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Abstract 

 

Over the last couple years, many researchers have been working to find solutions for the 

challenges related to log mining process and the associated log parsing algorithms. In addition, 

there have been many studies, the main focus of which were the comparison of these log 

mining/parsing algorithms with each other to find out the most effective ones that were also 

producing much more accurate outputs. However, during the analysis of the past academic research 

papers related to the log parsing algorithms and their comparisons, the author of the thesis found 

out that too little attention was paid to the efficiency, in which the processing speed of these log 

mining algorithms would be compared to each other so that to find out how much CPU time and 

memory resources these algorithms consume.  

Consequently, the focus area of this thesis was the compare and contrast analysis of log 

parsing algorithms, and measurement of their efficiency and pattern detection rates. The efficiency 

was defined as the processing speed of log mining algorithms, in other words, total CPU time and 

memory consumptions, likewise, the pattern detection rate was described as the quality of the 

parsed log messages by the log parsing algorithms.  

One of the key factors, which makes this thesis different than other studies, is that while 

executing the log mining algorithms to parse the log messages, the author of the thesis contacted 

the authors of the tested log parsing algorithms to find out their optimal input values that would 

help the algorithms to identify rarely occurring log lines, thus, generate output with much higher 

quality in a more efficient way. The second key factor, which makes this thesis different than other 

studies, is that the author conducted the memory consumption analysis of log parsing algorithms, 

which was not tested or analyzed in the previous similar research studies. 
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Chapter 1. Introduction 

The role of logs, which are, in simple terms, collections of records about the events 

occurring in the software systems, in their applications and processes, has increased significantly 

over the current century. There has been an obvious transition of traditional services into 

digitalized ones during the last decade, which can be seen from the increase in the usage of the 

Internet, usage of smart devices, application of IoT (Internet of Thing) devices almost in every 

field that surrounds people, etc. In other words, these developments have changed almost every 

aspect of people’s daily lives. For instance, the way a person contacts with his friends, socializes 

with people, does his daily purchases and so on [1]. In order to provide better and secure digital 

services for people, detect anomalies in the case of a system failure and identify the user behavior, 

developers and engineers are collecting detailed records regarding the system runtime information 

in the form of log files.  

Today, however, there still exist certain challenges in the analysis of log data. One of the 

challenges is that the size of logs continues to grow since modern software systems generate a 

huge volume of them. As a result, the manual analysis of the log data by engineers becomes 

impractical. The second challenge of the log analysis is that most of them are unstructured and just 

raw textual data because developers usually write unformatted log messages in the source code of 

their applications [2]. Consequently, there is a need to parse or transform logs into system events 

in order to be useful for engineers to provide maintenance of services. Finally, after being parsed, 

there is a need for logs to be summarized into certain patterns from the events [3]. 

 Over the last years, many researchers have been trying to resolve these issues by 

developing data mining algorithms for the analysis of unstructured log data [4], by making the 

overall log analysis process more automatic rather than manual [5, 6, 7]. Additionally, some of the 

research papers [8, 17, 18] were mainly focused on the comparison of these log mining/parsing 

methods to identify which one of them is more effective and provides more accurate results.  

Most of these research papers, however, were generally concentrated on the evaluation 

criteria such as the accuracy, where they measured the ability of log mining method to identify 

variable and constant parts of log messages, the robustness, where they analyzed the accuracy of 

results generated by these tools in the case of logs with different sizes obtained from various 

systems, and the usability, where it was identified how easy it is to use and apply these log parsing 
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tools. On the contrary, too little attention was paid to the efficiency, where scientists would measure 

the processing speed of these log mining algorithms, how much time and resources they consume, 

etc. Moreover, the ones, which focus on the analysis of the performance of log parsing algorithms, 

have not been thorough and/or fair enough. This is also the case for a recent paper from the 

University of Hong Kong that claims to address the shortcomings of previous works and offer a 

detailed performance comparison [8]. For example, the labeled datasets used for the accuracy 

measuring experiments [8] are not available for the download and use for other research studies. 

Furthermore, initially, it was claimed in the paper that 16 different datasets were used during the 

experiments, where some of them were very large. Nevertheless, during the conducted 

performance testing experiments, the authors utilized just 3 quite specific datasets, which do not 

represent frequently used real-world log types. Another drawback of the study is that the datasets 

used in the experiments were preprocessed, which corrupts the results and an adequate picture 

about what the performance of various algorithms can be on real log files. What is more important, 

however, is that some log mining tools were tested with badly chosen input parameter settings, 

which led to the poor performance of these tools and unfair comparison [19]. Finally, in the 

research study [31] by by Copstein et al., it was mentioned that the authors by focusing on the 

work of study [8], tried to replicate the conducted experiments, where they used the 

implementation of tools and annotated dataset, which were provided publicly by the original study. 

During their replication study, however, while analyzing Android logs, the authors found out that 

one of the log parsing algorithms did not manage to generate the similar results described in the 

study [8]. In addition, at the end of the replication experiments, the authors confirmed that some 

of the obtained outcomes were significantly different than the original study, in other words, results 

demonstrated approximately more than 10 percentage points of variance over the original 

experiments. 

Consequently, the objective of the author in this thesis, firstly, was to conduct the 

comparative analysis of currently available log parsing algorithms and obtain fair and clear results 

regarding the efficiency of them, where the efficiency is defined as the processing speed of log 

mining algorithms, in other words, total CPU time and memory consumptions while parsing log 

datasets of various sizes from different systems. Secondly, to find out the quality of the parsed log 

messages, where the quality is defined as the pattern detection rate of the log parsing algorithms.  
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In comparison with other similar studies about the log parsing algorithms, this thesis is 

different since the author of it contacted the authors of the tested log mining algorithms in order to 

find out the optimal input values while running the log parsing algorithms, which would help, 

firstly, to identify rarely occurring log message lines, secondly, produce results with much higher 

quality in a more efficient way. That allows for avoiding unfair comparison of different tools due 

to poor input parameter settings (for example, such mistakes have been made in [8]). Furthermore, 

another important distinction of this thesis paper is that the author conducted the memory 

consumption analysis of log parsing algorithms, which was not tested or analyzed in the previous 

studies like the paper [8]. Finally, unlike previous studies (for example, [8]), experiments for 

measuring efficiency are conducted on large log files from production environments, which have 

not been preprocessed in any way. As a result, the main contributions of this thesis paper are the 

identification of a log parsing algorithm or algorithms that generated results with much higher 

quality and achieved best pattern detection rates and demonstrated best performance and efficiency 

outcomes during the conducted experiments, likewise, the provision of the support for engineers 

to parse raw log data files into structured ones by saving CPU time and memory resources of their 

devices. 

The thesis consists of four chapters. The chapter 1 gives a brief overview of the importance 

of log files for the computer systems and services that people benefit in their daily lives, discusses 

some existing challenges related to the analysis of log data and what measures have been taken to 

resolve these issues, likewise, the focus area of the study is mentioned in this chapter as well, 

which is the compare and contrast analysis of log parsing algorithms mainly from the perspective 

of the efficiency and the pattern detection rates. The literature review and the methodology used 

in the research are discussed in the chapter 2. In the chapter 3, the author gives detailed information 

about the conducted experiments, such as what log parsing algorithms have been used, which 

datasets have been chosen, etc. Additionally, the results of the experiments, in other words, the 

performance of log mining algorithms are also discussed in this chapter. This chapter answers 

questions such as how much CPU time it takes for a particular algorithm to parse a raw log data, 

what the memory consumption is, how accurate are results and so on. In the fourth and the final 

chapter of the paper, the author provides a summary of the research study, revisits key points, and 

makes recommendations on which automatic log mining tools should be used to parse raw log files 

in order to obtain more accurate results in a more efficient manner. 
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Chapter 2. Literature Review and Research Methodology 

2.1 Research Methodology 

The research methods that the author used in this thesis are: 

• Analysis of the past academic research documents related to the automatic log parsing 

algorithms. The goal here was to identify which log mining algorithms currently exist in 

the market, how effective they are, what their strengths and weaknesses are, etc. 

• Analysis of the past academic research papers related to the comparison of performances 

of log mining algorithms with each other while parsing raw log files. The objective that the 

author wanted to accomplish here was to understand how those log parsing algorithms were 

compared to each other, which evaluation criteria was considered, how experiments were 

conducted, what kind of datasets were used and so on.  

• Conducting an experiment for comparative analysis of log mining algorithms specifically 

from the perspective of their efficiency and pattern detection rate, where, as it was stated 

earlier in the paper, the efficiency is defined as the processing speed of log parsing 

algorithms, in other words, how much CPU time and memory these algorithms consume 

while parsing raw log files of different size from various computer systems. 

 

 The documents referenced in the literature review part of this thesis were mainly found 

from the website called scopus.com. For the detailed preparation of the literature review, the 

following keywords were used: log mining, log parsing, log cluster, log analysis, data mining, etc. 

In terms of a search technique, the backward snowballing was used because some documents were 

not allowed to be downloaded. In other words, after getting the research papers that could be 

downloaded, the documents mentioned in their references were used since they had more detailed 

information about the topic of interest. Besides the scopus.com, some research papers were found 

with the help of Google search engine. 

 As it was stated earlier, the author conducted an experiment, in which, he compared the 

efficiency and pattern detection rates of log parsing algorithms with each other along with the 

quality of produced results. The datasets, that were used for experiments, were generated from the 

log data collections obtained from TalTech (Tallinn University of Technology) and from NATO 
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CCDCOE based on the NDA (non-disclosure agreement), which was signed between the 

respective parties. 

 

2.2 Literature Review 

In the research papers described in the section below, the authors are mainly focused on 

the specific log mining algorithms and their comparative analysis to similar methods from the 

perspective of parsing of unstructured raw log message files into structured ones. Most of these 

research studies start by describing the importance of event logs and emphasizes the roles that they 

play in the management of systems and networks. For instance, the paper [13] begins by 

highlighting the significance of monitoring of the way large enterprise systems work with the help 

of log files generated by the corresponding systems. According to the study, the system monitoring 

via log files plays a crucial role since it helps to ensure that such complex systems are producing 

expected results.  

The remainder of the literature review is organized as follows: in subsections 2.2.1-2.2.7, 

a number of log mining algorithms are discussed, while subsection 2.2.8 describes comparative 

studies of different log mining algorithms. 

2.2.1 IPLoM 

In their paper [5], Makanju, Zincir-Heywood and Milios claim that the manual analysis of 

log files is becoming challenging day by day since they are increasing in size significantly. 

Consequently, the paper is concentrated on the automatic analysis of these log files and introduces 

a log mining algorithm called IPLoM or Iterative Partitioning Log Mining. 

According to the study [5], IPLoM is a new clustering algorithm used to obtain event type 

patterns by mining the event logs, where each detected cluster corresponds to some event pattern. 

Overall, there are four steps for IPLoM to generate clusters from raw log files. During the first 

three steps, IPLoM works through hierarchical clustering process, in other words, the algorithm 

divides a log file into respective clusters. To be more specific, IPLoM starts its work by considering 

the entire log file as a single cluster. Next, during the first step, the initial cluster is split by 

assigning log file messages with a different number of words to different clusters. During the 

second step, each resulting cluster is then divided further in the following way – a word position 
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is identified which has the least number of unique words, and the cluster is split by these words. 

On the third step, clusters from the previous step are divided by associations between pairs of 

words. In the final and fourth stage, IPLoM generates cluster descriptions for every leaf partition 

of the log data file. In other words, by producing these cluster descriptions, the algorithm finds 

event type patterns.  

There are some differences of IPLoM from similar log mining algorithms. For instance, 

IPLoM is not based on the Apriori algorithm, which is a popular data mining method utilized by 

some other log mining algorithms [5]. This helps the algorithm to be more computationally 

efficient during the mining process of longer patterns compared to other algorithms [11]. 

Additionally, while it is mandatory to use a pattern support threshold for some other similar log 

mining algorithms, for IPLoM, it is optional, which increases the possibility for IPLoM to find all 

potential clusters. 

The authors of the paper found out that IPLoM consistently outperforms the other similar 

algorithms such as SLCT [14], Teiresias [23] and Loghound [22] when they were compared during 

the conducted experiments with seven various event log files. 

On the other hand, the authors mentioned that the data files used during the experiments, 

at the initial stage, were manually labeled. Likewise, based on the partition results of IPLoM, it 

was discovered that in some situations, it was almost impossible for IPLoM to generate correct 

cluster descriptions. The authors concluded that it should not be considered as an issue for a human 

since people are able to manually identify right cluster descriptions. To sum up, even though the 

algorithm is used as an automatic log analysis algorithm, there is still a need for a human 

interaction.  

In terms of the evaluation criteria used during the analysis, the authors of the study used 

metrics such as Recall, Precision and F-Measure in order to measure the clustering quality of 

IPLoM. 

2.2.2 Spell 

In their study [10], Du and Li state that in previous similar research papers, scientists were 

mainly investigating log analysis algorithms that were parsing raw log files in an offline mode. 

Nevertheless, the need to provide online monitoring and processing of log files is increasing day 
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by day. Consequently, the given paper recommends the usage of an online log parsing algorithm, 

which is called Spell (Streaming Parser for Event Logs), that parses unstructured system event 

logs into structured log types with the help of a longest common subsequence technique.  

In the research paper [10], it is said that let us assume there is a universe of alphabets, for 

instance, from a-z and from 0-9. Let us also assume that there are two different sets consisting of 

elements from this given alphabet. If a subsequence is both the subsequence of first and second 

sets of elements at the same time, then, this subsequence is called a common subsequence of set 

one and two. Furthermore, for a given input of sets of elements, LCS (longest common 

subsequence) is defined as the longest of such subsequences. For example, if there are sets of 

elements {1,3,5,7,9} and {1,5,7,10}, then an LCS will be {1, 5, 7} [10]. As a result, it was decided 

to utilize an LCS-based technique to extract message types from raw log messages. According to 

the authors of the paper, the output generated by the log printing statements is considered as a 

sequence. Static parts cover the most portions of these log printing statements, while the variable 

parts take only a small one. Therefore, if two log entries are generated by the identical log printing 

statement, where the only difference is in the parameter values, then, LCS of these sequences is 

most probable to be the constant in the code, which denotes the message type.  

Consequently, the designed algorithm contains a data structure, which is called LCSObject, 

the main purpose of which is to store parsed LCS sequences and the associated metadata 

information. Each LCSObject consists of LCSseq, which is the notation used to denote LCS of 

multiple log message lines. In addition, all currently parsed LCSObjects are stored in a list that is 

called LCSMap. When Spell receives a new log message line, it is first compared with all LCSseq’s 

contained in LCSObjects of LCSMap. Next, the algorithm decides to either insert this new log line 

to the existing LCSObject, or compute and generate a new LCSObject, which is then added into 

LCSMap. 

According to the results of the conducted experiments, the authors claim that in the case of 

large real system logs, Spell in comparison with the offline alternatives such as IPLoM and CLP 

(clustering-based log parser) demonstrates its supremacy in terms of both effectiveness and 

efficiency. 

For conducting experiments and comparing the performance of log mining algorithms [10], 

the authors used two real log datasets with various formats. 
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The first drawback of the study, however, is the overall number of datasets used to make 

comparisons of log parsing algorithms. Another drawback is that the authors of the paper measured 

the efficiency only in terms of runtime of log mining algorithms both in the form of a logarithmic 

scale and in the form of a normal decimal scale. In other words, the authors focused only on the 

time efficiency of these log parsing algorithms. 

2.2.3 Drain 

The study by He et al. [2] is similar to the previous one [10] since the authors of the paper 

start with the introduction that majority of the currently available log parsing algorithms are 

working based on the offline mode, and, considering the fact that the size and the volume of logs 

are increasing enormously, the model training process, where the offline log mining algorithms 

employ all obtained log data after collecting them, consumes a lot of time. As a result, the paper is 

also focused on the resolution of this issue by proposing an online log parsing algorithm called 

Drain, which is able to accurately and efficiently parse raw logs in a streaming and timely manner. 

