
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Aleksandr Babõkin 174960IDDR

Design and Implementation of the Personal Data
Processing Component for the AfterPay

Cross-organisational Processes

Diploma Thesis

Supervisor: Aleksandr Kormiltsõn
MsC

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Aleksandr Babõkin 174960IDDR

Isikuandmete töötlemise komponendi disain ja
rakendamine AfterPay organisatsioonidevahelistele

protsessidele

Diplomitöö

Juhendaja: Aleksandr Kormiltsõn
MsC

Tallinn 2021

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Aleksandr Babõkin

17.05.2021

3

Abstract

In cross-organisational business processes, partners have to respect each other’s internal
rules, such as data protection. Some organizations must supply a solution that is compliant
with the regulations of other partners in order for the collaboration to be effective.

The main goal of the thesis is to design and implement a Personal Data Processing
Component that eliminates the online merchant’s obligations and risks related to sensitive
data processing during the AfterPay API checkout process.

AfterPay as a system and the AfterPay Checkout process are introduced together, and the
value of the Personal Data Processing Component for merchants is discussed. After that,
an analysis of the requirements for the Personal Data Processing Component is presented.

Finally, the development process starts with specification gathering, by writing the behavior
driven development scenarios. Then the author considers the appropriate architecture and
design patterns which match the application’s scope and requirements. The paper covers
bothe the back-end and front-end implementation processes. The result is a working
application.

The thesis is in English and contains 32 pages of text, 8 chapters, 7 figures.

4

Annotatsioon

Isikuandmete töötlemise komponendi disain ja rakendamine
AfterPay organisatsioonidevahelistele protsessidele

AfterPay on teenus, mis võimaldab maksta tellimuse eest pärast kohaletoimetamist. Selleks,
et leevendada riske teeb AfterPay ostjale maksevõime eelkontrolli, kasutades kliendipoolset
isiku tuvastamise informatsiooni. Selleks, et veebipood sai enda klientidele AfterPay
maksmisteenust pakkuda peaks kaupleja klienti isikuandmed käsitlema.

AfterPay puutus kokku probleemiga, et kauplejad ehk veebipoed keelavad AfterPay-d enda
ostu vormistamise protsessi integreerida.

Lõputöö põhiline eesmärk on lahendada probleemi disainides ja implementeerides
Isikuandmete töötlemise komponent, mis võimaldaks kauplejatel isikutuvastamise in-
formatsiooni käsitlemisest mööda minema ja pakkudes samal ajal AfterPay teenust
klientidele.

Esiteks autor seletab, mis on AfterPay ja kirjeldab selle protsessid. On näidatud, miks
isiku tuvastamise informatsiooni on AfterPay-le vajalik ja selgitakse, kuidas AfterPay
on teiste äridega seotud. Teiseks, muude maksuplatvormide kaasaegsed lähendused on
analüüsitud ja selgitatud kuidas nad töötavad. Kolmandaks, alustab autor analüüsi nõuete
kogumisest. Nende nõuete baasil kirjeldab autor tulevikusüsteemi, mis hakkab ostjate
isikliku informatsiooni koguma. Neljandaks, kirjeldab autor tehnoloogia valikut. Lõpuks
autor seletab lahti rakendamise protsessi, alustades BDD stsenaariumite kirjutamisega
koos AfterPay esindajatega. Edasi autor kirjeldab rakenduse arhitektuurilised lahendused,
implementatsiooni detailid ja süsteemi hinnangu kriteeriumid.

Lõputöö tulemuseks on valmislahendus, mis annab kauplejatele võimalus kasutada After-
Pay makseteenuse ilma isiku tuvastamise informatsiooni puutumatu.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 32 leheküljel, 8 peatükki, 7 joonist.

5

List of abbreviations and terms

Customer/Shopper A customer is an individual or business who purchases
products or services from Merchant [1]

REST Representational State Transfer
API Application Programming Interface
Merchant A merchant is a business that engages in e-commerce and

has implemented or plans to use the AfterPay service [1]
GDPR General Data Protection Regulation
CI/CD Continuous integration/Continuous delivery or deployment
SSN Social Security Number
IBAN International Bank Account Number
SDK Software Development Kit
HTML HyperText Markup Language
Nonce Number that can only be used once
UI User Interface
CSS Cascading Style Sheets
JWT JSON Web Token
HTTP HyperText Transfer Protocol
IDE Integrated Development Environment
SQL Structured Query Language
XML Extensible Markup Language
YAML Yet Another Markup Language
JSON JavaScript Object Notation
BSON Binary JavaScript Object Notation
DOM Document Object Model
XHR XMLHttpRequest
BDD Behavior Driven Development

6

Table of Contents

1 Introduction 10
1.1 Scope . 11

2 Background 12
2.1 Overview of the AfterPay checkout process 13
2.2 Customers’ sensitive information and AfterPay 13
2.3 Cross-organisational processes . 14

3 State of the Art 16
3.0.1 Visa . 16
3.0.2 Braintree . 17
3.0.3 State of the art summary . 18

4 Analysis 19
4.1 List of functional requirements . 19
4.2 List of non-functional requirements . 19
4.3 Solution design . 20

5 Technology Stack 22
5.1 Back-end . 22
5.2 Database . 23

5.2.1 Relational databases . 23
5.2.2 Non-relational databases . 23
5.2.3 Personal Data Processing Component database 25

5.3 Front-end . 25

6 Development Process 27
6.1 Behaviour driven development . 27

6.1.1 Handling customer data . 28
6.1.2 Entering personal information 29

6.2 Back-end architecture and design . 31
6.2.1 The clean architecture . 31
6.2.2 The mediator pattern . 33

6.3 Back-end development . 33
6.3.1 Infrastructure layer . 34
6.3.2 Core layer . 35

7

6.3.3 Presentation layer . 35
6.4 Front-end SDK development . 36

6.4.1 Initialize function . 36
6.4.2 OnError function . 37
6.4.3 OnChange function . 37
6.4.4 Save function . 38

6.5 Development evaluation . 39

7 Results 40
7.1 Future developments . 40

8 Summary 41

Bibliography 42

Appendix 1 - Non-exclusive licence for reproduction and publication of a grad-
uation thesis 49

Appendix 2 - Visa Checkout code example 50

Appendix 3 - Braintree Drop-in UI code example 52

Appendix 4 - BDD Scenarios 54

8

List of Figures

1 Simplified overview of the pay-after-delivery process 12

2 Braintree interaction with merchant back and front-end applications. . . . 17

3 Simplified Personal Data Processing Component sequence diagram. . . . 20

4 Personal Data Processing Component data structure. 25

5 Clean Architecture Diagram. 32
6 A set of objects which interact directly and a set of objects which interact

through mediator. 33
7 Request processing using MediatR package. 34

9

1. Introduction

AfterPay1 is a payment-after-delivery solution that allows customers to pay for their online
purchases after receiving them [2]. The REST-based Payment API lets merchants integrate
AfterPay into their shopping experience and at the same time forces them to process the
customers’ sensitive data, so the payment for a specific shopper and basket can be approved,
including full fraud and credit scoring [3].

The fraud and risk evaluation can involve cross-organizational processes as the check will
be executed outside AfterPay. This makes sensitive data handling crucial for AfterPay as a
service provider.

While business processes that involve personal data are mostly cross-organizational legal
requirements for personal data processing are becoming even stricter, for example with
the introduction of the EU’s General Data Protection Regulation2. The current After-
Pay solution forces merchants to handle personally identifiable information within their
systems.

The need for the solution described in this paper came from the fact that some merchants
do not want to, or cannot, handle customers’ personally identifiable information in a
sufficiently secure and compliant way. As a result, merchants refuse to integrate AfterPay
into their checkout experience.

The main goal of the thesis was to solve the problem by designing and implementing the
Personal Data Processing Component that eliminates the obligations and risks related to
sensitive data processing by online merchants.

The paper methodology is based on the internal analysis and research performed in
AfterPay, including consultations with merchants and legal specialists. The solution is
aligned with GDPR and the requirements of all the stakeholders.

1 https://developer.afterpay.io/
2 https://gdpr.eu/

10

https://developer.afterpay.io/
https://gdpr.eu/

1.1 Scope

The scope of this paper is limited to AfterPay’s internal processes. The author considered
the use of architecture and design patterns for achieving a highly decoupled applica-
tion. The paper focuses on a specific application, and any other topics, such as cloud
infrastructure, CI/CD pipelines and integration within the AfterPay API, are out of scope.

11

2. Background

This section introduces AfterPay as a system, the AfterPay Checkout process and the
importance of the Personal Data Processing Component for merchants.

AfterPay is a pay-after-delivery solution developed by Arvato Financial Solutions. It
allows omni-channel businesses to isolate checkout and payment, and covers the risk of
consumers not paying, thus eliminating credit and fraud risk for merchants. An increasing
number of customers make purchases on mobile devices, so it is important to make the
checkout process in web shops as quick and easy as possible for on-the-go consumers,
frequent shoppers or those who want to experience the goods and make a payment later
[3].

In Fig. 1, [4] the AfterPay simplified process is introduced. The customer chooses ‘post
payment’ on the merchant checkout page, and receives their purchase and invoice. After
that, it is time to make a payment.

Figure 1. Simplified overview of the pay-after-delivery process

AfterPay offers an invoice that should be paid within 14 days as a default option. There
is also a possibility to split payments or pause the payments for a certain period, or
consolidate smaller purchases into one payment [3].

12

AfterPay is an international product operating in nine countries - Sweden, Norway, Finland,
Germany, Switzerland, Austria, Denmark, the Netherlands and Belgium [3].

2.1 Overview of the AfterPay checkout process

After the shopping basket is filled in the web shop, the checkout process to complete
the purchase can be initialized. The checkout process can be designed in various ways.
Typically the following information blocks are relevant for payment:

1. Personal information about the shopper including the invoice/delivery address
2. Shipping options
3. Payment method selection
4. Order confirmation

Checkout begins with the identification step, where shoppers are required to enter their
personal information, as well as the invoice and delivery address. AfterPay is trying to
provide a quick and easy checkout experience, so it is important to minimise the amount
of data given by the shopper. Therefore, several look-up services (as well as an bank
account and address validation services) are provided by AfterPay. Having entered the
required information, shoppers can choose the shipping provider before continuing to the
payment method selection. AfterPay offers several different payment options that can be
displayed at the payment selection step. After selecting a payment method, the shopper
receives either a payment confirmation, or a message that the payment has been declined. A
"declined" message redirects the shopper back to the payment method selection page. Once
payment to the merchant is confirmed, it is important to give the consumer a confirmation
including an overview of the shipping process as well as the payment method [3].

