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May 7, 2018



Analysis of Interpretable Anomalies and Kinematic

Parameters in Luria’s Alternating Series Tests for

Parkinson’s Disease Modeling

Abstract

Primary goal of present thesis is to conduct analysis of patterns drawn during

Luria’s alternating series tests, extract interpretable feature set and develop machine

learning model, capable of correct differentiation of Parkinson’s disease patients from

healthy control subjects.

Luria’s alternating series fine motor tests are being used in psychology and neu-

rology to assess level of disorder in motion planning and execution during handwrit-

ing, which is approved biomarker for Parkinson’s disease.

A novel method to analyze Luria’s alternating series patterns drawn during fine

motor test constitute main result of the present thesis. Majority of solutions avail-

able in the literature are based either on the analysis of entire drawing or individual

strokes. Distinctive feature of the proposed approach is that it allows to analyze

patterns, considering their logical structure with any required level of detail. To

achieve this, unique supervised and unsupervised machine learning techniques are

applied. Computer vision technique is used to split pattern into logical segments.

Based on this information, feature sequences describing different kinematic prop-

erties of the drawing are constructed. During next stages, neural-network based

models are used to generate feature sequences of the ”expected” normal drawing,

which allows to expose ”unexpected” regions with anomalies.

Main outcome of current research is classifier model, capable of differentiating

Parkinson’s disease patients from healthy controls, providing prediction performance

around 91%. Experimental part of the thesis offers technique for explaining individ-

ual predictions of obtained classifier by applying recently proposed machine learning

meta-algorithm.

Present thesis is written in English and is 85 pages long, including 11 chapters,

16 tables and 19 figures.



Luria vaheldutavate seeriate tõlgendatavate anomaaliate ja

kinemaatiliste parameetrite analüüs Parkinsoni tõbi

modelleerimisel

Annotatsioon

Käesoleva töö põhieesmärk oli analüüsida Luria vahelduvate seeriate testide

käigus joonistatud mustrid. Töö käigus arvutatakse tunnused mille alusel tren-

nitakse masinõpe mudelid Parkinsoni tõbi diagnoosimiseks.

Psühholoogias ja neuroloogias Luria vahelduvate seeria testid kaustatakse pat-

siendi motoorika seisu hindamiseks. Testide tulemuste alusel uuritakse haiguse mõju

liigutuse planeerimis- ja teostamis-funktsioonidele . Luria vahelduvate seeriate testid

kuuluvad biomarkerite hulka, mida kasutatakse Parkinosni tõbi diagnoosimisel.

Töö põhipanuseks on uus meetod mustrite analüüsimiseks, joonistatud Luuria

peenmotoorsete testide käigus. Pakutud meetodi iseloomustab joonistatud mus-

trite kirjeldamise viis. Nimelt, meetod võimaldab analüüsida joonistatud mustri er-

inevate detailiseerimise tasemetel. Selle saavutamiseks loodi unikaalne masinõpe al-

goritmite rakendamisjada. Esimeseks sammuks rakendatakse arvuti nägemise algo-

ritm joonistatud mustri põhilelementide (loogiliste segmentide) tuvastamiseks. Selle

alusel moodustatakse tunnuste jadad. Jadad kirjeldavad testide tulemused kine-

maatiliste parameetrite keeles. Järgmiseks sammuks on tehis närvivõrgu treenimine

mille abiga konstrueeritakse oodatud kinemaatiline portree mille alusel leitakse joon-

istamisanomaaliad.

Põhitulemuseks on klassifikaator mis võimaldab eristada patsiente Parkinsoni

tõbiga kontroll rühmast täpsusega 91%. Samuti pakutud meetod annab võimaluse

jälgida otsuse tegemist.

Töö on kirjutatud Inglise keeles ning sisaldab teksti 85 lehekuüljel, 11 peatükki,

16 tabelit ja 19 diagrammi.
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Chapter 1

Introduction

Significant part of human population suffers from Parkinson’s disease. Recent re-

search confirms, that up to 800 people per 100 000 are affected, which brings Parkin-

son’s disease to the list of most widely spread neurodegenerative disorders. Cur-

rently, there is no cure and we don’t know particular causes of PD. While disease

progresses over time, it severely reduces quality of life for the patient, therefore early

diagnosis has obvious high importance.

Parkinson’s disease is complex neurodegenerative disorder which mostly affects

human motions. Patients demonstrate variety of symptoms such as tremor, rigidity

and slowness in movements (bradykinesia) [1, 2, 3, 4]. Handwriting and drawing

processes are complex fine motor activities, which require precise coordination of

many muscles, hence these processes are mostly disrupted among Parkinson’s disease

patients. Recent studies [5, 6, 7] endorse drawing and handwriting — as a proven

biomarker for Parkinson’s disease.

While tablet and touch-screen technology is constantly evolving, numerous re-

search studies present their digitized versions of miscellaneous handwriting tests,

some of them investigate drawings of circle, star, spiral, clock. Others analyze sen-

tences and character sequences.

Related literature [8, 9] confirms, that ”Luria’s alternating series fine motor tests”

— is promising technique of disorder level evaluation in complex motion planning

and execution processes during handwriting. Luria’s tests are already being used in

medical community among neurologists and psychologists for several years. From

feature type perspective — kinematic features are most significant in distinguishing

7



CHAPTER 1. INTRODUCTION

between groups of Parkinson’s disease patients and healthy controls [10, 4, 7].

Primary goal of present thesis is to conduct analysis of patterns drawn during

Luria’s alternating series tests, extract set of interpretable features, containing vari-

ous kinematic and pressure parameters and develop machine learning model, capable

of correct distinguishing between groups of healthy controls and Parkinson’s disease

patients.

In present thesis previous knowledge will be applied and extended, by providing a

novel methodology for analyzing drawing patterns. Majority of solutions available in

the literature are based either on the analysis of entire drawing or individual strokes.

First distinctive feature of the proposed approach is that it allows to analyze patterns

with respect to their logical structure and with any required level of detail.

Computer vision technique is used to split pattern into logical segments and

organize unprocessed drawing data into tree-like graph structures. Based on this so-

lution, feature sequences describing different kinematic properties of the drawing are

constructed. During next stages, neural-network based models are used to generate

feature sequences of the ”expected” normal drawing, which allows to expose ”unex-

pected” regions with anomalies. Anomaly detection is second distinctive feature of

proposed methodology.

Main outcome of current research is machine learning model of classifier, capa-

ble of differentiating Parkinson’s disease patients from healthy controls, providing

prediction performance around 91%. Experimental part of the thesis describes third

distinctive feature — technique for explaining individual predictions of obtained

classifier by applying recently proposed ”Local Interpretable Model-Agnostic Ex-

planations” [11] meta-algorithm.

Thesis is organized as follows. Chapter 1 consists of problem statement and

analysis of related research. Chapter 2 provides high overview of infrastructure

and implementation. Chapters 2 and 3 describe data pre-processing and clustering.

Chapter 4 defines feature extraction methodologies. Chapter 5 explains anomaly

detection process. Chapter 7 evaluates feature statistical significance. Chapter 8

describes classifier model creation methodologies. Chapter 9 proposes experimental

solution for explaining individual predictions of obtained classifier. Chapters 10 and

11 offer discussion about acquired results and research strategies in future.

8



1.1. LURIA’S TESTS BACKGROUND CHAPTER 1. INTRODUCTION

1.1 Luria’s Tests Background

Human motions, during handwriting and drawing — are complex multilevel pro-

cedures according to Luria’s research studies [12]. Each complex motion require

several phases:

• Motion Planning Phase — consists of following sub-phases:

– General Planning — during initial phase, approximate idea, reason, gen-

eral representation of the movement are generated in human cortex, along

with reason behind the movement and the general representation of how

the movement should be executed.

– Motion Pattern Creation — second phase involves detailed motion pat-

tern generation according to general plan from previous phase. Motion

pattern can also be described as series of actions ordered in time.

• Motion Execution Phase

– Motion Pattern Implementation — series of actions are being imple-

mented during third phase, when pattern is transformed into series of

signals to spinal cord.

Luria’s alternating series tests — is a proven technique to expose disorders on

every phase of motion execution and planning during handwriting process. Test

series is represented by combination of certain task types and multiple periodic

patterns.

1.1.1 Task types

Luria alternating series tests are being executed on tablet with stylus. General idea

of every test — to collect handwriting data from tested subject using certain kinds

of tasks, listed as follows:

• Trace Task — implies tested individual to trace the drawing pattern with

stylus exactly above displayed pattern reference image. Simplest task of the

series and requires only motion execution phase without complex planning.

• Copy Task — implies tested individual to reproduce displayed reference pat-

tern with a stylus. Usually reference pattern is displayed on the upper part of

9



1.1. LURIA’S TESTS BACKGROUND CHAPTER 1. INTRODUCTION

screen area. Tested individual is being asked to draw equivalent pattern on a

free area of a tablet display. Task requires both motion execution and plan-

ning. May cause difficulties even for healthy subjects, since reference drawing

is shown aside, therefore possible borders of the pattern are not obvious.

• Continue Task — implies tested individual to continue and fully complete

whole drawing pattern from few visible segments. Most difficult task, both

motion execution and complex planning processes are required. May cause

difficulties for healthy subjects, since reference drawing is not fully shown,

possible borders of required pattern are not obvious.

1.1.2 Pattern Types

Possible subset of repetitive drawing patterns : sinus pattern, ’P’ pattern and ’PL’

pattern. Reasoning behind such naming, is because pattern silhouettes remind Greek

letters Pi (Π) and Lambda (Λ). All patterns are presented on following Figure 1.1.

Figure 1.1: Luria pattern types — sinus pattern, ’P’ pattern, ’PL’ pattern

10



1.2. PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

1.2 Problem statement

Statistical evidence suggests that 7 to 10 million people worldwide are living with

Parkinson’s disease, which makes it one of most widely spread neurodegenerative

disorders. Current medicine doesn’t offer complete cure, however early diagnosis

may significantly improve quality of life for the patients. Several studies suggest

[4, 7, 13], that handwriting might serve as biomarker for Parkinson’s disease. One

of the most promising handwriting evaluation technique — is ”Luria’s alternating

series tests”. Technique is already adopted by medical community and is being

used among psychologists and neurologists for several years. Other various kinds of

digitized drawing and handwriting tests are described and analyzed in the literature.

However detailed and complete analysis of Luria’s alternating series tests is still

missing.

Present thesis is a part of bigger research series in Tallinn University of Tech-

nology, Tallinn University and University of Tartu, which investigates human hand-

writing and already consists of two master theses. First work offers quantitative

analysis of kinematic features for Luria’s tests and is clearly a foundation for present

research [14]. Thesis introduces initial prototype of application for recording hand-

writing data. Similarly, second work [15] proposes next prototype of application

and analyzes ”Clock Drawing Test”. Both share same methodology and conduct

quantitative analysis of kinematic features, extracted from collected drawings.

Both theses miss essential part and don’t offer any machine learning classifiers,

which capable of differentiation Parkinson’s disease patients from healthy controls.

Therefore proposed solutions cannot be adopted by clinicians.

Other studies, however, do offer classification models [4, 16, 17, 18] with various

accuracy rates. Majority of solutions available in the literature are based either on

the analysis of entire drawing or individual strokes, namely — logical structure of

the drawings is not taken into account, which is another possible gap. Additional

important aspect should also be considered, which is trust. Among medical society

black-box type machine learning systems are not considered trustworthy, therefore

not widely used. Reasoning and decision tracing for each individual prediction is

yet another area for research and development.

11



1.2. PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

To wrap up above aspects, we can formulate following list of problems in previous

and ongoing research:

• Detailed and complete analysis of ”Luria’s alternating series tests” technique

is not present in current literature.

• Prevailing studies do not analyze separate logical parts of the drawing shapes.

• None of present studies offer anomaly detection and analysis within drawn

shapes, which can be derived from previous point.

• Most of the proposed solutions lack of machine learning classification part,

classification models are not being analyzed.

• Solutions with machine learning classifiers do not offer high accuracy rate.

• Clinicians do not trust machine learning systems, due to ”black box” nature

of underlying algorithms.

• None of the present studies offer prediction reasoning or decision tracing for

Parkinson’s disease classification.

