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PREFACE 

This thesis explores the possible gains in efficiency provided by a control algorithm which 

dynamically adjusts the power being delivered to gimbal motors using position error as 

an input. All work was performed for the department of mechatronics at the Tallinn 

University of Technology in Tallinn, Estonia under the guidance of Professor Mart Tamre. 

I would like to express my gratitude to Professor Tamre for allowing me the opportunity 

to attend university in Estonia, as well as Dhanushka Liyanage for his invaluable 

suggestions over the last two years.  

I would also like to thank my family for their support and understanding during this 

process, as well as George Timbianakis for helping motivate me when things didn’t go 

as planned along the way. 

 

Keywords: Dynamic Power Control, Stabilized Gimbal, Master Thesis 

 

 

Selles lõputöös uuritakse juhtimisalgoritmi abil saadavat efektiivsuse võimalikku 

suurenemist, mis dünaamiliselt reguleerib jõuaalmootoritele tarnitavat võimsust, 

kasutades sisendina positsiooniviga. Kõik tööd tehti Tallinnas Tallinna Tehnikaülikooli 

mehhatroonika osakonnas professor Mart Tamre juhendamisel. 

Tahaksin tänada professor Tamret selle eest, et ta andis mulle võimaluse Eestis ülikoolis 

käia, samuti Dhanushka Liyanage'ile viimase kahe aasta hindamatute ettepanekute 

eest. 

Samuti soovin tänada oma perekonda toetuse ja mõistmise eest selle protsessi ajal ning 

George Timbianakist, kes aitasid mind motiveerida, kui asjad ei läinud plaanipäraselt. 

 

Märksõnad: Dünaamiline Võimsuse Juhtimine, Stabiliseeritud Gimbal, Magistritöö 
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List of abbreviations and symbols 

API Application Program Interface 

DC Direct Current 

DOF Degrees of Freedom 

GSD Ground Sampling Distance 

IMU Inertial Measurement Unit 

INS Inertial Navigation System 
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RX Receive 

TX Transmit 
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VTOL Vertical Takeoff and Landing 
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1 INTRODUCTION 

Aerial imaging with Unmanned Aerial Vehicles (UAV) is possible with many camera 

configurations. Hyperspectral pushbroom cameras are a powerful tool for collecting data 

across a wide electromagnetic spectrum. As these cameras have become more 

lightweight and UAV payloads have increased, combining the two technologies has 

yielded a low-cost and accessible imaging systems. Such systems are often used for 

aerial mapping but can also assist in infrastructure inspection [1][2] and environmental 

monitoring [3]. 

UAV imaging systems provide an alternative to larger, more expensive, imaging 

systems, but at the tradeoff of more disturbances which affect image quality. Therefore, 

the imaging system must be stabilized against disturbances and vibrations of the UAV 

[4][5]. A 2 or 3-axis gimbal utilizes an IMU to estimate inertial changes and a control 

scheme to compensate for these changes before they can affect the image quality. 

However, a more stable system typically requires more power, resulting in faster battery 

drain and reduced flight time. 

UAVs are broadly classified as either fixed-wing or rotating-wing (helicopter and 

multirotor) craft. Fixed-wing UAVs generally offer longer flight endurance, higher 

maximum speed, and more stable data collection than multirotor UAVs. Multirotor UAVs, 

however, are capable of Vertical Takeoff and Landing (VTOL) and can operate in more 

confined locations [3]. However, hybrid UAVs having the capability of both VTOL and 

fixed wing flight have recently been developed. 

Pushbroom cameras typically offer a good combination of spatial and spectral resolution. 

They are typically more stable than whiskbroom sensors and offer a greater spectral 

resolution. Pushbroom cameras are also typically smaller than framing and windowing 

devices and are therefore a better choice for lightweight UAV applications. In pushbroom 

cameras, a sensor row tangent to the flight path of the drone records a line of spectral 

information per exposure [3]. The sensor must be “swept” across the target, and 

software must be used to “stitch” the sequence of spectral information together to 

produce a complete image. Image distortion will occur due to disturbances to the flight 

path of the UAV, therefore the camera must be stabilized to minimize these effects. An 

IMU driven gimbal is the preferred solution. 

Disturbances to the camera system can be due to wind, motor torque, and vibration. 

This system functions independently from the UAV host and will therefore require no 

modification to the UAV other than the mounting system. While the gimbal is designed 

around the camera system, it is composed of commonly available hardware and 

software wherever possible. Common components include Direct Current (DC) brushless 

motors, motion controller, Inertial Measurement Units (IMU), and microcontroller. 
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This paper presents a novel solution to prototype a gimbal which will affix a pushbroom 

style hyperspectral camera to a hybrid fixed-wing UAV capable of VTOL, as well as 

design an algorithm capable of dynamically adjusting power to each gimbal motor in 

real time in order to maximize flight time. 

This paper is organized as follows. Chapter 2 begins with a review of related literature. 

Chapter 3 presents the problem and the approach taken to solve it. Chapter 4 explains 

the methodology used when performing experiments. Chapter 5 presents the 

experimental results, and Chapter 6 presents the conclusions made. 
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2 LITERATURE OVERVIEW / ANALYSIS 

2.1 Existing Gimbal Design – 2DOF 

UAVs can be used for infrastructure inspection in locations inaccessible to humans. One 

prototyped solution for bridge and tunnel inspection is described here [1]. In this 

example, a camera is stabilized by a 2-DOF mechanism which corrects for roll and pitch. 

Yaw, in this instance, is locked to the body of the UAV and not stabilized to reduce 

weight (thereby reducing moment of inertia.) An IMU is fixed to the camera mounting 

plate and provides information about the camera attitude in real time.  

 

 

Figure 2.1 2-DOF Gimbal Example [1] 

 

This prototype demonstrates that a camera can effectively be used to inspect 

infrastructure when mounted to a UAV and properly stabilized. However, this gimbal 

design is only useful for framed cameras producing video or still images. While this setup 

could, in theory, support a pushbroom camera and scan vertically, any slight rotation 

errors caused by unbalanced motor torque will produce orthographic errors in the image. 

Adding yaw control to produce a 3-DOF system would remedy this, but at the 

disadvantage of adding weight and increasing mechanical complexity and power 

consumption. 

2.2 Existing Gimbal Design – 3DOF 

Another prototype designed for infrastructure inspection is described here [2]. In this 

case, the camera is stabilized by a 3-DOF mechanism which corrects for roll, pitch, and 

yaw. This prototype utilizes the same roll/pitch mechanism described in section 2.1, and 

the IMU is affixed to the camera mounting plate in the same location. 
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Figure 2.2 3-DOF Gimbal Example [70] 

 

The authors conclude that stable operation is possible with this prototype, however there 

was an issue with controller performance. Because the moments of inertia are different 

between the X and Y axes of the UAV, and since the PID controller does not have 

separate parameters for each axis, the control is tuned for one axis and under-damped 

in the other, resulting in an oscillated response. While this performance is acceptable 

for a framed camera, again, it will not produce acceptable results for a pushbroom style 

camera. 

2.3 Gimbal Control Algorithms 

An inertially stabilized gimbal generally consists of DC brushless motors, an IMU, and a 

motion controller. Many different control schemes have been proposed and modeled, 

and their parameters have been determined using many different methods. This section 

will briefly cover the methods that have been proposed by other researchers. 

It has been shown that a 2-DOF gimbal with PID controller can be tuned using Particle 

Swarm Optimization [4]. In another study, a modeled PID controller yielded better 

results when parameters were calculated with Particle Swarm Optimization as compared 

to Genetic Algorithm [5].  A modeled Fractional Order PI Control with parameters 

calculated using a genetic algorithm was shown to be an improvement over a standard 

PI controller optimized using the same method [6]. 
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A hybrid fuzzy-PID controller was found to reduce overshoot by adjusting gains [7], 

because fuzzy performs well with nonlinear disturbances [8]. It has been demonstrated 

that the fuzzy-PID controller is, in theory, simpler to implement than other commonly 

used controllers with similar robustness but has higher computational load [9]. This 

approach is effective with 2-axis gimbal targeting systems [10], and it has also been 

demonstrated that a fuzzy-PID and Neural Network based controller can be effective 

with a 3-axis gimbal [11]. 

A simulated model using Pole-Placement with State Feedback control performed better 

than a lead-lag compensator controller and PID controller [12]. 

Modeled 2-axis gimbal using Linear Quadratic Gaussian control with Loop Transfer 

Recovery was found to be more stable than a PI-Lead controller [13][14]. 

A 2-DOF model using an adaptive control with modified error approach is compared to 

an auxiliary error structure. While the modified approach is easier to implement and has 

less calculation, the auxiliary error structure is shown to have superior performance and 

time response [15]. 

A comparison of Lead-Lag, PID, and Fuzzy controllers was made and showed that all 

showed good performance under the presence of nonlinearities. Each control method 

has its own strengths and advantages, and in the end the engineer must choose based 

upon the problem. It is noted that deep learning and robust control methods provide 

better solutions to highly non-linear control problems, and model predictive control 

provides a solution for black box and grey box models [16]. 

A model demonstrates that a sliding mode control is as effective as a PI controller, and 

in some situations better [17]. Another model comparing a fixed-order H∞ controller to 

a full-order H∞ controller shows that the full-order controller has better disturbance 

rejection and reference tracking performance than a PI controller [18]. 

If gimbal targeting is to be performed, a system designed to point the camera at a fixed 

GPS coordinate based on the relative position of the UAV was successfully prototyped 

and tested in [19] and [20]. 

Finally, the Kalman filter [21] and complimentary Kalman filter [22] have been shown 

to be effective in reducing sensor noise and increase system stability. 

2.4 Camera Function and Orthorectification 

Pushbroom style cameras are favored for aerial scanning applications due to their high 

resolution. They also have higher frame rates than whiskbroom style cameras, but both 

are susceptible to difficulties in post-processing due to their sensitivity to disturbances 

[3]. It is important to note that pushbroom cameras are directional and must be “swept” 

across the target to produce a series of orthophotos. 
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The process of combining the sensor information into complete images is quite complex. 

Generally, the scanner is assumed to be in a nadir-facing orientation to the target. The 

pushbroom scanner “sweeps” in the same direction as the flight path of the UAV. 

Because of this, a 2-DOF gimbal is often used for vertical scanning such as this. A nadir-

facing scan could also occur across a vertical surface with a horizontal scan, and this 

application would instead require a 3-DOF camera if mounted beneath the UAV. 

When making images on a moving platform such as a UAV, motion blur can make images 

unusable. The following calculations should be considered when designing the UAV 

imaging system [23]. 

First, the GSD should be calculated as shown in equation (2.1). GSD represents the 

smallest dimension that the camera needs to resolve and should be at least twice as 

small as the smallest feature to be measured. The UAV should have a set working 

distance from the target area. The following formula is used to determine the ratio 

between the lens’ focal length and camera’s pixel size. 

