
Tallinn 2018

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Mahmoud Hany Mahmoud Elbayoumy 165518IVEM

MOBILITAPP PROJECT:

USER TRANSPORTATION ACTIVITY

RECOGNITION VIA MOBILE DEVICE

SENSORS

Master’s Thesis

 Supervisors: Alar Kuusik

 Dr., Senior researcher

of T.J. Seebeck Dept

of Electronics

 (TUT)

 Mónica Aguilar

Igartua

 Associate Professor in

the Department of

Networking

Engineering (UPC)

Tallinn 2018

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Mahmoud Hany Mahmoud Elbayoumy 165518IVEM

MOBILITAPP PROJEKT:

LIIKLEJA TRANSPORDIKASUTUSE

TUVASTAMINE MOBIILSE SEADME

SENSORITE ABIL

Magistritöö

Juhendaja: Alar Kuusik

 tehnikateaduste doktor

infotehnoloogia alal,

vanemteadur (TTÜ)

 Mónica Aguilar

Igartua

 Võrgutehnoloogiate

osakonna dotsent

(UPC)

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Mahmoud Elbayoumy

14.05.2018

4

Abstract

Current thesis presents my developments of algorithms and software for detecting means

of transportation of citizens using motion data from the sensors built in Android smart

phones.

First, I worked on adding sensors data logging functionalities to an Android application

called MobilitApp. Second, I worked on logging sensors data via using MobilitApp’s new

functionality. Third, using the data collected, I worked with machine learning concepts to

be able to detect the specific transportation activities. Eventually, I assessed multiple

solutions to integrate the machine learning logic implementations with Android operating

system.

This thesis is written in English and is 41 pages long, including 5 chapters, 17 figures and

8 tables.

5

Annotatsioon

Mobilitapp projekt: liikleja transpordikasutuse tuvastamine

mobiilse seadme sensorite abil

Käesolev lõputöö kirjeldab minu arendustöid algoritmide ja tarkvara vallas, mille

eesmärgiks on kodanike transpordivahendite kasutuse tuvastamine Android

nutitelefonides sisalduvate liikumisandurite abil.

Esmalt lisasin Android tarkvararakendusele MobilitApp sensorandmete logimise

funktsionaalsuse. Teiseks tegelesin sensorandmete kogumisega kasutades seda

MobilitApp uut funktsionaalsust. Kolmandaks, kasutades kogutud andmeid, tegelesin

masinõppe meetoditega tuvastamaks spetsiifilisi transpordiaktiivsusi. Lõpuks uurisin

erinevaid lahendusi integreerimaks masinõppealgoritmide implementatsioone Android

operatsioonisüsteemiga Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 41

leheküljel, 5 peatükki, 17 joonist, 8 tabelit.

6

List of abbreviations and terms

API Application programming interface

APK

Android Package. It is the file generated after developing an

Android phone application, used in its distribution and

installation.

App Software Application

ATM Autoritat del Transport Metropolità

m/s2 Meters per second squared

min Minutes

ms Milliseconds

OS Operating System

PC Personal Computer

PCA Principal Component Analysis

s Seconds

SCs Smart Cities

SDK
Software Development Kit. It is a set of development tools assists

in building certain software.

SVM Support Vector Machine

TUT Tallinn University of Technology

UI User Interface

UPC Universitat Politècnica de Catalunya

7

Table of contents

1 Introduction ... 10

1.1 Structure of Work ... 11

2 Transportation Applications Market Overview ... 12

2.1 Market Solutions... 12

2.1.1 Moovit [4] .. 12

2.1.2 My Smart Route [6] ... 13

2.1.3 Waze [7] .. 13

2.1.4 By2ollak [8] ... 13

2.1.5 Android Activity Recognition APIs [3] .. 14

2.2 MobilitApp [9] .. 14

3 Project Structure .. 16

3.1 Project Objective .. 16

3.2 Project Phases ... 17

4 Development Process .. 18

4.1 Phase 1: Data Capturing Logic Development .. 18

4.2 Phase 2: Data Collection ... 19

4.3 Phase 3: Activity Detection Logic Development ... 21

4.3.1 Machine learning concept assessment ... 21

4.3.2 Data structure assessment .. 23

4.3.3 Machine learning model assessment ... 29

4.4 Phase 4: Migrating Activity Detection Logic to MobilitApp 34

4.4.1 Matlab [16] .. 34

4.4.2 Weka [21] [22]... 34

4.4.3 Tensorflow [23] [24] ... 34

4.4.4 Python [25] [26] [27] ... 35

5 Results and Conclusion ... 38

References .. 40

8

List of figures

Figure 1. MobilitApp current services .. 15

Figure 2. Transportation activity data recording UI ... 19

Figure 3. Machine learning concepts .. 23

Figure 4. Stationary activity magnitudes of accelerometer components (m/s2) for ~6 s 24

