) PHYs 

The IEEE 802.15.4 standard specifies large number of physical layers based on different 

modulation methods and working in different operating bands. Frequency bands could be 

divided in groups of sub-GHz (operating band is under 1 GHz), high-band 2.4 GHz 

(worldwide unlicensed band) and ultra-wide band (UWB) with 3-10 GHz frequency band. 

The full list is available in IEEE 802.15.4 technical description [11]. The most used three 

unlicensed frequency bands are: 

 868.0–868.6 MHz: Europe, allows one communication channel 

 902–928 MHz: North America, up to thirty communication channels 

 2400–2483.5 MHz: worldwide use, up to sixteen channels 

In my work I use PHY layer operating in 2.4 GHz frequency band. This layer type is 

based on direct sequence spread spectrum (DSSS) technique and uses offset quadrature 

phase shift keying (O-QPSK) modulation. DSSS is a technique for data redundancy where 

one data bit is converted into a sequence of X bits (technique 'chipping'). The DSSS makes 

the signal resistant to noise and can also reconstruct the original data from a low signal 

through redundancy. The raw bit rate is 250 kbps. The frequency band is 2400–2483.5 

(MHz) with 16 channels, the center frequency of these channels is defined as follows:    

Fc = 2405 + 5 (k – 11) in megahertz, for k = 11, 12, … 26, where k is the channel number. 
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The IEEE 802.15.4 shares 2.4 GHz ISM band with IEEE 802.11n known as Wi-Fi, 

Bluetooth etc., so the interference might appear during communication. Channel spacing 

in IEEE 802.15.4 is 5 MHz, each channel is 2 MHz wide and there is no spectral overlap 

between channels. There are 4 IEEE 802.15.4 channels with numbers 15, 20, 25 and 26 

which fall between the non-overlapping IEEE 802.11n channels. In my master work all 

measurements and tests were done using channel 25 and no tests regarding interference 

were done. According to the IEEE 802.11n standard there are three non-overlapping 

channels (channel 1, 6 and 11). In figure below is shown IEEE 802.15.4 and IEEE 

802.11n spectrum comparison. 

2.2.2 IEEE 802.15.4 MAC 

The main role of MAC layer is to maintain and control the signal in a standardized manner 

to ensure network reliability. The medium access control layer provides an interface 

between the physical layer and the application layer, also it is responsible for the 

following tasks: 

 Generating network beacons when device acting as network coordinator 

 Synchronizing the beacons 

 Supporting personal area network association and disassociation 

 Providing device security 

 Employing the CSMA-CA mechanism to access the channel 

 Handling and maintaining the Guaranteed Time Slot (GTS) 

 Providing a reliable link between two peer MAC entities 

 

Figure 3. IEEE 802.15.4 and IEEE 802.11n spectrum comparison [25]. 



21 

The medium access layer gives services for the application layer, two groups of services 

are used: the MAC Management Service - the MAC Layer Management Entity (MLME) 

and the MAC Data Service - the MAC Common Part Layer (MCPS). 

The MLME provides the service interfaces through which layer management functions 

may be invoked. The MLME service is also responsible for maintaining a database of 

managed objects pertaining to the MAC layer. The MCPS allows the MLME to use the 

MAC data service. 

The IEEE 802.15.4 standard defines four MAC frame types: 

 Beacon frames 

 Acknowledgment frames 

 Data frames 

 MAC control frames 

Network coordinator uses beacon frames to describe channel access mechanism to other 

network participants. The data frame is used to send payload of different length 

(supported payload length is in range of 2 to 127 bytes). To increase reliability for data 

frame and control frame transmissions the acknowledgment frames are used. The MAC 

control frames are used to support network management functions, such as association 

and disassociation to/from the wireless network. 

The medium access layer can operate in beacon-enabled and non-beacon modes. With the 

beacon-enabled mode the coordinator periodically transmit beacons to synchronize nodes 

that are associated with it and nodes in the network are watching for these beacons. In 

this mode all the devices in a network know when to communicate with each other. In a 

non-beacon mode coordinator does not send beacons. In this case when a node wants to 

transmit, first it will make sure that channel is available by using means of CSMA/CA. 

Once the channel is in idle state, node sends out data frame after some random back off 

time. Receiver replies with acknowledgment frame, if the sender does not receive the 

ACK frame it tries to transmit data once again until acknowledgement or until the 

maximum number of retransmissions reached. 
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2.3 6LoWPAN as adaptation layer in protocol stack 

Between the IP (network layer) and the lower layers (MAC and PHY) some important 

problems need to be solved, these problems are solved by means of an adaptation layer, 

the 6LoWPAN. The 6LoWPAN protocol stack is similar to a standard IP stack, but with 

some differences. 6LoWPAN supports stateless compression of IPv6 (network layer) and 

higher layer headers such as UDP (transport layer) along with fragmentation and mesh 

addressing features. UDP is most used transport layer protocol for data flow in 

6LoWPAN networks. 6LoWPAN only defines operation of IPv6 over the IEEE 802.15.4 

standard, devices in 6LoWPAN network acting as border routers, may support IPv6 

tunnelling mechanisms to connect 6LoWPAN networks with IPv4 networks. Below you 

can see the Figure 4 showing the 6LoWPAN as adaptation layer in complete protocol 

stack. 

The main goals of adaptation layer are: 

 Fragmentation and reassembly - IPv6 specification defines the maximum 

transmission unit (MTU) of 1280 bytes. This is the minimum value the MAC layer 

has to provide to be able to send IPv6 packets without fragmentation. In IEEE 

802.15.4 standard the protocol data units are much less in size. To solve such a 

difference a fragmentation and reassembly mechanisms are used at the layer 

below IP. 

 Mesh routing protocol - support of a multi-hop mesh network. 

 

Figure 4. 6LoWPAN as adaptation layer in protocol stack. 
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 Address auto configuration - techniques to create IPv6 stateless address auto 

configuration. This technique generates the IPv6 Interface Identifier (IID) from 

the EUI-64 assigned to the IEEE 802.15.4 device. It is very attractive feature of 

6LoWPAN because it reduces the configuration overhead on the end devices. 

 Header compression – the maximum available payload according to the IEEE 

802.15.4 specification is 127 bytes, from this value up to 25 bytes for the MAC 

header and 40 bytes for the IPv6 header have to be subtracted. This gives that in 

worst case only 62 bytes remain for payload, however if security or other protocols 

(such as UDP or TCP) are added – the space for useful data payload increased 

even more. Figure 5 shows the relation of uncompressed header data and actual 

payload. 

 

2.3.1 Routing in 6LoWPAN 

To send a data packet from one node to another, sometimes through multiple hops, the 

routing techniques are in use. Two different routing categories are defined: mesh-under 

and route over. Mesh-under uses the layer-two (link layer) addresses (IEEE 802.15.4 

MAC or short address) and route-over uses layer three (network layer) addresses (IP 

addresses). The differences of mesh-under and route-over are illustrated in Figure 6 

below. 

 

Figure 5. Ratio of uncompressed header data and payload. 
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In case of a mesh-under, data packets routing is done transparently, so these networks are 

considered to be one IP subnet. The only IP router in such a system is the edge router. In 

mesh-under network broadcast domain is used to guarantee compatibility with higher 

layer protocols, for example duplicate address detection (DAD) that making sure that no 

duplicate addresses exist. These messages are sent to every device in the network, which 

in turn highly increase network load. This makes mesh-under networks better suited for 

small and local networks. 

In case of route-over networks routing is done in IP level, in this way each hop represents 

an IP router. The utilization of IP routing gives possibility to deploy more scalable and 

powerful networks, because each router must implement all functions supported by an 

ordinary IP router such as duplicate address detection. In route-over network messages 

are not broadcasted, but sent only to the nodes within the radio range. Protocol for route-

over networks, known as RPL (IPv6 routing protocol for low-power and lossy networks), 

is the most used in 6LoWPAN networks. The advantage of route-over, compared to mesh-

under, is that most of the protocols used on a standard TCP/IP stack is possible to 

implement and use as is.  

RPL supports two different routing modes: storing mode and non-storing mode. When 

storing mode is used all devices in the network configured as routers hold routing and a 

neighbour table. The neighbour table is used to keep track of a node’s direct neighbours 

 

Figure 6. Differences between mesh-under and route-over [26]. 
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and the routing table is used to search routes to devices. In a non-storing mode only the 

edge router keeps routing table. This means that when data packet needs to be sent from 

one node to another inside the same network, first the packet is sent from source node to 

the edge router, which looks up for complete route to destination in its routing table and 

adds this destination to packet. In case of non-storing mode the network overhead 

increases with the number of hops that packet should travel to reach the destination, while 

using storing mode requires more recourses of every device in network acting as router. 

RPL is a proactive distance vector protocol, when RPL network is initialized, it 

immediately starts to find the routes. RPL builds Destination Oriented DAGs (DODAGs) 

rooted in direction to one sink called DAG ROOT. DODAG is identified by a unique 

identifier DODAGID. Objective Function (OF) metric indicates the dynamic constraints 

and has different metrics like hop count, parent selection, expected transmission count, 

latency, energy consumption, etc. By using objective functions DODAGs could be 

optimized. Each node has its rank number, by this number it is possible to determine 

node’s relative position and distance to the root in the DODAG. RPL specifies three 

control messages to exchange graph related information [12]: DODAG Information 

Solicitation (DIS), DODAG Information Object (DIO), and DODAG Destination 

Advertisement Object (DAO). 