𝐺𝑆𝐷 =
𝐷𝑝𝑥

𝑓
      (2.1) 

 
where  GSD – Ground Sampling Distance, m 

D – distance to target, m 

px – pixel dimension, m 

f – focal length of lens, m 

 
Blur occurs when the same target information is registered by multiple pixels during the 

exposure time due to the movement of the camera with respect to the target. The blur 

value should not exceed 0.5 pixels, and can be calculated using equation (2.2). 
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𝑏 =
𝑣∗𝑡

𝐺𝑆𝐷
     (2.2) 

 
where   b – blur, # of pixels 

v – aircraft velocity, m/s 

t – camera exposure time, s 

 
The maximum velocity (or relative ground speed) without image blur can be calculated 

once the GSD and camera exposure time are known. 

 

𝑉𝑚𝑎𝑥 =
𝐺𝑆𝐷

2𝑡
     (2.3) 

 

2.5 Motor Selection and Control 

It is beneficial for the motors selected for a UAV platform to be of reduced size, weight, 

power, and cost [24]. Motors are often servo, brushed, or brushless type. As a general 

rule, efficiency is improved as motor size is decreased. However, motor specifications  

for many commercially available motors are not usually published, and these 

parameters must be measured directly to predict the performance of a DC motor. 

2.6 Conclusion of Research 

Typically, 2-axis gimbals are used for vertical linescanning photography at high 

elevation. 3-axis gimbals are generally used with framed imaging cameras. Linescan 

cameras are sensitive to disturbances, often resulting in blurred images. Linescan blur 

is dependent upon camera pixel size, focal length, distance to target, exposure time, 

and UAV velocity. The system response should be adequate to prevent image blur. 

While there are many control regimes that can be used, the simple PID is most common 

and often used in motion controllers. However, one power setting is used and the system 

is tuned based on the system response. While this results in steady holding torque, it 

also consumes power whether the holding torque is needed or not. 

Based upon this research, the thesis topic is to develop a general purpose 3-axis gimbal 

capable of stabilizing a hyperspectral linescan camera, with an algorithm to reduce 

power consumption when possible. This system consists the gimbal hardware, motor 

control software, and algorithm to dynamically adjust motor power. Prototyping will 

produce a functional unit, but it focuses on the electromechanical components and the 

power control algorithm. To simplify the system for the inital prototype, advanced filters, 

such as the Kalman, will not be used within this work.  
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3 PROBLEM STATEMENT AND APPROACH 

3.1 Problem Statement 

The purpose of this thesis was to develop a novel system for conserving gimbal power 

and maximizing UAV flight time. Specifically, a control algorithm was developed to 

adjust power delivery to each gimbal motor in real time based on positional error, and 

it was tested on a functional prototype. The major problems solved consisted of 

designing and building a gimbal prototype for testing, protecting the gimbal motors from 

overheating, communicating with the motion controller via serial connection, and 

developing a power-saving algorithm to update the power level and PID parameters of 

each motor in real time. This work specifically aimed to provide a working solution to 

mount a Ximea hyperspectral linescan camera onto a Wingcopter drone, thereby 

providing a platform for future thesis work within the department of mechatronics. 

At the time of writing, there was no solution for mounting a Ximea camera to the 

Wingcopter drone. Therefore, a functional protype was designed and built to serve as a 

test platform. Commercially available brushless DC motors and motor controller were 

used, and all structural components were designed with SolidWorks modeling software 

and 3D printed with a Creality Ender 3D printer. Every reasonable effort was made to 

provide a lightweight and balanced assembly, but the optimization of the physical design 

of the gimbal is beyond the scope of this work. 

Once a functional prototype was assembled, a method to protect the motors from 

overheating was needed. The motion controller manual states that temperatures of 

80°C or greater will damage the magnets in the DC motors [25], therefore a thermal 

model of system was developed to estimate each motor’s temperature in real time. The 

motor parameters were determined experimentally. 

Once the temperature of the motors was modeled, a method of controlling the power to 

each motor was devised. The motion controller documentation includes a serial API 

which provides the means to request data from and update parameters in the motion 

controller. A commonly available microcontroller was utilized to communicate with the 

motion controller via serial connection. 

Once a communication link was established between the microcontroller and the motion 

controller, an algorithm was created to modulate power to each motor in real time based 

on data from the motion controller and the temperature of each motor. Since motor 

response is directly related to power, a control scheme to adjust the PID parameters in 

real time was developed as well. While the values used during testing are functional, 

optimizing the PID parameters for this system is beyond the scope of this work. 
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Assumptions 

For the purpose of this thesis, it is assumed that the gimbal will be supplied power by a 

dedicated battery source. It is a good idea in general to isolate the gimbal’s power 

supply from that of the drone to mitigate the possibility of a gimbal failure causing a 

catastrophic electrical failure and/or crash. Further, while it is reasonable for both the 

imaging system and gimbal to share the same power source, such a system is not 

considered in this work. While at the test bench, the prototype was supplied with 13 V. 

During testing, motor temperatures were measured in still air. It is assumed that even 

while the drone is in flight, the gimbal is enclosed in a protective shell which also serves 

to isolate the electronics within from any high velocity air currents. Therefore, assuming 

a static environment is reasonable. 

Tuning PID controllers is a complex process and optimizing the parameters for this 

gimbal prototype could be a project of its own. Therefore, it is assumed that the 

parameters produced by the auto-tuning macro provided with the motion controller are 

adequate for the purpose of this thesis. 

3.2 Gimbal Design and Function 

While the design of the gimbal prototype is beyond the scope of this thesis, the selection 

of components and their wiring are discussed here as they have a direct effect on power 

consumption. All components are numbered in order as they are described, and each is 

labeled using these numbers in figures (3.6) and (3.7). 

Component 1: One BGM5208-200-12 brushless DC motor was selected to drive the 

yaw axis of the gimbal. This motor was located at the top of the gimbal and is shown in 

figure (3.1). 
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Figure 3.1 BGM5208-200-12 Motor 

 

 
Component 2: Two BGM2606-90T brushless DC motors were selected to drive the pitch 

and roll axes. These were located beside (pitch) and behind (roll) the camera within the 

gimbal and are shown in figure (3.2). 

 

Figure 3.2 BGM2606-90T Motors 
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Component 3: One SimpleBGC 32bit motion controller was selected to drive the three 

brushless DC motors. This motion controller operates as a PID controller and allows 

remote communication via serial connection send real-time system information and 

update parameters. The motion controller used is shown in figure (3.3). 

 

Figure 3.3 SimpleBGC 32bit Motion Controller 

 

Component 4: Two Inertial Measurement Units were used in this gimbal. Both were 

included with the SimpleBGC motion controller and are integral to the function of the 

system. One IMU was mounted directly behind the camera, and the other (optional) unit 

was mounted to the frame to improve system accuracy. The IMUs each contain an 

accelerometer, gyroscope, and temperature sensor. This data is used by the motion 

controller to determine the camera’s orientation. Both IMUs are shown in figure 3.4. 

 

Figure 3.4 IMU Sensors 
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Component 5: One Arduino Nano microcontroller was used to run the power control 

algorithm. It was connected to the motion controller via serial connection, described in 

detail in the methodology section. Figure (3.5) shows the microcontroller that was used. 

 

 

Figure 3.5 Arduino Nano Microcontroller 

 

 

Figure (3.6) shows the complete gimbal prototype used for testing, excluding the 

aerodynamic housing as it was unnecessary for testing. All of the gimbal compoments 

were designed around the Ximea hyperspectral linescan camera, shown here. All 

structural components were designed in SolidWorks and printed in PLA on a Creality 

Ender 3 printer. The system is suspended from braided steel wire, which is intended to 

dampen high frequency vibrations. All wires were secured with cable ties to minimize 

their influence on the system while in operation. 
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Figure 3.6 Gimbal Components, Front View 

1 

2 

5 
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Figure 3.7 Gimbal Components, Side View 

  

3 

4 

2 
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3.3 Mathematical Model 

Modeling the Temperature Change of a Motor 

This section explains the mathematical model used to estimate the temperature of a 

motor in real time as its power is increased or decreased with demand. Based on the 

first law of thermodynamics, all energy entering or leaving the system must be 

conserved as either heat or work, represented by equation (3.1) [26][27][28]. 

 Δ𝑈 = 𝑄 − 𝑊 (3.1) 

   
where  U - internal energy, J 

Q - net heat transferred to the system, J 

W - net work done by the system, J 

 
Energy enters the motor in the form of electrical energy from the power supply and 

must be converted into one of two forms, either heat or mechanical work. Mechanical 

work is defined in equation (3.2) [26][27][28]. 

 𝑊 = 𝐹 ∗ 𝑠 (3.2) 

 

where  F – force, N 

  s – displacement, m 

 
In a gimbal system, the motors are generally making very small movements or holding 

the system in a fixed position. Therefore, the displacement is often zero or very near 

zero. When displacement is zero, mechanical work can be assumed to be zero. Equation 

(3.1) can then be simplified to show that the change in internal energy of a motor must 

be equal to the heat absorbed by the motor less the heat lost by the motor, as shown 

in equation (3.3) [26][27][28]. 

 𝛥𝑈 = 𝑄𝑖𝑛 − 𝑄𝑜𝑢𝑡 (3.3) 

   
where  Qin – heat moving into the system, J 

  Qout – heat moving out of the system, J 

 

The relationship between heat and temperature is given by equation (3.4) [26][27][28]. 

 

 𝑄

𝑚𝐶
= Δ𝑇 

(3.4) 

   
where  m – mass, kg 

C – heat capacity, J/kg-°C 

ΔT – change in motor temperature, °C 

 

Therefore, dividing all terms by mass and heat capacity yields the relationship that the 

change in temperature of the motor is the difference between the temperature changes 

caused by heat entering and leaving the system, shown in equation (3.5). 
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 𝛥𝑇𝑚𝑜𝑡𝑜𝑟 = 𝛥𝑇𝑄𝑖𝑛
− 𝛥𝑇𝑄𝑜𝑢𝑡

 (3.5) 

   
where  ΔTmotor – temperature of the motor at time t, °C 

  ΔTQin – temperature change due to heat entering system, °C 

  ΔTQout – temperature change due to heat leaving system, °C 

 

The change of temperature over time is shown by equation (3.6). 

 𝛥𝑇𝑚𝑜𝑡𝑜𝑟
̇ = 𝛥𝑇𝑄𝑖𝑛

̇ − 𝛥𝑇𝑄𝑜𝑢𝑡
̇  (3.6) 

 

Calculating Temperature Gain 

The only source of energy entering the system is in the form of electrical power, so it 

can be assumed that the heat gained by the system is a function of power. A coefficient 

which combines the heat capacity and inefficiency of the motor can be created to 

describe the change in temperature due to this heat exchange, as shown in equation 

(3.7). This coefficient of heating must be determined experimentally. 

 

 𝑑𝑇𝑚𝑜𝑡𝑜𝑟

𝑑𝑡
= 𝑟𝑃 

 

(3.7) 

where  Tmotor – temperature of the motor at time t, °C 

  t – time, s 

  r – motor coefficient of heating, °C/J 

  P – power supplied to motor, J/s 
 

Calculating Temperature Loss 

Heat is assumed to be lost in the form of conduction, as described by Newton’s law of 

cooling, shown in equation (3.8)[26]. A coefficient of cooling is used to describe the rate 

at which this heat exchange occurs. This coefficient must be determined experimentally. 