Present thesis extends previous and ongoing research and offers solutions to

aforestated problems, by providing novel, more detailed technique for drawing pat-

terns analysis. Thesis objectives are formulated as follows:

• Detailed analysis of patterns drawn during Luria’s alternating series tests

– Pre-processing of drawing data, outlier and noise removal.

– Advanced clustering solution for extraction of logical elements of the

drawing patterns with arbitrary level of detail.

– Interpretable feature extraction.

– Anomaly detection.

– Statistical analysis of obtained feature set.

– Development of machine learning classifier, capable of precise differentia-

tion between groups of healthy controls and Parkinson’s disease patients.

• Solution for prediction explanation and decision tracing technique of obtained

classifier model.

12



1.3. RELATED WORK CHAPTER 1. INTRODUCTION

1.3 Related work

According to vast majority of research papers, most common Parkinson’s disease

specific handwriting and drawing impairment is ”micrographia” [3, 19]. Which can

be described as abnormal reduction in writing amplitude. Some authors [6, 10]

even propose two types of micrographia. ”Consistent” is uniform reduction in letter

size, compared to writing before PD was diagnosed. Another type is ”progressive”

or in other words — inability to sustain normal size letters for some number of

consecutive characters. Micrographia is easy to detect, since researchers deal with

visible product of handwriting and size of letters and drawn objects can be assessed

effortlessly, but does size is most relevant feature of PD handwriting?

With recent development of touch screens and tablets, researchers were able

to accurately measure pen coordinates along with time, which gave possibility to

distinguish new kinematic features of handwriting such as speed, duration, velocity,

jerk, fluency. Same studies propose totally new term - ”dysgraphya” [6] (from prefix

”dys” in medical terminology - ”impaired” or ”disordered”), which easily describes

motor aspects of the disease: tremor, akinesia (absence of power in movements),

rigidity and slowness and their combinations with kinematic features.

Overall, from data acquisition methodology perspective, we can divide groups

of researches into following main clusters. Graphic tablets (mostly preferred Intuos

4M Wacom), which can offer high precision tracking, 100Hz refresh rate also ability

to record pressure. Recent studies [20, 15] successfully adopt iPad touch screen

with Apple Pencil stylus and prove it more than capable of capturing drawing data

precisely. Also it’s worth mentioning, that iPad technology brings two novel mea-

sures, such as altitude and azimuth angles [15] of the Apple Pencil, which in theory,

may give more useful features describing PD drawings. As for Wacom tablets - they

offer exclusive possibility of tracking in-air movements of the pen, allowing to record

data between strokes [21]. Aghanavesi et al. [18] even utilizes common smartphone

screen for tapping and spiral drawing tests and successfully extract kinematic fea-

tures, which contain relevant symptom information for detecting and assessing PD

dexterity.

Also, we shouldn’t forget forget common ”pen and pencil” tests. Most of the
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studies in the past were utilizing such method really well. In recent studies Raud-

mann et al. [22] uses pen and paper tests for writing simple and more complex sen-

tences to investigate how PD handwriting alter from healthy controls (HC). Even

multiple paper types, such as plain, horizontal or grid lined were analyzed. And

research confirms, that writing of PD patients certainly differs from HC. Mainly

micrographia and speed reduction were observed. As for different paper types - mi-

crographia was less obvious, when patients performed test on lined paper, however

writing speed didn’t significantly improve.

As from test methodology perspective we can observe some variety of drawing

tasks. Smits, Tolonen, Cluitmans, van Gils, Conway, Zietsma, Leenders, and Mau-

rits [2] proposed set of standardized tasks, which include drawing of circle, star,

spiral and writing of sentence and character sequence ”elelel”.

Drotár, Mekyska, Rektorová, Masarová, Smékal, and Faundez-Zanuy [7] con-

ducted various researches [21, 4, 23] using set of handwriting tasks, which consists

of single letters, bi-grams, tri-grams, single words, sentence and Archimedean spiral.

Letanneux et al. [6] also suggests, while choosing methodology, some certain

aspects should be taken into consideration. The aim of the drawing tests are to

focus on very low level of motor functions, writing some complicated sentences and

unfamiliar words, also drawing complex shapes should be avoided, since it implies

cognitive process.

Nõmm et al. [24] proposes digitalized version of ”Poppelreuter’s overlapping fig-

ures test”, which was used in psychology and neurology for several decades to assess

visual perceptual cortex function [25].

Nackaerts et al. [5] introduced ”Systematic Screening of Handwriting Difficulties”

test (SOS-test), where patients were tested two times within month period and were

asked to copy as much as possible of a text within 5 minutes with the instruction

to write as neatly and quickly as in daily life.

Korner et al. [26], Souillard-Mandar et al. [27], Brodaty and Moore [28] investi-

gate CDT or ”Clock Drawing Test”, where participants are asked to draw the face of

clock, mark in the hours and then draw the hands to indicate a specified time. CDT

had proven its clinical validity of as a screening instrument for cognitive disorders,

such as Alzheimer and Parkinson’s disease or dementia and even recommended in
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Denmark [26] as screening method for individuals applying for an extension of their

driving licence after their 70th birthday.

Geometric and abstract shapes [24], including spiral [16] and Luria patterns

[9] are superb source of kinematic features, which help to asses bradykinesia and

tremor and overall dysgraphya. With sentence and character sequence writing

micrographia-related features can easily be produced [2, 5].

Some research overviews performed by Pinto and Velay [10], Letanneux et al.

[6] confirm, that majority of present studies distinguish most important features

for PD handwriting as size, duration, speed and writing fluency (fluctuations in

velocity, acceleration and jerk). Features, not related with micrographia are often

call kinematic features.

Nonetheless we can meet some other feature types in various researches. Drotár

et al. [4] proposes to utilize pressure measurements of the Wacom tablet, which were

analyzed along with kinematic features, such as speed, duration and acceleration and

showed significant discrimination power. Drotár et al. [21] also successfully adopted

in-air measurements of the Wacom tablet pen, since it allows recording up to 10mm

height, analyzing patients movements between individual strokes. Also, some very

recent work [15] takes advantage of novel azimuth and latitude angles of iPad pencil

for CDT test.

Zham, Kumar, Dabnichki, Poosapadi Arjunan, and Raghav [29] introduce ”Com-

posite Index of Speed and Pen-Pressure” or CISP and analyze its correlation with

UPDRS (The Unified Parkinson’s Disease rating scale) and shows, that CISP of

spiral drawing is indeed strongly correlates with UPDRS.

It is really important to stress, that our thesis is a part of bigger research se-

ries in Tallinn University of Technology, which investigates human handwriting and

drawing. Previous works include: ”Quantitative analysis of the kinematic features

for the Luria’s alternating series test”[9, 14] and ”Digital Clock Drawing Test Im-

plementation and Analysis”[15]

First work conducted by Kozhenkina [14] is clearly a foundation for next studies.

Thesis introduces first prototype of application for handwriting and drawing record-

ing. Drawing data was acquired, and kinematic features were generated, quantitative

analysis was performed to distinguish significant features, which separate healthy
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individuals from PD patients. Similarly, Mašarov [15] introduces second prototype

of application for recording another ”Clock Drawing Test”. Same approach was

used and thesis outcome was also quantitative analysis and subset of statistically

significant features extracted from drawing data. The main issue with aforemen-

tioned studies is that they miss essential part and don’t offer any machine learning

classifiers, which capable of distinguishing between healthy controls and Parkinson’s

disease patients. Therefore proposed solutions cannot be adopted by clinicians.

We can observe, that vast majority of researches produce and analyze features

extracted from drawing data and most of them perform statistical quantitative anal-

ysis of each single feature. The problem with such approach - single features have

low correlation coefficient with UPDRS or don’t provide high discrimination power.

To utilize multiple features at once and possibly find hidden relations between them,

machine learning models come to the rescue.

Only some of recent researches [18, 17, 24] experiment with machine learning

models and classify groups of individuals into PD or HC categories. For example

Drotár et al. [4] achieved 81,3% classification accuracy using support vector machine

SVM model, combining pressure and kinematic features with high discrimination

power. The problem with current approach is that medical doctors cannot really

utilize the above studies mainly because of the black-box nature of common machine

learning models, such as neural networks NN, random forests RF or support vector

machines SVM, even if they offer high accuracy rate.

To modify overall tendency of the medical community not to trust machine learn-

ing systems, we should somehow provide traceability of each individual classification

result or prediction, even if our models offer high classification accuracy. In recent

studies, Palczewska, Palczewski, Robinson, and Neagu [30] propose method for cal-

culation of feature contributions for random forest RF models. It also allows for

the determination of the influence of each feature on the model prediction for an

individual prediction.

Ribeiro, Singh, and Guestrin [11] offer novel methodology, called ”Local Inter-

pretable Model-Agnostic Explanations” or LIME, which is innovative explanation

technique that explains the predictions of any classifier in an interpretable and faith-

ful manner, by learning an interpretable model locally around the prediction.
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Chapter 2

Implementation

2.1 Implementation overview

Proposed implementation consists of several stages, high overview and main aspects

are specified in the following list:

1. Data pre-processing

(a) Input data description

(b) Removal of outliers

(c) Creation of the Drawing Entity

2. Clustering

(a) Shi-Tomasi algorithm

(b) Edge entity

(c) Improving Drawing Entity, building tree-like graph

3. Feature generation

(a) Edge entity feature generation

(b) Drawing entity feature generation

(c) Creating sequences of features

4. Anomaly detection

(a) Transformation of the sequences into training data for neural network

(b) ”Sliding window” pre-processor component
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(c) LSTM neural network training

(d) Anomaly detection process

(e) Anomaly feature generation

5. Feature analysis

(a) Statistical analysis of generated features

6. Classifier Training

(a) Methodology overview

(b) Classifier training and validation

(c) Analysis of trained classifiers

7. Individual prediction explanations for obtained classifier with LIME algorithm

(a) LIME background

(b) LIME integration

During initial stage of data pre-processing — raw input data of iPad drawings

will be transformed from transport JSON objects into Python dataframe format

and wrapped into Drawing Entities. This approach mostly contributes to flexible

and more effective storage and data organization. Additionally, in the intermediate

stage of transformation, outliers will be detected and eliminated.

After pre-processing, Drawing will be clustered using combination of computer

vision algorithm [31] and proposed heuristics for periodic pattern drawing data.

New Edge Entity will be introduced to describe meaningful, self-explaining and

consecutive clusters of the drawing patterns. Edge-type objects will be recursively

generated and will form a tree-like graph of the whole Drawing object.

After completion of clustering process, Feature Generation stage will be initi-

ated. Certain set of feature extraction methods will be embedded into Edge En-

tity and Drawing Entity to effectively compute required features in run-time. Since

Drawing-object itself is ordered tree-like graph of Edge-objects, sequences of already

computed features will be propagated and utilized during next stage.

We will introduce Anomaly detection algorithm, which should highlight abnor-

mal elements in the sequence of a certain Edge-type feature. To archive this goal,

we will transform 1-dimensional time-series sequence of data using Sliding Window
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method into N-dimensional training dataset to predict next value based on N pre-

vious values. Certain type of neural network - LSTM will be trained to reproduce

normal sequence of chosen feature, highlight abnormal elements in the sequence and

yield collection of Anomaly entities for each Drawing object.

Feature Analysis will be performed to assess significance of generated feature set.

We will split our dataset into control and PD populations, compute p-value, Spear-

man’s correlation coefficient and Fisher score for Drawing-, Edge- and Anomaly-type

features and will extract subset of features, which are potentially significant in dif-

ferentiating PD subjects from control group and vice versa.

After determination of significant features, we are ready to build machine learn-

ing classifier model. Using K-fold algorithm, dataset will be divided into K consec-

utive folds consisting of training and validation data. In each fold several classifier

models will be trained and analyzed. Accuracy, sensitivity and specificity will be

measured for each model along with corresponding mean values for set of splits.

Finally, we will apply ”Local Interpretable Model-Agnostic Explanations” LIME

algorithm [11] and describe individual predictions within validation dataset in chosen

fold, and will reveal hidden relations between features and individual prediction for

chosen classifier model.
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2.2 Infrastructure and Tools

To provide high overview of the infrastructure, software and hardware tools, I would

split the the topic into three main clusters: client hardware and software tools, back-

end server software, research and development related software.