Figure 5 Walk activity magnitudes of accelerometer components (m/s2) for ~6 s 24

Figure 6 Run activity magnitudes of accelerometer components (m/s2) for ~6 s 25

Figure 7 Bicycle activity magnitudes of accelerometer components (m/s2) for ~6 s 25

Figure 8 Motorbike activity magnitudes of accelerometer components (m/s2) for ~6 s 26

Figure 9 Car activity magnitudes of accelerometer components (m/s2) for ~6 s 26

Figure 10 Bus activity magnitudes of accelerometer components (m/s2) for ~6 s 27

Figure 11 Tram activity magnitudes of accelerometer components (m/s2) for ~6 s 27

Figure 12 Metro activity magnitudes of accelerometer components (m/s2) for ~6 s 28

Figure 13 Train activity magnitudes of accelerometer components (m/s2) for ~6 s 28

Figure 14 Android sensors components (accelerometer and magnetometer) [15] 29

Figure 15 Bagging versus boosting classifiers' training [18] ... 30

Figure 16 Confusion matrix showing results of testing data on the trained model 32

Figure 17 Chaquopy over Android OS ... 38

9

List of tables

Table 1 Activity Recognition API Detected Activities .. 14

Table 2. Transportation activities targeted to be detected by MobilitApp 16

Table 3. Collected duration per activity ... 20

Table 4. Holdout validation results for machine learning models 30

Table 5 Mapping Google Activity Recognition API activities to MobilitApp activities 32

Table 6 Android Activity Recognition API versus MobilitApp 33

Table 7. APK integration solutions of Python over Android ... 36

Table 8 Terminal solutions of Python over Android .. 37

10

1 Introduction

Smart cities (SCs) is one of the leading sensing and connectivity technology deployment

concepts nowadays. Everything around us is turning to be a smart object. One of the major

tracks of smart cities solutions is transportation by its all means. Detecting citizens

transportation activities (driving, cycling, walking, running or in a certain public

transportation) will assist in improving the transportation map of any city.

MobilitApp [1] is a project hosted in Universitat Politècnica de Catalunya (UPC) [2],

Barcelona, which focuses on the smart thing that is always accompanying citizens during

their daily transportation journeys, which is the smart phone. This project mainly focuses

on adding new functionalities to an existing Android software application (app) called

MobilitApp. New added functionalities are: collecting data from the mobile phone’s

sensors to be passed afterwards to a machine learning algorithm to be able to detect the

means of transportation the phone holder is using. In our case, MobilitatApp developers

consider Barcelona in Spain as our prototype case study.

Our ultimate goal is to offer MobilitApp to companies responsible for public

transportation, such as Autoritat del Transport Metropolità (ATM) in Barcelona,

automated bike rental companies, etc. For such service providers, information such as

what the citizens use to transport from certain place to another, what are the routes that

citizens always use and what are the hot destinations of the city, such information will be

of a great deal in enhancing the city transportation map.

In this part of the project, the author’s work was mainly focused on enhancing MobilitApp

application to be able to collect data from mobile phone sensors, and upload it to a remote

server to be stored and analysed. Afterwards a machine learning algorithm was set to

detect the activity done by the user based on the data collected. It worth mentioning that

Google has created and Android Activity Recognition API [3], which allows to classify

certain user activities like walking and driving a car, but it just detects a few motion

activities. Present thesis describes author’s work to classify different modes of transport

and therefore extends the present state-of-art of Android Activity Recognition API. I

11

managed to capture the output for Android Activity Recognition API for the same

activities during progressing in the project and I will try to show how the predictions of

Android versus mine versus the actual ones were.

1.1 Structure of Work

This work is structured in 5 main chapters. Chapter 1 is the current introduction. Chapter

2 focuses on the market overview and current solutions already in business and the scope

of each of them. Chapter 3 where I focus on my objective, obstacles and my plan to

overcome them. Chapters 4 illustrates the procedures followed to reach my final target.

Chapter 5 contains the results, the discussion around them and the future work.

12

2 Transportation Applications Market Overview

Over the years and since smartphones become in the hands of everybody, mobile

applications started to invade the market, and their existence started to take over major

part of the web applications’ role. Currently, the competition in the field of smart

transportation and routes applications is very fierce. Each and every company in the

market is trying to offer the software application (app) with the best features to gain the

biggest market share and to be a role model in the industry. This section shows some

examples of those apps to show the current direction of the business and sense the market

flavour. As mentioned before there are a lot of apps in the market, but those apps

presented here are meant to illustrate the different concepts which a smart traffic app

nowadays can work with.

2.1 Market Solutions

There are several smartphone applications dedicated for smart traffic solutions in order

to enhance the citizens’ experience on the road and facilitate their daily life. In the

following, a selection of those application focusing on their diversified scopes.