 

 𝑑𝑇𝑚𝑜𝑡𝑜𝑟

𝑑𝑡
= −𝑘(𝑇𝑚𝑜𝑡𝑜𝑟 − 𝑇𝑎𝑖𝑟) 

 

(3.8) 

where  Tair – temperature of the air, °C 

  k – motor coefficient of cooling, s-1 

 

Temperature Model 

By substituting equations (3.7) and (3.8) into equation (3.6), the rate of temperature 

change of the motor can be modeled as shown in equation (3.9). 

 𝑑𝑇𝑚𝑜𝑡𝑜𝑟

𝑑𝑡
= 𝑟𝑃 − 𝑘(𝑇𝑚𝑜𝑡𝑜𝑟 − 𝑇𝑎𝑖𝑟) 

 

(3.9) 
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Calculating Motor Voltage 

The stabilization controller sends a three-phase Pulse Width Modulated (PWM) signal of 

specific duty cycle to each motor based on a power parameter defined for each motor. 

The power parameter is an 8-bit unsigned integer value between 0 and 255, and the 

relationship between power parameter and duty cycle is a simple ratio, as shown in 

equation (3.10) [29]. 

 
𝐷 =

𝑃𝑝𝑎𝑟𝑎𝑚

255
 

 

(3.10) 

where  D = Duty Cycle, % 

  Pparam = Power Parameter, unitless 

 

The amplitude of this signal is equal to the voltage supplied to the stabilization 

controller, but the Root Mean Square (RMS) value of this signal is what determines the 

current consumed by the motor and, therefore, the torque produced. The RMS voltage 

value can be calculated with equation (3.11) [29]. 

 𝑉𝑅𝑀𝑆 = 𝑉𝑠𝑢𝑝𝑝𝑙𝑦 ∗ √𝐷 (3.11) 

 

where  VRMS = RMS Voltage, V 

  Vsupply = Supply Voltage, V 

 

Calculating Motor Current 

Motor current can be calculated using Ohm’s law, as shown in equation (3.12). 

 
𝐼 =

𝑉𝑅𝑀𝑆

𝑍
 

(3.12) 

 
where  I – current, A 

  Z – impedance, Ω 

 
Impedance is defined in equation (3.13). 

 𝑍 = 𝑅 + 𝑗𝑋 (3.13) 

 
where  R – resistance, Ω 

jX – reactance, Ω 

 

Impedance is required to describe the system due to the nature of a switched DC signal 

producing a waveform. Impedance is the combination of resistance, a function of the 

wire material and length, and reactance, a function of the inductance of the circuit. 

However, it was determined experimentally that impedance is not constant and changes 

with duty cycle and motor temperature. This relationship is not easily modeled 

mathematically and was instead modeled experimentally, as described in section (4.2).  
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4 METHODOLOGY 

4.1 Gimbal Design 

While the gimbal design is largely out of scope, it directly affects the performance of the 

system and will therefore be discussed here briefly. The objective while designing each 

printed component was to maintain a high moment of inertia while minimizing material 

(and therefore weight) simultaneously ensuring the final design was suitable for rapid 

manufacture on a 3D printer. To minimize weight, a wall thickness of 0.8 mm an infill 

of 15 % were used while printing all parts. Bearings were used to reduce drag on the 

motors and prevent parts from being cantilevered and solely supported by the brushless 

DC motors. Inlets designed for storing excess wire were integrated into the frame and 

wires were secured to prevent them from impacting the performance of the system. 

4.2 Mathematical Model 

The primary objective of this system is to dynamically adjust the power sent to each 

motor in real time. To accomplish this, a mathematical model was created to predict the 

behavior of the system. The model provides a way to estimate motor temperature and 

predict a safe maximum power that can be delivered without overheating each motor. 

Once this is determined, the power demand is calculated based upon the magnitude of 

positional error for each motor. Because many variables are functions of themselves 

(for instance, current is a function of motor temperature, but also determines the rate 

at which the motor heats), an iterative process is used to approximate the state of each 

variable at a discreet point in time, then use those variables to predict their initial states 

at the next discreet point in time. The motor variables calculated are current, rate of 

cooling due to conduction, rate of heating due to power, position error, maximum 

allowable power, and actual power to deliver. 

Calculating BGM9606-90T Current 

To calculate the current consumed by a BGM2606-90T motor, an experiment was 

performed to measure how much current a motor is suppled at various power settings 

and motor temperatures. The initial motor temperature was recorded, then the motor 

was supplied a constant RMS voltage from the motion controller by assigning a power 

parameter. The temperature of the motor and supplied current were measured at 

regular intervals until the motor was near either thermal equilibrium or 70 °C. The motor 

was then allowed to cool without disturbance. The test was repeated at a different power 



26 

parameter. Four different power parameters were tested in total. A Teklab TLP603 DC 

power supply was used to provide power to the motion controller. A Flir E50 thermal 

imaging camera was used to measure motor temperature. The system was initialized 

with all motors at zero power to measure the current supplied to the motion controller; 

this measured current was subtracted from all motor measurements. Only one motor 

was energized at a time. Table (4.1) summarizes the results from this test.  
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Table 4.1 BGM2606-90T Current as a Function of RMS Voltage and Motor Temperature 

 
   

  
Experimental 

Values 

Calculated 

Values 

   t 

min 

Tmotor 

°C 

I 

mA 

ΔTmotor/Δt 

°C/min 

Cooling 

°C/min 

r 

°C/J 

r-1 

J/°C 

   

E
x
p
e
ri

m
e
n
t 

1
 Power 

Parameter: 50 

 

VRMS: 5.76 V 

 

Tair: 25 °C 

0 25.9 56 n/a n/a n/a n/a 

1 27.5 55 1.6 0.275 5.91856 0.16896 

2 28.8 55 1.3 0.418 5.42298 0.1844 

3 29.8 55 1 0.528 4.82323 0.20733 

4 30.8 54 1 0.638 5.2662 0.18989 

5 31.7 54 0.9 0.737 5.26299 0.19001 

E
x
p
e
ri

m
e
n
t 

2
 Power 

Parameter: 100 

 

VRMS: 8.14 V 

 

Tair: 26 °C 

0 31.7 204 n/a n/a n/a n/a 

1 36.6 197 4.9 1.166 3.78279 0.26436 

2 40.8 194 4.2 1.628 3.69057 0.27096 

3 44.1 192 3.3 1.991 3.38542 0.29538 

4 47.1 190 3.0 2.321 3.44045 0.29066 

5 49.3 189 2.2 2.563 3.09595 0.323 

E
x
p
e
ri

m
e
n
t 

3
 Power 

Parameter: 150 

 

VRMS: 9.97 V 

 

Tair: 26 °C 

0 35.4 410 n/a n/a n/a n/a 

1 46.3 399 10.9 2.233 3.30138 0.3029 

2 54.8 389 8.5 3.168 3.00851 0.33239 

3 61.3 383 6.5 3.883 2.71912 0.36777 

4 66.6 378 5.3 4.466 2.59137 0.3859 

5 71.3 373 4.7 4.983 2.60379 0.38406 

E
x
p
e
ri

m
e
n
t 

4
 Power 

Parameter: 200 

 

VRMS: 11.5 V 

 

Tair: 26 °C 

0 31.6 678 n/a n/a n/a n/a 

1 50.1 650 18.5 2.651 2.82957 0.35341 

2 63.9 629 13.8 4.169 2.48414 0.40255 

3 74.5 604 10.6 5.335 2.29413 0.4359 

4 - - - - - - 

5 - - - - - - 

E
x
p
e
ri

m
e
n
t 

5
 Power 

Parameter: 250 

 

VRMS: 12.9 V 

 

Tair: 26 °C 

0 31.9 975 n/a n/a n/a n/a 

0.5 43.6 954 23.4 1.936 2.05873 0.48574 

1 56.4 925 25.6 3.344 2.42564 0.41226 

1.5 67.2 906 21.6 4.532 2.23591 0.44724 

- - - - - - - 

- - - - - - - 
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Figure 4.1 BGM2606-90T Current as a function of Temperature by RMS Voltage 

 

 

Figure 4.2 BGM2606-90T Slope Producing Equation for Current Calculation 

y = -0.3264x + 64.326

R² = 0.8659

y = -0.818x + 228.36

R² = 0.9576

y = -1.0318x + 446.4

R² = 0.9989

y = -1.6858x + 733.01

R² = 0.9897

y = -1.9909x + 1039.1

R² = 0.9975

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80

M
o
to

r 
C
u
rr

e
n
t,

 m
A

Motor Temperature, °C

VRMS: 5,76 V VRMS: 8,14 V VRMS: 9,97 V VRMS: 11,5 V VRMS: 12,9 V

y = -0.0134x2 + 0.0156x + 0.0167

R² = 0.9809

-2.5000

-2.0000

-1.5000

-1.0000

-0.5000

0.0000

0 2 4 6 8 10 12 14

d
I/

d
T
, 

m
A
/°

C

RMS Voltage, V



29 

 

Figure 4.3 BGM2606-90T Y-Intercept Producing Equation for Current Calculation 

 

Figure (4.1) shows the experimental data as a function of motor temperature. Figures 

(4.2) and (4.3) provide curves that are used to determine the slope and y-intercept of 

the linear current function. Given an RMS voltage, the function for current can now be 

produced in slope-intercept form as shown in equation (4.1). 

 𝐼 = 𝑚𝑇𝑚𝑜𝑡𝑜𝑟 + 𝑏 (4.1) 

 

where  m = slope as a function of VRMS, mA·°C-1 

  b = y-intercept as a function of VRMS, °C 

 

The slope of the current equation can now be calculated with equation (4.2). 

 𝑚 = 0.0134𝑉𝑅𝑀𝑆
2 + 0.0156𝑉𝑅𝑀𝑆 + 0.0167 (4.2) 

 

The y-intercept of the current equation can now be calculated with equation (4.3). 