2.2.1 Client Infrastructure and Tools

Hardware

Apple iPad Pro and Apple Pencil are crucial hardware components responsible for

drawing data acquisition. Tablet has 26.77cm (10.5 inch) diagonal, LED-backlit

Multi-Touch display with 2224 × 1668 pixels resolution with density of 264 ppi

(pixels per inch). The iPad Pro scans the Apple Pencil’s signal with resolution of

240 points per second, providing twice the data comparing to finger input.

Software

From software perspective — data was collected using custom iOS application, which

itself was developed with Swift programming language and Xcode IDE (integrated

development environment).

Initial implementation of aforementioned client software was initiated in scope

of the course ”Startup Project” ITX8549 in Tallinn University of Technology dur-

ing winter semester in 2016. Author of current thesis was responsible for drawing

algorithm and most of UI components of application.

Application saves acquired drawing data locally in JSON format, and also sends

to remote back-end service, if internet connection is available.

2.2.2 Back-end Server Infrastructure

Software

Back-end service was developed using the popular lightweight Python web frame-

work — Flask. Python library was used to provide REST API for saving drawing

data and also to integrate web services with Amazon Simple Storage Service (S3),
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which itself is file storage with high durability and web interface for data managing.

All drawing data in JSON format is being synced to Amazon S3 bucket.

2.2.3 Research and development

Research, analysis and algorithm implementation was performed using Python pro-

gramming language and PyCharm IDE. Following open-source Python libraries were

extensively used on different stages of the algorithm:

• NumPy and Pandas — for data effective storage and manipulation

• Matplotlib — for bitmap conversion and figure plotting

• OpenCV — for computer vision algorithms

• SciPy — for signal processing, statistical analysis and feature generation

• Keras with TensorFlow back-end — for LSTM neural network training

• Scikit-learn — for training and validation of numerous classifier models

• Lime library — for explaining individual predictions of obtained classifier
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2.3 Data acquisition

All tested individuals from PD and control groups were asked to complete a set of

handwriting tests on iPad tablet, while seating in front of the table in comfortable

position. All required meta information — time of the test, session id, test type

— is recorded automatically. Anonymous subject identification number should be

entered manually on initial stage of the test.

During drawing task, iPad registers all on-surface movements of Apple Pencil

with resolution of 240 record samples per second. Each record is a vector-type

object, with floating point number fields [x, y, t, p, a, l] and represents immediate

state of the digital pencil, where:

• x, y — coordinates

• t — time stamp

• p — vertical pressure

• a, l — altitude and latitude angles

Each consecutive on-surface movement can be treated as separate stroke, there-

fore additional field, which represent stroke number is also saved. Drawing itself is

substantially an array of pencil record samples, which on test-completion is trans-

formed into JSON transport object and sent to remote REST service, if internet

connection is available. Or stored locally otherwise.
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Data pre-processing

3.1 Data description

On initial stage of algorithm, we process list of JSON transport objects, which

represents separate drawings. Each JSON file has specific name and collection of

fields, filled with meta-information about corresponding drawing, such as [patientId,

session, time, type] and drawing data, which is list of strokes, stroke is a list of

points and point is aforementioned vector of [x, y, t, p, a, l]. Sample JSON file is

shown in the following listing.

{ "session ": "2CEE8303 -8AD9 -4D42 -AFCA -0966 DAA3E7FE",

"type": "plcopy",

"time": "2018 -03 -05 06:48:43 +0000" ,

"patientId ": "PD -15"

"data": [

[ { "x": 41.5938 , "l": 0.96508 , "a": 1.03885 ,

"y": 213.914 , "p": 0.33333 , "t": 541925323.7092 },

{ "x": 52.4063 , "l": 0.91419 , "a": 2.18995 ,

"y": 215.097 , "p": 0.00001 , "t": 541925324.55801 } ...] ...

]}

Table 3.1: Listing — Sample JSON drawing file
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3.2 Drawing Entity

To effectively store and manipulate the data, we introduced Drawing Entity, which

essentially is a wrapper object around existing JSON file with populated meta-

information and drawing data transformed into single Pandas dataframe.

Field Description Type

name Original name of the JSON file String

testType Type of the drawing test String

patientType Class of tested individual String

dateTime Timestamp when drawing was recorded DateTime

Table 3.2: Drawing Entity — Metadata

Pandas dataframe is two-dimensional matrix with labeled columns and rows.

Columns can potentially store different types of data. We can think of dataframe

as SQL table or spreadsheet. On current stage of algorithm whole list of JSON files

transformed into Drawing objects. Small transformation was necessary to perform:

drawing JSON data was represented as list stroke, and stroke is a of list of points.

Multiple array analysis seemed not much flexible and we flattened whole structure

into single dataframe of points and populated additional column with i variable,

representing stroke index of current point. Final dataframe structure and Drawing

entity meta-information are described on Tables 3.3 and 3.2

Feature Description Unit Type

x x - coordinate mm Float

y y - coordinate mm Float

t time stamp sec Float

p vertical pressure abstract unit, range [0..6.0] Float

a altitude angle degrees Float

l latitude angle degrees Float

i stroke index number Integer

Table 3.3: Drawing Entity — Dataframe Structure

24



3.2. DRAWING ENTITY CHAPTER 3. DATA PRE-PROCESSING

3.2.1 Outlier removal

An outlier is a separate observation, which is located relatively far from other ob-

servations. During intermediate process of JSON transport object conversion into

Drawing entity, we apply outlier removal function to the dataframe.

To determine outliers, we use simple heuristics, that all Luria patterns tend to

have horizontal direction and always limited in vertical range, therefore we should

not have significant deviation by y-coordinate. We treat arbitrary data point pi in

vector of points [p1, p2..., pn−1, pn] as an outlier, if scalar value yi of vector of all

y-coordinates [y1, y2, ...yn−1, yn] is more than three standard deviations away from

the vector [y1, y2, ...yn−1, yn] average.

3.2.2 JSON to Drawing entity Conversion

Final transformation process of JSON transport object to Drawing entity is exposed

on Figure 3.1

Figure 3.1: JSON to Drawing Entity Conversion — Flow Diagram
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Clustering

4.1 Requirements

During clustering phase, drawing data should be split into meaningful parts for

subsequent feature generation, analysis and classifier creation. First obvious re-

quirement for clustering algorithm comes from specific nature of existing dataset.

We process hand-written Luria alternating tests, which essentially are continuous

lines in two-dimensional space with repetitive elements, therefore could be treated

as patterns. By definition, pattern is a finite sequence of elements with each element

repeated in predictable manner.

Figure 4.1: Luria Pattern — Single Sample

As shown on Figure 4.1, particular single sample of Luria ’PL’ pattern consists

of connected repetitive horizontal and vertical lines. Figure 4.2 however, shows

multiple Luria ’PL’ patterns combined into single two-dimensional figure. It is

perfectly noticeable, what elements of the pattern positioned and scaled relatively

to same elements from other drawing samples. Also same elements withing single

sample may have slight variation in size and positioning.
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Obviously, clustering algorithm should handle all these cases and process any

two-dimensional continuous repetitive pattern. Cluster should represent smallest

logical segment of the line. And in our particular case, smallest logical element

would be straight line drawn at the same angle. For example in Luria ’PL’ pattern

on Figure 4.1 we could distinguish lines drawn at [90, 0, -90, 45, -45] degrees.

Figure 4.2: Luria Pattern — Multiple Samples Combined

Ideally, each cluster should be meaningful and human-interpretable, therefore

should posses meta-information, describing ordering index or relative position within

pattern sequence. To summarize all important aspects, we distinguished list of ideas

and requirements:

• Algorithm should handle repetitive two-dimensional line-patterns

• Elements of the pattern may have:

– Relative position

– Relative scaling

• Clusters should be:

– Consecutive

– Meaningful

– Traceable and interpretable

– Self-describing
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4.2 Standard Clustering Algorithms

It is worth mentioning, that set of most popular clustering algorithms was reviewed

and investigated. However none of standard algorithms fulfilled aforementioned

requirements and eventually was rejected for final solution.

• K-Means — requires pre-defined number of clusters K as input and also starts

with a random choice of centroids (cluster centers) and therefore it can produce

different results on different runs of the algorithm. Thus, the extracted clusters

may not be repeatable and lack ordering and consistency.

• Mean-Shift [32] — does not require pre-defined number of clusters, it is sliding-

window based algorithm, which tries to find dense areas of data points.

Algorithm is not applicable for our task, since same Luria patterns may be

drawn with different speed and acceleration, therefore density of the points

will vary, which will affect clustering results.

• DBSCAN [33] (Density-based spatial clustering of applications with noise) —

similarly to Mean-Shift, dense areas within drawing data do not represent

separate elements of the pattern, algorithm will yield incorrect clusters.

• Hierarchical Agglomerative Clustering — algorithm tries to construct hierarchy

of clusters. Each data point starts in its own cluster, and pairs of clusters are

merged during algorithm execution. In order to decide which clusters should

be merged a dissimilarity metric between sets of observations is essential. Most

commonly used metrics are: Euclidean, Manhattan, Maximum, Mahalanobis

distances.

Choosing appropriate metrics for drawing patterns is not a trivial task. None

of standard metrics offer good logic for splitting pattern into meaningful ele-

ments, since all lines are connected, as shown on Figure 4.1.
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4.3 Corner Node Detection

As shown on Figure 4.1, smallest logical element of the pattern is straight line drawn

at specific angle in the set of [90, 0, -90, 45, -45] degrees. Human eye can clearly

see the border or connection points between the neighbour lines or so-called corners.

Therefore it is essential to detect corner nodes to correctly split existing drawing

patterns. Each drawing pattern apparently is a set of points in two-dimensional

Descartes space, in other words — an image. Eventually, solution of aforementioned

clustering task was found among classical computer vision algorithms.

4.3.1 Shi-Tomasi Algorithm

Shi-Tomasi method [31] is a classical computer vision algorithm invented in 1994.

Algorithm is based on Harris Corner Detector method [34] with slight modification

of scoring function.

OpenCV library for Python offers standard function goodFeaturesToTrack(),

which is based on Shi-Tomasi method. Function input arguments are following:

• n - possible number of strongest corners

• q - quality level threshold, floating point number in range [0, 1]

• d - minimum Euclidean distance between corners

Function takes gray-scale image as input, and tries to finds n most significant

corners with specified quality level q in the range of [0, 1]. Level q indicates minimum

possible quality of the corner node. All corner-node-candidates below specified level

q are rejected. Remaining corners are sorted in descending order based on quality

score q. Neighbour corners with lower score and located closer, than minimum

Euclidean distance d, are filtered out. Finally, function returns n top remaining

corners of the image.

4.3.2 Shi-Tomasi Method Integration

Providing all required attributes for described corner detector function is feasible

task. All drawing patterns have type and reference image, maximum number of

corners is known number or can be determined experimentally. For example ’PL’
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Luria pattern consists of 28 connected straight lines, therefore number of expected

corners n = 28 + 1 = 29. Minimum Euclidean distance d between corners, as shown

on Figure 4.1 is approximately d ≈ 50mm. Same approach holds for finding quality

threshold level q. Integration of Shi-Tomasi method into clustering workflow was be

performed effortlessly with few additional pre-processing and post-processing steps.

Full corner node detection workflow consists following phases:

• Dataframe of drawing entity is converted into grayscale bitmap image — re-

quired step for Shi-Tomasi algorithm. Conversion was performed with stan-

dard plot() function of Matplotlib library. All data points within one sample

were connected with straight lines and saved into image in *.png format with

known resolution r (Figure 4.3).

Figure 4.3: Clustering — Set of Points to Grayscale Image Conversion

• Shi-Tomasi algorithm execution — generated bitmap image and [n, q, d] in-

put arguments are passed to goodFeaturesToTrack() function within OpenCV

library. Output is similarly sized bitmap with corners as separate bits.

• Bitmap to original coordinates conversion — since output of Shi-Tomasi al-

gorithm is bitmap of corners, it is required to perform conversion back to set

of data points. It is non-trivial process, since during rasterisation, precision

was lost and [x, y] coordinates were scaled according to bitmap size. However

with known image resolution r it is possible to get [x, y] coordinates of the

corners really close to existing data points.

• Exact corner points lookup — Since relatively precise coordinates of corner

candidates are known, it is possible to choose closest points from the dataset.

For that purpose special KDtree data-structure of Scipy library was gener-

ated from existing Drawing dataframe. It provides an index into a set of
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any k-dimensional data points and can be used to rapidly lookup the nearest

neighbors of any point.

