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ABSTRACT 
Data mining (DM) is often defined as finding hidden information in a database. 
The two “high-level” primary goals of data mining are prediction and description. 
A descriptive model serves as a way to explore the properties of the data 
examined, not to predict new properties (like the predictive model).  

The goals of prediction and description are achieved by using different DM tasks, 
including classification and association rules. Classification maps (classifies) 
data into predefined groups or classes. This method comes from machine 
learning, in DM it is used mainly for prediction. An association rule mining 
uncovers relationships among data, identifying specific types of data 
associations. It is considered to be a descriptive task. 

Both tasks produce IF-THEN rules. The difference is that classification rules are 
produced for determined class(es) only and class attribute(s) is(are) separated 
from other attributes; in case of association rules all attributes can be on either 
side of the rule (not in the same rule) and (generally) the conclusion is not 
determined in advance. 

Usually these tasks are solved separately and for different purposes. There also 
exist hybrid approaches that combine classification and association rules (either 
for descriptive or predictive purpose), their results are presented in the form of 
classification rules. We have created an approach (ZFF DA) that produces both 
kinds of the rules at the same time (for descriptive purpose). Producing both kinds 
of rules is different from hybrid approaches as well as classification and 
association rule discovery because each of them finds one kind of rules. 

This work presents developments of descriptive data mining methods called 
Determinacy Analysis (DA) and Generator of Hypotheses (GH).  

Both methods had been created in Soviet time. Being separated from the Western 
research, they had their own underlying concepts and theories. In this work we 
have shown the correspondences of the concepts from these methods with the 
ones that are widely known in data mining area. These correspondences facilitate 
to share our ideas as well as make findings about those well-known concepts 
usable for us.  

DA is a system of methods for the analysis of rules. It tries to answer the 
questions: “Who are they (objects of the class)?”, “How can we describe them?”, 
“What distinguishes them from others?”. DA can be seen as a classification 
method, in addition it can be related to association rules. 

In this thesis DA is developed in order to overcome different drawbacks typical 
of its different approaches, mainly towards reducing redundancy. Zero factors 
(ZF) are the elements that cause redundancy and must not to appear in the 
antecedents of the rules. We have defined two types of them. 
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Presented developments of DA are: 

 Step-by-step method: allowing free length for non-intersecting rules, it 
helps to reduce redundancy.  

 First algorithm for getting intersecting rules produces a possibly small 
set of (possibly short) rules.  

 DSR-approach: instead of one description out of (usually huge) number 
of all possible ones, it finds all non-redundant rules that can be used for 
finding a suitable cover. 

 Zero-factor-free (ZFF) DA finds all non-redundant rules for all existing 
classes (not for “target” class only) and enriches these (classification) 
rules with positive and negative association rules.  

Generator of hypotheses is a DM method that uses possibilities offered by 
algorithm MONSA. We have shown that it finds all closed sets.  

MONSA is changed to find all minimal generators with their closed sets, 
“excluded factors” and class. The elements between a closed set (CS) and its 
generator form a consequence for an association rule where the generator is an 
antecedent. Excluded factors are such elements that do not occur in CS, they form 
a consequence of a negative association rule. Having found that the elements 
between CS and generator correspond to (one kind of) ZF (in DA) and that a class 
can be detected the same way as ZF, we have created a MONSA-based algorithm 
for ZFF DA that produces three kinds of non-redundant rules with a common 
antecedent: classification rules, positive and negative association rules. 

As a CS with all its minimal generators forms an equivalence class (EC), we have 
created an algorithm for finding all ECs as well. 

Finally, we have gathered the tasks solvable by GH and DA under the framework 
called Universal Generator of Hypotheses. 

MONSA and all other algorithms presented in this thesis are based on the theory 
of monotone systems. We see that ZFF DA algorithm can be used as a basis for 
different further developments listed in the thesis. 
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12 

1 INTRODUCTION 
The wide area of data mining (DM) can be divided into predicting and describing. 
Unknown or future values of variables of interest are predicted using known data. 
Description focuses on finding human-interpretable patterns describing the data. 
A descriptive model serves as a way to explore the properties of the data 
examined. In the context of knowledge discovery in databases (KDD), 
description tends to be more important than prediction. (Fayyad, Piatetsky-
Shapiro, & Smyth, 1996) 

DM uses methods from many other disciplines: machine learning, pattern 
recognition, statistics, …. Different methods from machine learning (ML) are 
used mainly for prediction purposes. The most important ones of them are 
classification and clustering. The former represents supervised learning and the 
latter – unsupervised learning. In case of supervised learning there exist data for 
which the right answer (class, function value, …) is known and the learner is 
trained to give a right answer to each input in training set. It is assumed that it 
works on unseen data as well. In case of unsupervised learning there are no 
correct answers, usually the task is to partition data in some appropriate way. 

The classification rules represent found knowledge in the form of IF-THEN rules. 
The IF-part contains a predicate that can be evaluated as true or false against each 
tuple in the data. THEN-part shows the target class. 

The rules are used mainly for Classification task: to find the rules for 
classification of unknown object(s) on the basis of the learning examples. 
Additionally the classification rules are used for Data Analysis and Data Mining 
task: to use the found rules for describing the class under analysis, answering the 
questions: "Who are they (objects of the class)?", "How can we describe them?", 
"What distinguishes them from others?". 

In this work we will use classification rules for description, although primarily 
they are used for prediction purposes. 

Besides the classification rules we will deal with association rules. The difference 
between these two is that for classification rule the target class is given, whereas 
in case of association rule each considerable item can be on either side of the rule. 

One problem solved in this work is to get rid of redundancies appearing in the 
rules. For example, if the description of a class contains two characteristics: "Are 
you living in the countryside?" with a value "Yes", and "Do you have cows?" 
with a value "Yes", then the first one is redundant because having cows means 
that one lives in the country (if everyone having cows lives in the country). This 
way we get a (positive) association rule “has a cow”  “lives in the countryside”. 
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Besides positive association rules we can easily find the negative ones also (like 
“has a cow”  NOT “is a frequent traveller”). In some cases negative rules are 
more valuable than positive ones. 

Usually classification rules and association rules are treated separately. In 
addition to classification and association tasks there exist hybrid approaches that 
combine the two. The rules found by the hybrid methods have a form of 
classification rule. We have developed an approach (called zero-factor-free 
determinacy analysis) that finds for the same antecedent (left side of the rule) 
three types of conclusions (i.e. right sides of the rule): class, “accompanying” 
factors and “excluded” factors. The last two correspond to the association rules 
(positive and negative, accordingly), while the first one is a classification rule. 
By producing different kinds of rules our approach is different from hybrid 
approaches as well as classification and association rule discovery because each 
of these methods finds one kind of rules. 

This work is about descriptive data mining methods called Determinacy Analysis 
(DA) and Generator of Hypotheses (GH). These methods are not intended for big 
data analysis. Relations between the concepts used in these methods and more 
widely known concepts of data mining are shown in the thesis. Presented 
algorithms are based on the theory of monotone systems (MS). Different tasks 
solvable by GH and DA are gathered under the framework called Universal 
Generator of Hypothesis (UGH). 

1.1 Motivation 

Coming from the former USSR, our research themes after achieving an 
independence are to a great extent related to the topics and approaches that were 
actual in these times (for example, Determinacy Analysis). Since 1970s in the 
Institute of Informatics (at Tallinn University of Technology) there has been 
evolved our own school in data science area, the so-called school of prof. Leo 
Võhandu. Together with J. Mullat they have developed the theory of monotone 
systems which was the basis for many methods created here (e.g. Mullat’s 
kernels, data table reordering methods). As these methods were used mainly by 
the public opinion and market research companies (carrying out the questionnaire 
surveys), all the methodology and algorithms created at that time issue from a 
data table, i.e. the work data were in the form of object-attribute system, not 
drawn from databases. The approaches and algorithms presented in this work are 
developed largely based on that assumption, theoretical basis and manner of 
thought. 

The first versions of Determinacy Analysis and Generator of Hypotheses were 
used in the Computing Centre of Estonian Radio, where a group of sociologists 
were working. Due to their interestedness the problems of application and further 
development of the methods were then very actual. Unfortunately the beginning 
of Estonian independence with its economic difficulties and reforms did not allow 
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to seriously deal with it. Further development of GH and DA rose on the agenda 
again only in the beginning of 2000s. Also a group of enthusiasts emerged, who 
were ready to apply these methods (first of all, Saar Poll OÜ, Estonian Academy 
of Security Sciences). Encouraged by them the development of the method and 
algorithms (once) again got off the ground, new ideas and approaches arose, 
which were published in research papers. 

The base algorithms and approaches created in 90s were based on the concepts 
that had been created by the earlier school (prof. Leo Võhandu and others). As 
the USSR was a closed system, the foreign contacts and access to the foreign 
publications of the field were missing as well as the foreign scientists could not 
access our papers. Due to this, after achieving the independence, when we tried 
to get in the international conferences, we were not understood and our papers 
were not accepted, because we issued from our concepts. The situation changed 
only then when we comprehended that and adjusted ourselves. The 
correspondence between the notions was explained in (Kuusik & Lind, Algorithm 
MONSA for All Closed Sets Finding: basic concepts and new pruning 
techniques, 2008). By reference to all the foregoing, the methods and algorithms 
presented in this work are not much influenced by the world’s top of the area, our 
ideas have been evolved rather amid our own school. 

I joined the development of DA and HG after defending my master thesis 
“Monotone systems in data mining” in 1998 and in some years the research in 
this area developed into one of my main activities. 

Looking into these methods and talking to their potential users several usage 
problems and weak points that needed to develop came out. Also the new ideas 
how to further develop the methods arose. 

1.2  Methods and theories 

In this subchapter we will introduce the methods that will be developed in the 
thesis: determinacy analysis (1.2.1) and generator of hypotheses (1.2.2) as well 
as theory of monotone systems (1.2.3) on which these developments are based. 

1.2.1 Determinacy Analysis 

According to Chesnokov (1982, pp. 7-10), Determinacy1 Analysis (DA) has been 
created to fill the gap in the analysis of the qualitative sociological and socio-
economic data. The tasks (of analysis of sociological and socio-economic data) 
divide into two groups: studying the structure of relationships between variables 

                                                      
1 Russian „Детерминационный анализ“ has been translated both as “Determinacy 
Analysis” and “Determination Analysis”. We will use „Determinacy Analysis“ because 
it is used this way in the papers written in English by the author of the theory Chesnokov, 
for example: “Determinacy analysis and theoretical orthography” (by S. V. Chesnokov 
and P. A. Luelsdorff, in: Theoretical linguistics, 1991, 17(1-3), 231-262) 
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and building secondary aggregated indicators. The second type of tasks is well 
covered by different coefficients and other measures (e.g. Yule’s, Kendall’s, 
Pearson’s, Chuprov’s, Cramér’s coefficients, entropy). While such integral 
indicators provide a possibility to get the estimations of a general nature, they 
however, carry away from the characteristics presented by the values of the 
qualitative attributes in the working documents of empirical studies. 

In practice, the summary of direct visual analysis of contingency tables serves as 
a criterion of truth of the results, obtained by such integral indicators. 

Direct examination of percentage breakdown in contingency tables forms the 
basis for so called content analysis2 of empirical data. It is feasible when the tables 
have up to three dimensions. Having more dimensions the considerable 
difficulties appear: presentation of the material in a visually graspable form 
becomes complicated, the big number of empty or almost empty cells in tables 
appears, it becomes complicated to observe the trends and regularities of interest. 
The techniques for local, fragmentary analysis of contingency tables that could 
be contribute to overcoming these difficulties, practically have not been discussed 
in the research literature. DA represents a variant of just such kind of technique. 

The task solved by DA is not original. The task is to search for and describe the 
situations, where by the specific values of some social indicators it was possible 
to predict sufficiently definitely the values of other indicators. The usual 
conditional frequency serves as a main characteristic of the ability to predict. If b 
is predicted based on a according to the rule “if a then b” then the accuracy is 
measured by the value of the conditional frequency P(b/a). The rule “if a then b” 
itself is denoted by the symbol a→b and is called a determination. 

DA enables to get sufficiently accurate and complete determinations, 
manipulating combinations of elementary characteristics. Differentiation of 
different characteristics by the degree of essentiality of their contribution to the 
arguments of determination (measured by the increment of conditional 
frequencies) is included into this task. Active building of the contexts in which 
the determinations are examined as well as inclusion of a priori and a posteriori 
typologies, aggregated indicators, indexes into the analytic process are important 
elements of DA. 

The idea of analysing the conditional frequencies is not new. DA differs from 
other directions in this area primarily by consistent orientation to a direct 
manipulation with direct and inverse conditional frequencies and their increments 
(“contributions”). 

DA has a similarity with the fuzzy set theory (Zadeh, 1965). In DA we say “there 
is a determination a→b with intensity P(b/a)”. Its analogue in the fuzzy sets is 

                                                      
2 Russian “содержательный анализ“ 
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“there is an element a, which belonging to a fuzzy set b is characterized by the 
value of the membership function μb(a)=P(b/a)”. 

DA is a systematic exploration method of conditional probabilities or simply 
percentages contained in usual statistical contingency tables of different 
attributes. For practical use it has to be supported by software. 

DA is an interactive method. It is realised using a dialogue3. The user selects the 
attributes for inclusion into the analysis. In order to combine interesting attributes 
the user has to have an imagination of the material under examination. Trying 
every possible combination would take too much time when there are lot of 
attributes4. Thus DA is not the best means for discovering new regularities, but 
for testing the researcher’s hypotheses. (Kuusik, 1988)  

DA is familiar in Russia. It has been used in sociology (Chesnokov, 1980b), 
linguistics (Luelsdorff & Chesnokov, 1996), medicine (Chesnokov, 1996), and 
other areas.  

1.2.2 Generator of Hypotheses 

Generator of Hypotheses is inspired by the JSM5-Method for Automatic 
Generation of Hypotheses (Anshakov, Skvortsov, Finn, & Ivashko, 1987), thence 
its name comes from. In contrast to DA, both GH and JSM-method enable to 
automate the process of finding regularities (hypotheses). These methods allow 
outputting all value combinations that really exist in given data. (Kuusik, 1988) 
Slow algorithm that had been used to realise the JSM-method (see (Kuusik, 
1987)) gave rise to creation of GH. 

While DA and JSM-method assume that the given attributes are divided into the 
causes and effects, GH does not expect any partition of attributes. 

The result of GH – value combinations – is presented as a tree, showing the order 
of finding the combinations. Each embranchment is labelled with the probability 
P(b/a). Each branch (or shorter fragment of it) describes a group of data objects 
and is usable as a work hypothesis for a researcher. 

GH uses a Monotone System based algorithm MONSA that was presented in 
(Kuusik, 1993).  

                                                      
3 Original applications of DA will be described in 3.2.1. 
4 The number of all possible combinations is va-1, where a is the number of attributes and 
v is the number of different values of (each) attribute. 
5 JSM comes from the name of English philosopher John Stuart Mill; the Russian 
acronym is ДСМ.  
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1.2.3 Theory of Monotone Systems 

Algorithms presented in this thesis are based on the theory of monotone systems 
that has been created at Tallinn Technical University. 

Monotone (or monotonic6) systems (MS) were introduced by J. E. Mullat (1971), 
(1976), (1977). As the name refers these systems wield the monotonicity property 
which means that a function is either entirely nonincreasing or nondecreasing. 
“By a monotonic system, we understand a system, for which an action realized 
on an arbitrary element  involves either only decrease or only increase in the 
significance levels of all other elements.” (Mullat, 1976) 

Several methods based on the theory of monotone systems have been developed 
in Department of Informatics at Tallinn University of Technology. An overview 
of scale of conformity, data table reordering techniques (minus technique, plus 
technique, mixed technique), Mullat-Võhandu kernel extracting algorithm, 
generator of hypotheses and best decision finding is given in (Võhandu, Kuusik, 
Torim, Aab, & Lind, 2006). The MS approach has been applied in the graph 
theory to extract all maximal cliques (Kuusik, 1995) and maximum clique 
(Kuusik, Lind, & Võhandu, 2004). 

The current state of MS is kept by J. Mullat at http://www.datalaundering.com/. 

1.3 Research aims 

When I started the method called GH and a suitable algorithm (MONSA) already 
existed. For DA the so called step-by-step approach had been created here. GH 
and DA find different things and use different algorithms (however, both are 
based on monotone systems). We have dealt with them separately until they got 
together only in our last development – zero-factor-free DA which uses GH-type 
algorithm (instead of the type used for other DA algorithms).  

Besides further developing these methods it was important to publish already 
existing algorithms and methods in English because the publications in Russian 
and Estonian were not available and understandable to the remaining world. 
Thus, some of the papers (listed in 1.5) contain such “old” material. Also, 
showing relations between the concepts used here (for GH and DA) and the ones 

                                                      
6 At the creation time of the theory these systems were called “monotonic” in English, at 
a later time “monotone”. The reason is that this name “Monotone System” was already 
occupied in “Reliability Theory” unknown to J. Mullat (1976). According to Wolfram 
MathWorld (2016) “Monotone Increasing (Decreasing)” means strictly increasing 
(decreasing) i.e. never remaining constant (Weisstein, 2016a), (Weisstein, 2016b) while 
“Monotonic Function” is entirely nonincreasing or nondecreasing i.e. includes possibility 
to remain constant (Stover, 2016). To make a difference we can say “strictly 
monotone/monotonic” or “weakly monotone/monotonic”. 
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used in closed set mining and association rule mining was an important outcome 
in order to make our work understandable. 

The overall goal of this thesis is to improve and develop a data analysis method 
called Determinacy Analysis. 

The main tasks: 

 To investigate the possibilities to create and develop new approaches 
based on GH and MONSA 

 To create a new algorithmics (based on MS) for DA in order to add new 
functionalities 

 To show the correspondences of our concepts of GH/MS and the 
concepts used in DA with more widely used concepts in DM and ML 

The more specific questions (under the main tasks) were not posed all at a time, 
but arose one after another when we discovered new issues that needed solving. 
In the next section we will give an overview of what we have done. 

1.4 Overview of developments 

In the beginning, DA and HG were developed separately.  

When I started, for DA the so called step-by-step approach had been created here. 
Compared to the original application (called DAS) it allows to find rules with 
different lengths, thus reducing redundancy that appears in the form of inessential 
(zero) factors (in the antecedents of rules), but not eliminating it. Both approaches 
find additive systems of rules (i.e. sets of non-intersecting rules7). 

Step-by-step approach involved a new thing to consider – the order of attributes 
(factors) in the rules. Attributes are added into the rules in a given order, the 
completion of a single rule is stopped whenever it occurs to be accurate. In case 
of different orders the results are different. The number of all possible orders is 
too big to try them all and then find the most suitable one. Thus we got a new 
problem to solve – to find the best (or an optimal) order for attributes in the rules. 

This order is essential during the work process in order to avoid or lessen the 
redundancies, in the final rule it is not important any more. We explored the 
possibility to decide by factor’s contribution to accuracy at the moment when it 
is added into the rule. We reached the conclusion that we cannot say whether the 
factor remains essential (positive) (regarding the factors that will be added later) 
or not. This conclusion is valid for the step-by-step approach as well as the 
approaches that produce non-additive systems of rules. 

As an additive system of (non-intersecting) rules generally cannot be free of zero 
factors, we started to develop algorithms for finding non-additive systems of rules 

                                                      
7 If the rules do not intersect then there is maximally one rule for each data object. 
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(where the rules can intersect). The order of attributes can be different in each 
rule.  

First we worked out an algorithm that finds a possibly small set of rules, 
monitoring and taking into consideration which objects are covered by the found 
rules already. This MS-based algorithm is not based on MONSA, it uses so called 
3D8 frequency tables. Like a step-by-step approach this one also produces one 
system of rules that is not always the best one. 

Instead of finding one system of rules, it was good to find all non-redundant rules 
and then combine different covers (rule sets) from them. For that purpose we 
created an algorithm that produces all non-redundant rules and some redundant 
rules9 (that are eliminated by compression). The rules can intersect, regardless of 
how many times the objects are covered. Redundancy is avoided as much as 
possible by the nature of the algorithm. Differently from the previous 3D-
algorithm this one does not track the coverage of objects, and it uses elimination 
technique “bringing zeroes down” from MONSA. After elimination of redundant 
rules (by compression) we get the set of non-redundant rules, called 
Determinative Set of Rules (DSR) that gives a source for post-processing the 
rules. 

Dealing with redundancy we have found two different types of zero factors: 1) 
the ones that can be just left out from the left side of the rule (without changing 
the set of covered objects); 2) the ones that produce a subrule of an existing rule 
(reducing the set of covered objects). 

 

Meanwhile we have had developed GH and MONSA. My supervisor had a true 
guess that intersections found by algorithm MONSA are closed sets. After 
showing this correspondence (Kuusik & Lind, 2008) it became possible to relate 
MONSA’s results with the widely known concepts of frequent itemset mining 
and association rule mining (ARM). 

This correspondence helped to answer the question “can the leading element be 
chosen by some other principle (than by the maximal frequency)?” and explain 
the differences caused by different selection criteria (maximal frequency vs 
minimal frequency). 

After relating the concepts of DA with the ones of ARM we reached a conclusion 
that (in order to be free of zero factors) the left side of the rule has to be a minimal 
generator, such that it has no subset that defines a class.  

                                                      
8 3D frequency table contains “usual” frequency table (as in MONSA) and additionally a 
frequency table for such objects that belong to the “target class”. 
9 The rules that are contained in some other rules are considered redundant. 
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Proceeding from those correspondences we found a solution for one more 
question – “how to find both (minimal) generators and closed sets?” – and created 
an algorithm for finding them all.  

First we tried to adapt the algorithm that uses 3D frequency tables, but 
unsuccessfully: we did not get all the closed sets (CSs) and generators 
characteristic to the target class (the non-accurate descriptions were not found).  

Next we tried to use MONSA as a basis of a new algorithm and this time we got 
an expected outcome. While the original MONSA moves from a CS to a CS, this 
one moves from a generator to a generator, because it is easier to find a CS for a 
generator than unknown number of generators for a CS. Actually, we first had a 
more sophisticated algorithm (MONSA) and then made it easier, thereat retaining 
a valuable mechanism for detecting the elements between a CS and generator, but 
treating them differently. 

As a CS with all its minimal generators forms an equivalence class (EC), it was 
straightforward to create an algorithm for finding all ECs (although previously 
we did not have such goal). 

The reason for finding both generators and CSs was that together they give a basis 
for creating (positive) association rules (ARs): the elements between a CS and its 
minimal generator (we call them “zero factors” as they correspond to one type of 
zero factors in DA) can be seen as a conclusion resultant from generator. This 
way we get a (positive) “zero-factor-free” association rule. Besides positive 
conclusions the negative ones (called excluded factors) can be of interest as well. 
MONSA offers an easy way to detect them, thus we get negative ARs. 

The way how to detect zero factors gave an answer to the question “how to 
integrate classes into MONSA?” that had been waited for a solution for a long 
time. A class can be detected the same way as any other zero factor, the difference 
is that class attributes cannot occur in the left side of the rules. Having this 
solution we got ready to create a MONSA-based algorithm for DA. 

Putting together the abilities to find all three types of the rules we reached our 
final development called zero-factor-free (ZFF) DA that produces three kinds of 
rules: 1) classification rules; 2) (positive) ARs; 3) negative ARs. This approach 
uses a MONSA-based algorithm (moving from a generator to a generator) and 
DSR-compression. Compared to the 3D algorithm that (together with a 
compression) gives a DSR for a target class, ZFF DA gives DSR for all classes 
(if desired) and enriches the (classification) rules with information about 
accompanying factors (positive AR) and excluded factors (negative AR). 

Finally we have gathered different tasks solvable by GH and DA under the 
umbrella called Universal Generator of Hypotheses that is one possible 
framework for that purpose. 
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1.5 Previously published work 

The work of this thesis is based on the following publications: 

A Kuusik, R. and Lind, G. (2008). Algorithm MONSA for All Closed Sets 
Finding: basic concepts and new pruning techniques. WSEAS 
Transactions on Information Science and Applications, 5(5), 599-611.  

B Lind, G. and Kuusik, R. (2007). Some Ideas for Determinacy Analysis 
Realisation. Proceedings of the 11th IASTED International Conference 
on Artificial Intelligence and Soft Computing. Palma de Mallorca, Spain, 
August 29-31, 2007 (pp. 185-190). ACTA Press. 

C Lind, G. and Kuusik, R. (2008). Some Problems in Determinacy Analysis 
Approaches Development. Proceedings of the 2008 International 
Conference on Data Mining (DMIN 2008), Las Vegas, Nevada, USA, 
July 14-17, 2008, Volume I, pp. 102-108. CSREA Press. 

D Kuusik, R. and Lind, G. (2010). Some Developments of Determinacy 
Analysis. Advanced Data Mining and Applications: The 6th 
International Conference on Advanced Data Mining and Applications 
(ADMA2010), Chongqing, China, November 19-21, 2010. LNAI 6440, 
pp. 593-602. Berlin Heidelberg: Springer-Verlag. 

E Kuusik, R. and Lind, G. (2011). New Developments of Determinacy 
Analysis. Advanced Data Mining and Applications - 7th International 
Conference: ADMA 2011, Beijing, China, December 17-19, 2011. II; 
LNCS 7121, p. 223−236. Springer. 

F Lind, G. and Kuusik, R. (2016). Algorithm for Finding Zero Factor Free 
Rules. Man-Machine Interactions 4: 4th International Conference on 
Man-Machine Interactions, ICMMI 2015 Kocierz Pass, Poland, October 
6-9, 2015. AISC 391, pp. 421-435. Springer. 

These publications are reprinted in the appendices of the thesis. 

All these papers are written together with my supervisor prof. Rein Kuusik. 
Generally, he set the goal and I dealt with the details. In case of all papers I have 
done most of the writing and preparing examples. Other contributions of mine 
are listed below. 

Paper A: showing the correspondences between concepts used in our algorithm 
MONSA and the ones used for closed sets; explaining used pruning techniques. 

Paper B: showing the correspondence with terminology used in association rule 
mining; experimenting with DAS (original application of DA), analysing its 
possibilities and deficiencies; finding how many frequencies is needed to 
compute the characteristics of the rules. 

Paper C: exploring (and translating) the newer theory of DA (Chesnokov, 2002); 
investigating and explaining the problem with zero factors (normal rules). 
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Papers D and E: experimenting with the algorithms proposed by my supervisor. 

Paper F: defining two types of zero factors, showing their relation with minimal 
generators; creating the ZFF DA algorithm. 

Besides the published material this thesis contains unpublished material as well. 

1.6 Contribution of the thesis 

The main results: 

 We have shown how the concepts used in MONSA correspond to the 
ones used in CS mining and how the concepts of DA are related to the 
ones of ARM and ML  

 We have elaborated an algorithm for finding all equivalence classes 
 We have defined two types of zero factors (in DA) 
 We have found a way to detect classes and other zero-zero factors (and 

that they are detected the same way) for MONSA 
 We have proposed ZFF DA that finds three types of non-redundant rules 

at the same time: classification rules, positive and negative association 
rules  

 We have presented UGH that gathers different tasks solvable by DA and 
GH 

1.7 Organisation of the thesis 

Chapter 2 gives an overview of theoretical foundations of this work: data mining, 
machine learning, theory of monotone systems and determinacy analysis. 

Chapter 3 presents our work. Developments of GH/MONSA and developments 
of DA are given in distinct subchapters, 3.1 and 3.2, accordingly, as they were 
developed separately until they got together in ZFF DA. ZFF DA is presented at 
the end of 3.2. Section 3.3 describes UGH and shows how it is covered by our 
algorithms. In 3.4 further algorithmic developments of ZFF DA are proposed. 

In Chapter 4 the work is concluded and the directions for further research are 
listed. 
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2 THEORETICAL BACKGROUND 
In this chapter we will give an overview of data mining (2.1), machine learning 
(2.2) and some methods used in these areas (Classification in 2.3, Association 
rule mining in 2.4 and hybrid approaches in 2.5) as well as the theory of monotone 
systems (2.6) and determinacy analysis (2.7). 

2.1 Data mining 

This subchapter is based on (Fayyad, Piatetsky-Shapiro, & Smyth, 1996) and 
(Dunham, 2002a). 

Data mining (DM) is often defined as finding hidden information in a database. 
According to (Fayyad, Piatetsky-Shapiro, & Smyth, 1996) DM is seen as one step 
of process called knowledge discovery in databases. 

Knowledge discovery in databases (KDD) is the process of finding useful 
information and patterns in data.  

Data is a set of facts. 

Pattern is an expression describing facts in subset of all facts, it has to be simpler 
than the enumeration of all facts in it. 

Knowledge is an interesting pattern. What is interesting, is determined by the 
user. 

KDD process is usually a multi-step process, which involves data preparation, 
search for patterns, knowledge evaluation, and refinement involving iteration 
after modification. The process is assumed to be non-trivial – that is, to have some 
degree of search autonomy. 

Data mining is the use of algorithms to extract the information and patterns 
derived by the KDD process. 

The two “high-level” primary goals of data mining are prediction and description. 
Predictive model is used to predict unknown or future values of variables of 
interest using known data. Description focuses on finding human-interpretable 
patterns describing the data. A descriptive model serves as a way to explore the 
properties of the data examined, not to predict new properties (like the predictive 
model). In the context of KDD, description tends to be more important than 
prediction. This is in contrast to pattern recognition and machine learning 
applications where prediction is often the primary goal. 

The goals of prediction and description are achieved by using different DM tasks. 
The most important of them are: 

 Classification 
 Clustering 
 Association rules 
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Classification maps (classifies) data into predefined groups or classes. It is often 
referred to as supervised learning because the classes are determined before 
examining the data. 

Clustering is similar to classification except that the groups (clusters) are not 
predefined, but rather defined by the data alone. It can be thought of as 
partitioning or segmenting the data into groups that might or might not be 
disjointed. Clustering is alternatively referred to as unsupervised learning or 
segmentation. 

Determining association rules is the best example of the data mining task of 
uncovering relationships among data called link analysis, or affinity analysis. An 
association rule is a model that identifies specific types of data associations.  

Classification is used for prediction purposes, while clustering and association 
rules are considered to be descriptive. 

Most data mining methods are based on the concepts from machine learning, 
pattern recognition and statistics: classification, clustering, graphical models, and 
so forth. 

2.2 Machine Learning 

The following is mainly based on (Michalski, Carbonell, & Mitchell, 1984) and 
(Dunham, 2002a). 

Machine learning (ML) is the area of artificial intelligence (AI) that examines 
how to write programs that can learn. In data mining, machine learning is often 
used for prediction10 or classification. The objectives of ML and DM are different. 
Machine learning looks at things that may be difficult for humans to do or 
concentrates on how to develop learning techniques that can mimic human 
behaviour. The objective for data mining is to uncover information that can be 
used to provide information to humans (not take their place). 

Most of the learning strategies involve some amount of inductive inference. 
Inductive inference is a (bottom-up) mode of reasoning that starts with specific 
facts and concludes general hypotheses or theories. The conclusion is not 
guaranteed to be true, but usually it is. Reasoning in the opposite direction (top-
down – from general to specific), deductive inference is the derivation of a logical 
consequence from a given set of premises, it is a truth-preserving transformation 
of assertions. In AI deductive reasoning is used, for example, in expert systems, 
automated theorem proving. 

Inductive Learning (i.e. learning by inductive inference) is learning by 
generalizing facts and observations obtained from a teacher or environment. The 

                                                      
10 Here prediction is one of DM tasks (used for prediction purposes). It is often viewed 
as forecasting a continuous value, while classification forecasts a discrete value.  



 
25 

major forms of inductive learning are learning from examples and learning from 
observation and discovery. Learning from examples is inferring a general concept 
description from examples and (optionally) counter-examples of that concept. 
Learning from observation is constructing descriptions, hypotheses or theories 
about given collection of facts or observations whereat there is no a priori 
classification of observations into sets exemplifying desired concepts. The former 
represents supervised learning and the latter – unsupervised learning. 

In case of learning from examples (supervised learning), the set of training data 
together with correct answers is given. The computational model is trained to give 
the correct answer to each entry in the training set. There can be also a test set of 
data that is used to evaluate the result of learning. It is assumed that such model 
is good enough to be applied to unseen data. Such assumption is called the 
inductive learning hypothesis (Mitchell, 1997).  

Often only one concept has to be learned. In such case the given training examples 
can be either positive – the representatives of target concept – or negative – the 
ones that do not belong to that concept. Usually both are given, in some cases 
only positive examples are available. In case of multiple-concept learning 
different classes can be either mutually disjoint or overlapping. Looking for one 
certain class, the representatives of all other classes are considered as negative 
examples. 

Classification is a typical supervised learning task. 

In case of unsupervised learning the data exist, but without answers. In this case, 
usually, the problem is to partition the training set into subsets in some 
appropriate way. A typical unsupervised task is clustering – identifying a finite 
set of categories or clusters to describe the data. The clusters can be mutually 
exclusive and exhaustive, or consist of a richer representation such as hierarchical 
or overlapping categories (Fayyad, Piatetsky-Shapiro, & Smyth, 1996). 

Learning from observation and discovery is a very general form of inductive 
learning that includes discovery systems, theory-formation tasks, the creation of 
classification criteria to form taxonomic hierarchies, and similar tasks without 
benefit of an external teacher. 

2.2.1 Definitions of learning from examples  

Giving the basic concepts of learning from examples (supervised learning), we 
mainly originate from the notions of (Gams & Lavrac, 1987). 

The purpose of learning from examples is to find a concept description. 

A (concept) description is a set of (classification) rules: 

Desc = {Rulej}, j=1,2,…,S . 
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A rule is an implication where a condition part is a complex and a conclusion part 
is a class name: 

Rulej = “Complexj => Class” 

or 

Rulej = “if Complexj then Class” 

or 

Rulej = (Complexj , Class). 

A complex is a conjunction of selectors: 

Complexj = “(& Selectork)”, k=1,…K, 1≤K≤M, 

where M is the number of attributes. 

A selector relates an attribute to its disjunctive set of values: 

Selectorjk = “(Attribute = Values)” 

where 

Values = “( Valuet)”. 

Classes are non-intersecting subsets of objects. 

A (learning) example is a complex with all attributes, each with exactly one value, 
and its class value. 

A description covers an example of a Class if it contains a rule in the form “if 
Complex then Class”, and Complex covers the example. 

A complex covers an example if each Selector covers the example. 

A selector of the form “Attribute = Values” covers an example with “Attribute = 
Value” if Value is in Values. 

A description is complete if it covers all examples of all classes. 

A description is consistent if it does not cover any pair of examples from different 
classes. 

The learning algorithms have to allow us to find descriptions that are at the same 
time both consistent and complete. 

2.3 Classification 

The subchapter is mainly based on (Dunham, 2002a) and (Dunham, 2002b). 

Given a database D={t1,t2,…,tn} of tuples (items, records) and a set of classes 
C={C1,…,Cm}, the classification problem is to define a mapping f : D → C where 
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each ti is assigned to one class. A class, Cj, contains precisely those tuples mapped 
to it.  

The classes are predefined, non-overlapping, and partition the entire database. 

Usual approach is: 

1. Create specific model by evaluating training data (or using domain 
experts’ knowledge). 

2. Apply this model to new data. 

Classification techniques include: regression, distance, decision trees, rules, 
neural networks. 

Regression is used to map data item to a real valued prediction variable. 
Regression assumes that the target data fit into some known type of function (e.g., 
linear) and then determines the best function of this type that models the given 
data. It can be used either to divide area into regions or to predict a class 
membership function (input includes desired class). 

In case of distance-based methods the items are placed in class to which they are 
“closest”. “Alikeness” of different items can be identified by similarity or 
distance measures (like Euclidean distance, Manhattan distance, Jaccard’s 
coefficient etc.). 

(Artificial) neural networks is a graph-based method for learning from examples. 
Training this network can take a lot of time and the learned target function is not 
(easily) comprehensible, but it is robust to errors in the training data. Thus it suits 
well for learning to interpret noisy, complex real-world sensor data (such as 
inputs from cameras and microphones). (Mitchell, 1997) 

The decision tree approach to classification is to divide the search space into 
rectangular regions. A tuple is classified based on the region into which it falls.  

Classification rules represent found knowledge in the form of IF-THEN rules. In 
contrast to decision trees, they can overlap. 

Decision trees and rules will be introduced in subsequent subchapters. 

2.3.1 Decision trees 

The following is based on (Dunham, 2002a). 

A decision tree is a predictive modelling technique used in classification, 
clustering, and prediction tasks. 

A decision tree (DT) or a classification tree is a tree where the root and each 
internal node is labelled with a question. The arcs emanating from each node 
represent each possible answer to the associated question. Each leaf node 
represents a prediction of a solution to the problem under consideration. 
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Decision trees use divide-and-conquer technique to split the problem search 
space into subsets. 

The recursive algorithm builds a tree in a top-down fashion by examining the 
initial training data. Algorithms differ in how they determine the “best attribute” 
and its “best predicates” to use for splitting. Also, the “stopping criteria” for 
terminating the creation of tree can be different.  

The simplest approach is to stop when all objects/records belong to the same 
class. In order to prevent overfitting or just creating a larger tree it would be 
desirable to stop earlier. Sometimes, on the contrary, more levels than needed 
would be created (when there are data distributions not represented in the training 
data). 

To improve the performance applying the tree for classification, a balanced tree 
with the fewest levels is desirable. It has been found even that, in order to be 
meaningful to the user, an internal node (i.e. attribute test) can be the parent of at 
most one internal node (in so called fully linear trees) (Michie, Spiegelhalter, & 
Taylor, 1994). Some algorithms create only binary tree. Such trees are easily 
created, but they tend to be deeper. 

DTs are easy to interpret and understand. They scale well for large databases 
because the tree size is independent of the database size. Trees can be constructed 
for data with many attributes. Disadvantages are: it is not easy to handle 
continuous data and missing data, correlations among attributes are ignored, not 
all classification problems suit for rectangular partitioning. 

2.3.2 Classification rules 

The following is based on (Dunham, 2002a), (Mitchell, 1997) and (Michie, 
Spiegelhalter, & Taylor, 1994). 

One way to perform classification is to generate IF-THEN rules that cover all 
cases. The rule consists of two parts: antecedent (IF-part) and consequent 
(THEN-part). The antecedent contains a predicate that can be evaluated as true 
or false against each tuple in the data. 

There are algorithms that generate rules from decision trees or neural networks 
as well as algorithms that start from scratch. 

A DT can always be used to generate rules, for each leaf node a rule is generated. 
Rules with the same consequent could be combined together by ORing the 
antecedents of the simpler rules. 

There are following differences between rule and trees: 

 The tree has an implied order in which the splitting is performed. Rules 
have no order. 
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 A tree is created based on looking at all classes. When generating rules, 
only one class must be examined at a time. 

 A DT is restricted to non-overlapping rules while IF-THEN rules can 
overlap. 

The algorithms that attempt to generate rules that exactly cover a specific class 
are called covering (or separate-and-conquer) algorithms. Usually the best 
attribute-value pair is chosen, as opposed to the best attribute with tree-based 
algorithms. 

