
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Sanan Suleymanov 213860IASM

UNDERWATER VIDEO OBJECT TRACKING IN PRESENCE

OF CHALLENGING VISIBILITY CONDITIONS

Master’s Thesis

Supervisor: Elizaveta Dubrovinskaya
Ph.D.

Tallinn 2023

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Sanan Suleymanov 213860IASM

VEEALUSTE OBJEKTIDE VIDEO JÄLGIMINE KEERULISTE

NÄHTAVUSTINGIMUSTE KORRAL

Magistritöö

Juhendaja: Elizaveta Dubrovinskaya
Ph.D.

Tallinn 2023

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Sanan Suleymanov

08.05.2023

1

Abstract

The biodiversity of marine habitats is threatened by climate change and human activities.
To address this problem, it is essential to understand the factors that affect and mitigate the
negative impacts. One of the effective ways to understand the changes in biodiversity is to
analyze the behavior of animals. For instance, fish migration and behavior can reveal the
consequences of climate change and habitat degradation.

This thesis work aims to use computer vision for solving the problem of multiple object
tracking in underwater conditions. Tracking underwater objects, especially fish, poses
many challenges due to the complex and dynamic nature of underwater environment, such
as visual similarity of underwater objects and often insufficient natural lighting. This
study examines these challenges and explores how tracking algorithms can be applied
in underwater conditions. Four algorithms are compared: DeepSORT, StrongSORT,
OCSort, and ByteTRACK. The comparison is based on different metrics that measure
the performance of the algorithms on a custom dataset. The results show that OCSort
outperforms the other algorithms in terms of accuracy and efficiency. Moreover, the study
also presents a web application and an API that demonstrate the use of the chosen tracking
technique and make the solution more accessible.

The main contribution of this thesis work is the application of state-of-the-art tracking
algorithms to the problem of underwater multiple object tracking, with the goal of replacing
the tedious manual tasks done by humans for analysing underwater habitats. The developed
software enables users to obtain the tracking results by simply uploading the recorded
underwater video, which is a valuable advantage for efficient analysis of biodiversity.

The thesis is written in English and is 42 pages long, including 6 chapters, 13 figures and 4
tables.

2

Annotatsioon
Veealuste objektide video jälgimine keeruliste nähtavustingimuste

korral

Mereelupaikade bioloogilist mitmekesisust ohustavad kliimamuutused ja inimtegevus.
Selle probleemiga tegelemiseks on oluline mõista tegureid, mis mõjutavad ja leevendavad
negatiivset mõju. Üks tõhus viis bioloogilise mitmekesisuse muutuste mõistmiseks on
analüüsida loomade käitumist. Näiteks kalade ränne ja käitumine võib paljastada kliima-
muutuste ja elupaikade halvenemise tagajärgi. Käesoleva lõputöö eesmärk on kasutada
arvutinägemist mitme objekti jälgimise probleemi lahendamiseks veealustes tingimustes.
Veealuste objektide, eriti kalade jälgimine tekitab palju probleeme, mis tulenevad veealuse
keskkonna keerukast ja dünaamilisest olemusest, näiteks veealuste objektide visuaalsest
sarnasusest ja sageli ebapiisavast looduslikust valgustusest. Käesolevas uuringus uuri-
takse neid probleeme ja uuritakse, kuidas jälgimisalgoritme saab kohaldada veealustes
tingimustes. Võrreldakse nelja algoritmi: DeepSORT, StrongSORT, OCSort ja Byte-
TRACK. Võrdlus põhineb erinevatel mõõdikutel, mis mõõdavad algoritmide jõudlust
kohandatud andmestikul. Tulemused näitavad, et OCSort on teistest algoritmidest täp-
suse ja tõhususe poolest parem. Lisaks esitatakse uuringus ka veebirakendus ja API,
mis demonstreerivad valitud jälgimistehnika kasutamist ja muudavad lahenduse kätte-
saadavamaks. Käesoleva lõputöö peamine panus on moodsaimate jälgimisalgoritmide
rakendamine veealuse mitme objekti jälgimise probleemile, mille eesmärk on asendada
inimeste poolt veealuste elupaikade analüüsimisel tehtavaid tüütuid käsitsi tehtavaid üle-
sandeid. Välja töötatud tarkvara võimaldab kasutajatel saada jälgimise tulemusi lihtsalt
salvestatud veealuse video üleslaadimisega, mis on väärtuslik eelis bioloogilise mitmeke-
sisuse tõhusaks analüüsiks.

Lõputöö on kirjutatud ingilise keeles ning sisaldab teksti 42 leheküljel, 6 peatükki, 13
joonist, 4 tabelit.

3

List of Abbreviations and Terms

AFLink Appearance-free link
API Application Programming Interface
BfG The German Federal Institute of Hydrology
CNN Convolutional Neural Network
CVAT Computer Vision Annotation Tool
ECC Enhanced Correlation Coefficient
GMM Gaussian Mixture Model
IDsw Identity Switch
IDTP Identification True Positives
IoU Intersection over Union
JSON Javascipt Object Notation
KF Kalman filter
KCF Kernelized Correlation Filter
LSTM Long Short-term Memory
MAP Maximum a Posteriori
mAP Minimum Average Precision
MOTA Multiple Object Tracking Accuracy
MOTP Multiple Object Tracking Precision
RoI Region of Interest
OCM Observation-Centric Momentum
ORU Observation-Centric Re-Update
reID Re-Identification
RGB Red Green Blue
SOT Single Object Tracking
SOTA state-of-the-art
MOT Multiple Object Tracking
YOLO You Only Look Once

4

Table of Contents

1 Introduction . 8

2 Literature review . 11
2.1 Key problems in underwater fish tracking 11
2.2 Appearance model based tracking . 12
2.3 Detection as a part of underwater object tracking 17

3 Methodology . 21
3.1 Object tracking problem . 21

3.1.1 Multiple Object Tracking . 21
3.1.2 MOT Problem . 22
3.1.3 DeepSORT . 22
3.1.4 StrongSORT . 24
3.1.5 ByteTrack . 27
3.1.6 OCSort . 29

3.2 Enhancing Object Tracking through YOLO-based Detection 31
3.3 Training embedding model for appearance extraction 32
3.4 Evaluation metrics . 34

4 Results . 36

5 Implementation . 41
5.1 Data . 41
5.2 Web Application Architecture . 41
5.3 RESTful web application . 44
5.4 Software Dependencies . 46

6 Summary . 48

References . 50

Appendix 1 – Non-Exclusive License for Reproduction and Publication of a
Graduation Thesis . 56

5

List of Figures

1 Results of the proposed technique (top frames) and CAMSHIFT (bottom
frames) on three occluding fish. It can be observed that the CAMSHIFT
tracker is unable to distinguish the fish in the yellow box in Fig.1h which
is the same fish in the blue box in Fig.1e [19]. 14

2 Comparison on the framework and performance between DeepSORT and
StrongSORT [54]. 26

3 Examples of ByteTrack which associates every box of detection [55]. . . . 28
4 Cropped fishes from BfG underwater fish videos [17] using Python script

for the training of embedding model. 33

5 The track() function which contains the full process of tracking. 38
6 Identification switch in OCSort. 39
7 Comparison of tracking results with ground truth. 40

8 Multiple fish appearance in challenging view. 42
9 Architecture of fish tracker software. 43
10 HTML code for video stream page of web application 45
11 ’video_feed/’ route for streaming tracking video 45
12 User interface for uploading video to track. 47
13 The screen for object tracking stream. 47

6

List of Tables

1 The example dataset for the training of embedding model. 32

2 Data format of detection and annotation file [65]. 37
3 Evaluation results of MOT methods in the first dataset. 38
4 Evaluation results of MOT methods in the second dataset. 39

7

1. Introduction

The diversity of marine life is essential for the nutritional, economic, recreational, and
health necessities of billions of people. However, climate change and also, human-related
activities alter the biodiversity of marine habitats according to the evidence. To understand
this change and also, predict the source of the changes, it is required to monitor the
distribution, abundance, diversity, and health of the organisms [1, 2]. Among common
methods such as fish tagging and catch-and-release fishing [3], video-based monitoring
can provide timely information about the tracking of the population changes of fish by
eliminating manual tasks.

This thesis work discusses in detail the application of computer vision techniques to
solve the problems of underwater object tracking as low visibility conditions, insufficient
illumination, and turbid water. Due to these environmental conditions of the underwater
environment, there are originated challenges such as image lighting and clarity which
affect the performance of the proposed methods. Moreover, fish tracking has its difficulties.
Because of the acceleration, occlusion and also, and visual similarities of fish, it is more
challenging to track rather than general domain objects [4].

Object tracking is one of the well-known and challenging task in computer vision. Object
tracking aims to estimate the states of a target object in subsequent frames of a video, based
on its initialized state (such as position and size) in a given frame [5]. There are different
visual object tracking types, which are single object tracking (SOT) [6], multiple object
tracking (MOT) [7], video object segmentation [8] and 3D object tracking [9, 6]. In this
work, the MOT task is selected to solve the underwater fish tracking problem. Multi-target
tracking aims to give the trajectories of moving objects accurately from given observations.
The calculated trajectories are used for the prediction of positions or re-identification.
Multiple Object Tracking algorithms can be divided into two categories based on data
processing style: the online techniques which process the current video frame in sequence,
it is typically used for time-critical applications, and offline techniques that utilize whole
video frames [10].

In the study [11], a Kernelized Correlation Filter (KCF) with appearance models of normal
and abnormal fish appearance is proposed to deal with the restriction of the KCF model in
the sudden body deformation of fish. However, KCF is a single object-tracking algorithm
and the dataset used in this study only contains one fish per video.

8

MOT tracking commonly makes use of the tracking-by-detection approach. To do this, an
object detector must be applied to each frame of a video, and then a tracker must be used to
connect the items that are found to the tracks that they belonged to [12]. Object detection is
a crucial computer vision task that solves the detection of visual object instances of certain
classes in images [13]. One of the strongest arguments justifying the implementation of the
tracking-by-detection method is given in [14]. The authors used a graph-based two-staged
approach for the association of detection results and convolutional neural network (CNN)
activations for modeling object appearance. The experimental results were compared to
the other trackers which used similar approaches.

The goal of MOT is to track many objects in a video stream at the same time, where the
number of targets, their motion patterns, and their appearance can change over time. To do
this, modern MOT algorithms are often developed on the base of the tracking-by-detection
paradigm [15], which includes the detection of objects and associating them in each
frame of the video. Section 2 of this thesis work discusses in detail the online multiple
object tracking (MOT) algorithms that are employed to address this difficult challenge.
In particular, we examine four MOT algorithms, DeepSORT, StrongSORT, ByteTrack,
and OCSort because of their performance in MOT17 and MOT20, and also, DanceTrack
benchmark, which provides a platform for the development of MOT algorithms relied
on the motion analysis and visual discrimination. The output of the YOLOv7 detection
model is used in all of the investigated approaches. The DanceTrack benchmark aims
to address challenges that are also present in fish tracking, such as tracking objects with
similar appearances and diverse movements. YOLO (You Only Look Once) is a system for
real-time object detection which is unlike other models, divides an image into regions and
predicts bounding boxes and probabilities for each region using a single neural network
[16].

The ultimate goal of this thesis work is to try state-of-the-art (SOTA) MOT methodologies
for solving the underwater object tracking problem and it is achieved by carrying out the
following steps:

1. Investigation of challenges in underwater fish tracking
2. Conducting literature review on recent advances in object tracking algorithms,

knowing evaluation metrics of performance and the format of the dataset construction
3. Preparation of MOT dataset using the underwater fish videos received from BfG

[17] for training and evaluation, and the development of data pipeline
4. Application of SOTA MOT algorithms and the comparison of them using perfor-

mance indicator metrics.
5. Deployment of the selected multiple object tracking algorithms in web application

9

To make SOTA MOT algorithms accessible for researchers without programming expe-
rience or external applications, the web application and API developed are developed in
the Flask environment. In this way, the multiple object tracking algorithm is deployed and
made it easy to interact with users. The web application allows users to upload underwater
videos, analyze them with the multiple object tracking algorithm, and save the tracking
results in JSON format. The API extension of the application allows to give the path of the
video which runs the tracking algorithm in the server and the result is published in JSON
format. A detailed description of the application is mentioned in Section 3.

