
THESIS ON INFORMATICS AND SYSTEM ENGINEERING C131

From Determinacy Analysis to
Zero Factor Free Determinacy

Analysis and Universal Generator of
Hypotheses: Development of Algorithms

GRETE LIND

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Department of Software Science

This dissertation was accepted for the defence of the degree of Doctor of
Philosophy in Computer Science on October 10, 2017.

Supervisor: Prof. Rein Kuusik
Department of Software Science
Tallinn University of Technology

Opponents: Prof. Sergei O. Kuznetsov, Doctor of Sciences
School of Data Analysis and Artificial Intelligence
Faculty of Computer Science
National Research University Higher School of Economics
Russia

Jilles Vreeken, Ph.D.
Independent Research Group Leader (W2)
Exploratory Data Analysis
Cluster of Excellence MMCI
Saarland University, Saarbrücken, Germany

Defence of the thesis: December 18, 2017, Tallinn

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and
achievement, submitted for the doctoral degree at Tallinn University of
Technology has not been submitted for any academic degree.

/Grete Lind/

Copyright: Grete Lind, 2017
ISSN 1406-4731
ISBN 978-9949-83-161-6 (publication)
ISBN 978-9949-83-162-3 (PDF)

INFORMAATIKA JA S TEHNIKA C131ÜSTEEMI

Determinatsioonanalüüsist
nullfaktorivaba determinatsioonanalüüsi

ja universaalse hüpoteeside generaatorini:
algoritmide arendus

GRETE LIND

5

Table of Contents

ABSTRACT .. 8

ACKNOWLEDGEMENTS ... 10

Abbreviations ... 11

1 INTRODUCTION ... 12

1.1 Motivation .. 13

1.2 Methods and theories ... 14

1.2.1 Determinacy Analysis .. 14

1.2.2 Generator of Hypotheses .. 16

1.2.3 Theory of Monotone Systems .. 17

1.3 Research aims .. 17

1.4 Overview of developments .. 18

1.5 Previously published work ... 21

1.6 Contribution of the thesis ... 22

1.7 Organisation of the thesis ... 22

2 THEORETICAL BACKGROUND ... 23

2.1 Data mining .. 23

2.2 Machine Learning .. 24

2.2.1 Definitions of learning from examples 25

2.3 Classification ... 26

2.3.1 Decision trees ... 27

2.3.2 Classification rules ... 28

2.4 Association rule mining ... 30

2.4.1 Frequent itemsets ... 31

2.4.2 Association rules .. 34

2.5 Combining classification and association rules 38

2.6 Theory of Monotone Systems .. 41

2.6.1 Algorithm MONSA ... 42

2.7 Determinacy analysis ... 50

6

2.7.1 Determination and its characteristics ... 51

2.7.2 System of rules ... 53

2.7.3 Examples of different systems of rules 55

2.7.4 The main task ... 56

2.7.5 Basic tasks of DA... 57

2.7.6 Three principles ... 58

2.7.7 Place of DA .. 59

3 DEVELOPMENTS .. 61

3.1 Developments of Generator of hypotheses .. 61

3.1.1 Generator of hypotheses .. 62

3.1.2 Correspondence between concepts of MONSA and ARM 64

3.1.3 Associations found by GH ... 66

3.1.4 Comparison of two criteria for selecting next node 67

3.1.5 Elements between closed set and its generator 69

3.1.6 Algorithm for finding equivalence classes 70

3.1.7 Finding excluded factors .. 76

3.1.8 Integrating classes into MONSA ... 78

3.2 Developments of Determinacy analysis ... 82

3.2.1 About the original applications of DA 84

3.2.2 Problems .. 87

3.2.3 Step-by-step approach .. 88

3.2.4 Problem with zero factors .. 92

3.2.5 The first algorithm for finding intersecting rules 94

3.2.6 Determinative set of rules .. 100

3.2.7 Algorithm for finding all possible shortest rules 102

3.2.8 Types of zero factors .. 107

3.2.9 Relations of DA rules with closed sets and generators 108

3.2.10 Zero Factor Free DA .. 110

3.2.11 Discussion .. 127

3.3 Universal generator of hypotheses ... 130

7

3.3.1 Covering UGH with algorithms ... 135

3.4 Further algorithmic developments of ZFF DA 138

3.4.1 Involving accuracy and completeness thresholds 138

4 CONCLUSIONS ... 142

4.1 Directions for further research ... 144

REFERENCES .. 146

KOKKUVÕTE .. 158

Appendix A .. 161

Appendix B .. 177

Appendix C .. 185

Appendix D .. 195

Appendix E .. 207

Appendix F .. 223

Appendix G .. 239

8

ABSTRACT
Data mining (DM) is often defined as finding hidden information in a database.
The two “high-level” primary goals of data mining are prediction and description.
A descriptive model serves as a way to explore the properties of the data
examined, not to predict new properties (like the predictive model).

The goals of prediction and description are achieved by using different DM tasks,
including classification and association rules. Classification maps (classifies)
data into predefined groups or classes. This method comes from machine
learning, in DM it is used mainly for prediction. An association rule mining
uncovers relationships among data, identifying specific types of data
associations. It is considered to be a descriptive task.

Both tasks produce IF-THEN rules. The difference is that classification rules are
produced for determined class(es) only and class attribute(s) is(are) separated
from other attributes; in case of association rules all attributes can be on either
side of the rule (not in the same rule) and (generally) the conclusion is not
determined in advance.

Usually these tasks are solved separately and for different purposes. There also
exist hybrid approaches that combine classification and association rules (either
for descriptive or predictive purpose), their results are presented in the form of
classification rules. We have created an approach (ZFF DA) that produces both
kinds of the rules at the same time (for descriptive purpose). Producing both kinds
of rules is different from hybrid approaches as well as classification and
association rule discovery because each of them finds one kind of rules.

This work presents developments of descriptive data mining methods called
Determinacy Analysis (DA) and Generator of Hypotheses (GH).

Both methods had been created in Soviet time. Being separated from the Western
research, they had their own underlying concepts and theories. In this work we
have shown the correspondences of the concepts from these methods with the
ones that are widely known in data mining area. These correspondences facilitate
to share our ideas as well as make findings about those well-known concepts
usable for us.

DA is a system of methods for the analysis of rules. It tries to answer the
questions: “Who are they (objects of the class)?”, “How can we describe them?”,
“What distinguishes them from others?”. DA can be seen as a classification
method, in addition it can be related to association rules.

In this thesis DA is developed in order to overcome different drawbacks typical
of its different approaches, mainly towards reducing redundancy. Zero factors
(ZF) are the elements that cause redundancy and must not to appear in the
antecedents of the rules. We have defined two types of them.

9

Presented developments of DA are:

 Step-by-step method: allowing free length for non-intersecting rules, it
helps to reduce redundancy.

 First algorithm for getting intersecting rules produces a possibly small
set of (possibly short) rules.

 DSR-approach: instead of one description out of (usually huge) number
of all possible ones, it finds all non-redundant rules that can be used for
finding a suitable cover.

 Zero-factor-free (ZFF) DA finds all non-redundant rules for all existing
classes (not for “target” class only) and enriches these (classification)
rules with positive and negative association rules.

Generator of hypotheses is a DM method that uses possibilities offered by
algorithm MONSA. We have shown that it finds all closed sets.

MONSA is changed to find all minimal generators with their closed sets,
“excluded factors” and class. The elements between a closed set (CS) and its
generator form a consequence for an association rule where the generator is an
antecedent. Excluded factors are such elements that do not occur in CS, they form
a consequence of a negative association rule. Having found that the elements
between CS and generator correspond to (one kind of) ZF (in DA) and that a class
can be detected the same way as ZF, we have created a MONSA-based algorithm
for ZFF DA that produces three kinds of non-redundant rules with a common
antecedent: classification rules, positive and negative association rules.

As a CS with all its minimal generators forms an equivalence class (EC), we have
created an algorithm for finding all ECs as well.

Finally, we have gathered the tasks solvable by GH and DA under the framework
called Universal Generator of Hypotheses.

MONSA and all other algorithms presented in this thesis are based on the theory
of monotone systems. We see that ZFF DA algorithm can be used as a basis for
different further developments listed in the thesis.

10

ACKNOWLEDGEMENTS
I am deeply grateful to my supervisor prof. Rein Kuusik for long-time guidance
and collaboration. He has always been supportive, patient and very positive. Each
time we talked about my thesis, he fulfilled me with enthusiasm and hope.

I would like to thank my good colleagues from the Department of Informatics for
making it the best place to work.

I would like to acknowledge organisations that supported me during my PhD
work: Tallinn University of Technology, Estonian Information Technology
Foundation and ICT Doctoral School.

I thank my family and friends and especially my dear Mette for being with me
through all these years.

Thank you all!

11

Abbreviations
AR association rule

ARM association rule mining

CS closed set

DA determinacy analysis

DM data mining

DSR determinative set of rules

EC equivalence class

FT frequency table

GH generator of hypotheses

ML machine learning

MONSA MONotone System Algorithm

MS monotone systems

UGH universal generator of hypotheses

ZF zero factor

ZFF zero-factor-free

12

1 INTRODUCTION
The wide area of data mining (DM) can be divided into predicting and describing.
Unknown or future values of variables of interest are predicted using known data.
Description focuses on finding human-interpretable patterns describing the data.
A descriptive model serves as a way to explore the properties of the data
examined. In the context of knowledge discovery in databases (KDD),
description tends to be more important than prediction. (Fayyad, Piatetsky-
Shapiro, & Smyth, 1996)

DM uses methods from many other disciplines: machine learning, pattern
recognition, statistics, …. Different methods from machine learning (ML) are
used mainly for prediction purposes. The most important ones of them are
classification and clustering. The former represents supervised learning and the
latter – unsupervised learning. In case of supervised learning there exist data for
which the right answer (class, function value, …) is known and the learner is
trained to give a right answer to each input in training set. It is assumed that it
works on unseen data as well. In case of unsupervised learning there are no
correct answers, usually the task is to partition data in some appropriate way.

The classification rules represent found knowledge in the form of IF-THEN rules.
The IF-part contains a predicate that can be evaluated as true or false against each
tuple in the data. THEN-part shows the target class.

The rules are used mainly for Classification task: to find the rules for
classification of unknown object(s) on the basis of the learning examples.
Additionally the classification rules are used for Data Analysis and Data Mining
task: to use the found rules for describing the class under analysis, answering the
questions: "Who are they (objects of the class)?", "How can we describe them?",
"What distinguishes them from others?".

In this work we will use classification rules for description, although primarily
they are used for prediction purposes.

Besides the classification rules we will deal with association rules. The difference
between these two is that for classification rule the target class is given, whereas
in case of association rule each considerable item can be on either side of the rule.

One problem solved in this work is to get rid of redundancies appearing in the
rules. For example, if the description of a class contains two characteristics: "Are
you living in the countryside?" with a value "Yes", and "Do you have cows?"
with a value "Yes", then the first one is redundant because having cows means
that one lives in the country (if everyone having cows lives in the country). This
way we get a (positive) association rule “has a cow” “lives in the countryside”.

13

Besides positive association rules we can easily find the negative ones also (like
“has a cow” NOT “is a frequent traveller”). In some cases negative rules are
more valuable than positive ones.

Usually classification rules and association rules are treated separately. In
addition to classification and association tasks there exist hybrid approaches that
combine the two. The rules found by the hybrid methods have a form of
classification rule. We have developed an approach (called zero-factor-free
determinacy analysis) that finds for the same antecedent (left side of the rule)
three types of conclusions (i.e. right sides of the rule): class, “accompanying”
factors and “excluded” factors. The last two correspond to the association rules
(positive and negative, accordingly), while the first one is a classification rule.
By producing different kinds of rules our approach is different from hybrid
approaches as well as classification and association rule discovery because each
of these methods finds one kind of rules.

This work is about descriptive data mining methods called Determinacy Analysis
(DA) and Generator of Hypotheses (GH). These methods are not intended for big
data analysis. Relations between the concepts used in these methods and more
widely known concepts of data mining are shown in the thesis. Presented
algorithms are based on the theory of monotone systems (MS). Different tasks
solvable by GH and DA are gathered under the framework called Universal
Generator of Hypothesis (UGH).

1.1 Motivation

Coming from the former USSR, our research themes after achieving an
independence are to a great extent related to the topics and approaches that were
actual in these times (for example, Determinacy Analysis). Since 1970s in the
Institute of Informatics (at Tallinn University of Technology) there has been
evolved our own school in data science area, the so-called school of prof. Leo
Võhandu. Together with J. Mullat they have developed the theory of monotone
systems which was the basis for many methods created here (e.g. Mullat’s
kernels, data table reordering methods). As these methods were used mainly by
the public opinion and market research companies (carrying out the questionnaire
surveys), all the methodology and algorithms created at that time issue from a
data table, i.e. the work data were in the form of object-attribute system, not
drawn from databases. The approaches and algorithms presented in this work are
developed largely based on that assumption, theoretical basis and manner of
thought.

The first versions of Determinacy Analysis and Generator of Hypotheses were
used in the Computing Centre of Estonian Radio, where a group of sociologists
were working. Due to their interestedness the problems of application and further
development of the methods were then very actual. Unfortunately the beginning
of Estonian independence with its economic difficulties and reforms did not allow

14

to seriously deal with it. Further development of GH and DA rose on the agenda
again only in the beginning of 2000s. Also a group of enthusiasts emerged, who
were ready to apply these methods (first of all, Saar Poll OÜ, Estonian Academy
of Security Sciences). Encouraged by them the development of the method and
algorithms (once) again got off the ground, new ideas and approaches arose,
which were published in research papers.

The base algorithms and approaches created in 90s were based on the concepts
that had been created by the earlier school (prof. Leo Võhandu and others). As
the USSR was a closed system, the foreign contacts and access to the foreign
publications of the field were missing as well as the foreign scientists could not
access our papers. Due to this, after achieving the independence, when we tried
to get in the international conferences, we were not understood and our papers
were not accepted, because we issued from our concepts. The situation changed
only then when we comprehended that and adjusted ourselves. The
correspondence between the notions was explained in (Kuusik & Lind, Algorithm
MONSA for All Closed Sets Finding: basic concepts and new pruning
techniques, 2008). By reference to all the foregoing, the methods and algorithms
presented in this work are not much influenced by the world’s top of the area, our
ideas have been evolved rather amid our own school.

I joined the development of DA and HG after defending my master thesis
“Monotone systems in data mining” in 1998 and in some years the research in
this area developed into one of my main activities.

Looking into these methods and talking to their potential users several usage
problems and weak points that needed to develop came out. Also the new ideas
how to further develop the methods arose.

1.2 Methods and theories

In this subchapter we will introduce the methods that will be developed in the
thesis: determinacy analysis (1.2.1) and generator of hypotheses (1.2.2) as well
as theory of monotone systems (1.2.3) on which these developments are based.

1.2.1 Determinacy Analysis

According to Chesnokov (1982, pp. 7-10), Determinacy1 Analysis (DA) has been
created to fill the gap in the analysis of the qualitative sociological and socio-
economic data. The tasks (of analysis of sociological and socio-economic data)
divide into two groups: studying the structure of relationships between variables

1 Russian „Детерминационный анализ“ has been translated both as “Determinacy
Analysis” and “Determination Analysis”. We will use „Determinacy Analysis“ because
it is used this way in the papers written in English by the author of the theory Chesnokov,
for example: “Determinacy analysis and theoretical orthography” (by S. V. Chesnokov
and P. A. Luelsdorff, in: Theoretical linguistics, 1991, 17(1-3), 231-262)

15

and building secondary aggregated indicators. The second type of tasks is well
covered by different coefficients and other measures (e.g. Yule’s, Kendall’s,
Pearson’s, Chuprov’s, Cramér’s coefficients, entropy). While such integral
indicators provide a possibility to get the estimations of a general nature, they
however, carry away from the characteristics presented by the values of the
qualitative attributes in the working documents of empirical studies.

In practice, the summary of direct visual analysis of contingency tables serves as
a criterion of truth of the results, obtained by such integral indicators.

Direct examination of percentage breakdown in contingency tables forms the
basis for so called content analysis2 of empirical data. It is feasible when the tables
have up to three dimensions. Having more dimensions the considerable
difficulties appear: presentation of the material in a visually graspable form
becomes complicated, the big number of empty or almost empty cells in tables
appears, it becomes complicated to observe the trends and regularities of interest.
The techniques for local, fragmentary analysis of contingency tables that could
be contribute to overcoming these difficulties, practically have not been discussed
in the research literature. DA represents a variant of just such kind of technique.

The task solved by DA is not original. The task is to search for and describe the
situations, where by the specific values of some social indicators it was possible
to predict sufficiently definitely the values of other indicators. The usual
conditional frequency serves as a main characteristic of the ability to predict. If b
is predicted based on a according to the rule “if a then b” then the accuracy is
measured by the value of the conditional frequency P(b/a). The rule “if a then b”
itself is denoted by the symbol a→b and is called a determination.

DA enables to get sufficiently accurate and complete determinations,
manipulating combinations of elementary characteristics. Differentiation of
different characteristics by the degree of essentiality of their contribution to the
arguments of determination (measured by the increment of conditional
frequencies) is included into this task. Active building of the contexts in which
the determinations are examined as well as inclusion of a priori and a posteriori
typologies, aggregated indicators, indexes into the analytic process are important
elements of DA.

The idea of analysing the conditional frequencies is not new. DA differs from
other directions in this area primarily by consistent orientation to a direct
manipulation with direct and inverse conditional frequencies and their increments
(“contributions”).

DA has a similarity with the fuzzy set theory (Zadeh, 1965). In DA we say “there
is a determination a→b with intensity P(b/a)”. Its analogue in the fuzzy sets is

2 Russian “содержательный анализ“

16

“there is an element a, which belonging to a fuzzy set b is characterized by the
value of the membership function μb(a)=P(b/a)”.

DA is a systematic exploration method of conditional probabilities or simply
percentages contained in usual statistical contingency tables of different
attributes. For practical use it has to be supported by software.

DA is an interactive method. It is realised using a dialogue3. The user selects the
attributes for inclusion into the analysis. In order to combine interesting attributes
the user has to have an imagination of the material under examination. Trying
every possible combination would take too much time when there are lot of
attributes4. Thus DA is not the best means for discovering new regularities, but
for testing the researcher’s hypotheses. (Kuusik, 1988)

DA is familiar in Russia. It has been used in sociology (Chesnokov, 1980b),
linguistics (Luelsdorff & Chesnokov, 1996), medicine (Chesnokov, 1996), and
other areas.

1.2.2 Generator of Hypotheses

Generator of Hypotheses is inspired by the JSM5-Method for Automatic
Generation of Hypotheses (Anshakov, Skvortsov, Finn, & Ivashko, 1987), thence
its name comes from. In contrast to DA, both GH and JSM-method enable to
automate the process of finding regularities (hypotheses). These methods allow
outputting all value combinations that really exist in given data. (Kuusik, 1988)
Slow algorithm that had been used to realise the JSM-method (see (Kuusik,
1987)) gave rise to creation of GH.

While DA and JSM-method assume that the given attributes are divided into the
causes and effects, GH does not expect any partition of attributes.

The result of GH – value combinations – is presented as a tree, showing the order
of finding the combinations. Each embranchment is labelled with the probability
P(b/a). Each branch (or shorter fragment of it) describes a group of data objects
and is usable as a work hypothesis for a researcher.

GH uses a Monotone System based algorithm MONSA that was presented in
(Kuusik, 1993).

3 Original applications of DA will be described in 3.2.1.
4 The number of all possible combinations is va-1, where a is the number of attributes and
v is the number of different values of (each) attribute.
5 JSM comes from the name of English philosopher John Stuart Mill; the Russian
acronym is ДСМ.

17

1.2.3 Theory of Monotone Systems

Algorithms presented in this thesis are based on the theory of monotone systems
that has been created at Tallinn Technical University.

Monotone (or monotonic6) systems (MS) were introduced by J. E. Mullat (1971),
(1976), (1977). As the name refers these systems wield the monotonicity property
which means that a function is either entirely nonincreasing or nondecreasing.
“By a monotonic system, we understand a system, for which an action realized
on an arbitrary element involves either only decrease or only increase in the
significance levels of all other elements.” (Mullat, 1976)

Several methods based on the theory of monotone systems have been developed
in Department of Informatics at Tallinn University of Technology. An overview
of scale of conformity, data table reordering techniques (minus technique, plus
technique, mixed technique), Mullat-Võhandu kernel extracting algorithm,
generator of hypotheses and best decision finding is given in (Võhandu, Kuusik,
Torim, Aab, & Lind, 2006). The MS approach has been applied in the graph
theory to extract all maximal cliques (Kuusik, 1995) and maximum clique
(Kuusik, Lind, & Võhandu, 2004).

The current state of MS is kept by J. Mullat at http://www.datalaundering.com/.

1.3 Research aims

When I started the method called GH and a suitable algorithm (MONSA) already
existed. For DA the so called step-by-step approach had been created here. GH
and DA find different things and use different algorithms (however, both are
based on monotone systems). We have dealt with them separately until they got
together only in our last development – zero-factor-free DA which uses GH-type
algorithm (instead of the type used for other DA algorithms).

Besides further developing these methods it was important to publish already
existing algorithms and methods in English because the publications in Russian
and Estonian were not available and understandable to the remaining world.
Thus, some of the papers (listed in 1.5) contain such “old” material. Also,
showing relations between the concepts used here (for GH and DA) and the ones

6 At the creation time of the theory these systems were called “monotonic” in English, at
a later time “monotone”. The reason is that this name “Monotone System” was already
occupied in “Reliability Theory” unknown to J. Mullat (1976). According to Wolfram
MathWorld (2016) “Monotone Increasing (Decreasing)” means strictly increasing
(decreasing) i.e. never remaining constant (Weisstein, 2016a), (Weisstein, 2016b) while
“Monotonic Function” is entirely nonincreasing or nondecreasing i.e. includes possibility
to remain constant (Stover, 2016). To make a difference we can say “strictly
monotone/monotonic” or “weakly monotone/monotonic”.

18

used in closed set mining and association rule mining was an important outcome
in order to make our work understandable.

The overall goal of this thesis is to improve and develop a data analysis method
called Determinacy Analysis.

The main tasks:

 To investigate the possibilities to create and develop new approaches
based on GH and MONSA

 To create a new algorithmics (based on MS) for DA in order to add new
functionalities

 To show the correspondences of our concepts of GH/MS and the
concepts used in DA with more widely used concepts in DM and ML

The more specific questions (under the main tasks) were not posed all at a time,
but arose one after another when we discovered new issues that needed solving.
In the next section we will give an overview of what we have done.

1.4 Overview of developments

In the beginning, DA and HG were developed separately.

When I started, for DA the so called step-by-step approach had been created here.
Compared to the original application (called DAS) it allows to find rules with
different lengths, thus reducing redundancy that appears in the form of inessential
(zero) factors (in the antecedents of rules), but not eliminating it. Both approaches
find additive systems of rules (i.e. sets of non-intersecting rules7).

Step-by-step approach involved a new thing to consider – the order of attributes
(factors) in the rules. Attributes are added into the rules in a given order, the
completion of a single rule is stopped whenever it occurs to be accurate. In case
of different orders the results are different. The number of all possible orders is
too big to try them all and then find the most suitable one. Thus we got a new
problem to solve – to find the best (or an optimal) order for attributes in the rules.

This order is essential during the work process in order to avoid or lessen the
redundancies, in the final rule it is not important any more. We explored the
possibility to decide by factor’s contribution to accuracy at the moment when it
is added into the rule. We reached the conclusion that we cannot say whether the
factor remains essential (positive) (regarding the factors that will be added later)
or not. This conclusion is valid for the step-by-step approach as well as the
approaches that produce non-additive systems of rules.

As an additive system of (non-intersecting) rules generally cannot be free of zero
factors, we started to develop algorithms for finding non-additive systems of rules

7 If the rules do not intersect then there is maximally one rule for each data object.

19

(where the rules can intersect). The order of attributes can be different in each
rule.

First we worked out an algorithm that finds a possibly small set of rules,
monitoring and taking into consideration which objects are covered by the found
rules already. This MS-based algorithm is not based on MONSA, it uses so called
3D8 frequency tables. Like a step-by-step approach this one also produces one
system of rules that is not always the best one.

Instead of finding one system of rules, it was good to find all non-redundant rules
and then combine different covers (rule sets) from them. For that purpose we
created an algorithm that produces all non-redundant rules and some redundant
rules9 (that are eliminated by compression). The rules can intersect, regardless of
how many times the objects are covered. Redundancy is avoided as much as
possible by the nature of the algorithm. Differently from the previous 3D-
algorithm this one does not track the coverage of objects, and it uses elimination
technique “bringing zeroes down” from MONSA. After elimination of redundant
rules (by compression) we get the set of non-redundant rules, called
Determinative Set of Rules (DSR) that gives a source for post-processing the
rules.

Dealing with redundancy we have found two different types of zero factors: 1)
the ones that can be just left out from the left side of the rule (without changing
the set of covered objects); 2) the ones that produce a subrule of an existing rule
(reducing the set of covered objects).

Meanwhile we have had developed GH and MONSA. My supervisor had a true
guess that intersections found by algorithm MONSA are closed sets. After
showing this correspondence (Kuusik & Lind, 2008) it became possible to relate
MONSA’s results with the widely known concepts of frequent itemset mining
and association rule mining (ARM).

This correspondence helped to answer the question “can the leading element be
chosen by some other principle (than by the maximal frequency)?” and explain
the differences caused by different selection criteria (maximal frequency vs
minimal frequency).

After relating the concepts of DA with the ones of ARM we reached a conclusion
that (in order to be free of zero factors) the left side of the rule has to be a minimal
generator, such that it has no subset that defines a class.

8 3D frequency table contains “usual” frequency table (as in MONSA) and additionally a
frequency table for such objects that belong to the “target class”.
9 The rules that are contained in some other rules are considered redundant.

20

Proceeding from those correspondences we found a solution for one more
question – “how to find both (minimal) generators and closed sets?” – and created
an algorithm for finding them all.

First we tried to adapt the algorithm that uses 3D frequency tables, but
unsuccessfully: we did not get all the closed sets (CSs) and generators
characteristic to the target class (the non-accurate descriptions were not found).

Next we tried to use MONSA as a basis of a new algorithm and this time we got
an expected outcome. While the original MONSA moves from a CS to a CS, this
one moves from a generator to a generator, because it is easier to find a CS for a
generator than unknown number of generators for a CS. Actually, we first had a
more sophisticated algorithm (MONSA) and then made it easier, thereat retaining
a valuable mechanism for detecting the elements between a CS and generator, but
treating them differently.

As a CS with all its minimal generators forms an equivalence class (EC), it was
straightforward to create an algorithm for finding all ECs (although previously
we did not have such goal).

The reason for finding both generators and CSs was that together they give a basis
for creating (positive) association rules (ARs): the elements between a CS and its
minimal generator (we call them “zero factors” as they correspond to one type of
zero factors in DA) can be seen as a conclusion resultant from generator. This
way we get a (positive) “zero-factor-free” association rule. Besides positive
conclusions the negative ones (called excluded factors) can be of interest as well.
MONSA offers an easy way to detect them, thus we get negative ARs.

The way how to detect zero factors gave an answer to the question “how to
integrate classes into MONSA?” that had been waited for a solution for a long
time. A class can be detected the same way as any other zero factor, the difference
is that class attributes cannot occur in the left side of the rules. Having this
solution we got ready to create a MONSA-based algorithm for DA.

Putting together the abilities to find all three types of the rules we reached our
final development called zero-factor-free (ZFF) DA that produces three kinds of
rules: 1) classification rules; 2) (positive) ARs; 3) negative ARs. This approach
uses a MONSA-based algorithm (moving from a generator to a generator) and
DSR-compression. Compared to the 3D algorithm that (together with a
compression) gives a DSR for a target class, ZFF DA gives DSR for all classes
(if desired) and enriches the (classification) rules with information about
accompanying factors (positive AR) and excluded factors (negative AR).

Finally we have gathered different tasks solvable by GH and DA under the
umbrella called Universal Generator of Hypotheses that is one possible
framework for that purpose.

21

1.5 Previously published work

The work of this thesis is based on the following publications:

A Kuusik, R. and Lind, G. (2008). Algorithm MONSA for All Closed Sets
Finding: basic concepts and new pruning techniques. WSEAS
Transactions on Information Science and Applications, 5(5), 599-611.

B Lind, G. and Kuusik, R. (2007). Some Ideas for Determinacy Analysis
Realisation. Proceedings of the 11th IASTED International Conference
on Artificial Intelligence and Soft Computing. Palma de Mallorca, Spain,
August 29-31, 2007 (pp. 185-190). ACTA Press.

C Lind, G. and Kuusik, R. (2008). Some Problems in Determinacy Analysis
Approaches Development. Proceedings of the 2008 International
Conference on Data Mining (DMIN 2008), Las Vegas, Nevada, USA,
July 14-17, 2008, Volume I, pp. 102-108. CSREA Press.

D Kuusik, R. and Lind, G. (2010). Some Developments of Determinacy
Analysis. Advanced Data Mining and Applications: The 6th
International Conference on Advanced Data Mining and Applications
(ADMA2010), Chongqing, China, November 19-21, 2010. LNAI 6440,
pp. 593-602. Berlin Heidelberg: Springer-Verlag.

E Kuusik, R. and Lind, G. (2011). New Developments of Determinacy
Analysis. Advanced Data Mining and Applications - 7th International
Conference: ADMA 2011, Beijing, China, December 17-19, 2011. II;
LNCS 7121, p. 223−236. Springer.

F Lind, G. and Kuusik, R. (2016). Algorithm for Finding Zero Factor Free
Rules. Man-Machine Interactions 4: 4th International Conference on
Man-Machine Interactions, ICMMI 2015 Kocierz Pass, Poland, October
6-9, 2015. AISC 391, pp. 421-435. Springer.

These publications are reprinted in the appendices of the thesis.

All these papers are written together with my supervisor prof. Rein Kuusik.
Generally, he set the goal and I dealt with the details. In case of all papers I have
done most of the writing and preparing examples. Other contributions of mine
are listed below.

Paper A: showing the correspondences between concepts used in our algorithm
MONSA and the ones used for closed sets; explaining used pruning techniques.

Paper B: showing the correspondence with terminology used in association rule
mining; experimenting with DAS (original application of DA), analysing its
possibilities and deficiencies; finding how many frequencies is needed to
compute the characteristics of the rules.

Paper C: exploring (and translating) the newer theory of DA (Chesnokov, 2002);
investigating and explaining the problem with zero factors (normal rules).

22

Papers D and E: experimenting with the algorithms proposed by my supervisor.

Paper F: defining two types of zero factors, showing their relation with minimal
generators; creating the ZFF DA algorithm.

Besides the published material this thesis contains unpublished material as well.

1.6 Contribution of the thesis

The main results:

 We have shown how the concepts used in MONSA correspond to the
ones used in CS mining and how the concepts of DA are related to the
ones of ARM and ML

 We have elaborated an algorithm for finding all equivalence classes
 We have defined two types of zero factors (in DA)
 We have found a way to detect classes and other zero-zero factors (and

that they are detected the same way) for MONSA
 We have proposed ZFF DA that finds three types of non-redundant rules

at the same time: classification rules, positive and negative association
rules

 We have presented UGH that gathers different tasks solvable by DA and
GH

1.7 Organisation of the thesis

Chapter 2 gives an overview of theoretical foundations of this work: data mining,
machine learning, theory of monotone systems and determinacy analysis.

Chapter 3 presents our work. Developments of GH/MONSA and developments
of DA are given in distinct subchapters, 3.1 and 3.2, accordingly, as they were
developed separately until they got together in ZFF DA. ZFF DA is presented at
the end of 3.2. Section 3.3 describes UGH and shows how it is covered by our
algorithms. In 3.4 further algorithmic developments of ZFF DA are proposed.

In Chapter 4 the work is concluded and the directions for further research are
listed.

23

2 THEORETICAL BACKGROUND
In this chapter we will give an overview of data mining (2.1), machine learning
(2.2) and some methods used in these areas (Classification in 2.3, Association
rule mining in 2.4 and hybrid approaches in 2.5) as well as the theory of monotone
systems (2.6) and determinacy analysis (2.7).

2.1 Data mining

This subchapter is based on (Fayyad, Piatetsky-Shapiro, & Smyth, 1996) and
(Dunham, 2002a).

Data mining (DM) is often defined as finding hidden information in a database.
According to (Fayyad, Piatetsky-Shapiro, & Smyth, 1996) DM is seen as one step
of process called knowledge discovery in databases.

Knowledge discovery in databases (KDD) is the process of finding useful
information and patterns in data.

Data is a set of facts.

Pattern is an expression describing facts in subset of all facts, it has to be simpler
than the enumeration of all facts in it.

Knowledge is an interesting pattern. What is interesting, is determined by the
user.

KDD process is usually a multi-step process, which involves data preparation,
search for patterns, knowledge evaluation, and refinement involving iteration
after modification. The process is assumed to be non-trivial – that is, to have some
degree of search autonomy.

Data mining is the use of algorithms to extract the information and patterns
derived by the KDD process.

The two “high-level” primary goals of data mining are prediction and description.
Predictive model is used to predict unknown or future values of variables of
interest using known data. Description focuses on finding human-interpretable
patterns describing the data. A descriptive model serves as a way to explore the
properties of the data examined, not to predict new properties (like the predictive
model). In the context of KDD, description tends to be more important than
prediction. This is in contrast to pattern recognition and machine learning
applications where prediction is often the primary goal.

The goals of prediction and description are achieved by using different DM tasks.
The most important of them are:

 Classification
 Clustering
 Association rules

24

Classification maps (classifies) data into predefined groups or classes. It is often
referred to as supervised learning because the classes are determined before
examining the data.

Clustering is similar to classification except that the groups (clusters) are not
predefined, but rather defined by the data alone. It can be thought of as
partitioning or segmenting the data into groups that might or might not be
disjointed. Clustering is alternatively referred to as unsupervised learning or
segmentation.

Determining association rules is the best example of the data mining task of
uncovering relationships among data called link analysis, or affinity analysis. An
association rule is a model that identifies specific types of data associations.

Classification is used for prediction purposes, while clustering and association
rules are considered to be descriptive.

Most data mining methods are based on the concepts from machine learning,
pattern recognition and statistics: classification, clustering, graphical models, and
so forth.

2.2 Machine Learning

The following is mainly based on (Michalski, Carbonell, & Mitchell, 1984) and
(Dunham, 2002a).

Machine learning (ML) is the area of artificial intelligence (AI) that examines
how to write programs that can learn. In data mining, machine learning is often
used for prediction10 or classification. The objectives of ML and DM are different.
Machine learning looks at things that may be difficult for humans to do or
concentrates on how to develop learning techniques that can mimic human
behaviour. The objective for data mining is to uncover information that can be
used to provide information to humans (not take their place).

Most of the learning strategies involve some amount of inductive inference.
Inductive inference is a (bottom-up) mode of reasoning that starts with specific
facts and concludes general hypotheses or theories. The conclusion is not
guaranteed to be true, but usually it is. Reasoning in the opposite direction (top-
down – from general to specific), deductive inference is the derivation of a logical
consequence from a given set of premises, it is a truth-preserving transformation
of assertions. In AI deductive reasoning is used, for example, in expert systems,
automated theorem proving.

Inductive Learning (i.e. learning by inductive inference) is learning by
generalizing facts and observations obtained from a teacher or environment. The

10 Here prediction is one of DM tasks (used for prediction purposes). It is often viewed
as forecasting a continuous value, while classification forecasts a discrete value.

25

major forms of inductive learning are learning from examples and learning from
observation and discovery. Learning from examples is inferring a general concept
description from examples and (optionally) counter-examples of that concept.
Learning from observation is constructing descriptions, hypotheses or theories
about given collection of facts or observations whereat there is no a priori
classification of observations into sets exemplifying desired concepts. The former
represents supervised learning and the latter – unsupervised learning.

In case of learning from examples (supervised learning), the set of training data
together with correct answers is given. The computational model is trained to give
the correct answer to each entry in the training set. There can be also a test set of
data that is used to evaluate the result of learning. It is assumed that such model
is good enough to be applied to unseen data. Such assumption is called the
inductive learning hypothesis (Mitchell, 1997).

Often only one concept has to be learned. In such case the given training examples
can be either positive – the representatives of target concept – or negative – the
ones that do not belong to that concept. Usually both are given, in some cases
only positive examples are available. In case of multiple-concept learning
different classes can be either mutually disjoint or overlapping. Looking for one
certain class, the representatives of all other classes are considered as negative
examples.

Classification is a typical supervised learning task.

In case of unsupervised learning the data exist, but without answers. In this case,
usually, the problem is to partition the training set into subsets in some
appropriate way. A typical unsupervised task is clustering – identifying a finite
set of categories or clusters to describe the data. The clusters can be mutually
exclusive and exhaustive, or consist of a richer representation such as hierarchical
or overlapping categories (Fayyad, Piatetsky-Shapiro, & Smyth, 1996).

Learning from observation and discovery is a very general form of inductive
learning that includes discovery systems, theory-formation tasks, the creation of
classification criteria to form taxonomic hierarchies, and similar tasks without
benefit of an external teacher.

2.2.1 Definitions of learning from examples

Giving the basic concepts of learning from examples (supervised learning), we
mainly originate from the notions of (Gams & Lavrac, 1987).

The purpose of learning from examples is to find a concept description.

A (concept) description is a set of (classification) rules:

Desc = {Rulej}, j=1,2,…,S .

26

A rule is an implication where a condition part is a complex and a conclusion part
is a class name:

Rulej = “Complexj => Class”

or

Rulej = “if Complexj then Class”

or

Rulej = (Complexj , Class).

A complex is a conjunction of selectors:

Complexj = “(& Selectork)”, k=1,…K, 1≤K≤M,

where M is the number of attributes.

A selector relates an attribute to its disjunctive set of values:

Selectorjk = “(Attribute = Values)”

where

Values = “(Valuet)”.

Classes are non-intersecting subsets of objects.

A (learning) example is a complex with all attributes, each with exactly one value,
and its class value.

A description covers an example of a Class if it contains a rule in the form “if
Complex then Class”, and Complex covers the example.

A complex covers an example if each Selector covers the example.

A selector of the form “Attribute = Values” covers an example with “Attribute =
Value” if Value is in Values.

A description is complete if it covers all examples of all classes.

A description is consistent if it does not cover any pair of examples from different
classes.

The learning algorithms have to allow us to find descriptions that are at the same
time both consistent and complete.

2.3 Classification

The subchapter is mainly based on (Dunham, 2002a) and (Dunham, 2002b).

Given a database D={t1,t2,…,tn} of tuples (items, records) and a set of classes
C={C1,…,Cm}, the classification problem is to define a mapping f : D → C where

27

each ti is assigned to one class. A class, Cj, contains precisely those tuples mapped
to it.

The classes are predefined, non-overlapping, and partition the entire database.

Usual approach is:

1. Create specific model by evaluating training data (or using domain
experts’ knowledge).

2. Apply this model to new data.

Classification techniques include: regression, distance, decision trees, rules,
neural networks.

Regression is used to map data item to a real valued prediction variable.
Regression assumes that the target data fit into some known type of function (e.g.,
linear) and then determines the best function of this type that models the given
data. It can be used either to divide area into regions or to predict a class
membership function (input includes desired class).

In case of distance-based methods the items are placed in class to which they are
“closest”. “Alikeness” of different items can be identified by similarity or
distance measures (like Euclidean distance, Manhattan distance, Jaccard’s
coefficient etc.).

(Artificial) neural networks is a graph-based method for learning from examples.
Training this network can take a lot of time and the learned target function is not
(easily) comprehensible, but it is robust to errors in the training data. Thus it suits
well for learning to interpret noisy, complex real-world sensor data (such as
inputs from cameras and microphones). (Mitchell, 1997)

The decision tree approach to classification is to divide the search space into
rectangular regions. A tuple is classified based on the region into which it falls.

Classification rules represent found knowledge in the form of IF-THEN rules. In
contrast to decision trees, they can overlap.

Decision trees and rules will be introduced in subsequent subchapters.

2.3.1 Decision trees

The following is based on (Dunham, 2002a).

A decision tree is a predictive modelling technique used in classification,
clustering, and prediction tasks.

A decision tree (DT) or a classification tree is a tree where the root and each
internal node is labelled with a question. The arcs emanating from each node
represent each possible answer to the associated question. Each leaf node
represents a prediction of a solution to the problem under consideration.

28

Decision trees use divide-and-conquer technique to split the problem search
space into subsets.

The recursive algorithm builds a tree in a top-down fashion by examining the
initial training data. Algorithms differ in how they determine the “best attribute”
and its “best predicates” to use for splitting. Also, the “stopping criteria” for
terminating the creation of tree can be different.

The simplest approach is to stop when all objects/records belong to the same
class. In order to prevent overfitting or just creating a larger tree it would be
desirable to stop earlier. Sometimes, on the contrary, more levels than needed
would be created (when there are data distributions not represented in the training
data).

To improve the performance applying the tree for classification, a balanced tree
with the fewest levels is desirable. It has been found even that, in order to be
meaningful to the user, an internal node (i.e. attribute test) can be the parent of at
most one internal node (in so called fully linear trees) (Michie, Spiegelhalter, &
Taylor, 1994). Some algorithms create only binary tree. Such trees are easily
created, but they tend to be deeper.

DTs are easy to interpret and understand. They scale well for large databases
because the tree size is independent of the database size. Trees can be constructed
for data with many attributes. Disadvantages are: it is not easy to handle
continuous data and missing data, correlations among attributes are ignored, not
all classification problems suit for rectangular partitioning.

2.3.2 Classification rules

The following is based on (Dunham, 2002a), (Mitchell, 1997) and (Michie,
Spiegelhalter, & Taylor, 1994).

One way to perform classification is to generate IF-THEN rules that cover all
cases. The rule consists of two parts: antecedent (IF-part) and consequent
(THEN-part). The antecedent contains a predicate that can be evaluated as true
or false against each tuple in the data.

There are algorithms that generate rules from decision trees or neural networks
as well as algorithms that start from scratch.

A DT can always be used to generate rules, for each leaf node a rule is generated.
Rules with the same consequent could be combined together by ORing the
antecedents of the simpler rules.

There are following differences between rule and trees:

 The tree has an implied order in which the splitting is performed. Rules
have no order.

29

 A tree is created based on looking at all classes. When generating rules,
only one class must be examined at a time.

 A DT is restricted to non-overlapping rules while IF-THEN rules can
overlap.

The algorithms that attempt to generate rules that exactly cover a specific class
are called covering (or separate-and-conquer) algorithms. Usually the best
attribute-value pair is chosen, as opposed to the best attribute with tree-based
algorithms.

One of the most widespread approaches to learning disjunctive sets of rules is
sequential covering algorithm. It reduces the problem of learning a disjunctive
set of rules to a sequence of simpler problems, each requiring that a single
conjunctive rule be learned. The strategy it uses is: learn one rule, remove data it
covers, then iterate this process on the remaining examples until no examples
remain. Learned rules have to have high accuracy, but not necessarily high
coverage. High accuracy is needed to make correct predictions. Low coverage
means that the rule does not make predictions for every training example.
Together the rules cover the full set of positive examples. The final set of rules
can be sorted so that more accurate rules will be considered first when a new
instance must be classified.

One way to effectively find one rule is to consider all possible branches as in case
of DTs, but to follow only the most promising of them. With such a greedy search
there is a danger to make a suboptimal choice at any step. To reduce this risk, a
beam search can be used: instead of single best candidate k best candidates are
maintained at each step. On each search step, descendants (specializations) are
generated for each of these k candidates, and the resulting set is again reduced to
the k most promising members. Beam search keeps track of the most promising
alternatives to the current top-rated hypothesis, so that all of their successors can
be considered at each search step.

While sequential covering algorithm (such as CN2 (Clark & Niblett, 1987))
learns one rule at a time, DT algorithms (such as ID3 (Quinlan, 1986)) learn the
entire set of disjuncts simultaneously and might be called simultaneous covering
algorithms. At each search step a DT algorithm chooses among alternative
attributes by comparing the partitions of the data they generate. In contrast,
sequential covering algorithm chooses among alternative attribute-value pairs, by
comparing the subsets of data they cover. Thus, sequential covering algorithms
make a larger number of independent choices than simultaneous covering
algorithms. The first case may be preferred in case of plenty data, the latter –
when data is scarce.

Besides above described general-to-specific search, also specific-to-general
search is used for finding rules (for example, in AQ (Michalski, 1969)). In such
case, maximally specific rule (that specifies a value for every attribute in use) is

30

used as a “seed”. Then specificity is relaxed by dropping attributes one at a time
for all the ways of dropping a single attribute, followed by all the ways of
dropping two attributes, three attributes etc. Any rule which includes in its cover
a “negative example”, is incorrect and is discarded during the process. The cycle
terminates by saving a set of shortest rules covering only desired class. As a
classifier, such a set is guaranteed correct, but cannot be guaranteed complete.

2.4 Association rule mining

The problem of mining association rules between sets of items in a large database
of customer transactions was introduced by Agrawal, Imieliński and Swami
(1993). These rules describe association between sets of items. “An example of
such an association rule is the statement that 90% of transactions that purchase
bread and butter also purchase milk. The antecedent of this rule consists of bread
and butter and the consequent consists of milk alone. The number 90% is the
confidence factor of the rule.” (Ibid., p.207)

A confidence is a measure of the rule's strength. Additionally a rule’s statistical
significance is measured by a (transactional) support that shows which part of
transactions satisfy the rule. The task is to generate all rules that have at least
given support and given confidence.

“Besides statistical significance, another motivation for support constraints
comes from the fact that we are usually interested only in rules with support above
some minimum threshold for business reasons. If the support is not large enough,
it means that the rule is not worth consideration or that it is simply less preferred
/…/.” (Ibid., p.208)

Additionally syntactic constraints might be specified. “These constraints involve
restrictions on items that can appear in a rule”: certain consequent11, certain items
in the antecedent, both, top k rules that have certain item in the consequent, etc.

Association rules are not classification rules, there are no pre-specified classes.
Each item can appear either in the antecedent or in the consequent.

Agrawal, Imieliński and Swami (1993) decompose the problem of rule mining
into two steps:

1. Generate large itemsets – all combinations of items that are present in at
least s% of transactions.

2. Generate from each large itemset the rules that use items from the large
itemset.

Further large itemsets are called usually frequent itemsets.

11 In this work the consequent consists of one item

31

2.4.1 Frequent itemsets

The following definitions are presented according to Zaki and Hsiao (1999),
(2002).

Typically the database is arranged as a set of transactions, where each transaction
contains a set of items. Let I = {1,2,...,m} be a set of items, and let T = {1,2,...,n}
be a set of transaction identifiers or tids.

A set X I is also called an itemset, and a set Y T is called tidset.

t(X) denotes a tidset that corresponds to an itemset X, i.e. the set of all tids that
contain X as a subset: t(X) = ∩xX t(x).

i(Y) denotes an itemset that corresponds to a tidset Y, i.e. the set of items common
to all the tids in Y: i(Y) = ∩yY i(y).

The support of an itemset X, denoted σ(X), is the number of transactions in which
it occurs as a subset, i.e. σ(X) = |t(X)|.

An itemset is frequent if its support is more than or equal to a user-specified
minimum support (minsup) value, i.e. if σ(X) ≥ minsup.

A ‘support’ can be called a ‘frequency’ as well. Sometimes ‘support’ is used for
an absolute number of transactions (covered by an itemset) and ‘frequency’ for a
percentage from the number of all transactions in the database (for example,
Mielikäinen (2006) defines them this way).

The support/frequency measure is anti-monotone: X1 X2 σ(X1) σ(X2) and
therefore the set of frequent itemsets F is downward closed (Mielikäinen, 2006):

if X1 F , then X2 F for all X2 X1 i.e. all subsets of a frequent itemset are

frequent. Also, all supersets of an infrequent itemset are infrequent: if X1 F ,

then X2 F for all X2 X1. (Pasquier, Bastide, Taouil, & Lakhal, 1999, p. 402).
This is known also as an Apriori principle.

Zaki and Hsiao (1999) have shown that instead of finding all frequent itemsets it
is enough to mine all frequent closed itemsets.