Overall, in order to parse raw log files, besides the raw log messages, Drain does not need 

the source code of applications or any other information. With the help of the fixed depth parse 

tree technique, Drain can generate log templates from raw log files and divide them into the log 

groups. When, for instance, Drain receives a new raw log message, the tool starts searching a log 

group, in other words, leaf node of the tree in accordance with the specially implemented rules that 

are encoded in the internal nodes of the tree. In case, Drain finds out a suitable log group, the given 

log message will be compared and matched with the log event, which already existed in the log 

group. If, however, Drain does not find any suitable log group, then, a new log group associated 

with the given log message will be generated. Additionally, one of the key features of Drain is the 

fact that log messages with different number of words are divided between different branches of 

the tree.  

In their paper [2], the authors compared Drain with four similar log mining algorithms, 

such as LKE [9], IPLoM [5], SHISO [12], and Spell [10] in terms of the accuracy, efficiency, and 

effectiveness. Overall, Drain was compared to other similar log parsing algorithms based on the 

five real-world log datasets, which had more than 10 million raw log messages. According to the 

results, Drain outperformed other algorithms in terms of the accuracy on four datasets, and almost 

reached better accuracy on the remaining one. During the experiment, Drain also got 
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improvements in its running time, in other words, Drain was running faster than the other 

algorithms.  

The efficiency metric, however, was again limited only to the running time of the 

algorithm. In other words, the authors of the study measured only the time efficiency, but not the 

memory consumption. 

2.2.4 AEL (Abstracting Execution Logs) 

In their paper [13], Jiang et al. stated that even though the monitoring of computer and 

network systems via log message files is an integral part of providing better and secure services, 

the methods that are currently used for monitoring, for instance, the code instrumentation and 

profiling consume a lot of resources to produce correct results. Another drawback of such 

techniques is that specialists need to get the source code for a particular system or to contact to 

system experts.  

As a result, in their study, the authors recommend the usage of execution logs to observe 

the way applications are working. Every instance of a certain execution event ends up in a different 

log line because log lines generally consist of static/constant and dynamic parts that varies each 

time. Consequently, since these execution logs were initially not designed for monitoring tasks, 

the authors of the study propose a technique, where log lines will be abstracted to a set of various 

execution events. In the paper, it is said that the proposed approach is similar to a rule-based 

approach. Nevertheless, for this technique to work, there is a little need of effort and the system 

knowledge. Instead of encoding rules to identify specific execution events, the method described 

in [13] utilizes a few common heuristics to differentiate static and dynamic parts in log messages. 

At the end, log messages, which have similar static portions are categorized together for the 

abstraction of log messages to execution events. To be more specific, the algorithm mainly consists 

of three steps, which are Anonymize, Tokenize and Categorize. During the first stage, 

Anonymize, the algorithm utilizes heuristics to identify tokens in log message lines, which are 

related to dynamic parts. After being identified, the tokens are replaced by $v symbol that is used 

to denote generic tokens. Two main heuristics that are used to recognize dynamic parts are [13]: 

1. Assignment pairs like “word=value” 

2. Phrases like “is[are|was|were] value” 
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Next, during the Tokenize step, based on the number of words and variable parts, the anonymized 

log messages are divided into the various groups, which are also referred as bins. Finally, in the 

case of Categorize step, the algorithm makes comparison of log lines in every bin and abstracts 

these log messages to the respective execution events. 

In the study, the authors, firstly, mention that this approach does not work based on some 

specific strict requirements regarding the format of log files. Moreover, according to [13], the 

authors conducted some experiments, where the target system was a large enterprise application, 

in order to compare this abstraction technique against other log mining algorithms, namely SLCT 

[14]. Based on the results of experiments, the authors claim that the abstraction technique 

outperforms SLCT while parsing raw log data. 

The drawback of the paper is that first of all, instead of log files obtained from various 

domains, the case study was performed on a single application, which is also considered as a 

drawback by the authors. Secondly, according to the paper, this approach requires some human 

interaction, in other words, engineers need to go through some log lines, analyze them and define 

the anonymization rules. Finally, in terms of time or memory consumption of this method while 

parsing raw log files, nothing is mentioned in the corresponding paper since it only focuses on the 

accuracy of the results obtained by the log abstraction technique. 

2.2.5 LogSig 

In the paper [15], Tang, Li and Perng, first, describe the existing challenges in the analysis 

of log files such as a huge volume of log data generated day by day by the modern computing 

systems, the need for specialists, that use these log message files, to have domain knowledge in 

order to understand the behavior of their computer systems, etc. In addition, according to the study, 

another challenge related to the log analysis is that many of these log files are unstructured and in 

a raw textual format, which makes it difficult for automated log analysis while generating system 

events from these raw textual logs.  

It is known that usually, these log messages are not very long, nevertheless, may contain a 

large vocabulary, in other words, consist of completely different words for each log line. The 

authors of the study claim that the fact that log files can have various words for each log line 

generally leads to the poor performance when traditional text clustering methods have been used 
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to parse the log data. Furthermore, other log mining techniques have different restrictions and 

limitations and are suitable for specific systems log files.  

In the study [15], the authors propose a technique called logSig, which is a message 

signature-based algorithm used to obtain system events by analyzing raw textual log data. 

According to the paper, overall, logSig algorithm involves three main steps in order to produce 

results. The first step is the division of the log message lines into several pairs of terms. The second 

one is to obtain k groups of log message lines, where k is specified by the user, by utilizing local 

search strategy, in which every group would have common pairs as many as possible. Finally, the 

algorithm generates message signatures by investigating common pairs found in the second step 

for every message group. In other words, this technique is using the common subsequence 

information of raw log messages in order to categorize them and describe the newly created events.  

In the paper, the authors also conducted experiments by taking into account five real system 

log files such as Apache, FileZilla, Hadoop etc., to make a comparison of logSig against other 

alternative algorithms. According to the study, logSig outperforms other log mining algorithms in 

terms of overall performance. 

One of the drawbacks of the paper, however, is that the authors measured the performance 

of algorithms mainly from the perspective of the quality of results obtained by the algorithm and 

the scalability. The quality of results was measured with the help of F-measure (F1 score), which 

is a traditional metric to evaluate how accurate the results generated by the algorithm are by 

combining the precision and recall. The scalability, on the other hand, was measured by 

considering only the average running time of log mining algorithms while parsing raw log files of 

different sizes. 

2.2.6 LenMa 

According to the study by Shima [16], the analysis of system log messages mainly consists 

of two parts. First part of the log analysis is defined as a message template generation, while the 

second one is the possibility to extract something interesting and useful from the messages that are 

categorized by the generated templates. Therefore, the generation of accurate and correct templates 

plays a significant role in achieving better and precise log analysis results. 
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In his paper, in order for specialists to generate better and accurate templates from log 

messages, the author suggests the usage of a technique, which is a classification methodology that 

utilizes the length of words that appear in each log message. In other words, in the study [16], it is 

mentioned that currently, many existing log mining methods while creating templates tend to 

characterize words of messages by analyzing, for instance, their character types, ratios etc. On the 

other hand, the proposed classification method focuses more on the length of each word that 

appears in a log message, which is then used for clustering the messages. Overall, upon receiving 

a new log message line, this technique performs five steps to produce results: 

1. Generation of word length and word vectors from the new log message 

2. Calculation of a similarity score between this new log message and every existing 

cluster with the same number of words 

3. Creation of a new cluster with this new log message if the similarity score of the 

existing clusters is not larger than the threshold 

4. Update of the most similar cluster with this new log message using the algorithms 

provided in [16] if step 3 is false 

5. Return of the cluster 

Additionally, considering the fact that the number of log messages generated by system 

components is increasing day by day and that the classification technique mentioned in the 

research study does not need to perform two-pass analysis to create template messages, the author 

of the paper suggests the usage of this methodology for online template generation as well.  

Even though the recommended method can be useful for certain cases to parse raw log 

messages obtained from various systems, in terms of its performance, nothing is said in the 

research study [16]. In other words, the drawback of the paper is that there is no focus on specific 

aspects of the given methodology such as its time or memory consumption, or the overall 

performance of the algorithm. 

2.2.7 LogCluster 

According to the study [4] by R. Vaarandi and M. Pihelgas, in order to make the 

management of log files an easy process, many researchers have proposed in their papers the usage 

of various log mining algorithms, which are intended to generate event patterns from event logs. 

These event patterns can be useful in various areas such as the creation of event correlation rules, 
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detection of network anomalies or system faults, monitoring and creation of reports about network 

traffic patterns, automated generation of intrusion detection system (IDS) alarm classifiers, etc. 

The authors of the study state that previously proposed log parsing algorithms have been 

mainly based on the data clustering techniques, where there was an assumption that every event in 

the log file is described by a single line, and every line pattern shows a group of identical events. 

However, in their paper, the authors suggest a data clustering algorithm, which is called 

LogCluster, in order to produce event patterns from raw unstructured log files. LogCluster, firstly, 

starts by making a pass over the log file for generating a dictionary of all words together with their 

occurrence counts, so that frequent words can be detected (words that occur in at least S log file 

lines, where S is a support threshold provided by the user). Then, LogCluster makes another pass 

over the log file for creating the cluster candidates from the combinations of frequent words. As a 

final step, the candidates, that occur at least in S log file lines, are selected as clusters. Since the 

dictionary of words can consume a lot of memory for very large log files that contain millions of 

words, LogCluster can be configured to make an extra pass over the log file for creating a word 

sketch (a compact vector of N counters), which allows for filtering out many infrequent words and 

saving large amounts of memory. 

In the study, the authors also conducted experiments with large event logs, where they 

evaluated the performance of LogCluster and compared it with other similar algorithms.  

2.2.8 Other Similar Research Studies 

According to the research study paper [8] by Zhu, He, Liu et al., the traditional manual way 

to analyze log files becomes impractical since the overall number of log messages generated by 

modern software systems is increasing day by day. Since detailed log files are used to monitor the 

behavior of computer systems and to identify any anomalies, these log data play a very crucial role 

for specialists in order to develop and maintain the workflow of computer systems.  

In the paper, it is highlighted that for the analysis purposes, since log messages are usually 

in an unstructured form, the first fundamental step is the ability to parse or convert them into 

structured data. As a result, according to the research study, there have been many automated log 

parsing algorithms used for the last couple years, which have also been studied and analyzed both 

in the industry and the academia.  
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In order to better understand the way these log mining algorithms are working, the authors 

of the paper [8] provide a comprehensive evaluation study. In other words, they conduct 

experiments, where the performance of 13 log parsers is observed on an overall of 16 log datasets 

obtained from various systems such as supercomputers, mobile systems, operating systems, server 

applications, etc. The metrics that have been utilized in the study are the accuracy, robustness, and 

efficiency of log mining algorithms while parsing raw log data files.  

Even though the focus area of the research paper is directly related to the analysis of the 

performance of log parsing algorithms, the results obtained during the experiments are not 

thorough and/or fair enough. According to the study [19] by Mauno Pihelgas, the fairness of these 

experiments is questionable because some tools have been tested with badly chosen input 

parameter settings, resulting in poor performance of these algorithms. In addition, the authors of 

the paper [4] also claim that the input parameters of the algorithm, LogCluster, which was executed 

during the experiments, were badly chosen. Consequently, in order to achieve better and fair 

results, LogCluster had to be utilized during these experiments with its optimal input parameters 

since it would help to reveal the true capabilities of the algorithm. One more drawback of the study 

[8] is that the labeled datasets that were obtained from different systems and used for measuring 

the accuracy and during the experiments, are not available to be downloaded and utilized for other 

research studies. In addition, even though initially in the paper, it was claimed that the total number 

of distinct datasets utilized during the experiments was 16, while measuring the performance of 

algorithms, for instance, the authors utilized only 3 too specific datasets such as a supercomputer 

log, a Hadoop file server log, and Android log. This certainly does not demonstrate real-life 

scenarios, in which, it is common to encounter log types like Linux or Windows logs. Another 

drawback of the study is that the authors preprocessed the datasets by, for example, replacing IP 

addresses with special tags, which affected the produced outcomes in a great manner and corrupted 

the actual performance results of tested algorithms. In conclusion, according to the research study 

[31] by by Copstein et al., where the authors replicated the experiments conducted in the study [8] 

by using same implementation of tools and annotated datasets, it was found out that while parsing 

the Android logs, one of the tested log mining algorithms, LogSig, could not to produce the same 

outcomes as were described in the original study. Additionally, after completing the replication 

experiments, the authors concluded that in comparison with the original paper, there was about 

more than 10 percentage points of difference in the obtained results. 
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One of the similar research studies is the paper [17] by El-Masri et al., where the authors 

provide a systematic literature review regarding the existing automated log abstraction techniques. 

Firstly, the authors of the study start the paper by describing the challenges and problems related 

to the log analysis and log parsing. They also mention that in order to solve existing issues, 

software engineers can take an advantage of a wide range of ALATs (Automated Log Abstraction 

Techniques), which would help them to decrease the overall amount of log data to process. All of 

these methods have a different technique and different log-abstraction algorithms to accomplish 

various tasks such as information security related issues, performance optimization while parsing 

raw log files, anomaly detection, etc.  

On the other hand, according to the study, there still exists a huge gap between the academia 

and the industry. For instance, majority of specialists are not well-informed regarding all of the 

existing ALATs, that have been developed in the academia. Naturally, there is always a chance for 

a certain engineer to research and identify a particular log mining tool and what kind of an 

algorithm has been utilized in that tool. However, the study highlights that in general, software 

engineers do not have enough time and resources to allocate to the study and research of such 

algorithms and understand the characteristics of each of them.  

Consequently, the goal of the research study [17] is to reduce this existing gap by providing 

a systematic literature review (SLR), which would help to raise the awareness of many software 

engineers about the existing ALATs. Firstly, the authors of the paper categorize ALATs’ 

specifications, that were found out during the SLR, into seven most desired quality aspects and 

generates a quality model to evaluate these log abstraction algorithms. Then, based on the created 

quality model, there is a demonstration of the comparison of 17 log mining algorithms. According 

to the authors of the study, this comparison of algorithms helps to clarify and reduce the research 

gaps and to make recommendations for specialists on which log parsing algorithms to utilize. 

The drawback of the study is that the authors of it perform only a qualitative comparison 

of log mining algorithms while parsing raw log files. In other words, no performance experiments 

with certain log data files have been conducted.  

Another similar research study, which makes the comparison of log mining algorithms with 

each other is the paper [18] by Landauer et al. The authors of the paper start by describing the 

importance of log files, the role they play and why they are crucial for specialists by emphasizing 
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the fact that these files contain significant information about nearly all events that occur in systems 

such as databases, web servers, operating systems, firewalls, etc. Since the most of log messages 

are in a textual and human-readable format, and have, for instance, a time stamp that denotes the 

time this log message was generated, large organizations and companies can benefit from them for 

the forensic analysis or investigation cases of the long-term data.  

According to the study [18], the log messages, which show system faults and that are used 

for the forensic analysis, provides system administrators the opportunity to analyze and trace back 

the root causes of certain problems. Likewise, with the help of log files, specialists can, for 

example, restore the system, which had problems, to a non-faulty state, recover important data, 

stop the loss of information, test locally the scenario that caused problems in the system, etc.  

On the other hand, however, the authors of the paper claim that there is a major challenge 

with the forensic log analysis – log messages that are useful for the forensic investigations can 

only be detected in hindsight. Moreover, this task is very time and resource consuming since in 

order to successfully accomplish it, specialists need to have domain knowledge regarding the 

system in use. Consequently, according to the research study, in order to solve the above-

mentioned issue, specialists are moving the analysis techniques from a purely forensic to a 

proactive. In other words, specialists are monitoring log messages in a real-time online fault 

detection mode.  

In the study, it is also mentioned that the manual forensic analysis of log files by humans 

is becoming impossible day by day since the generated log messages have huge sizes and volumes. 

In terms of automatic log parsing algorithms, on the other hand, today, there exist various methods 

that automatically process the log message lines and extract interesting patterns from them. These 

methods are utilizing different algorithms to parse the log files and were mainly developed for the 

specific scenarios.  

In the paper [18], the authors conduct a comprehensive survey, where they get information 

regarding various automatic log mining algorithms found in scientific literature, which are 

specifically designed for applications used in the field of cyber security and compares them to each 

other.  
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The drawback of the study, again, is that the authors of it make a comparison of log mining 

algorithms in a qualitative way. There have been no performance related experiments conducted 

in the paper. 