2.2 Customers’ sensitive information and AfterPay

Shoppers’ personal information is a crucial part of AfterPay’s checkout flow. Only by
knowing the shopper’s identity can AfterPay eliminate the risk of fraud or non-payment.
The identification process can happen several ways: the shopper can provide an SSN
(Social Security NUmber) and authenticate in via some electronic identity application that
will guarantee that the person who entered the SSN has a connection with it. Sometimes
the shopper wants to pay with a debit card, so an IBAN check has to be executed at the
beginning of the checkout. With the current setup, all personal identity checks have to
happen on the merchant web page but at the same time, merchants do not need such
checks for their internal business processes. As a result, some merchants cannot or will

13

not integrate AfterPay payment methods into their own checkout. One of the reason why
merchants do not want to handle personal data is GDPR where merchants are referring
to GDPR, whose Article 4 states: "‘Personal data’ means any information relating to an
identified or identifiable natural person (‘data subject’); an identifiable natural person is
one who can be identified, directly or indirectly, in particular by reference to an identifier
such as a name, an identification number, location data, an online identifier or to one or
more factors specific to the physical, physiological, genetic, mental, economic, cultural or
social identity of that natural person." [5].

Merchant may, therefore, refuse to integrate AfterPay payment methods into their own
checkout instead requesting that AfterPay to handles all or some of the shopper’s input in
a separate page or element, hosted by AfterPay itself.

This solution could be either:

1. A separate page, and thereby an extra step in the checkout process, or
2. A page or area embedded inside the merchant’s page.

2.3 Cross-organisational processes

Businesses are constantly looking for methods to cut costs, lower overheads, and grow
their resources further. Collaboration with other businesses on a single project, or perhaps
building a more sustainable long-term collaboration, is one way to make budgets and
businesses go further [6].

For example, the e-commerce business process involves cooperation with payment gate-
ways and shipping providers. Customers may buy things quickly and easily with the help of
online payment channels [6]. Shipping is the physical transfer of goods from one location
to another, such as the moving of merchandise from the warehouse to the customer [7].
Without such cooperation, an e-commerce business will not achieve success.

Every organisation has a different set of rules. At its most basic level, a business rule is a
precise instruction that restricts or defines a business activity. These rules may be used to in
almost every part of an organisation, including supply chain standards, data management,
and customer relations. Business rules are meant to assist an organization in achieving its
objectives and can be applied to computing systems [8].

AfterPay is a payment provider that works in partnership with e-commerce businesses and
external providers of customer credit scores. For a successful collaboration, all parties

14

have to respect each other’s internal rules, or provide a new solution that will respect the
rules of the partner.

15

3. State of the Art

In this section, the state of the art is investigated. The thesis author investigate what
solutions other payment providers have for merchants, who do not want to touch personally
identifiable information by themselves. Also, the ways how those solutions are working is
explained.

3.0.1 Visa

Visa Inc. is one of the most recognized global financial services brand, which provides all
sort of APIs that meet customer specific needs [9, 10].

Visa Checkout is a digital payment service designed to simplify the checkout experience
using a secure, single sign-on across channels and devices, as the customer’s preferred
payment method [11].

According to documentation, the Visa Checkout Widget loads over a web page when the
customer selects Visa Checkout as a payment method on a checkout page. The customer is
then prompted to sign in to their Visa Checkout account or create a new account before
proceeding. After that, the customer reviews a payment information within the Visa
Checkout Widget, make adjustments, if needed, and clicks the Continue or Pay button to
send a confirmation back to the merchant. Then the customer is returned to the merchant’s
website so the order can be submitted. Finally, an Order Confirmation page is shown to the
customer [11].

In order to integrate Visa Checkout, a JavaScript SDK has to be included at the end of
a page body element. In the body of the page a Visa Checkout button has to be placed.
The button itself is an HTML image tag with a specific class and source attribute to the
image itself. After that, the Visa Checkout widget can be initialised by calling a JavaScript
function with the granted API key, encryption key and paymentRequest which is filled with
required properties. Also, event handlers should be added for possible payment events,
such as success, cancel, and error. An HTML page example can be found in Appendix 2
[12].

As a result, by clicking the Visa Checkout button, a modal window is displayed on top of

16

the page where the button is located [13]. The modal window itself is an iframe that is
initialized by Visa Checkout JavaScript SDK.

3.0.2 Braintree

Braintree is a payments platform that makes it easy to accept payments in mobile or web
applications. From single-touch payments to mobile SDKs, Braintree provide everything
needed to start accepting payments [14].

Braintree has client and server SDKs and merchant has to use both of them. Client SDK
is needed to securely collect payment information from customers and the server SDK
provides method to act on the collected payment information [15].

In Fig. 3, [15] diagram shows how merchant front-end client application, merchant
back-end application and Braintree interact with each other. Front-end requests a client
token from merchants back-end and initializes the client SDK. Back-end application
generates and sends a client token back to front-end client using the server SDK. The
customer submits payment information, the front-end SDK communicates that information
to Braintree and gets a payment method nonce, which is an identifier. Front-end sends
the nonce to merchant back-end server. Finally, the merchant back-end code receives the
payment method nonce and then uses the server SDK to create a transaction [15].

Figure 2. Braintree interaction with merchant back and front-end applications.

Braintree provides two UI components which will handle customer information with right

17

level of customization. The Drop-in UI is the Braintree ready-made payment solution
which accept credit card payments securely. It has a pre-formatted payment form with no
customization available. The Drop-in UI integration requires the latest Braintree JavaScript
SDK and some manipulations in merchant checkout page code, basically a container for
inputs, usually a HTML div tag, a submit button and a JavaScript which will initialize the
inputs and a send the nonce to merchant server [16]. A code example can be found in
Appendix 3 [17]. The Hosted Fields allows to collect personal information the same way
as Drop-in UI, but provides control of the field style, so merchant existing styles and layout
can be used and the experience of your checkout can be customised according to merchant
needs. Hosted Fields basic integration requires the latest Braintree JavaScript SDK and a
container for inputs. The custom CSS should be defined in initialization method. Also, the
Hosted Field events can be defined, this allows update the UI based on state of the fields.
[18, 19, 20, 21].

The correctly working integration will render credit card input fields. As Drop-in UI is
ready made it might not match with merchants existing page style. Hosted Fields provide
such possibility, so end will not see any difference between inputs which were rendered
by Hosted Fields or by merchant. Both Drop-in UI and Hosted Fields are initialised as an
iframe.

3.0.3 State of the art summary

Proposed solutions have different functionality for the end user, but actually have a common
design with JavaScript SDK, some back-end for processing the data and some authorization
service. All solutions have client SDKs which merchant has to integrate into the checkout
page. The client SDKs render a page inside the iframe, the end user will see it as a page
above the checkout page or it can be a part of the checkout page with different or even
similar look. The rendering will happen only if correct authorization token is provided
to initialization method in client SDK. Merchant has to add button which will trigger the
sending of the personal data to a third party service which will return some identifier back
to the merchant.

18

4. Analysis

After state of the art investigation, the analysis requirements for the Personal Data Process-
ing Component were collected from merchants, their representatives, AfterPay analysts,
AfterPay product owners, and the AfterPay software architect. After that, the solution
design of the application is placed determined, and the appropriate technology is selected.

4.1 List of functional requirements

A functional requirement describes what a system or system component must do to provide
its users with the required functionality [22].

� The system should be able to work in the merchant’s checkout page.
� The system should provide a page or text-box area for personal data input.
� The system should have possibility to style the page or text-box area according to

the merchant’s needs.
� The system should save the customer’s personal data and return an identifier back to

the merchant.

4.2 List of non-functional requirements

A non-functional requirement expresses how well the software system must work when
performing one or some functions [22].

� The merchant must not be able to access or edit the customers’ personal data.
� Each identifier, which is associated with the customer’s personal data, must be used

only once.
� The system must work in all common browsers.
� The system must provide the customer’s personal information only to a trusted

resource.
� The system must be designed and developed according to the cloud-native techniques

and technologies.

19

4.3 Solution design

After gathering of the requirements and state-of-art analyse the sequence diagram for
Personal Data Processing Component is created. Fig. 3 is a simplified Personal Data
Processing Component sequence diagram.

Figure 3. Simplified Personal Data Processing Component sequence diagram.

For authorization merchant will use already existing in-house build service which generates
the JWT tokens. JSON Web Token is a JSON object which is used for securely transmitting
information between parties. JWT token consist of three parts, the header, the payload and
the signature, those are separated by dots. The header usually consists of two parts: the
type of the token and the signing algorithm being used. The payload contains the claims,
which are statements about an entity (typically, the issuer). These is a list of predefined
claims which are highly recommended, but not mandatory. The custom claims can be used
instead. To generate the signature, the encoded header and payload are taken, along with
a secret, and signed with the algorithm specified in the header. The signature is used to

20

ensure that the token was not changed along the way [23]. The front-end SDK is needed
for creating the input fields on a merchant page, it is done by injecting the iframe HTML
tag into the merchant page. The iframe source has to be a page which is hosted on AfterPay
side and all operation with customer sensitive data will be done inside that iframe. One of
the operation is to save personal information in AfterPay database, so the data can be used
in later stages. The front-end SDK is going to send a request with JWT token and personal
data to the back-end application, which will save the personal data if the token is valid.
As a result the nonce will be send back to front-end SDK and populated to some hidden
container in a checkout page. The nonce is a unique identifier for customers personal data,
that can only be used once. Merchant will use the nonce to complete the AfterPay checkout
flow later on.

According to a non-functional requirement the system has to be designed and developed
according to cloud-native techniques and technologies. Organizations can use cloud native
technology to develop and run scalable applications in new, complex environments like
public, private, and hybrid clouds. This approach is exemplified by containers, service
meshes, microservices, immutable infrastructure, and declarative APIs. These techniques
allow to develop resilient, manageable, and measurable loosely coupled systems. Software
engineers can make high-impact improvements regularly and predictably with minimal
effort [24].

The microservice architecture style is a method of building a single program as a collection
of small services, each of which runs in its own process and communicates with lightweight
mechanisms, most commonly an HTTP resource API [25]. Each microservice should have
its own database which is suited for specific microservice needs [26, 27]. Personal Data
Processing component can be defined as a microservice which is dealing with a concrete
domain, in that case the domain is customers personal data.

21

5. Technology Stack

The technology stack is based on the requirements and solution design which were cov-
ered in previous sections. Technologies which are used in the AfterPay development
organisation are also considered.

5.1 Back-end

The author of the thesis is working in a team of C#/.NET software engineers, who specialize
on a REST APIs. Author decided to continue with .NET platform and develop a REST API
as a back-end service. .NET is an open source developer platform, created by Microsoft,
for building wide-range of applications. For building a REST Web API .NET provides a
framework called ASP.NET Core. ASP.NET Core is a cross-platform framework which
allows application to be executed inside Docker1 container. At the time the application was
developed (10.03.21) it was common to use .NET 5 version [28, 29, 30]. The application
is written using C#, which is a modern, object-oriented, and type-safe programming
language [31]. The IDE which are commonly used for developing .NET applications are
JetBrains Rider, Visual Studio ja Visual Studio Code [32]. The paper author is working
with Visual Studio Professional, which is provided by the authors employer. A system
for developers to produce, exchange, and consume valuable code is a essential tool for
any modern development environment. Such code is frequently bundled into "packages,"
which contain compiled code as well as other content required by the projects that consume
these packages. NuGet is the Microsoft-supported system for exchanging code for .NET
platform. It defines how .NET packages are generated, hosted, and consumed, as well as
providing tools for each of those functions [33].