One of the most widespread approaches to learning disjunctive sets of rules is 
sequential covering algorithm. It reduces the problem of learning a disjunctive 
set of rules to a sequence of simpler problems, each requiring that a single 
conjunctive rule be learned. The strategy it uses is: learn one rule, remove data it 
covers, then iterate this process on the remaining examples until no examples 
remain. Learned rules have to have high accuracy, but not necessarily high 
coverage. High accuracy is needed to make correct predictions. Low coverage 
means that the rule does not make predictions for every training example. 
Together the rules cover the full set of positive examples. The final set of rules 
can be sorted so that more accurate rules will be considered first when a new 
instance must be classified. 

One way to effectively find one rule is to consider all possible branches as in case 
of DTs, but to follow only the most promising of them. With such a greedy search 
there is a danger to make a suboptimal choice at any step. To reduce this risk, a 
beam search can be used: instead of single best candidate k best candidates are 
maintained at each step. On each search step, descendants (specializations) are 
generated for each of these k candidates, and the resulting set is again reduced to 
the k most promising members. Beam search keeps track of the most promising 
alternatives to the current top-rated hypothesis, so that all of their successors can 
be considered at each search step. 

While sequential covering algorithm (such as CN2 (Clark & Niblett, 1987)) 
learns one rule at a time, DT algorithms (such as ID3 (Quinlan, 1986)) learn the 
entire set of disjuncts simultaneously and might be called simultaneous covering 
algorithms. At each search step a DT algorithm chooses among alternative 
attributes by comparing the partitions of the data they generate. In contrast, 
sequential covering algorithm chooses among alternative attribute-value pairs, by 
comparing the subsets of data they cover. Thus, sequential covering algorithms 
make a larger number of independent choices than simultaneous covering 
algorithms. The first case may be preferred in case of plenty data, the latter – 
when data is scarce. 

Besides above described general-to-specific search, also specific-to-general 
search is used for finding rules (for example, in AQ (Michalski, 1969)). In such 
case, maximally specific rule (that specifies a value for every attribute in use) is 
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used as a “seed”. Then specificity is relaxed by dropping attributes one at a time 
for all the ways of dropping a single attribute, followed by all the ways of 
dropping two attributes, three attributes etc. Any rule which includes in its cover 
a “negative example”, is incorrect and is discarded during the process. The cycle 
terminates by saving a set of shortest rules covering only desired class. As a 
classifier, such a set is guaranteed correct, but cannot be guaranteed complete. 

2.4 Association rule mining 

The problem of mining association rules between sets of items in a large database 
of customer transactions was introduced by Agrawal, Imieliński and Swami 
(1993). These rules describe association between sets of items. “An example of 
such an association rule is the statement that 90% of transactions that purchase 
bread and butter also purchase milk. The antecedent of this rule consists of bread 
and butter and the consequent consists of milk alone. The number 90% is the 
confidence factor of the rule.” (Ibid., p.207)  

A confidence is a measure of the rule's strength. Additionally a rule’s statistical 
significance is measured by a (transactional) support that shows which part of 
transactions satisfy the rule. The task is to generate all rules that have at least 
given support and given confidence.  

“Besides statistical significance, another motivation for support constraints 
comes from the fact that we are usually interested only in rules with support above 
some minimum threshold for business reasons. If the support is not large enough, 
it means that the rule is not worth consideration or that it is simply less preferred 
/…/.” (Ibid., p.208) 

Additionally syntactic constraints might be specified. “These constraints involve 
restrictions on items that can appear in a rule”: certain consequent11, certain items 
in the antecedent, both, top k rules that have certain item in the consequent, etc. 

Association rules are not classification rules, there are no pre-specified classes. 
Each item can appear either in the antecedent or in the consequent.  

Agrawal, Imieliński and Swami (1993) decompose the problem of rule mining 
into two steps: 

1. Generate large itemsets – all combinations of items that are present in at 
least s% of transactions. 

2. Generate from each large itemset the rules that use items from the large 
itemset. 

Further large itemsets are called usually frequent itemsets. 

                                                      
11 In this work the consequent consists of one item 
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2.4.1 Frequent itemsets 

The following definitions are presented according to Zaki and Hsiao (1999), 
(2002).  

Typically the database is arranged as a set of transactions, where each transaction 
contains a set of items. Let I = {1,2,...,m} be a set of items, and let T = {1,2,...,n} 
be a set of transaction identifiers or tids.  

A set X  I is also called an itemset, and a set Y  T is called tidset. 

t(X) denotes a tidset that corresponds to an itemset X, i.e. the set of all tids that 
contain X as a subset: t(X) = ∩xX t(x). 

i(Y) denotes an itemset that corresponds to a tidset Y, i.e. the set of items common 
to all the tids in Y: i(Y) = ∩yY i(y). 

The support of an itemset X, denoted σ(X), is the number of transactions in which 
it occurs as a subset, i.e. σ(X) = |t(X)|. 

An itemset is frequent if its support is more than or equal to a user-specified 
minimum support (minsup) value, i.e. if σ(X) ≥ minsup. 

A ‘support’ can be called a ‘frequency’ as well. Sometimes ‘support’ is used for 
an absolute number of transactions (covered by an itemset) and ‘frequency’ for a 
percentage from the number of all transactions in the database (for example, 
Mielikäinen (2006) defines them this way).  

The support/frequency measure is anti-monotone: X1  X2  σ(X1)  σ(X2) and 
therefore the set of frequent itemsets F is downward closed (Mielikäinen, 2006): 

if X1  F , then X2  F  for all X2  X1 i.e. all subsets of a frequent itemset are 

frequent. Also, all supersets of an infrequent itemset are infrequent: if X1  F , 

then X2  F  for all X2  X1. (Pasquier, Bastide, Taouil, & Lakhal, 1999, p. 402). 
This is known also as an Apriori principle. 

Zaki and Hsiao (1999) have shown that instead of finding all frequent itemsets it 
is enough to mine all frequent closed itemsets. 

2.4.1.1 Closed sets, generators and equivalence classes 

The definitions concerning closed set will be given by (Zaki & Hsiao, 2002) and 
the definitions for generator by (Zaki, 2004). 

A frequent itemset X is called closed if there exists no proper superset Y  X with 
σ(X) = σ(Y). 

Closed sets are found using closure operation. 

A closure of an itemset X, denoted c(X), is defined as the smallest closed set that 
contains X. An itemset X is closed if and only if X = c(X). 
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The closure of an itemset X is found as: c(X) = i(t(X)).  

The support of an itemset X is also equal to the support of its closure, i.e. σ(X) = 
σ(c(X)). 

 

Itemsets with the same closure (and equal support) form an equivalence class. 
Equivalence class is defined as a set of itemsets that always occur together in the 
same set of transactions (Bastide, Taouil, Pasquier, Stumme, & Lakhal, 2000). 

Closed set is the only maximal set of an equivalence class. An equivalence class 
may contain more than one minimal itemset. For example: if all transactions 
contain items A and B, the equivalence class contains itemsets A, B and AB. AB 
is the maximal (closed) set. Set A and set B are both minimal sets of that 
equivalence class. 

A minimal itemset in an equivalence class is called a (minimal) generator (of 
closed set) or a free set or a key pattern. 

An equivalence class can be uniquely determined and concisely represented by a 
closed set and a set of minimal generators. Equivalence classes do not overlap. 
(Li, Liu, & Wong, 2007) 

 

An itemset X’ is a generator of closed itemset X if and only if (1) X’ ⊆ X, and (2) 
σ(X’) = σ(X).  

X’ is called a proper generator if X’ ⊂ X (i.e., X’ ≠ X). If there is no proper 
generator, X is its own minimal generator. 

A generator X’ is a minimal generator if it has no proper subset Y  X’ with σ(Y) 
= σ(X’). 

Usually under the ‘generator’ the ‘minimal generator’ is meant. 

Although the definitions are usually given for frequent (i.e. with support  
threshold) closed and free itemsets (=minimal generators), the closedness or 
freeness of an itemset does not depend on the fact whether it is frequent or 
infrequent. 

The frequency threshold is used to separate a (frequent) part from all closed or 
free itemsets. The reason is that the number of all closed or free itemsets is usually 
large. 

Besides using support/frequency threshold it is advisable to extract and store only 
the critical part of all (frequent) itemsets, this part is called a condensed 
representation or a concise representation. Sometimes a distinction between these 
two notions is made as follows. A condensed representation is a particular subset 
of the frequent pattern collection, such that we can regenerate from this subset 
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the whole collection (Bykowski & Rigotti, 2003). A concise representation has 
not to be a subset of all itemsets it represents, but preferably it has to be lossless. 
“By lossless we mean a representation that allows derivation and support 
determination of all frequent itemsets without accessing the database” 
(Kryszkiewicz & Gajek, 2002b).  

The collection of closed sets (with frequencies) is enough to restore the 
frequencies of all existing itemsets. The frequency of a non-closed (frequent) 
itemset is obtained by taking the maximum of the frequencies of its closed 
supersets. If an itemset has no superset among frequent closed itemsets, then 
consequently that itemset is infrequent. (Mielikäinen, 2006) 

Let us have a small sample data set given in Table 2.1. For example, the frequency 
of itemset AB is 4, in the following we denote it as AB(4). Let the support 
threshold be 3. Figure 2.1  shows equivalence classes (surrounded by dashed 
lines) with closed sets (shown in bold) and (minimal) generators (shown in 
italic) in case of frequency threshold equal to 3 for dataset from Table 2.1. There 
are no non-minimal proper generators. 

Table 2.1 Sample data set 

ABC 
AB 
ABD 
ABCD 
BCD 

 

 

Figure 2.1 Equivalence classes, closed sets and generators (for data from Table 2.1) 

Generators (free sets): A, B, C, D
Closed sets: B, AB, BC, BD
closed free sets: B

frequency(support) threshold: 3

Generators (free sets): AC, AD, CD, ACD
Closed sets: ABC, ABD, BCD, ABCD

equivalence class

itemset(support)

A(4) B(5) C(3) D(3)

AB(4) BC(3) BD(3)

AC(2) AD(2) CD(2)
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fr
e

q
u

e
n

t
in

fr
e

q
u

e
n

t



 
34 

In this little example the frequent closed itemsets are B(5), AB(4), BC(3) and 
DB(3) and infrequent closed itemsets are ABC(2), ABD(2), BCD(2) and 
ABCD(1).  

For finding the frequency for itemset A, the maximum should be taken from the 
frequencies of itemsets AB, AC and AD. Among closed sets only AB is present. 
Farther closed supersets ABD, ABC and ABCD are also available, but all of them 
are supersets of AB and therefore are not considered (their frequencies are smaller 
than σ(AB) anyway). For that reason the frequency of A is the same as for AB 
(i.e. 4).  

Similarly, the frequency of AD is equal to the frequency of ABD (=2). If we had 
only the frequent part of closed sets, then there was no superset for AD and 
consequently AD was just infrequent. 

2.4.2 Association rules 

The following definitions are given as in (Zaki, 2004). 

An association rule (AR) is an expression A 
,
ሱሮ B, where A and B are itemsets. 

Usually only rules with disjoint antecedent and consequent (A  B = ) are 
considered. 

The support of the rule is q=σ(A  B)= |t(A  B)| (i.e., the joint probability of a 
transaction containing both A and B). Alternatively, support is defined as a 
percentage of transactions that contain A  B (Agrawal & Srikant, 1994). 

The confidence of the rule is p = σ(A  B) / σ(A) = |t(A  B)|/ |t(A)| (i.e., the 
conditional probability that a transaction contains B, given that it contains A). 

A rule is frequent if the itemset A  B is frequent (i.e. q ≥ minsup).  

A rule is confident if p ≥ minconf, where minconf is a user-specified minimum 
threshold. 

Association rules whose confidence is equal to 100% are called exact association 
rules and rules whose confidence is lower than 100% are called approximate 
association rules (Bastide, Pasquier, Taouil, Stumme, & Lakhal, 2000). 

When support is understood, we omit q and write a rule as A 

→ B. 

In order to get confident rules, the rules of the form Y 

→ X – Y, are generated for 

all frequent itemsets X, for all Y  X, and Y ≠ , and provided p ≥ minconf. Since 
X is frequent, the rule is guaranteed to be frequent. For an itemset of size k there 
are 2k – 2 potentially confident rules that can be generated. This follows from the 
fact that we must consider each subset of the itemset as an antecedent, except for 
the empty and the full itemset. (Zaki, 2004) 
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2.4.2.1 Non-redundant association rules  

According to (Zaki & Hsiao, 1999, p. 6) “it is sufficient to consider only the rules 
among closed frequent itemsets”. “A rule between any two itemsets is exactly the 
same as the rule between their respective closures“ (Zaki, 2004): 

The rule X1 
,
ሱሮ X2  is equivalent to the rule c(X1) 

భ,భ
ሱۛ ሮۛ c(X2), i.e., q = q1 and p = p1 

(Ibid., p. 234). 

Moreover, it is sufficient to consider only the rules among adjacent12 closed 
frequent itemsets, other rules can be inferred by transitivity (Ibid., p. 235). 

An association rule X1 

→ X2 has confidence p=1.0 if and only if c(X2)  c(X1) (or 

equivalently if and only if t(X1)  t(X2)) (Ibid., p. 235) i.e. all exact (100% 
confidence) rules are those that are directed from frequent closed itemsets to their 
closed subsets. Rules with c(X2) = c(X1) are called self-rules and rules with c(X2) 
 c(X1) down-rules. 

Approximate association rules (p<100%) are directed from frequent closed 
itemsets to their closed supersets ( c(X1)  c(X2) ).  

Zaki (2004) defines non-redundant rules as the most general ones among rules 
with equal support and confidence, i.e., “those having minimal antecedents and 
consequents, in terms of subset relation”. Formally: 

Let Ri denote the rule ଵܺ
 ,ሱۛ ሮ ܺଶ

 . We say that a rule R1 is more general than a rule 
R2, denoted R1 ≼ R2 provided that R2 can be generated by adding additional items 
to either the antecedent or consequent of R1, i.e., if ଵܺ

ଵ ⊆ ଵܺ
ଶ and ܺଶ

ଵ ⊆ ܺଶ
ଶ. 

Let ࣬  = {R1, . . . , Rn} be a set of rules, such that all their supports and confidences 
are equal, i.e., qi = q and pi = p for all 1 ≤ i ≤ n. Then we say that a rule Rj is 
redundant if there exists some rule Ri , such that Ri ≼ Rj . Since all the rules in 
the collection ࣬ have the same support and confidence, the simplest rules in the 
collection should suffice to represent the whole set.  

The set of all non-redundant rules constitutes a generating set, i.e., a rule set, from 
which other confident rules can be inferred (Ibid., pp. 237-239). 

These rules are found between adjacent closed sets (more precisely: equivalence 
classes), but presented as rules between minimal generators of those closed sets 
(equivalence classes). This is because the purpose is to find possibly compact 
representation form. Actually, such generating set is not the minimal possible 
generating set, this question is opened as of 2004. 

                                                      
12 i.e. there is no other closed set between them  
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Table 2.2 presents sample data set from (Zaki, 2004) and Table 2.3 lists frequent 
equivalence classes according to minsup=3 (closed sets in bold, minimal 
generators in italic). 

Table 2.2 Sample data set (Zaki, 2004) 

ACTW 
CDW 
ACTW 
ACDW 
ACDTW 
CDT 

 
Table 2.3 Equivalence classes with minsup=3 for data given in Table 2.2 

Support Equivalence classes 
6 {C} 
5 {W, CW} 
4 {A, AC, AW, ACW}, {D, CD}, {T, CT} 
3 {AT, TW, ACT, ATW, CTW, ACTW}, {DW, CDW} 

 

The generating set for exact rules is: {TW→A, A→W, W→C, T→C, D→C} 
(Ibid., p. 237). The support of each rule is equal to the support of its antecedent. 

 

While Zaki finds association rules with minimal antecedents and minimal 
consequents, Bastide et al (Bastide, Pasquier, Taouil, Stumme, & Lakhal, 2000) 
look for minimal non-redundant association rules with minimal antecedent and 
maximal consequent. They find that “from the point of view of the user, these 
rules are the most useful and the most relevant association rules”( Ibid., p.985). 

An association rule r : l1l2 is a minimal non-redundant association rule iff there 
does not exist an association rule r’ : l1’l2’ with support(r)=support(r’), 
confidence(r)=confidence(r’), l1’ l1 and l2 l2’. 

In order to get a rule with minimal antecedent and maximal consequent, the 
antecedent is a minimal generator g and the consequent is its closure (i.e. closed 
set) diminished by that generator: gc(g)\g. 

The exact association rules, of the form l1  (l2\ l1), are rules between two 
frequent itemsets l1 and l2, whose closures are identical: c(l1)=c(l2). These rules 
are valid for all objects (of given set). 

Each approximate association rule l1(l2\ l1), is a rule between two frequent 
itemsets l1 and l2 such that the closure of l1 is a subset of the closure of l2: 
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c(l1)c(l2). These rules are valid for a proportion of objects equal to their 
confidence. 

For exact association rules a generic basis is defined and for approximate 
association rules an informative basis is defined. From these bases, their supports 
and their confidences (needed for approximate rules only), all valid exact and 
approximate (respectively) association rules, their supports and their confidences 
can be deduced. 

Let FC be the set of frequent closed itemsets and for each frequent closed itemset 
f, let denote Gf the set of generators of f. The generic basis for exact association 
rules is: 

GB = {r : g(f\ g)  fFC  gGf  g≠f}. 

Let denote G the set of generators of FC. The informative basis for approximate 
association rules is: 

IB = {r : g (f\ g)  fFC  gG  c(g)f}. 

The informative basis can be restricted to its transitive reduction so that generator 
g (c(g)f) is an immediate predecessor of f (c(g)< f). 

The generic basis for exact rules for data given in Table 2.2 is: {WC, TC, 
DC, ACW, TWAC, ATCW, DWC}. 

This set is not the same as the generating set for 100% confidence (i.e. exact) 
rules by Zaki (see p.36). While Zaki constructs the rules between (adjacent) 
equivalence classes, Bastide et al construct the rules inside equivalence classes. 
Only these rules can coincide where the consequent (f\ g) is a minimal generator 
of another (adjacent) closed set (in our example three rules with consequent C). 
Both approaches serve the purpose of creating a non-redundant set of exact 
association rules (from which all other exact rules can be inferred). In my opinion 
the second set of rules is better comprehensible for the user. 

2.4.2.2 Negative association rules  

Association rules in the form X ⇒ Y (or X → Y) show associations between 
present items and are called positive association rules. Besides them the rules 
considering absent items might be of interest. The absence of an item X is shown 
as a negation of X: ￢X. Association rules with negated antecedent and/or negated 
consequent are called negative association rules. There are three forms of them: 
￢X ⇒Y, X ⇒￢Y, ￢X ⇒￢Y . 

Support and confidence of negative association rules can be found using supports 
of positive itemsets by the following formulas (Wang, Zhang, & Chen, 2008): 

σ(￢X ) =1 σ(X ) ; 



 
38 

q(￢X ⇒Y) = σ(Y)  σ(X ∪Y) ; 

q(X ⇒￢Y ) = σ(X )  σ(X ∪Y) ; 

q(￢X ⇒￢Y) =1 σ(X )  σ(Y) + σ(X ∪Y) ; 

p(C1⇒C2) = q(C1⇒C2) / σ(C1), where X ∩Y = ∅, C1 ∈{X ,￢X}, C2 ∈{Y,￢Y} . 

Between confidences of different rule forms the following holds (Dong, Sun, 
Han, & Hou, 2006): 

p(A⇒B) + p(A⇒￢B) =1 and 

p(￢A⇒B) + p(￢A⇒￢B) =1. 

Overview of negative association rules can be found in (Antonie, Li, & Zaiane, 
2014). 

2.5 Combining classification and association rules 

ARM (see 2.4) represents descriptive rule learning whereas classification (see 
2.3) is a representative of predictive rule learning. Besides different goals there 
are other differences between the two. In case of ARs all attributes are “equal” in 
the sense that they can appear both in the antecedent and the consequent (not at 
the same time). In case of classification the consequent is determined and this 
class attribute cannot appear in the antecedent. Thus we can say that ARM is a 
symmetric task regarding attributes and classification is asymmetric. 

Further, there are more profound, “semantic” differences between the 
classification and ARM tasks. As brought out by Freitas (2000) classification has 
to have an inductive bias (i.e. the basis for favouring one hypothesis over 
another), it has to fight against overfitting and underfitting13 and moreover, there 
is no guarantee that discovered rules have a high predictive accuracy on unseen 
data, because induction is not truth-preserving. To theoretically overcome the last 
problem, the inductive learning hypothesis (see p.25) is used. There are no such 
problems with association rules. 

To mine these two types of rules, different techniques are used; ARM algorithms 
often find many more rules than classification rule mining algorithms.  

In addition to ARM and classification there exist approaches that combine these 
two: associative classification for predictive purpose and subgroup discovery for 
descriptive purpose. 

Associative classification (AC) is a hybrid approach that uses association rule 
discovery methods to build classifiers (Thabtah & Cowling, 2007). ARM 
                                                      
13 Overfitting refers to a model that models the training data too well. Underfitting refers 
to a model that can neither model the training data nor generalize to new data. Both cause 
poor performance of ML algorithms. (Brownlee, 2017)  
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algorithms are adapted to discover class-association rules (CARs) – a special 
subset of association rules whose right-hand-side are restricted to the 
classification class attribute (Liu, Hsu, & Ma, 1998). Mining CARs is discovery 
of all classification rules that satisfy the minimum support (minsup) and the 
minimum confidence (minconf) thresholds (Nguyen L. , Vo, Hong, & Thanh, 
2013). Further suitable rules are selected to form a classifier and this classification 
model is used to predict class values on new unseen data (Wedyan, 2014). 
Obviously, AC is a predictive technique. 

This approach is reported to give more accurate set of rules than traditional 
classification approaches. This is due to mining more complete rule set than in 
case of traditional classification algorithms. At the same time, finding a bigger 
set of rules takes more time. (Nguyen L. , Vo, Hong, & Thanh, 2013) 

Since founding by Liu, Hsu and Ma (1998) many different AC algorithms have 
been proposed, e.g. CBA (Liu, Hsu, & Ma, 1998), CMAR (Li, Han, & Pei, 2001), 
CPAR (Yin & Han, 2003), MCAR (Thabtah, Cowling, & Peng, 2005), ACCF 
(Li, Qin, & Yu, 2008), ACCR (Niu, Xia, & Zhang, 2009), ADA (Wang, Yue, 
Niu, & Shi, 2011), ACAC (Huang, Zhou, He, & Wang, 2011), CAR-Miner 
(Nguyen L. , Vo, Hong, & Thanh, 2013). AC approach has been extended to 
multi-label classification14 (MMAC (Thabtah, Cowling, & Peng, 2004), RMR 
(Thabtah & Cowling, 2007), CLAC (Veloso, Meira, Gonçalves, & Zaki, 2007)); 
to incorporate negative rules (e.g. ARC-PAN (Antonie & Zaïane, 2004), ACN 
(Kundu, Islam, Munir, & Bari, 2008)) and has been parallelized (e.g. (Nguyen, 
Vo, & Le, 2014)). For getting an overview of AC we suggest (Wedyan, 2014). 

Under descriptive rule discovery, another approach besides ARM, is subgroup 
discovery (or subgroup mining) (Fürnkranz & Kliegr, 2015). 

Subgroup discovery (SD) is a descriptive data mining technique using supervised 
learning (Carmona C. J., González, del Jesus, & Herrera, 2014), it is a descriptive 
induction technique that extracts interesting relations among different variables 
with respect to a special property of interest known as target variable (Helal, 
2016). Subgroup discovery results in individual rules, where the rule conclusion 
is a class (the property of interest). The main difference between learning of 
classification rules and subgroup discovery is that the latter induces single rules 
(subgroups) of interest, which aim at revealing interesting properties of groups of 
instances, not necessarily at forming a rule set used for classification. Being 
descriptive by its purpose, it is at the same time a form of supervised learning due 

                                                      
14 Multi-label classification consists in learning a model from instances that may be 
associated with multiple labels (Veloso, Meira, Gonçalves, & Zaki, 2007); while usually 
(in case of single-label learning) there is only one class label for each instance/example. 
Overview of multi-label classification can be found in (Tsoumakas & Katakis, 2007) and 
multi-label learning (including other than rule-based methods as well) in (Madjarov, 
Kocev, Gjorgjevikj, & Džeroski, 2012), (Zhang & Zhou, 2014). 
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to a defined property of interest acting as a class. (Fürnkranz, Gamberger, & 
Lavrač, 2012) Thus this task is considered to be at the intersection of descriptive 
and predictive induction (Lavrač, Kavšek, Flach, & Todorovski, 2004). SD can 
be seen as a special case of a more general rule learning task (Novak, Lavrač, & 
Webb, 2009). 

The task of subgroup discovery was defined by Klösgen (1996) and Wrobel 
(1997) as follows: Given a population of individuals and a property of those 
individuals that we are interested in, find population subgroups that are 
statistically ‘most interesting’, for example, are as large as possible and have the 
most unusual statistical (distributional) characteristics with respect to the 
property of interest. Thus, only the most interesting (the most unusual) rules are 
searched for. In order to evaluate rule’s interestingness different quality measures 
are used (see (Herrera, Carmona, González, & del Jesus, 2011)). 

Both classification rule learners like CN2 (Clark & Niblett, 1989) and ARM 
algorithms like Apriori (Agrawal & Srikant, 1994) and FP-Growth (Han, Pei, & 
Yin, 2000) have been adapted to subgroup discovery. Besides them evolutionary 
algorithms have been used. 

Pioneering algorithms EXPLORA (Klösgen, 1996) and MIDOS (Wrobel, 1997) 
are extensions of classification algorithms using decision trees and performing 
exhaustive (or heuristic) search. Subsequent algorithms, e.g. SubgroupMiner 
(Klösgen & May, 2002), SD (Gamberger & Lavrač, 2002) and CN2-SD (Lavrač, 
Kavšek, Flach, & Todorovski, 2004) use beam search (p.29). 

Apiropri-based extensions of association algorithms Apriori-SD (Kavšek & 
Lavrač, 2006) and its successor SD4TS (Mueller, et al., 2009) use also beam 
search, whereas algorithms based on FP-Growth – SD-Map (Atzmüller & Puppe, 
2006), DpSubgroup (Grosskreutz, Rüping, & Wrobel, 2008) and Merge-SD 
(Grosskreutz & Rüping, 2009) – perform exhaustive search. 

Evolutionary algorithms for extracting subgroups SDIGA (del Jesus, González, 
Herrera, & Mesonero, 2007), MESDIF (Berlanga, del Jesus, González, Herrera, 
& Mesonero, 2006) and NMEEF-SD (Carmona C. , González, del Jesus, & 
Herrera, 2010) use genetic algorithm15. 

For overview of SD we suggest (Herrera, Carmona, González, & del Jesus, 2011), 
an overview of evolutionary SD can be found in (Carmona C. J., González, del 
Jesus, & Herrera, 2014). 

                                                      
15 Genetic algorithm is an evolution-inspired computational model and global 
optimization technique developed by John Holland in 1975 (book titled Adaptation in 
Natural and Artificial Systems). 
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Novak, Lavrač and Webb (2009) gather subgroup discovery together with 
contrast set mining16 and emerging pattern mining17 under the unifying 
framework called supervised descriptive rule discovery that deals with finding 
interesting rules from class labelled data. All three methods are found to be 
compatible in most of compared aspects18. 

Alternatively, (Bringmann, Nijssen, & Zimmermann, 2009) see these three and 
some more approaches (correlated patterns19, discriminative patterns20, 
interesting rules21) as pattern-based classification methods where the “patterns 
define new features, which can be used in a classification model”. Associative 
classification fits under this view as well. 

2.6 Theory of Monotone Systems 

According to J. Mullat’s works (1976) (1977) the definitions of basic concepts of 
MS are as follows. 

Let a finite discrete set X and function x on it which maps to each element X 
a certain nonnegative number x(), be given. 

The function x is called a weight function if it is defined on any subset X’X; the 
number x() is called a weight of element  on X’. 

A set X with a weight function x is called a system and is denoted by S=(X, x). 

The system S’=(X’, x’) where X’X is called a subsystem of the system S=(X, x). 

The system S=(X, x) is called monotone if in the case of any X’\{b}, bX: 

x’\{b} ()  x’ () where X’ is any subset of X. 

 

                                                      
16 Contrast set mining (Bay & Pazzani, 2001) searches for discriminating characteristics 
of groups called contrast sets. 
17 Emerging pattern mining aims at discovering itemsets whose support increases 
significantly from one data set to another (Dong & Li, 1999). 
18 Although the definitions of the three appear different, the goals of these three mining 
tasks are very similar, it is primarily the terminology that differs (Novak, Lavrač, & 
Webb, 2009). 
19 Correlated association rules are ARs that have χ2 values between the assumption and 
the conclusion no less than user-specified minimum cutoff value (Morishita & Sese, 
2000). 
20 Discriminative patterns w.r.t. class labels are identified using information gain or Fisher 
score or other measures (Cheng, Yan, Han, & Hsu, 2007). 
21 Interestingness of a rule can be measured according some interestingness metric; 
(Bayardo Jr. & Agrawal, 1999) use information-theoretic measures like entropy, gini 
index, χ2 and others. A survey on interestingness measures can be found in (Geng & 
Hamilton, 2006).  
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Let be given data set X(N,M), where N is the number of objects (i=1,…,N) and M 
is the number of attributes (j=1,…,M). Element can be Xij, row i, column j or 
any subtable of X. 

To build a monotone system we have to fulfil two conditions: 

1. There has to be a weight function x() which will give a measure of 
influence for every element  of the monotone system on X; 

2. Certain activities (adding or removing) can be applied to the elements. There 
have to be rules f to recompute the weight of the system elements after used 
activities. Weights can be changed only to one direction (increasing or 
decreasing). 

These conditions give a lot of freedom (to user) to choose the weight functions 
and rules of weight change in the system. The only constraint we have to keep in 
mind is that after eliminating all elements from the system X the final weights 
of X must be equal to zero.  

In our case: 

1. A suitable weight function is object’s frequency in a (concerned) system. In 
case of tables of object-attribute type we weigh the attribute’s value and the 
weight is a number of objects having that certain value. 

2. Rules for recomputing the weights: 
 Choose the element(s) of interest.  
 Extract the objects having the(se) element(s) from the concerned set. So 

the set of objects under consideration can only decrease. 
 For the rest of objects calculate new weights using the same weight 

function. If there are no objects with given elements then the weight is 
zero. 

2.6.1 Algorithm MONSA 

MONSA (MONotone System Algorithm) – a hierarchical clustering algorithm 
based on monotonic systems was introduced by R. Kuusik (1993).  

The problem is stated as follows: 

Suppose that the finite discrete data matrix X(N,M) (the set of objects X) of object-
attribute type is given, where N is the number of objects (examples) and M is the 
number of attributes. Every attribute j can acquire integer values in the interval 
hj = 0,1,2,...,Kj-1.  

We should find all existing value combinations (VC) of attributes in set X. 

Every VC describes a certain subset XVC of objects and subset XVC of elements in 
set X. The last set is called a cluster in the theory of classification – that is why 
we call the process of extracting VCs clustering. 
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An element is an attribute with certain value. We will denote it as 
Attribute.value. 

A central concept used here is an intersection. The intersection of two (or more) 
sets is the set of elements, which belong to both (all) sets, simultaneously. Table 
2.4 presents an intersection of two objects described by three attributes. The 
intersection is A1.1 AND A3.2. 

Table 2.4. Intersection of X(2,3) 

Object \ Attribute A1 A2 A3 
O1 1 2 2 
O2 1 1 2 

    
Intersection 1 * 2 

For finding really existing VCs the intersections over different sets of objects are 
found. 

Earlier algorithms for that same task had the following drawbacks (Kuusik, 
1993): 

 Majority of found intersections are either empty or repeating; 
 Determining a VC originality (i.e. whether or not it is already generated) 

is very time-consuming; 
 Because of spontaneous intersection, those algorithms are very difficult 

(if not impossible) to use for optimizing tasks. 

The main reason is that the order of finding intersections depends on the order of 
objects in data table.  

MONSA is free of abovementioned deficiencies. It finds only existing VCs 
without repetitions (in different order of elements). 

The algorithm uses frequency tables (FT). A frequency table contains the counts 
of occurrences of all existing values for each attribute. Each attribute can have a 
different number of different discrete values. 

Table 2.5. Data table X(2,3) and corresponding frequency table 

Object \ Attribute A1 A2 A3 
O1 1 2 2 
O2 1 1 2 

    
Value \ Attribute A1 A2 A3 

1 2 1 0 
2 0 1 2 
    

Intersection 1 * 2 
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In Table 2.5 data table X(2,3) from previous example (Table 2.4) is given together 
its corresponding frequency table. Zero in FT shows that corresponding element 
does not appear in the data table. 

As we see from Table 2.4 and Table 2.5 an intersection is also findable through 
the frequencies: every value which has frequency equal to the number of objects 
in the table (shown in bold) belongs to the intersection: A1.1 AND A3.2 is an 
intersection with frequency 2. This way MONSA finds intersections. 

In order to intersect suitable sets of objects, the next node is chosen by element’s 
frequency (from FT) and special “elimination” techniques are used to prevent 
repetitions. The algorithm works in a depth-first search manner. 

From the initial data set MONSA finds a result as a set of intersections (closed 
sets22) and/or a set of trees (forest), they are listed in the order they are found, that 
order does not depend on the initial order of objects (records). The frequencies of 
nodes (intersections) decrease strictly along branches of a tree(s). The decrease 
makes allowable to prune the branches according to the minimal allowed fre-
quency (support). This is similar to the other tree-based algorithms, for example 
ChARM (Zaki & Hsiao, 2002). The fact that the decrease is strict gives a high 
potential to the intersection (combination from root to the certain node) to be a 
closed set. At any level the descendants of a common parent-node are found in a 
weakly decreasing order of their frequencies, the roots also are found in a weakly 
descending order. The order of nodes with equal frequency depends on the 
searching principle (usually by columns or by rows of frequency table).  

For every extract of objects its corresponding frequency table is formed. Zero in 
the initial frequency table means that the corresponding element does not exist. 
During the work the elements that are exhaustively analysed are set to zero in 
frequency tables. Such prohibited (eliminated) elements are not included into the 
intersections any more, only the elements with frequency over zero (or some 
higher threshold) are considered. 

By essence MONSA is a recursive algorithm. Here we present its backtracking 
version23 (Kuusik & Lind, 2008). 

In this algorithm the following denotations are used: 

t the number of the step (or level) of recursion 

FTt frequency table for a set Xt  

IntSect vector of elements over set Xt (intersection) 

Init activity for initial evaluation 

                                                      
22 The correspondence between intersection and closed set is shown in 3.1.1. 
23 Recursive version of MONSA (containing further developments) is given in 3.1.8 
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Algorithm MONSA 

1: Init 

2: t0, IntSec0{} 
3: Find a table of frequencies FT0 for all attributes in X0 

4: DO WHILE there exists FTs#Ø in {FTs}, st 

5:   FOR EACH element hfFTt with frequency V=max FTt(hf)#0 DO 
6:     IF pruning is needed (hf has to be pruned) THEN GOTO BACK 

7:     Separate submatrix Xt+1Xt such that Xt+1={XijXtX.f=hf} 
8:     Find a table of frequencies on Xt+1 FTt+1 
9:     ZeroesDown(t+1) 
10:     CheckUniqueness(t+1) 
11:     IF new intersection is unique THEN 
12:       Add elements j with FTt+1(j)=V into vector IntSect+1 
13:       BackwardComparison(t+1) 
14:       Output of IntSect+1  

15:       IF there exist attributes to analyse THEN tt+1 
16:     ENDIF 
17:   NEXT 

18:   BACK: tt-1 

19:   IntSect+1IntSect 
20: ENDDO 
21: All intersections are found 
22: END: end of algorithm 

Elimination (pruning) activities: 

1) 
ZeroesDown(t+1) 

    FOR EACH element huFTt DO 

      IF FTt(hu)=0 THEN FTt+1(hu)0 
    NEXT 

2) 
BackwardComparison(t+1) 

    FOR EACH element huFTt+1 with frequency #0 DO 

      IF FTt+1(hu)=FTt(hu) THEN FTt(hu)0 
    NEXT 

3) 
CheckUniqueness(t+1) 

    IF there exists on Xt+1 hu, 1uM such, that  

    huIntSect+1 AND FTt+1(hu)=0 AND frequency of hu in Xt+1=V 
    THEN 
      Intersection is not unique 
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    ELSE 
      Intersection is unique 
    ENDIF 

 

MONSA is a depth-first search algorithm which backtracks when the current 
branch is exhausted or has to be pruned. Inside the backtracking algorithm the 
main steps at each level are as follows: 

S1: Choose a “leading” element – the first element with maximal frequency (over 
zero; at least with threshold frequency specified by the user) (line 5), add it into 
the (potential) intersection and zerofill the corresponding cell in the frequency 
table 

S2: Calculate the next frequency table for objects containing that leading element 
(line 8) 

S3: If there exist element(s) with frequency equal to the leading one check the 
intersection’s uniqueness (line 10) => if it is unique, add these elements (with 
frequency equal to the leading frequency) into the intersection (line 12); 
otherwise backtrack  

S4: Output intersection (line 14) 

S5: “Bring down” zeroes from the frequency table of the previous level i.e. at the 
current level zerofill all elements that have been zerofilled at the previous level 
(line 9) 

S6: “Backward comparison”: elements that have equal frequencies at both levels 
are zerofilled at the previous level (line 13) 

In order to avoid finding “repetitions” i.e. permutations of already found 
intersections two elimination techniques have been used in algorithm MONSA: 

“bringing zeroes down” – activity that prohibits arbitrary output repetition of 
already separated intersection at the next (deeper) level(s); 

“backward comparison” – activity that does not allow the output of the separated 
intersection at the same (current) level and also at previous (higher) levels (after 
backtracking). 

Impact of these techniques is proved in (Kuusik, 1993)24. 

Appears that these two activities do not prevent repetitious finding (and output) 
of some subsets of already found intersections. Those repetitions are avoided by 
“uniqueness check” (that will be explained in 2.6.1.1). 

                                                      
24 Theorems 5.3 and 5.4 accordingly 
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Without these elimination techniques the algorithm would find all permutations 
of all existing value combinations. 

Turning back to before listed drawbacks of earlier algorithms for finding all 
existing value combinations (see p. 43) we have to point out: 

 Empty (i.e. non-existing) combinations are avoided by the nature of 
algorithm, they are not generated (and checked for existence) at all. 

 Repetitions are avoided by elimination techniques (introduced above). 
 A VC originality is checked using existing frequency tables, there is no 

need to look through already found intersections. 
 The order of finding intersections is driven by data, not by the order in 

which the objects are presented. 