 Finally, in the research paper [31] by Copstein et al., the authors analyzed the current state-

of-the-art and open-source log parsing and abstraction techniques in order to find out how they 

deal with the security-related log messages. In their study, the authors also conducted experiments 

to measure the pattern detection quality and performance of log mining algorithms, where they 

utilized the log files, which included messages from DNS, HTTP, FTP, Firewall, SNORT IDS, 

SSH, etc. On the other hand, the tested datasets contained only 2000 log message lines, which 

affected the runtimes of log parsing algorithms significantly during the performance tests by 

achieving very fast results. Therefore, the study does not provide insights what would be the 

performance of algorithms on larger log files that are a typical target for log mining algorithms. 
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Chapter 3. Experiments 

In this chapter, the author, first, gives information about the experimental setup. In other 

words, the author provides details of the hardware and OS (Operating System) used to conduct the 

experiments, information about the log mining algorithms that were chosen for the comparative 

analysis, the detailed information about the datasets that were utilized for the experiments, and 

what kind of metrics and tools were used for evaluation purposes. Then, the author of this thesis 

paper describes the conducted experiments and the steps that were taken, and at the end, provides 

the details of the achieved results. 

3.1 Experimental Setup 

In order to conduct experiments, where log parsing algorithms would be compared to each 

other, the author of the paper used a dedicated physical Linux server. The main reason why the 

author preferred to use physical machine for experiments rather than a virtualized environment is 

to reduce a possibility of occurrence of issues and problems specific to such infrastructures. To be 

more specific, the utilized physical machine had more computing power and memory than a typical 

virtual machine, which enabled the author to run experiments without any technical issues.  

Below, in the Table 1, the author provides technical characteristics of this physical server: 

 

Operating System (OS)  Rocky Linux release 8.4 (Green Obsidian) 

Physical memory (also known as random-

access memory (RAM)) 

64 GB 

Disk Type Samsung SSD 860 EVO 250GB, RVT02B6Q, 

max UDMA/133 

CPU model/make Intel(R) Xeon(R) CPU E5-2630L v2 @ 

2.40GHz                

CPU sockets / CPUs 2 
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Cores per CPU 6 

Threads per CPU 12 

Total CPU Cores 12 

Total CPU Threads 24 

 

Table 1. Technical Characteristics of Linux Server Used for Experiments 

 

3.2 Log Mining Tools Used for Comparative Analysis 

For comparative analysis, overall, the author chose seven log mining algorithms to be used 

to parse unstructured raw log messages. In the Table 2, the author of the thesis provides the list of 

these log parsing algorithms: 

 

Log Parsing Tool 1 IPLoM (Iterative Partitioning Log Mining) [5] 

Log Parsing Tool 2 Spell [10] 

Log Parsing Tool 3 Drain [2] 

Log Parsing Tool 4 AEL (Abstracting Execution Logs) [13] 

Log Parsing Tool 5 LogSig [15] 

Log Parsing Tool 6 LenMa [16] 

Log Parsing Tool 7 LogCluster [4] 

 

Table 2. Selected Log Mining Algorithms 
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Since, as of the moment of writing this thesis paper, there were no other publicly available 

implementations of most of the above-mentioned log mining algorithms, the author utilized the 

tool implementations from the github repository of University of Hong Kong [8] paper. In other 

words, besides the log mining tools Drain3 and LogCluster, which were obtained from their 

official repositories [24] (release 0.9.7) and [25] (version 0.10) respectively, other tools were 

downloaded/copied from [26] for IPLoM, [27] for Spell, [28] for AEL, [29] for LogSig and [30] 

for LenMa. It is also worth to note that since the new version of Drain, which is Drain3, was 

available to be downloaded from [24], instead of the old version of the tool, the author decided to 

conduct experiments with the newer one. 

In terms of the reason behind the log parsing algorithms selection, the author decided to 

experiment with the best and worst algorithms from the paper [8] with the main focus on the ones 

released since 2015. To be more specific, according to the results of the experiments conducted in 

the research study by University of Hong Kong [8], the log parsing algorithms that produced the 

most accurate results are LenMa [16], Spell [10], AEL [13], IPLoM [5] and Drain [2]. While 

LogCluster [4] has the average level of accuracy for the produced outcome, LogSig [15] has the 

worst performance in terms of the quality of parsed log messages. Since recent studies have 

questioned the results in [8] for LogCluster and LogSig [19, 31], the author of the thesis decided 

to include these algorithms in the tests. As a result, the author performed experiments with the help 

of above-mentioned log mining algorithms in order to find out how algorithms would be different 

compared to each other by the pattern detection rate and efficiency. 

 

3.3 Datasets Used for Experiments 

As it was stated earlier in the thesis, after signing the NDA (non-disclosure agreement) 

with the corresponding parties, the author obtained log data from two various organizations.  

One of these log data was obtained from TalTech (Tallinn University of Technology). The 

size of this log data is 11GB, and it consists of five log files from Linux Servers, which are in an 

unstructured raw syslog format. The other log data from TalTech is a log file with Suricata IDS 

alert messages (97MB). 
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On the other hand, from NATO CCDCOE, the author got one separate log file and two 

large data collections consisting of several log files. One of these collections has the log data from 

Suricata systems and involves 188 compressed log files in it. In terms of the size, Suricata log file 

collection is 3.7GB. Unlike the Suricata log data from TTU, the NATO CCDCOE log data is not 

only containing IDS alert messages, but also network traffic records for network flows and various 

common application layer protocols. The second collection involves compressed log files, which 

were obtained from Windows operating systems. This collection has 202 log files and is 3.4GB. 

Finally, as it was stated above, the author obtained an individual log file, which contains syslog 

messages gathered from XS19 exercise. To be more specific, this file has 27365365 log message 

lines from the central syslog server of XS19. These events were monitored and collected from 54 

distinct hosts during the period of 10 days. In addition, the overall log file size is 4.6GB. 

To sum up, the experiments for this thesis paper were conducted with the help of the log 

messages obtained from the above-mentioned datasets, which are TTU (11GB from Linux Servers 

and 97MB from Suricata IDS) and NATO CCDCOE (7.1 GB compressed files from Suricata and 

Windows systems, and 4.6GB from syslog server of XS19). 

 

3.4 Metrics/Evaluation Criteria of Experiments 

3.4.1 Performance Testing Setup 

Previously in this thesis, it was mentioned that the objective of the author was to perform 

the comparative analysis of log mining algorithms and eventually, get fair and clear results. 

Likewise, it was specified that the main focus during these experiments would be on the pattern 

detection rate and the efficiency of log parsing algorithms. In other words, one of the criteria to 

evaluate results achieved at the end of experiments is the efficiency of log mining algorithms, 

where the efficiency, in this thesis paper, is defined as the processing speed of these algorithms, 

such as CPU time and memory consumption, while parsing raw unstructured log messages. In 

order to measure the efficiency of log parsing algorithms, the author used GNU Time utility [20]. 

The GNU ‘time’ command is used to run another program, and then, to display the information 

about the system resources, which were consumed by that program. During the experiments, the 

author used the following command along with a particular log mining tool to parse raw log 

messages and obtain system resource consumption information: 
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/usr/bin/time -f ‘memory %M KB, kernelCPU %S, userCPU %U’ <log 

mining tool> <log file to parse> 

 In terms of the datasets, that were utilized to conduct performance testing experiments, the 

author used four data files with various sizes. The first dataset was derived from Suricata log file 

collection obtained from NATO CCDCOE and consisted of HTTP Apache log messages, thus, was 

called http-apacheformat.log. Compared to other utilized datasets, http-apacheformat.log was 

a relatively medium-sized one because it consisted of 95457 log message lines and had a size of 

21MB. The second dataset, which was one of the large-sized datasets, was called windows-

text.log. This dataset was generated from the second log file collection received from NATO 

CCDCOE, which had logs of Windows operating systems. In terms of the number of the log 

messages, windows-text.log had 3551025 lines and had a size of 3.2GB. The third dataset, which 

was tested during the experiments and was considered as a large-sized data file as well, was one 

of the five log files received from TalTech (Tallinn University of Technology). This dataset, called 

logsrv.log.2, had 17015421 syslog message lines and had a size of 2.5GB. Finally, the author 

utilized the last large-sized data file, which was xs19-syslog.log dataset. This dataset contained 

27365365 syslog events from XS19 exercise and had a size of 4.6GB. 

 

3.4.2 Quality Testing Setup 

Naturally, obtaining results about which log mining algorithms are more efficient compared 

to other ones is not sufficient for the experiments. In other words, even if the performance of a 

particular log parsing algorithm is much better than others, if quality of produced outcome is very 

poor, then, this particular log mining algorithm cannot be considered as a valid option to parse 

unstructured raw log messages in a real-world environment. Consequently, in this thesis paper, the 

second metric used for the evaluation of the produced results is the output quality for the parsed 

log files. The quality is measured in terms of the pattern detection rate – if the log file is known to 

contain N patterns, and the output of the tool contains K patterns out of these N patterns (K ≤ N), 

then the pattern detection rate is defined as K / N * 100 %. 

In order to estimate the quality of generated outcomes, four specific small and medium-

sized datasets were used during the experiments. All these four datasets were derived from TalTech 

Linux and Suricata log data. Three of these datasets, that were used for quality testing, were created 
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by extracting sshd, su and sudo syslog log messages from Linux log files of TTU log data. 

Henceforth, these datasets are called sshd, su and sudo. The fourth dataset, on the other hand, is 

the Suricata log file from TalTech, which consists of Suricata IDS alert log messages, that are also 

in a syslog format. In summary, in terms of the number of log message lines, sudo dataset had 815, 

su contained 1496, sshd - 420104 log messages, while suricata consisted of 499805 log message 

lines and had 97MB of size. 

After the creation of the above-mentioned two small-sized (su and sudo) and the two 

medium-sized (sshd and suricata) datasets, the author generated a file, where he manually 

identified and combined the log message patterns/clusters/templates that were expected to be 

found from su, sudo, sshd and suricata datasets while being parsed by log mining tools. The 

manually identified patterns, in total, consisted of 5 sudo, 12 su and 34 sshd patterns. Additionally, 

since suricata dataset contained IDS alerts that were all sharing the same format, the tools were 

expected to detect just 1 generic pattern that would represent a message template for all IDS alerts. 

The main goal in the creation of a file with manually identified patterns was to make a comparison 

of the results produced by a certain log parsing tool against the patterns that were manually 

generated by the author and calculate the pattern detection rate. According to the author of this 

thesis paper, the pattern detection rate is calculated based on the following rules: 

1. If P is a manually created pattern, P is considered as found if P exists in the output of 

the log mining algorithm.  

2. A certain log mining tool, like LogCluster, can generate a pattern, where instead of 

wildcards, lists of possible values are shown. For instance, for the following pattern, 

“(alice|bob) : unable to resolve host *”, the list of all possible variable values, 

such as (alice|bob) are provided. In the case of such patterns, the value lists are treated 

as wildcards. 

3. For some manually created patterns, the log file contained messages, where for some 

wildcard in the manually created pattern, the same constant appeared in all messages. 

For example, suppose that for the manually created pattern “* : unable to resolve 

host *”, the log file contains the following three messages: “alice : unable to 

resolve host 10.1.1.1”, “alice : unable to resolve host 10.1.1.2” and 

“alice : unable to resolve host 10.1.1.3”. Since for the first wildcard, the 
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constant “alice” is appearing in all log file messages, the log mining algorithms are 

unable to identify it as a wildcard. In the case of such scenarios, the author regarded 

the manually generated pattern P successfully found even if the pattern generated by 

the log mining algorithm was reporting a constant for such wildcard. For example, in 

the case of the above example scenario, the log mining algorithm reports the pattern 

“alice : unable to resolve host *”, and the manually created pattern “* : 

unable to resolve host *” will be regarded as found. 

 

One of the key points while evaluating the experiment results is that if redundant patterns 

are identified by the log mining tools, which do not match the manually generated ones, the pattern 

detection rate is not penalized. For instance, if the tool not only detects/generates all expected 

patterns, but also identifies 15-20 additional patterns, the overall matching score will not be 

penalized or decreased because of these extra patterns, instead, will still be 100%. The reason for 

this is that in the field of data and pattern mining, it is common for log mining algorithms to provide 

redundant patterns that represent the same knowledge as other patterns. Likewise, unlike a false 

positive or false negative in the classical machine learning, a redundant pattern is not a false 

pattern, but something that actually exists in the log file, which is just either too specific or too 

generic. 

3.5 Experiment Results 

In this sub-chapter of the thesis, the author discusses the outcomes achieved at the end of 

the quality and performance testing experiments.  

During the experiments, the author of the thesis tested the chosen log mining tools by 

changing only required input parameters since his objective was to check the capability of these 

log parsing tools in terms of quality of generated results and their efficiency when there would not 

be any human interaction with the tool such as the modification of other settings by enabling, for 

instance, the pre-processing with the help of regular expressions that can be utilized to replace IP 

addresses with special tags, and so on.  

Some of the tested tools (e.g., Drain and LogCluster) support advanced input pre-

processing functionality, for example, pre-processing with the help of regular expressions for 
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replacing IP addresses with special tags, etc. Even though some tools were supporting such pre-

processing functionality, and had it even enabled by default, since this functionality was not 

supported by other tested tools, the author disabled it for the sake of fair comparisons. Another 

reason of disabling pre-processing feature was that the pre-processing of the log files assumes 

previous knowledge on the content of the log messages, which contradicts the fact that in the 

beginning of log parsing process, the human analyst has usually no information regarding the 

content of log data. 

In terms of the experiment results, even though the author was running tools with various 

input parameters, for reporting in this thesis, he picked only three or four combinations of input 

options that were making log mining tools produce results with best quality and achieve highest 

efficiency. Additionally, while conducting performance testing experiments, each input value of 

every tool was tested three times on each dataset in order to find out the average of results. 

Likewise, the maximum amount of time that the author waited after the execution of a certain log 

parsing tool was 36 hours. If a particular log mining tool was not able to produce results within 

the given timeframe, the running process would be stopped, and it would be concluded that the 

tool did not manage to generate/parse results. Finally, even though the modern multi-CPU and 

multi-core systems offer a lot of multithreading opportunities, and the system that the author used 

for conducting the experiments was a relatively powerful multi-CPU system, overall, it was 

decided not to utilize the multithreading extensively. The main reason was that while parsing the 

log message lines, most algorithms face complexities of safely and efficiently syncing/sharing 

clustering data between the threads, which leads to non-deterministic clustering outcomes. 

Regarding the quality test experiments, it is worth to note that since the su, sudo and sshd 

datasets contained some rare events/log messages as well, it is common for log mining tools not 

to be able to detect/identify those rarely occurring patterns. In other words, the fact that there were 

some log message types that appeared too little, the pattern detection rate of log mining algorithms 

was expected to be perfect. In order for log parsing tools to identify rarely occurring log messages 

as patterns, the author of this thesis paper contacted the authors of those tools to get some 

recommendations regarding the possible options and parameters that could have improved the 

quality of produced results. Out of seven log mining tools used during the experiments, the authors 

of five of them replied back, which were the authors of IPLoM, AEL, LenMa, LogCluster, and 

Drain3.  
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Another key point here is that most log parsing algorithms, for example IPLoM, Drain3, 

LenMa and AEL, which were tested during the experiments, are designed with an assumption that 

across multiple log message lines, an identified pattern should have the same number of words for 

the corresponding log messages (see section 2 for more details). However, due to this kind of 

algorithm design, while testing some log mining tools to parse suricata dataset, produced results 

had very poor pattern detection rates. For instance, if there are two log message lines such as 

“SNMP get with public Classification: recon {UDP} 10.1.1.1:45661 -> 10.1.1.2:161” and “SQL 

injection Classification: recon {TCP} 10.1.1.1:45661 -> 10.1.1.2:3333”, instead of identifying 

them as one generic pattern, most tools, due to the difference in the number of words in log 

messages (10 and 8 words respectively, since substring "SNMP get with public" contains 4 words 

and substring "SQL injection" - 2 words), would generate two distinct patterns. As a result, except 

for the LogCluster, which achieved 100% of the pattern detection rate while parsing Suricata IDS 

alert messages, other log mining tools, regardless of the various input parameters, performed very 

poorly with pattern detection rate of 0%.  