REST API is an application programming interface that respects the limits of REST
architectural style and provide a standardized way for two applications to send data back
and forth. The data will be communicated via the HTTP protocol [34, 35].

1 https://www.docker.com/

22

https://www.docker.com/

5.2 Database

In this section the analyses of databases is based on two database categories: relational and
non-relational. Non-relational databases subcategories are also considered.

5.2.1 Relational databases

Introduced by E.F. Codd in 1970, a relational database is a digital database organized
based on the relational model of data. This model divides data into tables with rows and
columns, with its own unique key for each row. In general, each database entity type has
its own table, with rows representing instances of that entity type and columns representing
values assigned to those instances. Since each row in a table has its own unique key,
rows in one table may be connected to rows in other tables by storing the unique key of
the row to which it should be linked, such unique key is also known as a “foreign key”.
Microsoft SQL Server, SQL Server, MySQL, or PostgreSQL are some of the relational
database examples. Common thing for those examples is that they have abbreviation SQL
in their names. SQL (Structured Query Language) is a standard language for accessing and
manipulating relational databases, to be precise SQL allows to insert, delete, and update
the data itself or create, delete, or alter table in the database. SQL allows to join multiple
tables and order or group the data according to the needs [36]. Relational databases face a
significant obstacle in terms of scalability and elasticity. Relational databases were created
at a time when data could be kept small, neat, and organized. To protect the consistency of
the table mappings and escape the challenges of distributed computing, relational databases
are built to operate on a single server. With this design, if a system needs to scale then
bigger, more complex, and more expensive proprietary hardware with more processing
power has to be acquired [37].

5.2.2 Non-relational databases

Non-relational database is a design that offers schema-less data storage and retrieval
beyond relational databases’ conventional table structures. Non-relational databases can
be called NoSQL, which stand for "Not only SQL" to emphasize that they do not support
SQL-like query languages, although some NoSQL databases do support SQL-compatible
queries. Despite the fact that NoSQL databases have been around for a long time, they have
only recently gained popularity in the age of cloud, big data, and high-volume applications.
They are chosen today for their characteristics of scale, performance and ease of use.
NoSQL databases are designed for large scale on distributed platforms, rather than being
limited by the limitations of single-server architectures. They will scale out “horizontally,”
which means they can run on several servers, each sharing part of the load. A NoSQL

23

database can run on hundreds of servers and process tens of thousands of transactions per
second using this approach. It can also do all of this on low-cost commodity hardware in
any environment. Another advantage is that if one node fails, the workload can be picked
up by the others, removing a single point of failure [37].

The most common types of NoSQL databases are [36, 38]:

� Key-value databases
� Document-oriented databases
� Columnar-oriented databases
� Graph databases

As the name implies, a key-value database is non-relational database that has a key and
a value for each document. The key can be used to identify the value, much as in a
dictionary. Developers choose key-value databases when the data they are dealing with is
not complex and speed is a requirement. For example, key-value databases are ideal for
storing configuration information [39].

A document-oriented data store maintains a collection of named string fields and object
data values in an entity known as a "document", which is usually stored as JSON documents
and can be encoded in a number of ways, including XML, YAML, JSON, BSON, or plain
text. Document fields are exposed, allowing applications to query and sort data based on
field values [40].

Data in graph databases is stored in nodes and edges. Nodes typically store information
about entities while edges store information about the relationships between the nodes.
This database style is especially useful for visualizing, analyzing, and helping in the
discovery of relations between various pieces of data [41].

In contrast to relational databases, columnar databases store data in columns rather than
rows. Columnar databases are built to read data faster and respond to queries more quickly.
The ability to compress data is one of the key advantages of a columnar database. Columnar
operations such as MIN, MAX, SUM, COUNT, and AVG may be done faster because to the
compression. Another advantage is that, because column-based databases are self-indexing,
they take up less disk space than a relational database management system containing the
same data [42]. The disadvantage of columnar databases is that reading individual entries
can be time consuming [43].

24

5.2.3 Personal Data Processing Component database

For the Personal Data Processing Component author decided to use a document-oriented
database. Fig. 4 represents data structure which will be saved in the database. The
structure itself is quite simple and do not require any additional tables or relations, that is
why the relational and graph databases are not a good choice for the system. The columnar
databases are bad in reading individual entries. The key-value non-relational database
can be a good option, but it does not support complex queries which might be used for
retrieving the data [44].

Figure 4. Personal Data Processing Component data structure.

Author decided to use MongoDB as a database, at the time the thesis was written (12.05.21)
MongoDB is the most popular document-oriented database [45]. In addition, MongoDB
provides official .NET driver, which allows asynchronous interacting with the database
[46].

5.3 Front-end

HTML, CSS, and JavaScript work together to create a website’s front-end design by
applying information that changes the site’s content, style, and interaction. A HyperText
Markup Language (HTML) describes and defines the website’s content and fundamental
structure. This is accomplished through the use of specific tags that instruct the browser on
what to do. HTML is the foundation of any website. A Cascading Style Sheet (CSS) is in
charge of defining the colors, font, and placement of content on a website. It gives some
style and shape to the content. To use the CSS capabilities, it must be linked within the
HTML content so that the style may be applied to the website. CSS dictate the browser
on how to render the current HTML. JavaScript is a lightweight interpreted programming

25

language that is used to change web pages and generate interactive functionality. A website
will still work without JavaScript, but only to a limited extent [47]. Some of the JavaScript
features are DOM and XHR API. DOM API allows to add, remove, and change HTML as
well as apply new styles to web page. XHR API is used to communicate with the servers
[48, 49]. One of the requirements for Personal Data Processing Component is that the
system must work in popular browsers. According to caniuse.com 97.78% of browsers are
supporting JavaScript with ECMAScript 5 specification [50]. JavaScript is an example of
a loosely typed language. Loosely typed languages are ones in which type confusion can
occur, resulting in errors that are difficult to find and detect, as opposed to strongly typed
languages, in which such mistakes are identified either at compilation or during runtime.
On the contrary, a loosely typed languages are usually way faster and offer a lot more
flexibility [51].

An alternative language for coding front-end applications is Typescript. TypeScript is an
open-source language that adds static type definitions to JavaScript. TypeScript can not
be interpret by the browsers, so it has to be compiled to a JavaScript, so the code may be
run on any browser or server equipped with JavaScript engine. The main advantage of
the TypeScript is that compilation helps to catch bugs faster and earlier, especially when
front-end application code base become larger [52].

For Personal Data Processing Component JavaScript was chosen as the front-end SDK
programming language. Author of the paper had some experience with JavaScript previ-
ously and no time for learning TypeScript specific structures. TypeScript is a better choice
for projects with large code base and when several developers are working on the project
at the same time, but that is not the case for the current project [53, 54].

26

6. Development Process

Based on the problem, collected requirements, and analysis the author decided to start the
development from describing the application features and behaviour driven development
scenarios.

6.1 Behaviour driven development

BDD is an agile development approach which focuses on defining a specifications of the
behaviour of the system, in a way that it can be automated. BDD encourages collaboration
between all project participants, especially developers and business stakeholders, by using
a pre-defined simple ubiquitous language, which is domain independent and used for
structure user stories and scenarios [55].

The user story should have a story title which describes an activity that is done by a user in
a given role and answer the questions [55]:

� What is the role of the user?
� What feature does the user want?
� What value can the user gain if the system provides the feature?

The user story template:
[StoryTitle]
As a [Role]
I want a [Feature]
So that I can get [Benefit].

For one user story, there may be different versions in different contexts. The specific
instances of a user story are called scenarios. Scenarios should describe specific contexts
and outcomes of the user story, which should be provided by customers. Scenarios in
BDD are used as acceptance criteria [55]. In AfterPay development organisation the BDD
scenarios are written using the Gherkin syntax and have the unified format across all
AfterPay development teams.

27

Each scenario has many layers of information that must be transparent, both individually
and collectively. The scenario’s title is the first layer. The title should make clear what to do
with scenario right away. As a consequence, the title must contain an action that describes
the original purpose or instruction of a scenario. Second level of details is a bunch of
given-when-then statements. The given-when-then statements should give an overview
of what has to accomplished. The final level of detail is a set of different scenarios that
are linked by the same label that have to be implemented as one logical unit. Scenarios
must be as short as possible, as additional words make understanding more difficult. The
scenario should not be written for any one group (technical or business), but for all parties
involved. If scenario is not clear to someone, then there is something wrong with it [56].

The scenario format:
@ (Label - semantic tag (marked as "@") to group scenarios into one logical unit)
Scenario: title which describes scenario purpose
Given some precondition
When an action occurs
And some other action occurs
Then some result happens

6.1.1 Handling customer data

This feature describes the process of how Personal Data Processing Component handles
the customer identifiable information.

As a merchant
I want to integrate with AfterPay without touching user input
So that all the customer data is handled by AfterPay

Scenario: Personal information entering into a hosted field
Given Hosted field is visible on merchant page
When customer submits personal information
Then customer input is saved in a Hosted fields DB with nonce

@Authentication
Scenario: Authentication failed, when customer token is invalid
Given Hosted field is visible on merchant page
When customer submits personal information
And customer token is invalid
Then Hosted fields server returns status code 401 with a proper error message

28

@Authentication
Scenario: Authentication failed, when customer token is expired
Given Hosted field is visible on merchant page
When customer submits personal information
And customer token is expired
Then Hosted fields server returns status code 401 with a proper error message

6.1.2 Entering personal information

This feature describes initialization and styling of hosted fields.