 𝑏 = 0.1551𝑉𝑅𝑀𝑆
3.4591 (4.3) 

 

Calculating BGM5208-200-12 Current 

The same test was then repeated for the BGM5208-200-12 motor, and the experimental 

results are summarized in table (4.2).  

y = 0.1551x3.4591

R² = 0.9991

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

0 2 4 6 8 10 12 14

Y
-I

n
te

rc
e
p
t,

 °
C

RMS Voltage, V



30 

Table 4.2 BGM5208-200-12 Current as a Function of RMS Voltage and Motor Temperature 

 
   

 Experimental 
Values 

Calculated 
Values 

   

t 
min 

Tmotor 
°C 

I 
mA 

ΔTmotor/Δt 
°C/min 

Cooling 
°C/min 

r 
°C/J 

r-1 
J/°C 

   

E
x
p
e
ri

m
e
n
t 

1
 

Power 
Parameter: 50 
 
VRMS: 5.76 V 
 
Tair: 25 °C 

0 25.3 34 n/a n/a n/a n/a 

1 25.5 33 0.2 0.025 1.18371 0.84480 

2 25.7 33 0.2 0.035 1.23632 0.80885 

3 25.9 33 0.2 0.045 1.28893 0.77584 

4 26.1 33 0.2 0.055 1.34154 0.74541 

5 26.3 33 0.2 0.065 1.39415 0.71728 

E
x
p
e
ri

m
e
n
t 

2
 

Power 
Parameter: 100 

 
VRMS: 8.14 V 
 
Tair: 26 °C 

0 26.2 127 n/a n/a n/a n/a 

1 26.6 125 0.4 0.03 0.4226 2.36628 

2 27.3 124 0.7 0.065 0.75791 1.31942 

3 27.8 124 0.5 0.09 0.58453 1.71078 

4 28.4 124 0.6 0.12 0.71332 1.40189 

5 28.8 124 0.4 0.14 0.53499 1.86919 

E
x
p
e
ri

m
e
n
t 

3
 

Power 

Parameter: 150 
 

VRMS: 9.97 V 
 
Tair: 26 °C 

0 28.5 273 n/a n/a n/a n/a 

1 29.2 268 0.7 0.16 0.32186 3.10693 

2 30.3 266 1.1 0.215 0.49585 2.01675 

3 31.8 265 1.5 0.29 0.6775 1.47601 

4 32.6 264 0.8 0.33 0.42932 2.32927 

5 33.8 263 1.2 0.39 0.60638 1.64913 

E
x
p
e
ri

m
e
n
t 

4
 

Power 
Parameter: 200 
 
VRMS: 11.5 V 

 
Tair: 26 °C 

0 31.8 460 n/a n/a n/a n/a 

1 33.4 448 1.6 0.37 0.38238 2.61523 

2 35.5 444 2.1 0.475 0.50431 1.98291 

3 37.1 440 1.6 0.555 0.42589 2.34803 

4 38.8 438 1.7 0.64 0.46456 2.15256 

5 40.1 435 1.3 0.705 0.4008 2.49501 

E
x
p
e
ri

m
e
n
t 

5
 

Power 

Parameter: 250 
 
VRMS: 12.9 V 
 
Tair: 26 °C 

0 32.3 689 n/a n/a n/a n/a 

0.5 34.5 663 2.2 0.425 0.30692 3.25817 

1 37.6 656 3.1 0.58 0.43486 2.29957 

1.5 40.2 649 2.6 0.71 0.39536 2.52934 

- 42.8 644 2.6 0.84 0.41408 2.41500 

- 45.1 639 2.3 0.955 0.39488 2.53244 
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Figure 4.4 BGM5208-200-12 Current as a function of Temperature by RMS Voltage 

 

 

Figure 4.5 BGM5208-200-12 Slope Producing Equation for Current Calculation 
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Figure 4.6 BGM5208-200-12 Y-Intercept Producing Equation for Current Calculation 

 

Figure (4.4) shows the experimental data as a function of motor temperature. Figures 

(4.5) and (4.6) provide curves that are used to determine the slope and y-intercept of 

the linear current function. Given an RMS voltage, the function for current can now be 

produced in slope-intercept form as shown in equation (4.1). 

The slope of the current equation can now be calculated with equation (4.4). 

 𝑚 = 0.055𝑉𝑅𝑀𝑆
2 + 0.6311𝑉𝑅𝑀𝑆 − 2.497 (4.4) 

 

The y-intercept of the current equation can now be calculated with equation (4.5). 

 𝑏 = 0.1257𝑉𝑅𝑀𝑆
3.4135 (4.5) 

 

 

Determining Motor Coefficient of Cooling 

In order to calculate the coefficient of cooling for a motor, the condition in which a 

heated motor is deenergized and allowed to cool is analyzed. Since the power entering 

the motor is zero in this situation, equation (3.8) can be used. 

Integrating yields the relationship of motor temperature as a function of time, as shown 

below in equation (4.6). 
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∫
1
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ln(𝑇𝑚𝑜𝑡𝑜𝑟 − 𝑇𝑎𝑖𝑟) = −𝑘 ∗ 𝑡 + 𝐶 
 

𝑇𝑚𝑜𝑡𝑜𝑟 − 𝑇𝑎𝑖𝑟 = 𝐶 ∗ 𝑒−𝑘𝑡 

 
 𝑇𝑚𝑜𝑡𝑜𝑟 = 𝐶 ∗ 𝑒−𝑘𝑡 + 𝑇𝑎𝑖𝑟  

 

(4.6) 

   

where  C – constant of integration 

 

BGM2606-90T Coefficient of Cooling 

An experiment was then performed to determine the constant of integration. The motor 

was heated to approximately 60˚C by setting a power parameter of 200 in the motion 

controller. The power was then shut off and the motor temperature was measured at 

regular intervals as the motor cooled. The air temperature, as measured by the motion 

controller, was recorded at each interval as well. The results are shown in table (4.3) 

below. 

 

Table 4.3 BGM2606-90T Motor Temperature while Cooling 

 

t 

min 

Tmotor 

˚C 

Tair 

˚C 

0 61.8 25 

1 56.3 25 

2 51.9 25 

3 49.5 25 

4 47.3 25 

5 45.4 25 

6 43.7 25 

7 42.1 25 

8 40.8 25 

9 39.7 25 

10 38.8 25 
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Next, the initial condition is substituted into equation (4.6) to solve for C: 

 (61.8 ˚C) = 𝐶 ∗ 𝑒−𝑘(0 𝑚𝑖𝑛) + (25 ˚C) 
 

 

 36.8 ˚C = 𝐶 ∗ 1 
 

 

 𝐶 = 36.8 ˚C 

 

 

 

Now C can be substituted into equation (4.6) to produce equation (4.7): 

 𝑇𝑚𝑜𝑡𝑜𝑟 = 36.8 ∗ 𝑒−𝑘𝑡 + 𝑇𝑎𝑖𝑟 
 

 

 
𝑒−𝑘𝑡 =

𝑇𝑚𝑜𝑡𝑜𝑟 − 𝑇𝑎𝑖𝑟

36.8
 

 

 

 
ln(𝑒−𝑘𝑡) = ln (

𝑇𝑚𝑜𝑡𝑜𝑟 − 𝑇𝑎𝑖𝑟

36.8
) 

 

 

 
−𝑘𝑡 = ln (

𝑇𝑚𝑜𝑡𝑜𝑟 − 𝑇𝑎𝑖𝑟

36.8
) 

 

 

 
𝑘 =

−1

𝑡
∗ ln (

𝑇𝑚𝑜𝑡𝑜𝑟 − 𝑇𝑎𝑖𝑟

36.8
) 

(4.7) 

   
 

The value of k can now be calculated for each of the data points in table (4.3), as shown 

in table (4.4). 

 

  



35 

Table 4.4 BGM2606-90T Calculated Cooling Coefficients 

 

t 

min 

k 

s-1 

0 n/a 

1 0.0936 

2 0.0447 

3 0.0290 

4 0.0211 

5 0.0164 

6 0.0133 

7 0.0110 

8 0.0094 

9 0.0081 

10 0.0071 

 

While, in theory, the value of k is a constant in Newton’s law of cooling, the calculations 

in table (4.4) demonstrate that the model is imperfect in this application. However, it 

can still be useful to approximate the rate at which heat leaves the system. Substituting 

the value of C into equation (4.6) produces equation (4.8). 

 𝑇𝑚𝑜𝑡𝑜𝑟 = 36.8 ∗ 𝑒−𝑘𝑡 + 𝑇𝑎𝑖𝑟  

 

(4.8) 

   

Table (4.5) shows the predicted temperature values for three different assumed values 

of k, calculated using equation (4.8). Figure (4.7) shows how the curves produced by 

these values compare to the experimental data. 
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Table 4.5 BGM2606-90T Predicted Cooling Values with Various Coefficients 

 

t 

min 

Tair 

˚C 

Tmotor 

˚C  

k=0.08 

Tmotor 

˚C  

k=0.12 

Tmotor 

˚C  

k=0.16 

0 25 61.8 61.8 61.8 

1 25 59.0 57.6 56.4 

2 25 56.4 53.9 51.7 

3 25 53.9 50.7 47.8 

4 25 51.7 47.8 44.4 

5 25 49.7 45.2 41.5 

6 25 47.8 42.9 39.1 

7 25 46.0 40.9 37.0 

8 25 44.4 39.1 35.2 

9 25 42.9 37.5 33.7 

10 25 41.5 36.1 32.4 

 

 

 

Figure 4.7 BGM2606-90T Temperature Change Estimates by Coefficient of Cooling 

 

The value of k=0.11 was selected for use in this model and is assumed to be a constant 

in all calculations. Equation (3.8) can now be updated to include this coefficient, as 

shown in equation (4.9). 

 𝑑𝑇𝑚𝑜𝑡𝑜𝑟

𝑑𝑡
= −0.11(𝑇𝑚𝑜𝑡𝑜𝑟 − 𝑇𝑎𝑖𝑟) 

(4.9) 
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BGM5208-200-12 Coefficient of Cooling 

The experiment was then performed a second time with the BGM5208-200-12 motor. 

It was heated to approximately 65˚C by setting a power parameter of 255 in the motion 

controller. The power was then shut off and the motor temperature was measured at 

regular intervals as the motor cooled. The air temperature, as measured by the motion 

controller, was recorded at each interval as well. The results are shown in table (4.6) 

below. 

 

Table 4.6 BGM5208-200-12 Motor Temperature while Cooling 

 

t 

min 

Tmotor 

˚C 

Tair 

˚C 

0 65.0 26 

1 63.2 26 

2 60.9 26 

3 58.9 26 

4 57.2 26 

5 55.8 26 

6 54.2 26 

7 53.0 26 

8 51.9 26 

9 50.7 26 

10 49.5 26 

 

Next, the initial condition is substituted into equation (4.6) to solve for C: 

 (65.0 ˚C) = 𝐶 ∗ 𝑒−𝑘(0 𝑚𝑖𝑛) + (26 ˚C) 
 

 

 39.0 ˚C = 𝐶 ∗ 1 

 

 

 𝐶 = 39.0 ˚C 
 

 

Now C can be substituted into equation (4.6) to produce equation (4.10): 

 𝑇𝑚𝑜𝑡𝑜𝑟 = 39.0 ∗ 𝑒−𝑘𝑡 + 𝑇𝑎𝑖𝑟 
 

 

 
𝑒−𝑘𝑡 =

𝑇𝑚𝑜𝑡𝑜𝑟 − 𝑇𝑎𝑖𝑟

39.0
 

 

 

 
ln(𝑒−𝑘𝑡) = ln (

𝑇𝑚𝑜𝑡𝑜𝑟 − 𝑇𝑎𝑖𝑟

39.0
) 
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−𝑘𝑡 = ln (

𝑇𝑚𝑜𝑡𝑜𝑟 − 𝑇𝑎𝑖𝑟

39.0
) 

 

 

 
𝑘 =

−1

𝑡
∗ ln (

𝑇𝑚𝑜𝑡𝑜𝑟 − 𝑇𝑎𝑖𝑟

39.0
) 

(4.10) 

   

   
The value of k can now be calculated for each of the data points in table (4.6). The 

results are shown below in table (4.7). 