 

3.5.1 Quality Testing 

IPLoM 

While testing IPLoM with su, sshd, sudo and suricata datasets, the author was mainly 

changing two input parameters like CT, which stands for cluster goodness threshold, and 

lowerBound to achieve outcomes with better quality. The summary of the quality testing results 

along with the optimal input parameters of IPLoM can be found in the Table 3 below (the figures 

in parentheses represent the total number of detected patterns). 

After testing several input parameter values to parse sudo logs, the author ended up with 

three different options that were producing the best results. One of them is when the author set CT 

to be equal to 0.3 and lowerBound to be 0.3 as well. The second combination of input parameter 

settings is when CT was equal to 0.3 and lowerBound was 0.1. And finally, the last tested 

parameters were CT to be 0.5 and lowerBound to be 0.3. These three combinations of input 

parameters produced, in total, eight templates that demonstrated 80% of the pattern detection rate.  



33 

 

In order to parse su log messages, the author, first, set CT to be equal to 0.6 and 

lowerBound to be 0.1. In total, these values generated 14 templates, where most logs messages 

were covered with a lot of specific patterns rather than generic ones. In terms of the pattern 

detection rate, the tested values showed approximately 75% (74.7%) of match with the manually 

identified clusters. Secondly, input values, where CT was 0.5 and lowerBound was 0.2, were 

tested. The number of overall produced templates was 11, in which, compared to the first threshold 

values, relatively fewer specific patterns were covering the log messages, likewise, this time, a bit 

higher pattern detection rate, such as 83% of match, was achieved. Finally, the author executed the 

tool with input parameters, where both CT and lowerBound were equal to 0.3. These input values 

identified same number of templates as the second threshold, which was 11. The difference, 

however, was that these templates were mostly generic ones. In other words, in comparison with 

the previous threshold values, this time, most logs messages were covered by generic patterns, 

consequently, reaching higher pattern detection rate, which was 91.3%. 

The first combination of input values, that were tested while parsing sshd logs, is CT to be 

0.6 and lowerBound to be 0.1. Overall, the tool identified 52 templates, most of which were too 

specific patterns, thus, resulting in approximately 78.3% of pattern detection rate. As the second 

combination, the author set CT to be equal to 0.5 and lowerBound to be 0.2. This time, the tool 

managed to identify 49 templates and achieved better pattern detection rate with about 84% of 

match. Finally, the author tried the combination of CT to be 0.3 and lowerBound to be 0.3 as well. 

In comparison with the second combination of input values, almost same outcomes were achieved 

– 47 templates with generic patterns and nearly 84.1% of pattern detection rate. 

As a recommendation for IPLoM to parse/identify rarely occurring events, the author of 

the tool advised the usage of File Support Threshold and Partition Support Threshold 

parameters. According to the author of the IPLoM, by setting both of these thresholds to 0, it would 

be possible that clusters with rare events were found. However, even though the author of this 

thesis was mainly testing CT and lowerBound input parameters, the above-recommended input 

options, by default, were set to be 0. In other words, the experiments conducted with IPLoM were 

already configured to identify rarely appearing log messages. 

Finally, regardless of the tested combinations of input values, IPLoM achieved 0% of 

pattern detection rate while parsing suricata dataset. 
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 CT = 0.1, 

lowerBound 

= 0.1 

CT = 0.3, 

lowerBound 

= 0.3 

CT = 0.3, 

lowerBound 

= 0.1 

CT = 0.5, 

lowerBound 

= 0.3 

CT = 0.5, 

lowerBound 

= 0.2 

CT = 0.6, 

lowerBound 

= 0.1 

sudo logs  80% (8) 80% (8) 80% (8)   

su logs  91.3% (11)   83% (11) 74.7% 

(14) 

sshd logs  84.1% (47)   84% (49) 78.3% 

(52) 

suricata 

logs 

0% (17) 0% (272)    0% (270) 

 

Table 3. Quality Test Results and Optimal Input Parameters of IPLoM 

 

Spell 

The main input parameter the author was modifying while running Spell on datasets 

suricata, sshd, sudo and su, is called tau, which basically provides a threshold for merging two 

messages into a pattern, where tau reflects the number of common tokens (words) in messages. 

The summary information regarding the quality testing outcomes of Spell is provided in Table 4. 

After finishing the testing of various input values for parameter tau to parse sudo logs, the 

author selected three distinct values, where outcomes with relatively higher quality were 

generated. The first value, that tau was set, equals to 0.85. This value led to the identification of 

26 templates, which were mainly specific ones rather than generic. In terms of the pattern detection 

rate, with this value, the tool achieved 60% of the match. For the second value, the author set tau 

to be equal to 0.7. Even though the pattern detection rate in this case was identical to the one 

achieved in the previous threshold value, the number of produced templates decreased to 10, where 

most part of log messages were covered by the generic patterns. Nevertheless, the best quality 

results while parsing sudo logs were achieved when tau was set to 0.5. This time, the tool managed 



35 

 

to get 80% of the pattern detection rate by generating 7 generic templates to cover majority of the 

log message lines. 

The input parameter values, that produced much higher quality results while parsing su log 

messages, were same as the ones used to parse sudo log messages. For the tau 0.85, the overall 

number of identified templates was 30, where mainly specific patterns were noticeable. Likewise, 

with the tau equals to 0.85, the tool achieved approximately 50% (49.8%) of the pattern detection 

rate. When the author changed the value of the input parameter and set tau to be equal to 0.7, even 

though the tool generated 14 templates with some specific patterns in it, in terms of the quality, it 

managed to reach 83% of the pattern detection rate. As it was in the case of sudo log messages, 

when tau was set to 0.5, the tool produced the best outcomes in terms of the quality. In total, 12 

templates were identified, where most log messages were covered by the generic patterns, 

moreover, the pattern detection rate was much higher than the previous two results – it was equal 

to 91.3%. 

Similar to the input argument values used to mine su and sudo logs, the author of this thesis 

paper found out that tau 0.85, tau 0.7 and tau 0.5 were the optimal parameters in the identification 

process of templates with much higher pattern detection rate, in other words, with the best quality 

and accuracy. While testing tau 0.5, the tool achieved its best outcome by identifying 42 templates 

and obtaining 72.5% of the pattern detection rate. The quality of the produced results was getting 

worse when the tau was set to 0.7 and 0.85. In the case of tau 0.7, the tool generated 5111 

templates, that were too specific for each pattern. In other words, Spell identified almost each log 

message with variables as a separate pattern. In terms of the quality, 49.3% of the pattern detection 

rate was achieved. The worst-case scenario was reached when tau was set to 0.85 since the tool 

crashed and produced only partial results by generating 19152 patterns. As a result, there was not 

an efficient way to find out the pattern detection rate achieved by the given value of the tau. 

In the case of suricata dataset, Spell achieved 0% of the pattern detection rate in all tested 

input values. 
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 tau = 0.55 tau = 0.5 tau = 0.7 tau = 0.85 tau = 0.9 

sudo logs  80% (7) 60% (10) 60% (26)  

su logs  91.3% (12) 83% (14) 49.8% (30)  

sshd logs  72.5% (42) 49.3% (5111) <tool crashed> 

(19152) 

 

suricata logs 0% (111)  0% (206)  0% (6886) 

 

Table 4. Quality Test Results and Optimal Input Parameters of Spell 

 

Drain3 

One of the key input arguments that were tested while running the tool is st, which denotes 

the similarity threshold, where if the percentage of similar tokens for a log message is below this 

number, a new log cluster will be created. The second key parameter is depth, which defines the 

max depth levels of log clusters. Optimal input values along with the summary of the quality 

testing experiments for Drain3 are described in the Table 5.  

The first pair of input parameters, that author tried while testing the Drain3 on sudo log 

messages dataset, are st equals to 0.4, and depth equals to 4. The tool managed to identify overall 

14 clusters with mainly specific patterns in it. Moreover, the pattern detection rate of the tool was 

estimated and found to be 60%. Even though the next two combinations of input values, which 

were used during the experiment, were completely different from each other, the achieved 

outcomes were identical. In other words, when the author set st to be 0.3 and depth to be 6, 

likewise, when he set st to be equal to 0.6 and depth to 5, the tool generated 14 clusters, most of 

which were specific patterns, and obtained 60% of the pattern detection rate.  

The two combinations of distinct input values, that the author experimented in order to 

parse su log messages, produced nearly the same outputs with the same pattern detection rate. 

These values are st 0.3 and depth 6, and st 0.6 and depth 5. By using these pairs of options, Drain3 
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identified 17 clusters, in the case of st 0.3 and depth 6, and 16 clusters, in the case of st 0.6 and 

depth 5. Even though the pattern detection rate that was obtained in these experiments were equal 

to 83%, the generated templates consisted of more specific patterns rather than generic ones. The 

last input parameters that were st 0.4 and depth 4, on the other hand, not only enabled the tool to 

identify more generic clusters, but also achieved much higher pattern detection rate. In total, the 

number of generated templates was 14, and the corresponding pattern detection rate was 91.3%. 

While parsing sshd log messages, the author managed to achieve the best quality outcomes 

when he set the input values st to be 0.4 and depth to be 4. In terms of the identified clusters, 

Drain3 produced 40 of them, where the number of generic patterns were prevailing the number of 

specific ones. Furthermore, the pattern detection rate obtained with this group of input parameters 

was nearly 90% (89.9%). The second combination of input values that produced relatively better 

quality results were st equals to 0.3 and depth to be 6. This time, the tool generated 42 clusters, 

where almost half of it were specific patterns. Nevertheless, there was 84.1% of the pattern 

detection rate achieved. In comparison with two previous combinations of input parameters, the 

last pair of them produced relatively poor results. When the author set the value of st to 0.6 and 

depth to 5, Drain3 identified 50 clusters in total. While comparing with previous thresholds, this 

time, generated results contained slightly more specific patterns and had a pattern detection rate of 

78.3%. 

When it comes to parsing rare events, according to the author of Drain3, the tool does not 

provide specific options for rarely occurring log messages. Even though it is expected for Drain to 

generate the templates when there are 2 or more log messages in the same group, the author of 

Drain says that the error of the tool mainly comes from the fact that some events contain the same 

number of tokens, and their first k tokens are the same so that multiple events may be assigned 

into the same group. 

The pattern detection rate achieved by the end of parsing suricata dataset by Drain3 was 

equal to 0%.  
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 st = 0.3, depth = 6 st = 0.4, depth = 4 st = 0.6, depth = 5 

sudo logs 60% (14) 60% (14) 60% (14) 

su logs 83% (17) 91.3% (14) 83% (16) 

sshd logs 84.1% (42) 89.9% (40) 78.3% (50) 

suricata logs 0% (108) 0% (69) 0% (156) 

 

Table 5. Quality Test Results and Optimal Input Parameters of Drain3 

 

AEL 

The main two input parameters, which were tested with various values while experimenting 

AEL over suricata, sshd, sudo and su datasets, were mineventcount and mergepercent. The author 

provides the summary of the quality testing outcomes of AEL, likewise, the input values in the 

Table 6.  

Overall, there were three combinations of input parameters tested to parse sudo logs, two 

of which generated higher quality outcomes, while the third one produced output with a poor 

pattern detection rate. First, the author set mineventcount to be equal to 2 and mergepercent to 

0.3.  This combination of inputs identified, in total, 12 templates, where a bit more specific patterns 

were noticeable. In terms of the pattern detection rate, however, the given combination of values 

achieved 80% of the matching with the manually generated patterns. Results got improved when 

the author left the mineventcount unchanged and modified just mergepercent to be 0.6. Even 

though the obtained pattern detection rate was same as in the case of the previous threshold values, 

80%, the number of produced templates decreased to 8, in which, mainly generic patterns were 

dominating. As it was stated above, the third combination of tested input values, which are 

mineventcount to be equal to 10 and mergepercent to 0.6, led to the worst outcomes, where 23 

mainly specific patterns were identified, thus, obtaining 40% of the pattern detection rate. 
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Based on the observations obtained while parsing sudo logs with AEL, the author decided 

to test just the two combinations of optimal input values from previous experiments to parse su 

log messages. Therefore, the first input parameters are mineventcount to be 2 and mergepercent 

to 0.3. In general, AEL identified 19 templates, which consisted of mainly specific patterns. On 

the other hand, these produced results managed to achieve a pattern detection rate of 91.3%. The 

second combination of input values, that are mineventcount to be 2 and mergepercent to 0.6, 

however, identified fewer patterns, which, in total, were 11, where most log messages were 

covered by generic patterns rather than the specific ones. Nevertheless, this combination of options 

also obtained 91.3% of the pattern detection rate. 

For parsing sshd log messages, overall, the author managed to find three optimal 

combinations of input values, which were producing results with pattern detection rates above 

70%. The first pair of values, that generated, in comparison with other threshold values, relatively 

low-quality outcomes, were mineventcount to be 10 and mergepercent to 0.3. With these values, 

AEL identified 76 templates, which contained too many specific patterns. As a result, the pattern 

detection rate obtained in this case was approximately 72.5%. In contrast, the pattern detection 

rate of generated results got better, when the author changed the value of mergepercent to 0.8 and 

left mineventcount same. This time, the tool identified 34 templates, where log message lines were 

covered mainly by generic patterns. Consequently, in the case of the second combination of input 

parameters, the pattern detection rate increased to 84.1%. However, among the three optimal 

combinations of values, the third one reached the highest quality and pattern detection rate in the 

generated outcomes. The author tested the tool by, again, leaving mineventcount unchanged and 

modifying only mergepercent to 0.6. AEL created 37 templates, where the number of generic 

patterns were prevailing the number of specific ones, and obtained the pattern detection rate of 

89.9% with the manually generated templates. 

In terms of the identifying rarely occurring log templates, the author of AEL suggested to 

run AEL twice, first, by generating frequent patterns and a file with rarely occurring events, then, 

running the tool on the file with rare logs with lower threshold values. The problem in this case 

was that since there were no other implementations available, the author of this thesis paper was 

using the University of Hong Kong paper [8] implementation of AEL, which does not produce 

outliers file with rare events so that to run AEL on them with lower threshold values. 
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When the author tested AEL to parse suricata dataset, the pattern detection rate obtained 

at the end was 0%. 

 

 mineventcount = 2, 

mergepercent = 0.3 

mineventcount = 2, 

mergepercent = 0.6 

mineventcount = 10, 

mergepercent = 0.3 

mineventcount = 10, 

mergepercent = 0.6 

mineventcount = 10, 

mergepercent = 0.8 

sudo logs 80% (12) 80% (8)  40% (23)  

su logs 91.3% (19) 91.3% (11)    

sshd logs   72.5% (76) 89.9% (37) 84.1% (34) 

suricata 

logs 

  0% (172) 0% (73)  

 

Table 6. Quality Test Results and Optimal Input Parameters of AEL 

 

LogSig 

When LogSig was used in the experiments to parse sudo, su, sshd and suricata datasets, 

the author was mainly testing an input parameter called groupNum, which is used to specify the 

number of groups that log messages had to be portioned, in other words, it tells the tool to partition 

logs into k groups. The detailed information about the quality of produced results and the input 

values used to generate those outcomes are provided in the Table 7. 

Starting from the groupNum values 20, 40 and above, when LogSig was used to parse sudo 

log message lines, results were getting worse and worse such that the pattern detection rates were 

declining, and the number of specific patterns were increasing with each threshold value. 

Consequently, the first input value of groupNum, which is considered to be optimal and produce 

relatively better results, was 15. The tool identified 9 templates, which contained comparatively 

more specific patterns, nevertheless, achieved 40% of the pattern detection rate. The second input 

parameter value was groupNum to be equal to 10. In this case, the number of generated templates 
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was 7, where compared to the previous threshold value, there were fewer specific patterns. In terms 

of the pattern detection rate, however, it was same – 40%. The best outcomes were produced, when 

the author set groupNum to be equal to 5 since the tool identified 4 generic templates, thus, 

achieving 60% of the pattern detection rate.  

When LogSig was configured to parse su log message lines, results with relatively higher 

pattern detection rates were produced after the author set groupNum to be equal to 20. The tool 

managed to identify 20 templates, where generic patterns were dominating. Therefore, there was 

a 66.4% of the matching with the manually identified patterns. Even though the next input value, 

which was groupNum to be 25, led to the generation of outcomes with almost the similar pattern 

detection rate, 60%, the identified templates, that in total were 23, contained mostly specific 

patterns compared to the results obtained when groupNum was 20. For the final input value, the 

author set groupNum to be 15, where the tool identified 15 templates, which had relatively poor 

quality since the pattern detection rate was 58.1%. 