The most important advantages of the algorithm are: 

 The frequency is known at the moment the new node is found. 
 The ability to find nodes consisting of more than one element, this 

reduces the number of nodes and the size of the tree. 
 The possibility to output the tree immediately during the finding closed 

sets. 
 The possibility to use different pruning criteria that comply with 

monotonic decrease of the frequency. 
 Attributes can have more values than only 0/1.  
 The use of new original and very effective elimination techniques.  
 In order to prevent repetitions we do not look through the already found 

result and therefore we do not need additional data structures.  

Demonstration how MONSA works is shown in (Kuusik & Lind, 2008) (see 
Appendix A). In this example the frequency threshold is used for pruning. 

Denotations and definitions used for MONSA (Kuusik, 1993) will be given in 
3.1.2 where their relations with the concepts used for frequent itemsets (see 2.4.1) 
will be shown. 

2.6.1.1 Explanation of “uniqueness check” 

The subset of already found intersection is redundant only if both have equal 
frequencies (i.e. this (sub)set is non-closed). If subset’s frequency is higher (than 
its superset’s) then it covers more objects and is not redundant. Subset’s 
frequency cannot be smaller.  

Finding a superset of already found set with the same frequency is impossible, 
because at any level MONSA finds all co-existing (i.e. contained in the same 
objects) elements with equal frequencies as one intersection (i.e. maximal EC25). 

                                                      
25 Defined in 3.1.2, p. 65 
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Table 2.6. Example X(9,3) 

Object \ Attribute A1 A2 A3 
O1 4 0 8 
O2 5 3 4 
O3 5 4 3 
O4 5 0 7 
O5 3 1 8 
O6 3 1 8 
O7 4 1 7 
O8 4 0 8 
O9 5 4 3 

 
(a) Result as a set of 
trees: 
 
(4) 0.500(2) 
A1.5=>A2.4&A3.3 
    0.250(1) 
    =>A2.0&A3.7 
    0.250(1) 
    =>A2.3&A3.4 
 
(4) 0.500(2) 
A3.8=>A1.3&A2.1 
    0.500(2) 
    =>A1.4&A2.0 
 
 (3) 0.667(2) 
A1.4=>A2.0 
    0.333(1) 
    =>A2.1&A3.7 
 
 (3) 0.333(1) 
A2.0=>A3.7 
 
 (3) 0.333(1) 
A2.1=>A3.7 
 
 (2) 
A3.7 

 

(b) Result as a set of 
intersections: 
 
I1)  A1.5=4 
I2)  A1.5&A2.4&A3.3=2 
I3)  A1.5&A2.0&A3.7=1 
I4)  A1.5&A2.3&A3.4=1 
 
 
 
I5)  A3.8=4 
I6)  A3.8&A1.3&A2.1=2 
I7)  A3.8&A1.4&A2.0=2 
 
 
I8)  A1.4=3 
I9)  A1.4&A2.0=2 
I10) A1.4&A2.1&A3.7=1 
 
 
I11) A2.0=3 
I12) A2.0&A3.7=1 
 
I13) A2.1=3 
I14) A2.1&A3.7=1 
 
 
I15) A3.7=2 

 

Figure 2.2 Result found by MONSA (without uniqueness check) 
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Next we give an example of redundant subsets under consideration. For that we 
have used MONSA without “uniqueness check” (of a new intersection). 

Having the initial data set of nine objects described by three attributes (see Table 
2.6) MONSA (without uniqueness check) finds fifteen intersections (with 
minimal frequency allowed =2). Both representation forms – trees and 
intersections – are given in Figure 2.2. 

Here we have six trees and six roots accordingly. Intersections I1, I5, I8, I11, I13 
and I15 correspond to the roots. 

Intersection I11 (A2.0=3) is not redundant although A2.0 is contained in the 
intersections I3, I7 and I9, because these three intersections have lower 
frequencies and none of them cover all objects covered by I11.  

Intersections I9, I12 and I14 are redundant: 

 I9 (A1.4&A2.0) is a subset of I7 (A3.8&A1.4&A2.0) with the same 
frequency =2 (both cover objects O1 and O8); 

 I12 (A2.0&A3.7) is a subset of I3 (A1.5&A2.0&A3.7), both frequencies 
are 1 (they cover object O4) and 

 I14 (A2.1&A3.7) is a part of I10 (A1.4&A2.1&A3.7), frequencies equal 
1 (they cover O7). 

There have to be 12 intersections instead of 15.  

Starting from the root of a tree the frequencies of intersections (nodes) always 
(strictly) decrease along any branch of the tree (due to finding maximal EC at 
every node). As no branch has two intersections with the same frequency, the 
redundant subsets do not occur in the same branch, they can appear in different 
branches of a tree or in different trees. 

Among siblings (i.e. direct descendants of a common node) any element can 
appear in only one intersection. Consequently, redundant subsets (under 
consideration) do not occur among siblings. This is also true for the root-level 
(which formally consists of descendants of the initial empty set), therefore these 
redundant subsets never occur at root-level. 

Intersection (closed set) and its redundant sub-intersection (with the same 
frequency) do not have to appear at the same level of a tree (as in all three cases 
of our example). 

Element(s) that appear in the root node are eliminated from further analysis by 
zerofilling the corresponding cell(s) in the frequency table. Elements that are fully 
analysed (exhausted) at deeper levels are prohibited by “backward comparison”. 
All these zeroes are “brought down” to all succeeding levels and therefore 
prohibited elements never occur in redundant intersections. So (due to the 
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elimination techniques used) no permutation of whole (already found) inter-
section (closed set) is not found. Elements that are partially analysed (at the non-
root levels) are not eliminated. All this is true for any subtree also.  

Although prohibited elements are eliminated from the frequency tables they still 
appear in the subsets of objects extracted by non-prohibited elements. Remind 
that some set (of elements) and its subset with the same frequency define the same 
set of objects. If some prohibited (and eliminated) element appears in all objects 
(of subset) it means that this subset has been analysed already (this element can 
not be contained in the value combination (potential intersection) on which basis 
that subset of objects was extracted). All intersections containing a prohibited 
element are already found and such subsets need no more analysis. This situation 
indicates a repetitive extraction of certain subset of objects. 

To exclude redundant subsets (sub-intersections) we have to detect a situation 
when some prohibited element occurs in all objects and stop analysing such 
branch. 

In our example (see Table 2.6 and Figure 2.2) intersection I7 (A3.8&A1.4&A2.0) 
has one more element than redundant set I9 (A1.4&A2.0), namely A3.8. The set 
of objects extracted by I9 is the same as by I7. Consequently, actual frequency of 
A3.8 is as much as the number of objects in that set (=2). As A3.8 was prohibited 
after exhaustive analyzation, the frequency table contains zero in the 
corresponding cell. Detecting such situation we can say that A1.4&A2.0 (I9) is a 
redundant set. 

Such “uniqueness check” is used by MONSA. It is not necessary to look through 
the already found intersections to ensure the new one is non-redundant. 

Correctness of ‘uniqueness check’ explained here is proved in (Kuusik, 1995). 

It is interesting that those redundant subsets seem to be the same ones for what 
ChARM (Zaki & Hsiao, 1999) (2002) needs “subsumption checking”. In order to 
ensure that a candidate set is really closed ChARM looks through the (certain) 
already found closed sets, only those that have 1) the same “tidsum” and 2) the 
same support (frequency) as the candidate set. (Tidsums of different closed sets 
with equal frequency tend to be different). For the complete description see (Zaki 
& Hsiao, 1999) (2002).  

As shown already we perform the uniqueness check of a new intersection 
(potential closed set) otherwise, without looking through the already found 
(closed) sets. 

2.7 Determinacy analysis 

Determinacy Analysis (DA) is a system of methods for the analysis of rules that 
was created at the end of 70s. Its approach combines mathematical statistics and 
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logic. DA’s methodology and the underlying mathematics are developed by 
Russian scientist Sergei Chesnokov (1980a) (1982). 

DA-technology provides an alternative way to perform factor analysis of 
qualitative and quantitative variables. It assists in obtaining regularities, 
explanations and prognostic rules. 

The goal of DA is to describe a given selection of objects (class Y), answering the 
questions: “Who are they (objects of the class)?”, “How can we describe them?”, 
“What distinguishes them from others?”. 

The following overview of determinacy analysis is based on Chesnokov (1980a) 
(1982) (2002), (DALSolution, 2007), (Context, 1999b). In 2.7.7 our opinion is 
presented. 

2.7.1 Determination and its characteristics 

The idea behind DA is that a rule can be found based on the frequencies of joint 
occurrence or non-occurrence of events. Such a rule is called determinacy or 
determination and the mathematical theory of such rules is called determinacy 
analysis.  

If it is observable that an occurrence of X is always followed by an occurrence of 
Y, it means that there exists a rule “If X then Y”, or XY. Such correlation 
between X and Y is called determination (from X to Y). Here X is the determinative 
(determining) and Y is the determinable. 

Each determination holds in the given context. It might not to be valid in some 
other context. Context is the characteristic (set of characteristics) on which basis 
the data set is formed. It is common to all objects of that set. The universal context 
is characteristic to the initial data set. Often it is not explicitly shown. Extracting 
a subset of data by some characteristic we determine a narrower, usual (non-
universal) context. A determination X→Y in the context k is written as kX→kY or 
equivalently k(X→Y). Universal context (denoted by ω) is usually omitted. 

The determinative (X) consists of one or more factors. A factor is an attribute with 
its certain value. Each attribute can have many different discrete values and gives 
as many different factors as many different values it has. Factors coming from 
the same attribute are not contained in the same X. 

Each rule has two characteristics: accuracy and completeness26. 

                                                      
26 In the beginning (in (Chesnokov, 1980a), for example) “accuracy” (Russian 
“точность”) was called “intensity” and “completeness” (“полнота”) was called 
“capacity” (“емкость”). More exactly, intensity shows the accuracy (or validity) of 
determination and capacity shows the completeness  (Chesnokov, 1982, p. 24). 



 
52 

Accuracy of determination XY shows to what extent X determines Y. It is 
defined as the proportion of occurrences of Y among the occurrences of X: 

A(XY) = n(X Y) / n(X), where 

A(XY) is the accuracy of determination, 
n(X) is the number of objects having feature X and 
n(X Y) is the number of objects having both features X and Y. 

Completeness of determination XY shows which part of cases having feature Y 
can be explained by determination XY. It is the percentage of occurrences of X 
among the occurrences of Y: 

C(XY) = n(X Y) / n(Y), where 

C(XY) is the completeness of determination, 
n(Y) is the number of objects having feature Y and 
n(X Y) is the number of objects having both features X and Y. 

Both accuracy and completeness can have values ranging from 0 to 1 (0% .. 
100%). A value of 1 shows maximum accuracy or completeness, 0 means that 
the rule is not accurate or complete at all. A value between 0 and 1 shows 
quasideterminism. 

If all objects having feature X also have feature Y then the determination is 
(maximally) accurate. In case of accurate determination A(XY) = 1 (100%). 

The majority of rules are not accurate. In case of inaccurate rule A(XY) < 1. 

In order to make a determination more (or less) accurate, complementary factors 
are added to the left part of the rule. Adding factor Z into the rule XY, we get 
the rule XZY, adding factor W to the rule XZY, we get the rule XZWY etc. 

The contribution of factor Z to the accuracy of the rule XZY is measured by the 
increase of accuracy ΔA(Z) caused by addition of factor Z into the rule XY: 

ΔA(Z) = A(XZY) – A(XY). 

The contribution to accuracy can range from -1 to 1. 

If ΔA(Z)>0 then Z is a positive factor. Adding a positive factor makes the rule 
more accurate, sometimes the resultant rule is (maximally) accurate. If ΔA(Z)<0 
then Z is a negative factor. Adding a negative factor decreases the rule’s accuracy, 
sometimes down to zero. If ΔA(Z)=0 then Z is a zero (or inessential) factor. 
Adding a zero factor does not change the rule’s accuracy. An accurate rule 
contains no negative factors, all factors are positive or zero factors. A rule 
consisting of positive factors only, is called a normal rule. 
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If C(XY)=1 (100%) then the rule XY is (maximally) complete. It means that 
Y is always explained by X. In case of an incomplete rule C(XY)<1, X does not 
explain all occurrences of Y. 

The contribution of factor Z to the completeness of the rule XZY is measured 
by the increase of completeness ΔC(Z) by addition of factor Z into the rule XY: 

ΔC(Z) = C(XZY) – C(XY) 

The contribution of whatever factor to completeness is negative or zero. 

2.7.2 System of rules 

A system of rules is a set of rules in the form Sq = {xiy | i=1,2,...,q}, where q is 
the number of rules. 

Every system is characterised by average accuracy, summarised completeness 
and summarised capacity (the number of objects/cases covered by the rules). 

Accuracy of system of rules is:  
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Capacity of system of rules is: 
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System of rules Sq = {xiy | i=1,2,...,q} is additive when xi-s pairwise do not 
overlap (i.e. do not cover the same objects). The capacity of additive system is 
equal to the sum of capacities of rules it consists of: 
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In case of additive system the previously given formulas can be simplified. 

Completeness and capacity of an additive system are just summed up 
completenesses and capacities of rules: 
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Accuracy of additive system is not additive (i.e. equal to the sum of rules’ 
accuracies). It is found as a weighted average: 
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Rank of a rule is a dimension of its left side. Rule in the form z1z2...zry is called 
a rule of rank r (r ≥ 1). 

System of rules in the form z1z2...zry is called a system of rules of rank r by 
variables z1, z2, ..., zr relative to feature y. 

Every system of rules of rank r ≥ 1 by fixed set of r variables is additive 
(Chesnokov, 2002). 

System is called complete if its completeness is 1. System of rules of rank r by 
variables z1, z2, ..., zr is complete if it contains all existing rules in the form 
z1z2...zry. 

System is called accurate if its accuracy is 1. System is accurate when all of its 
rules are accurate. 

An accurate rule has no negative factors, all factors are positive or zero factors 
(Chesnokov, 2002). 

A rule in the form z1z2...zry is called normal rule (of rank r) if all factors z1, z2, 
..., zr are positive. Positive factor (called also binder) makes rule more accurate 
than it was without that factor. 

System Sr consisting of all normal rules in the form z1z2...zry is called normal 
system of rank r. Normal system of rank r is additive i.e. its rules do not intersect 
pairwise. 

Let be given m variables z1, z2, ..., zm and feature y. A canonical system of order 
m is a system of rules that joins all normal systems of rules in the form 
Sjr = {zj1zj2...zjry} where zj1, zj2, …, zjr – all possible combinations by r variables 
from set of variables z1, z2, ..., zm. 
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In case of fixed r there are 
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Canonical system of order m contains 2m-1 normal systems. Variables z1, z2, ..., 
zm are called the basis of canonical system. In general, a canonical system of order 
m>1 is not additive. 

2.7.3 Examples of different systems of rules 

Here we present some examples of different accurate and complete systems of 
rules using data from (Quinlan, 1984). This data table (see Table 2.7) contains 8 
objects described by 4 attributes. The last attribute shows object’s affiliation to 
certain class. Attributes Height, Eyes and Class have two possible values each, 
attribute Hair has three alternative values. 

Table 2.7. Data from (Quinlan, 1984) 

Height Hair Eyes Class 
tall dark blue ‒ 
short dark blue ‒ 
tall blond blue + 
tall red blue + 
tall blond brown ‒ 
short blond blue + 
short blond brown ‒ 
tall dark brown ‒ 

 

The purpose is to determine Class ’‒’ by attributes Eyes and Hair. 

Next four different systems of rules are given, based on the same data. 

1. Additive system with fixed number of factors (r=2) S1: 
 Eyes.blue & Hair.dark  Class.‒ (C = 40%; 2 objects) 
 Eyes.brown & Hair.dark  Class.‒ (C = 20%; 1 object) 
 Eyes.brown & Hair.blond  Class.‒ (C = 40%; 2 objects) 

The system is (maximally) accurate (overall accuracy is 100%) and (maximally) 
complete (sum of completenesses is 100%). Maximal completeness shows that 
all objects (belonging to class) are covered and maximal accuracy says that there 
is no need to add any more factors into analysis. 

2. Additive system consisting of accurate rules of different rank (number of 
factors) could be S2: 
 Hair.dark  Class.‒ (C = 60%; 3 objects) 
 Hair.blond & Eyes.brown  Class.‒ (C = 40%; 2 objects) 
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or S3 

 Eyes.brown  Class.‒ (C = 60%; 3 objects) 
 Eyes.blue & Hair.dark  Class.‒ (C = 40%; 2 objects) 

In both cases the system is accurate and complete and rules do not cover the same 
objects. 

3. Normal system (of rank 2) would have no rules because each rule (of rank 2) 
has at least one factor with zero contribution to accuracy (recall that normal 
rules consist of positive factors only): Hair.dark is accurate alone, without 
Eyes.blue or Eyes.brown, also Eyes.brown is accurate without Hair.blond or 
Hair.dark. 

4. Canonical system (of order 2) S4 would have two rules of rank 1: 
 Eyes.brown  Class.‒ (C = 60%; 3 objects) 
 Hair.dark  Class.‒ (C = 60%; 3 objects) 

These rules cover all objects belonging to Class ‘‒’. One object (having 
Eyes.brown and Hair.dark) is covered twice, there from the +20% comes. 
Canonical system is non-additive and it allows to cover objects more than once. 

2.7.4 The main task 

Systems of rules are used for explanation and forecasting. 

Initial data matrix is given and some feature y. The goal is to find maximally 
accurate and maximally complete system of rules (to explain or forecast feature 
y). 

To solve the main task, the following operations are applied to the rules in the 
form z1z2...zry, where z1, z2, ..., zr are factors: 

1. Removing negative factors 
=> Accuracy increases 
=> Completeness increases or does not change 

2. Removing non-existing factors 
=> Accuracy does not change 
=> Completeness increases or does not change 

3. Substitution of factors 
=> Accuracy increases, decreases or does not change 
=> Completeness increases, decreases or does not change 

4. Addition of new factors 
=> Accuracy increases, decreases or does not change 
=> Completeness increases, decreases or does not change 

Removing zero or negative factors improves or does not make worse the solution. 
Therefore, the normal rules (that contain only positive factors) are essential. 
Usually the canonical system of rules is found to solve the main task. 
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It often holds that the bigger is accuracy the smaller is completeness. Thus, the 
system of rules has to be as accurate and complete as possible. Accuracy, 
completeness and statistical significance of a system depend on accuracy, 
completeness and statistical significance of the rules it consists of. The more 
accurate, complete and capacious is each rule, the greater is the chance to get an 
acceptable solution of the main task. 

According to (Chesnokov, 1982) the main task is to find in given context all 
determinations from given variable (attribute) to another given variable (class 
attribute) that have at least given minimal allowable accuracy and minimal 
allowable completeness.  

2.7.5 Basic tasks of DA 

The basic tasks of DA represent the possible research questions. 

Task 1. Obtaining explanations 

Some characteristic is given. We call it explainable i.e. liable to explanation. 
What (kind of) people and in what conditions possess them? Give a description 
of these people and conditions i.e. specify the characteristics27 (called explaining) 
that explain the originally given characteristic28. 

Task 2. Obtaining specifications 

There is an attribute. Can its values make accurate the explanation obtained as a 
solution of task 1? If yes, then specify the sought values of the attribute and how 
they make accurate that solution. 

Task 3. Obtaining complements 

There is an attribute. Can its values complement the explanation obtained as a 
solution of task 1? If yes, then specify the sought values of the attribute and how 
they complement that solution. 

Task 4. Essentiality of context 

Let’s say, a solution of task 1 is obtained in some context. Is it essential? Specify 
the extent of essentiality29. 

Task 5. Essentiality of explaining characteristics 

Let’s say, there is a solution of task 1. To what extent are essential the explaining 
characteristics contained in it, that belong to the description of people and 
conditions, giving itself a solution? Specify their essentiality. 

                                                      
27 factors 
28 class 
29 The extent of essentiality is measured by the increment of accuracy (caused by context) 
i.e. contribution to accuracy. 
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Task 6. Essentiality of explainable characteristics 

Let’s say, there is a solution of task 1. To what extent are essential the 
characteristics contained in it, that in combination form an explainable 
characteristic? Specify their essentiality. 

Task 7. Formation of explaining typology 

Let there is initially a set of characteristics, each of them separately explains the 
same characteristic b, may be not very completely, but accurately enough. It is 
required to build a generalizing typological characteristic that would generalize 
all explaining characteristics from the initial set and would give a sufficiently 
accurate explanation of characteristic b, but herewith the completeness of this 
explanation being definitely higher than of separate explanations of characteristic 
b by characteristics from the mentioned set. 

Task 8. Formation of explainable typology 

Let there is initially a set of characteristics, each of them can be explained, let not 
very accurately, but completely enough, through the same characteristic a. It is 
required to build a generalizing typological characteristic, that would generalize 
all explainable characteristics from the initial set and herewith, it itself was 
explained by characteristic a, not only completely enough, but definitely more 
accurately than each of separate characteristics from the mentioned set. 

Task 9. Verification of explanatory possibilities of typology 

Let be given some typological characteristic, acting as a meaningful typological 
generalization of number of simpler (less general) characteristics. It is required 
to determine to what extent it is essential in explaining of some third 
characteristic. 

Task 10. Verification of explanability of typology 

Let be given some typological characteristic, acting as a meaningful typological 
generalization of number of simpler (less general) characteristics. It is required 
to determine to what extent it can be explained by number of third characteristics. 

These tasks are solved by finding required determinations (the main task), 
specifying contributions of their components and combining variables into 
typologies. 

2.7.6 Three principles 

DA emanates from three principles: nominality, concreteness and bounded 
statisticality. 

The principle of nominality states that the qualitative/nominal measurements are 
fundamental in exploring the social phenomena and processes. 
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The principle of concreteness provides that relations between sociological 
variables (indicators) should be measured as relations between separate concrete 
values of these variables, not between variables in general. 

The principle of bounded statisticality stipulates that statisticality in sociological 
regularities manifests itself only as a violation of determinism limited in its scale. 

Among the mathematical methods, used for analysis of sociological data, only 
DA consistently meets all requirements arising from the principles of nominality, 
concreteness and bounded statisticality. Any other method possessing these 
properties should simply coincide with DA. (Chesnokov, 1980a, p. 52) 

2.7.7 Place of DA 

In our opinion the task of DA is a subtask of machine learning. 

The task of supervised inductive learning is to find (minimal) set of classification 
rules (this set is called description) that cover all learning examples (i.e. objects) 
without contradictions (Gams & Lavrac, 1987). The description is consistent if 
each object is covered by the rule(s) of only one class (consistency condition). 
The description is complete if all objects are covered at least by one rule 
(completeness condition). 

The task of DA is to cover only one class (Y) by non-contradictory rules. Thus it 
corresponds to single-concept learning (in ML). 

DA gives also possibility to loosen the consistency condition and to find rules 
that are not maximally accurate (i.e. hold with some probability under 100%) and 
thus allow contradictions30. 

DA can be related with association rule mining (ARM) as well. Next the relations 
with terminology used in ARM (see 2.4.2) are shown. 

The confidence of a rule X→Y is a percentage of transactions (records, objects) 
containing both X and Y among the ones containing X, i.e. it is the same as 
accuracy of determination (see 2.7.1 for definition). 

The support of a rule is a percentage of transactions (objects) containing both X 
and Y against the number of transactions in the whole database. In DA the 
completeness of determination is a percentage of objects containing both X and Y 
against the number of objects (transactions) containing Y. Therefore we can say 
that completeness of determination (in DA) corresponds to the support of a rule 

                                                      
30 This is the situation where the chosen set of attributes does not determine object’s 
affiliation uniquely, the same combination of factors (i.e. attributes with certain values) 
leads to different classes; for example 2/3 of cases belong to class1 and 1/3 belong to 
class2. 
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in class Y. Rules’ support against whole database is not calculated in DA as the 
task is to find only rules of class Y. 

In ML the classification rules are found for predictive purposes, while in DA the 
rules have to describe the class. The predictive power of found rules is not 
evaluated in DA. ARM serves the descriptive purpose like DA, but usually the 
consequent of the rule is not determined in advance. Being descriptive and 
looking for the rules with determined consequent (i.e. class) at the same time, DA 
could be put under supervised descriptive rule discovery (see 2.5).  

Similarly to our finding that DA is a subtask of ML (corresponding to single-
concept learning), the methods of supervised descriptive rule discovery can be 
seen as special cases of a more general rule learning task (Novak, Lavrač, & 
Webb, 2009). Among them subgroup discovery (SD) is the closest to DA by its 
purpose – to describe one certain class (whereas two other methods compare two 
classes).  

Comparing DA and SD, the difference is that in SD only the most interesting (the 
most unusual) rules are searched for. Thus the obtained set of rules might not be 
complete while DA tries to completely cover the target class. Besides confidence 
(=accuracy) and support (comparable to completeness) SD algorithms use 
different quality measures to evaluate rule’s interestingness, DA does not use 
such measures. 

Thus, DA is different from the methods belonging to supervised descriptive rule 
discovery (by Novak, Lavrač and Webb (2009)), but literally it performs 
supervised descriptive rule discovery. 

According to Bringmann, Nijssen and Zimmermann (2009), SD and similar 
approaches can be used for classification as well, the same is true for DA. 
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3 DEVELOPMENTS 
In this chapter we will present our developments of MONSA and DA, in 
subchapters 3.1 and 3.2, accordingly. Each of them is presented in a nearly 
chronological order. Putting both methods into a common order was confusing in 
my opinion. Developments of both methods will be combined in zero-factor-free 
(ZFF) DA that is presented at the end of the DA subchapter. 

In 3.3 we present a framework gathering descriptive tasks solvable by GH and 
DA and show how these possibilities are covered by our algorithms. 

Finally in 3.4 possible further developments of ZFF DA will be presented. 

3.1 Developments of Generator of hypotheses 

In this subchapter our developments of Generator of hypotheses (GH) and its 
underlying algorithm MONSA will be presented. 

We will start by introducing Generator of hypotheses in 3.1.1. Actually, this 
method itself (and its base algorithm MONSA) existed already before I began 
(see 1.2.2), but it has to be introduced before presenting its developments. Next, 
in 3.1.2 we will show the correspondence between concepts used in MONSA and 
the ones of closed set mining. In 3.1.3, we will relate the associations found by 
GH with association rules (introduced in 2.4.2). 3.1.4 describes the differences of 
MONSA’s work depending on the selection criterion of the next node (either by 
maximal frequency or by minimal frequency). 3.1.5 deals with items between 
closed set and its generator. After that an algorithm for finding equivalence 
classes is presented (in 3.1.6). In 3.1.7 we define “excluded factors” and show 
how to integrate finding these factors into the algorithm for finding equivalence 
classes. Finally, in 3.1.8, we will show how to integrate classes into MONSA. 

Most of these developments are not ultimate goals themselves, but steps towards 
ZFF DA that will be presented in 3.2.10. 

The contents of 3.1.1 can be found in (Lind & Kuusik, 2012). Material in 3.1.2 is 
published in (Kuusik & Lind, Algorithm MONSA for All Closed Sets Finding: 
basic concepts and new pruning techniques, 2008) – see Appendix A.  

Our algorithm for finding equivalence classes in 3.1.6 is not published, except in 
master’s thesis of Meelis Pruks (2014) where it is compared with DPMiner (Li, 
Liu, & Wong, 2007), with further purpose to use found equivalence classes for 
EC-based clustering algorithm ECCC (Liu, Wang, Deng, & Dong, 2011). 

Material in 3.1.5 and 3.1.8 is published indirectly as the building blocks of zero 
factor free DA (that will be introduced in 3.2.10) in (Lind & Kuusik, Algorithm 
for Finding Zero Factor Free Rules, 2016) – see Appendix F. 

The contents of 3.1.3, 3.1.4 and 3.1.7 is not published. 
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3.1.1 Generator of hypotheses 

Generator of hypotheses is a DM method that uses the possibilities offered by 
algorithm MONSA (described in 2.6.1). It solves the task of hierarchical 
clustering. The goal is to describe the source data. Used evaluation criteria are 
deterministic (not probabilistic). The association rules it produces are represented 
as trees, which are easy to comprehend and interpret. 

Hypothesis means here a presumable association found by the generator. The 
system generates associations that meet the criteria given by user. The final 
decision about their significance makes the user (researcher). 

Source data is given as a table of object-attribute type. The result is represented 
as a hierarchical grouping tree or as a set of intersections.  

Below an example of (a fragment of) a tree formed by GH is given. Used data are 
shown in Table 2.7 (Quinlan, 1984) (p. 55). 

(3)        0.667(2)     0.500(1) 
Height.tall=>Hair  .dark->Eyes  .blue 
                        0.500(1) 
                        ->Eyes  .brown 
           0.667(2)      0.500(1) 
           =>Eyes  .brown->Hair  .blond 
 
(3)        0.667(2)     0.500(1) 
Hair  .dark=>Eyes  .blue->Height.short 
           0.333(1) 
           =>Eyes  .brown 
 
(3)         0.667(2)      0.500(1) 
Eyes  .brown=>Hair  .blond->Height.short 

The trees are represented from left to right. This example consists of three trees, 
it has three root nodes (on the left). Symbols “=>”31 separate the root nodes and 
non-root nodes of a tree. 

Usually a node contains one element (attribute.value). A node can consist of more 
than one attribute-value pairs, then “&” is used to connect them. There are no 
such nodes in given example. 

The numbers above node show node’s absolute frequency (in parentheses) and 
node’s relative (to the previous level) frequency (before parentheses). 

                                                      
31 Here “=>” and “->” have no different meaning (regarding exactness) as they have in 
case of non-redundant association rules by Bastide et al (see 2.4.2.1, p. 36) 
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The absolute frequency of node t shows how many objects have a certain attribute 
with a certain value (among objects having properties (i.e. certain attributes with 
certain values) of all previous levels t-1,…,1). The relative frequency is a ratio 
A/B, where A is the absolute frequency of node t and B is the absolute frequency 
of node t-1. For the first level the relative frequency is not calculated. 

For example we can translate the first tree (Height.tall=>) of the set of trees 
as “3 persons (objects/ examples) are tall, 67% of them have dark hair, and of 
those (with Height.tall and Hair.dark) 50% have blue eyes and 50% 
have brown eyes. Also, 67% of tall persons have brown eyes and 50% of those 
have blond hair.” 

Horizontally the nodes are connected by logical AND and vertically by logical 
OR. The first tree can be represented as follows: 

Height.tall AND ((Hair.dark AND (Eyes.blue OR 
Eyes.brown)) OR (Eyes.brown AND Hair.blond)) 

All trees in the result can be ORed as well. 

The same result (the fragment consisting of 3 trees) in the form of intersections 
is shown below. 

Height.tall=3 
Height.tall&Hair  .dark=2 
Height.tall&Hair  .dark&Eyes  .blue=1 
Height.tall&Hair  .dark&Eyes  .brown=1 
Height.tall&Eyes  .brown=2 
Height.tall&Eyes  .brown&Hair  .blond=1 
Hair  .dark=3 
Hair  .dark&Eyes  .blue=2 
Hair  .dark&Eyes  .blue&Height.short=1 
Hair  .dark&Eyes  .brown=1 
Eyes  .brown=3 
Eyes  .brown&Hair  .blond=2 
Eyes  .brown&Hair  .blond&Height.short=1 

In this representation form after “=” the absolute frequency is listed. The relative 
frequency is not shown. 

GH has the following properties:  

 GH enables larger set of discrete values (not only binary); 
 GH enables to use several pruning techniques; 
 The result is presented in the form of trees; 
 GH enables to treat large datasets; 
 GH enables sampling. 
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3.1.2 Correspondence between concepts of MONSA and ARM 

We had a true guess that intersections found by algorithm MONSA are closed 
sets. It was important to show this correspondence in order to be comprehensible 
for the researchers familiar with closed sets. It made findings about closed sets 
and related concepts usable for us as well.  

Here we present denotations and definitions used for MONSA (described in 
2.6.1) as in (Kuusik, 1993) and show how these notions and concepts relate to the 
ones used for frequent itemsets (see 2.4.1). 

(1) X - a set X = {Xi}, i = 1,2,...,N,  

where each object Xi is a conjunction of M attribute values: j

M

j
hXi

1
&  


 . 

X is a set of N objects (records) that are described by M attributes. Set X has not 
to be a binary dataset, every attribute j can acquire integer values in the interval 
hj = 0,1,2,...,Kj-1. X can be a transaction database also. 

(2) H - a value combination (VC) of certain attributes q
Dq

hH


 &  , D = {je}, 

e = 1,...,EH (the number of elements hq in H), 1  EH  M, 1  je  M, jf, jt  D,  
jf # jt, f # t, H  Xi. 

A value combination can contain 1 to M attributes (with certain values), each only 
once (i.e. only with one value); it is a subset of some object or is a whole object. 

(3) Each value combination H defines on the set X a subset of objects XH = {Xp}, 
p = 1,2,...,NH, 1  NH  N,  

{Xp} are all objects Xi  X that contain H: XH = {XiX | Xi  H}. 

The subset of objects defined by the value combination is similar to the tidset that 
corresponds to some itemset (t(X)). 

(4) Each value combination H defines on set X a subset of elements XH  X: 
XH = {Xij  X | Xij  H, i = 1,2,...,N, j = 1,2,...,M}. 

An attribute with certain value is called element. ‘Element’ corresponds to ‘item’. 
The difference is that each attribute produces as many elements as many different 
values it has. Definition (4) says that a ‘value combination’ is the same as 
‘itemset’ (with extension that values need not be binary). 

(5) Intersection over a set Y = {Yt}, t = 1,2,...,T, Yt = &hj is a set of such elements 

hq which belong simultaneously to all Yt: HhYtY q
q

T

t



&

1
. 

In Y for H there exists always a corresponding subset of objects YH = {Yp}, 
p = 1,...,NH, NH  N. 
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If N = 1, then the intersection over Y is an object itself.  

If there exist no objects Yt  Y for which H  Yt, then YH = . 

Definition (5) says that an intersection over a set of objects is a set of common 
elements, this is the same as itemset that corresponds to some tidset (i(Y)). 

(6) Elementary conjunction (EC) on XH is such an intersection over the set XH, 
where XH = A( H), XA = XH, NH  N. 

In the case of A  H, XA = XH, A is an EC. 

We have a set of elements H and its corresponding set of objects XH (i.e. t(H)) 
and find an intersection over it: XH (i.e. i(t(H))). The operation i(t(H)) means 
finding the closure of H. Therefore the resultant set A (of elements) called 
elementary conjunction is a closed set. From the viewpoint of the algorithm it is 
essential to find a technique that guarantees the finding of such subsets XH  only 
for which XH = A( H) (i.e. finding of closed sets only). 

(7) Maximal EC on XH is such an intersection over XH in case of which for a VC 

q
q

hH &    is a valid relation  

HhAX e
e

H   )&(   , 1  q < e  M, XA = XH. 

By definition, VC H is EC if XH =H. 

H is a maximal EC if it is EC and contains at least one VC Ht  H such, that 
|XHt| = |XH| on X. That means that the set of objects XH  X is defined unique. 

Definition (7) says that maximal EC is EC that has at least one (non-closed) 
subset with the same frequency (support) i.e. we can remove at least one element 
without changing in frequency. Our maximal elementary conjunction here is not 
the same as maximal (closed) set32.  

Additionally, our ‘(absolute) frequency’ is the same as ‘support’ and ‘relative 
frequency’ corresponds to ‘confidence’33 of a rule.  

Thus, algorithm MONSA for finding all intersections finds all closed sets. 
Support threshold (i.e. minimal allowed frequency) can be applied. The 
confidence measure (relative frequency) is not anti-monotone and downward 
closed and therefore cannot be used for pruning similarly to Apriori principle 
(mentioned in 2.4.1). 

                                                      
32 “A frequent itemset X is called maximal if it is not a subset of any other frequent 
itemset.” (Zaki & Hsiao, 2002) 
33 Defined in 2.4.2 
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3.1.3 Associations found by GH 

Having found a set of intersections (the result of MONSA) we are interested in 
presenting this result possibly understandably. This is the reason for presenting 
the result in an alternative form – as a set of trees. The tree is presented exactly 
in the same order (of nodes) as it is traversed, thus it is possible to output it 
immediately during the work. This way there is no need for additional data 
structures for storing the (tree-form) result before outputting.  

In the following we will explain which ARs are contained in the trees and whether 
they can be related to the representation forms presented in 2.4.2.1. 

An example of associations found by GH is given in 3.1.1. The last branch of it  

(3)         0.667(2)      0.500(1) 
Eyes  .brown=>Hair  .blond->Height.short 

contains three nodes: Eyes.brown(3), Eyes.brown&Hair.blond(2), 
Eyes.brown&Hair.blond&Height.short(1). The value combination in the current 
node is composed from the elements starting from the root until the current node. 
Each node in HG tree represents a closed set. Next node in the tree is a closed 
superset of the previous one. Choosing the next node by the maximal frequency 
guarantees that the current node and the next node are adjacent closed sets. (This 
is not guaranteed when an arbitrary node is chosen to be the next one.) 

A closed set can have (usually has) more than one adjacent subsets. In case of a 
tree (where each closed set is presented only once) there is only one path to each 
closed set, thus not all possible associations between closed sets are represented. 

Given fragment presents two approximate association rules:  

 Eyes.brown 
ଷ,ଶ/ଷ
ሱۛ ሮۛ Hair.blond;  

 Eyes.brown&Hair.blond 
ଶ,ଵ/ଶ
ሱۛ ሮۛ Height.short. 

The left side (antecedent) is always a closed set (because every node represents a 
closed set) and the right side (consequent) is its closed superset diminished by the 
elements of the current closed itemset. We can say that these rules have maximal 
antecedent and maximal consequent. This representation form does not coincide 
with either of the ones presented in 2.4.2.1. Furthermore, it does not pretend to 
be a minimal generating set for approximate association rules. 

The presented rules are directed from subset to superset. If we wanted to get the 
rules in the opposite direction i.e. exact (confidence=1) rules from superset to 
subset, we would find rules where antecedent and consequent were not disjoint, 
for example:  
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 Eyes.brown&Hair.blond 
ଶ
→ Eyes.brown;  

 Eyes.brown&Hair.blond&Height.short 
ଵ
→ Eyes.brown&Hair.blond. 

In these rules the right side is not diminished by the elements of left side. If we 
did that, the consequent would be empty, because the elements of the right side 
are contained in the left side. If we tried to shorten the left side it was not maximal 
(in the same equivalence class) anymore. Moreover, (in the current branch) we 
do not have information about the support of such left side: 

 Hair.blond 
?,ଶ/?
ሱۛ ሮ Eyes.brown (because σ(Hair.blond)=?);  

 Height.short 
?,ଵ/?
ሱۛ ሮ Eyes.brown&Hair.blond (because σ(Height.short)=?). 

In short, GH finds approximate association rules with maximal antecedent and 
maximal consequent between adjacent closed sets (according to given frequency 
threshold). As the result has the form of tree, it is a subset of all such associations. 

3.1.4 Comparison of two criteria for selecting next node 

By default MONSA selects the next node by maximal frequency. Is it the only 
possible criterion for selecting the next node? What happens if we choose by 
minimal frequency? Will we get the same result? Does it change the amount of 
work?  