2.3.2 Header compression 

The traditional way of header compression is status based, which is used at point-to-point 

connections where a flow between two end points is stable. This method is effective in 

static networks with stable links, but this method is not effective or not applicable at all 

to dynamically changing networks with multiple hops like one based on 6LoWPAN 

standard. In 6LoWPAN two different methods are used for header compression – IPv6 

header compression (IPHC) and next header compression (NHP). IPv6 header 

compression relies on information referring to the entire 6LoWPAN. IPv6 header 

compression assumes the following will be the common case for 6LoWPAN network: 

 Internet protocol version is 6. 

 Traffic Class and Flow Label are both zero. 

 Payload Length can be inferred from lower layers: from fragmentation header or 

from the IEEE 802.15.4 header. 
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 Hop Limit will be set to a known value by the sender. 

 Addresses assigned to devices in network will be formed using the link-local 

prefix or a small set of routable prefixes assigned to the entire 6LoWPAN. 

 Addresses assigned to devices are formed with an interface ID derived from either 

the 64-bit extended or from the IEEE 802.15.4 16-bit short addresses 

Figure 7 below shows three possible scenarios of header compression. In the first example 

communication is carried between two devices in the same network, when link-local 

addresses are used, the header can be compressed to size of 2 bytes. In the second example 

communication is carried between devices of different networks and destination network 

prefix is known – in this case header is compressed up to 12 bytes. The third example is 

similar to second, but without knowing of destination prefix – in this case the header is 

compressed to size of 20 bytes. The first example can’t be used for sending application 

data, as it can be used to send data only to direct neighbors, however this header 

compression scenario is very important for routing protocol. The third example is worst 

case, but it still gives a 50 percent header compression ratio. In these examples UDP 

header compression is not described, however it is part of 6LoWPAN standard. UDP 

header is possible to reduce from 8 bytes up to 1 byte. 

 

 

Figure 7. Three scenarios of IPv6 header compression [26]. 
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2.3.3 Fragmentation and reassembly 

One of the 6LoWPAN protocol suite components is fragmentation, which fulfils the IPv6 

MTU requirement of 1280 bytes [6]. Fragmentation requires generating additional data 

in each packet, this is needed to correctly reassemble packet at destination. During 

reassemble the additional data is removed and packets are combined to a complete 

package. 

The fragmentation process depends on which routing mode is used – mesh-under or route-

over. In case of mesh-under routing, fragments are reassembled only at their final 

destination, but in case of route-over routing data packets are reassembled at every hop. 

In case of route-over every device acting as router should have enough memory space 

and recourses to store all fragments, since all fragments are assembled and the complete 

packet is analysed to determine the next destination node. In case of mesh-under network 

all packets are processed immediately, this mean that a lot of traffic is generated. This 

may lead to situation when fragments are missed during reassemble, in this case the 

complete packet should be retransmitted. In general, fragmentation should be avoided 

every time when it is possible, because it has negative influence on the battery life of a 

power-constrained device. 

2.4 6LoWPAN vs ZigBee 

6LoWPAN is not only one standard for deploying wireless sensor networks and it is not 

only one that uses the IEEE 802.15.4 standard. The most usually 6LoWPAN is compared 

to its competitor - ZigBee. ZigBee is also low data-rate, low-cost and low-power wireless 

mesh networking standard designed for power-constrained devices. It is typically 

implemented for personal or home-area networks, for smart energy, in commercial 

building automation, or in a wireless mesh for networks that operate over longer ranges. 

Unlike 6LoWPAN, ZigBee cannot easily communicate with IPv6. 

To better understand main differences of both standards it is better to compare them 

according to ISO/OSI networking model. ZigBee is located on layers 3 to 6 (network - 

application), while 6LoWPAN only between layers 2 and 3 (data-link and network). Since 

ZigBee uses more network layers the complete system becomes more complex. ZigBee 

devices have limited interoperability, they can communicate only with other ZigBee 

devices and must have ZigBee Alliance license.  6LoWPAN offers interoperability with 
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any wireless 802.15.4 devices and moreover with devices on any other IP network link 

(e.g., Ethernet or Wi-Fi) with a simple bridge device. 

2.5 Summery 

In this chapter the main parts of 6LoWPAN were reviewed. Latest Internet protocol 

version 6 was described in sufficient way for understanding how it is used in 6LoWPAN, 

the main aspects of IPv6 such as header, address and auto configuration were reviewed. 

For IEEE 802.15.4 standard were covered physical layer responsibility areas and 

frequency bands; described MAC layer tasks, frame types and operating modes such as 

beacon-enabled and non-beacon. For 6LoWPAN adaptation layer routing, header 

compression, fragmentation and reassembly were also described. 

In the next chapter I will introduce to the reader equipment I used, main software parts 

and tools, also some 6LoWPAN parts will be covered in more details. 
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3 Available equipment 

In this chapter I will describe hardware, software and tools I used in this master work. 

Mostly I will pay attention on software – describe Contiki OS and some 6LoWPAN 

applications I tested. In this chapter I will not review precision synchronization protocols 

I developed during this work, this I leave for next chapter 4. 

With a rapid grow of interest to IoT almost all main microcontroller and semiconductor 

manufacturers started to produce their own systems on chip (SoC) or separate radio chips 

supporting IEEE 802.15.4. To start working with or evaluate IEEE 802.15.4 it is better to 

have already complete evaluation board, so engineers do not need to design their own 

platforms, this always speed up development process and get faster familiar with 

technology, in my case 6LoWPAN based on IEEE 802.15.4 standard. 

3.1 Hardware choice 

For me the main aspects choosing the right platform were: the lowest price, easy to buy 

(availability), real examples of working solutions, open software, programming tools and 

it best case supporting community working with same hardware and software. Spending 

some time choosing the suitable platform finally I stopped my choice on Texas 

Instruments Launchxl-cc2650. This is well-known LaunchPad (previously I worked with 

another LaunchPad) with multi-standard wireless MCU on board. The attractiveness of 

this evaluation board is its low price, only 25 Euros (the cheapest among competitors), 

available low level driver libraries by TI, no external programming tool, 32 bit ARM 

processor and active TI’s engineering community. For development and tests I bought 4 

Launchxl-cc2650 boards. 

The CC2650 is a SimpleLink multi-standard 2.4 GHz ultra-low power wireless MCU. 

The device is a member of the CC26xx family of cost-effective, ultralow power, 2.4-GHz 

RF devices. According to manufacturer it is very low-power providing operation on small 

coin cell batteries and in energy-harvesting applications. This MCU is called multi-

standard because it supports Bluetooth, ZigBee and 6LoWPAN, and ZigBee RF4CE 

remote control applications. The Bluetooth Low Energy controller and the IEEE 802.15.4 

MAC are embedded into ROM and are partly running on a separate ARM Cortex-M0 

processor. 
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Here are some features of CC2650 derived from technical reference manual [13]: 

 Powerful ARM® Cortex®-M3 

 Up to 48-MHz Clock Speed 

 128KB of In-System Programmable Flash 

 20KB of Ultralow-Leakage SRAM 

 Efficient Code Size Architecture, Placing Drivers, Bluetooth® Low Energy 

Controller, IEEE 802.15.4 MAC, and Bootloader in ROM 

 Four General-Purpose Timer Modules (Eight 16-Bit or Four 32-Bit Timers, PWM 

Each) 

 UART 

 All Digital Peripheral Pins Can Be Routed to Any GPIO 

 12-Bit ADC, 200-ksamples/s, 8-Channel Analog MUX 

 Real-Time Clock (RTC) 

 AES-128 Security Module 

 Normal Operation: 1.8 to 3.8 V 

 Active-Mode RX: 5.9 mA 

 Active-Mode TX at +5 dBm: 9.1 mA 

 Excellent Receiver Sensitivity (–97 dBm for BLE and –100 dBm for 802.15.4), 

Selectivity, and Blocking Performance 

 Programmable Output Power up to +5 dBm 

 Various of supported Tools and Development Environment 

Below is a Figure 8 where one launchxl-cc2650 board is depicted. 
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During development and tests the boards were used as end-devices, as boarder router, as 

serial line Internet Protocol (SLIP-radio) and as IEEE 802.15.4 packet sniffer. In case 

when it was used as slip-radio, it was connected to Raspberry Pi 3 which was acting as 

6LoWPAN boarder router, the rest three launchxl-cc2650 boards were end-devices in 

network (nodes). When I tested synchronization protocols, one board was used as boarder 

router (server) and the rest three as end-devices (clients). When I used launchxl-cc2650 

board as packet sniffer – it was connected to PC, one other launchxl-cc2650 board was 

acting as boarder router and the rest two was end-devices in 6LoWPAN network.  

Specific firmware were used in every case. Flash programming were done with Texas 

Instruments’ programming tool Flash Programmer 2 and XDS110 debugger (JTAG 

debugger for Texas Instruments’ microcontrollers and embedded processors) already 

mounted on launchxl-cc2650 board. 

To connect my 6LoWPAN network to the outside world the gateway with Ethernet 

interface is required. Here are also available different solutions, for example single 

Ethernet module with ENC28j60 which could communicate with launchxl-cc2650 board 

via I2C interface. But the better choice is to use more powerful single board computer 

like BeagleBone or Raspberry Pi. As I already had Raspberry Pi 3 then I decided to use 

it. 