2.4.1.1 Closed sets, generators and equivalence classes

The definitions concerning closed set will be given by (Zaki & Hsiao, 2002) and
the definitions for generator by (Zaki, 2004).

A frequent itemset X is called closed if there exists no proper superset Y X with
σ(X) = σ(Y).

Closed sets are found using closure operation.

A closure of an itemset X, denoted c(X), is defined as the smallest closed set that
contains X. An itemset X is closed if and only if X = c(X).

32

The closure of an itemset X is found as: c(X) = i(t(X)).

The support of an itemset X is also equal to the support of its closure, i.e. σ(X) =
σ(c(X)).

Itemsets with the same closure (and equal support) form an equivalence class.
Equivalence class is defined as a set of itemsets that always occur together in the
same set of transactions (Bastide, Taouil, Pasquier, Stumme, & Lakhal, 2000).

Closed set is the only maximal set of an equivalence class. An equivalence class
may contain more than one minimal itemset. For example: if all transactions
contain items A and B, the equivalence class contains itemsets A, B and AB. AB
is the maximal (closed) set. Set A and set B are both minimal sets of that
equivalence class.

A minimal itemset in an equivalence class is called a (minimal) generator (of
closed set) or a free set or a key pattern.

An equivalence class can be uniquely determined and concisely represented by a
closed set and a set of minimal generators. Equivalence classes do not overlap.
(Li, Liu, & Wong, 2007)

An itemset X’ is a generator of closed itemset X if and only if (1) X’ ⊆ X, and (2)
σ(X’) = σ(X).

X’ is called a proper generator if X’ ⊂ X (i.e., X’ ≠ X). If there is no proper
generator, X is its own minimal generator.

A generator X’ is a minimal generator if it has no proper subset Y X’ with σ(Y)
= σ(X’).

Usually under the ‘generator’ the ‘minimal generator’ is meant.

Although the definitions are usually given for frequent (i.e. with support
threshold) closed and free itemsets (=minimal generators), the closedness or
freeness of an itemset does not depend on the fact whether it is frequent or
infrequent.

The frequency threshold is used to separate a (frequent) part from all closed or
free itemsets. The reason is that the number of all closed or free itemsets is usually
large.

Besides using support/frequency threshold it is advisable to extract and store only
the critical part of all (frequent) itemsets, this part is called a condensed
representation or a concise representation. Sometimes a distinction between these
two notions is made as follows. A condensed representation is a particular subset
of the frequent pattern collection, such that we can regenerate from this subset

33

the whole collection (Bykowski & Rigotti, 2003). A concise representation has
not to be a subset of all itemsets it represents, but preferably it has to be lossless.
“By lossless we mean a representation that allows derivation and support
determination of all frequent itemsets without accessing the database”
(Kryszkiewicz & Gajek, 2002b).

The collection of closed sets (with frequencies) is enough to restore the
frequencies of all existing itemsets. The frequency of a non-closed (frequent)
itemset is obtained by taking the maximum of the frequencies of its closed
supersets. If an itemset has no superset among frequent closed itemsets, then
consequently that itemset is infrequent. (Mielikäinen, 2006)

Let us have a small sample data set given in Table 2.1. For example, the frequency
of itemset AB is 4, in the following we denote it as AB(4). Let the support
threshold be 3. Figure 2.1 shows equivalence classes (surrounded by dashed
lines) with closed sets (shown in bold) and (minimal) generators (shown in
italic) in case of frequency threshold equal to 3 for dataset from Table 2.1. There
are no non-minimal proper generators.

Table 2.1 Sample data set

ABC
AB
ABD
ABCD
BCD

Figure 2.1 Equivalence classes, closed sets and generators (for data from Table 2.1)

Generators (free sets): A, B, C, D
Closed sets: B, AB, BC, BD
closed free sets: B

frequency(support) threshold: 3

Generators (free sets): AC, AD, CD, ACD
Closed sets: ABC, ABD, BCD, ABCD

equivalence class

itemset(support)

A(4) B(5) C(3) D(3)

AB(4) BC(3) BD(3)

AC(2) AD(2) CD(2)

ACD(1)ABC(2) ABD(2) BCD(2)

ABCD(1)

fr
e

q
u

e
n

t
in

fr
e

q
u

e
n

t

34

In this little example the frequent closed itemsets are B(5), AB(4), BC(3) and
DB(3) and infrequent closed itemsets are ABC(2), ABD(2), BCD(2) and
ABCD(1).

For finding the frequency for itemset A, the maximum should be taken from the
frequencies of itemsets AB, AC and AD. Among closed sets only AB is present.
Farther closed supersets ABD, ABC and ABCD are also available, but all of them
are supersets of AB and therefore are not considered (their frequencies are smaller
than σ(AB) anyway). For that reason the frequency of A is the same as for AB
(i.e. 4).

Similarly, the frequency of AD is equal to the frequency of ABD (=2). If we had
only the frequent part of closed sets, then there was no superset for AD and
consequently AD was just infrequent.

2.4.2 Association rules

The following definitions are given as in (Zaki, 2004).

An association rule (AR) is an expression A
,
ሱሮ B, where A and B are itemsets.

Usually only rules with disjoint antecedent and consequent (A B =) are
considered.

The support of the rule is q=σ(A B)= |t(A B)| (i.e., the joint probability of a
transaction containing both A and B). Alternatively, support is defined as a
percentage of transactions that contain A B (Agrawal & Srikant, 1994).

The confidence of the rule is p = σ(A B) / σ(A) = |t(A B)|/ |t(A)| (i.e., the
conditional probability that a transaction contains B, given that it contains A).

A rule is frequent if the itemset A B is frequent (i.e. q ≥ minsup).

A rule is confident if p ≥ minconf, where minconf is a user-specified minimum
threshold.

Association rules whose confidence is equal to 100% are called exact association
rules and rules whose confidence is lower than 100% are called approximate
association rules (Bastide, Pasquier, Taouil, Stumme, & Lakhal, 2000).

When support is understood, we omit q and write a rule as A

→ B.

In order to get confident rules, the rules of the form Y

→ X – Y, are generated for

all frequent itemsets X, for all Y X, and Y ≠ , and provided p ≥ minconf. Since
X is frequent, the rule is guaranteed to be frequent. For an itemset of size k there
are 2k – 2 potentially confident rules that can be generated. This follows from the
fact that we must consider each subset of the itemset as an antecedent, except for
the empty and the full itemset. (Zaki, 2004)

35

2.4.2.1 Non-redundant association rules

According to (Zaki & Hsiao, 1999, p. 6) “it is sufficient to consider only the rules
among closed frequent itemsets”. “A rule between any two itemsets is exactly the
same as the rule between their respective closures“ (Zaki, 2004):

The rule X1
,
ሱሮ X2 is equivalent to the rule c(X1)

భ,భ
ሱۛ ሮۛ c(X2), i.e., q = q1 and p = p1

(Ibid., p. 234).

Moreover, it is sufficient to consider only the rules among adjacent12 closed
frequent itemsets, other rules can be inferred by transitivity (Ibid., p. 235).

An association rule X1

→ X2 has confidence p=1.0 if and only if c(X2) c(X1) (or

equivalently if and only if t(X1) t(X2)) (Ibid., p. 235) i.e. all exact (100%
confidence) rules are those that are directed from frequent closed itemsets to their
closed subsets. Rules with c(X2) = c(X1) are called self-rules and rules with c(X2)
 c(X1) down-rules.

Approximate association rules (p<100%) are directed from frequent closed
itemsets to their closed supersets (c(X1) c(X2)).

Zaki (2004) defines non-redundant rules as the most general ones among rules
with equal support and confidence, i.e., “those having minimal antecedents and
consequents, in terms of subset relation”. Formally:

Let Ri denote the rule ଵܺ
 ,ሱۛ ሮ ܺଶ

 . We say that a rule R1 is more general than a rule
R2, denoted R1 ≼ R2 provided that R2 can be generated by adding additional items
to either the antecedent or consequent of R1, i.e., if ଵܺ

ଵ ⊆ ଵܺ
ଶ and ܺଶ

ଵ ⊆ ܺଶ
ଶ.

Let ࣬ = {R1, . . . , Rn} be a set of rules, such that all their supports and confidences
are equal, i.e., qi = q and pi = p for all 1 ≤ i ≤ n. Then we say that a rule Rj is
redundant if there exists some rule Ri , such that Ri ≼ Rj . Since all the rules in
the collection ࣬ have the same support and confidence, the simplest rules in the
collection should suffice to represent the whole set.

The set of all non-redundant rules constitutes a generating set, i.e., a rule set, from
which other confident rules can be inferred (Ibid., pp. 237-239).

These rules are found between adjacent closed sets (more precisely: equivalence
classes), but presented as rules between minimal generators of those closed sets
(equivalence classes). This is because the purpose is to find possibly compact
representation form. Actually, such generating set is not the minimal possible
generating set, this question is opened as of 2004.

12 i.e. there is no other closed set between them

36

Table 2.2 presents sample data set from (Zaki, 2004) and Table 2.3 lists frequent
equivalence classes according to minsup=3 (closed sets in bold, minimal
generators in italic).

Table 2.2 Sample data set (Zaki, 2004)

ACTW
CDW
ACTW
ACDW
ACDTW
CDT

Table 2.3 Equivalence classes with minsup=3 for data given in Table 2.2

Support Equivalence classes
6 {C}
5 {W, CW}
4 {A, AC, AW, ACW}, {D, CD}, {T, CT}
3 {AT, TW, ACT, ATW, CTW, ACTW}, {DW, CDW}

The generating set for exact rules is: {TW→A, A→W, W→C, T→C, D→C}
(Ibid., p. 237). The support of each rule is equal to the support of its antecedent.

While Zaki finds association rules with minimal antecedents and minimal
consequents, Bastide et al (Bastide, Pasquier, Taouil, Stumme, & Lakhal, 2000)
look for minimal non-redundant association rules with minimal antecedent and
maximal consequent. They find that “from the point of view of the user, these
rules are the most useful and the most relevant association rules”(Ibid., p.985).

An association rule r : l1l2 is a minimal non-redundant association rule iff there
does not exist an association rule r’ : l1’l2’ with support(r)=support(r’),
confidence(r)=confidence(r’), l1’ l1 and l2 l2’.

In order to get a rule with minimal antecedent and maximal consequent, the
antecedent is a minimal generator g and the consequent is its closure (i.e. closed
set) diminished by that generator: gc(g)\g.

The exact association rules, of the form l1 (l2\ l1), are rules between two
frequent itemsets l1 and l2, whose closures are identical: c(l1)=c(l2). These rules
are valid for all objects (of given set).

Each approximate association rule l1(l2\ l1), is a rule between two frequent
itemsets l1 and l2 such that the closure of l1 is a subset of the closure of l2:

37

c(l1)c(l2). These rules are valid for a proportion of objects equal to their
confidence.

For exact association rules a generic basis is defined and for approximate
association rules an informative basis is defined. From these bases, their supports
and their confidences (needed for approximate rules only), all valid exact and
approximate (respectively) association rules, their supports and their confidences
can be deduced.

Let FC be the set of frequent closed itemsets and for each frequent closed itemset
f, let denote Gf the set of generators of f. The generic basis for exact association
rules is:

GB = {r : g(f\ g) fFC gGf g≠f}.

Let denote G the set of generators of FC. The informative basis for approximate
association rules is:

IB = {r : g (f\ g) fFC gG c(g)f}.

The informative basis can be restricted to its transitive reduction so that generator
g (c(g)f) is an immediate predecessor of f (c(g)< f).

The generic basis for exact rules for data given in Table 2.2 is: {WC, TC,
DC, ACW, TWAC, ATCW, DWC}.

This set is not the same as the generating set for 100% confidence (i.e. exact)
rules by Zaki (see p.36). While Zaki constructs the rules between (adjacent)
equivalence classes, Bastide et al construct the rules inside equivalence classes.
Only these rules can coincide where the consequent (f\ g) is a minimal generator
of another (adjacent) closed set (in our example three rules with consequent C).
Both approaches serve the purpose of creating a non-redundant set of exact
association rules (from which all other exact rules can be inferred). In my opinion
the second set of rules is better comprehensible for the user.

2.4.2.2 Negative association rules

Association rules in the form X ⇒ Y (or X → Y) show associations between
present items and are called positive association rules. Besides them the rules
considering absent items might be of interest. The absence of an item X is shown
as a negation of X: ￢X. Association rules with negated antecedent and/or negated
consequent are called negative association rules. There are three forms of them:
￢X ⇒Y, X ⇒￢Y, ￢X ⇒￢Y .

Support and confidence of negative association rules can be found using supports
of positive itemsets by the following formulas (Wang, Zhang, & Chen, 2008):

σ(￢X) =1 σ(X) ;

38

q(￢X ⇒Y) = σ(Y) σ(X ∪Y) ;

q(X ⇒￢Y) = σ(X) σ(X ∪Y) ;

q(￢X ⇒￢Y) =1 σ(X) σ(Y) + σ(X ∪Y) ;

p(C1⇒C2) = q(C1⇒C2) / σ(C1), where X ∩Y = ∅, C1 ∈{X ,￢X}, C2 ∈{Y,￢Y} .

Between confidences of different rule forms the following holds (Dong, Sun,
Han, & Hou, 2006):

p(A⇒B) + p(A⇒￢B) =1 and

p(￢A⇒B) + p(￢A⇒￢B) =1.

Overview of negative association rules can be found in (Antonie, Li, & Zaiane,
2014).

2.5 Combining classification and association rules

ARM (see 2.4) represents descriptive rule learning whereas classification (see
2.3) is a representative of predictive rule learning. Besides different goals there
are other differences between the two. In case of ARs all attributes are “equal” in
the sense that they can appear both in the antecedent and the consequent (not at
the same time). In case of classification the consequent is determined and this
class attribute cannot appear in the antecedent. Thus we can say that ARM is a
symmetric task regarding attributes and classification is asymmetric.

Further, there are more profound, “semantic” differences between the
classification and ARM tasks. As brought out by Freitas (2000) classification has
to have an inductive bias (i.e. the basis for favouring one hypothesis over
another), it has to fight against overfitting and underfitting13 and moreover, there
is no guarantee that discovered rules have a high predictive accuracy on unseen
data, because induction is not truth-preserving. To theoretically overcome the last
problem, the inductive learning hypothesis (see p.25) is used. There are no such
problems with association rules.

To mine these two types of rules, different techniques are used; ARM algorithms
often find many more rules than classification rule mining algorithms.

In addition to ARM and classification there exist approaches that combine these
two: associative classification for predictive purpose and subgroup discovery for
descriptive purpose.

Associative classification (AC) is a hybrid approach that uses association rule
discovery methods to build classifiers (Thabtah & Cowling, 2007). ARM

13 Overfitting refers to a model that models the training data too well. Underfitting refers
to a model that can neither model the training data nor generalize to new data. Both cause
poor performance of ML algorithms. (Brownlee, 2017)

39

algorithms are adapted to discover class-association rules (CARs) – a special
subset of association rules whose right-hand-side are restricted to the
classification class attribute (Liu, Hsu, & Ma, 1998). Mining CARs is discovery
of all classification rules that satisfy the minimum support (minsup) and the
minimum confidence (minconf) thresholds (Nguyen L. , Vo, Hong, & Thanh,
2013). Further suitable rules are selected to form a classifier and this classification
model is used to predict class values on new unseen data (Wedyan, 2014).
Obviously, AC is a predictive technique.

This approach is reported to give more accurate set of rules than traditional
classification approaches. This is due to mining more complete rule set than in
case of traditional classification algorithms. At the same time, finding a bigger
set of rules takes more time. (Nguyen L. , Vo, Hong, & Thanh, 2013)

Since founding by Liu, Hsu and Ma (1998) many different AC algorithms have
been proposed, e.g. CBA (Liu, Hsu, & Ma, 1998), CMAR (Li, Han, & Pei, 2001),
CPAR (Yin & Han, 2003), MCAR (Thabtah, Cowling, & Peng, 2005), ACCF
(Li, Qin, & Yu, 2008), ACCR (Niu, Xia, & Zhang, 2009), ADA (Wang, Yue,
Niu, & Shi, 2011), ACAC (Huang, Zhou, He, & Wang, 2011), CAR-Miner
(Nguyen L. , Vo, Hong, & Thanh, 2013). AC approach has been extended to
multi-label classification14 (MMAC (Thabtah, Cowling, & Peng, 2004), RMR
(Thabtah & Cowling, 2007), CLAC (Veloso, Meira, Gonçalves, & Zaki, 2007));
to incorporate negative rules (e.g. ARC-PAN (Antonie & Zaïane, 2004), ACN
(Kundu, Islam, Munir, & Bari, 2008)) and has been parallelized (e.g. (Nguyen,
Vo, & Le, 2014)). For getting an overview of AC we suggest (Wedyan, 2014).

Under descriptive rule discovery, another approach besides ARM, is subgroup
discovery (or subgroup mining) (Fürnkranz & Kliegr, 2015).

Subgroup discovery (SD) is a descriptive data mining technique using supervised
learning (Carmona C. J., González, del Jesus, & Herrera, 2014), it is a descriptive
induction technique that extracts interesting relations among different variables
with respect to a special property of interest known as target variable (Helal,
2016). Subgroup discovery results in individual rules, where the rule conclusion
is a class (the property of interest). The main difference between learning of
classification rules and subgroup discovery is that the latter induces single rules
(subgroups) of interest, which aim at revealing interesting properties of groups of
instances, not necessarily at forming a rule set used for classification. Being
descriptive by its purpose, it is at the same time a form of supervised learning due

14 Multi-label classification consists in learning a model from instances that may be
associated with multiple labels (Veloso, Meira, Gonçalves, & Zaki, 2007); while usually
(in case of single-label learning) there is only one class label for each instance/example.
Overview of multi-label classification can be found in (Tsoumakas & Katakis, 2007) and
multi-label learning (including other than rule-based methods as well) in (Madjarov,
Kocev, Gjorgjevikj, & Džeroski, 2012), (Zhang & Zhou, 2014).

40

to a defined property of interest acting as a class. (Fürnkranz, Gamberger, &
Lavrač, 2012) Thus this task is considered to be at the intersection of descriptive
and predictive induction (Lavrač, Kavšek, Flach, & Todorovski, 2004). SD can
be seen as a special case of a more general rule learning task (Novak, Lavrač, &
Webb, 2009).

The task of subgroup discovery was defined by Klösgen (1996) and Wrobel
(1997) as follows: Given a population of individuals and a property of those
individuals that we are interested in, find population subgroups that are
statistically ‘most interesting’, for example, are as large as possible and have the
most unusual statistical (distributional) characteristics with respect to the
property of interest. Thus, only the most interesting (the most unusual) rules are
searched for. In order to evaluate rule’s interestingness different quality measures
are used (see (Herrera, Carmona, González, & del Jesus, 2011)).

Both classification rule learners like CN2 (Clark & Niblett, 1989) and ARM
algorithms like Apriori (Agrawal & Srikant, 1994) and FP-Growth (Han, Pei, &
Yin, 2000) have been adapted to subgroup discovery. Besides them evolutionary
algorithms have been used.

Pioneering algorithms EXPLORA (Klösgen, 1996) and MIDOS (Wrobel, 1997)
are extensions of classification algorithms using decision trees and performing
exhaustive (or heuristic) search. Subsequent algorithms, e.g. SubgroupMiner
(Klösgen & May, 2002), SD (Gamberger & Lavrač, 2002) and CN2-SD (Lavrač,
Kavšek, Flach, & Todorovski, 2004) use beam search (p.29).

Apiropri-based extensions of association algorithms Apriori-SD (Kavšek &
Lavrač, 2006) and its successor SD4TS (Mueller, et al., 2009) use also beam
search, whereas algorithms based on FP-Growth – SD-Map (Atzmüller & Puppe,
2006), DpSubgroup (Grosskreutz, Rüping, & Wrobel, 2008) and Merge-SD
(Grosskreutz & Rüping, 2009) – perform exhaustive search.

Evolutionary algorithms for extracting subgroups SDIGA (del Jesus, González,
Herrera, & Mesonero, 2007), MESDIF (Berlanga, del Jesus, González, Herrera,
& Mesonero, 2006) and NMEEF-SD (Carmona C. , González, del Jesus, &
Herrera, 2010) use genetic algorithm15.

For overview of SD we suggest (Herrera, Carmona, González, & del Jesus, 2011),
an overview of evolutionary SD can be found in (Carmona C. J., González, del
Jesus, & Herrera, 2014).

15 Genetic algorithm is an evolution-inspired computational model and global
optimization technique developed by John Holland in 1975 (book titled Adaptation in
Natural and Artificial Systems).

41

Novak, Lavrač and Webb (2009) gather subgroup discovery together with
contrast set mining16 and emerging pattern mining17 under the unifying
framework called supervised descriptive rule discovery that deals with finding
interesting rules from class labelled data. All three methods are found to be
compatible in most of compared aspects18.

Alternatively, (Bringmann, Nijssen, & Zimmermann, 2009) see these three and
some more approaches (correlated patterns19, discriminative patterns20,
interesting rules21) as pattern-based classification methods where the “patterns
define new features, which can be used in a classification model”. Associative
classification fits under this view as well.

2.6 Theory of Monotone Systems

According to J. Mullat’s works (1976) (1977) the definitions of basic concepts of
MS are as follows.

Let a finite discrete set X and function x on it which maps to each element X
a certain nonnegative number x(), be given.

The function x is called a weight function if it is defined on any subset X’X; the
number x() is called a weight of element on X’.

A set X with a weight function x is called a system and is denoted by S=(X, x).

The system S’=(X’, x’) where X’X is called a subsystem of the system S=(X, x).

The system S=(X, x) is called monotone if in the case of any X’\{b}, bX:

x’\{b} () x’ () where X’ is any subset of X.

16 Contrast set mining (Bay & Pazzani, 2001) searches for discriminating characteristics
of groups called contrast sets.
17 Emerging pattern mining aims at discovering itemsets whose support increases
significantly from one data set to another (Dong & Li, 1999).
18 Although the definitions of the three appear different, the goals of these three mining
tasks are very similar, it is primarily the terminology that differs (Novak, Lavrač, &
Webb, 2009).
19 Correlated association rules are ARs that have χ2 values between the assumption and
the conclusion no less than user-specified minimum cutoff value (Morishita & Sese,
2000).
20 Discriminative patterns w.r.t. class labels are identified using information gain or Fisher
score or other measures (Cheng, Yan, Han, & Hsu, 2007).
21 Interestingness of a rule can be measured according some interestingness metric;
(Bayardo Jr. & Agrawal, 1999) use information-theoretic measures like entropy, gini
index, χ2 and others. A survey on interestingness measures can be found in (Geng &
Hamilton, 2006).

42

Let be given data set X(N,M), where N is the number of objects (i=1,…,N) and M
is the number of attributes (j=1,…,M). Element can be Xij, row i, column j or
any subtable of X.

To build a monotone system we have to fulfil two conditions:

1. There has to be a weight function x() which will give a measure of
influence for every element of the monotone system on X;

2. Certain activities (adding or removing) can be applied to the elements. There
have to be rules f to recompute the weight of the system elements after used
activities. Weights can be changed only to one direction (increasing or
decreasing).

These conditions give a lot of freedom (to user) to choose the weight functions
and rules of weight change in the system. The only constraint we have to keep in
mind is that after eliminating all elements from the system X the final weights
of X must be equal to zero.

In our case:

1. A suitable weight function is object’s frequency in a (concerned) system. In
case of tables of object-attribute type we weigh the attribute’s value and the
weight is a number of objects having that certain value.

2. Rules for recomputing the weights:
 Choose the element(s) of interest.
 Extract the objects having the(se) element(s) from the concerned set. So

the set of objects under consideration can only decrease.
 For the rest of objects calculate new weights using the same weight

function. If there are no objects with given elements then the weight is
zero.

2.6.1 Algorithm MONSA

MONSA (MONotone System Algorithm) – a hierarchical clustering algorithm
based on monotonic systems was introduced by R. Kuusik (1993).

The problem is stated as follows:

Suppose that the finite discrete data matrix X(N,M) (the set of objects X) of object-
attribute type is given, where N is the number of objects (examples) and M is the
number of attributes. Every attribute j can acquire integer values in the interval
hj = 0,1,2,...,Kj-1.

We should find all existing value combinations (VC) of attributes in set X.

Every VC describes a certain subset XVC of objects and subset XVC of elements in
set X. The last set is called a cluster in the theory of classification – that is why
we call the process of extracting VCs clustering.

43

An element is an attribute with certain value. We will denote it as
Attribute.value.

A central concept used here is an intersection. The intersection of two (or more)
sets is the set of elements, which belong to both (all) sets, simultaneously. Table
2.4 presents an intersection of two objects described by three attributes. The
intersection is A1.1 AND A3.2.

Table 2.4. Intersection of X(2,3)

Object \ Attribute A1 A2 A3
O1 1 2 2
O2 1 1 2

Intersection 1 * 2

For finding really existing VCs the intersections over different sets of objects are
found.

Earlier algorithms for that same task had the following drawbacks (Kuusik,
1993):

 Majority of found intersections are either empty or repeating;
 Determining a VC originality (i.e. whether or not it is already generated)

is very time-consuming;
 Because of spontaneous intersection, those algorithms are very difficult

(if not impossible) to use for optimizing tasks.

The main reason is that the order of finding intersections depends on the order of
objects in data table.

MONSA is free of abovementioned deficiencies. It finds only existing VCs
without repetitions (in different order of elements).

The algorithm uses frequency tables (FT). A frequency table contains the counts
of occurrences of all existing values for each attribute. Each attribute can have a
different number of different discrete values.

Table 2.5. Data table X(2,3) and corresponding frequency table

Object \ Attribute A1 A2 A3
O1 1 2 2
O2 1 1 2

Value \ Attribute A1 A2 A3

1 2 1 0
2 0 1 2

Intersection 1 * 2

44

In Table 2.5 data table X(2,3) from previous example (Table 2.4) is given together
its corresponding frequency table. Zero in FT shows that corresponding element
does not appear in the data table.

As we see from Table 2.4 and Table 2.5 an intersection is also findable through
the frequencies: every value which has frequency equal to the number of objects
in the table (shown in bold) belongs to the intersection: A1.1 AND A3.2 is an
intersection with frequency 2. This way MONSA finds intersections.

In order to intersect suitable sets of objects, the next node is chosen by element’s
frequency (from FT) and special “elimination” techniques are used to prevent
repetitions. The algorithm works in a depth-first search manner.

From the initial data set MONSA finds a result as a set of intersections (closed
sets22) and/or a set of trees (forest), they are listed in the order they are found, that
order does not depend on the initial order of objects (records). The frequencies of
nodes (intersections) decrease strictly along branches of a tree(s). The decrease
makes allowable to prune the branches according to the minimal allowed fre-
quency (support). This is similar to the other tree-based algorithms, for example
ChARM (Zaki & Hsiao, 2002). The fact that the decrease is strict gives a high
potential to the intersection (combination from root to the certain node) to be a
closed set. At any level the descendants of a common parent-node are found in a
weakly decreasing order of their frequencies, the roots also are found in a weakly
descending order. The order of nodes with equal frequency depends on the
searching principle (usually by columns or by rows of frequency table).

For every extract of objects its corresponding frequency table is formed. Zero in
the initial frequency table means that the corresponding element does not exist.
During the work the elements that are exhaustively analysed are set to zero in
frequency tables. Such prohibited (eliminated) elements are not included into the
intersections any more, only the elements with frequency over zero (or some
higher threshold) are considered.

By essence MONSA is a recursive algorithm. Here we present its backtracking
version23 (Kuusik & Lind, 2008).

In this algorithm the following denotations are used:

t the number of the step (or level) of recursion

FTt frequency table for a set Xt

IntSect vector of elements over set Xt (intersection)

Init activity for initial evaluation

22 The correspondence between intersection and closed set is shown in 3.1.1.
23 Recursive version of MONSA (containing further developments) is given in 3.1.8

45

Algorithm MONSA

1: Init

2: t0, IntSec0{}
3: Find a table of frequencies FT0 for all attributes in X0

4: DO WHILE there exists FTs#Ø in {FTs}, st

5: FOR EACH element hfFTt with frequency V=max FTt(hf)#0 DO
6: IF pruning is needed (hf has to be pruned) THEN GOTO BACK

7: Separate submatrix Xt+1Xt such that Xt+1={XijXtX.f=hf}
8: Find a table of frequencies on Xt+1 FTt+1
9: ZeroesDown(t+1)
10: CheckUniqueness(t+1)
11: IF new intersection is unique THEN
12: Add elements j with FTt+1(j)=V into vector IntSect+1
13: BackwardComparison(t+1)
14: Output of IntSect+1

15: IF there exist attributes to analyse THEN tt+1
16: ENDIF
17: NEXT

18: BACK: tt-1

19: IntSect+1IntSect
20: ENDDO
21: All intersections are found
22: END: end of algorithm

Elimination (pruning) activities:

1)
ZeroesDown(t+1)

 FOR EACH element huFTt DO

 IF FTt(hu)=0 THEN FTt+1(hu)0
 NEXT

2)
BackwardComparison(t+1)

 FOR EACH element huFTt+1 with frequency #0 DO

 IF FTt+1(hu)=FTt(hu) THEN FTt(hu)0
 NEXT

3)
CheckUniqueness(t+1)

 IF there exists on Xt+1 hu, 1uM such, that

 huIntSect+1 AND FTt+1(hu)=0 AND frequency of hu in Xt+1=V
 THEN
 Intersection is not unique

46

 ELSE
 Intersection is unique
 ENDIF

MONSA is a depth-first search algorithm which backtracks when the current
branch is exhausted or has to be pruned. Inside the backtracking algorithm the
main steps at each level are as follows:

S1: Choose a “leading” element – the first element with maximal frequency (over
zero; at least with threshold frequency specified by the user) (line 5), add it into
the (potential) intersection and zerofill the corresponding cell in the frequency
table

S2: Calculate the next frequency table for objects containing that leading element
(line 8)

S3: If there exist element(s) with frequency equal to the leading one check the
intersection’s uniqueness (line 10) => if it is unique, add these elements (with
frequency equal to the leading frequency) into the intersection (line 12);
otherwise backtrack

S4: Output intersection (line 14)

S5: “Bring down” zeroes from the frequency table of the previous level i.e. at the
current level zerofill all elements that have been zerofilled at the previous level
(line 9)

S6: “Backward comparison”: elements that have equal frequencies at both levels
are zerofilled at the previous level (line 13)

In order to avoid finding “repetitions” i.e. permutations of already found
intersections two elimination techniques have been used in algorithm MONSA:

“bringing zeroes down” – activity that prohibits arbitrary output repetition of
already separated intersection at the next (deeper) level(s);

“backward comparison” – activity that does not allow the output of the separated
intersection at the same (current) level and also at previous (higher) levels (after
backtracking).

Impact of these techniques is proved in (Kuusik, 1993)24.

Appears that these two activities do not prevent repetitious finding (and output)
of some subsets of already found intersections. Those repetitions are avoided by
“uniqueness check” (that will be explained in 2.6.1.1).

24 Theorems 5.3 and 5.4 accordingly

47

Without these elimination techniques the algorithm would find all permutations
of all existing value combinations.

Turning back to before listed drawbacks of earlier algorithms for finding all
existing value combinations (see p. 43) we have to point out:

 Empty (i.e. non-existing) combinations are avoided by the nature of
algorithm, they are not generated (and checked for existence) at all.

 Repetitions are avoided by elimination techniques (introduced above).
 A VC originality is checked using existing frequency tables, there is no

need to look through already found intersections.
 The order of finding intersections is driven by data, not by the order in

which the objects are presented.

The most important advantages of the algorithm are:

 The frequency is known at the moment the new node is found.
 The ability to find nodes consisting of more than one element, this

reduces the number of nodes and the size of the tree.
 The possibility to output the tree immediately during the finding closed

sets.
 The possibility to use different pruning criteria that comply with

monotonic decrease of the frequency.
 Attributes can have more values than only 0/1.
 The use of new original and very effective elimination techniques.
 In order to prevent repetitions we do not look through the already found

result and therefore we do not need additional data structures.

Demonstration how MONSA works is shown in (Kuusik & Lind, 2008) (see
Appendix A). In this example the frequency threshold is used for pruning.

Denotations and definitions used for MONSA (Kuusik, 1993) will be given in
3.1.2 where their relations with the concepts used for frequent itemsets (see 2.4.1)
will be shown.

2.6.1.1 Explanation of “uniqueness check”

The subset of already found intersection is redundant only if both have equal
frequencies (i.e. this (sub)set is non-closed). If subset’s frequency is higher (than
its superset’s) then it covers more objects and is not redundant. Subset’s
frequency cannot be smaller.

Finding a superset of already found set with the same frequency is impossible,
because at any level MONSA finds all co-existing (i.e. contained in the same
objects) elements with equal frequencies as one intersection (i.e. maximal EC25).

25 Defined in 3.1.2, p. 65

48

Table 2.6. Example X(9,3)

Object \ Attribute A1 A2 A3
O1 4 0 8
O2 5 3 4
O3 5 4 3
O4 5 0 7
O5 3 1 8
O6 3 1 8
O7 4 1 7
O8 4 0 8
O9 5 4 3

(a) Result as a set of
trees:

(4) 0.500(2)
A1.5=>A2.4&A3.3
 0.250(1)
 =>A2.0&A3.7
 0.250(1)
 =>A2.3&A3.4

(4) 0.500(2)
A3.8=>A1.3&A2.1
 0.500(2)
 =>A1.4&A2.0

 (3) 0.667(2)
A1.4=>A2.0
 0.333(1)
 =>A2.1&A3.7

 (3) 0.333(1)
A2.0=>A3.7

 (3) 0.333(1)
A2.1=>A3.7

 (2)
A3.7

(b) Result as a set of
intersections:

I1) A1.5=4
I2) A1.5&A2.4&A3.3=2
I3) A1.5&A2.0&A3.7=1
I4) A1.5&A2.3&A3.4=1

I5) A3.8=4
I6) A3.8&A1.3&A2.1=2
I7) A3.8&A1.4&A2.0=2

I8) A1.4=3
I9) A1.4&A2.0=2
I10) A1.4&A2.1&A3.7=1

I11) A2.0=3
I12) A2.0&A3.7=1

I13) A2.1=3
I14) A2.1&A3.7=1

I15) A3.7=2

Figure 2.2 Result found by MONSA (without uniqueness check)

49

Next we give an example of redundant subsets under consideration. For that we
have used MONSA without “uniqueness check” (of a new intersection).

Having the initial data set of nine objects described by three attributes (see Table
2.6) MONSA (without uniqueness check) finds fifteen intersections (with
minimal frequency allowed =2). Both representation forms – trees and
intersections – are given in Figure 2.2.

Here we have six trees and six roots accordingly. Intersections I1, I5, I8, I11, I13
and I15 correspond to the roots.

Intersection I11 (A2.0=3) is not redundant although A2.0 is contained in the
intersections I3, I7 and I9, because these three intersections have lower
frequencies and none of them cover all objects covered by I11.

Intersections I9, I12 and I14 are redundant:

 I9 (A1.4&A2.0) is a subset of I7 (A3.8&A1.4&A2.0) with the same
frequency =2 (both cover objects O1 and O8);

 I12 (A2.0&A3.7) is a subset of I3 (A1.5&A2.0&A3.7), both frequencies
are 1 (they cover object O4) and

 I14 (A2.1&A3.7) is a part of I10 (A1.4&A2.1&A3.7), frequencies equal
1 (they cover O7).

There have to be 12 intersections instead of 15.

Starting from the root of a tree the frequencies of intersections (nodes) always
(strictly) decrease along any branch of the tree (due to finding maximal EC at
every node). As no branch has two intersections with the same frequency, the
redundant subsets do not occur in the same branch, they can appear in different
branches of a tree or in different trees.

Among siblings (i.e. direct descendants of a common node) any element can
appear in only one intersection. Consequently, redundant subsets (under
consideration) do not occur among siblings. This is also true for the root-level
(which formally consists of descendants of the initial empty set), therefore these
redundant subsets never occur at root-level.

Intersection (closed set) and its redundant sub-intersection (with the same
frequency) do not have to appear at the same level of a tree (as in all three cases
of our example).

Element(s) that appear in the root node are eliminated from further analysis by
zerofilling the corresponding cell(s) in the frequency table. Elements that are fully
analysed (exhausted) at deeper levels are prohibited by “backward comparison”.
All these zeroes are “brought down” to all succeeding levels and therefore
prohibited elements never occur in redundant intersections. So (due to the

50

elimination techniques used) no permutation of whole (already found) inter-
section (closed set) is not found. Elements that are partially analysed (at the non-
root levels) are not eliminated. All this is true for any subtree also.

Although prohibited elements are eliminated from the frequency tables they still
appear in the subsets of objects extracted by non-prohibited elements. Remind
that some set (of elements) and its subset with the same frequency define the same
set of objects. If some prohibited (and eliminated) element appears in all objects
(of subset) it means that this subset has been analysed already (this element can
not be contained in the value combination (potential intersection) on which basis
that subset of objects was extracted). All intersections containing a prohibited
element are already found and such subsets need no more analysis. This situation
indicates a repetitive extraction of certain subset of objects.

To exclude redundant subsets (sub-intersections) we have to detect a situation
when some prohibited element occurs in all objects and stop analysing such
branch.

In our example (see Table 2.6 and Figure 2.2) intersection I7 (A3.8&A1.4&A2.0)
has one more element than redundant set I9 (A1.4&A2.0), namely A3.8. The set
of objects extracted by I9 is the same as by I7. Consequently, actual frequency of
A3.8 is as much as the number of objects in that set (=2). As A3.8 was prohibited
after exhaustive analyzation, the frequency table contains zero in the
corresponding cell. Detecting such situation we can say that A1.4&A2.0 (I9) is a
redundant set.

Such “uniqueness check” is used by MONSA. It is not necessary to look through
the already found intersections to ensure the new one is non-redundant.

Correctness of ‘uniqueness check’ explained here is proved in (Kuusik, 1995).

It is interesting that those redundant subsets seem to be the same ones for what
ChARM (Zaki & Hsiao, 1999) (2002) needs “subsumption checking”. In order to
ensure that a candidate set is really closed ChARM looks through the (certain)
already found closed sets, only those that have 1) the same “tidsum” and 2) the
same support (frequency) as the candidate set. (Tidsums of different closed sets
with equal frequency tend to be different). For the complete description see (Zaki
& Hsiao, 1999) (2002).

As shown already we perform the uniqueness check of a new intersection
(potential closed set) otherwise, without looking through the already found
(closed) sets.

2.7 Determinacy analysis

Determinacy Analysis (DA) is a system of methods for the analysis of rules that
was created at the end of 70s. Its approach combines mathematical statistics and

51

logic. DA’s methodology and the underlying mathematics are developed by
Russian scientist Sergei Chesnokov (1980a) (1982).

DA-technology provides an alternative way to perform factor analysis of
qualitative and quantitative variables. It assists in obtaining regularities,
explanations and prognostic rules.

The goal of DA is to describe a given selection of objects (class Y), answering the
questions: “Who are they (objects of the class)?”, “How can we describe them?”,
“What distinguishes them from others?”.

The following overview of determinacy analysis is based on Chesnokov (1980a)
(1982) (2002), (DALSolution, 2007), (Context, 1999b). In 2.7.7 our opinion is
presented.

2.7.1 Determination and its characteristics

The idea behind DA is that a rule can be found based on the frequencies of joint
occurrence or non-occurrence of events. Such a rule is called determinacy or
determination and the mathematical theory of such rules is called determinacy
analysis.

If it is observable that an occurrence of X is always followed by an occurrence of
Y, it means that there exists a rule “If X then Y”, or XY. Such correlation
between X and Y is called determination (from X to Y). Here X is the determinative
(determining) and Y is the determinable.

Each determination holds in the given context. It might not to be valid in some
other context. Context is the characteristic (set of characteristics) on which basis
the data set is formed. It is common to all objects of that set. The universal context
is characteristic to the initial data set. Often it is not explicitly shown. Extracting
a subset of data by some characteristic we determine a narrower, usual (non-
universal) context. A determination X→Y in the context k is written as kX→kY or
equivalently k(X→Y). Universal context (denoted by ω) is usually omitted.

The determinative (X) consists of one or more factors. A factor is an attribute with
its certain value. Each attribute can have many different discrete values and gives
as many different factors as many different values it has. Factors coming from
the same attribute are not contained in the same X.

Each rule has two characteristics: accuracy and completeness26.

26 In the beginning (in (Chesnokov, 1980a), for example) “accuracy” (Russian
“точность”) was called “intensity” and “completeness” (“полнота”) was called
“capacity” (“емкость”). More exactly, intensity shows the accuracy (or validity) of
determination and capacity shows the completeness (Chesnokov, 1982, p. 24).

52

Accuracy of determination XY shows to what extent X determines Y. It is
defined as the proportion of occurrences of Y among the occurrences of X:

A(XY) = n(X Y) / n(X), where

A(XY) is the accuracy of determination,
n(X) is the number of objects having feature X and
n(X Y) is the number of objects having both features X and Y.

Completeness of determination XY shows which part of cases having feature Y
can be explained by determination XY. It is the percentage of occurrences of X
among the occurrences of Y:

C(XY) = n(X Y) / n(Y), where

C(XY) is the completeness of determination,
n(Y) is the number of objects having feature Y and
n(X Y) is the number of objects having both features X and Y.

Both accuracy and completeness can have values ranging from 0 to 1 (0% ..
100%). A value of 1 shows maximum accuracy or completeness, 0 means that
the rule is not accurate or complete at all. A value between 0 and 1 shows
quasideterminism.

If all objects having feature X also have feature Y then the determination is
(maximally) accurate. In case of accurate determination A(XY) = 1 (100%).

The majority of rules are not accurate. In case of inaccurate rule A(XY) < 1.

In order to make a determination more (or less) accurate, complementary factors
are added to the left part of the rule. Adding factor Z into the rule XY, we get
the rule XZY, adding factor W to the rule XZY, we get the rule XZWY etc.

The contribution of factor Z to the accuracy of the rule XZY is measured by the
increase of accuracy ΔA(Z) caused by addition of factor Z into the rule XY:

ΔA(Z) = A(XZY) – A(XY).

The contribution to accuracy can range from -1 to 1.

If ΔA(Z)>0 then Z is a positive factor. Adding a positive factor makes the rule
more accurate, sometimes the resultant rule is (maximally) accurate. If ΔA(Z)<0
then Z is a negative factor. Adding a negative factor decreases the rule’s accuracy,
sometimes down to zero. If ΔA(Z)=0 then Z is a zero (or inessential) factor.
Adding a zero factor does not change the rule’s accuracy. An accurate rule
contains no negative factors, all factors are positive or zero factors. A rule
consisting of positive factors only, is called a normal rule.

53

If C(XY)=1 (100%) then the rule XY is (maximally) complete. It means that
Y is always explained by X. In case of an incomplete rule C(XY)<1, X does not
explain all occurrences of Y.

The contribution of factor Z to the completeness of the rule XZY is measured
by the increase of completeness ΔC(Z) by addition of factor Z into the rule XY:

ΔC(Z) = C(XZY) – C(XY)

The contribution of whatever factor to completeness is negative or zero.

2.7.2 System of rules

A system of rules is a set of rules in the form Sq = {xiy | i=1,2,...,q}, where q is
the number of rules.

Every system is characterised by average accuracy, summarised completeness
and summarised capacity (the number of objects/cases covered by the rules).

Accuracy of system of rules is:

.

)(

)(
))(()(

1

1

1

 q

i
i

q

i
iq

i
iq

xn

xyn
yxASA

Completeness of system of rules is:

.
)(

)(
))(()(1

1 yn

xyn
yxCSC

q

i
iq

i
iq

Capacity of system of rules is:

).()(
1

q

i
iq xnSn

System of rules Sq = {xiy | i=1,2,...,q} is additive when xi-s pairwise do not
overlap (i.e. do not cover the same objects). The capacity of additive system is
equal to the sum of capacities of rules it consists of:

.)()()(
11

q

i
i

q

i
iq xn xnSn

In case of additive system the previously given formulas can be simplified.

Completeness and capacity of an additive system are just summed up
completenesses and capacities of rules:

54

;)(
)(

)(
))(()(

1

1i

1

q

i
i

q

iq

i
iq yxC

yn

yxn
yxCSC

.)()(
1

q

i
iq xnSn

Accuracy of additive system is not additive (i.e. equal to the sum of rules’
accuracies). It is found as a weighted average:

).())((

)(

)(

)(

)(

)(
))(()(

1 1

1

11i

1i

1

yxAxxA

yxA

xn

xn

xn

yxn
yxASA

i

q

i
i

q

k
k

i

q

i
q

k
k

i
q

i

q

iq

i
iq

Rank of a rule is a dimension of its left side. Rule in the form z1z2...zry is called
a rule of rank r (r ≥ 1).

System of rules in the form z1z2...zry is called a system of rules of rank r by
variables z1, z2, ..., zr relative to feature y.

Every system of rules of rank r ≥ 1 by fixed set of r variables is additive
(Chesnokov, 2002).

System is called complete if its completeness is 1. System of rules of rank r by
variables z1, z2, ..., zr is complete if it contains all existing rules in the form
z1z2...zry.

System is called accurate if its accuracy is 1. System is accurate when all of its
rules are accurate.

An accurate rule has no negative factors, all factors are positive or zero factors
(Chesnokov, 2002).

A rule in the form z1z2...zry is called normal rule (of rank r) if all factors z1, z2,
..., zr are positive. Positive factor (called also binder) makes rule more accurate
than it was without that factor.

System Sr consisting of all normal rules in the form z1z2...zry is called normal
system of rank r. Normal system of rank r is additive i.e. its rules do not intersect
pairwise.

Let be given m variables z1, z2, ..., zm and feature y. A canonical system of order
m is a system of rules that joins all normal systems of rules in the form
Sjr = {zj1zj2...zjry} where zj1, zj2, …, zjr – all possible combinations by r variables
from set of variables z1, z2, ..., zm.

55

In case of fixed r there are
)!(!

!

rmr

m

r

m

 normal systems Sjr = {zj1zj2...zjry}, jr

gets values from 1 to

r

m .

Canonical system of order m contains 2m-1 normal systems. Variables z1, z2, ...,
zm are called the basis of canonical system. In general, a canonical system of order
m>1 is not additive.

2.7.3 Examples of different systems of rules

Here we present some examples of different accurate and complete systems of
rules using data from (Quinlan, 1984). This data table (see Table 2.7) contains 8
objects described by 4 attributes. The last attribute shows object’s affiliation to
certain class. Attributes Height, Eyes and Class have two possible values each,
attribute Hair has three alternative values.

Table 2.7. Data from (Quinlan, 1984)

Height Hair Eyes Class
tall dark blue ‒
short dark blue ‒
tall blond blue +
tall red blue +
tall blond brown ‒
short blond blue +
short blond brown ‒
tall dark brown ‒

The purpose is to determine Class ’‒’ by attributes Eyes and Hair.

Next four different systems of rules are given, based on the same data.

1. Additive system with fixed number of factors (r=2) S1:
 Eyes.blue & Hair.dark Class.‒ (C = 40%; 2 objects)
 Eyes.brown & Hair.dark Class.‒ (C = 20%; 1 object)
 Eyes.brown & Hair.blond Class.‒ (C = 40%; 2 objects)

The system is (maximally) accurate (overall accuracy is 100%) and (maximally)
complete (sum of completenesses is 100%). Maximal completeness shows that
all objects (belonging to class) are covered and maximal accuracy says that there
is no need to add any more factors into analysis.

2. Additive system consisting of accurate rules of different rank (number of
factors) could be S2:
 Hair.dark Class.‒ (C = 60%; 3 objects)
 Hair.blond & Eyes.brown Class.‒ (C = 40%; 2 objects)

56

or S3

 Eyes.brown Class.‒ (C = 60%; 3 objects)
 Eyes.blue & Hair.dark Class.‒ (C = 40%; 2 objects)

In both cases the system is accurate and complete and rules do not cover the same
objects.

3. Normal system (of rank 2) would have no rules because each rule (of rank 2)
has at least one factor with zero contribution to accuracy (recall that normal
rules consist of positive factors only): Hair.dark is accurate alone, without
Eyes.blue or Eyes.brown, also Eyes.brown is accurate without Hair.blond or
Hair.dark.