For experimenting with minimal frequency (as the selection criterion) only a 
small change in the program is needed – instead of maximal frequency the 
minimal frequency is selected from the current frequency table (at line 5 in 
algorithm MONSA – see p. 45). Bit more changes are needed to make this choice 
dependent on user’s input. In the following we will discuss the differences 
between working by maximal and by minimal frequency. 

In Appendix G both forms of output – intersections and trees – got selecting next 
node by maximal frequency and by minimal frequency, are listed side-by-side.  

As we can see, MONSA finds exactly the same intersections in both cases, just 
in a different order. The order of elements in an intersection can be different as 
well. Actually, an arbitrary (suitable) element can be chosen as a next node from 
FT. The system retains its monotonic nature and finds the same intersections. 

When the order of nodes is different, then the tree, got by associating the nodes 
in the order they are found, is also different. 

The overall shape of the trees is different. The first one (by maximal frequency) 
has many branches with maximal possible depth (12 branches with depth 4 in 
given case) and some branches consisting of the root only at the end (there are 4 
such branches). The second tree (by minimal frequency) is more balanced. In our 
case it has no branches with maximal depth (=4) and only one branch with depth 
1 (i.e. root only). The number of branches is bigger in the latter case (38 vs 35).  
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It is explained by reaching quickly to the intersections with the lowest frequency 
that contain all possible attributes (in case of selecting by minimal frequency) 
while in case of maximal frequency these nodes are reached step-by-step. If we 
prefer the closed superset with maximal possible frequency then there cannot be 
any closed set between the current and the chosen one, because there is no 
superset with frequency smaller than the frequency of the current set and bigger 
than the frequency of the chosen superset. Therefore always an adjacent closed 
superset is chosen by maximal frequency. Choosing by minimal frequency we 
can skip closed sets between the current and the chosen one, thus adjacency is not 
guaranteed in such case. 

In a tree, each node is represented by the element(s) that are not contained in its 
parent node. Nodes with more than one element contain “&”-signs. The bigger 
differences between parents and children the more “&”-signs in the tree. Adjacent 
closed sets can differ by one or more elements, non-adjacent ones differ at least 
by two elements. Therefore, selecting a next node by minimal frequency, thus 
preferring non-adjacent supersets, there are more bigger differences and more 
“&”-signs in the tree (compared to choosing by maximal frequency): 14 “&”-
signs in 10 nodes in case of minimal frequency and only 2 nodes and 2 signs in 
case of maximal frequency. The last two cases are those where adjacent closed 
sets differ by two elements. Choosing by minimal frequency there are also two 
such cases (out of 10). If the current and the next node differ by more than one 
element (independent whether they are adjacent or non-adjacent closed sets), then 
all those elements are included into the same intersection (node) at a time (line 
12 in algorithm MONSA, p. 45).  

Our tree got by minimal frequency has one more root node than the one by 
maximal frequency, namely T2.1&T3.2=4. It happens when some node of initial 
level (here T2.1 with frequency 4) is fully “subsumed” by another which has a 
bigger frequency (T3.2=7) i.e. all objects containing that first element (T2.1) 
contain the other (T3.2) as well (while the set of objects having only the other 
element is bigger). Preferring bigger frequency such element with smaller 
frequency is set to zero in the FT before we could select it as a root. Tree by 
maximal frequency contains T3.2=> T2.1. Both trees contain a root T3.2=7. 
Described situation is also an occurrence of skipping adjacent superset (of the 
initial empty set). 

Taking into account that in case of depth-first search only current branch is held 
in the memory, the tree with a smaller depth can be preferable (if the amount of 
data at each level is big).  

For each found intersection an extract of data has been made and the 
corresponding FT has been found by algorithm. (Extract has not to be “physical” 
subtable, just indexes of objects/rows can be kept.) Besides these extracts that 
have given the intersections also some repetitious extracts have been made, for 
which output was not generated (when the intersection is not unique – at line 10 
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(MONSA, p. 45)). So, the overall number of extracts made is bigger than the 
number of found intersections. Comparing algorithm’s work by maximal and by 
minimal frequency, the numbers of “unsuccessfull” extracts are different. In our 
case 18 by maximal and 10 by minimal frequency. Only 4 of those extracts 
coincide. (Information about these extracts is taken from log files.) Again, 
selecting next node by minimal frequency, is less labor-consuming. 

This is from the technical aspect. The user’s viewpoint might be different as 
different trees present different subset of (set of all possible) associations. 
Probably the user expects the associations rather between adjacent closed sets 
than between non-adjacent sets.  

A statement (from the previous subchapter) that GH finds approximate 
association rules between adjacent closed sets is valid for the case when next node 
is selected by maximal frequency. 

3.1.5 Elements between closed set and its generator 

Each intersection (found by MONSA) determines some set of objects and 
consists of all common elements of those objects. Some elements (of an 
intersection) are more “considerable” than the others, they determine the set (of 
objects), while the others just come with them. For example, if the set of people 
is described as “lives in the country” and “has a cow” then quite probably the 
same set of people can be determined by “has a cow” only and “living in the 
country” can be concluded from “having a cow”. Such a conclusion is an (exact) 
association rule (see p. 36): “has a cow”  “lives in the country”. 

We will associate these different subsets of intersection with notions of FIM and 
show how (original) MONSA operates with these kinds of elements. 

Additionally, we will bring out what changes are needed to find both subsets for 
each found intersection. 

As we have shown in 3.1.2 algorithm MONSA for finding all intersections finds 
all closed sets (intersection = closed set). 

Having found an intersection, a next leading element is chosen. Adding it to the 
intersection we get a new VC (itemset) with a smaller frequency. For completing 
the next intersection (closed set) we add all such elements that do not cause a 
change (decrease) of frequency of the VC. In FIM notion these are the items 
between closed set and its generator: c(g)\g. There is no special name for these 
elements/items (neither in the original description of MONSA (see 3.1.2) nor in 
closed set mining). Inspired by DA, we call them “zero factors”. Later (in 3.2.9) 
we will show how these elements are related to the zero factors of DA. 

Each (found) intersection contains all relevant zero factors. Each time we add a 
new leading element (item) into the current intersection (closed set), we get a 
generator for a next closed set. The lastly added (leading) element is certainly not 
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a zero factor in this new VC/itemset (because it causes a decrease of frequency), 
but the current closed set can contain zero factors (included at previous levels). 
Thus, generally this new generator is not a minimal generator, it is just a generator 
for a new closed set.  

If no element of the new extract has a frequency equal to the leading one, then 
there are no zero factors and this generator itself is a new closed set. If there exist 
elements with frequency equal to the leading frequency, then these are the zero 
factors; we add them to the generator and get the corresponding closed set.  

An intersection (closed set) can have more than one minimal generators (see 
2.4.1.1). MONSA finds each intersection only once, thus it can find only one 
generator for each intersection, and usually the found generator is not a minimal 
one. If we want to find them all, then we need to reach each CS as many times as 
many minimal generators it has. It is easier to find one closed set for each 
generator than unknown number of generators for each closed set. Moreover, 
MONSA already contains means for completing a closed set for an arbitrary 
generator (independent whether it is minimal or not). Thus, in order to find all 
minimal generators (together with their corresponding closed sets), the program 
should move from one minimal generator to another instead of original moving 
from a closet set to a closet set.  

MONSA has means to make sure whether the just found intersection (actually, 
the set of objects it determines) is really new (“unique”) or has been extracted 
already. This information is used to block repetitious intersections. In order to 
enable repeated finding of already found intersection by another minimal 
generator we have to remove such blocking, but information about ”uniqueness” 
(“newness”) is still available.  

In order to distinguish between zero factors and non-zero factors found at 
previous levels we should store them separately at each node. 

Described approach (generator + zero-factors = closed set) and algorithmic 
changes will be used in the algorithm for finding equivalence classes (presented 
in the next subchapter). 

3.1.6 Algorithm for finding equivalence classes 

The creation of an algorithm for finding equivalence classes was not an end in 
itself, the idea to create it arose when we thought out how to distinguish between 
zero factors and generator that together form a closed set (see 3.1.5). 

For that purpose the following changes were made to original MONSA: 1) 
keeping generator separately from closed set; 2) moving from smaller (shorter) 
generators to bigger (longer) ones (while MONSA moves from smaller closed 
sets to bigger closed sets); 3) using information about “uniqueness” for 
organizing ECs (not for blocking repetitious output of already found CSs). 
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ECs are used to construct association rules with minimal antecedent and maximal 
consequent: gc(g)\g (see 2.4.2.1), whereas the concept of “equivalence class” 
itself is not always mentioned. On top of (non-redundant) association rule mining 
CFD (conditional functional dependency) discovery has been developed. 
CFDMiner (Fan, Geerts, Li, & Xiong, 2011) uses an EC-based algorithm by Li, 
Liu and Wong (2007). CFDs are used as rules for data cleaning and data 
integration. 

ECs have found use in building understandable classifiers based on “emerging 
patterns” 34 that describe significant changes (differences or trends) between two 
classes of data. Emerging patterns, in turn, are used in many application fields. 
For example, an algorithm that exploits ECs for finding “delta-discriminative” 
emerging patterns (Li, Liu, & Wong, 2007), is used for human activity 
recognition (Gu, Wu, Tao, Pung, & Lu, 2009). 

Here we present an algorithm for finding all (frequent) equivalence classes. This 
algorithm does not construct any kind of rules (based on ECs). 

As an equivalence class can be uniquely determined and concisely represented 
by a closed pattern and a set of generators (Li, Liu, & Wong, 2007), we have to 
find the (only) closed set and all minimal generators for each existing equivalence 
class and the frequency (that is equal for all itemsets in the same equivalence 
class). 

Our MS based algorithm for finding all equivalence classes according to given 
frequency threshold is grown from the algorithm MONSA for finding all 
intersections (i.e. closed sets) described in 2.6.1. It uses the same technique of 
making subsequent extracts by the aid of frequency tables. (FT shows for each 
attribute the frequencies of all its possible values (in the set of objects for which 
it is found).) 

Each generator is found only once. In order to avoid repeatedly finding already 
found generators, the frequency of the selected element (the “leading” element) 
is set to zero in the current frequency table. Before selecting the next leading 
element, those zeroes are “brought down” from the frequency table of the 
previous level to the current level (except for the initial level). 

The next element to be included into the generator is selected by the frequency 
(from the frequency table). Its frequency has to be bigger than or equal to the 
given frequency threshold and smaller than the frequency of the current extract. 

                                                      
34 “Emerging patterns are defined as itemsets whose supports increase significantly from 
one dataset to another”, more specifically, itemsets whose growth rates (support ratio) are 
larger than a given threshold (Dong & Li, 1999). A survey of emerging patterns for 
supervised classification can be found in (García-Borroto, Martínez-Trinidad, & 
Carrasco-Ochoa, 2014). 
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The latter condition prevents selecting elements that belong to the closure of the 
current generator.  

In order to find minimal generators only (not the ones between a minimal 
generator and closed set), the minimal one of suitable frequencies is chosen (in 
contrast with MONSA where the next subset is selected by maximal frequency). 
If there is more than one element with such frequency, just one of them is 
selected. The chosen element together with the previously selected elements of 
the same branch forms a generator and determines a narrower (than the current) 
set of objects. 

At each step it is easy to find a closure of the current generator. All elements in 
FT that have a frequency equal to the frequency of current generator, belong to 
the closed set. (That is why those elements are not chosen for forming the next 
generator.) If there are no such elements, the generator and its closed set coincide.  

As there can be more than one generators in EC, we need to know whether the 
current generator belongs to any already found equivalence class or we have 
found a new one. This is also easy to make sure (without looking through the 
already found results): if any of the elements between the generator and its closure 
(i.e. c(generator)\generator) has been set to zero in the FT of the previous level, 
then the set of objects (covered by the current generator) has been extracted 
already (by another generator of current EC). 

 

The following notation is used in pseudocode of the algorithm: 

X0 – initial data table (objects*attributes); 

t – number of the step (or level) of the recursion; 

Xt – set of objects (extract) at level t; 

FTt – frequency table for a set Xt; 

gent – generator at level t; 

CS – closed set (closure of gent); 

CS_is_new – the truth-value of whether the closed set (and corresponding 
equivalence class) is new; 

V – „leading“ frequency i.e. frequency of extract; 

minfr – frequency threshold (minimal allowed number of covered objects); 

Init – activity for initial evaluation; 

Elements are given as valueattribute; 

Assignments are indicated by “” (“=” is for comparison). 
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Equivalence class (EC) is described by closed set (CS), all its minimal generators 
and frequency. 

The pseudocode of the algorithm is given below. 

Algorithm for finding all equivalence classes 
Given: X0, minfr>0  
1: Init  
2: t0 ; gen0{} 
3: find FT0  
4: FOR EACH element hfFT0 with frequency V=min FT0[hf]≥ 

minfr DO 
5:   make_extract(t+1; hf; V) 
6:   FT0[hf]0 
  NEXT 
7:  output all ECs 
End of Algorithm 
PROCEDURE make_extract(t; hf; V) 
8: gent  gent-1  hf 
9: CS  gent 
10:CS_is_new  true 
11:IF V=1 THEN 
12:  find object obj with hf from Xt-1 
13:  FOR EACH empty position p in CS DO 
14:   value  Xt-1[obj; p] 
15:   CS  CS  valuep   /* CS[p]  value 
16:   IF FTt-1[valuep]=0 THEN   
17:    CS_is_new  false; EXIT FOR-cycle 
    ENDIF 
   NEXT 
18:  IF CS_is_new THEN new_EC(V; CS; gent) ELSE   

  add_gen(V; gent; hf) 
19:ELSE 
20:  separate submatrix XtXt-1 such that Xt={XijXt-1  

X.f=hf} 
21:  find FTt 
22:  FOR EACH empty position p in CS DO 
23:   IF exists value(element) hp such that FTt[hp]= V    

   THEN 
24:    CSCShp 
25:    IF FTt-1[hp]=0 THEN  
26:     CS_is_new  false; EXIT FOR-cycle 
     ENDIF 
    ENDIF 
   NEXT 
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27:  IF CS_is_new THEN new_EC(V; CS; gent) ELSE   
  add_gen(V; gent ; hf) 

28:  IF V>minfr THEN 
29:   ZeroesDown(t)  
30:   FTt[hf]0 
31:    FOR EACH huFTt with frequency V2=min 

FTt[hu]minfr and V2<V DO 
32:    make_extract(t+1; hu; V2) 
33:    FTt[hu]0 
    NEXT 
  ENDIF 
  ENDIF 
END PROCEDURE 
PROCEDURE ZeroesDown(t) /* from FTt-1 into FTt 
34: FOR EACH element huFTt with frequency > 0 DO 
35:  IF FTt-1[hu]=0 THEN FTt[hu] 0 
 NEXT 
END PROCEDURE 
PROCEDURE new_EC(freq; CS; gen)  
/* instead of parameters current V, CS, gent can be used 
/* creates a new equivalence class with frequency freq 
containing closed set CS and generator gen 
END PROCEDURE 
PROCEDURE add_gen(freq; gen; hf)  
/* instead of parameters current V, gent, hf can be used  
/* finds the equivalence class with frequency freq to which 
the generator gen belongs 
/*knowing the lastly added element hf might improve the 
(element-wise) search/check  
/* adds a generator gen into the equivalence class 
END PROCEDURE 

The initial data table X0 and the frequency threshold minfr are given. The main 
program starts with initializing the structure for holding equivalence classes (step 
1) and initial assignments for a level of recursion t and the empty generator gen0 
(2). Next the frequency table FT0 for X0 is found (3). In step 4 each element with 
a suitable frequency (minfr) is chosen as a leading element (for inclusion into 
generator) in ascending order (by frequencies). An extract by the leading element 
hf is made (5) and its frequency in the frequency table FT0 is set to zero (6). 
Finally, all found equivalence classes are outputted (7). 

While the main program makes extracts from initial data, the recursive procedure 
make_extract handles all deeper levels. It starts by evaluating the current 
generator gent (8) and giving initial values for its closure CS and truth-value 
CS_is_new for indicating whether the closed set (and consequently current EC) 
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is new (9-10). (Lines 11-19 in grey colour are for special case when the leading 
frequency V is 1 and will be explained further.) Next the subset of objects Xt is 
extracted by the leading factor hf (20) and the corresponding frequency table FTt 
is found (21). Step 22 goes through all empty positions (attributes without value) 
in the current closed set CS (as a vector) and step 23 searches for the value (of 
that attribute) with frequency equal to the leading one V. If one exists, it belongs 
to the current closed set and it is included into CS (24). Next we check whether 
the found element of closed set has been set to zero in the frequency table of 
previous level (25). If it is so, then this closed set (and whole EC) is not a new 
one and indicator CS_is_new is evaluated accordingly, also the search for 
elements of current CS is exited (26). After finishing the search for elements of 
CS, according to the value of CS_is_new, either a new equivalence class is 
created (with current generator gent, its closure CS and frequency V) or an 
existing equivalence class is complemented with the current generator gent (27). 
Additional parameters of add_gen V and hf are intended for improving the 
search for the right existing EC. Also, the number of elements in gent can be 
used (the number of elements in corresponding CS has to be bigger than in 
generator). 

After creating or complementing an EC, step 28 checks the reasonability of 
making a subsequent extract. If the frequency V is above the threshold minfr, 
then there is a possibility to find frequency that is <V and minfr. If that check 
(in 28) gives a positive result, then the zeroes are “brought down” from the 
frequency table of the previous level (29). The procedure ZeroesDown goes 
through the current frequency table and for each element with a frequency over 
zero (34) its frequency at the previous level is checked (35). If the latter is zero, 
then the element gets a zero frequency at the current level as well (35). 

The frequency of the current leading element hf is set to zero (30). 

Step 31 goes through all elements that are suitable for subsequent extract i.e. with 
frequency smaller than the leading one (in order to prevent selecting element of 
current closed set) and greater than or equal to the given frequency threshold 
minfr. Again the order is ascending. A recursive call to procedure 
make_extract is made with a new leading element hu and its frequency V2 
(32) and the frequency of hu is set to zero (33). 

Lines 11-19 describe a special case when the leading frequency V is 1. In such 
case there is no need to make an extract by hf. If the frequency is 1 then there is 
exactly one object that belongs to that (potential) extract, so we can locate it 
without forming an extract (12). Similarly to the general case, each empty 
position in CS is inspected (13) and filled with respective value from that object 
(14-15). If this element has been set to zero in the FT of previous level (16) then 
consequently the current CS (and EC) is not new and the cycle for filling empty 
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positions in CS is exited (17). At line 18 either a new EC is created or an existing 
one is complemented with the current generator gent. 

Practically, this part of code is not important, because the frequency(support) 
threshold is usually >1 (in case of bigger data) and the code at lines 20-32 is 
suitable for that case as well. 

This algorithm is not published, except in the master’s thesis of Meelis Pruks 
(2014) where it is compared with DPMiner, that is claimed to be the first 
algorithm mining closed sets and generators simultaneously (Li, Liu, & Wong, 
2007), with further purpose to use found equivalence classes for EC-based 
clustering algorithm ECCC (Liu, Wang, Deng, & Dong, 2011). The result of the 
comparison is: DPMiner is faster, but less accurate since it finds non-redundant35 
δ-discriminative36 equivalence classes, because the number of non-redundant δ-
discriminative ECs is considerably smaller than of all ECs (with equal support 
threshold). An important difference between the two algorithms is that DPMiner 
uses transactional database (i.e. binary data) with class labels as an input, while 
our MS based algorithm supposes an object-attribute data table where each 
attribute can have more values and pre-classification is not required. 

3.1.7 Finding excluded factors 

Besides elements that occur together in some set of objects (i.e. form a closed set) 
we might be interested in elements that do not occur in any of those objects. For 
example, it might be true that people who “have a cow” (and “live in the country”) 
are not “frequent travellers”. In such case we can form a negative association rule 
(2.4.2.2): “has a cow” [AND “lives in the country”]  NOT “is a frequent 
traveller”. In some cases negative rules are more valuable than positive ones. 

We call these non-presented elements “excluded factors”, this is our own name 
(although “factor” comes from DA). Next we will show how to adapt the 
previously introduced EC algorithm (3.1.6) to find such information.  

Excluded factors are such factors that are not presented in any of the objects of 
the current extract (covered by the current closed set), but do exist in the initial 
data table. Excluded factors are not sought for from such attributes that belong to 
the closed set. As each included attribute can have only one certain value in the 

                                                      
35 Non-redundancy here is different from non-redundancy of association rules (as defined 
in 2.4.2.1) where redundant and non-redundant rules are found among rules with equal 
support (and confidence). Here δ-discriminative closed set EC2 is said to be redundant 
with respect to δ-discriminative closed set EC1 if its closed pattern is a superset of the 
closed pattern of EC1 (thus their frequencies are different) i.e. its transaction set is fully 
subsumed by transaction set of EC1. Thus only the most general (minimal) equivalence 
classes are non-redundant. (Li, Liu, & Wong, 2007, p. 3) 
36 δ is a small integer number showing how many covered transactions can belong to other 
classes than the largest one (thus, the classification of data is supposed). 
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closed set, we can conclude ourselves that all other values of such attribute cannot 
be presented in that extract. Thus only the values of attributes that are not included 
in the CS are considered. 

Let us have an extract consisting of two objects given in Table 3.1 together its 
corresponding frequency table and intersection over this extract. We do not look 
for excluded factors for attributes A1 and A3 as they belong to the closed set 
(intersection). We look for zeroes in the remaining columns (attributes) of the 
frequency table. A2.2 (having zero frequency) is an excluded factor if such value 
for A2 does exist in the initial data table. 

Table 3.1. Data table X(2,3) and corresponding frequency table 

Object \ Attribute A1 A2 A3 
O1 1 3 2 
O2 1 1 2 

    
Value \ Attribute A1 A2 A3 

1 2 1 0 
2 0 0 2 
3 0 1 0 
    

Intersection 1 * 2 

Our EC algorithm (in 3.1.6, see p. 73) can be easily supplemented with the part 
for finding excluded factors. At lines 22-26 there is a FOR-cycle passing through 
all empty positions of the current not-yet-ready closed set CS. IF-clause inside 
this cycle (lines 23-26) checks whether the current empty position p can be filled 
with a value (that is a zero factor in this CS). We add an ELSE-part to this IF-
clause for the case when there is no zero factor for the current position. 

Below we give a suitable fragment of the code (preserving original lines numbers 
22-26) with the extension for finding excluded factors (starting at line 27). 

22:  FOR EACH empty position p in CS DO 
23:    IF exists value(element) hp such that FTt[hp]= V 

    THEN 
24:    CSCShp 
25:    IF FTt-1[hp]=0 THEN  
26:     CS_is_new  false; EXIT FOR-cycle 
     ENDIF 
27:   ELSE 
28:    FOR EACH value v (of attribute p) DO 
29:     IF FTt[vp]= 0 THEN  
30:      IF InitialFT[vp]> 0 THEN  
31:       ExclFExclFvp  
       ENDIF 
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      ENDIF 
     NEXT 
    ENDIF 
   NEXT 

In the (new) ELSE-part we check each element with zero frequency in column p 
(i.e. values of current attribute) (lines 28-29): if it has a non-zero frequency in the 
initial FT (line 30) then it is an excluded factor and is inserted into the set of 
excluded factors ExclF (line 31). (Otherwise, such a factor does not exist in the 
data.) InitialFT (at line 30) is a copy of the initial state of FT0. FT0 itself is not 
suitable because the frequencies (of selected leading factors) in it are set to zero 
during the work (line 6 in EC algorithm). 

Although this algorithm determines extracts by minimal generator, the excluded 
factors are found for their corresponding closed set. Attributes that provide zero 
factors have a certain value in the extract (selected set of objects), thus there is 
no need to list their remaining values among excluded factors. 

Therefore, excluded factors corresponding to some closed set are looked for and 
stored only once – when this CS is found for the first time and a new EC is created 
(procedure new_EC gets a new parameter: ExclF). 

Of course, ExclF has to be evaluated with an empty set (ExclF{}) each time 
before processing a next generator – that is in the beginning of procedure 
make_extract (lines 8-10 in the EC algorithm at p. 73). 

3.1.8 Integrating classes into MONSA 

Heretofore MONSA has found descriptions for non-classified data. If data is 
partitioned into classes then, obviously, we are interested in describing these 
classes. For that purpose we will integrate detection of a class into the algorithm. 

The question how to incorporate classes into MONSA, has been raised before the 
questions about zero factors (and excluded factors), but it waited for an answer 
until the detection of zero factors was solved. Then we saw that the solution is 
simple – the class can be detected the same way as any zero factor. The difference 
is that a class attribute is never used for making an extract. 

Let us have a data table containing a class attribute (Table 3.2). Both objects 
belong to the same class (Class.1). An intersection over them contains this class 
value. As we have seen earlier this is easy to detect from the frequency table. 

If the class value is a zero factor here (not the one that has been used for extracting 
the current set of objects) then we can say that the remaining part of the 
intersection (A1.1&A3.2) is always accompanied by Class.1 
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Table 3.2. Data table and corresponding frequency table 

Object \ Attribute A1 A2 A3 Class 
O1 1 2 2 1 
O2 1 1 2 1 

     
Value \ Attribute A1 A2 A3 Class 

1 2 1 0 2 
2 0 1 2 0 
     

Intersection 1 * 2 1 

Next we will present a recursive37 version of MONSA for finding all closed sets 
with classes. (This algorithm does not detect zero factors and excluded factors.) 

The following notation is used in pseudocode of the algorithm: 

X0 – initial data table (objects*attributes); 

attr – number of attributes (excluding class); 

t – number of the step (or level) of the recursion; 

Xt – set of objects (extract) at level t; 

FTt – frequency table for a set Xt; 

CSt – closed set at level t; 

clt – class at level t; 

CS_is_new – the truth-value of whether the closed set is found for the first time; 

V – „leading“ frequency i.e. frequency of extract; 

minfr – frequency threshold (minimal allowed number of covered objects); 

Init – activity for initial evaluation; 

Elements are given as valueattribute; 

Assignments are indicated by “” (“=” is for comparison). 

The pseudocode of the algorithm is given below. 

Algorithm for finding all CSs with classes 
Given: X0, minfr >0  
1: t0 ; CS0{} ; cl00 
2: find FT0 

                                                      
37 There is no need to use recursion while realising the algorithm; backtracking version 
(like in 2.6.1) is still suitable. 
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3: FOR EACH element hfFT0 with frequency V≥minfr DO 
4:   FT0[hf]0 
5:   make_extract(t+1; hf; V) 
 NEXT 
End of Algorithm 
PROCEDURE make_extract(t; hf; V) 
6: CSt  CSt-1  hf 
7: clt  clt-1 
8: CS_is_new  true 
9: separate submatrix XtXt-1 such that Xt={XijXt-1  

X.f=hf} 
10: find FTt 
11: FOR EACH empty position p (p1,…,attr) in CS DO 
12:  IF exists value(element) hp such that FTt[hp]= V   

   THEN 
13:   CStCSthp 
14:   IF FTt-1[hp]=0 THEN  
15:    CS_is_new  false; EXIT FOR-cycle 
    ENDIF 
  ENDIF 
  NEXT 
16: IF CS_is_new THEN 
17:  IF clt=0 THEN 
18:   IF exists value clv such that FTt[clvattr+1]=V 

   THEN cltclv 
  ENDIF 
19:  output CSt, clt 
20:  IF V>minfr THEN 
21:   ZeroesDown(t)  
  ENDIF 
22:  BackwardComparison(t)  
23:  IF V>minfr THEN 
24:   FOR EACH huFTt with frequency V2minfr and V2<V 

   DO 
25:    FTt[hu]0 
26:    make_extract(t+1; hu; V2) 
   NEXT 
  ENDIF 
 ENDIF 
END PROCEDURE 
PROCEDURE ZeroesDown(t) /* from FTt-1 into FTt 
27: FOR EACH element huFTt with frequency > 0 DO 
28:  IF FTt-1[hu]=0 THEN FTt[hu] 0 
 NEXT 
END PROCEDURE 
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PROCEDURE BackwardComparison(t) 
29: FOR EACH element huFTt with frequency > 0 DO 
30:  IF FTt [hu]=FTt-1[hu] THEN FTt-1 [hu] 0 
 NEXT 
END PROCEDURE 

The algorithm works similarly to the original MONSA (see 2.6.1). In the given 
recursive version the main program treats the initial level and the procedure 
make_extract handles all extracts.  

The uniqueness check of a closed set (that was before brought out as a separate 
procedure CheckUniqueness) takes place at lines 11-15. This time it is 
executed before bringing zeroes down (line 21). This change is not principal, it 
just makes it easier to perform the check.  

One more difference is that the criterion of selecting the next node (by maximal 
frequency in FT) is left out from the pseudocode (at lines 3 and 24). We still use 
it, but principally it is not so important, because any other order of nodes would 
give all the same closed sets (just in a different order). 

A condition V≥minfr (for considering the support threshold) is revealed here 
(at lines 3 and 24) while in the previous pseudocode it was hidden into the 
condition ‘pruning is needed’ (line 6). 

The condition V>minfr (lines 20 and 23) is a prerequisite for a possibility to 
find a frequency V2 that is smaller than V and bigger than or equal to minfr 
(V2≥minfr and V2<V at line 24). V2 is the frequency of the next leading 
element (by which an extract will be made). Its frequency V2 has to be smaller 
than the frequency of current leading element (and extract) V to prevent making 
an extract by zero factor (the frequencies of zero factors are equal to the leading 
frequency). Another possibility to prevent it was to set to zero the frequencies of 
all zero factors (after they have been detected) – earlier we used this option.  

A new property – detection of classes – starts by evaluating a class corresponding 
to the initial level cl0 by 0 (or some other non-existing value) with a meaning 
that objects belong to different classes. At each lower level variable clt gets a 
value from the previous level. If objects belong to the same class at some level, 
then in every further extract (that is a subset of that object set) they still belong to 
that same class. Therefore, if the value of clt is not (initial) 0 then all objects of 
the current extract belong to this class and there is no need to check whether they 
belong to the same class. If there is no common class at previous level (line 17) 
then the algorithm checks the frequencies of class attribute: if one of them is equal 
to the leading frequency (and others are zeroes) then all objects of the extract 
belong to that class and clt is evaluated accordingly (line 18). As pointed out 
earlier this check is analogous to detecting “usual” zero factors (taking place at 
line 12).  
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The algorithm assumes that a class is given by one class attribute (in the last 
column of data table). Instead of using only one attribute it was possible to use 
more of them. In such case the frequency check (whether it is equal to the leading 
frequency) should be made for each of these attributes and instead of one value 
(clt) a vector of corresponding values should be used. We can consider each 
different combination (conjunction) of their values as a separate class or to use 
more sophisticated logic on them. 

The given version of the algorithm outputs all closed sets irrespective do they 
have a class or not. It does not backtrack after finding a class. In case of insertion 
of such criterion the order of selecting next node by maximal frequency might be 
important. 

3.2 Developments of Determinacy analysis 

The theory of Determinacy Analysis (DA) by Chesnokov is introduced in 2.7. In 
this subchapter we will present our developments of DA. However, first 
subchapters introduce things that existed before I began.  

We will start by giving an overview of original applications of DA (3.2.1), in 
order to bring out their limitations (3.2.1). In 3.2.2 we will list these and other 
deficiencies of DA that have given us a reason to work out better solutions.  

First, in order to overcome the problem of equal length of found rules, we have 
proposed so called step-by-step method38, where the completion of a single rule 
is stopped whenever it occurs to be accurate (see 3.2.3). Although this approach 
gives a better result than the original one, it still finds a set of non-intersecting 
rules that is an important restriction. 

Our further algorithms produce non-additive systems of rules where the rules can 
intersect. Also, the order of attributes can be different in each rule. 

Our first algorithm for finding intersecting rules is presented in 3.2.5. This 
algorithm produces a possibly small set of rules, monitoring and taking into 
consideration which objects are covered by the found rules already. Like a step-
by-step approach this one also produces one system of rules that is not always the 
best one. 

Besides a possibly small number of rules, we are interested in possibly short rules 
containing no redundant factors. A factor is redundant when we can remove it 
without losing accuracy of the rule. These redundant factors are zero factors. 

                                                      
38 This method itself existed before I started, but then it had not been put into the context 
of systems (sets) of rules (according to (Chesnokov, 2002)) and it was unpublished as 
well. It is presented in this thesis because it serves as a starting point for further 
developments of DA.  
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Occurs that in the moment when a new factor is inserted into a rule we cannot 
decide about its redundancy or non-redundancy (in reference to the final rule) by 
its contribution to the accuracy. This problem is explained in 3.2.4 , it is true for 
step-by-step method as well as other approaches. 

Our next algorithm (in 3.2.7) produces all possible shortest rules i.e. non-
redundant rules. Additionally it finds some redundant rules that cannot be 
avoided. These rules have to be removed by compressing the result. The set of 
rules we get after such compression is the same in case of some other algorithms 
as well. We call it Determinative Set of Rules (DSR) – see 3.2.6. DSR gives us 
the basis for finding different covers – suitable subsets of found rules that cover 
all objects. 

Delving deeper into the problem of zero factors we have found that there are two 
types of them – see 3.2.8. In 3.2.9 will we show how zero factors and DA rules 
are related to closed sets and generators. These associations together with 
developments of MONSA (3.1) have been involved in our final development of 
DA – Zero Factor Free DA – that will be presented in 3.2.10. The algorithm is 
described in 3.2.10.1, an example is given in 3.2.10.2, and discussion about 
detecting zero factors in 3.2.10.3. 

 

The part concerning DA-System (DAS) in 3.2.1 and 3.2.1.1 is published in (Lind 
& Kuusik, Some Ideas for Determinacy Analysis Realisation, 2007). Step-by-
step method is described in the same paper39. A discussion in 3.2.4 is based on 
(Lind & Kuusik, Some Problems in Determinacy Analysis Approaches 
Development, 2008b). The algorithm in 3.2.5 is presented in (Kuusik & Lind, 
Some Developments of Determinacy Analysis, 2010). DSR (in 3.2.6) and 
algorithm giving a suitable result for applying DSR-compression (3.2.7) were 
proposed in (Kuusik & Lind, New Developments of Determinacy Analysis, 
2011). Our latest paper (Lind & Kuusik, Algorithm for Finding Zero Factor Free 
Rules, 2016) contains material presented in 3.2.8, 3.2.9 and part of material in 
3.2.10 and its subchapters. The published version of ZFF DA algorithm contains 
only two types of rules (out of three). Also, the demonstration how the algorithm 
works on sample data (in 3.2.10.2) and a discussion (3.2.10.3) were left out of 
this paper due to size limit. All three types of rules are used in the master’s work 
of Liisa Jõgiste (Prototyping of Zero-factor based DA, 2014). In this work the 
experiments showing dependency of execution time on the number of objects 
(rows) or attributes (columns) were carried out. These results are presented also 
in (Lind & Kuusik, 2016). 

The referred papers are reprinted in appendices B, C, D, E and F. 

                                                      
39 The corresponding algorithm is published in (Lind & Kuusik, 2008a). 
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3.2.1 About the original applications of DA 

We know about two original applications of DA. Although their underlying data 
structures and algorithms used for finding determinations are different, they share 
a similar approach from the user’s point of view. 

The user determines X and Y (and some possible restrictions to the rules) and gets 
a set (system) of rules corresponding to the input. In this set all the rules have the 
same number of factors and exactly from the attributes given for X. Thus, the 
found system of rules is additive consisting of non-intersecting rules i.e. each 
object can be covered maximally by one rule. If no rules have been excluded (due 
to given restrictions), then the system is complete – each object is covered (by 
exactly one rule). In such case all existing value combinations of X are presented 
as an antecedent of some rule. 

The output is given as a table where each row represents a determination. For 
each determination XY first its components – factors (i.e. attribute with its 
certain value) constituting X – are listed (in the order they were given by the user). 
They are followed by the characteristics of determination: 

 Accuracy A(XY) 
 Completeness C(XY) 
 the Number of rules’ Applications n(X)40  
 the Number of rules’ Confirmations n(XY)41 
 n(Y) – as it is equal for all determinations with the same Y, it can be shown 

only once per table (not at each row) 

Accuracy and completeness are calculated using n(X), n(XY) and n(Y).  

For each factor constituting X its contribution to the accuracy ΔA and its 
contribution to the completeness ΔC is shown. Each contribution is computed 
regarding all other factors in X, independent on the order of attributes. 

The user can change the input and get a new additive system of rules with equal 
length. 

 

The realization of DA from 1980ies is described in (Veselov, Deza, & 
Podrabinovich, 1980). 

In this case the user can determine 7 attributes for X and 3 attributes for Y. In this 
realization two trees are created: one contains both reason-attributes X and 
consequence-attributes Y (in the given order), the other only consequence-

                                                      
40 i.e. the number of objects having determining factors in whole dataset or context 
41 i.e. the number of objects having these factors among objects belonging to the class 
under investigation 
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attributes. All objects are described in both trees. Each node (except the root) 
indicates a certain value of a certain attribute (i.e. factor) and has as many 
descendants as many different values has the next attribute. The leaves represent 
the value combinations with length equal to the number of observable attributes. 
For each node (value combination) its corresponding set of objects is kept in 
memory using lists. On these two trees the user’s queries are executed. 

In order to find five characteristics (listed above) for a certain determination the 
necessary nodes are looked up and the number of corresponding objects is 
detected. To describe a determination we have to find one leaf (representing XY) 
and one node on the way to that leaf (X) in the bigger tree and one leaf (Y) in the 
smaller tree. 

Finding needed nodes in such trees is comfortable and the number of comparisons 
is acceptable42, but the trees itself take much memory. Therefore the number of 
observable attributes is limited to seven reason-attributes and three consequence-
attributes (Chesnokov, 1980a). 

 

Later, at the end of 1990ies, DA was realised in the software package “DA-
system”43 (shortly DAS) by “Context”44. The following overview is about its 
(Russian) version 4.0 for Windows that was available to us for a limited time, it 
is described in (Lind & Kuusik, 2007). Materials (DALSolution, 2007), (Context, 
1999a) (Context, 1999b) have been used also. 

This application allows to determine one certain factor for Y at a time. In addition 
to the five characteristics listed above, it finds totals for the whole set (system) of 
found rules: total Accuracy (weighted average), total Completeness (sum of 
rules’ completenesses), total Number of Applications and total Number of 
Confirmations (both are sums of rules’ characteristics). 

The user can set restrictions to the rules by accuracy, completeness, contribution 
to accuracy and contribution to completeness. All four apply to the individual 
rules, not to the separate factors in the rules nor to the whole system. If at least 
one of those four does not fit, the rule is not included into the result. 

By default DAS finds all existing combinations of factor-attributes irrespective 
of their class affiliation i.e. combinations belonging to other class(es) are also 
found. Such system is a complete system of rules (where the sum of rules’ 
completenesses is 100%). In order to suppress the rules of other classes the 
required completeness (or required accuracy) of rules has to be set to >0 by the 

                                                      
42 ig comparisons, where i is the average arity (the number of branching) of the nodes and 
g is the depth of the tree (Veselov, Deza, & Podrabinovich, 1980). 
43 Russian “ДА-система” 
44 Russian “Контекст Медиа” 
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user. In such case the system remains complete. Using a higher threshold the 
completeness is not guaranteed. 