2.1.1 Moovit [4]

Platforms: Web, Android, iOS

Service locations: over 2000 cities

Moovit is adopting the same concept of Google maps [5] where it shows the user the

options of routes to his/her destination, the estimated trip time for each route, the best

route of them, the means of transportations can be used (including public transportation

stations, route numbers and timetables).

Moovit also offers reselling solutions through their widgets and white-label solutions for

companies that want to implement an interactive maps in their applications.

13

2.1.2 My Smart Route [6]

Platforms: Web, Android

Serving locations: Worldwide

My Smart Route is meant to be for users who work in the delivery business. It enables

the user to plan and model the daily delivery routes. The user enters details of his/her

customers like addresses, time windows, departure time, then the system applies a route

optimization algorithm and create optimized, feasible and cost-effective multi-drop

routes.

2.1.3 Waze [7]

Platforms: Android, iOS

Service locations: Worldwide

Waze is meant to be for private vehicle owners. Users open the application and enter the

destination address then start driving while the app is opened. The app on its own starts

to collect traffic and other road data. Also, users can share road reports on accidents,

police traps, or any other hazards along the way which help others users during their trips.

2.1.4 By2ollak [8]

Platform: Android, iOS

Serving locations: Cairo, Egypt

By2ollak is meant to be for private vehicle owners. It works with the concept of reporting

where each driver can report the status of the road he/she is driving in and those reports

are shared with other users. It is somehow like Waze, but without any smart algorithm for

collecting the traffic data.

14

2.1.5 Android Activity Recognition APIs [3]

Platform: API for Android apps

Serving locations: Worldwide

Google Activity recognition is an API developed by Google to be used in Android

application. This API uses the built in Android phone sensor to differentiate between 8

user activities, shown in Table 1. The API output is the probabilities for each activity to

be done by the user in a particular period of time.

Table 1 Activity Recognition API Detected Activities

Activity Name Activity Description

IN_VEHICLE The device is in a vehicle, such as a car.

ON_BICYCLE The device is on a bicycle.

ON_FOOT The device is on a user who is walking or running.

RUNNING The device is on a user who is running.

STILL The device is still (not moving).

TILTING The device angle relative to gravity changed significantly.

UNKNOWN Unable to detect the current activity.

WALKING The device is on a user who is walking.

2.2 MobilitApp [9]

MobilitApp project started in 2014 in Universitat Politècnica de Catalunya (UPC) [2],

Barcelona and still ongoing till now. MobilitApp main target is to enhance the citizens’

daily transportation experience and to improve the public transportation over the city of

Barcelona. It is the collaboration of many students’ work. The major difference I am

targeting to add to MobilitApp over other apps in the market is the focus on activity

recognition of the users. I want to detect how the user is transporting during his day

without any intervention of the user himself, so I could reach a fully automated app having

15

an Artificial Intelligence concept. Android Activity Recognition API offers the same

utility, however it cannot distinguish between different means of transportations (car,

metro, train, bus, etc.). Other services like route advising and traffic density can be served

as an auxiliary services. However, our main scope here is to reach a fully automated

platform to inform the user without the user informing it or inserting any input.

MobilitApp currently offers multiple useful services as shown in Figure 1. Traffic flow

information (Figure 1a), step counter calculating number of steps walked and number of

calories burned (Figure 1b) and an accident detection system where the user can insert an

emergency number and the phone can auto detect in case an accident happens and send

emergency SMS to that number. An accident is basically detected via aggressive and

abnormal vibration behaviour of the mobile phone.

(a) Traffic view (b) Step counter view (c) Notify accident view

Figure 1. MobilitApp current services

During this phase of MobilitApp project, I will work to add the functionality of detection

for the means of transportation the phone-holder is using.

16

3 Project Structure

3.1 Project Objective

As mentioned in the previous section, the initial objective of this thesis is to make

MobilitApp capable of detecting the user’s means of transportation, for example use of a

bus, train, metro…etc. This activity detection algorithm should be on real-time basis.

The concept followed was based on machine learning technology where the following 2

stages should be fulfilled:

 Collecting data from mobile phone sensors;

 Creating a machine learning algorithm to detect the means of transportation.

This transportation activity detection logic is developed to serve its purpose in the city of

Barcelona, Spain. It should be capable of detecting 10 transportation activities shown in

Table 2.

Table 2. Transportation activities targeted to be detected by MobilitApp

Activity Name Activity Description

Stationary The device is not moving.

Walk The device is on a user who is walking.

Run The device is on a user who is running.

Bicycle The device is on a bicycle.

Motorbike The device is on a motorbike.

Car The device is on a car.

Bus The device is on a bus.

Tram The device is on a tram.

17

Metro The device is on a metro.

Train The device is on a train.