Most of the works done [11, 14, 18, 19] for solving the underwater object tracking task,
tried to develop algorithms that can work efficiently specific to this domain. However,
some of these methods focus on the particular challenge in this problem and, has lack
attributes to cover the whole multiple object tracking task which is mentioned with all
aspects in Section 2. This thesis work aims to utilize computer vision for the tracking
of objects in underwater conditions by experimenting with SOTA MOT algorithms to
encompass all points of the MOT challenge in this task.

10

2. Literature review

This section reviews the literature on the object tracking methods used to solve the under-
water object tracking problem. The structure of the literature review is as follows. The
general overview of the issues with underwater object tracking is provided in Section 2.1.
The approaches used to address this difficulty are comprehensively detailed in Section 2.2.
Section 2.3 described the detection models used in underwater object tracking.

2.1 Key problems in underwater fish tracking

A rising number of researchers utilize video-based underwater monitoring in order to
track changes in the underwater ecosystem over time. The health of ecosystem can be
determined in a way by analyzing underwater fauna and flora, particularly fish. In fact,
large-scale video collection of the fish populations is possible, but manual analysis by
human experts is time and also, money consuming [14].

To track fish movements and gauge any uncertainty related to those movements, marine
biologists typically use electronic tags such as passive integrated transponder tags, visible
implant fluorescent elastomer tags, and acoustic tags. These techniques involve surgically
implanting, injecting, feeding, or externally attaching tags to fish, making them intrusive.
This takes a lot of time and only gathers a little amount of data. Tagging must be done
under skilled supervision, which is not always possible. This problem drives the need for
non-intrusive fish tracking techniques. Due to recent advancements in the technology of
underwater cameras, tracking that incorporates vision-based measurement (VBM) is a very
promising technique [18].

Computer-aided tracking of numerous identical-sized zebrafish with maintained identi-
fication after occlusion is an open issue in ethology. When tracking a huge number of
objects, cutting-edge systems cannot maintain correct IDs over an extended period of
time following severe occlusion. For the purpose of analyzing individual behavior, it is
essential to track numerous zebrafish while correctly maintaining identity throughout the
entire movie. A situation of occlusion will occur in the top camera’s field of view when
more than two fish physically engage with or swim over one another. Three scenarios
are possible following occlusion. In the first case, a new identification is determined
after occlusion rather than the fish’s identity being kept. In the second scenario, identities
are connected across occlusions using a prediction framework based on an individual

11

movement prediction mechanism, such as a Kalman filter [20] or particle filter. The first
scenario occurs if occlusions are too complex to link identities after occlusion. At this
point, manual review and correction should be undertaken. In the third case, there are
no mistakes or incorrect identity assignments and the trajectory still corresponds to the
initial identity prior to occlusion. Artificial marking is a technique to address this issue,
however in other circumstances, such as when the population is large or a fish is too little,
this approach is not practical [21].

2.2 Appearance model based tracking

Appearance-based tracking techniques are commonly used in computer vision applications
to track objects in video streams. These techniques rely on the visual similarities of the ob-
jects based on their features in each frame of the video stream. One of the main challenges
in appearance-based tracking is to deal with the locomotion of live animals, which can
cause significant changes in their appearance. A study [11] proposed a method for tracking
fish that can adapt to the various appearance changes caused by non-rigid deformation.
The authors noted that while recent deep learning approaches have improved the tracking
algorithms, they are also more time-consuming for real-time tracking. Therefore, they
proposed an adaptive multi-appearance model that was compared with the Kernelized
Correlation filter (KCF). KCF is a tracking algorithm that is designed to distinguish be-
tween the target object and the background. It is a classifier that is trained on scaled and
rotated patches [22]. The authors built the appearance model for both normal and abnormal
appearances of fish. They defined the normal appearance as linear swimming and the
abnormal appearance as turning of fish. The experimental results showed that the proposed
method outperformed the KCF model [11] by 13.5% on average in accuracy. However,
the proposed method had some limitations. Firstly, the frames used to show the results
only contained one fish, which limits the applicability of the method to more complex
scenarios with multiple objects. Secondly, the tracker sometimes lost the object, indicating
that the proposed method might not be robust enough to handle all possible appearance
changes. Finally, there might be difficulties in integrating the tracking results with other
computer vision methods because the bounding box size did not always match the size of
the tracklets.

Concetto et al. [19] developed a tracking algorithm in order to meet the demand in
fish tracking that makes use of covariance representation to link many sorts of features,
including position, derivatives, color intensities, and others, as well as to characterize the
object’s appearance and statistical data. The algorithm’s accuracy was assessed using
hand-labeled ground truth data which consists of 30000 frames from ten different videos,
yielding approximately 94% average performance. This performance was estimated using

12

several ratios that give an indication of how well a tracking algorithm performs both
globally (e.g., counting objects over a fixed period) and locally (e.g., in identifying object
occlusions). To create a covariance matrix for each detected object, the feature vector
is created that contains the coordinates of the pixel, its RGB and hue values, as well as
the standard deviation and mean of a 5x5 window’s histogram with the target pixel at its
center. The covariance matrix that models the object is determined using this feature vector
and is connected to the detected object. The object is then compared to the other tracked
objects using this matrix to determine which one it most closely looks like. Authors used
Förstner’s distance instead of Euclidean distance because the covariance matrices are not
in Euclidean space. The similarity of two covariance matrices is determined using the
following formula [19]:

ρ(Ci, Cj) =

√√√√ d∑
k=1

ln2λk(Ci, Cj) (2.1)

where d denotes the matrix order and {λk(Ci, Cj)} is the Ci and Cj covariance matrices’
eigenvalues which are calculated from

λkCixk − Cjxk = 0 k = 1...d (2.2)

The algorithm also deals with the loss of tracked fish for solving occlusion problems
by using the counter (TTL) for each of the tracklets which counts how many numbers
of frames the object missed and whenever the counter of the tracker reaches the value
which is given by the user, that object is discarded. The tracker outperforms the compared
CAMSHIFT tracker and can accurately detect over 90% of objects With a right choice
rate of more than 96%. The experimental results of the proposed algorithm together with
CAMSHIFT are shown on the same frames in Fig. 1.

The authors proposed a new deep-learning based solution which is called DFTNet that uses
a Siamese network to encode appearance similarity, and an attention-based long short-term
memory network (LSTM) is utilized to capture motion similarity across consecutive frames.
In order to combine spatial similarity cues in the final result, they additionally apply an
intersection-over-union matching score. The suggested approach offers joint optimization
scores for keeping tracklet data that encodes motion, appearance, and spatial similarity
signals [18]. The Siamese network was first time presented by Bromley and LeCun
in the early 1990s to handle the signature verification challenge as an image matching

13

Figure 1. Results of the proposed technique (top frames) and CAMSHIFT (bottom frames)
on three occluding fish. It can be observed that the CAMSHIFT tracker is unable to
distinguish the fish in the yellow box in Fig.1h which is the same fish in the blue box in
Fig.1e [19].

problem [23]. It is basically a neural network made up of two twin networks that each
receive different inputs but are connected at the top by an energy function [24]. LSTM
is a Recurrent Neural Network proposed by Sepp Hochreiter and Jürgen Schmidhuber
which can selectively keep the information over extended periods and is beneficial for
tasks utilizing sequential data [25]. Scientists used Fish4knowledge [26] videos for their
research and were able to reduce identification switches (IDsw) significantly by 60.9%
when compared to other methods [18]. One of the compared methods is the well-known
MOT algorithm DeepSORT which is also shown as outperformed by DFTNet. However,
the DFTNet is computationally expensive by using different networks for tracking, compare
to other MOT algorithms.

The paper [14] discusses the application of two-stage graph approach with the utilization of
activations of convolutional neural network (CNN) for modelling object appearances. The
algorithm searches for matching detections in several frames that have strong similarities in
appearance and position in the first stage and extracts them into small trajectories (Tracklet
Extraction). A similar approach is used in the second stage to link the so-called tracklets to
complete object trajectories (Tracklet Linking). The algorithm were compared with graph
based approaches using MOTA/MOTP and IDsw metrics, which are explained in Section
3.4. The approach produced better results when compared to the work done by Chuang
et al.[27] on underwater fish tracking, which employs the k-shortest path optimization
method for multiple object tracking [28]. However, it was discovered that the algorithm’s
performance was so close to the Mothes and Denzler’s [29] graph-based technique.

Mygel and Prospero for solving multiple fish tracking challenges developed the synthetic
dataset because of the lack of available annotated benchmark [30]. They also present
SynDHN, an integrated detector, and tracker that takes advantage of the Deep Hungarian

14

Network for tracking. The authors demonstrate that SynDHN performs better than baseline
techniques and generalizes effectively to real underwater video tracking by taking into
account spatial and also, appearance features for affinity estimate. They conduct tracking-
by-detection using Faster-RCNN [31] and customized Deep Hungarian Network (DHN).
DHN is proposed by Xu et al. [32] and according to the original architecture, it takes a
distance matrix D as an input and its row is the predicted bounding box a t time frame and
column is the ground truth bounding box at the same time frame. The goal of DHN is to
determine the optimal ground truth bounding box match for each predicted bounding box
based on the affinities of their features (such as IoU). They repurposed DHN by putting
the predicted bounding box at t+1 time frame as a column of matrix D and remaining
the column unchanged. The disadvantage of the provided solution is not having a re-
identification (reID) feature which can recover the tracks reappeared after the lost in
previous frames. The model result is compared by the methods as Tractor [33] and SORT
[34] that also, only can perform frame-by-frame tracking, and got higher results in MOT
metrics and lower identification switches (IDs).

In the paper [35], authors utilized the centroid tracking method for tracking Roman
seabream after detection of them using the Mask R-CNN model. The algorithm uses
Euclidean distance measure to compare the centroids of each initial Roman seabream
detections in Ft with the centroids of the new detections in Ft+1, and it assigns the same
ID to the Ft+1 detections that are closest to the initial Ft detections in pairwise centroid
distance. At this point, if the number of detected fishes in Ft+1 is more than in Ft, new
IDs are allocated. The application of the centroid tracking also increases the reliability of
the Mask R-CNN model which can be utilized in order to correct false outputs given by
Mask R-CNN. However, the performance of the centroid tracking is not evaluated due to
the amount of required manual work.

The primary objective of the presented paper[36] is to use simple image processing
methods for tracking and counting fish. The conducted research covers obtaining the fish
images and processing of the collected images by utilizing blob analysis and the Euclidean
filtering techniques. The distance of the object traveled was calculated using the centroid in
accordance with the Euclidean distance formula [37]. The variables used were the moving
object’s pixel coordinates from the beginning to the end. The following is a presentation
of the distance calculation algorithm:

1. Check the centroid position of each image.
2. Determine the separation between two centroid images.
3. for X resolution (present_position=initial_value: final_value)
4. for the Y resolution (present_position=initial_value: final_value)

15

5. Determine the distance change using the formula Distance=p(X2:X1)2 + (Y2:Y1)
and Y1 is the prior pixel position and Y2 is the current pixel position in height, and
X1 is the previous pixel position and X2 is the present pixel position in width.

6. save each distance value in an array.