By default the rules can contain positive, zero and negative factors. It is possible 
to get rules that consist of positive (and zero) factors only by setting the 
requirement that the contribution to accuracy has to be >0 (≥0). Other rules are 
excluded, therefore the found system loses completeness. 

System of rules can be maximally accurate (average accuracy =100%) if there are 
no contradictions45 in data. Accurate system can be required also by the user. In 
order to find only accurate rules the required accuracy has to be set to 1. System 
got by applying such restriction may be incomplete. 

3.2.1.1 Deficiencies of DA-system 

Having been analysed DA-system we have the following observations. 

Unfortunately DA-system has no possibility to set restrictions to the individual 
factors and get rules with different number of factors. This is due to technical 
reasons. By our opinion such lack makes DAS limited compared to theory of DA 
by Chesnokov (2002). 

DAS (4.0) limits the number of attributes (factors) in rules to 5, due to technical 
reasons. Always it is not enough to describe a class. The current46 version of DAS 
(5.0) is claimed to overcome this limitation. A discussion about the number of 
frequencies needed to compute the characteristics of the rules can be found in 
chapter 3 of (Lind & Kuusik, 2007). For example, if we have 5 binary attributes, 
there can be 32 rules at most and the maximal number of frequencies to find is 
224. In case of 7 binary attributes: 128 rules and 1152 frequencies. In case of 5 
attributes having 10 different values: 105 rules and 3*105 frequencies; in case of 
7 attributes already 10*106 rules and 34*106 frequencies. Probably due to such 
big numbers, DA-system limits the number of attributes (factors) in a rule to 5. 

A minor drawback is that DAS finds rules for only one class at a time; while by 
default it finds value combinations of other classes anyway (without showing 
their class affiliation). It could be more convenient to find rules for all alternative 
classes (by the same variable), but this exceeds the bound of task of DA (as 
defined in 2.7.4). 

An important disadvantage is that DAS has no automated search strategies to find 
better solutions. It only helps manual search (by making calculations), but gives 
no advice for the subsequent search direction. The system does not say which 

                                                      
45 This is the situation where the chosen set of attributes does not determine object’s 
affiliation uniquely, the same combination of factors (i.e. attributes with certain values) 
leads to different classes; for example 2/3 of cases belong to class1 and 1/3 belong to 
class2. 
46 As of 2007 
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attributes should be included into or excluded from analysis. Quite probably this 
comes from the way DA-system solves the task. It seems that DAS does not use 
a backtracking search algorithm, but implements database queries. 

Also, the user manual does not include the methodology how to get needed result 
with DAS. Probably that knowledge is sold at special training courses. 

3.2.2 Problems 

The following deficiencies of original applications and methodology of DA were 
pointed out in the previous section: 

 Limited number of attributes/factors in the rules 
 Finding rules for one class only at a time 
 No automated search strategies 

Additionally:  

 All rules have equal length 
 Only additive systems of rules can be found 

In order to explain why the last two properties are significant limitations, we will 
use the example in 2.7.3 (p.55). All presented systems of rules are complete (i.e. 
all objects are covered by the rules) and accurate (i.e. all rules are accurate). S1, 
S2 and S3 are additive47 systems and S4 is a non-additive system. 

In this example S1 is a system of rules where all rules contain exactly the same 
attributes (with different values) and have equal length (such set can be found 
with DAS). S2 and S3 are both additive systems where the rules can have different 
lengths. Comparing S1 either with S2 or S3 we can see that S1 contains more rules 
(3 vs 2) and longer rules (both S2 or S3 have one rule with only one factor (in the 
left side)). For example, instead of two first rules consisting of two factors in S1:  

 Eyes.blue & Hair.dark  Class.‒ (C = 40%; 2 objects) 
 Eyes.brown & Hair.dark  Class.‒ (C = 20%; 1 object) 

there is one rule consisting of one factor in S2:  

 Hair.dark  Class.‒ (C = 60%; 3 objects). 

The value of attribute Eyes is not essential when Hair has value dark. 
Consequently, there is some redundancy in the rules of S1. 

Comparing non-additive system of rules S4 with any of the additive systems S1, 
S2 or S3, we can see that S4 is more compact, containing no redundant 

                                                      
47 In case of additive systems the rules do not intersect (i.e. do not cover the same objects), 
thus there is maximally one rule per object 
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information. For example, the first rules of S3 and S4 are identical, but the second 
rule of S3: 

 Eyes.blue & Hair.dark  Class.‒ (C = 40%; 2 objects) 

is longer and with smaller completeness than the second rule of S4: 

 Hair.dark  Class.‒ (C = 60%; 3 objects) . 

In this case, the non-additive system S4 has shorter rule(s). Comparing it to S1 
we can see that also the number of rules is smaller (2 vs 3). This shows that 
allowing intersecting (overlapping) rules, the system (set) of rules can be more 
compact and contain less redundancy. 

In order to overcome the problem of equal length, we have proposed so called 
step-by-step method, where the order of attributes is fixed, but completion of a 
single rule is stopped whenever it occurs to be accurate. Although step-by-step 
approach gives a better result than original approach, it has the following 
disadvantages: 

 The result depends on the order of attributes 
 Trying all possible orders of attributes is too laborious 

Further we have elaborated different algorithms for getting non-additive systems 
of rules. These algorithms do not use any given order of attributes, but decide 
themselves which attribute is added next. In each rule the order of attributes can 
be different and also the set of used attributes can be different. This leads us to 
automated search strategies. The latest among these three algorithms – ZFF DA – 
finds rules for all possible classes intermittently. 

All these developments try to solve one more important problem: 

 Avoiding zero-factors (in the left part of the rule) 

Further the essence of zero factors and all our approaches and algorithms will be 
explained.  

3.2.3 Step-by-step approach 

Step-by-step approach is our first development of DA. Compared to DAS it 
allows to find rules with different lengths, thus reducing redundancy (but not 
eliminating it). In case of such approach we get a new thing to consider – the 
order of attributes (factors) in the rules. Attributes are added into the rules in a 
given order, the completion of a single rule is stopped whenever it occurs to be 
accurate. In case of different orders the results are different. The number of all 
possible orders is too big to try them all and then find the most suitable one. 

The task. The initial data table is given and some feature Y (as a certain class). 
The goal is to describe Y (possibly) completely by non-intersecting (possibly) 
accurate rules. 
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In case of non-intersecting (i.e. additive) system each object can be covered by 
one rule at most while each rule can cover more than one object. Thus, the number 
of rules is  the number of objects (covered by the rules). 

As described before (3.2.1), the original application (DAS) solves this task by 
finding all existing value combinations that contain all given attributes and meet 
other criteria given by the user. The result consists of rules with equal length 
(rank), all of them contain the same attributes – this is a simple way to get an 
additive system of rules (i.e. non-intersecting rules).  

It is reasonable to allow rules with different number of factors in argument 
(keeping them non-intersecting at the same time), to exclude inessential factors. 
In such case factors are added into rules in some order (not all at the same time) 
and their contributions to accuracy and completeness can be calculated regarding 
those factors only that have been added into rule earlier. Latter factors cannot be 
considered in those calculations. 

Below we will present our “step-by-step” approach where the extracted rules can 
have different lengths while the system is additive. The order of attributes 
(factors) is essential, they are added into the rules one by one, in the given order. 

If some rule obtains the maximal accuracy (A=1) it is not expanded by adding the 
next factor. At the same time the completenesses of found accurate rules are 
summed up. Reaching 100% the coverage is found. 

Using the same order of attributes for all rules guarantees that the rules do not 
intersect. The user decides about the order in which the attributes are included 
into the rules, from the beginning until the situation when all objects of the class 
are covered. 

The following example will demonstrate the step-by-step approach. It will show 
also that different orders of attributes can give different results. 

In this example Quinlan’s data from Table 2.7 (p. 55) will be used again. The 
purpose is to determine class ‘+’ (to describe the persons belonging to class ‘+’). 
This class consists of three objects: n(Y)=3. 

First, we will add attributes in the order they are given in the table: 1) Height, 2) 
Hair, 3) Eyes. 

The rules containing attribute Height (only) are given in Table 3.3. 

Table 3.3. The rules consisting of attribute Hair 

Height     n(X) n(XY) A C C
short   3 1 1/3 1/3  
tall   5 2 2/5 2/3  

Neither of the two (candidate) rules is accurate. 
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We add the next attribute (Hair) into both rules – see Table 3.4. 

Theoretically there can be 6 different value combinations of those two arguments. 
One of those 6 (Height.short&Hair.red) does not exist in the data (n(X)=0). Two 
of them (Height.short&Hair.dark; Height.tall& Hair.dark) do not exist in the 
given class (n(XY)=0). These three are excluded from the analysis. 

Table 3.4. The rules consisting of attributes Height and Hair 

Height Hair   n(X) n(XY) A C C
short dark  1 0 0 0  
short red  0     
short blond  2 1 1/2 1/3  
tall dark  2 0 0 0  
tall red  1 1 1 1/3 1/3
tall blond  2 1 1/2 1/3  

The remaining three rules are proper for the target class. One of them 
(Height.tall&Hair.red) is accurate (A=1) and needs no additional factors. This 
rule covers 33% of the objects of the class (C=1/3). We will sum up 
completenesses of accurate rules (C), with hope to reach to 100% coverage (by 
accurate rules). Two rules having accuracy between 0 and 1 have to be expanded 
again. Next we add attribute Eyes into those two rules (see Table 3.5). 

Table 3.5. The rules consisting of attributes Height, Hair and Eyes 

Height Hair Eyes n(X) n(XY) A C C
short blond blue 1 1 1 1/3 2/3
short blond brown 1 0 0 0  
tall blond blue 1 1 1 1/3 1 
tall blond brown 1 0 0 0  

Two rules of four have accuracy 1 and both of them have completeness 1/3. At 
this point we have found three (accurate) rules for the class ‘–’ with overall 
completeness 1 (100%). Thus the class is completely described: 

 Height.tall&Hair.red  Class.+ (C = 33%) 
 Height.short&Hair.blond&Eyes.blue  Class.+ (C=33%) 
 Height.tall&Hair.blond&Eyes.blue  Class.+ (C = 33%) 

This is one possible description for class ‘+’.  

Now we will describe the same class by the same attributes, adding them in 
another (freely chosen) order: 1) Hair, 2) Eyes, 3) Height.  

The rules consisting of attribute Hair only are given in Table 3.6. 
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Table 3.6. The rules consisting of attribute Hair 

Hair     n(X) n(XY) A C C
dark   3 0 0   
red   1 1 1 1/3 1/3
blond   4 2 2/4   

The rule Hair.redClass.+ is accurate and is included into the result, it covers 
1/3 of the class. The rule with Hair.dark has zero accuracy in the given class and 
will be not expanded. The rule with Hair.blond has accuracy between 0 and 1, 
thus we add the next attribute (Eyes) into it (see Table 3.7). 

Table 3.7. The rules consisting of attributes Hair and Eyes 

Hair Eyes   n(X) n(XY) A C C
blond blue  2 2 1 2/3 1 
blond brown  2 0 0 0  

The first of found rules has accuracy 1 and will be included into the result. Its 
completeness is 2/3. Now the cumulative completeness is 100%, thus the class 
‘+’ is (fully) covered by the (accurate) rules. 

At the same time we see that the other branch (with Eyes.brown) has zero 
accuracy and there is no reason to expand it.  

This time class ‘+’ is covered by two rules: 

 Hair.red  Class.+ (C = 33%) 
 Hair.blond&Eyes.blue  Class.+ (C = 67%) 

We have shown that the same class can be (completely) covered by different sets 
(systems) of (non-intersecting) rules depending on the order of inclusion of the 
attributes into the rules.  

As we can see, attribute Height is not necessary for distinction of classes. The 
class is described without using it. 

 

Usually we are interested in the minimal number of rules, but we do not know 
which order of attributes gives such result. Trying all possible orders is too 
laborious. For example, if we have 10 dichotomous (2-valued) attributes, then we 
should look through 210-1 =1023 combinations of attributes, i.e. by 1, 2, 3, …, 10 
attributes. It is not real to extract all these rule systems and to analyse them. 

Also, the number of factors in the rules should be possibly small. The additivity 
constraint (i.e. the rules cannot intersect) does not allow leaving out all redundant 
(inessential) factors. Compare, for example, non-additive system S4 with either 
of additive systems S2 and S3 (got by step-by-step approach using different orders 
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of attributes) (in 2.7.3, page 55). Such an additive system of rules corresponds to 
a decision tree. 

3.2.4 Problem with zero factors 

In the following we will explore the possibility to extract only such rules that do 
not contain redundancy (zero factors), deciding by the factor’s contribution to 
accuracy at the moment when it is added into the rule. We will reach the 
conclusion that we cannot say whether the factor remains positive (regarding 
factors that will be added later) or not. This conclusion is valid for step-by-step 
approach as well as approaches that produce non-additive systems of rules. 

Chesnokov (2002) suggests a non-additive system consisting of accurate normal 
rules of different rank as a solution, but gives no description how to achieve such 
desired result.  

Recall that an accurate rule contains no negative factors, all factors are positive 
or zero factors, and a normal rule consists of positive factors only. A positive 
factor makes a rule more accurate than it was without it (a negative makes less 
accurate) and a zero factor does not change the rule’s accuracy. Such influence is 
measured by the contribution to the accuracy (ΔA). For definitions see 2.7.1. 

A normal rule is not always accurate. Taking away whatever factor(s) from a 
normal rule, its accuracy decreases (because every factor in such rule has a 
positive contribution to the accuracy). 

Also, an accurate rule is not always normal (when it contains zero factor(s)). 

Example in 2.7.3 presents four different systems of rules consisting of individual 
rules that can be part of more than one system. Among them there are two normal 
accurate rules: 

 Eyes.brown  Class.‒ (A=3/3=1) 
 Hair.dark  Class.‒ (A=3/3=1) 

All longer rules are also accurate, but not normal. For example: 

 Eyes.blue & Hair.dark  Class.‒ (A=2/2=1) 

where Eyes.blue is a zero factor: 

 ΔA(Eyes.blue) =  
= A(Eyes.blue & Hair.dark  Class.‒) - A(Hair. dark  Class.‒) =  
= 1 - 1 = 0 

and Hair.dark is a positive factor: 

 ΔA(Hair.dark) =  
= A(Eyes.blue & Hair.dark  Class.‒) - A(Eyes.blue Class.‒) =  
= 1 - 2/5 = 3/5 



 
93 

Sometimes both (all) factors are zero factors, like in the rule 

 Eyes.brown & Hair.dark  Class.‒ (A= 1) 

where  

 ΔA(Eyes.brown) =  
= A(Eyes.brown & Hair.dark  Class.‒) - A(Hair.dark  Class.‒) =  
= 1 - 1 = 0 

 ΔA(Hair.dark) =  
= A(Eyes.brown & Hair.dark  Class.‒) - A(Eyes.brown Class.‒) =  
= 1 - 1 = 0 

Taking away either of the factors we get an accurate rule. 

In case of longer rules, it is possible that some factors are zero factors “together” 
– so that two or more factors at a time can be removed without changing the 
accuracy. 

Based on the same data (see Table 2.7, p. 55), an accurate rule containing only 
positive factors i.e. normal rule is: 

 Eyes.blue&Hair.blond  Class.+ (A = 1) 

where: 

 ΔA(Eyes.blue) =  
= A(Eyes.blue&Hair.blond  Class.+) - A(Hair.blond  Class.+) =  
= 1 - 2/4 = 1/2 

 ΔA(Hair.blond) =  
= A(Eyes.blue&Hair.blond  Class.+) - A(Eyes.blue  Class.+) =  
= 1 - 3/5 = 2/5 

If we take away factor Eyes.blue, we get a normal non-accurate rule: 

 Hair.blond  Class.+ (A = 2/4) 

where  

 ΔA(Hair.blond) = A(Hair.blond  Class.+) - A(  Class.+) =  
= 2/4 - 3/8 = 1/8 

 

In case of step-by-step approach (see 3.2.3) it is not easy to say whether the 
current factor is suitable in a sense it is positive (“essential”) regarding factors 
that will be added later. Adding a factor that makes a rule more accurate it may 
occur later that the factor is inessential anyway. 

For example (using data given in Table 2.7): 



 
94 

 Eyes.blue Class.+  
(A=3/5) 

 Eyes.blue&Height.tall Class.+  
(A=2/3; ΔA(Height.tall)=2/3-3/5=1/15>0) 

 Eyes.blue&Height.tall&Hair.blond Class.+  
(A=1; ΔA(Hair.blond)=1-2/3=1/3>0) 

The contributions (of the new factors) to the accuracy are positive in both steps, 
but the resultant rule contains a zero factor (Height.tall) – the rule is accurate 
without it: 

 Eyes.blue&Hair.blond Class.+ (A=1) 

We may consider making a control in the opposite direction: 

 Height.tall Class.+ (A=2/5) 
 Height.tall&Eyes.blue  Class.+  

(A=2/3; ΔA(Eyes.blue)=2/3-2/5=4/15>0) 

Occurs that Height.tall and Eyes.blue together form a normal rule (with accuracy 
below 1). However, such finding does not guarantee that both factors remain 
positive after addition of the next one(s). Addition of whatever possible factor 
(i.e. values of attribute Hair) into the last rule does not produce any normal rule, 
although we get accurate rules: 

 Height.tall&Eyes.blue&Hair.blond  Class.+ (A=1) 
 Height.tall&Eyes.blue&Hair.red  Class.+ (A=1) 

Both rules contain zero factor(s): Height.tall is a zero factor in both rules and 
Eyes.blue is a zero factor in the last rule. 

It means that the fact that some factor has a positive impact to the accuracy at 
the moment it is added into the rule does not guarantee that the factor retains its 
positiveness. 

In our example we found a branch of a search tree that gives no normal accurate 
rules. As we have seen also, the factor’s contribution to the accuracy (at the 
moment of addition) is not an adequate criterion to avoid entering such branches.  

3.2.5 The first algorithm for finding intersecting rules  

Heretofore different approaches to DA have given additive (i.e. non-intersecting) 
systems of rules. Thus it is principally impossible to eliminate all zero factors 
from the rules. Therefore our next development was to find systems of rules 
where the rules can intersect. Our first algorithm to this direction finds a possibly 
small set of rules, monitoring and taking into consideration which objects are 
covered by the found rules already. Like a step-by-step approach this one also 
produces one system of rules that is not always the best one. The presented 
algorithm is not based on neither the previous one (for step-by-step approach) nor 
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MONSA, although it is MS based and makes extracts. This algorithm uses so 
called 3D frequency tables. 

It is desired that the rules were relatively short – then it is easier to interpret them. 
For the same reason, the number of rules has not to be very large. Using the 
previously introduced step-by-step method we should find all rule systems and 
according to some criteria find from them a cover i.e. a rule set (with 
completeness 100%) consisting of the shortest rules or a rule set with the least 
number of rules. This turns out to be very labour-consuming because all the 
possible sets and orders (permutations) of attributes should be found. 

In order to facilitate the work it is reasonable to find systems of rules where the 
rules can intersect (overlap) i.e. non-additive systems of rules. It would be good 
to allow a non-fixed order of including factors as well. 

Here we will present our first algorithm for getting intersecting rules for DA. The 
system of rules it finds is non-additive (i.e. objects may be covered by more than 
one rule), accurate (i.e. consists of accurate rules only) and complete (i.e. covers 
all objects of determinable class) if there are no contradictions in the data (the 
algorithm can find them). The findable set of rules is possibly small – the potential 
rules are not included into the result if they cover only such objects that are 
covered already. No given order for including factors into the rules is used. 

The pseudocode of the algorithm is given below. 

Algorithm 
Determine tables X and Y  
S0. t:=0; Ut:= 

If all the objects in Y are covered then Goto End 
S1. Find frequencies in tables Xt and Yt: Fxt, Fyt  
S2. For each factor A such that Fyt(A)=Fxt(A) and all 

objects containing A are not covered by rule(s) 
output rule {Ui}&A, i=0,…,t 

If at least one new rule was found Goto S0 
S3. Choose a new (free) factor Ut 

If there are no factors to add then 
{Ui}, i=0,…,t is a contradiction; Goto S0 

t:=t+1; extract subtable of objects containing Ut; Goto 
S1 

End. System of rules is found 

As we are searching for accurate rules we need to know the accuracies of factors. 
Accuracy is findable using two frequencies: 1) the frequency in determinable 
class Y and 2) the frequency in the whole dataset X (see 2.7.1). At every iteration 
t we collect those two frequencies for each factor into two frequency tables: Fxt 
contains frequencies in the whole dataset and Fyt in class Y (step S1). Fxt does 
not change during the work. Frequencies in Fyt decrease after finding a new rule. 
Fx and Fy together are called 3D frequency table. Additionally the frequency 
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table of covered (by the found rules) objects (Fc in the examples at pages 97-99) 
is kept. This is one possible way to detect whether a potential rule covers any 
uncovered object and detect when the work can be finished. The use of 
frequencies is explained hereinafter. 

Our DA algorithm is recursive and extracts certain subsets Xt (t is a level of 
recursion) while working, for every Xt its corresponding Fxt and Fyt are found. 

We can detect accurate rules by the use of frequency tables. In any subset (at any 
level) holds a rule: if some factor belongs to one class only, we get an accurate 
rule including it (into the set of factors that are selected already and thus are 
common to all objects in current Xt). Such factor has equal frequencies in Fxt 
(the whole set) and in Fyt (the observable class) – in case of equal frequencies 
the accuracy is 1. A situation of this kind is easy to detect because we have both 
frequencies for each factor in frequency tables. If such new rule covers at least 
one object (in class Y) that is not covered by the rules yet, it is appended to the 
resultant set of rules. This condition is also easy to detect using the frequencies 
of covered objects (Fc). If factor’s frequency in Fc is same as in Fx and Fy then 
all objects containing it are already covered by the found rules and the potential 
rule produced by that factor is not added into result, otherwise (when the 
frequency in Fc is lower) the new rule is suitable. This way the last factor of each 
rule is found. All other factors in a rule are found in step S3. 

The frequencies in Fc are updated (incremented) every time a new rule is 
extracted; this table is independent on the recursion level (t). The end of work 
(the situation when all objects belonging to Y are covered by the found rules) is 
detected using Fc as well. If all frequencies in Fc are equal to the ones in initial 
Fy then all objects of Y are covered and the work can be finished. 

Factors before the last one are selected recursively from the current (sub)set Xt. 
The selection criteria are based on frequencies, the maximal frequency in Fyt, 
for example. In case of equal maximal frequencies in Fy the one having bigger 
frequency in Fx is preferred. 

Every time a new rule(s) is(are) found, the algorithm turns back to the initial level 
and selects a new first factor. Compared to turning back to the previous level, 
such strategy enables to find possibly short (i.e. containing possibly few factors) 
rules. 

This algorithm is able to detect a contradiction – the situation where identically 
described (by used attributes) objects belong to different classes. The algorithm 
detects it when it does not find any possible factor for extracting a next subset. It 
means that all attributes are already included into the current set of factors, but 
the accuracy is below 1. The objects covered by such contradictory set of factors 
are treated as covered objects when counting frequencies into Fc. 
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In case of contradiction the full coverage (i.e. maximal completeness) by accurate 
rules is not achievable. Optionally we may consider to output such contradictory 
non-accurate rules showing their (lower) accuracy. 

In the following we will demonstrate the work of the algorithm using data from 
(Quinlan, 1984) again (given in Table 2.7). This time we use a numerical 
representation, the coding used for attributes and their values is shown in Table 
3.8. The initial data table is given in Table 3.9. Let X is X(8,3), Xij = 1,...,3 and 
Y=4.1 {Yi: 1,2,5,7,8} (i.e. class “‒”). The frequencies of attributes’ values for X 
and Y (Fx and Fy accordingly) are given in Table 3.10. 

Table 3.8. The coding used for Quinlan’s (1984) data 

Attribute Height Hair Eyes Class 
Code 1 2 3 4 
1 short dark blue ‒ 
2 tall red brown + 
3  blond   

Table 3.9. Coded initial data table 

i \ j 1 2 3 4 
1 2 1 1 1 
2 1 1 1 1 
3 2 3 1 2 
4 2 2 1 2 
5 2 3 2 1 
6 1 3 1 2 
7 1 3 2 1 
8 2 1 2 1 

Table 3.10. The frequencies for X and Y 

Fx Kj \ j 1 2 3 Fy Kj \ j 1 2 3 
 1 3 3 5  1 2 3 2 
 2 5 1 3  2 3 0 3 
 3 0 4 0  3 0 2 0 

 

For value 1 of attribute 2 (shortly 2.1) the frequencies in Fx and Fy are equal 
which means that all objects having 2.1 belong to Y. Hence we get a rule 2.1=3 
(Hair.darkClass.‒). The frequency after “=” shows that the rule covers three 
objects (namely objects 1, 2 and 8) – this is additional information. Also for 3.2 
the frequencies are equal and we get another rule 3.2=3 (Eyes.brownClass.‒) 
that also covers three objects (5, 7 and 8). 

By those two rules  
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 Hair.darkClass.‒ (3 objects) 
 Eyes.brownClass.‒ (3 objects) 

all the objects belonging to Y are covered. The found rules are overlapping, both 
cover object 8. The result coincides with an example of a non-additive system of 
rules S4 in 2.7.3 (p. 55). 

In order to demonstrate other steps of the algorithm another example is presented. 

This time Y=4.2 {Yi: 3,4,6} (class “+”). The frequency tables Fx and Fy are given 
in Table 3.11. 

Table 3.11. The frequencies for X and Y 

Fx Kj \ j 1 2 3 Fy Kj \ j 1 2 3 
 1 3 3 5  1 1 0 3 
 2 5 1 3  2 2 1 0 
 3 0 4 0  3 0 2 0 

 

For 2.2 (attribute 2 with value 2) the frequencies in Fx and Fy are equal. The rule 
2.2=1 (Hair.redClass.+) covers object 4. 

The “free” frequencies i.e. the frequencies over non-covered objects (in Y) after 
extraction of the first rule are shown in Table 3.12. 

Table 3.12. Free frequencies for Y after extraction of the first rule 

Fy Kj \ j 1 2 3 
 1 1 0 2 
 2 1 0 0 
 3 0 2 0 

 

From here the factor starting a new rule is chosen by maximal frequency in Fy. 
As there are two (equal) maximal frequencies, the choice is made by the bigger 
frequency in Fx where the factor 3.1 has frequency 5 and 2.3 has frequency 4. 
Thus 3.1 is selected. 

Table 3.13. Extract by 3.1 

i \ j 1 2 3 4 
1 2 1 1 1 
2 1 1 1 1 
3 2 3 1 2 
4 2 2 1 2 
6 1 3 1 2 
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Table 3.14. The frequencies of extracted data 

Fx Kj \ j 1 2 3 Fy Kj \ j 1 2 3 
 1 2 2 5  1 1 0 3 
 2 3 1 0  2 2 1 0 
 3 0 2 0  3 0 2 0 

Table 3.15. The frequencies of covered objects after extraction of the first rule 

Fc Kj \ j 1 2 3 
 1 0 0 1 
 2 1 1 0 
 3 0 0 0 

 

Next the objects having 3.1 are extracted (see Table 3.13) and the frequencies for 
X and Y over the extracted data are found (see Table 3.14). The frequencies of 
covered objects (Fc) are given in Table 3.15. 

In Table 3.14 we can see two potential rules, (3.1) with 2.2 and (3.1) with 2.3. 
Looking into Fc (Table 3.15) we see that 2.2 has equal frequency here indicating 
that the object(s) containing factor 2.2 is(are) already covered by the found rules. 
Therefore 2.2 does not produce a new rule (rule 3.1&2.2=1 would be redundant 
covering the same object as rule 2.2=1). The factor 2.3 is suitable for completing 
a rule, its frequency in Fc is smaller than 2. So, the second rule is 3.1&2.3=2 
(Eyes.blue&Hair.blondClass.+), it covers objects 3 and 6. 

The two rules we have found cover all the objects belonging to Y. We detect it 
turning back to the initial level and comparing initial Fy with Fc (after extraction 
of the last rule – see Table 3.16): all the frequencies in both tables are equal. 

Table 3.16. The frequencies of covered objects after extraction of the second rule 

Fc Kj \ j 1 2 3 
 1 1 0 3 
 2 2 1 0 
 3 0 2 0 

 

This time the found rules  

 Hair.red  Class.+ (1 object) 
 Eyes.blue&Hair.blondClass.+ (2 objects) 

do not intersect. In the given data set it is possible to describe class “+” by non-
intersecting rules that do not contain any redundancy. 
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Generally the presented algorithm finds one non-additive system of accurate rules 
(for given X and Y). Compared to the approaches that find only non-intersecting 
rules (i.e. additive systems) the number of rules is not bigger (usually it is smaller) 
and the rules are shorter also. The ability to detect a contradiction is also valuable. 

However, there is no guarantee that the extracted system of rules is the shortest 
(with a lowest number of rules). Realizing the algorithm it is possible to apply 
several different principles for selecting the next factor and thus to get different 
results, one possibility is to let the user make the decision. 

3.2.6 Determinative set of rules 

Instead of finding one system of rules, it was good to find all non-redundant rules 
and then combine different covers (rule sets) from them. For that purpose we need 
an algorithm that produces (at least) all non-redundant rules as well as a procedure 
for eliminating redundant rules (if the result of the algorithm contains them). 

DSR – the set of non-redundant rules defined in this subchapter – gives a source 
for post-processing the rules. An algorithm for finding all non-redundant rules 
will be presented in the next subchapter (3.2.7). 

We are interested in possibly short rules. If there are two accurate rules 

 Eyes.blue & Hair.dark  Class.‒ (C = 40%; 2 objects) 
 Hair.dark  Class.‒ (C = 60%; 3 objects) 

we prefer the second one. It covers the two objects covered by the first rule plus 
one more object. We say that the first rule is contained in the second one or it is 
a subrule of the second rule. Comparing their left sides, the first one is longer 
containing all the factors of the shorter rule and some additional factors. Having 
such rules we consider the longer one to be redundant. 

Let a table X(N,M) be given and a set B of all possible rules describing (only) the 
class Y and each rule in B is presented only once. 

The Determinative set of rules (DSR) for class Y consists of all rules which are 
not contained in other rules of B. 

B = Ri, i=1, 2,..., K, where K is a number of all possible rules describing (only) 
the Class Y. Ri  Rj, i  j. 

DSR = Ru. Ru  DSR if there  Ri  B, Ru  Ri, i  u. DSR  B 

It means that DSR does not contain subrules of its rules. To get DSR from B we 
have to throw out all subrules of rules. We call this process „rule set 
compression“. 

Example. Let B contain 4 rules (all possible rules for Y = (Class =1)): 

 r1: IF T1=1 & T2=1 THEN CLASS=1 
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 r2: IF T1=1 & T3=2 THEN CLASS=1 
 r3: IF T2=1 THEN CLASS=1 
 r4: IF T3=2 THEN CLASS=1 

As we see, the rule r1 is contained in r3 and r2 is contained in r4. According to 
the definition DSRB = r3, r4. 

The main features of DSR are: 

1. there are no redundant attributes (zero factors) in rules, 
2. the same object in the class Y can be described by several rules. 

Such compression can be applied either during the work of the main algorithm 
(that finds the potential DSR rules), each time a new rule is found, or as a separate 
step after the main algorithm. In order to facilitate compression the following 
aspects could be taken into account: 

 The redundant rule is longer (i.e. its left side contains more factors) than 
the one that forces it out; 

 Its left side contains all the factors of the shorter one; 
 Its frequency (support) is  than this of shorter one; 
 Both rules describe the same class; 
 The longer (redundant) rule is always found before than the shorter one. 

The last property is characteristic to MS algorithms (and likely to other 
algorithms as well). After finding the rule Hair.darkClass.‒ the possible rule 
Hair.dark&Eyes.blueClass.‒ is not found, but the rule Eyes.blue&Hair.dark 
Class.‒ can be found (only) before finding the rule Hair.darkClass.‒. 

The presence of the non-redundant rules (that belong to DSR) has to be 
guaranteed by the algorithm used for finding the rules. The compression 
procedure can be applied to the rule set regardless it contains all needed rules. If 
it does not, then the result cannot be the expected one. 

Our algorithm for finding all the rules needed for getting DSR is given in the next 
section (3.2.7). It finds possibly few redundant rules. 

On the basis of DSR we can form and solve the following tasks – to find: 

1. the shortest rules (by rank48), 
2. the longest rules (by rank), 
3. the rules with specific features (for example, all rules of the rank r in 

DSR), 
4. the shortest rule system (i.e. the rule system with the smallest number of 

rules), 
5. the rule system which consists of rules with minimal ranks, 

                                                      
48 the number of attributes in the rule 
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6. all the rule systems we can form on the basis of DSR. 

Tasks 1-3 are easily solvable, but tasks 4-6 are essentially system covering tasks 
and they are NP-complex tasks. 

These tasks are important for post-analysis of rules giving several new 
possibilities for experimentation with several rule sets (subsets of DSR) and for 
describing them. We must not try to minimise the rule set during the work of a 
rule finding algorithm, we can find the best solution during the post-analysis of 
DSR. 

Using DSR and the post-analysis of rules also gives a possibility to gather 
statistics about the use of rules for classification in order to analyse the rules’ 
perspective and their power of classification. We can see which rules classify 
more accurately and which do not on the basis of the information we have about 
classified (test-set and real) objects. On this basis we can reorder the rules in the 
rule set. DSR is a good basis for developing this approach. 

Finding DSR is laborious, especially in cases of large amounts of data. The user 
can decide whether it is reasonable. If the purpose is a quick one-time information 
gathering about a data set under analysis then the use of DSR-based approach 
may not be the best one. But if the purpose is to describe the data set and through 
that discover new knowledge and get an opportunity for post-analysis of the rule 
set then this approach is a good solution. 

We have extended this DSR-approach so that the rules for all existing classes are 
found, solving thus the multiple-concept learning task (Kuusik & Lind, 2012). 
Having applied the before described compression to the results of our different 
ML algorithms (Kuusik & Lind, 2012), (Roosmann, Võhandu, Kuusik, Treier, & 
Lind, 2008) the results are identical – from that observation the idea for DSR 
comes. 

Although DA rules are not association rules, we can compare our DSR to the non-
redundant association rules (see 2.4.2.1). Zaki defines non-redundant rules as 
those that have minimal antecedents and consequents, in terms of subset relation; 
Bastide et al – as the rules with minimal antecedent and maximal consequent. In 
case of DA rules the right side of the rules is not a subject to comparison, only 
the rules with equal right side (i.e. describing the same class) are compared. Thus 
the left sides of DA rules are compared. Both approaches to non-redundant 
association rules prefer shorter left sides (minimal antecedents), the same is true 
for our DSR. 

3.2.7 Algorithm for finding all possible shortest rules  

As said before, DSR (3.2.6) is a basis for forming different sets (systems) of rules. 
Here we present a MS based algorithm that finds all rules needed for DSR and 
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some redundant rules49 (that are eliminated by compression). The rules can 
intersect, regardless of how many times the objects are covered. Redundancy 
(zero factors) in the rules is avoided as much as possible by the nature of the 
algorithm. Differently from the previous 3D-algorithm (in 3.2.5) it uses usual 
backtracking (while the former turns back to the initial level), does not track the 
coverage of objects and uses elimination technique “bringing zeroes down” from 
MONSA (2.6.1). 

This is a depth-first-search algorithm that makes subsequent extracts of objects 
containing certain factors. At each level first of all the rules (of that extract) are 
detected and then factors for making extracts of the next level are selected one by 
one. 

The algorithm uses frequency tables for Xt (all objects of current extract) and Yt 
(objects belonging to observable class of current extract), Fxt and Fyt accordingly. 
If there are equal frequencies in both frequency tables for some factor then this 
factor completes a rule. The rule includes also the factors chosen on the way to 
that extract. 

The selection criteria for choosing the next factor are based on frequencies, the 
maximal frequency in Fyt. In case of equal maximal frequencies in Fyt the one 
having lower frequency in Fxt is preferred. If only one attribute (of the extract) 
has free (unused) value(s) (indicated by frequencies over zero in Fy) then it is not 
practical to make a next (further) extract because there would be no free factors 
to distinguish objects of different classes in that extract. If there are no free factors 
(i.e. no frequencies over zero) then obviously it is not possible to make a next 
extract. In both cases the algorithm backtracks to the previous level. 

Each factor that is used for making an extract or completing a rule is set to zero 
in the corresponding Fy. Each Fy (except for the initial level) inherits all zeros of 
the previous level (we call it “bringing zeroes down”). These zeroing techniques 
prevent many redundant extracts and rules without losing the rules of DSR. 

The pseudocode of the algorithm is given below. 

Algorithm 
Determine tables X and Y  
S0. t:=0; Ut:= 
S1. Find frequencies in tables Xt and Yt: Fxt, Fyt  

If t>0 then 
For each factor A such that Fyt-1(A)=0 

Fyt(A):= 0 
S2. For each factor A such that Fyt(A)=Fxt(A) 

output rule {Ui}&A, i=0,…,t; Fyt(A):= 0 
S3. If not enough free factors for making extract then  

If t=0 then Goto End 

                                                      
49 The rules that are contained in some other rules are considered redundant (see 3.2.6). 
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Else t:=t-1; Goto S3 
S4. Choose a new (free) factor Ut 

Fyt(A):= 0 
t:=t+1; extract subtable of objects containing Ut;  
Goto S1 

End. System of rules is found 

Compared to the first algorithm for finding intersecting rules (in section 3.2.5) 
the differences are following: 

 The coverage of the objects (Fc) is not tracked; 
 It does not turn back to the initial level after extraction of a rule; 
 It uses elimination technique “bringing zeroes down” (similarly to 

MONSA – see 2.6.1); 
 The contradictions are not detected. 

Next an example using Quinlan (1984) data is presented. Here we will repeat its 
numeric representation (Table 3.9), the used coding is in Table 3.8 (p. 97). 

The initial data table is given in Table 3.17. Let X is X(8,3), Xij = 1,...,3 and Y=4.2 
{Yi: 3,4,6} (i.e. class “+”). The frequencies of attributes’ values for X and Y (Fx 
and Fy accordingly) are given in Table 3.18. 

Table 3.17. The initial data table 

i \ j 1 2 3 4 
1 2 1 1 1 
2 1 1 1 1 
3 2 3 1 2 
4 2 2 1 2 
5 2 3 2 1 
6 1 3 1 2 
7 1 3 2 1 
8 2 1 2 1 

 
Table 3.18. The frequencies for X and Y 

Fx Kj \ j 1 2 3 Fy Kj \ j 1 2 3 
 1 3 3 5  1 1 0 3 
 2 5 1 3  2 2 1 0 
 3 0 4 0  3 0 2 0 

 

For factor 2.2 (Hair.red) the frequencies in Fx and Fy are equal which means that 
all objects having 2.2 belong to Y. Hence we get a rule R1: 2.2=1 (Hair.red). The 
frequency after “=” shows that the rule covers one object (namely object 4) – this 
is an additional information. The frequency of 2.2 is set to zero in the current Fy 
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to avoid using it as a basis for making next extract(s). The current state of the 
frequency tables is given in Table 3.19. 