Android Activity Recognition API mentioned in section 2.1.5 already can detect 8 user

activities (IN_VEHICLE, ON_BICYCLE, ON_FOOT, RUNNING, STILL, TILTING,

UNKNOWN, WALKING), but those activities do not include the differentiation between

types of transportation means. Also, it includes an activity called “Unknown” which

affects the resulting output badly whenever it is detected. Consequently, I added another

point to the thesis objective which is considering the enhancement I should make in my

activity detection algorithm versus that of Android Activity Recognition API.

3.2 Project Phases

In order to reach my target, the work was phased out into the 4 following phases and the

scope of each of them will be discussed in chapter 4:

Phase 1: Data Capturing Logic Development;

Phase 2: Data Collection;

Phase 3: Activity Detection Logic Development;

Phase 4: Migrating Detection Logic to MobilitApp.

18

4 Development Process

4.1 Phase 1: Data Capturing Logic Development

First of all, a logic was developed on MobilitApp to capture and log the data from

accelerometer, magnetometer and Android Activity Recognition API. I focused on

accelerometer because it is the sensor responsible for motion detection in an Android

phone, as per Android developers [10]. Also because of its wide footprint, now, you can

barely find a smartphone without accelerometer. Magnetometer comes in the second

place just as an assistant for the accelerometer to enhance its detection. Moreover, I

triggered the data of Android Activity Recognition API to illustrate the difference

between its output and output of MobilitApp developed logic.

The data will first be logged in the phone’s storage, then it should be upload to a

Raspberry PI server where it will be analysed.

Enhancement was done to the user Interface (UI) of MobilitApp where activity annotation

functionality was added to assist in data collection, as show in Figure 2.

a) The phone user should press the play button to start recording the data of the

transportation activity being done. See Figure 2 (a).

b) Select the type of transportation activity from a pop-up menu. See Figure 2 (b).

c) Press the stop button after finishing the transportation activity to stop the data

recording. See Figure 2 (c).

d) Discard the logged data or save it to the phone’s storage. See Figure 2 (d). This is

because in some cases the users forget to stop the recording after the transportation

activity has been finished. So if the data is saved and sent to the server it will be

misleading.

e) Press the “Send data” choice from the dropdown menu to send the logged data

files to the server and delete it from the mobile storage. See Figure 2 (e).

19

(a) Start recording

(b) Choose activity type

(c) Stop recording

(d) Save the recorded sample

(e) Upload the recorded data to

the server

Figure 2. Transportation activity data recording UI

4.2 Phase 2: Data Collection

In this phase, I focused on acquiring volunteers to assist us in collecting data by using

MobilitApp via the new module developed in phase 1. First of all, slides were prepared

explaining how to use MobilitApp data collection module [11]. Then, a campaign was

20

launched to acquire volunteers to use the app and collect test data volunteer acquiring

campaigns were launched via:

 Emails & WhatsApp: emails and WhatsApp messages were formulated and sent

to groups of professors and students of UPC.

 MobilitApp webpage [9]: New section was added to the site to esteem the site

visitors to assist us in collecting data.

During this phase, a fierce challenge was faced in convincing people to volunteer for

using the app to collect data for the sake of development. Eventually, I managed to collect

data from 8 mobile devices covering all the 10 required transportation activities. Table 3

shows the duration of the data collected per activity.

Table 3. Collected duration per activity

Activity Overall Collected Duration of Recordings, [min]

Car 25

Bicycle 38

Train 44

Tram 46

Motorbike 46

Run 48

Stationary 62

Metro 251

Bus 262

Walk 417

21

4.3 Phase 3: Activity Detection Logic Development

After collecting the needed data, a machine learning model needed to be set in order to

detect the transportation activities. In the next section, machine learning concepts and

models are illustrated to consequently conclude the appropriate machine learning model

needed in our case.

4.3.1 Machine learning concept assessment

Machine learning is divided into 2 concepts as summarized in Figure 3: [12] [13] [14]

4.3.1.1 Supervised machine learning

Supervised machine learning is based on building a model from datasets with known

responses (labels) known as training data and the resulting model is known as trained

model. Consequently, this trained model can be used to predict responses (labels) for

other datasets with unknown responses.

Supervised learning common techniques are classification and regression.

Classification is used in case of prediction of discrete responses like in questions with an

answer of yes or no. For instance, whether an email is genuine or spam. Classification

models classify input data into categories.

Classification common algorithms are:

 Support vector machine (SVM)

 Boosted and bagged decision trees

 K-nearest neighbour, Naïve Bayes

 Discriminant analysis, logistic regression

 Neural networks

22

Regression is used in case of prediction of continuous responses. Here, the answer of the

question is not in a discrete format, it always varies with a range which is unlimited in

most cases. For instance, temperature changes or employees’ salaries predictions.

Common regression algorithms are:

 Linear model

 Nonlinear model

 Regularization

 Stepwise regression

 Boosted and bagged decision trees

 Neural networks

4.3.1.2 Unsupervised machine learning

Unsupervised learning is based on building a model from unlabelled datasets. The training

data here has no known responses (labels). Unsupervised learning technique works on

finding the hidden patterns and drawing inferences for the unlabelled training data.