4. Canonical system (of order 2) S4 would have two rules of rank 1:
 Eyes.brown Class.‒ (C = 60%; 3 objects)
 Hair.dark Class.‒ (C = 60%; 3 objects)

These rules cover all objects belonging to Class ‘‒’. One object (having
Eyes.brown and Hair.dark) is covered twice, there from the +20% comes.
Canonical system is non-additive and it allows to cover objects more than once.

2.7.4 The main task

Systems of rules are used for explanation and forecasting.

Initial data matrix is given and some feature y. The goal is to find maximally
accurate and maximally complete system of rules (to explain or forecast feature
y).

To solve the main task, the following operations are applied to the rules in the
form z1z2...zry, where z1, z2, ..., zr are factors:

1. Removing negative factors
=> Accuracy increases
=> Completeness increases or does not change

2. Removing non-existing factors
=> Accuracy does not change
=> Completeness increases or does not change

3. Substitution of factors
=> Accuracy increases, decreases or does not change
=> Completeness increases, decreases or does not change

4. Addition of new factors
=> Accuracy increases, decreases or does not change
=> Completeness increases, decreases or does not change

Removing zero or negative factors improves or does not make worse the solution.
Therefore, the normal rules (that contain only positive factors) are essential.
Usually the canonical system of rules is found to solve the main task.

57

It often holds that the bigger is accuracy the smaller is completeness. Thus, the
system of rules has to be as accurate and complete as possible. Accuracy,
completeness and statistical significance of a system depend on accuracy,
completeness and statistical significance of the rules it consists of. The more
accurate, complete and capacious is each rule, the greater is the chance to get an
acceptable solution of the main task.

According to (Chesnokov, 1982) the main task is to find in given context all
determinations from given variable (attribute) to another given variable (class
attribute) that have at least given minimal allowable accuracy and minimal
allowable completeness.

2.7.5 Basic tasks of DA

The basic tasks of DA represent the possible research questions.

Task 1. Obtaining explanations

Some characteristic is given. We call it explainable i.e. liable to explanation.
What (kind of) people and in what conditions possess them? Give a description
of these people and conditions i.e. specify the characteristics27 (called explaining)
that explain the originally given characteristic28.

Task 2. Obtaining specifications

There is an attribute. Can its values make accurate the explanation obtained as a
solution of task 1? If yes, then specify the sought values of the attribute and how
they make accurate that solution.

Task 3. Obtaining complements

There is an attribute. Can its values complement the explanation obtained as a
solution of task 1? If yes, then specify the sought values of the attribute and how
they complement that solution.

Task 4. Essentiality of context

Let’s say, a solution of task 1 is obtained in some context. Is it essential? Specify
the extent of essentiality29.

Task 5. Essentiality of explaining characteristics

Let’s say, there is a solution of task 1. To what extent are essential the explaining
characteristics contained in it, that belong to the description of people and
conditions, giving itself a solution? Specify their essentiality.

27 factors
28 class
29 The extent of essentiality is measured by the increment of accuracy (caused by context)
i.e. contribution to accuracy.

58

Task 6. Essentiality of explainable characteristics

Let’s say, there is a solution of task 1. To what extent are essential the
characteristics contained in it, that in combination form an explainable
characteristic? Specify their essentiality.

Task 7. Formation of explaining typology

Let there is initially a set of characteristics, each of them separately explains the
same characteristic b, may be not very completely, but accurately enough. It is
required to build a generalizing typological characteristic that would generalize
all explaining characteristics from the initial set and would give a sufficiently
accurate explanation of characteristic b, but herewith the completeness of this
explanation being definitely higher than of separate explanations of characteristic
b by characteristics from the mentioned set.

Task 8. Formation of explainable typology

Let there is initially a set of characteristics, each of them can be explained, let not
very accurately, but completely enough, through the same characteristic a. It is
required to build a generalizing typological characteristic, that would generalize
all explainable characteristics from the initial set and herewith, it itself was
explained by characteristic a, not only completely enough, but definitely more
accurately than each of separate characteristics from the mentioned set.

Task 9. Verification of explanatory possibilities of typology

Let be given some typological characteristic, acting as a meaningful typological
generalization of number of simpler (less general) characteristics. It is required
to determine to what extent it is essential in explaining of some third
characteristic.

Task 10. Verification of explanability of typology

Let be given some typological characteristic, acting as a meaningful typological
generalization of number of simpler (less general) characteristics. It is required
to determine to what extent it can be explained by number of third characteristics.

These tasks are solved by finding required determinations (the main task),
specifying contributions of their components and combining variables into
typologies.

2.7.6 Three principles

DA emanates from three principles: nominality, concreteness and bounded
statisticality.

The principle of nominality states that the qualitative/nominal measurements are
fundamental in exploring the social phenomena and processes.

59

The principle of concreteness provides that relations between sociological
variables (indicators) should be measured as relations between separate concrete
values of these variables, not between variables in general.

The principle of bounded statisticality stipulates that statisticality in sociological
regularities manifests itself only as a violation of determinism limited in its scale.

Among the mathematical methods, used for analysis of sociological data, only
DA consistently meets all requirements arising from the principles of nominality,
concreteness and bounded statisticality. Any other method possessing these
properties should simply coincide with DA. (Chesnokov, 1980a, p. 52)

2.7.7 Place of DA

In our opinion the task of DA is a subtask of machine learning.

The task of supervised inductive learning is to find (minimal) set of classification
rules (this set is called description) that cover all learning examples (i.e. objects)
without contradictions (Gams & Lavrac, 1987). The description is consistent if
each object is covered by the rule(s) of only one class (consistency condition).
The description is complete if all objects are covered at least by one rule
(completeness condition).

The task of DA is to cover only one class (Y) by non-contradictory rules. Thus it
corresponds to single-concept learning (in ML).

DA gives also possibility to loosen the consistency condition and to find rules
that are not maximally accurate (i.e. hold with some probability under 100%) and
thus allow contradictions30.

DA can be related with association rule mining (ARM) as well. Next the relations
with terminology used in ARM (see 2.4.2) are shown.

The confidence of a rule X→Y is a percentage of transactions (records, objects)
containing both X and Y among the ones containing X, i.e. it is the same as
accuracy of determination (see 2.7.1 for definition).

The support of a rule is a percentage of transactions (objects) containing both X
and Y against the number of transactions in the whole database. In DA the
completeness of determination is a percentage of objects containing both X and Y
against the number of objects (transactions) containing Y. Therefore we can say
that completeness of determination (in DA) corresponds to the support of a rule

30 This is the situation where the chosen set of attributes does not determine object’s
affiliation uniquely, the same combination of factors (i.e. attributes with certain values)
leads to different classes; for example 2/3 of cases belong to class1 and 1/3 belong to
class2.

60

in class Y. Rules’ support against whole database is not calculated in DA as the
task is to find only rules of class Y.

In ML the classification rules are found for predictive purposes, while in DA the
rules have to describe the class. The predictive power of found rules is not
evaluated in DA. ARM serves the descriptive purpose like DA, but usually the
consequent of the rule is not determined in advance. Being descriptive and
looking for the rules with determined consequent (i.e. class) at the same time, DA
could be put under supervised descriptive rule discovery (see 2.5).

Similarly to our finding that DA is a subtask of ML (corresponding to single-
concept learning), the methods of supervised descriptive rule discovery can be
seen as special cases of a more general rule learning task (Novak, Lavrač, &
Webb, 2009). Among them subgroup discovery (SD) is the closest to DA by its
purpose – to describe one certain class (whereas two other methods compare two
classes).

Comparing DA and SD, the difference is that in SD only the most interesting (the
most unusual) rules are searched for. Thus the obtained set of rules might not be
complete while DA tries to completely cover the target class. Besides confidence
(=accuracy) and support (comparable to completeness) SD algorithms use
different quality measures to evaluate rule’s interestingness, DA does not use
such measures.

Thus, DA is different from the methods belonging to supervised descriptive rule
discovery (by Novak, Lavrač and Webb (2009)), but literally it performs
supervised descriptive rule discovery.

According to Bringmann, Nijssen and Zimmermann (2009), SD and similar
approaches can be used for classification as well, the same is true for DA.

61

3 DEVELOPMENTS
In this chapter we will present our developments of MONSA and DA, in
subchapters 3.1 and 3.2, accordingly. Each of them is presented in a nearly
chronological order. Putting both methods into a common order was confusing in
my opinion. Developments of both methods will be combined in zero-factor-free
(ZFF) DA that is presented at the end of the DA subchapter.

In 3.3 we present a framework gathering descriptive tasks solvable by GH and
DA and show how these possibilities are covered by our algorithms.

Finally in 3.4 possible further developments of ZFF DA will be presented.

3.1 Developments of Generator of hypotheses

In this subchapter our developments of Generator of hypotheses (GH) and its
underlying algorithm MONSA will be presented.

We will start by introducing Generator of hypotheses in 3.1.1. Actually, this
method itself (and its base algorithm MONSA) existed already before I began
(see 1.2.2), but it has to be introduced before presenting its developments. Next,
in 3.1.2 we will show the correspondence between concepts used in MONSA and
the ones of closed set mining. In 3.1.3, we will relate the associations found by
GH with association rules (introduced in 2.4.2). 3.1.4 describes the differences of
MONSA’s work depending on the selection criterion of the next node (either by
maximal frequency or by minimal frequency). 3.1.5 deals with items between
closed set and its generator. After that an algorithm for finding equivalence
classes is presented (in 3.1.6). In 3.1.7 we define “excluded factors” and show
how to integrate finding these factors into the algorithm for finding equivalence
classes. Finally, in 3.1.8, we will show how to integrate classes into MONSA.

Most of these developments are not ultimate goals themselves, but steps towards
ZFF DA that will be presented in 3.2.10.

The contents of 3.1.1 can be found in (Lind & Kuusik, 2012). Material in 3.1.2 is
published in (Kuusik & Lind, Algorithm MONSA for All Closed Sets Finding:
basic concepts and new pruning techniques, 2008) – see Appendix A.

Our algorithm for finding equivalence classes in 3.1.6 is not published, except in
master’s thesis of Meelis Pruks (2014) where it is compared with DPMiner (Li,
Liu, & Wong, 2007), with further purpose to use found equivalence classes for
EC-based clustering algorithm ECCC (Liu, Wang, Deng, & Dong, 2011).

Material in 3.1.5 and 3.1.8 is published indirectly as the building blocks of zero
factor free DA (that will be introduced in 3.2.10) in (Lind & Kuusik, Algorithm
for Finding Zero Factor Free Rules, 2016) – see Appendix F.

The contents of 3.1.3, 3.1.4 and 3.1.7 is not published.

62

3.1.1 Generator of hypotheses

Generator of hypotheses is a DM method that uses the possibilities offered by
algorithm MONSA (described in 2.6.1). It solves the task of hierarchical
clustering. The goal is to describe the source data. Used evaluation criteria are
deterministic (not probabilistic). The association rules it produces are represented
as trees, which are easy to comprehend and interpret.

Hypothesis means here a presumable association found by the generator. The
system generates associations that meet the criteria given by user. The final
decision about their significance makes the user (researcher).

Source data is given as a table of object-attribute type. The result is represented
as a hierarchical grouping tree or as a set of intersections.

Below an example of (a fragment of) a tree formed by GH is given. Used data are
shown in Table 2.7 (Quinlan, 1984) (p. 55).

(3) 0.667(2) 0.500(1)
Height.tall=>Hair .dark->Eyes .blue
 0.500(1)
 ->Eyes .brown
 0.667(2) 0.500(1)
 =>Eyes .brown->Hair .blond

(3) 0.667(2) 0.500(1)
Hair .dark=>Eyes .blue->Height.short
 0.333(1)
 =>Eyes .brown

(3) 0.667(2) 0.500(1)
Eyes .brown=>Hair .blond->Height.short

The trees are represented from left to right. This example consists of three trees,
it has three root nodes (on the left). Symbols “=>”31 separate the root nodes and
non-root nodes of a tree.

Usually a node contains one element (attribute.value). A node can consist of more
than one attribute-value pairs, then “&” is used to connect them. There are no
such nodes in given example.

The numbers above node show node’s absolute frequency (in parentheses) and
node’s relative (to the previous level) frequency (before parentheses).

31 Here “=>” and “->” have no different meaning (regarding exactness) as they have in
case of non-redundant association rules by Bastide et al (see 2.4.2.1, p. 36)

63

The absolute frequency of node t shows how many objects have a certain attribute
with a certain value (among objects having properties (i.e. certain attributes with
certain values) of all previous levels t-1,…,1). The relative frequency is a ratio
A/B, where A is the absolute frequency of node t and B is the absolute frequency
of node t-1. For the first level the relative frequency is not calculated.

For example we can translate the first tree (Height.tall=>) of the set of trees
as “3 persons (objects/ examples) are tall, 67% of them have dark hair, and of
those (with Height.tall and Hair.dark) 50% have blue eyes and 50%
have brown eyes. Also, 67% of tall persons have brown eyes and 50% of those
have blond hair.”

Horizontally the nodes are connected by logical AND and vertically by logical
OR. The first tree can be represented as follows:

Height.tall AND ((Hair.dark AND (Eyes.blue OR
Eyes.brown)) OR (Eyes.brown AND Hair.blond))

All trees in the result can be ORed as well.

The same result (the fragment consisting of 3 trees) in the form of intersections
is shown below.

Height.tall=3
Height.tall&Hair .dark=2
Height.tall&Hair .dark&Eyes .blue=1
Height.tall&Hair .dark&Eyes .brown=1
Height.tall&Eyes .brown=2
Height.tall&Eyes .brown&Hair .blond=1
Hair .dark=3
Hair .dark&Eyes .blue=2
Hair .dark&Eyes .blue&Height.short=1
Hair .dark&Eyes .brown=1
Eyes .brown=3
Eyes .brown&Hair .blond=2
Eyes .brown&Hair .blond&Height.short=1

In this representation form after “=” the absolute frequency is listed. The relative
frequency is not shown.

GH has the following properties:

 GH enables larger set of discrete values (not only binary);
 GH enables to use several pruning techniques;
 The result is presented in the form of trees;
 GH enables to treat large datasets;
 GH enables sampling.

64

3.1.2 Correspondence between concepts of MONSA and ARM

We had a true guess that intersections found by algorithm MONSA are closed
sets. It was important to show this correspondence in order to be comprehensible
for the researchers familiar with closed sets. It made findings about closed sets
and related concepts usable for us as well.

Here we present denotations and definitions used for MONSA (described in
2.6.1) as in (Kuusik, 1993) and show how these notions and concepts relate to the
ones used for frequent itemsets (see 2.4.1).

(1) X - a set X = {Xi}, i = 1,2,...,N,

where each object Xi is a conjunction of M attribute values: j

M

j
hXi

1
&

 .

X is a set of N objects (records) that are described by M attributes. Set X has not
to be a binary dataset, every attribute j can acquire integer values in the interval
hj = 0,1,2,...,Kj-1. X can be a transaction database also.

(2) H - a value combination (VC) of certain attributes q
Dq

hH

 & , D = {je},

e = 1,...,EH (the number of elements hq in H), 1 EH M, 1 je M, jf, jt D,
jf # jt, f # t, H Xi.

A value combination can contain 1 to M attributes (with certain values), each only
once (i.e. only with one value); it is a subset of some object or is a whole object.

(3) Each value combination H defines on the set X a subset of objects XH = {Xp},
p = 1,2,...,NH, 1 NH N,

{Xp} are all objects Xi X that contain H: XH = {XiX | Xi H}.

The subset of objects defined by the value combination is similar to the tidset that
corresponds to some itemset (t(X)).

(4) Each value combination H defines on set X a subset of elements XH X:
XH = {Xij X | Xij H, i = 1,2,...,N, j = 1,2,...,M}.

An attribute with certain value is called element. ‘Element’ corresponds to ‘item’.
The difference is that each attribute produces as many elements as many different
values it has. Definition (4) says that a ‘value combination’ is the same as
‘itemset’ (with extension that values need not be binary).

(5) Intersection over a set Y = {Yt}, t = 1,2,...,T, Yt = &hj is a set of such elements

hq which belong simultaneously to all Yt: HhYtY q
q

T

t

&

1
.

In Y for H there exists always a corresponding subset of objects YH = {Yp},
p = 1,...,NH, NH N.

65

If N = 1, then the intersection over Y is an object itself.

If there exist no objects Yt Y for which H Yt, then YH = .

Definition (5) says that an intersection over a set of objects is a set of common
elements, this is the same as itemset that corresponds to some tidset (i(Y)).

(6) Elementary conjunction (EC) on XH is such an intersection over the set XH,
where XH = A(H), XA = XH, NH N.

In the case of A H, XA = XH, A is an EC.

We have a set of elements H and its corresponding set of objects XH (i.e. t(H))
and find an intersection over it: XH (i.e. i(t(H))). The operation i(t(H)) means
finding the closure of H. Therefore the resultant set A (of elements) called
elementary conjunction is a closed set. From the viewpoint of the algorithm it is
essential to find a technique that guarantees the finding of such subsets XH only
for which XH = A(H) (i.e. finding of closed sets only).

(7) Maximal EC on XH is such an intersection over XH in case of which for a VC

q
q

hH & is a valid relation

HhAX e
e

H)&(, 1 q < e M, XA = XH.

By definition, VC H is EC if XH =H.

H is a maximal EC if it is EC and contains at least one VC Ht H such, that
|XHt| = |XH| on X. That means that the set of objects XH X is defined unique.

Definition (7) says that maximal EC is EC that has at least one (non-closed)
subset with the same frequency (support) i.e. we can remove at least one element
without changing in frequency. Our maximal elementary conjunction here is not
the same as maximal (closed) set32.

Additionally, our ‘(absolute) frequency’ is the same as ‘support’ and ‘relative
frequency’ corresponds to ‘confidence’33 of a rule.

Thus, algorithm MONSA for finding all intersections finds all closed sets.
Support threshold (i.e. minimal allowed frequency) can be applied. The
confidence measure (relative frequency) is not anti-monotone and downward
closed and therefore cannot be used for pruning similarly to Apriori principle
(mentioned in 2.4.1).

32 “A frequent itemset X is called maximal if it is not a subset of any other frequent
itemset.” (Zaki & Hsiao, 2002)
33 Defined in 2.4.2

66

3.1.3 Associations found by GH

Having found a set of intersections (the result of MONSA) we are interested in
presenting this result possibly understandably. This is the reason for presenting
the result in an alternative form – as a set of trees. The tree is presented exactly
in the same order (of nodes) as it is traversed, thus it is possible to output it
immediately during the work. This way there is no need for additional data
structures for storing the (tree-form) result before outputting.

In the following we will explain which ARs are contained in the trees and whether
they can be related to the representation forms presented in 2.4.2.1.

An example of associations found by GH is given in 3.1.1. The last branch of it

(3) 0.667(2) 0.500(1)
Eyes .brown=>Hair .blond->Height.short

contains three nodes: Eyes.brown(3), Eyes.brown&Hair.blond(2),
Eyes.brown&Hair.blond&Height.short(1). The value combination in the current
node is composed from the elements starting from the root until the current node.
Each node in HG tree represents a closed set. Next node in the tree is a closed
superset of the previous one. Choosing the next node by the maximal frequency
guarantees that the current node and the next node are adjacent closed sets. (This
is not guaranteed when an arbitrary node is chosen to be the next one.)

A closed set can have (usually has) more than one adjacent subsets. In case of a
tree (where each closed set is presented only once) there is only one path to each
closed set, thus not all possible associations between closed sets are represented.

Given fragment presents two approximate association rules:

 Eyes.brown
ଷ,ଶ/ଷ
ሱۛ ሮۛ Hair.blond;

 Eyes.brown&Hair.blond
ଶ,ଵ/ଶ
ሱۛ ሮۛ Height.short.

The left side (antecedent) is always a closed set (because every node represents a
closed set) and the right side (consequent) is its closed superset diminished by the
elements of the current closed itemset. We can say that these rules have maximal
antecedent and maximal consequent. This representation form does not coincide
with either of the ones presented in 2.4.2.1. Furthermore, it does not pretend to
be a minimal generating set for approximate association rules.

The presented rules are directed from subset to superset. If we wanted to get the
rules in the opposite direction i.e. exact (confidence=1) rules from superset to
subset, we would find rules where antecedent and consequent were not disjoint,
for example:

67

 Eyes.brown&Hair.blond
ଶ
→ Eyes.brown;

 Eyes.brown&Hair.blond&Height.short
ଵ
→ Eyes.brown&Hair.blond.

In these rules the right side is not diminished by the elements of left side. If we
did that, the consequent would be empty, because the elements of the right side
are contained in the left side. If we tried to shorten the left side it was not maximal
(in the same equivalence class) anymore. Moreover, (in the current branch) we
do not have information about the support of such left side:

 Hair.blond
?,ଶ/?
ሱۛ ሮ Eyes.brown (because σ(Hair.blond)=?);

 Height.short
?,ଵ/?
ሱۛ ሮ Eyes.brown&Hair.blond (because σ(Height.short)=?).

In short, GH finds approximate association rules with maximal antecedent and
maximal consequent between adjacent closed sets (according to given frequency
threshold). As the result has the form of tree, it is a subset of all such associations.

3.1.4 Comparison of two criteria for selecting next node

By default MONSA selects the next node by maximal frequency. Is it the only
possible criterion for selecting the next node? What happens if we choose by
minimal frequency? Will we get the same result? Does it change the amount of
work?

For experimenting with minimal frequency (as the selection criterion) only a
small change in the program is needed – instead of maximal frequency the
minimal frequency is selected from the current frequency table (at line 5 in
algorithm MONSA – see p. 45). Bit more changes are needed to make this choice
dependent on user’s input. In the following we will discuss the differences
between working by maximal and by minimal frequency.

In Appendix G both forms of output – intersections and trees – got selecting next
node by maximal frequency and by minimal frequency, are listed side-by-side.

As we can see, MONSA finds exactly the same intersections in both cases, just
in a different order. The order of elements in an intersection can be different as
well. Actually, an arbitrary (suitable) element can be chosen as a next node from
FT. The system retains its monotonic nature and finds the same intersections.

When the order of nodes is different, then the tree, got by associating the nodes
in the order they are found, is also different.

The overall shape of the trees is different. The first one (by maximal frequency)
has many branches with maximal possible depth (12 branches with depth 4 in
given case) and some branches consisting of the root only at the end (there are 4
such branches). The second tree (by minimal frequency) is more balanced. In our
case it has no branches with maximal depth (=4) and only one branch with depth
1 (i.e. root only). The number of branches is bigger in the latter case (38 vs 35).

68

It is explained by reaching quickly to the intersections with the lowest frequency
that contain all possible attributes (in case of selecting by minimal frequency)
while in case of maximal frequency these nodes are reached step-by-step. If we
prefer the closed superset with maximal possible frequency then there cannot be
any closed set between the current and the chosen one, because there is no
superset with frequency smaller than the frequency of the current set and bigger
than the frequency of the chosen superset. Therefore always an adjacent closed
superset is chosen by maximal frequency. Choosing by minimal frequency we
can skip closed sets between the current and the chosen one, thus adjacency is not
guaranteed in such case.

In a tree, each node is represented by the element(s) that are not contained in its
parent node. Nodes with more than one element contain “&”-signs. The bigger
differences between parents and children the more “&”-signs in the tree. Adjacent
closed sets can differ by one or more elements, non-adjacent ones differ at least
by two elements. Therefore, selecting a next node by minimal frequency, thus
preferring non-adjacent supersets, there are more bigger differences and more
“&”-signs in the tree (compared to choosing by maximal frequency): 14 “&”-
signs in 10 nodes in case of minimal frequency and only 2 nodes and 2 signs in
case of maximal frequency. The last two cases are those where adjacent closed
sets differ by two elements. Choosing by minimal frequency there are also two
such cases (out of 10). If the current and the next node differ by more than one
element (independent whether they are adjacent or non-adjacent closed sets), then
all those elements are included into the same intersection (node) at a time (line
12 in algorithm MONSA, p. 45).

Our tree got by minimal frequency has one more root node than the one by
maximal frequency, namely T2.1&T3.2=4. It happens when some node of initial
level (here T2.1 with frequency 4) is fully “subsumed” by another which has a
bigger frequency (T3.2=7) i.e. all objects containing that first element (T2.1)
contain the other (T3.2) as well (while the set of objects having only the other
element is bigger). Preferring bigger frequency such element with smaller
frequency is set to zero in the FT before we could select it as a root. Tree by
maximal frequency contains T3.2=> T2.1. Both trees contain a root T3.2=7.
Described situation is also an occurrence of skipping adjacent superset (of the
initial empty set).

Taking into account that in case of depth-first search only current branch is held
in the memory, the tree with a smaller depth can be preferable (if the amount of
data at each level is big).

For each found intersection an extract of data has been made and the
corresponding FT has been found by algorithm. (Extract has not to be “physical”
subtable, just indexes of objects/rows can be kept.) Besides these extracts that
have given the intersections also some repetitious extracts have been made, for
which output was not generated (when the intersection is not unique – at line 10

69

(MONSA, p. 45)). So, the overall number of extracts made is bigger than the
number of found intersections. Comparing algorithm’s work by maximal and by
minimal frequency, the numbers of “unsuccessfull” extracts are different. In our
case 18 by maximal and 10 by minimal frequency. Only 4 of those extracts
coincide. (Information about these extracts is taken from log files.) Again,
selecting next node by minimal frequency, is less labor-consuming.

This is from the technical aspect. The user’s viewpoint might be different as
different trees present different subset of (set of all possible) associations.
Probably the user expects the associations rather between adjacent closed sets
than between non-adjacent sets.

A statement (from the previous subchapter) that GH finds approximate
association rules between adjacent closed sets is valid for the case when next node
is selected by maximal frequency.

3.1.5 Elements between closed set and its generator

Each intersection (found by MONSA) determines some set of objects and
consists of all common elements of those objects. Some elements (of an
intersection) are more “considerable” than the others, they determine the set (of
objects), while the others just come with them. For example, if the set of people
is described as “lives in the country” and “has a cow” then quite probably the
same set of people can be determined by “has a cow” only and “living in the
country” can be concluded from “having a cow”. Such a conclusion is an (exact)
association rule (see p. 36): “has a cow” “lives in the country”.

We will associate these different subsets of intersection with notions of FIM and
show how (original) MONSA operates with these kinds of elements.

Additionally, we will bring out what changes are needed to find both subsets for
each found intersection.

As we have shown in 3.1.2 algorithm MONSA for finding all intersections finds
all closed sets (intersection = closed set).

Having found an intersection, a next leading element is chosen. Adding it to the
intersection we get a new VC (itemset) with a smaller frequency. For completing
the next intersection (closed set) we add all such elements that do not cause a
change (decrease) of frequency of the VC. In FIM notion these are the items
between closed set and its generator: c(g)\g. There is no special name for these
elements/items (neither in the original description of MONSA (see 3.1.2) nor in
closed set mining). Inspired by DA, we call them “zero factors”. Later (in 3.2.9)
we will show how these elements are related to the zero factors of DA.

Each (found) intersection contains all relevant zero factors. Each time we add a
new leading element (item) into the current intersection (closed set), we get a
generator for a next closed set. The lastly added (leading) element is certainly not

70

a zero factor in this new VC/itemset (because it causes a decrease of frequency),
but the current closed set can contain zero factors (included at previous levels).
Thus, generally this new generator is not a minimal generator, it is just a generator
for a new closed set.

If no element of the new extract has a frequency equal to the leading one, then
there are no zero factors and this generator itself is a new closed set. If there exist
elements with frequency equal to the leading frequency, then these are the zero
factors; we add them to the generator and get the corresponding closed set.

An intersection (closed set) can have more than one minimal generators (see
2.4.1.1). MONSA finds each intersection only once, thus it can find only one
generator for each intersection, and usually the found generator is not a minimal
one. If we want to find them all, then we need to reach each CS as many times as
many minimal generators it has. It is easier to find one closed set for each
generator than unknown number of generators for each closed set. Moreover,
MONSA already contains means for completing a closed set for an arbitrary
generator (independent whether it is minimal or not). Thus, in order to find all
minimal generators (together with their corresponding closed sets), the program
should move from one minimal generator to another instead of original moving
from a closet set to a closet set.

MONSA has means to make sure whether the just found intersection (actually,
the set of objects it determines) is really new (“unique”) or has been extracted
already. This information is used to block repetitious intersections. In order to
enable repeated finding of already found intersection by another minimal
generator we have to remove such blocking, but information about ”uniqueness”
(“newness”) is still available.

In order to distinguish between zero factors and non-zero factors found at
previous levels we should store them separately at each node.

Described approach (generator + zero-factors = closed set) and algorithmic
changes will be used in the algorithm for finding equivalence classes (presented
in the next subchapter).

3.1.6 Algorithm for finding equivalence classes

The creation of an algorithm for finding equivalence classes was not an end in
itself, the idea to create it arose when we thought out how to distinguish between
zero factors and generator that together form a closed set (see 3.1.5).

For that purpose the following changes were made to original MONSA: 1)
keeping generator separately from closed set; 2) moving from smaller (shorter)
generators to bigger (longer) ones (while MONSA moves from smaller closed
sets to bigger closed sets); 3) using information about “uniqueness” for
organizing ECs (not for blocking repetitious output of already found CSs).

71

ECs are used to construct association rules with minimal antecedent and maximal
consequent: gc(g)\g (see 2.4.2.1), whereas the concept of “equivalence class”
itself is not always mentioned. On top of (non-redundant) association rule mining
CFD (conditional functional dependency) discovery has been developed.
CFDMiner (Fan, Geerts, Li, & Xiong, 2011) uses an EC-based algorithm by Li,
Liu and Wong (2007). CFDs are used as rules for data cleaning and data
integration.

ECs have found use in building understandable classifiers based on “emerging
patterns” 34 that describe significant changes (differences or trends) between two
classes of data. Emerging patterns, in turn, are used in many application fields.
For example, an algorithm that exploits ECs for finding “delta-discriminative”
emerging patterns (Li, Liu, & Wong, 2007), is used for human activity
recognition (Gu, Wu, Tao, Pung, & Lu, 2009).

Here we present an algorithm for finding all (frequent) equivalence classes. This
algorithm does not construct any kind of rules (based on ECs).

As an equivalence class can be uniquely determined and concisely represented
by a closed pattern and a set of generators (Li, Liu, & Wong, 2007), we have to
find the (only) closed set and all minimal generators for each existing equivalence
class and the frequency (that is equal for all itemsets in the same equivalence
class).

Our MS based algorithm for finding all equivalence classes according to given
frequency threshold is grown from the algorithm MONSA for finding all
intersections (i.e. closed sets) described in 2.6.1. It uses the same technique of
making subsequent extracts by the aid of frequency tables. (FT shows for each
attribute the frequencies of all its possible values (in the set of objects for which
it is found).)

Each generator is found only once. In order to avoid repeatedly finding already
found generators, the frequency of the selected element (the “leading” element)
is set to zero in the current frequency table. Before selecting the next leading
element, those zeroes are “brought down” from the frequency table of the
previous level to the current level (except for the initial level).

The next element to be included into the generator is selected by the frequency
(from the frequency table). Its frequency has to be bigger than or equal to the
given frequency threshold and smaller than the frequency of the current extract.

34 “Emerging patterns are defined as itemsets whose supports increase significantly from
one dataset to another”, more specifically, itemsets whose growth rates (support ratio) are
larger than a given threshold (Dong & Li, 1999). A survey of emerging patterns for
supervised classification can be found in (García-Borroto, Martínez-Trinidad, &
Carrasco-Ochoa, 2014).

72

The latter condition prevents selecting elements that belong to the closure of the
current generator.

In order to find minimal generators only (not the ones between a minimal
generator and closed set), the minimal one of suitable frequencies is chosen (in
contrast with MONSA where the next subset is selected by maximal frequency).
If there is more than one element with such frequency, just one of them is
selected. The chosen element together with the previously selected elements of
the same branch forms a generator and determines a narrower (than the current)
set of objects.

At each step it is easy to find a closure of the current generator. All elements in
FT that have a frequency equal to the frequency of current generator, belong to
the closed set. (That is why those elements are not chosen for forming the next
generator.) If there are no such elements, the generator and its closed set coincide.

As there can be more than one generators in EC, we need to know whether the
current generator belongs to any already found equivalence class or we have
found a new one. This is also easy to make sure (without looking through the
already found results): if any of the elements between the generator and its closure
(i.e. c(generator)\generator) has been set to zero in the FT of the previous level,
then the set of objects (covered by the current generator) has been extracted
already (by another generator of current EC).

The following notation is used in pseudocode of the algorithm:

X0 – initial data table (objects*attributes);

t – number of the step (or level) of the recursion;

Xt – set of objects (extract) at level t;

FTt – frequency table for a set Xt;

gent – generator at level t;

CS – closed set (closure of gent);

CS_is_new – the truth-value of whether the closed set (and corresponding
equivalence class) is new;

V – „leading“ frequency i.e. frequency of extract;

minfr – frequency threshold (minimal allowed number of covered objects);

Init – activity for initial evaluation;

Elements are given as valueattribute;

Assignments are indicated by “” (“=” is for comparison).

73

Equivalence class (EC) is described by closed set (CS), all its minimal generators
and frequency.

The pseudocode of the algorithm is given below.

Algorithm for finding all equivalence classes
Given: X0, minfr>0
1: Init
2: t0 ; gen0{}
3: find FT0
4: FOR EACH element hfFT0 with frequency V=min FT0[hf]≥

minfr DO
5: make_extract(t+1; hf; V)
6: FT0[hf]0
 NEXT
7: output all ECs
End of Algorithm
PROCEDURE make_extract(t; hf; V)
8: gent gent-1 hf
9: CS gent
10:CS_is_new true
11:IF V=1 THEN
12: find object obj with hf from Xt-1
13: FOR EACH empty position p in CS DO
14: value Xt-1[obj; p]
15: CS CS valuep /* CS[p] value
16: IF FTt-1[valuep]=0 THEN
17: CS_is_new false; EXIT FOR-cycle
 ENDIF
 NEXT
18: IF CS_is_new THEN new_EC(V; CS; gent) ELSE

 add_gen(V; gent; hf)
19:ELSE
20: separate submatrix XtXt-1 such that Xt={XijXt-1

X.f=hf}
21: find FTt
22: FOR EACH empty position p in CS DO
23: IF exists value(element) hp such that FTt[hp]= V

 THEN
24: CSCShp
25: IF FTt-1[hp]=0 THEN
26: CS_is_new false; EXIT FOR-cycle
 ENDIF
 ENDIF
 NEXT

74

27: IF CS_is_new THEN new_EC(V; CS; gent) ELSE
 add_gen(V; gent ; hf)

28: IF V>minfr THEN
29: ZeroesDown(t)
30: FTt[hf]0
31: FOR EACH huFTt with frequency V2=min

FTt[hu]minfr and V2<V DO
32: make_extract(t+1; hu; V2)
33: FTt[hu]0
 NEXT
 ENDIF
 ENDIF
END PROCEDURE
PROCEDURE ZeroesDown(t) /* from FTt-1 into FTt
34: FOR EACH element huFTt with frequency > 0 DO
35: IF FTt-1[hu]=0 THEN FTt[hu] 0
 NEXT
END PROCEDURE
PROCEDURE new_EC(freq; CS; gen)
/* instead of parameters current V, CS, gent can be used
/* creates a new equivalence class with frequency freq
containing closed set CS and generator gen
END PROCEDURE
PROCEDURE add_gen(freq; gen; hf)
/* instead of parameters current V, gent, hf can be used
/* finds the equivalence class with frequency freq to which
the generator gen belongs
/*knowing the lastly added element hf might improve the
(element-wise) search/check
/* adds a generator gen into the equivalence class
END PROCEDURE

The initial data table X0 and the frequency threshold minfr are given. The main
program starts with initializing the structure for holding equivalence classes (step
1) and initial assignments for a level of recursion t and the empty generator gen0
(2). Next the frequency table FT0 for X0 is found (3). In step 4 each element with
a suitable frequency (minfr) is chosen as a leading element (for inclusion into
generator) in ascending order (by frequencies). An extract by the leading element
hf is made (5) and its frequency in the frequency table FT0 is set to zero (6).
Finally, all found equivalence classes are outputted (7).

While the main program makes extracts from initial data, the recursive procedure
make_extract handles all deeper levels. It starts by evaluating the current
generator gent (8) and giving initial values for its closure CS and truth-value
CS_is_new for indicating whether the closed set (and consequently current EC)

75

is new (9-10). (Lines 11-19 in grey colour are for special case when the leading
frequency V is 1 and will be explained further.) Next the subset of objects Xt is
extracted by the leading factor hf (20) and the corresponding frequency table FTt
is found (21). Step 22 goes through all empty positions (attributes without value)
in the current closed set CS (as a vector) and step 23 searches for the value (of
that attribute) with frequency equal to the leading one V. If one exists, it belongs
to the current closed set and it is included into CS (24). Next we check whether
the found element of closed set has been set to zero in the frequency table of
previous level (25). If it is so, then this closed set (and whole EC) is not a new
one and indicator CS_is_new is evaluated accordingly, also the search for
elements of current CS is exited (26). After finishing the search for elements of
CS, according to the value of CS_is_new, either a new equivalence class is
created (with current generator gent, its closure CS and frequency V) or an
existing equivalence class is complemented with the current generator gent (27).
Additional parameters of add_gen V and hf are intended for improving the
search for the right existing EC. Also, the number of elements in gent can be
used (the number of elements in corresponding CS has to be bigger than in
generator).

After creating or complementing an EC, step 28 checks the reasonability of
making a subsequent extract. If the frequency V is above the threshold minfr,
then there is a possibility to find frequency that is <V and minfr. If that check
(in 28) gives a positive result, then the zeroes are “brought down” from the
frequency table of the previous level (29). The procedure ZeroesDown goes
through the current frequency table and for each element with a frequency over
zero (34) its frequency at the previous level is checked (35). If the latter is zero,
then the element gets a zero frequency at the current level as well (35).

The frequency of the current leading element hf is set to zero (30).

Step 31 goes through all elements that are suitable for subsequent extract i.e. with
frequency smaller than the leading one (in order to prevent selecting element of
current closed set) and greater than or equal to the given frequency threshold
minfr. Again the order is ascending. A recursive call to procedure
make_extract is made with a new leading element hu and its frequency V2
(32) and the frequency of hu is set to zero (33).

Lines 11-19 describe a special case when the leading frequency V is 1. In such
case there is no need to make an extract by hf. If the frequency is 1 then there is
exactly one object that belongs to that (potential) extract, so we can locate it
without forming an extract (12). Similarly to the general case, each empty
position in CS is inspected (13) and filled with respective value from that object
(14-15). If this element has been set to zero in the FT of previous level (16) then
consequently the current CS (and EC) is not new and the cycle for filling empty

76

positions in CS is exited (17). At line 18 either a new EC is created or an existing
one is complemented with the current generator gent.

Practically, this part of code is not important, because the frequency(support)
threshold is usually >1 (in case of bigger data) and the code at lines 20-32 is
suitable for that case as well.

This algorithm is not published, except in the master’s thesis of Meelis Pruks
(2014) where it is compared with DPMiner, that is claimed to be the first
algorithm mining closed sets and generators simultaneously (Li, Liu, & Wong,
2007), with further purpose to use found equivalence classes for EC-based
clustering algorithm ECCC (Liu, Wang, Deng, & Dong, 2011). The result of the
comparison is: DPMiner is faster, but less accurate since it finds non-redundant35
δ-discriminative36 equivalence classes, because the number of non-redundant δ-
discriminative ECs is considerably smaller than of all ECs (with equal support
threshold). An important difference between the two algorithms is that DPMiner
uses transactional database (i.e. binary data) with class labels as an input, while
our MS based algorithm supposes an object-attribute data table where each
attribute can have more values and pre-classification is not required.

3.1.7 Finding excluded factors

Besides elements that occur together in some set of objects (i.e. form a closed set)
we might be interested in elements that do not occur in any of those objects. For
example, it might be true that people who “have a cow” (and “live in the country”)
are not “frequent travellers”. In such case we can form a negative association rule
(2.4.2.2): “has a cow” [AND “lives in the country”] NOT “is a frequent
traveller”. In some cases negative rules are more valuable than positive ones.

We call these non-presented elements “excluded factors”, this is our own name
(although “factor” comes from DA). Next we will show how to adapt the
previously introduced EC algorithm (3.1.6) to find such information.

Excluded factors are such factors that are not presented in any of the objects of
the current extract (covered by the current closed set), but do exist in the initial
data table. Excluded factors are not sought for from such attributes that belong to
the closed set. As each included attribute can have only one certain value in the

35 Non-redundancy here is different from non-redundancy of association rules (as defined
in 2.4.2.1) where redundant and non-redundant rules are found among rules with equal
support (and confidence). Here δ-discriminative closed set EC2 is said to be redundant
with respect to δ-discriminative closed set EC1 if its closed pattern is a superset of the
closed pattern of EC1 (thus their frequencies are different) i.e. its transaction set is fully
subsumed by transaction set of EC1. Thus only the most general (minimal) equivalence
classes are non-redundant. (Li, Liu, & Wong, 2007, p. 3)
36 δ is a small integer number showing how many covered transactions can belong to other
classes than the largest one (thus, the classification of data is supposed).

77

closed set, we can conclude ourselves that all other values of such attribute cannot
be presented in that extract. Thus only the values of attributes that are not included
in the CS are considered.

Let us have an extract consisting of two objects given in Table 3.1 together its
corresponding frequency table and intersection over this extract. We do not look
for excluded factors for attributes A1 and A3 as they belong to the closed set
(intersection). We look for zeroes in the remaining columns (attributes) of the
frequency table. A2.2 (having zero frequency) is an excluded factor if such value
for A2 does exist in the initial data table.

Table 3.1. Data table X(2,3) and corresponding frequency table

Object \ Attribute A1 A2 A3
O1 1 3 2
O2 1 1 2

Value \ Attribute A1 A2 A3

1 2 1 0
2 0 0 2
3 0 1 0

Intersection 1 * 2

Our EC algorithm (in 3.1.6, see p. 73) can be easily supplemented with the part
for finding excluded factors. At lines 22-26 there is a FOR-cycle passing through
all empty positions of the current not-yet-ready closed set CS. IF-clause inside
this cycle (lines 23-26) checks whether the current empty position p can be filled
with a value (that is a zero factor in this CS). We add an ELSE-part to this IF-
clause for the case when there is no zero factor for the current position.

Below we give a suitable fragment of the code (preserving original lines numbers
22-26) with the extension for finding excluded factors (starting at line 27).

22: FOR EACH empty position p in CS DO
23: IF exists value(element) hp such that FTt[hp]= V

 THEN
24: CSCShp
25: IF FTt-1[hp]=0 THEN
26: CS_is_new false; EXIT FOR-cycle
 ENDIF
27: ELSE
28: FOR EACH value v (of attribute p) DO
29: IF FTt[vp]= 0 THEN
30: IF InitialFT[vp]> 0 THEN
31: ExclFExclFvp
 ENDIF

78

 ENDIF
 NEXT
 ENDIF
 NEXT

In the (new) ELSE-part we check each element with zero frequency in column p
(i.e. values of current attribute) (lines 28-29): if it has a non-zero frequency in the
initial FT (line 30) then it is an excluded factor and is inserted into the set of
excluded factors ExclF (line 31). (Otherwise, such a factor does not exist in the
data.) InitialFT (at line 30) is a copy of the initial state of FT0. FT0 itself is not
suitable because the frequencies (of selected leading factors) in it are set to zero
during the work (line 6 in EC algorithm).

Although this algorithm determines extracts by minimal generator, the excluded
factors are found for their corresponding closed set. Attributes that provide zero
factors have a certain value in the extract (selected set of objects), thus there is
no need to list their remaining values among excluded factors.

Therefore, excluded factors corresponding to some closed set are looked for and
stored only once – when this CS is found for the first time and a new EC is created
(procedure new_EC gets a new parameter: ExclF).

Of course, ExclF has to be evaluated with an empty set (ExclF{}) each time
before processing a next generator – that is in the beginning of procedure
make_extract (lines 8-10 in the EC algorithm at p. 73).

3.1.8 Integrating classes into MONSA

Heretofore MONSA has found descriptions for non-classified data. If data is
partitioned into classes then, obviously, we are interested in describing these
classes. For that purpose we will integrate detection of a class into the algorithm.

The question how to incorporate classes into MONSA, has been raised before the
questions about zero factors (and excluded factors), but it waited for an answer
until the detection of zero factors was solved. Then we saw that the solution is
simple – the class can be detected the same way as any zero factor. The difference
is that a class attribute is never used for making an extract.

Let us have a data table containing a class attribute (Table 3.2). Both objects
belong to the same class (Class.1). An intersection over them contains this class
value. As we have seen earlier this is easy to detect from the frequency table.

If the class value is a zero factor here (not the one that has been used for extracting
the current set of objects) then we can say that the remaining part of the
intersection (A1.1&A3.2) is always accompanied by Class.1

79

Table 3.2. Data table and corresponding frequency table

Object \ Attribute A1 A2 A3 Class
O1 1 2 2 1
O2 1 1 2 1

Value \ Attribute A1 A2 A3 Class

1 2 1 0 2
2 0 1 2 0

Intersection 1 * 2 1

Next we will present a recursive37 version of MONSA for finding all closed sets
with classes. (This algorithm does not detect zero factors and excluded factors.)

The following notation is used in pseudocode of the algorithm:

X0 – initial data table (objects*attributes);

attr – number of attributes (excluding class);

t – number of the step (or level) of the recursion;

Xt – set of objects (extract) at level t;

FTt – frequency table for a set Xt;

CSt – closed set at level t;

clt – class at level t;

CS_is_new – the truth-value of whether the closed set is found for the first time;

V – „leading“ frequency i.e. frequency of extract;

minfr – frequency threshold (minimal allowed number of covered objects);

Init – activity for initial evaluation;

Elements are given as valueattribute;

Assignments are indicated by “” (“=” is for comparison).

The pseudocode of the algorithm is given below.

Algorithm for finding all CSs with classes
Given: X0, minfr >0
1: t0 ; CS0{} ; cl00
2: find FT0

37 There is no need to use recursion while realising the algorithm; backtracking version
(like in 2.6.1) is still suitable.

80

3: FOR EACH element hfFT0 with frequency V≥minfr DO
4: FT0[hf]0
5: make_extract(t+1; hf; V)
 NEXT
End of Algorithm
PROCEDURE make_extract(t; hf; V)
6: CSt CSt-1 hf
7: clt clt-1
8: CS_is_new true
9: separate submatrix XtXt-1 such that Xt={XijXt-1

X.f=hf}
10: find FTt
11: FOR EACH empty position p (p1,…,attr) in CS DO
12: IF exists value(element) hp such that FTt[hp]= V

 THEN
13: CStCSthp
14: IF FTt-1[hp]=0 THEN
15: CS_is_new false; EXIT FOR-cycle
 ENDIF
 ENDIF
 NEXT
16: IF CS_is_new THEN
17: IF clt=0 THEN
18: IF exists value clv such that FTt[clvattr+1]=V

 THEN cltclv
 ENDIF
19: output CSt, clt
20: IF V>minfr THEN
21: ZeroesDown(t)
 ENDIF
22: BackwardComparison(t)
23: IF V>minfr THEN
24: FOR EACH huFTt with frequency V2minfr and V2<V

 DO
25: FTt[hu]0
26: make_extract(t+1; hu; V2)
 NEXT
 ENDIF
 ENDIF
END PROCEDURE
PROCEDURE ZeroesDown(t) /* from FTt-1 into FTt
27: FOR EACH element huFTt with frequency > 0 DO
28: IF FTt-1[hu]=0 THEN FTt[hu] 0
 NEXT
END PROCEDURE

81

PROCEDURE BackwardComparison(t)
29: FOR EACH element huFTt with frequency > 0 DO
30: IF FTt [hu]=FTt-1[hu] THEN FTt-1 [hu] 0
 NEXT
END PROCEDURE

The algorithm works similarly to the original MONSA (see 2.6.1). In the given
recursive version the main program treats the initial level and the procedure
make_extract handles all extracts.

The uniqueness check of a closed set (that was before brought out as a separate
procedure CheckUniqueness) takes place at lines 11-15. This time it is
executed before bringing zeroes down (line 21). This change is not principal, it
just makes it easier to perform the check.