Table 3.19. The frequencies for X and Y after extraction of the first rule 

Fx Kj \ j 1 2 3 Fy Kj \ j 1 2 3 
 1 3 3 5  1 1 0 3 
 2 5 0 3  2 2 0 0 
 3 0 4 0  3 0 2 0 

 

Now we have to choose a factor for making a next extract. The factor with the 
biggest frequency in Fy – 3.1 (Eyes.blue) is selected. An extract (subtable of the 
table X) by 3.1 is shown in Table 3.20 and the corresponding frequency tables in 
Table 3.21. 

Table 3.20. Extract by 3.1 

i \ j 1 2 3 4 
1 2 1 1 1 
2 1 1 1 1 
3 2 3 1 2 
4 2 2 1 2 
6 1 3 1 2 

Table 3.21. The frequencies of extracted data 

Fx Kj \ j 1 2 3 Fy Kj \ j 1 2 3 
 1 2 2 5  1 1 0 3 
 2 3 0 0  2 2 0 0 
 3 0 2 0  3 0 2 0 

 

Every frequency table for Y (Fy) inherits all zeroes of the previous level 
(“bringing zeroes down”), to avoid repetitious extracts and redundant rules. 
Therefore the actual frequency of 2.2 in Fy (=1) is replaced by 0. If this frequency 
was not set to zero we would find the rule 3.1&2.2=1 which is a subrule of the 
already found rule 2.2=1. From the current extract we find the rule R2: 3.1&2.3=2 
(Eyes.blue & Hair.blond). The frequency of 2.3 is set to zero after that. 

Now all the frequencies over zero (in Fy) – 1.1 and 1.2 – are in the same column 
(attribute). Making an extract by any of these factors cannot give a rule because 
there are no attributes to use for distinguishing between different classes at the 
next level. Therefore the algorithm goes back to the previous level (that is the 
initial level). 

The frequency table Fy of that level (see Table 3.22) has got two zeroes already: 
2.2 has been set to zero when the rule with it was extracted and 3.1 has been set 
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to zero due to being the basis for extract. In Fy there are two factors with maximal 
frequency (=2): 1.2 and 2.3. Their frequencies in Fx are different, we choose the 
one with smaller frequency in Fx: factor 2.3 (Hair.blond). The extract by 2.3 is in 
Table 3.23 and its corresponding frequencies in Table 3.24. 

Table 3.22. The frequencies of the initial level 

Fx Kj \ j 1 2 3 Fy Kj \ j 1 2 3 
 1 3 3 0  1 1 0 0 
 2 5 0 3  2 2 0 0 
 3 0 4 0  3 0 2 0 

Table 3.23. Extract by 2.3 

i \ j 1 2 3 4 
3 2 3 1 2 
5 2 3 2 1 
6 1 3 1 2 
7 1 3 2 1 

Table 3.24. The frequencies of extracted data 

Fx Kj \ j 1 2 3 Fy Kj \ j 1 2 3 
 1 2 0 0  1 1 0 0 
 2 2 0 2  2 1 0 0 
 3 0 4 0  3 0 2 0 

 

There are no equal frequencies (over zero) in these frequency tables (Table 3.24). 
Again, all usable (non-zero) factors in Fy (1.1 and 1.2) come from the same 
attribute and therefore it is not reasonable to make an extract by any of them. The 
algorithm backtracks to the initial level (see Table 3.25) where again, all non-
zero frequencies (in Fy) are in the same column. The algorithm finishes its work. 

Table 3.25. The frequencies of the initial level 

Fx Kj \ j 1 2 3 Fy Kj \ j 1 2 3 
 1 3 3 0  1 1 0 0 
 2 5 0 3  2 2 0 0 
 3 0 0 0  3 0 0 0 

 

During the work two rules have been found: 

 R1: 2.2=1 (Hair.redClass.+) 
 R2: 3.1&2.3=2 (Eyes.blue & Hair.blondClass.+) 
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From this very small data set we did not find any redundant rule. An example 
with bit bigger data from which some redundant rules are found also is given in 
(Kuusik & Lind, 2011) where we presented this algorithm and DSR approach.  

The presented algorithm finds all needed non-redundant rules and additionally 
some redundant rules that can be eliminated afterwards in order to get DSR.  

In the extended version of this algorithm that finds the rules for all existing classes 
(Kuusik & Lind, 2012), for each class its Fy is used and the rules are detected for 
all classes intermittently. 

3.2.8 Types of zero factors 

Dealing with redundancy we found two different types of zero factors. Making 
the difference is important for showing the relation of zero factors (of DA) with 
the elements between closed set and its generator (see 3.1.5). Here we will 
introduce different types of ZF, the relations with CSs and generators will be 
shown in 3.2.9. 

We have found that there are two types of zero factors: 

1. the ones with zero contribution to the completeness (ΔC=0) that do not 
change the rule’s coverage (set of covered objects) and frequency (the 
number of objects it covers) and 

2. the ones with negative contribution to the completeness (ΔC<0) that 
decrease the rule’s frequency. 

We will call them zero-zero factors and zero-negative factors, accordingly. 
Recall that zero factor means a factor with zero contribution to the accuracy 
(ΔA=0), so the accuracy of the rule does not change in either case. 

The two different systems of accurate rules found by step-by-step approach (see 
3.2.1, p. 90) are: 

 A1: Height.tall&Hair.red  Class.+ (C = 1/3) 
 A2: Height.short&Hair.blond&Eyes.blue  Class.+ (C=1/3) 
 A3: Height.tall&Hair.blond&Eyes.blue  Class.+ (C = 1/3) 

and 

 B1: Hair.red  Class.+ (C = 1/3) 
 B2: Hair.blond&Eyes.blue  Class.+ (C = 2/3) 

An example of zero-zero factor is factor Height.tall in the rule A1 (with 
completeness 1/3), because the rule without it (B1) has the same completeness 
(both rules cover exactly the same objects).  

Height.short in A2 and Height.tall in A3 are zero-negative factors. If either of 
them is added into the rule B2 then the completeness of the rule decreases from 
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2/3 to 1/3. This negative difference (1/3–2/3) is the factor’s contribution to the 
rule’s completeness. A2 and A3 are subrules of B2. 

3.2.9 Relations of DA rules with closed sets and generators 

Relating DA rules with closed sets and generators gives us possibility to define 
non-redundant rule based on these concepts. We have already shown the 
correspondences between concepts used in ARM and in MONSA (in 3.1.2), thus 
now we can relate DA and MONSA in order to use the latter to produce DA rules 
(3.2.10). 

Before we will show how zero factors and DA rules relate to closed sets and 
generators, recall these concepts (introduced in 2.4.1.1). 

In frequent itemset mining an item is a binary attribute that can be either present 
or not in a transaction (a database record). For example, in market basket 
databases the items represent purchased goods. Extending the concept to multi-
valued attributes, an item is a certain attribute with a certain value from the set of 
different possible values for that attribute. For example, in case of a market basket 
database, instead of “bread” there can be either “black bread“ or “white bread” 
(i.e. attribute “bread“ with either value). Such an item corresponds to a DA factor. 

A closed (item)set is the maximal set of items common to a set of objects 
(Pasquier, Bastide, Taouil, & Lakhal, 1998), it has no superset with the same 
support (i.e. frequency) (Zaki & Hsiao, 2002). Adding whichever item decreases 
its coverage and frequency. For example, one of the closed sets in Table 2.7 is 
Hair.blond&Eyes.blue&Class.+ with frequency 2. If we add Height.short or 
Height.tall to this itemset, then the frequency changes and the resultant itemset is 
not the same closed set anymore. 

A closure is the smallest (minimal) closed itemset containing the given itemset 
(Bastide, Taouil, Pasquier, Stumme, & Lakhal, 2000) i.e. the itemset’s maximal 
superset with the same frequency. For example, the closure of Hair.red 
(frequency=1) is Height.tall&Hair.red&Eyes.blue&Class.+ (frequency=1). A 
closed set is the same as its closure. 

A (minimal) generator of a closed set is an itemset with the same closure and 
with no proper subsets with the same closure (Bastide, Pasquier, Taouil, Stumme, 
& Lakhal, 2000). Taking away whichever item increases its coverage (and 
frequency). For example, Hair.blond&Eyes.blue with frequency 2 is a generator 
of the closed set Hair.blond&Eyes.blue&Class.+ with a frequency of 2. Taking 
away either Hair.blond or Eyes.blue from the generator gives us an itemset with 
bigger frequency and thus with different closure. 

If the number of items in a closed set and its generator differs more than by one 
then also the sets between the minimal generator and the closed set can be used 
for generating a closed set and can be called generators (for example, itemsets 



 
109 

between Hair.red and Height.tall&Hair.red&Eyes.blue&Class.+). However, 
mostly “generator” means the minimal generator. 

A closed set can have more than one minimal generator. For example, the closed 
set Hair.blond&Eyes.blue&Class.+ has two (minimal) generators: 
Hair.blond&Eyes.blue and Hair.blond&Class.+. 

A closed set or a generator is said to be frequent if its frequency is more than or 
equal to a given threshold. If the frequency threshold is 2, then 
Height.tall&Hair.red&Eyes.blue&Class.+ and its generators are infrequent 
(frequency=1); Hair.blond&Eyes.blue&Class.+ and its generators are frequent 
(frequency=2). 

Now we can turn to the relations. 

A closed set is the maximal set of items common to a set of objects and its 
(minimal) generator is a minimal set of items common to that set of objects. 
Between the closed set and its generator there are such items, the addition or 
removal of which does not change the coverage and frequency of the itemset. 
Those items are similar to zero-zero factors that do not change either the accuracy 
or the completeness of the DA rule. Just the class-belonging usually is not 
observed in case of closed sets. Consequently, in order to avoid zero-zero factors 
the left side of the rule has to be a minimal generator. 

Minimal generators do not contain zero-zero factors, but they can contain zero-
negative factors. For example, the generator Height.tall&Hair.blond&Eyes.blue 
determines Class.+ (i.e. rule A3 (in 3.2.8): Height.tall&Hair.blond&Eyes.blue 
Class.+), but Height.tall is a zero-negative factor, because Hair.blond&Eyes.blue 
is enough to determine Class.+ (rule B2: Hair.blond&Eyes.blueClass.+). 
Height.tall decreases the rule’s completeness by 1/3 (from 2/3 to 1/3). Thus, if a 
generator produces a rule (generatorclass) then the rules with super-generators 
of that generator contain zero-negative factors and are redundant. 

Therefore, for class detection we need such (minimal) generators that define a 
class and have no such subset that defines a class. 

In case of non-classified data, elements between CS and its generator correspond 
to zero-zero factors (in that context we call them just zero factors – as in 3.1.5). 
Elements/items/factors that would decrease the frequency of the current itemset 
(when added), could be seen corresponding to zero-negative factors (we do not 
use such name). Without classification such “zero-negativity” does not mean 
redundancy as well as being zero-zero factor is not redundancy when the CSs are 
searched for (CSs are found according to frequency threshold). Actually, “zero” 
factor (in DA) is a factor that does not change the accuracy (the ratio of two 
frequencies) of DA rule. CSs do not have accuracy (as they do not have a 
consequent part); in case of CSs just the frequency changes or not (when some 
element/factor is included into it). 
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3.2.10 Zero Factor Free DA 

Here we will present a new approach to DA that finds non-redundant rules for all 
classes (not for one target class only) and additionally positive and negative 
association rules (at the same time). For the same antecedent three types of 
consequents can be found. For example, from “has a cow” we can conclude that 
the person belongs to the class of “rancher” (classification rule), “lives in the 
country” (positive association rule) and “is not a frequent traveller” (negative 
association rule): “has a cow”  “is a rancher” AND “lives in the country” AND 
(NOT “is a frequent traveller”). 

Corresponding algorithm is based on MONSA and its developments. In 3.2.9 we 
reached a conclusion that the left side of DA rule has to be a (minimal) generator 
(in order to contain no redundancy). We have already a MONSA-based algorithm 
for finding all generators with their closed sets (3.1.6) and excluded factors 
(3.1.7) as well as algorithm that integrates classes into MONSA (3.1.8). From the 
algorithm for finding generators (together CSs and EFs) we leave out gathering 
ECs and add the possibility to detect a class. DSR-compression (3.2.6) is used to 
remove some redundant generators (from classification rules). 

From minimal generators that define a class, we can build rules IF minimal-
generator THEN class (min-genclass). In this case we get the rules with zero-
factor-free (ZFF) left sides and therefore we call our approach Zero Factor Free 
DA (ZFF DA). 

Zero-zero factors that have to be left out from the left side of the rule can be 
moved to the right side – the conclusion part: IF minimal-generator THEN zero-
zero-factors (min-genzero-factors). Used this way they show which factors are 
accompanied by which factors. For example, an itemset Height.tall&Hair.red (the 
left side of the rule A1 in 3.2.8, p.107) contains a zero-zero factor Height.tall. 
Moving this factor from the left side to the right side we get an accurate rule 
Hair.red  Height.tall: 

A(Hair.red  Height.tall) = n(Hair.red&Height.tall) / n(Hair.red) = 1/1 =1. 

This rule informs us that everyone having red hair is tall (the rule with so low 
support as here (=1) is not the best example, of course). Such a rule is an exact 
association rule (for definition see 2.4.2). 

Actually, for Hair.red there are more factors suitable for putting to the right side: 
Hair.red  Height.tall & Eyes.blue & Class.+. This example reveals an important 
observation that a class can be detected the same way as other zero-zero factors. 
The difference is that the class attribute(s) is(are) never put on the left side of the 
rule, while all other attributes can be present in either of the sides (but not on both 
sides in the same rule). 
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Zero-negative factors cannot be moved from the left side to the right side this 
way. An itemset Height.short&Hair.blond&Eyes.blue (the left side of an accurate 
rule A2 in 3.2.8,) contains a zero-negative factor Height.short. Moving that zero-
negative factor to the right side, we get a new rule – Hair.blond&Eyes.blue  
Height.short – that is not accurate: 

A=n(Hair.blond&Eyes.blue&Height.short) / n(Hair.blond&Eyes.blue) = 1/2. 

In the following, if we use “zero factor” then zero-zero factor is meant. 

Additionally, it is possible to construct rules with a negation on the right side, 
showing which factors do not occur in the objects covered by the left side of the 
rule. We call these factors excluded factors. The form of such rule is: IF minimal-
generator THEN NOT excluded-factor (min-genNOT excl-factor). For 
example, Eyes.brownNOT Hair.red. In case of more than one excluded factor 
each of them is negated separately: (NOT excl-factor1) AND (NOT excl-factor2) 
[AND …]. 

Only such attributes are considered that do not provide any other factor in the 
same rule. For example, if holds Hair.red  Eyes.blue, then true rule(s) Hair.red 
 NOT Eyes.brown (and thinkable Hair.red  NOT Eyes.green if there were 
some persons with green eyes) is(are) not produced, because we can deduce 
ourselves that persons with red hair do not have brown (or green) eyes (because 
they all have blue eyes). 

Among excluded factors (of the same rule) more than one value of the same 
attribute can be present while for the two previously presented rule types (having 
non-negated items on the right side), for each used attribute only one possible 
value can be included. Our little data table does not contain any suitable example. 
Suppose that there were four possible eye colours: blue, brown, green and grey. 
Then it was possible that read-haired persons had either blue or grey eyes. In such 
case a negative rule for other eye colours – Hair.red  NOT Eyes.brown AND 
NOT Eyes.green – was formed, otherwise not. Attributes with less than three 
different values cannot appear among excluded factors. 

Zero factors devolve from more general rule to more specific rules: if holds AB 
then holds A&CB as well. We will give an example where the zero factor is a 
class. For example, holds Eyes.brownClass.‒ and also more specific rule 
Eyes.brown&Height.tallClass.‒ (that is a redundant rule being a subrule of 
another classification rule). 

Generally such inheritance is true for excluded factors as well, but not in case 
when an attribute (presented among excluded factors) goes to the constitution of 
closed set i.e. either generator or zero factor (because we do not consider factors 
from those attributes as excluded factors). For example, holds a rule 
Height.shortNOT Hair.red. For Height.short&Eyes.brown we find a zero 
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factor Hair.blond and get the rule Height.short&Eyes.brownHair.blond. In 
such case other hair colours (incl. red) are excluded (by logic) without 
considering them as excluded factors. When attribute Hair is included into the 
generator (Height.short&Hair.blond or Height.short&Hair.dark) then again all 
other hair colours are obviously excluded. 

Our ZFF DA offers three types of rules, having a minimal generator on the left 
side, but with different right sides: 

1. Classification rule:  
IF minimal-generator THEN class (min-genclass) 

2. (Positive) Association rule:  
IF minimal-generator THEN zero-zero-factors (min-genzero-factors) 

3. Negative association rule:  
IF minimal-generator THEN NOT excluded-factor  
(min-genNOT excl-factor) 

For the same minimal generator all three types can be combined into a single rule: 

IF minimal-generator THEN class [AND zero-factor(s)] [AND NOT excluded-
factor(s)] 
where more than one zero factors are connected by logical conjunction (AND) 
and excluded factors are negated singly before connecting by conjunction:  

(NOT excluded-factor1) AND (NOT excluded-factor2) [AND …] . 

 

Next we present an algorithm for producing zero-factor-free rules – all three 
types. The algorithm is based on finding generators. For each generator it is 
possible to detect the difference with its corresponding closed set i.e. zero-zero 
factors, a possible class among them, and to find excluded factors (from the 
attributes that are not contained in that closed set) as well. Finding of all needed 
generators is guaranteed. The majority of their unwanted supergenerators 
(containing zero factors) can be avoided, the remaining part is excluded by 
compression of the initial result (after the main algorithm). 

Supergenerators of other minimal generators are considered redundant only for 
the classification rules (the first type). In case of association rules (both positive 
and negative i.e. types 2 and 3) the support threshold (minimal allowed 
frequency) limits the depth of such rules. In our algorithm, we also stop going 
further (with association rules) when we have found a classification rule. For 
example, if we have found a rule Eyes.brownClass.‒(AND NOT Hair.red) we 
will not investigate whether there is any zero factor or excluded factor for 
Eyes.brown&Hair.dark (that actually has zero factors Height.tall and Class.‒) and 
other supergenerators of Eyes.brown (Eyes.brown&Hair.blond, Eyes.brown& 
Height.tall, Eyes.brown&Height.short). 
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3.2.10.1 Description of the Algorithm (of Zero Factor Free DA) 

This is a depth-first search algorithm that makes subsequent extracts of objects 
containing certain factors. From the root to the leaves (of search tree), the 
frequencies of extracts always decrease. Each extract is determined by a 
generator. Each generator is found only once. 

The algorithm uses frequency tables that show for each attribute the frequencies 
of all its possible values (in the set of objects for which it is found). 

The frequencies (in the frequency table) can be equal to or smaller than the 
current (“leading”) frequency (the number of the objects in the current extract). 
Equal frequency shows that all objects of the extract contain that factor. For each 
attribute, there can be at most one frequency equal to the leading one, in such 
case all other frequencies for that attribute are zeroes. Factors with such frequency 
are zero-zero factors (in the current extract). 

Detecting whether the generator determines a class is analogous. If for the class 
attribute one value has a frequency equal to the leading one (and others are 
zeroes), then all objects of the extract belong to that class. 

In addition to class and zero factors “excluded” factors can be detected. Excluded 
factor is a factor that is not presented in the current set of objects, but does exist 
in the initial data set. Only such attributes are considered that do not participate 
in the generator and zero factors (i.e. closed set). 

In order to prevent finding supergenerators (subrules) of the current generator 
(rule) the algorithm backtracks after detecting a class. Only such supergenerators 
can be avoided that are not found yet. 

If no class was detected (objects of the extract belong to different classes) then 
we can check for a possibility to find any classification rule from the current 
branch (of the search tree). This is possible when at least one of the class values 
has a frequency bigger than or equal to the given threshold. Otherwise the 
algorithm can backtrack (if desired). 

If the check(s) has(have) a positive result then the next factor to be included into 
the generator (left side of the rule) is selected by the frequency (from the 
frequency table). Its frequency has to be smaller than the frequency of the current 
extract and bigger than or equal to the given frequency threshold. The first 
condition prevents the inclusion of zero-zero factors (of the current extract), the 
second one is usual in mining frequent sets and rules. In order to find minimal 
generators only (not the ones between a minimal generator and closed set), the 
minimal one of suitable frequencies is chosen. If there is more than one factor 
with such frequency, just one of them is selected. The chosen factor together with 
the previously selected factors of the same branch forms a generator and 
determines a narrower (than the current) set of objects. 
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In order to avoid repeatedly finding already found generators, the frequency of 
the selected factor (the “leading” factor) is set to zero in the current frequency 
table. Before selecting the next leading factor, those zeroes are “brought down” 
from the frequency table of the previous level to the current level (except for the 
initial level). 

The following notation is used in pseudocode of the algorithm: 

X0 – initial data table (objects*attributes); 

FirstFT – initial frequency table (values*attribtues);  

attr – number of attributes (excluding class); 

cl– class attribute; 

t – number of the step (or level) of the recursion; 

Xt – set of objects (extract) at level t; 

FTt – frequency table for a set Xt; 

V – „leading“ frequency i.e. frequency of extract; 

gent – generator at level t; 

noclass – the truth-value of whether the class is detected for gent; 

classpot – the truth-value showing whether there is a possibility to find any 
classification rule from further extracts; 

gclass – class value of gent; 

zft – zero factors (regarding gent); 

excl – excluded factors (regarding gentzft); 

minfr – frequency threshold (minimal allowed number of covered objects); 

Factors are given as valueattribute; 

Assignments are indicated by “” (“=” is for comparison). 

The pseudocode of the algorithm is given below. 

Algorithm for finding minimal generators with zero factors, 
excluded factors and class 
Given: X0 , minfr >0  
A1. t0 ; gen0{} ; zf0{} 
A2. find FT0  
A3. FirstFTFT0 
A4. FOR EACH factor hf=1,…,attrFT0 with frequency V=min 

FT0[hf]minfr DO  
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A5.  FT0[hf]0 
A6.  make_extract(t+1; hf; V) 
  NEXT 
End of Algorithm 
PROCEDURE make_extract(t; hf; V) 
B1. gentgent-1hf  
B2. zftzft-1 ; excl{} ; gclass0 ;  

noclasstrue ; classpotfalse 
B3. separate submatrix XtXt-1 such that Xt={XijXt-1  

X.f=hf}  
B4. find FTt 
B5. IF exists value clv such that FTt[clvcl]=V THEN 
B6.   gclassclv ; noclassfalse 
B7. ELSEIF exists value clv such that FTt[clvcl]minfr THEN 
B8.   classpottrue 
  ENDIF 
B9. FOR EACH empty position p (p1,…,attr) in gent DO 
B10.   IF exists value h such that FTt[hp]= V THEN  
B11.   zftzfthp 
B12. ELSE 
B13.  FOR EACH value v (of attribute p) DO 
B14.   IF FTt[vp]= 0 THEN 
B15.    IF FirstFT [vp]> 0 THEN 
B16.     exclexclvp  
      ENDIF 
     ENDIF 
   NEXT 
   ENDIF 
  NEXT 
B17.output gent, zft, gclass, excl, V 
B18.IF V>minfr AND noclass AND classpot THEN  
B19. ZeroesDown(t)  
B20. FOR EACH hu=1,…,attrFTt with frequency  

V2=min FTt[hu]minfr and V2<V DO 
B21.  FTt[hu]0 
B22.  make_extract(t+1; hu; V2) 
   NEXT 
 ENDIF 
END PROCEDURE  
PROCEDURE ZeroesDown(t)  
C1. FOR EACH factor hu=1,…,attrFTt with frequency >0 DO  
C2.  IF FTt-1[hu]=0 THEN FTt[hu]0 
  NEXT 
END PROCEDURE 
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The initial data table X0 and the frequency threshold minfr are given. The main 
program starts with initial assignments for a level of recursion t, the empty 
generator gen0 and the empty set of zero factors zf0 (step A1). Next the 
frequency table FT0 for X0 is found (A2) and this initial state is stored in 
FirstFT (A3). In step A4 each factor with a suitable frequency (minfr) is 
chosen as a leading factor (for inclusion into generator) in ascending order (by 
frequencies). The frequency of the leading factor hf is set to zero in the frequency 
table FT0 (A5) and an extract by hf is made (A6). 

While the main program makes extracts from initial data, the recursive procedure 
make_extract handles all deeper levels. It starts with evaluating the current 
generator gent (B1) and giving initial values for the set of zero factors zft, the 
set of excluded factors excl, class value gclass of current generator, truth-
value noclass for indicating whether the class is found and truth-value 
classpot for indicating whether a class can be found from subsequent extracts 
(B2). Next the subset of objects Xt is extracted by the leading factor hf (B3) and 
the corresponding frequency table FTt is found (B4).  

In B5 we check whether there is a value clv of class attribute cl with a 
frequency equal to the leading one V. If equal frequency is found, then the 
generator gent determines a class and in B6 its class value gclass and indicator 
noclass are evaluated accordingly. Otherwise we make sure whether there is 
at least one class value with a frequency minfr (B7). In such case there is a 
potential to find a classification rule(s) from subsequent extracts and indicator 
classpot is evaluated accordingly (B8). 

Step B9 goes through all empty positions (attributes without value) in current 
generator gent (as a vector) and B10 searches for the value (of that attribute) 
with frequency a equal to the leading one V. If one exists, it is a zero-zero factor 
(regarding gent) and it is included into the set of zero factors zft (B11).  

In case when there is no value with leading frequency for position p (B12), we 
will look for its value with zero frequency (B13-B14). There can be more than 
one of them. If such element exists (has a non-zero value in FirstFT – step 
B15) then it is an excluded factor and we add it into the set of excluded factors 
excl (B16). 

In step B17 the generator is outputted together with its frequency, possible zero 
factors, excluded factors and class. Several conditions can be applied to decide 
whether to output the current generator or not – this is a possibility to leave out 
generators without a class and/or without zero factors (or without new zero 
factors at that level). If zft is not empty, the rule IF gent THEN zft can be 
produced. If a class was detected then the rule IF gent THEN gclass can 
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be produced. If excl is not empty, the rule(s) IF gent THEN NOT excl can 
be produced. 

Step B18 checks the suitability of making a subsequent extract. If the frequency 
V is above the threshold minfr, then there is a possibility to find frequency that 
is <V and minfr. If a class is not found (noclass=true), but there is hope 
to detect it from the subsequent extracts (classpot=true) by a longer 
generator(s), then we can proceed. The last two conditions can be left out if 
needed. 

If that check (in B18) gives a positive result, then the zeroes from the frequency 
table of the previous level are “brought down” (B19). The procedure 
ZeroesDown goes through the current frequency table and for each factor with 
a frequency over zero (C1) its frequency at the previous level is checked (C2). If 
the latter is zero, then the factor gets a zero frequency at the current level as well 
(C2). 

Step B20 goes through all factors that are suitable for subsequent extract i.e. with 
frequency smaller than the leading one (in order to prevent including zero-zero 
factors) and greater than or equal to the given frequency threshold minfr. Again 
the order is ascending. The frequency of the selected next factor hu is set to zero 
(B21) and a recursive call to procedure make_extract is made with a new 
leading factor hu and its frequency V2 (B22). 

Note on inheritance of excluded factors. Although excluded factors generally 
devolve from higher level to deeper levels, there are two reasons not to evaluate 
the corresponding variable excl by its value from the previous level (as we do 
for zf that holds zero factors). First, as pointed out before (p.111), when an 
attribute presented among excluded factors goes to the constitution of closed set, 
it is not considered as excluded factor any more. Second, for each attribute there 
can be more than one values that are excluded and the number of them can grow 
at each deeper level, thus we need to check that attribute anyway. 

After the main algorithm a compression takes place. DSR-compression is suitable 
for the rules with identical right side. In existing realisation (by Jõgiste) only 
generators with class are compressed and DSR (see 3.2.6) for each class is got. 
Trying to compress association rules (both positive and negative) as well, 
additional problems can occur. We have to take into account the fact that for each 
generator there can be three different types of conclusions (consequents). The 
safest option is to compress only those for which all three are identical. But in 
case of excluded factors we should remind that some attributes can be left out due 
to belonging to the closed set. Also, comparing either zero factors or excluded 
factors might be technically more difficult depending on how this information is 
stored (because there are usually more than one factor in such set). 
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If we tried to compress generators without class, zero factors and excluded factors 
(i.e. without the consequent part of rules), then only single-item generators out of 
them remained. 

 

This algorithm is realized in a master’s work of Liisa Jõgiste (2014) in a bit 
different version: without inheritance of zero factors and without checking 
whether the current branch can give any classification rule. This last property is 
presented as a suggestion for improving the algorithm in that work.  

For choosing a leading factor the author suggests the following procedure (Ibid., 
p.70): 

1. Store all the values (>0 and ≥ threshold) from data table in a list or array; 
2. Sort the list by using custom sorting conditions ( 1) value 2) column 

number 3) row number, smaller value is always preferred); 
3. Always take the first lead factor from a sorted list and then remove it or 

mark it used. 

In case of non-initial levels “it is also necessary to take into consideration used 
lead factors from higher levels to avoid using the same factor twice. This can be 
solved by keeping a list of already used factors and checking possible ones against 
them.” 

Such solution complies with the presented (here) algorithm. 

3.2.10.2 Example 

In the following example we use data from (Quinlan, 1986). The coding of the 
original text values is given in Table 3.26. We use a numerical representation of 
these data (see Table 3.27). 

The data set consists of 14 objects described by four attributes and class. The 
frequency threshold is set to 2. 

Next the working of the algorithm (3.2.10.1) is demonstrated. 

Table 3.26. The coding of the original text values 

Attri-
bute 

Outlook Tempe
-rature

Humi-
dity 

Windy Class

Code Ou Te Hu Wi Cl 
1 sunny cool high true P 
2 overcast mild normal false N 
3 rain hot    
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Table 3.27. Initial data table 

obj Ou Te Hu Wi Cl 
1 1 3 1 2 2 
2 1 3 1 1 2 
3 2 3 1 2 1 
4 3 2 1 2 1 
5 3 1 2 2 1 
6 3 1 2 1 2 
7 2 1 2 1 1 
8 1 2 1 2 2 
9 1 1 2 2 1 

10 3 2 2 2 1 
11 1 2 2 1 1 
12 2 2 1 1 1 
13 2 3 2 2 1 
14 3 2 1 1 2 

 
Table 3.28. Initial frequency table 

FT0 Ou Te Hu Wi Cl 
1 5 4 7 6 9 
2 4→0 6 7 8 5 
3 5 4 0 0 0 

 
Table 3.29. Extract by Ou.2 

G1 2    =4 
obj Ou Te Hu Wi Cl 
3 2 3 1 2 1 
7 2 1 2 1 1 

12 2 2 1 1 1 
13 2 3 2 2 1 

 
Table 3.30. Frequency table for extract by Ou.2 

FT1 Ou Te Hu Wi Cl 
1  1 2 2 4 
2  1 2 2 0 
3  2 0 0 0 

 

The initial frequency table FT0 (for initial data) is found (see Table 3.28). From 
there the first factor with minimal frequency (threshold) is chosen: Ou.2=4 (i.e. 
attribute Ou with value 2 having frequency 4). Its frequency in FT0 is set to zero 
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(indicated by “→0”). Table 3.29 presents the generator Ou.2 and the extract of 4 
objects containing it. Generator Ou.2 (indicated by G1) is shown in the first row, 
“=4” on the right of the row stands for the frequency (of the generator and 
extract). The extract of objects (with header row) follows. Next the frequency 
table FT1 for that extract is found (see Table 3.30). 

In G1 (Table 3.29) there are 3 empty positions: for attributes Te, Hu and Wi. 
None of those columns in FT1 (Table 3.30) contain a frequency equal to the 
leading one (=4), thus there are no zero-zero factors for generator G1. There are 
no excluded factors as well, because the zeroes in that FT are the same as in the 
initial FT (Hu.3 and Wi.3), thus these factors do not exist (in the data) at all. In 
the class attribute column there is a frequency 4 for value 1 (and other frequencies 
are zeroes), so the generator determines a class (IF Ou.2 THEN Cl.1). The 
algorithm backtracks to the previous level, because the class was found. That 
prevents finding subrules of the found rule (like IF Ou.2&Te.3 THEN Cl.1). 

From the initial frequency table (Table 3.28) the next factor with minimal 
frequency Te.1=4 is chosen. Extract by Te.1 (G2) and its frequency table are 
given in Table 3.31. This time the empty positions in generator (G2) are Ou, Hu 
and Wi. Column Hu contains a frequency equal to the leading one: Hu.2=4. That 
factor is a zero-zero factor regarding generator G2 and we get the rule (IF Te.1 
THEN Hu.2). Other values of the same attribute are not considered as excluded 
factors, although their frequencies are zeroes. In the class column there is no 
frequency equal to 4, thus no class is detected by G2. 

Table 3.31. Extract by Te.1 and its frequency table 

G2  1   =4 
obj Ou Te Hu Wi Cl 
5 3 1 2 2 1 
6 3 1 2 1 2 
7 2 1 2 1 1 
9 1 1 2 2 1 

FT1      
1 1  0 2 3 
2 1 ↓0  4 2 1 
3 2→0  0 0 0 

 

A class was not detected, the leading frequency (=4) is greater than the frequency 
threshold and the class column contains a frequency that is bigger than the given 
threshold (Cl.1=3) – thus there is a possibility to find a classification rule50 (for 

                                                      
50 If the number of classes is 2 and minfr=2 then there is no real need for such check. If 
the leading value is 2 then the program backtracks (line 18) due to this value. In case of 
higher leading value: if no class was found (noclass=true) then certainly one of the 
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Cl.1). Therefore, the work continues with “bringing zeroes down”, from the 
frequency table of the previous level (FT0) to the current level. At level 0 (see 
Table 3.28) the factor Ou.2 was set to zero (indicating that it has been used for 
making extracts), this zero comes into the current frequency table FT1 (in order 
to prevent possible further extract by that factor) (indicated by “↓0” in Table 
3.31). 

This frequency table contains some “suitable” frequencies – smaller than the 
leading one and greater than or equal to the threshold (i.e. <4 and >=2). The first 
(minimal) of them Ou.3=2 is chosen for inclusion into the generator and making 
a subsequent extract. At the current level its frequency is set to zero (“→0” in 
Table 3.31). 

The new generator is Te.1&Ou.3=2 (G3). The corresponding extract with its 
frequency table is given in Table 3.32. From the frequency table we find no class 
and no new zero-zero factors (in addition to Hu.2 that is inherited from the 
previous level). The rule IF Te.1&Ou.3 THEN Hu.2 can be outputted. This is a 
subrule of association rule found at the previous level (IF Te.1 THEN Hu.2). If 
such output is not wanted then the current set of zero factors has to be compared 
to the one of the previous level. In case of no difference the output should be 
skipped. (That check is not included into the algorithm presented in 3.2.10.1, it 
can be contained in the output procedure.) 

Table 3.32. Extract by Te.1&Ou.3 and its frequency table 

G3 3 1   =2 
obj Ou Te Hu Wi Cl 
5 3 1 2 2 1 
6 3 1 2 1 2 

FT2      
1   0 1 1 
2   2 1 1 
3   0 0 0 

 

As the leading frequency is equal to the threshold (=2) the algorithm backtracks 
(because there cannot be any frequency <2 and >=2). 

From the previous frequency table FT1 (Table 3.31) the next suitable factor is 
chosen: Wi.1=2. The corresponding extract and frequency table are shown in 
Table 3.33. From there we find the rule with inherited zero factor: IF Te.1&Wi.1 
THEN Hu.2. Again, the output can be suppressed if an appropriate check is 
applied. This time we find an excluded factor also (Ou.1=0), that gives a rule IF 
                                                      
frequencies is ≥minfr (if V=3 then frequencies of classes can be 2+1; if V=4 then 3+1 or 
2+2). In case of higher minfr this check can have an effect. If minfr=3 and the leading 
value V=4 then it is possible that all class frequencies are <minfr (2+2). 
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Te.1&Wi.1 THEN NOT Ou.1. The algorithm backtracks again due to the value 
of the leading frequency. 

Table 3.33. Extract by Te.1&Wi.1 and its frequency table 

G4  1  1 =2 
obj Ou Te Hu Wi Cl 
6 3 1 2 1 2 
7 2 1 2 1 1 

FT2      
1 0  0  1 
2 1  2  1 
3 1  0  0 

 

The next choice from FT1 (Table 3.31) is Wi.2=2 (see Table 3.34). This time we 
find both class and excluded factor in addition to the inherited zero factor: IF 
Te.1&Wi.2 THEN Hu.2 AND Cl.1 AND NOT Ou.2. The algorithm backtracks 
because of two reasons: the class is detected and the leading frequency is too low 
to make further extracts. 

Table 3.34. Extract by Te.1&Wi.2 and its frequency table 

G5  1  2 =2 
obj Ou Te Hu Wi Cl 
5 3 1 2 2 1 
9 1 1 2 2 1 

FT2      
1 1  0  2 
2 0  2  0 
3 1  0  0 

 

At the previous level (Table 3.31) all the factors with suitable frequencies 
(Ou.3=2, Wi.1=2, Wi.2=2) have already been used. The zero factor (Hu.2=4) is 
not suitable for making an extract. 

The algorithm backtracks to the initial level. Now there are two factors with 
“zeroed” frequencies in the frequency table FT0 (Ou.2 and Te.1 in Table 3.27). 
No generators containing either of them will be generated during the following 
work. 