• Corner nodes are determined and saved as separate list in existing Drawing

entity — corner nodes are saved for subsequent clustering phases. Sample

result is shown on Figure 4.4.

Figure 4.4: Clustering — Detected Corner Nodes
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4.4 Edge Entity

After completion of previous phase, Drawing entity is complemented with ordered

list of corners points (Figure 4.4). List of corner points is sorted by point timestamp

t in ascending order. Each pair of consecutive corner points along with intermediate

points represent a meaningful cluster of drawing pattern. To encapsulate data,

meta-information and logic of a cluster, Edge entity was designed.

Figure 4.5: Clustering — Recursively Generated Edges with depth level d = 1,

d = 2, d = 3

4.4.1 Edge Generation — from Corner Nodes

During first step of the algorithm, Edge objects created from consecutive pairs of

neighbour corner points of the drawing. During creation of each Edge entity, we

pass following arguments to constructor and store them as object fields:

• pair of corner points [pi, pj]
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• index i — relative index of the corner pair

• vector of points [pi, pi+1..., pj−1, pj] — limited by corresponding corner points,

represents certain segment of the Drawing object

Figure 4.6: Clustering — Drawing object transformed into tree-like graph of Edge

objects with depth level d = 3

4.4.2 Edge Generation — by Splitting Existing Edges

In theory, n Edge objects can be generated from n + 1 corner points. To improve

precision, it is feasible to split each Edge object recursively into m Edge sub-objects.

Experimentally was determined best metrics for splitting strategy — Euclidean

distance between points [p1, p2]. Another metrics, such as — time interval and

number of points of a segment didn’t produce acceptable results.

By intuition, edge represents a drawing stroke of the pattern and each stroke

may have [starting, ending] or [starting, middle, ending] parts, therefore we can

split Edge into m = 2 or m = 3 logical parts.

Process can be repeated recursively with required depth level (Figure 4.5) with-

out losing logical meaning of generated sub-clusters. Given information about cur-
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rent depth, local index and reference to parent Edge object and list of m references to

child Edge objects, we can easily construct tree-like graph, which describes Drawing

with any level of required precision (Figure 4.6).

4.4.3 Edge Entity — Fields

Edge object encapsulates cluster-related data and meta-information and possesses

all required indices, references to build tree-like graph from related Drawing object.

All stored fields of the Edge described in following Table 4.1:

Field Description

index index, relative to current depth level d

local index index, relative to other siblings

current depth depth level d of current Edge

starting point starting point pi of the edge

ending point ending point pj of the edge

dataframe vector of points [pi, pi+1..., pj−1, pj]

parent edge single reference to parent Edge object

child edges list of references to child Edge objects

sibling edges list of references to sibling Edge objects

Table 4.1: Edge Entity — Encapsulated Data and Meta-information
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4.5 Clustering Summary

Proposed clustering algorithm transforms raw data of the Drawing object into tree-

like graph of Edge objects with required level of detail. All previously mentioned

requirements for clustering solution were successfully fulfilled:

• Algorithm can handle two-dimensional line-patterns.

• Corner node detector is important element of algorithm and allows to extract

relatively positioned and sized elements of the pattern for subsequent cluster

generation.

• Cluster is represented by Edge object, which possesses following characteris-

tics:

– Consecutive:

∗ Edge object store global and local indices.

– Traceable and interpretable:

∗ Edge object describes certain element of the pattern.

∗ Can be easily transformed into named feature.

– Self-explaining:

∗ Edge is an element of tree-like Drawing graph.

∗ Edge is aware about parent, child and sibling Edges.
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Figure 4.7: Clustering of the Drawing entity — Flow Diagram
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Features

5.1 Feature Generation

Main purpose of current implementation phase is to define and generate features,

or individual measurable characteristics of the Drawing object or researched Luria

pattern for subsequent statistical analysis and creation of classifier model.

Since discrimination power of particular feature is unknown, it is crucial to con-

struct as many features as possible to produce accurate classifier. Features should

also be informative, since it was planned to build individual prediction interpreter

model using ”Local Interpretable Model-Agnostic Explanations” (LIME) algorithm.

Following sections will describe aspects of technical implementation, methodol-

ogy, feature indexing and naming, along with feature groups and individual features.

5.1.1 Methodology

It was decided from the scratch not to use straightforward naive approach for feature

generation. Features are not generated and evaluated during separate iterative pro-

cess, but described as computations over internal state of the entity (in our case —

Drawing and Edge entities) in declarative manner using Python @property decorator

and evaluated lazily in runtime on demand. Lazy evaluation is the computational

strategy which postpones the evaluation of an expression until its value is actually

required (non-strict evaluation).

Also memoization technique was applied. Memoization is an optimization strat-

egy to speed up computations by storing the results of expensive function calls and
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returning the cached result, when same inputs occur again. In our case — if fea-

ture evaluation happened, actual value of the feature is cached with possibility to

re-trigger evaluation any time. All these aspects provide great computational flex-

ibility and data integrity while working with massive amount of objects. Also it

may give the ability to define potentially infinite tree-like graphs. Features can be

added, changed or even deleted any time on entity level, which immediately affects

all nodes of the whole graph.

5.1.2 Edge Naming and Indexing

Usually we are splitting each Edge into three Edge sub-objects [1, 2, 3], which

describe [starting, middle, ending] parts of the certain element of the pattern and

also stored as local index of the edge. Given information of graph depth, local index,

parent node from the Edge object, we can easily construct meaningful index and

also deconstruct any index to human-understandable Edge description.

Edge Name Interpretation

edge 2 Second stroke of the pattern

edge 2 1 Start of the second stroke of the pattern

edge 2 1 3 Ending of the start of the second stroke of the

pattern

edge-2 1 3 2 Middle of the ending of the start of second

stroke of the pattern

Table 5.1: Edge Entity — Naming and Indexing

5.1.3 Feature Engineering

Feature engineering is a process of application of function set to a set of existing fea-

tures resulting in creation of new higher-order feature. It is possible to discriminate

functions into three categories:

• Unary functions — functions, which take one argument, produce single feature

from single feature. Sample unary functions would be — trigonometric, square

root, exponentiation.
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• Binary functions — functions, which take two arguments, produce single fea-

ture from two features. Sample binary functions would be all arithmetic func-

tions — sum, minus, multiplication.

• Array functions — multiple-argument functions, produce single feature from

array of features. For example — statistical functions max, min, median

In our case, Drawing object consists of Edges, Edge is an array of data points,

data point itself is an array of [x, y, t, p, l, a] scalar values. So any array-like

feature of the Edge or Drawing object can be transformed into higher-order numeric

feature by applying statistical functions such as [mean, median, min, max, standard

deviation, 1st percentile, 99th percentile, ...]. From [x, y] coordinates of data points

and time [t] we can produce arrays of geometric and kinematic features, such as:

length, height, width, angle, duration, speed, acceleration, jerk and similarly apply

statistical functions to them and once more obtain unique higher-order features.

5.1.4 Feature Naming

Feature is always evaluated in the scope of certain entity [Drawing, Edge], by ap-

plying certain function, therefore global identification name of feature is generated

by concatenating three main components [Entity name, Feature name, Function

name] :

• Entity name — Edge entity is named according to relative position in the

graph. However Drawing is essentially a singleton in the current context.

• Feature name — concrete feature name.

• Function name — optional name, used in case of higher-order feature.
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5.2 Feature Classes

5.2.1 Edge Features

Edge features are defined in the scope of corresponding Edge entity. In the context of

Luria pattern, Edge is line-segment, represented by vector of points [pi, pi+1, ...pj−1, pj]

where [pi, pj] are starting and ending points of the segment. Next Table 5.2 demon-

strates subset of Edge-related features, final names are defined by adding variable

prefixes to following feature names. Prefix is produced from corresponding name of

the Edge instance.

Edge Feature Description

angle Angle of the line between points [pi, pj]

distance Euclidean distance between points [pi, pj]

duration Time interval between points [pi, pj]

speed Linear speed between points [pi, pj]

pressure median Median pressure in vector of points

[pi, pi+1..., pj−1, pj]

pressure max Max pressure in vector of points

pressure min Min pressure in vector of points

longitude median Median longitude of a pencil in vector of points

longitude max Max longitude of a pencil in vector of points

longitude min Min longitude of a pencil in vector of points

latitude median Median latitude of a pencil in vector of points

latitude max Max latitude of a pencil in vector of points

latitude min Min latitude of a pencil in vector of points

Table 5.2: Edge Features — Sample Subset

5.2.2 Drawing Features

Drawing-related features are defined and evaluated in the scope of corresponding

Drawing entity. In the current context, Drawing is whole Luria pattern, which

consists of line-segments, each represented by vector of points [pi, pi+1, ...pj−1, pj]
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where [pi, pj] are starting and ending points of the segment. So the whole Drawing

is represented by vector of points [p1, p2, ...pn−1, pn], where n is total number of

points in the Drawing. Subsequent Table 5.3 demonstrates subset of Drawing-related

features, final names are defined by adding prefix constant ’drawing’ to following

feature names.

Drawing Feature Description

width Horizontal distance of the Drawing xmax−xmin

height Vertical distance of the Drawing ymax − ymin

area Drawing height multiplied by width

number of strokes Number of strokes. Corresponds to max-

imum stroke index in vector of points

[p1, p2, ...pn−1, pn]

number of edges Number of Edge elements in the Drawing, cal-

culated from number of Edges in graph on

depth level d = 0

completeness Ratio between actual and expected number of

Edge elements in the Drawing pattern. Ex-

pected number of Edges is Luria pattern-type

related constant

angle upper regression line Angle of upper regression line

angle lower regression line Angle of lower regression line

angle middle regression line Angle of middle regression line

angle upper lower Angle between upper and lower regression

lines of the Drawing

Table 5.3: Drawing Features — Sample Subset

To define asymmetry measure of particular Luria pattern, it was decided to

construct regression lines from [upper, middle, lower] corner nodes of the Drawing

and evaluate angle values of corresponding lines. Classification task of extraction

[upper, middle, lower] nodes, was solved by creating linear regression model from

all existing corner nodes, which represents middle regression line. During next step,

each corner node y-coordinate was compared to y-coordinate of middle regression
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line, so all corner nodes above middle regression line were classified as upper-type.

Or lower-type in the opposite case. Similarly, upper and lower linear regression lines

were constructed and angle features evaluated. Result is illustrated on Figure 5.1.

Figure 5.1: Drawing Features — Upper, middle, lower regression lines

5.2.3 Kinematic and Pressure Features

Kinematic and pressure characteristics of handwriting are described in various recent

research papers of Zham et al. [29], San Luciano et al. [16], Nõmm et al. [9] and have

proven high level of discrimination power between Parkinson’s disease patients and

healthy subjects. Kinematic and pressure feature set describes arbitrary vector of

points [p1, p2, ...pn−1, pn], therefore can be defined and evaluated in the scope of both

Drawing and Edge entities. Velocity, acceleration, jerk and pressure higher-order

features are described and used in subsequent analysis and classifier creation.

Along with standard [median, mean, mass] features, another higher-order feature

was proposed — number of changes. To evaluate number of changes, standard

function argrelextrema() of Scipy library was applied, which is sliding-window based

function and yields local extrema of the arbitrary array. In our case — number of

extrema points within feature vector corresponds to number of changes of particular

kinematic or pressure feature.

Following Table 5.4 denotes subset of kinematic and pressure features. Final

names are generated by adding variable prefixes to feature names. Prefix is produced

from corresponding name of the Edge or Drawing instance.
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Feature Description

duration Time period between first and last point of

vector [p1, p2, ...pn−1, pn]

trajectory length Sum of all Euclidean distances between all

neighbour points in vector

velocity mass Velocity mass of the point vector

[p1, p2, ...pn−1, pn]

velocity mean Average velocity of the point vector

velocity nc Number of velocity changes in point vector

acceleration mass Acceleration mass of the point vector

acceleration mean Average acceleration of the point vector

acceleration nc Number of acceleration changes in point vector

jerk mass Jerk mass of the point vector

jerk mean Average jerk of the point vector

jerk nc Number of changes in jerk of point vector

pressure diff mean Average difference in pressure between neigh-

bour points

pressure mass Pressure mass of the point vector

pressure nc Number of changes in pressure

Table 5.4: Kinematic and Pressure Features — Sample Subset

43



Chapter 6

Anomaly Detection

6.1 Overview

Motivation behind proposed anomaly detection solution based on following assump-

tions. Current research subject is essentially a Luria pattern drawing. Pattern itself

is sequence of repetitive groups of elements. It is expected, that tested individuals,

while drawing a pattern, may produce mistakes. Healthy subjects, by intuition,

should produce less mistakes, than subjects with PD, therefore mistake detection

may have potential in Parkinson’s disease prediction.

