
TALLINN UNIVERSITY OF TECHNOLOGY
SCHOOL OF ENGINEERING
Department of Electrical Power engineering and Mechatronics

Migration and Integration of FESTO Tripod
robot with Beckhoff’s CX2042 controller.

FESTO Tripod roboti ümberseadistamine ja
integreerimine Beckhoff CX2042 kontrolleriga.

Master Thesis

Student : Erick Suncin

Student Code: 194294 MAHM

Supervisor: Mart Tamre

Tallinn 2020

(On the reverse side of title page)

AUTHOR’S DECLARATION

Hereby I declare, that I have written this thesis independently.

No academic degree has been applied for based on this material. All works, major

viewpoints and data of the other authors used in this thesis have been referenced.

“.......” 20…..

Author:

/signature /

Thesis is in accordance with terms and requirements

“.......” 20….

Supervisor: ….........................

/signature/

Accepted for defence

“.......”....................20… .

Chairman of theses defence commission: ...

 /name and signature/

2

Non-exclusive Licence for Publication and Reproduction of
GraduationTthesis¹

I, Erick Suncin (date of birth: 04/14/1989) hereby

1.grant Tallinn University of Technology (TalTech) a non-exclusive license for my

thesis: Migration and Integration of FESTO Tripod robot with Beckhoff’s CX2042

controller.

supervised by Mart Tamre

1.1reproduced for the purposes of preservation and electronic publication, incl. to

be entered in the digital collection of TalTech library until expiry of the term of

copyright;

1.2published via the web of TalTech, incl. to be entered in the digital collection of

TalTech library until expiry of the term of copyright.

1.3 I am aware that the author also retains the rights specified in clause 1 of this

license.

2.I confirm that granting the non-exclusive license does not infringe third persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

¹Non-exclusive Licence for Publication and Reproduction of Graduation Thesis is not valid during the

validity period of restriction on access, except the university's right to reproduce the thesis only for

preservation purposes.

______________ (signature)

______________ (date)

3

Department of Electrical Power Engineering and
Mechatronics

Student : Erick Rene Suncin Aguilar. 194294MAHM

Study Programme

Main Specialty: MAHM MsC Mechatronics

Supervisor(s): Professor Mart Tamre, Director of MsC Master

Thesis topic:

(In English). Migration and Integration of FESTO Tripod robot with Beckhoff’s

CX2042 controller.

(In Estonian) FESTO Tripod roboti ümberseadistamine ja integreerimine Beckhoff

CX2042 kontrolleriga.

1. Introduction

Nowadays it is pretty common to find obsolete machinery in the industry, meaning

that since they were built the same controller or control system has been working

in the machine and new applications are not possible, that is why migrating and

integrating existing machines to new controller is a must in today’s automation

applications.

With this Thesis, the goal is to be able to migrate and integrate all the applications

of FESTO tripod Delta robot with the new Beckhoff Controller, the CX2042. It is

important to note that the FESTO tripod robot is being controlled by its default

controller from FESTO (CMXR-C1). By integrating the robot with the new controller,

new applications can be done, and also there will be a significant increase in the

performance of the robot.

The motivation behind this research and project comes from my background in

automation. I believe that migration machines that have a default controller to a

new and more capable controller can bring a lot of benefits on the functionality of

the machine, also the main goal og migrating a machine to a new controller is to

increase performance and have many more applications. Also it is important to note

that this project will benefit the department of power electronics and mechatronics

in many ways.

4

Completing this thesis and project will assure the usage of Festo Tripod form many

years to come and with increased applications fro this machine, that will also

benefit other students in the area. By completing the project we will also be making

a better machine and for sure we will have applications that can be tried in such

development.

2. Background

The Festo Tripod Delta robot works with its default controller, the Festo PLC CMXR-

C1. This controller is a multi-axis controller specially made for kinematics

applications and as you may have to guess the FESTO tripod has a lot of kinematics

behind its functionality, that is why this controller is the heart of the complete

kinematic system. All of this sounds good for the FESTO tripod Robot, so why

change it? The answer is simple: The Beckhoff Controller CX2042 is much more

powerful than what the FESTO controller offers. This is why the first step is making

work the FESTO tripod with the CX2042 and it’s current applications. After this is

done then we can go further in the applications that are desired for example:

integrating MatLab and vision modules to the robot, as well as creating remote

access to it. Knowing how to Integrate all this is the main barrier that we will have

to pass, integration between two different systems sometimes can be sketchy.

For this project and thesis it will be necessary to read and understand all the

corresponding manuals such as the motor driver manuals, the installation manuals,

the CX2042 manual and some other articles related to Beckhoff controllers. Also

there are a few articles and thesis previously done that had a related topic just like

this one. For further applications some IEEE articles will be used.

3. Methodology

Since this project is more of seeing results and less of doing a research the first

step on understanding the problematic is understanding how the controller and the

robot, drivers etc…can communicate between each other, it is really important to

understand every component in the robot. Once everything is understood we can

proceed with getting results with the migration of the whole system. Also it is very

important to understand how the FESTO tripod works and its current applications so

when we replicate everything with the new controller we can understand what the

ultimate goal is. For the research part of this project it will be really interesting to

have some applications with MatLab and Beckhoff’s vision modules.

5

The results will be measured once the migration, integration of the Festo Tripod

robot is made with the new CX2042 controller. If there are good results then the

whole system will work perfectly and everything has to be documented, that way

we can surely state that a universal approach of integration a machine can be done

with the new Beckhoff controller. An excellent result will also let us have new

applications added to the Tripod System.

4. Research Schedule

Proceeding steps outline

Thinking about what interest you ‹ select a thesis topic proposal ‹ conduct your research ‹ choose your
supervisor ‹ completing literature review ‹ planning outlines ‹ conducting your research ‹ writing your
thesis ‹ defense presentation ‹ composing journal/conference papers.

Language: English Deadline for submission of Thesis:

Student: Erick Suncin. October 12, 2020

 (Signature)

Supervisor: Mart Tamre ………………………………………. October 12, 2020

 (Signature)

Head of study programme: Mart Tamre

Company based confidentiality and other terms to formulate on the reverse side.

No. Task Description Deadline

1. Understanding of the whole Festo Tripod system

Full knowledge of all the components

Understanding of the new CX2042 controller

15.11.2020

2. Integration and Migration of the Tripod system To CX2042

controller

Rewiring of the whole cabinet to the new Beckhoff

controller

30.01.2021

3. Documentation and diagrams of the new system

Research on new applications and integration to Matlab

01.03.2021

4. Creation of functional HMI screens 30.04.2021

5. Final Presentation of the whole system 20.05.2021

6

CONTENTS

 Page

 Preface. ……… 8

1. Introduction ……………………………………………………………………………………………………… 9

2. Literature review ……………………………………………………………………………………………… 11

 2.1 Automation history and trends …………………………………………………………. 11

 2.2 Industrial Internet of things …………………………………………………………….. 13

 2.3 Industrial communication trends …………………………………………………….. 14

 2.4 Beckhoff Automation ……………………………………………………………………….. 15

 2.5 CanOpen communication protocol ………………………………………………….. 16

 2.6 Integration methods and standards ……………………………………………….. 18

 2.7 Similar Projects ……………………………………………………………………………….. 19

 2.8 Conclusions ………………………………………………………………………………………. 20

3. FESTO EXPT Tripod Robot/Beckhoff CX2042 PLC hardware specifications ….. 22

 3.1 Overview ………………………………………………………………………………………….. 22

 3.2 Topology and Architecture of the system ……………………………………….. 24

 3.3 Beckhoff PLC CX2042 Overview ………………………………………………………. 27

 3.4 Festo Motor drives CMPP-AS ……………………………………………………………. 28

4. Universal solution for Migrating and Integrating CX2042 PLC …………………….. 30

 4.1 Twincat 3 PLC and modules integration ………………………………………….. 30

 4.2 Integration of components and drives from other manufacturers ….. 33

 4.3 Motion control in Twincat 3 Software ………………………………………………. 36

 4.4 Manual movement using motion control function blocks ……………….. 40

 4.5 Automatic mode: Simple pick and place program ………………………….. 42

 4.6 Matlab/Simulink interface and integration ………………………………………. 43

5. Future Developments ………………………………………………………………………………………. 47

6. Conclusion …… 48

7. Summary ……. 49

8. Kokkuvõte ……………………………………………………………………………………………………….. 51

9. References ………………………………………………………………………………………………………. 53

Appendices

A.1 Declaration of Variables ……………………………………………………………………………….. 56

A.2 Manual Movement …………………………………………………………………………………………. 61

A.3 Automatic Movement ……………………………………………………………………………………. 68

A.4 HMI screens. ………………………………………………………………………………………………….. 90

7

PREFACE

This thesis project was proposed by the Professor Mart Tamre, director of Msc in

Mechatronics at Taltech university and the author accepted with great enthusiasm

the challenge of integration the Beckhoff controller CX2042 to an existing machine

and be able to give the department a new possibility in developing tools for

upcoming students. The work of this thesis project was conducted in the

Mechatronics laboratory where the EXPT tripod robot is located, at Tallinn Technical

University. All the components used for this thesis work are property of Taltech

university and will open doors to keep using the EXPT robot.

The thesis project is mainly focused on integrating the FESTO EXPT tripod robot to

a controller that is capable of having an immense amount of solutions and

applications in a single software, that is user friendly since it is based on Microsoft

Visual studio and does not require to buy licenses when developing new

applications, there are some limits with trial licenses but they are mostly good

enough for university researches. Previous researches had been done trying to

integrate this robot without success, giving the author extra motivation to

accomplish the objective.

The author would like to express gratitude to Professor Mart Tamre for the

opportunity of taking this project and helping with the development of the Thesis

work. Also the author is thankful with all the Mechatronics department staff that

helped with the tools and permissions. Also the deepest gratitude to Bekchoff

Estonia and Festo Estonia for giving tips and helping with the development of the

Thesis work.

Keywords: Programmable logic controller (PLC), fieldbus, programming, delta robot,

Master’s thesis

8

1. INTRODUCTION

The following thesis project has the main objective of creating and implementing a

universal solution to migrate any robot or application to a new a controller, the

CX2042 from Beckhoff Automation, and be able to integrate the existing

applications and have new applications available as well. This integration is needed

because we really want to be able to have new applications with the existing robots

and the CX2042 controller, a PC-based controller, is much more powerful than the

one the exisitng robots have. For this thesis project we will be focusing the

migration and integration of the new CX2042 Beckhoff controller to the existing

FESTO Expt Tripod robot, or better called delta robot from FESTO. The FESTO EXPT

is a robot fabricated by FESTO that work on the basis of parallel kinematics, it has 3

main servo motors that are controlled by three basic axis controllers and 1 extra

servo motor that is also controlled by its own motor drive controller. The tripod

robot works with a CMXR-C1 PLC that is also fabricated by FESTO and is a multi

axis controller [1] that makes it really easy to program algorithms for picking and

placing with a relatively high speed. This controller suits perfectly the main idea of

the FESTO tripod robot, that is to have simple picking and placing application and in

some industries really small applications.

But as you may have wonder, robotics and automation are developing really fast

and new trends and applications are appearing and industry has to keep up with

these trends and new applications in order to avoid being an obsolete industry.

For this new controllers, new sensors, new technologies need to be applied to

already existing machines to have new opportunities. The main objective of this

thesis will be focused in migrating the applications to the new CX2042.

There will be some challenges while integrating this technology since previously

there have been researches and projects trying to communicate the actual

components to the CX2042 with no success. One of the main reasons there was no

success while trying to integrate the new controller was that the communication

protocol that the motor drives work on are CANopen, a communication protocol

that is based on CAN, and there has to be some configurations and parameters that

have to be analysed.

9

The main idea of migrating this delta robot to a new controller is that the CX2042 is

a PC-based controller and Beckhoff has been one of the pioneers of this technology

since the first PC-based PLC was fabricated by them in 1986, and as we will see

during the first part of this thesis the new industrial revolution (Industry 4.0) has

many opportunities in this type of controller, since IoT devices need the integration

of IT communication and automation, then keeping with the trend and new

technologies will definitely need the use of a new controller that is capable of

having new applications and new technologies that are needed in industry and in an

university environment as well.

The CX2042 controller is a controller that is part of the CX2000 series and has an

Intel® Xeon® CPU with a clock rate of 2.2 GHz (4 cores), if we compare this to the

CMXR-C1 there is a huge difference in power between both of them. It also contains

a main memory with a size of 8 GB RAM, with expandable option available.The CPU

has an internal 128 kB NOVRAM, which acts as a persistent data memory if no UPS

is used and it has an operating system (Microsoft Windows 10 IoT Enterprise 2016

or Windows 10 IoT Enterprise 2019 LTSC 64 bit) .

Problem Statement

In this master thesis the main objective will be to achieve a universal solution for

the integration on the new controller CX2042 into any machine available, in this

case we will be using the Delta Robot as our base. This is necessary in order to be

able to migrate any application into a new controller and that way, solve a big issue

that many companies have: Having machine with old controllers and not having a

solution to migrate and integrate new applications into their machine. In the

automation field there is an increased need to keep innovating and applying new

processes that improve the manufacturing or industrial capacity, this will help any

industry or user to have a better result and be able to keep with the trend of

industry 4.0

10

2. LITERATURE REVIEW

2.1. Automation history and trends

Manufacturing has been one of the main pillars for every country’s economy,

especially the use of industrial robots for manufacturing, and will continue to be for

many more years to come. If we check on the data of the most powerful countries,

China, Germany, and the United States, we clearly see that the contribution of the

manufacturing field to the economic field is 27% for China, 23% for Germany, and

12% for the United States [2], but there is a clear decrease in this contribution

throughout history.

There have been some major industrial revolutions that have shaped the form and

the way industry and manufacturing works. The first major change in the industry

happened around the end of the 18th Century and was characterised by converting

agricultural and rural areas to urban areas where mass manufacturing of products

was made, mainly powered by steam. Afterward the second industrial revolution

came between the late 19th century and early 20th century, it was characterised by

standardisation and industrialisation of manufacturing technologies at a rapid pace

and also more manufacturing inventions were well established in the industrial

area. The third industrial revolution happened in the second half of the 20th

century and here is where the rise of telecommunications, electronics, and

computers, in this time frame two major inventions (that concern this thesis) were

brought: PLCs and robots.