One more difference is that the criterion of selecting the next node (by maximal
frequency in FT) is left out from the pseudocode (at lines 3 and 24). We still use
it, but principally it is not so important, because any other order of nodes would
give all the same closed sets (just in a different order).

A condition V≥minfr (for considering the support threshold) is revealed here
(at lines 3 and 24) while in the previous pseudocode it was hidden into the
condition ‘pruning is needed’ (line 6).

The condition V>minfr (lines 20 and 23) is a prerequisite for a possibility to
find a frequency V2 that is smaller than V and bigger than or equal to minfr
(V2≥minfr and V2<V at line 24). V2 is the frequency of the next leading
element (by which an extract will be made). Its frequency V2 has to be smaller
than the frequency of current leading element (and extract) V to prevent making
an extract by zero factor (the frequencies of zero factors are equal to the leading
frequency). Another possibility to prevent it was to set to zero the frequencies of
all zero factors (after they have been detected) – earlier we used this option.

A new property – detection of classes – starts by evaluating a class corresponding
to the initial level cl0 by 0 (or some other non-existing value) with a meaning
that objects belong to different classes. At each lower level variable clt gets a
value from the previous level. If objects belong to the same class at some level,
then in every further extract (that is a subset of that object set) they still belong to
that same class. Therefore, if the value of clt is not (initial) 0 then all objects of
the current extract belong to this class and there is no need to check whether they
belong to the same class. If there is no common class at previous level (line 17)
then the algorithm checks the frequencies of class attribute: if one of them is equal
to the leading frequency (and others are zeroes) then all objects of the extract
belong to that class and clt is evaluated accordingly (line 18). As pointed out
earlier this check is analogous to detecting “usual” zero factors (taking place at
line 12).

82

The algorithm assumes that a class is given by one class attribute (in the last
column of data table). Instead of using only one attribute it was possible to use
more of them. In such case the frequency check (whether it is equal to the leading
frequency) should be made for each of these attributes and instead of one value
(clt) a vector of corresponding values should be used. We can consider each
different combination (conjunction) of their values as a separate class or to use
more sophisticated logic on them.

The given version of the algorithm outputs all closed sets irrespective do they
have a class or not. It does not backtrack after finding a class. In case of insertion
of such criterion the order of selecting next node by maximal frequency might be
important.

3.2 Developments of Determinacy analysis

The theory of Determinacy Analysis (DA) by Chesnokov is introduced in 2.7. In
this subchapter we will present our developments of DA. However, first
subchapters introduce things that existed before I began.

We will start by giving an overview of original applications of DA (3.2.1), in
order to bring out their limitations (3.2.1). In 3.2.2 we will list these and other
deficiencies of DA that have given us a reason to work out better solutions.

First, in order to overcome the problem of equal length of found rules, we have
proposed so called step-by-step method38, where the completion of a single rule
is stopped whenever it occurs to be accurate (see 3.2.3). Although this approach
gives a better result than the original one, it still finds a set of non-intersecting
rules that is an important restriction.

Our further algorithms produce non-additive systems of rules where the rules can
intersect. Also, the order of attributes can be different in each rule.

Our first algorithm for finding intersecting rules is presented in 3.2.5. This
algorithm produces a possibly small set of rules, monitoring and taking into
consideration which objects are covered by the found rules already. Like a step-
by-step approach this one also produces one system of rules that is not always the
best one.

Besides a possibly small number of rules, we are interested in possibly short rules
containing no redundant factors. A factor is redundant when we can remove it
without losing accuracy of the rule. These redundant factors are zero factors.

38 This method itself existed before I started, but then it had not been put into the context
of systems (sets) of rules (according to (Chesnokov, 2002)) and it was unpublished as
well. It is presented in this thesis because it serves as a starting point for further
developments of DA.

83

Occurs that in the moment when a new factor is inserted into a rule we cannot
decide about its redundancy or non-redundancy (in reference to the final rule) by
its contribution to the accuracy. This problem is explained in 3.2.4 , it is true for
step-by-step method as well as other approaches.

Our next algorithm (in 3.2.7) produces all possible shortest rules i.e. non-
redundant rules. Additionally it finds some redundant rules that cannot be
avoided. These rules have to be removed by compressing the result. The set of
rules we get after such compression is the same in case of some other algorithms
as well. We call it Determinative Set of Rules (DSR) – see 3.2.6. DSR gives us
the basis for finding different covers – suitable subsets of found rules that cover
all objects.

Delving deeper into the problem of zero factors we have found that there are two
types of them – see 3.2.8. In 3.2.9 will we show how zero factors and DA rules
are related to closed sets and generators. These associations together with
developments of MONSA (3.1) have been involved in our final development of
DA – Zero Factor Free DA – that will be presented in 3.2.10. The algorithm is
described in 3.2.10.1, an example is given in 3.2.10.2, and discussion about
detecting zero factors in 3.2.10.3.

The part concerning DA-System (DAS) in 3.2.1 and 3.2.1.1 is published in (Lind
& Kuusik, Some Ideas for Determinacy Analysis Realisation, 2007). Step-by-
step method is described in the same paper39. A discussion in 3.2.4 is based on
(Lind & Kuusik, Some Problems in Determinacy Analysis Approaches
Development, 2008b). The algorithm in 3.2.5 is presented in (Kuusik & Lind,
Some Developments of Determinacy Analysis, 2010). DSR (in 3.2.6) and
algorithm giving a suitable result for applying DSR-compression (3.2.7) were
proposed in (Kuusik & Lind, New Developments of Determinacy Analysis,
2011). Our latest paper (Lind & Kuusik, Algorithm for Finding Zero Factor Free
Rules, 2016) contains material presented in 3.2.8, 3.2.9 and part of material in
3.2.10 and its subchapters. The published version of ZFF DA algorithm contains
only two types of rules (out of three). Also, the demonstration how the algorithm
works on sample data (in 3.2.10.2) and a discussion (3.2.10.3) were left out of
this paper due to size limit. All three types of rules are used in the master’s work
of Liisa Jõgiste (Prototyping of Zero-factor based DA, 2014). In this work the
experiments showing dependency of execution time on the number of objects
(rows) or attributes (columns) were carried out. These results are presented also
in (Lind & Kuusik, 2016).

The referred papers are reprinted in appendices B, C, D, E and F.

39 The corresponding algorithm is published in (Lind & Kuusik, 2008a).

84

3.2.1 About the original applications of DA

We know about two original applications of DA. Although their underlying data
structures and algorithms used for finding determinations are different, they share
a similar approach from the user’s point of view.

The user determines X and Y (and some possible restrictions to the rules) and gets
a set (system) of rules corresponding to the input. In this set all the rules have the
same number of factors and exactly from the attributes given for X. Thus, the
found system of rules is additive consisting of non-intersecting rules i.e. each
object can be covered maximally by one rule. If no rules have been excluded (due
to given restrictions), then the system is complete – each object is covered (by
exactly one rule). In such case all existing value combinations of X are presented
as an antecedent of some rule.

The output is given as a table where each row represents a determination. For
each determination XY first its components – factors (i.e. attribute with its
certain value) constituting X – are listed (in the order they were given by the user).
They are followed by the characteristics of determination:

 Accuracy A(XY)
 Completeness C(XY)
 the Number of rules’ Applications n(X)40
 the Number of rules’ Confirmations n(XY)41
 n(Y) – as it is equal for all determinations with the same Y, it can be shown

only once per table (not at each row)

Accuracy and completeness are calculated using n(X), n(XY) and n(Y).

For each factor constituting X its contribution to the accuracy ΔA and its
contribution to the completeness ΔC is shown. Each contribution is computed
regarding all other factors in X, independent on the order of attributes.

The user can change the input and get a new additive system of rules with equal
length.

The realization of DA from 1980ies is described in (Veselov, Deza, &
Podrabinovich, 1980).

In this case the user can determine 7 attributes for X and 3 attributes for Y. In this
realization two trees are created: one contains both reason-attributes X and
consequence-attributes Y (in the given order), the other only consequence-

40 i.e. the number of objects having determining factors in whole dataset or context
41 i.e. the number of objects having these factors among objects belonging to the class
under investigation

85

attributes. All objects are described in both trees. Each node (except the root)
indicates a certain value of a certain attribute (i.e. factor) and has as many
descendants as many different values has the next attribute. The leaves represent
the value combinations with length equal to the number of observable attributes.
For each node (value combination) its corresponding set of objects is kept in
memory using lists. On these two trees the user’s queries are executed.

In order to find five characteristics (listed above) for a certain determination the
necessary nodes are looked up and the number of corresponding objects is
detected. To describe a determination we have to find one leaf (representing XY)
and one node on the way to that leaf (X) in the bigger tree and one leaf (Y) in the
smaller tree.

Finding needed nodes in such trees is comfortable and the number of comparisons
is acceptable42, but the trees itself take much memory. Therefore the number of
observable attributes is limited to seven reason-attributes and three consequence-
attributes (Chesnokov, 1980a).

Later, at the end of 1990ies, DA was realised in the software package “DA-
system”43 (shortly DAS) by “Context”44. The following overview is about its
(Russian) version 4.0 for Windows that was available to us for a limited time, it
is described in (Lind & Kuusik, 2007). Materials (DALSolution, 2007), (Context,
1999a) (Context, 1999b) have been used also.

This application allows to determine one certain factor for Y at a time. In addition
to the five characteristics listed above, it finds totals for the whole set (system) of
found rules: total Accuracy (weighted average), total Completeness (sum of
rules’ completenesses), total Number of Applications and total Number of
Confirmations (both are sums of rules’ characteristics).

The user can set restrictions to the rules by accuracy, completeness, contribution
to accuracy and contribution to completeness. All four apply to the individual
rules, not to the separate factors in the rules nor to the whole system. If at least
one of those four does not fit, the rule is not included into the result.

By default DAS finds all existing combinations of factor-attributes irrespective
of their class affiliation i.e. combinations belonging to other class(es) are also
found. Such system is a complete system of rules (where the sum of rules’
completenesses is 100%). In order to suppress the rules of other classes the
required completeness (or required accuracy) of rules has to be set to >0 by the

42 ig comparisons, where i is the average arity (the number of branching) of the nodes and
g is the depth of the tree (Veselov, Deza, & Podrabinovich, 1980).
43 Russian “ДА-система”
44 Russian “Контекст Медиа”

86

user. In such case the system remains complete. Using a higher threshold the
completeness is not guaranteed.

By default the rules can contain positive, zero and negative factors. It is possible
to get rules that consist of positive (and zero) factors only by setting the
requirement that the contribution to accuracy has to be >0 (≥0). Other rules are
excluded, therefore the found system loses completeness.

System of rules can be maximally accurate (average accuracy =100%) if there are
no contradictions45 in data. Accurate system can be required also by the user. In
order to find only accurate rules the required accuracy has to be set to 1. System
got by applying such restriction may be incomplete.

3.2.1.1 Deficiencies of DA-system

Having been analysed DA-system we have the following observations.

Unfortunately DA-system has no possibility to set restrictions to the individual
factors and get rules with different number of factors. This is due to technical
reasons. By our opinion such lack makes DAS limited compared to theory of DA
by Chesnokov (2002).

DAS (4.0) limits the number of attributes (factors) in rules to 5, due to technical
reasons. Always it is not enough to describe a class. The current46 version of DAS
(5.0) is claimed to overcome this limitation. A discussion about the number of
frequencies needed to compute the characteristics of the rules can be found in
chapter 3 of (Lind & Kuusik, 2007). For example, if we have 5 binary attributes,
there can be 32 rules at most and the maximal number of frequencies to find is
224. In case of 7 binary attributes: 128 rules and 1152 frequencies. In case of 5
attributes having 10 different values: 105 rules and 3*105 frequencies; in case of
7 attributes already 10*106 rules and 34*106 frequencies. Probably due to such
big numbers, DA-system limits the number of attributes (factors) in a rule to 5.

A minor drawback is that DAS finds rules for only one class at a time; while by
default it finds value combinations of other classes anyway (without showing
their class affiliation). It could be more convenient to find rules for all alternative
classes (by the same variable), but this exceeds the bound of task of DA (as
defined in 2.7.4).

An important disadvantage is that DAS has no automated search strategies to find
better solutions. It only helps manual search (by making calculations), but gives
no advice for the subsequent search direction. The system does not say which

45 This is the situation where the chosen set of attributes does not determine object’s
affiliation uniquely, the same combination of factors (i.e. attributes with certain values)
leads to different classes; for example 2/3 of cases belong to class1 and 1/3 belong to
class2.
46 As of 2007

87

attributes should be included into or excluded from analysis. Quite probably this
comes from the way DA-system solves the task. It seems that DAS does not use
a backtracking search algorithm, but implements database queries.

Also, the user manual does not include the methodology how to get needed result
with DAS. Probably that knowledge is sold at special training courses.

3.2.2 Problems

The following deficiencies of original applications and methodology of DA were
pointed out in the previous section:

 Limited number of attributes/factors in the rules
 Finding rules for one class only at a time
 No automated search strategies

Additionally:

 All rules have equal length
 Only additive systems of rules can be found

In order to explain why the last two properties are significant limitations, we will
use the example in 2.7.3 (p.55). All presented systems of rules are complete (i.e.
all objects are covered by the rules) and accurate (i.e. all rules are accurate). S1,
S2 and S3 are additive47 systems and S4 is a non-additive system.

In this example S1 is a system of rules where all rules contain exactly the same
attributes (with different values) and have equal length (such set can be found
with DAS). S2 and S3 are both additive systems where the rules can have different
lengths. Comparing S1 either with S2 or S3 we can see that S1 contains more rules
(3 vs 2) and longer rules (both S2 or S3 have one rule with only one factor (in the
left side)). For example, instead of two first rules consisting of two factors in S1:

 Eyes.blue & Hair.dark Class.‒ (C = 40%; 2 objects)
 Eyes.brown & Hair.dark Class.‒ (C = 20%; 1 object)

there is one rule consisting of one factor in S2:

 Hair.dark Class.‒ (C = 60%; 3 objects).

The value of attribute Eyes is not essential when Hair has value dark.
Consequently, there is some redundancy in the rules of S1.

Comparing non-additive system of rules S4 with any of the additive systems S1,
S2 or S3, we can see that S4 is more compact, containing no redundant

47 In case of additive systems the rules do not intersect (i.e. do not cover the same objects),
thus there is maximally one rule per object

88

information. For example, the first rules of S3 and S4 are identical, but the second
rule of S3:

 Eyes.blue & Hair.dark Class.‒ (C = 40%; 2 objects)

is longer and with smaller completeness than the second rule of S4:

 Hair.dark Class.‒ (C = 60%; 3 objects) .

In this case, the non-additive system S4 has shorter rule(s). Comparing it to S1
we can see that also the number of rules is smaller (2 vs 3). This shows that
allowing intersecting (overlapping) rules, the system (set) of rules can be more
compact and contain less redundancy.

In order to overcome the problem of equal length, we have proposed so called
step-by-step method, where the order of attributes is fixed, but completion of a
single rule is stopped whenever it occurs to be accurate. Although step-by-step
approach gives a better result than original approach, it has the following
disadvantages:

 The result depends on the order of attributes
 Trying all possible orders of attributes is too laborious

Further we have elaborated different algorithms for getting non-additive systems
of rules. These algorithms do not use any given order of attributes, but decide
themselves which attribute is added next. In each rule the order of attributes can
be different and also the set of used attributes can be different. This leads us to
automated search strategies. The latest among these three algorithms – ZFF DA –
finds rules for all possible classes intermittently.

All these developments try to solve one more important problem:

 Avoiding zero-factors (in the left part of the rule)

Further the essence of zero factors and all our approaches and algorithms will be
explained.

3.2.3 Step-by-step approach

Step-by-step approach is our first development of DA. Compared to DAS it
allows to find rules with different lengths, thus reducing redundancy (but not
eliminating it). In case of such approach we get a new thing to consider – the
order of attributes (factors) in the rules. Attributes are added into the rules in a
given order, the completion of a single rule is stopped whenever it occurs to be
accurate. In case of different orders the results are different. The number of all
possible orders is too big to try them all and then find the most suitable one.

The task. The initial data table is given and some feature Y (as a certain class).
The goal is to describe Y (possibly) completely by non-intersecting (possibly)
accurate rules.

89

In case of non-intersecting (i.e. additive) system each object can be covered by
one rule at most while each rule can cover more than one object. Thus, the number
of rules is the number of objects (covered by the rules).

As described before (3.2.1), the original application (DAS) solves this task by
finding all existing value combinations that contain all given attributes and meet
other criteria given by the user. The result consists of rules with equal length
(rank), all of them contain the same attributes – this is a simple way to get an
additive system of rules (i.e. non-intersecting rules).

It is reasonable to allow rules with different number of factors in argument
(keeping them non-intersecting at the same time), to exclude inessential factors.
In such case factors are added into rules in some order (not all at the same time)
and their contributions to accuracy and completeness can be calculated regarding
those factors only that have been added into rule earlier. Latter factors cannot be
considered in those calculations.

Below we will present our “step-by-step” approach where the extracted rules can
have different lengths while the system is additive. The order of attributes
(factors) is essential, they are added into the rules one by one, in the given order.

If some rule obtains the maximal accuracy (A=1) it is not expanded by adding the
next factor. At the same time the completenesses of found accurate rules are
summed up. Reaching 100% the coverage is found.

Using the same order of attributes for all rules guarantees that the rules do not
intersect. The user decides about the order in which the attributes are included
into the rules, from the beginning until the situation when all objects of the class
are covered.

The following example will demonstrate the step-by-step approach. It will show
also that different orders of attributes can give different results.

In this example Quinlan’s data from Table 2.7 (p. 55) will be used again. The
purpose is to determine class ‘+’ (to describe the persons belonging to class ‘+’).
This class consists of three objects: n(Y)=3.

First, we will add attributes in the order they are given in the table: 1) Height, 2)
Hair, 3) Eyes.

The rules containing attribute Height (only) are given in Table 3.3.

Table 3.3. The rules consisting of attribute Hair

Height n(X) n(XY) A C C
short 3 1 1/3 1/3
tall 5 2 2/5 2/3

Neither of the two (candidate) rules is accurate.

90

We add the next attribute (Hair) into both rules – see Table 3.4.

Theoretically there can be 6 different value combinations of those two arguments.
One of those 6 (Height.short&Hair.red) does not exist in the data (n(X)=0). Two
of them (Height.short&Hair.dark; Height.tall& Hair.dark) do not exist in the
given class (n(XY)=0). These three are excluded from the analysis.

Table 3.4. The rules consisting of attributes Height and Hair

Height Hair n(X) n(XY) A C C
short dark 1 0 0 0
short red 0
short blond 2 1 1/2 1/3
tall dark 2 0 0 0
tall red 1 1 1 1/3 1/3
tall blond 2 1 1/2 1/3

The remaining three rules are proper for the target class. One of them
(Height.tall&Hair.red) is accurate (A=1) and needs no additional factors. This
rule covers 33% of the objects of the class (C=1/3). We will sum up
completenesses of accurate rules (C), with hope to reach to 100% coverage (by
accurate rules). Two rules having accuracy between 0 and 1 have to be expanded
again. Next we add attribute Eyes into those two rules (see Table 3.5).

Table 3.5. The rules consisting of attributes Height, Hair and Eyes

Height Hair Eyes n(X) n(XY) A C C
short blond blue 1 1 1 1/3 2/3
short blond brown 1 0 0 0
tall blond blue 1 1 1 1/3 1
tall blond brown 1 0 0 0

Two rules of four have accuracy 1 and both of them have completeness 1/3. At
this point we have found three (accurate) rules for the class ‘–’ with overall
completeness 1 (100%). Thus the class is completely described:

 Height.tall&Hair.red Class.+ (C = 33%)
 Height.short&Hair.blond&Eyes.blue Class.+ (C=33%)
 Height.tall&Hair.blond&Eyes.blue Class.+ (C = 33%)

This is one possible description for class ‘+’.

Now we will describe the same class by the same attributes, adding them in
another (freely chosen) order: 1) Hair, 2) Eyes, 3) Height.

The rules consisting of attribute Hair only are given in Table 3.6.

91

Table 3.6. The rules consisting of attribute Hair

Hair n(X) n(XY) A C C
dark 3 0 0
red 1 1 1 1/3 1/3
blond 4 2 2/4

The rule Hair.redClass.+ is accurate and is included into the result, it covers
1/3 of the class. The rule with Hair.dark has zero accuracy in the given class and
will be not expanded. The rule with Hair.blond has accuracy between 0 and 1,
thus we add the next attribute (Eyes) into it (see Table 3.7).

Table 3.7. The rules consisting of attributes Hair and Eyes

Hair Eyes n(X) n(XY) A C C
blond blue 2 2 1 2/3 1
blond brown 2 0 0 0

The first of found rules has accuracy 1 and will be included into the result. Its
completeness is 2/3. Now the cumulative completeness is 100%, thus the class
‘+’ is (fully) covered by the (accurate) rules.

At the same time we see that the other branch (with Eyes.brown) has zero
accuracy and there is no reason to expand it.

This time class ‘+’ is covered by two rules:

 Hair.red Class.+ (C = 33%)
 Hair.blond&Eyes.blue Class.+ (C = 67%)

We have shown that the same class can be (completely) covered by different sets
(systems) of (non-intersecting) rules depending on the order of inclusion of the
attributes into the rules.

As we can see, attribute Height is not necessary for distinction of classes. The
class is described without using it.

Usually we are interested in the minimal number of rules, but we do not know
which order of attributes gives such result. Trying all possible orders is too
laborious. For example, if we have 10 dichotomous (2-valued) attributes, then we
should look through 210-1 =1023 combinations of attributes, i.e. by 1, 2, 3, …, 10
attributes. It is not real to extract all these rule systems and to analyse them.

Also, the number of factors in the rules should be possibly small. The additivity
constraint (i.e. the rules cannot intersect) does not allow leaving out all redundant
(inessential) factors. Compare, for example, non-additive system S4 with either
of additive systems S2 and S3 (got by step-by-step approach using different orders

92

of attributes) (in 2.7.3, page 55). Such an additive system of rules corresponds to
a decision tree.

3.2.4 Problem with zero factors

In the following we will explore the possibility to extract only such rules that do
not contain redundancy (zero factors), deciding by the factor’s contribution to
accuracy at the moment when it is added into the rule. We will reach the
conclusion that we cannot say whether the factor remains positive (regarding
factors that will be added later) or not. This conclusion is valid for step-by-step
approach as well as approaches that produce non-additive systems of rules.

Chesnokov (2002) suggests a non-additive system consisting of accurate normal
rules of different rank as a solution, but gives no description how to achieve such
desired result.

Recall that an accurate rule contains no negative factors, all factors are positive
or zero factors, and a normal rule consists of positive factors only. A positive
factor makes a rule more accurate than it was without it (a negative makes less
accurate) and a zero factor does not change the rule’s accuracy. Such influence is
measured by the contribution to the accuracy (ΔA). For definitions see 2.7.1.

A normal rule is not always accurate. Taking away whatever factor(s) from a
normal rule, its accuracy decreases (because every factor in such rule has a
positive contribution to the accuracy).

Also, an accurate rule is not always normal (when it contains zero factor(s)).

Example in 2.7.3 presents four different systems of rules consisting of individual
rules that can be part of more than one system. Among them there are two normal
accurate rules:

 Eyes.brown Class.‒ (A=3/3=1)
 Hair.dark Class.‒ (A=3/3=1)

All longer rules are also accurate, but not normal. For example:

 Eyes.blue & Hair.dark Class.‒ (A=2/2=1)

where Eyes.blue is a zero factor:

 ΔA(Eyes.blue) =
= A(Eyes.blue & Hair.dark Class.‒) - A(Hair. dark Class.‒) =
= 1 - 1 = 0

and Hair.dark is a positive factor:

 ΔA(Hair.dark) =
= A(Eyes.blue & Hair.dark Class.‒) - A(Eyes.blue Class.‒) =
= 1 - 2/5 = 3/5

93

Sometimes both (all) factors are zero factors, like in the rule

 Eyes.brown & Hair.dark Class.‒ (A= 1)

where

 ΔA(Eyes.brown) =
= A(Eyes.brown & Hair.dark Class.‒) - A(Hair.dark Class.‒) =
= 1 - 1 = 0

 ΔA(Hair.dark) =
= A(Eyes.brown & Hair.dark Class.‒) - A(Eyes.brown Class.‒) =
= 1 - 1 = 0

Taking away either of the factors we get an accurate rule.

In case of longer rules, it is possible that some factors are zero factors “together”
– so that two or more factors at a time can be removed without changing the
accuracy.

Based on the same data (see Table 2.7, p. 55), an accurate rule containing only
positive factors i.e. normal rule is:

 Eyes.blue&Hair.blond Class.+ (A = 1)

where:

 ΔA(Eyes.blue) =
= A(Eyes.blue&Hair.blond Class.+) - A(Hair.blond Class.+) =
= 1 - 2/4 = 1/2

 ΔA(Hair.blond) =
= A(Eyes.blue&Hair.blond Class.+) - A(Eyes.blue Class.+) =
= 1 - 3/5 = 2/5

If we take away factor Eyes.blue, we get a normal non-accurate rule:

 Hair.blond Class.+ (A = 2/4)

where

 ΔA(Hair.blond) = A(Hair.blond Class.+) - A(Class.+) =
= 2/4 - 3/8 = 1/8

In case of step-by-step approach (see 3.2.3) it is not easy to say whether the
current factor is suitable in a sense it is positive (“essential”) regarding factors
that will be added later. Adding a factor that makes a rule more accurate it may
occur later that the factor is inessential anyway.

For example (using data given in Table 2.7):

94

 Eyes.blue Class.+
(A=3/5)

 Eyes.blue&Height.tall Class.+
(A=2/3; ΔA(Height.tall)=2/3-3/5=1/15>0)

 Eyes.blue&Height.tall&Hair.blond Class.+
(A=1; ΔA(Hair.blond)=1-2/3=1/3>0)

The contributions (of the new factors) to the accuracy are positive in both steps,
but the resultant rule contains a zero factor (Height.tall) – the rule is accurate
without it:

 Eyes.blue&Hair.blond Class.+ (A=1)

We may consider making a control in the opposite direction:

 Height.tall Class.+ (A=2/5)
 Height.tall&Eyes.blue Class.+

(A=2/3; ΔA(Eyes.blue)=2/3-2/5=4/15>0)

Occurs that Height.tall and Eyes.blue together form a normal rule (with accuracy
below 1). However, such finding does not guarantee that both factors remain
positive after addition of the next one(s). Addition of whatever possible factor
(i.e. values of attribute Hair) into the last rule does not produce any normal rule,
although we get accurate rules:

 Height.tall&Eyes.blue&Hair.blond Class.+ (A=1)
 Height.tall&Eyes.blue&Hair.red Class.+ (A=1)

Both rules contain zero factor(s): Height.tall is a zero factor in both rules and
Eyes.blue is a zero factor in the last rule.

It means that the fact that some factor has a positive impact to the accuracy at
the moment it is added into the rule does not guarantee that the factor retains its
positiveness.

In our example we found a branch of a search tree that gives no normal accurate
rules. As we have seen also, the factor’s contribution to the accuracy (at the
moment of addition) is not an adequate criterion to avoid entering such branches.

3.2.5 The first algorithm for finding intersecting rules

Heretofore different approaches to DA have given additive (i.e. non-intersecting)
systems of rules. Thus it is principally impossible to eliminate all zero factors
from the rules. Therefore our next development was to find systems of rules
where the rules can intersect. Our first algorithm to this direction finds a possibly
small set of rules, monitoring and taking into consideration which objects are
covered by the found rules already. Like a step-by-step approach this one also
produces one system of rules that is not always the best one. The presented
algorithm is not based on neither the previous one (for step-by-step approach) nor

95

MONSA, although it is MS based and makes extracts. This algorithm uses so
called 3D frequency tables.

It is desired that the rules were relatively short – then it is easier to interpret them.
For the same reason, the number of rules has not to be very large. Using the
previously introduced step-by-step method we should find all rule systems and
according to some criteria find from them a cover i.e. a rule set (with
completeness 100%) consisting of the shortest rules or a rule set with the least
number of rules. This turns out to be very labour-consuming because all the
possible sets and orders (permutations) of attributes should be found.

In order to facilitate the work it is reasonable to find systems of rules where the
rules can intersect (overlap) i.e. non-additive systems of rules. It would be good
to allow a non-fixed order of including factors as well.

Here we will present our first algorithm for getting intersecting rules for DA. The
system of rules it finds is non-additive (i.e. objects may be covered by more than
one rule), accurate (i.e. consists of accurate rules only) and complete (i.e. covers
all objects of determinable class) if there are no contradictions in the data (the
algorithm can find them). The findable set of rules is possibly small – the potential
rules are not included into the result if they cover only such objects that are
covered already. No given order for including factors into the rules is used.

The pseudocode of the algorithm is given below.

Algorithm
Determine tables X and Y
S0. t:=0; Ut:=

If all the objects in Y are covered then Goto End
S1. Find frequencies in tables Xt and Yt: Fxt, Fyt
S2. For each factor A such that Fyt(A)=Fxt(A) and all

objects containing A are not covered by rule(s)
output rule {Ui}&A, i=0,…,t

If at least one new rule was found Goto S0
S3. Choose a new (free) factor Ut

If there are no factors to add then
{Ui}, i=0,…,t is a contradiction; Goto S0

t:=t+1; extract subtable of objects containing Ut; Goto
S1

End. System of rules is found

As we are searching for accurate rules we need to know the accuracies of factors.
Accuracy is findable using two frequencies: 1) the frequency in determinable
class Y and 2) the frequency in the whole dataset X (see 2.7.1). At every iteration
t we collect those two frequencies for each factor into two frequency tables: Fxt
contains frequencies in the whole dataset and Fyt in class Y (step S1). Fxt does
not change during the work. Frequencies in Fyt decrease after finding a new rule.
Fx and Fy together are called 3D frequency table. Additionally the frequency

96

table of covered (by the found rules) objects (Fc in the examples at pages 97-99)
is kept. This is one possible way to detect whether a potential rule covers any
uncovered object and detect when the work can be finished. The use of
frequencies is explained hereinafter.

Our DA algorithm is recursive and extracts certain subsets Xt (t is a level of
recursion) while working, for every Xt its corresponding Fxt and Fyt are found.

We can detect accurate rules by the use of frequency tables. In any subset (at any
level) holds a rule: if some factor belongs to one class only, we get an accurate
rule including it (into the set of factors that are selected already and thus are
common to all objects in current Xt). Such factor has equal frequencies in Fxt
(the whole set) and in Fyt (the observable class) – in case of equal frequencies
the accuracy is 1. A situation of this kind is easy to detect because we have both
frequencies for each factor in frequency tables. If such new rule covers at least
one object (in class Y) that is not covered by the rules yet, it is appended to the
resultant set of rules. This condition is also easy to detect using the frequencies
of covered objects (Fc). If factor’s frequency in Fc is same as in Fx and Fy then
all objects containing it are already covered by the found rules and the potential
rule produced by that factor is not added into result, otherwise (when the
frequency in Fc is lower) the new rule is suitable. This way the last factor of each
rule is found. All other factors in a rule are found in step S3.

The frequencies in Fc are updated (incremented) every time a new rule is
extracted; this table is independent on the recursion level (t). The end of work
(the situation when all objects belonging to Y are covered by the found rules) is
detected using Fc as well. If all frequencies in Fc are equal to the ones in initial
Fy then all objects of Y are covered and the work can be finished.

Factors before the last one are selected recursively from the current (sub)set Xt.
The selection criteria are based on frequencies, the maximal frequency in Fyt,
for example. In case of equal maximal frequencies in Fy the one having bigger
frequency in Fx is preferred.

Every time a new rule(s) is(are) found, the algorithm turns back to the initial level
and selects a new first factor. Compared to turning back to the previous level,
such strategy enables to find possibly short (i.e. containing possibly few factors)
rules.

This algorithm is able to detect a contradiction – the situation where identically
described (by used attributes) objects belong to different classes. The algorithm
detects it when it does not find any possible factor for extracting a next subset. It
means that all attributes are already included into the current set of factors, but
the accuracy is below 1. The objects covered by such contradictory set of factors
are treated as covered objects when counting frequencies into Fc.

97

In case of contradiction the full coverage (i.e. maximal completeness) by accurate
rules is not achievable. Optionally we may consider to output such contradictory
non-accurate rules showing their (lower) accuracy.

In the following we will demonstrate the work of the algorithm using data from
(Quinlan, 1984) again (given in Table 2.7). This time we use a numerical
representation, the coding used for attributes and their values is shown in Table
3.8. The initial data table is given in Table 3.9. Let X is X(8,3), Xij = 1,...,3 and
Y=4.1 {Yi: 1,2,5,7,8} (i.e. class “‒”). The frequencies of attributes’ values for X
and Y (Fx and Fy accordingly) are given in Table 3.10.

Table 3.8. The coding used for Quinlan’s (1984) data

Attribute Height Hair Eyes Class
Code 1 2 3 4
1 short dark blue ‒
2 tall red brown +
3 blond

Table 3.9. Coded initial data table

i \ j 1 2 3 4
1 2 1 1 1
2 1 1 1 1
3 2 3 1 2
4 2 2 1 2
5 2 3 2 1
6 1 3 1 2
7 1 3 2 1
8 2 1 2 1

Table 3.10. The frequencies for X and Y

Fx Kj \ j 1 2 3 Fy Kj \ j 1 2 3
 1 3 3 5 1 2 3 2
 2 5 1 3 2 3 0 3
 3 0 4 0 3 0 2 0

For value 1 of attribute 2 (shortly 2.1) the frequencies in Fx and Fy are equal
which means that all objects having 2.1 belong to Y. Hence we get a rule 2.1=3
(Hair.darkClass.‒). The frequency after “=” shows that the rule covers three
objects (namely objects 1, 2 and 8) – this is additional information. Also for 3.2
the frequencies are equal and we get another rule 3.2=3 (Eyes.brownClass.‒)
that also covers three objects (5, 7 and 8).

By those two rules

98

 Hair.darkClass.‒ (3 objects)
 Eyes.brownClass.‒ (3 objects)

all the objects belonging to Y are covered. The found rules are overlapping, both
cover object 8. The result coincides with an example of a non-additive system of
rules S4 in 2.7.3 (p. 55).

In order to demonstrate other steps of the algorithm another example is presented.

This time Y=4.2 {Yi: 3,4,6} (class “+”). The frequency tables Fx and Fy are given
in Table 3.11.

Table 3.11. The frequencies for X and Y

Fx Kj \ j 1 2 3 Fy Kj \ j 1 2 3
 1 3 3 5 1 1 0 3
 2 5 1 3 2 2 1 0
 3 0 4 0 3 0 2 0

For 2.2 (attribute 2 with value 2) the frequencies in Fx and Fy are equal. The rule
2.2=1 (Hair.redClass.+) covers object 4.

The “free” frequencies i.e. the frequencies over non-covered objects (in Y) after
extraction of the first rule are shown in Table 3.12.

Table 3.12. Free frequencies for Y after extraction of the first rule

Fy Kj \ j 1 2 3
 1 1 0 2
 2 1 0 0
 3 0 2 0

From here the factor starting a new rule is chosen by maximal frequency in Fy.
As there are two (equal) maximal frequencies, the choice is made by the bigger
frequency in Fx where the factor 3.1 has frequency 5 and 2.3 has frequency 4.
Thus 3.1 is selected.

Table 3.13. Extract by 3.1

i \ j 1 2 3 4
1 2 1 1 1
2 1 1 1 1
3 2 3 1 2
4 2 2 1 2
6 1 3 1 2

99

Table 3.14. The frequencies of extracted data

Fx Kj \ j 1 2 3 Fy Kj \ j 1 2 3
 1 2 2 5 1 1 0 3
 2 3 1 0 2 2 1 0
 3 0 2 0 3 0 2 0

Table 3.15. The frequencies of covered objects after extraction of the first rule

Fc Kj \ j 1 2 3
 1 0 0 1
 2 1 1 0
 3 0 0 0

Next the objects having 3.1 are extracted (see Table 3.13) and the frequencies for
X and Y over the extracted data are found (see Table 3.14). The frequencies of
covered objects (Fc) are given in Table 3.15.

In Table 3.14 we can see two potential rules, (3.1) with 2.2 and (3.1) with 2.3.
Looking into Fc (Table 3.15) we see that 2.2 has equal frequency here indicating
that the object(s) containing factor 2.2 is(are) already covered by the found rules.
Therefore 2.2 does not produce a new rule (rule 3.1&2.2=1 would be redundant
covering the same object as rule 2.2=1). The factor 2.3 is suitable for completing
a rule, its frequency in Fc is smaller than 2. So, the second rule is 3.1&2.3=2
(Eyes.blue&Hair.blondClass.+), it covers objects 3 and 6.

The two rules we have found cover all the objects belonging to Y. We detect it
turning back to the initial level and comparing initial Fy with Fc (after extraction
of the last rule – see Table 3.16): all the frequencies in both tables are equal.

Table 3.16. The frequencies of covered objects after extraction of the second rule

Fc Kj \ j 1 2 3
 1 1 0 3
 2 2 1 0
 3 0 2 0

This time the found rules

 Hair.red Class.+ (1 object)
 Eyes.blue&Hair.blondClass.+ (2 objects)

do not intersect. In the given data set it is possible to describe class “+” by non-
intersecting rules that do not contain any redundancy.

100

Generally the presented algorithm finds one non-additive system of accurate rules
(for given X and Y). Compared to the approaches that find only non-intersecting
rules (i.e. additive systems) the number of rules is not bigger (usually it is smaller)
and the rules are shorter also. The ability to detect a contradiction is also valuable.

However, there is no guarantee that the extracted system of rules is the shortest
(with a lowest number of rules). Realizing the algorithm it is possible to apply
several different principles for selecting the next factor and thus to get different
results, one possibility is to let the user make the decision.

3.2.6 Determinative set of rules

Instead of finding one system of rules, it was good to find all non-redundant rules
and then combine different covers (rule sets) from them. For that purpose we need
an algorithm that produces (at least) all non-redundant rules as well as a procedure
for eliminating redundant rules (if the result of the algorithm contains them).

DSR – the set of non-redundant rules defined in this subchapter – gives a source
for post-processing the rules. An algorithm for finding all non-redundant rules
will be presented in the next subchapter (3.2.7).

We are interested in possibly short rules. If there are two accurate rules

 Eyes.blue & Hair.dark Class.‒ (C = 40%; 2 objects)
 Hair.dark Class.‒ (C = 60%; 3 objects)

we prefer the second one. It covers the two objects covered by the first rule plus
one more object. We say that the first rule is contained in the second one or it is
a subrule of the second rule. Comparing their left sides, the first one is longer
containing all the factors of the shorter rule and some additional factors. Having
such rules we consider the longer one to be redundant.

Let a table X(N,M) be given and a set B of all possible rules describing (only) the
class Y and each rule in B is presented only once.

The Determinative set of rules (DSR) for class Y consists of all rules which are
not contained in other rules of B.

B = Ri, i=1, 2,..., K, where K is a number of all possible rules describing (only)
the Class Y. Ri Rj, i j.

DSR = Ru. Ru DSR if there Ri B, Ru Ri, i u. DSR B

It means that DSR does not contain subrules of its rules. To get DSR from B we
have to throw out all subrules of rules. We call this process „rule set
compression“.

Example. Let B contain 4 rules (all possible rules for Y = (Class =1)):

 r1: IF T1=1 & T2=1 THEN CLASS=1

101

 r2: IF T1=1 & T3=2 THEN CLASS=1
 r3: IF T2=1 THEN CLASS=1
 r4: IF T3=2 THEN CLASS=1

As we see, the rule r1 is contained in r3 and r2 is contained in r4. According to
the definition DSRB = r3, r4.

The main features of DSR are:

1. there are no redundant attributes (zero factors) in rules,
2. the same object in the class Y can be described by several rules.

Such compression can be applied either during the work of the main algorithm
(that finds the potential DSR rules), each time a new rule is found, or as a separate
step after the main algorithm. In order to facilitate compression the following
aspects could be taken into account:

 The redundant rule is longer (i.e. its left side contains more factors) than
the one that forces it out;

 Its left side contains all the factors of the shorter one;
 Its frequency (support) is than this of shorter one;
 Both rules describe the same class;
 The longer (redundant) rule is always found before than the shorter one.

The last property is characteristic to MS algorithms (and likely to other
algorithms as well). After finding the rule Hair.darkClass.‒ the possible rule
Hair.dark&Eyes.blueClass.‒ is not found, but the rule Eyes.blue&Hair.dark
Class.‒ can be found (only) before finding the rule Hair.darkClass.‒.

The presence of the non-redundant rules (that belong to DSR) has to be
guaranteed by the algorithm used for finding the rules. The compression
procedure can be applied to the rule set regardless it contains all needed rules. If
it does not, then the result cannot be the expected one.

Our algorithm for finding all the rules needed for getting DSR is given in the next
section (3.2.7). It finds possibly few redundant rules.

On the basis of DSR we can form and solve the following tasks – to find:

1. the shortest rules (by rank48),
2. the longest rules (by rank),
3. the rules with specific features (for example, all rules of the rank r in

DSR),
4. the shortest rule system (i.e. the rule system with the smallest number of

rules),
5. the rule system which consists of rules with minimal ranks,

48 the number of attributes in the rule

102

6. all the rule systems we can form on the basis of DSR.

Tasks 1-3 are easily solvable, but tasks 4-6 are essentially system covering tasks
and they are NP-complex tasks.

These tasks are important for post-analysis of rules giving several new
possibilities for experimentation with several rule sets (subsets of DSR) and for
describing them. We must not try to minimise the rule set during the work of a
rule finding algorithm, we can find the best solution during the post-analysis of
DSR.

Using DSR and the post-analysis of rules also gives a possibility to gather
statistics about the use of rules for classification in order to analyse the rules’
perspective and their power of classification. We can see which rules classify
more accurately and which do not on the basis of the information we have about
classified (test-set and real) objects. On this basis we can reorder the rules in the
rule set. DSR is a good basis for developing this approach.

Finding DSR is laborious, especially in cases of large amounts of data. The user
can decide whether it is reasonable. If the purpose is a quick one-time information
gathering about a data set under analysis then the use of DSR-based approach
may not be the best one. But if the purpose is to describe the data set and through
that discover new knowledge and get an opportunity for post-analysis of the rule
set then this approach is a good solution.

We have extended this DSR-approach so that the rules for all existing classes are
found, solving thus the multiple-concept learning task (Kuusik & Lind, 2012).
Having applied the before described compression to the results of our different
ML algorithms (Kuusik & Lind, 2012), (Roosmann, Võhandu, Kuusik, Treier, &
Lind, 2008) the results are identical – from that observation the idea for DSR
comes.

Although DA rules are not association rules, we can compare our DSR to the non-
redundant association rules (see 2.4.2.1). Zaki defines non-redundant rules as
those that have minimal antecedents and consequents, in terms of subset relation;
Bastide et al – as the rules with minimal antecedent and maximal consequent. In
case of DA rules the right side of the rules is not a subject to comparison, only
the rules with equal right side (i.e. describing the same class) are compared. Thus
the left sides of DA rules are compared. Both approaches to non-redundant
association rules prefer shorter left sides (minimal antecedents), the same is true
for our DSR.

3.2.7 Algorithm for finding all possible shortest rules

As said before, DSR (3.2.6) is a basis for forming different sets (systems) of rules.
Here we present a MS based algorithm that finds all rules needed for DSR and

103

some redundant rules49 (that are eliminated by compression). The rules can
intersect, regardless of how many times the objects are covered. Redundancy
(zero factors) in the rules is avoided as much as possible by the nature of the
algorithm. Differently from the previous 3D-algorithm (in 3.2.5) it uses usual
backtracking (while the former turns back to the initial level), does not track the
coverage of objects and uses elimination technique “bringing zeroes down” from
MONSA (2.6.1).

This is a depth-first-search algorithm that makes subsequent extracts of objects
containing certain factors. At each level first of all the rules (of that extract) are
detected and then factors for making extracts of the next level are selected one by
one.

The algorithm uses frequency tables for Xt (all objects of current extract) and Yt
(objects belonging to observable class of current extract), Fxt and Fyt accordingly.
If there are equal frequencies in both frequency tables for some factor then this
factor completes a rule. The rule includes also the factors chosen on the way to
that extract.

The selection criteria for choosing the next factor are based on frequencies, the
maximal frequency in Fyt. In case of equal maximal frequencies in Fyt the one
having lower frequency in Fxt is preferred. If only one attribute (of the extract)
has free (unused) value(s) (indicated by frequencies over zero in Fy) then it is not
practical to make a next (further) extract because there would be no free factors
to distinguish objects of different classes in that extract. If there are no free factors
(i.e. no frequencies over zero) then obviously it is not possible to make a next
extract. In both cases the algorithm backtracks to the previous level.

Each factor that is used for making an extract or completing a rule is set to zero
in the corresponding Fy. Each Fy (except for the initial level) inherits all zeros of
the previous level (we call it “bringing zeroes down”). These zeroing techniques
prevent many redundant extracts and rules without losing the rules of DSR.

The pseudocode of the algorithm is given below.

Algorithm
Determine tables X and Y
S0. t:=0; Ut:=
S1. Find frequencies in tables Xt and Yt: Fxt, Fyt

If t>0 then
For each factor A such that Fyt-1(A)=0

Fyt(A):= 0
S2. For each factor A such that Fyt(A)=Fxt(A)

output rule {Ui}&A, i=0,…,t; Fyt(A):= 0
S3. If not enough free factors for making extract then

If t=0 then Goto End

49 The rules that are contained in some other rules are considered redundant (see 3.2.6).

104

Else t:=t-1; Goto S3
S4. Choose a new (free) factor Ut

Fyt(A):= 0
t:=t+1; extract subtable of objects containing Ut;
Goto S1

End. System of rules is found

Compared to the first algorithm for finding intersecting rules (in section 3.2.5)
the differences are following:

 The coverage of the objects (Fc) is not tracked;
 It does not turn back to the initial level after extraction of a rule;
 It uses elimination technique “bringing zeroes down” (similarly to

MONSA – see 2.6.1);
 The contradictions are not detected.

Next an example using Quinlan (1984) data is presented. Here we will repeat its
numeric representation (Table 3.9), the used coding is in Table 3.8 (p. 97).

The initial data table is given in Table 3.17. Let X is X(8,3), Xij = 1,...,3 and Y=4.2
{Yi: 3,4,6} (i.e. class “+”). The frequencies of attributes’ values for X and Y (Fx
and Fy accordingly) are given in Table 3.18.

Table 3.17. The initial data table

i \ j 1 2 3 4
1 2 1 1 1
2 1 1 1 1
3 2 3 1 2
4 2 2 1 2
5 2 3 2 1
6 1 3 1 2
7 1 3 2 1
8 2 1 2 1

Table 3.18. The frequencies for X and Y

Fx Kj \ j 1 2 3 Fy Kj \ j 1 2 3
 1 3 3 5 1 1 0 3
 2 5 1 3 2 2 1 0
 3 0 4 0 3 0 2 0

For factor 2.2 (Hair.red) the frequencies in Fx and Fy are equal which means that
all objects having 2.2 belong to Y. Hence we get a rule R1: 2.2=1 (Hair.red). The
frequency after “=” shows that the rule covers one object (namely object 4) – this
is an additional information. The frequency of 2.2 is set to zero in the current Fy

105

to avoid using it as a basis for making next extract(s). The current state of the
frequency tables is given in Table 3.19.

Table 3.19. The frequencies for X and Y after extraction of the first rule

Fx Kj \ j 1 2 3 Fy Kj \ j 1 2 3
 1 3 3 5 1 1 0 3
 2 5 0 3 2 2 0 0
 3 0 4 0 3 0 2 0

Now we have to choose a factor for making a next extract. The factor with the
biggest frequency in Fy – 3.1 (Eyes.blue) is selected. An extract (subtable of the
table X) by 3.1 is shown in Table 3.20 and the corresponding frequency tables in
Table 3.21.