Following the filtering procedure, the input image is improved and segmented in accordance
with the characteristics of the objects. In order to extract the object of interest, photos
are then made grayscale. According to the experimental results, the detection algorithm
only seldom experienced overcounting or undercounting problems. It was determined that
some detected objects during the procedure were not the objects of interest and this was a
false detection that resulted in excessive counting. The shadows cast by the environmental
lightning or foreign objects were two examples of overcounting. Furthermore, failure to
recognize smaller objects as well as objects that were near to one another also contributed
to undercounting[36]. Despite the fact that the results show high accuracy, it is not
feasible to apply the given method—which was tested on white-colored fish passes—in
natural underwater settings due to the difficult environmental conditions for differentiating
fish from one another and for tracking each fish separately due to their intricate mutual
movements.

This article [38] focuses on employing stationary and nonstationary camera configurations
to address the issue of visual tracking in an underwater environment. Deepak et al. suggests
to utilize the YCbCr color representation in order to get scene representation based on
the dominant color component. The developed adaptive model chooses Walsh-Hadamard
(WH) kernels for the effective extraction of edge, color and also, texture strengths, while a
new feature - range strength is presented to extract the intensity variation from underwater
frames in the local neighborhood by employing the WH kernel. The particle framework is
used for tracking the fish by integrating the probabilities of the feature strengths. Based
on the Sϕrensen distance, the reference feature strengths that are utilized to determine
the weights for the particles are updated. The target initialization is involved in the first
step by manually placing a rectangular blob. The blob’s dimension is recorded for use
in the future. The assessment of the proposed method is done using the underwater
datasets from underwaterchangedetection (UWCD) [39], reefVid [40], National Oceanic
and Atmospheric Administration (NOAA) and fish4knowledge (F4K) [26]. According to
the conclusion of the authors this method performs effectively under conditions of blur,
variable illumination, light haze, partial occlusion, and partial camouflage on the base of
the used . In spite of the fact that this technique performs well in the challenging condition
of underwater, the model tested in the tracking of single fish and it can have limited
capabilities for tracking of multiple fishes because of their complex mutual behaviors. The
approach also lacks the reID module for fish re-identification, which can track an object

16

when it returns to the video frame after disappearing for a number of frames.

2.3 Detection as a part of underwater object tracking

In actuality, the tracking-by-detection concept forms the foundation of most state-of-the-art
MOT methodologies. The techniques outlined in Section 2.2 demonstrate that this is true
for tracking in an underwater object environment as well.

The research [41] involved collecting three different datasets from the real water power
plants and training a YOLO deep learning model to detect fishes in underwater videos. The
selected model is YOLOv3 which is trained using the transfer learning. With samples from
all three datasets, training and testing produced an average precision score of 0.5392. The
model was trained with samples from only two datasets and then evaluated with examples
from all three to determine how well it generalizes to new datasets. However, the model
was unable to recognize fish in the dataset that it had not been trained on. In comparison to
the results achieved by the model trained on all three datasets, the mAP scores on the other
two datasets utilized in the training set were higher.

YOLO is the conceptualization of object detection problem as a regression to structurally
separated bounding boxes and related class probabilities. It uses only a single neural
network for predicting bounding boxes and class probabilities on entire images in a single
assessment. Since the entire detection pipeline consists of a single network, detection
performance may be optimized end-to-end [16].

Another research [42] uses hybrid solution in order to eliminate the underwater challenges
such as fish shape deformations while swimming, dynamic backgrounds, murky water,
low resolution, fish camouflage, and tiny differences between some fish species. Authors
proposed a method to recognize and categorize fishes in underwater videos that combines
Gaussian mixture and optical flow models with YOLO network. According to the paper
YOLO based object detection is originally used to only detect occurrences of fish that is
static and easily observable. YOLO can be able to detect freely swimming fish that are
hidden in the background utilizing temporal data collected by optical flow and Gaussian
mixture models which overcomes the mentioned limitation. The suggested approach
got 95.47% and 91.2% F-scores in fish detection which is evaluated in LifeCLEF 2015
benchmark and dataset received from University of Western Austria.

The work of Xiu Li et al. [43] also contains the application of a deep convolutional network
approach in which they used Fast R-CNN for detecting and also, recognizing fish species.
The Fast R-CNN model has the convolutional network which produces the feature map

17

from the input image and region of interest (RoI) layer which extracts the feature vector
from the feature map for each object proposal received as input. The outputs consist of
two layers: one of them is softmax probabilities of detections and another layer that gives
the detected bounding boxes of each class [44]. Fast R-CNN detects 80x faster than prior
R-CNN on a single fish image while increasing mean average precision (mAP) by 11.2%
compared to the Deformable Parts Model (DPM) baseline [43].

According to the authors of paper [45], due to the poor image quality and the fish’s
uncontrolled mobility, traditional feature extraction and object detection techniques as
CNN-based algorithms, are not adequate for detecting fish in real underwater conditions.
This research suggests a framework for composite fish detection called Composited Fish-
Net to overcome this problem and enable efficient fish localization and recognition in
complicated underwater environments. The designed composite backbone model (CBres-
net) is an improved version of ResNet that aims to capture information on scene change,
which is related to the brightness of the image, shape, and orientation of fishes, and seabed
structure. The resultant experiments demonstrate that the suggested Composited FishNet’s
average precision (AP)0.5:0.95, average recall (AR)max=10, and average precision AP50

are, respectively, 75.2%, 81.1%, and 92.8%. The composite backbone network improves
the characteristic information utilization and the output of characteristic information for
the detected object.

Although the deep learning-based approach is highly effective in order to solve object
detection tasks, it has a high computational cost. Xiu Li et al. [14] introduced deep but
a lightweight neural network model for detecting fishes in underwater. The ImageCLEF
dataset, which contains 24,277 fish photos from 12 classes, attained SOTA accuracy for
detecting fish. By utilizing some building blocks, such as concatenated ReLU, HyperNet,
and Inception, we alter the structure of convolution layers in comparison to commonly
used detection networks, such as Faster R-CNN. The resulting network outperformed the
Faster R-CNN network on the same dataset by 7.25%, achieving the top results of 89.95%
mAP (mean average precision).

In the automatic localization, classification, counting, and tracking tasks of fish, the
research [35] proposed a Mask R-CNN object detection framework. The Mask R-CNN
is the expanded version of the Faster R-CNN by adding the new branch for the object
mask prediction parallel to the existing branch, which detects the bounding box [46].
The essential component of Mask R-CNN which is missed in Fast/Faster R-CNN, is
pixel-to-pixel alignment. The same two-stage technique, with the same first-stage region
proposal network (RPN), is used by Mask R-CNN. In the second stage, Mask R-CNN
additionally produces a binary mask as output for each RoI in parallel to class and box

18

offset predictions.

To train and verify the model accuracy, a brand-new dataset is presented which consists
of labeled images of the fish species indigenous to Southern Africa, the Roman seabream
(Chrysoblephus laticeps). The Mask R-CNN model correctly identified and categorized
roman seabream on training, validation, and test dataset with mAP50 = 80.29%, mAP50 =
80.35% and mAP50 = 81.45% respectively. The model’s success on previously unexplored
data shows that it can generalize to new streams of data that are not part of this study [35].

In fact, above mentioned methodologies use the deep learning-based approach in order
to solve the underwater fish detection problem. Because of the time-criticality of some
tasks, deep learning-based solutions would have limited deployment in some scenarios.
The research conducted by Ahmad Salman et al.[47] utilized the probabilistic background
modeling for detecting the fishes in complex backgrounds. In the paper, it is mentioned that
the Gaussian Mixture Modelling is the efficient method for segmenting fish which is in the
foreground, from the background by learning the distribution of pixels in the background.
The authors proposed an approach on the base of Gaussian Mixture Models and Pixel-Wise
Posteriors for fish detection in complex underwater environments. The outcome of the
presented technique is provided using the Complex Background dataset taken from the
Fish4Knowledge repository. The F-score generated by their suggested technique is 84.3%,
which is noted as the highest result ever recorded on the aforementioned dataset for fish
detection. Due to the real-time performance and potential accuracy in dynamic background
situations, they used adaptive background subtraction, Grimmson GMM [48] in their
method. Gaussian mixture model or GMM is a probabilistic representation of the data
distribution using numerous individual Gaussian distributions. Given these features which
are the pixel values of a given input, GMM develops a model of the background, where the
background is referred to as all objects in the film other than fish. The fish that is needed
to be detected is the foreground. The following is the background GMM model [47]:

SM =

{
wj, µj,

∑
j

}
(2.3)

where the jth feature vector’s mean and covariance matrices, which correspond to pixel
j, are represented by µj and

∑
j , respectively. The feature vector is the combination of

values of each pixel that describes the feature of input data in the following video frames.
The authors applied Pixel-wise Posteriors to enhance the segmentation outcomes from
the background subtraction in order to address the constraints of adaptive background
subtraction. This method is particularly helpful for slow-moving objects, which background

19

subtraction algorithms can only partially identify. By the implementation of the Pixel-wise
Posteriors, they achieved 84.28% F-score addition to the background subtraction with
GMM, which was 83.26%.

Generally, the use of CNN-based neural networks appears to be a more promising approach
for detecting fishes in underwater environments because of their higher accuracy, ability
to identify fish in intricate surroundings, and resilience to challenging lighting and water
conditions.

20

3. Methodology

The section methodology is structured as follows. Section 3.1 defines the object tracking
problem. The SOTA algorithms utilized for tracking which are the main part of this work
explained deeply in Section 3.1.1. Section 3.2 discusses the YOLO detection model as a
part of the tracking system. The training of embedding model of tracker for appearance
extraction is described in Section 3.3.

3.1 Object tracking problem

Object Tracking is one of the leading problems of computer vision that tries to detect and
track objects in the sequences of images. There are challenges in this field which makes it
an ongoing research area. There are two types of object tracking methods: single object
tracking and multiple object tracking. Single Object Tracking only tracks an individual
target object which is given in the first frame of the video and then must track the same
object in the next frames. This type of object tracker should be able to track any given
object even if there is no classification model given for that object [49].

On the other hand, Multiple Object Tracking (MOT) is more complex. In addition to
challenges in single object tracking, MOT needs to track multiple objects in the same
category, re-identify the objects when they appear again or terminate when they are out
of the vision area of the camera. Furthermore, background clutter, occlusion, and pose
changing problems are more complicated compared to tracking single object [50].

3.1.1 Multiple Object Tracking

To conduct the work for solving underwater object tracking, this task is approached as the
MOT problem. In this way, it is possible to track many fishes in each frame of the video
stream and analyze their behavior individually. As it is described in Section 3.1, tracking is
challenging underwater because of the environmental conditions. Being fish as the chosen
object also brings difficulties due to their unpredictable movements, interactions with each
other, and visual similarities. To handle the mentioned problems the four state-of-the-art
tracking algorithms are selected because of their effectiveness and the proven performance
in multiple object tracking [51]: DeepSORT, StrongSORT, ByteTrack, and OCSort.

Modern MOT systems generally apply the tracking-by-detection concept: it contains a

21

detection model to locate the target and also, an appearance embedding model for the
association of data. In the detection step, targets are localized in the single frame, and in the
association step, detected target objects are assigned and linked to the existing trajectories
[52].

3.1.2 MOT Problem

The MOT can be seen as the problem of multi-variable estimation. In the given sequence of
image, we can define sit to denote i-th object state in the t-th frame, St = (s1t , s

2
t , ..., s

Mt
t) to

describe the Mt objects states in the t-th frame. The sequential states of the i-th object can
be defined as Sis:ie = (siis , ..., s

i
ie), where is and ie are the first and last frame respectively

where i target exists and S1:t = (s1, s
2, ..., st) to define all sequential states of all objects

from first to t-th frame.

According to the tracking-by-detection paradigm, we employ oit to describe the obser-
vations of the i-th object in the t-th frame, Ot = (o1t , o

2
t , ..., o

Mt
t) to define the all Mt

objects observations in the t-th frame and O1:t = (o1, o2, ..., ot) to define all the sequential
observations of all objects from first to t-th frame.