 

Table 4.7 BGM5208-200-12 Calculated Cooling Coefficients 

 

t k 

min s-1 

0 n/a 

1 0.0473 

2 0.0555 

3 0.0567 

4 0.0558 

5 0.0538 

6 0.0540 

7 0.0525 

8 0.0512 

9 0.0508 

10 0.0507 

 
 

The value of k is again demonstrated to not be constant over time. Table (4.8) shows 

the predicted temperature values for three different assumed values of k, calculated 

using equation (4.10). Figure (4.8) shows how the curves produced by these values 

compare to the experimental data. 
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Table 4.8 BGM5208-200-12 Predicted Cooling Values with Various Coefficients 

 

t 

min 

Tair 

˚C 

Tmotor Tmotor Tmotor 

˚C, ˚C, ˚C, 

k=0.06 k=0.05 k=0.04 

0 26 65.0 65.0 65.0 

1 26 62.7 63.1 63.5 

2 26 60.6 61.3 62.0 

3 26 58.6 59.6 60.6 

4 26 56.7 57.9 59.2 

5 26 54.9 56.4 57.9 

6 26 53.2 54.9 56.7 

7 26 51.6 53.5 55.5 

8 26 50.1 52.1 54.3 

9 26 48.7 50.9 53.2 

10 26 47.4 49.7 52.1 

 

 

 

Figure 4.8 BGM5208-200-12 Temperature Change Estimates by Coefficient of Cooling 

 

The value of k=0.05 was selected for use in this model and is assumed to be a constant 

in all calculations. Equation (3.8) can now be updated to include this coefficient, as 

shown in equation (4.11). 

 𝑑𝑇𝑚𝑜𝑡𝑜𝑟

𝑑𝑡
= −0.05(𝑇𝑚𝑜𝑡𝑜𝑟 − 𝑇𝑎𝑖𝑟) 

(4.11) 
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Determining Motor Coefficient of Heating 

The data collected in the motor current experiment, were used to determine the motor 

coefficient of heating. The calculated values in the table were produced as described 

below and used for the calculations. 

 
The motor temperature rate of change was calculated between each time interval with 

equation (4.12). 

 𝑑𝑇𝑚𝑜𝑡𝑜𝑟

𝑑𝑡
=

𝑇2 − 𝑇1

𝑡2 − 𝑡1
 

(4.12) 

   

 
The rate of cooling was calculated using equations (4.9) and (4.11) depending on the 

motor being tested. Power was calculated by using equation (4.13). 

 𝑃 = 𝑉𝑅𝑀𝑆𝐼 (4.13) 

   

   
The rate of heating for each data point was then calculated by substituting the rate of 

cooling and power into equation (3.9), producing equation (4.14). 

 𝑑𝑇𝑚𝑜𝑡𝑜𝑟

𝑑𝑡
= 𝑟 ∗ 𝑃 − [𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐𝑜𝑜𝑙𝑖𝑛𝑔] 

 

 

 𝑑𝑇𝑚𝑜𝑡𝑜𝑟

𝑑𝑡
+ [𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐𝑜𝑜𝑙𝑖𝑛𝑔] = 𝑟 ∗ 𝑃 

 

 

 

 

𝑟 =

𝑑𝑇𝑚𝑜𝑡𝑜𝑟

𝑑𝑡
+ [𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐𝑜𝑜𝑙𝑖𝑛𝑔]

𝑃
 

(4.14) 

 

BGM9606-90T Coefficient of Heating 

The motor coefficients of heating were then graphed for the various power settings as 

a function of motor temperature to produce figure (4.9). The motor coefficient is 

relatively linear, but a function of both motor temperature and RMS voltage. Therefore, 

each data set was described with a linear best fit function, and the slopes and y-

intercepts, shown in table (4.9), were graphed as functions of RMS voltage, figures 

(4.10) and (4.11), respectively. It should be noted that because the calculated 

coefficients of heating decrease as motor temperature increases, the inverse of r is 

plotted in figure (4.9). 
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Figure 4.9 BGM9606-90T Heating Coefficient as function of Motor Temperature 

 

 
Table 4.9 BGM9606-90T Heating Coefficient Slope and Y-Intercept Values by RMS Voltage 

 

VRMS slope y-int 

5.76 0.0049 0.0428 

8.14 0.0042 0.1066 

9.97 0.0036 0.1408 

11.5 0.0034 0.1843 

12.9 0.0032 0.2296 

 

y = 0,0049x + 0,0428
R² = 0,3434

y = 0,0042x + 0,1066
R² = 0,8351

y = 0,0036x + 0,1408
R² = 0,947

y = 0,0034x + 0,1843
R² = 0,9988

y = 0,0032x + 0,2296
R² = 1
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Figure 4.10 BGM9606-90T Slope Producing Equation for Heating Coefficient 

 

 

Figure 4.11 BGM9606-90T Y-Intercept Producing Equation for Heating Coefficient 

 

Given an RMS voltage, the function for current can now be produced in slope-intercept 

form as shown in equation (4.15). 

 𝐼 = 𝑚𝑇𝑚𝑜𝑡𝑜𝑟 + 𝑏 (4.15) 

 

The slope of the motor heating coefficient equation can now be calculated with equation 

(4.16). 

 𝑚 = −0.0002𝑉𝑅𝑀𝑆 + 0.0062 (4.16) 
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The y-intercept of the motor heating coefficient equation can now be calculated with 

equation (4.17). 

 𝑏 = 0.0255𝑉𝑅𝑀𝑆 − 0.105 (4.17) 
 

BGM5208-200-12 Coefficient of Heating 

The motor coefficients of heating were then graphed for the various power settings as 

a function of motor temperature to produce figure (4.12). The motor coefficients are 

not linear, probably due to the low temperature changes in this experiment combined 

with the relative inaccuracy of the measurements. For this reason, the averages of each 

test, shown in table (4.10), were graphed. The linear best fit shown in figure (4.13) was 

used to describe the heating coefficient. 

 

 

Figure 4.12 BGM5208-200-12 Heating Coefficient as function of Motor Temperature 
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Table 4.10 BGM5208-200-12 Calculated Heating Coefficient Values by RMS Voltage 

 

VRMS 

V 

ravg 

°C/J 

ravg
-1 

J/°C 

5.76 1.2889 0.7758 

8.14 0.6027 1.6593 

9.97 0.5062 1.9756 

11.5 0.4356 2.2958 

12.9 0.3892 2.5692 

 

 

Figure 4.13 BGM5208-200-12 Slope Producing Equation for Heating Coefficient 

 

Given an RMS voltage, the function for current can now be calculated with equation 

(4.18). 

 𝑚 = 0.2435𝑉𝑅𝑀𝑆 − 0.4952 (4.18) 

 

Calculating System Position Error 

This prototype utilizes a pair of IMU sensors. The primary sensor is located on the 

camera mount and measures the orientation of the camera. The secondary sensor is 

mounted to the frame beneath the yaw axis motor and serves to improve the precision 

of stabilization [25]. The motion controller interprets the signals from both IMUs and 

calculates, among other things, the orientation of the primary sensor in space. 
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The motion controller is assigned a set of target angles (roll, pitch, and yaw) as 

parameters. Each program cycle, it attempts to move the motors as needed to match 

the orientation of the primary IMU with these target angles. Any difference between the 

two is considered position error. Therefore, error for each axis can be calculated as 

shown in equation (4.19). 

 𝑒𝑟𝑟𝑜𝑟 = 𝐴𝑡𝑎𝑟𝑔𝑒𝑡 − 𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 (4.19) 

 

where  error – position error, ˚ 

  Atarget – target angle, ˚ 

  Ameasured – measured angle, ˚ 

 

Calculating Air Temperature 

Both the primary and secondary IMU have temperature sensors onboard. The readings from 

both sensors are averaged together to calculate air temperature, as shown in equation (4.20). 

 
𝑇𝑎𝑖𝑟 =

𝑇𝑃 + 𝑇𝑆

2
 

(4.20) 

 

where  Tp = temperature measured by primary IMU, ˚C 

  Ts = temperature measured by secondary IMU, ˚C 

 

Calculating Motor Temperature 

When the program executes, motor temperature is initialized as being equal to air 

temperature. The program then calculates the rate of change of motor temperature and 

calculates how long the loop has been running. The amount of temperature change is 

then calculated as shown in equation (4.21).  

 
𝑇𝑚𝑜𝑡𝑜𝑟2 = 𝑇𝑚𝑜𝑡𝑜𝑟1 +

𝑑𝑇𝑚𝑜𝑡𝑜𝑟

𝑑𝑡
(𝑡2 − 𝑡1) 

(4.21) 

 

where  Tmotor2 – temperature of motor at time 2, ˚C 

  Tmotor1 – temperature of motor at time 1, ˚C 

  t2 – time 2, s 

  t1 – time 1, s 

Calculating Power to Deliver 

The power control algorithm separates the power parameter into ten discreet levels and 

steps between these levels based upon system error. This stepped adjustment mode 

simply divides the error by the maximum error value and multiplies by 10. This value is 

then rounded down to the nearest integer value and multiplied by 25 (approximately 

ten percent of the maximum value of 255). In this way, the system response is scaled 
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to one of ten steps directly proportional to the amount of position error. Large 

disturbances to the system are corrected by large system responses. If error is very 

large, the power parameter is capped at 255 (the maximum allowable). This process is 

described by equation (4.22). 

 
𝑃𝑝𝑎𝑟𝑎𝑚 = 25 (𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (10

𝑒𝑟𝑟𝑜𝑟

𝑒𝑟𝑟𝑜𝑟𝑚𝑎𝑥
)) 

(4.22) 

 

where  errormax – error value to apply max voltage, ˚, Euler Angle 

 

Calculating Power Limit 

In the event the system is operating in a dynamic environment which requires high 

power supply to the motors for extended periods of time, the power must be limited to 

protect the motors even if performance is reduced. Firstly, a maximum allowable motor 

temperature is defined in the algorithm; for this prototype, a value of 60 ˚C was 

selected. (The gimbal components were printed in PLA, which softens above this 

temperature. Otherwise, 75 ˚C would have been used to protect the motors.) A safety 

temperature is calculated as shown in equation (4.23). 

 
𝑇𝑠𝑎𝑓𝑒𝑡𝑦 = 𝑇𝑚𝑎𝑥 − (𝑡𝑠𝑎𝑓𝑒𝑡𝑦

𝑑𝑇𝑚𝑜𝑡𝑜𝑟

𝑑𝑡
) 

(4.23) 

 

where  Tsafety – safety temperature,  

  Tmax – maximum allowable motor temperature,  

  tsafety – safety time, s 

 

The safety temperature is effectively the temperature at which, at the motor’s current 

rate of heating, the motor must not exceed if it is to remain operational for the 

designated safety time; for this prototype, a value of 30 seconds was used. 

If the motor temperature exceeds the maximum allowable temperature, the power 

parameter is set to 1 (a value of 0 is not valid). If the motor temperature does not 

exceed the allowable but does exceed the safety temperature, the maximum allowable 

power parameter is reduced by 1 each cycle until either the parameter becomes equal 

to 1 or the safety temperature rises above the motor temperature. If the motor 

temperature is below the safety temperature, the maximum allowable power parameter 

is increased by 1 each cycle until the maximum value of 255 is reached or the motor 

temperature exceeds the safety temperature. Each cycle, if the calculated power 

parameter is greater than the maximum allowable, it is reduced to the maximum 

allowable instead. Figure (4.14) shows how the safety temperature prevents a motor 

from overheating. 
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Figure 4.14 Theoretical Safety Temperature as a Function of Time 

 

Calculating Power Usage 

The dynamic power control algorithm response is tested by observing the IMU 

measurements while the gimbal is at rest, in motion, and subject to large disturbances. 