Table 3.20. Extract by 3.1

i \ j 1 2 3 4
1 2 1 1 1
2 1 1 1 1
3 2 3 1 2
4 2 2 1 2
6 1 3 1 2

Table 3.21. The frequencies of extracted data

Fx Kj \ j 1 2 3 Fy Kj \ j 1 2 3
 1 2 2 5 1 1 0 3
 2 3 0 0 2 2 0 0
 3 0 2 0 3 0 2 0

Every frequency table for Y (Fy) inherits all zeroes of the previous level
(“bringing zeroes down”), to avoid repetitious extracts and redundant rules.
Therefore the actual frequency of 2.2 in Fy (=1) is replaced by 0. If this frequency
was not set to zero we would find the rule 3.1&2.2=1 which is a subrule of the
already found rule 2.2=1. From the current extract we find the rule R2: 3.1&2.3=2
(Eyes.blue & Hair.blond). The frequency of 2.3 is set to zero after that.

Now all the frequencies over zero (in Fy) – 1.1 and 1.2 – are in the same column
(attribute). Making an extract by any of these factors cannot give a rule because
there are no attributes to use for distinguishing between different classes at the
next level. Therefore the algorithm goes back to the previous level (that is the
initial level).

The frequency table Fy of that level (see Table 3.22) has got two zeroes already:
2.2 has been set to zero when the rule with it was extracted and 3.1 has been set

106

to zero due to being the basis for extract. In Fy there are two factors with maximal
frequency (=2): 1.2 and 2.3. Their frequencies in Fx are different, we choose the
one with smaller frequency in Fx: factor 2.3 (Hair.blond). The extract by 2.3 is in
Table 3.23 and its corresponding frequencies in Table 3.24.

Table 3.22. The frequencies of the initial level

Fx Kj \ j 1 2 3 Fy Kj \ j 1 2 3
 1 3 3 0 1 1 0 0
 2 5 0 3 2 2 0 0
 3 0 4 0 3 0 2 0

Table 3.23. Extract by 2.3

i \ j 1 2 3 4
3 2 3 1 2
5 2 3 2 1
6 1 3 1 2
7 1 3 2 1

Table 3.24. The frequencies of extracted data

Fx Kj \ j 1 2 3 Fy Kj \ j 1 2 3
 1 2 0 0 1 1 0 0
 2 2 0 2 2 1 0 0
 3 0 4 0 3 0 2 0

There are no equal frequencies (over zero) in these frequency tables (Table 3.24).
Again, all usable (non-zero) factors in Fy (1.1 and 1.2) come from the same
attribute and therefore it is not reasonable to make an extract by any of them. The
algorithm backtracks to the initial level (see Table 3.25) where again, all non-
zero frequencies (in Fy) are in the same column. The algorithm finishes its work.

Table 3.25. The frequencies of the initial level

Fx Kj \ j 1 2 3 Fy Kj \ j 1 2 3
 1 3 3 0 1 1 0 0
 2 5 0 3 2 2 0 0
 3 0 0 0 3 0 0 0

During the work two rules have been found:

 R1: 2.2=1 (Hair.redClass.+)
 R2: 3.1&2.3=2 (Eyes.blue & Hair.blondClass.+)

107

From this very small data set we did not find any redundant rule. An example
with bit bigger data from which some redundant rules are found also is given in
(Kuusik & Lind, 2011) where we presented this algorithm and DSR approach.

The presented algorithm finds all needed non-redundant rules and additionally
some redundant rules that can be eliminated afterwards in order to get DSR.

In the extended version of this algorithm that finds the rules for all existing classes
(Kuusik & Lind, 2012), for each class its Fy is used and the rules are detected for
all classes intermittently.

3.2.8 Types of zero factors

Dealing with redundancy we found two different types of zero factors. Making
the difference is important for showing the relation of zero factors (of DA) with
the elements between closed set and its generator (see 3.1.5). Here we will
introduce different types of ZF, the relations with CSs and generators will be
shown in 3.2.9.

We have found that there are two types of zero factors:

1. the ones with zero contribution to the completeness (ΔC=0) that do not
change the rule’s coverage (set of covered objects) and frequency (the
number of objects it covers) and

2. the ones with negative contribution to the completeness (ΔC<0) that
decrease the rule’s frequency.

We will call them zero-zero factors and zero-negative factors, accordingly.
Recall that zero factor means a factor with zero contribution to the accuracy
(ΔA=0), so the accuracy of the rule does not change in either case.

The two different systems of accurate rules found by step-by-step approach (see
3.2.1, p. 90) are:

 A1: Height.tall&Hair.red Class.+ (C = 1/3)
 A2: Height.short&Hair.blond&Eyes.blue Class.+ (C=1/3)
 A3: Height.tall&Hair.blond&Eyes.blue Class.+ (C = 1/3)

and

 B1: Hair.red Class.+ (C = 1/3)
 B2: Hair.blond&Eyes.blue Class.+ (C = 2/3)

An example of zero-zero factor is factor Height.tall in the rule A1 (with
completeness 1/3), because the rule without it (B1) has the same completeness
(both rules cover exactly the same objects).

Height.short in A2 and Height.tall in A3 are zero-negative factors. If either of
them is added into the rule B2 then the completeness of the rule decreases from

108

2/3 to 1/3. This negative difference (1/3–2/3) is the factor’s contribution to the
rule’s completeness. A2 and A3 are subrules of B2.

3.2.9 Relations of DA rules with closed sets and generators

Relating DA rules with closed sets and generators gives us possibility to define
non-redundant rule based on these concepts. We have already shown the
correspondences between concepts used in ARM and in MONSA (in 3.1.2), thus
now we can relate DA and MONSA in order to use the latter to produce DA rules
(3.2.10).

Before we will show how zero factors and DA rules relate to closed sets and
generators, recall these concepts (introduced in 2.4.1.1).

In frequent itemset mining an item is a binary attribute that can be either present
or not in a transaction (a database record). For example, in market basket
databases the items represent purchased goods. Extending the concept to multi-
valued attributes, an item is a certain attribute with a certain value from the set of
different possible values for that attribute. For example, in case of a market basket
database, instead of “bread” there can be either “black bread“ or “white bread”
(i.e. attribute “bread“ with either value). Such an item corresponds to a DA factor.

A closed (item)set is the maximal set of items common to a set of objects
(Pasquier, Bastide, Taouil, & Lakhal, 1998), it has no superset with the same
support (i.e. frequency) (Zaki & Hsiao, 2002). Adding whichever item decreases
its coverage and frequency. For example, one of the closed sets in Table 2.7 is
Hair.blond&Eyes.blue&Class.+ with frequency 2. If we add Height.short or
Height.tall to this itemset, then the frequency changes and the resultant itemset is
not the same closed set anymore.

A closure is the smallest (minimal) closed itemset containing the given itemset
(Bastide, Taouil, Pasquier, Stumme, & Lakhal, 2000) i.e. the itemset’s maximal
superset with the same frequency. For example, the closure of Hair.red
(frequency=1) is Height.tall&Hair.red&Eyes.blue&Class.+ (frequency=1). A
closed set is the same as its closure.

A (minimal) generator of a closed set is an itemset with the same closure and
with no proper subsets with the same closure (Bastide, Pasquier, Taouil, Stumme,
& Lakhal, 2000). Taking away whichever item increases its coverage (and
frequency). For example, Hair.blond&Eyes.blue with frequency 2 is a generator
of the closed set Hair.blond&Eyes.blue&Class.+ with a frequency of 2. Taking
away either Hair.blond or Eyes.blue from the generator gives us an itemset with
bigger frequency and thus with different closure.

If the number of items in a closed set and its generator differs more than by one
then also the sets between the minimal generator and the closed set can be used
for generating a closed set and can be called generators (for example, itemsets

109

between Hair.red and Height.tall&Hair.red&Eyes.blue&Class.+). However,
mostly “generator” means the minimal generator.

A closed set can have more than one minimal generator. For example, the closed
set Hair.blond&Eyes.blue&Class.+ has two (minimal) generators:
Hair.blond&Eyes.blue and Hair.blond&Class.+.

A closed set or a generator is said to be frequent if its frequency is more than or
equal to a given threshold. If the frequency threshold is 2, then
Height.tall&Hair.red&Eyes.blue&Class.+ and its generators are infrequent
(frequency=1); Hair.blond&Eyes.blue&Class.+ and its generators are frequent
(frequency=2).

Now we can turn to the relations.

A closed set is the maximal set of items common to a set of objects and its
(minimal) generator is a minimal set of items common to that set of objects.
Between the closed set and its generator there are such items, the addition or
removal of which does not change the coverage and frequency of the itemset.
Those items are similar to zero-zero factors that do not change either the accuracy
or the completeness of the DA rule. Just the class-belonging usually is not
observed in case of closed sets. Consequently, in order to avoid zero-zero factors
the left side of the rule has to be a minimal generator.

Minimal generators do not contain zero-zero factors, but they can contain zero-
negative factors. For example, the generator Height.tall&Hair.blond&Eyes.blue
determines Class.+ (i.e. rule A3 (in 3.2.8): Height.tall&Hair.blond&Eyes.blue
Class.+), but Height.tall is a zero-negative factor, because Hair.blond&Eyes.blue
is enough to determine Class.+ (rule B2: Hair.blond&Eyes.blueClass.+).
Height.tall decreases the rule’s completeness by 1/3 (from 2/3 to 1/3). Thus, if a
generator produces a rule (generatorclass) then the rules with super-generators
of that generator contain zero-negative factors and are redundant.

Therefore, for class detection we need such (minimal) generators that define a
class and have no such subset that defines a class.

In case of non-classified data, elements between CS and its generator correspond
to zero-zero factors (in that context we call them just zero factors – as in 3.1.5).
Elements/items/factors that would decrease the frequency of the current itemset
(when added), could be seen corresponding to zero-negative factors (we do not
use such name). Without classification such “zero-negativity” does not mean
redundancy as well as being zero-zero factor is not redundancy when the CSs are
searched for (CSs are found according to frequency threshold). Actually, “zero”
factor (in DA) is a factor that does not change the accuracy (the ratio of two
frequencies) of DA rule. CSs do not have accuracy (as they do not have a
consequent part); in case of CSs just the frequency changes or not (when some
element/factor is included into it).

110

3.2.10 Zero Factor Free DA

Here we will present a new approach to DA that finds non-redundant rules for all
classes (not for one target class only) and additionally positive and negative
association rules (at the same time). For the same antecedent three types of
consequents can be found. For example, from “has a cow” we can conclude that
the person belongs to the class of “rancher” (classification rule), “lives in the
country” (positive association rule) and “is not a frequent traveller” (negative
association rule): “has a cow” “is a rancher” AND “lives in the country” AND
(NOT “is a frequent traveller”).

Corresponding algorithm is based on MONSA and its developments. In 3.2.9 we
reached a conclusion that the left side of DA rule has to be a (minimal) generator
(in order to contain no redundancy). We have already a MONSA-based algorithm
for finding all generators with their closed sets (3.1.6) and excluded factors
(3.1.7) as well as algorithm that integrates classes into MONSA (3.1.8). From the
algorithm for finding generators (together CSs and EFs) we leave out gathering
ECs and add the possibility to detect a class. DSR-compression (3.2.6) is used to
remove some redundant generators (from classification rules).

From minimal generators that define a class, we can build rules IF minimal-
generator THEN class (min-genclass). In this case we get the rules with zero-
factor-free (ZFF) left sides and therefore we call our approach Zero Factor Free
DA (ZFF DA).

Zero-zero factors that have to be left out from the left side of the rule can be
moved to the right side – the conclusion part: IF minimal-generator THEN zero-
zero-factors (min-genzero-factors). Used this way they show which factors are
accompanied by which factors. For example, an itemset Height.tall&Hair.red (the
left side of the rule A1 in 3.2.8, p.107) contains a zero-zero factor Height.tall.
Moving this factor from the left side to the right side we get an accurate rule
Hair.red Height.tall:

A(Hair.red Height.tall) = n(Hair.red&Height.tall) / n(Hair.red) = 1/1 =1.

This rule informs us that everyone having red hair is tall (the rule with so low
support as here (=1) is not the best example, of course). Such a rule is an exact
association rule (for definition see 2.4.2).

Actually, for Hair.red there are more factors suitable for putting to the right side:
Hair.red Height.tall & Eyes.blue & Class.+. This example reveals an important
observation that a class can be detected the same way as other zero-zero factors.
The difference is that the class attribute(s) is(are) never put on the left side of the
rule, while all other attributes can be present in either of the sides (but not on both
sides in the same rule).

111

Zero-negative factors cannot be moved from the left side to the right side this
way. An itemset Height.short&Hair.blond&Eyes.blue (the left side of an accurate
rule A2 in 3.2.8,) contains a zero-negative factor Height.short. Moving that zero-
negative factor to the right side, we get a new rule – Hair.blond&Eyes.blue
Height.short – that is not accurate:

A=n(Hair.blond&Eyes.blue&Height.short) / n(Hair.blond&Eyes.blue) = 1/2.

In the following, if we use “zero factor” then zero-zero factor is meant.

Additionally, it is possible to construct rules with a negation on the right side,
showing which factors do not occur in the objects covered by the left side of the
rule. We call these factors excluded factors. The form of such rule is: IF minimal-
generator THEN NOT excluded-factor (min-genNOT excl-factor). For
example, Eyes.brownNOT Hair.red. In case of more than one excluded factor
each of them is negated separately: (NOT excl-factor1) AND (NOT excl-factor2)
[AND …].

Only such attributes are considered that do not provide any other factor in the
same rule. For example, if holds Hair.red Eyes.blue, then true rule(s) Hair.red
 NOT Eyes.brown (and thinkable Hair.red NOT Eyes.green if there were
some persons with green eyes) is(are) not produced, because we can deduce
ourselves that persons with red hair do not have brown (or green) eyes (because
they all have blue eyes).

Among excluded factors (of the same rule) more than one value of the same
attribute can be present while for the two previously presented rule types (having
non-negated items on the right side), for each used attribute only one possible
value can be included. Our little data table does not contain any suitable example.
Suppose that there were four possible eye colours: blue, brown, green and grey.
Then it was possible that read-haired persons had either blue or grey eyes. In such
case a negative rule for other eye colours – Hair.red NOT Eyes.brown AND
NOT Eyes.green – was formed, otherwise not. Attributes with less than three
different values cannot appear among excluded factors.

Zero factors devolve from more general rule to more specific rules: if holds AB
then holds A&CB as well. We will give an example where the zero factor is a
class. For example, holds Eyes.brownClass.‒ and also more specific rule
Eyes.brown&Height.tallClass.‒ (that is a redundant rule being a subrule of
another classification rule).

Generally such inheritance is true for excluded factors as well, but not in case
when an attribute (presented among excluded factors) goes to the constitution of
closed set i.e. either generator or zero factor (because we do not consider factors
from those attributes as excluded factors). For example, holds a rule
Height.shortNOT Hair.red. For Height.short&Eyes.brown we find a zero

112

factor Hair.blond and get the rule Height.short&Eyes.brownHair.blond. In
such case other hair colours (incl. red) are excluded (by logic) without
considering them as excluded factors. When attribute Hair is included into the
generator (Height.short&Hair.blond or Height.short&Hair.dark) then again all
other hair colours are obviously excluded.

Our ZFF DA offers three types of rules, having a minimal generator on the left
side, but with different right sides:

1. Classification rule:
IF minimal-generator THEN class (min-genclass)

2. (Positive) Association rule:
IF minimal-generator THEN zero-zero-factors (min-genzero-factors)

3. Negative association rule:
IF minimal-generator THEN NOT excluded-factor
(min-genNOT excl-factor)

For the same minimal generator all three types can be combined into a single rule:

IF minimal-generator THEN class [AND zero-factor(s)] [AND NOT excluded-
factor(s)]
where more than one zero factors are connected by logical conjunction (AND)
and excluded factors are negated singly before connecting by conjunction:

(NOT excluded-factor1) AND (NOT excluded-factor2) [AND …] .

Next we present an algorithm for producing zero-factor-free rules – all three
types. The algorithm is based on finding generators. For each generator it is
possible to detect the difference with its corresponding closed set i.e. zero-zero
factors, a possible class among them, and to find excluded factors (from the
attributes that are not contained in that closed set) as well. Finding of all needed
generators is guaranteed. The majority of their unwanted supergenerators
(containing zero factors) can be avoided, the remaining part is excluded by
compression of the initial result (after the main algorithm).

Supergenerators of other minimal generators are considered redundant only for
the classification rules (the first type). In case of association rules (both positive
and negative i.e. types 2 and 3) the support threshold (minimal allowed
frequency) limits the depth of such rules. In our algorithm, we also stop going
further (with association rules) when we have found a classification rule. For
example, if we have found a rule Eyes.brownClass.‒(AND NOT Hair.red) we
will not investigate whether there is any zero factor or excluded factor for
Eyes.brown&Hair.dark (that actually has zero factors Height.tall and Class.‒) and
other supergenerators of Eyes.brown (Eyes.brown&Hair.blond, Eyes.brown&
Height.tall, Eyes.brown&Height.short).

113

3.2.10.1 Description of the Algorithm (of Zero Factor Free DA)

This is a depth-first search algorithm that makes subsequent extracts of objects
containing certain factors. From the root to the leaves (of search tree), the
frequencies of extracts always decrease. Each extract is determined by a
generator. Each generator is found only once.

The algorithm uses frequency tables that show for each attribute the frequencies
of all its possible values (in the set of objects for which it is found).

The frequencies (in the frequency table) can be equal to or smaller than the
current (“leading”) frequency (the number of the objects in the current extract).
Equal frequency shows that all objects of the extract contain that factor. For each
attribute, there can be at most one frequency equal to the leading one, in such
case all other frequencies for that attribute are zeroes. Factors with such frequency
are zero-zero factors (in the current extract).

Detecting whether the generator determines a class is analogous. If for the class
attribute one value has a frequency equal to the leading one (and others are
zeroes), then all objects of the extract belong to that class.

In addition to class and zero factors “excluded” factors can be detected. Excluded
factor is a factor that is not presented in the current set of objects, but does exist
in the initial data set. Only such attributes are considered that do not participate
in the generator and zero factors (i.e. closed set).

In order to prevent finding supergenerators (subrules) of the current generator
(rule) the algorithm backtracks after detecting a class. Only such supergenerators
can be avoided that are not found yet.

If no class was detected (objects of the extract belong to different classes) then
we can check for a possibility to find any classification rule from the current
branch (of the search tree). This is possible when at least one of the class values
has a frequency bigger than or equal to the given threshold. Otherwise the
algorithm can backtrack (if desired).

If the check(s) has(have) a positive result then the next factor to be included into
the generator (left side of the rule) is selected by the frequency (from the
frequency table). Its frequency has to be smaller than the frequency of the current
extract and bigger than or equal to the given frequency threshold. The first
condition prevents the inclusion of zero-zero factors (of the current extract), the
second one is usual in mining frequent sets and rules. In order to find minimal
generators only (not the ones between a minimal generator and closed set), the
minimal one of suitable frequencies is chosen. If there is more than one factor
with such frequency, just one of them is selected. The chosen factor together with
the previously selected factors of the same branch forms a generator and
determines a narrower (than the current) set of objects.

114

In order to avoid repeatedly finding already found generators, the frequency of
the selected factor (the “leading” factor) is set to zero in the current frequency
table. Before selecting the next leading factor, those zeroes are “brought down”
from the frequency table of the previous level to the current level (except for the
initial level).

The following notation is used in pseudocode of the algorithm:

X0 – initial data table (objects*attributes);

FirstFT – initial frequency table (values*attribtues);

attr – number of attributes (excluding class);

cl– class attribute;

t – number of the step (or level) of the recursion;

Xt – set of objects (extract) at level t;

FTt – frequency table for a set Xt;

V – „leading“ frequency i.e. frequency of extract;

gent – generator at level t;

noclass – the truth-value of whether the class is detected for gent;

classpot – the truth-value showing whether there is a possibility to find any
classification rule from further extracts;

gclass – class value of gent;

zft – zero factors (regarding gent);

excl – excluded factors (regarding gentzft);

minfr – frequency threshold (minimal allowed number of covered objects);

Factors are given as valueattribute;

Assignments are indicated by “” (“=” is for comparison).

The pseudocode of the algorithm is given below.

Algorithm for finding minimal generators with zero factors,
excluded factors and class
Given: X0 , minfr >0
A1. t0 ; gen0{} ; zf0{}
A2. find FT0
A3. FirstFTFT0
A4. FOR EACH factor hf=1,…,attrFT0 with frequency V=min

FT0[hf]minfr DO

115

A5. FT0[hf]0
A6. make_extract(t+1; hf; V)
 NEXT
End of Algorithm
PROCEDURE make_extract(t; hf; V)
B1. gentgent-1hf
B2. zftzft-1 ; excl{} ; gclass0 ;

noclasstrue ; classpotfalse
B3. separate submatrix XtXt-1 such that Xt={XijXt-1

X.f=hf}
B4. find FTt
B5. IF exists value clv such that FTt[clvcl]=V THEN
B6. gclassclv ; noclassfalse
B7. ELSEIF exists value clv such that FTt[clvcl]minfr THEN
B8. classpottrue
 ENDIF
B9. FOR EACH empty position p (p1,…,attr) in gent DO
B10. IF exists value h such that FTt[hp]= V THEN
B11. zftzfthp
B12. ELSE
B13. FOR EACH value v (of attribute p) DO
B14. IF FTt[vp]= 0 THEN
B15. IF FirstFT [vp]> 0 THEN
B16. exclexclvp
 ENDIF
 ENDIF
 NEXT
 ENDIF
 NEXT
B17.output gent, zft, gclass, excl, V
B18.IF V>minfr AND noclass AND classpot THEN
B19. ZeroesDown(t)
B20. FOR EACH hu=1,…,attrFTt with frequency

V2=min FTt[hu]minfr and V2<V DO
B21. FTt[hu]0
B22. make_extract(t+1; hu; V2)
 NEXT
 ENDIF
END PROCEDURE
PROCEDURE ZeroesDown(t)
C1. FOR EACH factor hu=1,…,attrFTt with frequency >0 DO
C2. IF FTt-1[hu]=0 THEN FTt[hu]0
 NEXT
END PROCEDURE

116

The initial data table X0 and the frequency threshold minfr are given. The main
program starts with initial assignments for a level of recursion t, the empty
generator gen0 and the empty set of zero factors zf0 (step A1). Next the
frequency table FT0 for X0 is found (A2) and this initial state is stored in
FirstFT (A3). In step A4 each factor with a suitable frequency (minfr) is
chosen as a leading factor (for inclusion into generator) in ascending order (by
frequencies). The frequency of the leading factor hf is set to zero in the frequency
table FT0 (A5) and an extract by hf is made (A6).

While the main program makes extracts from initial data, the recursive procedure
make_extract handles all deeper levels. It starts with evaluating the current
generator gent (B1) and giving initial values for the set of zero factors zft, the
set of excluded factors excl, class value gclass of current generator, truth-
value noclass for indicating whether the class is found and truth-value
classpot for indicating whether a class can be found from subsequent extracts
(B2). Next the subset of objects Xt is extracted by the leading factor hf (B3) and
the corresponding frequency table FTt is found (B4).

In B5 we check whether there is a value clv of class attribute cl with a
frequency equal to the leading one V. If equal frequency is found, then the
generator gent determines a class and in B6 its class value gclass and indicator
noclass are evaluated accordingly. Otherwise we make sure whether there is
at least one class value with a frequency minfr (B7). In such case there is a
potential to find a classification rule(s) from subsequent extracts and indicator
classpot is evaluated accordingly (B8).

Step B9 goes through all empty positions (attributes without value) in current
generator gent (as a vector) and B10 searches for the value (of that attribute)
with frequency a equal to the leading one V. If one exists, it is a zero-zero factor
(regarding gent) and it is included into the set of zero factors zft (B11).

In case when there is no value with leading frequency for position p (B12), we
will look for its value with zero frequency (B13-B14). There can be more than
one of them. If such element exists (has a non-zero value in FirstFT – step
B15) then it is an excluded factor and we add it into the set of excluded factors
excl (B16).

In step B17 the generator is outputted together with its frequency, possible zero
factors, excluded factors and class. Several conditions can be applied to decide
whether to output the current generator or not – this is a possibility to leave out
generators without a class and/or without zero factors (or without new zero
factors at that level). If zft is not empty, the rule IF gent THEN zft can be
produced. If a class was detected then the rule IF gent THEN gclass can

117

be produced. If excl is not empty, the rule(s) IF gent THEN NOT excl can
be produced.

Step B18 checks the suitability of making a subsequent extract. If the frequency
V is above the threshold minfr, then there is a possibility to find frequency that
is <V and minfr. If a class is not found (noclass=true), but there is hope
to detect it from the subsequent extracts (classpot=true) by a longer
generator(s), then we can proceed. The last two conditions can be left out if
needed.

If that check (in B18) gives a positive result, then the zeroes from the frequency
table of the previous level are “brought down” (B19). The procedure
ZeroesDown goes through the current frequency table and for each factor with
a frequency over zero (C1) its frequency at the previous level is checked (C2). If
the latter is zero, then the factor gets a zero frequency at the current level as well
(C2).

Step B20 goes through all factors that are suitable for subsequent extract i.e. with
frequency smaller than the leading one (in order to prevent including zero-zero
factors) and greater than or equal to the given frequency threshold minfr. Again
the order is ascending. The frequency of the selected next factor hu is set to zero
(B21) and a recursive call to procedure make_extract is made with a new
leading factor hu and its frequency V2 (B22).

Note on inheritance of excluded factors. Although excluded factors generally
devolve from higher level to deeper levels, there are two reasons not to evaluate
the corresponding variable excl by its value from the previous level (as we do
for zf that holds zero factors). First, as pointed out before (p.111), when an
attribute presented among excluded factors goes to the constitution of closed set,
it is not considered as excluded factor any more. Second, for each attribute there
can be more than one values that are excluded and the number of them can grow
at each deeper level, thus we need to check that attribute anyway.

After the main algorithm a compression takes place. DSR-compression is suitable
for the rules with identical right side. In existing realisation (by Jõgiste) only
generators with class are compressed and DSR (see 3.2.6) for each class is got.
Trying to compress association rules (both positive and negative) as well,
additional problems can occur. We have to take into account the fact that for each
generator there can be three different types of conclusions (consequents). The
safest option is to compress only those for which all three are identical. But in
case of excluded factors we should remind that some attributes can be left out due
to belonging to the closed set. Also, comparing either zero factors or excluded
factors might be technically more difficult depending on how this information is
stored (because there are usually more than one factor in such set).

118

If we tried to compress generators without class, zero factors and excluded factors
(i.e. without the consequent part of rules), then only single-item generators out of
them remained.

This algorithm is realized in a master’s work of Liisa Jõgiste (2014) in a bit
different version: without inheritance of zero factors and without checking
whether the current branch can give any classification rule. This last property is
presented as a suggestion for improving the algorithm in that work.

For choosing a leading factor the author suggests the following procedure (Ibid.,
p.70):

1. Store all the values (>0 and ≥ threshold) from data table in a list or array;
2. Sort the list by using custom sorting conditions (1) value 2) column

number 3) row number, smaller value is always preferred);
3. Always take the first lead factor from a sorted list and then remove it or

mark it used.

In case of non-initial levels “it is also necessary to take into consideration used
lead factors from higher levels to avoid using the same factor twice. This can be
solved by keeping a list of already used factors and checking possible ones against
them.”

Such solution complies with the presented (here) algorithm.

3.2.10.2 Example

In the following example we use data from (Quinlan, 1986). The coding of the
original text values is given in Table 3.26. We use a numerical representation of
these data (see Table 3.27).

The data set consists of 14 objects described by four attributes and class. The
frequency threshold is set to 2.

Next the working of the algorithm (3.2.10.1) is demonstrated.

Table 3.26. The coding of the original text values

Attri-
bute

Outlook Tempe
-rature

Humi-
dity

Windy Class

Code Ou Te Hu Wi Cl
1 sunny cool high true P
2 overcast mild normal false N
3 rain hot

119

Table 3.27. Initial data table

obj Ou Te Hu Wi Cl
1 1 3 1 2 2
2 1 3 1 1 2
3 2 3 1 2 1
4 3 2 1 2 1
5 3 1 2 2 1
6 3 1 2 1 2
7 2 1 2 1 1
8 1 2 1 2 2
9 1 1 2 2 1

10 3 2 2 2 1
11 1 2 2 1 1
12 2 2 1 1 1
13 2 3 2 2 1
14 3 2 1 1 2

Table 3.28. Initial frequency table

FT0 Ou Te Hu Wi Cl
1 5 4 7 6 9
2 4→0 6 7 8 5
3 5 4 0 0 0

Table 3.29. Extract by Ou.2

G1 2 =4
obj Ou Te Hu Wi Cl
3 2 3 1 2 1
7 2 1 2 1 1

12 2 2 1 1 1
13 2 3 2 2 1

Table 3.30. Frequency table for extract by Ou.2

FT1 Ou Te Hu Wi Cl
1 1 2 2 4
2 1 2 2 0
3 2 0 0 0

The initial frequency table FT0 (for initial data) is found (see Table 3.28). From
there the first factor with minimal frequency (threshold) is chosen: Ou.2=4 (i.e.
attribute Ou with value 2 having frequency 4). Its frequency in FT0 is set to zero

120

(indicated by “→0”). Table 3.29 presents the generator Ou.2 and the extract of 4
objects containing it. Generator Ou.2 (indicated by G1) is shown in the first row,
“=4” on the right of the row stands for the frequency (of the generator and
extract). The extract of objects (with header row) follows. Next the frequency
table FT1 for that extract is found (see Table 3.30).

In G1 (Table 3.29) there are 3 empty positions: for attributes Te, Hu and Wi.
None of those columns in FT1 (Table 3.30) contain a frequency equal to the
leading one (=4), thus there are no zero-zero factors for generator G1. There are
no excluded factors as well, because the zeroes in that FT are the same as in the
initial FT (Hu.3 and Wi.3), thus these factors do not exist (in the data) at all. In
the class attribute column there is a frequency 4 for value 1 (and other frequencies
are zeroes), so the generator determines a class (IF Ou.2 THEN Cl.1). The
algorithm backtracks to the previous level, because the class was found. That
prevents finding subrules of the found rule (like IF Ou.2&Te.3 THEN Cl.1).

From the initial frequency table (Table 3.28) the next factor with minimal
frequency Te.1=4 is chosen. Extract by Te.1 (G2) and its frequency table are
given in Table 3.31. This time the empty positions in generator (G2) are Ou, Hu
and Wi. Column Hu contains a frequency equal to the leading one: Hu.2=4. That
factor is a zero-zero factor regarding generator G2 and we get the rule (IF Te.1
THEN Hu.2). Other values of the same attribute are not considered as excluded
factors, although their frequencies are zeroes. In the class column there is no
frequency equal to 4, thus no class is detected by G2.

Table 3.31. Extract by Te.1 and its frequency table

G2 1 =4
obj Ou Te Hu Wi Cl
5 3 1 2 2 1
6 3 1 2 1 2
7 2 1 2 1 1
9 1 1 2 2 1

FT1
1 1 0 2 3
2 1 ↓0 4 2 1
3 2→0 0 0 0

A class was not detected, the leading frequency (=4) is greater than the frequency
threshold and the class column contains a frequency that is bigger than the given
threshold (Cl.1=3) – thus there is a possibility to find a classification rule50 (for

50 If the number of classes is 2 and minfr=2 then there is no real need for such check. If
the leading value is 2 then the program backtracks (line 18) due to this value. In case of
higher leading value: if no class was found (noclass=true) then certainly one of the

121

Cl.1). Therefore, the work continues with “bringing zeroes down”, from the
frequency table of the previous level (FT0) to the current level. At level 0 (see
Table 3.28) the factor Ou.2 was set to zero (indicating that it has been used for
making extracts), this zero comes into the current frequency table FT1 (in order
to prevent possible further extract by that factor) (indicated by “↓0” in Table
3.31).

This frequency table contains some “suitable” frequencies – smaller than the
leading one and greater than or equal to the threshold (i.e. <4 and >=2). The first
(minimal) of them Ou.3=2 is chosen for inclusion into the generator and making
a subsequent extract. At the current level its frequency is set to zero (“→0” in
Table 3.31).

The new generator is Te.1&Ou.3=2 (G3). The corresponding extract with its
frequency table is given in Table 3.32. From the frequency table we find no class
and no new zero-zero factors (in addition to Hu.2 that is inherited from the
previous level). The rule IF Te.1&Ou.3 THEN Hu.2 can be outputted. This is a
subrule of association rule found at the previous level (IF Te.1 THEN Hu.2). If
such output is not wanted then the current set of zero factors has to be compared
to the one of the previous level. In case of no difference the output should be
skipped. (That check is not included into the algorithm presented in 3.2.10.1, it
can be contained in the output procedure.)

Table 3.32. Extract by Te.1&Ou.3 and its frequency table

G3 3 1 =2
obj Ou Te Hu Wi Cl
5 3 1 2 2 1
6 3 1 2 1 2

FT2
1 0 1 1
2 2 1 1
3 0 0 0

As the leading frequency is equal to the threshold (=2) the algorithm backtracks
(because there cannot be any frequency <2 and >=2).

From the previous frequency table FT1 (Table 3.31) the next suitable factor is
chosen: Wi.1=2. The corresponding extract and frequency table are shown in
Table 3.33. From there we find the rule with inherited zero factor: IF Te.1&Wi.1
THEN Hu.2. Again, the output can be suppressed if an appropriate check is
applied. This time we find an excluded factor also (Ou.1=0), that gives a rule IF

frequencies is ≥minfr (if V=3 then frequencies of classes can be 2+1; if V=4 then 3+1 or
2+2). In case of higher minfr this check can have an effect. If minfr=3 and the leading
value V=4 then it is possible that all class frequencies are <minfr (2+2).

122

Te.1&Wi.1 THEN NOT Ou.1. The algorithm backtracks again due to the value
of the leading frequency.

Table 3.33. Extract by Te.1&Wi.1 and its frequency table

G4 1 1 =2
obj Ou Te Hu Wi Cl
6 3 1 2 1 2
7 2 1 2 1 1

FT2
1 0 0 1
2 1 2 1
3 1 0 0

The next choice from FT1 (Table 3.31) is Wi.2=2 (see Table 3.34). This time we
find both class and excluded factor in addition to the inherited zero factor: IF
Te.1&Wi.2 THEN Hu.2 AND Cl.1 AND NOT Ou.2. The algorithm backtracks
because of two reasons: the class is detected and the leading frequency is too low
to make further extracts.

Table 3.34. Extract by Te.1&Wi.2 and its frequency table

G5 1 2 =2
obj Ou Te Hu Wi Cl
5 3 1 2 2 1
9 1 1 2 2 1

FT2
1 1 0 2
2 0 2 0
3 1 0 0

At the previous level (Table 3.31) all the factors with suitable frequencies
(Ou.3=2, Wi.1=2, Wi.2=2) have already been used. The zero factor (Hu.2=4) is
not suitable for making an extract.

The algorithm backtracks to the initial level. Now there are two factors with
“zeroed” frequencies in the frequency table FT0 (Ou.2 and Te.1 in Table 3.27).
No generators containing either of them will be generated during the following
work.

The work continues in the same way. Table 3.35 presents all 39 generators found
by the algorithm together with their frequency, possible class, zero-zero factors
and excluded factors. Generators with inherited zero factors (G3, G4), are not
skipped. Similarly, generators with the same excluded factors as their parent
generator (G8, G9, G10), are listed here.

123

Table 3.35. Minimal generators, class, zero factors and excluded factors with frequency
>1

 Minimal
generator

Frequ-
ency

Class Zero
factors

Excluded
factors

1 Ou.2 4 1
2 Te.1 4 Hu.2
3 Te.1&Ou.3 2 Hu.2
4 Te.1&Wi.1 2 Hu.2 Ou.1
5 Te.1&Wi.2 2 1 Hu.2 Ou.2
6 Te.3 4 Ou.3
7 Te.3&Ou.1 2 2 Hu.1
8 Te.3&Hu.1 3 Ou.3
9 Te.3&Hu.1&Wi.2 2 Ou.3
10 Te.3&Wi.2 3 Ou.3
11 Ou.1 5
12 Ou.1&Te.2 2
13 Ou.1&Hu.2 2 1 Te.3
14 Ou.1&Wi.1 2 Te.1
15 Ou.1&Hu.1 3 2 Te.1
16 Ou.1&Wi.2 3
17 Ou.3 5 Te.3
18 Ou.3&Hu.1 2 Te.2
19 Ou.3&Wi.1 2 2 Te.3
20 Ou.3&Te.2 3
21 Ou.3&Te.2&Wi.2 2 1
22 Ou.3&Hu.2 3 Te.3
23 Ou.3&Hu.2&Wi.2 2 1 Te.3
24 Ou.3&Wi.2 3 1 Te.3
25 Te.2 6
26 Te.2&Hu.2 2 1 Ou.2
27 Te.2&Wi.1 3
28 Te.2&Wi.1&Hu.1 2 Ou.1
29 Te.2&Wi.2 3 Ou.2
30 Te.2&Wi.2&Hu.1 2 Ou.2
31 Te.2&Hu.1 4
32 Wi.1 6
33 Wi.1&Hu.1 3 Te.1
34 Wi.1&Hu.2 3 Te.3
35 Hu.1 7 Te.1
36 Hu.1&Wi.2 4 Te.1
37 Hu.2 7
38 Hu.2&Wi.2 4 1
39 Wi.2 8

124

The result contains 11 generators with class (suitable for producing rules IF
generator THEN class), 6 generators with zero factor(s) (suitable for producing
rules IF generator THEN zero-factors) and 22 generators with excluded factor(s)
(suitable for producing rules IF generator THEN NOT excluded-factor). One
generator (G5) has all three types of consequents; some generators have two of
them. 10 generators have none of the three. Of course, it is possible not to output
them. Also it is possible filter out (or not to output) generators without class or
generators without zero factors or without excluded factors.

For Class 1 (Cl.1) 8 generators were found: G1, G5, G13, G21, G23, G24, G26
and G38. Two of them are supergenerators of other generators:

 G21 (Ou.3&Te.2&Wi.2=2) is a super-generator of G24 (Ou.3&Wi.2=3);
 G23 (Ou.3&Hu.2&Wi.2=2) is a super-generator of G24 (Ou.3&Wi.2=3)

and G38 (Hu.2&Wi.2=4).

Adding factor Te.2 into G24 causes a decrease in frequency (from 3 to 2), thus
Te.2 in G21 is a zero-negative factor. Adding Hu.2 into G24 also decreases the
frequency by 1; adding Ou.3 into G38 decreases the frequency by 2 (4-2). Both
are zero-negative factors in G23, but not at the same time.

In order to remove such redundant generators (that contain zero factors), a
compression is applied to each class in the preliminary result.

In case of removal of such redundant generator we can lose (together with
redundant classification rule) possible association rules as well. G21 does not
have neither zero factors nor excluded factors. G23 has an excluded factor Te.3.
This time two of its parent generators – G22 (without class) and G24 (with
class) – have the same excluded factor; thus we will not lose this information.

The redundant generators (in the preliminary result) are always found before their
non-redundant subgenerators. It can be useful to take this fact into account while
removing them.

In addition, the frequencies can be used to select potential redundant rules. The
generators containing zero-negative factors have a smaller frequency than their
subgenerators, the ones with zero-zero factors have equal frequency. Thus only
the generators with a smaller or equal frequency should be checked.

After the compression 6 generators are left for Class 1. Table 3.36 lists them
together with the rules based on them, using the original text values and full
attribute names (according to the correspondence shown in Table 3.26).

125

Table 3.36. Minimal generators of class 1 (Class.P) and corresponding generator-
based rules

 Minimal generator Rules
G1 Outlook.overcast IF Outlook.overcast THEN Class.P
G5 Temperature.cool

&Windy.false
IF Temperature.cool&Windy.false THEN Class.P
IF Temperature.cool&Windy.false THEN

Humidity.normal
IF Temperature.cool&Windy.false THEN

NOT Outlook.overcast
G13 Outlook.sunny&

Humidity.normal
IF Outlook.sunny&Humidity.normal THEN Class.P
IF Outlook.sunny&Humidity.normal THEN

Temperature.hot
G24 Outlook.rain

&Windy.false
IF Outlook.rain&Windy.false THEN Class.P
IF Outlook.rain&Windy.false THEN

NOT Temperature.hot
G26 Temperature.mild

&Humidity.normal
IF Temperature.mild&Humidity.normal THEN

Class.P
IF Temperature.mild&Humidity.normal THEN

NOT Outlook.overcast
G38 Humidity.normal

&Windy.false
IF Humidity.normal&Windy.false THEN Class.P

For each listed (minimal) generator (in Table 3.36) we get a zero-factor-free
classification rule (IF minimal generator THEN class). For example, from G5 we
can conclude: IF Temperature.cool&Windy.false THEN Class.P. Such a
conclusion holds in the given data set (Table 3.27).

Generator G5 has zero factors also, this gives an association rule (IF minimal
generator THEN zero-zero factor(s)): IF Temperature.cool&Windy.false THEN
Humidity.normal. It means that Temperature.cool&Windy.false is always
accompanied by Humidity.normal.

As we saw already, Hu.normal actually comes with Te.cool (see G2 in Table
3.35) and it descends to all supergenerators (subrules) of Te.cool (G3, G4, G5).

A generator together with its zero-zero factors forms a closed set – the set of all
common factors of covered objects. No other object (in given data set) contains
all those factors. Two objects covered by minimal generator
Temperature.cool&Windy.false, have 3 factors in common: Temperature.cool &
Windy.false & Humidity.normal.

G5 has excluded factors also, thus we get a negative association rule (IF minimal
generator THEN NOT excluded-factor): IF Temperature.cool&Windy.false
THEN NOT Outlook.overcast. This rule says that when it is cool and not windy
then the outlook is not overcast (in the given data set).

126

Thus from minimal generator Temperature.cool&Windy.false (G5) we can
conclude Class.P and presence of Humidity.normal and absence of
Outlook.overcast.

3.2.10.3 About detecting zero factors

The problem that is not fully solved by the presented algorithm is detecting and
avoiding some zero factors in (the left side of) the rules. Being a zero factor
regarding the final (class-determining) itemset (left side of the rule) is not
detectable at the moment the item is included into (the left side of) the rule.

Only the lastly added factor in the rule (that completed the rule) is certainly a
positive (thus non-redundant) factor. Any other factor might turn out to be a zero
factor. Therefore, the number of factors to check is one less than the rank (i.e. the
number of factors) of the rule.

For making sure whether some factor is inessential regarding other factors in the
rule, we need two frequencies of an itemset that consists of all those other factors
and does not contain the factor under consideration: 1) how many objects this
itemset covers, 2) how many objects from the concluded class it covers. Extracts
by such itemsets have not been explored by that moment yet. They will be made
later, in different branches of the search tree. The redundant generators are always
found before their subgenerators.

The complexity of detecting zero factors grows with the fact that sometimes more
than one of them can be excluded at the same time. For example, from the itemset
ABCD we might discover zero factors A, B and C in such a way that A is a zero
factor “alone”, but B and C are zero factors also “together” – thus there are two
zero-factor-free itemsets (covering the same objects as ABCD): BCD and AD.
Another possibility is that zero factor A can be accompanied by either B or C
(ZFF itemsets are CD and BD, accordingly).

In our example (see Table 3.35, p. 123) generator G23 contains two zero factors
that are zero-negative “alone” i.e. they cannot be thrown out at the same time.
Excluding Hu.2 gives us G24. Excluding Ou.3 gives us G38. If there were a
generator Wi.2 (determining Cl.1) instead of G24 and G38, then both zero factors
could be excluded from G23 at the same time.

Thus, the detection of zero factors in the rule alone is not enough, we also need
to know in which combinations these factors could be excluded from the rule.

Moreover, if we figure out an effective way to detect zero factors then we also
have to find a way to prevent finding appropriate ZFF rules (generators) later.

In our approach we do not use this kind of detection. It seems to be more
reasonable to apply compression to the found rules. That procedure requires no
access to the initial data, only the rules are compared. A shorter rule pushes out a
longer one that contains all the factors of the shorter rule. Both rules belong to

127

the same class. A longer (redundant) one is always found before the shorter one
and has a smaller or equal frequency. These conditions (same class, finding order,
frequency) and also comparing the ranks of the rules reduce the number of
possible redundant rules regarding a certain (shorter) rule.

Such a check may be performed each time a new rule is found or after finding all
rules (by the main algorithm). We use the second option – compression as a
separate compact step. The first option would save storing space of rules during
the work of the main algorithm.

3.2.11 Discussion

Compared to original DA we have done several improvements:

 Allowing non-overlapping rules with different length vs the same fixed
length for all rules (see 3.2.3)

 Creating 3 algorithms for overlapping rules
o Finding possibly small set of possibly short rules (3.2.5) – this is

similar to usual ML rule set
o Finding all non-redundant rules (+ DSR-compression) (3.2.7,

3.2.6) – the found set is comparable to the set of CARs51
o ZFF DA (3.2.10): finding all non-redundant classification rules

for all classes + positive and negative ARs

ZFF DA has similarities with both ML and ARM. Like the original DA, it can be
called descriptive supervised rule discovery (SDRD), but actually does not fit
under its definition. We are not aware of any other approach finding classification
and association rules at the same time (as does ZFF DA).

Similarly to ML, ZFF DA finds classification rules. The purpose is different: in
ML the rules are used to predict future or missing values, ZFF DA uses them for
description. Nevertheless, the classification function of ZFF rules52 (that is not in
the scope of this thesis) has been studied by Fjodor Ševtšenko in his master’s
thesis (Ševtšenko, 2017). He has proposed three different ways to measure the
prediction accuracy and has found that ZFF rules have a high predictive power.

For classification usually a possibly small set of rules is preferable. Our approach,
on the contrary, is to find all non-redundant rules – that set (called DSR) gives a
possibility to find different covers according to user’s needs. Such approach is
similar to associative classification in case of which from the set of found rules
the suitable classifier is formed. Obviously, finding a bigger set is
computationally more burdening, but with development of hardware this burden

51 Class association rules (from associative classification)
52 Such usage (for predictive purpose) can be seen as associative classification.

128

is decreasing continually. From a technological side, Ševtšenko (2017) has
parallelized the algorithm, obtaining the growth of speed 17 times53.

Usually the rules are found for one (or more) determined target class(es), not for
all existing classes. Determining target class(es) is not a problem for ZFF DA.

Classification rules found by ZFF DA can be called class association rules
(CARs)54 as the algorithm finds them in the manner of finding ARs rather than
classification rules.

Compared to “usual” ARM we can bring out two differences. First, our approach
finds only exact rules (i.e. with accuracy/confidence 100%) while usually a lower
threshold can be used (set by the user). The suitability of so high threshold (i.e.
100%) depends on the data. We admit that in some cases there are no exact rules
(with required support/frequency) at all and then we cannot find anything.
Second, as ARs are found as additional information to CARs in our case, the
search in the current branch is normally discontinued after finding a CAR (while
usually backtracking takes place when the support threshold is met).

Compared to the closest approach under SDRD – subgroup discovery (SD) – the
difference is that ZFF DA finds all non-redundant CARs according to support
threshold while SD looks for the “most interesting” rules (more exactly, the rules
that have the most unusual statistical characteristics), thus skipping part of the
rules that can be found by ZFF DA.

Concerning negative ARs (2.4.2.2) we have to bring out that ZFF DA finds only
one kind of them (out of three possible ones), namely X ⇒￢Y.

All these methods – classification and association rules, subgroup discovery and
associative classification – have their roots in the previous century.

Already in 2006 Ceglar and Roddick stated that „the fundamentals of association
mining are now well established and there appears little current research on
optimizing the performance of classic itemset identification“. /…/ “The majority
of current research involves the specialization of fundamental association mining
algorithms to address specific issues, such as the development of incremental
algorithms to facilitate dynamic dataset mining or the inclusion of additional
semantics (such as time, space, ontologies, etc.) to discover, for example,
temporal or spatial association rules.” (Ceglar & Roddick, 2006)

53 After completing his thesis he obtained the growth of speed 37,5 times already.
54 This term is from associative classification where ARs with certain class as a
consequent are found.

129

In classification also the basics have been developed many years ago already. In
the latest developments the rule-based classification methods seem to be less used
than neural networks for example. Especially popular is Deep Learning55.

The hottest topic in DM is Big Data mining. Big Data56 means not only a huge
amount of data, but also different sources and formats, rapid continuous growth,
variety, variability, …. “In response to the problems of analyzing large-scale data,
quite a few efficient methods, such as sampling, data condensation, density-based
approaches, grid-based approaches, divide and conquer, incremental learning,
and distributed computing, have been presented.” (Tsai, Lai, Chao, & Vasilakos,
2015).