And last but not least is where we are standing right now, Industry 4.0 or like some

people call this the fourth industrial revolution. Some people do agree that we are

experiencing the fourth industrial revolution but some others still disagree, what it

is a fact is that we are experiencing new inventions and new technologies and the

magnitude is yet unknown.

Industry 4.0 is characterised by the extensive use of the internet [3] and with this

a big amount of data is gathered, making it possible for machines and robots to

predict certain situations and have self-learning algorithm. Also, a lot of

technologies have emerged during this so called “Fourth Industrial revolution” like

image processing applications to control robots, artificial intelligence, remote

control, Internet of things, 3D printing, autonomous vehicles, etc…

11

Figure 2.1.1. Industry 4.0 Technologies [5]

This industrial revolution is believed by some optimistic people that this revolution

will be the one that will have the most impact on the economy of the world and also

improve the quality of the population [4], this means that there is a trend towards

these technologies and this means that new machines will come into play in the

industry, but what happens with industrial and manufacturing companies that have

invested a lot of money in robots and machines and cannot afford a totally new

machine or robot? Well this is where integration and migration of new controllers to

adapt new technologies to an existing machine enters into scene.

This is something that has taken a lot of importance lately, it is a new trend that

consists of transitioning and integrating a new controller to a new robot to make

this robot capable of having new technologies, that of course are part of the new

industry 4.0 and even though they might need new components like new sensors,

vision modules, cameras, more complex algorithms at the end this is much more

affordable than a new machine with all this capability.

The new industrial revolution is changing how the industry works and how business

operates, the way industry 4.0 is making a fusion between the industrial processes

and the daily tasks allows a lot of benefits to society, like: reducing costs, better

quality life, quality of processes, improved operations and many more [6]. This is

why industry 4.0 can make a huge change on how things are managed in an

industrial environment, but even more incredible is that this industrial revolution

that we are now living will shape society in a huge way, it will change how business

operates, and there will be an increase in incomes benefiting from the industrial

change that has to be taken into account if an industry wants to continue a big

progress and have a bright future, society 4.0 is being created in a really amazing

way.

12

Cloud, Big data

Augmented Reality

IoT

Cybersecurity

Simulation

Simulation

Robots and sensores

Deep Learning

In the next section we will analize how industry 4.0 and internet of things is

shaping industry and how IIoT (Industrial internet of things) is shaping the

manufacturing and industry processes.

2.2. Industrial internet of things (IIoT)

It is important to draw a small line between what is internet of things and what is

industrial internet of things. To put it in a simple term: IIOT (Industrial Internet of

things) is the when IT is integrated to industrial automation devices and control

systems such as sensors, technologies, big data, self-learning algorithms, and

much more [8]. It is important to note as well that certain parameters have to be

fulfilled in order to consider a system part of the current trends in IIOT.

IoT is the technology that connects devices (wired or wireless) to a network, in the

other hand IIoT is the kind of technology which deals all the industrial machinery

that have intelligent sensors, software and many other components of the current

industry 4.0, it also involves the connection of this complex machinery to the

network in order to control it through a different service, but it not only involves

this connection between machines and sensors it also involves the human being ,

that is the one in charge of interfacing the unit to have a machine as close as a

error-free system, humans will always be involved [9].

The adoption of IIoT can change how industries work, but there is the challenge to

have strategies to strengthen efforts to digital transformation while maintaining

security in all aspects. There are three areas that need to be focused on with IIoT:

[10]

• Availability: The state of machines or processes to be “available” or unoccupied in

order to have the maximum use of certain machines or tools.

• Scalability : The characteristic of a company or industrial process to cope and

perform really well with increased amount of workload and also have the option

to add new components without a need of shutting everything down.

• Security: Since IoT devices are connected to the world wide web then there is

mayor concern in cybersecurity, the mayor challenges of this area to keep

everything good are:

13

Figure 2.1.2. Cybersecurity challenges for IIoT [10]

As we reviewed this section we were able to see how there is a small line between

IoT devices and IIoT trend in machines. There is a huge amount of information

regarding IIoT and industry 4.0. It is very important to keep an eye on this trends

and technologies in order to see if it is viable to apply any new technology or

application to an industrial process or a machine like the FESTO tripod robot.

2.3. Industrial communication trends

With the introduction of all the new trends and technologies in communication the

industrial scenario is having a tremendous change and also having an immense

amount of opportunities to shock the world with new processes and applications.

As stated, the main goal of automated systems is the harmonisation of devices

beyond networking (just connections) and this is because the core of every

distributed system is the smooth exchange of information between devices[11] that

will or are connected to the same network.

This smooth exchange of information is possible thanks to the development of

communication protocol, creating an opportunity to exchange the information more

comprehensive and therefore automation systems began to grow into more

complex systems, but this has not always being so easy to state or say since it has

been lately where these changes and opportunities have been penetrating the

industrial picture [12].

14

Since the industrial automation world is so heterogenous and the need to

communicate all the different devices and the huge amount of variety of devices in

mechatronic systems, so this takes the development to a main issue that has to be

addressed: “The real time industrial communication” [13]

2.4. Beckhoff Automation

Beckhoff Automation was established around 1980 and now it has more tan 30

years on innovating and giving a large contribution to PC-based automation. It is

important to mention that the first PC-based machine controller was created by

Beckhoff in 1986 and as we may wonder industry 4.0 needs IT and pc based

system to make an all together system, that is why Beckhoff controllers are one of

many in the market that will be really useful for future applications and

technologies. Beckhoff milestone is as follows:

• 1986 - First Beckhoff PC-XT-based controllers for woodworking machines. This

units were first used as operating, computing and memory units, using motorola

hardware, but they rapidly realized that the PC- based controller could take over

all the system functions and the idea for future inventions was borned.

• 1989 - Lightbus interface card, first optical fieldbus created by Beckhoff, the PC

proccersor always assumed the master controller role

• 1990- the all in one PC motherboard created with Intel, now able to communicate

with siemens S5, this was known as the “press PC” since the main role and

programation was done for metal pressing.

• 1992- communication with mitshubishi PLC

• 2002- Development of motherboard CX100 model, with Pentium processor, this

was the return for beckhoff for creating its own motherboards and the first PC

embeddded PC with the DIN standard mounting.

• 2003- Ethercat is created, the first real-time field bus and patent for Beckhoff.

• 2004- Intel pentium M processors for controllers

• 2006- Intel core duo processor for controllers

• CX2042-Inttel Xeon CPU with a clock rate of 2.2 GHz, 4 cores in main memory

with a size of 8 GB RAM with Microsoft Windows 10 IoT Enterprise as operating

system.

• 2010- TwinCat 3 is developed, this is the software to integrate everything in a

single automation software.

• 2012- second generation of HMI panels was developed

15

• 2014- a new axo servo system is developed the AX8000

• 2015- New Ethercat IOT devices are created as well as TwinCat HMIs

• 2017- Ulta compact controllers are created as IPCs

• 2019- Multicore industrial PC with a high grade of protections (IP65/67) are

launched into market, and new options for machine learning in Twincat 3 [14]

2.5. CANopen communication protocol

One of the main problems from previous thesis projects was the communication

between the motor drives and the CX2042 Beckoff PLC. This happened because the

motor drives are made by FESTO and they use the communication protocol called

CANpen and they are communicated by the basic axis drive controller from FESTO,

as today the interface they are using is the one in which it was commissioned. The

next figure shows the control architecture from FESTO EXPT tripod robot.

Figure 2.1.1. Control Arquitecture for FESTO Expt Delta Robot [15]

According to the manual the robot is using 3 motor controllers CMMP-AS-C5-3A for

3 main axes, 1 motor controller CMMP-AS-C2-3A for 1 supplemental axis. These are

very old motor drive controllers and apparently they only have the CANopen

interface [16].

16

In order to make a fully functional CANopen network first we need to understand

how this works. The CANopen fieldbus is based on the CAN communication protocol

but working on higher layer of the OSI network model [17] [18], the OSI is a

conceptual model standarizing communication functions across diverse

communication devices. Lower level is the basic communication like physical cables,

and the upper ones are more complex communication. CANopen was first created

for motion-oriented machine controlled applications and now it is extensively used

in control of stepper motors and servo motors, as well as some robotic application

and industrial machinery applications. There are some important concepts that we

need to have into account when configuring a CANopen network, these concepts

are:

• Communication models: There are several options to choose from but in for this

thesis purpose the master/slave model will be used. Meaning that a master node

will be created and several slaves will depend on the master network. [17]

• Communication protocols: as we have explained protocols are used for

communicating object in a network

• Device states: a concept used in many other standards and communication

protocols that gives information about a devices, e.g. running, emergency state,

stop, etc…

• Object dictionary or OD, each device in the network has its own OD and in these

parameters for this device are found. These are normally given by the

manufacturer.

• Electronic Data sheet (EDS), Standard file format for OD entries [17]

• Device profiles, standards used for running a communication protocol.

All these concepts have to be taken into account in order to make a susccesful

communication network. Also to understand a bit better the CANopen the following

figure shows the frameworks that are normally used in the CANopen protocol.

Figure 2.1.2. CANopen frame work [19]

17

2.6. Integration methods and standards

In the field of industrial automation and robotics there are several standards that

need to be followed in order to implement a competitive project and to be in

accordance to the industry standards.

The most important standard in PLC programming and implementation us the IEC

61131 and is the “standard for programmable controllers” it is divided in ten parts,

each part outlining an important part of PLC programming and all the parts are

maintained to keep the industry trend. The first part of this standard is an

introductory part mentioning the terms that will be used in subsequent parts. The

second part of the standard is for equipment requirements and tests, it describes

the normal service conditions requirements, functional requirements, functional

type tests and verifications, and electromagnetic compatibility. The third part of this

standard (the most widely used and known) is for programming languages,

describing each of the standardised programming languages used in industry, like

ladder (LD), structured text (ST), functional blocks diagram (FBD), instruction list

(IL) and sequential function chart (SFC) [20]. The fourth part is for user guidelines,

the fifth part is for communications between PLC and devices and it is important

because here there are general rules and standards. The sixth part is for functional

safety, the seventh part is a little bit more specialised and is for fuzzy control

programming, the eight part are the guidelines for the application and

implementation of programming languages, the ninth part is single-drop digital

communication interface for small sensors and actuators and the last part is a guide

of PLC open XML exchange format for the export and import of IEC 61131-3

projects.

As we see there is plenty of information regarding standards in PLC programming

but as we may notice there are complex programming structures and safety

measures have to be included at the beginning of the development process.

Complex safety functions are normally managed by safety PLCs and this concept is

described in another standard, the IEC 61508 functional safety of a functional

safety system. This standard is really important to estimate the the risks and the

SIL (safety integrity level) of each system [21].

18

2.7. Similar projects

There are plenty of projects that want to migrate and integrate new controllers to

existing machines, this trend is very popular nowadays because there is an

increasing need of applying new applications and new automated processes. For

example before a normal PLC was able to guarantee a great reaction time but now

there is an increased number of field sensors and there are a lot of data driven

algorithms that need a device to gather and distribute data to the cloud (Virtual

based storage) and many PLCs manufacturers are integrating IoT modules to the

PLC, but there is a problem a lot of processes need real time reaction time and

cloud based data is not acceptable, so here is PC-based PLC come into play [22].

The use of PLC is a much needed control emphasis that is done because it gives

much more operational availability, for example there is a ROV (Remote operated

vehicle) called Remora III, designed by Phoenix, that has been operating in search

and rescue operations for more than 16 years, and it has been really successful in

the activities that it's performed, but there is a need to increase its service

capability and operational availability and for this an integration to a PLC was done.

With this migration there is a clear increase in application, easy programmable

interfaces, world wide availability and much more just by simply integration a PLC

control system [23]. This is a simple example on how integrating new PLC systems

can help you increase your operational availability and new application can be

implemented.

Another good example, that is much closer to us, is the integration of TalTech’s

Scara robot with the same controller that we will be using for this thesis. This

migration and integration was done to prove that replacement and integration of

robots with its own basic control system with a customised control system, and

much more powerful, is a convenient approach. This project was tested with two

experiments, one to measure the accuracy of motion control which resulted to be

really accurate and the second one was a performance testing, which the robot

performed without any sign of error. This project proved that migrating to a much

more powerful controller leaves the scara robot in a better position and with new

capabilities for future applications [24].

There is an increase amount of robots that are being integrated and migrated to

new PLC systems, specially the PC-based systems, because they can benefit a lot of

areas: Education, fun, industries, processes, manufacturing, etc.

19

2.8. Conclusions

As we have seen from different references taken into account in this literature

review we are now aware why migrating a very powerful controller to an existing

machine is more than worth it, there are many applications that will be available

once this master Thesis project is successful and keeping with the trend on

industrial applications and robotic application will just bring benefits to the

university.

Industry 4.0 is taking big steps towards development of industrial automation and

robotics and it is shaping the society into a more capable society. This does not

mean that robots will be doing all the work, as stated humans are necessary for a

near free-error automatic system and this will always be needed in order to succeed

in a very competitive world.

With the integration of a new controller new applications will be available but we

always have to be aware that with new application more security threats can be

created as well and security is a very important subject we have to take into

account if we want to create a general solution for migrating the CX 2042 controller

to any existing machine and we always have to follow the standards in industry in

order to be competitive.

This thesis project will benefit the university in an amazing way and it is needed if

we want to keep the pace with the evolution of industry 4.0 and the development of

automation in industry. This is just a small step that TalTech has to take.

In order to successfully carry out this thesis project we need to solve more specific

objectives, such as:

• Be able to successfully migrate and integrate all the current applications of a

robot to the new Beckhoff CX2042 controller. To be more specific this thesis will

rely in FESTO’s tripod EXPT delta robot, this does not mean that we will only

carry out a solution for this robot, we will be creating an universal solution to

fully integrate this controller to new applications and robots. If successfully done

we will be able to translate this to the industrial field and be able to propose new

application to old machines or robots with the new controller with a solution that

will be adaptable to any field

20

• Since there is history while making this solution, we need to be able to create a

fully functional communication network that will adapt to the different

communication protocols that each machine or robot has, this will benefit the

user in a vast way, since one of the main issues while working with in this field is

the vast amount of time and effort it has to create a new network to

communicate each component

• Once everything is fully functional we want to keep with the pace of industry 4.0

and integrating new applications will be one of the main sub objectives, in this

case this thesis will focus in creating a remote access to the machine and

integrating some vision modules that will open a wide variety of new application

for the machine.