As a customer
I want to see merchant page with hosted fields
So that I can enter personal details

@Initialization
Scenario: Hosted field initialization fails without authentication token
Given authentication token does not exist
When Hosted fields client initializes client library
Then error message is provided
And Hosted field is not visible
And hidden nonce field is not added to the form

@Initialization
Scenario: Hosted field initialization fails without a proper DOM element
Given authentication token exists
And Hosted field container does not exist on the page
When Hosted fields client initializes client library
Then error message is provided
And Hosted field is not visible
And hidden nonce field is not added to the form

@Initialization
Scenario: Client-side library with one field initialization
Given authentication token exists
And Hosted field container exists on the page
When Hosted fields client initializes client library
Then Hosted field is visible
And hidden nonce field is added to the form

29

@Initialization
Scenario: Iframe creation
Given authentication token exists
When Hosted fields client initializes client library
Then Hosted field container has an iframe

As a merchant
I want AfterPay to style and validate hosted fields
So hosted fields are styled and validated when "onchange" event is triggered

@Hosted-field-profile
Given merchant defined profile in config
And merchant defined "onChange" event in config
And page with hosted field rendered
When customer fulfills hosted field
Then status object returned to merchant

@Hosted-fields-profile
Scenario: Placeholder is visible in a hosted field, when merchant defined profile in config
Given merchant defined "IBAN-de-DE" profile in config
When page with hosted field renders
Then placeholder with German "IBAN" example visible in hosted field

@Hosted-field-profile
Scenario: "onChange" event triggered when customer enters value into hosted field input
Given placeholder with German "IBAN" example visible in hosted field
When customer enters non German "IBAN"
Then "onChange" event triggered with status code "400.000"

@Hosted-field-profile
Scenario: "onChange" event triggered when customer enters value into hosted field input
Given placeholder with German "IBAN" example visible in hosted field
When customer enters incomplete German "IBAN"
Then "onChange" event triggered with status code "400.001"

@Hosted-field-profile
Scenario: "onChange" event triggered when customer enters value into hosted field input
Given placeholder with German "IBAN" example visible in hosted field
When customer enters German "IBAN" with typo

30

Then "onChange" event triggered with status code "400.002"

@Hosted-field-profile
Scenario: "onChange" event triggered when customer enters value into hosted field input
Given placeholder with German "IBAN" example visible in hosted field
When customer enters invalid German "IBAN"
Then "onChange" event triggered with status code "400.005"

@Hosted-field-profile
Scenario: "onChange" event triggered when customer enters value into hosted field input
Given placeholder with German "IBAN" example visible in hosted field
When customer enters valid German "IBAN"
Then "onChange" event triggered with status code "200"

Appendix 4 contains further scenarios.

6.2 Back-end architecture and design

In this section, the architecture and design of a system is considered. For software
application, an Architecture Pattern represents a fundamental structural organization. It
defines the roles of predefined subsystems and includes rules and guidelines for organizing
the relationships between them. A Design Pattern is a method for optimizing a software
system’s subsystems or components, as well as the relationships between them. It’s a
term that refers to a recurrent arrangement of interacting components that solves a general
design problem in a specific situation [57].

The author decided to use the Clean Architecture approach together with mediator pattern
for designing the system.

6.2.1 The clean architecture

One way to handle the scope of an application as it grows in complexity is to split it up into
layers based on its responsibilities or concerns. This methodology adheres to the division
of concerns principles which can help in the organization of an expanding code base so
that developers can quickly locate where specific software is applied [58].

The back-end architecture pattern is based on the Clean Architecture principles. The clean
architecture was proposed by Robert C. Martin in 2011 [59] .

31

The Clean Architecture allows to build software with very low coupling and independence
from technical implementation like databases and frameworks. As a result, the program
becomes simple to manage and modify. The decoupled application becomes intrinsically
testable as well [60, 61].

In Fig. 5 [62] diagram demonstrates back-end architecture for the Personal Data Processing
Component. Enterprise logic and types are located in the Domain layer, while business
logic and types are found in the Application layer. Enterprise logic, on the other hand, can
be shared across several systems, whereas business logic is commonly used only within
the system. The Domain and Application layers are at the heart of Clean Architecture’s
nature, it is also common to name those as Core. Core should not be reliant on data access
or other infrastructure concerns such as external providers, because those dependencies
are inverted. Presentation layer is responsible for showing data to the end-user, it can be a
REST API, Blazor WebAssembly application or a desktop application. All dependencies
flow inwards, and Core has no external dependencies. Infrastructure and Presentation are
both dependent on Core, but not on one another [62].

Figure 5. Clean Architecture Diagram.

Usually, it is common to add business logic to a Presentation level, but that will break a
Clean Architecture principle, by adding a redundant dependency. It is important to ensure
that business logic is independent of the Presentation. A good approach to solve this
problem is to use the mediator pattern.

32

6.2.2 The mediator pattern

The distribution of actions among objects is encouraged in object-oriented design. As a
consequence of this distribution, an entity system with several relations between objects
will emerge; in the worst-case scenario, each object becomes aware of the others. These
issues can be avoided by encapsulating collective behavior in a separate mediator object.
Controlling and organizing the activities of a group of objects is the job of a mediator [63].

Figure 6. A set of objects which interact directly and a set of objects which interact through
mediator.

Fig. 6 [64] shows that mediator acts as a intermediary, preventing objects in the group
from referring to each other explicitly. Since the objects just recognize the mediator, the
number of interconnections is reduced [63].

For mediator pattern author decided to use an already existing, open sourced MediatR1

library which is a a simple and unambitious mediator implementation on .NET platform.
The library can be added to a project as a NuGet package.

6.3 Back-end development

The back-end development started from creating a solution project in Visual Studio. The
solution has three layers. First of all, author added the ASP.NET Core Web API project
to the solution, it is responsible for Presentation layer. Secondly, a Class library for
Infrastructure layer has been added. Finally, another Class library has been added, this
time for Core layer which contains business logic.

The entity has to be created that describes the object which is going to be stored in
the database, it can be placed in Core layer inside Domain folder. The entity itself has
dictionary as a public property, both dictionary key and value are strings. The dictionary

1 https://github.com/jbogard/MediatR

33

https://github.com/jbogard/MediatR

key will represent the value, for example, the key can be IBAN or SSN.

The author added an interface for the repository inside Core layer Interface folder. Cur-
rently, the interface having only one method for saving the entity in the database. The
interface will be implemented inside Infrastructure layer, so the Core layer will not be
dependent on Infrastructure.

Both Core and Presentation layer use MediatR for process the requests. Fig. 7 shows that
MediatR is smart enough to redirect to the right request handler depending on the request
type.

Figure 7. Request processing using MediatR package.

6.3.1 Infrastructure layer

The Infrastructure layer which enables a software system to interact with external systems
by receiving, storing and providing data when requested. Previously, author has chosen
the MongoDb as a database for Personal Data Processing Component. In order to connect
database to the application MongoDb provides a C#/.NET driver. The driver itself is
supported by MongoDb and can be downloaded as a NuGet package [65, 66].

The Infrastructure layer is using the repository pattern which is a strategy for abstracting
data accessing. To be precise, data access is made up of the code in an application that
deals with storing and retrieving data [67]. The solution will have only one entity to
manipulate, so one interface was added to the Application layer and implemented in the
Infrastructure layer.

For data manipulation application has to connect to a database itself. It is done using he
MongoDb driver. The connection begins with a MongoClient object which will be the
root object. It is thread-safe and is all that is needed to handle connection to server. The
database connection string should be provided to a MongoClient as a parameter. A database
in a MongoDB server is represented by an IMongoDatabase interface. The GetDatabase

34

method is used to retrieve databases from an IMongoClient instance. The GetDatabase
method should get the name of the database as a paramether. If the database does not
already exist on the server, it will be generated upon first use. Last step is to access the
collection itself. The GetCollection<TDocument> method is used to extract collections
from an IMongoDatabase. The collection name has to be to a method as a parameter. The
type of document that is stored in collection can be a generic TDocument or a custom class
[68].

6.3.2 Core layer

The author decided to merge Domain and Application layers into one Core layer, because
lack of enterprise logic. The Core layer was implemented using the mediator design patters
which was described previously. The Core Layer contains all business logic which is
describe in BDD scenarios.

As was mentioned previously, for implementing the mediator patter author uses the Medi-
atR library which can be downloaded as a NuGet package. The MediatR forces developer
to have a request and a handler per feature. First of all, the request has to be defined. The
the handler, which contain business logic to solve the request, has to be created. Request
is a class that implements the MediatR.IRequest<T> interface, where T is a return type.
Handler is a class that implements the MediatR.IRequestHandler<T,U> interface, where
T is a request type and U is a response type. The handler dependents on a repository
interface, so it has to be initialized from the constructor.

6.3.3 Presentation layer

The Presentation layer is dependent on MediatR package, because it has to send requests
to mediator. Another required package is needed for dependency injection. It is called
MediatR.Extensions.Microsoft.DependencyInjection and it is useful for applications using
the default Microsoft Dependency Injection libraries.

The presentation layer takes care of incoming HTTP requests and responds to the caller.
In ASP.NET framework it can be done using the controller. The controller is going to
communicate with the business logic via mediator. The mediator has to be initialized
from the constructor. The controllers method will usually have only couple lines of code,
basically it will only send a request to a mediator using IMediator.Send() method, which
takes request as a parameter.

For presentation layer the controller has to be created, which takes care of incoming HTTP

35

requests and responds to the caller. The controller is dependent only on a mediator,

6.4 Front-end SDK development

In this section the Front-End SDK development is considered. SDK is a collection of
software resources and programs offered by software vendors that enable third-party devel-
opers to create applications for particular platforms. The front-end SKD is implemented
using the JavaScript.

The SDK has following structure:

� main.js - is a hearth of the SDK, containing functions which end client suppose to
use.

� field.js - have specific functionality for the field itself, such as field value validation.
� field.html - the HTML file which has HTML input and script tag. Script tag has a

field.js as a source.
� manager.js - has functionality for sending the data to Personal Data Processing

Component back-end service.
� manager.html - the HTML file which has script HTML tag with source to manager.js

file.

Both field and manager HTML pages have to be injected to the merchant checkout page
as an iframe sources. The communication between iframes is done by the MessageEvent
interface, using the window.postMessage() method. Every JavaScript file has an event
listener with a ’message’ type. Messages will be consumed only if the event origin is
whitelisted [69].

The SDK consists of four functions:

1. initialize function
2. onError function
3. onChange function
4. save function

6.4.1 Initialize function

The initialize function takes configuration object as a parameter. The configuration object
is a set of required and optional properties. The mandatory properties are authorization
token and fields array. Array can contain multiple field objects, each field should have

36

required properties, like a field name and a container id. Field name represents what the
field suppose to contain, for example SSN or IBAN. Container id is a CSS selector which
marks HTML container where input field will be created. HTML container is usually a div
tag section.

The main purpose of initialization function is to add an event listener with type ’message’
and a function that will be called when the required event is transmitted to the destination,
check the configuration required properties and inject two iframes within the merchants
page. The iframe creation is done by using the HTML DOM createElement() method
with paramether ’iframe’. Then the iframe source is defined, it should be a HTML page
which is hosted on the AfterPay side. First iframe will have a field.html page as a source,
second iframe source will be manager.html page. Second iframe is unseen to end users.
appendChild() method is used to inject iframes to merchant page. The field iframe will
be appended in the end of container which is marked with CSS id selector. The manager
iframe will be appeded in the end of the document body.

6.4.2 OnError function

OnError is a callback function, which exposes the errors. It is important to set up error
handling before fields initialization, as it can cause some issues.

Possible errors:

� ERROR - generic error, the concrete cause has to be investigated in browsers console.
� NO_FIELDS - There are no fields configured, the fields property in the configuration

is missing.
� NO_TOKEN - In the configuration, no authorization token was passed.
� SAVE_ERROR - The specific cause of an error storing the field must be explored in

the browser console.
� NO_CONTAINER - The container element where the field must be generated could

not be found.