In 2006 a representative group of awarded researches brought out 10 most
influential data mining algorithms (Wu, et al., 2008). Among these we can find 3
rule-based ones: C4.5 (Quinlan, 1993), Apriori (Agrawal & Srikant, 1994) and
CART (Breiman, Friedman, Stone, & Olshen, 1984). Apriori represents ARM,
while the two others are intended for classification. These good old algorithms
are adapted to modern technologies like distributed and parallel processing.

For instance, in frequent pattern mining, three implementations of Apriori57 in the
MapReduce58 framework are proposed in (Lin, Lee, & Hsueh, 2012) and FP-
tree59 is combined with DH-TRIE in (Yang, Shi, Xu, Liang, & Kirsh, 2011).

55 Deep learning refers to a class of machine learning techniques, where many layers of
information-processing stages in hierarchical architectures are exploited for pattern
classification and for feature or representation learning. It is in the intersections among
the research areas of neural network, graphical modeling, optimization, pattern
recognition, and signal processing. (Deng, 2014)
56 According to (Borne, 2014) Big Data is defined through 10 Vs (volume, velocity,
variety, veracity, validity, value, variability, venue, vocabulary, and vagueness) that
“represent ten different challenges associated with the main tasks involving big data (/…/
capture, cleaning, curation, integration, storage, processing, indexing, search, sharing,
transfer, mining, analysis, and visualization)”.
57 Apriori (Agrawal & Srikant, 1994) is a basic level-wise algorithm for association rule
mining.
58 MapReduce is a programming model and an associated implementation for processing
and generating large data sets enabling automatic parallelization and distribution of large-
scale computations, running on a large cluster (Dean & Ghemawat, 2004).
59 FP-tree (frequent pattern tree) is a compressed structure for storing information about
frequent patterns and is used by FP-growth method for finding frequent patterns; both
proposed in (Han, Pei, Yin, & Mao, 2004).

130

For classification (in big data context) other methods than rule-based ones are
rather used e.g. SVM60 and GA61 for predicting hazardous weather conditions
(Lee, Hong, & Lee, 2014), two types of neural networks (SOM62 and MBP63) for
biomedical classification problems (Hasan, Shamsuddin, & Lopes, 2015), SVM
on quantum computer (Rebentrost, Mohseni, & Lloyd, 2014).

Our work is presented on an algorithmic level, the choice of technological means
is left to the developer. Thus, we cannot compare our work to these latest trends
in DM.

Literally ZFF DA is supervised descriptive rule discovery, but has no analogue.

3.3 Universal generator of hypotheses

Here we present an idea for Universal Generator of Hypotheses (UGH) – one
possible framework for gathering different descriptive tasks solvable by GH and
DA. It is needed to get an overview of what is done yet and what still needs a
solution.

The block diagram of Universal Generator of Hypotheses is shown in Figure 3.1.
In the following “block N” will be often referred to as BN (for example B5 instead
of block 5).

First of all, it is possible to define the set of observable objects (narrower than in
initial data). It is shown as a logical expression (in block 2). In a sense of DA the
narrowing of universal context takes place. Context is the set of qualities that
describe the whole group (the ones, on the ground of which the objects are
selected). The qualities common to the whole initial data set determine the
universal context. In the same data set it is not possible to widen the context, it is
the widest there. Thus the context can be changed only by narrowing. For that
purpose the qualities on which basis to make the restriction have to be shown.
Usually it is needless to observe the attributes that determine the context in the
further analysis, since they describe the whole subset under examination.
However, these attributes might be of interest if they can have more than one
value.

60 SVM (support vector machine (Vapnik, 1995)) is a supervised machine learning
algorithm that classifies vectors in a feature space into one of two sets, given training data
from the sets (Rebentrost, Mohseni, & Lloyd, 2014).
61 GA (genetic algorithm) is an evolution-inspired computational model and global
optimization technique developed by John Holland in 1975 (book titled Adaptation in
Natural and Artificial Systems).
62 SOM (self-organizing map), introduced in (Kohonen, 1981), is an algorithm for
exploratory data analysis which provides mapping from high-dimensional features to
low-dimensional features (Hasan, Shamsuddin, & Lopes, 2015).
63 MBP (multiple back-propagation (Lopes & Ribeiro, 2001)) is a hybrid learning
algorithm for multi neural network.

F
ig

ur
e

3.
1

U
ni

ve
rs

al
 G

en
er

at
or

 o
f H

yp
ot

he
se

s

G
en

er
at

io
n

of
 h

yp
ot

he
se

s

2
In

:
cr

it
er

io
n

fo
r

se
le

ct
io

n
of

 o
bj

ec
ts

as

 a
 lo

gi
ca

l e
xp

re
ss

io
n

9
th

e
re

se
ar

ch
er

di

vi
de

s
th

e
at

tr
ib

ut
es

 in
to

 c
au

se
s

(C
) a

nd

ef
fe

ct
s

(E
)

13

In
:

C
 a

s
a

gi
ve

n
lo

gi
ca

l e
xp

re
ss

io
n;

E

 –
 li

st
 o

f
M

2
at

tr
ib

ut
es

10

In
:

C
 –

 li
st

 o
f

M
1

at
tr

ib
ut

es
;

E
 a

s
a

gi
ve

n
lo

gi
ca

l e
xp

re
ss

io
n

3
th

e
re

se
ar

ch
er

 d
oe

s
no

t
di

vi
de

th

e
at

tr
ib

ut
es

 i
nt

o
ca

us
es

 a
nd

ef

fe
ct

s

4
In

:
lis

t o
f

M
 a

tt
ri

bu
te

s

14

O
ut

:
C

E
, w

he
re

E

 –
 c

om
bi

na
ti

on
s

by
 1

,..
.,M

2

11

O
ut

:
C

E
, w

he
re

C

 –
 c

om
bi

na
ti

on
s

by
 1

,..
.,M

1

12

O
ut

:
C

E
, w

he
re

C

 –
 c

om
bi

na
ti

on
s

by
 M

1

5
O

ut
:

co
m

bi
na

ti
on

s
by

 1
,…

,M

16

In
:

C
 –

 li
st

 o
f

M
1

at
tr

ib
ut

es
;

E
 –

 li
st

 o
f

M
2

at
tr

ib
ut

es

7
O

ut
:

C

E
, w

he
re

 C
 a

nd
 E

 a
re

au

to
m

at
ic

al
ly

 g
en

er
at

ed

co
m

bi
na

ti
on

s
by

 1
,..

.,M
.

|C
|+

|E
|

M

18

O
ut

:
C

E
, w

he
re

C

 –
 c

om
bi

na
ti

on
s

by
 1

,..
.,M

1;

E
 –

 c
om

bi
na

ti
on

s
by

 1
,..

.,M
2

19

O
ut

:
C

E
, w

he
re

C

 –
 c

om
bi

na
ti

on
s

by
 M

1;

E
 –

 c
om

bi
na

ti
on

s
by

 1
,..

.,M
2

17

O
ut

:
C

E
, w

he
re

C

 –
 c

om
bi

na
ti

on
s

by
 1

,..
.,M

1;

E
 –

 c
om

bi
na

ti
on

s
by

 M
2

6
O

ut
:

co
m

bi
na

ti
on

s
by

 M

8
O

ut
:

C

E
, w

he
re

 C
 a

nd
 E

 a
re

au

to
m

at
ic

al
ly

 g
en

er
at

ed

co
m

bi
na

ti
on

s
by

 1
,..

.,M
.

|C
|+

|E
|=

M

15

O
ut

:
C

E
, w

he
re

E

 –
 c

om
bi

na
ti

on
s

by
 M

2

131

132

Further there are two possibilities:

1) The researcher (user) does not partition attributes (objects’
characteristics) under consideration – presented by blocks 3..8 on the left
side of the scheme;

2) The researcher divides attributes into causes (C) and effects (E) – blocks
9..19 on the right side of the scheme.

In the first case (blocks 3..8) simply the enumeration of analysable attributes is
given to the system, i.e. it is not required to observe all the attributes that are used
for describing the objects. It is possible to find existing value combinations of
those attributes (B5, B6) or associations/rules in the form of C→E where the
causes C and effects E are generated automatically, each attribute can be on either
side of found association – i.e. association rules are found (B7, B8). In B5 found
combinations can consist of different subsets of given attributes (“combinations
by 1,..,M” on the diagram). In B6 all existing value combinations of those
attributes containing all given attributes (“combinations by M”) are found.
Similarly, the found rules can contain different subsets of given attributes (B7) or
have to contain all given attributes (B8).

If the researcher distinguishes between cause-attributes (C) and effect-attributes
(E) (blocks 9..19), then the rules having cause-attributes in their antecedent and
effect-attributes in their consequent are found. Both C and E can be given as a list
of attributes. Both can be of either fixed-length (containing all given attributes)
or free-length (containing a subset of given attributes). If C or E has to contain
all given attributes, then obviously zero factors cannot be left out from these
combinations.

The general cases are presented in blocks 16..19. Block 18 presents the case
where both sides of found rules can contain different subsets of attributes. In B17
the rules are restricted to the ones that contain all given effect-attributes in their
right sides (consequents); in B19 the left sides (antecedents) have such restriction.

Either C or E can be given as a logical expression.

In blocks 10..12 the user examines what reasons lead to specified effect. The
logical condition over effect-attributes determines the set of observable objects –
the target class. This is the usual DA (and ML) task.

Blocks 13..15 represent a case, where the user investigates what are the effects
resulting from specified cause(s). The set of observable objects is determined by
a logical condition over cause-attributes. For certain C (B13) there can be only
one accurate rule or no such rules at all. Therefore lower (than 1) threshold for
accuracy (i.e. confidence) could be reasonable.

Determining the set of observable objects is not the same as determining the
context (in B2). In case of determining a context the objects that are not contained
in it, are totally left out from the analysis. In case of determining certain effects

133

(B10) or causes (B13) the set of observable objects are positive examples and all
others are negative examples (in terms of ML).

Finding “combinations by M” from a given list of M attributes means finding all
existing (with at least required frequency) “full-length” combinations i.e.
conjunctions that contain all given attributes including zero factors.
“Combinations by 1,…,M” can be conjunctions of any subset of given M
attributes. These combinations can be either minimal – containing no zero factors
(i.e. generators) or maximal – containing all possible zero factors (closed sets).
Set of minimal combinations “by 1,…,M” usually does not contain all
combinations “by M” – the ones containing zero factors are missing. Set of
maximal combinations “by 1,…,M” contains all combinations “by M”; but it is
not guaranteed to contain all combinations “by L” where L<M.

The result of B6 is a subset of the result of B5 in case of equal frequency threshold
(and the same list of given attributes and the same context, of course).

Preferring zero factor free (ZFF) rules with minimal antecedent (if C has free
length) and maximal consequent (if E has free length) their left sides “by
1,…,M1” (in B11, B17, B18, B7) are minimal combinations and right sides “by
1,…,M2” (in B14, B19, B18, B7) are maximal combinations.

In such case, for the same lists of M1 C-attributes and M2 E-attributes (and other
equal conditions: context, frequency threshold, accuracy threshold):

 The result of B17 is a subset of the result of B18; but the result of B19
usually is not a subset of the result of B18.

 The result of B15 is a subset of the result of B14. If B14 does not contain
a rule with |E|=M2 (there can be only one such rule) then the result of
B15 is empty.

 The result of B12 is not a subset of the result of B11.
 If E (in B10) is a conjunction (or a single item) consisting of M2

attributes then the result of B11 is subset of the result of B17 and the
result of B12 is a subset of the result of B19.

 If C (in B13) is a conjunction then the result of B14 is a subset of the
result of B19. For the result of B15 there is no such relation.

If the list of attributes in B4 consists of M1 C-attributes and M2 E-attributes from
B16 (M=M1+M2) then the result of B7 contains all “minimal combinations by
1,…,M1” (left sides) and thus all rules of B18. If the left side of a rule (in B7)
contains less than M1 attributes, then its right side (that is a maximal
combination) can contain some E-attributes, but those can be just not considered
for B18. For example, if C={C1;C2;C3} and E={E1;E2} and the result of B7
contains a rule C1&C2→C3&E1, then for B18 the rule is C1&C2→E1.

The result of B7 might not contain all the rules that constitute the result of B8,
because finding subrules is prevented (in B7). For example, if the set of attributes

134

is {X;Y;Z} and there exists a rule X→Y then its subrule XZ→Y is not found in
B7. In B8 XZ→Y is needed instead of X→Y.

Setting thresholds for frequency (i.e. support) and accuracy (i.e. confidence) is
not shown on the scheme.

For giving examples we use Table 3.27 (p. 119). If the list of attributes (in B4) is
{Ou;Te;Hu} and minimal allowed frequency (support threshold) is 2, then
“combinations by 1,…,M” (all closed sets) of those attributes (B5) are:

CS1: Hu.1=7
CS2: Hu.1&Te.2=4
CS3: Hu.1&Te.2&Ou.3=2
CS4: Hu.1&Ou.1=3
CS5: Hu.1&Ou.1&Te.3=2
CS6: Hu.1&Te.3=3
CS7: Hu.1&Ou.2=2
CS8: Hu.2=7
CS9: Hu.2&Te.1=4
CS10: Hu.2&Te.1&Ou.3=2
CS11: Hu.2&Ou.3=3

CS12: Hu.2&Ou.1=2
CS13: Hu.2&Ou.2=2
CS14: Hu.2&Te.2=2
CS15: Te.2=6
CS16: Te.2&Ou.3=3
CS17: Te.2&Ou.1=2
CS18: Ou.1=5
CS19: Ou.3=5
CS20: Ou.2=4
CS21: Ou.2&Te.3=2
CS22: Te.3=4

There is no combination Te.1=4 because this one is not a closed set, but a part of
CS9. (Generally, if A and A&B have equal frequency, then combination A is not
presented.) All other possible combinations have too low frequency (for example,
Hu.1&Te.3&Ou.2=1) or do not exist (for example: Ou.3&Te.3). Combinations
containing all given attributes (B6) are: CS3, CS5, CS10.

Accurate rules of any length (B7) are:

 R11: Te.1 Hu.2 (4)
 R12: Te.3 & Ou.1 Hu.1 (2)
 R13: Ou.3 & Hu.1 Te.2 (2)

All other possible rules have too low frequency (Hu.2&Te.3→Ou.2 (1), for
example) and/or accuracy less than 1 (e.g. Te.2→Ou.3 (3) with A=3/6). Rules
that contain all given attributes (B8) are: R12, R13, and additionally
Te.1&Ou.3→Hu.2 (2) that is a subrule of R11 containing zero-negative factor
Ou.3. Other possible subrules of R11 have frequency 1 (for example:
Te.1&Ou.1→Hu.2).

Let C={Ou;Te} and E={Hu;Wi} in B16. The rules with free-length C and free-
length E (B18) with frequency threshold 2 are:

 R21: Te.1 Hu.2 (4)
 R22: Te.3 & Ou.1 Hu.1 (2)
 R23: Ou.2 & Te.3 Wi.2 (2)

135

With frequency threshold 1 we can find additionally the rules having two
attributes on their right side:

 R24: Ou.2 & Te.1 Hu.2&Wi.1 (1)
 R25: Ou.2 & Te.2 Hu.1&Wi.1 (1)
 R26: Te.1 & Ou.1 Hu.2&Wi.2 (1)

The result of B19 (where each antecedent has to contain all C-attributes) with
frequency threshold 2 would contain R22, R23, and additionally
Te.1&Ou.3→Hu.2 (2) that is not found in B18, because it is a subrule
(specialization) of R21. At the same time rules R24 and R26 containing Te.1 in
their antecedents are not subrules of R21, because they have different
consequents.

The result of B17 (where each consequent has to contain all E-attributes) with
frequency threshold 2 is empty; with frequency threshold 1 it consists of R24,
R25, and R26. Other combinations of Ou and Te either do not exist (Ou.3&Te.3)
or do not have an accurate consequent (Ou.1&Te.2 and Ou.3&Te.2) or have only
“partial” consequent (R22, R23).

If C={Ou;Te;Wi} and E=Hu.2 in B10 then accurate rules having different
number of attributes in their antecedent (B11) with frequency threshold 1 are:

 R31: Te.1 Hu.2 (4)
 R32: Ou.1 & Te.2 & Wi.1 Hu.2 (1)

The result of B12 (with fixed-length left side) contains rule R32 and – instead of
R31 – all existing combinations containing Te.1:

 Te.1 & Ou.1 & Wi.2 Hu.2 (1)
 Te.1 & Ou.3 & Wi.2 Hu.2 (1)
 Te.1 & Ou.3 & Wi.1 Hu.2 (1)
 Te.1 & Ou.2 & Wi.1 Hu.2 (1)

If C=Te.1 and E={Hu;Wi} in B13 then the result of B14 is:

 Te.1 Hu.2 (4)

There are no accurate rules containing all given attributes for E (B15). With
accuracy threshold 50% the result of B15 would be:

 Te.1 Hu.2 & Wi.1 (2); A=2/4
 Te.1 Hu.2 & Wi.2 (2); A=2/4

3.3.1 Covering UGH with algorithms

The result of B5 can be found by Generator of hypotheses (described in 3.1.1)
and the result of B6 is its subset.

136

In B7 association rules are searched for, the result is achievable using ZFF DA
(see 3.2.10, the second type of rules64). ZFF DA covers also finding classification
rules with one class attribute and free-length left side i.e. the results of B11 and
B17 (and B18) with a restriction M2=1.

If we use DSR (consisting of all ZFF rules65) as a basis from which to select rules
according to the different cases presented in UGH, we can find suitable ZFF rules
only, all non-ZFF rules are not found. If the presence of zero factors in the
antecedent is expected, then DSR-approach is not suitable. However, our
algorithm for finding ZFF rules can be modified in different ways in order to find
different rule sets presented in UGH.

ZFF DA can be adapted to allow more (than one) class attributes. For the cases
where M2>1 the algorithm has to be extended in two different modes:

1) the rules with only “full” consequent (that contains all M2 attributes) are
outputted – for the cases where E has to be of fixed length (“combinations by
M2” in B17 (and B15));

2) the rules can have any subset of M2 attributes in their consequent
(“combinations by 1, …,M2” in B18 and B19 (and B14)).

After finding a “partial” class (i.e. not all class attributes have a value) in a search
tree: 1) output a rule if “partial class” is allowed (and the consequent is not exactly
the same as at previous level, otherwise the rule is a specification of that previous
one and is not outputted); 2) continue the search. After reaching a “full” class the
program has to backtrack (after outputting the rule).

If C has to contain all given M1 attributes (B12, B19) then all frequent
combinations of them have to be found and zero-zero factors cannot be left out
from the antecedent. In such case both factors constituting a generator and zero-
zero factors are considered as a left side and the rules are outputted only when
they together include all M1 attributes (and the rule has such right side
(consequent) as required). In case of such modification there is nothing to
compress (by DSR-compression).

In case of B8 such rules are searched for that their antecedent and consequent
together contain all given attributes. In such case shorter rules are not outputted
and the program does not backtrack at that point. Only if all attributes are

64 The given description of ZFF DA does not contain an option to find only association
rules (without finding classification rules), but this is a minor change to give such
possibility (not to check a class and backtrack after finding a class).
65 Practically, the quality of DSR depends on the quality of the rule set before
compression.

137

involved it is time to output the rule and backtrack. Again, DSR-compression
(that compares rules with identical right sides) is not needed66.

Reasonable solution for using logical expressions to determine either E (B10) or
C (B13) is to create a new attribute such that its positive value corresponds to the
given condition. This way more complex expressions (than just conjunction) can
be used.

For B10..B12 it means that we have find the rules for positive class (only) and
we can use our ZFF DA (without need to extend it to many class attributes) and
other methods that consider only one class attribute.

In B13..B15 only one extract is made, by the positive value of the new attribute
(corresponding to given C (B13)). As mentioned already, for certain C there can
be only one accurate rule or no such rules at all. This number of rules is true for
accuracy threshold (i.e. minconf) >50% as well. There is more hope to find a
“partial” consequent (for B14) than a “full” consequent (B15, B14).

For cases with fixed-length E (“combinations by M2”) in B17 (and B15) all
different combinations can be coded and represented by one class attribute – such
solution is reasonable for a small number of different combinations. This way the
methods considering only one class attribute can be used. In case of fixed-length
C (B19, B12) probably the number of all different combinations (“by M1”) is not
small enough (to be beneficial to code all existing combinations before searching
the rules and decode them for presenting the result).

Our other algorithms (besides ZFF DA) are intended for single-concept learning
(i.e. finding rules for one class at a time) and enable only one class attribute. To
get rules for more classes (represented by one class attribute) they should be used
repetitively. The left sides of the rules have free length (i.e. are “combinations by
1,…,M”) in all three cases.

An algorithm for finding all possible shortest rules (see 3.2.7) together with DSR-
compression gives the same rules as ZFF DA (with compression), but for one
class only. The first algorithm for finding intersecting (DA) rules (3.2.5) gives a
smaller set of rules trying to cover each object by a possibly small number of
rules. Step-by-step approach (3.2.1) gives rules that do not intersect (i.e. additive
system) – this is the additional restriction. The last two do not guarantee the
minimality of combinations in the antecedents i.e. the found rules can contain
zero factors in their left sides.

All three algorithms can give a result for B11 with a restriction M2=1 and when
repeated, for B17 with the same restriction, thereat their individualities have to
be taken into account.

66 Compression, based on different principles (comparing rules with different
consequents) is probably needed. This topic is not explored yet.

138

Our algorithms do not find such systems of rules where each rule has to contain
all given attributes in its antecedent (i.e. “combinations by M1”). DA-System
(described in 3.2.1) can do it for one class, represented by one attribute, at a time.
Thus it covers the results of B12 and (in case of appropriate repeating) B19 with
a restriction M2=1. As described above, ZFF DA algorithm can be modified to
find such rules.

Findable rules could be pruned by frequency (support) of C ∪	E (i.e. n(XY) in DA
notation) as it is a monotone property. Accuracy (that corresponds to confidence
in rule mining) is not monotone and therefore cannot be used the same way (as a
criterion to stop the search in the current branch). Associations with too low
accuracy are not considered to be rules. How to adapt our algorithms to allow
lower (than 1) accuracy will be shown in 3.4.1.

3.4 Further algorithmic developments of ZFF DA

Universal Generator of Hypotheses solves the main task of DA – to find
determinations (rules, associations) – in many variations. However, the
formulation of the problem as given in (Chesnokov, 1982) contains giving
thresholds for accuracy and completeness of findable rules. The algorithms
presented in this thesis find (maximally) accurate rules and do not find
completeness, thus do not consider these thresholds. In 3.4.1 we will show how
to take them into account.

Solving the basic tasks of DA (listed in 2.7.5) needs – in addition to finding
determinations – specifying the contributions of factors in the rules and
combining initial variables.

Transforming variables is not a topic of this thesis.

The tasks dealing with essentiality (i.e. contribution to accuracy) are presented as
finding the difference of accuracies of two certain rules (see (Chesnokov, 1982,
pp. 62-64)). Finding these rules is accomplishable by UGH. To be sure that a
needed parent rule (of a given rule) can be found, the accuracy threshold should
be low (while performing that task).

Chesnokov (1982) does not expect finding all contributions of all factors in all
found rules (determinations), although in “original” applications (described in
3.2.1) they are found both to accuracy and completeness. This is one possible
direction for developing ZFF DA: to incorporate finding the contributions both
to accuracy and completeness of each factor in every (final) rule. Besides the
algorithmic developments there should be the management system supporting to
tie the basic tasks.

3.4.1 Involving accuracy and completeness thresholds

According to (Chesnokov, 1982) the main task is to find in a given context all
determinations from a given variable (attribute) to another given variable (class

139

attribute) that have at least a given minimal allowable accuracy (i.e. confidence)
and minimal allowable completeness (i.e. support in given class – see 2.7.6).
These two thresholds can have a value between 0 and 1 (0% .. 100%).

The algorithms presented in this work find rules with maximal accuracy (i.e.
A=1), but they can be easily adapted to allow lower accuracy. In our algorithms
we do not find completeness, but finding it is not a problem as well as applying
a threshold for completeness. In the following we will show how to find accuracy
and completeness and use given thresholds for them.

Accuracy is a ratio n(XY)/n(X) (see 2.7.1) where n(X) is a frequency of X in the
whole set (context) and n(XY) in the target class. In each extract the „leading“
frequency (i.e. the number of objects in that extract) is n(X) and n(XY) is the
frequency of Y in the corresponding frequency table. For accurate rules
n(XY)=n(X).

If we are looking for the rules with lower accuracy, with accuracy threshold minA
(0<minA<1), then instead of checking whether n(XY)=n(X) (or equivalently
n(XY)/n(X)=1) we should check whether n(XY)/n(X)minA or
n(XY)minA*n(X). Notice that minA*n(X) is constant in the current extract.

Adapting our algorithms to lower (than 1) accuracy is feasible. Accuracy check
is identical in two presented algorithms using 3D frequency tables – the first
algorithm for finding intersecting (DA) rules (p. 95) and the algorithm for finding
all possible shortest rules (p. 103), performed in step S2:

Fyt(A)=Fxt(A),

where A is a factor, Fyt contains frequencies in class Y (at level t) and Fxt
contains frequencies in the whole dataset (X). In order to allow lower than 1
accuracy that check should be replaced by:

Fyt(A)/Fxt(A)minA.

In ZFF DA (algorithm for finding minimal generators with zero factors, excluded
factors and class – see p. 115) the accuracy is checked at lines B5 and B10:

FTt[factor]=V,

where FTt contains frequencies of all factors (at level t), class values are treated
as other factors at this point, and V is the frequency of the current extract. This
check should be replaced by

FTt[factor] V * minA.

In addition to changing these checks the actual accuracies should be memorized
and outputted with the rules.

140

Completeness is a ratio n(XY)/n(Y) (see 2.7.1) where n(Y) is a constant for each
class Y. Needed n(Y)-s can be counted before searching for the rules. In our
algorithms we count initial frequencies of all factors into the initial frequency
table. Thus n(Y) is available for any Y consisting of one factor. n(XY) is the
frequency of Y in the extract by X, these frequencies are counted into current
frequency tables. If we find many consequents for the same X (as it is possible in
our ZFF DA), then each of the rules XYi has its own completeness.

If we have a threshold for completeness minC (0<minC<1), then each factor has
its own minimal allowed frequency to be a suitable (by completeness) consequent
(Y) of a rule: n(Y)*minC. This individual frequency threshold holds in any
extract. This is true both for class attributes (that are never put on the left side of
the rule) and non-class attributes (that can be on either side of an association rule).

The completeness (of each possible Y) decreases (weakly) together with the
frequency of extract along the branches of the search tree. If the frequency of a
certain factor is too low to use it as Y, then this is true for any further extract as
well. However, we cannot interrupt the search (in the current branch), as long as
we have hope to find rules for any other possible class.

In our ZFF DA algorithm (3.2.10.1) we check the possibility to find any
classification rule from the current branch: this is possible when at least one of
the class values has a frequency bigger than or equal to the given frequency
threshold (step B7, p. 115). Having individual frequency thresholds (arising from
the completeness threshold) for each class we should compare the frequency of
each class value with its own minimal allowed frequency.

This individual threshold (to be suitable consequent by completeness) is not
intended to be the criterion by which to reject (or not) the factor to be chosen as
a leading factor, because the leading factors (used for making extracts) go into
the constitution of X (and are not potential Y-s in that branch any more). A factor
that is not frequent enough to be the consequent, might suite to be included into
X for some other Y (that has a lower individual frequency threshold). For choosing
the leading factors the (usual) general frequency threshold is better.

However, if the general frequency threshold minfr is not given, we can use the
completeness threshold minC to calculate it: minfr=n(Y)*minC, using n(Y) of
the class with the least number of objects (i.e. the smallest initial frequency).
Applying such frequency threshold no rule with sufficient completeness is not
lost due to not making an extract with a suitable frequency. The actual
completeness of each possible rule (i.e. the frequency of potential Y compared to
its own threshold) still has to be checked.

As said already, the accuracy is not monotone and therefore cannot be used for
pruning the search tree.

141

Thus, each possible consequent Y has its own minimal allowed frequency
n(Y)*minC (to be suitable by completeness) that holds in any extract of data; and
for each extract there is a minimal allowed frequency n(X)*minA (to meet the
accuracy requirement) that is common to all potential Y-s of that extract. These
two thresholds are applicable when producing the rules from the current extract,
but (generally) not for pruning the search tree.

142

4 CONCLUSIONS
The main aim of this work was to develop descriptive data mining methods GH
and DA and create corresponding algorithms (based on MS theory).

Both methods had been created in Soviet time. Being separated from the Western
research, they had their own underlying concepts and theories. In this work we
have shown the correspondences of concepts from these methods with the ones
that are widely known in data mining area. These correspondences facilitate to
share our ideas as well as make findings about those well-known concepts usable
for us.

DA finds classification rules (for descriptive purpose). DA has been developed
in order to overcome different drawbacks typical of its different approaches.

The first direction was to find a better set of rules (than by previous approaches).
Step-by-step approach reduces redundancy in case of non-intersecting rules. Our
first algorithm for finding intersecting rules produces a possibly small set of
(possibly short) rules.

The second approach is different: to find all non-redundant rules that form a basis
from which to find a suitable cover. We call such rule set Determinative Set of
Rules (DSR). This approach comprises an algorithm that produces all non-
redundant rules and some of their subrules, and a compression that removes those
subrules (that cannot be avoided by the main algorithm).

Our final development of DA, called zero-factor-free DA, finds DSR for all
classes and additionally positive and negative association rules (at the same time).
Differently from the previous approaches of DA, this one uses an algorithm that
has been grown out from MONSA. Here DA and GH meet, the correspondences
between different concepts helped to build the bridge.

It is important to make a difference between two types of zero factors (in DA)
that cause different kinds of redundancy and can be avoided or removed by
different means. We have defined 1) zero-zero factors (ZZF) that can be just left
out from the antecedent (without changing the set of covered objects) and 2) zero-
negative factors (ZNF) that produce a subrule of an existing rule (reducing the set
of covered objects). We have found that, in order to be free of ZZFs, the left side
of the rule has to be a minimal generator. In order to be free of ZNF, that minimal
generator must not have a subset that defines a class.

We have shown that original GH finds all closed sets. Its base algorithm MONSA
has been changed to find all minimal generators with their closed sets, “excluded
factors” and class.

Elements between a closed set (CS) and its generator form a consequence for an
association rule where the generator is antecedent. Such “accompanying factors”
are the characteristics that always occur with the ones in the left side of the rule.

143

Excluded factors are such elements that do not occur in any of the objects covered
by the CS, thus never accompany the elements of the antecedent. Excluded
factors serve as a consequence of a negative association rule.

Elements between a CS and its generator correspond to ZZF in DA.
Consequently, the factors that are redundant in the antecedent (of a DA rule), can
be put into the consequence and form an association rule (this is not valid for
ZNF).

Especially important finding is that a class (consequent in a classification rule)
can be detected the same way as zero-zero factors. The difference is that the class
attribute never occurs in the left side of the rule. This way we can find for the
same antecedent both class and (other) zero-zero factors.

Putting all together, we have got a MONSA-based algorithm for ZFF DA that
produces 3 kinds of non-redundant rules with the common antecedent – a minimal
generator: classification rules, positive and negative association rules. It is not
usual to find classification rules and association rules at the same time. As there
is no target class determined, the algorithm can find rules for all existing classes
intermittently – this is different from all previous approaches of DA. DSR-
compression is still needed for classification rules.

By finding classification rules for all classes, ZFF DA corresponds to multiple-
concept learning. As these rules are used for descriptive purpose, ZFF DA (like
original DA) can be called descriptive supervised rule discovery, but actually
does not fit under its definition. The simultaneous finding of ARs makes the
placement more complicated.

As a CS with all its minimal generators forms an equivalence class (EC), it was
straightforward to create an algorithm for finding all ECs (although previously
we did not have such goal).

We have created Universal Generator of Hypotheses (UGH) – one possible
framework for gathering different tasks solvable by GH and DA. We have shown
to which extent these tasks are covered by ZFF DA and other existing methods.

Our work is presented on an algorithmic level, the choice of technological means
is left to the developer. Presented methods are not intended for big data analysis.
However, with a continual development of hardware and technological means,
its capability increases.

Our approach finds only exact rules, therefore, depending on data and frequency
threshold, we can find no rules. The idea for allowing a lower accuracy (as well
as setting a threshold for completeness) has been described (without presenting it
in the form of algorithm).

Redundancy is defined as being a subrule of another rule, for rules with equal
consequent. Redundancy in case of non-identical right sides needs exploration.

144

We do not use interestingness measures for excluding non-interesting rules. The
depth of the rules is determined by the frequency threshold. However, the
presented algorithms enable to incorporate for stopping the search such measures
that are downward closed.

In ZFF DA the search in the current branch is stopped after finding a classification
rule (CAR), thus ARs that are located deeper in such branch are not found. This
specialty can be easily removed, if needed.

ZFF DA finds only one type of negative ARs (out of three).

In the future, we plan to discuss about rationality to find all contributions of all
factors in found rules and, if it is rational, to design a corresponding algorithm.
Another open issue is how to compare the results of different (sub)sets of data.

We have brought out possible directions for further development of ZFF DA
based on UGH. I believe that the MONSA-based ZFF DA algorithm has a
potential to incorporate different new possibilities (as described in this work).

4.1 Directions for further research

This thesis already contains ideas for further developments of the presented ZFF
DA:

1) Extend the algorithm for considering many class attributes in two
different ways: a) class is defined by all class attributes; b) class can be
defined by a subset of class attributes as well (see 3.3.1)

2) Modify the algorithm for finding the rules with fixed rank (3.3.1)
3) Modify the algorithm for finding the rules where antecedent and

consequent together contain all given attributes (3.3.1)
4) Involve thresholds for accuracy and completeness (see 3.4.1)

Ideas that have not been elaborated yet:

5) Finding contributions both to accuracy and completeness for all factors
in (final) rules (mentioned in 3.4)

6) Explore the redundancy in case of (association) rules having non-
identical consequents (mentioned in 3.3.1)

7) Design the management system for integrating different tasks of UGH
(mentioned in 3.4)

As the thesis contains unpublished material, we have a potential to publish:

8) Algorithm for finding equivalence classes (3.1.6)
9) Part concerning excluded factors in ZFF DA (3.1.7, 3.2.10)

Topics to explore:

10) Negative ARs (in connection with excluded factors)

145

11) Algorithms/approaches for finding ECs (or just generators and closed
sets together) (in connection with EC algorithm)

12) Using multiple minimum supports67 (how it is related to the idea of
involving accuracy and completeness thresholds presented in 3.4.1)

13) Discriminative patterns, emerging patterns, contrast sets and other
approaches that deal with comparison of classes (to find a way to
compare the results of different (sub)sets of data)

67 Different minimum support threshold is set either for each single item (Liu, Hsu, &
Ma, 1999) or for each level of hierarchy (Han & Fu, 1995) or taxonomy (Srikant &
Agrawal, 1995).

146

REFERENCES
Agrawal, R., & Srikant, R. (1994). Fast Algorithms for Mining Association

Rules. Proceedings of 20th International Conference on Very Large Data
Bases, (pp. 487-499). Santiago, Chile.

Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association rules
between sets of items in large databases. Proceedings of the 1993 ACM
SIGMOD International conference on Management of Data
(SIGMOD'93) (pp. 207-216). ACM Press.

Anshakov, O., Skvortsov, D., Finn, V., & Ivashko, V. (1987). Logical Tools of
the JSM-Method of Automatic Generation of Hypotheses: Basic
Concepts and System of Rules. Nauchn. Tekhn. Inform. Ser. 2(9), 10-18
(in Russian).

Antonie, L., Li, J., & Zaiane, O. (2014). Negative association rules. In C.
Aggarwal, & J. Han, Frequent pattern mining (pp. 135-145). Springer
International Publishing.

Antonie, M.-L., & Zaïane, O. (2004). An associative classifier based on positive
and negative rules. Proceedings of the 9th ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery (pp. 64 - 69).
Paris, France: ACM.

Atzmüller, M., & Puppe, F. (2006). SD-Map—a fast algorithm for exhaustive
subgroup discovery. European Conference on Principles of Data Mining
and Knowledge Discovery. LNCS 4213, pp. 6-17. Springer.

Bastide, Y., Pasquier, N., Taouil, R., Stumme, G., & Lakhal, L. (2000). Mining
minimal non-redundant association rules using frequent closed itemsets.
CL'2000 international conference on Computational Logic, LNCS 1861,
pp. 972-986.

Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., & Lakhal, L. (2000). Mining
Frequent Patterns with Counting Inference. ACM SIGKDD Explorations,
2(2), 66–75.

Bay, S., & Pazzani, M. (2001). Detecting group differences: Mining contrast sets.
Data Mining and Knowledge Discovery, 5(3), 213-246.

Bayardo Jr., R., & Agrawal, R. (1999). Mining the most interesting rules.
Proceedings of the fifth ACM SIGKDD international conference on
Knowledge discovery and data mining (pp. 145-154). ACM.

Berlanga, F., del Jesus, M., González, P., Herrera, F., & Mesonero, M. (2006).
Multiobjective evolutionary induction of subgroup discovery fuzzy rules:
a case study in marketing. In P. Perner (Ed.), Advances in Data Mining.

147

Applications in Medicine, Web Mining, Marketing, Image and Signal
Mining. ICDM 2006. LNAI 4065, pp. 337–349. Springer.

Borne, K. (2014). Top 10 big data challenges a serious look at 10 big data v’s.
Retrieved May 2017, from https://mapr.com/blog/top-10-big-data-
challenges-serious-look-10-big-data-vs

Breiman, L., Friedman, J., Stone, C., & Olshen, R. (1984). Classification and
regression trees.

Bringmann, B., Nijssen, S., & Zimmermann, A. (2009). Pattern-Based
Classification: A Unifying Perspective. In A. Knobbe, & J. Fürnkranz
(Ed.), From Local Patterns to Global Models: Proceedings of the
ECML/PKDD-09 Workshop (LeGo-09), (pp. 36-50). Bled, Slovenia.

Brownlee, J. (2017). Overfitting and Underfitting With Machine Learning
Algorithms. Retrieved May 2017, from Machine Learning Mastery:
http://machinelearningmastery.com/overfitting-and-underfitting-with-
machine-learning-algorithms/

Bykowski, A., & Rigotti, C. (2003). DBC: a condensed representation of frequent
patterns for efficient mining. Information Systems, 28(8), 949-977.

Carmona, C. J., González, P., del Jesus, M. J., & Herrera, F. (2014). Overview
on evolutionary subgroup discovery: analysis of the suitability and
potential of the search performed by evolutionary algorithms. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(2),
87-103.

Carmona, C., González, P., del Jesus, M., & Herrera, F. (2010). NMEEF-SD:
Non-dominated multi-objective evolutionary algorithm for extracting
fuzzy rules in subgroup discovery. IEEE Transactions on Fuzzy Systems,
18(5), 958-970.

Ceglar, A., & Roddick, J. (2006). Association mining. ACM Computing Surveys
(CSUR), 38(2), 5.

Cheng, H., Yan, X., Han, J., & Hsu, C.-W. (2007). Discriminative frequent
pattern analysis for effective classification. IEEE 23rd International
Conference on Data Engineering, 2007. ICDE 2007. (pp. 716-725).
IEEE.

Chesnokov, S. V. (1980a). Determination-analysis of social-economic data in
dialogical regime (Preprint). Moscow: All-Union Institute for Systems
Research (in Russian) .

Chesnokov, S. V. (1980b). Determinacy analysis of social-economic data.
Sociological Studies, #3, 179-189 (in Russian).

148

Chesnokov, S. V. (1982). Determinacy analysis of social-economic data.
Moscow: Nauka (in Russian).

Chesnokov, S. V. (1996). Determinacy Analysis and the search for diagnostic
criteria in medicine (the case of comprehensive ultrasonography).
Ultrasonic Diagnostics, #4, 42-47 (in Russian).

Chesnokov, S. V. (2002). Determinacy Analysis of Socio-Economic Data.
Illustrative Materials to Lectures. Lecture 2: Rules. Lecture 3: Systems
of Rules. Moscow: Lomonosov Moscow State University, Faculty of
Economics (unpublished, in Russian).

Clark, P., & Niblett, T. (1987). Induction in noisy domains. Progress in Machine
Learning - Proceedings of EWSL 1987, (pp. 11-30). Bled, Yugoslavia.

Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Journal of Machine
Learning, 3(4), 261-283.

Context. (1999a). DA-system 4.0. User's Guide, ver. 1.0, 1998-1999. (in Russian).

Context. (1999b). DA-system 4.0, version 4.0 for Windows 95, Windows 98 and
Windows NT. Questions and Answers. DA-system and Technology of
Data Analysis. (in Russian).

DALSolution. (2007, 02 27). DALSolution software and technology. Questions
and Answers. Retrieved from http://www.dalsolution.com/faq.htm,
27.02.2007

Dean, J., & Ghemawat, S. (2004). MapReduce: Simplified Data Processing on
Large Clusters. OSDI'04 Proceedings of the 6th conference on
Symposium on Opearting Systems Design & Implementation. 6, pp. 137-
149. CA, USA: USENIX Association Berkeley.

del Jesus, M. J., González, P., Herrera, F., & Mesonero, M. (2007). Evolutionary
fuzzy rule induction process for subgroup discovery: A case study in
marketi. IEEE Transactions on Fuzzy Systems 15, 15(4), 578-592.

Deng, L. (2014). A tutorial survey of architectures, algorithms, and applications
for deep learning. APSIPA Transactions on Signal and Information
Processing, 3.

Dong, G., & Li, J. (1999). Efficient Mining of Emerging Patterns: Discovering
Trends and Differences. Proceedings of the fifth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (pp.
43-52). ACM.

Dong, X., Sun, F., Han, X., & Hou, R. (2006). Study of Positive and Negative
Association Rules Based on Multi-confidence and Chi-Squared Test. In
X. Li, O. Zaïane, & Z. Li (Ed.), ADMA 2006. LNCS (LNAI) 4093, pp.
100–109. Heidelberg: Springer.

149

Dunham, M. H. (2002a). Data Mining: Introductory and Advanced Topics.
Prentice Hall.

Dunham, M. H. (2002b). DATA MINING: Introductory and Advanced Topics.
Part II. Companion slides for the text by Dr. M.H.Dunham, Data
Mining,Introductory and Advanced Topics, Prentice Hall, 2002.

Fan, W., Geerts, F., Li, J., & Xiong, M. (2011). Discovering conditional
functional dependencies. IEEE Transactions on Knowledge and Data
Engineering, 23(5), 683-698.

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From Data Mining to
Knowledge Discovery: An Overview. In U. Fayyad, G. Piatetsky-
Shapiro, P. Smyth, & R. Uthurusamy, Advances in Knowledge Discovery
and Data Mining (pp. 1-36). AAAI Press/ The MIT Press.

Freitas, A. (2000). Understanding the crucial differences between classification
and discovery of association rules: a position paper. ACM SIGKDD
Explorations Newsletter, 2(1), 65-69.

Fürnkranz, J., & Kliegr, T. (2015). A brief overview of rule learning.
International Symposium on Rules and Rule Markup Languages for the
Semantic Web (pp. 54-69). Springer International Publishing.

Fürnkranz, J., Gamberger, D., & Lavrač, N. (2012). Foundations of rule learning.
Springer Science & Business Media.

Gamberger, D., & Lavrač, N. (2002). Expert-guided subgroup discovery:
Methodology and application. Journal of Artificial Intelligence
Research, 17(1), 501-527.

Gams, M., & Lavrac, N. (1987). Review of five empirical learning systems within
a proposed schemata. In I. Bratko, & N. Lavrac (Ed.), Progress in
Machine Learning, Proceedings of EWSL 87 (pp. 46-66). Wilmslow:
Sigma Press.

García-Borroto, M., Martínez-Trinidad, J. F., & Carrasco-Ochoa, J. A. (2014). A
survey of emerging patterns for supervised classification. Artificial
Intelligence Review, 42(4), 705-721.

Geng, L., & Hamilton, H. (2006). Interestingness measures for data mining: A
survey. ACM Computing Surveys (CSUR), 38(3), 9.

Grosskreutz, H., & Rüping, S. (2009). On subgroup discovery in numerical
domains. Data mining and knowledge discovery, 19(2), 210-226.

Grosskreutz, H., Rüping, S., & Wrobel, S. (2008). Tight optimistic estimates for
fast subgroup discovery. Proceedings of the 2008 European Conference
on Machine Learning and Knowledge Discovery in Databases (pp. 440-
456). Springer.

150

Gu, T., Wu, Z., Tao, X., Pung, H. K., & Lu, J. (2009). epsicar: An emerging
patterns based approach to sequential, interleaved and concurrent activity
recognition. IEEE International Conference on Pervasive Computing
and Communications, 2009. PerCom 2009. (pp. 1-9). IEEE.

Han, J., & Fu, Y. (1995). Discovery of multiple-level association rules from large
databases. Proceedings of the 21st VLDB Conference (pp. 420-431).
Morgan Kaufmann Publishers Inc.

Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate
generation. Proceedings of the 2000 ACM SIGMOD international
conference on management of data (pp. 1-12). ACM.

Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining Frequent Patterns without
Candidate Generation: A Frequent-Pattern Tree Approach. Data Mining
and Knowledge Discovery, 8(1), 53-87.

Hasan, S., Shamsuddin, S., & Lopes, N. (2015). Soft computing methods for big
data problems. In Y. Cai, & S. See, GPU Computing and Applications
(pp. 235-247). Singapore: Springer.

Helal, S. (2016). Subgroup Discovery Algorithms: A Survey and Empirical
Evaluation. Journal of Computer Science and Technology, 31(3), 561-
576.

Herrera, F., Carmona, C., González, P., & del Jesus, M. (2011). An overview on
subgroup discovery: foundations and applications. Knowledge and
information systems, 29(3), 495-525.

Huang, Z., Zhou, Z., He, T., & Wang, X. (2011). ACAC: Associative
Classification based on All-Confidence. IEEE International Conference
on Granular Computing (GrC) (pp. 289-293). IEEE.

Jõgiste, L. (2014). Prototyping of Zero-factor based DA. Master's Thesis, Tallinn
University of Technology, IT Faculty, Tallinn.

Kavšek, B., & Lavrač, N. (2006). APRIORI-SD: Adapting association rule
learning to subgroup discovery. Applied Artificial Intelligence, 20(7),
543-583.

Klösgen, W. (1996). Explora: A multipattern and multistrategy discovery
assistant. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R.
Uthurusamy, Advances in knowledge discovery and data mining (pp.
249-271). AAAI Press.

Klösgen, W., & May, M. (2002). Spatial Subgroup Mining Integrated in an
Object-Relational Spatial Database. Principles of Data Mining and
Knowledge Discovery. PKDD 2002. LNAI 2431, pp. 275-286. Springer.

151

Kohonen, T. (1981). Automatic formation of topological maps of patterns in a
self-organizing system. Proc. 2nd Scandinavian Conf. on lmage
Analysis, (pp. 214-220). Espoo, Finland.

Kryszkiewicz, M., & Gajek, M. (2002b). Why to apply generalized disjunction-
free generators representation of frequent patterns? In M.-S. Hacid, Z.
W. Ras, D. A. Zighed, & Y. Kodratoff (Ed.), ISMIS 2002. LNAI 2366,
pp. 383-392. Berlin Heidelberg: Springer-Verlag.

Kundu, G., Islam, M., Munir, S., & Bari, M. (2008). ACN: An Associative
Classifier with Negative Rules. 11th IEEE International Conference on
Computational Science and Engineering (pp. 369-375). IEEE.

Kuusik, R. (1987). Generator Hypotheses for Qualitative Data. Transactions of
Tallinn Technical University(645), 141-148 (in Russian).

Kuusik, R. (1988). On new qualitative datanalysis methods and its applications.
Infotechnology and exact economics. Proceedings of the Respublican
Scientific Seminar, II, 287-290 (in Estonian).

Kuusik, R. (1993). The Super-Fast Algorithm of Hierarchical Clustering and the
Theory of Monotone Systems. Transactions of Tallinn Technical
University, 734, 37-62.