Mistakes can be interpreted as anomalies. An anomaly, by definition, is an

element in the sequence with significant deviation from its expected value [35]. Ex-

pected value can be obtained from average value of similarly positioned elements of

the sequence. Another option — is to obtain expected value from sequential model

prediction.

Upper chart on Figure 6.1 illustrates normal behaviour of the angle sequence

from the subset of normal Drawings. Lower chart is subset of Drawings with

anomalies. Similarity between different sequences within normal subset is obvious,

therefore it is possible to construct sequential neural network NN model, capable of

reproducing comparable signal.

Proposed anomaly detection solution includes following important steps:

• Sequence Extraction — logic for sequence extraction from Drawing entity. Se-

quence essentially is vector of separate numeric feature x of the Edge entity of

the Drawing object. Sequence is represented by vector [x1, x2...xn]
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Figure 6.1: Combined Sequences of ’Angle’ Feature — Normal Subset (Upper Chart)

and Subset with Anomalies (Lower Chart)

• Neural Network Training — neural networks NN have proven high efficiency

in sequential data processing. NN model should be able to reproduce normal

sequence of feature x with low error rate.

• Anomaly Detection — process consists from two sub-processes:

– Sequence Prediction — predict sequence [y1, y2...yn] from existing se-

quence [x1, x2...xn] of arbitrary Drawing feature x.

– Error Evaluation — Compare original sequence [x1, x2...xn] with pre-

dicted [y1, y2...yn], evaluate elements with significant difference, generate

anomaly objects.

• Anomaly Feature Generation — generate numeric features from generated

anomalies for subsequent analysis.
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6.2 Important Components

6.2.1 Sequence Extractor

Figure 6.2: Sequence of arbitrary feature x extracted from Edge graph at depth

d = 4 represented by vector [x1, x2...xn]

After previous phases of algorithm, we’ve already acquired set of Drawing entities

with well structured tree-like graphs of Edge objects. Each Edge object already

carries meta-information about position inside graph, represented by depth d and

local index i along with evaluated set of numeric features. Current architecture,

showed on Figure 6.2, allows us to easily transform Drawing entity into set of feature

sequences by extracting n Edge objects at certain depth d and join arbitrary Edge

feature x values into sequence, represented by vector of [x1, x2...xn]

Current component is being applied during sequential model training and se-

quence prediction with slight variations:

• For Sequence Prediction — extracts singular sequence of arbitrary feature x

from singular Drawing and outputs vector of [x1, x2...xn], where n – is number

of Edges at deepest available depth d = 4 of Edge graph.

• For Model Training — during fist step, extracts vector of sequences [X1, X2, ...Xm]

from subset of Drawings selected for model training. Current structure (6.1)

is essentially a matrix of numeric representation of x arbitrary feature, where

m – is number of Drawings in subset, n – is number of Edges at depth d = 4

46



6.2. IMPORTANT COMPONENTS CHAPTER 6. ANOMALY DETECTION

of Edge graph of the Drawings. Throughout next step, we flat map structure

(6.1) into vector of [x11, ...xmn] producing long connected feature-sequence of

all Drawings of the subset.

[X1, X2, ...Xm] = [[x11, ...x1n], [x21, ...x2n], ..[xm1, ...xmn]] (6.1)

6.2.2 LSTM Neural Network

It was decided to utilize ”Long Short-Term Memory” [36] or LSTM neural network

for sequential data modelling and prediction. LSTMs are a very promising solution

to sequence and time series related problems [37]. LSTM network was firstly pro-

posed in 1997 by the German researcher Sepp Hochreiter [36] as a answer to gradient

decay problem in traditional recurrent neural networks. LSTM neural networks in

essence — are subset of regular recurrent neural networks or RNNs.

LSTM neural network propose novel gating unit mechanism that manages net-

work memory cell access. Gate unit can block other network parts from modifying

contents of the memory cells for multiple time steps, therefore LSTM networks pre-

serve signals and propagate errors for significantly longer than traditional RNNs.

In other words, LSTM is capable of selectively remembering patterns for extensive

periods of time.

Current solution utilizes Keras library, which is high-level neural networks API,

written in Python and capable of running on top of TensorFlow back-end.

The LSTM network processes sequences of input signals in the form of vector

of tuples [(a1, b1), ...(an, bn)]. For every tuple (ai, bi) the LSTM network takes the

new input ai and produces an estimate for the target bi given all the previous inputs

[a1, ...ai−1].

Following architecture was applied during training: standard Sequential model

was used, as a linear stack of layers with three LSTM hidden layers with number

of neurons: ’hidden1’: 64, ’hidden2’: 256, ’hidden3’: 100, along with intermediate

Dropout layers with fraction of the input units drop set to 0.2. Dropout helps to

prevent overfilling of the model, by randomly setting a fraction of input units to

0 at each update during training phase. Also activation function was set to linear

and loss function to mean squared error or MSE, which is adequate combination
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for current regression task. However all mentioned hyper-parameters were defined

experimentally during algorithm implementation.

6.2.3 Sliding-Window Pre-Processor

Current component Sliding-Window Pre-Processor is required for LSTM input gen-

eration, hence is extensively used during model training and sequence predictions.

LSTM network model takes input signals in the form of vector of tuples [(a1, b1), ...

(an, bn)]. For every tuple (ai, bi), LSTM network takes the input ai and produces an

estimate for the target bi.

By applying Sliding-Window method to existing sequence [x1, ...xm], we will get

required structure of tuples [(a1, b1), ...(am, bm)]. Where ai itself is a vector with n

values ai = [xi−n, ...xi−1, xi], and bi is single value bi = xi+1. Parameter n – size of

the window, m – number elements of the existing sequence. In other words – we are

trying to predict xi+1 next value in the sequence by supplying LSTM model with

[xi−n, ...xi−1, xi] previous n values.

6.2.4 Auxiliary Entities

Following auxiliary entities will be mentioned in subsequent processes.

• Drawing Container — after previous phases of the algorithm, set of Drawings

was already transformed from JSON transport objects. Clustering and fea-

ture extraction processes were executed. To effectively manage collection of

existing Drawing objects, Drawing Container entity is introduced. It allows

to apply logic, required for subsequent model building and analysis: sequence

generation, training data pre-processing, training and test data splitting, fea-

ture analysis and classifier model generation.

• LSTM Container — Single LSTM model is used to reproduce sequence of sep-

arate feature x of the Drawing. Current solution examines subset of n different

features of the Drawing, hence total number of n LSTM models were trained

and stored in LSTM Container entity, which substantially is a wrapper-object

over a collection of the neural network models with preserved meta-information

and required logic.
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6.3 LSTM Model Training

Current chapter describes process of training singular LSTM neural network for

arbitrary feature x sequence modelling. Process will be repeated for every feature

in the subset of pre-defined features. Trained model will be enclosed in the LSTM

Container entity for subsequent anomaly detection. Whole process is illustrated on

flow diagram on Figure 6.3.

• Sequence Extraction — certain subset of experimentally defined ’normal’ Draw-

ings from healthy individuals moved into isolated list of [d1, d2, ...dn] and

wrapped into LSTM Container object. This subset of Drawings will not be

used in any consecutive classifier modelling. With Sequence Extractor com-

ponent, obtain vector of sequences [[x11, ...x1n], [x21, ...x2n], ..[xm1, ...xmn]] from

current subset of Drawings, then flat map into vector of [x1, ...xm] where m

– number of all Edges at certain depth of the Edge graph of all Drawings in

[d1, d2, ...dn] list.

• Sequence Splitting — divide long sequence of [x1, ...xm] into two sub-sequences

[x1, ...xj] and [xj+1, ...xm] for model training and testing. Index j determined

by j = round(0.7 ∗m), where fraction 0.7 – is training rate and m - number

of elements in the sequence.

• LSTM Input Generation — with Sliding-Window Pre-Processor component

transform training [x1, ...xj] and testing [xj+1, ...xm] sequences into n-dimensional

data in the form of tuple vectors [(a1, b1), ...(am, bm)]

• LSTM Training — with Keras library compile Sequential LSTM model with

aforementioned hyper-parameters, set number of epochs to 10. Fit model with

train-input data obtained from Sliding-Window Pre-Processor component. On

training completion measure model accuracy with previously generated test-

input. Save model into LSTM Container, preserving required meta-data.
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Figure 6.3: LSTM Model Training — Flow Diagram
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6.4 Anomaly Detection

By definition, anomaly detection process usually refers to the problem of finding

sequences in data, that do not conform to expected behavior.

Current algorithm utilizes most common Neural-Networks-Based anomaly detec-

tion method, described by Chandola, Banerjee, and Kumar [35]. Main idea is to

initially predict a sequence from its previous samples and then decide whether the

element of sequence is anomaly or normal, based on prediction error, or in other

words — an anomaly is an element, which cannot be predicted from the past normal

time-series or sequential data using trained NN model.

First part of the method — is already implemented: neural network, in current

context — LSTM model is trained on the normal sequential dataset to learn the

normal behaviour of the sequence, or to accurately predict xi+1 next value of the

sequence from [xi−n, ...xi−1, xi] previous n values, if normal, i.e., non-anomaly input

were supplied.

Second part of the method — is described in current chapter: each test instance,

in our case — feature-sequence extracted from the Drawing entity, is provided as an

input to the LSTM neural network model. If model predicts each next element of

the sequence with error below certain threshold, this particular element is treated as

normal. If measured error is above pre-defined threshold — element doesn’t conform

to expected behaviour of the sequence, hence treated as anomaly.

6.4.1 Anomaly Entity

In current context, anomaly — is an element of a feature-sequence, i.e, certain fea-

ture instance of the certain Edge of the Drawing object. Intuitively, anomaly refers

to both feature and Edge instances, thus it was decided to design Anomaly entity in

order to wrap meta-information about feature name, predicted and actual values,

also to establish a link to related Edge object by storing its reference. Current de-

sign approach takes advantage of already existing flexible data-structure of Drawing

graph by decorating its Edge elements with extracted Anomaly objects.
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6.4.2 Anomaly Detection Process

Certain subset of n feature-types was already pre-defined, and n neural network

LSTM models were trained to predict corresponding feature-sequences. Similarly,

current anomaly detection process is executed for single Drawing object n times for

each pre-defined feature-sequence and optionally produces Anomaly objects, which

are stored in graph data-structure of Drawing entity for successive Anomaly-type

feature generation and analysis. Process is illustrated on flow diagram on Figure

6.4 and consists of following steps:

• Sequence Extraction — with Sequence Extractor component, obtain sequence

for particular feature x of Drawing instance. Sequence is represented by vector

of [x1, x2...xn], where n – is number of Edges at deepest available depth d =

4 of Edge graph.

• LSTM Input Generation — with Sliding-Window Pre-Processor component

transform training [x1, x2...xn] sequence into n-dimensional data in the form

of tuple vectors [(a1, b1), ..., (ai, bi), ...(am, bm)], where ai itself is a vector with

n values ai = [xi−n, ...xi−1, xi], and bi is singular value bi = xi+1.

• Sequence Prediction — from LSTM Container extract required LSTM model,

trained for feature x sequence prediction. Feed generated n-dimensional data

from Sliding-Window Pre-Processor to LSTM model, obtain predicted se-

quence, represented by vector of [y1, y2...yn].

• Error evaluation — subtract predicted sequence, represented by vector [y1, y2...yn]

from original vector [x1, x2...xn] and apply square function. Obtain vector of

errors [e1, e2...en], so each element is squared standard error (SE)2 for original

element xi of the sequence. Generated [e1, e2...en] may include outlier-peaks

(shown on third chart of the Figure 6.5). Peaks are removed by applying Scipy

library standard median filter function. Finally, locate anomalies — elements

with error ei above pre-defined threshold t, by retrieving corresponding indices

of the sequence.