All of these secondary objectives will be attacked once the universal solution of

integration of the new controller is available. It is really important to note that

making this solution will benefit not only the university, but also many industries

that are interested in this application.

This project will be a really interesting challenge since previous work groups have

tried to integrate the old-phased out controllers to the CX2042 controller without

success and recommending to change the whole motion drive system into one from

ABB to have compatibility. Of course this is a good solution to make but it will mean

an increase in spending and it will not be worth it if we translate this action to an

industry where a machine or a system will cost a lot of money. In industries there is

always a demand on spending as less money as possible to make a ROI (return of

inversion) worth it.

21

3. FESTO EXPT TRIPOD ROBOT AND BECKHOFF

CX2042 PLC HARDWARE SPECIFICATIONS

3.1 Overview

Festo EXPT tripod robot is a parallel kinematic system, better known in robotics as a

delta robot. These robots are widely used for pick and place applications in

industries, as well as labelling, gluing, sorting, grouping, and other type of

applications. There are different types of delta robots in the market, some of the

most notorious delta robots are: prismatic, rotational, linear and cable delta robots,

they all have the same principle of functionality, three arms connected to universal

joints, but they differ on how movement is transferred to the end effector, for

example one of the most common delta robot is the one based on rotational joints

which use high torque motors mounted on a fixed platform and connected

perpendicular to an arm.

The FESTO tripod robot is based on linear movement, which has a high-speed

carriage unit that gives free movement in three dimensions to the effector platform

or mobile platform. Normally this type of robots have a really high precision,

making this robots very unique and well established in the industry. From factory

design the EXPT robot is based on Festo products and also having a FESTO

controller (CMXR-C1) which is capable of controlling this type of systems without a

problem, made in part specifically for this type of applications.

Mechanically speaking the Festo EXPT tripod robot has three motors that make the

main carriage move along the rail with a toothed belt system, and the carriage is

attached to the main arm of the system with two universal joints in the connection

with the carriage and two other universal joints in the connection to the effector

platform, making this system a 3 DOF parallel manipulator. Figure 3.1.1 shows the

general diagram of the mechanical parts of the EXPT tripod robot, some

measurements may vary depending on the model of the EXPT robot, this project

will be based on the EXPT-45 model. One extra motor is exactly at the center of the

effector platform to have control of both the suction cups located at the bottom,

this can be changed in a future with a gripper or another mechanism.

22

Figure 3.1.1. Festo EXPT tripod Robot diagram [25]

The electrical cabinet of the EXPT robot is located below the robot and it contains all

the power stage of the robot meaning that it has the main power line of the motors

(240Vac) connected to the motors and the drives, as well as the control stage of

the robot (24Vdc) connecting all the electronic components, such as digital inputs,

digital outputs, power supply, safety relays and the controller. It is important to

note that most of the electric cabinet is from the original Festo design and the only

that will be changed will be the controller (PLC). All other components will stay as

they are and since there had been two previous works on this robot, some digital

inputs and outputs will be changed and connected correctly. This is an important

step while migrating any robot or machine to a new controller, compatibility

between voltages, between inputs and outputs is a must if there is going to be a

migration of the control system. Figure 3.1.2 shows the electrical cabinet from the

control (24Vdc) stage viewpoint.

Figure 3.1.2. Festo EXPT tripod Electric cabinet

23

3.2 Topology and Architecture of the system

One of the most important steps of migrating and integrating a system into a new

controller or even designing from scratch a new system is to understand the

general topology or automation architecture of the system. The topology of the

system shows in a very general way how the components are connected between

each other and what type of communication is used in the system to connect each

component, also the amount of I/O modules that will be used is shown in the

general topology. In this topology just the general control scheme is shown and all

the small connections to the terminal blocks are not shown, this connections are

shown directly in the fabric handouts from the machine design. The topology will

as well help other engineers in future projects and future modifications. the next

figure shows the automation architecture of the thesis project, in which the

controller CX2042 is shown as the main controller in the working station and all the

other connections are part of the electric cabinet

Figure 3.1.2. Automation topology of the system

24

In the automation topology it is very important to show what type of fieldbus is

used to communicate each component, that is why the colour of the cables change

according to the communication protocol that is used.

Another important part of the information and a core part of integration of

controllers are the inputs and outputs list. Along with the topology knowing the

amount of inputs/outputs of the system is extremely important to understand and

be aware of what will be done. These two steps will guaranteed that there are high

chances of accomplishing the full integration of the system, in fact these two steps

are how a project is created and every automation engineer can base it decisions

on the information provided by the I/O list and the automation topology. The

following tables show the inputs and outputs list.

Table 3.1 Digital Inputs Term 2 module (EL1018)

No Type of signal Address Name (Twincat) Function Terminal
Block

1 DI (Term 2) 1577.0 bEmergencyK20 Emergency button K20.P5

2 DI (Term 2) 1577.1 bSensorTemp Temperature sensor DI0.5

3 DI (Term 2) 1577.2 bEmergencyK22 Emergency relay K22 K22.P5

4 DI (Term 2) 1577.3 bSensorH Sensor signal DI0.6

5 DI (Term 2) 1577.4 bAutoMode Automatic mode selection DI1.2

6 DI (Term 2) 1577.5 bSensorW Sensor signal DI0.7

7 DI (Term 2) 1577.6 bManualMode Manual mode selection DI1.5

8 DI (Term 2) 1577.7 bDoorSensor Door sensor Emergency relay K21 K21.P5

Table 3.2 Digital Inputs Term 3 module (EL1018)

No Type of signal Address Name (Twincat) Function Terminal Block

1 DI (Term 3) 1578.0 bStartButton Start Push button DI1.1

2 DI (Term 3) 1578.1 Free to use

3 DI (Term 3) 1578.2 bAir Air pressure (NO)

4 DI (Term 3) 1578.3 Free to use

5 DI (Term 3) 1578.4 Free to use

6 DI (Term 3) 1578.5 Free to use Free to use X1.203

7 DI (Term 3) 1578.6 bBreakSystem Breaks are active

8 DI (Term 3) 1578.7 Free to use Free to use X1.179

25

Term 7 (EL2008) digital outputs module is free to use completely, this is just in case

there is a need fro a spare digital output module.

Table 3.3 Digital Inputs Term 4 module (EL1018)

No Type of signal Address Name (Twincat) Function Terminal
Block

1 DI (Term 4) 1579.0 bTopRight Top right pressure sensor DI2.1

2 DI (Term 4) 1579.1 bTop Top pressure sensor DI2.2

3 DI (Term 4) 1579.2 bGripTop Pressure sensor for tool DI2.3

4 DI (Term 4) 1579.3 bGripBot Pressure sensor for tool DI2.4

5 DI (Term 4) 1579.4 bBottom Bottom pressure sensor DI2.5

6 DI (Term 4) 1579.5 bBottomLeft Bottom left pressure sensor DI2.6

7 DI (Term 4) 1579.6 bLeft Left pressure sensor DI2.7

8 DI (Term 4) 1579.7 bTopLeft Top left pressure sensor DI2.8

Table 3.4 Digital Outputs Term 5 module (EL2008)

No Type of signal Address Name (Twincat) Function Terminal Block

1 DO (Term 5) 1562.0 Free to use

2 DO (Term 5) 1562.1 Free to use

3 DO (Term 5) 1562.2 Free to use

4 DO (Term 5) 1562.3 blightstart Light for start button

5 DO (Term 5) 1562.4 Free to use To drives

6 DO (Term 5) 1562.5 Free to use Free to use

7 DO (Term 5) 1562.6 Free to use To drives

8 DO (Term 5) 1562.7 blightstop Light for stop button

Table 3.5 Digital Outputs Term 6 module (EL2008)

No Type of signal Address Name (Twincat) Function Terminal Block

1 DO (Term 6) 1563.0 bTopVacuum Vacuum for top position DO1.1

2 DO (Term 6) 1563.1 bBottomVacuum Vacuum for bottom pos DO1.2

3 DO (Term 6) 1563.2 bTopRightVacuum Vacuum for top right pos DO1.3

4 DO (Term 6) 1563.3 bLeftVacuum Vacuum for left possition DO1.4

5 DO (Term 6) 1563.4 bGrip1Vacuum Vacuum for tool #1 DO1.5

6 DO (Term 6) 1563.5 bGrip2Vacuum Vacuum for tool #2 DO1.6

7 DO (Term 6) 1563.6 bTopLeftVacuum Vacuum for top left pos DO1.7

8 DO (Term 6) 1563.7 bBottomLeftVacuum Vacuum for bot left pos DO1.8

26

3.3 Beckhoff CX2042 PLC overview.

Beckhoff CX2042 is a PLC from the embedded PC family of Beckhoff, where they

have combined PC technology along with the modular I/O units all installed in a DIN

rail in a cabinet. The CX series family is suitable for all controla tasks that an

engineer can come up with, since there is a combination of industrial PC and

hardware PLC, as well as a lot of installation space is reduced since there will be

added only the units that are required for a specific application. Specifically the

CX2042 comes with a Xeon Intel CPU with a clock rate of 2.2 GHz (4 cores). The

basic module comes with an internal memory of 8 GB RAM that can be upgraded to

64 GB. Microsoft Windows 10 IoT enterprise is used as operating system and to

program the PLC, TwinCat3 is used as software. This PLC will be the main brain of

our system and everything will come to this component in order to make the EXPT

work correctly.

Figure 3.1.3. Beckhoff CX2042 PLC basic module overview

The individual components of the CX family come as modules that can be connected

in series with standard widths (Beckhoff widths). There are a good amount of

modules for I/O Inputs and oputputs, power supplies, communication modules,

master/slave modules, interface modules, among others.

For this thesis project and according to the topology the power supply that will be

used for the CX2042 will be the BALLUFF BAE0003 and will be installed in the same

DIN rail as the CX2042.

27

In the EXPT cabinet there will be another power supply but this time for 24 VDC

and will be the one that the original system has from FESTO, we will power up the

EK1100 that will be our Ethercat coupler. This module is used to have a

decentralised system, meaning that we can have the I/O modules inside the

machine cabinet or in another location and communicate the CPU with the module

with only one fieldbus, that in this case will be Ethercat fieldbus. This in the

industry is a very common practice, since there is a lot of reduced costs because of

cable and commissioning is much easier and faster than having all the components

in a single cabinet. In the same rail as the EK1100 we will have our input and

output modules (EL1018 for Inputs and EL2008 for outputs).

To communicate the motor drivers we will need a CANOpen module in the system

(EL6751), we are using this module since the idea of this thesis project is to

migrate every component to the new system and try not to change a component. It

is important to remember that Beckhoff has a wide range of communication

interfaces modules, we can communicate CanOpen fieldbus, Profibus, Profinet,

Modbus, and many other widely known communication protocol.

Knowing the outputs and inputs of the system we can select the inputs and outputs

of the Beckhoff PLC. As we can see we now know that we will need three inputs

card and 2 output cards. It is important to mention that in Beckhoff PLC systems

since they are modular systems we can add and take the supported amount of

inputs and outputs of the system (amount)

3.4 Festo Motor drives CMMP-AS

The EXPT tripod robot from FESTO works with 4 motor, three of these motors are

the same model (EMMS-AS-100-S-HS-RMB) and they are all connected to a toothed

belt, which will be the one in charge of moving the carriage along the rail. These

three motors are controlled by FESTO drives, model CMMP-AS-C5-3A. These motor

drives are already phased out and one of the original motor controllers was

damaged by previous tests, that is the reason why one of the motors is connected

to a newer model of these motor drives, the CMMP-AS-C5-3A-M0. The last motor is

a rotatory motor which is connected to a CMMP-AS-C2-3A, same model of the other

motor drives but with less torque and speed. All four motor drives can be

configured through the FCT tool, which is the proprietary software from FESTO to

change the factory parameters of the drives, this tool is very important while

28

commissioning these type of drives under a project. Since there are previous

studies regarding these motors and their controller/drive, it is recommended to

have a look on how the controllers are configured and parametrised. This thesis

work will focus on the important parameters to communicate the drives to the

CX2042 and since the machine has motor controllers that are phased out then this

have caused mayor issues with the integration of the drives with the controller.

The following parameters have to be checked in the FCT tool:

• Application data

• Fieldbus that will be used

• CanOpen Node ID, number for the node

• Type of protocol from the CanOpen fieldbus, FHPP or CiA402 standard protocol

• Factor number, to read correctly the digits

• Components connected to the controller: motor, rail, sensors, etc

• Limit switch by software

• Homing or calibration

• Interpolated position to have a correct function in TwinCat

• Length of the carriage movement, same length as the toothed belt

29

4. UNIVERSAL SOLUTION FOR MIGRATING AND

INTEGRATING CX2042 PLC

4.1 TwinCat3 PLC and modules integration

In order to integrate any system to Beckhoff PLC it is first necessary to be sure the

topology is accurate and that there is enough amount of inputs and outputs

modules available to integrate the whole system. Once this step is done is is

necessary to understand how TwinCat3 works. Twincat 3 is an all-in-one software

for Beckhoff automation in which all available applications are integrated into a

single software. It is important to note that this software uses different licenses and

if the machine in which it is necessary to integrate a Beckhoff PLC is working locally

and always attached to a PC it won’t be necessary to buy the licenses, but in an

industrial environment buying the licenses are completely a must. For this case we

will be using the trial/free licenses to work with the EXPT machine, since the

machine will only work while the computer is connected to the EXPT. It is important

to mention that the following steps mentioned in this project will guide in a very

general way on how to create a new project and how to integrate the external or

not the same manufacturers components as the Beckhoff PLC or FESTO hardware.

It is not intended to follow strictly a guide and the following steps were done

following the knowledge of previous programs and getting knowledge from official/

published manuals from Beckhoff. Previous work groups had followed strictly some

guides, having a negative result while trying to integrate Festo components to

Beckhoff controller.

The first step in every software is to create a new project (New Twincat Project

XML), in TwinCat 3 it is important to note that the environment is based on Visual

Basic, meaning that it will be familiar to anyone that has used any other software

based on visual basic, selecting the standard project will give you a general

template of the project. The second step in communicating the PLC to the software

is to link the PLC IP address to the software in order to create a bridge of

communication. To do this, select the local dropdown menu in the upper part and

select Choose target system…, this will show a new window where all the devices

that are connected to the network will be shown, in this case only one PLC is

connected to our network. It is important to check the IP and name of the PLC in

order to have correct communication.