For each motor, the positional error, current, and power parameter is recorded every 

program cycle (approximately 30 ms). The power for each motor is calculated using 

equation (4.13). Total energy consumed is calculated using the Riemann sum technique, 

as shown in equation (4.24) [30]. 

 

∑ 𝑃(𝑡)Δ𝑡

𝑛−1

𝑡=0

 

(4.24) 

where  P(t) – calculated power 

 

Total energy is then divided by the total time of the observations to yield an average 

power consumption for the experiment, as shown in equation (4.25). 

 𝐸 = 𝑃𝑡  

 
𝑃 =

𝐸

𝑡
 

(4.25) 

where  E – energy, J 

 

Percent difference is calculated according to equation (4.26). 
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𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 100 (

𝑃1 − 𝑃2

𝑃1
) 

(4.26) 

 

where  Difference – percent difference between power consumption, % 

 

Calculating Proportional Control Parameter 

The proportional control parameter, P in PID, must be recalculated every time the power 

parameter is changed. Because motor torque increases with power, the proportional 

parameter must be reduced to keep the system response the same. Because this is an 

inverse relationship, the value is higher for low power settings and vice versa. The P 

parameters are determined for the lowest and highest values used by the system by 

using the auto-tune function included with the motion controller. The necessary P value 

is then interpolated from these values for each motor as shown in equation (4.27). 

 
𝑃𝑃𝐼𝐷 = 𝑃𝑝𝑎𝑟𝑎𝑚𝐿𝑜𝑤 − (

𝑃𝑝𝑎𝑟𝑎𝑚

255
) (𝑃𝑝𝑎𝑟𝑎𝑚𝐿𝑜𝑤 − 𝑃𝑝𝑎𝑟𝑎𝑚𝐻𝑖𝑔ℎ) 

(4.27) 

 

where  PPID – proportional parameter of PID control 

  PparamLow – the proportional parameter for the lowest power parameter 

  PparamHigh – the proportional parameter for the hightest power parameter 

 

4.3 System Control 

System Layout 

Figure (4.15) shows the layout of the electromechanical components and how they 

interact with one another. The SimgleBGC motion controller is the heart of the system 

and drives the motors. As the motors move, the IMUs also move based on their location 

within the system. The IMUs send data back to the motion controller which it interprets 

as motor position and compares with the target position to determine error. This 

positional error is read by the Arduino Nano microprocessor, which runs the power 

control algorithm. The algorithm determines the appropriate power level to operate each 

motor at based on positional error, then calculates a new proportional parameter. The 

calculated power levels and proportional parameters are then sent to the motion 

controller and updated. The cycle then repeats for the next program cycle. 
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Figure 4.15 Electromechanical System Diagram 

 

Serial API and Communication 

The SimpleBGC motion controller includes a serial API which allows communication with 

an external device. Commands can be both sent and received via serial connection, 

which facilitates the retrieval of IMU and system state data from the motion controller 

in real time, as well as updating its parameters. An Arduino Nano microcontroller was 

connected to the motion controller on this prototype. 

The motion controller parses incoming commands every 8 ms, which are sent by the 

microcontroller. The SBGC_CMD_REALTIME_DATA_4 was used to retrieve air 

temperature, IMU Angles, and Target Angles. The SBGC_cmd_set_adj_vars_var_t 

command was used to write new power parameters and PID parameters to the roll, 

pitch, and yaw axes. 

4.4 Program Flow and Calculations 

The system control algorithm is executed on an Arduino Nano. The TX and RX pins on 

the Arduino are connected directly to the RX and TX pins on the SimpleBGC motion 

controller, respectively. These two connections are all that are required for serial 

connection between the two controllers. The algorithm works by first sending a real-
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time data request (from the Arduino) to the serial buffer on the SimpleBGC controller. 

The controller processes this command and sends the requested data to the Arduino 

serial buffer. The algorithm then makes all necessary calculations to determine power 

and PID parameters for each axis based on the mathematical model. The Arduino then 

sends the commands to update these parameters to the SimpleBGC serial buffer. The 

program then loops back the beginning and runs again continuously as long as the 

Arduino is powered. The flowchart in figure (4.16) shows the general order in which 

routines are executed. 

 

 

Figure 4.16 Program Process Flowchart 
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5 RESULTS AND ANALYSIS 

5.1 Temperature Modeling Test 

Testing the Rate of Cooling Model 

The results from the rate of cooling test are shown below in table (5.1). These results 

are graphed in figures (5.1) and (5.2) to show the relative accuracy of the cooling model 

for the BGM5208-200-12 and BGM2606-90T motors, respectively. 

 

Table 5.1 Results of Motor Cooling Test 

 

 
BGM5208-200-12 BGM2606-90T 

t 

min 

Tmeasured 

°C 

Tcalculated 

°C 

Tmeasured 

°C 

Tcalculated 

°C 

0 47.0 47.0 54.0 54.0 

1 45.8 45.9 47.1 51.0 

2 44.7 44.9 43.2 48.5 

3 43.4 44.1 40.9 46.2 

4 42.1 43.2 39.2 44.2 

5 41.1 42.3 38.0 42.3 

 

 

 

Figure 5.1 BGM2606-90T Measured Versus Calculated Temperature While Cooling 
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Figure 5.2 BGM5208-200-12 Measured Versus Calculated Temperature While Cooling 

 

Testing the Rate of Heating Model 

The results of the rate of heating test for the BGM5208-200-12 motor are shown below 

in table (5.2). These results are graphed in figures (5.3), (5.4), and (5.5) to show the 

relative accuracy of the heating model for each of the power settings tested. The 

calculated values are quite different from the measured values, likely due to the small 

temperature range during testing. 

 

Table 5.2 BGM5208-200-12 Heating Test Results 

 

 Power Parameter: 150 
VRMS = 9.97 V 

Power Parameter: 200 
VRMS = 11.5 V 

Power Parameter: 250 
VRMS = 12.9 V 

t 
min 

Tcalculated 
°C 

Tmeasured 
°C 

Tcalculated 
°C 

Tmeasured 
°C 

Tcalculated 
°C 

Tmeasured 
°C 

0 25.6 25.6 33.0 32.9 30.2 30.2 

1 26.1 27.9 33.2 34.8 31.6 32.6 

2 26.5 29.7 33.6 37.0 32.4 36.6 

3 26.9 31.1 34.2 39.0 33.2 40.1 

4 27.3 32.4 34.9 40.9 34.0 43.2 

5 27.6 33.6 35.2 42.5 34.5 46.1 
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Figure 5.3 BGM5208-200-12 Motor Heating Model Test Results at Power Parameter 150 

 

 

Figure 5.4 BGM5208-200-12 Motor Heating Model Test Results at Power Parameter 200 

 

 

Figure 5.5 BGM5208-200-12 Motor Heating Model Test Results at Power Parameter 250 
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relative accuracy of the heating model for each of the power settings tested. The 

calculated temperatures are very close to those measured, and conservative in their 

difference. 

 

Table 5.3 BGM2606-90T Heating Test Results 

 

 

Power Parameter: 150 

VRMS = 9.97 V 

Power Parameter: 200 

VRMS = 11.5 V 

Power Parameter: 250 

VRMS = 12.9 V 

t 

min 

Tcalculated 

°C 

Tmeasured 

°C 

Tcalculated 

°C 

Tmeasured 

°C 

Tcalculated 

°C 

Tmeasured 

°C 

0 26.8 26.8 30.5 30.5 33.6 33.6 

1 40.9 38.7 49.6 46.7 58.6 53.5 

2 49.9 48.1 63.0 58.0 79.1 68.2 

3 56.7 55.7 75.2 69.6 - - 

4 62.4 61.3 - - - - 

5 - - - - - - 

 

 

 

Figure 5.6 BGM2606-90T Motor Heating Model Test Results at Power Parameter 150 
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Figure 5.7 BGM2606-90T Motor Heating Model Test Results at Power Parameter 200 

 

 

Figure 5.8 BGM2606-90T Motor Heating Model Test Results at Power Parameter 250 

 

Overtemperature Protection Results 

The results of the overtemperature protection test are shown in table (5.4), and the 

data are plotted in figures (5.9), (5.10), and (5.11) for power parameters of 150, 200, 

and 250, respectively. The calculated temperatures are conservative, but effectively 

prevent the motor from overheating. 
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Table 5.4 Overtemperature Protection Test Results 

 

 

Power Parameter: 150 

VRMS = 9.97 V 
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Figure 5.9 Heating and Overtemperature Test Results at VRMS 9.97 
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Figure 5.10 Heating and Overtemperature Test Results at VRMS 11.5 

 

 

Figure 5.11 Heating and Overtemperature Test Results at VRMS 12.9 
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to maintain the shape of the curve. Figures (5.12) and (5.13) show the performance of 

the roll and pitch axes, respectively. 

 

 

Figure 5.12 Roll Axis System Response under Moving Condition 

 

 

Figure 5.13 Pitch Axis System Response Under Moving Condition 
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the dashed lines show the position error measured by the IMU, while the solid lines 

indicate the power level supplied by the motion controller in terms of power parameter. 

Error values were normalized to match the corresponding power parameter, and large 

error values were intentionally cropped to maintain the shape of the curve. Figures 

(5.14) and (5.15) show the performance of the roll and pitch axes, respectively. 

 

 

Figure 5.14 Roll Axis System Response Under Large Disturbances 

 

 

Figure 5.15 Pitch Axis System Response Under Large Disturbances 
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The yaw response is discussed separately because it had very poor performance. For an 

unknown reason, the motion controller was returning IMU error values 18 times larger 

than those for the roll and pitch axes. Because the algorithm was tuned for much smaller 

values, the system response was far too large. Figure (5.16) shows the yaw error and 

response. The test started with the system in the moving condition, then a series of 

large disturbances, then finishing with the gimble at rest. 

 

 

Figure 5.16 Yaw Axis System Response Under Small and Large Disturbances 

5.3 Power Consumption Comparison 

The power savings of this approach can be estimated by making a few assumptions 

about how the system is used. Per the motion controller manual, a power setting is 
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Because of the poor performance of the yaw motor with this technique, it will be ignored 
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standard setup as it is constant. However, large disturbances will cause a substantial 

difference in the dynamic algorithm. Therefore, it is assumed that the system will 

operate under the same conditions as the disturbance tests. The data from those tests 

is integrated over time to produce energy, then divided by the time to produce Watts. 

According to these estimates, the roll axis will consume 1.4 W on average, whereas the 

pitch axis will consume 0.7 W. This represents a power savings of 22.2 % and 61.1 % 

for the roll and pitch axes, respectively. 
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6 CONCLUSIONS 

Overall, the prototype functioned well and met all of the objectives of this work. The 

temperature modeling was adequate, the motor protection excellent, the system 

response performed well in many ways and poorly in a few, and the potential power 

savings of the algorithm are substantial. Overall, the design of the gimbal proved to be 

effective. 

6.1 Temperature Modeling 

The temperature model works well to predict the rate at which a motor will heat while 

powered as well as cool while unpowered. The algorithm is more accurate for the roll 

and pitch axes in large part because the data spanned a much larger temperature range 

than the yaw motor. The results tend to be a bit conservative, but this is not a problem 

given the objective of preventing motor overheating. It is important to note that air 

currents will cool a motor faster than predicted since all measurements were limited to 

the laboratory environment, however this is likely to make the system even more 

conservative and not manifest as a problem. A fully functional model will have 

aerodynamic covers which limit air currents across the motor. 