– Threshold calculation logic — threshold was calculated separately for

each LSTM model, during training process: feed model with normal

test data [a1, a2, ...an], obtain predicted sequence [â1, â2, ...ân], evaluate
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mean squared error MSE with (6.2). Required threshold is calculated

by t = C ×MSE, where hyper-parameter C is defined for each model

experimentally.

MSE =
1

n

n∑
i=1

(ai − âi)2 (6.2)

• Anomaly Generation — after previous step, indices of anomalies [i1, i2, ...im]

within sequence [y1, y2...yn] are defined and correspond to Edge object local in-

dices at specified depth d = 4 of the Drawing graph. Look-up and obtain Edge

entities by corresponding i index. Wrap meta-information about feature type,

actual value xi and predicted value yi along with reference to corresponding

Edge object by constructing Anomaly entities.

6.4.3 Anomaly Features

It was pre-defined subset of n feature-types [t1, t2, ...tn], extracted n feature-sequences

and trained n LSTM models to evaluate n anomaly-types. Current work analyzes

n = 6 feature-sequences [angle, pressure, length, duration, longitude, latitude] of the

Edge, i.e., sequences of mean values of [angle, pressure, length, duration, longitude,

latitude] within Edge objects of Drawing graph at depth d = 4.

It is feasible to recursively traverse whole graph and evaluate number of anoma-

lies for each node of the graph at arbitrary depth level d. Feature extraction algo-

rithm follows simple logic:

• Obtain all Edges objects [e1, e2, ...em] of the Drawing graph at depth d

• Recursively count all anomalies for each of [e1, e2, ...em] and feature-type [t1, t2, ...tn].

• Evaluate output for depth d = 0, d = 1

• Construct feature names by combining prefix and suffix. Prefix – is taken from

corresponding entity name with possible values of [Drawing, Edge 1, Edge 2,

...Edge n]. Suffix – is matching name of the feature type for current anomaly

– [angle, pressure, length, duration, longitude, latitude].
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Figure 6.4: Anomaly Detection Process — Flow Diagram
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6.5 Anomaly Detection Example

Following Figure 6.5 shows example output of proposed anomaly detection algo-

rithm. Fourth chart represents Luria ’P’ pattern in Cartesian coordinates, drawn

with mistakes. Luria ’P’ pattern by definition, should only contain vertical and

horizontal lines. So only segments with angles with slight variation around values

in subset of [90, 0, -90] are allowed. Pattern segments drawn at unexpected angle

(edges 2 and 13) with unexpected order (edge 20) considered as anomalies.

First chart on Figure 6.5 illustrates extracted sequence of Edge angles [a1, ..an]

of Drawing graph at depth d = 4. Second chart shows angle sequence [â1, ...ân]

predicted by corresponding LSTM model trained to reproduce normal behaviour

of Luria ’P’ pattern. Third chart demonstrates error vector, or squared difference

between [a1, ..an] and [â1, ...ân], represented by [e1, ...en] with applied median fil-

ter. Elements of the sequence [e1, ...en] above pre-defined threshold t = C ×MSE

marked as anomalies and shown on all charts as gray circles. Hyper-parameter for

corresponding angle-related LSTM model is C = 15

Figure 6.5: Anomaly Detection — Example Output
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Feature Analysis

7.1 Dataset Description

Subjects of both classes, with Parkinson’s disease PD and healthy controls HC

participated in research. It was totally npd = 17 individuals with Parkinson’s disease

and equal number nhc = 17 of healthy controls, which gives total number of n = 34

participants.

Handwriting data was recorded for series of Luria and other non-Luria types of

tests. Combination of three Luria patterns [’Sinus’, ’P’, ’PL’] and three task types

[continue, copy, trace] results in series of 9 different tests. To reduce complexity

and the scope of research, dataset with only one particular test was analyzed: copy

task with ’P’ pattern — or [Luria ’P’ copy].

From preceding phases of the algorithm, it was evaluated totally n = 1077 nu-

meric features, which are distributed among three major classes:

• Drawing-related — total n = 29 aggregated higher-order features, recursively

extracted from underlying Edge and Anomaly entities, describe particular in-

stance of Luria pattern, or Drawing entity in general.

• Edge-related — total n = 872 numeric features, describe particular logical part

of Luria pattern, i.e, Edge entity of the Drawing instance.

• Anomaly-related — total n = 176 numeric features, reveal number of Anoma-

lies of different types inside particular Edge or complete Drawing instance.
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7.2 Statistical Analysis

It was decided to apply one of the most widely used supervised feature selection

methods — Fisher scoring method [38, 39].

Fisher score for each feature was calculated using (7.1), where µj and σj – are the

mean and standard deviation of the data points in the class j ∈ [pd, hc] for current

feature, pj – is the fraction of data points in the class j and µ – is the global mean

of the feature. The larger the Fisher score, the greater the discriminatory potential

of particular feature. To evaluate the results, Python function fisher score() from

Skfeature library was used.

F =

∑k
j=1 pj(µj − µ)2∑k

j=1 pjσ
2
j

(7.1)

Along with proposed Fisher scoring method, additional metrics were added for

feature statistical analysis and selection decision logic:

• Two-sample t-test — to reject null hypothesis and determine if datasets are

differ significantly from each other. In current context, null hypothesis — is

that the samples representing HC and PD subjects belong to the independent

populations with equal means. Alternative hypothesis — samples representing

HC and PD subjects originate from the populations with unequal means, hence

there is significant difference between datasets.

Standard Scipy function ttest ind() was utilized to perform T -test. Function

produces tuple of p-value and t-statistics as output. Features with high p-

value p > 0.05 were automatically filtered out and were not used in subsequent

classifier training.

• Spearman’s Correlation Coefficient — ρ was adopted to additionally validate

Fisher Scoring method, by evaluating absolute correlation |ρ| to dataset class

numeric values [PD = 1.0, HC = 0.0]. Python function spearmanr() from

Scipy library was used to evaluate the results.
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7.3 Feature Analysis Results

7.3.1 Drawing Features

Higher-order Drawing features provide information about particular instance of

Luria pattern in general. Totally 97% of n = 29 features from current cluster

passed t-test with significance level set to α = 0.05.

Top performing drawing features are determined by Fisher score and listed in Ta-

ble 7.1. According to the list, most significant of them — drawing acceleration mean,

drawing jerk mean, drawing velocity mean, i.e, average acceleration, jerk and ve-

locity of whole drawing. Highest Fisher score F = 0.50 was observed for draw-

ing acceleration mean. These results are predictable, since kinematic features usu-

ally provide great discrimination power between groups of HC and PD [22, 6, 10],

also our dataset confirms that subjects from PD population in average, perform

drawing tasks 2-3 times slower, than healthy controls of the same age group.

Interestingly, that drawing acceleration nc, drawing velocity nc, drawing pressure nc

also received high Fisher score. These features stand for total number of changes in

acceleration, velocity and pressure during drawing test, and can, in theory, represent

tremor — one of the primary symptoms of Parkinson’s disease.

Feature Name Fisher score |ρ| p-value t-stat

drawing acceleration mean 0.5025 0.65 2.56 · 10−11 9.82

drawing jerk mean 0.4415 0.63 3.42 · 10−10 8.82

drawing velocity mean 0.4071 0.64 1.67 · 10−11 9.99

drawing slope mass 0.3555 0.57 1.37 · 10−13 12.01

drawing acceleration nc 0.3372 0.64 6.29 · 10−6 5.36

drawing velocity nc 0.3333 0.64 1.46 · 10−5 5.08

drawing jerk nc 0.3313 0.64 3.80 · 10−6 5.54

drawing pressure nc 0.3261 0.63 3.96 · 10−9 7.92

drawing duration 0.3149 0.59 2.26 · 10−8 7.29

anomalies drawing length 0.2021 0.38 3.68 · 10−8 7.12

Table 7.1: Drawing features — Statistical Analysis
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7.3.2 Edge Features

Edge features describe particular logical part of Luria pattern, i.e, Edge entity of

the Drawing instance. Totally 78% of n = 872 features from current cluster passed

t-test with significance level set to α = 0.05. Highest observed Fisher score F = 0.90

received feature edge 03 speed, i.e, linear speed of third edge of the drawing, which

means, that speed within particular segment of the pattern provides much higher

discrimination potential, than any kinematic feature of full drawing (F = 0.50 was

observed for drawing acceleration mean).

Highest Fisher scores, received kinematic feature set of different edges, identified

by index i. Top non-kinematic feature with Fisher score F = 0.46 is edge 14 pressure nc,

i.e, number of changes in pressure within edge with index i = 14. Corresponding

higher-order feature drawing pressure nc obtained much lower score of F = 0.33

Aforementioned numbers demonstrate, what proposed clustering technique with

concepts of Edge entity and tree-like graph structure contribute to overall higher sig-

nificance of generated features. Top n = 10 Edge features are presented in following

Table 7.2

Feature Name Fisher score |ρ| p-value t-stat

edge 03 speed 0.9000 0.71 6.11 · 10−10 8.60

edge 15 velocity mean 0.7802 0.73 1.12 · 10−9 8.38

edge 13 speed 0.7649 0.74 1.51 · 10−11 10.03

edge 03 velocity mean 0.7591 0.69 6.70 · 10−10 8.57

edge 15 acceleration mean 0.7464 0.73 4.87 · 10−9 7.84

edge 15 jerk mean 0.7442 0.70 3.40 · 10−8 7.15

edge 03 acceleration mean 0.6709 0.67 2.06 · 10−9 8.15

edge 11 velocity mean 0.6662 0.68 2.00 · 10−10 9.02

edge 14 speed 0.6050 0.64 4.35 · 10−10 8.73

edge 11 acceleration mean 0.5998 0.67 5.14 · 10−10 8.67

Table 7.2: Edge features — Statistical Analysis
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7.3.3 Anomaly Features

Anomaly features represent number of observed Anomalies of different types inside

particular Edge or complete Drawing instance. Totally 42% of n = 176 features

from current cluster passed t-test with significance level set to α = 0.05. Highest

Fisher score F = 0.20 was observed for anomalies drawing length, i.e, number of

length anomalies in the whole drawing. Anomaly features in Table 7.3, in general,

demonstrate lower Fisher score in comparison with other feature clusters. Possible

aspects and future improvement ideas may include:

• Sequence Types — set of analyzed feature-sequence types was pre-defined in-

tuitively and consisted of only [angle, pressure, length, duration, longitude,

latitude] types. Results of prior analysis (Tables 7.1 and 7.2) confirm, that

most-performing are kinematic feature-types, hence changing subset of types

to kinematic may, in theory, improve significance of Anomaly features.

• Error Threshold — every hyper-parameter C for definition of Anomaly thresh-

old t = C ×MSE was determined experimentally. Further tuning of C may

enhance feature performance.

• Feature Engineering — we may improve the results by engineering advanced

feature types — Anomaly strength, i.e, average error value of anomalies within

segment. It is also feasible to sum all errors and obtain Anomaly mass.

Feature Name Fisher score |ρ| p-value t-stat

anomalies drawing length 0.2021 0.38 3.68 · 10−8 7.12

anomalies edge 25 pressure 0.0891 0.31 2.24 · 10−2 −2.34

anomalies edge 11 length 0.0695 0.14 2.38 · 10−3 3.28

anomalies edge 07 latitude 0.0667 0.25 3.58 · 10−2 −2.15

anomalies edge 04 pressure 0.0592 0.25 3.46 · 10−4 −3.79

anomalies edge 03 pressure 0.0519 0.25 3.64 · 10−3 −3.02

anomalies drawing angle 0.0514 0.21 4.06 · 10−5 4.73

Table 7.3: Anomaly features — Statistical Analysis
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Chapter 8

Classifier Training

8.1 Methodology

After previous analysis phase, statistically significant numeric feature subset was

determined for labelled collection of drawings, received from Parkinson’s disease

patients PD and healthy control HC. Major goal of current research is to construct

classifier model for HC and PD differentiation. Considering number of possible

labels in dataset (PD and HC), we a dealing with standard binary classification

problem, which is solvable by machine learning algorithms.

8.1.1 Classifier Algorithms

For the purpose of best performing classifier acquisition for PD discrimination task,

it was decided to train, analyze and compare classical and modern machine learning

algorithms from the following subset:

• k-NN — k -nearest neighbors, classical supervised learning method, yields label

of particular instance. Instance is classified by a majority vote of its neigh-

bors — from most common class among its k nearest instances from training

dataset. KNeighborsClassifier model of Scikit-learn library was used for cur-

rent implementation with k parameter set to k = 3.