Kuusik, R. (1995). Extracting of all maximal cliques: monotone system approach.
Proceedings of the Estonian Academy of Sciences. Engineering, 1(2),
113-138.

Kuusik, R., & Lind, G. (2008, May). Algorithm MONSA for All Closed Sets
Finding: basic concepts and new pruning techniques. WSEAS
Transactions on Information Science and Applications, 5(5), 599-611.

Kuusik, R., & Lind, G. (2010). Some Developments of Determinacy Analysis.
Advanced Data Mining and Applications: The 6th International
Conference on Advanced Data Mining and Applications (ADMA2010),
Chongqing, China, November 19-21, 2010. LNAI 6440, pp. 593-602.
Berlin Heidelberg: Springer-Verlag.

Kuusik, R., & Lind, G. (2011). New Developments of Determinacy Analysis. In
J. Tang, I. King, L. Chen, & J. Wang (Ed.), Advanced Data Mining and
Applications - 7th International Conference: ADMA 2011, Beijing,
China, December 17-19, 2011. II; LNCS 7121, p. 223−236. Springer.

Kuusik, R., & Lind, G. (2012). An Effective Inductive Learning Algorithm for
Extracting Rules. In F. L. Gaol, & Q. V. Nguyen (Ed.), Proceedings of
the 2011 2nd International Congress on Computer Applications and
Computational Science, 2: CACS 2011, Bali, Indonesia, November 15-
17, 2011. AISC 145, pp. 339-344. Berlin Heidelberg: Springer-Verlag.

152

Kuusik, R., Lind, G., & Võhandu, L. (2004). Frequent pattern mining as a clique
extracting task. In N. Callaos, V. Lefebvre, E. Hansen, T. Dickopp, & J.
Su (Ed.), The 8th World Multi-Conference on Systemics, Cybernetics and
Informatics, July 18-21, 2004 - Orlando, Florida, USA, SCI 2004
Proceedings. IV, p. 425−428. Orlando, Florida, USA: International
Institute of Informatics and Systemics.

Lavrač, N., Kavšek, B., Flach, P., & Todorovski, L. (2004). Subgroup discovery
with CN2-SD. Journal of Machine Learning Research, 5(Feb), 153-188.

Lee, J., Hong, S., & Lee, J.-H. (2014). An efficient prediction for heavy rain from
big weather data using genetic algorithm. Proceedings of the
International Conference on Ubiquitous Information Management and
Communication (pp. 25:1–25:7). ACM.

Li, J., Liu, G., & Wong, L. (2007). Mining statistically important equivalence
classes and delta-discriminative emerging patterns. Proceedings of the
13th ACM SIGKDD international conference on Knowledge discovery
and data mining (pp. 430-439). ACM.

Li, W., Han, J., & Pei, J. (2001). CMAR: Accurate and efficient classification
based on multiple class-association rules. Proceedings of the 2001 IEEE
International Conference on Data Mining (ICDM) (pp. 369-376). IEEE.

Li, X., Qin, D., & Yu, C. (2008). ACCF: Associative Classification Based on
Closed Frequent Itemsets. Proceedings of the Fifth International
Conference on Fuzzy Systems and Knowledge Discovery. 2, pp. 380-384.
IEEE.

Lin, M.-Y., Lee, P.-Y., & Hsueh, S.-C. (2012). Apriori-based frequent itemset
mining algorithms on MapReduce. Proceedings of the International
Conference on Ubiquitous Information Management and
Communication (pp. 76:1–76:8). ACM.

Lind, G., & Kuusik, R. (2007). Some Ideas for Determinacy Analysis Realisation.
Proceedings of the 11th IASTED International Conference on Artificial
Intelligence and Soft Computing. Palma de Mallorca, Spain, August 29-
31, 2007 (pp. 185-190). ACTA Press.

Lind, G., & Kuusik, R. (2008a, October). New developments for Determinacy
Analysis: diclique-based approach. WSEAS Transactions on Information
Science and Applications, 5(10), 1458-1469.

Lind, G., & Kuusik, R. (2008b). Some Problems in Determinacy Analysis
Approaches Development. Proceedings of the 2008 International
Conference on Data Mining (DMIN 2008), Las Vegas, Nevada, USA,
July 14-17, 2008. Volume I, pp. 102-108. CSREA Press.

153

Lind, G., & Kuusik, R. (2012). An Idea for Universal Generator of Hypotheses.
In L. Maciaszek, A. Cuzzocrea, & J. Cordeiro (Ed.), Proceedings of
ICEIS 2012: the 14th International Conference on Enterprise
Information Systems, Wrocław, Poland, 28 June – 1 July. Volume 1, pp.
169-174. Portugal: SciTePress.

Lind, G., & Kuusik, R. (2016). Algorithm for Finding Zero Factor Free Rules.
Man-Machine Interactions 4: 4th International Conference on Man-
Machine Interactions, ICMMI 2015 Kocierz Pass, Poland, October 6-9,
2015. AISC 391, pp. 421-435. Springer.

Liu, B., Hsu, W., & Ma, Y. (1998). Integrating Classification and Association
Rule Mining. Proceedings of the Fourth International Conference on
Knowledge Discovery and Data Mining (pp. 80-86). AAAI Press.

Liu, B., Hsu, W., & Ma, Y. (1999). Mining association rules with multiple
minimum supports. Proceedings of the fifth ACM SIGKDD International
Conference on Knowledge Ddiscovery and Data Mining (pp. 337-341).
ACM.

Liu, Q., Wang, W., Deng, S., & Dong, G. (2011). An Equivalence Class Based
Clustering Algorithm for Categorical Data. IMMM 2011 : The First
International Conference on Advances in Information Mining and
Management, (pp. 127-130).

Lopes, N., & Ribeiro, B. (2001). Hybrid learning in a multi neural network
architecture. INNS-IEEE International Joint Conference on Neural
Networks, IJCNN’01 (pp. 2788–2793). Washington D.C., USA: IEEE.

Luelsdorff, P., & Chesnokov, S. (1996). Determinacy Form as the Essence of
Language. Prague Linguistic Circle, 2, 205-234.

Madjarov, G., Kocev, D., Gjorgjevikj, D., & Džeroski, S. (2012). An extensive
experimental comparison of methods for multi-label learning. Pattern
Recognition, 45(9), 3084-3104.

MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein. (2016).
Retrieved February 2016, from http://mathworld.wolfram.com/

Michalski, R. S. (1969). On the Quasi-Minimal Solution of the Covering
Problem. Proceedings of FCIP 69, A3, pp. 125-128. Bled, Yugoslavia.

Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (1984). Machine Learing:
An Artificial Intelligence Approach. Berlin Heidelberg New York Tokio:
Springer-Verlag.

Michie, D., Spiegelhalter, D., & Taylor, C. (1994). Machine Learning, Neural
and Statistical Classification.

154

Mielikäinen, T. (2006). Transaction databases, frequent itemsets, and their
condensed representations. In F. Bonchi, & J.-F. Boulicaut (Ed.),
Knowledge Discovery in Inductive Databases, 4th International
Workshop, KDID 2005, Porto, Portugal, October 3, 2005, Revised
Selected and Invited Papers. Lecture Notes in Computer Science 3933,
pp. 139-164. Springer.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

Morishita, S., & Sese, J. (2000). Traversing itemset lattice with statistical metric
pruning. Proceedings of the 19th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS), (pp. 226–236).

Mueller, M., Rosales, R., Steck, H., Krishnan, S., Rao, B., & Kramer, S. (2009).
Subgroup discovery for test selection: a novel approach and its
application to breast cancer diagnosis. Advances in Intelligent Data
Analysis VIII. IDA 2009. LNCS 5772, pp. 119-130. Springer.

Mullat, J. E. (1971). On the Maximum Principle for some Set Functions.
Proceedings of the Tallinn Technical University(313), 37-44. Retrieved
02 2016, from http://www.datalaundering.com/download/modular.pdf

Mullat, J. E. (1976). Extremal Subsystems of Monotonic Systems. I. Automation
and Remote Control, 37(5), 758-766. Retrieved 02 2016, from
www.datalaundering.com/download/extrem01.pdf

Mullat, J. E. (1977). Extremal Subsystems of Monotonic Systems. II. Automation
and Remote Control, 37(8), 1286-1294. Retrieved 02 2016, from
www.datalaundering.com/downlaods/extrem02.pdf

Nguyen, D., Vo, B., & Le, B. (2014). Efficient strategies for parallel mining class
association rules. Expert Systems with Applications, 41(10), 4716-4729.

Nguyen, L., Vo, B., Hong, T.-P., & Thanh, H. (2013). CAR-Miner: An efficient
algorithm for mining class-association rules. Expert Systems with
Applications, 40(6), 2305-2311.

Niu, Q., Xia, S.-X., & Zhang, L. (2009). Association Classification Based on
Compactness of Rules. Proceedings of the Second International
Workshop on Knowledge Discovery and Data Mining - WKDD (pp. 245-
247). IEEE.

Novak, P., Lavrač, N., & Webb, G. (2009). Supervised descriptive rule discovery:
A unifying survey of contrast set, emerging pattern and subgroup mining.
Journal of Machine Learning Research, 10(Feb), 377-403.

Pasquier, N., Bastide, Y., Taouil, R., & Lakhal, L. (1998). Pruning Closed Itemset
Lattices for Association Rules. Proceedings of the BDA Conference, (pp.
177-196).

155

Pasquier, N., Bastide, Y., Taouil, R., & Lakhal, L. (1999). Discovering frequent
closed itemsets for association rules. Database Theory - ICDT'99. LNCS
1540, pp. 398-416. Springer.

Pruks, M. (2014). Realization of Equivalence Class Based Clustering. Master's
Thesis, Tallinn University of Informatics, IT Faculty, Tallinn.

Quinlan, J. R. (1984). Learning efficient classification procedures and their
application to chess and games. In R. S. Michalski, J. G. Carbonell, & T.
M. Mitchell (Eds.), Machine Learning. An Artificial Intelligence
Approach (pp. 463-482). Berlin Heidelberg New York Tokyo: Springer-
Verlag.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 11(1), 81-
106.

Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Mateo: Morgan
Kaufmann Publishers.

Rebentrost, P., Mohseni, M., & Lloyd, S. (2014). Quantum support vector
machine for big data classification. Physical review letters, 113(13),
130503.

Roosmann, P., Võhandu, L., Kuusik, R., Treier, T., & Lind, G. (2008). Monotone
Systems approach in Inductive Learning. International Journal of
Applied Mathematics and Informatics, 2(2), 47−56.

Ševtšenko, F. (2017). Zero Factors Free Rules Algorithm: The Study of
Classification Function. Master's Thesis, Tallinn University of
Technology, Faculty of Information Technology, Tallinn.

Srikant, R., & Agrawal, R. (1995). Mining generalized association rules.
Proceedings of the 21st VLDB Conference (pp. 407-419). Morgan
Kaufmann Publishers Inc.

Stover, C. (2016). Monotonic Function. Retrieved February 2016, from
MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein:
http://mathworld.wolfram.com/MonotonicFunction.html

Thabtah, F., & Cowling, P. (2007). A greedy classification algorithm based on
association rule. Applied Soft Computing, 7(3), 1102-1111.

Thabtah, F., Cowling, P., & Peng, Y. (2004). MMAC: A new multiclass, multi-
label associative classification approach. Proceedings of the Fourth
IEEE International Conference on Data Mining (ICDM ’04) (pp. 217-
224). Brighton, UK: IEEE.

Thabtah, F., Cowling, P., & Peng, Y. (2005). MCAR: Multi-class classification
based on association rule approach. Proceedings of the 3rd IEEE

156

International Conference on Computer Systems and Applications (pp.
33-I). IEEE.

Tsai, C.-W., Lai, C.-F., Chao, H.-C., & Vasilakos, A. V. (2015). Big data
analytics: a survey. Journal of Big Data, 2(1), 21.

Tsoumakas, G., & Katakis, I. (2007). Multi-label classification: An overview.
International Journal of Data Warehouse and Mining, 3(3), 1–13.

Vapnik, V. (1995). The Nature of Statistical Learning. Springer.

Veloso, A., Meira, W., Gonçalves, M., & Zaki, M. (2007). Multi-label Lazy
Associative Classification. Proceedings of the Principles of Data Mining
and Knowledge Discovery - PKDD (pp. 605-612). Springer.

Veselov, A., Deza, V., & Podrabinovich, A. (1980). Computation of
characteristics of determination relationships. In Methodology of
comprehensive analysis of socio-economic systems. Collected papers
(pp. 94-99). Moscow: the Institute for Systems Studies (in Russian).

Võhandu, L., Kuusik, R., Torim, A., Aab, E., & Lind, G. (2006). Some Monotone
Systems Algorithms for Data Mining. WSEAS Transactions on
Information Science and applications, 4(3), 802−809.

Wang, H., Zhang, X., & Chen, G. (2008). Mining a complete set of both positive
and negative association rules from large databases. Advances in
Knowledge Discovery and Data Mining (pp. 777-784). Springer.

Wang, X., Yue, K., Niu, W., & Shi, Z. (2011). An approach for adaptive
associative classification. Expert Systems with Applications, 38(9),
11873-11883.

Wedyan, S. (2014). Review and comparison of associative classification data
mining approaches. International Journal of Computer, Information,
Systems and Control Engineering, 8(1), 34-45.

Weisstein, E. W. (2016a). Monotone Increasing. Retrieved February 2016, from
MathWorld--A Wolfram Web Resource:
http://mathworld.wolfram.com/MonotoneIncreasing.html

Weisstein, E. W. (2016b). Monotone Decreasing. Retrieved February 2016, from
MathWorld--A Wolfram Web Resource:
http://mathworld.wolfram.com/MonotoneDecreasing.html

Wrobel, S. (1997). An algorithm for multi-relational discovery of subgroups.
Proceedings of the 1st European Symposium on Principles of Data
Mining and Knowledge Discovery (PKDD) (pp. 78-87). Springer-Verlag.

157

Wu, X., Kumar, V., Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., . . . Steinberg,
D. (2008). Top 10 algorithms in data mining. Knowledge and information
systems, 14(1), 1-37.

Yang, L., Shi, Z., Xu, L. D., Liang, F., & Kirsh, I. (2011). DH-TRIE frequent
pattern mining on Hadoop using JPA. 2011 IEEE International
Conference on Granular Computing, (pp. 875-878).

Yin, X., & Han, J. (2003). CPAR: Classification based on predictive association
rules. In Proceedings of the 2003 SIAM International Conference on
Data Mining (pp. 331-335). SIAM.

Zadeh, L. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.

Zaki, M. J. (2004). Mining Non-Redundant Association Rules. (Fayyad, Mannila,
& Ramakrishnan, Eds.) Data Mining and Knowledge Discovery, 9, 223-
248.

Zaki, M. J., & Hsiao, C.-J. (1999). CHARM: An efficient algorithm for closed
association rule mining. Technical Report 99-10, Rensselaer Polytechnic
Institute, Department of Computer Science.

Zaki, M. J., & Hsiao, C.-J. (2002). CHARM: An Efficient Agorithm for Closed
Itemset Mining. Proceedings of the Second SIAM International
Conference on Data Mining, 2, pp. 457-473.

Zhang, M.-L., & Zhou, Z.-H. (2014). A review on multi-label learning
algorithms. IEEE transactions on knowledge and data engineering,
26(8), 1819-1837.

158

KOKKUVÕTE
Andmekaevandamist defineeritakse kui peidetud informatsiooni leidmist
andmebaasist. Andmekaevandamise kaks kõrgtaseme eesmärki on ennustamine
ja kirjeldamine. Kirjeldamine on viis uuritavate andmete omaduste lähemaks
uurimiseks (mitte uute omaduste ennustamiseks).

Nimetatud eesmärkide saavutamiseks kasutatakse mitmeid andmekaevandamis-
ülesandeid, sh klassifitseerimine ja assotsiatsioonireeglid. Klassifitseerimisel
seatakse andmed vastavusse eelnevalt defineeritud klassidega (gruppidega). See
meetod pärineb masinõppest, andmekaeves kasutatakse seda peamiselt
ennustamiseks. Assotsiatsioonireeglite kaevandamine paljastab seoseid andmete
vahel, identifitseerides kindlat tüüpi kooslusi. Seda peetakse kirjeldavaks
ülesandeks.

Mõlemad ülesanded annavad tulemuseks IF-THEN reeglid. Vahe on selles, et
klassifikatsioonireeglid leitakse vaid ettemääratud klassi(de)le ja
klassitunnus(ed) on eraldatud teistest tunnustest, assotsiatsioonireeglite korral
aga võivad kõik atribuudid esineda emmal-kummal reegli poolel ja reegli
järelduse osa pole (üldjuhul) ette määratud.

Enamasti lahendatakse neid ülesandeid eraldi ja erinevatel eesmärkidel. Meie
loodud lähenemine (nullfaktorivaba determinatsioonanalüüs) leiab korraga
mõlemat tüüpi reegleid (kirjeldamise eesmärgil). See erineb teistest meetoditest,
milles kombineeritakse klassifitseerimist ja assotsiatsioonireegleid.

Käesolev töö esitab kahe kirjeldava andmekaeve meetodi arendusi. Nendeks
meetoditeks on determinatsioonanalüüs (DA) ja hüpoteeside generaator (HG).

Mõlemad meetodid on loodud Nõukogude ajal, eraldatuna Lääne teadusest.
Seetõttu põhinevad need omadel mõistetel ja teooriatel. Käesolevas töös näitame
nende meetodite poolt kasutatavate mõistete vastavusi üldtuntud andmekaeve
mõistetega. Sellised vastavused hõlbustavad meil oma ideid jagada, aga ka ära
kasutada teadmisi nende laiemalt tuntud mõistete kohta.

DA on meetod reeglite analüüsimiseks. Püütakse vastata küsimustele: „Kes nad
on?“, „Kuidas saame neid kirjeldada?“, „Mis neid teistest eristab?“, et kirjeldada
klassi kuuluvaid objekte. Determinatsioonanalüüsi võib lugeda klassifitseerimis-
meetodiks ning saab seostada ka assotsiatsioonireeglitega.

Käesolevas töös on DAd arendatud selle erinevates lähenemistes esinevate
puuduste kõrvaldamiseks, peamiselt liiasuse vähendamise suunas. Nullfaktorid
(NF) on elemendid, mis põhjustavad liiasust ja ei tohi esineda reeglite eelduse
osas. Defineerisime kaht tüüpi nullfaktorid.

Töös esitatakse järgmised DA arendused:

159

 Samm-sammuline meetod: aitab liiasust vähendada, leides erineva
pikkusega mittelõikuvaid reegleid.

 Esimene lõikuvate reeglite algoritm leiab võimalikult väikese arvu
(võimalikult lühikesi) reegleid.

 DSR-lähenemine: selle asemel, et leida üks paljudest eksisteerivatest
kirjeldustest, leiab kõik mitteliiased reeglid; seda reeglihulka saab
kasutada sobiva katte leidmiseks.

 Nullfaktorivaba DA: leiab kõik mitteliiased reeglid kõigi klasside jaoks
(mitte vaid ühe määratud klassi jaoks) ning rikastab neid
klassifikatsioonireegleid positiivsete ja negatiivsetete assotsiatsiooni-
reeglitega.

Hüpoteeside generaator on andmekaeve meetod, mis kasutab algoritm MONSA
pakutavaid võimalusi. Näitame, et HG/MONSA leiab kõik suletud hulgad (closed
sets).

Muutsime MONSAt nii, et see leiab kõik minimaalsed generaatorid koos neile
vastava suletud hulga, „välistatud faktorite“ ja klassiga. Elemendid suletud hulga
ja selle generaatori vahel moodustavad järelduse assotsiatsioonireeglile, mille
eelduseks on generaator. Välistatud faktoriteks on elemendid, mis ei esine suletud
hulgas, need moodustavad järelduse osa negatiivsele assotsiatsioonireeglile.
Leidsime, et elemendid suletud hulga ja selle generaatori vahel vastavad ühele
(DA) nullfaktori tüübile ja et klassi saab tuvastada samamoodi kui neid
nullfaktoreid. Pannes kõik kokku, lõime MONSAst tuletatud algoritmi
nullfaktorivaba DA jaoks, mis leiab kolme tüüpi reegleid ühise eelduse osaga:
klassifikatsioonireeglid, positiivsed ja negatiivsed assotsiatsioonireeglid.

Et suletud hulk koos kõigi oma minimaalsete generaatoritega moodustab
ekvivalentsiklassi, lõime ka algoritmi, mis leiab kõik ekvivalentsiklassid.

Lõpuks kogusime GH ja DA poolt lahendatavad ülesanded ühtsesse raamistikku,
mida kutsume universaalseks hüpoteeside generaatoriks.

MONSA ja kõik teised töös esitatud algoritmid põhinevad monotoonsete
süsteemide teoorial. Loodud NF-vaba DA algoritm sobib mitmete edasiste
arenduste aluseks.

161

Appendix A
Kuusik, R. and Lind, G. (2008). Algorithm MONSA for All Closed Sets Finding:
basic concepts and new pruning techniques. WSEAS Transactions on Information
Science and Applications, 5(5), 599-611.

�

�������	
��	���������� !�"##$ "%�&��'��(!)�)*+,-./*0.�12� 021-/,.345�',66300�#037*-53.8�12�'*490161:8��,;,�<=%�',66300�<>?<@��$'A! B�CDD53CE44F..DF**%�:-*.*E5.,22F..DF**���GHIJKLMJN�O� 0�.935�+,+*-�,0�,6:1-3.9/�0,/*P�QA!$B�21-�4615*P�5*.5�/3030:�35�+-*5*0.*PF� .�P1*5�01.�D5*�5D49�C30P�12�.*4903RD*5�,5�30�S9B�Q�T8�U,C3�,0P�V53,1F�QA!$B�35�,0�*W,4.�P*+.9X23-5.�5*,-49�,6:1-3.9/�*W.-,4.30:�1068�2-*RD*0.�4615*P�5*.5�D530:�5*7*-,6�0*Y�7*-8�*22*4.37*�+-D030:�.*4903RD*5�.1�T*�2-**�2-1/�-*+*.3.37*�,0P�*/+.8�+,..*-05F�QA!$B�P1*5�01.�P*+*0P�10�.9*�303.3,6�1-P*-�12�1T;*4.5F� 0�QA!$B�.9*-*�35�,4.37*�1068�10*�T-,049�Y9349�35�D0P*-�4105.-D4.310F�'9*�+D-+15*�12�.935�+,+*-�35�.1�P*54-3T*�.9*�,++-1,49�D5*P�30�QA!$B�,0P�.9*�41--*5+10P*04*�12�3.5�T,5345�,0P�4104*+.5�.1�.9*�,++-1,49�T8�U,C3�,0P�V53,1F�B�2D66�*W,/+6*�12�.9*�,6:1-3.9/Z5�Y1-C�35�+-*5*0.*PF�[8�.9*�,6:1-3.9/�.9*�30.*-5*4.3105�\4615*P�5*.5]�,0P� ̂_'V�!�-D6*5�10�.9*�5DT5*.5�12�51D-4*�P,.,�5*.�53/D6.,0*1D568�,-*�21D0PF�QA!$B�.-*,.5�01.�1068�T30,-8�P,.,%�TD.�,�6,-:*-�5*.�12�P354-*.*�7,6D*5F��̀abOcdKeIN�O�),.,�/3030:%�̂-*RD*0.�4615*P�5*.5%�f-D030:�.*4903RD*5%�)*+.9X23-5.�5*,-49%�Q101.10*�585.*/5��g���h������������i'9*�.,5C�12�/3030:�,55143,.310�-D6*5�410535.5�12�.Y1�/,30�5.*+5F�'9*�23-5.�307167*5�230P30:�.9*�5*.�12�,66�2-*RD*0.�3.*/5*.5F�'9*�5*410P�307167*5�.*5.30:�,0P�:*0*-,.30:�,66�93:9�41023P*04*�-D6*5�,/10:�3.*/5*.5j�k<lF�U,C3�,0P�V53,1�+-17*�30�k<l�.9,.�i .�35�01.�0*4*55,-8�.1�/30*�,66�2-*RD*0.�3.*/5*.5�30�.9*�23-5.�5.*+%�305.*,P�3.�35�5D22343*0.�.1�/30*�.9*�5*.�12�4615*P�2-*RD*0.�3.*/5*.5%�Y9349�35�/D49�5/,66*-�.9,0�.9*�5*.�12�,66�2-*RD*0.�3.*/5*.5j�,0P�i .�35�,651�01.�0*4*55,-8�.1�/30*�.9*�5*.�12�,66�+1553T6*�-D6*5j%�T*4,D5*�i,08�-D6*�T*.Y**0�3.*/5*.5�35�*RD37,6*0.�.1�51/*�-D6*�T*.Y**0�4615*P�3.*/5*.5F�'9D5�/,08�-*PD0P,0.�-D6*5�4,0�T*�*63/30,.*Pj�k<lF�B651�3.�35�3/+1-.,0.�.1�*0D/*-,.*�4615*P�5*.5�P3-*4.68%�Y3.91D.�:*0*-,.30:�.9*/�iD530:�B+-31-3X63C*�T1..1/XD+�5*,-49�/*.91P5�.9,.�*W,/30*�,66�5DT5*.5�12�2-*RD*0.�3.*/5*.5j�1-�230P30:�.9*/�2-1/�/,W3/,6�+,..*-05�i5304*�,66�5DT5*.5�12�.9*�/,W3/,6�3.*/5*.5�Y1D6P�,:,30�9,7*�.1�T*�*W,/30*Pj�k>lF�B5�Y*�5**%�21-�/3030:�,55143,.310�-D6*5�Y*�0**P�.1�230P�1068�4615*P�5*.5F�m*�P3P�3.F�[D.�30�1D-�,6:1-3.9/�QA!$B�Y*�D5*�1.9*-�P*01.,.3105�,0P�.*4903RD*5�.9,0�U,C3�,0P�V53,1�k<l�k>lF�B6:1-3.9/�QA!$B�knl�Y,5�4-*,.*P�21-�P35417*-30:�30.*-5*4.3105�Y3.9�5+*43,6�RD,63.8�\5**�5*4.310�>F>�\?]]F�B++*,-5�.9,.�.9*�5*.�12�30.*-5*4.3105�3.�21D0P5�35�.9*�5,/*�,5�.9*�5*.�12�,66�\2-*RD*0.]�4615*P�5*.5F�BPP3.310,668�1D-�,6:1-3.9/�*0,T6*5�.1�230P�-D6*5�\T*.Y**0�4615*P�3.*/5*.5]�,.�.9*�5,/*�.3/*�

,5�4615*P�3.*/5*.5�3.5*62F�!*7*-.9*6*55�.935�35�,�5DT5*.�12�,66�+1553T6*�-D6*5�T*.Y**0�4615*P�5*.5F� 0�1-P*-�.1�*05D-*�.9,.�.9*5*�-D6*5�916P�Y3.9�,.�6*,5.�-*RD3-*P�41023P*04*�3.�35�+1553T6*�.1�+-D0*�.9*�T-,049*5�12�,�5*,-49�.-**�,441-P30:�.1�.9*�.9-*5916P�:37*0�T8�.9*�D5*-F�'9*�/,30�:1,6�12�.9*�+,+*-�35�.1�P*54-3T*�1D-�,6:1-3.9/�,0P�.9*�/,30�.9*1-*.34,6�4104*+.3105�10�Y9349�3.�35�T,5*PF���gog���p	�����q�QA!$B�35�,�P*+.9X23-5.�5*,-49�,6:1-3.9/�D5*P�21-�P35417*-30:�30.*-5*4.3105�Y3.9�5+*43,6�RD,63.8F�'9*�rsJaKIaMJrds�12�.Y1�\1-�/1-*]�5*.5�35�.9*�5*.�12�*6*/*0.5%�Y9349�T*610:�.1�T1.9�\,66]�5*.5%�53/D6.,0*1D568F�m3.91D.�D5*P�+-D030:�.*4903RD*5�QA!$B�Y1D6P�+*-21-/�*W9,D5.37*�5*,-49�,0P�+-1PD4*�,66�+*-/D.,.3105�12�,66�*W35.30:�7,6D*�41/XT30,.3105F�'9*�tLuva�MdwHrsLJrds�35�,�5*.�12�*6*X/*0.5%�,0�auawasJ�35�,0�,..-3TD.*�Y3.9�4*-.,30�7,6D*F�',C30:�30.1�,441D0.�.9*�/303/,6�2-*RD*048�,661Y*P�T8�.9*�D5*-�1068�.9*�2-*RD*0.�+,-.�12�.9*�-*5D6.�35�21D0PF�'9*-*�,-*�5*7*-,6�+-1T6*/5�30�30.*-5*4.3105Z�230P30:�+-14*55x�Y*�9,7*�.1�+-*7*0.�230P30:�<]�-*+*.3.31D5�30.*-5*4.3105�,0P�>]�*/+.8�30.*-5*4.3105F�3̂0P30:�*/+.8�30.*-5*4.3105�35�,713P*P�T8�.9*�0,.D-*�12�.9*�,6:1-3.9/�QA!$B%�3.�P1*5�01.�:*0*-,.*�\.9*1-*.34,6]�41/T30,.3105%�TD.�.-,7*-5*5�1068�

177

Appendix B
Lind, G. and Kuusik, R. (2007). Some Ideas for Determinacy Analysis
Realisation. Proceedings of the 11th IASTED International Conference on
Artificial Intelligence and Soft Computing. Palma de Mallorca, Spain, August 29-
31, 2007 (pp. 185-190). ACTA Press.

�� �����������	�
�����
���������������
������������� ������������������������������ ����!��"�����#�$%���&'�$ $(#��)�*���+����$%�,�%$�+���&����-��./��.01.2��� ����3��$����(����4���%%5���5����������4&&5���5������6��
����'���*�*���(�"���$"��"��7�$%��'�$�#�&� ��������+���&#���� #���������'$7�������� ���$���7��'�$�'����**�$�&'��5��'��*�*�������$��&���$��(��� ��** �&���$��$%�)8��9���(��$������� �+�����$��������'$7���'���+$����$%�&� &� ���$�������������&����$%��**�$�&'����������'����** �&���$�5�)�%%�������**�$�&'��$��$ "���'�������$%�)8����*��������5��:���;�
���<�&'���� ������(�������+���&#���� #����������� ��5�=>��?@?ABCDEFG�EDEHGICI�)����+���&#�8�� #����J)8K�������#���+�$%�+��'$���%$���'����� #����$%��� ����'���7���&�����������'������$%�LM�5�,����**�$�&'�&$+9�����+��'�+���&� ���������&������ $(�&5�)8N��+��'$�$ $(#������'������� #��(�+��'�+���&��������"� $*���9#����������&��������O��(���P'���$�$"�Q.R��Q0R5�)8S��&'�$ $(#�*�$"��������� �������"��7�#��$�*��%$�+�%�&�$����� #����$%�T�� �����"������T���������"��"����9 ��5�,�������������$9������(���(� ����������U* �����$�������*�$(�$���&��� ��5�)8�'���9�������������$&�$ $(#�QVR�� ��(�����&��QWR��+���&����Q/R������$�'���������J%$��&$+* ���� ����$%���%����&��������Q1R�$��QLRK5��'����� �����$��$%�)8�'�������+9���$%� �+�����$���&$+*������$��'���'�$�#5�,���'��%$ $7��(�7���������'��+��'$��$%���� #����$%��� ������������** �&���$������*�$*$���+$����%%�&��"���$ ���$��%$���'����� �����$�5��'��$"��"��7�$%������+���&#���� #�������9�����$��Q.R��Q0R��Q1R��QLR��Q2R5�=>=��?@?ABCDE@CXD�EDY�C@I�FZEAEF@?ACI@CFI��'��+���������9�'����)8�����'������� ��&���9��%$����9�����$���'��%��T���&����$%�-$����$&&�����&��$���$�S$&&�����&��$%��"����5�O�&'��� �����&� ����������+���&#�$�������+�����$��������'��+��'�+���&� ��'�$�#�$%���&'��� ������&� ��������+���&#���� #���5�Q1R�,%�������$9���"�9 ���'������$&&�����&��$%�[����� 7�#��%$ $7���9#����$&&�����&��$%�\���'���+������'����'�����U��������� ��],%�[��'���\̂��$��[_\5��O�&'�&$��� ���$��9��7����[�����\����&� ��������+�����$��J%�$+�[��$�\K5��̀���[���������+�����"��J�����+����(K�����\���������+���9 �5�

3�&'��� ��'����7$�&'���&�������&�a��&&���&#�����&$+* �������5�8&&���&#�$%������+�����$��[_\��'$7���$�7'����U�����[������+�����\5�,�������%����������*�$*$���$��$%�$&&�����&���$%�\��+$�(��'��$&&�����&���$%�[a��8J[_\K�b�cJ[�\K�d�cJ[K��7'�����8J[_\K�����&&���&#�$%������+�����$���cJ[K��������+9���$%�$9-�&���'�"��(�%�������[������cJ[�\K��������+9���$%�$9-�&���'�"��(�9$�'�%��������[�����\5�P$+* ��������$%������+�����$��[_\��'$7��7'�&'�*����$%�&�����'�"��(�\�&���9���U* ������9#������+�����$��[_\5�,�������*��&����(��$%�$&&�����&���$%�[��+$�(��'��$&&�����&���$%�\a��PJ[_\K�b�cJ[�\K�d�cJ\K��7'����PJ[_\K����&$+* ��������$%������+�����$���cJ\K��������+9���$%�$9-�&���'�"��(�%�������\�����cJ[�\K��������+9���$%�$9-�&���'�"��(�9$�'�%��������[�����\5�e$�'��&&���&#�����&$+* ��������&���'�"��"� ����%�$+�M��$�.5�f� ���.��'$7��+�U�+� ��&&���&#�$��&$+* ���������M�+������'����� ������$���&&������$��&$+* �������� 5�f� ���9��7����M�����.��'$7��T���������+����+5��,%�� �$9-�&���'�"��(�%�������[�'�"��� �$�%�������\��'����'�������+�����$�����J+�U�+� #K��&&�����5�,��&����$%��&&�����������+�����$��8J[_\K�b�.�J.MMgK5�<�-$���#�$%��� ��������$���&&�����5�,��&����$%����&&�������� ��8J[_\K�h�.5��,��$������$�+���������+�����$��+$���J$�� ���K��&&������&$+* �+�����#�%�&�$����������������$��'��%�����*����$%����� �5�8����(�%�&�$��i����$��� ��[_\�7��(������� ��[i_\5�P$����9���$��$%�%�&�$��i��$��&&���&#�$%��� ��[i_\����+��������9#���&������$%��&&���&#�j8JiK�&������9#�������$��$%�%�&�$��i����$��� ��[_\a�j8JiK�b�8J[i_\K�k�8J[_\K5�P$����9���$���$��&&���&#�%� �����$������"� �%�$+�S.��$�.5�,%�j8JiKlM��'���i������*$����"��%�&�$�5�8�����$��$%�*$����"��%�&�$��+������� ��+$����&&��������$+���+����'������ ������� �����J+�U�+� #K��&&�����5�,%�j8JiKhM��'���i��������(���"��%�&�$�5�8�����$��$%���(���"��%�&�$����&��������� �N���&&���&#���$+���+������� �m��$5�

185

Appendix C
Lind, G. and Kuusik, R. (2008). Some Problems in Determinacy Analysis
Approaches Development. Proceedings of the 2008 International Conference on
Data Mining (DMIN 2008), Las Vegas, Nevada, USA, July 14-17, 2008, Volume
I, pp. 102-108. CSREA Press.

���������	��
������������������	�
�
����������
����	���������������������������
����� !"#$% &$�'(�)&('#%"$*+,-�."//*&&�0&*1 #,*$2�'(�. +3&'/'42-�."//*&&-�5,$'&*"������
������6�789:�;<;=>�?9@=:�<A�B@=>@9=C�BD�<�E=F8BG�H<II=G�G=F=>E9A<HJ�<A<IJ:9:�K�<�E=F8BG�DB>�D9AG9A?�:J:F=E:�BD�>LI=:�G=:H>9M9A?�<�HI<::�G=F=>E9A=G�MJ�L:=>N�78=>=�<>=�FCB�FJ;=:�BD�>LI=�:J:F=E:O�<GG9F9@=�<AG�ABAP<GG9F9@=N�QGG9F9@=�:J:F=E�9:�<�:J:F=E�9A�C89H8�9F:�>LI=:�GB�ABF�9AF=>:=HF�;<9>C9:=�RGB�ABF�HB@=>�F8=�:<E=�BMS=HF:T�F><A:<HF9BA:UN�VA�H<:=�BD�ABAP<GG9F9@=�:J:F=E�F8=J�E<J�9AF=>:=HFN�VA�F89:�;<;=>W�C=�=X;I<9A�C8<F�9:�<�AB>E<I�>LI=�<AG�DB>�C8<F�9F�G9DD=>:�D>BE�>LI=:�H>=<F=G�BA�F8=�M<:9:�BD�HIB:=G�:=F:N�Y=�:8BC�F8<F�MBF8�<;;>B<H8=:�:L??=:F=G�MJ�F8=�<LF8B>�BD�G=F=>E9A<HJ�<A<IJ:9:�GB�ABF�?L<><AF==�F8=�AB>E<I9FJ�BD�>LI=:W�M=H<L:=�9F�9:�ABF�=<:J�FB�:<J�C8=F8=>�:BE=�D<HFB>�9:�:L9F<MI=�9A�<�:=A:=�9F�9:�;B:9F9@=�>=?<>G9A?�D<HFB>:�F8<F�C9II�M=�<GG=G�I<F=>N�VF�E=<A:�F8<F�F8=�B>G=>�F8=�D<HFB>:�<>=�:=I=HF=G�8<:�<A�9E;<HF�FB�F8=�AB>E<I9FJ�BD�F8=�>=:LIFN�Z=@=><I�=X<E;I=:�<>=�<GG=GN����[���
\�� $ #%*&"+2�"&"/2,*,-�]̂/ ,-�_'#%"/�#̂/ ̀��a�b������������ ��� ��������������	�
�
�� $ #%*&"+2�c&"/2,*,�d�ce�*,�"�,2,$ %�'(�% $3'f,�('#�$3 �"&"/2,*,�'(�#̂/ ,-�*$�g",�+# "$ f�"$�$3 � &f�'(�hi,̀�)$,�"!!#'"+3�+'%j*& ,�%"$3 %"$*+"/�,$"$*,$*+,�"&f�/'4*+̀��ck,�% $3'f'/'42�"&f�$3 � &̂f #/2*&4�%"$3 %"$*+,�"# �f 1 /'! f�j2�]̂,,*"&�,+* &$*,$�l #4 *�m3 ,&'n'1�opq-�orq̀��cs$ +3&'/'42�",,*,$,�*&�'j$"*&*&4�# 4̂/"#*$* ,-� t!/"&"$*'&,�"&f�!#'4&',$*+�#̂/ ,̀��c� &"j/ ,�$'�(*&f�#̂/ ,�('#�"#j*$#"#2�4*1 &�+/",,-�$3 # "$�$3 �+/",,�*,�&'$�f $ #%*& f�j2�'&/2�'& �"$$#*ĵ$ -�ĵ$�+"&�j �f ,+#*j f�'1 #�%"&2�"$$#*ĵ$,�̂,*&4�/'4*+"/�"&f�+'%!"#*,'&�'! #"$'#,�d"&f-�'#-�&'$-�u-�v-� $+̀è�51 #2�"$$#*ĵ$ �+"&�3"1 �%'# �$3"&�$g'�1"/̂ ,̀��c�̂, ,�,*%!/ �$ +3&*ŵ �$'�*f &$*(2�"�+/",,k�#̂/ �dxyze�{�% ",̂# �c�d|&dxze}&dxe-�g3 # �&dxe�*,�"�&̂%j #�'(�'j~ +$,�+'&$"*&*&4�x�"&f�&dxze�*,�"�&̂%j #�'j~ +$,�+'&$"*&*&4�j'$3�x�"&f�zè�.3 �#̂/ �*f &$*(* ,�"�+/",,�̂&"%j*4̂'̂,/2�*(�*$,�c|p-i�dpii�è�.3 �+/",,�*,�

+'%!/ $ /2�*f &$*(* f�j2�,'% �, $�'(�#̂/ ,�*(�$3 *#�$'$"/�m�d|&dxze}&dze-�g3 # �&dze�*,�"�&̂%j #�'j~ +$,�+'&$"*&*&4�ze�|p�dpii�è�.3 , �% ",̂# ,�g*//�j �*&$#'f̂+ f�*&�l +$*'&�r̀��'#� t"%!/ -�̂,*&4�f"$"�4*1 &�*&�."j/ �p-�g �g*//�f ,+#*j �! #,'&,�j /'&4*&4�$'�+/",,��s�̀�.3*,�+/",,�+'&,*,$,�'(�$3# �'j~ +$,̀��*#,$�g �g*//�̂, �"$$#*ĵ$,�*&�$3 �d(# /2�+3', &e�'#f #���"*#-�52 ,-�� *43$̀�."j/ �p̀��̂*&/"&k,�f"$"�� *43$� �"*#� 52 ,� m/",,�$"//� f"#n� j/̂ � ��,3'#$� f"#n� j/̂ � ��$"//� j/'&f� j/̂ � s�$"//� # f� j/̂ � s�$"//� j/'&f� j#'g&� ��,3'#$� j/'&f� j/̂ � s�,3'#$� j/'&f� j#'g&� ��$"//� f"#n� j#'g&� ���]̂/ ,�+'&$"*&*&4�"$$#*ĵ$ ��"*#�'&/2�"# �4*1 &�*&�."j/ �r̀�."j/ �r̀�]̂/ ,�+'&,*,$*&4�'(�"$$#*ĵ$ ��"*#��"*#� �� �� &dxe�&dxze�c� m� �m�f"#n� � � �� i� i� � ����� � � a� a� a� a�� p}�j/'&f� � � �� r� r}� � ��]̂/ ��"*#̀# fy�m/",,̀{�*,�"++̂#"$ �dc|pe�"&f�& f,�&'�"ff*$*'&"/�("+$'#,̀�.3*,�#̂/ �*,�*&+/̂f f�*&$'�$3 �# ,̂/$̀�)$�+'1 #,�p}��'(�$3 �'j~ +$,�'(�$3 �+/",,�dm|p}�è�.3 �+'%!/ $ & ,, ,�m�'(�"++̂#"$ �#̂/ ,�g*//�j �,̂%% f�̂!-�g*$3�3'! �$'�# "+3�$'�pii��+'1 #"4 �dj2�"++̂#"$ �#̂/ ,è��]̂/ �g*$3��"*#̀f"#n�3",�� #'�"++̂#"+2�d*̀ ̀�f' ,�&'$� t*,$e�*&�4*1 &�+/",,�"&f�g*//�j �&'$� t!"&f f̀��

195

Appendix D
Kuusik, R. and Lind, G. (2010). Some Developments of Determinacy Analysis.
Advanced Data Mining and Applications: The 6th International Conference on
Advanced Data Mining and Applications (ADMA2010), Chongqing, China,
November 19-21, 2010. LNAI 6440, pp. 593-602. Berlin Heidelberg: Springer-
Verlag.

�����������	��
������������
�����
�������������������������� ��!����"�#�� $�� �%&�'�&%�$� �(�)�*�++����,��-���� .�%&�*�(/�%+%0.����1��23)�*�++����24526)�7� %�����������8((9 �9��)�0�� �8� �&&9 �9����:������;�*/���#�#������+��<� /���-�+%#$�� �%&�"� ��$��(.�=��+.����>"=?)���$� /%��&%���� ��$����09�*/�������� <%��##�%�(/��� %�"=� /� �0�-������&&���� �����+ �(%���� ��0�%&��%�@%-��+�##��0�>�A(+���-����(/�% /��?���+��9�*/��&��� �$� /%��&������A�(+.�%����.� �$�(%���� ��0�%&���+��� /� �/�-���B��+�+��0 /9�*/����(%��)�� �#�C.�� �#��##�%�(/����C+��� %�&����-��.�$��.���&&���� ���+���.� �$��</���� /����+���/�-����&&���� �+��0 /9�'�� /��&��� �(���� /����+���(%� ������+% �%&��������� �� ��C� ��)���� /����(%���(���� /�������� %%�$��.���&&���� �>&%�$�++.�(%$#+� �?��.� �$��%&���+���</� �$����� /����+�(�%��/���9�=�C� �������+ �(���C��%C ������C.�&�����0�%-��+�##��0���+��9�*/���#�#���#����� ��"=��##�%�(/����� �(/��B��� /� ����C+��� %�&����%-��+�##��0���+���<� /���&&���� �+��0 /������+0%@�� /$����+�D��0�� 9�E�(/��##�%�(/�&%��"=�/����% �C����(��� ������+���9��F��G��H�I�"� ��$���(.�=��+.���)�"� ��J����0)�K-��+�##��0���+��9��L���M
���HN����
��'�� /���#�#���<�����+�<� /����� ��$����0�$� /%��(�++���"� ��$���(.�=��+.���9�"�@ ��$���(.�=��+.����>"=?�������.� �$�%&�$� /%���&%�� /�����+.����%&���+��� /� �<���(��@� ���� � /������%&�2OPQ�9�' ���##�%�(/�(%$C�����$� /�$� �(�+�� � �� �(������+%0�(9�"=R��$� /%�%+%0.����� /�������+.��0�$� /�$� �(��������-�+%#���C.������������(���@ �� �E��0���S/���%�%-�T2U)�T4U9�*/��#��$��.�0%�+�%&�"=������ ��$����0��#�(�&.��0� /��%C1�(��%&�(+����V� %� �.� %����<��� /��B��� �%��W</%X</� ����� /�.YZ��9�9� %����(��C�� /�$� /��C�� �<�.�����0��#�(�&����� ��C� ������� %�%� #� ���-���+��� ��%&���+���&�%$�</�(/���(/�%���(%-����V�2QQ[9�*/�������$����� /����(���%��</�(/��� �%���� ������ /��C�� �&%�����(��C��09�"�&@&����� �%������%&�� ��C� ���������&&���� ��� ��%&�� ��C� ������� ������� �+� /��$%� ���� @�C+�����(��# �%����� /������R��%#���%�����&%���9��'�� /��$���+��%&�OQ������A �-����%��%&�"=�<�����-�+%#���C.�S/���%�%-������ ������%<���������������� /��&%�$�����#�C+�(��%&�,EE��������%& <����#�(��0��"=@�.� �$2�>"� ��$���(.�=��+.����E.� �$�%���/%� +.�"=E?9����%<��$� /%���%&�"=�(����A ��(�%���%��$%�����+���.� �$��</���� /����+����%��% �%-��+�#9�*/�� <%�$�����##�%�(/��� %�"=����\�2?�"=E)�4?�� �#�C.�� �#�$� /%�9��*/����� ��+��� �� �C+��������&�� ����V�>�����(�� ����(+���?�����0�-��9�*/��0%�+���� %����(��C��V�>#%���C+.?�(%$#+� �+.�C.� /���%�@%-��+�##��0�>#%���C+.?��((��� ����+��9���2 �E%& <����#�(��0��"=@�.� �$�>��������-����%��%�+.?�C.�]S%� �A �J����W�>/ #\XX<<<9(%� �A 9��?)�������(��C����+�%����T̂U�

207

Appendix E
Kuusik, R. and Lind, G. (2011). New Developments of Determinacy Analysis.
Advanced Data Mining and Applications - 7th International Conference: ADMA
2011, Beijing, China, December 17-19, 2011. II; LNCS 7121, p. 223−236.
Springer.