Clustering is the most common unsupervised learning technique. It works on forming

clusters or grouping the data based on the hidden patterns. It can be used in market

research or for customers’ segmentation.

Common clustering algorithms are:

 K-means and k-medoids

 Hierarchical clustering

 Gaussian mixture models

 Hidden Markov models

 Self-organizing maps

23

 Fuzzy c-means clustering

 Subtractive clustering

Figure 3. Machine learning concepts

In our case, Regression Supervised machine learning is the best fitting concept because

data which we will use to train the model is labelled meaning that we know the activity

accompanying each data input. That is why I will use supervised way and I choose

regression because the data is an output of accelerometer and magnetometer so the data

form is continuous not discrete values meaning that it can have any value with no limits.

4.3.2 Data structure assessment

In this part, I will focus on the accelerometer data. The initial data which I got from the

accelerometer was somehow random but I can categorize some of the 10 activities to be

classified in groups. The stationary activity components always have a very tiny variation

in the magnitudes of the X, Y, Z components (most of the time, the variation of magnitude

is less than 0.1 between certain instance and its successive one). Run and walk activities

tend to have a uniform patterns which are being repeated over and over. Other activities

are very random which make it difficult for the human eyes to distinguish between them.

Machine Learning

Supervised

Labeled training data

Classification

Output is Definite Discrete
values (e.g. 1,2,3 and 4)

Regression

Output is Infinite Continues
values (e.g. 222.6, 300,

568,…)

Unsupervised

Non-labeled training data

Clustering

24

As shown in Figures 4 – 13. For this reason, machine learning was the best choice to go

for to assist me in distinguishing between the different activities. This was the main scope

machine learning was invented for, to detect what the human-being cannot detect by

normal static coding.

Figure 4. Stationary activity magnitudes of accelerometer components (m/s2) for ~6 s

Figure 5 Walk activity magnitudes of accelerometer components (m/s2) for ~6 s

25

Figure 6 Run activity magnitudes of accelerometer components (m/s2) for ~6 s

Figure 7 Bicycle activity magnitudes of accelerometer components (m/s2) for ~6 s

26

Figure 8 Motorbike activity magnitudes of accelerometer components (m/s2) for ~6 s

Figure 9 Car activity magnitudes of accelerometer components (m/s2) for ~6 s

27

Figure 10 Bus activity magnitudes of accelerometer components (m/s2) for ~6 s

Figure 11 Tram activity magnitudes of accelerometer components (m/s2) for ~6 s

28

Figure 12 Metro activity magnitudes of accelerometer components (m/s2) for ~6 s

Figure 13 Train activity magnitudes of accelerometer components (m/s2) for ~6 s

For machine learning, I needed to restructure the data to fit for the machine learning

concepts. First of all the machine learning model should be fed the data as intervals to be

able to deduce the pattern of the movement. Because giving the model just 3 points in

time for each input was meaningless. The second challenge was to decide what

29

parameters these data should form and fed the machine learning model. As per my

research and multiple trials, the best data structure was to calculate the mean, the standard

deviation and the first component of the Principal Component Analysis (PCA) for each

component of the accelerometer (X, Y, and Z), see Figure 14. The same parameters were

calculated for the magnetometer. Those parameters were calculated for each successive

1000 log of each component representing a time interval of average 6 ms which is good

for running the application on real-time basis considering that MobilitApp will predict

the transportation activity each 6 ms. Finally, I got the required parameters for each

activity to train the machine learning model to be able to detect the activity.

Figure 14 Android sensors components (accelerometer and magnetometer) [15]

4.3.3 Machine learning model assessment

In this stage, I used Matlab software [16] as our tool to assess the machine learning models

versus our training data structure. Matlab was the best option for this stage because it

provides us with a classification learner application with which multiple models can be

trained and compare between their performance. Trial and error played a big role in

finding the right model to work with, but also formatting the data in an appropriate

structure for the model was another challenge. The best performing machine learning

models, as expected, were those of ensemble methodologies [17] because they adopt the

concept of training multiple models using the same learning algorithm which as a result

enhance the prediction ability of the trained model. The two major ensemble models are

Bagging and Boosting trees [18]. Both models work on training multiple learners and

30

then conclude the final trained model. I used 30 learners for our runs which is the default

value for Matlab. The major difference is that bagging get the simple average from the

trained learners to conclude the model while boosting give weights to each learner where

poor ones get lower weights to enhance its final output. This is shown in Figure 15.

Figure 15 Bagging versus boosting classifiers' training [18]

To compare between trained models in the training stage, I used the holdout validation

method, where the data is split into 2 portions. 75% of the data is used for training and

25% of the data is used to test the resulting trained model. Table 4 shows the results of

the holdout validation where ensemble bagged and boosted trees shows the best

performance. But the best performer was always ensemble bagged trees through all of our

trial sets. I also trained the other models to keep them as a reference for the resulted

models performance.