The multiple object tracking objective is to obtain "optimal" sequential states of all objects
and it can be modeled by applying MAP (Maximum a Posteriori) estimation using the
conditional distribution of the sequential states in the given observations:

Ŝ1:t = argS1:tmaxP (S1:t/O1:t)

To solve above mentioned MAP problem, different MOT algorithms can be designed either
from deterministic optimization or probabilistic inference perspective [7].

3.1.3 DeepSORT

SORT is a practical approach for the multiple object tracking problem with simple and
effective algorithms. In the paper [53], the performance of SORT is improved by adding
the appearance information. Because of the extension, it is possible to track the objects
during longer periods of occlusions with an effective reduction of the number of identity
switches. The more complexity of computation is placed in the offline re-training stage in
which deep association metric is learned on the large-scale re-identification dataset of a
person. The results of experiments show that the proposed extensions decrease the number
of the identity switches by 45%, reaching competitive performance at the high number of

22

frames.

The association between Kalman filter predictions and newly received measurements
can be defined by building an assignment problem that can be solved by applying the
Hungarian algorithm.

To include the motion information, the Mahalanobis distance between predictions of
Kalman states and newly received measurements is used:

d(1)(i, j) = (dj − yi)
TS−1

i (dj − yi) (3.1)

where (yi, Si) is the i-th track distribution projection into measurement space and dj is the
j-th bounding box detection. The Mahalanobis distance includes the estimation uncertainty
by measuring the number of deviations between the detection and mean track location. The
unlikely associations can be excluded by 95% threshold confidence of the Mahalanobis
distance calculated from the x2 inverse distribution. This decision can be represented as
the following indicator

b
(1)
i,j = 1[d(1)(i, j) ≤ t(1)] (3.2)

that equals to 1 if the association of i-th track and the j-th detection is acceptable. The
Mahalanobis threshold for four-dimensional measurement space corresponds to t(1) =
9.4877.

The Mahalanobis distance is an appropriate association metric for the low uncertainty mo-
tion. However, in the image-space problem, the state distribution predicted by the Kalman
filter is the rough estimation of the object’s location. Specifically, the camera motion can
cause rapid space displacement which makes the Mahalanobis distance uninformed metric
for tacking during occlusions. Because of that authors proposed a second metric for the
assignment problem. The appearance descriptor rj (∥rj∥ = 1) is determined for each
dj box detection. Furthermore, the gallery of the last Lk = 100 appearance descriptors

Rk =
{
r
(i)
k

}Lk

k=1
is saved for each track k. Then the second metric calculates the distance

in appearance space between j-th detection and i-th track.

d(2)(i, j) = min
{
1− rTj r

(i)
k |r(i)k ∈ Ri

}
(3.3)

23

Once more the binary variable is introduced to indicate whether the association is accept-
able according to the metric

b
(2)
i,j = 1[d(2)(i, j) ≤ t(2)] (3.4)

and the separate training dataset is used for finding the threshold for this indicator.

The two metrics are combined with a weighted sum for building association problem

ci,j = λd(1)(i, j) + (1− λ)d(2)(i, j) (3.5)

If the association is within the gating range of these two metrics, it is called admissible:

bi,j =
2∏

m=1

b
(m)
i,j (3.6)

The hyperparameter λ allows to control the influence of each metric. According to
experiments, it is reasonable to set λ = 0 when there is significant camera motion.

The parameters which are used to run the DeepSORT model are shown below:

max_iou_distance = 0.7

max_age = 30

n_init = 3

nms_max_overlap = 1.0

max_cosine_distance = 0.2

embedder = ”torchreid”(default : ”mobilenet”)

3.1.4 StrongSORT

StrongSORT [54] is an improved version of DeepSORT which uses two algorithms:
appearance-free link model (AFLink) which is proposed to associate short tracklets into
complete trajectories and Gaussian smoothed interpolation for the compensation of missed
objects.

24

In the StrongSORT, two fundamental "missing" problems are discussed: missing asso-
ciation and missing detection. The authors propose an appearance-free link model to
accomplish the global association with no appearance information and obtain a good bal-
ance between accuracy and speed. Additionally, Gaussian-smoothed interpolation which
is based on Gaussian process regression, is proposed for relieving missed detection.

The Optimized Faster R-CNN model is used in DeepSORT as the detector and as the
embedding model, it trains simple CNN. Alternatively, StrongSORT applies YOLOX-X
for detection, and additionally, a strong feature extractor, BoT, for appearance replaced
simple CNN to extract more distinctive features. Even though long-term information can
be saved by the feature bank mechanism in DeepSORT, it is sensitive to noise during
detection. The feature bank mechanism is replaced with a feature updating strategy for
solving this problem. It updates the appearance state of i -th tracklet at frame t which is
denoted as eti, an exponential moving average (EMA):

eti = αet−1
i + (1− α)f t

i (3.7)

f t
i is the current detection appearance embedding and α is the momentum term which is

equal to 0.9.

Multiple benchmarks have camera movements. In StrongSORT, an enhanced correlation
coefficient maximization model (ECC) is used for the compensation of camera motion.
This technique can compute the global rotation and translation between nearby frames.
The performance of warping transformation can be quantified with the following criterion:

EECC(p) =
∥∥∥ īr
∥īr∥ −

¯iw(p)

∥ ¯iw(p)∥
∥∥∥2

(3.8)

where ∥.∥ is the Euclidean norm, p is parameter of warping, īr and īw(p) are the zero-mean
of reference image ir and warping image iw(p) respectively. The problem of the image
alignment is solved by minimizing EECC(p) with the presented algorithm of forward
additive iterative or inverse compositional iterative. Because of its effectiveness and
efficiency, ECC is widely used in MOT tasks for compensating the motion noise caused by
camera movement.

In the StrongSORT algorithm, instead of the vanilla Kalman filter, which ignores infor-
mation on the detection noise scales, the NSA Kalman filter is used. It proposes the

25

Figure 2. Comparison on the framework and performance between DeepSORT and
StrongSORT [54].

below-mentioned formula for adaptive calculation of noise covariance R̃x:

R̃k = (1− ck)Rk (3.9)

Rk is the preset constant covariance for measurement noise, ck is the confidence score of
detection at state k. When it has low noise, the detection has higher ck which brings the
low R̃k. The lower value of R̃k means that the detection will get a higher weight in the
step of state update and vice versa. It can help the improvement of the accuracy of updated
states.

DeepSORT applies the distance of the appearance feature as the matching cost for the first
association stage, which uses motion distance for gate purposes. However, StrongSORT
employs both appearance and motion information for solving the assignment problem. The
following equation shows the cost matrix C which equals the weighted sum of appearance
cost Aa and motion cost Am [54] :

C = λAa + (1− λ)Am (3.10)

where the weight factor λ is equal to 0.98.

26

As the tracker algorithm becomes stronger it turns into more robust to the confusing
associations. It is simply solved in StrongSORT by replacing the matching cascade in
DeepSORT with the vanilla global linear assignment.

Furthermore, the authors proposed using two lightweight, appearance-free, model-
independent algorithms which are AFLink and GSI, to solve missing association and
missing detection problems. The final algorithm is called StrongSORT++ which combines
StrongSORT with these two algorithms.

The StrongSORT algorithm is initialized as shown below in the experiment:

max_dist = 0.2

max_iou_dist = 0.7

max_age = 70

max_unmatched_preds = 7

n_init = 3

nn_budget = 100

mc_lambda = 0.995

ema_alpha = 0.9

3.1.5 ByteTrack

ByteTrack [55] compare to other algorithms detects not only objects which have detection
with higher scores but also low-scored boxes. The low-scored objects are utilized with the
similarities of tracklets to recover real objects.

Most MOT algorithms get identities of objects by associating the boxes which have higher
scores from the threshold. The boxes with low scores are thrown away which causes them
to miss eligible objects and fragmented trajectories. To solve the mentioned problem,
ByteTrack is presented which associates almost every detection box rather than only high-
scored ones. It keeps almost all detection boxes and separates them into high and low
scores. Firstly, high-score boxes are matched with tracklets on the base of the motion or
appearance similarity. Authors adopt the Kalman filter for predicting tracklet locations in
the new frame. IoU or Re-ID is used for computing the similarity between the detection
box and the prediction box. The second matching is performed using the motion similarity
between unmatched tracklets and low-score detection.

The boxes with low confidence sometimes show the existing objects, e.g. occluded objects.
The irreversible errors can be caused for MOT because of the filtering out of these objects

27

Figure 3. Examples of ByteTrack which associates every box of detection [55].

which causes the non-negligible lost detection and fragmented trajectories. Figure 3 (a)
and (b) show the same problem. The three tracklets are initialized in the frame t1 because
of having scores higher than 0.5. However, in the frames t2 and t3 occlusion happens
and the detection score of boxes becomes lower by changing from 0.8 to 0.4 and then
0.1. These low-scored detection boxes are eliminated by threshold and the red tracklet
disappears. However, if we take into consideration every detection box, then more false
positives will be received immediately, e.g. in the t3 frame of Figure 6 (a) the right box
with 0.1 scores.

In the paper, the authors show that similarity is a powerful point to differentiate the objects
and the background in low-scored detection boxes. The two detection boxes which have
low scores are matched to the tracklets according to the prediction boxes of the motion
model. Simultaneously, the background box is discarded because it does not have matched
tracklet.

To fully use the detection boxes in the matching process from high score to low score, the
ByteTrack association method is named because each detection box is a tracklet basic unit
as a computer byte and every detailed detection is valued by this method.

Initially, 80.3 MOTA, 77.3 IDF1, and 63.1 HOTA are achieved on the MOT17 test set with
a running speed of 30 FPS on a single V100 GPU.

The ByteTrack algorithm requires to initialize the below-mentioned parameters in order to

28

run tracking and they have the following values in the conducted experiment:

track_thresh = 0.45

match_thresh = 0.8

track_buffer = 25

frame_rate = 30

3.1.6 OCSort

The goal of the research [56] is to develop a motion model based multi-object tracking
method that can deal with occlusion and nonlinear motion. Many of the motion model
based algorithms suppose that tracking objects have a constant velocity in a time period
which is the linear motion assumption. In actuality, this presumption might not be true
which could give inaccuracies in the result. The authors offer a motion model which
addresses some of the limitations of current approaches to enhance tracking performance,
particularly in the occlusion conditions.

The most popular filtering-based solution for multiple object tracking is SORT which uses
Kalman filter in order to predict object states and the function of linear motion to transition
between time steps. However, the filter posteriori parameters can not be updated by SORT
and it is not robust to the nonlinear motion. In this study, three limitations of SORT -are
noted: noise sensitivity, estimation-centric methodology, and error accumulation over time.

This research suggests two primary innovations—Observation-Centric Re-Update (ORU)
and Observation-Centric Momentum (OCM)—to overcome these restrictions. During
times of lost tracking, ORU employs object state observations to correct accumulated errors.
The cost matrix for association in OCM takes track direction consistency into account. The
suggested technique, called Observation-Centric SORT (OC-SORT), increases robustness
in occlusion and nonlinear motion conditions while offering real-time tracking capabilities
[56].