30

Figure 4.1.1. Choosing the Target system from the dropdown menu

Once in the choose target system new window it is necessary to select the Search

(Ethernet) option, this option will work in this case since the PLC is just connected

to the LAN network where the machine will be working. A new window will appear

and the Broadcast search option will show the controllers available in the LAN

network. Selecting the controller, making sure the correct IP is selected and the

Host name is correct will let you Add the Route (PLC) to the software. Adding the

PLC to TwinCat needs a password in order to successfully connect the controller, the

password is the default for any controller, which is the number 1.

Figure 4.1.2. (TOP LEFT) Choosing the Target window, (Top right) Adding route to the

software, (bottom) password input to connect the PLC to TwinCat3

Once the PLC is added to the software we can use a very easy way to add all the

modules and some of the components connected to the Fieldbus. It is important to

note that some components that are made by other companies, like FESTO,

SIEMENS, ABB, etc… will not be recognised and some manual addition has to be

done. To add the components to the network we select from the project tree, under

I/O, Devices option and select the scan option.

31

This scan option will add all the components in the bus. You have to be clear on

which network card of the computer you are connecting to, since this is very

important (this can be checked under network setting of windows or any other OS

available). Once the scan option is selected and the correct network drive is

selected the components will be added to the project tree.

Figure 4.1.3. Selecting the Scan option from the project tree and selecting the correct

network adapter

In the project tree it is very clear which components are added, since each one of

them has the name of the component. Also it is important to mention that if there

is doubt about the components that were added, the topology on how each device

is connected can be shown in the device options - topology. This way the engineer

will be completely sure that all the components are added accordingly. Also as any

other engineering software of automation, any other components can be added

manually and avoid the automatic adding of the components through the scan

option.

Figure 4.1.4. (Left) Project tree with all the components added. (Right) Topology as shown in

TwinCat3

32

4.2 Integration of components and drives from other

manufacturers.

As mentioned before there is the option of adding any components from other

companies, as long as the correct modules for having compatibility of the same

communication protocol exists, which in this thesis project it will be focused on

communicating Canopen devices into Ethercat communication protocol. The first

important thing to know is if there is correct module to transfer all the important

information into the field bus. The EL6751 will be used in regards of this thesis,

according to Beckhoff:

 “The Terminal enables within an EtherCAT Terminal network the integration of any

CANopen devices and can either be master or slave. In addition, general CAN

messages can be sent or received – without having to bother with CAN frames in

the applications program.”[26]

This small terminal will be the one to communicate the Canopen device to the PLC,

but it is really important to understand each communication protocol that will be

used in any control system. In this case the Canopen communication protocol

works on sending and receiving SDOs and PDOs, as mentioned in the literature

review. Each device and each manufacturer has its own data to communicate the

device to any controller, meaning that the file needed to integrate any external

component is given by the manufacturer, in this specific case FESTO. When working

with Canopen devices a .tce or .gsd file extension is needed from the manufacturer

and this will change if there is a need to integrate any other communication

protocol. For example if there is a Siemens motor drive with Profibus

communication, it will be needed a Profibus to Ethercat module, the EL6731 which

is the Profibus master/slave terminal and the .gsd extension files, which will

integrate the device to the Beckhoff controller.

To add a component from other manufacturer and once the topology is fully

understood, adding an existing item in the communication terminal (EL6751) has to

be selected and the file with the mentioned extensions has to be selected, this will

depend on what component has to be added and where the file has been saved.

Once the component is selected it will appear in the project tree under the

communication terminal and it can be once again checked in the topology from the

device options.

33

https://www.beckhoff.com/en-us/products/i-o/ethercat/#text_bild_1

Figure 4.2.1. (Left) Project tree selection from the communication terminal to add an existing

item. (Right) Window to select the correct file with the correct file extension

In this specific thesis project the objective is to integrate four motor controllers

from FESTO, model CMMP-AS. Two of this controllers are CMMP-AS-C5-A3, one of

the controllers is a CMMP-AS-C2-A3 and one new controller CMMP-AS-C5-A3-M0,

which is the newer controller from FESTO. This controller was needed because in

previous tests one controller was damaged and since the older controllers are

already phased out, a newer controller had to be installed, but as mentioned it does

not matter if they are old or new, as long as they are integrated into the same

communication protocol, it will work correctly.

Figure 4.2.2. Four Festo motor drivers integrated into the project tree and the topology after

the motor drives are integrated.

An important note regarding any fieldbus communication is that each component in

the bus has to have its own unique ID (Profibus) or node (CanOpen). In CanOpen

there is a maximum amount of 127 slaves per each master module that is installed.

This Can node number can be parametrised in the FCT tool from festo for each

driver and in the parameters of each motor drive added to twincat 3, this two

numbers have to be the same in both configurations in order to get a successful

communication.

34

But there is another detail regarding the FESTO drivers, since each of this drivers

have a unique SDOs there is a need to change the last number from each SDO

where it is needed. This can be changed in the SDOs tab while selecting each motor

driver and they have to match the CAN node Id. For example if our CAN node Id is

three (3), then the SDOs values have to end with the number 3, also is important

to note that this is given by each manufacturer and it depends on what is needed

for each motor drive.

Figure 4.2.3. Node Id shown in the CAN node tab and changing the SDOs final value to

match the CAN node Id

In the FCT tool from Festo this parameters have to match with the ones from

Twincat 3 software, therefore in this thesis project just the important parameters

will be shown, which are: The CanOpen node id, the factor group escalation (which

is how the numbers from the driver are interpreted in the twincat 3 software) and

the most important that is the application data configuration so that the driver can

communicate through Canopen with the CiA402 protocol, which is a standard in

CanOpen communication. The FCT tool can be used with all FESTO drivers and

depending on the firmware of each driver the FCT tool will use a different version.

For the purposes of the thesis the lastest version (4.xx) was used for the newest

drive and the version 2.14.xx was used for the phased out motor controllers.

In the application data option, the way the driver communicates can be changed

and there are two options: CiA402 and FHHP protocol from Canopen. Since

Beckhoff controllers can only communicate through the CiA402 standard then this

option is selected. From the fieldbus menu, the node id can be changed and the

factor groupo as well. Due to recommendations from the manufacturers the

factor was used and this value has to be changed in the parameters of the axis.

x 10−4

35

Figure 4.2.4. FCT tool important parameters that need to be changed in order to have a

successful communication

4.3 Motion control in Twincat 3 Software

Motion control in a PLC is a really important part while working with any motor

drive or motor controller, each software has its own pros and cons while working

with motor drives and with the motion modules. One of the important aspects and a

really great advantage of twincat 3 over other softwares is that it is already

integrated inside the specific functions, all that is needed is to download the specific

extension of the engineering functions and add the components that are needed. In

this project the TF5000 function package was used, This function allows the system

to have up to 10 axes added to the motion control section, extendable up to 255

with the TF5020. Without this package there is no option to add axes in the motion

section of the software. It is important to remember that licensing in Twincat 3 is

free as long as it is used locally on a PC that will always be connected to the PLC

which is the case of this project. If there is a system outside in an industrial

environment then buying the license with the specific functions will be needed.

36

To add axes to the motion section, just select add new item from the project tree

and once selected a dialog appears asking which type of configuration will be used,

there are three options the CNC configuration, the MC configuration and the NC/PTP

configuration. CNC configuration stands for Computer Numerical Control system,

the MC configuration stands for Motion control for robotics control and NC/PTP

stands for Traditional numerical Control system or point-to-point system, the

difference between each other is that in the CNC configuration has a local computer

that is used to control the positioning and store data, the MC configuration is for

robotics control specifically, which is not the case for this thesis. NC/PTP

configuration is the point-to-point configuration which control only the position of

the components, thus the driver will have the ability to control the velocity and

acceleration of each connected motor, which is the case in this thesis project.

Figure 4.3.1. Adding the NC/PTP configuration to the motion section of the project

Adding a NC configuration system will add a task in the project tree and very

detailed parameters can be changed in the task, the most important of this task

parameters is the cycle time in which each component will be sending and receiving

information. This cycle time is configured as well in the drivers with specific

manufacturer tools, which this case of FESTO is the FCT tool for motor drivers and

they both have to be the same in order to make the system work successfully.

Once the task is added, the axes have to be added, there are different options while

adding the axes: Continuous Axis, encoder axis, time generator axis, discrete axis

(two speed) and los cost stepper axis (dig. I/O). It is clear which is the difference

between each other and for this project the continuous axis will be selected for all

the motor drives added before

37

Figure 4.3.2. Adding the Continuous axis to the project tree

Adding the axis has to be done with each motor drive and they have to be linked

with each drive that was added previously in the communication terminal (Canopen

to Ethercat communication). To link each axis you have to open the axis

configuration and select the Setting tab - Link To I/O option. A new dialog window

appears and the axis can be linked to the Festo CMMP-AS motor drive that was

previously added.

Figure 4.3.3. Linking the axis to the motor drive in Twincat 3

Once there is a successful link between the motor controller and the Beckhoff

CX2042 controller, then there is an online option (which is one of the most

important tabs in any automation software) to check if there a value regarding the

internal encoder of the drive.

38

Figure 4.3.4. Online values of the motor controller shown in twincat 3

The last step to make sure everything is working is to move the axis in the online

tab and make sure the physical axis is moving as well. Before making any

movement there are important parameters that have to be changed in the axis

project tree. These parameters are the velocity that we will be working, the velocity

in JOG mode, the velocity in manual movement, acceleration, deceleration, the

factor group escalation, and the software limit switches (since we are not using any

physical limit switch in the EXPT tripod robot). All of these parameters have to

match the original parameters from the manufacturer to make a correct movement

of each axis.

Figure 4.3.5. Parameters for each axis

39

4.4 Manual movement of each axis using motion

control function blocks

Manual movements are always important in any motion control programming, the

manual movements can be used to calibrate the axis, to make simple tests and also

to make demonstrations in an industrial environment. Beckhoff has the possibility

to program all this type of movements thanks to the motion package that include

different function blocks, which are already created in twincat 3 to make certain

actions with each motor drive. This functions blocks are standard for any motor

drive that is integrated to the software, meaning that this solution will work with

any type of motor controller from any manufacturer. Before starting to program this

function blocks it is really important to link the axis to some variables, using the

global variables option in order to declare the axis that will be linked in the

software. For this case the default names will be used and we are using the global

variable list because it will apply to all the programming that can be done.

Declaring the axis variables is really simple, according to beckhoff it only has to be

named as AXIS_REF. This will create a .GVL file extension inside twincat and it will

be possible to link to PLC using this file created in twincat. Without linking the axis

to the PLC, there will be no option to use the motion function blocks included in

Beckhoff motion package.

Figure 4.4.1. Global variable declaration of the Axis and linking of Axis to the software

40

Before programming any of this functions block it is important to know what

options are available and that we will be using in this project.

MC_POWER ———————————————— Function block used to enable the drive

MC_RESET ———————————————— Function block to reset any fault

MC_JOG ———————————————— Function block for manual movement

Each of this function blocks have their unique variables, inputs and outputs. It is

really important to review all the documentation from each function block. For

example for the MC_POWER function block (once declared) the information

regarding this function block can be found in official documentation from Beckhoff.

The MC_power function block information is as follows:

Figure 4.4.2. MC_Power function block information [27]

The flow diagram regarding the manual movement of the axis include a certain

amount of safety hardware components, such as emergency buttons, door safety

sensor, safety relays. The following flow diagram shows the functionality of the

manual movements and what decisions and components will be taken into account

to perform a simple manual movement of the axis.

41

Figure 4.4.3. Flow diagram for Manual movement

The main idea of manual movement is to test the communication between each

axis and each drive, as well as the communication between Twincat 3 and Festo

drives. The full programming for manual movement can be seen in Appendice

section.

4.5 Simple Automatic pick and place programming

using Beckhoff CX2042 PLC

The automatic mode of the system will be a simple pick and place application, in

which as the name states it will only need a single push of a button to start the

sequence of movement. For this application the MC_MoveAbsolute function block

was used and it is part of the motion package of Twincat 3. Everytime there is a

step a state is changed in the system that works as a memory of the system, to

avoid signals crashing and have a sequence movement. The following flow diagram

shows the decisions and pre-requisites of the system for the automatic mode. Full

programming of the automatic mode can be found in appendix section.

42

Figure 4.4.4. Automatic mode, Pick and Place flowchart

4.6 Matlab/Simulink interface and integration

Twincat 3 automation engineering environment (XAE) made by Beckhoff has a very

important advantage over other manufacturers software, this advantage is that is

based on the widely used Microsoft Visual Studio and added to the applications that

come with the engineering solution (motion, connection to ERPs, I/O configuration)

this makes Twincat 3 a one of a kind software in the industry. Since is based on

visual studio this approaxch allows the possibility to integrate other softwares and

other programming tools, that are also based on visual studio such as MATLAB,

simulink and C/C++, which are the most used programming softwares in todays

industry.

43

The TC3 target (extension for using Matlab and simulink in Twincat) extends the

workflows based on the simulink coder, giving twincat 3 the ability to target from

simulink and be able to build them under TcCOM (TwinCat common object model).

Allowing users to design their control algorithms and simulations models in simulink

and use the simulink coder to compile the files, and later use this files in Twincat 3

software exactly the same way it is used in simulink. Another key feature of this

target is that the model of block diagram can be integrated to TwinCat environment

to be used as a controller simulation or debugging applications, meaning that it can

be fully integrated to the environment.

Another feature is ADS communication in a MatLab script, ADS stands for

Automation device specification and is a transport layer within Twincat

environment, with this communication data can be exchanged directly to a matlab

script or directly from a matlab scripts in real-time, this communication protocol is

used only within the TwinCat environment and will be used always when there is a

need to communicate with other software tools or to communicate with another PC

or device.

Unfortunately for this thesis project the lack of physical sensors makes the full

integration of the EXPT robot not so valuable, and just the simple actions to

demonstrate the functionality and communication between each software can be

shown. Another big issue is the Microsoft Visual Studio 2019 C++, since this

version of visual studio is not supported by the link between the interfaces of

simulink and Twincat. This is because matlab uses a compiler to generate the files

that are readable in twincat 3 integration of the block diagram. Without the proper

compiler it is impossible to generate files that are readable for twincat 3.