Here are some features of Raspberry Pi 3 model B: 

 1.2GHz 64-bit quad-core ARMv8 CPU 

 

Figure 8. Launchxl-cc2650 board. 
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 802.11n Wireless LAN 

 Bluetooth Low Energy (BLE) 

 1GB RAM 

 4 USB ports 

 40 GPIO pins 

 Ethernet port 

 Micro SD card slot 

The Figure 9 shows the Raspberry Pi and reader could see its size. 

Since Raspberry Pi is a single board computer, not a bare microcontroller, the operating 

system is required to simplify using Pi and eliminate low level programming. Several of 

operating systems could be used on Raspberry Pi, most of them are Linux based, however 

Microsoft also supports Raspberry Pi with Windows 10 IoT Core. But I choose to use 

Raspbian - official supported operating system. 

On Raspbian OS I installed CETIC 6LBR (6LoWPAN boarder router) [14] – is a 

6LoWPAN/RPL Border Router solution, or better to say it is a complete solution for 

interconnecting IP and 6LoWPAN networks. 6LBR expects an Ethernet interface on the 

IP side and an 802.15.4 radio interface on the 6LoWPAN side. 

 

Figure 9. Raspberry Pi 3 Model B. 
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CETIC 6lbr requires external hardware supporting 802.15.4 radio. In my case this 

external hardware is launchxl-cc2650 board acting as slip-radio. On this launchxl-cc2650 

executes a specific firmware implementing the communication protocol between the 

6LBR process and the IEEE 802.15.4 radio. The data are transferred over UART. Some 

specifics of 6lbr, regarding 6LoWPAN, I will review in more details in the next chapter 

3.2 describing software and firmware I used in this project. Below is Figure 10 showing 

complete 6LoWPAN test setup. 

3.2 Software choice 

As in case of choosing the right hardware, there are plenty of available software choices. 

My requirements to choose software are following. First I need to choose operating 

system that fits to CC2650. Secondly this operating system must have native support for 

a number of common IP-based protocols, this should significantly simplify application 

development and save time. Of course this operating system should be open sourced with 

full source code available. Among different embedded operating systems that I looked 

thru, the best that fits my needs is Contiki-OS [15].  It is the open source operating system 

for the Internet of Things. Contiki-OS is written in standard C, full source code is 

available, and also it has active community with contributors from different well-known 

 

Figure 10. Complete 6LoWPAN test setup. 
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companies like Atmel, Cisco, ETH, Redwire LLC, SAP, Thingsquare, and many others. 

It has native support (drivers) for CC2650 MCU and moreover Texas Instruments 

supports Contiki OS [16]. 

The main Contiki-OS features are: 

 Supports low-power IPv6 networking, including 6lowpan adaptation layer, RPL 

IPv6 multi-hop routing protocol and the CoAP RESTful application-layer 

protocol. 

 Full IP Networking - provides standard IP protocols such as UDP, TCP, and 

HTTP. 

 Designed for tiny and low-power systems. 

 ContikiMAC radio duty cycling mechanism allows devices to sleep between 

packet transmissions. 

Contiki uses a mechanism called protothreads [17]. Protothreads provide sequential flow 

of control without complex state machines or full multi-threading. With protothreads, 

event-handlers can be made to block, waiting for events to occur. Protothreads API 

consists of main operations like: 

 PT_INIT () – initialize structure with protothreads description. Protothread should 

be initialized before execution starts. 

 PT_BEGIN () – defines the begin of protothread within function 

 PT_END () – defines the end of protothread within function 

 PT_WAIT_UNTIL () and PT_WAIT_WHILE () – blocks the thread until some 

condition will come true 

 PT_WAIT_THREAD () and PT_SPAWN () – awaits until subsidiaries 

protothreads finalize execution 

 PT_RESTART () and PT_EXIT () – restart and exit protothread 

 PT_SCHEDULE () – schedules (in fact launching) a protothread 
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 PT_YIELD () – yield from the current protothread, returns control to scheduler 

3.2.1 6LoWPAN border router 

Border router is required to connect 6LoWPAN network to traditional IP networks like 

Internet. As I already mentioned in chapter describing hardware I used in this work, the 

6lbr was chosen for boarder router. Project 6lbr was developed by CETIC [14] - applied 

research center in the field of ICT located in Belgium, 6lbr is a Contiki-OS branch. 6LBR 

is based on uIP (micro IP) which optimized for embedded platforms. 

Some features of 6lbr that makes it attractive: 

 Synchronizes 6LoWPAN WSNs with IP network 

 Network auto configuration  

 Different network architectures 

 NAT64 to provide bidirectional IPv4 connectivity 

 An enhanced webserver with configuration commands 

6LBR can work as stand-alone router on embedded hardware or on a Linux host. 6LBR 

is designed for flexibility, it can be configured to support various network topologies 

while smartly interconnecting the WSNs with the IP world [14]. 

6LBR can be used in three different modes: bridge, router and transparent bridge. In my 

work I used router mode. In this mode 6lbr acts as independent router interconnecting 2 

IPv6 subnets. In this mode wireless sensor network is managed by the RPL protocol and 

Ethernet subnet is managed by IPv6 NDP. This operating mode could be understand as a 

gateway between Ethernet side and 6LoWPAN RPL. In the Figure 11 below depicted 

block diagram of network with 6lbr in router mode. 
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6LBR has a built-in webserver which could be accessed from web browser, the default 

address is http://[bbbb::100]. Thru the webserver different network configurations could 

be done: configure IEEE 802.15.4 channel, configure security layer, configure global IP 

address to access from Internet, configure RPL behaviour etc. Also from webserver 

different statistics could be found, like connected sensors list or display node tree, up-

time, amount of transmitted packets etc. Below in Figure 12 is shown webserver interface 

and example of node tree, with three 6LoWPAN nodes connected to the border router. 

The firmware for launchxl-cc2650 acting as slip-radio was taken from Contiki’s examples 

for slip-radio. Some minor modifications in configuration file were done to match the 

target board launchxl-cc2650. 6LBR code was used as is without modifications, only file 

static configuration file located in Raspbian /etc/6lbr/6lbr.conf was modified: configured 

 

Figure 11. Network block-diagram with 6LBR in router mode. 

 

Figure 12. 6LBR webserver illustrating network tree with three nodes connected to 6lbr. 
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router mode, selected the mode of the Ethernet-side interface and set the right baud rate 

to be used to communicate with the slip-radio. 

3.2.2 Contiki MAC layer 

The medium access in Contiki includes three different layers: medium access control 

(MAC), radio duty-cycle (RDC) and framer. Global variables NETSTACK_FRAMER, 

NETSTACK_RDC and NETSTACK_MAC in core/net/netstack.h can be used to access 

network layer for defining custom configuration. 

Two MAC drivers are supported in Contiki, these are CSMA and NullMAC. CSMA is 

responsible for receiving incoming packets from radio duty-cycle layer and in same time 

uses radio duty-cycle to transmit packets. When the radio duty-cycle layer or radio layer 

find that the medium is busy, the MAC layer will retransmit packet after some backoff 

time. The medium access check is done by the radio duty-cycle driver. NullMAC is a 

simple pass-through protocol. It calls the appropriate radio duty-cycle functions. The 

CSMA in Contiki keeps a list of sequence numbers, retransmission, etc., while NullMAC 

doesn't do any of this and gives a less reliable network. In my work I used CSMA. 

Contiki RDC driver manages the sleep period of nodes. This driver determine when 

packets are going to be transmitted and makes sure that nodes are awake when packets 

should be received. In Contiki following RDC drivers are supported ContikiMAC, X-

MAC, LPP, NullRDC and SicslowMAC. Radio duty-cycle drivers try to keep the radio 

off as much as possible and only periodically waking up to check the wireless medium 

for radio activity. When RDC detects some activity, it turns on the radio to check if the 

packet should be received, other way it turns radio back in sleep mode. The check 

periodicity is set in Hz and is defined by global variable 

NETSTACK_CONF_RDC_CHANNEL_CHECK_RATE located in core/net/netstack.h. 

NullRDC is a simple pass-through driver, it will never switch radio into sleep mode. 

Usage of NullRDC will give a lower latency, but higher receive energy consumption, 

whereas ContikiMAC has lower receive energy consumption, but higher latency and 

increased transmission energy. In my work I used NullRDC driver. The ContikiMAC 

radio duty cycling protocol is in details described by its developer in [18] paper. 

The framer driver is a set of functions, which are responsible for constructing and parsing 

MAC header. The two most used framers are framer-802154 and framer-nullmac. In case 
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if framer-802154 is used the driver frames the data in compliance to the IEEE 802.15.4 

standard. The framer-nullmac only fills in the two fields of nullmac_hdr: receiver address 

and sender address. In my work I used framer-802154. 

3.2.3 Routing in Contiki 

The default routing protocol in Contiki is RPL, its implementation could be found in 

core/net/rpl. Contiki automatically forms a wireless IPv6 network. The basics of RPL I 

already described in chapter 2.3.1 Routing in 6LoWPAN.  

To enable routing in Contiki the following variable UIP_CONF_ROUTER should be 

enabled and to enable RPL (there are some other routing protocols supported by Contiki, 

like AODV) the variable UIP_CONF_IPV6_RPL is used. In my configuration I used 

RPL, disabled sending of routing advertisements, disabled IP forwarding and disabled 

RPL configuration statistics. By default Contiki uses storing mode for RPL downward 

routes, meaning that all nodes store in theirs routing tables the addresses of child nodes. 