6.4.3 OnChange function

OnChange is a callback function which returns field validation status. The validation
will happen only if each field profile is defined in configuration object. The profile itself
is a string, for example ’IBAN-de-DE’ or ’SSN-sv-FI’. Each profile has a default field
placeholder, which is added to the field automatically. The profile is devided on three
parts. First part is a field key, second part is a language of the customer, third part is

37

the country. The Personal Data Processing Component supports Finnish, Swedish and
Norwegian SSNs and all European IBANs. All supported SSNs have different formats and,
as a result, different validation logic. IBAN is an international system, which is used to
identify bank accounts, so the validation is unified.

In field.js file the event listener with type ’input’ is added to a field in field.html. That
will trigger the validation every time the value in the field is changing. The onChange
method returns validation status object with the exact field name which validation is failed,
validation overall status and a message with detailed explanation what went wrong.

Error messages:

� Input invalid - default error message
� Too short - the value of the input is shorter than it should be
� Too long - the value of the input is longer than it should be
� Too young - customer age is less than 18 years
� Checksum incorrect - field validation failed

6.4.4 Save function

Save method is a callback function which sends data from input fields to back-end ap-
plication and returns the nonce. The saving process starts from getting the field value
from input field and saving it in the browser local storage. Saving data in browser local
storage will prevent personally identifiable information moving from one iframe to another.
localStorage.setItem(key, value) method is used for saving the data in the browser local
storage. The data is saved as a key-value pair, where key is a field name and value is
a field value. When browsers local storage is filled, then sending data to the back-end
application can be initiated in manager.js file. First of all, the data itself has to be retrieved
from local storage by the key. Then, the request can be sent via XMLHttpRequest.send()
method. The request is initialized with XMLHttpRequest.open() method, which first
parameter is the HTTP request method, ’POST’ to be exact and second parameter is url
where to send the request. After that, some request headers are added using the XML-
HttpRequest.setRequestHeader() method, which takes the name of the header whose value
is to be set and the value to set as the body of the header as a parameters. Then, a request
is sent via the XMLHttpRequest.send() method, which takes request as a parameter. When
successful response is received, the nonce is returned to a merchant page.

38

6.5 Development evaluation

The evaluation of the development is based on multiple criteria, such as:

1. BDD scenarios
2. Unit tests
3. Acceptance testing
4. Feedback from the merchants

The first criteria is quality of written BDD scenarios, which basically means, how un-
derstandable those scenarios are for the domain experts, such as AfterPay analytics and
product owners together with business stakeholders and software engineers. The feedback
about BDD scanarios was positive. The second criteria is unit tests which are a sort of
software testing that examines individual software units or components [70]. The third
criteria is system acceptance testing. Acceptance criteria outline intended behavior and
are used to assess if a feature of feature component has been developed successfully [71].
The acceptance testing is done using the UI tests, which are based on BDD scenarios. UI
testiing is a mechanism for testing the parts of any software that a user will interact with.
This generally means putting the visual aspects to the test to see if they work as expected
[72]. If the tests are written correctly, then it ensures that the system behaves as it was
originally intended. Sometimes, the BDD scenario itself can be wrong, then it has to be
corrected. Overall, the system passed acceptance criteria and was presented to merchants
who did not want to touch their customers’ personally identifiable information. Early on,
several merchants began integrating the system into their checkouts, and as a consequence,
they were able to identify and report several problems.

39

7. Results

The result of the thesis is the Personal Data Processing Component, which allows merchants
to bypass the handling of personally identifiable information handling on their side and
still provide AfterPay payment provider for their customers. Initial requirements for the
system were achieved, but some future development might be required.

During the development process the thesis author learned how to write BDD scenarios,
which are understandable to the whole team of developers and business stakeholders. In
addition, the author improved knowledge about the clean architecture approach and what
patterns can be used to achieve it. Among other things, the author gained confidence in
developing front-end applications using JavaScript.

7.1 Future developments

The solution was introduced to AfterPay clients and first feedback about potential new
requirements and improvements was gathered. The Personal Data Processing Component
is lacking field style customization. Clients wanted to have possibility to customize the
fields so their checkout page style is consistent. Another comment from a client was that
the solution does not work in Chrome1 Incognito mode, the browser’s local storage, which
is used in front-end SDK, can be a potential cause of that issue. The front-end codebase is
bigger than the author initially thought, and sometimes it is hard to understand the code,
porting JavaScript code to TypeScript can improve its overall readability. Covering the
system with automation tests using the BDD scenarios is another future improvement.
The automation tests suite will guarantee that the system works as it was described in the
scenarios.

1 https://www.google.com/intl/et/chrome/

40

https://www.google.com/intl/et/chrome/

8. Summary

The thesis’ major purpose was to reduce the online merchant’s obligations and risks
associated with sensitive data processing throughout the AfterPay API checkout process.
As result of this thesis, the Personal Data Processing Component was designed and
developed. The system consists of a REST API and front-end SDK. The front-end SDK
handles the personally identifiable information on the merchant’s checkout page and
communicates it to the REST API, which saves the data to a database. The Personal Data
Processing Component is already in use by the merchants in production.

The thesis is divided into five sections: background, state of the art, analysis, technology
stack and implementation process. An overview of AfterPay and the importance of
personally identifiable information to its operation are covered in the thesis’ background
section. In addition, cross-organisational processes are described.

In the analysis section, system requirements are presented together with the state-of-art
investigation. Based on this analysis, a solution design is proposed.

In the implementation section the development process of the Personal Data Processing
Component is covered. First of all, the explanation why BDD scenarios are valuable is
presented. Then the architecture and design patterns are chosen. Lastly, the implementation
of the component is described.

41

Bibliography

[1] AfterPay. Terminology. [Online]. [Accessed: 15-03-2021]. URL: https : / /
developer.afterpay.io/terminology.

[2] AfterPay. AfterPay Basics. [Online]. [Accessed: 07-03-2021]. URL: https://
developer.afterpay.io/basics.

[3] AfterPay. AfterPay Technical White Papep Version 2.6. [Online]. [Accessed: 07-
03-2021]. URL: https://documents.afterpay.io/guidelines/
Technical_White_Paper.pdf.

[4] AfterPay. AfterPay How does it work. [Online]. [Accessed: 26-03-2021]. URL:
https://www.afterpay.nl/en/customers/how-does-it-work.

[5] GDPR. What is considered personal data under the EU GDPR? [Online]. [Accessed:
26-03-2021]. URL: https://gdpr.eu/eu-gdpr-personal-data/#:
~:text=’Personal%20data’%20means%20any%20information,

location%20data%2C%20an%20online%20identifier.

[6] Patrick Hosch. Is Cross-Organizational Collaboration Key to your Org’s Future?

[Online]. [Accessed: 15-05-2021]. URL: https : / / www . nintex . com /
blog/cross-organizational-collaboration-key-businesss-

future/.

[7] Ecommerce Platforms. What is Shipping? What does shipping mean? [Online].
[Accessed: 15-05-2021]. URL: https://ecommerce-platforms.com/
glossary/shipping.

[8] Techopedia. Business Rule. [Online]. [Accessed: 15-05-2021]. URL: https://
www.techopedia.com/definition/28018/business-rule.

[9] Visa Inc. About Visa. [Online]. [Accessed: 18-03-2021]. URL: https://ht.
visa.com/about-visa.html.

[10] Visa Inc. Merchant APIs. [Online]. [Accessed: 18-03-2021]. URL: https://
developer.visa.com/apibrowser/#segment=Merchants.

[11] Visa Inc. Visa Checkout. [Online]. [Accessed: 18-03-2021]. URL: https://
developer.visa.com/capabilities/visa_checkout.

42

https://developer.afterpay.io/terminology
https://developer.afterpay.io/terminology
https://developer.afterpay.io/basics
https://developer.afterpay.io/basics
https://documents.afterpay.io/guidelines/Technical_White_Paper.pdf
https://documents.afterpay.io/guidelines/Technical_White_Paper.pdf
https://www.afterpay.nl/en/customers/how-does-it-work
https://gdpr.eu/eu-gdpr-personal-data/#:~:text='Personal%20data'%20means%20any%20information,location%20data%2C%20an%20online%20identifier
https://gdpr.eu/eu-gdpr-personal-data/#:~:text='Personal%20data'%20means%20any%20information,location%20data%2C%20an%20online%20identifier
https://gdpr.eu/eu-gdpr-personal-data/#:~:text='Personal%20data'%20means%20any%20information,location%20data%2C%20an%20online%20identifier
https://www.nintex.com/blog/cross-organizational-collaboration-key-businesss-future/
https://www.nintex.com/blog/cross-organizational-collaboration-key-businesss-future/
https://www.nintex.com/blog/cross-organizational-collaboration-key-businesss-future/
https://ecommerce-platforms.com/glossary/shipping
https://ecommerce-platforms.com/glossary/shipping
https://www.techopedia.com/definition/28018/business-rule
https://www.techopedia.com/definition/28018/business-rule
https://ht.visa.com/about-visa.html
https://ht.visa.com/about-visa.html
https://developer.visa.com/apibrowser/#segment=Merchants
https://developer.visa.com/apibrowser/#segment=Merchants
https://developer.visa.com/capabilities/visa_checkout
https://developer.visa.com/capabilities/visa_checkout

[12] Visa Inc. How to Use Visa Checkout. [Online]. [Accessed: 19-03-2021]. URL:
https://developer.visa.com/capabilities/visa_checkout/

docs-how-to.

[13] w3schools. How TO - CSS/JS Modal. [Online]. [Accessed: 26-03-2021]. URL:
https://www.w3schools.com/howto/howto_css_modals.asp.

[14] Braintree. Braintree FAQ. [Online]. [Accessed: 21-03-2021]. URL: https://www.
braintreepayments.com/ee/faq.

[15] Braintree. Braintree Get Started Overview. [Online]. [Accessed: 21-03-2021].
URL: https : / / developers . braintreepayments . com / start /
overview.

[16] Braintree. Braintree Drop-in Setup. [Online]. [Accessed: 25-03-2021]. URL:
https://developers.braintreepayments.com/guides/drop-

in/setup-and-integration/javascript/v3.

[17] Braintree. Braintree Drop-in Tutorial. [Online]. [Accessed: 21-03-2021]. URL:
https://developers.braintreepayments.com/start/tutorial-

drop-in-node.

[18] Braintree. Braintree Hosted Fields Overview. [Online]. [Accessed: 25-03-2021].
URL: https://developers.braintreepayments.com/guides/
hosted-fields/overview/javascript/v3.

[19] Braintree. Braintree Hosted Fields Setup and Integration. [Online]. [Accessed:
25-03-2021]. URL: https://developers.braintreepayments.com/
guides/hosted-fields/setup-and-integration/javascript/

v3.

[20] Braintree. Braintree Hosted Fields Styling. [Online]. [Accessed: 25-03-2021]. URL:
https://developers.braintreepayments.com/guides/hosted-

fields/styling/javascript/v3.