Despite the fact that the author tried various input values while testing LogSig on sshd log 

messages, overall, the tool did not manage to produce outcomes with more than 40% of the pattern 

detection rate. Three out of four input values for groupNum, which were 30, 45 and 50, achieved 

34.8% of the pattern detection rate. The number of identified templates were 27, 38 and 44 

respectively, where, in comparison with each other, groupNum 30 produced more generic patterns 

rather than specific ones. The last input value that the author tested, groupNum to be 40, obtained 

even lower pattern detection rate, which was 31.9%. This time, in total, the tool identified 38 

templates, where the number of specific patterns were much more than the generic patterns.  

When being tested on suricata dataset, based on the results obtained by LogSig, the pattern 

detection rate was concluded to be 0%. 

 

 groupNum 

= 5 

groupNum 

= 10 

groupNum 

= 15 

groupNum 

= 20 

groupNum 

= 25 

groupNum 

= 30 

groupNum 

= 40 

groupNum 

= 45 

groupNum 

= 50 

sudo 

logs 

60% (4) 40% (7) 40% (9)       
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su logs   58.1% 

(15) 

66.4% 

(20) 

60% (23)     

sshd 

logs 

     34.8% 

(27) 

31.9% 

(38) 

34.8% 

(38) 

34.8% 

(44) 

suricata 

logs 

     0% (21)   0% (30) 

 

Table 7. Quality Test Results and Optimal Input Parameters of LogSig 

 

LenMa 

The only input parameter, which the author was modifying to test LenMa with su, sudo, 

sshd and suricata datasets, was threshold. In the Table 8, the author provided the optimal input 

values used during the experiments along with the pattern detection rates of the generated outputs 

of LenMa. 

After testing several input options, the author stopped on three threshold values such as 

0.5, 0.7 and 0.9, which produced results with relatively higher pattern detection rates. For instance, 

when the threshold value was set to 0.9 while parsing sudo logs, the tool identified in total 20 

templates, where mainly specific patterns were exceeding. In terms of the pattern detection rate, 

with the given threshold value, the tool managed to achieve the rate of 40%. On the other hand, 

by setting the threshold value to 0.5 and 0.7, the author managed to produce outcomes with 60% 

of the pattern detection rate. Overall, these values identified 14 templates, most of which were 

generic patterns.  

In contrast, while parsing su log messages, the above-mentioned threshold values generated 

templates, the pattern detection rates of which had large differences with each other. For example, 

the lowest pattern detection rate was obtained when the author set threshold to be equal to 0.9. 

The tool produced 37 templates, which mainly consisted of the specific patterns. Consequently, it 

got a pattern detection rate of 58.1%. Secondly, when threshold value was set to 0.7, LenMa 
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achieved 66.4% of the pattern detection rate by producing 28 patterns that consisted of slightly 

fewer specific templates. Nevertheless, the outcomes with best pattern detection rates were 

generated when threshold was set to be equal to 0.5. This time, the tool, in total, produced 19 

templates, and by having mainly generic patterns, reached 83% of the pattern detection rate.  

In the final part of the experiments with LenMa, when it was used to parse sshd logs, the 

pattern detection rates of the produced outcomes were high and close to each other when threshold 

values were set to 0.5 and 0.7. In the case of the first value, 0.5, the tool identified 40 templates, 

most of which were generic patterns, thus, leading to the pattern detection rate of 89.9%. The 

second threshold value, 0.7, generated almost similar results – 47 templates with mainly generic 

ones, and reached 84.1% of the pattern detection rate. On the other hand, results decreased 

drastically when the threshold was set to be 0.9. This time, LenMa led to the creation of 63 

templates, where most logs messages were covered by the specific patterns and got a pattern 

detection rate of 49.3%.  

According to the author of LenMa, with the current implementation of the algorithm, it is 

not possible to identify rarely occurring events. In other words, since LenMa is based on the 

statistical analysis results of log messages, it is quite difficult to extract rarely happening log 

messages. 

While parsing the final dataset – suricata dataset, the achieved pattern detection rate by 

LenMa was 0%. 

 threshold = 0.5 threshold = 0.7 threshold = 0.9 

sudo logs 60% (14) 60% (14) 40% (20) 

su logs 83% (19) 66.4% (28) 58.1% (37) 

sshd logs 89.9% (40) 84.1% (47) 49.3% (63) 

suricata logs 0% (197) 0% (203) 0% (241) 

 

Table 8. Quality Test Results and Optimal Input Parameters of LenMa 
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LogCluster 

In terms of the input parameters, overall, the author was changing the values of three input 

options while using LogCluster in the experiments. During the experiments with the datasets sudo, 

su and sshd, the author utilized two input options such as support and wweight, where wweight 

denotes the word weight threshold. On the other hand, he was using rsupport parameter, which 

stands for the relative support, while testing the tool on suricata dataset. When it comes to parse 

rarely occurring log messages in a file, according to the author of LogCluster, it is possible to 

identify rarely occurring events by running the tool on the generated outliers file with lower 

threshold values. In other words, first, the tool will be mining the main file and create cluster of 

first outliers. Then, LogCluster can be used to mine the cluster of first outliers and create cluster 

of second outliers. Based on the need, this process might continue until all possible rarely occurring 

patterns are found. This process is called Iterative Clustering, and this pattern mining technique 

has also been described in a paper that discusses various usage techniques of LogCluster [21]. As 

a result, the author of this thesis decided to run LogCluster on the outliers of sudo, su and sshd 

logs to find out rarely appearing messages. The summary of the quality testing experiments with 

LogCluster can be found in the Tables 9 and 10. 

In the case of sudo log messages, the first input value, that support threshold was set to, 

was 20. In total, LogCluster identified 11 clusters and 88 outliers, where specific patterns were 

dominating among the generated clusters. The produced results obtained 40% of the pattern 

detection rate in total. Almost similar outcomes were achieved when support was set to be equal 

to 40. The number of identified clusters decreased to 8, while outliers remained same, 88, and the 

pattern detection rate of generated clusters was 40% as well. The next two support threshold 

values, which were 60 and 80, produced results with relatively higher pattern detection rates 

compared to the previous two threshold values. In the case of 80, 5 clusters and 35 outliers were 

identified, while in the case of 60, 8 clusters and 22 outliers were generated. In both cases, the 

produced clusters were mainly generic patterns, consequently, leading to the higher pattern 

detection rate of 60%. 

Same support threshold values were also tested while parsing su log messages with 

LogCluster. This time, results with relatively lower pattern detection rates were produced in the 

case of support to be equal to 60 and 80. The number of identified clusters and outliers were same 
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in both cases – 9 clusters and 210 outliers. In terms of the pattern detection rate, these two values 

enabled the tool to reach 41.5% of the pattern detection rate. The quality of generated outcomes 

got improved when the author set support to be 20. The tool identified 25 clusters along with 16 

outliers, where there were many specific patterns among generated templates. Nevertheless, 58.1% 

of the pattern detection rate was managed to be achieved by LogCluster. Finally, the author tested 

the support to be 40. This time, the tool identified 19 clusters, where mainly generic patterns were 

dominating, and 18 outliers. Likewise, the best pattern detection rate was obtained with this 

support value – 66.4%.  

While parsing sshd log messages, two combinations of input parameters were used: 

support threshold only and support threshold along with wweight parameter. The results with 

worst pattern detection rate were produced when support was set to 60. The tool identified 52, 

mainly specific, clusters and 335 outliers, moreover, the obtained pattern detection rate was 20.3%. 

The second support value was 40, where LogCluster identified 53 clusters and 407 outliers. 

Nevertheless, this time, the tool achieved a bit higher pattern detection rate - 29%. Finally, in 

comparison with the previous threshold values, the support value to be 20 produced outcomes with 

relatively higher pattern detection rate – 34.8%. The downside of this support value was that 

overall, 79 clusters, in which specific patterns were mainly noticeable, and 249 outliers were 

identified. As a result, in order to improve the quality of the produced outcomes, the author decided 

to test support value of 20 further with wweight input parameter. First, he set wweight to be equal 

to 0.5. In this case, the tool identified 43 clusters, mostly generic patterns, and 249 outliers. 

Additionally, this time, much higher pattern detection rate was obtained – 43.5%. The pattern 

detection rate of results increased further to 49.3% when the author set wweight to be 0.8. Overall, 

LogCluster identified 39 generic clusters and 249 outliers. 

In order to parse rarely occurring events of sudo dataset, the author executed the tool with 

support to be 5 on the outliers of support threshold 60 and 80 since they previously produced 

comparatively higher quality outcomes. While running the tool with support to be 5 on outliers of 

support 80, the tool identified five new patterns and increased the overall pattern detection rate 

from 60% to 80%. However, in the case of outliers of support 60, there was 40% of an increase, 

in other words, the pattern detection rate of 100% was achieved. 
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To parse rarely occurring events of su log messages, the author executed the tool on the 

outliers of support 40 with lower threshold value of 2. In this case, the tool managed to identify 

five new clusters and increased the overall pattern detection rate by 16.6%, which in total, became 

83%. 

In the case of sshd logs, the author first tested support value of 5 on the outliers of support 

20 and wweight 0.8. LogCluster produced additional 20 clusters and 41 outliers, which led to an 

increase in the pattern detection rate by 20.3%, thus, making it 69.6%. Later, the author tested even 

lower threshold value, which was 2, on the newly generated 41 outliers. This time, the tool 

identified 12 additional clusters, which had a pattern detection rate of 78.3% with the manually 

generated patterns. 

As it was previously mentioned in this thesis paper, only LogCluster managed to produce 

results with higher quality while parsing Suricata IDS alert messages. First, the author tested the 

tool by setting rsupport to be 10, in which, 0% of the pattern detection rate was achieved. Later, 

however, when rsupport was set to be 99, the tool identified one generic cluster to cover all 

Suricata IDS alert messages, thus, managed to obtain a pattern detection rate of 100%. 

 

 rsupport = 

10 

rsupport = 

99 

support = 

20 

support = 

40 

support = 

60 

support = 

80 

support = 20, 

wweight = 0.5 

support = 20, 

wweight = 0.8 

sudo logs   40% (11) 40% (8) 60% (8) 60% (5)   

su logs   58.1% 

(25) 

66.4% 

(19) 

41.5% 

(9) 

41.5% 

(9) 

  

sshd logs   34.8% 

(79) 

29% (53) 20.3% 

(52) 

 43.5% (43) 49.3% (39) 

suricata 

logs 

0% (9) 100% (1)       

 

Table 9. Quality Test Results and Optimal Input Parameters of LogCluster 
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 sudo outliers 

(support 80) 

sudo outliers 

(support 60) 

su outliers 

(support 40) 

sshd outliers (support 20 

and wweight 0.8) 

sshd outliers (support 5 

and wweight 0.8) 

support 2   83% (5)  78.3% (12) 

support 5 80% (5) 100% (4)  69.6% (20)  

 

Table 10. Quality Test Results of Iterative Clustering of LogCluster 

 

3.5.2 Summary of Quality Testing 

 Below in the Table 11, the author provides the summary of best pattern detection rates 

obtained by the log mining algorithms while being tested to parse the quality testing datasets. 

 

 IPLoM Spell Drain3 AEL LogSig Lenma LogCluster 

sudo logs 80% 80% 60% 80% 60% 60% 100% 

su logs 91.3% 91.3% 91.3% 91.3% 66.4% 83% 83% 

sshd logs 84.1% 72.5% 89.9% 89.9% 34.8% 89.9% 78.3% 

suricata logs 0% 0% 0% 0% 0% 0% 100% 

Average Rates 63.85% 60.95% 60.3% 65.3% 40.3% 58.23% 90.33% 

Average Rates 

without 

suricata logs 

85.1% 81.3% 80.4% 87.1% 53.7% 77.6% 87.1% 

 

Table 11. Best Pattern Detection Rates of Each Log Parsing Algorithm During Quality Testing 
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According to the table above, it can be seen that while parsing the suricata dataset, most 

algorithms achieved the pattern detection rate of 0%. This illustrates the fact that it is important to 

design algorithms to detect the patterns, where the number of words in corresponding log messages 

is not necessarily a constant. Likewise, this finding demonstrates that a number of current log 

mining algorithms such as Drain, IPLoM, Lenma and AEL are lacking in this area, and thus, their 

design cannot be regarded suitable for all log types. 

It is also worth to mention that during the quality testing experiments, the author discovered 

that the selection of parameters can have a significant effect on the outcome and using the right 

parameter values can noticeably improve the result. For instance, with some values, the algorithms 

can have lower pattern detection rates, while with other values, better results will be achieved. 

Consequently, in order to be able to use certain log parsing algorithm successfully, engineers must 

have a good understanding of input parameters, which was the case in this thesis paper, where the 

author of the thesis consulted with the authors of the tools to find out optimal input values of 

algorithms. 

Finally, based on the quality testing experiment results, apart from LogSig, all other tested 

algorithms were having a quite good performance on the first three datasets, su, sudo and suricata. 

For example, the difference between the average pattern detection rates of Lenma for the first three 

datasets, that is 77.6%, and AEL or LogCluster, that is about 87%, is nearly 10%. In other words, 

besides the quality testing results of LogSig, the difference between worst and best tools is less 

than 10%. However, according to the paper from University of Hong Kong [8], there were much 

larger differences in the accuracy of produced results of algorithms, for example, for LogCluster 

66.5% and for Drain 86.5%, which is the range covering 20%. This can be explained by the fact 

that not all algorithms were tested with good input settings. Likewise, the input data was 

preprocessed by Hong Kong researchers. To be more specific, IP addresses were replaced by 

special tokens, which, in general, distorts the original log data and might also influence the quality 

of generated results. 

Summary of the main findings obtained as a result of the quality testing experiments: 

• It is important to design log mining algorithms to detect patterns, where the number of 

words in corresponding log messages is not necessarily constant. Hence, log parsing 
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algorithms like Drain, IPLoM, Lenma and AEL, due to their designs, are not suitable for 

all log types. 

• Selection of input values can have significant effect on quality of produced outcome and 

usage of right parameter values can noticeably improve result. 

 

3.5.3 Performance Testing 

IPLoM 

The summary of the performance testing results along with the tested input parameters of 

IPLoM can be found in the Table 12. 

When the author executed IPLoM to parse http-apacheformat.log dataset, mainly, four 

different combinations of input parameters were tested. First, the tool was tested by setting both 

CT and lowerBound to 0.1. As a result, during 27 seconds period of time, 284 templates were 

identified, where the log mining tool consumed 286200 KB of memory and 30.84 of total CPU 

time (kernelCPU 2.05 and userCPU 28.79). The next combination of tested input values, which 

were CT and lowerBound to be equal to 0.3, produced 439 templates within 27 seconds. In terms 

of the memory and CPU time consumption, the tool consumed 286732 KB of memory and 30.43 

of total CPU time (kernelCPU 2.02 and userCPU 28.41). Then, when CT was equal to 0.5 and 

lowerBound was 0.2, IPLoM parsed the logs within 27 seconds and generated 494 templates, 

where it consumed 286756 KB of memory and 30.8 of CPU time (kernelCPU 1.99 and userCPU 

28.81). The tool managed to achieve almost the same results when it was tested with CT to be 1 

and lowerBound to be 1. This time, even though the parsing time was similar – 27 seconds, the 

number of identified templates was 611. Likewise, there was not too much of a difference 

regarding the memory and CPU time consumption, which were 290864 KB of memory and 30.94 

of CPU time (kernelCPU 2.02 and userCPU 28.92). 

IPLoM did not manage to achieve any results while being tested on windows-text.log 

dataset. Additionally, while analyzing the source code of the utilized implementation of IPLoM 

[26], it was found out that the tool requires maxEventLen input option, which was set to 200 by 

default. This parameter denotes the length of the longest log/event, which is used in step 1 of 

original algorithm [5] to split logs into partitions according to their length. By running the tool 
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with the default value of maxEventLen, the author received “list index out of range” error since 

windows-text.log dataset contained long log message lines such as more than 18000 characters. 