We will make a small guide on how to create the link between Twincat 3 and

simulink, making the supposition that all the previous requirements are correct. To

add the target for simulink the first step to be taken is to download TE1400 function

target for simulink from the official Beckhoff site. Next is to open Matlab, it is

important to mention that the latest version of Matlab which is recommended by

Beckhoff is Matlab 2019a (oldest version is Matlab 2010b), other versions outside

this range will not function correctly. To add the blocks of Twincat in Matlab you

have to add the library from Twincat/functions/TF1400… and run the setup file in

Matlab. Once this is added the simulink block diagram can be created. Some

changes have to be done in the configuration parameters to create the Twincat

target files.

44

Figure 4.6.1. Adding the Twincat target blocks

Figure 4.6.1. Changing the system target to generate files

Once the files are created we can use Twincat 3 XAE to add the block diagram that

was previously created and link the variables accordingly. From this point on it is all

part of programming like if we were using the variables and we can control the

robot through simulink function block.

45

Figure 4.6.3. Adding the block diagram to Twincat3

Unfortunately this is just a theoretical part of the function between matlab and

twincat, without the correct compiler this procedure is not possible since there are

no files that are generated for twincat 3 to read the files correctly.

46

5. FUTURE DEVELOPMENTS

Integration this machine with the extraordinary CX2042 PLC from Beckhoff is a

major plus for the university, this machine was supposed to be working with this

controller, but difficulties integrating different communication protocols and old

components of the system made the integration long lasting and not possible for

previous researchers. Now that the system is fully integrated there are an amazing

amount of options to improve the system:

Integration of a camera and a Twincat vision modules: With this module the image

processing applications will be possible and it will just add one more solution to the

whole system. With this vision modules there is a significant reduction of

engineering, since everything is simplified because configuration, parametrisation

and programming takes place in a single software and that is familiar to engineers.

Also all image processing applications can be integrated in real time, meaning that

latency is eliminated, a major problem while applying image processing solutions.

Integrating the vision modules will make the way for the EXPT robot to be more

advanced and it will satisfy the demands of todays and tomorrows industry

applications. Finally TwinCat vision will give a competitive advantage over other

delta robots, will make that application of industry 4.0 look easy to integrate, will

increase the production and safety, it will have openness and scalability on new

solutions and of course there will be thousands of application in real time that can

be programmed to comply with the demand of the industry.

• As mentioned before this machine lacks physical sensors and all the

programming and calibration was made only by software limits, for example the

carriages have a physical limits but there are limit switches programmed in the

software to avoid any physical damage to the machine. Adding sensors to each

rail and carriage will improve the effectiveness and precision of the EXPT robot.

Calculating the inverse and forward kinematics of the delta robot and having

sensors that will limit certain movements will make the robot be a high precision

robot.

47

6. CONCLUSIONS

This thesis work showed that previous researches made with the motor drives and

the Beckhoff controller trying to integrate all in a new system were wrong. The

main objective of the thesis work was to fully integrate the Festo EXPT tripod robot

with a new controller which after successfully integrating the motor drives to the

PLC showed that the application was a success. The procedure used during this

research and project can be used to integrate any type of hardware from other

manufacturers and the steps taken into account for the project can be used from

industries that are willing to invest a little bit to get an old machine have a

controller that is sticking and evolving along with the current trends of the industry,

for example industry 4.0.

The results after working with the controller showed that this type of applications

can be used in any industry and the applications and solutions that can be achieved

with the controller and with the universal solution of integrating old machines,

phased out motor controllers, sensors and hardware from other manufacturers, are

really immense and future developments are available once the whole system is

integrated to the controller. One great advantage as mentioned several times is the

software that this type of PLC is using, Twincat 3 is based in a widely popular and

used microsoft visual studio and the develoPments with this interface are growing

each day. All the packages and functions that Beckhoff can offer are industry

changer and the CX2042 shows exactly the potential with how easy is to migrate all

the components to the programmable logic controller.

The thesis project really showed the passion the author has with automation, even

thought the project had a bad reputation and other researchers did try to integrate

the system and were not successful, this time the steps taken into account and the

experience from previous projects helped with the improvement of the system and

with the successful steps for a general solution to integrate any machine. Of course

it is important to mention that most of the time extra components will be necessary

and taking into account the expertise from the manufacturer and official

documentation is important to successfully carry out a project of this area.

48

7. SUMMARY

The thesis project had the main objective of being able to integrate the Beckhoff

controller CX2042 into a machine from another manufacturer called EXPT tripod

robot from FESTO with a solution that will not only work with this machine, but it

will be able to follow the same steps to integrate any other machine that a company

or individual might want as an approach. Integrating and migrating old machines

into new controllers is something every industry is willing to discover since modern

controllers are able to keep the pace with how the world is evolving and how the

applications are trying to be in the same line as Industry 4.0. This thesis project

was worked on several occasions in the past without success, this was mainly

because the communication protocol some components use are different from the

one the controller use and this was causing some problems while reading the

parameters and data from the motor drives, in this specific occasion. The motor

drives are old controllers that were phased out several years ago, causing some

misinformation on how to integrate the components to the whole network. During

this occasion, the motor drives were fully integrated into the network after some

reading and tips from the manufacturers and after these controllers were in the

network the solution was pretty straightforward to accomplish. The CX2042

controller works under the software TwinCat3 that is based on the highly popular

visual studio from Microsoft, meaning that it is possible to integrate other softwares

to twincat 3, making the software really flexible and easy to use. What is even

more important is that software like C/C++ and Matlab can be integrated into

Twincat 3 using an incorporated interface, this is possible thanks to the free

functions packages of licenses available from Beckhoff, since this machine will be

connected to a PC then licensing is not necessary.

During this thesis work the results were accomplished making a small guide on how

to add the components to the network, it is important to know that there are some

steps that have to be taken before integrating the system. These steps include

actions that even from the design phase they have to be done, like knowing and

understanding the topology, understanding the machine functionality and limits,

creating the inputs and outputs list to know the hardware that will be needed. After

the steps are understood then the integration can be accomplished without any

problems. The major issues regarding this thesis were related to these steps,

previous researchers had a bad I/O list and the topology of the system was never

created.

49

Thanks to taking this thesis step by step the integration was a success, leaving the

machine ready for more complicated and advanced applications, such as integrating

the vision modules to have image processing in the system. The integration of this

system made the author create a simple manual movement of the machine and an

automatic pick a place simple sequence. This thesis will open the doors to future

generations that want to work with this system and add applications that can help

any industry.

As a conclusion the main objective was achieved and the machine is ready to be

used once again, of course better and more applications could have been done but

it was really important to understand how the system worked and how the

components could be integrated to the system without any problem and be sure

that the problems caused in the past were only bad steps taken towards the final

approach. The author considers this thesis as a step forward to future generations

and it will open the door to the mechatronics department with this machine, that

has not been working for some time.

50

8. KOKKUVÕTE

Lõputöö peamine eesmärk oli Beckhoff CX2042 kontrolleri integreerimine FESTO

tripod EXPT robotiga, kus väljapakutav lahendus mitte ainult töötaks konkreetse

robotiga vaid mida oleks võimalik integreerida ka teiste seadmetega vastavalt

ettevõtte või kliendi vajadustele. Vanemat tüüpi seadmete integreerimine ja

üleviimine uute kontrolleritega kasutamiseks on kõigile ettevõtetele kasulik, kuna

kaasaegsed kontrollerid käivad oma võimalustelt tehnika arenguga ja Industry 4.0

nõuete ning võimalustega kaasas. Selle töö teemal on varasemalt pakutud mitmeid

mitte edukaid lahendusi, kuna mõningate komponentide kommunikatsiooniprotokoll

on kontrolleri kommunikatsiooniprotokollist erinev. See probleem tekitas seni

parameetrite ja andmete lugemisel teatud juhtudel vigu mootorite liidestamisel.

Mootorite juhtimiseks kasutatakse vanemat tüüpi mootori kontrollereid ja see

tekitab segadust, kuidas liidestada kõik komponendid ühtsesse võrku. Antud töö

raames integreeriti mootori kontrollerid ühtsesse juhtvõrku komponendi tootjate

soovituste abil ja saavutati küllaltki lihtne lahendus, kus kõik kontrollerid on ühtses

võrkstruktuuris ühendatud. CX2042 kontroller töötab TwinCat3 tarkvaraga, mis

baseerub väga populaarsele MS Visual Studio tarkvarale. See omakorda võimaldab

liidestada TwinCat3 tarkvaraga teisi tarkvaralahendusi, mis muudab kogu süsteemi

tõeliselt paindlikuks ja lihtsalt kasutatavaks. Veelgi tähtsam on, et C/C++ ja Matlab

tarkvara lahendusi saab liidestada TwinCat3-ga, kasutades olemasolevat liidest.

Selline liidestamine on võimalik tasuta litsentsiga Beckhoff firmalt.

Lõputöö käigus on valminud ka lühike juhend, kuidas liidestada komponente

seadme võrkstruktuuriga. Siinjuures on oluline pidada meeles, et on rida samme,

mis tuleb enne süsteemiga liidestamist läbi teha. Niisugusteks sammudeks on

toimingud mis tuleks teha juba kavandamise faasis, näiteks kavandatava süsteemi

topoloogia määratlemine ja sellest täieliku ülevaate tegemine, seadme

funktsionaalsuse ja selle võimaluste määratlemine, sisendite ja väljundite nimekirja

koostamine, et määratleda kogu vajalik riistvara. Kui kõik need sammud on läbitud,

siis on võimalik kõigi komponentide edukas liidestamine ilma probleemideta.

Lõputöö põhifookus on pööratud nende sammude läbiviimise kirjeldamisele.

Varasemates analoogsetes töödes on olnud sisend/väljund loend ebatäpne ja

topoloogiat ei ole täpselt määratletud..

Tänu samm-sammulisele lähenemisele selles töös oli ka kogu süsteemi liidestamine

edukas ja saavutati seadme valmisolek keerukamateks ja väljakutset

nõudvamateks ülesanneteks, milleks võiks olla masinnägemise mooduli

51

integreerimine masinnägemise ülesannete lahendamiseks vahetult juhtsüsteemi

abil. Töö autori poolt on loodud liidestamiste abil näitena lihtne seadme

käsijuhtimise lahendus ja samuti automaatne tõsta ja aseta lihtne lahendus. Antud

töö annab võimaluse järgnevateks projektideks selle seadmega, mis võiks pakkuda

huvi tööstusele.

Töö kokkuvõttena on saavutatud töö püstitatud eesmärk, kogu seade koos uue

juhtsüsteemiga on tööks valmis. Töö annab ülevaate ja juhised kogu süsteemi

kasutamiseks edaspidi ja samuti juhised täiendavate komponentide liidestamiseks

süsteemiga. Autor on seisukohal, et väljatöötatud lahendus on kasulik ka

tulevastele õppuritele..

52

9. REFERENCES

[1] FESTO tripod Expt: Manual, FESTO, version 1.00

[2] Emerging Technologies: Connecting Millennials and Manufacturing, Joydeep

Acharya, Yasutaka Serizawa, Sudhanshu Gaur, 2019 IEEE First International

Conference on Cognitive Machine Intelligence (CogMI)

[3] Industry 4.0: hope, hype or revolution? , Lorenzo Bassi, 2017 IEEE 3rd

International Forum on Research and Technologies for Society and Industry (RTSI),

2017

[4] Plenary: The Challenges of Education in Engineering, Computing and

Technology without exclusions: Innovation in the era of the Industrial Revolution

4.0., Claudio R. Brito, Melany M. Ciampi, Maria Feldgen, Osvaldo Clua, Victor A.

Barros, IV IEEE World Engineering Education Conference - EDUNINE2020, 2019

[5] Industry 4.0: A review on industrial automation and robotic, June 2016

Jurnal Teknologi 78(6-13), Fauzi Othman, Universiti Teknologi Malaysia

[6] Fourth industrial revolution and its impact on society, Mario Peña-Cabrera,

Victor Lomas, Gastón Lefranc, CHILECON 2019, Valparaiso, Chile, 2019

[7] Industrial Internet of Things: A Review, Avish Karmakar, Naiwrita Dey,

Tapadyuti Baral, Manojeet Chowdhury, 2019 International Conference on Opto-

Electronics and Applied Optics (Optronix), 2019

[8] “What do small and medium-sized enterprises stand to gain from the

digitization of their production processes?“, Interview with Hans Beckhoff on

historical changes in automation technology, Martin Ciupek, PC Control, 2016

[9] C. Gong, “Human-Machine Interface: Design Principles of Visual Information in

Human-Machine Interface Design ”, International Conference on Intelligent Human

-Machine Systems and Cybernetics Year: 2009 , Volume: 2.

[10] Some Security Problems and Aspects of the Industrial Internet of Things,

Georgi Tsochev, Technical University of Sofia, 2020

53

[11] The Future of Industrial Communication: Automation Networks in the Era of

the Internet of Things and Industry 4.0, Martin Wollschlaeger, Thilo Sauter, Juergen

Jasperneite, IEEE Industrial Electronics Magazine, 2017

[12] A. J. C. Trappey, C. V. Trappey, U. H. Govinda- rajan, J. J. Sun, and A. C.

Chuang, “A review of technology standards and patent portfolios for enabling

cyberphysical systems in advanced manufacturing,” IEEE Access, Oct. 2016.

[13] Trends in Industrial Communication and OPC UA, Peter Drahoš, Erik Kuera, Oto

Haffner, Ivan Klimo, Slovak University of Technology in Bratislava, 018 Cybernetics

& Informatics (K&I), 2018, Lazy pod Makytou, Slovakia

[14] 25 years of PC history at Beckhoff, Andreas Thome, Beckhoff Automation,

2014

[15] High-speed handling tripod EXPT, Accurate dynamic response!, FESTO, Product

short information, Festo AG & Co. KG, 2011

[16] Festo Tripod robot control with the Beckoff industrial embedded controller

CX2042, Master thesis, Artur Pyatkov, Tallinn University of Technology, 2019

[17] CiA 302-1 Standard, CAN in Automation, version 4.1.0, 2009

[18] CiA 306, CAN in Automation, CAN in Automation, version 1.3.0, 2015

[19] CANopen Explained - A Simple Intro, CSS electronics, Soeren Frichs, 2020

[20] International Standard IEC 61131-3 part 3: Programming languages,

Reference number IEC 61131-3:2003(E), International Electrotechnical

commission, 2013

[21] Using industrial standards on PLC programming learning, Javier Molina, Julio

Barbanacho, Carlos Leon, Control & Automation, 2017. MED ’17.