6.2 Motor Protection 

The motor protection routine works very well to prevent an overheat situation. The 

system successfully limits maximum power available to a motor as it heats, and provides 

a larger buffer as a motor heats more quickly. This greatly decreases the chances that 

the maximum defined temperature will ever be reached. As the rate of heating 

decreases, the buffer decreases, allowing more power to be consumed again. Once this 

algorithm was implemented, a motor never exceeded the maximum defined 

temperature during testing. 

6.3 System Response 

Acceptable positional error is a function of distance to target and ground speed, 

according to the blur equation. It must be decided by the operator how much error is 

acceptable and tune the system accordingly. Both the maximum positional error value 

and PID parameters must be tuned to provide a system response which is slow enough 

to save power but fast enough to prevent any image blur. This thesis utilized the auto-

tuner function included with the motion controller, which proved to be functional, but 
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there are occasional oscillations which would affect image quality, especially when the 

gimbal is positioned at extreme angles relative to its initial calibration. Further PID 

analysis is required for a fully functional system. 

6.4 Power Savings 

For this particular design and setup, power savings were shown to be significant for the 

roll and pitch axes, at 22.2 % and 61.1% power savings respectively. The yaw axis 

performed relatively poorly with the same algorithm, but further advancement of a yaw 

specific algorithm will likely yield good results. The motor selected for the yaw axis was 

capable of utilizing higher RMS voltage than those used with the roll and pitch axes, 

which could provide improved performance as well. Regardless, balance proved to be 

critical to the quality of stabilization provided by a motor, especially at lower power 

settings. 
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7 SUMMARY 

This work demonstrates a successful design capable of mounting a hyperspectral 

linescan camera to a fixed wing drone, paired with a power conserving algorithm that 

dynamically scales power to each motor as needed. The system created will provide a 

platform upon which other thesis work can be completed within the mechatronics 

department. 

The control algorithm successfully adjusts power delivery to each gimbal motor in real 

time based on positional error. It also prevents the motors from overheating if the 

demand for power remains too high for too long. While system performance will suffer, 

the system protects itself to prevent permanent damage. The PID parameters 

successfully scale with the changing power level, preventing under and over-dampened 

response. 

While the work in this thesis demonstrates the potential efficiency gains that dynamically 

adjusting power can yield in an inertial gimbal system, there are many improvements 

that can be made to the prototype developed here. 

First of all, a well balanced system is critical to reducing power consumption. The center 

of mass must be located along the axis of each motor to prevent gravity from inducing 

a rotation that the motor must counter, thereby increasing the necessary torque to hold 

the axis in the desired position. Dangling cables increase motor load both by being pulled 

and compressed as the axis moves and limit the rotation of the system. Slip rings were 

not available, but would offer a significant improvement in efficiency, especially if the 

camera requires an external cable. 

The frame was designed to be easily prototyped and 3D printed. While every reasonable 

attempt was made to reduce its weight and keep the system balanced, the final design 

is by no means optimized. Further study and refinement of the mechanical system could 

offer improvements. 

The PID parameters were generated with the assistance of the auto-tuner routine 

included with the SimpleBGC controller. A proper study of the system response as a 

function of RMS voltage and motor temperature will likely yield better results. The 

prototype is susceptible to oscillations at certain orientations, especially at extreme 

angles. 

The dynamics properties of the power supply under load were ignored in this study. A 

bench top power supply was used, and batteries will likely behave differently under load. 

Adjusting power and PID parameters based on battery drain may be required for a fully 

functional model. 

While the Flir thermal scope was very effective, its precision of measurement is limited 

to one tenth of one degree. This produces poor curves when the rate of temperature 
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change is slow. Also, the methods used to record data were not automated and thus 

could not be performed quickly. Using a smaller measurement interval will yield more 

accurate graphs and therefore better fit curves. Faster measurements will also allow 

temperatures to be recorded at higher RMS voltage settings which overheated the small 

motors quickly in this study. 

The material used in this protytpe is PLA, and therefore softens at 60 °C. The maximum 

temperature can be increased to be closer to the limitations of the motors with a more 

heat resistant material. Also, the screws regularly loosened as the PLA softened, 

requiring maintenance often. 

A dynamic “holding torque” variable can be implemented to adaptively determine how 

much holding torque each axis needs based on the flight data. 

Using the version of the motion controller that measures current can allow the system 

to self-initialize the motor temperatures based on power parameter and current draw. 

The system currently assumes air temperature if not overwritten by the user. 

 

Kokkuvõte 
See töö demonstreerib õnnestunud disainilahendust, kus on paigaldatud hüperspektraal 

linescan kaamera fikseeritud tiivaga droonile ja rakendatud toitesäästlik algoritm, mis 

dünaamiliselt reguleerib iga mootori võimsust vastavalt vajadusele. Loodud süsteem 

pakub platvormi, mille abil saab mehhatroonika laboris teha uusil lõputöid. 

Juhtimisalgoritm reguleerib positsioonivea põhjal edukalt reaalajas iga kardaanmootori 

energiatarbimist. Samuti hoiab see ära mootorite ülekuumenemise, kui energiatarve 

püsib liiga kaua liiga kõrge. Ehkki süsteemi jõudlus kannatab, kaitseb süsteem end 

püsivate kahjustuste vältimiseks. PID-parameetrid muutuvad koose muutuva 

võimsustasemega, hoides ära ala- ja üle summutatud reageerimise. 

Kuigi käesoleva lõputöö käigus näidatakse potentsiaalset efektiivsuse kasvu, mida 

dünaamiliselt reguleeriva jõu abil saab inertsiaalses pöördesüsteemis kasutada, on siin 

välja töötatud prototüübi jaoks võimalik edaspidi palju täiendusi. 

Esiteks on hästi tasakaalustatud süsteem kriitiline energiatarbimise vähendamiseks. 

Massi keskpunkt peab asuma piki iga mootori telge, et gravitatsioon ei põhjustaks 

pöörlemist, millele mootor reageerib, suurendades sel viisil vajalikku pöördemomenti 

telje hoidmiseks soovitud asendis. Rippuvad kaablid suurendavad mootori koormust nii 

painutamisel kui ka sirgestumisel telje liikumisel ja piiravad süsteemi pöörlemist. 

Libisevad rõngaskontaktid polnud saadaval, kuid need parandaksid tõhusust 

märkimisväärselt, eriti kui kaamera vajab välist kaablit. 

Raam oli mõeldud hõlpsaks prototüüpide valmistamiseks ja 3D-printimiseks. Ehkki selle 

efektiivsust üritati vähendada ja süsteemi tasakaalus hoida, pole lõplik ülesehitus mingil 
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juhul optimeeritud. Mehaanilise süsteemi täiendav uurimine ja täiustamine võiks 

pakkuda täiendusi. 

PID-parameetrid genereeriti SimpleBGC kontrolleriga kaasasoleva automaatse 

häälestaja rutiini abil. Süsteemi reaktsiooni nõuetekohane uurimine RMS-i pinge ja 

mootori temperatuuri funktsioonina annab tõenäoliselt paremaid tulemusi. Prototüüp on 

tundlik võnkumistele teatud orientatsioonide korral, eriti äärmiste pöördenurkade 

korral. 

Selles uuringus jäeti kõrvale koormuse all oleva toiteallika dünaamika omadused. 

Kasutati fikseeritud pinge toiteallikat ja akud käituvad koormuse korral tõenäoliselt 

erinevalt. Täielikult töötava mudeli jaoks võib olla vajalik aku tühjenemisel põhinevate 

võimsuse ja PID-parameetrite reguleerimine. 

Kuigi Flir kaamera temperaturri mõõtmise ulatus oli väga lai, on selle mõõtmise täpsus 

piiratud ühe kümnendikuga ühest kraadist. Kui temperatuuri muutuse kiirus on aeglane, 

saadakse ebaadekvaatsed kõverad. Samuti ei olnud andmete registreerimiseks 

kasutatavad meetodid automatiseeritud ja seetõttu ei olnud neid võimalik kiiresti 

teostada. Väiksema mõõtmisintervalli kasutamisel saadakse täpsemad graafikud ja 

seetõttu sobivad kõverad paremini. Kiiremad mõõtmised võimaldavad temperatuure 

registreerida ka kõrgema RMS-pinge korral, mis selles uuringus väikemootorid üle 

kuumendas. 

Selles prototüübis on kasutatud konstruktiivsete elementide jaoks PLA-d ja see 

pehmeneb temperatuuril 60 °C. Maksimaalset temperatuuri saab tõsta, et olla lähemal 

kuumuskindlama materjali puhul mootorite piirangutele. Samuti kruvisid kruvid 

regulaarselt lahti, kui PLA pehmenes, vajades sageli hooldust. 

Dünaamilist hoidemomendi muutujat saab rakendada lennuandmete põhjal adaptiivselt 

määramaks, kui palju hoidemomenti iga telg vajab. 

Voolu mõõtva liikumiskontrolleri versiooni kasutamine võimaldab süsteemil mootori 

temperatuuri ise juhtida vastavalt parameetrile ja vooluhulgale. Süsteem eeldab praegu 

kindlat õhutemperatuuri, kui kasutaja pole seda üle kirjutanud. 
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APPENDIX 

Appendix 1 Microprocessor Power Control Algorithm 

1. //be sure to increase serial buffer size   

2. //in the ProgramFiles/Arduino/ directory, find HardwareSerial.h   

3. //change SERIAL_RX_BUFFER_SIZE to 256   

4. //change SERIAL_TX_BUFFER_SIZE to 256   

5.    

6. //the realtime data request code is based heavily on the examples provided at    

https://www.basecamelectronics.com/   

7.    

8. #include <inttypes.h>   

9. #include <SBGC.h>   

10. #include <SBGC_Arduino.h>   

11.    

12. #define SERIAL_SPEED 115200   

13. #define serial Serial   

14. #define REALTIME_DATA_REQUEST_INTERNAL_MS 10 //interval between realtime data req

uests   

15.    

16. #define conversionAcc 512   

17. #define conversionGyr 0.06103701895   

18.    

19. inline void process_cmd_realtime_data();   

20. inline void process_in_queue();   

21.    

22. void request_adj_vars_val();   

23.    

24. static SBGC_cmd_realtime_data_t rt_data;   

25. static uint16_t cur_time_ms,rt_req_last_time_ms,last_cmd_time_ms;   

26.    

27. const float SupplyVoltage = 13.0; //IMPORTANT!!! SET THIS TO MATCH THE POWER SOURC

E!   

28.    
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29. //MOTOR CONSTANTS                  {   roll,  pitch,  yaw}   

30. const float kMotor[3]            = {  0.110,  0.110, 0.05};   

31.    

32. const float iMotorSlope_term1[3] = {-0.0134,-0.0134, -0.055};   

33. const float iMotorSlope_term2[3] = { 0.0156, 0.0156, 0.6311};   

34. const float iMotorSlope_term3[3] = { 0.0167, 0.0167, -2.497};   

35. const float iMotorYint_base[3]  = {  0.1551, 0.1551, 0.1257};   

36. const float iMotorYint_powr[3]  = {  3.4591, 3.4591, 3.4135};   

37.    