The work continues in the same way. Table 3.35 presents all 39 generators found 
by the algorithm together with their frequency, possible class, zero-zero factors 
and excluded factors. Generators with inherited zero factors (G3, G4), are not 
skipped. Similarly, generators with the same excluded factors as their parent 
generator (G8, G9, G10), are listed here. 
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Table 3.35. Minimal generators, class, zero factors and excluded factors with frequency 
>1 

 Minimal 
generator 

Frequ-
ency 

Class Zero 
factors 

Excluded 
factors 

1 Ou.2 4 1   
2 Te.1 4  Hu.2  
3 Te.1&Ou.3 2  Hu.2  
4 Te.1&Wi.1 2  Hu.2 Ou.1 
5 Te.1&Wi.2 2 1 Hu.2 Ou.2 
6 Te.3 4   Ou.3 
7 Te.3&Ou.1 2 2 Hu.1  
8 Te.3&Hu.1 3   Ou.3 
9 Te.3&Hu.1&Wi.2 2   Ou.3 
10 Te.3&Wi.2 3   Ou.3 
11 Ou.1 5    
12 Ou.1&Te.2 2    
13 Ou.1&Hu.2 2 1  Te.3 
14 Ou.1&Wi.1 2   Te.1 
15 Ou.1&Hu.1 3 2  Te.1 
16 Ou.1&Wi.2 3    
17 Ou.3 5   Te.3 
18 Ou.3&Hu.1 2  Te.2  
19 Ou.3&Wi.1 2 2  Te.3 
20 Ou.3&Te.2 3    
21 Ou.3&Te.2&Wi.2 2 1   
22 Ou.3&Hu.2 3   Te.3 
23 Ou.3&Hu.2&Wi.2 2 1  Te.3 
24 Ou.3&Wi.2 3 1  Te.3 
25 Te.2 6    
26 Te.2&Hu.2 2 1  Ou.2 
27 Te.2&Wi.1 3    
28 Te.2&Wi.1&Hu.1 2   Ou.1 
29 Te.2&Wi.2 3   Ou.2 
30 Te.2&Wi.2&Hu.1 2   Ou.2 
31 Te.2&Hu.1 4    
32 Wi.1 6    
33 Wi.1&Hu.1 3   Te.1 
34 Wi.1&Hu.2 3   Te.3 
35 Hu.1 7   Te.1 
36 Hu.1&Wi.2 4   Te.1 
37 Hu.2 7    
38 Hu.2&Wi.2 4 1   
39 Wi.2 8    
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The result contains 11 generators with class (suitable for producing rules IF 
generator THEN class), 6 generators with zero factor(s) (suitable for producing 
rules IF generator THEN zero-factors) and 22 generators with excluded factor(s) 
(suitable for producing rules IF generator THEN NOT excluded-factor). One 
generator (G5) has all three types of consequents; some generators have two of 
them. 10 generators have none of the three. Of course, it is possible not to output 
them. Also it is possible filter out (or not to output) generators without class or 
generators without zero factors or without excluded factors. 

 

For Class 1 (Cl.1) 8 generators were found: G1, G5, G13, G21, G23, G24, G26 
and G38. Two of them are supergenerators of other generators: 

 G21 (Ou.3&Te.2&Wi.2=2) is a super-generator of G24 (Ou.3&Wi.2=3); 
 G23 (Ou.3&Hu.2&Wi.2=2) is a super-generator of G24 (Ou.3&Wi.2=3) 

and G38 (Hu.2&Wi.2=4). 

Adding factor Te.2 into G24 causes a decrease in frequency (from 3 to 2), thus 
Te.2 in G21 is a zero-negative factor. Adding Hu.2 into G24 also decreases the 
frequency by 1; adding Ou.3 into G38 decreases the frequency by 2 (4-2). Both 
are zero-negative factors in G23, but not at the same time. 

In order to remove such redundant generators (that contain zero factors), a 
compression is applied to each class in the preliminary result. 

In case of removal of such redundant generator we can lose (together with 
redundant classification rule) possible association rules as well. G21 does not 
have neither zero factors nor excluded factors. G23 has an excluded factor Te.3. 
This time two of its parent generators – G22 (without class) and G24 (with 
class) – have the same excluded factor; thus we will not lose this information. 

The redundant generators (in the preliminary result) are always found before their 
non-redundant subgenerators. It can be useful to take this fact into account while 
removing them. 

In addition, the frequencies can be used to select potential redundant rules. The 
generators containing zero-negative factors have a smaller frequency than their 
subgenerators, the ones with zero-zero factors have equal frequency. Thus only 
the generators with a smaller or equal frequency should be checked. 

After the compression 6 generators are left for Class 1. Table 3.36 lists them 
together with the rules based on them, using the original text values and full 
attribute names (according to the correspondence shown in Table 3.26). 
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Table 3.36. Minimal generators of class 1 (Class.P) and corresponding generator-
based rules 

 Minimal generator  Rules 
G1 Outlook.overcast IF Outlook.overcast THEN Class.P 
G5 Temperature.cool 

&Windy.false 
IF Temperature.cool&Windy.false THEN Class.P  
IF Temperature.cool&Windy.false THEN 

Humidity.normal 
IF Temperature.cool&Windy.false THEN  

NOT Outlook.overcast 
G13 Outlook.sunny& 

Humidity.normal  
IF Outlook.sunny&Humidity.normal THEN Class.P 
IF Outlook.sunny&Humidity.normal THEN 

Temperature.hot 
G24 Outlook.rain 

&Windy.false  
IF Outlook.rain&Windy.false THEN Class.P 
IF Outlook.rain&Windy.false THEN  

NOT Temperature.hot 
G26 Temperature.mild 

&Humidity.normal  
IF Temperature.mild&Humidity.normal THEN 

Class.P 
IF Temperature.mild&Humidity.normal THEN  

NOT Outlook.overcast 
G38 Humidity.normal 

&Windy.false  
IF Humidity.normal&Windy.false THEN Class.P 

 

For each listed (minimal) generator (in Table 3.36) we get a zero-factor-free 
classification rule (IF minimal generator THEN class). For example, from G5 we 
can conclude: IF Temperature.cool&Windy.false THEN Class.P. Such a 
conclusion holds in the given data set (Table 3.27). 

Generator G5 has zero factors also, this gives an association rule (IF minimal 
generator THEN zero-zero factor(s)): IF Temperature.cool&Windy.false THEN 
Humidity.normal. It means that Temperature.cool&Windy.false is always 
accompanied by Humidity.normal. 

As we saw already, Hu.normal actually comes with Te.cool (see G2 in Table 
3.35) and it descends to all supergenerators (subrules) of Te.cool (G3, G4, G5). 

A generator together with its zero-zero factors forms a closed set – the set of all 
common factors of covered objects. No other object (in given data set) contains 
all those factors. Two objects covered by minimal generator 
Temperature.cool&Windy.false, have 3 factors in common: Temperature.cool & 
Windy.false & Humidity.normal. 

G5 has excluded factors also, thus we get a negative association rule (IF minimal 
generator THEN NOT excluded-factor): IF Temperature.cool&Windy.false 
THEN NOT Outlook.overcast. This rule says that when it is cool and not windy 
then the outlook is not overcast (in the given data set). 
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Thus from minimal generator Temperature.cool&Windy.false (G5) we can 
conclude Class.P and presence of Humidity.normal and absence of 
Outlook.overcast. 

3.2.10.3 About detecting zero factors  

The problem that is not fully solved by the presented algorithm is detecting and 
avoiding some zero factors in (the left side of) the rules. Being a zero factor 
regarding the final (class-determining) itemset (left side of the rule) is not 
detectable at the moment the item is included into (the left side of) the rule. 

Only the lastly added factor in the rule (that completed the rule) is certainly a 
positive (thus non-redundant) factor. Any other factor might turn out to be a zero 
factor. Therefore, the number of factors to check is one less than the rank (i.e. the 
number of factors) of the rule. 

For making sure whether some factor is inessential regarding other factors in the 
rule, we need two frequencies of an itemset that consists of all those other factors 
and does not contain the factor under consideration: 1) how many objects this 
itemset covers, 2) how many objects from the concluded class it covers. Extracts 
by such itemsets have not been explored by that moment yet. They will be made 
later, in different branches of the search tree. The redundant generators are always 
found before their subgenerators. 

The complexity of detecting zero factors grows with the fact that sometimes more 
than one of them can be excluded at the same time. For example, from the itemset 
ABCD we might discover zero factors A, B and C in such a way that A is a zero 
factor “alone”, but B and C are zero factors also “together” – thus there are two 
zero-factor-free itemsets (covering the same objects as ABCD): BCD and AD. 
Another possibility is that zero factor A can be accompanied by either B or C 
(ZFF itemsets are CD and BD, accordingly). 

In our example (see Table 3.35, p. 123) generator G23 contains two zero factors 
that are zero-negative “alone” i.e. they cannot be thrown out at the same time. 
Excluding Hu.2 gives us G24. Excluding Ou.3 gives us G38. If there were a 
generator Wi.2 (determining Cl.1) instead of G24 and G38, then both zero factors 
could be excluded from G23 at the same time. 

Thus, the detection of zero factors in the rule alone is not enough, we also need 
to know in which combinations these factors could be excluded from the rule. 

Moreover, if we figure out an effective way to detect zero factors then we also 
have to find a way to prevent finding appropriate ZFF rules (generators) later. 

In our approach we do not use this kind of detection. It seems to be more 
reasonable to apply compression to the found rules. That procedure requires no 
access to the initial data, only the rules are compared. A shorter rule pushes out a 
longer one that contains all the factors of the shorter rule. Both rules belong to 
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the same class. A longer (redundant) one is always found before the shorter one 
and has a smaller or equal frequency. These conditions (same class, finding order, 
frequency) and also comparing the ranks of the rules reduce the number of 
possible redundant rules regarding a certain (shorter) rule. 

Such a check may be performed each time a new rule is found or after finding all 
rules (by the main algorithm). We use the second option – compression as a 
separate compact step. The first option would save storing space of rules during 
the work of the main algorithm. 

3.2.11 Discussion 

Compared to original DA we have done several improvements: 

 Allowing non-overlapping rules with different length vs the same fixed 
length for all rules (see 3.2.3) 

 Creating 3 algorithms for overlapping rules 
o Finding possibly small set of possibly short rules (3.2.5) – this is 

similar to usual ML rule set 
o Finding all non-redundant rules (+ DSR-compression) (3.2.7, 

3.2.6) – the found set is comparable to the set of CARs51 
o ZFF DA (3.2.10): finding all non-redundant classification rules 

for all classes + positive and negative ARs 

ZFF DA has similarities with both ML and ARM. Like the original DA, it can be 
called descriptive supervised rule discovery (SDRD), but actually does not fit 
under its definition. We are not aware of any other approach finding classification 
and association rules at the same time (as does ZFF DA). 

Similarly to ML, ZFF DA finds classification rules. The purpose is different: in 
ML the rules are used to predict future or missing values, ZFF DA uses them for 
description. Nevertheless, the classification function of ZFF rules52 (that is not in 
the scope of this thesis) has been studied by Fjodor Ševtšenko in his master’s 
thesis (Ševtšenko, 2017). He has proposed three different ways to measure the 
prediction accuracy and has found that ZFF rules have a high predictive power. 

For classification usually a possibly small set of rules is preferable. Our approach, 
on the contrary, is to find all non-redundant rules – that set (called DSR) gives a 
possibility to find different covers according to user’s needs. Such approach is 
similar to associative classification in case of which from the set of found rules 
the suitable classifier is formed. Obviously, finding a bigger set is 
computationally more burdening, but with development of hardware this burden 

                                                      
51 Class association rules (from associative classification) 
52 Such usage (for predictive purpose) can be seen as associative classification. 
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is decreasing continually. From a technological side, Ševtšenko (2017) has 
parallelized the algorithm, obtaining the growth of speed 17 times53. 

Usually the rules are found for one (or more) determined target class(es), not for 
all existing classes. Determining target class(es) is not a problem for ZFF DA. 

Classification rules found by ZFF DA can be called class association rules 
(CARs)54 as the algorithm finds them in the manner of finding ARs rather than 
classification rules. 

Compared to “usual” ARM we can bring out two differences. First, our approach 
finds only exact rules (i.e. with accuracy/confidence 100%) while usually a lower 
threshold can be used (set by the user). The suitability of so high threshold (i.e. 
100%) depends on the data. We admit that in some cases there are no exact rules 
(with required support/frequency) at all and then we cannot find anything. 
Second, as ARs are found as additional information to CARs in our case, the 
search in the current branch is normally discontinued after finding a CAR (while 
usually backtracking takes place when the support threshold is met). 

Compared to the closest approach under SDRD – subgroup discovery (SD) – the 
difference is that ZFF DA finds all non-redundant CARs according to support 
threshold while SD looks for the “most interesting” rules (more exactly, the rules 
that have the most unusual statistical characteristics), thus skipping part of the 
rules that can be found by ZFF DA. 

Concerning negative ARs (2.4.2.2) we have to bring out that ZFF DA finds only 
one kind of them (out of three possible ones), namely X ⇒￢Y. 

 

All these methods – classification and association rules, subgroup discovery and 
associative classification – have their roots in the previous century. 

Already in 2006 Ceglar and Roddick stated that „the fundamentals of association 
mining are now well established and there appears little current research on 
optimizing the performance of classic itemset identification“. /…/ “The majority 
of current research involves the specialization of fundamental association mining 
algorithms to address specific issues, such as the development of incremental 
algorithms to facilitate dynamic dataset mining or the inclusion of additional 
semantics (such as time, space, ontologies, etc.) to discover, for example, 
temporal or spatial association rules.” (Ceglar & Roddick, 2006) 

                                                      
53 After completing his thesis he obtained the growth of speed 37,5 times already. 
54 This term is from associative classification where ARs with certain class as a 
consequent are found. 
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In classification also the basics have been developed many years ago already. In 
the latest developments the rule-based classification methods seem to be less used 
than neural networks for example. Especially popular is Deep Learning55. 

The hottest topic in DM is Big Data mining. Big Data56 means not only a huge 
amount of data, but also different sources and formats, rapid continuous growth, 
variety, variability, …. “In response to the problems of analyzing large-scale data, 
quite a few efficient methods, such as sampling, data condensation, density-based 
approaches, grid-based approaches, divide and conquer, incremental learning, 
and distributed computing, have been presented.” (Tsai, Lai, Chao, & Vasilakos, 
2015). 

In 2006 a representative group of awarded researches brought out 10 most 
influential data mining algorithms (Wu, et al., 2008). Among these we can find 3 
rule-based ones: C4.5 (Quinlan, 1993), Apriori (Agrawal & Srikant, 1994) and 
CART (Breiman, Friedman, Stone, & Olshen, 1984). Apriori represents ARM, 
while the two others are intended for classification. These good old algorithms 
are adapted to modern technologies like distributed and parallel processing. 

For instance, in frequent pattern mining, three implementations of Apriori57 in the 
MapReduce58 framework are proposed in (Lin, Lee, & Hsueh, 2012) and FP-
tree59 is combined with DH-TRIE in (Yang, Shi, Xu, Liang, & Kirsh, 2011). 

55 Deep learning refers to a class of machine learning techniques, where many layers of 
information-processing stages in hierarchical architectures are exploited for pattern 
classification and for feature or representation learning. It is in the intersections among 
the research areas of neural network, graphical modeling, optimization, pattern 
recognition, and signal processing. (Deng, 2014) 
56 According to (Borne, 2014) Big Data is defined through 10 Vs (volume, velocity, 
variety, veracity, validity, value, variability, venue, vocabulary, and vagueness) that 
“represent ten different challenges associated with the main tasks involving big data (/…/ 
capture, cleaning, curation, integration, storage, processing, indexing, search, sharing, 
transfer, mining, analysis, and visualization)”. 
57 Apriori (Agrawal & Srikant, 1994) is a basic level-wise algorithm for association rule 
mining. 
58 MapReduce is a programming model and an associated implementation for processing 
and generating large data sets enabling automatic parallelization and distribution of large-
scale computations, running on a large cluster (Dean & Ghemawat, 2004).  
59 FP-tree (frequent pattern tree) is a compressed structure for storing information about 
frequent patterns and is used by FP-growth method for finding frequent patterns; both 
proposed in (Han, Pei, Yin, & Mao, 2004). 
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For classification (in big data context) other methods than rule-based ones are 
rather used e.g. SVM60 and GA61 for predicting hazardous weather conditions 
(Lee, Hong, & Lee, 2014), two types of neural networks (SOM62 and MBP63) for 
biomedical classification problems (Hasan, Shamsuddin, & Lopes, 2015), SVM 
on quantum computer (Rebentrost, Mohseni, & Lloyd, 2014). 

Our work is presented on an algorithmic level, the choice of technological means 
is left to the developer. Thus, we cannot compare our work to these latest trends 
in DM. 

Literally ZFF DA is supervised descriptive rule discovery, but has no analogue. 

3.3 Universal generator of hypotheses 

Here we present an idea for Universal Generator of Hypotheses (UGH) – one 
possible framework for gathering different descriptive tasks solvable by GH and 
DA. It is needed to get an overview of what is done yet and what still needs a 
solution. 

The block diagram of Universal Generator of Hypotheses is shown in Figure 3.1. 
In the following “block N” will be often referred to as BN (for example B5 instead 
of block 5). 

First of all, it is possible to define the set of observable objects (narrower than in 
initial data). It is shown as a logical expression (in block 2). In a sense of DA the 
narrowing of universal context takes place. Context is the set of qualities that 
describe the whole group (the ones, on the ground of which the objects are 
selected). The qualities common to the whole initial data set determine the 
universal context. In the same data set it is not possible to widen the context, it is 
the widest there. Thus the context can be changed only by narrowing. For that 
purpose the qualities on which basis to make the restriction have to be shown. 
Usually it is needless to observe the attributes that determine the context in the 
further analysis, since they describe the whole subset under examination. 
However, these attributes might be of interest if they can have more than one 
value. 

60 SVM (support vector machine (Vapnik, 1995)) is a supervised machine learning 
algorithm that classifies vectors in a feature space into one of two sets, given training data 
from the sets (Rebentrost, Mohseni, & Lloyd, 2014). 
61 GA (genetic algorithm) is an evolution-inspired computational model and global 
optimization technique developed by John Holland in 1975 (book titled Adaptation in 
Natural and Artificial Systems). 
62 SOM (self-organizing map), introduced in (Kohonen, 1981), is an algorithm for 
exploratory data analysis which provides mapping from high-dimensional features to 
low-dimensional features (Hasan, Shamsuddin, & Lopes, 2015). 
63 MBP (multiple back-propagation (Lopes & Ribeiro, 2001)) is a hybrid learning 
algorithm for multi neural network. 
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Further there are two possibilities: 

1) The researcher (user) does not partition attributes (objects’
characteristics) under consideration – presented by blocks 3..8 on the left
side of the scheme;

2) The researcher divides attributes into causes (C) and effects (E) – blocks
9..19 on the right side of the scheme.

In the first case (blocks 3..8) simply the enumeration of analysable attributes is 
given to the system, i.e. it is not required to observe all the attributes that are used 
for describing the objects. It is possible to find existing value combinations of 
those attributes (B5, B6) or associations/rules in the form of C→E where the 
causes C and effects E are generated automatically, each attribute can be on either 
side of found association – i.e. association rules are found (B7, B8). In B5 found 
combinations can consist of different subsets of given attributes (“combinations 
by 1,..,M” on the diagram). In B6 all existing value combinations of those 
attributes containing all given attributes (“combinations by M”) are found. 
Similarly, the found rules can contain different subsets of given attributes (B7) or 
have to contain all given attributes (B8). 

If the researcher distinguishes between cause-attributes (C) and effect-attributes 
(E) (blocks 9..19), then the rules having cause-attributes in their antecedent and 
effect-attributes in their consequent are found. Both C and E can be given as a list 
of attributes. Both can be of either fixed-length (containing all given attributes) 
or free-length (containing a subset of given attributes). If C or E has to contain 
all given attributes, then obviously zero factors cannot be left out from these 
combinations. 

The general cases are presented in blocks 16..19. Block 18 presents the case 
where both sides of found rules can contain different subsets of attributes. In B17 
the rules are restricted to the ones that contain all given effect-attributes in their 
right sides (consequents); in B19 the left sides (antecedents) have such restriction. 

Either C or E can be given as a logical expression. 

In blocks 10..12 the user examines what reasons lead to specified effect. The 
logical condition over effect-attributes determines the set of observable objects – 
the target class. This is the usual DA (and ML) task. 

Blocks 13..15 represent a case, where the user investigates what are the effects 
resulting from specified cause(s). The set of observable objects is determined by 
a logical condition over cause-attributes. For certain C (B13) there can be only 
one accurate rule or no such rules at all. Therefore lower (than 1) threshold for 
accuracy (i.e. confidence) could be reasonable. 

Determining the set of observable objects is not the same as determining the 
context (in B2). In case of determining a context the objects that are not contained 
in it, are totally left out from the analysis. In case of determining certain effects 
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(B10) or causes (B13) the set of observable objects are positive examples and all 
others are negative examples (in terms of ML). 

Finding “combinations by M” from a given list of M attributes means finding all 
existing (with at least required frequency) “full-length” combinations i.e. 
conjunctions that contain all given attributes including zero factors. 
“Combinations by 1,…,M” can be conjunctions of any subset of given M 
attributes. These combinations can be either minimal – containing no zero factors 
(i.e. generators) or maximal – containing all possible zero factors (closed sets). 
Set of minimal combinations “by 1,…,M” usually does not contain all 
combinations “by M” – the ones containing zero factors are missing. Set of 
maximal combinations “by 1,…,M” contains all combinations “by M”; but it is 
not guaranteed to contain all combinations “by L” where L<M. 

The result of B6 is a subset of the result of B5 in case of equal frequency threshold 
(and the same list of given attributes and the same context, of course). 

Preferring zero factor free (ZFF) rules with minimal antecedent (if C has free 
length) and maximal consequent (if E has free length) their left sides “by 
1,…,M1” (in B11, B17, B18, B7) are minimal combinations and right sides “by 
1,…,M2” (in B14, B19, B18, B7) are maximal combinations. 

In such case, for the same lists of M1 C-attributes and M2 E-attributes (and other 
equal conditions: context, frequency threshold, accuracy threshold): 

 The result of B17 is a subset of the result of B18; but the result of B19 
usually is not a subset of the result of B18. 

 The result of B15 is a subset of the result of B14. If B14 does not contain 
a rule with |E|=M2 (there can be only one such rule) then the result of 
B15 is empty. 

 The result of B12 is not a subset of the result of B11. 
 If E (in B10) is a conjunction (or a single item) consisting of M2 

attributes then the result of B11 is subset of the result of B17 and the 
result of B12 is a subset of the result of B19. 

 If C (in B13) is a conjunction then the result of B14 is a subset of the 
result of B19. For the result of B15 there is no such relation. 

If the list of attributes in B4 consists of M1 C-attributes and M2 E-attributes from 
B16 (M=M1+M2) then the result of B7 contains all “minimal combinations by 
1,…,M1” (left sides) and thus all rules of B18. If the left side of a rule (in B7) 
contains less than M1 attributes, then its right side (that is a maximal 
combination) can contain some E-attributes, but those can be just not considered 
for B18. For example, if C={C1;C2;C3} and E={E1;E2} and the result of B7 
contains a rule C1&C2→C3&E1, then for B18 the rule is C1&C2→E1. 

The result of B7 might not contain all the rules that constitute the result of B8, 
because finding subrules is prevented (in B7). For example, if the set of attributes 
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is {X;Y;Z} and there exists a rule X→Y then its subrule XZ→Y is not found in 
B7. In B8 XZ→Y is needed instead of X→Y. 

Setting thresholds for frequency (i.e. support) and accuracy (i.e. confidence) is 
not shown on the scheme. 

For giving examples we use Table 3.27 (p. 119). If the list of attributes (in B4) is 
{Ou;Te;Hu} and minimal allowed frequency (support threshold) is 2, then 
“combinations by 1,…,M” (all closed sets) of those attributes (B5) are: 

CS1: Hu.1=7 
CS2: Hu.1&Te.2=4 
CS3: Hu.1&Te.2&Ou.3=2 
CS4: Hu.1&Ou.1=3 
CS5: Hu.1&Ou.1&Te.3=2 
CS6: Hu.1&Te.3=3 
CS7: Hu.1&Ou.2=2 
CS8: Hu.2=7 
CS9: Hu.2&Te.1=4 
CS10: Hu.2&Te.1&Ou.3=2 
CS11: Hu.2&Ou.3=3 

CS12: Hu.2&Ou.1=2 
CS13: Hu.2&Ou.2=2 
CS14: Hu.2&Te.2=2 
CS15: Te.2=6 
CS16: Te.2&Ou.3=3 
CS17: Te.2&Ou.1=2 
CS18: Ou.1=5 
CS19: Ou.3=5 
CS20: Ou.2=4 
CS21: Ou.2&Te.3=2 
CS22: Te.3=4 

 

There is no combination Te.1=4 because this one is not a closed set, but a part of 
CS9. (Generally, if A and A&B have equal frequency, then combination A is not 
presented.) All other possible combinations have too low frequency (for example, 
Hu.1&Te.3&Ou.2=1) or do not exist (for example: Ou.3&Te.3). Combinations 
containing all given attributes (B6) are: CS3, CS5, CS10. 

Accurate rules of any length (B7) are: 

 R11: Te.1  Hu.2 (4) 
 R12: Te.3 & Ou.1  Hu.1 (2) 
 R13: Ou.3 & Hu.1  Te.2 (2) 

All other possible rules have too low frequency (Hu.2&Te.3→Ou.2 (1), for 
example) and/or accuracy less than 1 (e.g. Te.2→Ou.3 (3) with A=3/6). Rules 
that contain all given attributes (B8) are: R12, R13, and additionally 
Te.1&Ou.3→Hu.2 (2) that is a subrule of R11 containing zero-negative factor 
Ou.3. Other possible subrules of R11 have frequency 1 (for example: 
Te.1&Ou.1→Hu.2). 

Let C={Ou;Te} and E={Hu;Wi} in B16. The rules with free-length C and free-
length E (B18) with frequency threshold 2 are: 

 R21: Te.1  Hu.2 (4) 
 R22: Te.3 & Ou.1  Hu.1 (2) 
 R23: Ou.2 & Te.3  Wi.2 (2) 
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With frequency threshold 1 we can find additionally the rules having two 
attributes on their right side: 

 R24: Ou.2 & Te.1  Hu.2&Wi.1 (1) 
 R25: Ou.2 & Te.2  Hu.1&Wi.1 (1) 
 R26: Te.1 & Ou.1  Hu.2&Wi.2 (1) 

The result of B19 (where each antecedent has to contain all C-attributes) with 
frequency threshold 2 would contain R22, R23, and additionally 
Te.1&Ou.3→Hu.2 (2) that is not found in B18, because it is a subrule 
(specialization) of R21. At the same time rules R24 and R26 containing Te.1 in 
their antecedents are not subrules of R21, because they have different 
consequents. 

The result of B17 (where each consequent has to contain all E-attributes) with 
frequency threshold 2 is empty; with frequency threshold 1 it consists of R24, 
R25, and R26. Other combinations of Ou and Te either do not exist (Ou.3&Te.3) 
or do not have an accurate consequent (Ou.1&Te.2 and Ou.3&Te.2) or have only 
“partial” consequent (R22, R23). 

If C={Ou;Te;Wi} and E=Hu.2 in B10 then accurate rules having different 
number of attributes in their antecedent (B11) with frequency threshold 1 are: 

 R31: Te.1  Hu.2 (4) 
 R32: Ou.1 & Te.2 & Wi.1  Hu.2 (1) 

The result of B12 (with fixed-length left side) contains rule R32 and – instead of 
R31 – all existing combinations containing Te.1: 

 Te.1 & Ou.1 & Wi.2  Hu.2 (1) 
 Te.1 & Ou.3 & Wi.2  Hu.2 (1) 
 Te.1 & Ou.3 & Wi.1  Hu.2 (1) 
 Te.1 & Ou.2 & Wi.1  Hu.2 (1) 

If C=Te.1 and E={Hu;Wi} in B13 then the result of B14 is: 

 Te.1  Hu.2 (4) 

There are no accurate rules containing all given attributes for E (B15). With 
accuracy threshold 50% the result of B15 would be: 

 Te.1  Hu.2 & Wi.1 (2); A=2/4 
 Te.1  Hu.2 & Wi.2 (2); A=2/4 

3.3.1 Covering UGH with algorithms 

The result of B5 can be found by Generator of hypotheses (described in 3.1.1) 
and the result of B6 is its subset. 
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In B7 association rules are searched for, the result is achievable using ZFF DA 
(see 3.2.10, the second type of rules64). ZFF DA covers also finding classification 
rules with one class attribute and free-length left side i.e. the results of B11 and 
B17 (and B18) with a restriction M2=1. 

If we use DSR (consisting of all ZFF rules65) as a basis from which to select rules 
according to the different cases presented in UGH, we can find suitable ZFF rules 
only, all non-ZFF rules are not found. If the presence of zero factors in the 
antecedent is expected, then DSR-approach is not suitable. However, our 
algorithm for finding ZFF rules can be modified in different ways in order to find 
different rule sets presented in UGH. 

 

ZFF DA can be adapted to allow more (than one) class attributes. For the cases 
where M2>1 the algorithm has to be extended in two different modes:  

1) the rules with only “full” consequent (that contains all M2 attributes) are 
outputted – for the cases where E has to be of fixed length (“combinations by 
M2” in B17 (and B15));  

2) the rules can have any subset of M2 attributes in their consequent 
(“combinations by 1, …,M2” in B18 and B19 (and B14)).  

After finding a “partial” class (i.e. not all class attributes have a value) in a search 
tree: 1) output a rule if “partial class” is allowed (and the consequent is not exactly 
the same as at previous level, otherwise the rule is a specification of that previous 
one and is not outputted); 2) continue the search. After reaching a “full” class the 
program has to backtrack (after outputting the rule). 

If C has to contain all given M1 attributes (B12, B19) then all frequent 
combinations of them have to be found and zero-zero factors cannot be left out 
from the antecedent. In such case both factors constituting a generator and zero-
zero factors are considered as a left side and the rules are outputted only when 
they together include all M1 attributes (and the rule has such right side 
(consequent) as required). In case of such modification there is nothing to 
compress (by DSR-compression). 

In case of B8 such rules are searched for that their antecedent and consequent 
together contain all given attributes. In such case shorter rules are not outputted 
and the program does not backtrack at that point. Only if all attributes are 

                                                      
64 The given description of ZFF DA does not contain an option to find only association 
rules (without finding classification rules), but this is a minor change to give such 
possibility (not to check a class and backtrack after finding a class). 
65 Practically, the quality of DSR depends on the quality of the rule set before 
compression. 
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involved it is time to output the rule and backtrack. Again, DSR-compression 
(that compares rules with identical right sides) is not needed66. 

Reasonable solution for using logical expressions to determine either E (B10) or 
C (B13) is to create a new attribute such that its positive value corresponds to the 
given condition. This way more complex expressions (than just conjunction) can 
be used. 

For B10..B12 it means that we have find the rules for positive class (only) and 
we can use our ZFF DA (without need to extend it to many class attributes) and 
other methods that consider only one class attribute. 

In B13..B15 only one extract is made, by the positive value of the new attribute 
(corresponding to given C (B13)). As mentioned already, for certain C there can 
be only one accurate rule or no such rules at all. This number of rules is true for 
accuracy threshold (i.e. minconf) >50% as well. There is more hope to find a 
“partial” consequent (for B14) than a “full” consequent (B15, B14). 

For cases with fixed-length E (“combinations by M2”) in B17 (and B15) all 
different combinations can be coded and represented by one class attribute – such 
solution is reasonable for a small number of different combinations. This way the 
methods considering only one class attribute can be used. In case of fixed-length 
C (B19, B12) probably the number of all different combinations (“by M1”) is not 
small enough (to be beneficial to code all existing combinations before searching 
the rules and decode them for presenting the result). 

Our other algorithms (besides ZFF DA) are intended for single-concept learning 
(i.e. finding rules for one class at a time) and enable only one class attribute. To 
get rules for more classes (represented by one class attribute) they should be used 
repetitively. The left sides of the rules have free length (i.e. are “combinations by 
1,…,M”) in all three cases. 

An algorithm for finding all possible shortest rules (see 3.2.7) together with DSR-
compression gives the same rules as ZFF DA (with compression), but for one 
class only. The first algorithm for finding intersecting (DA) rules (3.2.5) gives a 
smaller set of rules trying to cover each object by a possibly small number of 
rules. Step-by-step approach (3.2.1) gives rules that do not intersect (i.e. additive 
system) – this is the additional restriction. The last two do not guarantee the 
minimality of combinations in the antecedents i.e. the found rules can contain 
zero factors in their left sides. 

All three algorithms can give a result for B11 with a restriction M2=1 and when 
repeated, for B17 with the same restriction, thereat their individualities have to 
be taken into account. 

                                                      
66 Compression, based on different principles (comparing rules with different 
consequents) is probably needed. This topic is not explored yet. 
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Our algorithms do not find such systems of rules where each rule has to contain 
all given attributes in its antecedent (i.e. “combinations by M1”). DA-System 
(described in 3.2.1) can do it for one class, represented by one attribute, at a time. 
Thus it covers the results of B12 and (in case of appropriate repeating) B19 with 
a restriction M2=1. As described above, ZFF DA algorithm can be modified to 
find such rules. 

Findable rules could be pruned by frequency (support) of C ∪	E (i.e. n(XY) in DA 
notation) as it is a monotone property. Accuracy (that corresponds to confidence 
in rule mining) is not monotone and therefore cannot be used the same way (as a 
criterion to stop the search in the current branch). Associations with too low 
accuracy are not considered to be rules. How to adapt our algorithms to allow 
lower (than 1) accuracy will be shown in 3.4.1. 

3.4 Further algorithmic developments of ZFF DA 

Universal Generator of Hypotheses solves the main task of DA – to find 
determinations (rules, associations) – in many variations. However, the 
formulation of the problem as given in (Chesnokov, 1982) contains giving 
thresholds for accuracy and completeness of findable rules. The algorithms 
presented in this thesis find (maximally) accurate rules and do not find 
completeness, thus do not consider these thresholds. In 3.4.1 we will show how 
to take them into account.  

Solving the basic tasks of DA (listed in 2.7.5) needs – in addition to finding 
determinations – specifying the contributions of factors in the rules and 
combining initial variables.  

Transforming variables is not a topic of this thesis.  

The tasks dealing with essentiality (i.e. contribution to accuracy) are presented as 
finding the difference of accuracies of two certain rules (see (Chesnokov, 1982, 
pp. 62-64)). Finding these rules is accomplishable by UGH. To be sure that a 
needed parent rule (of a given rule) can be found, the accuracy threshold should 
be low (while performing that task).  

Chesnokov (1982) does not expect finding all contributions of all factors in all 
found rules (determinations), although in “original” applications (described in 
3.2.1) they are found both to accuracy and completeness. This is one possible 
direction for developing ZFF DA: to incorporate finding the contributions both 
to accuracy and completeness of each factor in every (final) rule. Besides the 
algorithmic developments there should be the management system supporting to 
tie the basic tasks. 

3.4.1 Involving accuracy and completeness thresholds 

According to (Chesnokov, 1982) the main task is to find in a given context all 
determinations from a given variable (attribute) to another given variable (class 
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attribute) that have at least a given minimal allowable accuracy (i.e. confidence) 
and minimal allowable completeness (i.e. support in given class – see 2.7.6). 
These two thresholds can have a value between 0 and 1 (0% .. 100%). 

The algorithms presented in this work find rules with maximal accuracy (i.e. 
A=1), but they can be easily adapted to allow lower accuracy. In our algorithms 
we do not find completeness, but finding it is not a problem as well as applying 
a threshold for completeness. In the following we will show how to find accuracy 
and completeness and use given thresholds for them.  

 

Accuracy is a ratio n(XY)/n(X) (see 2.7.1) where n(X) is a frequency of X in the 
whole set (context) and n(XY) in the target class. In each extract the „leading“ 
frequency (i.e. the number of objects in that extract) is n(X) and n(XY) is the 
frequency of Y in the corresponding frequency table. For accurate rules 
n(XY)=n(X). 

If we are looking for the rules with lower accuracy, with accuracy threshold minA 
(0<minA<1), then instead of checking whether n(XY)=n(X) (or equivalently 
n(XY)/n(X)=1) we should check whether n(XY)/n(X)minA or 
n(XY)minA*n(X). Notice that minA*n(X) is constant in the current extract. 

Adapting our algorithms to lower (than 1) accuracy is feasible. Accuracy check 
is identical in two presented algorithms using 3D frequency tables – the first 
algorithm for finding intersecting (DA) rules (p. 95) and the algorithm for finding 
all possible shortest rules (p. 103), performed in step S2: 

Fyt(A)=Fxt(A), 

where A is a factor, Fyt contains frequencies in class Y (at level t) and Fxt 
contains frequencies in the whole dataset (X). In order to allow lower than 1 
accuracy that check should be replaced by: 

Fyt(A)/Fxt(A)minA. 

In ZFF DA (algorithm for finding minimal generators with zero factors, excluded 
factors and class – see p. 115) the accuracy is checked at lines B5 and B10: 

FTt[factor]=V, 

where FTt contains frequencies of all factors (at level t), class values are treated 
as other factors at this point, and V is the frequency of the current extract. This 
check should be replaced by 

FTt[factor]  V * minA. 

In addition to changing these checks the actual accuracies should be memorized 
and outputted with the rules. 
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Completeness is a ratio n(XY)/n(Y) (see 2.7.1) where n(Y) is a constant for each 
class Y. Needed n(Y)-s can be counted before searching for the rules. In our 
algorithms we count initial frequencies of all factors into the initial frequency 
table. Thus n(Y) is available for any Y consisting of one factor. n(XY) is the 
frequency of Y in the extract by X, these frequencies are counted into current 
frequency tables. If we find many consequents for the same X (as it is possible in 
our ZFF DA), then each of the rules XYi has its own completeness.  

If we have a threshold for completeness minC (0<minC<1), then each factor has 
its own minimal allowed frequency to be a suitable (by completeness) consequent 
(Y) of a rule: n(Y)*minC. This individual frequency threshold holds in any 
extract. This is true both for class attributes (that are never put on the left side of 
the rule) and non-class attributes (that can be on either side of an association rule). 

The completeness (of each possible Y) decreases (weakly) together with the 
frequency of extract along the branches of the search tree. If the frequency of a 
certain factor is too low to use it as Y, then this is true for any further extract as 
well. However, we cannot interrupt the search (in the current branch), as long as 
we have hope to find rules for any other possible class.  

In our ZFF DA algorithm (3.2.10.1) we check the possibility to find any 
classification rule from the current branch: this is possible when at least one of 
the class values has a frequency bigger than or equal to the given frequency 
threshold (step B7, p. 115). Having individual frequency thresholds (arising from 
the completeness threshold) for each class we should compare the frequency of 
each class value with its own minimal allowed frequency.  

This individual threshold (to be suitable consequent by completeness) is not 
intended to be the criterion by which to reject (or not) the factor to be chosen as 
a leading factor, because the leading factors (used for making extracts) go into 
the constitution of X (and are not potential Y-s in that branch any more). A factor 
that is not frequent enough to be the consequent, might suite to be included into 
X for some other Y (that has a lower individual frequency threshold). For choosing 
the leading factors the (usual) general frequency threshold is better.  

However, if the general frequency threshold minfr is not given, we can use the 
completeness threshold minC to calculate it: minfr=n(Y)*minC, using n(Y) of 
the class with the least number of objects (i.e. the smallest initial frequency). 
Applying such frequency threshold no rule with sufficient completeness is not 
lost due to not making an extract with a suitable frequency. The actual 
completeness of each possible rule (i.e. the frequency of potential Y compared to 
its own threshold) still has to be checked.  

As said already, the accuracy is not monotone and therefore cannot be used for 
pruning the search tree. 
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Thus, each possible consequent Y has its own minimal allowed frequency 
n(Y)*minC (to be suitable by completeness) that holds in any extract of data; and 
for each extract there is a minimal allowed frequency n(X)*minA (to meet the 
accuracy requirement) that is common to all potential Y-s of that extract. These 
two thresholds are applicable when producing the rules from the current extract, 
but (generally) not for pruning the search tree. 
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4 CONCLUSIONS 
The main aim of this work was to develop descriptive data mining methods GH 
and DA and create corresponding algorithms (based on MS theory).  