Observation-centric Re-Update (ORU)

In real-world circumstances, even if items tracked by the SORT approach are re-associated
after going untracked for a while, they may still go lost again. This is because of the tempo-
ral error magnification that has caused the Kalman filter (KF) parameters to already deviate
too much from the ideal values. In the research, Observation-Centric Re-Update (ORU)
technique is proposed to solve this problem. By backchecking the time the object was lost
and re-updating the KF parameters based on "observations" from a virtual trajectory, ORU

29

lowers the accumulative error. By using the observations of the steps that start and end the
untracked interval, the virtual trajectory is created. For instance, the virtual trajectory is
represented by the denoting the observation last seen before started to be untracked and
the observation which triggers re-association by zt1 and zt2 respectively:

z̃t = Trajvirtual(zt1 , zt2 , t), t1 < t < t2 (3.11)

Then, the predict and re-update loop run along the z̃t(t1 < t < t2) trajectory. The operation
of re-update is

re− update

Kt = Pt\t−1H

T
t (HtPt\t−1H

T
t +Rt)

−1

x̂t\t = x̂t\t−1 +Kt(z̃t −Ktxt\t−1)

Pt\t = (I −KtHt)Pt\t−1

 (3.12)

The update will no longer be suffered from the accumulated error by update because pattern
of motion anchored by the last-seen and the most recent real observations is matched by
observations on virtual trajectory. The proposed technique is known as Observation-centric
Re-Update. It functions as a separate stage outside of the predict-update loop and is only
active when a track is brought back online after a time of no observations.

The parameter which is required to run OCSort algorithm has given values as shown below:

max_age = 30

min_hits = 3

iou_threshold = 0.3

delta_t = 3

asso_func = ”iou”

inertia = 0.2

Observation-Centric Momentum (OCM)

In the research, it is discussed that the motion can be approximated as linear in a short
period. The consistent motion direction is required by linear motion assumption but the
utilization of consistency of direction is prevented by noise. To calculate the motion
direction, it is needed to have states of the object on two steps where the time difference
is ∆t. The estimator is sensitive to state noise, therefore if ∆t is little, the velocity noise
would be substantial. Due to the temporal error magnification and the falsification of the
assumption of linear motion, if ∆t is large, the noise of direction estimation may also be

30

significant. The authors propose using state observations rather than state estimations to
reduce the noise of motion direction computation and introduce the term of its consistency
to aid the association because state observations do not suffer from the problem of temporal
error magnification that state estimations do.

Given N existing tracks and M detections on the upcoming time step, the association cost
matrix for the new term is formulated as follows:

C(X̂, Z) = CIoU(X̂, Z) + λCv(Z
′, Z) (3.13)

where the set of estimation of object is denoted as X̂ ∈ RN×7 and the set of new time step
observations is Ẑ ∈ RM×5. λ is weighting factor. Z’ contains trajectories of all existing
tracks’ observations. CIoU(., .) determines the negative pairwise IoU and Cv(., .) deter-
mines the consistency of directions between Θtrack which is linking the two observations
on existing track and Θintention which is linking historical and new observation of track. Θ
consists of all the pairs of ∆Θ =

∣∣Θtrack −Θintention
∣∣.

In addition to ORU and OCM, authors also believe that experimentally verifying a track’s
most recent presence can prevent it from being lost. As a result, the heuristic Observation-
Centric Recovery (OCR) method is employed. Following the customary association stage,
OCR will begin a second attempt to associate the last observation of unmatched tracks
to the unmatched observations. It can deal with the situation where an object stops or is
blocked for a brief period [56].

The OCSort algorithm has experimented on multiple datasets such as MOT17 and MOT20.
We can say from the benchmark results that OCsort outperforms compare to the other
SOTA methodologies.

3.2 Enhancing Object Tracking through YOLO-based Detection

The tracking-by-detection approach is chosen for solving the tracking problem in an
underwater environment, and YOLO is considered an appropriate detection model for this
purpose because of being a real-time and more accurate model which makes it suitable
for tracking fast-moving objects. In this thesis, transfer learned YOLOv7 model on fish
dataset is used which is received from the Environmental Sensing and Intelligence Group
of Tallinn University of Technology. The model is trained on the 74043 fish images and
received F1 score of 0.95, Precision 0.967 and Recall 0.933 [57]. YOLOv7 outperforms

31

other detection algorithms with its speed and accuracy and achieves SOTA performance
[58].

In the research, the authors proposed a new real-time object detection architecture and
an associated model scaling technique. They discovered the replacement problem for the
module of re-parameterize and the allocation difficulty for the dynamic label assignment
during the study process. The suggested method named is the trainable bag-of-freebies
to address the issue and improve object detection precision. Based on that, the YOLOv7
series of object detection system is created, which produces cutting-edge results.

3.3 Training embedding model for appearance extraction

As it is discussed in Section 3.1.1, the algorithms like StrongSORT take into account
the appearance of tracklets. It utilizes embedding models for extracting the appearance
features of objects. In the original paper, the authors of the StrongSORT algorithm propose
to use the BoT model as a feature extractor instead of the simple CNN model trained for
the DeepSORT model. In order to run the StrongSORT algorithm, it is possible to load the
weights of pretrained models as MobileNET, ResNET50, and OSNet which are trained
on the general dataset. In this thesis work, the OSNet model is used as an embedding
model. OSNet is a re-ID CNN model which stands for omni-scale network [59]. It can be
needed to train the feature extractor model on the basis of the fish data because of feature
difference from general domain objects. The training process of the model is following:

1. preparation of the dataset by cropping the fishes from images and saving the path
of images together with the object ID and camera ID in a CSV file. The example
format from a dataset is shown in Table 1.

image_pth pid camid
0 datasets/images/000.jpg 0 0
1 datasets/images/001.jpg 0 0
2 datasets/images/002.jpg 0 0
3 datasets/images/003.jpg 0 0

Table 1. The example dataset for the training of embedding model.

The ID of fishes is saved in such a way that same fishes extracted each frame of
video receives same ID and each different fish in the videos get different ID. The
camera ID for all videos are chosen as zero.
The cropped fish images from underwater videos are illustrated in Figure 4.

2. The dataset is divided into the train, test, and query subdatasets and managed by the
ImageDataManager() function of the torchreid library. Torchreid is a deep learning-

32

Figure 4. Cropped fishes from BfG underwater fish videos [17] using Python script for the
training of embedding model.

based re-identification library that is developed in PyTorch for the ICCV’19 project
[60]. It contains many features as access to the pretrained reID models, advanced
techniques for training, and visualization tools. The managed dataset specifications
are demonstrated below:

--

subset | # ids | # images | # cameras

--

train | 7 | 666 | 1

query | 2 | 40 | 1

gallery | 2 | 187 | 1

--

3. The ’osnet_ain_x1_0’ model is initialized and trained by using builtin functions of
Torchreid.

In fact, embedding models for extracting the feature appearances of tracklets are trained
on the reID datasets as Market1501 [61]. However, it is possible to train the model on the
base of the custom dataset for specific tasks by using the above-mentioned steps.

33

3.4 Evaluation metrics

Choosing the evaluation metrics has higher importance for not loosing any important
information about each algorithm. The selected evaluation metrics are following: IDF1,
IDsw, Multiple Object Tracking Accuracy (MOTA), Multiple Object Tracking Precision
(MOTP).

To increase the overall number of frames in which corresponding tracks overlap, or the
Identification True Positives (IDTP), IDF1 builds correlation between full tracks [62].

IDF1 = M−1(IDR, IDP) = IDTP/

[
1

2
(N + N̂)

]
(3.14)

N - number of boxes in tracks of ground truth
N̂ - number of boxes in predicted tracks
Mp - the p-mean
IDR - recall
IDP - precision

IDsw is the Identity Switch which happens when a tracker incorrectly switches the identities
of objects or when a track is lost and then reinitialized with a new identity [63]. An IDsw
is formally defined as a true positive with a predicted ID that is distinct from the predicted
ID of the prior true positive (which has the same ground truth ID). IDsw determines only
associated errors comparison to the single prior true positive and do not consider where
the same predicted ID swithces to another ground truth ID which is called ID Transfer.

The MOTA demonstrates that if the tracker algorithm found the correct object in a frame.
It is represented as below mentioned function:

MOTA = 1−
∑

t(mt + fpt +mmet)∑
t gt

(3.15)

where mt, fpt and mmet are number of misses, false positives and mismatches respec-
tively.

The Multiple Object Tracking Precision (MOTP):

34

MOTP =

∑
i,t(d

i
t)∑

t ct
(3.16)

where dit is the total error between matched pairs of object-hypothesis in all frames, ct is
the total number of matches [64].

35

4. Results

This section presents the results of the tracking methods employed for tracking fish in an
underwater environment with the created MOT dataset.

The experiment is conducted on two datasets, one containing 87 frames and the other 246
frames. The detailed information about dataset is also given in Section 5.1. The first dataset
contains frames from a single video that has three fishes on screen and 252 annotated
bounding boxes. The second dataset consists of frames from three videos which have
three fishes in the first and second video, and two fishes in the last video, and overall 430
annotated bounding boxes. The ground truth positions of each fish species are annotated
manually using CVAT in MOT16 format, which is mentioned as follows [65, 66]:

<frame>, <id>, <bb_left>, <bb_top>, <bb_width>, <bb_height>, <conf>, <x>, <y>, <z>

Example rows for such annotation format are shown below from the dataset used in
evaluation:

1, 1, 603.0, 401.9, 105.9, 46.0, 0.9, -1, -1, -1
2, 1, 597.0, 411.9, 99.9, 45.0, 0.8, -1, -1, -1
3, 1, 583.0, 420.9, 114.9, 44.0, 0.8, -1, -1, -1
4, 2, 715.0, 43.9, 47.9, 21.0, 0.7, -1, -1, -1

Table 2. illustrates the description of each element in the data format which is valid for
the result of the tracker and also, ground truth files. The ground truth annotation data and
also, the tracking results are saved in separate .txt files according to the above-mentioned
format.

The experiments are done on the state-of-the-art MOT trackers explained in Section
3.1. The tracking algorithms require inputs to be executed, which is true for all four
models investigated in this thesis work. The needed data must include the bounding
box parameters(commonly, x and y coordinates of starting point together with width and
height), confidence and class of detection, and also, the frame. It can be given in different
formats depending on the implementation of the algorithm:

<x>, <y>, <w>, <h>, <conf>, <cl>

36

Position Name Description
1 Frame number shows that at which frame of stream object exist
2 Identity number each tracked object has unique identity number
3 Bounding box left top-left corner coordinate of the bounding box
4 Bounding box top top-left corner coordinate of the bounding box
5 Bounding box width width in pixels of bounding box
6 Bounding box height height in pixels of bounding box

7 Confidence score
show how confident is detector that this instance is needed
object. For the result and also, ground truth, it describes
whether detection is considered.

8 x
3D x position of detected object in real-world coordinates
(-1 in case it is not available)

9 y
3D y position of detected object in real-world coordinates
(-1 in case it is not available)

10 z
3D z position of detected object in real-world coordinates
(-1 in case it is not available)

Table 2. Data format of detection and annotation file [65].

The below-mentioned code is a part of the tracker.py file which executes the tracking
algorithm in the software. The track() (Fig. 5) function takes the input frame to run the
YOLO detection model, which returns ’x’, ’y’, ’w’, ’h’, ’conf’, and ’cl’ data of each
detected object in order to give as an input to the initialized DeepSORT model using
update_tracks() function together with the frame. At the end of the track() function, it
returns the boxes and corresponding IDs of each tracked object.

Each method is evaluated using IDF1, IDsw, MOTA, and MOTP metrics. For the cal-
culation of metrics, the py-motmetrics Python library is used. In comparison to the
MOT Challenge benchmark computation of metrics, the library does not calculate MOTP
as a percentage and uses the original formula [64]. It can be converted by computing
(1-MOTP)*100.