3.2.4 UDP Client-Server realization 

In this chapter I would like to describe UDP client-server realization I implemented. 

Based on this code for server and for client I developed synchronization protocols and 

measurements tests were done. In this realization UDP server is acting as DAG Root and 

all clients have rank number one, meaning they directly connected to the root. So in this 

realization I didn’t use Raspberry Pi with 6lbr on board, of course it is possible to use 

Raspberry Pi with 6lbr as UDP server, but I found it easier to use launchxl-cc2650 as 

server (in this case I don’t need to reinstall 6lbr every time I make code changes). 

First I need to choose global addresses for server and clients – I choose to acquire address 

from the IEEE 802.15.4 16-bit short addresses. This is done by calling function to 

construct address with right arguments:                                                            

uip_ip6addr(&ipaddr, UIP_DS6_DEFAULT_PREFIX, 0, 0, 0, 0, 0x00ff, 0xfe00, 1); 

Constructed address is saved in ipaddr. Now on the server side I need to configure it as 

DAG root, this is done with the following code: 
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  struct uip_ds6_addr *root; 

  uip_ds6_addr_add(&ipaddr, 0, ADDR_MANUAL); 

  root = uip_ds6_addr_lookup(&ipaddr); 

  if(root != NULL) { 

    rpl_dag_t *dag; 

    dag = rpl_set_root(RPL_DEFAULT_INSTANCE,(uip_ip6addr_t *)&ipaddr); 

    uip_ip6addr(&ipaddr, UIP_DS6_DEFAULT_PREFIX, 0, 0, 0, 0, 0, 0, 0); 

    rpl_set_prefix(dag, &ipaddr, 64); 

  }    PRINTF("created a new RPL dag\n"); 

  } else { 

    PRINTF("failed to create a new RPL DAG\n"); 

  } 

 

Now for both, server and client I need to create new UDP connection and bind UDP ports. 

Binding is done for port which server/client is going to listen to, so for client I need to 

bind server’s port and vice versa for server. This is accomplished by means of following 

functions (example for client): 

static struct uip_udp_conn *server_conn_sync 

server_conn_sync = udp_new(NULL, UIP_HTONS(UDP_CLIENT_PORT_SYNC), NULL); 

udp_bind(server_conn_sync, UIP_HTONS(UDP_SERVER_PORT_SYNC)); 

 

Now server and client in main thread’s while loop will check for function uip_newdata() 

if new packet is received, when new data is received I call udp_handler() function to 

make some useful operations on received data or replies with current sensor value. This 

function for client code is shown below, for simplicity in this example useful operation is 

just reply “echo” to sender: 

static void 

udp_handler(void) 

{ 

    uip_ipaddr_copy(&client_conn_sync->ripaddr, &UIP_IP_BUF->srcipaddr); 

    uip_udp_packet_sendto(client_conn_sync, "echo", strlen("echo"), 

            &broadc_ipaddr, UIP_HTONS(UDP_SERVER_PORT_SYNC)); 

    uip_create_unspecified(&client_conn_sync->ripaddr); 

} 

 

When client or server receives new packet and if client or server should reply to sender, 

first the sender’s address should be saved and after replying the address should be 

unspecified that it can receive unicasts from anyone else. 
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It is worth to mention that if server should send data packets to both multicast and unicast 

addresses it should keep one UDP connection (struct uip_udp_conn) for unicasts, and one 

for multicast on a separate ports. When client receive an incoming multicast packet, it 

will copy the packet's source address into the unicast destination address (the ripaddr 

field in struct uip_udp_conn), then send the packet, and finally reset the ripaddr so that 

it can receive unicasts from anyone again. 

3.3 Summery 

In this chapter 3 I described the requirements for hardware and software and which ones 

I choose. For the hardware I choose CC2650 multi-standard 2.4 GHz ultra-low power 

wireless MCU which is mounted on launchxl-cc2650 evaluation board. Additionally I 

used Raspberry Pi 3 model B with installed 6LoWPAN boarder router to access tested 

wireless sensor network from outside network (Internet). Also provided some pictures of 

single launchxl-cc2650 board as well as of complete test setup I used in this work. 

In section reviewing software choice I describe operating system I decided to use – 

Contiki-OS and its advantages. Regarding operating system also was described its main 

functions and operating specifics such as routing and MAC layer. 6LowPAN boarder 

router running on Raspberry Pi was reviewed. For the firmware implemented I give a 

simplified example of RPL UDP client-server, on this firmware is based my realization 

of two synchronization protocols, which will be described later. 

In next chapter I introduce reader to synchronization protocol and my realization of it in 

6LoWPAN network. 
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4 Synchronization of end devices 

The main motivation for this work is to realize mechanism for synchronizing sensor nodes 

in 6LoWPAN based wireless sensor network. In distributed wireless sensor networks 

maintaining clocks of the nodes’ in such a way that they are very close to each other is 

one of the most complex problems, because of decentralized structure, latency of radio 

channel, big amount of devices to be synchronized, no defined standard, lossy network, 

lack of hardware support of existing synchronization protocols in most applications and 

etc. 

In my master project I decided to use mechanisms of precision time protocol (PTP) 

version 2 defined in IEEE 1588-2008 standard, officially entitled "Standard for a 

Precision Clock Synchronization Protocol for Networked Measurement and Control 

Systems" [19]. From my point of view this standard with its hierarchical master-slave 

architecture for clock distribution could be ideally adapted into 6LowPAN based 

networks, despite of the IEEE 1588-2008 standard describes the synchronization 

mechanism for wired network nodes, mainly using Ethernet. However I didn’t find any 

IEEE802.15.4 wireless system on chip solution or low-power MCU with external 

transceiver that have IEEE1588 hardware support. For this reason the software 

implementation of precision time protocol is expected, however this reduces the 

synchronization accuracy to around 1 millisecond, while with hardware support the 

accuracy of 1 microsecond (or even sub-microsecond) is achievable. 

In this chapter 4 in a brief and simplified manner I will review PTP version 2 including 

notes regarding deviations in my implementation from defined IEEE 1588-2008 standard. 

Also description of my implementations of PTPv2 will be described and explained. 

4.1 PTPv2 message classes 

PTP is client-server synchronization protocol, so to realize this protocol at least two 

devices are needed – master which have reference time and slave which should be 

synchronized to master’s clock with most precise. This protocol is used to synchronize 

systems that include clocks of different precision, resolution and stability.  



42 

PTP is message-based protocol and messages are transported over UDP/IP. The PTP 

protocol defines event and general messages. The IEEE 1588-2008 standard defines in 

total ten messages which are divided into two sub-groups – event messages and general 

messages. Event messages are timed messages, accurate timestamp is generated at both 

transmission and receipt. General messages do not require accurate timestamps. 

There are 4 event messages: 

 Sync 

 Delay_Req 

 Pdelay_Req 

 Pdelay_Resp 

General messages are: 

 Announce 

 Follow_Up 

 Delay_Resp 

 Pdelay_Resp_Follow_Up 

 Management 

 Signaling 

Announce message – sent by master to all slaves, contains information which is used to 

establish the synchronization hierarchy. According to information containing in this 

message, the slave clock can choose the best master clock (BMC). There is special 

algorithm how to choose BMC based on such values like accuracy, dispersion, rank, 

priority etc. For me BMC is not interest in the scope of this master project, because only 

one master clock is predefined – 6LoWPAN boarder router, so slave devices can’t choose 

best master clock. 
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Management message – is used to query and update the PTP data sets, to customize a 

PTP system and also used for initialization and fault management. This message type is 

also omitted in my project. 

Signalling message – is used for all other purposes. 

Sync / Follow_Up, Delay_Req / Delay_Resp messages – used to generate and distribute 

the timing information needed to synchronize clocks by using the delay request-response 

mechanism. Follow_Up message could be omitted in one-step clock synchronization, but 

is mandatory in two-step clock synchronization. 

Pdelay_Req / Pdelay_Resp and Pdelay_Resp_Follow_Up messages – used to measure 

the link delay between two clocks, this delay value is used to correct timing information 

contained in Sync and Follow_Up messages. 

The slave is using only Delay_Req and Pdelay_Req request messages, the rest messages 

are sent by master clock, so master is required to provide almost all synchronization 

information. Messages are transmitted to multicast and unicast addresses. The IEEE 

1588-2008 standard defines these multicast addresses, both IPv4 and IPv6 – 224.0.0.107 

and FF02::6B for Pdelay_Req, Pdelay_Resp and Pdelay_Resp_Follow_Up messages; 

224.0.1.129 and FF0x::181 for all other messages. Since devices I used don’t have PTPv2 

hardware support, in my protocol implementation I used IPv6 multicast address FF02::1 

– all devices in network are required to receive messages from this multicast address 

(similar to broadcast messages in IPv4).  

In my implementation of synchronization protocol for 6LoWPAN based network, 

multicast transmission is used for messages Sync and Follow_Up sent by master clock. 

The Delay_Req / Delay_Resp and Pdelay_Req / Pdelay_Resp and 

Pdelay_Resp_Follow_Up messages are used only in unicast transmission between master 

and slave. This will be explained later in chapter 4.4 describing my implementation of 

synchronization protocol. 