����������	
������������
������������������������������ �!��"����#�$� !%��!�&'�(�'& %�!�)�*�+�,,����-��.� ��!/�&'�+�)0�&,&1/����2��34*�+�,,����35637*�8�!&�����9::;<9=>>?@@:?AAB�CDA@A=;@EFF?@@:?AA��G�����H�+0���$�$� ����,��I�!0���.�,&$%��!�&'�#�!� %��)/�J��,/����K#JL*���%�!0&��'& ���&I,��1�����)&.� /M�+0� ��� ��!0 ����$$ &�)0���!&�#J�!0�!�1�.����''� ��!� ���,!�M�+0��'� �!�%�!0&��'������N�)!,/�&����/�!�%�&'��&�O&.� ,�$$��1� �,��*��,,�I�!0��P��,�,��1!0M�+0����)&��*��!�$�Q/��!�$��$$ &�)0����Q,���!&�'����.� /�%��/���''� ��!��/�!�%��&'��&�O&.� ,�$$��1� �,���I0� ��!0�� �,���0�.����'O'� ��!�,��1!0M�+0��!0� ���$$ &�)0�)���'����&����/�!�%�&'�&.� ,�$$��1� �,��M�J��,/����&'�!0�����$$ &�)0����0&I���!0�!��0& !� � �,���/�!�%��)&�!���� �,���I0�)0�� ���&!�)&�!���������&!0� � �,��M�(!�%�����!0�!�I��0�.��!&�'����&�,/��,,�!0���� �,���K�&�)�,,�����!� %���!�.����!�&'� �,��*�#R�L��������) �Q��1�.�����!��!�Q,��&��!0�� �Q����M�+0���$�$� �$ ����!������I�#J��$$ &�)0�Q�����&��!0��#R�������,1& �!0%�'& �'�����1�!0�%M�R�.� �,���I�!������ ��'& %�,�!��S�!&�1��� �!�� �,���/�!�%��I�!0��$�)�'�)�'��!� ���& �!0���0& !��!�& �%���%�,� �,���/�!�%��!)M��T�����UV�#�!� %���)/�J��,/���*�#�!�����)&.� /*���,���/�!�%*�W.� ,�$$��1� �,��*�#�!� %���!�.����!�&'� �,��M��X� Y����UZ��������������U��[��	��G��
�����
����(��!0���$�$� �I�����,�I�!0�!0����.�,&$%��!��&'�!0����&I,��1�����)&.� /�%�!0&��)�,,���#�!� %���)/�J��,/����K#JL*�!0���/�!�%�&'�%�!0&���'& �!0�����,/����&'� �,���!0�!�I���) ��!����!�!0������&'�3\]̂�M�(!���$$ &�)0�)&%Q�����%�!0�%�!�)�,��!�!��!�)������,&1�)�_3O5̀M�#J�0���Q����� �����' &%�!0�����,/����&'�' �P���)/�!�Q,��M�+0��1&�,�&'�#J����!&���O�) �Q����1�.�����,�)!�&��&'�&Q2�)!��K),����aL�Kb0&cI0�!�� ��!0�/d�e&I�)���I�����) �Q��!0�%d�b0�!����!��1���0���!0�%�' &%�&!0� �dL*��&!�!&�),����'/��������&I��&Q2�)!M�+0� �'& ���!������)���� /�!&���&I�I0�)0��!! �Q�!���� ��%& ����!� %����1�!0���!0��&!0� �*��&!�Q/��!! �Q�!�f�����) �$!�.��$&I� �K'& �!0�!�$� $&���I��)&�,�����*�'& ��N�%$,�*���! &$/�,�������(#g�& ��!����.�,&$%��!�L*�Q�!�' &%�!0��.��I$&��!�&'�!/$�)�,����&)��!�&���&'��!! �Q�!��������!! �Q�!���!0�!�� ���&!���)���� /�'& ����) �Q��1�!0���/�O!�%�&'�&Q2�)!��KaLM���&I��%�!0&���&'�#J�)����N! �)!�&���& �%& �� �,���/�!�%��I0� ��!0�� �,����&��&!�&.� ,�$M�+0��!I&���)0�������$$ &�)0���!&�#J�� �S�3L��!�$�Q/��!�$�%�!0&�*�5L�#JRM��+0�����!��,���!��!�Q,��������'��!� ��a�K�����)� !����),���L�� ��1�.��M�+0��1&�,����!&����) �Q��a�K$&���Q,/L�)&%$,�!�,/�Q/�!0���&�O&.� ,�$$��1�K$&���Q,/L��))� �!�� �,��M��

223

Appendix F
Lind, G. and Kuusik, R. (2016). Algorithm for Finding Zero Factor Free Rules.
Man-Machine Interactions 4: 4th International Conference on Man-Machine
Interactions, ICMMI 2015 Kocierz Pass, Poland, October 6-9, 2015. AISC 391,
pp. 421-435. Springer.

��������	
�� !!"�#$%&&'(()('*+,-'./01$+23(0&04/56+7%,.8+(.019(10,8%.'2-5$%&&'((5:-.0('%;<=>?>@ABCDEF>BC@GHHIBJKLM??H@>>NOPQRSTQUV&%--W+.+2.'0(,X&+-%,+80-.&/X-+W10,2&%--'1/'(4(+Y0Z[\+2.-]̂ (0.3+,70--'Z&+X-%4+'-.0W+-2,'Z+%-+.010Z\+2.-_%2&%--̀Z/.3+,X&+-]6+.+,8'(%2/ (̂%&/-'-_6̂ `'-%a(0Y&+W4+8'('(48+.30WY'.3-X237X,70-+]b+.-01,X&+-%,+X-+W.0%(-Y+,.3+cX+-.'0(-de30%,+.3+/_0Z\+2.-01.3+2&%--̀fd5dg0Y2%(Y+W+-2,'Z+.3+8fd]hX&+-10X(WZ/W'i+,+(.6̂ 8+.30W-.+(W.020(.%'(-08+,+WX(W%(.'(10,[8%.'0(2%&&+Wj+,01%2.0,-]9(.3'-7%7+,Y+-30Y30Yj+,01%2.0,-%,+,+&%.+W.02&0-+W-+.-%(W8'('8%&4+(+,%.0,-]e+7,070-+%(+Y%&40[,'.38 .3%.+k.,%2.-j+,0[1%2.0,[1,++,X&+-%(Wj+,01%2.0,-.3+8-+&*+-5Z%-+W0(l(W'(44+(+,%.0,-]m(0Y'(4j+,01%2.0,-4'*+-.0.3+%(%&/-.'870,.%(.%WW'.'0(%&a(0Y&+W4+10,X(W+,-.%(W'(4.3++--+(2+01.3+W+[-2,'Z+W-+.010Z\+2.-_%2&%--̀]nopqrRsPt6+.+,8'(%2/ (̂%&/-'-uhX&+uv+,0w%2.0,ux'('8%&y+([+,%.0,z {����������|}�~�������}��������"��������}�"~�~��}�"���"�������}����}������������������������"�"�����}��}������"�����}����������������|}������������������"�"!���"#"������}������������������������}�������"#�"�������������������������!��"������""����������!�#�����������"����}���"�"��������������~��"������������ ���¡���¢�����£ ���¤����¥�������!"��}���!���!��"�����"��������}����""!���������"�"��"�������}�¦!�"����"�§̈ }�����}���������"���}����""�©§�§ª���������"������}��©§�§̈ }����"����!�"}�"�}��������}��"©§�|}���"���~��"���������������������"����}�����������������������«�"�"¬����}��~��"���"�������������}������������"�������}�"�¦!�"����"����!�~!�"�}����!����������~�����!��"�"������}��������!��"§®̄ °|ª±²³��""§"��}�����}�������"�������������!������"���������������!��"����������}�"����������"!���������"�"�²���}������"������"������}�"����������"!���������"�"�����"�����������}���""~���������}����""����}��"�~�����"��́��������""�"�®��}���"���~�����"����������!�}}�µ"}�����}�����}��������������!��"�����������"�¶·̧¹º»¼½±���������!��"���"�"���"������������"��������������!��"���}���«�������!�"�����}�¦!�"�����"�}��}���}������}���"���~����������}��}

239

Appendix G
Output of generator of hypotheses:

a) Intersections
b) Trees

 On the left: nodes have been selected by maximal frequency
 On the right: nodes have been selected by minimal frequency

a) Intersections

Alustatud: 2013 11 6 18 49
30.859

Fail: C:\…\SMorn.txt
Objekte failis: 14, objektis
tunnuseid: 5
Objektid:
Tunnused: 1-4
Objekte valjavotus: 14
Minimaalne lubatud sagedus = 1
Juhtsageduse valik: max sagedus

T4.2=8
T4.2&T3.1=4
T4.2&T3.1&T1.1=2
T4.2&T3.1&T1.1&T2.2=1
T4.2&T3.1&T1.1&T2.3=1
T4.2&T3.1&T2.2=2
T4.2&T3.1&T2.2&T1.3=1
T4.2&T3.1&T2.3=2
T4.2&T3.1&T2.3&T1.2=1
T4.2&T3.2=4
T4.2&T3.2&T1.3=2
T4.2&T3.2&T1.3&T2.1=1
T4.2&T3.2&T1.3&T2.2=1
T4.2&T3.2&T2.1=2
T4.2&T3.2&T2.1&T1.1=1
T4.2&T3.2&T1.2&T2.3=1
T4.2&T1.1=3
T4.2&T1.3=3
T4.2&T1.3&T2.2=2
T4.2&T2.2=3
T4.2&T2.3=3
T4.2&T2.3&T1.2=2
T3.1=7
T3.1&T2.2=4
T3.1&T2.2&T1.3=2

Alustatud: 2013 11 6 18 50
12.781

Fail: C:\…\SMorn.txt
Objekte failis: 14, objektis
tunnuseid: 5
Objektid:
Tunnused: 1-4
Objekte valjavotus: 14
Minimaalne lubatud sagedus = 1
Juhtsageduse valik: min sagedus

T1.2=4
T1.2&T2.1&T3.2&T4.1=1
T1.2&T2.2&T3.1&T4.1=1
T1.2&T2.3&T4.2=2
T1.2&T2.3&T4.2&T3.1=1
T1.2&T2.3&T4.2&T3.2=1
T1.2&T3.1=2
T1.2&T3.2=2
T1.2&T4.1=2
T2.1&T3.2=4
T2.1&T3.2&T1.1&T4.2=1
T2.1&T3.2&T1.3=2
T2.1&T3.2&T1.3&T4.1=1
T2.1&T3.2&T1.3&T4.2=1
T2.1&T3.2&T4.1=2
T2.1&T3.2&T4.2=2
T2.3=4
T2.3&T1.1&T3.1&T4.1=1
T2.3&T1.1&T3.1=2
T2.3&T1.1&T3.1&T4.2=1
T2.3&T3.1=3
T2.3&T3.1&T4.2=2
T2.3&T4.2=3
T1.1=5
T1.1&T2.2=2

240

T3.1&T2.2&T1.3&T4.1=1
T3.1&T2.2&T4.1=2
T3.1&T2.2&T4.1&T1.2=1
T3.1&T1.1=3
T3.1&T1.1&T2.3=2
T3.1&T1.1&T2.3&T4.1=1
T3.1&T2.3=3
T3.1&T4.1=3
T3.1&T1.2=2
T3.2=7
T3.2&T2.1=4
T3.2&T2.1&T1.3=2
T3.2&T2.1&T1.3&T4.1=1
T3.2&T2.1&T4.1=2
T3.2&T2.1&T4.1&T1.2=1
T3.2&T1.3=3
T3.2&T4.1=3
T3.2&T4.1&T1.1&T2.2=1
T3.2&T1.1=2
T3.2&T1.2=2
T3.2&T2.2=2
T2.2=6
T2.2&T1.3=3
T2.2&T4.1=3
T2.2&T1.1=2
T4.1=6
T4.1&T1.1=2
T4.1&T1.2=2
T4.1&T1.3=2
T1.1=5
T1.3=5
T1.2=4
T2.3=4

Lopetatud: 2013 11 6 18 49
31.292

T1.1&T2.2&T3.1&T4.2=1
T1.1&T2.2&T3.2&T4.1=1
T1.1&T3.2=2
T1.1&T4.1=2
T1.1&T3.1=3
T1.1&T3.1&T4.2=2
T1.1&T4.2=3
T1.3=5
T1.3&T2.2&T3.1=2
T1.3&T2.2&T3.1&T4.1=1
T1.3&T2.2&T3.1&T4.2=1
T1.3&T4.1=2
T1.3&T2.2=3
T1.3&T2.2&T3.2&T4.2=1
T1.3&T2.2&T4.2=2
T1.3&T3.2=3
T1.3&T3.2&T4.2=2
T1.3&T4.2=3
T2.2=6
T2.2&T3.2=2
T2.2&T4.1=3
T2.2&T4.1&T3.1=2
T2.2&T4.2=3
T2.2&T4.2&T3.1=2
T2.2&T3.1=4
T4.1=6
T4.1&T3.1=3
T4.1&T3.2=3
T3.1=7
T3.1&T4.2=4
T3.2=7
T3.2&T4.2=4
T4.2=8

Lopetatud: 2013 11 6 18 50
13.263

b) Trees

Alustatud: 2013 11 1 17 37
44.122

Fail: C:\…\SMorn.txt
Objekte failis: 14, objektis
tunnuseid: 5
Objektid:
Tunnused: 1-4
Objekte valjavotus: 14
Minimaalne lubatud sagedus = 1
Juhtsageduse valik: max sagedus

Alustatud: 2013 11 1 17 35
48.862

Fail: C:\…\SMorn.txt
Objekte failis: 14, objektis
tunnuseid: 5
Objektid:
Tunnused: 1-4
Objekte valjavotus: 14
Minimaalne lubatud sagedus = 1
Juhtsageduse valik: min sagedus

241

(8) 0.500(4)0.500(2)0.500(1)
T4.2=>T3.1 ->T1.1 ->T2.2
 0.500(1)
 ->T2.3
 0.500(2)0.500(1)
 ->T2.2 ->T1.3
 0.500(2)0.500(1)
 ->T2.3 ->T1.2
 0.500(4)0.500(2)0.500(1)
 =>T3.2 ->T1.3 ->T2.1
 0.500(1)
 ->T2.2
 0.500(2)0.500(1)
 ->T2.1 ->T1.1
 0.250(1)
 ->T1.2&T2.3
 0.375(3)
 =>T1.1
 0.375(3)0.667(2)
 =>T1.3 ->T2.2
 0.375(3)
 =>T2.2
 0.375(3)0.667(2)
 =>T2.3 ->T1.2

(7) 0.571(4)0.500(2)0.500(1)
T3.1=>T2.2 ->T1.3 ->T4.1
 0.500(2)0.500(1)
 ->T4.1 ->T1.2
 0.429(3)0.667(2)0.500(1)
 =>T1.1 ->T2.3 ->T4.1
 0.429(3)
 =>T2.3
 0.429(3)
 =>T4.1
 0.286(2)
 =>T1.2

(7) 0.571(4)0.500(2)0.500(1)
T3.2=>T2.1 ->T1.3 ->T4.1
 0.500(2)0.500(1)
 ->T4.1 ->T1.2
 0.429(3)
 =>T1.3
 0.429(3)0.333(1)
 =>T4.1 ->T1.1&T2.2
 0.286(2)
 =>T1.1
 0.286(2)
 =>T1.2
 0.286(2)
 =>T2.2

(4) 0.250(1)
T1.2=>T2.1&T3.2&T4.1
 0.250(1)
 =>T2.2&T3.1&T4.1
 0.500(2) 0.500(1)
 =>T2.3&T4.2->T3.1
 0.500(1)
 ->T3.2
 0.500(2)
 =>T3.1
 0.500(2)
 =>T3.2
 0.500(2)
 =>T4.1

(4) 0.250(1)
T2.1&T3.2=>T1.1&T4.2
 0.500(2)0.500(1)
 =>T1.3 ->T4.1
 0.500(1)
 ->T4.2
 0.500(2)
 =>T4.1
 0.500(2)
 =>T4.2

(4) 0.250(1)
T2.3=>T1.1&T3.1&T4.1
 0.500(2) 0.500(1)
 =>T1.1&T3.1->T4.2
 0.750(3)0.667(2)
 =>T3.1 ->T4.2
 0.750(3)
 =>T4.2

(5) 0.400(2)0.500(1)
T1.1=>T2.2 ->T3.1&T4.2
 0.500(1)
 ->T3.2&T4.1
 0.400(2)
 =>T3.2
 0.400(2)
 =>T4.1
 0.600(3)0.667(2)
 =>T3.1 ->T4.2
 0.600(3)
 =>T4.2

(5) 0.400(2) 0.500(1)
T1.3=>T2.2&T3.1->T4.1
 0.500(1)
 ->T4.2
 0.400(2)

242

(6) 0.500(3)
T2.2=>T1.3
 0.500(3)
 =>T4.1
 0.333(2)
 =>T1.1

(6) 0.333(2)
T4.1=>T1.1
 0.333(2)
 =>T1.2
 0.333(2)
 =>T1.3

(5)
T1.1

(5)
T1.3

(4)
T1.2

(4)
T2.3

Lopetatud: 2013 11 1 17 37 44.5

 =>T4.1
 0.600(3)0.333(1)
 =>T2.2 ->T3.2&T4.2
 0.667(2)
 ->T4.2
 0.600(3)0.667(2)
 =>T3.2 ->T4.2
 0.600(3)
 =>T4.2

(6) 0.333(2)
T2.2=>T3.2
 0.500(3)0.667(2)
 =>T4.1 ->T3.1
 0.500(3)0.667(2)
 =>T4.2 ->T3.1
 0.667(4)
 =>T3.1

(6) 0.500(3)
T4.1=>T3.1
 0.500(3)
 =>T3.2

(7) 0.571(4)
T3.1=>T4.2

(7) 0.571(4)
T3.2=>T4.2

(8)
T4.2

Lopetatud: 2013 11 1 17 35
49.318

243

CURRICULUM VITAE

Personal data

Name: Grete Lind

Date of birth: 07.05.1971

Place of birth: Tallinn, Estonia

Citizenship: Estonian

Contact data

Address: Akadeemia tee 15a, 12618 Tallinn

Phone: +372 58847732

E-mail: Grete.Lind@ttu.ee

Education

1999 – 2004 Tallinn University of Technology, Doctor’s Degree
Programme in Information Technology

1994 – 1998 Tallinn Technical University, M.Sc. in Information
Processing

1989 – 1994 Tallinn Technical University, B.Sc. in Information
Processing cum laude

1978 – 1989 Tallinn Secondary School no 37, silver medal

Language competence

Estonian Mother Tongue

English Fluent

Russian Intermediate

French Basic

Professional employment

1997 – … Researcher, Tallinn University of Technology,
Department of Informatics

Jan 1997 – Aug 1997 Engineer, Tallinn University of Technology,
Department of Informatics

244

Publications

Lind, G. and Kuusik, R. (2016). Algorithm for Finding Zero Factor Free
Rules. Man-Machine Interactions 4: 4th International Conference on Man-
Machine Interactions, ICMMI 2015 Kocierz Pass, Poland, October 6-9, 2015.
AISC 391, pp. 421-435. Springer.

Kuusik, R. and Lind, G. (2012). An Effective Inductive Learning Algorithm
for Extracting Rules. Proceedings of the 2011 2nd International Congress on
Computer Applications and Computational Science, 2: CACS 2011, Bali,
Indonesia, November 15-17, 2011. AISC 145, pp. 339-344. Berlin Heidelberg:
Springer-Verlag.

Lind, G. and Kuusik, R. (2012). An Idea for Universal Generator of
Hypotheses. Proceedings of ICEIS 2012: the 14th International Conference
on Enterprise Information Systems, Wrocław, Poland, 28 June – 1 July.
Volume 1, pp. 169-174. Portugal: SciTePress.

Kuusik, R. and Lind, G. (2011). New Developments of Determinacy Analysis.
Advanced Data Mining and Applications - 7th International Conference:
ADMA 2011, Beijing, China, December 17-19, 2011. II; LNCS 7121, pp.
223−236. Springer.

Kuusik, R. and Lind, G. (2011). New Solution for Extracting Inductive
Learning Rules and their Post-Analysis. The 1st International Conference on
Advances in Information Mining and Management (IMMM 2011), Barcelona,
Spain, October 23-28, 2011. XPS (Xpert Publishing Services), pp. 121-126.

Kuusik, R. and Lind, G. (2010). Some Developments of Determinacy
Analysis. Advanced Data Mining and Applications: The 6th International
Conference on Advanced Data Mining and Applications (ADMA2010),
Chongqing, China, November 19-21, 2010. LNAI 6440, pp. 593-602. Berlin
Heidelberg: Springer-Verlag.

Kuusik, R., Treier, T., Lind, G. and Roosmann, P. (2009). Machine Learning
Task as a Diclique Extracting Task. Sixth International Conference on Fuzzy
Systems and Knowledge Discovery: FSKD 2009, Tianjin, China, 14-16
August. Vol. 1, p. 555−560. IEEE Computer Society.

Kuusik, R. and Lind, G. (2008). Algorithm MONSA for All Closed Sets
Finding: basic concepts and new pruning techniques. WSEAS Transactions on
Information Science and Applications, 5(5), 599-611.

Kuusik, R. and Lind, G. (2008). An All Closed Set Finding Algorithm for Data
Mining. Advances on Artificial Intelligence, Knowledge Engineering and
Data Bases: the 7th WSEAS International Conference on Artificial
Intelligence, Knowledge Engineering and Data Bases (AIKED ’08),

245

University of Cambridge, February 20-22. Cambridge, UK: WSEAS Press,
pp. 135-141.

Lind, G. and Kuusik, R. (2008). Determinacy Analysis as a diclique extracting
task. Proceedings of the 2nd European Computing Conference (ECC ’08):
New Aspects on Computing Research, Malta, September 11-13. WSEAS Press
(Recent Advances in Computer Engineering), pp. 119-125.

Lind, G. and Kuusik, R. (2008). New developments for Determinacy
Analysis: diclique-based approach. WSEAS Transactions on Information
Science and Applications, 5(10), 1458-1469.

Lind, G. and Kuusik, R. (2008). Some Problems in Determinacy Analysis
Approaches Development. Proceedings of the 2008 International Conference
on Data Mining (DMIN 2008), Las Vegas, Nevada, USA, July 14-17, 2008,
Volume I, pp. 102-108. CSREA Press.

Roosmann, P., Võhandu, L., Kuusik, R., Treier, T. and Lind, G. (2008). A new
inductive learning algorithm based on monotone system theory. Recent
Advances in Applied Computer Science - Proceedings of the 8th WSEAS
International Conference on Applied Computer Science (ACS '08), Venice,
Italy, November 21-23. WSEAS Press, pp. 310-316.

Roosmann, P., Võhandu, L., Kuusik, R., Treier, T. and Lind, G. (2008).
Monotone Systems approach in Inductive Learning. International Journal of
Applied Mathematics and Informatics, 2(2), 47−56.

Lind, G. and Kuusik, R. (2007). Some Ideas for Determinacy Analysis
Realisation. Proceedings of the 11th IASTED International Conference on
Artificial Intelligence and Soft Computing. Palma de Mallorca, Spain, August
29-31, 2007. ACTA Press, pp. 185-190.

Võhandu, L., Kuusik, R., Torim, A., Aab, E. and Lind, G. (2006). Some
algorithms for data table (re)ordering using Monotone Systems. Proceedings
of the 5th WSEAS International Conference on Artificial Intelligence,
Knowledge Engineering and Data Bases (AIKED ’06), Madrid, Spain,
February 15-17, pp. 417-422.

Võhandu, L., Kuusik, R., Torim, A., Aab, E. and Lind, G. (2006). Some
Monotone Systems Algorithms for Data Mining. WSEAS Transactions on
Information Science and applications, 4(3), 802−809.

Kuusik, R., Liiv, I. and Lind, G. (2005). An Efficient Method for Post
Analysis of Patterns. Proceedings of the IASTED International Conference on
Artificial Intelligence and Applications: February 14-16, 2005. Innsbruck,
Austria. ACTA Press, pp. 101−105.

246

Kuusik, R. and Lind, G. (2004). Generator of Hypotheses – an Approach of
Data Mining Based on Monotone Systems Theory. International Journal of
Computational Intelligence, 1, 49−53.

Kuusik, R. and Lind, G. (2004). New Frequency Pattern Algorithm for Data
Mining. Proceedings of the International 13th Turkish Symposium on
Artificial Intelligence and Neural Networks (TAINN), June 2004, Izmir,
Turkey, pp. 47−54.

Kuusik, R., Lind, G. and Võhandu, L. (2004). Data mining: pattern mining as
a clique extracting task. Proceedings of the Sixth International Conference on
Enterprise Information Systems, Porto, Portugal, April 14-17, 2004. Vol. 2,
pp. 519−522. Porto, Portugal: INSTICC.

Kuusik, R., Lind, G. and Võhandu, L. (2004). Frequent pattern mining as a
clique extracting task. The 8th World Multi-Conference on Systemics,
Cybernetics and Informatics, July 18-21, 2004 - Orlando, Florida, USA, SCI
2004 Proceedings. IV, pp. 425−428. International Institute of Informatics and
Systemics.

Kuusik, R., Lind, G. and Võhandu, L. (2004). Pattern Mining as a Clique
Extracting Task. Posters. Tenth International Conference IPMU 2004
Information Processing and Management of Uncertainty on Knowledge-
Based Systems. Perugia, Italy, July 4-9, 2004, pp. 19−20.

Kuusik, R. and Lind, G. (2003). An Approach of Data Mining Using
Monotone Systems. Proceedings of the 5th International Conference on
Enterprise Information Systems (ICEIS), April 2003, Angers, France, II, pp.
482−485.

Lind, G. (2002). Monotone Systems in Data Mining. Databases and
Information Systems. Proceedings of the Fifth International Baltic
Conference, BalticDB&IS 2002, Tallinn, June 3-6, 2002. Vol. 2, pp. 249−254.
Tallinn: Institute of Cybernetics at Tallinn University of Technology.

Lind, G. (2000). Method for Data Mining – Generator of Hypotheses.
Databases and Information Systems. Proceedings of the 4th IEEE
International Baltic Workshop, Vilnius, Lithuania, May 2000. Vol. 2, pp.
304−305. Vilnius: Technika.

247

ELULOOKIRJELDUS

Isikuandmed

Nimi: Grete Lind

Sünniaeg: 07.05.1971

Sünnikoht: Tallinn, Eesti

Kodakondsus: Eesti

Kontaktandmed

Aadress: Akadeemia tee 15a, 12618 Tallinn

Telefon: +372 58847732

E-mail: Grete.Lind@ttu.ee

Hariduskäik

1999 – 2004 Tallinna Tehnikaülikool, doktoriõpe

1994 – 1998 Tallinna Tehnikaülikool, tehnikateaduste magister

1989 – 1994 Tallinna Tehnikaülikool, infotöötluse eriala, diplom
cum laude

1978 – 1989 Tallinna 37. Keskkool, hõbemedal

Keelteoskus

Eesti keel Emakeel

Inglise keel Kõrgtase

Vene keel Kesktase

Prantsuse keel Algtase

Teenistuskäik

1997 -… Teadur, Tallinna Tehnikaülikool,
Informaatikainstituut

Jaanuar 1997 – august 1997 insener, Tallinna Tehnikaülikool,
Informaatikainstituut

Publikatsioonid

Lind, G. and Kuusik, R. (2016). Algorithm for Finding Zero Factor Free
Rules. Man-Machine Interactions 4: 4th International Conference on Man-
Machine Interactions, ICMMI 2015 Kocierz Pass, Poland, October 6-9, 2015.
AISC 391, pp. 421-435. Springer.

248

Kuusik, R. and Lind, G. (2012). An Effective Inductive Learning Algorithm
for Extracting Rules. Proceedings of the 2011 2nd International Congress on
Computer Applications and Computational Science, 2: CACS 2011, Bali,
Indonesia, November 15-17, 2011. AISC 145, pp. 339-344. Berlin Heidelberg:
Springer-Verlag.

Lind, G. and Kuusik, R. (2012). An Idea for Universal Generator of
Hypotheses. Proceedings of ICEIS 2012: the 14th International Conference
on Enterprise Information Systems, Wrocław, Poland, 28 June – 1 July.
Volume 1, pp. 169-174. Portugal: SciTePress.

Kuusik, R. and Lind, G. (2011). New Developments of Determinacy Analysis.
Advanced Data Mining and Applications - 7th International Conference:
ADMA 2011, Beijing, China, December 17-19, 2011. II; LNCS 7121, pp.
223−236. Springer.

Kuusik, R. and Lind, G. (2011). New Solution for Extracting Inductive
Learning Rules and their Post-Analysis. The 1st International Conference on
Advances in Information Mining and Management (IMMM 2011), Barcelona,
Spain, October 23-28, 2011. XPS (Xpert Publishing Services), pp. 121-126.

Kuusik, R. and Lind, G. (2010). Some Developments of Determinacy
Analysis. Advanced Data Mining and Applications: The 6th International
Conference on Advanced Data Mining and Applications (ADMA2010),
Chongqing, China, November 19-21, 2010. LNAI 6440, pp. 593-602. Berlin
Heidelberg: Springer-Verlag.

Kuusik, R., Treier, T., Lind, G. and Roosmann, P. (2009). Machine Learning
Task as a Diclique Extracting Task. Sixth International Conference on Fuzzy
Systems and Knowledge Discovery: FSKD 2009, Tianjin, China, 14-16
August. Vol. 1, p. 555−560. IEEE Computer Society.

Kuusik, R. and Lind, G. (2008). Algorithm MONSA for All Closed Sets
Finding: basic concepts and new pruning techniques. WSEAS Transactions on
Information Science and Applications, 5(5), 599-611.

Kuusik, R. and Lind, G. (2008). An All Closed Set Finding Algorithm for Data
Mining. Advances on Artificial Intelligence, Knowledge Engineering and
Data Bases: the 7th WSEAS International Conference on Artificial
Intelligence, Knowledge Engineering and Data Bases (AIKED ’08),
University of Cambridge, February 20-22. Cambridge, UK: WSEAS Press,
pp. 135-141.

Lind, G. and Kuusik, R. (2008). Determinacy Analysis as a diclique extracting
task. Proceedings of the 2nd European Computing Conference (ECC ’08):
New Aspects on Computing Research, Malta, September 11-13. WSEAS Press
(Recent Advances in Computer Engineering), pp. 119-125.

249

Lind, G. and Kuusik, R. (2008). New developments for Determinacy
Analysis: diclique-based approach. WSEAS Transactions on Information
Science and Applications, 5(10), 1458-1469.

Lind, G. and Kuusik, R. (2008). Some Problems in Determinacy Analysis
Approaches Development. Proceedings of the 2008 International Conference
on Data Mining (DMIN 2008), Las Vegas, Nevada, USA, July 14-17, 2008,
Volume I, pp. 102-108. CSREA Press.

Roosmann, P., Võhandu, L., Kuusik, R., Treier, T. and Lind, G. (2008). A new
inductive learning algorithm based on monotone system theory. Recent
Advances in Applied Computer Science - Proceedings of the 8th WSEAS
International Conference on Applied Computer Science (ACS '08), Venice,
Italy, November 21-23. WSEAS Press, pp. 310-316.

Roosmann, P., Võhandu, L., Kuusik, R., Treier, T. and Lind, G. (2008).
Monotone Systems approach in Inductive Learning. International Journal of
Applied Mathematics and Informatics, 2(2), 47−56.

Lind, G. and Kuusik, R. (2007). Some Ideas for Determinacy Analysis
Realisation. Proceedings of the 11th IASTED International Conference on
Artificial Intelligence and Soft Computing. Palma de Mallorca, Spain, August
29-31, 2007. ACTA Press, pp. 185-190.

Võhandu, L., Kuusik, R., Torim, A., Aab, E. and Lind, G. (2006). Some
algorithms for data table (re)ordering using Monotone Systems. Proceedings
of the 5th WSEAS International Conference on Artificial Intelligence,
Knowledge Engineering and Data Bases (AIKED ’06), Madrid, Spain,
February 15-17, pp. 417-422.

Võhandu, L., Kuusik, R., Torim, A., Aab, E. and Lind, G. (2006). Some
Monotone Systems Algorithms for Data Mining. WSEAS Transactions on
Information Science and applications, 4(3), 802−809.

Kuusik, R., Liiv, I. and Lind, G. (2005). An Efficient Method for Post
Analysis of Patterns. Proceedings of the IASTED International Conference on
Artificial Intelligence and Applications: February 14-16, 2005. Innsbruck,
Austria. ACTA Press, pp. 101−105.

Kuusik, R. and Lind, G. (2004). Generator of Hypotheses – an Approach of
Data Mining Based on Monotone Systems Theory. International Journal of
Computational Intelligence, 1, 49−53.

Kuusik, R. and Lind, G. (2004). New Frequency Pattern Algorithm for Data
Mining. Proceedings of the International 13th Turkish Symposium on
Artificial Intelligence and Neural Networks (TAINN), June 2004, Izmir,
Turkey, pp. 47−54.

250

Kuusik, R., Lind, G. and Võhandu, L. (2004). Data mining: pattern mining as
a clique extracting task. Proceedings of the Sixth International Conference on
Enterprise Information Systems, Porto, Portugal, April 14-17, 2004. Vol. 2,
pp. 519−522. Porto, Portugal: INSTICC.

Kuusik, R., Lind, G. and Võhandu, L. (2004). Frequent pattern mining as a
clique extracting task. The 8th World Multi-Conference on Systemics,
Cybernetics and Informatics, July 18-21, 2004 - Orlando, Florida, USA, SCI
2004 Proceedings. IV, pp. 425−428. International Institute of Informatics and
Systemics.

Kuusik, R., Lind, G. and Võhandu, L. (2004). Pattern Mining as a Clique
Extracting Task. Posters. Tenth International Conference IPMU 2004
Information Processing and Management of Uncertainty on Knowledge-
Based Systems. Perugia, Italy, July 4-9, 2004, pp. 19−20.

Kuusik, R. and Lind, G. (2003). An Approach of Data Mining Using
Monotone Systems. Proceedings of the 5th International Conference on
Enterprise Information Systems (ICEIS), April 2003, Angers, France, II, pp.
482−485.

Lind, G. (2002). Monotone Systems in Data Mining. Databases and
Information Systems. Proceedings of the Fifth International Baltic
Conference, BalticDB&IS 2002, Tallinn, June 3-6, 2002. Vol. 2, pp. 249−254.
Tallinn: Institute of Cybernetics at Tallinn University of Technology.

Lind, G. (2000). Method for Data Mining – Generator of Hypotheses.
Databases and Information Systems. Proceedings of the 4th IEEE
International Baltic Workshop, Vilnius, Lithuania, May 2000. Vol. 2, pp.
304−305. Vilnius: Technika.

251

DISSERTATIONS DEFENDED AT
TALLINN UNIVERSITY OF TECHNOLOGY ON

INFORMATICS AND SYSTEM ENGINEERING

1. Lea Elmik. Informational Modelling of a Communication Office. 1992.

2. Kalle Tammemäe. Control Intensive Digital System Synthesis. 1997.

3. Eerik Lossmann. Complex Signal Classification Algorithms, Based on the
Third-Order Statistical Models. 1999.

4. Kaido Kikkas. Using the Internet in Rehabilitation of People with Mobility
Impairments – Case Studies and Views from Estonia. 1999.

5. Nazmun Nahar. Global Electronic Commerce Process: Business-to-Business.
1999.

6. Jevgeni Riipulk. Microwave Radiometry for Medical Applications. 2000.

7. Alar Kuusik. Compact Smart Home Systems: Design and Verification of Cost
Effective Hardware Solutions. 2001.

8. Jaan Raik. Hierarchical Test Generation for Digital Circuits Represented by
Decision Diagrams. 2001.

9. Andri Riid. Transparent Fuzzy Systems: Model and Control. 2002.

10. Marina Brik. Investigation and Development of Test Generation Methods
for Control Part of Digital Systems. 2002.

11. Raul Land. Synchronous Approximation and Processing of Sampled Data
Signals. 2002.

12. Ants Ronk. An Extended Block-Adaptive Fourier Analyser for Analysis and
Reproduction of Periodic Components of Band-Limited Discrete-Time Signals.
2002.

13. Toivo Paavle. System Level Modeling of the Phase Locked Loops:
Behavioral Analysis and Parameterization. 2003.

14. Irina Astrova. On Integration of Object-Oriented Applications with
Relational Databases. 2003.

15. Kuldar Taveter. A Multi-Perspective Methodology for Agent-Oriented
Business Modelling and Simulation. 2004.

16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004.

17. Artur Jutman. Selected Issues of Modeling, Verification and Testing of
Digital Systems. 2004.

252

18. Ander Tenno. Simulation and Estimation of Electro-Chemical Processes in
Maintenance-Free Batteries with Fixed Electrolyte. 2004.

19. Oleg Korolkov. Formation of Diffusion Welded Al Contacts to
Semiconductor Silicon. 2004.

20. Risto Vaarandi. Tools and Techniques for Event Log Analysis. 2005.

21. Marko Koort. Transmitter Power Control in Wireless Communication
Systems. 2005.

22. Raul Savimaa. Modelling Emergent Behaviour of Organizations. Time-
Aware, UML and Agent Based Approach. 2005.

23. Raido Kurel. Investigation of Electrical Characteristics of SiC Based
Complementary JBS Structures. 2005.

24. Rainer Taniloo. Ökonoomsete negatiivse diferentsiaaltakistusega astmete ja
elementide disainimine ja optimeerimine. 2005.

25. Pauli Lallo. Adaptive Secure Data Transmission Method for OSI Level I.
2005.

26. Deniss Kumlander. Some Practical Algorithms to Solve the Maximum
Clique Problem. 2005.

27. Tarmo Veskioja. Stable Marriage Problem and College Admission. 2005.

28. Elena Fomina. Low Power Finite State Machine Synthesis. 2005.

29. Eero Ivask. Digital Test in WEB-Based Environment 2006.

30. Виктор Войтович. Разработка технологий выращивания из жидкой
фазы эпитаксиальных структур арсенида галлия с высоковольтным p-n
переходом и изготовления диодов на их основе. 2006.

31. Tanel Alumäe. Methods for Estonian Large Vocabulary Speech Recognition.
2006.

32. Erki Eessaar. Relational and Object-Relational Database Management
Systems as Platforms for Managing Softwareengineering Artefacts. 2006.

33. Rauno Gordon. Modelling of Cardiac Dynamics and Intracardiac Bio-
impedance. 2007.

34. Madis Listak. A Task-Oriented Design of a Biologically Inspired
Underwater Robot. 2007.

35. Elmet Orasson. Hybrid Built-in Self-Test. Methods and Tools for Analysis
and Optimization of BIST. 2007.

36. Eduard Petlenkov. Neural Networks Based Identification and Control of
Nonlinear Systems: ANARX Model Based Approach. 2007.

253

37. Toomas Kirt. Concept Formation in Exploratory Data Analysis: Case Studies
of Linguistic and Banking Data. 2007.

38. Juhan-Peep Ernits. Two State Space Reduction Techniques for Explicit
State Model Checking. 2007.

39. Innar Liiv. Pattern Discovery Using Seriation and Matrix Reordering:
A Unified View, Extensions and an Application to Inventory Management. 2008.

40. Andrei Pokatilov. Development of National Standard for Voltage Unit Based
on Solid-State References. 2008.

41. Karin Lindroos. Mapping Social Structures by Formal Non-Linear
Information Processing Methods: Case Studies of Estonian Islands
Environments. 2008.

42. Maksim Jenihhin. Simulation-Based Hardware Verification with High-
Level Decision Diagrams. 2008.

43. Ando Saabas. Logics for Low-Level Code and Proof-Preserving Program
Transformations. 2008.

44. Ilja Tšahhirov. Security Protocols Analysis in the Computational Model –
Dependency Flow Graphs-Based Approach. 2008.

45. Toomas Ruuben. Wideband Digital Beamforming in Sonar Systems. 2009.

46. Sergei Devadze. Fault Simulation of Digital Systems. 2009.

47. Andrei Krivošei. Model Based Method for Adaptive Decomposition of the
Thoracic Bio-Impedance Variations into Cardiac and Respiratory Components.
2009.

48. Vineeth Govind. DfT-Based External Test and Diagnosis of Mesh-like
Networks on Chips. 2009.

49. Andres Kull. Model-Based Testing of Reactive Systems. 2009.

50. Ants Torim. Formal Concepts in the Theory of Monotone Systems. 2009.

51. Erika Matsak. Discovering Logical Constructs from Estonian Children
Language. 2009.

52. Paul Annus. Multichannel Bioimpedance Spectroscopy: Instrumentation
Methods and Design Principles. 2009.

53. Maris Tõnso. Computer Algebra Tools for Modelling, Analysis and
Synthesis for Nonlinear Control Systems. 2010.

54. Aivo Jürgenson. Efficient Semantics of Parallel and Serial Models of Attack
Trees. 2010.

254

55. Erkki Joasoon. The Tactile Feedback Device for Multi-Touch User
Interfaces. 2010.

56. Jürgo-Sören Preden. Enhancing Situation – Awareness Cognition and
Reasoning of Ad-Hoc Network Agents. 2010.

57. Pavel Grigorenko. Higher-Order Attribute Semantics of Flat Languages.
2010.

58. Anna Rannaste. Hierarcical Test Pattern Generation and Untestability
Identification Techniques for Synchronous Sequential Circuits. 2010.

59. Sergei Strik. Battery Charging and Full-Featured Battery Charger Integrated
Circuit for Portable Applications. 2011.

60. Rain Ottis. A Systematic Approach to Offensive Volunteer Cyber Militia.
2011.

61. Natalja Sleptšuk. Investigation of the Intermediate Layer in the Metal-
Silicon Carbide Contact Obtained by Diffusion Welding. 2011.

62. Martin Jaanus. The Interactive Learning Environment for Mobile
Laboratories. 2011.

63. Argo Kasemaa. Analog Front End Components for Bio-Impedance
Measurement: Current Source Design and Implementation. 2011.

64. Kenneth Geers. Strategic Cyber Security: Evaluating Nation-State Cyber
Attack Mitigation Strategies. 2011.

65. Riina Maigre. Composition of Web Services on Large Service Models. 2011.

66. Helena Kruus. Optimization of Built-in Self-Test in Digital Systems. 2011.

67. Gunnar Piho. Archetypes Based Techniques for Development of Domains,
Requirements and Sofware. 2011.

68. Juri Gavšin. Intrinsic Robot Safety Through Reversibility of Actions. 2011.

69. Dmitri Mihhailov. Hardware Implementation of Recursive Sorting
Algorithms Using Tree-like Structures and HFSM Models. 2012.

70. Anton Tšertov. System Modeling for Processor-Centric Test Automation.
2012.

71. Sergei Kostin. Self-Diagnosis in Digital Systems. 2012.

72. Mihkel Tagel. System-Level Design of Timing-Sensitive Network-on-Chip
Based Dependable Systems. 2012.

73. Juri Belikov. Polynomial Methods for Nonlinear Control Systems. 2012.

74. Kristina Vassiljeva. Restricted Connectivity Neural Networks based
Identification for Control. 2012.

255

75. Tarmo Robal. Towards Adaptive Web – Analysing and Recommending Web
Users` Behaviour. 2012.

76. Anton Karputkin. Formal Verification and Error Correction on High-Level
Decision Diagrams. 2012.

77. Vadim Kimlaychuk. Simulations in Multi-Agent Communication System.
2012.

78. Taavi Viilukas. Constraints Solving Based Hierarchical Test Generation for
Synchronous Sequential Circuits. 2012.

79. Marko Kääramees. A Symbolic Approach to Model-based Online Testing.
2012.

80. Enar Reilent. Whiteboard Architecture for the Multi-agent Sensor Systems.
2012.

81. Jaan Ojarand. Wideband Excitation Signals for Fast Impedance
Spectroscopy of Biological Objects. 2012.

82. Igor Aleksejev. FPGA-based Embedded Virtual Instrumentation. 2013.

83. Juri Mihhailov. Accurate Flexible Current Measurement Method and its
Realization in Power and Battery Management Integrated Circuits for Portable
Applications. 2013.

84. Tõnis Saar. The Piezo-Electric Impedance Spectroscopy: Solutions and
Applications. 2013.

85. Ermo Täks. An Automated Legal Content Capture and Visualisation
Method. 2013.

86. Uljana Reinsalu. Fault Simulation and Code Coverage Analysis of RTL
Designs Using High-Level Decision Diagrams. 2013.

87. Anton Tšepurov. Hardware Modeling for Design Verification and Debug.
2013.

88. Ivo Müürsepp. Robust Detectors for Cognitive Radio. 2013.

89. Jaas Ježov. Pressure sensitive lateral line for underwater robot. 2013.

90. Vadim Kaparin. Transformation of Nonlinear State Equations into Observer
Form. 2013.

92. Reeno Reeder. Development and Optimisation of Modelling Methods and
Algorithms for Terahertz Range Radiation Sources Based on Quantum Well
Heterostructures. 2014.

93. Ants Koel. GaAs and SiC Semiconductor Materials Based Power Structures:
Static and Dynamic Behavior Analysis. 2014.

94. Jaan Übi. Methods for Coopetition and Retention Analysis: An Application
to University Management. 2014.

256

95. Innokenti Sobolev. Hyperspectral Data Processing and Interpretation in
Remote Sensing Based on Laser-Induced Fluorescence Method. 2014.

96. Jana Toompuu. Investigation of the Specific Deep Levels in p-, i- and n-
Regions of GaAs p+-pin-n+ Structures. 2014.

97. Taavi Salumäe. Flow-Sensitive Robotic Fish: From Concept to Experiments.
2015.

98. Yar Muhammad. A Parametric Framework for Modelling of Bioelectrical
Signals. 2015.

99. Ago Mõlder. Image Processing Solutions for Precise Road Profile
Measurement Systems. 2015.

100. Kairit Sirts. Non-Parametric Bayesian Models for Computational
Morphology. 2015.

101. Alina Gavrijaševa. Coin Validation by Electromagnetic, Acoustic and
Visual Features. 2015.

102. Emiliano Pastorelli. Analysis and 3D Visualisation of Microstructured
Materials on Custom-Built Virtual Reality Environment. 2015.

103. Asko Ristolainen. Phantom Organs and their Applications in Robotic
Surgery and Radiology Training. 2015.

104. Aleksei Tepljakov. Fractional-order Modeling and Control of Dynamic
Systems. 2015.

105. Ahti Lohk. A System of Test Patterns to Check and Validate the Semantic
Hierarchies of Wordnet-type Dictionaries. 2015.

106. Hanno Hantson. Mutation-Based Verification and Error Correction in
High-Level Designs. 2015.

107. Lin Li. Statistical Methods for Ultrasound Image Segmentation. 2015.

108. Aleksandr Lenin. Reliable and Efficient Determination of the Likelihood
of Rational Attacks. 2015.

109. Maksim Gorev. At-Speed Testing and Test Quality Evaluation for High-
Performance Pipelined Systems. 2016.

110. Mari-Anne Meister. Electromagnetic Environment and Propagation
Factors of Short-Wave Range in Estonia. 2016.

111. Syed Saif Abrar. Comprehensive Abstraction of VHDL RTL Cores to ESL
SystemC. 2016.

112. Arvo Kaldmäe. Advanced Design of Nonlinear Discrete-time and Delayed
Systems. 2016.

113. Mairo Leier. Scalable Open Platform for Reliable Medical Sensorics. 2016.

114. Georgios Giannoukos. Mathematical and Physical Modelling of Dynamic
Electrical Impedance. 2016.

257

115. Aivo Anier. Model Based Framework for Distributed Control and Testing
of Cyber-Physical Systems. 2016.

116. Denis Firsov. Certification of Context-Free Grammar Algorithms. 2016.

117. Sergei Astapov. Distributed Signal Processing for Situation Assessment in
Cyber-Physical Systems. 2016.

118. Erkki Moorits. Embedded Software Solutions for Development of Marine
Navigation Light Systems. 2016.

119. Andres Ojamaa. Software Technology for Cyber Security Simulations.
2016.

120. Gert Toming. Fluid Body Interaction of Biomimetic Underwater Robots.
2016.

121. Kadri Umbleja. Competence Based Learning – Framework,
Implementation, Analysis and Management of Learning Process. 2017.

122. Andres Hunt. Application-Oriented Performance Characterization of the
Ionic Polymer Transducers (IPTs). 2017.

123. Niccolò Veltri. A Type-Theoretical Study of Nontermination. 2017.

124. Tauseef Ahmed. Radio Spectrum and Power Optimization Cognitive
Techniques for Wireless Body Area Networks. 2017.

125. Andre Veski. Agent-Based Computational Experiments in Two-Sided
Matching Markets. 2017

126. Artjom Rjabov. Network-Based Hardware Accelerators for Parallel Data
Processing. 2017.

127. Fatih Güllü. Conformity Analysis of E-Learning Systems at Largest
Universities in Estonia and Turkey on the Basis of EES Model. 2017.

128. Margarita Spitšakova. Discrete Gravitational Swarm Optimization
Algorithm for System Identification. 2017.

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