As a result, the author changed the value of this parameter to be 30000 during the experiments. It 

worth to note, however, that in order to be able to set the correct value for maxEventLen, security 

engineers need to have a prior knowledge about the parsed log file, which contradicts to the 

assumption of this thesis paper that log mining tools were being tested without any human 

interaction with the tool such as the modification of configurations, etc. In terms of the tested 

parameters, when the author tested the combination of input values such as CT to be 0.5 and 

lowerBound to be 0.2, the tool did not finish parsing the logs in a reasonable amount of time 

(approximately 36 hours). Regarding the other combinations like CT and lowerBound to be 0.3, 

and CT and lowerBound to be 0.1, even though IPLoM could not finalize the parsing process, it 

still identified some number of templates, 2901 and 1991 templates respectively. 

When IPLoM was tested on logsrv.log.2 and xs19-syslog.log datasets with combinations 

of input values of CT=0.3 and lowerBound=0.3, CT = 0.5 and lowerBound = 0.2, and CT = 1 and 

lowerBound = 1, no results were achieved. 

 

 CT = 0.1, lowerBound 

= 0.1 

CT = 0.3, lowerBound 

= 0.3 

CT = 0.5, lowerBound 

= 0.2 

CT = 1, lowerBound 

= 1 

http-apacheformat.log memory 286200 KB, 

CPU Time 30.84 

(kernelCPU 2.05 + 

userCPU 28.79) 

memory 286732 KB,  

CPU Time 30.43 

(kernelCPU 2.02 + 

userCPU 28.41) 

memory 286756 KB, 

CPU Time 30.8 

(kernelCPU 1.99 + 

userCPU 28.81) 

memory 290864 KB, 

CPU Time 30.94 

(kernelCPU 2.02 + 

userCPU 28.92) 

windows-text.log <no results> <no results> <no results>  

logsrv.log.2  <no results> <no results> <no results> 

xs19-syslog.log  <no results> <no results> <no results> 

 

Table 12. Performance Test Results of IPLoM 
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Spell 

During the experiments, when the author tested Spell on the performance testing datasets, 

the tool, except for one case, did not manage to complete parsing process in a reasonable time, 

which was previously decided to be 36 hours (the summary of the performance testing is described 

in the Table 13). 

In general, the tested input values were tau = 1, tau = 0.5 and tau = 0.1. Among these three 

distinct parameters, Spell was able to complete the parsing of only http-apacheformat.log dataset 

when tau was set to be equal to 1. In total, it took 53 minutes and 7 seconds for the tool to complete 

the parsing of the logs, where it identified 17006 templates. In terms of the memory and CPU time 

consumption, Spell consumed the memory of 255896 KB and total CPU time of 3181.6 

(kernelCPU 9.40 and userCPU 3172.20). On other cases, where the tool was tested on windows-

text.log, logsrv.log.2 and xs19-syslog.log datasets, no results were achieved. 

 

 tau = 0.1 tau = 0.5 tau = 1 

http-apacheformat.log <no results> <no results> memory 255896 KB, 

CPU Time 30.94 

(kernelCPU 9.40 + 

userCPU 3172.20) 

windows-text.log <no results> <no results> <no results> 

logsrv.log.2 <no results> <no results> <no results> 

xs19-syslog.log <no results> <no results> <no results> 

 

Table 13. Performance Test Results of Spell 
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Drain3 

While analyzing the source code of Drain3, which was downloaded from the official 

repository [24], the author found out that the given implementation of the tool loads the entire log 

file into the memory before Drain3 starts its work to parse log messages. This means that the 

memory usage of Drain3 reflects the size of the log file, not the memory usage of algorithms' data 

structures. Therefore, the author tested Drain3 on two different scenarios, where in the first case, 

the tool will be loading the entire log file into the memory and then start the parsing process, and 

in the second case, Drain3 will be reading log messages from the datasets line by line and perform 

the mining. The results of the performance testing experiments of Drain3 are described in the 

Table 14 and Table 15.  

 The first pair of input values of Drain3 that the author set to parse http-apacheformat.log 

dataset was st to be equal to 0.3 and depth to be 6. When the tool was executed based on the first 

scenario, overall, it took 2.41 seconds to finalize the parsing of logs and identify 204 clusters, 

moreover, the memory and CPU time consumptions ended up being 49076 KB and 2.65 

(kernelCPU 0.05 and userCPU 2.60) respectively. On the other hand, when the author ran Drain3 

to parse log messages according to the second scenario, 204 clusters were produced within 2.51 

seconds, in which, the tool consumed 20984 KB of memory along with the 2.65 of total CPU time 

(kernelCPU 0.02 and userCPU 2.63). Next, input values of the tool were changed to st to be 0.4 

and depth to be 4. This time, in the first case, the tool completed parsing and identification of 296 

clusters in 2.85 seconds. In addition, Drain3 consumed 48836 KB of memory and 3.07 of CPU 

time (kernelCPU 0.08 and userCPU 2.99). Except for the memory consumption, achieved results 

were almost similar in the second case since within 2.89 seconds, the tool produced 296 clusters, 

where it also consumed 3.03 of CPU time (kernelCPU 0.02 and userCPU 3.01) and 21096 KB of 

memory. Finally, when the author set the value of st to be 0.6 and changed depth to 5, Drain3 

completed parsing of the log messages in 5.57 seconds and generated 785 clusters when it was 

executed in accordance with the first scenario. In terms of the CPU time and memory 

consumptions, the tool consumed 49512 KB of memory and 5.82 of total CPU time (kernelCPU 

0.05 and userCPU 5.77). When the tool was executed based on the second case, overall, it took 

5.49 seconds to finish the mining of logs and produce 785 clusters, in which, the CPU time and 

memory consumptions of Drain3 were 21728 KB and 5.64 (kernelCPU 0.03 and userCPU 5.61) 

respectively. 
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 Even though the total CPU time consumptions of Drain3 while parsing windows-text.log 

dataset in accordance with scenarios 1 and 2 were close to each other, the overall memory 

consumptions were completely different. For instance, in the first scenario, when the input values 

were set to st = 0.3 and depth = 6, the tool identified 1327 clusters in 3 minutes and 46 seconds 

and utilized 3688412 KB of memory and 233.93 of total CPU time (kernelCPU 3.70 and userCPU 

230.23). On the other hand, when the tool was executed by the second scenario, 1327 clusters were 

produced in 3 minutes and 55 seconds, in which, the memory and CPU time consumptions were 

36364 KB and 235.17 (kernelCPU 1.70 and userCPU 233.47) respectively. Secondly, when the 

second combination of input values, st to be 0.4 and depth to be 4, were tested under the first case, 

Drain3 managed to finalize the parsing process within 7 minutes and 3 seconds and generate 1335 

clusters. Furthermore, the associated memory and CPU time consumptions of the tool were 

3689744 KB and 429.95 (kernelCPU 5.70 and userCPU 424.25) respectively. When being tested 

according to the second scenario, it took for the tool to identify 1335 clusters in 6 minutes and 56 

seconds, where Drain3 also used 415.54 of total CPU time (kernelCPU 2.60 and userCPU 412.94) 

and 36544 KB of memory. In approximately 7 minutes and 10 seconds, the tool produced 1653 

clusters when it was executed under the first scenario with input values of st to be equal to 0.6 and 

depth to be 5. Likewise, the total CPU time and memory consumptions utilized during the parsing 

process were 436.98 (kernelCPU 4.83 and userCPU 432.15) and 3691880 KB respectively. In the 

case of second scenario, on the other hand, it took 7 minutes and 15 seconds for Drain3 to complete 

the parsing of logs and produce 1653 clusters. This time, Drain3 utilized 434.65 of total CPU time 

(kernelCPU 2.49 and userCPU 432.16) along with the memory of 38208 KB. 

 When the author executed Drain3 under the first scenario to parse logsrv.log.2 dataset, 

with input values of st to be 0.3 and depth to equal to 6, the tool was running for about an hour 1 

minute and 12 seconds in order to generate 1719 clusters. In addition, along with 3753124 KB of 

memory consumption, the tool utilized 3668.88 of total CPU time (kernelCPU 12.49 and userCPU 

3656.39). Drain3 finalized parsing of logs nearly in 5 hours 37 minutes and 51 seconds and 

produced 4016 clusters when input values were changed to be st = 0.4 and depth = 4. This time, 

the corresponding memory and CPU time consumptions ended up being 3755736 KB and 

20224.06 (kernelCPU 5.76 and userCPU 20218.30) respectively. In the case of final combination 

of input values, st = 0.6 and depth = 5, in total, 40542 clusters were identified within 23 hours and 

17 minutes, where Drain3 used 83606.47 of total CPU time (kernelCPU 128.11 and userCPU 
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83478.36) and 3782560 KB of memory. On the other hand, when Drain3 was tested under the 

second scenario, in the case of input values of st to be 0.3 and depth to be 6, 1719 clusters were 

generated in an hour 4 minutes and 22 seconds, in which, the total CPU time of 3850.86 

(kernelCPU 2.69 and userCPU 3848.17) and memory of 22656 KB were consumed. Then, with 

the second combination of input values of st to be 0.4 and depth to be 4, Drain3 utilized 20323.14 

of total CPU time (kernelCPU 194.74 and userCPU 20128.40) and 24272 KB of memory, likewise, 

generated 4016 clusters within approximately 5 hours 39 minutes and 40 seconds. At the end, when 

the author set the input values st to be equal to 0.6 and depth to be equal to 5, it took about 23 

hours 5 minutes and 3 seconds to produce 40542 clusters. In terms of the overall CPU time and 

memory usages, the obtained results were 82881.63 (kernelCPU 101.82 and userCPU 82779.81) 

and 50304 KB respectively. 

For the final dataset xs19-syslog.log, when Drain3 was executed under the first scenario, 

with input values of st to be 0.3 and depth to be 6, in total, 8347 clusters were identified within 13 

minutes and 46 seconds. The tool consumed 6714168 KB of memory and 837.95 of total CPU 

time (kernelCPU 6.98 and userCPU 830.97). When same combination of input values was tested 

under the second scenario, same number of clusters were produced in 14 minutes and 2 seconds, 

where the memory and CPU time consumptions of Drain3 were 31372 KB and 840.34 (kernelCPU 

2.73 and userCPU 837.61) respectively. With parameter values of st to be equal to 0.4 and depth 

to be 4, in the case of scenario 1, it took 2 hours 34 minutes and 57 seconds for Drain3 to generate 

4962 clusters. Likewise, the memory and CPU time consumptions ended up being 6709604 KB 

and 9282.77 (kernelCPU 10.72 and userCPU 9272.05) respectively. In the case of scenario 2, 

however, 4962 clusters were generated in 2 hours 39 minutes and 4 seconds, in which, the tool 

utilized 9512.93 of CPU time (kernelCPU 6.66 and userCPU 9506.27) and 25952 KB of memory. 

Finally, when the author tested Drain3 with input values of st to be 0.6 and depth to be 5 under 

the first scenario, by consuming 6739196 KB of memory and 4953.48 of CPU time (kernelCPU 

13.11 and userCPU 4940.37), the tool produced 34328 clusters in 1 hour 22 minutes and 33 

seconds. For the scenario 2, Drain3 used 4906.79 of CPU time (kernelCPU 7.50 and userCPU 

4899.29) and 56220 KB of memory, where it identified same number of clusters, 34328, within 1 

hour and 22 minutes. 
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 st = 0.3, depth = 6 st = 0.4, depth = 4 st = 0.6, depth = 5 

http-apacheformat.log memory 49076 KB, 

CPU Time 2.65 

(kernelCPU 0.05 + 

userCPU 2.60) 

memory 48836 KB, 

CPU Time 3.07 

(kernelCPU 0.08 + 

userCPU 2.99) 

memory 49512 KB, 

CPU Time 5.82 

(kernelCPU 0.05 + 

userCPU 5.77) 

windows-text.log memory 3688412 KB,  

CPU Time 233.93 

(kernelCPU 3.70 + 

userCPU 230.23) 

memory 3689744 KB,  

CPU Time 429.95 

(kernelCPU 5.70 + 

userCPU 424.25) 

memory 3691880 KB,  

CPU Time 436.98 

(kernelCPU 4.83 + 

userCPU 432.15) 

logsrv.log.2 memory 3753124 KB,  

CPU Time 3656.39 

(kernelCPU 12.49 + 

userCPU 3656.39) 

memory 3755736 KB,  

CPU Time 20224.06 

(kernelCPU 5.76 + 

userCPU 20218.30) 

memory 3782560 KB,  

CPU Time 83606.47 

(kernelCPU 128.11 + 

userCPU 83478.36) 

xs19-syslog.log memory 6714168 KB,  

CPU Time 837.95 

(kernelCPU 6.98 + 

userCPU 830.97) 

memory 6709604 KB,  

CPU Time 9282.77 

(kernelCPU 10.72 + 

userCPU 9272.05) 

memory 6739196 KB,  

CPU Time 4953.48 

(kernelCPU 13.11 + 

userCPU 4940.37) 

 

Table 14. Performance Test Results of Drain3 when Entire Log File was Loaded into Memory 

(Scenario 1) 

 

 st = 0.3, depth = 6 st = 0.4, depth = 4 st = 0.6, depth = 5 

http-apacheformat.log memory 20984 KB,  

CPU Time 2.65 

(kernelCPU 0.02 + 

userCPU 2.63) 

memory 21096 KB, 

CPU Time 3.03 

(kernelCPU 0.02 + 

userCPU 3.01) 

memory 21728 KB,  

CPU Time 5.64 

(kernelCPU 0.03 + 

userCPU 5.61) 

windows-text.log memory 36364 KB, memory 36544 KB,  memory 38208 KB,  
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CPU Time 235.17 

(kernelCPU 1.70 + 

userCPU 233.47) 

CPU Time 415.54 

(kernelCPU 2.60 + 

userCPU 412.94) 

CPU Time 434.65 

(kernelCPU 2.49 + 

userCPU 432.16) 

logsrv.log.2 memory 22656 KB,  

CPU Time 3850.86 

(kernelCPU 2.69 + 

userCPU 3848.17) 

memory 24272 KB,  

CPU Time 20323.14 

(kernelCPU 194.74 + 

userCPU 20128.40) 

memory 50304 KB,  

CPU Time 82881.63 

(kernelCPU 101.82 + 

userCPU 82779.81) 

xs19-syslog.log memory 31372 KB,  

CPU Time 840.34 

(kernelCPU 2.73 + 

userCPU 837.61) 

memory 25952 KB,  

CPU Time 9512.93 

(kernelCPU 6.66 + 

userCPU 9506.27) 

memory 56220 KB, 

CPU Time 4906.79 

(kernelCPU 7.50 + 

userCPU 4899.29) 

 

Table 15. Performance Test Results of Drain3 when Log Messages were Read Line by Line 

(Scenario 2) 

 

AEL 

The author provides the summary of the performance testing outcomes of AEL, likewise, 

the tested input values in Table 16.  

When AEL was executed to parse http-apacheformat.log dataset, overall, four distinct 

combination of input values were tested. The first combination of input values was mineventcount 

to be 2 and mergepercent to be 0.3. The tool managed to complete the parsing of the logs in 22 

seconds and identified 638 templates. Additionally, the total memory and CPU time consumptions 

were 199852 KB and 25.37 (kernelCPU 1.86 and userCPU 23.51) respectively. Results were 

slightly different when the value of mineventcount remained same, but mergepercent was changed 

to 1. This time, 30 templates were produced within 20 seconds, where AEL consumed 218040 KB 

of memory and 23.61 of total CPU time (kernelCPU 1.86 and userCPU 21.75). When the author 

executed AEL with the third combination of input values, mineventcount to be 10 and 

mergepercent to be 0.3, it took overall 22 seconds for the tool to finalize the parsing of log 

messages and generate 655 templates. Likewise, the memory and CPU time consumptions of the 
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tool were 199880 KB and 25.69 (kernelCPU 1.81 and userCPU 23.88) respectively. Finally, when 

the author changed the value of mergepercent to 0.8 and left mineventcount unchanged, AEL 

finished the parsing of logs in 21 seconds, in which it identified 79 templates. In terms of the 

memory and CPU time consumptions, the results were 217132 KB of memory and 24.15 of CPU 

time (kernelCPU 1.78 and userCPU 22.37). 