Table 4. Holdout validation results for machine learning models

Trained Model Holdout Validation Accuracy

Ensemble Bagged Trees 90.20%

Ensemble Boosted Trees 83.00%

Medium Tree 75.50%

Ensemble RUSBoosted Trees 74.00%

Simple Tree 62.10%

31

Fine KNN 52.00%

Ensemble Subspace KNN 51.90%

Weighted KNN 51.80%

Cosine KNN 51.50%

Medium KNN 51.40%

Cubic KNN 51.30%

Coarse KNN 48.50%

Linear Discriminant 47.10%

Ensemble Subspace Discriminant 46.60%

Cubic SVM 35.80%

Quadratic SVM 35.70%

Medium Gaussian SVM 35.50%

Linear SVM 33.90%

Coarse Gaussian SVM 33.00%

Fine Gaussian SVM 31.80%

In order to dig down in the resulted data, I will use the confusion matrix chart. The

confusion matrix shows success percentages of the predicted activities by the model in its

horizontal axis and the actual true activities in its vertical axis. This will give us insights

not only on the overall performance of the trained model, but also on its performance in

detecting each activity.

As shown in Figure 16, the maximum success rate was of 98% achieved on detecting the

bicycle activity and the minimum success rate was of 61% achieved on detecting the car

activity.

32

Figure 16 Confusion matrix showing results of testing data on the trained model

Performance Comparison with Android Activity Recognition API

I used multiple sets of live data to resemble the live performance of the Ensemble Bagged

Trees trained model. The average success rate was around 77%, while the average success

rate of Android Activity Recognition API was 50% that is significantly lower.

As Activity Recognition API do not cover all the 10 activities targeted by MobilitApp

logic I considered the mapping in Table 5.

Table 5 Mapping Google Activity Recognition API activities to MobilitApp activities

Activity Recognition Activity MobilitApp Activity

IN_VEHICLE Bus, Car, Metro, Train, Tram

33

ON_BICYCLE Bicycle

ON_FOOT Walk

RUNNING Run

STILL Stationary

TILTING -

UNKNOWN -

WALKING Walk

In Table 6, I choose the common detected activities among Android Activity recognition

API and my MobilitApp logic to give an insight over the performance of detection of

each of them. Android Activity API shows lower performance, but the obvious case was

in the “Run” activity, as it gave 0% success rate. This is because actually the people who

were doing those running activities were jogging not actually running. Thus, my

resolution for that is that Android Activity Recognition API needs a very defined activity

shape to be able to detect it.

Table 6 Android Activity Recognition API versus MobilitApp

Activity Name Android Activity

Recognition API Success

Rate

MobilitApp Success Rate

Bicycle 43% 96%

Stationary 25% 80%

Walk 73% 84%

Run 0% 77%

34

4.4 Phase 4: Migrating Activity Detection Logic to MobilitApp

In this phase, efforts were done to migrate the machine learning model to Android over

MobilitApp application. In order to do this multiple tools were assessed to settle down on

the optimal one. In the following, I will show those different tools from the point of view

of Android compatibility and results efficiency in our case:

4.4.1 Matlab [16]

 Android Compatibility: Not compatible

 Results Efficiency: High

Matlab was the first candidate to integrate the machine learning model with Java [19]

which is used in MobilitApp development and currently used to develop most of Android

apps. The 2 options to integrate Matlab code in Java was whether to convert it to C

language [20] or to create a stand-alone Java application. The obstacle here was that both

methods cannot convert the machine learning classifier, produced from training the

machine learning model, to C or a stand-alone Java application. Consequently, it is not

feasible to directly deal with Matlab in this phase because code is only dedicated to work

in Matlab.

4.4.2 Weka [21] [22]

 Android Compatibility: Compatible

 Results Efficiency: Low

Weka (Waikato Environment for Knowledge Analysis) is a tool which avails multiple

machine learning methodologies. It is written in Java and developed at the University of

Waikato, New Zealand. It is free software licensed under the GNU General Public

License. The obstacle with Weka was that the machine learning models trained by Weka

did not give predictions of high efficiency as that of Matlab, but the major defect was that

there are whole activities cannot be detected at all like Tram and Train.

4.4.3 Tensorflow [23] [24]

 Android Compatibility: Compatible

 Results Efficiency: Low

35

TensorFlow is a library which can be used for machine learning applications. It is an

open-source software library developed by Google Brain Team. When I used TensorFlow

in this phase it gave 95% success rate during the training phase, but on live data, it gave

a very low efficient result of average success rate of 10%. Accordingly, I excluded

moving forward with TensorFlow.