[21] Braintree. Braintree Hosted Fields Events. [Online]. [Accessed: 25-03-2021]. URL:
https://developers.braintreepayments.com/guides/hosted-

fields/events/javascript/v3.

[22] Mohammad Dabbagh, Reza M. Parizi, and Sai Peck Lee. Functional and non-

functional requirements prioritization: empirical evaluation of IPA, AHP-based, and

HAM-based approaches. [Online]. [Accessed: 11-03-2021]. 2015. URL: https://
www.researchgate.net/publication/280089647_Functional_

and_non-functional_requirements_prioritization_empirical_

evaluation_of_IPA_AHP-based_and_HAM-based_approaches.

43

https://developer.visa.com/capabilities/visa_checkout/docs-how-to
https://developer.visa.com/capabilities/visa_checkout/docs-how-to
https://www.w3schools.com/howto/howto_css_modals.asp
https://www.braintreepayments.com/ee/faq
https://www.braintreepayments.com/ee/faq
https://developers.braintreepayments.com/start/overview
https://developers.braintreepayments.com/start/overview
https://developers.braintreepayments.com/guides/drop-in/setup-and-integration/javascript/v3
https://developers.braintreepayments.com/guides/drop-in/setup-and-integration/javascript/v3
https://developers.braintreepayments.com/start/tutorial-drop-in-node
https://developers.braintreepayments.com/start/tutorial-drop-in-node
https://developers.braintreepayments.com/guides/hosted-fields/overview/javascript/v3
https://developers.braintreepayments.com/guides/hosted-fields/overview/javascript/v3
https://developers.braintreepayments.com/guides/hosted-fields/setup-and-integration/javascript/v3
https://developers.braintreepayments.com/guides/hosted-fields/setup-and-integration/javascript/v3
https://developers.braintreepayments.com/guides/hosted-fields/setup-and-integration/javascript/v3
https://developers.braintreepayments.com/guides/hosted-fields/styling/javascript/v3
https://developers.braintreepayments.com/guides/hosted-fields/styling/javascript/v3
https://developers.braintreepayments.com/guides/hosted-fields/events/javascript/v3
https://developers.braintreepayments.com/guides/hosted-fields/events/javascript/v3
https://www.researchgate.net/publication/280089647_Functional_and_non-functional_requirements_prioritization_empirical_evaluation_of_IPA_AHP-based_and_HAM-based_approaches
https://www.researchgate.net/publication/280089647_Functional_and_non-functional_requirements_prioritization_empirical_evaluation_of_IPA_AHP-based_and_HAM-based_approaches
https://www.researchgate.net/publication/280089647_Functional_and_non-functional_requirements_prioritization_empirical_evaluation_of_IPA_AHP-based_and_HAM-based_approaches
https://www.researchgate.net/publication/280089647_Functional_and_non-functional_requirements_prioritization_empirical_evaluation_of_IPA_AHP-based_and_HAM-based_approaches

[23] jwt.io. Introduction to JSON Web Tokens. [Online]. [Accessed: 08-05-2021]. URL:
https://jwt.io/introduction/.

[24] GitHub(CNCF). CNCF Cloud Native Definition v1.0. [Online]. [Accessed: 11-
05-2021]. URL: https : / / github . com / cncf / toc / blob / main /
DEFINITION.md.

[25] Martin Fowler. Microservices. [Online]. [Accessed: 11-05-2021]. URL: https:
//martinfowler.com/articles/microservices.html.

[26] Samir Behara. Breaking the Monolithic Database in Your Microservices Architecture.
[Online]. [Accessed: 11-05-2021]. URL: https://dzone.com/articles/
breaking-the-monolithic-database-in-your-microserv.

[27] Chris Richardson. Pattern: Database per service. [Online]. [Accessed: 11-05-2021].
URL: https://microservices.io/patterns/data/database-
per-service.html.

[28] Microsoft Corporation. When to choose .NET for Docker containers. [Online].
[Accessed: 25-04-2021]. URL: https : / / docs . microsoft . com / en -
us / dotnet / architecture / microservices / net - core - net -

framework-containers/net-core-container-scenarios.

[29] Microsoft Corporation. What is .NET? [Online]. [Accessed: 10-05-2021]. URL:
https : / / dotnet . microsoft . com / learn / dotnet / what - is -

dotnet.

[30] Microsoft Corporation. What is ASP.NET? [Online]. [Accessed: 10-05-2021]. URL:
https : / / dotnet . microsoft . com / learn / aspnet / what - is -

aspnet.

[31] Microsoft Corporation. A tour of the C# language. [Online]. [Accessed: 10-05-2021].
URL: https://docs.microsoft.com/en- us/dotnet/csharp/
tour-of-csharp/.

[32] slant.co. What are the best C# IDEs? [Online]. [Accessed: 15-05-2021]. URL:
https://www.slant.co/topics/4118/~c-ides.

[33] Microsoft Corporation. An introduction to NuGet. [Online]. [Accessed: 15-05-2021].
URL: https://docs.microsoft.com/en-us/nuget/what-is-
nuget.

[34] Inc. Red Hat. What is a REST API? [Online]. [Accessed: 15-05-2021]. URL: https:
//www.redhat.com/en/topics/api/what-is-a-rest-api.

[35] Jamie Juviler. REST APIs: How They Work and What You Need to Know. [Online].
[Accessed: 15-05-2021]. URL: https://blog.hubspot.com/website/
what-is-rest-api.

44

https://jwt.io/introduction/
https://github.com/cncf/toc/blob/main/DEFINITION.md
https://github.com/cncf/toc/blob/main/DEFINITION.md
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://dzone.com/articles/breaking-the-monolithic-database-in-your-microserv
https://dzone.com/articles/breaking-the-monolithic-database-in-your-microserv
https://microservices.io/patterns/data/database-per-service.html
https://microservices.io/patterns/data/database-per-service.html
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/net-core-net-framework-containers/net-core-container-scenarios
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/net-core-net-framework-containers/net-core-container-scenarios
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/net-core-net-framework-containers/net-core-container-scenarios
https://dotnet.microsoft.com/learn/dotnet/what-is-dotnet
https://dotnet.microsoft.com/learn/dotnet/what-is-dotnet
https://dotnet.microsoft.com/learn/aspnet/what-is-aspnet
https://dotnet.microsoft.com/learn/aspnet/what-is-aspnet
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://www.slant.co/topics/4118/~c-ides
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://blog.hubspot.com/website/what-is-rest-api
https://blog.hubspot.com/website/what-is-rest-api

[36] James Serra. Relational databases vs Non-relational databases. [Online]. [Accessed:
11-05-2021]. URL: https://www.jamesserra.com/archive/2015/
08/relational-databases-vs-non-relational-databases/.

[37] Matt Allen. Relational Databases Are Not Designed For Scale. [Online]. [Accessed:
15-05-2021]. URL: https://www.marklogic.com/blog/relational-
databases-scale/.

[38] IBM Corp. NoSQL Databases. [Online]. [Accessed: 25-04-2021]. URL: https:
//www.ibm.com/cloud/learn/nosql-databases.

[39] Laura M. Different Types of Databases: What Should You Know? [Online]. [Ac-
cessed: 11-05-2021]. URL: https://www.bitdegree.org/tutorials/
types-of-databases/.

[40] Tamara Pattinson. RELATIONAL VS NON-RELATIONAL DATABASES. [On-
line]. [Accessed: 11-05-2021]. URL: https://www.pluralsight.com/
blog/software-development/relational-vs-non-relational-

databases.

[41] Lauren Schaefer. What is NoSQL? [Online]. [Accessed: 11-05-2021]. URL: https:
//www.mongodb.com/nosql-explained.

[42] TechTarget. Columnar database. [Online]. [Accessed: 15-05-2021]. URL: https:
//searchdatamanagement.techtarget.com/definition/columnar-

database.

[43] Mark Drake. A Comparison of NoSQL Database Management Systems and Models.
[Online]. [Accessed: 15-05-2021]. URL: https://www.digitalocean.
com/community/tutorials/a-comparison-of-nosql-database-

management-systems-and-models.

[44] Informit. NoSQL Key-Value Database Simplicity vs. Document Database Flexi-

bility. [Online]. [Accessed: 15-05-2021]. URL: https://www.informit.
com/articles/article.aspx?p=2429466#:~:text=Document%

5C%20databases%5C%20organize%5C%20documents%5C%20into,

analogous%5C%20to%5C%20a%5C%20relational%5C%20schema.

[45] db-engines.com. DB-Engines Ranking. [Online]. [Accessed: 12-05-2021]. URL:
https://db-engines.com/en/ranking.

[46] MongoDB Inc. MongoDB C#/.NET Driver. [Online]. [Accessed: 15-05-2021]. URL:
https://docs.mongodb.com/drivers/csharp/.

[47] Juan van Niekerk. How Do HTML, CSS and JavaScript Work Together? [Online].
[Accessed: 15-05-2021]. URL: https://www.itonlinelearning.com/
blog/how-do-html-css-and-javascript-work-together/.

45

https://www.jamesserra.com/archive/2015/08/relational-databases-vs-non-relational-databases/
https://www.jamesserra.com/archive/2015/08/relational-databases-vs-non-relational-databases/
https://www.marklogic.com/blog/relational-databases-scale/
https://www.marklogic.com/blog/relational-databases-scale/
https://www.ibm.com/cloud/learn/nosql-databases
https://www.ibm.com/cloud/learn/nosql-databases
https://www.bitdegree.org/tutorials/types-of-databases/
https://www.bitdegree.org/tutorials/types-of-databases/
https://www.pluralsight.com/blog/software-development/relational-vs-non-relational-databases
https://www.pluralsight.com/blog/software-development/relational-vs-non-relational-databases
https://www.pluralsight.com/blog/software-development/relational-vs-non-relational-databases
https://www.mongodb.com/nosql-explained
https://www.mongodb.com/nosql-explained
https://searchdatamanagement.techtarget.com/definition/columnar-database
https://searchdatamanagement.techtarget.com/definition/columnar-database
https://searchdatamanagement.techtarget.com/definition/columnar-database
https://www.digitalocean.com/community/tutorials/a-comparison-of-nosql-database-management-systems-and-models
https://www.digitalocean.com/community/tutorials/a-comparison-of-nosql-database-management-systems-and-models
https://www.digitalocean.com/community/tutorials/a-comparison-of-nosql-database-management-systems-and-models
https://www.informit.com/articles/article.aspx?p=2429466#:~:text=Document%5C%20databases%5C%20organize%5C%20documents%5C%20into,analogous%5C%20to%5C%20a%5C%20relational%5C%20schema
https://www.informit.com/articles/article.aspx?p=2429466#:~:text=Document%5C%20databases%5C%20organize%5C%20documents%5C%20into,analogous%5C%20to%5C%20a%5C%20relational%5C%20schema
https://www.informit.com/articles/article.aspx?p=2429466#:~:text=Document%5C%20databases%5C%20organize%5C%20documents%5C%20into,analogous%5C%20to%5C%20a%5C%20relational%5C%20schema
https://www.informit.com/articles/article.aspx?p=2429466#:~:text=Document%5C%20databases%5C%20organize%5C%20documents%5C%20into,analogous%5C%20to%5C%20a%5C%20relational%5C%20schema
https://db-engines.com/en/ranking
https://docs.mongodb.com/drivers/csharp/
https://www.itonlinelearning.com/blog/how-do-html-css-and-javascript-work-together/
https://www.itonlinelearning.com/blog/how-do-html-css-and-javascript-work-together/

[48] MDN Web Docs. What is JavaScript? [Online]. [Accessed: 15-05-2021]. URL:
https : / / developer . mozilla . org / en - US / docs / Learn /

JavaScript/First_steps/What_is_JavaScript.