[22] Next generation control units simplifying industrial machine learning, Stefano

de Blasi, Elmar Engels, 2020 IEEE 29th International Symposium on Industrial

Electronics (ISIE), 2020

54

[23] ROV Control System Upgrade, Benjamin Greenspon, OCEANS 2015 - MTS/IEEE

Washington, 2015

[24] Integration of SCARA robot with Beckhoff industrial controller, Md Arifur

Rahman, Taltech Master thesis projects, 2019

[25] Festo Parallel Kinematic system EXPT, FESTO, Manual, 2020/10 version.

[26] Beckhoff Documentation- EN- EL6751, Master and Slave Terminal for

CanOpen, Beckhoff Automation, 2021-02-11 Ver. 3.7

[27] Beckhoff Information system - EN, Twincat 3 PLC Library : Tc2_MC2,

MC_Power Function block, Beckhoff Automation, 2020

55

APPENDICES

Appendix A.1 Declaration of variables and function

blocks

VAR_GLOBAL

 Axis1 : AXIS_REF; //Axis one global declaration

 Axis2 : AXIS_REF; //Axis two global declaration

 Axis3 : AXIS_REF; //Axis three global declaration

 Axis4 : AXIS_REF; //Axis four (rotatory) global declaration

END_VAR

PROGRAM MAIN

VAR

//Initial Buttons and Booleans//

bStartButton AT %I*:BOOL;

bStopButton AT %I*: BOOL;

bStart_1 AT %IX54.6 :BOOL ;

bAutoMode AT %I*: BOOL;

bManualMode AT %I*:BOOL;

bDoorSensor AT %I* : BOOL;

bStartScreen AT %I* :BOOL;

bCalibrateAxis AT %M*:BOOL;

bStartAuto AT %I* : BOOL;

bAir AT %I* : BOOL;

rState : LREAL;

//Vacuum DO for each Location

bTopVacuum AT %Q* :BOOL;

bBottomVacuum AT %Q* :BOOL;

bGrip1Vacuum AT %Q* :BOOL;

bGrip2Vacuum AT %Q* :BOOL;

// Memory Flags of correct enabling of Motors

bMotor1Enable AT %M*:BOOL;

56

bMotor2Enable AT %M*:BOOL;

bMotor3Enable AT %M*:BOOL;

bMotor4Enable AT %M*:BOOL;

//Booleans to know where the The pieces are located

bTop AT %I* :BOOL;

bBottom AT %I* :BOOL;

bLeft AT %I* :BOOL;

bRight AT %I* :BOOL;

bTopLeft AT %I* :BOOL;

bTopRight AT %I* :BOOL;

bBottomLeft AT %I* :BOOL;

bBottomRight AT %I* :BOOL;

bGripTop AT %I* :BOOL;

bGripBot AT %I*:BOOL;

//Status and Error for each Axis//

bErrorAxis1 AT %I*: BOOL ;

bStatusAxis1 AT %I*: BOOL ;

bErrorAxis2 AT %I*: BOOL ;

bStatusAxis2 AT %I*: BOOL ;

bErrorAxis3 AT %I*: BOOL ;

bStatusAxis3 AT %I*: BOOL ;

bErrorAxis4 AT %I*: BOOL ;

bStatusAxis4 AT %I*: BOOL ;

//Reset Button//

bResetButton AT %I*: BOOL;

//MC_Power for each Axis to enable each controller//

fbMC_PowerAxis1 : MC_Power ;

fbMC_PowerAxis2 : MC_Power ;

fbMC_PowerAxis3 : MC_Power ;

fbMC_PowerAxis4 : MC_Power ;

57

//MC Homing for Calibration of each Axis. Done after Manual and Auto mode

Change if system is not in initial Position

fbMC_HomeAxis1 : MC_Home ;

fbMC_HomeAxis2 : MC_Home ;

fbMC_HomeAxis3 : MC_Home ;

fbMC_HomeAxis4 : MC_Home ;

// Homing Function Block Activation buttons

bHomingExecuteAxis1 AT %I*: BOOL;

bHomingExecuteAxis2 AT %I*: BOOL;

bHomingExecuteAxis3 AT %I*: BOOL;

bHomingExecuteAxis4 AT %I*: BOOL;

//JOG Mode Function Block for each Axis//

fbMC_JogAxis1 : MC_Jog;

fbMC_JogAxis2 : MC_Jog;

fbMC_JogAxis3 : MC_Jog;

fbMC_JogAxis4 : MC_Jog;

// JOG Buttons for controlling each movement

bForwardAxis1 AT %I* : BOOL;

bForwardAxis2 AT %I* : BOOL;

bForwardAxis3 AT %I* : BOOL;

bForwardAxis4 AT %I* : BOOL;

bBackwardsAxis1 AT %I* : BOOL;

bBackwardsAxis2 AT %I* : BOOL;

bBackwardsAxis3 AT %I* : BOOL;

bBackwardsAxis4 AT %I* : BOOL;

//fb RESET for each axis

fbMC_ResetAxis1 : MC_Reset;

fbMC_ResetAxis2 : MC_Reset;

fbMC_ResetAxis3 : MC_Reset;

fbMC_ResetAxis4 : MC_Reset;

//Reset execute Booleans

bReset1 AT %I*:BOOL;

bReset2 AT %I*:BOOL;

58

bReset3 AT %I*:BOOL;

bReset4 AT %I*:BOOL;

//Function block for Read status of each Axis

fbMC_ReadStatus1 : Mc_ReadStatus;

fbMC_ReadStatus2 : Mc_ReadStatus;

fbMC_ReadStatus3 : Mc_ReadStatus;

fbMC_ReadStatus4 : Mc_ReadStatus;

//Reading Axis Actual position

fbMC_ReadActualPositionAxis1 : MC_ReadActualPosition;

fbMC_ReadActualPositionAxis2 : MC_ReadActualPosition;

fbMC_ReadActualPositionAxis3 : MC_ReadActualPosition;

fbMC_ReadActualPositionAxis4 : MC_ReadActualPosition;

//Function Blocks for absolute Movement Of the Axis (Known Locations in the

working space)

fbMC_MoveAxis1 : MC_MoveAbsolute;

fbMC_MoveAxis2 : MC_MoveAbsolute;

fbMC_MoveAxis3 : MC_MoveAbsolute;

fbMC_MoveAxis4 : MC_MoveAbsolute;

fbMC_MoveAxis5 : MC_MoveAbsolute;

fbMC_MoveAxis6 : MC_MoveAbsolute;

fbMC_MoveAxis7 : MC_MoveAbsolute;

fbMC_MoveAxis11 : MC_MoveAbsolute;

fbMC_MoveAxis22 : MC_MoveAbsolute;

fbMC_MoveAxis111 : MC_MoveAbsolute;

fbMC_MoveAxis222 : MC_MoveAbsolute;

fbMC_MoveAxis33 : MC_MoveAbsolute;

fbMC_MoveAxis1111 : MC_MoveAbsolute;

fbMC_MoveAxis2222 : MC_MoveAbsolute;

fbMC_MoveAxis333 : MC_MoveAbsolute;

fbMC_MoveAxis11111 : MC_MoveAbsolute;

fbMC_MoveAxis22222 : MC_MoveAbsolute;

fbMC_MoveAxis3333 : MC_MoveAbsolute;

fbMC_MoveAxis111111 : MC_MoveAbsolute;

fbMC_MoveAxis222222 : MC_MoveAbsolute;

fbMC_MoveAxis33333 : MC_MoveAbsolute;

fbMC_MoveAxis_1 : MC_MoveAbsolute;

59

fbMC_MoveAxis_2 : MC_MoveAbsolute;

fbMC_MoveAxis_3 : MC_MoveAbsolute;

fbMC_MoveAxis_1_1 : MC_MoveAbsolute;

fbMC_MoveAxis_2_2 : MC_MoveAbsolute;

fbMC_MoveAxis_3_3 : MC_MoveAbsolute;

fbMC_MoveAxis_4 : MC_MoveAbsolute;

fbMC_MoveAxis_1_1_1 : MC_MoveAbsolute;

fbMC_MoveAxis_2_2_2 : MC_MoveAbsolute;

fbMC_MoveAxis_3_3_3 : MC_MoveAbsolute;

fbMC_MoveAxis_1_2 : MC_MoveAbsolute;

fbMC_MoveAxis_2_3 : MC_MoveAbsolute;

fbMC_MoveAxis_3_4 : MC_MoveAbsolute;

fbMC_MoveAxis1_ : MC_MoveAbsolute;

fbMC_MoveAxis2_ : MC_MoveAbsolute;

fbMC_MoveAxis3_ : MC_MoveAbsolute;

fbMC_MoveAxis1_1 : MC_MoveAbsolute;

fbMC_MoveAxis2_2 : MC_MoveAbsolute;

fbMC_MoveAxis3_3 : MC_MoveAbsolute;

fbMC_MoveAxis_4_ : MC_MoveAbsolute;

fbMC_MoveAxis1_1_ : MC_MoveAbsolute;

fbMC_MoveAxis2_2_ : MC_MoveAbsolute;

fbMC_MoveAxis3_3_ : MC_MoveAbsolute;

fbMC_MoveAxis1_1_1 : MC_MoveAbsolute;

fbMC_MoveAxis2_2_2: MC_MoveAbsolute;

fbMC_MoveAxis3_3_3 : MC_MoveAbsolute;

fbMC_MoveAxis1_1_1_ : MC_MoveAbsolute;

fbMC_MoveAxis2_2_2_: MC_MoveAbsolute;

fbMC_MoveAxis3_3_3_ : MC_MoveAbsolute;

fbMC_MoveAxis_4_4 : MC_MoveAbsolute;

//MC relative test

fbMC_Relativemove1 : MC_MoveRelative;

fbMC_Relativemove2 : MC_MoveRelative;

fbMC_Relativemove3 : MC_MoveRelative;

//Error Flags to control Every axis

bError AT %I* :BOOL;

fbMC_StopAxis1 : MC_Stop;

60

Timer1 : TON;

Timer2:TON;

Timer3:TON;

Timer4:TON;

END_VAR

Appendix A.2 Manual movement programming

//Initial Flags and Buttons: Emergency Button, Door Open and Air pressure

//Enabling of all drivers, activated only if Emergency reset is not activated

// And Door is closed. (This is hardware security)

IF bStartButton =1 THEN

 rState:=0000;

END_IF

IF (bStartButton = 1 OR bStartScreen) OR fbMC_PowerAxis1.Enable AND NOT

bStopButton THEN

 fbMC_PowerAxis1(Axis := GVL.Axis1,

 Enable := TRUE,

 Enable_Positive := TRUE,

 Enable_Negative := TRUE);

 fbMC_PowerAxis2(Axis := GVL.Axis2,

 Enable := TRUE,

 Enable_Positive := TRUE,

 Enable_Negative := TRUE);

 fbMC_PowerAxis3(Axis := GVL.Axis3,

 Enable := TRUE,

 Enable_Positive := TRUE,

 Enable_Negative := TRUE);

 fbMC_PowerAxis4(Axis := GVL.Axis4,

61

 Enable := TRUE,

 Enable_Positive := TRUE,

 Enable_Negative := TRUE);

 fbMC_ResetAxis1(Axis := GVL.Axis1);

ELSE

 fbMC_PowerAxis1(Axis :=GVL.Axis1,

 //Motors are disabled if button Stop is pressed or Emergency push

button is pressed or

 Enable := FALSE,

 // Door is opened (Hardware security)

 Enable_Positive := FALSE,

 Enable_Negative := FALSE);

 fbMC_PowerAxis2(Axis :=GVL.Axis2,

 Enable := FALSE,

 Enable_Positive := FALSE,

 Enable_Negative := FALSE);

 fbMC_PowerAxis3(Axis :=GVL.Axis3,

 Enable := FALSE,

 Enable_Positive := FALSE,

 Enable_Negative := FALSE);

 fbMC_PowerAxis4(Axis :=GVL.Axis4,

 Enable := FALSE,

 Enable_Positive := FALSE,

 Enable_Negative := FALSE);

END_IF

IF fbMC_PowerAxis1.Status =1 THEN

 // Motor/ Driver 1 is activated

 bMotor1Enable := 1;

ELSE

 bMotor1Enable := 0;

62

END_IF

IF fbMC_PowerAxis2.Status =1 THEN

 // Motor/ Driver 2 is activated

 bMotor2Enable := 1;

ELSE

 bMotor2Enable := 0;

END_IF

IF fbMC_PowerAxis3.Status =1 THEN

 // Motor/ Driver 3 is activated

 bMotor3Enable := 1;

ELSE

 bMotor3Enable := 0;

END_IF

IF fbMC_PowerAxis4.Status =1 THEN

 // Motor/ Driver 4 is activated

 bMotor4Enable := 1;

ELSE

 bMotor4Enable := 0;

END_IF

//Enabling the read status function block to read the actual status and error in an

axis

IF bStartButton = 1 THEN

 fbMC_ReadStatus1(Axis:= GVL.Axis1,

 Enable:=TRUE);

ELSE

 IF bStopButton = 1 THEN

 fbMC_ReadStatus1(Axis:= GVL.Axis1,

 Enable:=FALSE);

 END_IF

END_IF

63

IF bStartButton = 1 THEN

 fbMC_ReadStatus2(Axis:= GVL.Axis2,

 Enable:=TRUE);

ELSE

 IF bStopButton = 1 THEN

 fbMC_ReadStatus2(Axis:= GVL.Axis2,

 Enable:=FALSE);

 END_IF

END_IF

IF bStartButton = 1 THEN

 fbMC_ReadStatus3(Axis:= GVL.Axis3,

 Enable:=TRUE);

ELSE

 IF bStopButton = 1 THEN

 fbMC_ReadStatus3(Axis:= GVL.Axis3,

 Enable:=FALSE);

 END_IF

END_IF

IF bStartButton = 1 THEN

 fbMC_ReadStatus4(Axis:= GVL.Axis4,

 Enable:=TRUE);

ELSE

 IF bStopButton = 1 THEN

 fbMC_ReadStatus4(Axis:= GVL.Axis4,

 Enable:=FALSE);