4.2 PTPv2 device types 

The IEEE 1588-2008 standard defines five basic types of PTP devices, which implement 

one or more sides of the protocol. These device types are: 



44 

 Ordinary clock 

 Boundary clock 

 End-to-end transparent clock 

 Peer-to-peer transparent clock 

 Management node 

An ordinary clock has only one network connection. It can be either master providing 

reference time or slave that is a destination for synchronization time reference. 

A boundary clock is like ordinary clock but with multiple network connections. One of 

this connection is in slave mode, receiving time from master clock. Other connections 

(might be more than one) acting as master providing synchronization time to downstream 

slaves (it might be ordinary or boundary clock). So boundary clock receives 

synchronization on slave port, corrects own time, generate new synchronization message 

and finally transmit this message to slaves from master port. 

An end-to-end transparent clock and peer-to-peer transparent clock are devices that pass 

synchronization message, but updating synchronization time with corrected time for 

message spent traversing the network. This mechanism improves accuracy by 

compensating the traverse latency across the network. 

A management node is a device that may have one or more network connections. It may 

be combined with any of the device types described above. 

It is also worth to mention about grandmaster clock. This is the root of timing reference. 

Grandmaster always acts as a master, it has precise oscillator and can get time for example 

from GPS. The grandmaster is only one in network. In my implementation the 6LoWPAN 

boarder router is a grandmaster, it transmits synchronization messages to all the slaves. 

4.3 PTPv2 simple master-slave clock hierarchy 

One of many possible PTP master-slave hierarchies is illustrated in Figure 13. In this 

example ordinary clock 1 is grand master and located at the root of hierarchy. Boundary 

clock 1 is directly connected to grand master and receives synchronization time on its 
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slave port. Other ports of boundary clock 1 are acting as masters providing 

synchronization time to downstream slaves – ordinary clock 2, ordinary clock 3 and to 

boundary clock 2. Boundary clock 2 is similar to boundary clock 1, provides 

synchronization time from its master ports to downstream slaves – ordinary clock 4, 

ordinary clock 5 and ordinary clock 6. This simple PTP master-slave hierarchy could be 

easily extended with other boundary clocks and ordinary clocks, also it is possible to 

include transparent clocks. 

 

My implementation of precision time protocol has even simpler master-slave clock 

hierarchy than shown above. For testing purposes and because of reduced amount of 

devices, the clock hierarchy includes ordinary clock 1, acting as grand master (reference 

time was its own general purpose timer) and 3 ordinary clocks which were synchronized 

against this grand master clock, however software support for enabling boundary clocks 

were implemented. So in future it will be good to test more complex clock hierarchy for 

synchronizing nodes in 6LoWPAN based network. 

4.4 Implementation of modified PTPv2 

In this chapter I would like to describe my implementation of PTPv2, of course it is not a 

full implementation of the IEEE 1588-2008 standard, since it was developed for wired 

networks, specifically Ethernet. My goal is to use the core concepts of precision time 

protocol and apply them to wireless sensor network based on 6LoWPAN standard. I think 

 

Figure 13. PTPv2 simple master-slave clock hierarchy. 
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that my implementation is better to be termed as modified PTP since it is not fully 

conform the specified standard. 

The simplest implementation of PTP is an application at the top of the network protocol 

stack and timestamps are generated at the application level. This approach brings error in 

timestamp caused by floating delay. When timestamp is generated at the application level, 

the time to go down the stack to actually send out synchronization message, is not 

constant, depending on system workload. The same floating delay is introduced at the 

recipient side – non constant time to propagate synchronization data from physical layer 

up the stack to application layer. These errors are typically in the hundred microseconds 

to milliseconds range depending on the system. This is what makes software realization 

of PTP not such accurate as with hardware support, the difference is about 1000 times (1 

microsecond precision with HW support and 1 millisecond precision without HW 

support). Not only this error has bad effect on synchronization accuracy, the following is 

limiting the achievable accuracy of PTP system: 

 The delay fluctuation in the protocol stacks of clocks 

 The delay asymmetry 

 The delay fluctuation in network components 

 Timestamping accuracy 

 Stability issues 

The pattern of basic synchronization message exchange is illustrated in Figure 14. 
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The synchronization process is divided into two steps: first is slave’s clock offset 

correction and secondly determining the message propagation delay.  

Synchronization process begins with Sync message sent by master clock to all slaves to 

multicast address. With a Sync message transmission master clock saves time t1, when 

message is sent. In my implementation I use two step mode, so immediately after Sync 

message, master sends Follow_Up message containing timestamp of t1, this message is 

also sent to multicast address. When the slave receives Sync message it generates 

timestamp t2. The slave then takes time value in Follow_Up message and subtracts the 

timestamped value t2, resulting a calculated offset (here is no difference if I calculate 

offset by subtracting t2 from t1 or t1 from t2). The calculated offset is now added to 

current slave time resulting a new clock time. Master and slave clocks are not yet 

completely synchronized because the network delay is not taken into account. 

After slave clock calculated its offset regarding master clock, starts the second step of 

synchronization process. Now slave sends out Delay request message to the master, also 

by sending out Delay_Req message, slave generates and saves timestamp t3 with its local 

time. The master clock receives this messages, generates its local timestamp t4 and sends 

out the value of t4 in Delay response message. This Delay_Resp message is sent out in 

unicast mode, the destination address is the slave that sent delay request message. When 

slave clock receives delay response message it can calculate the network delay by 

 

Figure 14. PTP message exchange. 
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subtracting the time it sent the delay request message (t3 timestamp) from the time the 

master received the delay request message (t4 timestamp). However the delay was 

measured by sending two messages, so to obtain correct one-way message propagation 

delay, the last calculated value (t4 – t3) should be divided by 2 and now slave clock can 

finally add this delay value to its current time, giving the synchronized clock between 

master and slave, of course with limited accuracy. 

The internal clocks of the different devices will inevitably drift over time. To compensate 

for this, the master clock will periodically send out Sync message and the synchronization 

process will be started over again. The synchronization periodicity shouldn’t be very 

frequent to not over flood the network. With a described synchronization process all slave 

clocks will be synchronized to master clock one by one after they receive two multicast 

messages – Sync and Follow_Up. 

Additionally to already described synchronization process I implemented another one, 

pretty much the same but slightly modified. Figure 15 illustrates modified 

synchronization message exchange. 

 

Figure 15. Modified PTP message exchange. 
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Comparing modified PTP message exchange with message exchange described before, 

one additional pair of multicast messages Sync and Follow_Up are sent by master clock. 

This is done to achieve better accuracy which is limited with network delay fluctuations. 

To correct for the message transmission delay, the slave additionally uses a second pair 

of Sync message and Follow_Up message with its corrected clock to calculate the master-

to-slave delay. The second set of messages is necessary to account for variations in 

network delays. So if there will be difference between timestamps t3 and t4, the slave will 

correct its internal clock value by this difference. The rest of synchronization process and 

message exchange is described above and it is similar to basic PTP message exchange. 

Below is Figure 16 illustrating code flowchart of master clock. The code is similar for 

both described PTP synchronization processes, except additional pair of Sync and 

Follow_Up messages in case of second described implementation. On the Figure 19 

additional Sync/Follow_Up pair is presented. 

 

Figure 16. Master clock code flowchart. 
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The synchronization process starts by timer 1). In step 3) timestamp is generated and in 

the next step 4) is taken decision whether to send synchronization message to multicast 

or if master received request from slave, to unicast address. Address is copied to created 

UDP connection structure, which mainly contains addresses, ports and data to send. If it 

is multicast address then master should send the pair of Sync / Follow_Up messages (in 

case of first described implementation only one pair is sent). When master clock received 

request from slave clock it should do get know, step 6), which type of request it is. 

Normally slave should send to master clock only delay requests, but during tests it came 

up that rarely one 6LoWPAN node measured too long delay (up to 2 seconds) between 

Delay_req and Delay_resp, in this situation node will ask to start synchronization from 

step 5), but in unicast mode. If it was Delay_req message then master replies 9) with delay 

response message. Finally in step 10) master clock starts to wait messages from slaves 

(delay request or Sync repeat), also periodic timer 1) could start synchronization process 

from the beginning. 

Below is Figure 20 illustrating code flowchart of slave clock. As in case of previously 

illustrated master clock code flowchart, this code is also similar for both described PTP 

synchronization processes, except additional pair of Sync and Follow_Up messages in 

case of second described implementation. On the Figure 17 additional Sync/Follow_Up 

pair is shown. 
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The slave clock continuously waits for PTP messages from master clock. In the steps 2), 

3) and 4) slave clock gets know the type of received message. If it is first Sync message 

then slave clock in step 7) generates timestamp t2, starts timer and continues to wait 

messages. Also with reception of first Sync message, slave clock in step 8) starts its timer, 

which will interrupt and request synchronization started with Sync message, but in unicast 

mode, when synchronization not completed during defined time. If it was second Sync 

message then in step 6) generates timestamp t4 and also continues to wait messages from 

master clock. When received message is Follow_up, slave clock calculates offset and 

corrects clock in step 11), and also slave clock checks whether it is second or first 

Follow_Up message. In case it is first Follow_Up message – continues to wait messages 

from master, if second – generates timestamp t5 in step 13), sends out delay request 

message in step 14) and jumps to wait next message. Finally when Delay_Resp message 

is received, slave clock calculates the network delay and corrects current local time. Also 

In step 15) timer, measuring time to complete synchronization is stopped and slave clock 

jumps to wait messages for net synchronization process. 