4.4.4 Python [25] [26] [27]

Python is a high-level programming language. Python is the strongest programming

language with machine learning. It has a robust machine learning libraries. First, I

implemented the machine learning model using Python over personal computer (PC) and

it gave an average success rate of 68% during training and 70% during testing its trained

model with live data. Results gained from Matlab, previously in section 4.3.3, were 90.2%

during training and 77% during testing with live data. Although, testing data validation

for Matlab was better, but I considered Python because in training and testing phases it

nearly gave results as Matlab with live data. Second, I needed to find a way to integrate

Python with its machine learning libraries over Android. There are a lot of solutions

developed to integrate Python over Andoid’s Java. The most important is to find the

solution which avails the integration of Python’s machine learning libraries as well. The

current available solutions are divided into 2 groups. The first group with target to build

a standalone APK over Android and this can assist me in integration of Python with Java.

The second group is enabling a terminal over Android in which we can write Python code

over Android and this group can be used just to proof that Python utilities can be used

over Android. In the following, I will show those solutions from 2 viewpoints. As shown

in Table 7. The first viewpoint is the feasibility for the solution to be integrated with Java

and I will put it under the name of “overall integration with Java”. The second viewpoint

is if the solution avails the libraries required to use Python in machine learning and I will

put it under the name of “Python machine learning libraries integration with Java”. In our

case, in order to use Python in machine learning, the following 3 libraries are needed to

be imported to the Python code:

 Pandas [28]: I used it in getting data from files and restructure it.

 Pickle [29]: I used it in storing and loading the trained machine learning model.

36

 Scikit-learn [30]: I used it to import the required machine learning algorithm to

work with.

4.4.4.1 Build Standalone APK

As shown in Table 7, as per my assessment for the shown solutions, all of them are not

feasible in case of integration of Python Machine Learning libraries, except for Chaquopy

[31]. Chaquopy’s team worked on integrating the required libraries (pandas, scikit-learn)

during the time of writing this thesis and they managed to successfully launch the new

version in 26.04.2018. Thus, my recommendation was to stick to Chaquopy in this phase.

I need to highlight that Chaquopy is not an open source SDK and it costs 39

Euro/developer.

Table 7. APK integration solutions of Python over Android

Solution Overall integration with

Java

Python Machine

Learning libraries

integration with Java

BeeWare tool

(https://pybee.org/)

Feasible Not feasible

Chaquopy SDK

(https://chaquo.com/)

Feasible Feasible (26.04.2018)

Kivy library

(https://kivy.org/)

Not feasible Not feasible

python-for-android tool

(http://python-for-

android.readthedocs.io/)

Not feasible Not feasible

https://pybee.org/
https://chaquo.com/
https://kivy.org/
http://python-for-android.readthedocs.io/
http://python-for-android.readthedocs.io/

37

4.4.4.2 Android Terminal

There are 2 terminals which can be downloaded from Google Play like any normal

application and after installing them, they can be used to write Python code. This method

cannot assist in integrating my solution in MobilitApp, but can be used to proof the

concept that machine learning using Python can function over Android OS. As shown in

Table 8, Termux is the one which supports working with Python Machine Learning

libraries. Qpython, however in their website they stated that it can handle machine

learning libraries. In my live testing to it, its performance was very poor, not consistent

and not all functions were working properly.

Table 8 Terminal solutions of Python over Android

Solution Overall integration with

Java

Python Machine

Learning libraries

Qpython

(http://www.qpython.com/)

Not feasible Not Feasible

Termux

(https://termux.com/)

Not feasible Feasible

In conclusion, the best option, as I mentioned before, is to go for Chaquopy SDK, as it

can integrate Python with Android applications built over Java. I have managed to

perform a proof of concept using Chaquopy unlicensed version. As shown in Figure 17,

via Chaquopy, I managed to run my Python script over Android with the required libraries

by which I was able to train Ensemble Bagged Trees model and use it to detect the

transportation activities but not on real time basis.

http://www.qpython.com/
https://termux.com/

38

 (a) Training model

(b) Detect a single activity

(walk)

(c) Detect multiple activities

Figure 17 Chaquopy [32] [33] over Android OS

5 Results and Conclusion

My main target was to add the functionality of transportation activity detection in

MobilitApp smartphone application.

I managed to reach an algorithm via machine learning Ensemble Bagged trees model to

predict the different transportation activities in the city of Barcelona. The algorithm can

detect between 10 transportation activities with average success rate of 77% (Stationary,

Walk, Run, Bicycle, Motorbike, Car, Bus, Metro, Train and Tram). Compared to Android

Activity Recognition API, 6 more motion activities can be recognized and the average

recognition success rate is 1.5 times higher.

Currently, I proved my concept via running it using Matlab, Python over PC and Android

OS.

39

Future Work

For the next phase, it is needed to integrate the transportation activity detection

functionality in MobilitApp. This can be done by importing trained Ensemble Bagged

Trees model in Android by using Chaquopy SDK.