The initial experiment is conducted on the first dataset, which consists of 87 frames. The
comparative results of trackers are shown in table 3. According to the table, DeepSORT,
StrongSORT, ByteTRACK, and OCSort, all have an identical IDF1 score of 0.5898 and
IDsw value of 8. This shows that for identifying and tracking fish in a certain scene,
all four techniques are equally effective. The MOTA and MOTP scores, however, are
different from one another. Among the four approaches, OCSort has the highest MOTA
score (0.5940), indicating that it has the fewest false positives, false negatives, and identity
switches. The MOTA score for the other three approaches is 0.5912. Lower MOTP scores
imply better tracking accuracy since they reflect the average distance between predicted
and actual object positions. The table shows that all four approaches have a MOTP score

37

def track(frame):
detection = model(frame)
tracker = DeepSort(max_age=30)
num= detection.xyxy[0].numpy().shape[0]
boxes=[]
id=[]
detections=[]
for i in range (num):

x= int(detection.xyxy[0].numpy()[i][0])
y = int(detection.xyxy[0].numpy()[i][1])
w= int(detection.xyxy[0].numpy()[i][2])
h=int(detection.xyxy[0].numpy()[i][3])
conf = detection.xyxy[0].numpy()[i][4]
cl = int(detection.xyxy[0].numpy()[i][5])
detection= ([x, y, w, h], conf, cl)
detections.append(detection)

tracks = tracker.update_tracks(detections, frame= frame)

for track in tracks:
boxes.append(track.to_tlwh())
id.append(track.track_id)

return boxes, id

Figure 5. The track() function which contains the full process of tracking.

of approximately 0.17. Overall, OCSort seems to have the best tracking accuracy, with the
other three approaches closely following in the first experiment.

Method IDF1 IDsw MOTA MOTP
DeepSORT 0.5898 8 0.5912 0.1707
StrongSORT 0.5898 8 0.5912 0.1707
ByteTRACK 0.5898 8 0.5912 0.1707
OCSort 0.5940 10 0.6111 0.1698

Table 3. Evaluation results of MOT methods in the first dataset.

The next experiment is done by utilizing a second dataset which contains 246 frames.
Table 4 indicates that the IDF1 scores for the four approaches, DeepSORT, StrongSORT,
ByteTRACK, and OCSort, range from 0.6795 to 0.6844. The IDsw, MOTA, and MOTP
scores, however, are not all the same. Among the four algorithms, OCSort has the fewest
identity switches (118), according to its lowest IDsw value. By contrast, ByteTRACK has
an IDsw value of 119, whereas DeepSORT, StrongSORT, and SORT have IDsw values of
121. We can see that for MOTA, DeepSORT, StrongSORT, and OCSort all of their scores
are 0.4744. With a slightly lower MOTA score of 0.4720 than the other three approaches,
ByteTRACK has a little greater rate of false positives, false negatives, and identity switches.
Finally, all four approaches have comparable MOTP scores, which range from 0.1562 to

38

Figure 6. Identification switch in OCSort.

0.1580. In comparison to the other three approaches, although OCSort has low IDF1 score,
it can be concluded that OCSort can still be considered as a viable approach considering
overall performance.

Method IDF1 IDsw MOTA MOTP
DeepSORT 0.6844 121 0.4744 0.1580
StrongSORT 0.6844 121 0.4744 0.1580
ByteTRACK 0.6819 119 0.4720 0.1569
OCSort 0.6795 118 0.4744 0.1562

Table 4. Evaluation results of MOT methods in the second dataset.

Although the fish tracking in some frames have issues in some attempted methods which
are identified by comparing with the ground truth data (Fig. 7), it must be noted that these
problems do not present in all frames. Furthermore, some racking methods are able to
track the fish successfully in that frame without encountering issue. As it is seen from
pictures, DeepSORT and StrongSORT detects the fourth fish in the second frame which is
not available in ground truth dataset and neglected by ByteTRACK and OCSort. However,
in the third frame, all four algorithms missed one of the fish, which is identified by ID 3,
because of its orientation, and it is recovered in the fourth frame.

In the first dataset, the results reveal that all four techniques are equally effective at
recognizing and tracking fishes, with OCSort having the greatest MOTA score and the
fewest identification switches. In the second dataset, all four techniques got comparable
MOTP scores, with OCSort outperforming the others with respect to MOTA, MOTP score
and the smallest number of identity switches. In both studies, OCSort appears to have
higher tracking performance.

39

Ground truth annotation of fishes

DeepSORT tracking results

StrongSORT tracking results

ByteTRACK tracking results

OCSort tracking results

Figure 7. Comparison of tracking results with ground truth.

40

5. Implementation

After the development and evaluation of model, Artificial Intelligence Lifecycle includes
deployment of model. In this paragraph, implementation of the tracking algorithm is
broadly discussed. The structure of this section is as follows. Section 5.1 lists all the data
used in the different of this thesis work. The architecture and the structure of developed
web application and API are explained in Section 5.2 and 5.3 respectively meanwhile
Section 5.4 describes the software dependencies used in development.

5.1 Data

The data which is used for the thesis is received from The German Federal Institute of
Hydrology (BfG) [17]. As it is described in Section 4, the two datasets are utilized for
evaluating the performance of tracking algorithms. The first dataset which has 87 frames
received from single video and it is also part of second dataset. The second dataset consist
of 246 frames from three different videos. In order to annotate all frames, Computer Vision
Annotation Tool (CVAT) [67] is used and exported in MOT format.

Testing the performance of created application also conducted using the videos which
contain complex frames to analyze. They are video frames which have many fishes but
not used during the evaluation. One of the main reason is annotation of video frames is
challenging task to do manually when there are many small fishes in blurry video. It can
be seen clearly in Figure 8. Furthermore, beside of above mentioned evaluation dataset,
there is a prepared dataset using Python script for training of embedding model which
consists of the cropped images of fishes from separate single fish videos and it is described
in Section 4.

5.2 Web Application Architecture

The creation of software that can quickly receive, evaluate, and give tracking information
from underwater video footage is one of the main objectives of this thesis. In order to
achieve this goal, a web application and API are developed with the software architecture
shown in the Figure 9. A Flask web application that uses a PyTorch model to analyze
received video from user and outputs both the analyzed video and JSON data. It also has a
REST API that can be used to communicate with the app directly without going via the
frontend.

41

Figure 8. Multiple fish appearance in challenging view.

The architecture of the web application:

1. User uploads video to the Flask web application.
2. Flask server receives the video, saves in runtime and sends it to the Pytorch model

and tracker algorithm for analysis.
3. The detector and tracking algorithm processes the video and generates tracking

information.
4. Information of tracklets are saved in JSON format and new video with tracking

information overlay is generated on the base of it.
5. After end of the video processing, the output video and JSON file are downloaded.

For implementing this architecture, the following components are used:

■ Frontend: HTML/CSS/Jinja2, which allows users to upload the underwater video
file and demonstrates the analyzed video with overlaid tracking information.

■ Flask server: Flask is a lightweight micro framework for web application which is
written in Python. Flask allows to create one-page applications and also, scale them
and develop larger applications without issues [68]. As a web framework, Flask will

42

be used because of the API support as well. API is a set of functions to provide
interactions between computer programs and exchange of information. REST is an
architectural style that is applied for design of APIs. Web services called "RESTful"
which have REST API [69].

■ Pytorch and OpenCV: The uploaded video is handled by OpenCV in order to get the
frames, overlay tracking results, and save new video stream. The YOLO model is in
Pytorch format and Pytorch framework allows us to load model and run prediction for
detecting the fishes on the received video frames which is used by tracker algorithm.

■ Database: In fact, current application does not have database and saves the uploaded
view in runtime. It is possible to integrate database for saving the tracking results of
users.

Figure 9. Architecture of fish tracker software.

43

5.3 RESTful web application

As it is described in the Section 5.2 the developed web application is capable of the video
processing for tracking fish species. The file structure of a Flask application created in the
Python environment, along with an overview, is presented below.:

tracker_app/

|

+-- venv

+-- templates/

| |

| +-- index.html

| +-- video.html

+-- app.py

+-- tracker.py

■ ’app.py’: This is the main file of the Flask application that contains the route of the
application. It has three routes, ’/run’, ’/’, and ’/video_feed’.

■ ’templates’ folder: This folder contains the HTML templates that the Flask applica-
tion uses to render web pages.

1. The ’index.html’ template contains a simple form for uploading an image file
and submitting it to the server.

2. The ’video.html’ template displays the video overlaid with tracking boxes and
IDs on the page.

■ ’tracker.py’: This file contains the function ’track()’ which is used for detecting
fishes and handling the tracking algorithm. The function receives frames, bounding
box, and class names and returns the IDs and bounding box coordinates of tracked
fishes.

The overview of how the Flask application works:

1. When a user visits the ’/’ route, they are presented with the ’index.html’ page where
they can upload a video file (Figure 13).

2. When the user uploads a video file, the application saves the video file to a temporary
file and then renders the ’video.html’ and passes path of the file to the video.html
template.

3. ’video_feed/’ (Fig. 11) route handles the video stream page which takes path to the
file from ’url_for’ function used in the ’img’ tag of ’video.html’ (Fig.10) template.

44

<body>
<h1>Fish Tracking Video Stream</h1>
<div class="container">

<img src="{{ url_for(’video_feed’,
video_path=video_path)}}" width="50%">

</div>
</body>

Figure 10. HTML code for video stream page of web application

@app.route(’/video_feed’, methods=[’GET’])
def video_feed():

Get the temporary file path
video_path = request.args.get(’video_path’)
Open the video file
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
Check if video was opened successfully
if not cap.isOpened():

return redirect(url_for(’index’))
Set the response header
return Response(generate_frames(cap=cap, fps=fps),
mimetype=’multipart/x-mixed-replace; boundary=frame’)

Figure 11. ’video_feed/’ route for streaming tracking video

4. It uses the generate_frames() function which utilizes track() function. At the result,
it generates tacking data from video frames, saves in the JSON format and yields
each tracking frames as a binary data stream.

5. The response header is then set to ’multipart/x-mixed-replace; boundary=frame’,
and the frames of the tracking video stream are returned as a ’Response’ object
(Figure 13).

6. After completion of the tracking process in all frames of uploaded video, the JSON
and tracking video files are downloaded.

In order to get access to the tracking model through Rest API, user needs to send ’GET’
request to the ’/run’ endpoint with the URL of the video. The description of API is shown
below.

Endpoint URL: http://localhost:5000/run

45

HTTP Method: GET
Request Parameters: video_link Example request: GET http://localhost:5000/run?video_-
link=<video_link_value>

The format of JSON output for Web application and API is same:

{

"<frame_num_1>": [

[<start_point>, <end_point>, "<id_1>"],

[<start_point>, <end_point>, "<id_2>"],

],

"<frame_num_n>": [

[<start_point>, <end_point>, "<id_1>"],

...

[<start_point>, <end_point>, "<id_m>"]

],

...

}

The key ’<frame_num_n>’ represents the number of each video frame where fish is
detected. The elements of value ’[<start_point>, <end_point>, "<id_m>"]’ are the starting
point, ending point of bounding box and the ID of tracked fish respectively.

5.4 Software Dependencies

The software is implemented as a Flask-based web application running in a Python 3.10
environment. Some software dependencies are required for the application to function
properly. The Flask framework (version 2.2.2) provides packages to build the backend
of web application. OpenCV (version 4.6.0) is an open-source library which consists
of hundreds of computer vision algorithms and it is used for handling the video file and
its frames in this thesis work. PyTorch is the machine learning framework that is also
renowned in the research community because of being more flexible in building new
approaches. The torch library (version 1.13.0+cpu) is utilized for loading the YOLO model
and running detection on the frames of underwater video. For application of tracking
algorithms in the task, two approaches are used. Firstly, deep_sort_realtime library (version
1.3.2) is used for DeepSORT method which contains all necessary calculations such as
Kalman Filtering in order to do real-time tracking of multiple objects. Secondly, the YOLO
provides packages in order to use ByteTrack, OCSort, and StrongSORT algorithms but

46

it is needed to do changes over them before use. Furthermore, json library is applied for
writing JSON data. Meanwhile, during the conducting experiments, py-motmetrics library
(version 1.4.0) is installed which has a Python implementation of MOT metrics, is utilized
for evaluation of tracking results.