Regarding the parsing of windows-text.log, logsrv.log.2 and xs19-syslog.log datasets, 

none of the tested combinations of input values helped AEL to complete the mining of logs within 

the reasonable amount of time, which was 36 hours. 

 

 mineventcount = 2, 

mergepercent = 0.3 

mineventcount = 2, 

mergepercent = 1 

mineventcount = 10, 

mergepercent = 0.3 

mineventcount = 10, 

mergepercent = 0.8 

http-apacheformat.log memory 199852 KB, 

CPU Time 25.37 

(kernelCPU 1.86 + 

userCPU 23.51) 

memory 218040 KB, 

CPU Time 23.61 

(kernelCPU 1.86 + 

userCPU 21.75) 

memory 199880 KB, 

CPU Time 25.69 

(kernelCPU 1.81 + 

userCPU 23.88) 

memory 217132 KB,  

CPU Time 24.15 

(kernelCPU 1.78 + 

userCPU 22.37) 

windows-text.log <no results>  <no results> <no results> 

logsrv.log.2  <no results> <no results> <no results> 

xs19-syslog.log <no results>  <no results> <no results> 

 

Table 16. Performance Test Results of AEL 

 

LogSig 

When LogSig was tested to parse the logs, only in the case of http-apacheformat.log 

dataset, the tool managed to finalize the parsing process. For other three large-sized datasets, 

windows-text.log, logsrv.log.2 and xs19-syslog.log, after certain period of time from the start of 

the execution, the log parsing tool crashed every time on each tested input value. The detailed 
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information about the performance testing results and tested input parameters are provided in the 

Table 17. 

In general, the author tried three or four input values for testing LogSig. First, while parsing 

http-apacheformat.log dataset, he set groupNum parameter to be equal to 30, where LogSig 

identified 31 templates in about 16 minutes and 10 seconds. For this case, the tool consumed 

669892 KB of memory and 970.96 of total CPU time (kernelCPU 2.39 and userCPU 968.57). The 

secondly tested input value was groupNum to be 20, in which, within roughly 9 minutes and 37 

seconds, the tool finished the parsing process and generated 21 templates. In total, the memory 

consumption was 664644 KB, and total CPU time was 579.58 (kernelCPU 2.47 and userCPU 

577.11). When groupNum was set to be 10, it took 4 minutes and 28 seconds for LogSig to 

complete the parsing and produce 11 identified templates, where the tool consumed 660064 KB of 

memory and 271.38 of total CPU time (kernelCPU 2.58 and userCPU 268.80). Finally, when the 

author set the value of groupNum to be 5, overall, 6 templates were identified within 3 minutes 

and 11 seconds. This time, the memory and total CPU time consumptions of LogSig were 649852 

KB and 194.37 (kernelCPU 2.56 and userCPU 191.81) respectively. 

When being tested on windows-text.log dataset, regardless of the tested input values such 

as groupNum=30, groupNum=20 or groupNum=10, LogSig crashed every time. The primary 

reason for this was that in each case, the memory consumption of the tool reached the maximum 

available memory on the machine. In the case of groupNum to be 30, the tool crashed after 

consuming 64738668 KB of memory and 1028.39 of total CPU time (kernelCPU 103.26 and 

userCPU 925.13). On the other hand, when groupNum was set to be 20, the tool crashed after 

64730832 KB of memory and 1039.19 of CPU time (kernelCPU 117.44 and userCPU 921.75) 

consumptions. Finally, when the author set groupNum to be 10, after using memory of 64728916 

KB and CPU time of 1086.95 (kernelCPU 158.84 and userCPU 928.11), LogSig crashed. 

As it was stated above, after certain period of time from the start of the execution, LogSig 

crashed on each tested input value while parsing logsrv.log.2 dataset as well. The reason was same 

as in the case of windows-text.log dataset, in other words, the tool crashed due to consuming the 

maximum available memory on the experiment server. For instance, when groupNum was set to 

30, LogSig crashed after consuming 64766840 KB of memory and 93342.24 of total CPU time 

(kernelCPU 413.60 and userCPU 92928.64). When groupNum was set to 20, the tool crashed 
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when it utilized the memory of 64763224 KB and CPU time of 92811.54 (kernelCPU 482.13 and 

userCPU 92329.41). Finally, when the author changed the value of groupNum to 10, the overall 

memory and CPU time consumptions were 64804468 KB and 93472.53 (kernelCPU 570.63 and 

userCPU 92901.90) respectively, in which, LogSig crashed one more time. 

Similarly, as in the case of other large-sized datasets, while parsing xs19-syslog.log, 

LogSig crashed in each tested input value. For instance, with groupNum to be equal to 30, after 

consuming the memory of 64792384 KB and CPU time of 4767.77 (kernelCPU 293.88 and 

userCPU 4473.89), the tool crashed. For groupNum value of 20, LogSig crashed after utilizing 

64804288 KB of memory and 4691.51 of total CPU time (kernelCPU 272.06 and userCPU 

4419.45). The last tested input value was groupNum to be equal to 10, in which, after the 

consumption of 64785508 KB of memory and 4662.98 of total CPU time (kernelCPU 229.19 and 

userCPU 4433.79), LogSig crashed. 

 groupNum = 5 groupNum = 10 groupNum = 20 groupNum = 30 

http-apacheformat.log memory 649852 KB, 

CPU Time 194.37 

(kernelCPU 2.56 + 

userCPU 191.81) 

memory 660064 KB, 

CPU Time 271.38 

(kernelCPU 2.58 + 

userCPU 268.80) 

memory 664644 KB, 

CPU Time 579.58 

(kernelCPU 2.47 + 

userCPU 577.11) 

memory 669892 KB,  

CPU Time 970.96 

(kernelCPU 2.39 + 

userCPU 968.57) 

windows-text.log  <tool crashed> 

memory 64728916 

KB, CPU Time 

1086.95  

(kernelCPU 158.84 + 

userCPU 928.11) 

<tool crashed> 

memory 64730832 

KB, CPU Time 

1039.19  

(kernelCPU 117.44 + 

userCPU 921.75) 

<tool crashed> 

memory 64738668   

KB, CPU Time  

1028.39  

(kernelCPU 103.26 + 

userCPU 925.13) 

logsrv.log.2  <tool crashed> 

memory 64804468 

KB, CPU Time 

93472.53 

(kernelCPU 570.63 + 

userCPU 92901.90) 

<tool crashed> 

memory 64763224 

KB, CPU Time 

92811.54  

(kernelCPU 482.13 + 

userCPU 92329.41) 

<tool crashed> 

memory 64766840   

KB, CPU Time 

93342.24  

(kernelCPU 413.60 + 

userCPU 92928.64) 
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xs19-syslog.log  <tool crashed> 

memory 64785508 

KB, CPU Time 

4662.98 

(kernelCPU 229.19 + 

userCPU 4433.79) 

<tool crashed> 

memory 64804288 

KB, CPU Time 

4691.51 

(kernelCPU 272.06 + 

userCPU 4419.45) 

<tool crashed> 

memory 64792384   

KB, CPU Time  

4767.77 

(kernelCPU 293.88 + 

userCPU 4473.89) 

 

Table 17. Performance Test Results of LogSig 

 

LenMa 

In the Table 18, along with the performance testing results of LenMa, the author also 

provided the tested input values during the experiments. 

In order to parse http-apacheformat.log dataset with LenMa, the first tested value of input 

parameter threshold was set to 0.1, in which, it took 2 minutes and 20 seconds to complete parsing 

of logs and produce 426 templates. Furthermore, the tool consumed 174308 KB of memory and 

145.99 of total CPU time (kernelCPU 3.24 and userCPU 142.75). Results were almost identical 

when threshold value was set to 0.5. This time, within 2 minutes and 49 seconds, LenMa finalized 

mining of logs and identified 434 templates. In terms of the memory and CPU time consumptions, 

the tool used 173896 KB of memory and 174.99 of CPU time (kernelCPU 3.25 and userCPU 

171.74). Comparatively worse results were achieved when threshold was equal to 1, where, in 

total, 4639 templates were generated for 5 hours 51 minutes and 4 seconds. Additionally, even 

though, the utilized memory was similar to previous outcomes, which was 173912 KB of memory, 

the overall CPU time consumption was 20980.8 (kernelCPU 15.05 and userCPU 20965.75). 

In the case of windows-text.log dataset, LenMa managed to produce results within 

reasonable time when threshold value was set to 0.1 and 0.5. For threshold to be equal to 1, no 

outcomes were obtained. Overall, it took for the tool 2 hours and 44 minutes to parse the logs when 

threshold was 0.1 and identify 910 templates, where the memory and total CPU time consumptions 

were 8296304 KB and 9806.97 (kernelCPU 16.88 and userCPU 9790.09) respectively. On the 

other hand, with the threshold value of 0.5, LenMa finalized parsing in 3 hours 54 minutes and 
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18 seconds by producing 1051 templates. This time, the total consumed memory was 8296064 

KB, and CPU time was 14005.13 (kernelCPU 16.78 and userCPU 13988.35). 

Regardless of the tested threshold values, LenMa did not manage to parse the logs in 

reasonable timeframe (nearly 36 hours) while parsing logsrv.log.2 and xs19-syslog.log datasets. 

 threshold = 0.1 threshold = 0.5 threshold = 1 

http-apacheformat.log memory 174308 KB,  

CPU Time 145.99 

(kernelCPU 3.24 + 

userCPU 142.75) 

memory 173896 KB,  

CPU Time 174.99 

(kernelCPU 3.25 + 

userCPU 171.74) 

memory 173912 KB,  

CPU Time 20980.8 

(kernelCPU 15.05 + 

userCPU 20965.75) 

windows-text.log memory 8296304 KB, 

CPU Time 9806.97 

(kernelCPU 16.88 + 

userCPU 9790.09) 

memory 8296064 KB, 

CPU Time 14005.13 

(kernelCPU 16.78 + 

userCPU 13988.35) 

<no results> 

logsrv.log.2 <no results> <no results> <no results> 

xs19-syslog.log <no results> <no results> <no results> 

 

Table 18. Performance Test Results of LenMa 

 

LogCluster 

While testing LogCluster on the performance testing datasets, two different scenarios were 

utilized. The first scenario was to conduct experiments with --wsize=100000 option, which would 

make an extra pass over the entire logfile for memory saving purposes. While this option would 

allow to save significant amounts of memory, since the experiment server had more than enough 

memory for successful completion of all experiments, the second scenario was realized as well, 

where the author omitted --wsize option while running the tool, which also helped to save a lot of 

CPU time. The summary of the performance testing experiments with LogCluster can be found in 

the Tables 19 and 20. 
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In the case of http-apacheformat.log dataset, first, the author set rsupport threshold value 

to be equal to 0.1. With wsize option being enabled, the tool identified 152 clusters within 7 

seconds, where it consumed 33741 KB of memory along with 7.7 of total CPU time (kernelCPU 

0.05 and userCPU 7.65). On the other hand, when wsize parameter was missing, LogCluster 

identified 152 clusters in 4 seconds by consuming 39016 KB of memory and 3.99 of CPU time 

(kernelCPU 0.02 and userCPU 3.97). Next, the rsupport value was changed to 0.5, where 

LogCluster produced 35 clusters in 8 seconds with wsize parameter. Overall, the memory and CPU 

time consumptions ended up being 21609 KB and 7.6 (kernelCPU 0.04 and userCPU 7.56) 

respectively. However, without wsize option, 35 clusters were produced within 3 seconds, in 

which, the memory and CPU time consumptions of LogCluster were 34152 KB and 3.94 

(kernelCPU 0.03 and userCPU 3.91) respectively. Finally, when the author set the value of 

rsupport to be 1, in the case of enabled wsize parameter, in total, it took for the tool around 7 

seconds to complete the parsing and identify 16 clusters, where LogCluster consumed 19213 KB 

of memory and 7.49 of total CPU time (kernelCPU 0.03 and userCPU 7.46). On the other hand, 

parsing and identification of 16 clusters were completed in 4 seconds with 34084 KB of memory 

and 3.82 of CPU time (kernelCPU 0.04 and userCPU 3.78) consumptions, when wsize was 

omitted. 

The memory and total CPU time consumptions of LogCluster were 2626989 KB and 

1283.24 (kernelCPU 5.64 and userCPU 1277.6) respectively when the author used wsize option 

and set rsupport to be 0.1 while parsing windows-text.log dataset. Likewise, the tool managed to 

complete the parsing process in 21 minutes and 29 seconds, in which it identified 98 clusters. 

However, when wsize was omitted, there were significant improvements in the performance of the 

tool, in other words, it generated 99 clusters in 12 minutes and 40 seconds by consuming 2800664 

KB of memory and 758.42 of CPU time (kernelCPU 5.90 and userCPU 752.52). The second tested 

value of rsupport was 0.5. This time, in the case of wsize being utilized, the tool generated 43 

clusters in 21 minutes and 19 seconds, where it consumed 764704 KB of memory and 1279.37 of 

CPU time (kernelCPU 5.44 and userCPU 1273.93). Again, the overall time taken to parse the logs 

and identify 43 clusters was much lower, 12 minutes and 43 seconds, when wsize was not used. 

Furthermore, the memory and CPU time consumptions of the tool were 947672 KB and 761.28 

(kernelCPU 3.31 and userCPU 757.97) respectively. As a final input value, the author set rsupport 

to be 1, where along with wsize option being enabled, it took 21 minutes and 12 seconds for 
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LogCluster to produce 21 clusters. In terms of the memory and CPU time consumptions, the results 

were 675456 KB and 1262.13 (kernelCPU 4.50 and userCPU 1257.63) respectively. On the other 

hand, when wsize was disabled, LogClusters consumed 863828 KB of memory and 739.22 of CPU 

time (kernelCPU 4.08 and userCPU 735.14), likewise, completed the parsing process in 12 minutes 

and 27 seconds by identifying 21 clusters. 

With wsize being enabled and rsupport to be 0.1, in total, it took 22 minutes and 40 seconds 

for LogCluster to complete the parsing of logsrv.log.2 dataset, as a result of which, the tool 

generated 196 clusters. Moreover, the tool consumed 165116 KB of memory and 1368.88 of CPU 

time (kernelCPU 4.12 and userCPU 1364.76). When the author changed the value of rsupport to 

0.5, the log parsing tool managed to finalize the mining of logs in 22 minutes and 19 seconds, 

where 20 clusters were identified. In terms of the memory and CPU time consumptions, the 

achieved results were 64193 KB and 1351.79 (kernelCPU 4.89 and userCPU 1346.9) respectively. 

For the final input value of rsupport to be 1, LogCluster produced 3 clusters within 22 minutes 

and 18 seconds, where it consumed 32676 KB of memory and 1330.16 of total CPU time 

(kernelCPU 4.43 and userCPU 1325.73). In contrast, when wsize was omitted, for rsupport to be 

0.1, it took for the tool 11 minutes and 40 seconds to identify 196 clusters, in which, it utilized 

1957376 KB of memory and 698.65 of total CPU time (kernelCPU 5.53 and userCPU 693.12). 

For rsupport value of 0.5, LogCluster finished the parsing of logs in 11 minutes and 24 seconds 

and produced 20 clusters. Additionally, 1956760 KB of memory and 681.92 of CPU time 

(kernelCPU 6.39 and userCPU 675.53) were used during the parsing. The tool identified 3 clusters 

within 11 minutes and 8 seconds when rsupport was set to 1, where the memory and CPU time 

consumptions were 1956788 KB and 666.51 (kernelCPU 4.88 and userCPU 661.63) respectively. 