 END_IF

END_IF

//Enabling the read actual position function block

IF bMotor1Enable = 1 THEN

 fbMC_ReadActualPositionAxis1(Axis:= GVL.Axis1,

 Enable:=TRUE);

ELSE

 IF bStopButton = 1 THEN

 fbMC_ReadActualPositionAxis1(Axis:= GVL.Axis1,

 Enable:=FALSE);

 END_IF

END_IF

IF bMotor2Enable = 1 THEN

64

 fbMC_ReadActualPositionAxis2(Axis:= GVL.Axis2,

 Enable:=TRUE);

ELSE

 IF bStopButton = 1 THEN

 fbMC_ReadActualPositionAxis2(Axis:= GVL.Axis2,

 Enable:=FALSE);

 END_IF

END_IF

IF bMotor3Enable = 1 THEN

 fbMC_ReadActualPositionAxis3(Axis:= GVL.Axis3,

 Enable:=TRUE);

ELSE

 IF bStopButton = 1 THEN

 fbMC_ReadActualPositionAxis3(Axis:= GVL.Axis3,

 Enable:=FALSE);

 END_IF

END_IF

IF bMotor4Enable = 1 THEN

 fbMC_ReadActualPositionAxis4(Axis:= GVL.Axis4,

 Enable:=TRUE);

ELSE

 IF bStopButton = 1 THEN

 fbMC_ReadActualPositionAxis4(Axis:= GVL.Axis4,

 Enable:=FALSE);

 END_IF

END_IF

//Reset For all axis in case there is an Error. This will be present in all screens

IF bReset1=1 THEN

 fbMC_ResetAxis1(Axis := GVL.Axis1,

 Execute := TRUE);

ELSE

 fbMC_ResetAxis1(Axis := GVL.Axis1,

 Execute := FALSE);

END_IF

IF bReset1=1 THEN

 fbMC_ResetAxis2(Axis := GVL.Axis2,

 Execute := TRUE);

65

ELSE

 fbMC_ResetAxis2(Axis := GVL.Axis2,

 Execute := FALSE);

END_IF

IF bReset1=1 THEN

 fbMC_ResetAxis3(Axis := GVL.Axis3,

 Execute := TRUE);

ELSE

 fbMC_ResetAxis3(Axis := GVL.Axis3,

 Execute := FALSE);

END_IF

IF bReset1=1 THEN

 fbMC_ResetAxis4(Axis := GVL.Axis4,

 Execute := TRUE);

ELSE

 fbMC_ResetAxis4(Axis := GVL.Axis4,

 Execute := FALSE);

END_IF

// Manual Movement with the Function Block MC_JOg for each axis

IF fbMC_PowerAxis1.Enable =1 THEN //Manual Activation

 fbMC_JogAxis1(Axis := GVL.Axis1,

 JogForward := bForwardAxis1,

 JogBackwards:= bBackwardsAxis1,

 Mode:= MC_JOGMODE_STANDARD_SLOW);

END_IF

IF fbMC_PowerAxis2.Enable =1 THEN //Manual Activation

 fbMC_JogAxis2(Axis := GVL.Axis2,

 JogForward := bForwardAxis2,

 JogBackwards:= bBackwardsAxis2,

66

 Mode:= MC_JOGMODE_STANDARD_SLOW);

END_IF

IF fbMC_PowerAxis3.Enable =1 THEN //Manual Activation

 fbMC_JogAxis3(Axis := GVL.Axis3,

 JogForward := bForwardAxis3,

 JogBackwards:= bBackwardsAxis3,

 Mode:= MC_JOGMODE_STANDARD_SLOW);

END_IF

IF fbMC_PowerAxis4.Enable =1 THEN //Manual Activation

 fbMC_JogAxis4(Axis := GVL.Axis4,

 JogForward := bForwardAxis4,

 JogBackwards:= bBackwardsAxis4,

 Mode:= MC_JOGMODE_STANDARD_SLOW);

END_IF

67

Appendix A.3 Automatic mode programming

//Reset For all axis in case there is an Error. This will be present in all screens

IF bReset1=1 THEN

 fbMC_ResetAxis1(Axis := GVL.Axis1,

 Execute := TRUE);

ELSE

 fbMC_ResetAxis1(Axis := GVL.Axis1,

 Execute := FALSE);

END_IF

IF bReset1=1 THEN

 fbMC_ResetAxis2(Axis := GVL.Axis2,

 Execute := TRUE);

ELSE

 fbMC_ResetAxis2(Axis := GVL.Axis2,

 Execute := FALSE);

END_IF

IF bReset1=1 THEN

 fbMC_ResetAxis3(Axis := GVL.Axis3,

 Execute := TRUE);

ELSE

 fbMC_ResetAxis3(Axis := GVL.Axis3,

 Execute := FALSE);

END_IF

IF bReset1=1 THEN

 fbMC_ResetAxis4(Axis := GVL.Axis4,

 Execute := TRUE);

ELSE

 fbMC_ResetAxis4(Axis := GVL.Axis4,

 Execute := FALSE);

END_IF

// Manual Movement with the Function Block MC_JOg for each axis

IF fbMC_PowerAxis1.Enable =1 THEN //Manual Activation

 fbMC_JogAxis1(Axis := GVL.Axis1,

 JogForward := bForwardAxis1,

 JogBackwards:= bBackwardsAxis1,

 Mode:= MC_JOGMODE_STANDARD_SLOW);

 END_IF

68

IF fbMC_PowerAxis2.Enable =1 THEN //Manual Activation

 fbMC_JogAxis2(Axis := GVL.Axis2,

 JogForward := bForwardAxis2,

 JogBackwards:= bBackwardsAxis2,

 Mode:= MC_JOGMODE_STANDARD_SLOW);

END_IF

IF fbMC_PowerAxis3.Enable =1 THEN //Manual Activation

 fbMC_JogAxis3(Axis := GVL.Axis3,

 JogForward := bForwardAxis3,

 JogBackwards:= bBackwardsAxis3,

 Mode:= MC_JOGMODE_STANDARD_SLOW);

END_IF

IF fbMC_PowerAxis4.Enable =1 THEN //Manual Activation

 fbMC_JogAxis4(Axis := GVL.Axis4,

 JogForward := bForwardAxis4,

 JogBackwards:= bBackwardsAxis4,

 Mode:= MC_JOGMODE_STANDARD_SLOW);

END_IF

// Absolute Movement for Automatic mode

IF bMotor1Enable =1 AND bMotor2Enable= 1 AND bMotor3Enable= 1 AND

bMotor4Enable =1 AND bAutoMode =1 AND rState=0000 THEN

 fbMC_MoveAxis1(Axis := GVL.Axis1,

 Execute := TRUE,

 Position := 0,

 Velocity:= 4000);

 fbMC_MoveAxis2(Axis := GVL.Axis2,

 Execute := TRUE,

 Position := 5,

 Velocity:= 4000);

 fbMC_MoveAxis3(Axis := GVL.Axis3,

 Execute := TRUE,

 Position := -2,

 Velocity:= 4000);

 fbMC_MoveAxis4(Axis := GVL.Axis4,

 Execute := TRUE,

 Position := 0.0,

69

 Velocity:= 2);

 IF fbMC_MoveAxis3.Done =1 THEN

 bTopVacuum:=1;

 bBottomVacuum:=1;

 rState:=1001;

 END_IF

END_IF

// States For sequences and combinations

//State 100X Corresponds to only Top Vacuum activated if not then is another state

another combination

IF bTop = 1 AND bDoorSensor = 0 AND bAir = 0 AND bLeft=0 AND bBottom=0

AND bTopLeft=0 AND bTopRight=0 AND bBottomLeft=0 AND rState=1001 AND

bStartAuto=1 THEN // Auto mode Also

bBottomVacuum:=0;

 fbMC_MoveAxis1(Axis := GVL.Axis1,

 Execute := FALSE,

 Position := 0,

 Velocity:= 4000);

 fbMC_MoveAxis2(Axis := GVL.Axis2,

 Execute := FALSE,

 Position := 5,

 Velocity:= 4000);

 fbMC_MoveAxis3(Axis := GVL.Axis3,

 Execute := FALSE,

 Position := -2,

 Velocity:= 4000);

 fbMC_MoveAxis4(Axis := GVL.Axis4,

 Execute := FALSE,

 Position := 0,

 Velocity:= 2);

rState := 2001;

END_IF

//Programming for each state

// State 1001 Top almost Put center

IF rState= 2001 THEN

70

 fbMC_MoveAxis1(Axis := GVL.Axis1,

 Execute := TRUE,

 Position := -80.77,

 Velocity:= 4000);

 fbMC_MoveAxis2(Axis := GVL.Axis2,

 Execute := TRUE,

 Position := 26.5,

 Velocity:= 4000);

 fbMC_MoveAxis3(Axis := GVL.Axis3,

 Execute := TRUE,

 Position := -176,

 Velocity:= 4000);

IF fbMC_MoveAxis3.Done =1 AND fbMC_ReadActualPositionAxis3.Position <= -175

THEN

rState:=2010;

END_IF

END_IF

IF rState=2010 THEN

 fbMC_MoveAxis1(Axis := GVL.Axis1,

 Execute := FALSE,

 Position := -80.77,

 Velocity:= 4000);

 fbMC_MoveAxis2(Axis := GVL.Axis2,

 Execute := FALSE,

 Position := 26.5,

 Velocity:= 4000);

 fbMC_MoveAxis3(Axis := GVL.Axis3,

 Execute := FALSE,

 Position := -176,

 Velocity:= 4000);

rState:= 2011;

END_IF

//Center Top putting piece

IF rState=2011 THEN

71

fbMC_MoveAxis1(Axis := GVL.Axis1,

 Execute := TRUE,

 Position := -97.35,

 Velocity:= 4000);

 fbMC_MoveAxis2(Axis := GVL.Axis2,

 Execute := TRUE,

 Position := 46.20,

 Velocity:= 4000);

 fbMC_MoveAxis3(Axis := GVL.Axis3,

 Execute := TRUE,

 Position := -192.5,

 Velocity:= 4000);

IF fbMC_MoveAxis3.Done =1 AND fbMC_ReadActualPositionAxis3.Position <= -191

THEN

rState:=2030;

END_IF

END_IF

IF rState=2030 THEN

 fbMC_MoveAxis1(Axis := GVL.Axis1,

 Execute := FALSE,

 Position := -97.35,

 Velocity:= 4000);

 fbMC_MoveAxis2(Axis := GVL.Axis2,

 Execute := FALSE,

 Position := 46.20,

 Velocity:= 4000);

 fbMC_MoveAxis3(Axis := GVL.Axis3,

 Execute := FALSE,

 Position := -192.5,

 Velocity:= 4000);

bTopVacuum:=0;

bGrip2Vacuum:=1;

rState:=2040;

72

END_IF

IF rState =2040 THEN\

 fbMC_MoveAxis1(Axis := GVL.Axis1,

 Execute := TRUE,

 Position := -1,

 Velocity:= 4000);

 fbMC_MoveAxis2(Axis := GVL.Axis2,

 Execute := TRUE,

 Position := 5,

 Velocity:= 4000);

 fbMC_MoveAxis3(Axis := GVL.Axis3,

 Execute := TRUE,

 Position := -3,

 Velocity:= 4000);

IF fbMC_MoveAxis3.Done =1 AND fbMC_ReadActualPositionAxis3.Position > -3.5

THEN

 rState:=2051;

 END_IF

 END_IF

IF rState=2051 THEN

 fbMC_MoveAxis1(Axis := GVL.Axis1,

 Execute := FALSE,

 Position := -1,

 Velocity:= 4000);

 fbMC_MoveAxis2(Axis := GVL.Axis2,

 Execute := FALSE,

 Position := 5,

 Velocity:= 4000);

 fbMC_MoveAxis3(Axis := GVL.Axis3,

 Execute := FALSE,

 Position := -3,

 Velocity:= 4000);

rState:=2060;

73

END_IF

//Rotating Axis 4 to change gripper Vacuum

IF rState=2060 THEN

 fbMC_MoveAxis4(Axis := GVL.Axis4,

 Execute := TRUE,

 Position := 0.50,

 Velocity:= 2);

IF fbMC_MoveAxis4.Position > 0.48 THEN

rState:=2061 ;

END_IF

END_IF

IF rState=2061 THEN

 fbMC_MoveAxis4(Axis := GVL.Axis4,

 Execute := FALSE,

 Position := 0.50,

 Velocity:= 2);

rState:=2070;

END_IF

IF rState= 2070 THEN

 fbMC_MoveAxis1(Axis := GVL.Axis1,

 Execute := TRUE,

 Position := -58.35,

 Velocity:= 4000);

 fbMC_MoveAxis2(Axis := GVL.Axis2,

 Execute := TRUE,

 Position := 46.32,

 Velocity:= 4000);

 fbMC_MoveAxis3(Axis := GVL.Axis3,

 Execute := TRUE,

 Position := -187.5,

 Velocity:= 4000);

IF fbMC_ReadActualPositionAxis3.Position < -187 THEN

rState:=2071;

74

END_IF

END_IF

IF rState=2072 THEN

 fbMC_MoveAxis1(Axis := GVL.Axis1,

 Execute := FALSE,

 Position := -58.35,

 Velocity:= 4000);

 fbMC_MoveAxis2(Axis := GVL.Axis2,

 Execute := FALSE,

 Position := 46.32,

 Velocity:= 4000);

 fbMC_MoveAxis3(Axis := GVL.Axis3,

 Execute := FALSE,

 Position := -3,

 Velocity:= 4000);

rState:=2079;

END_IF

IF rState= 2079 THEN

 fbMC_MoveAxis1(Axis := GVL.Axis1,

 Execute := TRUE,

 Position := -75.35,

 Velocity:= 4000);

 fbMC_MoveAxis2(Axis := GVL.Axis2,

 Execute := TRUE,

 Position := 64.74,

 Velocity:= 4000);

 fbMC_MoveAxis5(Axis := GVL.Axis3,

 Execute := TRUE,

 Position := -201,

 Velocity:= 4000);

75

IF fbMC_ReadActualPositionAxis3.Position < -200 THEN

bGrip1Vacuum:=1;

rState:=2073;