• Decision Tree — classical supervised method for classification [38], where learn-

ing process is modelled with set of hierarchical decisions, based on features and

represented by tree-like graph structure. Every tree node – is a decision, i.e,
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some condition on one or multiple features of the dataset. Every leaf is a class

label. Implementation utilizes DecisionTreeClassifier model of Scikit-learn li-

brary with parameter of max depth = 5

• Random Forest — ensemble learning method for classification tasks proposed

by Ho [40] in 1995. The essence of the technique is to construct collection of

simple decision-tree predictors in randomly selected feature sub-space. Final

prediction of the class label determined by most common class from the output

of individual decision-trees. Standard RandomForestClassifier model of Scikit-

learn was applied in current solution.

• SVM — stands for Support Vector Machine, supervised learning algorithm

proposed by Vladimir N. Vapnik and Alexey Ya. Chervonenkis in 1963. Main

idea of the method is to attempt to pass a linearly separable maximal mar-

gin hyperplane through a dataset in order to separate two classes. Hyper-

plane — is a linear separator for any n-dimensional space, represented by

line in 2-dimensional, by plane in 3-dimensional and by hyperplane in higher-

dimensional space.

If dataset is non-linearly separable, the observation points are mapped to

higher-dimensional space by means of a kernel function in order to find sep-

arating hyperplane. Common types of kernels are linear, polynomial and ra-

dial basis kernels. In current solution two implementations of SVM models

from Scikit-learn library were trained and analyzed — with radial basis kernel

SVMrbf and linear kernel SVMlinear.

• AdaBoost — or Adaptive Boosting, machine learning meta-algorithm proposed

by Schapire and Freund [41]. AdaBoost uses ensemble concept also known as

boosting. Fundamental idea of this technique — to combine weaker classifiers

in order to build a stronger learner. Algorithm constructs a strong classifier as

a set of weak classifiers, each performing at least above 50% of accuracy. We

used implementation of AdaBoostClassifier from Scikit-learn library. Num-

ber of estimators was set to n = 50 and estimator type assigned to default

DecisionTreeClassifier.
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8.1.2 Classifier Validation

To confirm correctness of accuracy measures, we applied K-Fold cross-validation

technique, which consists of following steps:

1. Divide original dataset of drawings into mutually exclusive and possibly equal-

sized k subsets. Each subset represent a fold. So result is vector of folds

[f1, f2, .., fk].

2. For every fold fi in i = 1..k repeat:

(a) Keep fold fi as validation set and use remaining k − 1 folds as cross-

validation training set

(b) Train model using corss-validation training set from previous step, eval-

uate accuracy P i
acc of the model inside fi fold by comparing actual pre-

dictions with validation set.

3. Obtain model accuracy Pacc by calculating mean accuracy from all k folds

[f1, f2, .., fk]

Using K-Fold cross validation technique, we’ve achieved state, when all the data

points in the original dataset were used for both training and validation. Also,

each data point was used for validation only once. Normally, the value of k = 10,

however considering our dataset size of n = 34 data-points, it was decided to use

k = 3 folds. In our context, every fold would represent 11-12 drawings of 5-6 both

PD and HC class instances. We utilized StratifiedKFold from Scikit-learn library —

improved implementation of common K-Fold algorithm, where folds are constructed

with possibly equal percentage of samples for each class.

8.1.3 Classifier Training Process

To analyze different combinations of models and hyper-parameters and achieve high

classification accuracy Pacc, collection of models with k-NN, Decision Tree, Random

Forest, SVM and AdaBoost was trained with different number of top-performing

features (n = 3, n = 30, n = 90) from separate Drawing, Edge, Anomaly and Mixed

features-clusters for each of k = 3 folds. All randomly generated folds with trained

models and accuracy measures were saved in auxiliary Classifier-container entity for

subsequent analysis.
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8.2 Classifier Analysis

Output of previous phase is demonstrated in the form of slices: feature space, clas-

sifier model type, feature class. Following Tables 8.1, 8.2 and 8.3 describe model

performance for different feature-spaces with top n = 3, n = 30 and n = 90 per-

forming features. Each table combines slices of model types and feature classes.

Analyzed model types — k-NN, Decision Tree, Random Forest, SVM and AdaBoost

and feature classes — Drawing, Edge, Anomaly and Mixed.

From classifier type perspective — we can observe, that best performing model

is Random Forest with highest accuracy Pacc = 0.91, high performance also demon-

strates AdaBoost and classical Decision Tree with Pacc = 0.86 and Pacc = 0.88.

For some reason, Support Vector Machine classifies our dataset with slightly lower

accuracy rate of Pacc = 0.67

From feature space perspective — we can achieve Pacc = 0.88 with only n =

3 features. Which conforms to high statistical significance of extracted drawing

parameters. Best accuracy of Pacc = 0.91 was obtained with n = 30 feature space.

Much higher dimensionality of n = 90 features does not boost model accuracy, but

even makes it slightly lower with Pacc = 0.88.

From feature class perspective — Edge-related features perform best with highest

accuracy Pacc = 0.91. Fusion of all features yields classifier with Pacc = 0.86.

Drawing-related features describe Luria pattern in general and can produce model

with Pacc = 0.84. Class of separated Anomaly features demonstrates model with

highest accuracy of Pacc = 0.67, which also conforms to statistical analysis and

overall low Anomaly presence in the current dataset of drawings.
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Classifier Pacc all Pacc drawing Pacc edge Pacc anomaly

AdaBoost 0,79 0,79 0,76 0,55

DecisionTree 0,82 0,76 0,79 0,44

k-NN 0,71 0,84 0,71 0,61

RandomForest 0,86 0,84 0,88 0,50

SVMlinear 0,56 0,50 0,67 0,62

SVMrbf 0,56 0,62 0,56 0,57

Table 8.1: Classifier accuracy Pacc — trained with top n = 3 features

Classifier Pacc all Pacc drawing Pacc edge Pacc anomaly

AdaBoost 0,77 0,70 0,80 0,55

DecisionTree 0,70 0,80 0,80 0,44

k-NN 0,74 0,69 0,70 0,64

RandomForest 0,86 0,77 0,91 0,59

SVMlinear 0,53 0,50 0,50 0,62

SVMrbf 0,56 0,56 0,62 0,56

Table 8.2: Classifier accuracy Pacc — trained with top n = 30 features

Classifier Pacc all Pacc drawing Pacc edge Pacc anomaly

AdaBoost 0,82 0,77 0,86 0,68

DecisionTree 0,79 0,69 0,88 0,66

k-NN 0,65 0,71 0,71 0,56

RandomForest 0,85 0,80 0,89 0,60

SVMlinear 0,50 0,50 0,49 0,57

SVMrbf 0,56 0,62 0,56 0,64

Table 8.3: Classifier accuracy Pacc — trained with top n = 90 features
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8.3 Data Visualization

Possible reasons, why classifiers achieve high prediction performance with accuracy

of Pacc = 0.91 is subtle feature engineering and selection technique, which again is

confirmed by high Fisher score after statistical analysis. For the sake of demonstra-

tion, subset of classifiers was trained with top-performing pairs of features in order

to visualize decision boundaries within two-dimensional feature space.

2D scatter-plots on Figures 8.1, 8.2 and 8.3 illustrate decision boundaries for

different classifiers trained with only n = 2 features, taken from separate feature

clusters. Particular subplot demonstrates classifier model — k-NN (top left), Deci-

sion Tree (top right), Random Forest (bottom left), AdaBoost (bottom right). Each

X and Y axis represents individual feature from different feature classes — Draw-

ing, Edge, Anomaly. Healthy controls HC instances are marked with yellow dots.

Scatter-plot on Figure 8.4 illustrates all instances within 3D feature space.

Figure 8.1: Decision Boundaries for PD Classifiers: x-axis — linear speed of third

edge of the drawing, y-axis — average acceleration of the drawing. Healthy controls

HC instances are marked with yellow dots.
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Figure 8.2: Decision Boundaries for PD Classifiers: x-axis — linear speed of third

edge of the drawing, y-axis — number of length anomalies in the drawing. Healthy

controls HC instances are marked with yellow dots.

Figure 8.3: Decision Boundaries for PD Classifiers: x-axis — number of length

anomalies in the drawing, y-axis — average acceleration of the drawing. Healthy

controls HC instances are marked with yellow dots.
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Figure 8.4: Dataset of subjects (HC — yellow, PD — blue) in 3D feature-space:

X-axis — linear speed of third edge of the drawing, Y -axis — number of length

anomalies in the drawing, Z-axis — average acceleration of the drawing.
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Chapter 9

Explaining Predictions

9.1 Motivation

Outcome of the preceding phases of algorithm — numerous binary classifier models,

capable of differentiating Parkinson’s disease patients PD from healthy control sub-

jects HC with up to 91% of accuracy. In theory, obtained classifier models may be

integrated into decision support framework and used by clinicians for Parkinson’s

disease diagnosis.

There exists a major problem with practical application of present method in

hospitals. Main reason would be overall ”black box” nature of machine learning

algorithms, such as neural networks, random forests or support vector machines

SVM. Even if particular model offers high accuracy rate, it would not be considered

as trustworthy by clinicians, primarily because of prediction making process is not

traceable.

It is worth mentioning, that limited amount of simple machine learning models

offer some level of interpretability. For example, particular models of Decision Tree,

Linear Classifier can be described by feature weights. Recently became possible to

interpret binary Random Forest classifier models with feature contribution method,

proposed by Palczewska, Palczewski, Robinson, and Neagu [30] in 2014.

However interpretations of individual predictions were not feasible before.
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9.2 Methodology

9.2.1 LIME

In 2016 Ribeiro, Singh, and Guestrin [11] came up with novel machine learning meta-

algorithm, called ”Local Interpretable Model-Agnostic Explanations” or LIME, which

is innovative explanation technique, that explains the predictions of any classifier

in an interpretable and faithful manner, by learning an interpretable model locally

around the prediction. This method was also extended to SP-LIME algorithm,

which yields representative and non-redundant set of predictions to provide higher

overview of any machine learning model.

LIME algorithm was built around assumption, that any complex model is linear

on local scale, namely — pair of close datapoints should have predictable behaviour,

even the complex model is non-linear, therefore it is feasible to fit linear model

around particular datapoint to create local linear representation of the global non-

linear model. Linear model then can be utilized to explain predictions of the complex

model locally. In general, LIME algorithm follows these main steps to explain global

model M individual prediction for datapoint d:

1. From original datapoint d to explain, create randomly permuted points [d1, d2, ..dn],

obtain predictions for each of [d1, ..dn] from global model M and assign labels.

2. Evaluate distances between [d1, ..dn] and original d

3. Choose k features and fit simple linear model Mlinear using labelled points

[d1, ..dn] and their distances to original datapoint d.

4. Obtain feature list [f1, ..fm] with feature weights from simple model Mlinear,

use them as explanation for datapoint d prediction.

Distance measuring, feature selection and model fitting from steps (2) and (3) are

complex processes and may have multiple implementations and different strategies.

Obtained explanation is not faithful globally, but it is faithful locally around d. In

context of LIME, explanation — is textual artifact, that provides understanding of

the relationship between the datapoint d features [f1, ..fm] and particular model’s

prediction.
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9.2.2 LIME Integration

It was decided to apply LIME to generate explanations for individual predictions of

HC and PD datapoints from validation set and observe, how algorithm performs.

LIME has Python implementation in form of lime package, which was integrated

effortlessly into existing project.

In order to obtain explanation for individual instance d, we create LimeTabular-

Explainer object and execute explain instance() method, while providing following

input parameters:

• Particular classifier model M object, which predicts class of the instance d

• Related labelled drawings [d1, ..dn] from training set

• Feature names [f1, ..fm]

• Class labels [PD,HC]

• Individual instance d from validation set

Output is complex Explanation object, which in general, contains prediction

probability for each class [PD,HC] and list of tuples [(x1, y1), ..((xm, ym)], where

[x1, ..xm] — feature names ordered by their numeric significance values [y1, ..ym],

which were calculated from particular feature fi weight inside linear model Mlinear

— local linear approximation of global model M . Algorithm is also capable of

showing discretized ranges for every explained feature fi of the d instance.
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9.3 Experimental Result

Following Table 9.1 and Table 9.2 demonstrate sample classification explanations for

random instances of HC and PD, taken from validation dataset. Classifier model M

is Random Forest with measured accuracy Pacc = 0.88, trained with n = 90 features

from mixed feature class. To confirm validity of the explanation, actual feature value

of the corresponding instance was added to LIME output as a reference.