 

Figure 17. Slave clock code flowchart. 
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In the next chapter 5 will be described testing process of two implemented realizations of 

modified synchronization protocol defined in IEEE 1588-2008 standard. Also all 

available measurements will be presented. 

4.5 Summery 

In this chapter the basics of precision time protocol version 2 defined in IEEE 1588-2008 

standard were described. The description includes message classes, device types and 

master-slave hierarchy. My 2 versions of modified realization of this standard also was 

described including code flowcharts for both master clock and slave clock operation. In 

the next chapter I will present test and measurement results for both implementations of 

synchronization protocol. 
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5 Measurements results 

One of the main targets of my thesis work is to evaluate the capability of 6LoWPAN 

based wireless sensor network. In this chapter I describe methods, processes and types of 

measurements and tests I made. In chapter 5.1 acquired results for synchronization are 

shown and studied, in chapter 5.2 results of data transfer tests are shown and studied. 

The real field wireless mesh sensor network may consist of tens and hundreds of nodes 

which are spatially distributed, however I have a limited amount of devices and space. 

For evaluating of synchronization protocols I developed, the test setup include the 

following components. Three end-nodes (RPL-UDP clients) wirelessly connected 

(rooted) to one DAG root (RPL-UDP server). All devices are same TI CC2650 

LaunchPad(s), they are spatially distributed from each other in distance of 10-100 cm. 

The devices are USB-powered from one source. The nodes (clients) are numbered as 

node1, node2 and node3, the devices doesn’t interchange their numbering during taking 

measurements (also same numbering for nodes is constant throughout the thesis). The 

server is interchangeably named as server, master, and UDP server. 

One type of synchronization measurements were done by using oscilloscope Owon DS 

5032E bandwidth 30 MHz, sampling rate 500 MSa/s. Another synchronization test was 

done with additional MSP430 LaunchPad [20] which was used to generate pulses every 

2 seconds, the synchronized timers values were sent to PC via serial interface and later 

calculations were done in Excel. Measurements were done for both synchronization 

protocols under equal conditions. 

For testing of data transfer capability, one of available CC2650 LaunchPad was used as 

IEEE 802.15.4 packet traffic sniffer and Wireshark [21] [22] to capture and correctly 

show 6LoWPAN traffic.  

In the following subchapters measurements described in detail and result are shown. Note 

for reader: in the following sub-chapters terms “version 1”, “version 2”, “PTPv1” and 

“PTPv2” are referring to 2 synchronization versions that I implemented, which were 

described in chapter 4. 
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5.1 Oscilloscope measurements 

In this type of measurement GPIO Pin 15 (same on server and clients) was configured as 

output and was toggled every 500 ms on GPT2A TIMER value match interrupt. The same 

timer, was synchronized to server’s GPT2A timer. This timer is configured as periodic, 

count-up, 32 bit full-width and no pre-scaler. The interrupt on timer value match was 

enabled and handled in same interrupt service routine as for timer overflow. Every time 

timer value match interrupt occurs the DIO 15 is toggled and timer match value is 

increased to toggle pin again after next 500 ms. On timer overflow same process starts 

from zero timer value. There is no reason to toggle pin more frequent. All traffic except 

synchronization data is avoided during measurements. 

The following code snippet shows the GPT2A interrupt service routine. 

void 

ISR_GPT2A() 

{ 

const uint32_t LOAD_VAL = timer_load_get(GPT2A); 

 

if(TIMER_TIMA_MATCH == timer_int_status(GPT2A, 1)) 

{ 

if((timer_value_get(GPT2A) + SET_MATCH_VAL) < LOAD_VAL) 

timer_match_set(GPT2A, (timer_value_get(GPT2A)+SET_MATCH_VAL)); 

else 

timer_match_set(GPT2A, SET_MATCH_VAL); 

 

gpio_toggle_dio(DIO_15); 

timer_int_clear(GPT2A, TIMER_TIMA_MATCH); 

} 

if(TIMER_TIMA_TIMEOUT == timer_int_status(GPT2A, 1)) 

{ 

//gpio_toggle_dio(DIO_15); 

leds_toggle(LEDS_RED); 

timer_int_clear(GPT2A, TIMER_TIMA_TIMEOUT); 

} 

 

// I need to make sure event is cleared before returning from the ISR. 

// Allowing cleared event to propagate through any synchronizers. 

__asm__ ("nop"); 

__asm__ ("nop"); 

} 

 

All synchronization precision measurements are done with reference to master clock, 

meaning that one oscilloscope probe was attached to DIO15 of cc2650 LaunchPad acting 
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as server, another probe was attached to same pin on node1, then node2 and then node3. 

Measurements between nodes were done during testing, but not included in this work, 

since they are in same range as to measurements taken with reference to server. The time 

difference between node’s pin rising edge and server’s pin rising edge show the 

precession of synchronization. The less time difference (Δt) the more precisely timers are 

synchronized. Besides the measuring Δt right after synchronization on first rising edge, 5 

additional measurement points after synchronization were taken: 30 s,   60 s, 180 s, 240 

s and 300 s after synchronization. This is done to observe jitter between different timer 

clocks and to estimate how frequently I need to send synchro signal to keep desirable 

synchronization precision. Moreover the time spent for each synchronization was also 

measured. 

For every node 10 synchronization results were taken. After each attempt all nodes and 

server were restarted. By button press on LaunchPad acting as UDP server, the 

synchronization process was initialized and end-devices were synchronized. 

Both versions of developed synchronization protocols were tested in the same way. Below 

the acquired results are present in separate tables for each node and for each 

synchronization protocol. The differences in protocol versions are described in chapter 4. 

Results of synchronization protocol version 1: 

 

Table 1. Results of synchronization protocol version 1, node 1. 

Node1        

Num. 
Δt 
[us] 

Time to 
SYNC [ms] 

Δt [us] 
after 30s 

Δt [us] 
after 60s 

Δt [us] 
after 180s 

Δt [us] 
after 240s 

Δt [us] 
after 300s 

1 402 4.789 426 452 544 592 640 

2 204 33.745 232 252 348 388 444 

3 320 4.8 388 412 508 556 612 

4 556 91.148 584 608 724 772 836 

5 384 7.399 408 463 544 596 652 

6 358 4.846 379 411 508 552 614 

7 312 22.453 345 392 496 538 612 

8 367 47.104 393 430 523 564 625 

9 391 22.269 337 378 471 539 619 

10 287 23.474 318 346 452 461 527 

Average 358 26.2027 381 414 512 556 618 

Median 363 22.361 384 412 508 554 617 
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The results for node1, in Table 1, show that synchronization precision is better than 1 

millisecond, the average time difference for 10 measurements is 358 microseconds. Also 

from table results I can observe the difference between server’s and client’s clocks after 

some time. In average the timers are desync on approximately 60 microseconds in every 

1 minute, however even after 5 minutes the Δt is still less than 1 millisecond. 

Here are results for node2 in above Table 2, the precision of synchronization is also better 

than 1 millisecond, however the crystal oscillator of node2 include its error and already 

after 3 minutes node2 and server are more than 1 millisecond out of sync. Desync between 

client and server is about 200 microseconds per every minute. In this example to achieve 

time difference of less than 1 millisecond between devices, I need to send synchro signal 

at least every 2 minutes. 

Table 2. Results of synchronization protocol version 1, node 2. 

Node2        

Num. 
Δt 
[us] 

Time to 
SYNC [ms] 

Δt [us] 
after 30s 

Δt [us] 
after 60s 

Δt [us] 
after 180s 

Δt [us] 
after 240s 

Δt [us] 
after 300s 

1 480 16.771 600 692 1084 1296 1500 

2 444 24.595 548 648 1068 1240 1452 

3 448 16.811 552 664 1060 1264 1462 

4 468 16.779 584 680 1074 1266 1484 

5 430 5.325 541 634 1014 1200 1397 

6 457 11.654 568 691 1086 1302 1506 

7 445 17.893 554 667 1058 1261 1459 

8 463 16.52 579 676 1047 1249 1460 

9 478 23.547 593 688 1081 1293 1494 

10 435 14.392 536 624 1011 1195 1373 

Average 455 16.4287 566 666 1058 1257 1459 

Median 453 16.775 561 672 1064 1263 1461 

 

Below in Table 3 results of synchronization measurements for node3. As in case of node1 

and node2 the precision of synchronization is better than 1 millisecond, with average for 

10 measurements 490 microseconds. Desync between node3 and server is about 70 

microseconds per 1 minute. In case of node3 to achieve time difference less than 1 

millisecond the device should be synchronized every 5 minutes. 
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Table 3. Results of synchronization protocol version 1, node 3. 

Node3        

Num. 
Δt 
[us] 

Time to 
SYNC [ms] 

Δt [us] 
after 30s 

Δt [us] 
after 60s 

Δt [us] 
after 180s 

Δt [us] 
after 240s 

Δt [us] 
after 300s 

1 448 16.339 486 516 648 712 780 

2 457 16.794 488 518 658 722 788 

3 470 17.804 508 542 676 744 812 

4 556 4.777 588 620 756 832 890 

5 481 33.489 517 551 694 761 821 

6 479 10.952 521 563 698 769 834 

7 523 27.23 554 594 713 792 846 

8 511 11.687 546 587 701 774 829 

9 466 30.269 502 548 690 765 833 

10 505 14.841 553 604 745 827 884 

Average 490 18.4182 526 564 698 770 832 

Median 480 16.5665 519 557 696 767 831 

 

Results of synchronization protocol version 2: 

 

Table 4 below with results of measurements for node1 with protocol version 2 shows that 

time difference between node1 and server right after synchronization is under 200 

microseconds. After 5 minutes the time difference between devices is 468 microseconds 

in average for 10 measurements. 