Figure 12. User interface for uploading video to track.

Figure 13. The screen for object tracking stream.

47

6. Summary

Underwater object tracking is a difficult problem that has attracted the interest of researches
due to its vast range of applications in marine biology, oceanography, and underwater
robotics. A detailed literature review was conducted in this master thesis to investigate
the state of the art methodologies in underwater object tracking. The study examined the
specific models and approaches tried to address the problems related to the underwater
environment as well as the characteristics of the objects being tracked. Furthermore,
this thesis focuses on the evaluation and deployment of multiple object tracking (MOT)
algorithms to solve the underwater object tracking problem.

This thesis presents a comparative evaluation of different multi-object tracking (MOT)
algorithms for underwater scenarios. The research involved preparation of MOT dataset
on the basis of underwater fish video data received from [17] and evaluation of four
state-of-the-art MOT algorithms: DeepSORT, StrongSORT, OCSort, and ByteTRACK.
The performance of each algorithm was measured by precision, accuracy, F1 score and
the number of identification switches. The results showed that OCSort achieved the
best performance among the four algorithms, with low identification switches and high
precision and accuracy.

Furthermore, this thesis provides an in-depth examination of the process of applying the
evaluated algorithms to the problem of underwater object tracking. The investigation
took into account several processes, such as input data preparation, model training and
evaluation, and identified the primary obstacles associated with implementing tracking
algorithms in the underwater environment. The study gives useful information for tracking
model selection and application on the specific domain. Finally, this thesis presents a web
application and API that demonstrate the practicality of the chosen tracking algorithms
and makes the solution more accessible. The application has the potential to be expanded
by including tracking into live stream fish videos and developing a database from which
users may obtain the results.

In conclusion, this research offers a thorough overview of the difficulties in underwater
object tracking as well as a detailed analysis of the particular models and approaches
developed to deal with these difficulties. Future research in this area will be well-supported
by further investigation with extended dataset and optimization of tried algorithms, and
the operational considerations involved in using them. The results of this study have a

48

potential impact on underwater object tracking research and improve the state-of-art in this
area.

49

References

[1] Gabrielle Canonico et al. “Global Observational Needs and Resources for Marine
Biodiversity”. In: Frontiers in Marine Science 6 (2019). ISSN: 2296-7745. DOI:
10.3389/fmars.2019.00367. URL: https://www.frontiersin.
org/articles/10.3389/fmars.2019.00367.

[2] Jacopo Aguzzi et al. “Coastal observatories for monitoring of fish behaviour and
their responses to environmental changes”. In: Reviews in fish biology and fisheries

25 (2015), pp. 463–483.

[3] Vishnu Kandimalla et al. “Automated Detection, Classification and Counting of Fish
in Fish Passages With Deep Learning”. In: Frontiers in Marine Science 8 (2022).
ISSN: 2296-7745. DOI: 10.3389/fmars.2021.823173. URL: https://
www.frontiersin.org/articles/10.3389/fmars.2021.823173.

[4] Weiran Li, Fei Li, and Zhenbo Li. “CMFTNet: Multiple fish tracking based on
counterpoised JointNet”. In: Computers and Electronics in Agriculture 198 (2022),
p. 107018. ISSN: 0168-1699. DOI: https://doi.org/10.1016/j.compag.
2022.107018. URL: https://www.sciencedirect.com/science/
article/pii/S0168169922003350.

[5] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. “Online Object Tracking: A Bench-
mark”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). June 2013.

[6] Yucheng Zhang et al. “Recent advances of single-object tracking methods: A
brief survey”. In: Neurocomputing 455 (2021), pp. 1–11. ISSN: 0925-2312. DOI:
https : / / doi . org / 10 . 1016 / j . neucom . 2021 . 05 . 011. URL:
https : / / www . sciencedirect . com / science / article / pii /

S0925231221007220.

[7] Wenhan Luo et al. “Multiple object tracking: A literature review”. In: Artificial Intel-

ligence 293 (2021), p. 103448. ISSN: 0004-3702. DOI: https://doi.org/10.
1016/j.artint.2020.103448. URL: https://www.sciencedirect.
com/science/article/pii/S0004370220301958.

[8] Rui Yao et al. “Video Object Segmentation and Tracking: A Survey”. In: ACM

Trans. Intell. Syst. Technol. 11.4 (May 2020). ISSN: 2157-6904. DOI: 10.1145/
3391743. URL: https://doi.org/10.1145/3391743.

50

https://doi.org/10.3389/fmars.2019.00367
https://www.frontiersin.org/articles/10.3389/fmars.2019.00367
https://www.frontiersin.org/articles/10.3389/fmars.2019.00367
https://doi.org/10.3389/fmars.2021.823173
https://www.frontiersin.org/articles/10.3389/fmars.2021.823173
https://www.frontiersin.org/articles/10.3389/fmars.2021.823173
https://doi.org/https://doi.org/10.1016/j.compag.2022.107018
https://doi.org/https://doi.org/10.1016/j.compag.2022.107018
https://www.sciencedirect.com/science/article/pii/S0168169922003350
https://www.sciencedirect.com/science/article/pii/S0168169922003350
https://doi.org/https://doi.org/10.1016/j.neucom.2021.05.011
https://www.sciencedirect.com/science/article/pii/S0925231221007220
https://www.sciencedirect.com/science/article/pii/S0925231221007220
https://doi.org/https://doi.org/10.1016/j.artint.2020.103448
https://doi.org/https://doi.org/10.1016/j.artint.2020.103448
https://www.sciencedirect.com/science/article/pii/S0004370220301958
https://www.sciencedirect.com/science/article/pii/S0004370220301958
https://doi.org/10.1145/3391743
https://doi.org/10.1145/3391743
https://doi.org/10.1145/3391743

[9] Alireza Asvadi et al. “3D object tracking using RGB and LIDAR data”. In: 2016

IEEE 19th International Conference on Intelligent Transportation Systems (ITSC).
2016, pp. 1255–1260. DOI: 10.1109/ITSC.2016.7795718.

[10] Young-Chul Yoon et al. “Online multiple pedestrians tracking using deep tem-
poral appearance matching association”. In: Information Sciences 561 (2021),
pp. 326–351. ISSN: 0020-0255. DOI: https://doi.org/10.1016/j.ins.
2020.10.002. URL: https://www.sciencedirect.com/science/
article/pii/S0020025520309890.

[11] Xiaojing Li et al. “Real-Time Underwater Fish Tracking Based on Adaptive Multi-
Appearance Model”. In: 2018 25th IEEE International Conference on Image Pro-

cessing (ICIP). 2018, pp. 2710–2714. DOI: 10.1109/ICIP.2018.8451469.

[12] Erik Bochinski, Volker Eiselein, and Thomas Sikora. “High-Speed tracking-by-
detection without using image information”. In: 2017 14th IEEE International

Conference on Advanced Video and Signal Based Surveillance (AVSS). 2017, pp. 1–
6. DOI: 10.1109/AVSS.2017.8078516.

[13] Zhengxia Zou et al. “Object Detection in 20 Years: A Survey”. In: Proceedings of

the IEEE 111.3 (2023), pp. 257–276. DOI: 10.1109/JPROC.2023.3238524.

[14] Jonas Jäger et al. “Visual fish tracking: Combining a two-stage graph approach with
CNN-features”. In: OCEANS 2017 - Aberdeen. 2017, pp. 1–6. DOI: 10.1109/
OCEANSE.2017.8084691.

[15] Zhongdao Wang et al. “Towards Real-Time Multi-Object Tracking”. In: Computer

Vision – ECCV 2020. Ed. by Andrea Vedaldi et al. Cham: Springer International
Publishing, 2020, pp. 107–122. ISBN: 978-3-030-58621-8.

[16] Joseph Redmon et al. You Only Look Once: Unified, Real-Time Object Detection.
2016. arXiv: 1506.02640 [cs.CV].

[17] Bundesanstalt für Gewässerkunde / Federal Institute of Hydrology. Supplementary

dataset. [usage, copying, sharing, or publication of the data without consultation
and approval from the BfG is prohibited]. Accessed: 24-04-2023. URL: https:
//www.etis.ee/Portal/Projects/Display/669139e4-524b-

4562-9aad-a1164b870823.

[18] Shilpi Gupta et al. “DFTNet: Deep Fish Tracker With Attention Mechanism in
Unconstrained Marine Environments”. In: IEEE Transactions on Instrumentation

and Measurement 70 (2021), pp. 1–13. DOI: 10.1109/TIM.2021.3109731.

[19] Concetto Spampinato et al. “Covariance based Fish Tracking in Real-life Underwater
Environment.” In: VISAPP (2). 2012, pp. 409–414.

51

https://doi.org/10.1109/ITSC.2016.7795718
https://doi.org/https://doi.org/10.1016/j.ins.2020.10.002
https://doi.org/https://doi.org/10.1016/j.ins.2020.10.002
https://www.sciencedirect.com/science/article/pii/S0020025520309890
https://www.sciencedirect.com/science/article/pii/S0020025520309890
https://doi.org/10.1109/ICIP.2018.8451469
https://doi.org/10.1109/AVSS.2017.8078516
https://doi.org/10.1109/JPROC.2023.3238524
https://doi.org/10.1109/OCEANSE.2017.8084691
https://doi.org/10.1109/OCEANSE.2017.8084691
https://arxiv.org/abs/1506.02640
https://www.etis.ee/Portal/Projects/Display/669139e4-524b-4562-9aad-a1164b870823
https://www.etis.ee/Portal/Projects/Display/669139e4-524b-4562-9aad-a1164b870823
https://www.etis.ee/Portal/Projects/Display/669139e4-524b-4562-9aad-a1164b870823
https://doi.org/10.1109/TIM.2021.3109731

[20] Zhi-Ming Qian, Xi En Cheng, and Yan Qiu Chen. “Automatically detect and track
multiple fish swimming in shallow water with frequent occlusion”. In: PloS one 9.9
(2014), e106506.

[21] Zhiping Xu and Xi En Cheng. “Zebrafish tracking using convolutional neural
networks”. In: Scientific reports 7.1 (2017), p. 42815.

[22] Joao F. Henriques et al. “High-Speed Tracking with Kernelized Correlation Filters”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 37.3 (Mar.
2015), pp. 583–596. DOI: 10.1109/tpami.2014.2345390. URL: https:
//doi.org/10.1109%2Ftpami.2014.2345390.

[23] Jane Bromley et al. “Signature verification using a"Siamese" time delay neural
network”. In: International Journal of Pattern Recognition and Artificial Intelligence

7.4 (1993), pp. 669–688. URL: http://oro.open.ac.uk/35662/.

[24] Gregory R. Koch. “Siamese Neural Networks for One-Shot Image Recognition”. In:
2015.

[25] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural

Comput. 9.8 (Nov. 1997), pp. 1735–1780. ISSN: 0899-7667. DOI: 10.1162/neco.
1997.9.8.1735. URL: https://doi.org/10.1162/neco.1997.9.8.
1735.

[26] Robert B Fisher et al. Fish4Knowledge: collecting and analyzing massive coral reef

fish video data. Vol. 104. Springer, 2016.

[27] Meng-Che Chuang et al. “Underwater fish tracking for moving cameras based
on deformable multiple kernels”. In: IEEE Transactions on Systems, Man, and

Cybernetics: Systems 47.9 (2016), pp. 2467–2477.

[28] Jerome Berclaz et al. “Multiple object tracking using k-shortest paths optimization”.
In: IEEE transactions on pattern analysis and machine intelligence 33.9 (2011),
pp. 1806–1819.

[29] Oliver Mothes and Joachim Denzler. “Anatomical Landmark Tracking by One-shot
Learned Priors for Augmented Active Appearance Models.” In: VISIGRAPP (6:

VISAPP). 2017, pp. 246–254.