For production and deployment of MobilitApp for commercial use, massive data should

be collected from variant parts of Barcelona and retrain the machine learning model to

enhance its detection efficiency over larger scale. Moreover, a dashboard should be

developed with analysable views for business users, in order to make the output data

beneficial and can be used to enhance the transportation infrastructure over the city.

40

References

[1] UPC, “MobilitApp,” [Online]. Available: http://mobilitat.upc.edu/.

[2] “UPC,” [Online]. Available: https://www.upc.edu/ca.

[3] Google, “Android Activity Recognition API,” [Online]. Available:

https://developers.google.com/android/reference/com/google/android/gms/locati

on/ActivityRecognitionClient.

[4] “Moovit,” [Online]. Available: https://moovit.com/.

[5] “Google Maps,” [Online]. Available: https://www.google.com/maps.

[6] “My Smart Route,” [Online]. Available: http://mysmartroute.com/.

[7] “Waze,” [Online]. Available: https://www.waze.com/.

[8] “By2ollak,” [Online]. Available: https://desktop.bey2ollak.com/.

[9] “MobilitApp,” [Online]. Available: http://mobilitat.upc.edu/.

[10] “https://developer.android.com/guide/topics/sensors/sensors_overview.html,”

Google. [Online].

[11] “MobilitApp Data Collection,” [Online]. Available:

http://mobilitat.upc.edu/data_collection_steps.pdf.

[12] Mathworks, “Mathworks,” [Online]. Available:

https://www.mathworks.com/discovery/machine-learning.html.

[13] L. L. Cárdenas, “Enhancement of vehicular ad hoc networks using machine

learning techniques and privacy,” Leticia Lemus Cárdenas, Barcelona, 2018.

[14] “azure ML,” [Online]. Available: https://docs.microsoft.com/en-

us/azure/machine-learning/studio/algorithm-choice.

[15] “Android sensor components,” [Online]. Available:

https://github.com/imthexie/GestureLearner/wiki/Android-Accelerometer.

[16] “Matlab,” [Online]. Available:

https://www.mathworks.com/products/matlab.html.

[17] D. O. &. R. Maclin, “Popular Ensemble Methods: An Empirical Study,”

[Online]. Available: https://arxiv.org/pdf/1106.0257.pdf.

[18] “What is the difference between Bagging and Boosting?,” [Online]. Available:

https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/.

[19] “Java for Android,” [Online]. Available:

https://developer.android.com/studio/write/java8-support.

[20] “C language,” [Online]. Available:

https://en.wikipedia.org/wiki/C_(programming_language).

[21] “Weka,” [Online]. Available: https://www.cs.waikato.ac.nz/ml/weka/.

[22] “Wikipedia (Weka),” [Online]. Available:

https://en.wikipedia.org/wiki/Weka_(machine_learning).

[23] “TensorFlow,” [Online]. Available: https://www.tensorflow.org/.

41

[24] “Wikipedia (TensorFlow),” [Online]. Available:

https://en.wikipedia.org/wiki/TensorFlow.

[25] “Python,” [Online]. Available: https://www.python.org/.

[26] “Wikipedia (Python),” [Online]. Available:

https://en.wikipedia.org/wiki/Python_(programming_language).

[27] “Python for Android,” [Online]. Available:

https://wiki.python.org/moin/Android.

[28] “Python Pandas,” [Online]. Available: https://pandas.pydata.org/.

[29] “Python Pickle,” [Online]. Available:

https://docs.python.org/3/library/pickle.html.

[30] “Python Scikit-learn,” [Online]. Available: http://scikit-learn.org/stable/.

[31] “Chaquopy,” [Online]. Available: https://chaquo.com/chaquopy/.

[32] “Chaquopy,” [Online]. Available: https://chaquo.com/chaquopy/.

[33] “Chaquopy Demo,” [Online]. Available: https://github.com/chaquo/chaquopy.

[34] M. Aguilar, “Monica Aguilar,” [Online]. Available: http://www-

entel.upc.edu/monica.aguilar/.

[35] Wikipedia, “PCA,” [Online]. Available:

https://en.wikipedia.org/wiki/Principal_component_analysis.

[36] “Android Studio,” [Online]. Available: https://developer.android.com/studio/.

[37] G. M. Torregrosa, “Improvement of algorithms to identify transportation modes

for MobilitApp, an Android Application to anonymously track citizens in

Barcelona,” Universitat Politècnica de Catalunya, Barcelona, 2016.

[38] A. S. G. A. V. D. B. a. G. N. Yan Michalevsky, “PowerSpy: Location Tracking

using Mobile Device Power Analysis,” Stanford.

[39] P. N. S. T. Samuli Hemminki, “Accelerometer-Based Transportation Mode,”

Helsinki.

[40] M. M. J. B. D. E. SASANK REDDY, “Using Mobile Phones to Determine

Transportation Modes,” Los Angeles.