[49] MDN Web Docs. XMLHttpRequest. [Online]. [Accessed: 15-05-2021]. URL:
https : / / developer . mozilla . org / en - US / docs / Web / API /

XMLHttpRequest.

[50] caniuse.com. Can I use Search EcmaScript 5? [Online]. [Accessed: 15-05-2021].
URL: https://caniuse.com/?search=ecmascript%5C%205.

[51] Gary Cordero Rosa. Loosely Typed and Strongly Type Languages. [Online]. [Ac-
cessed: 15-05-2021]. URL: https://garycordero1690.medium.com/
loosely-typed-and-strongly-type-languages-550ce60b2739.

[52] typescriptlang.org. [Online]. [Accessed: 15-05-2021]. URL: https://www.
typescriptlang.org/.

[53] altexsoft.com. The Good and the Bad of TypeScript. [Online]. [Accessed: 15-05-
2021]. URL: https://www.altexsoft.com/blog/typescript-pros-
and-cons/.

[54] Sasha Andrieiev. What Are The Differences, Advantages, and Disadvantages, be-

tween TypeScript and JavaScript? [Online]. [Accessed: 15-05-2021]. URL: https:
//javascript.plainenglish.io/what-are-the-differences-

advantages- and- disadvantages- between- typescript- and-

javascript-492fb3764870.

[55] Carlos Solis and Xiaofeng Wang. A Study of the Characteristics of Behaviour

Driven Development. [Online]. [Accessed: 12-03-2021]. 2011. URL: https://
www.researchgate.net/publication/224265781_A_Study_of_

the_Characteristics_of_Behaviour_Driven_Development.

[56] D. North. Introducing BDD. [Online]. [Accessed: 12-03-2021]. 2006. URL: https:
//dannorth.net/introducing-bdd/.

[57] The Open Group. Architecture Patterns. [Online]. [Accessed: 12-04-2021]. URL:
https://pubs.opengroup.org/architecture/togaf8- doc/

arch/chap28.html.

[58] Microsoft Corporation. Common web application architectures. [Online]. [Ac-
cessed: 12-04-2021]. URL: https://docs.microsoft.com/en-us/
dotnet/architecture/modern-web-apps-azure/common-web-

application-architectures.

46

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps/What_is_JavaScript
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps/What_is_JavaScript
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://caniuse.com/?search=ecmascript%5C%205
https://garycordero1690.medium.com/loosely-typed-and-strongly-type-languages-550ce60b2739
https://garycordero1690.medium.com/loosely-typed-and-strongly-type-languages-550ce60b2739
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.altexsoft.com/blog/typescript-pros-and-cons/
https://www.altexsoft.com/blog/typescript-pros-and-cons/
https://javascript.plainenglish.io/what-are-the-differences-advantages-and-disadvantages-between-typescript-and-javascript-492fb3764870
https://javascript.plainenglish.io/what-are-the-differences-advantages-and-disadvantages-between-typescript-and-javascript-492fb3764870
https://javascript.plainenglish.io/what-are-the-differences-advantages-and-disadvantages-between-typescript-and-javascript-492fb3764870
https://javascript.plainenglish.io/what-are-the-differences-advantages-and-disadvantages-between-typescript-and-javascript-492fb3764870
https://www.researchgate.net/publication/224265781_A_Study_of_the_Characteristics_of_Behaviour_Driven_Development
https://www.researchgate.net/publication/224265781_A_Study_of_the_Characteristics_of_Behaviour_Driven_Development
https://www.researchgate.net/publication/224265781_A_Study_of_the_Characteristics_of_Behaviour_Driven_Development
https://dannorth.net/introducing-bdd/
https://dannorth.net/introducing-bdd/
https://pubs.opengroup.org/architecture/togaf8-doc/arch/chap28.html
https://pubs.opengroup.org/architecture/togaf8-doc/arch/chap28.html
https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/common-web-application-architectures
https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/common-web-application-architectures
https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/common-web-application-architectures

[59] Robert C. Martin. Clean Architecture. [Online]. [Accessed: 5-04-2021]. URL:
http://blog.cleancoder.com/uncle-bob/2011/11/22/Clean-

Architecture.html.

[60] Carlos Schults. An Introduction to Clean Architecture. [Online]. [Accessed: 5-04-
2021]. URL: https://blog.ndepend.com/introduction-clean-
architecture/.

[61] Robert C. Martin. Clean Architecture. [Online]. [Accessed: 12-04-2021]. URL:
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-

clean-architecture.html.

[62] Jason Taylor. Clean Architecture with .NET Core: Getting Started. [Online].
[Accessed: 5-04-2021]. URL: https : / / jasontaylor . dev / clean -
architecture-getting-started/.

[63] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Soft-

ware. [Online]. [Accessed: 20-04-2021]. URL: https://archive.org/
details/designpatternsel00gamm/.

[64] John Thompson. The Mediator Pattern: Deep Dive. [Online]. [Accessed: 11-05-
2021]. URL: https://dzone.com/articles/mediator-pattern-1.

[65] Janalta Interactive. Infrastructure Layer. [Online]. [Accessed: 20-04-2021]. URL:
https://www.techopedia.com/definition/32090/infrastructure-

layer#:~:text=The%20infrastructure%20layer%20enables%

20a,to%20connect%20with%20other%20systems.

[66] MongoDB Inc. Start Developing with MongoDB. [Online]. [Accessed: 22-04-2021].
URL: https://docs.mongodb.com/drivers/.

[67] Joe Petrakovich. The WHY Series: Why should you use the repository pattern?

[Online]. [Accessed: 22-04-2021]. URL: https://makingloops.com/why-
should-you-use-the-repository-pattern/#:~:text=The%

20repository%20pattern%20is%20a,list%20items%20in%20a%

20table..

[68] MongoDB Inc. Connection String. [Online]. [Accessed: 11-05-2021]. URL: https:
//mongodb.github.io/mongo-csharp-driver/2.12/reference/

driver/connecting/.

[69] MDN Web Docs. MessageEvent. [Online]. [Accessed: 15-05-2021]. URL: https:
//developer.mozilla.org/en-US/docs/Web/API/MessageEvent.

[70] LLC Innolution. Unit Testing Tutorial: What is, Types, Tools & Test EXAMPLE.
[Online]. [Accessed: 15-05-2021]. URL: https://www.guru99.com/unit-
testing-guide.html.

47

http://blog.cleancoder.com/uncle-bob/2011/11/22/Clean-Architecture.html
http://blog.cleancoder.com/uncle-bob/2011/11/22/Clean-Architecture.html
https://blog.ndepend.com/introduction-clean-architecture/
https://blog.ndepend.com/introduction-clean-architecture/
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://jasontaylor.dev/clean-architecture-getting-started/
https://jasontaylor.dev/clean-architecture-getting-started/
https://archive.org/details/designpatternsel00gamm/
https://archive.org/details/designpatternsel00gamm/
https://dzone.com/articles/mediator-pattern-1
https://www.techopedia.com/definition/32090/infrastructure-layer#:~:text=The%20infrastructure%20layer%20enables%20a,to%20connect%20with%20other%20systems
https://www.techopedia.com/definition/32090/infrastructure-layer#:~:text=The%20infrastructure%20layer%20enables%20a,to%20connect%20with%20other%20systems
https://www.techopedia.com/definition/32090/infrastructure-layer#:~:text=The%20infrastructure%20layer%20enables%20a,to%20connect%20with%20other%20systems
https://docs.mongodb.com/drivers/
https://makingloops.com/why-should-you-use-the-repository-pattern/#:~:text=The%20repository%20pattern%20is%20a,list%20items%20in%20a%20table.
https://makingloops.com/why-should-you-use-the-repository-pattern/#:~:text=The%20repository%20pattern%20is%20a,list%20items%20in%20a%20table.
https://makingloops.com/why-should-you-use-the-repository-pattern/#:~:text=The%20repository%20pattern%20is%20a,list%20items%20in%20a%20table.
https://makingloops.com/why-should-you-use-the-repository-pattern/#:~:text=The%20repository%20pattern%20is%20a,list%20items%20in%20a%20table.
https://mongodb.github.io/mongo-csharp-driver/2.12/reference/driver/connecting/
https://mongodb.github.io/mongo-csharp-driver/2.12/reference/driver/connecting/
https://mongodb.github.io/mongo-csharp-driver/2.12/reference/driver/connecting/
https://developer.mozilla.org/en-US/docs/Web/API/MessageEvent
https://developer.mozilla.org/en-US/docs/Web/API/MessageEvent
https://www.guru99.com/unit-testing-guide.html
https://www.guru99.com/unit-testing-guide.html

[71] LLC Innolution. Acceptance criteria. [Online]. [Accessed: 15-05-2021]. URL:
https://innolution.com/resources/glossary/acceptance-

criteria.

[72] Shreya Bose. UI Testing: A Detailed Guide. [Online]. [Accessed: 15-05-2021]. URL:
https://www.browserstack.com/guide/ui-testing-guide.

48

https://innolution.com/resources/glossary/acceptance-criteria
https://innolution.com/resources/glossary/acceptance-criteria
https://www.browserstack.com/guide/ui-testing-guide

Appendix 1 - Non-exclusive licence for reproduction and
publication of a graduation thesis1

I Aleksandr Babõkin

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my
thesis "Design and Implementation of the Personal DataProcessing Component for
the AfterPayCross-Organisational Processes" , supervised by Aleksandr Kormiltsõn
1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library
of Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to
be entered in the digital collection of the library of Tallinn University of
Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act
or rights arising from other legislation.

17.05.2021

1The non-exclusive licence is not valid during the validity of access restriction indicated in the student’s
application for restriction on access to the graduation thesis that has been signed by the school’s dean, except
in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation thesis
is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted,
by the set deadline, the student defending his/her graduation thesis consent to reproduce and publish the
graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive
license shall not be valid for the period.