Table 4. Results of synchronization protocol version 2, node 1. 

Node1        

Num. 
Δt 
[us] 

Time to 
SYNC [ms] 

Δt [us] 
after 30s 

Δt [us] 
after 60s 

Δt [us] 
after 180s 

Δt [us] 
after 240s 

Δt [us] 
after 300s 

1 31 10.995 58 80 185 236 288 

2 30 10.908 66 93 191 236 283 

3 61 10.944 88 111 208 254 306 

4 198 68.771 230 260 404 478 566 

5 169 22.942 191 226 402 484 568 

6 192 33.732 225 294 642 726 808 

7 177 25.771 204 234 406 494 578 

8 158 18.73 190 225 324 371 421 

9 147 22.986 182 219 309 367 414 

10 164 4.789 201 226 323 378 447 

Average 133 23.0568 164 197 339 402 468 

Median 161 20.836 191 226 324 375 434 

 

Below in Table 5 results show synchronization precision of node2 using protocol version 

2. The time difference between client and server right after synchronization is about 117 
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microseconds. After 5 minutes time difference is slightly above 1 millisecond, so to have 

Δt constantly less than 1 millisecond node2 should be synchronized roughly every 4 

minutes. 

Table 5. Results of synchronization protocol version 2, node 2. 

Node2               

Num. 
Δt 
[us] 

Time to 
SYNC [ms] 

Δt [us] 
after 30s 

Δt [us] 
after 60s 

Δt [us] 
after 180s 

Δt [us] 
after 240s 

Δt [us] 
after 300s 

1 99 18.193 218 316 696 867 1104 

2 3 10.903 101 180 580 780 978 

3 180 47.248 280 381 758 967 802 

4 80 22.985 82 121 498 894 1085 

5 108 25.496 222 329 728 932 1132 

6 110 22.873 130 230 602 806 1018 

7 182 33.483 292 388 784 986 1185 

8 112 33.437 220 328 732 928 1120 

9 178 10.903 287 378 784 984 1180 

10 117 10.938 178 267 668 870 1066 

Average 117 23.6459 201 292 683 901 1067 

Median 111 22.929 219 322 712 911 1095 

 

The results for node3 are provided in Table 6 below. The synchronization precision is 

better than 200 microseconds. After 5 minutes time difference between node3 and server 

is about 500 microseconds, meaning if I send synchro signal at least every 5 minute node3 

will be synchronized to server clock with precision under 1 microsecond. 

Table 6. Results of synchronization protocol version 2, node 3. 

Node3        

Num. 
Δt 
[us] 

Time to 
SYNC [ms] 

Δt [us] 
after 30s 

Δt [us] 
after 60s 

Δt [us] 
after 180s 

Δt [us] 
after 240s 

Δt [us] 
after 300s 

1 110 29.917 161 183 318 388 455 

2 124 22.886 172 199 333 402 470 

3 196 10.864 233 264 404 471 542 

4 198 41.527 252 290 423 492 558 

5 9 23.783 45 78 216 286 353 

6 172 18.69 224 261 401 469 534 

7 184 55.472 236 273 408 477 549 

8 135 21.354 184 229 375 441 501 

9 166 28.355 207 239 382 458 522 

10 151 10.948 198 241 386 463 537 

Average 145 26.3796 191 226 365 435 502 

Median 159 23.3345 203 240 384 461 528 
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Below I give summery Table 7 combining all results separately for both protocols. It will 

simplifier for readers to have a performance of synchronization precision for both 

developed protocols and to see the differences. 

Table 7. Summery tables combining all results separately for both protocols. 

Version1        

 

Δt 
[us] 

Time to 
SYNC [ms] 

Δt [us] 
after 30s 

Δt [us] 
after 60s 

Δt [us] 
after 180s 

Δt [us] 
after 240s 

Δt [us] 
after 300s 

Average 434 20 491 548 756 861 970 

Median 453 17 529 575 700 771 834 

       

 

 

 

Version2        

 

Δt 
[us] 

Time to 
SYNC [ms] 

Δt [us] 
after 30s 

Δt [us] 
after 60s 

Δt [us] 
after 180s 

Δt [us] 
after 240s 

Δt [us] 
after 300s 

Average 131 24 185 238 462 580 679 

Median 149 23 200 237 404 478 554 

 

From the Table 7 it is seen that precision of synchronization is better in case of protocol 

version 2. However both protocols give precision under 1 millisecond. To have a time 

difference between all nodes and server during devices’ uptime the synchronization 

process should be initiated at least every 2 minutes in case of protocol version 1 and every 

4 minutes in case of second protocol (to gather these times you need to refer to detailed 

tables with results). 

5.2 Synchronization precision measurements with external signal 

Another type of measurement to evaluate the synchronization precision of both developed 

protocols is described in this chapter. In this test I used MSP430 LaunchPad to generate 

pulses every 2 seconds. All three nodes and server were configured to generate interrupt 

when on cc2650 LaunchPad pin 21 rising edge is detected. When pulse is detected the 

synchronized timer value (and server’s timer value) is printed out on serial port. All three 

nodes’  and server input pin 21 connected to breadboard, MSP430 output pin generating 

pulses also connected to same line on breadboard. With this approach I know that pulses 

are detected by devices in exactly same time point. No other tasks were executed on 

devices of interest, only once before measurement started nodes were synchronized and 

approximately 40-50 seconds after MSP430 board started to generate pulses by pushing 
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the button on board. 10 measurements during 20 seconds were taken, so this will show 

how nodes’ timers differ from master timer during first minute after synchronization. 

Printed results were captured with PuTTY [23] and later calculated in Excel. 

Below results for both protocols are presented in Table 8 and Table 9, where present 

values of 32 bit timers. Timers are not pre-scaled (no such possibility in cc2650 for full-

width mode timers), so its clocks are as MCU’s – 48 MHz, calculated time differences 

are shown in microseconds and in timer ticks.   

 

In table 8 results for protocol version 1, it can be seen that time difference between nodes 

and timer does not exceed 500 microseconds in the end of first minute after 

synchronization. The clocks deviate from masters on 3-10 microseconds in every 2 

seconds. 

 

Table 8. Measurement results taken with external signal, for version 1. 

 

Table 9. Measurement results taken with external signal, for version 2. 
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In above table results for synchronization protocol version 2 are present. Time difference 

between nodes and timer as in case of protocol version 1 does not exceed 500 

microseconds in the end of first minute after synchronization and even better. The clocks 

deviate from masters on 3-10 microseconds in every 2 seconds.  

This test was additionally done to prove results acquired in chapter 5.1, where 

measurements were taken by oscilloscope right after synchronization and at some points 

after. These results show that time difference between nodes and server are less than 1 

millisecond and even under 500 microsecond. I think that achieved results are good and 

believe that synchronization protocols might be improved to achieve better precision. 

5.3 Time to synchronize 

One measurement which I not described yet is time to sync. This time was measured with 

timer GPT3A, which was started when first multicast synchro signal is reached to node’s 

application layer software and stopped also in application layer when last unicast synchro 

signal received and timer to synchronize is adjusted with new value. In this case average 

or median values doesn’t tell much, since after nodes receive multicast synchro signal 

they start to talk to server in unicast way, and they start to send data exactly in same time, 

so concurrency and/or collisions occur. This means that only 1 node at time moment is 

able to send data frame over IEEE 802.15.4 network. There always will present non-

constant time between first and last synchronized node. And this time almost linearly 

increase with adding new nodes into network. 

In this chapter I bring results of measured time to synchronize. In tables you will find 10 

measurements for each protocol. In every attempt time to sync is taken for all three nodes, 

each node send its measured value to PC via serial interface. 

As it could be seen from Table 10 below, the time to sync is non deterministic and in most 

attempts pretty much same for both protocols.  It is easy to explain – despite that 

synchronization protocol version 2 uses 4 times more multicast synchro frames, the most 

time spent on synchronization is used by unicast frames where concurrency and collisions 

are met, and this is equal issue for both protocols. In Table 10 during attempt 5 in ver.1 

happened situation when all three nodes did not complete synchronization during defined 

time limit and nodes separately were asking server for new synchro signals. It is not 



62 

mandatory that all three nodes will be not synchronized with defined time limit, during 

tests I have seen that 1 or 2 nodes were not synchronized during time limit, however this 

does not have influence on precision. Unfortunately I don’t have statistics how often 

synchronization time is out of limit, but this was quite rare situations. 