9.3.1 Explanation for PD instance

First explanation (Table 9.1) confirms, that instance is PD with 71% probability.

Main reasons for such classification result, according to Random Forest model:

• Velocity is lower than expected for edge with index 3

• Increased number of pressure changes for edges with indexes 6 and 14

• Linear speed for edges 5, 12, 22 is lower, than expected

• Duration for edge 14 is longer, than expected

9.3.2 Explanation for HC instance

Second explanation (Table 9.2) confirms, that instance is actually healthy control

HC with 90% probability. Primary reasons for such classification result, according

to Random Forest model:

• High linear speed for edges 5, 6, 10, 22

• High average velocity for edges 3, 10, 11, 15

• Number of pressure changes in edges 6, 14 are low
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Classifier Model — RandomForest, n = 90 features

Instance PD-07 — Prediction PD (71%) / Control (29%)

Prediction Explanations: Parkinson’s Disease PD (71%)

Feature Explanation Feature Actual Significance

edge 03 velocity mean ≤ 9.07e+03 4.25e+03 0.061013

edge 14 pressure nc > 1.95e+01 2.80e+01 0.054542

edge 03 acceleration mean ≤ 1.92e+08 7.28e+07 0.042965

drawing slope mass > 1.83e+05 3.21e+05 0.037471

1.65e+01 < edge 06 pressure nc ≤ 1.90e+01 1.90e+01 0.034442

edge 03 jerk mean ≤ 1.21e+13 3.43e+12 0.029171

edge 22 speed ≤ 5.39e+01 3.90e+01 0.027016

1.62e+13 < edge 00 jerk mean ≤ 2.76e+13 2.14e+13 0.018656

1.25e+00 < edge 00 pressure mass ≤ 1.51e+00 1.45e+00 0.012146

5.32e+01 < edge 05 speed ≤ 7.01e+01 5.85e+01 0.011786

6.27e+01 < edge 12 speed ≤ 1.02e+02 1.00e+02 0.011575

edge 14 duration > 9.40e-01 1.62e+00 0.010385

Prediction Explanations: Healthy Control HC (29%)

Feature Explanation Feature Actual Significance

edge 14 velocity mean ≤ 7.31e+03 5.81e+03 -0.012261

edge 14 acceleration mean ≤ 1.43e+08 1.36e+08 -0.012769

2.26e+08 < edge 07 acceleration mean ≤ 3.20e+08 2.29e+08 -0.013645

5.81e+03 < edge 10 velocity mean ≤ 9.51e+03 7.19e+03 -0.015295

6.81e+12 < edge 20 jerk mean ≤ 1.32e+13 7.37e+12 -0.023397

6.23e+01 < edge 10 speed ≤ 1.16e+02 9.00e+01 -0.025807

5.96e+03 < edge 15 velocity mean ≤ 1.20e+04 9.29e+03 -0.032646

7.28e+01 < edge 06 speed ≤ 1.05e+02 7.65e+01 -0.077155

Table 9.1: PD Instance Explanation — Example
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Classifier Model — RandomForest, n = 90 features

Instance HC-01 — Prediction HC (90%) / PD (10%)

Prediction Explanations: Healthy Control HC (90%)

Feature Explanation Feature Actual Significance

edge 06 speed > 1.05e+02 2.67e+02 0.111788

edge 11 velocity mean > 1.45e+04 2.63e+04 0.074923

edge 15 velocity mean > 1.82e+04 2.23e+04 0.073401

drawing slope mass ≤ 1.14e+05 8.27e+04 0.059881

edge 03 velocity mean > 1.56e+04 3.79e+04 0.057738

edge 06 pressure nc ≤ 1.05e+01 5.00e+00 0.057620

edge 14 pressure nc ≤ 1.02e+01 7.00e+00 0.037617

edge 03 jerk mean > 2.73e+13 7.69e+13 0.032639

edge 10 speed > 1.16e+02 2.60e+02 0.031768

edge 22 speed > 1.21e+02 2.67e+02 0.030603

edge 21 acceleration nc ≤ 6.75e+00 4.00e+00 0.026311

edge 05 speed > 9.92e+01 2.46e+02 0.024375

edge 10 velocity mean > 1.50e+04 3.28e+04 0.023728

edge 03 acceleration mean > 3.54e+08 8.96e+08 0.021507

edge 14 duration ≤ 4.20e-01 3.30e-01 0.018153

Prediction Explanations: Parkinson’s Disease PD (10%)

Feature Explanation Feature Actual Significance

edge 00 jerk mean > 2.76e+13 3.54e+13 -0.021943

edge 01 jerk mean > 1.70e+13 4.17e+13 -0.026075

edge 14 velocity mean > 1.29e+04 2.30e+04 -0.027546

edge 14 acceleration mean > 2.92e+08 6.07e+08 -0.037125

edge 20 jerk mean > 2.73e+13 7.93e+13 -0.066437

Table 9.2: Healthy Control HC Instance Explanation — Example
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Chapter 10

Discussion

Overall, primary objectives of present thesis were met. We conducted detailed anal-

ysis of patterns drawn during Luria’s alternating series tests. Analysis was based

on data collected from 17 real patients with approved Parkinson’s disease diagno-

sis and 17 healthy control subjects within same age group. Main outcome of the

analysis is machine learning classifier, capable of differentiation Parkinson’s disease

patients from healthy controls, providing prediction performance around 91%. We

also integrated technique for explaining individual predictions of obtained classifier

based on ”Local Interpretable Model-Agnostic Explanations” novel meta-algorithm.

Proposed solution is complex multilevel process with several dependent phases.

During each phase we experienced certain challenges. Some design decision exceeded

our expectations, few on the other hand, revealed various limitations and possible

flaws. All these aspects should be discussed.

Applied ”Shi-Tomasi” computer vision algorithm [31] performed really well dur-

ing clustering phase, however there is no automatic validation technique for mea-

suring quality of corner detection results. The only option — is to perform man-

ual visual check of the image. Another possible limitation of the algorithm — is

pre-defined constants for maximum corner number and minimum distance between

corners, which potentially narrows usage of the method for other pattern types.

Probable solution would require including heuristics before algorithm execution,

which evaluates possible values for algorithm constants.

Most successful design decision during implementation — is certainly clustering

solution architecture. We combined computer vision, object-oriented programming
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techniques and recursion. Point, Edge and Drawing entities were introduced to

describe pattern on different levels of abstraction. Computer vision assisted in split-

ting Drawing into Edge objects — meaningful logical parts of the pattern. Every

Edge object was recursively divided into connected sub-objects of the same type

while preserving references to parent and child entities. Outcome of whole cluster-

ing process — tree-like graph structure of connected pattern segments, represented

by Edge objects. Clustering algorithm is capable of processing periodic drawing

patterns with relatively positioned and scaled elements, preserves logical structure

and describes pattern with arbitrary level of detail. Tree-like graph structure is

very flexible for feature generation and interpretation, which helped to produce fea-

tures with much higher statistical significance, comparing to features obtained from

unclustered drawings. Subsequent anomaly detection concept was built on top of

existing clustering solution. In general clustering component exceeded initial expec-

tations.

Anomaly detection — is interesting and promising concept, derived from clus-

tering solution, capable of identifying ”unseen” or ”unexpected” segments of any

feature sequence. Sequences were generated with LSTM neural network, utilizing

tree-like graph data structure of the Drawing object. As was already mentioned,

Anomaly features showed slightly lower significance in comparison with common

features obtained from pattern segments. Nevertheless, we can enhance Anomaly

feature performance. For example, set of pre-defined feature sequence types was

initially limited and non-kinematic. Results of subsequent analysis showed, that

most-performing are common features with kinematic type, therefore changing sub-

set of analyzed feature sequences, may improve significance. Another idea — every

hyper-parameter C for definition of Anomaly threshold t = C ×MSE was deter-

mined experimentally. Further tuning of C may enhance feature performance. We

may also improve the results by engineering advanced feature types, such as Anomaly

strength — by averaging error value of anomalies within edge, or Anomaly mass —

by summing all obtained Anomaly strength values in the same region. Anomaly

detection solution is neural-network based, possible enhancement may be found by

applying new network types. For example, recently proposed Independently Recur-

rent Neural Network IndRNN [42] in theory, can process longer sequences and can
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be stacked into deep neural network models.

Statistical analysis exposed decent performance of features, derived from certain

logical pattern segments with maximum Fisher score around 0.90. Features, de-

rived from whole pattern showed much lower discrimination power with maximum

Fisher score around 0.50. This fact again, confirms our assumption, that proposed

clustering technique contributes to overall higher significance of generated features.

From feature type perspective, most promising — are kinematic features, which was

already stated in multiple research papers. Non-kinematic — geometry features,

pressure, altitude, latitude of stylus revealed their low significance in Parkinson’s

disease differentiation.

During classifier training, we discovered most performing algorithms — Random

forest, AdaBoost and Decision Tree. Interestingly, support vector machine SVM

models performed with slightly lower accuracy. This fact is worth investigating in

future and possibly conduct experiments with SVM model parameters. Models were

validated with K-Fold technique. Normally value of k = 10, however considering

existing dataset size of n = 34 data-points, it was decided to use only k = 3 folds.

We achieved highest average classification accuracy around 91% for Random Forest

model, trained with n = 30 top features.

During experimental phase, ”Local Interpretable Model-Agnostic Explanations”

algorithm was integrated into existing project for explaining individual predictions

of obtained classifier. LIME certainly is innovative explanation technique, that

explains the predictions of any classifier in an interpretable and faithful manner, still

authors warn about undeniable limitations. Generated explanations are not faithful

globally, but are faithful only locally around certain predicted datapoint instance.

Additionally, there is no objective method for measuring correctness of explanations.

Nevertheless, this technique, without doubt can reveal hidden relations between

instance features and particular classification result with some degree of confidence.
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Chapter 11

Conclusion

Primary goal of present thesis was to conduct analysis of patterns drawn during

Luria’s alternating series tests, extract interpretable feature set and develop machine

learning model, capable of correct differentiation of Parkinson’s disease patients from

healthy controls. Additional goal was to offer solution for explaining individual

predictions of obtained classifier.

Research is based on handwriting data collected from 17 patients with diagnosed

Parkinson’s disease and 17 healthy control subjects within same age group.

Novel clustering technique was applied during analysis. Proposed clustering algo-

rithm is computer vision based and capable of processing periodic drawing patterns

with relatively positioned and scaled elements, preserving logical structure with ar-

bitrary level of detail. Obtained concept could also be applied in other research

fields.

Anomaly detection concept was also introduced and applied. Anomaly detection

technique evolved from clustering concept. Method is neural network based and

capable of identifying ”unseen” or ”unexpected” sequence segments within drawing

patterns.

Detailed statistical analysis of extracted features was successfully conducted and

revealed high number of significant kinematic parameters, derived from certain log-

ical segments of the pattern. Main outcome of the analysis was machine learning

classifier, capable of differentiation Parkinson’s disease patients from healthy con-

trols, providing average prediction performance around 91%.

Technique for explaining individual predictions of obtained classifier based on
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”Local Interpretable Model-Agnostic Explanations” algorithm was successfully in-

tegrated into final solution and performed adequately.

Proposed technique could be included into decision support framework for Parkin-

son’s disease screening and, in theory, adopted by clinicians in medical facilities. Ob-

tained methodology can certainly help to reveal hidden relations between pattern

instance parameters and particular classification result with some degree of confi-

dence. With such classification reasoning, clinicians are capable of making informed

decisions about whether to trust the model’s predictions.

Obtained results of present thesis clearly indicate, that main goals were success-

fully achieved. Present research can evolve in different ways.

Most obvious research direction — extension of present machine learning binary

classifier to regression model, capable of predicting severity of Parkinson’s disease,

expressed in unified Parkinson’s disease rating scale UPDRS. Without doubt, it will

require a reasonably large group of patients with various levels of disease severity.

Additionally, interesting and promising anomaly detection concept could be in-

vestigated much further. Novel feature engineering, parameter tuning, experiments

with neural network architecture — are some of possible improvement areas.
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