49

Appendix 2 - Visa Checkout code example

1 <html>

2 <head>

3 <script type="text/javascript">

4 function onVisaCheckoutReady(){

5 V.init({

6 apikey: "...",

7 encryptionKey: "...",

8 paymentRequest:{

9 currencyCode: "USD",

10 subtotal: "11.00"

11 }

12 });

13 V.on("payment.success", function(payment)

14 {alert(JSON.stringify(payment)); });

15 V.on("payment.cancel", function(payment)

16 {alert(JSON.stringify(payment)); });

17 V.on("payment.error", function(payment, error)

18 {alert(JSON.stringify(error)); });

19 }

20 </script>

21 </head>

22

23 <body>

24 <img alt="Visa Checkout" class="v-button" role="button"

25 src="https://sandbox.secure.checkout.visa.com/wallet-services-web/

xo/button.png"/>↪→

26 <script type="text/javascript"

27 src="https://sandbox-assets.secure.checkout.visa.com/

28 checkout-widget/resources/js/integration/v1/sdk.js">

29 </script>

30 </body>

31 </html>

50

32

33

51

Appendix 3 - Braintree Drop-in UI code example

1 <div id="dropin-wrapper">

2 <div id="checkout-message"></div>

3 <div id="dropin-container"></div>

4 <button id="submit-button">Submit payment</button>

5 </div>

6 <script>

7 var button = document.querySelector('#submit-button');

8

9 braintree.dropin.create({

10 // Insert your tokenization key here

11 authorization: '<use_your_tokenization_key>',

12 container: '#dropin-container'

13 }, function (createErr, instance) {

14 button.addEventListener('click', function () {

15 instance.requestPaymentMethod(function

(requestPaymentMethodErr, payload) {↪→

16 // When the user clicks on the 'Submit payment'

button this code will send the↪→

17 // encrypted payment information in a variable

called a payment method nonce↪→

18 $.ajax({

19 type: 'POST',

20 url: '/checkout',

21 data: {'paymentMethodNonce': payload.nonce}

22 }).done(function(result) {

23 // Tear down the Drop-in UI

24 instance.teardown(function (teardownErr) {

25 if (teardownErr) {

26 console.error('Could not tear down Drop-in

UI!');↪→

27 } else {

28 console.info('Drop-in UI has been torn

down!');↪→

52

29 // Remove the 'Submit payment' button

30 $('#submit-button').remove();

31 }

32 });

33

34 if (result.success) {

35

$('#checkout-message').html('<h1>Success</h1><p>Your

Drop-in UI is working! Check your

sandbox Control Panel for your test

transactions.</p><p>Refresh to try another

transaction.</p>');

↪→

↪→

↪→

↪→

↪→

↪→

36 } else {

37 console.log(result);

38

$('#checkout-message').html('<h1>Error</h1><p>Check

your console.</p>');

↪→

↪→

39 }

40 });

41 });

42 });

43 });

44 </script>

53

Appendix 4 - BDD Scenarios

@Hosted-field-profile
Scenario: "onChange" event triggered when customer enters value into hosted field input
Given placeholder with Norwegian "SSN" example visible in hosted field
When customer enters incomplete Norwegian "SSN"
Then "onChange" event triggered with status code "400.001"

@Hosted-field-profile
Scenario: "onChange" event triggered when customer enters value into hosted field input
Given placeholder with Norwegian "SSN" example visible in hosted field
When customer enters Norwegian "SSN" with typo
Then "onChange" event triggered with status code "400.002"

@Hosted-field-profile
Scenario: "onChange" event triggered when customer enters value into hosted field input
Given placeholder with Norwegian "SSN" example visible in hosted field
When 17 years old customer enters Norwegian "SSN"
Then "onChange" event triggered with status code "400.003"

@Hosted-field-profile
Scenario: "onChange" event triggered when customer enters value into hosted field input
Given placeholder with Norwegian "SSN" example visible in hosted field
When 126 years old customer enters Norwegian "SSN"
Then "onChange" event triggered with status code "400.004"

@Hosted-fields-profile
Scenario: Placeholder is visible in a hosted field, when merchant defined profile in config
Given merchant defined "IBAN-de-AT" profile in config
When page with hosted field renders
Then placeholder with Austrian "IBAN" example visible in hosted field

@Hosted-field-profile
Scenario: "onChange" event triggered when customer enters value into hosted field input
Given placeholder with Austrian "IBAN" example visible in hosted field

54

When customer enters non Austrian IBAN
Then "onChange" event triggered with status code "400.000"
And status object includes next fields fulfilled: ’fieldName’, ’isValid’, ’statusCode’ and
’message’

@Hosted-field-profile
Scenario: "onChange" event triggered when customer enters value into hosted field input
Given placeholder with Austrian "IBAN" example visible in hosted field
When customer enters incomplete Austrian IBAN (<22 symbols)
Then "onChange" event triggered with status code "400.001"
And status object includes next fields fulfilled: ’fieldName’, ’isValid’, ’statusCode’ and
’message’

@Hosted-field-profile
Scenario: "onChange" event triggered when customer enters value into hosted field input
Given placeholder with Austrian "IBAN" example visible in hosted field
When customer enters Austrian IBAN with typo (>22 symbols)
Then "onChange" event triggered with status code "400.002"
And status object includes next fields fulfilled: ’fieldName’, ’isValid’, ’statusCode’ and
’message’

@Hosted-field-profile
Scenario: "onChange" event triggered when customer enters value into hosted field input
Given placeholder with Austrian "IBAN" example visible in hosted field
When customer enters invalid Austrian IBAN
Then "onChange" event triggered with status code "400.005"
And status object includes next fields fulfilled: ’fieldName’, ’isValid’, ’statusCode’ and
’message’

@Hosted-field-profile
Scenario: "onChange" event triggered when customer enters value into hosted field input
Given placeholder with Austrian "IBAN" example visible in hosted field
When customer enters valid Austrian IBAN
Then "onChange" event triggered with status code "200"
And status object includes next fields fulfilled: ’fieldName’, ’isValid’, ’statusCode’, ’mes-
sage’, ’bic’ and ’bankName’

@Hosted-fields-profile
Scenario: Placeholder is visible in a hosted field, when merchant defined profile in config

55

Given merchant defined "SSN-sv-SE" profile in config
When page with hosted field renders
Then placeholder with Swedish "SSN" example visible in hosted field

@Hosted-field-profile
Scenario: "onChange" event triggered when customer enters Swedish "SSN" with wrong
separator
Given placeholder with Swedish "SSN" example visible in hosted field
When customer enters Swedish "SSN" with wrong separator
Then "onChange" event triggered with status code "400.000"

@Hosted-field-profile
Scenario: "onChange" event triggered when customer enters incomplete Swedish "SSN"
Given placeholder with Swedish "SSN" example visible in hosted field
When customer enters incomplete Swedish "SSN"
Then "onChange" event triggered with status code "400.001"

@Hosted-field-profile
Scenario: "onChange" event triggered when customer enters Swedish "SSN" with typo
Given placeholder with Swedish "SSN" example visible in hosted field
When customer enters Swedish "SSN" with typo
Then "onChange" event triggered with status code "400.002"

@Hosted-field-profile
Scenario: "onChange" event triggered when customer is too young to use our service
Given placeholder with Swedish "SSN" example visible in hosted field
When 17 years old customer enters Swedish "SSN"
Then "onChange" event triggered with status code "400.003"

@Hosted-field-profile
Scenario: "onChange" event triggered when customer is too old to use our service
Given placeholder with Swedish "SSN" example visible in hosted field
When 126 years old customer enters Swedish "SSN"
Then "onChange" event triggered with status code "400.004"

@Hosted-field-profile
Scenario: "onChange" event triggered when customer enters valid SSN into hosted field
input
Given placeholder with Swedish "SSN" example visible in hosted field

56

When customer enters valid Swedish "SSN"
Then "onChange" event triggered with status code "200"

@Hosted-fields-profile
Scenario: Placeholder is visible in a hosted field, when merchant defined profile in config
Given merchant defined "SSN-nb-NO" profile in config
When page with hosted field renders
Then placeholder with Norwegian "SSN" example visible in hosted field

@Hosted-field-profile
Scenario: "onChange" event triggered when customer enters value into hosted field input
Given placeholder with Norwegian "SSN" example visible in hosted field
When customer enters valid Norwegian "SSN"
Then "onChange" event triggered with status code "200"

@Hosted-fields-profile
Scenario: Placeholder is visible in a hosted field, when merchant defined profile in config
Given merchant defined "SSN-fi-FI" profile in config
When page with hosted field renders
Then placeholder with Finnish "SSN" example visible in hosted field

@Hosted-field-profile
Scenario: "onChange" event triggered when customer enters value into hosted field input
Given placeholder with Finnish "SSN" example visible in hosted field
When customer enters Finnish "SSN" with wrong separator
Then "onChange" event triggered with status code "400.000"

@Hosted-field-profile
Scenario: "onChange" event triggered when customer enters value into hosted field input
Given placeholder with Finnish "SSN" example visible in hosted field
When customer enters incomplete Finnish "SSN"
Then "onChange" event triggered with status code "400.001"

@Hosted-field-profile
Scenario: "onChange" event triggered when customer enters value into hosted field input
Given placeholder with Finnish "SSN" example visible in hosted field
When customer enters Finnish "SSN" with typo
Then "onChange" event triggered with status code "400.002"

57

@Hosted-field-profile
Scenario: "onChange" event triggered when customer enters value into hosted field input
Given placeholder with Finnish "SSN" example visible in hosted field
When 17 years old customer enters Finnish "SSN"
Then "onChange" event triggered with status code "400.003"

@Hosted-field-profile
Scenario: "onChange" event triggered when customer enters value into hosted field input
Given placeholder with Finnish "SSN" example visible in hosted field
When 126 years old customer enters Finnish "SSN"
Then "onChange" event triggered with status code "400.004"

@Hosted-field-profile
Scenario: "onChange" event triggered when customer enters value into hosted field input
Given placeholder with Finnish "SSN" example visible in hosted field
When customer enters valid Finnish "SSN"
Then "onChange" event triggered with status code "200"

58

	Introduction
	Scope

	Background
	Overview of the AfterPay checkout process
	Customers' sensitive information and AfterPay
	Cross-organisational processes

	State of the Art
	Visa
	Braintree
	State of the art summary

	Analysis
	List of functional requirements
	List of non-functional requirements
	Solution design

	Technology Stack
	Back-end
	Database
	Relational databases
	Non-relational databases
	Personal Data Processing Component database

	Front-end

	Development Process
	Behaviour driven development
	Handling customer data
	Entering personal information

	Back-end architecture and design
	The clean architecture
	The mediator pattern

	Back-end development
	Infrastructure layer
	Core layer
	Presentation layer

	Front-end SDK development
	Initialize function
	OnError function
	OnChange function
	Save function

	Development evaluation

	Results
	Future developments

	Summary
	Bibliography
	Appendix 1 - Non-exclusive licence for reproduction and publication of a graduation thesis
	Appendix 2 - Visa Checkout code example
	Appendix 3 - Braintree Drop-in UI code example
	Appendix 4 - BDD Scenarios