Table 10. Time to synchronization, version 1 and version 2 

Version 
1     

Version 
2   

SYNC 
num. Node 

Time to SYNC 
[ms]   

SYNC 
num. Node 

Time to SYNC 
[ms] 

1 Node1 4.791   1 Node1 30.721 

1 Node2 25.947   1 Node2 38.761 

1 Node3 17.804   1 Node3 10.913 

              

2 Node1 4.814   2 Node1 16.57 

2 Node2 25.947   2 Node2 28.61 

2 Node3 52.544   2 Node3 43.956 

              

3 Node1 4.781   3 Node1 11.28 

3 Node2 24.543   3 Node2 20.478 

3 Node3 10.791   3 Node3 46.601 

              

4 Node1 7.574   4 Node1 10.94 

4 Node2 18.716   4 Node2 20.507 

4 Node3 34.781   4 Node3 30.766 

              

5 Node1 336.951   5 Node1 10.949 

5 Node2 353.69   5 Node2 38.878 

5 Node3 384.84   5 Node3 28.298 

              

6 Node1 6.845   6 Node1 22.965 

6 Node2 11.359   6 Node2 38.623 

6 Node3 23.64   6 Node3 10.968 

              

7 Node1 17.28   7 Node1 48.105 

7 Node2 14.574   7 Node2 16.3 

7 Node3 4.814   7 Node3 55.562 

              

8 Node1 16.804   8 Node1 18.72 

8 Node2 11.826   8 Node2 35.307 

8 Node3 4.807   8 Node3 28.25 

              

9 Node1 10.952   9 Node1 25.829 

9 Node2 14.692   9 Node2 22.64 

9 Node3 23.128   9 Node3 33.359 

              

10 Node1 4.805   10 Node1 25.771 

10 Node2 19.646   10 Node2 16.778 

10 Node3 9.979   10 Node3 10.911 
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In my test setup I have only 3 nodes and time to sync is not critical, but with every new 

node in network the estimated time to sync for last node increases on approximately 10 

milliseconds. So if 6LoWPAN network for example contains 10 nodes, theoretical 

estimated time to sync for last node is about 100 milliseconds in best case situation. But 

as I can see from my results where 3 nodes in network, time is non deterministic and 

collision may lead to situation when synchronization retransmission are needed due to 

reached synchronization time limit. This might lead to big problems when some tens of 

nodes simultaneously will send unicast frames to the server asking for synchro. In a worst 

case scenario might happen situation when no one node will be able to synchronize. One 

of theoretical solutions for this problem I think is that every node should wait some 

random time before sending unicast frame to server. This should help to relieve load from 

CSMA and less collisions will occur. Of course this is only theory not supported by real 

tests. 

5.4 6LoWPAN data transfer capability test 

In this chapter I describe how test of 6LoWPAN data transfer capability were done and 

show the results I have. In this test, one of available CC2650 LaunchPad was used as 

IEEE 802.15.4 packet traffic sniffer. So I have 1 6LoWPAN device acting as server and 

2 nodes which continuously and simultaneously send UDP data to server. Wireshark [21] 

was used to correctly show 6LoWPAN traffic captured with sniffer.  

The firmware for sniffer was taken from Contiki github, few modifications were done to 

match target hardware CC2650 LaunchPad. To capture and proceed frames captured by 

sniffer, free python script “Sensniff” - Live Traffic Capture and Sniffer for IEEE 802.15.4 

networks [22] was used. Sensniff helps to do real traffic capture and further data analysis. 

This script is available only for *nix platforms so virtual machine with Ubuntu OS was 

used. CC2650 LaunchPad acting as sniffer was connected to virtual Ubuntu via USB bus. 

Wireshark on Ubuntu was configured to capture data from Sensniff and correctly 

represent 6LoWPAN data. 

Tests were done in following way: server send 1 multicast frame, 2 nodes receive this 

frame and simultaneously start to send UDP data packets. Each time server receives 

packet it reply with hardware-level acknowledgment frame ACK sent by the radio 

interface. In total were done 39 tests – data was sent with different frequency and different 
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data length. In all cases 2 nodes were sending with equal time periodicity and equal data 

length. Below is column chart with gathered results.     

 

Figure 18. Data transfer capability test results. 

 

In column chart shown above the results of 6LoWPAN data transfer capability tests are 

presented. Here under X-axis are time periodicity of sending data by 2 nodes 

simultaneously. Under Y-axis data length of each packet. 

The maximum data length that could be sent simultaneously by 2 nodes every 50 

milliseconds is 18 bytes; every 100 milliseconds – 19 bytes; every 500 milliseconds – 23 

bytes; every 1000 milliseconds – 30 bytes. When I tried to transfer data every 10 

millisecond the network was overloaded and 1 node was never able to send its data 

(despite the data length) to server, so I consider it as 6LoWPAN impossibility to handle 

data transfer from multiple nodes while they transfer data simultaneously every 10 

milliseconds. Below is snapshot from Wireshark when IEEE 802.15.4 is overloaded and 

data is not received by server. 
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In Figure 19 is seen how nodes are trying to send 22 data bytes every 100 milliseconds, 

but server never replies. The total packet size including compressed header is 51 bytes. 

The node with link-local address fe80::212::4b00:d54:3d82 is node2 in this thesis; node 

with link-local address fe80::212::4b00:d5e:d403 – is node3; and server’s address is 

fe80::212::4b00:d6a:dc87. 

Below I want to show Wireshark snapshot when nodes were able to continuously send 

data and server acknowledges on received frames. In this example 19 data bytes were sent 

every 500 milliseconds. The total packet size including compressed header is 48 bytes. 

 

Figure 19. Two nodes fail to simultaneously send 22 data bytes every 100 milliseconds. 
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In this 6LoWPAN data transfer capability test I tried to evaluate ability of 6LoWPAN to 

handle data transfer when several nodes simultaneously start to transmit data frames. The 

reason for simultaneous data transfer test is quite obvious – synchronized nodes will 

acquire sensor’s values and send data to server in equal time point. The results show that 

it is possible to simultaneously send up to 18 data bytes every 50 milliseconds, however 

for higher data rates and time periodicity some improvements should be done. One of 

possible solutions is send data with random period, this will require to have data buffer 

on devices. 

5.5 Summary 

The results show that synchronization precision of both developed protocols is under 1 

millisecond, or rather 600 microseconds in case of first protocol and 200 microseconds 

in case of second synchronization protocol (synchronization frequency ones in 30 

seconds). To have constantly time difference between nodes and server less than 1 

millisecond, synchronization should be initialized by server at least every 2 minutes in 

case of protocol version 1 and every 4 minutes in case of second protocol. 

Synchronization periodicity once in every 2-4 minutes will not over flood existing 

wireless sensor network. Time to synchronization seems very long, however I think it 

could be improved by adding random delay before sending unicast frame to server asking 

 

Figure 20. Two nodes are able to simultaneously send 19 data bytes every 100 milliseconds. 
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for synchro. Another improvement in both protocols might be using more efficient 

compression, in my examples compression threshold was configured so that data less than 

15 bytes will not be compressed, but when every node is asking server for synchro, they 

send unicast frame with data length of 2 bytes – this frame appears uncompressed, so the 

total UDP frame length is 74 bytes long. Unfortunately I don’t have results with more 

efficient compression, because I found this Contiki OS specific when measurements were 

already done. Nevertheless I believe this could improve time to synchronization and 

6LoWPAN data transfer capacity, but of course this does not influence precision of 

synchronization. 
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6 Conclusion and future improvements 

During this thesis work I have studied the working principles of 6LoWPAN in IEEE 

802.15.4 based networks. Knowledge of IPv6 also improved. Get familiar with Contiki-

OS – operating system for IoT. Implemented UDP client-server communication and base 

on this solution, realized 2 modified versions of synchronization protocol based on IEEE 

1588-2008 standard.  

Deployed test environment and measurement results show that even with software 

realization of PTP the synchronization precision of sub-millisecond is achievable – 600 

microseconds in case of first protocol and 200 microseconds in case of second 

synchronization protocol. To achieve such precisions, nodes should be synchronized at 

least every 30 seconds. 

Data transfer capability tests show that two nodes could continuously and simultaneously 

transmit 18 data bytes every 50 milliseconds or 30 data bytes every one second. The data 

rates could be higher if nodes transmit packets in different time, with a gap for example 

one millisecond. Future work will be mainly based on improvements described above. 

6.1 Future improvements 

The first thing to improve in synchronization process is to take timestamps in MAC layer 

right after message received or just before sending out. This definitely will improve 

synchronization accuracy, otherwise generating timestamps at application level introduce 

error, since going up or down the protocol stack requires time which can’t be determined 

and highly depends on workload of operating system or device in total. Generating 

timestamps at MAC layer, I think shouldn’t be a very complex solution, since Contiki-

OS is supplied with full available source code and it is easy to make changes and custom 

configurations. 

The next step is to implement support of boundary clock and/or transparent clocks. 

6LoWPAN based wireless sensor network with mesh topology could be deployed on a 

large area, where some end-devices are not directly connected to DAG root. If upstream 

nodes are simply ordinary clocks, not acting as boundary clocks, there is now way for 

downstream nodes to be synchronized with master clock. The solution for this issue seems 
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very plain – 6LoWPAN nodes already support route-over mode and storing mode is 

enabled, hence nodes hold routing and neighbour tables. So it seems logically to 

implement boundary clock on top of RPL. Of course this is only in case of software 

implementation of IEEE 1588-2008 standard, without specific hardware solution. 

The last improvement I want to mention is to provide grand master with real time and 

date. In current tests grand master (6lowpan border router, or UDP server, or gateway) 

sends out its general purpose timer values, which is not time like UNIX time since epoch. 

Here any kind of solution could be implemented, since 6LBR is running on top of 

Raspbian in Raspberry Pi 3, which has Ethernet and WIFI interfaces, it uses mains power 

supply and it is more powerful comparing to normal microcontrollers. 

Tests and measurement result showed that with implemented solution the achievable 

synchronization precision is in sub-millisecond range. With described improvements the 

accuracy could be increased, system become more stable and reliable, this gives 

opportunity for real field deployment and usage in wireless sensor networks. 
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