38. const float rMotorSlope_slope[3] = {-0.0002,-0.0002,      0};   

39. const float rMotorSlope_yint[3]  = { 0.0062, 0.0062, 0.2435};   

40. const float rMotorYint_slope[3]  = { 0.0255, 0.0255,       0};   

41. const float rMotorYint_yint[3]   = { -0.105, -0.105, -0.4952};   

42.    

43. //P parameters   

44. const float pParamLo[3]         = {      24,    180,  40};   

45. const float pParamHi[3]         = {       4,    105,   2};   

46.    

47.    

48. //POWER CONSTANTS   

49. const float maxTemp = 60.0;    //max temperature, not to exceed, degrees C   

50. const float errFullval = 1.0;  //degrees of error resulting in a system response of 10

0% available power   

51.    

52. //GLOBAL VARS   

53. boolean varsInit;   

54. float Vsupply;   

55. float Tair;   

56. float Tmotor[3];   

57. uint8_t pwrParam[3];   

58. int16_t imuAng[3]; //actual angle for each motor   

59. int16_t tgtAng[3]; //target angle for each motor   

60. float errAng[3]; //error between target and actual angles, calculated   

61. uint16_t timePrev; //used to save the previous time for integration   
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62. float corP=10; //proportional correction value for angle error, pwrParm=corP*errAn

g   

63. float tMotorRate[3]; //current rate of motor temperature change, degrees C / secon

d   

64. uint8_t maxPwr[3]; //stores the current maximum power level allowed by the safety 

routine   

65.    

66. uint16_t prevOutput; //used to store the last output time, ms   

67. boolean printInfo;   

68. uint16_t loopCount; //used to limit serial print commands   

69. uint8_t segDisp=1; //used to rotate though segments to display each loop   

70.    

71.    

72. void setup(){   

73.   serial.begin(SERIAL_SPEED);   

74.   SBGC_Demo_setup(&serial);   

75.   varsInit=false;   

76.    

77.   loopCount=0;   

78.   //prevOutput=0;   

79.   printInfo=false;   

80. }   

81.    

82. void loop(){   

83.   loopCount++;   

84.    

85.   cur_time_ms=millis();   

86.   process_in_queue();   

87.   //request realtime data   

88.   if((cur_time_ms - rt_req_last_time_ms) > REALTIME_DATA_REQUEST_INTERNAL_MS){   

89.     SerialCommand cmd;   

90.     cmd.init(SBGC_CMD_REALTIME_DATA_4);   

91.     sbgc_parser.send_cmd(cmd,0);   

92.     rt_req_last_time_ms = cur_time_ms;   
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93.   }   

94. }   

95.    

96. // Process incoming commands. Call it as frequently as possible, to prevent overr

un of serial input buffer.   

97. void process_in_queue() {   

98.   while(sbgc_parser.read_cmd()) {   

99.     SerialCommand &cmd = sbgc_parser.in_cmd;   

100.     last_cmd_time_ms = cur_time_ms;   

101.        

102.     uint8_t error = 0;   

103.     switch(cmd.id){   

104.     // Receive realtime data   

105.     case SBGC_CMD_REALTIME_DATA_3:   

106.     case SBGC_CMD_REALTIME_DATA_4:   

107.       error = SBGC_cmd_realtime_data_unpack(rt_data, cmd);   

108.       if(!error){   

109.         //check struct BGC_cmd_realtime_data_t within SBGC_cmd_helpers.h for 

member names (starts on line 133)   

110.    

111.         //store supply (battery) voltage   

112.         if(float(rt_data.battery_voltage)/100>3){ //the onboard voltage measureme
nt is very inaccurate, but can be used to tell if the system has power or not for

 testing   

113.           Vsupply=SupplyVoltage;   

114.         }else{Vsupply=0.0;}   

115.            

116.         //store ambient temperature   

117.         Tair=float(rt_data.imu_temp_celcius+rt_data.frame_imu_temp_celcius)/

2;   

118.            

119.         if (!varsInit){   

120.           //Serial.print("Vsupply: ");Serial.println(Vsupply);   

121.           for(uint8_t x=0;x<3;x++){   

122.             maxPwr[x]=255;   
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123.             Tmotor[x]=Tair; //initialize motor temp, assume same as Tair   

124.             pwrParam[x]=150; //initialize initial power parameter   

125.           }   

126.              

127.           timePrev=0; //init for integration   

128.           varsInit=true;   

129.         }   

130.    

131.         //store parameters for each motor   

132.         for(uint8_t x=0;x<3;x++){   

133.           imuAng[x]   = rt_data.imu_angle[x];   

134.           tgtAng[x]   = rt_data.target_angle[x];   

135.           errAng[x]   = (float(tgtAng[x])-

float(imuAng[x]))/45.5111; //16384/360   

136.         }   

137.    

138.         Serial.println("");   

139.         Serial.print("t:");Serial.print(millis()/1000.0);Serial.print(",");   

140.    

141.         uint16_t timeCur=micros();   

142.         float RMS;   

143.         float Imotor;   

144.         float TmotorInc;   

145.         float TmotorDec;   

146.         for(int x=0;x<3;x++){ //for each motor, x   

147.           RMS=calc_RMS(pwrParam[x]);   

148.           Imotor=calc_I(x,RMS);   

149.           TmotorInc=calc_rateTempInc(x,RMS,Imotor);                             //per 

minute   

150.           TmotorDec=calc_rateTempDec(x);                                        //per minute   

151.           tMotorRate[x]=(TmotorInc-

TmotorDec)/60;                               //per second   

152.           Tmotor[x]=Tmotor[x]+tMotorRate[x]*float(timeCur-

timePrev)/1000000; //C + C/s * micros * (s/1000micros) = C   
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153.    

154.           Serial.print("#:");Serial.print(x);Serial.print(",");   

155.           Serial.print("e:");Serial.print(errAng[x]*100);Serial.print(",");   

156.           Serial.print("I:");Serial.print(Imotor);Serial.print(",");   

157.           Serial.print("Tm:");Serial.print(Tmotor[x]);Serial.print(",");   

158.           Serial.print("TI:");Serial.print(TmotorInc);Serial.print(",");   

159.           Serial.print("TD:");Serial.print(TmotorDec);Serial.print(",");   

160.         }   

161.            

162.         timePrev=timeCur;   

163.    

164.         if(Vsupply>0){adjust_power();}   

165.    

166.         printInfo=false;   

167.       } else {   

168.         sbgc_parser.onParseError(error);   

169.       }   

170.       break;   

171.     }   

172.   }   

173. }   

174.    

175. void adjust_power( ){   

176.   //uint8_t numVars=3;   

177.   //this command is defined as a struct in SBGC_cmd_helpers.h   

178.   SBGC_cmd_set_adj_vars_var_t a[6]; //init struct   

179.   //possible ids are defined on p57, vals 0-255   

180.   a[0].id = ADJ_VAR_POWER_ROLL; //see SBGC_adj_vars.h for list   

181.   a[1].id = ADJ_VAR_POWER_PITCH;   

182.   a[2].id = ADJ_VAR_POWER_YAW;   

183.   a[3].id = ADJ_VAR_P_ROLL;   

184.   a[4].id = ADJ_VAR_P_PITCH;   

185.   a[5].id = ADJ_VAR_P_YAW;   
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186.      

187.   for(int x=0;x<3;x++){   

188.     float e=abs(errAng[x]);   

189.     while(e>180){e=abs(e-360);}   

190.        

191.     //stepped response mode   

192.     uint16_t responseRange=int(e*10.0/errFullval);   

193.     if(responseRange<1){responseRange=1;}   

194.     else if(responseRange>10){responseRange=10;}   

195.     pwrParam[x]=25*responseRange;   

196.     Serial.print("#:");Serial.print(x);Serial.print(",");   

197.     Serial.print("rrange:");Serial.print(responseRange);Serial.print(",");   

198.        

199.     //limit power output based on estimated motor temperature   

200.     float Tsafety=maxTemp-(30*tMotorRate[x]);   

201.    

202.     if(Tmotor[x]>maxTemp){//over max temp!   

203.       maxPwr[x]=1;   

204.     }else if(Tmotor[x]>Tsafety){//over safety temp   

205.       if(maxPwr[x]>1){maxPwr[x]=maxPwr[x]-1;}   

206.     }else{//temp is fine   

207.       if(maxPwr[x]<255){maxPwr[x]=maxPwr[x]+1;}   

208.     }   

209.    

210.     if(pwrParam[x]>maxPwr[x]){pwrParam[x]=maxPwr[x];}   

211.     Serial.print("pP:");Serial.print(pwrParam[x]);Serial.print(",");   

212.     Serial.print("pM:");Serial.print(maxPwr[x]);Serial.print(",");   

213.    

214.     if(x<2){a[x].val=90;}   

215.        

216.     //update power parameters   

217.     a[x].val = pwrParam[x]; //value of 0-255   

218.     a[x+3].val = calc_pParam(pwrParam[x],x); //value of 0-255   
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219.   }   

220.   SBGC_cmd_set_adj_vars_send(a,6,sbgc_parser);   

221. }   

222.    

223. float calc_pParam(uint8_t powParam,uint8_t motorNo){   

224.   return uint8_t(pParamLo[motorNo]-

(float(powParam)/255*(pParamLo[motorNo]-pParamHi[motorNo])));   

225. }   

226.    

227. float calc_RMS(uint8_t pwrPar){   

228.   float d=float(pwrPar)/255.0; //duty cycle   

229.   return Vsupply*pow(d,0.5);   

230. }   

231.    

232. float calc_I(uint8_t motorNo, float RMS){   

233.   if(RMS>1){   

234.     float motorTemp=Tmotor[motorNo];   

235.     float slope=iMotorSlope_term1[motorNo]*pow(RMS,2)+iMotorSlope_term2[

motorNo]*RMS+iMotorSlope_term3[motorNo];   

236.     float yint=iMotorYint_base[motorNo]*pow(RMS,iMotorYint_powr[motorNo]); 

  

237.     float current=motorTemp*slope+yint;   

238.     if(current>0){   

239.       return current;   

240.     }else{   

241.       return 0;   

242.     }   

243.   }else{ //RMS is zero, so return zero current   

244.     return 0;   

245.   }   

246. }   

247.    

248. float calc_rateTempInc(uint8_t motorNo, float RMS, float I){   

249.   if(RMS>1){   
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250.     float rSlope=rMotorSlope_slope[motorNo]*RMS+rMotorSlope_yint[motorNo];

   

251.     float rYint=rMotorYint_slope[motorNo]*RMS+rMotorYint_yint[motorNo];   

252.     float rCoeff=1.0/(rSlope*Tmotor[motorNo]+rYint);   

253.     if(rCoeff>0){return rCoeff*(I/1000.0*RMS);}else{return 0;} //r*P   

254.   }else{   

255.     return 0;   

256.   }   

257. }   

258.    

259. float calc_rateTempDec(uint8_t motorNo){   

260.   float kCoeff=kMotor[motorNo];   

261.   float motorTemp=Tmotor[motorNo];   

262.   return kCoeff*(motorTemp-Tair); //k(Tmotor - Tair)   

263. }   