END_IF

END_IF

IF rState =2074 THEN

 fbMC_MoveAxis11(Axis := GVL.Axis1,

 Execute := TRUE,

 Position := -1,

 Velocity:= 4000);

 fbMC_MoveAxis22(Axis := GVL.Axis2,

 Execute := TRUE,

 Position := 5,

 Velocity:= 4000);

 fbMC_MoveAxis6(Axis := GVL.Axis3,

 Execute := TRUE,

 Position := -2,

 Velocity:= 4000);

 IF fbMC_ReadActualPositionAxis3.Position >= -3 THEN

 rState:=2075;

//Putting piece a bit up of bottom center

IF rState =2080 THEN

 fbMC_MoveAxis111(Axis := GVL.Axis1,

 Execute := TRUE,

 Position := -85.2,

 Velocity:= 4000);

 fbMC_MoveAxis222(Axis := GVL.Axis2,

 Execute := TRUE,

 Position := 188.7,

 Velocity:= 4000);

 fbMC_MoveAxis33(Axis := GVL.Axis3,

 Execute := TRUE,

 Position := -33.9,

76

 Velocity:= 4000);

 IF fbMC_ReadActualPositionAxis3.Position < -33.8 THEN

 rState:=2081;

 END_IF

 END_IF

 //Putting Piece in bottom Center

 IF rState =2082 THEN

 fbMC_MoveAxis1111(Axis := GVL.Axis1,

 Execute := TRUE,

 Position := -95,

 Velocity:= 4000);

 fbMC_MoveAxis2222(Axis := GVL.Axis2,

 Execute := TRUE,

 Position := 196.7,

 Velocity:= 4000);

 fbMC_MoveAxis333(Axis := GVL.Axis3,

 Execute := TRUE,

 Position := -47.2,

 Velocity:= 4000);

 IF fbMC_ReadActualPositionAxis3.Position < -47.1 THEN

 rState:=2084;

 bBottomVacuum:=1;

 bGrip2Vacuum:=0;

 END_IF

 END_IF

 IF rState =2084 THEN

 fbMC_MoveAxis1111(Axis := GVL.Axis1,

 Execute := FALSE,

 Position := -91,

 Velocity:= 4000);

 fbMC_MoveAxis2222(Axis := GVL.Axis2,

 Execute := FALSE,

 Position := 195.86,

77

 Velocity:= 4000);

 fbMC_MoveAxis333(Axis := GVL.Axis3,

 Execute := FALSE,

 Position := -47.13,

 Velocity:= 4000);

rState:=2085;

END_IF

//Returning to Initial position

IF rState =2085 THEN

 fbMC_MoveAxis11111(Axis := GVL.Axis1,

 Execute := TRUE,

 Position := -1,

 Velocity:= 4000);

 fbMC_MoveAxis22222(Axis := GVL.Axis2,

 Execute := TRUE,

 Position := 5,

 Velocity:= 4000);

 fbMC_MoveAxis3333(Axis := GVL.Axis3,

 Execute := TRUE,

 Position := -2,

 Velocity:= 4000);

 IF fbMC_ReadActualPositionAxis3.Position >= -3 THEN

 rState:=2086;

END_IF

END_IF

IF rState=2086 THEN

 fbMC_MoveAxis11111(Axis := GVL.Axis1,

 Execute := FALSE,

 Position := -1,

 Velocity:= 4000);

78

 fbMC_MoveAxis22222(Axis := GVL.Axis2,

 Execute := FALSE,

 Position := 5,

 Velocity:= 4000);

 fbMC_MoveAxis3333(Axis := GVL.Axis3,

 Execute := FALSE,

 Position := -2,

 Velocity:= 4000);

rState:=2087;

 END_IF

 //Rotating Axis 4 to change gripper Vacuum

IF rState=2087 THEN

 fbMC_MoveAxis_4(Axis := GVL.Axis4,

 Execute := TRUE,

 Position := 0,

 Velocity:= 2);

IF fbMC_MoveAxis_4.Position < 0.1 THEN

rState:=2088 ;

END_IF

END_IF

IF rState=2088 THEN

 fbMC_MoveAxis_4(Axis := GVL.Axis4,

 Execute := FALSE,

 Position := 0.50,

 Velocity:= 2);

rState:=2090;

END_IF

//Putting piece a bit up of bottom right

IF rState =2090 THEN

79

 fbMC_MoveAxis_1(Axis := GVL.Axis1,

 Execute := TRUE,

 Position := -24.3,

 Velocity:= 4000);

 fbMC_MoveAxis_2(Axis := GVL.Axis2,

 Execute := TRUE,

 Position := 170.5,

 Velocity:= 4000);

 fbMC_MoveAxis_3(Axis := GVL.Axis3,

 Execute := TRUE,

 Position := -14.7,

 Velocity:= 4000);

Timer1(IN:=TRUE,

 PT:=T#4S);

 IF fbMC_ReadActualPosit ionAxis3.Posit ion < -14.6 AND

fbMC_MoveAxis_3.Done = 1 AND Timer1.Q=1 THEN

 rState:=2091;

 END_IF

 END_IF

 IF rState =2091 THEN

 fbMC_MoveAxis_1(Axis := GVL.Axis1,

 Execute := FALSE,

 Position := -70.21,

 Velocity:= 4000);

 fbMC_MoveAxis_2(Axis := GVL.Axis2,

 Execute := FALSE,

 Position := 178.14,

 Velocity:= 4000);

 fbMC_MoveAxis_3(Axis := GVL.Axis3,

 Execute := FALSE,

 Position := -22.67,

 Velocity:= 4000);

80

 rState:=2092;

 END_IF

 //Putting Piece in bottom Right

 IF rState =2092 THEN

 fbMC_MoveAxis_1_1(Axis := GVL.Axis1,

 Execute := TRUE,

 Position := -68.7,

 Velocity:= 4000);

 fbMC_MoveAxis_2_2(Axis := GVL.Axis2,

 Execute := TRUE,

 Position := 207.2,

 Velocity:= 4000);

 fbMC_MoveAxis_3_3(Axis := GVL.Axis3,

 Execute := TRUE,

 Position := -66.5,

 Velocity:= 4000);

 IF fbMC_ReadActualPositionAxis3.Position < -66.4 THEN

 rState:=2093;

 bGrip1Vacuum:=0;

 END_IF

 END_IF

 IF rState =2093 THEN

 fbMC_MoveAxis_1_1(Axis := GVL.Axis1,

 Execute := FALSE,

 Position := -91,

 Velocity:= 4000);

 fbMC_MoveAxis_2_2(Axis := GVL.Axis2,

 Execute := FALSE,

81

 Position := 195.86,

 Velocity:= 4000);

 fbMC_MoveAxis_3_3(Axis := GVL.Axis3,

 Execute := FALSE,

 Position := -47.13,

 Velocity:= 4000);

rState:=2094;

END_IF

//Returning to Initial position

IF rState =2094 THEN

 fbMC_MoveAxis_1_1_1(Axis := GVL.Axis1,

 Execute := TRUE,

 Position := -1,

 Velocity:= 4000);

 fbMC_MoveAxis_2_2_2(Axis := GVL.Axis2,

 Execute := TRUE,

 Position := 5,

 Velocity:= 4000);

 fbMC_MoveAxis_3_3_3(Axis := GVL.Axis3,

 Execute := TRUE,

 Position := -2,

 Velocity:= 4000);

 IF fbMC_ReadActualPositionAxis3.Position >= -3 THEN

 rState:=2096;

END_IF

END_IF

IF rState=2096 THEN

 fbMC_MoveAxis_1_1_1(Axis := GVL.Axis1,

 Execute := FALSE,

 Position := -1,

 Velocity:= 4000);

82

 fbMC_MoveAxis_2_2_2(Axis := GVL.Axis2,

 Execute := FALSE,

 Position := 5,

 Velocity:= 4000);

 fbMC_MoveAxis_3_3_3(Axis := GVL.Axis3,

 Execute := FALSE,

 Position := -2,

 Velocity:= 4000);

rState:=2097;

 END_IF

 //Putting piece a bit up top left

IF rState =2097 THEN

 fbMC_MoveAxis_1_2(Axis := GVL.Axis1,

 Execute := TRUE,

 Position := -103.5,

 Velocity:= 4000);

 fbMC_MoveAxis_2_3(Axis := GVL.Axis2,

 Execute := TRUE,

 Position := 11.15,

 Velocity:= 4000);

 fbMC_MoveAxis_3_4(Axis := GVL.Axis3,

 Execute := TRUE,

 Position := -164.36,

 Velocity:= 4000);

 IF fbMC_ReadActualPositionAxis3.Position < -164.2 THEN

 rState:=2098;

 END_IF

 END_IF

 //Putting Piece in top left

 IF rState =2098 THEN

 fbMC_MoveAxis1_(Axis := GVL.Axis1,

83

 Execute := TRUE,

 Position := -123.43,

 Velocity:= 4000);

 fbMC_MoveAxis2_(Axis := GVL.Axis2,

 Execute := TRUE,

 Position := 38.7,

 Velocity:= 4000);

 fbMC_MoveAxis3_(Axis := GVL.Axis3,

 Execute := TRUE,

 Position := -182,

 Velocity:= 4000);

 IF fbMC_ReadActualPositionAxis3.Position < -181.9 THEN

 rState:=2099;

 bGrip2Vacuum:=1;

 END_IF

 END_IF

//Returning to Initial position

IF rState =2099 THEN

 fbMC_MoveAxis1_1(Axis := GVL.Axis1,

 Execute := TRUE,

 Position := -1,

 Velocity:= 4000);

 fbMC_MoveAxis2_2(Axis := GVL.Axis2,

 Execute := TRUE,

 Position := 5,

 Velocity:= 4000);

 fbMC_MoveAxis3_3(Axis := GVL.Axis3,

 Execute := TRUE,

 Position := -2,

 Velocity:= 4000);

84

 IF fbMC_ReadActualPositionAxis3.Position >= -3 THEN

 rState:=2100;

END_IF

END_IF

IF rState=2100 THEN

 fbMC_MoveAxis1_1(Axis := GVL.Axis1,

 Execute := FALSE,

 Position := -1,

 Velocity:= 4000);

 fbMC_MoveAxis2_2(Axis := GVL.Axis2,

 Execute := FALSE,

 Position := 5,

 Velocity:= 4000);

 fbMC_MoveAxis3_3(Axis := GVL.Axis3,

 Execute := FALSE,

 Position := -2,

 Velocity:= 4000);

rState:=2110;

 END_IF

 //Rotating Axis 4 to change gripper Vacuum

IF rState=2110 THEN

 fbMC_MoveAxis_4_(Axis := GVL.Axis4,

 Execute := TRUE,

 Position := 0.5,

 Velocity:= 2);

IF fbMC_MoveAxis_4.Position > 0.49 THEN

rState:=2111 ;

END_IF

END_IF

85

IF rState=2111 THEN

 fbMC_MoveAxis_4_(Axis := GVL.Axis4,

 Execute := FALSE,

 Position := 0.50,

 Velocity:= 2);

rState:=2112;

END_IF

//Putting piece a bit up of bottom left

IF rState =2112 THEN

 fbMC_MoveAxis1_1_(Axis := GVL.Axis1,

 Execute := TRUE,

 Position := -97.9,

 Velocity:= 4000);

 fbMC_MoveAxis2_2_(Axis := GVL.Axis2,

 Execute := TRUE,

 Position := 166.8,

 Velocity:= 4000);

 fbMC_MoveAxis3_3_(Axis := GVL.Axis3,

 Execute := TRUE,

 Position := -3.27,

 Velocity:= 4000);

Timer3(IN:=TRUE,

 PT:=T#2S);

 IF fbMC_ReadActualPositionAxis3.Position < -3.1 AND Timer3.Q=1

THEN

 rState:=2113;

 END_IF

 END_IF

 IF rState =2113 THEN

 fbMC_MoveAxis1_1_(Axis := GVL.Axis1,

 Execute := FALSE,

86

 Position := -70.21,

 Velocity:= 4000);

 fbMC_MoveAxis2_2_(Axis := GVL.Axis2,

 Execute := FALSE,

 Position := 178.14,

 Velocity:= 4000);

 fbMC_MoveAxis3_3_(Axis := GVL.Axis3,

 Execute := FALSE,

 Position := -22.67,

 Velocity:= 4000);

 rState:=2114;

 END_IF

 //Putting Piece in bottom *Lefyt

 IF rState =2114 THEN

 fbMC_MoveAxis1_1_1(Axis := GVL.Axis1,

 Execute := TRUE,

 Position := -119,

 Velocity:= 4000);

 fbMC_MoveAxis2_2_2(Axis := GVL.Axis2,

 Execute := TRUE,

 Position := 187.3,

 Velocity:= 4000);

 fbMC_MoveAxis3_3_3(Axis := GVL.Axis3,

 Execute := TRUE,

 Position := -30,

 Velocity:= 4000);

 IF fbMC_ReadActualPositionAxis3.Position < -29.9 THEN

 rState:=2115;

 bGrip2Vacuum:=0;

87

// Timer4(IN:=TRUE,

//PT:=T#2S);

 END_IF

 END_IF

 IF rState =2115 THEN

 fbMC_MoveAxis1_1_1(Axis := GVL.Axis1,

 Execute := FALSE,

 Position := -91,

 Velocity:= 4000);

 fbMC_MoveAxis2_2_2(Axis := GVL.Axis2,

 Execute := FALSE,

 Position := 195.86,

 Velocity:= 4000);

 fbMC_MoveAxis3_3_3(Axis := GVL.Axis3,

 Execute := FALSE,

 Position := -47.13,

 Velocity:= 4000);

rState:=2116;

END_IF

//Returning to Initial position

IF rState =2116 THEN

 fbMC_MoveAxis1_1_1_(Axis := GVL.Axis1,

 Execute := TRUE,

 Position := -1,

 Velocity:= 4000);

 fbMC_MoveAxis2_2_2_(Axis := GVL.Axis2,

 Execute := TRUE,

 Position := 5,

 Velocity:= 4000);

 fbMC_MoveAxis3_3_3_(Axis := GVL.Axis3,

 Execute := TRUE,

 Position := -2,

 Velocity:= 4000);

88

 IF fbMC_ReadActualPositionAxis3.Position >= -3 THEN

 rState:=2117;

END_IF

END_IF

 IF rState=2117 THEN

 fbMC_MoveAxis_4_4(Axis := GVL.Axis4,

 Execute := TRUE,

 Position := 0,

 Velocity:= 2);

rState:=2200;

END_IF

89

Appendix A.4 HMI Manual and Automatic screens

90