[30] Mygel Andrei M. Martija and Prospero C. Naval. “SynDHN: Multi-Object Fish
Tracker Trained on Synthetic Underwater Videos”. In: 2020 25th International

Conference on Pattern Recognition (ICPR). 2021, pp. 8841–8848. DOI: 10.1109/
ICPR48806.2021.9412291.

[31] Shaoqing Ren et al. “Faster r-cnn: Towards real-time object detection with region
proposal networks”. In: Advances in neural information processing systems 28
(2015).

52

https://doi.org/10.1109/tpami.2014.2345390
https://doi.org/10.1109%2Ftpami.2014.2345390
https://doi.org/10.1109%2Ftpami.2014.2345390
http://oro.open.ac.uk/35662/
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/ICPR48806.2021.9412291
https://doi.org/10.1109/ICPR48806.2021.9412291

[32] Yihong Xu et al. “How to train your deep multi-object tracker”. In: Proceedings

of the IEEE/CVF conference on computer vision and pattern recognition. 2020,
pp. 6787–6796.

[33] Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixe. “Tracking without bells
and whistles”. In: Proceedings of the IEEE/CVF International Conference on Com-

puter Vision. 2019, pp. 941–951.

[34] Alex Bewley et al. “Simple online and realtime tracking”. In: 2016 IEEE interna-

tional conference on image processing (ICIP). IEEE. 2016, pp. 3464–3468.

[35] Christopher R Conrady et al. “Automated detection and classification of southern
African Roman seabream using mask R-CNN”. In: Ecological Informatics 69 (2022),
p. 101593.

[36] Ramil Lumauag and Marevic Nava. “Fish Tracking and Counting using Image
Processing”. In: 2018 IEEE 10th International Conference on Humanoid, Nanotech-

nology, Information Technology,Communication and Control, Environment and Man-

agement (HNICEM). 2018, pp. 1–4. DOI: 10.1109/HNICEM.2018.8666369.

[37] Hamid Hassanpour. Euclidean Distance Filter for Image Processing. Feb. 2021.
DOI: 10.36227/techrxiv.13664615.

[38] Deepak Kumar Rout et al. “Walsh–Hadamard-Kernel-Based Features in Particle
Filter Framework for Underwater Object Tracking”. In: IEEE Transactions on

Industrial Informatics 16.9 (2020), pp. 5712–5722. DOI: 10.1109/TII.2019.
2937902.

[39] . Home - Underwaterchangedetection. http://underwaterchangedetection.eu/index.html.

[40] ReefVid: Free Reef Video Clip Database. http://www.reefvid.org/index.php.

[41] Wenwei Xu and Shari Matzner. “Underwater Fish Detection Using Deep Learning
for Water Power Applications”. In: 2018 International Conference on Computational

Science and Computational Intelligence (CSCI). 2018, pp. 313–318. DOI: 10.
1109/CSCI46756.2018.00067.

[42] Ahsan Jalal et al. “Fish detection and species classification in underwater environ-
ments using deep learning with temporal information”. In: Ecological Informatics

57 (2020), p. 101088.

[43] Xiu Li et al. “Fast accurate fish detection and recognition of underwater images
with Fast R-CNN”. In: OCEANS 2015 - MTS/IEEE Washington. 2015, pp. 1–5. DOI:
10.23919/OCEANS.2015.7404464.

[44] Ross Girshick. “Fast R-CNN”. In: Proceedings of the IEEE International Conference

on Computer Vision (ICCV). Dec. 2015.

53

https://doi.org/10.1109/HNICEM.2018.8666369
https://doi.org/10.36227/techrxiv.13664615
https://doi.org/10.1109/TII.2019.2937902
https://doi.org/10.1109/TII.2019.2937902
https://doi.org/10.1109/CSCI46756.2018.00067
https://doi.org/10.1109/CSCI46756.2018.00067
https://doi.org/10.23919/OCEANS.2015.7404464

[45] Zhenxi Zhao et al. “Composited FishNet: Fish Detection and Species Recognition
From Low-Quality Underwater Videos”. In: IEEE Transactions on Image Processing

30 (2021), pp. 4719–4734. DOI: 10.1109/TIP.2021.3074738.

[46] Kaiming He et al. “Mask R-CNN”. In: Proceedings of the IEEE International

Conference on Computer Vision (ICCV). Oct. 2017.

[47] Ahmad Salman et al. “Real-time fish detection in complex backgrounds using
probabilistic background modelling”. In: Ecological Informatics 51 (2019), pp. 44–
51.

[48] Chris Stauffer and W Eric L Grimson. “Adaptive background mixture models for
real-time tracking”. In: Proceedings. 1999 IEEE computer society conference on

computer vision and pattern recognition (Cat. No PR00149). Vol. 2. IEEE. 1999,
pp. 246–252.

[49] Zahra Soleimanitaleb and Mohammad Ali Keyvanrad. “Single Object Tracking: A
Survey of Methods, Datasets, and Evaluation Metrics”. In: ArXiv abs/2201.13066
(2022).

[50] Yingkun Xu et al. “Deep learning for multiple object tracking: a survey”. In:
IET Computer Vision 13.4 (2019), pp. 355–368. DOI: https://doi.org/
10.1049/iet- cvi.2018.5598. eprint: https://ietresearch.
onlinelibrary.wiley.com/doi/pdf/10.1049/iet-cvi.2018.

5598. URL: https://ietresearch.onlinelibrary.wiley.com/
doi/abs/10.1049/iet-cvi.2018.5598.

[51] Peize Sun et al. DanceTrack: Multi-Object Tracking in Uniform Appearance and

Diverse Motion. 2021. DOI: 10.48550/ARXIV.2111.14690. URL: https:
//arxiv.org/abs/2111.14690.

[52] Zhongdao Wang et al. Towards Real-Time Multi-Object Tracking. 2019. DOI: 10.
48550/ARXIV.1909.12605. URL: https://arxiv.org/abs/1909.
12605.

[53] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. “Simple Online and Realtime
Tracking with a Deep Association Metric”. In: CoRR abs/1703.07402 (2017). arXiv:
1703.07402. URL: http://arxiv.org/abs/1703.07402.

[54] Yunhao Du et al. StrongSORT: Make DeepSORT Great Again. 2022. DOI: 10.
48550/ARXIV.2202.13514. URL: https://arxiv.org/abs/2202.
13514.

[55] Yifu Zhang et al. ByteTrack: Multi-Object Tracking by Associating Every Detection

Box. 2021. DOI: 10.48550/ARXIV.2110.06864. URL: https://arxiv.
org/abs/2110.06864.

54

https://doi.org/10.1109/TIP.2021.3074738
https://doi.org/https://doi.org/10.1049/iet-cvi.2018.5598
https://doi.org/https://doi.org/10.1049/iet-cvi.2018.5598
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-cvi.2018.5598
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-cvi.2018.5598
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-cvi.2018.5598
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-cvi.2018.5598
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-cvi.2018.5598
https://doi.org/10.48550/ARXIV.2111.14690
https://arxiv.org/abs/2111.14690
https://arxiv.org/abs/2111.14690
https://doi.org/10.48550/ARXIV.1909.12605
https://doi.org/10.48550/ARXIV.1909.12605
https://arxiv.org/abs/1909.12605
https://arxiv.org/abs/1909.12605
https://arxiv.org/abs/1703.07402
http://arxiv.org/abs/1703.07402
https://doi.org/10.48550/ARXIV.2202.13514
https://doi.org/10.48550/ARXIV.2202.13514
https://arxiv.org/abs/2202.13514
https://arxiv.org/abs/2202.13514
https://doi.org/10.48550/ARXIV.2110.06864
https://arxiv.org/abs/2110.06864
https://arxiv.org/abs/2110.06864

[56] Jinkun Cao et al. Observation-Centric SORT: Rethinking SORT for Robust Multi-

Object Tracking. 2023. arXiv: 2203.14360 [cs.CV].

[57] JEFFREY A TUHTAN et al. “SMART FISH COUNTER FOR MONITORING
SPECIES, SIZE, MIGRATION BEHAVIOUR AND ENVIRONMENTAL CONDI-
TIONS”. In: ().

[58] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. YOLOv7:

Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors.
2022. arXiv: 2207.02696 [cs.CV].

[59] Kaiyang Zhou et al. Omni-Scale Feature Learning for Person Re-Identification.
2019. arXiv: 1905.00953 [cs.CV].

[60] Kaiyang Zhou and Tao Xiang. “Torchreid: A Library for Deep Learning Person
Re-Identification in Pytorch”. In: arXiv preprint arXiv:1910.10093 (2019).

[61] Liang Zheng et al. “Scalable Person Re-identification: A Benchmark”. In: Computer

Vision, IEEE International Conference on. 2015.

[62] Jack Valmadre et al. Local Metrics for Multi-Object Tracking. 2021. arXiv: 2104.
02631 [cs.CV].

[63] Jonathon Luiten et al. “Hota: A higher order metric for evaluating multi-object
tracking”. In: International journal of computer vision 129 (2021), pp. 548–578.

[64] Keni Bernardin and Rainer Stiefelhagen. “Evaluating multiple object tracking perfor-
mance: the clear mot metrics”. In: EURASIP Journal on Image and Video Processing

2008 (2008), pp. 1–10.

[65] L. Leal-Taixé et al. “MOTChallenge 2015: Towards a Benchmark for Multi-Target
Tracking”. In: arXiv:1504.01942 [cs] (Apr. 2015). arXiv: 1504.01942. URL: http:
//arxiv.org/abs/1504.01942.

[66] A. Milan et al. “MOT16: A Benchmark for Multi-Object Tracking”. In: arXiv:1603.00831

[cs] (Mar. 2016). arXiv: 1603.00831. URL: http://arxiv.org/abs/1603.
00831.

[67] Cvat. URL: https://www.cvat.ai/.

[68] Shalabh Aggarwal. Flask framework cookbook. Packt Publishing Ltd, 2014.

[69] Mark Masse. REST API design rulebook: designing consistent RESTful web service

interfaces. " O’Reilly Media, Inc.", 2011.

55

https://arxiv.org/abs/2203.14360
https://arxiv.org/abs/2207.02696
https://arxiv.org/abs/1905.00953
https://arxiv.org/abs/2104.02631
https://arxiv.org/abs/2104.02631
http://arxiv.org/abs/1504.01942
http://arxiv.org/abs/1504.01942
http://arxiv.org/abs/1603.00831
http://arxiv.org/abs/1603.00831
https://www.cvat.ai/

Appendix 1 – Non-Exclusive License for Reproduction and
Publication of a Graduation Thesis1

I Sanan Suleymanov

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for
my thesis “Underwater video object tracking in presence of challenging visibility
conditions”, supervised by Elizaveta Dubrovinskaya
1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library
of Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to
be entered in the digital collection of the library of Tallinn University of
Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act
or rights arising from other legislation.

08.05.2023

1The non-exclusive licence is not valid during the validity of access restriction indicated in the student’s
application for restriction on access to the graduation thesis that has been signed by the school’s dean,
except in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation
thesis is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted,
by the set deadline, the student defending his/her graduation thesis consent to reproduce and publish the
graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive
license shall not be valid for the period.

56

	Introduction
	Literature review
	Key problems in underwater fish tracking
	Appearance model based tracking
	Detection as a part of underwater object tracking

	Methodology
	Object tracking problem
	Multiple Object Tracking
	MOT Problem
	DeepSORT
	StrongSORT
	ByteTrack
	OCSort

	Enhancing Object Tracking through YOLO-based Detection
	Training embedding model for appearance extraction
	Evaluation metrics

	Results
	Implementation
	Data
	Web Application Architecture
	RESTful web application
	Software Dependencies

	Summary
	References
	Appendix 1 – Non-Exclusive License for Reproduction and Publication of a Graduation Thesis