For the final dataset, xs19-syslog.log, with rsupport value of 0.1 and wsize parameter being 

enabled during the execution, by consuming 76088 KB of memory and 1872.55 of CPU time 

(kernelCPU 7.38 and userCPU 1865.17), LogCluster identified 295 clusters in 31 minutes and 18 

seconds. When wsize was omitted, the tool produced same number of clusters in 16 minutes and 

35 seconds, where the memory and CPU time consumptions were 5704668 KB and 992.71 

(kernelCPU 8.99 and userCPU 983.72) respectively. When LogCluster was tested with rsupport 

value of 0.5, in the case of wsize parameter being enabled, the tool produced 31 clusters within 31 

minutes and 10 seconds, likewise, it utilized 1863.9 of CPU time (kernelCPU 7.32 and userCPU 

1856.58) and 33428 KB of memory. On the other hand, with wsize being disabled, it took 16 
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minutes and 11 seconds for the tool to generate 31 clusters, in which, it used the memory of 

5704612 KB and CPU time of 969.04 (kernelCPU 8.92 and userCPU 960.12). The last tested value 

of rsupport was equal to 1. LogCluster consumed 29036 KB of memory and 1831.58 of total CPU 

time (kernelCPU 7.53 and userCPU 1824.05) to identify 17 clusters in 30 minutes and 36 seconds 

when it was executed with wsize option being enabled. When the author disabled the given option, 

same number of clusters, 17, were produced within 15 minutes and 56 seconds, where the tool 

utilized 953.28 of CPU time (kernelCPU 9.23 and userCPU 944.05) and the memory of 5704588 

KB.  

 rsupport=0.1 rsupport=0.5 rsupport=1 

http-apacheformat.log memory 33741 KB,  

CPU Time 7.7 

(kernelCPU 0.05 + 

userCPU 7.65) 

memory 21609 KB,  

CPU Time 7.6 

(kernelCPU 0.04 + 

userCPU 7.56) 

memory 19213 KB,  

CPU Time 7.49 

(kernelCPU 0.03 + 

userCPU 7.46) 

windows-text.log memory 2626989 KB, 

CPU Time 1283.24 

(kernelCPU 5.64 + 

userCPU 1277.6) 

memory 764704 KB,  

CPU Time 1279.37 

(kernelCPU 5.44 + 

userCPU 1273.93) 

memory 675456 KB,  

CPU Time 1262.13 

(kernelCPU 4.50 + 

userCPU 1257.63) 

logsrv.log.2 memory 165116 KB, 

CPU Time 1368.88 

(kernelCPU 4.12 + 

userCPU 1364.76) 

memory 64193 KB,  

CPU Time 1351.79 

(kernelCPU 4.89 + 

userCPU 1346.9) 

memory 32676 KB,  

CPU Time 1330.16 

(kernelCPU 4.43 + 

userCPU 1325.73) 

xs19-syslog.log memory 76088 KB,  

CPU Time 1872.55 

(kernelCPU 7.38 + 

userCPU 1865.17) 

memory 33428 KB,  

CPU Time 1863.9 

(kernelCPU 7.32 + 

userCPU 1856.58) 

memory 29036 KB,  

CPU Time 1831.58 

(kernelCPU 7.53 + 

userCPU 1824.05) 

 

Table 19. Performance Test Results of LogCluster with wsize parameter 
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 rsupport=0.1 rsupport=0.5 rsupport=1 

http-apacheformat.log memory 39016 KB,  

CPU Time 3.99 

(kernelCPU 0.02 + 

userCPU 3.97) 

memory 34152 KB,  

CPU Time 3.94 

(kernelCPU 0.03 + 

userCPU 3.91) 

memory 34084 KB,  

CPU Time 3.82 

(kernelCPU 0.04 + 

userCPU 3.78) 

windows-text.log memory 2800664 KB, 

CPU Time 758.42  

(kernelCPU 5.90 + 

userCPU 752.52) 

memory 947672 KB,   

CPU Time 761.28 

(kernelCPU 3.31 + 

userCPU 757.97) 

memory 863828 KB, 

CPU Time 739.22 

(kernelCPU 4.08 + 

userCPU 735.14) 

logsrv.log.2 memory 1957376 KB, 

CPU Time 698.65 

(kernelCPU 5.53 + 

userCPU 693.12) 

memory 1956760 KB,  

CPU Time 681.92 

(kernelCPU 6.39 + 

userCPU 675.53) 

memory 1956788 KB,  

CPU Time 666.51 

(kernelCPU 4.88 + 

userCPU 661.63) 

xs19-syslog.log memory 5704668 KB,  

CPU Time 992.71 

(kernelCPU 8.99 + 

userCPU 983.72) 

memory 5704612 KB,  

CPU Time 969.04 

(kernelCPU 8.92 + 

userCPU 960.12) 

memory 5704588 KB,  

CPU Time 953.28 

(kernelCPU 9.23 + 

userCPU 944.05) 

 

Table 20. Performance Test Results of LogCluster without wsize parameter 

 

3.5.4 Summary of Performance Testing 

In this subchapter, the author tested the log mining algorithms with various input values on 

different datasets in order to find out the efficiency of the given algorithms. Depending on the size 

of the dataset, some algorithms managed to complete the parsing successfully, while others failed 

to parse the log messages within a reasonable amount of time, which was 36 hours. Additionally, 

there were cases when a particular tool crashed while mining the logs. 

According to the results of performance testing experiments, one important finding is that 

many algorithms required too much CPU time when processing larger datasets, however, they still 
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were not able to complete the parsing within 36 hours. LogSig, AEL, Spell and IPLoM can be 

examples of such algorithms. On the other hand, in the paper from University of Honk Kong [8], 

while measuring the efficiency of log mining algorithms, where the efficiency was defined as the 

running time of an algorithm required to finalize the parsing process, the authors claimed that 

IPLoM had a better efficiency, which scaled linearly with the log file size. To be more specific, a 

log file, which has a size of 1 GB, can be parsed by IPLoM within 10 minutes. Likewise, except 

for BGL data, AEL was also reported to achieve higher efficiency during the experiments. 

The second important finding is that many tools consumed too much memory and even 

crashed during the parsing process. Even though in the research paper [8], it was stated that their 

experiments were conducted on a server with 62GB of memory, which is almost similar to the one 

utilized in this thesis, the authors did not perform any memory usage analysis of log mining 

algorithms. However, with a similarly equipped server, it is highly probable that certain log parsing 

algorithms will crash, if the experiments are conducted with real-life larger datasets. 

 Finally, in terms of total CPU time, some algorithms were obviously faster than the others 

while parsing the log files. For instance, the two fastest algorithms were Drain3 and LogCluster. 

In contrast, for other algorithms, either it took too long to complete the parsing, or the algorithm 

did not manage to complete the mining of log messages at all. 

When comparing Drain3 and LogCluster side by side, it can be observed that Drain3 is 

much more sensitive to input parameter settings on large log files. For example, for xs19-

syslog.log dataset, the CPU time consumption ranged from 837.95 to 9282.77 seconds, and for 

logsrv.2.log dataset from 3656.93 to 82606.47 seconds (see Table 14). In contrast, LogCluster 

was much more stable in terms of consumed CPU time, spending from 953.29 to 992.71 seconds 

on xs19-syslog.log dataset, and from 666.51 to 698.65 seconds on logsrv.2.log dataset (see Table 

20). 

Summary of the main findings obtained as a result of the performance testing experiments: 

• Many algorithms required too much CPU time when processing larger datasets, however, 

they still were not able to complete the parsing within 36 hours. 

• Many algorithms consumed too much memory and even crashed during parsing process. 
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• Two log mining algorithms, specifically Drain3 and LogCluster, outperformed other tested 

algorithms in terms of total CPU time, in other words, completed parsing of logs faster than 

others. 
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Chapter 4. Conclusion 

Over the last couple years, many researchers have been working to find solutions for the 

challenges related to log mining process and the associated log parsing algorithms. In addition, 

there have been many studies, the main focus of which were the comparison of these log 

mining/parsing algorithms with each other to find out the most effective ones that were also 

producing much more accurate outputs. However, after analyzing the past academic research 

documents related to the automatic log parsing algorithms and their comparisons, the author of the 

thesis found out that these studies have serious drawbacks in their analysis such as:  

• Too little attention was paid to efficiency, in which processing speed of log mining 

algorithms would be compared to each other to find out how much CPU time and memory 

resources they consume.  

• Many of these research studies did not measure the quality of produced output at all.  

• The research studies, which measured the quality and performance of log parsing 

algorithms, missed some important aspects in their papers. For instance, the study [8] did 

not measure the memory consumption of algorithms, which plays a crucial role in real-life 

log parsing scenarios.  

• The studies, which measured the quality and performance of log mining tools, utilized bad 

input parameter settings, which renders conducted experiments unfair. 

• The datasets used during the quality and performance testing experiments, were 

preprocessed, which is not a realistic log file analysis scenario and is also distorting the 

performance results. 

 

Eventually, the concentration area of this thesis was the comparative analysis of log parsing 

algorithms and measurement of their efficiency and pattern detection rates. In other words, the 

primary contribution of this thesis was conducting fair and clear experiments in order to address 

the above-mentioned drawbacks.  

As it was stated earlier in the thesis, one of the key factors, which makes this thesis different 

than other studies, is that while executing the log mining algorithms to parse the log messages, the 

author of the thesis consulted with the authors of the tested log parsing algorithms to find out their 
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optimal input values that would enable the algorithms to identify rarely occurring log lines, thus, 

generate output with much higher quality in a more efficient way. Compared to other similar 

research studies, another main distinction in this thesis paper is the analysis of the memory 

consumption of log parsing algorithms during the performance testing experiments. 

Overall, the author conducted experiments consisting of two scenarios, where he compared 

the log mining algorithms with each other.  

In the case of first scenario, he measured and compared the pattern detection rates of log 

mining algorithms while parsing the quality testing datasets. While, in general, the algorithms 

achieved relatively high-quality results, for most algorithms, the incapability to parse the rarely 

occurring log messages, likewise, the issues related to the design and implementation of the 

algorithm affected the quality of produced outputs by decreasing the total pattern detection rates. 

The main findings that the author obtained from the quality testing experiments are: 

• It is important to design log mining algorithms to detect patterns, where the number of 

words in corresponding log messages is not necessarily constant. Thus, log parsing 

algorithms like Drain, IPLoM, Lenma and AEL, due to their designs, are not suitable for 

all log types. 

• Selection of input values can have significant effect on quality of produced outcome and 

usage of right parameter values can noticeably improve result. 

 

For the second scenario, the author executed the log parsing algorithms to parse the 

performance testing datasets, where he measured the memory and total CPU time consumptions 

of a particular algorithm. Depending on the tested input values and the size of the performance 

testing dataset, while some algorithms successfully finalized the parsing process in a reasonable 

amount of time, 36 hours, others either failed to parse or even crashed during the process. 

Additionally, the efficiency of tested log mining algorithms varied a lot since some of them 

consumed a lot of memory and CPU time resources to complete the mining of logs, while others 

accomplished the task in a much more efficient way by consuming less resources. 

In terms of the most important findings obtained as a result of the performance testing 

experiments, the author provided the following points: 
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• Many algorithms required too much CPU time when processing larger datasets, however, 

they still were not able to complete the parsing within 36 hours. 

• Many algorithms consumed too much memory and even crashed during parsing process. 

• Two log mining algorithms, specifically Drain3 and LogCluster, outperformed other tested 

algorithms in terms of total CPU time, in other words, completed parsing of logs faster than 

others. However, in comparison with the LogCluster, Drain3 is much more sensitive to 

input parameter settings on larger log files since it consumed significantly more CPU time 

in a number of cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



71 

 

References 

[1] Harjunkoski I., Isaksson A. J., Sand G., “The impact of digitalization on the future control and 

operations”, Computer & Chemical Engineering, 114, p. 122 - 129, 2018. 

[2] P. He, J. Zhu, Z. Zheng and M. R. Lyu, "Drain: An Online Log Parsing Approach with Fixed 

Depth Tree," 2017 IEEE International Conference on Web Services (ICWS), pp. 33-40, 2017. 

[3] Tang, Liang & Li, Tao & Perng, Chang-Shing, “LogSig: Generating system events from raw 

textual logs”, pp. 785-794, 2011. 

[4] R. Vaarandi and M. Pihelgas, "LogCluster - A data clustering and pattern mining algorithm for 

event logs," 2015 11th International Conference on Network and Service Management (CNSM), 

pp. 1-7, 2015. 

[5] Adetokunbo A.O. Makanju, A. Nur Zincir-Heywood, and Evangelos E. Milios., “Clustering 

event logs using iterative partitioning,” In Proceedings of the 15th ACM SIGKDD international 

conference on Knowledge discovery and data mining (KDD '09), New York, NY, USA, pp. 1255–

1264, 2009. 

[6] J. Stearley, "Towards informatic analysis of syslogs," 2004 IEEE International Conference on 

Cluster Computing (IEEE Cat. No.04EX935), pp. 309-318, 2004. 

[7] Vaarandi, Risto, “Mining event logs with SLCT and LogHound”, pp. 1071 – 1074, 2008.  

[8] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, and Michael R. Lyu., 

“Tools and benchmarks for automated log parsing.”, In Proceedings of the 41st International 

Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP '19), IEEE 

Press, pp. 121–130, 2019. 

[9] Q. Fu, J. Lou, Y. Wang and J. Li, "Execution Anomaly Detection in Distributed Systems 

through Unstructured Log Analysis," 2009 Ninth IEEE International Conference on Data Mining, 

pp. 149-158, 2009. 

[10] M. Du and F. Li, "Spell: Streaming Parsing of System Event Logs," 2016 IEEE 16th 

International Conference on Data Mining (ICDM), pp. 859-864, 2016. 

[11] Jiawei Han, Jian Pei, and Yiwen Yin, “Mining frequent patterns without candidate 

generation”, SIGMOD Rec. 29, 2 (June 2000), pp. 1–12, 2000. 



72 

 

[12] M. Mizutani, "Incremental Mining of System Log Format," 2013 IEEE International 

Conference on Services Computing, pp. 595-602, 2013. 

[13] Z. M. Jiang, A. E. Hassan, P. Flora and G Hamann, “Abstracting Execution Logs to Execution 

Events for Enterprise Applications”, September 2008. 

[14] Vaarandi, Risto. “A data clustering algorithm for mining patterns from event 

logs.”, Proceedings of the 3rd IEEE Workshop on IP Operations & Management (IPOM 2003), 

119-126, 2003. 

[15] Liang Tang, Tao Li, and Chang-Shing Perng, “LogSig: generating system events from raw 

textual logs.”, In Proceedings of the 20th ACM international conference on Information and 

knowledge management, Association for Computing Machinery, New York, NY, USA, 785–794, 

2011. 

[16] Shima, Keiichi, “Length Matters: Clustering System Log Messages using Length of Words”, 

2016. 

[17] Diana El-Masri, Fabio Petrillo, Yann-Gaël Guéhéneuc, Abdelwahab Hamou-Lhadj, Anas 

Bouziane, “A systematic literature review on automated log abstraction techniques”, Information 

and Software Technology, Volume 122, 2020. 

[18] Landauer, Max & Skopik, Florian & Wurzenberger, Markus & Rauber, Andreas, “System Log 

Clustering Approaches for Cyber Security Applications: A Survey.”, Computers & Security, 2020. 

[19] Pihelgas, Mauno, “Automating Defences against Cyber Operations in Computer Networks.”, 

Tallinn University of Technology (TalTech), 2021.  

[20] GNU Time utility, Available Online: https://www.gnu.org/software/time/ 

[21] Risto Vaarandi, Markus Kont, and Mauno Pihelgas, “Event log analysis with the LogCluster 

tool”, MILCOM 2016 - 2016 IEEE Military Communications Conference, pp. 982 – 987, 2016. 

[22] Vaarandi, Risto. “A Breadth-First Algorithm for Mining Frequent Patterns from Event 

Logs.”, INTELLCOMM, 2004. 

[23] J. Stearley, "Towards informatic analysis of syslogs," 2004 IEEE International Conference on 

Cluster Computing, pp. 309-318, 2004. 

[24] Drain3, Available Online: https://github.com/IBM/Drain3  



73 

 

[25] LogCluster, Available Online: https://github.com/ristov/logcluster  

[26] IPLoM, Available Online: https://github.com/logpai/logparser/tree/master/logparser/IPLoM 

[27] Spell, Available Online: https://github.com/logpai/logparser/tree/master/logparser/Spell  

[28] AEL, Available Online: https://github.com/logpai/logparser/tree/master/logparser/AEL  

[29] LogSig, Available Online: https://github.com/logpai/logparser/tree/master/logparser/LogSig  

[30] LenMa, Available Online: https://github.com/logpai/logparser/tree/master/logparser/LenMa  

[31] Rafael Copstein, Jeff Schwartzentruber, Nur Zincir-Heywood, and Malcolm Heywood, “Log 

Abstraction for Information Security: Heuristics and Reproducibility”, the 16th International 

Conference on Availability, Article 93, p. 1 – 10, 2021. 