Both methods had been created in Soviet time. Being separated from the Western 
research, they had their own underlying concepts and theories. In this work we 
have shown the correspondences of concepts from these methods with the ones 
that are widely known in data mining area. These correspondences facilitate to 
share our ideas as well as make findings about those well-known concepts usable 
for us.  

DA finds classification rules (for descriptive purpose). DA has been developed 
in order to overcome different drawbacks typical of its different approaches.  

The first direction was to find a better set of rules (than by previous approaches). 
Step-by-step approach reduces redundancy in case of non-intersecting rules. Our 
first algorithm for finding intersecting rules produces a possibly small set of 
(possibly short) rules. 

The second approach is different: to find all non-redundant rules that form a basis 
from which to find a suitable cover. We call such rule set Determinative Set of 
Rules (DSR). This approach comprises an algorithm that produces all non-
redundant rules and some of their subrules, and a compression that removes those 
subrules (that cannot be avoided by the main algorithm). 

Our final development of DA, called zero-factor-free DA, finds DSR for all 
classes and additionally positive and negative association rules (at the same time). 
Differently from the previous approaches of DA, this one uses an algorithm that 
has been grown out from MONSA. Here DA and GH meet, the correspondences 
between different concepts helped to build the bridge. 

It is important to make a difference between two types of zero factors (in DA) 
that cause different kinds of redundancy and can be avoided or removed by 
different means. We have defined 1) zero-zero factors (ZZF) that can be just left 
out from the antecedent (without changing the set of covered objects) and 2) zero-
negative factors (ZNF) that produce a subrule of an existing rule (reducing the set 
of covered objects). We have found that, in order to be free of ZZFs, the left side 
of the rule has to be a minimal generator. In order to be free of ZNF, that minimal 
generator must not have a subset that defines a class. 

We have shown that original GH finds all closed sets. Its base algorithm MONSA 
has been changed to find all minimal generators with their closed sets, “excluded 
factors” and class.  

Elements between a closed set (CS) and its generator form a consequence for an 
association rule where the generator is antecedent. Such “accompanying factors” 
are the characteristics that always occur with the ones in the left side of the rule. 
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Excluded factors are such elements that do not occur in any of the objects covered 
by the CS, thus never accompany the elements of the antecedent. Excluded 
factors serve as a consequence of a negative association rule.  

Elements between a CS and its generator correspond to ZZF in DA. 
Consequently, the factors that are redundant in the antecedent (of a DA rule), can 
be put into the consequence and form an association rule (this is not valid for 
ZNF). 

Especially important finding is that a class (consequent in a classification rule) 
can be detected the same way as zero-zero factors. The difference is that the class 
attribute never occurs in the left side of the rule. This way we can find for the 
same antecedent both class and (other) zero-zero factors.  

Putting all together, we have got a MONSA-based algorithm for ZFF DA that 
produces 3 kinds of non-redundant rules with the common antecedent – a minimal 
generator: classification rules, positive and negative association rules. It is not 
usual to find classification rules and association rules at the same time. As there 
is no target class determined, the algorithm can find rules for all existing classes 
intermittently – this is different from all previous approaches of DA. DSR-
compression is still needed for classification rules. 

By finding classification rules for all classes, ZFF DA corresponds to multiple-
concept learning. As these rules are used for descriptive purpose, ZFF DA (like 
original DA) can be called descriptive supervised rule discovery, but actually 
does not fit under its definition. The simultaneous finding of ARs makes the 
placement more complicated. 

As a CS with all its minimal generators forms an equivalence class (EC), it was 
straightforward to create an algorithm for finding all ECs (although previously 
we did not have such goal).  

We have created Universal Generator of Hypotheses (UGH) – one possible 
framework for gathering different tasks solvable by GH and DA. We have shown 
to which extent these tasks are covered by ZFF DA and other existing methods.  

Our work is presented on an algorithmic level, the choice of technological means 
is left to the developer. Presented methods are not intended for big data analysis. 
However, with a continual development of hardware and technological means, 
its capability increases. 

Our approach finds only exact rules, therefore, depending on data and frequency 
threshold, we can find no rules. The idea for allowing a lower accuracy (as well 
as setting a threshold for completeness) has been described (without presenting it 
in the form of algorithm). 

Redundancy is defined as being a subrule of another rule, for rules with equal 
consequent. Redundancy in case of non-identical right sides needs exploration. 
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We do not use interestingness measures for excluding non-interesting rules. The 
depth of the rules is determined by the frequency threshold. However, the 
presented algorithms enable to incorporate for stopping the search such measures 
that are downward closed. 

In ZFF DA the search in the current branch is stopped after finding a classification 
rule (CAR), thus ARs that are located deeper in such branch are not found. This 
specialty can be easily removed, if needed. 

ZFF DA finds only one type of negative ARs (out of three). 

In the future, we plan to discuss about rationality to find all contributions of all 
factors in found rules and, if it is rational, to design a corresponding algorithm. 
Another open issue is how to compare the results of different (sub)sets of data. 

We have brought out possible directions for further development of ZFF DA 
based on UGH. I believe that the MONSA-based ZFF DA algorithm has a 
potential to incorporate different new possibilities (as described in this work). 

4.1 Directions for further research 

This thesis already contains ideas for further developments of the presented ZFF 
DA: 

1) Extend the algorithm for considering many class attributes in two 
different ways: a) class is defined by all class attributes; b) class can be 
defined by a subset of class attributes as well (see 3.3.1) 

2) Modify the algorithm for finding the rules with fixed rank (3.3.1) 
3) Modify the algorithm for finding the rules where antecedent and 

consequent together contain all given attributes (3.3.1) 
4) Involve thresholds for accuracy and completeness (see 3.4.1) 

Ideas that have not been elaborated yet: 

5) Finding contributions both to accuracy and completeness for all factors 
in (final) rules (mentioned in 3.4) 

6) Explore the redundancy in case of (association) rules having non-
identical consequents (mentioned in 3.3.1) 

7) Design the management system for integrating different tasks of UGH 
(mentioned in 3.4) 

As the thesis contains unpublished material, we have a potential to publish: 

8) Algorithm for finding equivalence classes (3.1.6) 
9) Part concerning excluded factors in ZFF DA (3.1.7, 3.2.10) 

Topics to explore: 

10) Negative ARs (in connection with excluded factors) 
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11) Algorithms/approaches for finding ECs (or just generators and closed 
sets together) (in connection with EC algorithm) 

12) Using multiple minimum supports67 (how it is related to the idea of 
involving accuracy and completeness thresholds presented in 3.4.1)  

13) Discriminative patterns, emerging patterns, contrast sets and other 
approaches that deal with comparison of classes (to find a way to 
compare the results of different (sub)sets of data) 

 

                                                      
67 Different minimum support threshold is set either for each single item (Liu, Hsu, & 
Ma, 1999) or for each level of hierarchy (Han & Fu, 1995) or taxonomy (Srikant & 
Agrawal, 1995). 



 
146 

REFERENCES 
Agrawal, R., & Srikant, R. (1994). Fast Algorithms for Mining Association 

Rules. Proceedings of 20th International Conference on Very Large Data 
Bases, (pp. 487-499). Santiago, Chile. 

Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association rules 
between sets of items in large databases. Proceedings of the 1993 ACM 
SIGMOD International conference on Management of Data 
(SIGMOD'93) (pp. 207-216). ACM Press. 

Anshakov, O., Skvortsov, D., Finn, V., & Ivashko, V. (1987). Logical Tools of 
the JSM-Method of Automatic Generation of Hypotheses: Basic 
Concepts and System of Rules. Nauchn. Tekhn. Inform. Ser. 2(9), 10-18 
(in Russian). 

Antonie, L., Li, J., & Zaiane, O. (2014). Negative association rules. In C. 
Aggarwal, & J. Han, Frequent pattern mining (pp. 135-145). Springer 
International Publishing. 

Antonie, M.-L., & Zaïane, O. (2004). An associative classifier based on positive 
and negative rules. Proceedings of the 9th ACM SIGMOD Workshop on 
Research Issues in Data Mining and Knowledge Discovery (pp. 64 - 69). 
Paris, France: ACM. 

Atzmüller, M., & Puppe, F. (2006). SD-Map—a fast algorithm for exhaustive 
subgroup discovery. European Conference on Principles of Data Mining 
and Knowledge Discovery. LNCS 4213, pp. 6-17. Springer. 

Bastide, Y., Pasquier, N., Taouil, R., Stumme, G., & Lakhal, L. (2000). Mining 
minimal non-redundant association rules using frequent closed itemsets. 
CL'2000 international conference on Computational Logic, LNCS 1861, 
pp. 972-986. 

Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., & Lakhal, L. (2000). Mining 
Frequent Patterns with Counting Inference. ACM SIGKDD Explorations, 
2(2), 66–75. 

Bay, S., & Pazzani, M. (2001). Detecting group differences: Mining contrast sets. 
Data Mining and Knowledge Discovery, 5(3), 213-246. 

Bayardo Jr., R., & Agrawal, R. (1999). Mining the most interesting rules. 
Proceedings of the fifth ACM SIGKDD international conference on 
Knowledge discovery and data mining (pp. 145-154). ACM. 

Berlanga, F., del Jesus, M., González, P., Herrera, F., & Mesonero, M. (2006). 
Multiobjective evolutionary induction of subgroup discovery fuzzy rules: 
a case study in marketing. In P. Perner (Ed.), Advances in Data Mining. 



 
147 

Applications in Medicine, Web Mining, Marketing, Image and Signal 
Mining. ICDM 2006. LNAI 4065, pp. 337–349. Springer. 

Borne, K. (2014). Top 10 big data challenges a serious look at 10 big data v’s. 
Retrieved May 2017, from https://mapr.com/blog/top-10-big-data-
challenges-serious-look-10-big-data-vs 

Breiman, L., Friedman, J., Stone, C., & Olshen, R. (1984). Classification and 
regression trees.  

Bringmann, B., Nijssen, S., & Zimmermann, A. (2009). Pattern-Based 
Classification: A Unifying Perspective. In A. Knobbe, & J. Fürnkranz 
(Ed.), From Local Patterns to Global Models: Proceedings of the 
ECML/PKDD-09 Workshop (LeGo-09), (pp. 36-50). Bled, Slovenia. 

Brownlee, J. (2017). Overfitting and Underfitting With Machine Learning 
Algorithms. Retrieved May 2017, from Machine Learning Mastery: 
http://machinelearningmastery.com/overfitting-and-underfitting-with-
machine-learning-algorithms/ 

Bykowski, A., & Rigotti, C. (2003). DBC: a condensed representation of frequent 
patterns for efficient mining. Information Systems, 28(8), 949-977. 

Carmona, C. J., González, P., del Jesus, M. J., & Herrera, F. (2014). Overview 
on evolutionary subgroup discovery: analysis of the suitability and 
potential of the search performed by evolutionary algorithms. Wiley 
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(2), 
87-103. 

Carmona, C., González, P., del Jesus, M., & Herrera, F. (2010). NMEEF-SD: 
Non-dominated multi-objective evolutionary algorithm for extracting 
fuzzy rules in subgroup discovery. IEEE Transactions on Fuzzy Systems, 
18(5), 958-970. 

Ceglar, A., & Roddick, J. (2006). Association mining. ACM Computing Surveys 
(CSUR), 38(2), 5. 

Cheng, H., Yan, X., Han, J., & Hsu, C.-W. (2007). Discriminative frequent 
pattern analysis for effective classification. IEEE 23rd International 
Conference on Data Engineering, 2007. ICDE 2007. (pp. 716-725). 
IEEE. 

Chesnokov, S. V. (1980a). Determination-analysis of social-economic data in 
dialogical regime (Preprint). Moscow: All-Union Institute for Systems 
Research (in Russian) . 

Chesnokov, S. V. (1980b). Determinacy analysis of social-economic data. 
Sociological Studies, #3, 179-189 (in Russian). 



 
148 

Chesnokov, S. V. (1982). Determinacy analysis of social-economic data. 
Moscow: Nauka (in Russian). 

Chesnokov, S. V. (1996). Determinacy Analysis and the search for diagnostic 
criteria in medicine (the case of comprehensive ultrasonography). 
Ultrasonic Diagnostics, #4, 42-47 (in Russian). 

Chesnokov, S. V. (2002). Determinacy Analysis of Socio-Economic Data. 
Illustrative Materials to Lectures. Lecture 2: Rules. Lecture 3: Systems 
of Rules. Moscow: Lomonosov Moscow State University, Faculty of 
Economics (unpublished, in Russian). 

Clark, P., & Niblett, T. (1987). Induction in noisy domains. Progress in Machine 
Learning - Proceedings of EWSL 1987, (pp. 11-30). Bled, Yugoslavia. 

Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Journal of Machine 
Learning, 3(4), 261-283. 

Context. (1999a). DA-system 4.0. User's Guide, ver. 1.0, 1998-1999. (in Russian). 

Context. (1999b). DA-system 4.0, version 4.0 for Windows 95, Windows 98 and 
Windows NT. Questions and Answers. DA-system and Technology of 
Data Analysis. (in Russian). 

DALSolution. (2007, 02 27). DALSolution software and technology. Questions 
and Answers. Retrieved from http://www.dalsolution.com/faq.htm, 
27.02.2007 

Dean, J., & Ghemawat, S. (2004). MapReduce: Simplified Data Processing on 
Large Clusters. OSDI'04 Proceedings of the 6th conference on 
Symposium on Opearting Systems Design & Implementation. 6, pp. 137-
149. CA, USA: USENIX Association Berkeley. 

del Jesus, M. J., González, P., Herrera, F., & Mesonero, M. (2007). Evolutionary 
fuzzy rule induction process for subgroup discovery: A case study in 
marketi. IEEE Transactions on Fuzzy Systems 15, 15(4), 578-592. 

Deng, L. (2014). A tutorial survey of architectures, algorithms, and applications 
for deep learning. APSIPA Transactions on Signal and Information 
Processing, 3. 

Dong, G., & Li, J. (1999). Efficient Mining of Emerging Patterns: Discovering 
Trends and Differences. Proceedings of the fifth ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining (pp. 
43-52). ACM. 

Dong, X., Sun, F., Han, X., & Hou, R. (2006). Study of Positive and Negative 
Association Rules Based on Multi-confidence and Chi-Squared Test. In 
X. Li, O. Zaïane, & Z. Li (Ed.), ADMA 2006. LNCS (LNAI) 4093, pp. 
100–109. Heidelberg: Springer. 



 
149 

Dunham, M. H. (2002a). Data Mining: Introductory and Advanced Topics. 
Prentice Hall. 

Dunham, M. H. (2002b). DATA MINING: Introductory and Advanced Topics. 
Part II. Companion slides for the text by Dr. M.H.Dunham, Data 
Mining,Introductory and Advanced Topics, Prentice Hall, 2002.  

Fan, W., Geerts, F., Li, J., & Xiong, M. (2011). Discovering conditional 
functional dependencies. IEEE Transactions on Knowledge and Data 
Engineering, 23(5), 683-698. 

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From Data Mining to 
Knowledge Discovery: An Overview. In U. Fayyad, G. Piatetsky-
Shapiro, P. Smyth, & R. Uthurusamy, Advances in Knowledge Discovery 
and Data Mining (pp. 1-36). AAAI Press/ The MIT Press. 

Freitas, A. (2000). Understanding the crucial differences between classification 
and discovery of association rules: a position paper. ACM SIGKDD 
Explorations Newsletter, 2(1), 65-69. 

Fürnkranz, J., & Kliegr, T. (2015). A brief overview of rule learning. 
International Symposium on Rules and Rule Markup Languages for the 
Semantic Web (pp. 54-69). Springer International Publishing. 

Fürnkranz, J., Gamberger, D., & Lavrač, N. (2012). Foundations of rule learning. 
Springer Science & Business Media. 

Gamberger, D., & Lavrač, N. (2002). Expert-guided subgroup discovery: 
Methodology and application. Journal of Artificial Intelligence 
Research, 17(1), 501-527. 

Gams, M., & Lavrac, N. (1987). Review of five empirical learning systems within 
a proposed schemata. In I. Bratko, & N. Lavrac (Ed.), Progress in 
Machine Learning, Proceedings of EWSL 87 (pp. 46-66). Wilmslow: 
Sigma Press. 

García-Borroto, M., Martínez-Trinidad, J. F., & Carrasco-Ochoa, J. A. (2014). A 
survey of emerging patterns for supervised classification. Artificial 
Intelligence Review, 42(4), 705-721. 

Geng, L., & Hamilton, H. (2006). Interestingness measures for data mining: A 
survey. ACM Computing Surveys (CSUR), 38(3), 9. 

Grosskreutz, H., & Rüping, S. (2009). On subgroup discovery in numerical 
domains. Data mining and knowledge discovery, 19(2), 210-226. 

Grosskreutz, H., Rüping, S., & Wrobel, S. (2008). Tight optimistic estimates for 
fast subgroup discovery. Proceedings of the 2008 European Conference 
on Machine Learning and Knowledge Discovery in Databases (pp. 440-
456). Springer. 



 
150 

Gu, T., Wu, Z., Tao, X., Pung, H. K., & Lu, J. (2009). epsicar: An emerging 
patterns based approach to sequential, interleaved and concurrent activity 
recognition. IEEE International Conference on Pervasive Computing 
and Communications, 2009. PerCom 2009. (pp. 1-9). IEEE. 

Han, J., & Fu, Y. (1995). Discovery of multiple-level association rules from large 
databases. Proceedings of the 21st VLDB Conference (pp. 420-431). 
Morgan Kaufmann Publishers Inc. 

Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate 
generation. Proceedings of the 2000 ACM SIGMOD international 
conference on management of data (pp. 1-12). ACM. 

Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining Frequent Patterns without 
Candidate Generation: A Frequent-Pattern Tree Approach. Data Mining 
and Knowledge Discovery, 8(1), 53-87. 

Hasan, S., Shamsuddin, S., & Lopes, N. (2015). Soft computing methods for big 
data problems. In Y. Cai, & S. See, GPU Computing and Applications 
(pp. 235-247). Singapore: Springer. 

Helal, S. (2016). Subgroup Discovery Algorithms: A Survey and Empirical 
Evaluation. Journal of Computer Science and Technology, 31(3), 561-
576. 

Herrera, F., Carmona, C., González, P., & del Jesus, M. (2011). An overview on 
subgroup discovery: foundations and applications. Knowledge and 
information systems, 29(3), 495-525. 

Huang, Z., Zhou, Z., He, T., & Wang, X. (2011). ACAC: Associative 
Classification based on All-Confidence. IEEE International Conference 
on Granular Computing (GrC) (pp. 289-293). IEEE. 

Jõgiste, L. (2014). Prototyping of Zero-factor based DA. Master's Thesis, Tallinn 
University of Technology, IT Faculty, Tallinn. 

Kavšek, B., & Lavrač, N. (2006). APRIORI-SD: Adapting association rule 
learning to subgroup discovery. Applied Artificial Intelligence, 20(7), 
543-583. 

Klösgen, W. (1996). Explora: A multipattern and multistrategy discovery 
assistant. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. 
Uthurusamy, Advances in knowledge discovery and data mining (pp. 
249-271). AAAI Press. 

Klösgen, W., & May, M. (2002). Spatial Subgroup Mining Integrated in an 
Object-Relational Spatial Database. Principles of Data Mining and 
Knowledge Discovery. PKDD 2002. LNAI 2431, pp. 275-286. Springer. 



 
151 

Kohonen, T. (1981). Automatic formation of topological maps of patterns in a 
self-organizing system. Proc. 2nd Scandinavian Conf. on lmage 
Analysis, (pp. 214-220). Espoo, Finland. 

Kryszkiewicz, M., & Gajek, M. (2002b). Why to apply generalized disjunction-
free generators representation of frequent patterns? In M.-S. Hacid, Z. 
W. Ras, D. A. Zighed, & Y. Kodratoff (Ed.), ISMIS 2002. LNAI 2366, 
pp. 383-392. Berlin Heidelberg: Springer-Verlag. 

Kundu, G., Islam, M., Munir, S., & Bari, M. (2008). ACN: An Associative 
Classifier with Negative Rules. 11th IEEE International Conference on 
Computational Science and Engineering (pp. 369-375). IEEE. 

Kuusik, R. (1987). Generator Hypotheses for Qualitative Data. Transactions of 
Tallinn Technical University(645), 141-148 (in Russian). 

Kuusik, R. (1988). On new qualitative datanalysis methods and its applications. 
Infotechnology and exact economics. Proceedings of the Respublican 
Scientific Seminar, II, 287-290 (in Estonian). 

Kuusik, R. (1993). The Super-Fast Algorithm of Hierarchical Clustering and the 
Theory of Monotone Systems. Transactions of Tallinn Technical 
University, 734, 37-62. 

Kuusik, R. (1995). Extracting of all maximal cliques: monotone system approach. 
Proceedings of the Estonian Academy of Sciences. Engineering, 1(2), 
113-138. 

Kuusik, R., & Lind, G. (2008, May). Algorithm MONSA for All Closed Sets 
Finding: basic concepts and new pruning techniques. WSEAS 
Transactions on Information Science and Applications, 5(5), 599-611. 

Kuusik, R., & Lind, G. (2010). Some Developments of Determinacy Analysis. 
Advanced Data Mining and Applications: The 6th International 
Conference on Advanced Data Mining and Applications (ADMA2010), 
Chongqing, China, November 19-21, 2010. LNAI 6440, pp. 593-602. 
Berlin Heidelberg: Springer-Verlag. 

Kuusik, R., & Lind, G. (2011). New Developments of Determinacy Analysis. In 
J. Tang, I. King, L. Chen, & J. Wang (Ed.), Advanced Data Mining and 
Applications - 7th International Conference: ADMA 2011, Beijing, 
China, December 17-19, 2011. II; LNCS 7121, p. 223−236. Springer. 

Kuusik, R., & Lind, G. (2012). An Effective Inductive Learning Algorithm for 
Extracting Rules. In F. L. Gaol, & Q. V. Nguyen (Ed.), Proceedings of 
the 2011 2nd International Congress on Computer Applications and 
Computational Science, 2: CACS 2011, Bali, Indonesia, November 15-
17, 2011. AISC 145, pp. 339-344. Berlin Heidelberg: Springer-Verlag. 



 
152 

Kuusik, R., Lind, G., & Võhandu, L. (2004). Frequent pattern mining as a clique 
extracting task. In N. Callaos, V. Lefebvre, E. Hansen, T. Dickopp, & J. 
Su (Ed.), The 8th World Multi-Conference on Systemics, Cybernetics and 
Informatics, July 18-21, 2004 - Orlando, Florida, USA, SCI 2004 
Proceedings. IV, p. 425−428. Orlando, Florida, USA: International 
Institute of Informatics and Systemics. 

Lavrač, N., Kavšek, B., Flach, P., & Todorovski, L. (2004). Subgroup discovery 
with CN2-SD. Journal of Machine Learning Research, 5(Feb), 153-188. 

Lee, J., Hong, S., & Lee, J.-H. (2014). An efficient prediction for heavy rain from 
big weather data using genetic algorithm. Proceedings of the 
International Conference on Ubiquitous Information Management and 
Communication (pp. 25:1–25:7). ACM. 

Li, J., Liu, G., & Wong, L. (2007). Mining statistically important equivalence 
classes and delta-discriminative emerging patterns. Proceedings of the 
13th ACM SIGKDD international conference on Knowledge discovery 
and data mining (pp. 430-439). ACM. 

Li, W., Han, J., & Pei, J. (2001). CMAR: Accurate and efficient classification 
based on multiple class-association rules. Proceedings of the 2001 IEEE 
International Conference on Data Mining (ICDM) (pp. 369-376). IEEE. 

Li, X., Qin, D., & Yu, C. (2008). ACCF: Associative Classification Based on 
Closed Frequent Itemsets. Proceedings of the Fifth International 
Conference on Fuzzy Systems and Knowledge Discovery. 2, pp. 380-384. 
IEEE. 

Lin, M.-Y., Lee, P.-Y., & Hsueh, S.-C. (2012). Apriori-based frequent itemset 
mining algorithms on MapReduce. Proceedings of the International 
Conference on Ubiquitous Information Management and 
Communication (pp. 76:1–76:8). ACM. 

Lind, G., & Kuusik, R. (2007). Some Ideas for Determinacy Analysis Realisation. 
Proceedings of the 11th IASTED International Conference on Artificial 
Intelligence and Soft Computing. Palma de Mallorca, Spain, August 29-
31, 2007 (pp. 185-190). ACTA Press. 

Lind, G., & Kuusik, R. (2008a, October). New developments for Determinacy 
Analysis: diclique-based approach. WSEAS Transactions on Information 
Science and Applications, 5(10), 1458-1469. 

Lind, G., & Kuusik, R. (2008b). Some Problems in Determinacy Analysis 
Approaches Development. Proceedings of the 2008 International 
Conference on Data Mining (DMIN 2008), Las Vegas, Nevada, USA, 
July 14-17, 2008. Volume I, pp. 102-108. CSREA Press. 



 
153 

Lind, G., & Kuusik, R. (2012). An Idea for Universal Generator of Hypotheses. 
In L. Maciaszek, A. Cuzzocrea, & J. Cordeiro (Ed.), Proceedings of 
ICEIS 2012: the 14th International Conference on Enterprise 
Information Systems, Wrocław, Poland, 28 June – 1 July. Volume 1, pp. 
169-174. Portugal: SciTePress. 

Lind, G., & Kuusik, R. (2016). Algorithm for Finding Zero Factor Free Rules. 
Man-Machine Interactions 4: 4th International Conference on Man-
Machine Interactions, ICMMI 2015 Kocierz Pass, Poland, October 6-9, 
2015. AISC 391, pp. 421-435. Springer. 

Liu, B., Hsu, W., & Ma, Y. (1998). Integrating Classification and Association 
Rule Mining. Proceedings of the Fourth International Conference on 
Knowledge Discovery and Data Mining (pp. 80-86). AAAI Press. 

Liu, B., Hsu, W., & Ma, Y. (1999). Mining association rules with multiple 
minimum supports. Proceedings of the fifth ACM SIGKDD International 
Conference on Knowledge Ddiscovery and Data Mining (pp. 337-341). 
ACM. 

Liu, Q., Wang, W., Deng, S., & Dong, G. (2011). An Equivalence Class Based 
Clustering Algorithm for Categorical Data. IMMM 2011 : The First 
International Conference on Advances in Information Mining and 
Management, (pp. 127-130). 

Lopes, N., & Ribeiro, B. (2001). Hybrid learning in a multi neural network 
architecture. INNS-IEEE International Joint Conference on Neural 
Networks, IJCNN’01 (pp. 2788–2793). Washington D.C., USA: IEEE. 

Luelsdorff, P., & Chesnokov, S. (1996). Determinacy Form as the Essence of 
Language. Prague Linguistic Circle, 2, 205-234. 

Madjarov, G., Kocev, D., Gjorgjevikj, D., & Džeroski, S. (2012). An extensive 
experimental comparison of methods for multi-label learning. Pattern 
Recognition, 45(9), 3084-3104. 

MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein. (2016). 
Retrieved February 2016, from http://mathworld.wolfram.com/ 

Michalski, R. S. (1969). On the Quasi-Minimal Solution of the Covering 
Problem. Proceedings of FCIP 69, A3, pp. 125-128. Bled, Yugoslavia. 

Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (1984). Machine Learing: 
An Artificial Intelligence Approach. Berlin Heidelberg New York Tokio: 
Springer-Verlag. 

Michie, D., Spiegelhalter, D., & Taylor, C. (1994). Machine Learning, Neural 
and Statistical Classification.  



 
154 

Mielikäinen, T. (2006). Transaction databases, frequent itemsets, and their 
condensed representations. In F. Bonchi, & J.-F. Boulicaut (Ed.), 
Knowledge Discovery in Inductive Databases, 4th International 
Workshop, KDID 2005, Porto, Portugal, October 3, 2005, Revised 
Selected and Invited Papers. Lecture Notes in Computer Science 3933, 
pp. 139-164. Springer. 

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill. 

Morishita, S., & Sese, J. (2000). Traversing itemset lattice with statistical metric 
pruning. Proceedings of the 19th ACM SIGMOD-SIGACT-SIGART 
Symposium on Principles of Database Systems (PODS), (pp. 226–236). 

Mueller, M., Rosales, R., Steck, H., Krishnan, S., Rao, B., & Kramer, S. (2009). 
Subgroup discovery for test selection: a novel approach and its 
application to breast cancer diagnosis. Advances in Intelligent Data 
Analysis VIII. IDA 2009. LNCS 5772, pp. 119-130. Springer. 

Mullat, J. E. (1971). On the Maximum Principle for some Set Functions. 
Proceedings of the Tallinn Technical University(313), 37-44. Retrieved 
02 2016, from http://www.datalaundering.com/download/modular.pdf 

Mullat, J. E. (1976). Extremal Subsystems of Monotonic Systems. I. Automation 
and Remote Control, 37(5), 758-766. Retrieved 02 2016, from 
www.datalaundering.com/download/extrem01.pdf 

Mullat, J. E. (1977). Extremal Subsystems of Monotonic Systems. II. Automation 
and Remote Control, 37(8), 1286-1294. Retrieved 02 2016, from 
www.datalaundering.com/downlaods/extrem02.pdf 

Nguyen, D., Vo, B., & Le, B. (2014). Efficient strategies for parallel mining class 
association rules. Expert Systems with Applications, 41(10), 4716-4729. 

Nguyen, L., Vo, B., Hong, T.-P., & Thanh, H. (2013). CAR-Miner: An efficient 
algorithm for mining class-association rules. Expert Systems with 
Applications, 40(6), 2305-2311. 

Niu, Q., Xia, S.-X., & Zhang, L. (2009). Association Classification Based on 
Compactness of Rules. Proceedings of the Second International 
Workshop on Knowledge Discovery and Data Mining - WKDD (pp. 245-
247). IEEE. 

Novak, P., Lavrač, N., & Webb, G. (2009). Supervised descriptive rule discovery: 
A unifying survey of contrast set, emerging pattern and subgroup mining. 
Journal of Machine Learning Research, 10(Feb), 377-403. 

Pasquier, N., Bastide, Y., Taouil, R., & Lakhal, L. (1998). Pruning Closed Itemset 
Lattices for Association Rules. Proceedings of the BDA Conference, (pp. 
177-196). 



 
155 

Pasquier, N., Bastide, Y., Taouil, R., & Lakhal, L. (1999). Discovering frequent 
closed itemsets for association rules. Database Theory - ICDT'99. LNCS 
1540, pp. 398-416. Springer. 

Pruks, M. (2014). Realization of Equivalence Class Based Clustering. Master's 
Thesis, Tallinn University of Informatics, IT Faculty, Tallinn. 

Quinlan, J. R. (1984). Learning efficient classification procedures and their 
application to chess and games. In R. S. Michalski, J. G. Carbonell, & T. 
M. Mitchell (Eds.), Machine Learning. An Artificial Intelligence 
Approach (pp. 463-482). Berlin Heidelberg New York Tokyo: Springer-
Verlag. 

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 11(1), 81-
106. 

Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Mateo: Morgan 
Kaufmann Publishers. 

Rebentrost, P., Mohseni, M., & Lloyd, S. (2014). Quantum support vector 
machine for big data classification. Physical review letters, 113(13), 
130503. 

Roosmann, P., Võhandu, L., Kuusik, R., Treier, T., & Lind, G. (2008). Monotone 
Systems approach in Inductive Learning. International Journal of 
Applied Mathematics and Informatics, 2(2), 47−56. 

Ševtšenko, F. (2017). Zero Factors Free Rules Algorithm: The Study of 
Classification Function. Master's Thesis, Tallinn University of 
Technology, Faculty of Information Technology, Tallinn. 

Srikant, R., & Agrawal, R. (1995). Mining generalized association rules. 
Proceedings of the 21st VLDB Conference (pp. 407-419). Morgan 
Kaufmann Publishers Inc. 

Stover, C. (2016). Monotonic Function. Retrieved February 2016, from 
MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein: 
http://mathworld.wolfram.com/MonotonicFunction.html 

Thabtah, F., & Cowling, P. (2007). A greedy classification algorithm based on 
association rule. Applied Soft Computing, 7(3), 1102-1111. 

Thabtah, F., Cowling, P., & Peng, Y. (2004). MMAC: A new multiclass, multi-
label associative classification approach. Proceedings of the Fourth 
IEEE International Conference on Data Mining (ICDM ’04) (pp. 217-
224). Brighton, UK: IEEE. 

Thabtah, F., Cowling, P., & Peng, Y. (2005). MCAR: Multi-class classification 
based on association rule approach. Proceedings of the 3rd IEEE 



 
156 

International Conference on Computer Systems and Applications (pp. 
33-I). IEEE. 

Tsai, C.-W., Lai, C.-F., Chao, H.-C., & Vasilakos, A. V. (2015). Big data 
analytics: a survey. Journal of Big Data, 2(1), 21. 

Tsoumakas, G., & Katakis, I. (2007). Multi-label classification: An overview. 
International Journal of Data Warehouse and Mining, 3(3), 1–13. 

Vapnik, V. (1995). The Nature of Statistical Learning. Springer. 

Veloso, A., Meira, W., Gonçalves, M., & Zaki, M. (2007). Multi-label Lazy 
Associative Classification. Proceedings of the Principles of Data Mining 
and Knowledge Discovery - PKDD (pp. 605-612). Springer. 

Veselov, A., Deza, V., & Podrabinovich, A. (1980). Computation of 
characteristics of determination relationships. In Methodology of 
comprehensive analysis of socio-economic systems. Collected papers 
(pp. 94-99). Moscow: the Institute for Systems Studies (in Russian). 

Võhandu, L., Kuusik, R., Torim, A., Aab, E., & Lind, G. (2006). Some Monotone 
Systems Algorithms for Data Mining. WSEAS Transactions on 
Information Science and applications, 4(3), 802−809. 

Wang, H., Zhang, X., & Chen, G. (2008). Mining a complete set of both positive 
and negative association rules from large databases. Advances in 
Knowledge Discovery and Data Mining (pp. 777-784). Springer. 

Wang, X., Yue, K., Niu, W., & Shi, Z. (2011). An approach for adaptive 
associative classification. Expert Systems with Applications, 38(9), 
11873-11883. 

Wedyan, S. (2014). Review and comparison of associative classification data 
mining approaches. International Journal of Computer, Information, 
Systems and Control Engineering, 8(1), 34-45. 

Weisstein, E. W. (2016a). Monotone Increasing. Retrieved February 2016, from 
MathWorld--A Wolfram Web Resource: 
http://mathworld.wolfram.com/MonotoneIncreasing.html 

Weisstein, E. W. (2016b). Monotone Decreasing. Retrieved February 2016, from 
MathWorld--A Wolfram Web Resource: 
http://mathworld.wolfram.com/MonotoneDecreasing.html 

Wrobel, S. (1997). An algorithm for multi-relational discovery of subgroups. 
Proceedings of the 1st European Symposium on Principles of Data 
Mining and Knowledge Discovery (PKDD) (pp. 78-87). Springer-Verlag. 



 
157 

Wu, X., Kumar, V., Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., . . . Steinberg, 
D. (2008). Top 10 algorithms in data mining. Knowledge and information 
systems, 14(1), 1-37. 

Yang, L., Shi, Z., Xu, L. D., Liang, F., & Kirsh, I. (2011). DH-TRIE frequent 
pattern mining on Hadoop using JPA. 2011 IEEE International 
Conference on Granular Computing, (pp. 875-878). 

Yin, X., & Han, J. (2003). CPAR: Classification based on predictive association 
rules. In Proceedings of the 2003 SIAM International Conference on 
Data Mining (pp. 331-335). SIAM. 

Zadeh, L. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. 

Zaki, M. J. (2004). Mining Non-Redundant Association Rules. (Fayyad, Mannila, 
& Ramakrishnan, Eds.) Data Mining and Knowledge Discovery, 9, 223-
248. 

Zaki, M. J., & Hsiao, C.-J. (1999). CHARM: An efficient algorithm for closed 
association rule mining. Technical Report 99-10, Rensselaer Polytechnic 
Institute, Department of Computer Science. 

Zaki, M. J., & Hsiao, C.-J. (2002). CHARM: An Efficient Agorithm for Closed 
Itemset Mining. Proceedings of the Second SIAM International 
Conference on Data Mining, 2, pp. 457-473. 

Zhang, M.-L., & Zhou, Z.-H. (2014). A review on multi-label learning 
algorithms. IEEE transactions on knowledge and data engineering, 
26(8), 1819-1837. 

 



 
158 

KOKKUVÕTE 
Andmekaevandamist defineeritakse kui peidetud informatsiooni leidmist 
andmebaasist. Andmekaevandamise kaks kõrgtaseme eesmärki on ennustamine 
ja kirjeldamine. Kirjeldamine on viis uuritavate andmete omaduste lähemaks 
uurimiseks (mitte uute omaduste ennustamiseks).  

Nimetatud eesmärkide saavutamiseks kasutatakse mitmeid andmekaevandamis-
ülesandeid, sh klassifitseerimine ja assotsiatsioonireeglid. Klassifitseerimisel 
seatakse andmed vastavusse eelnevalt defineeritud klassidega (gruppidega). See 
meetod pärineb masinõppest, andmekaeves kasutatakse seda peamiselt 
ennustamiseks. Assotsiatsioonireeglite kaevandamine paljastab seoseid andmete 
vahel, identifitseerides kindlat tüüpi kooslusi. Seda peetakse kirjeldavaks 
ülesandeks. 

Mõlemad ülesanded annavad tulemuseks IF-THEN reeglid. Vahe on selles, et 
klassifikatsioonireeglid leitakse vaid ettemääratud klassi(de)le ja 
klassitunnus(ed) on eraldatud teistest tunnustest, assotsiatsioonireeglite korral 
aga võivad kõik atribuudid esineda emmal-kummal reegli poolel ja reegli 
järelduse osa pole (üldjuhul) ette määratud. 

Enamasti lahendatakse neid ülesandeid eraldi ja erinevatel eesmärkidel. Meie 
loodud lähenemine (nullfaktorivaba determinatsioonanalüüs) leiab korraga 
mõlemat tüüpi reegleid (kirjeldamise eesmärgil). See erineb teistest meetoditest, 
milles kombineeritakse klassifitseerimist ja assotsiatsioonireegleid. 

Käesolev töö esitab kahe kirjeldava andmekaeve meetodi arendusi. Nendeks 
meetoditeks on determinatsioonanalüüs (DA) ja hüpoteeside generaator (HG). 

Mõlemad meetodid on loodud Nõukogude ajal, eraldatuna Lääne teadusest. 
Seetõttu põhinevad need omadel mõistetel ja teooriatel. Käesolevas töös näitame 
nende meetodite poolt kasutatavate mõistete vastavusi üldtuntud andmekaeve 
mõistetega. Sellised vastavused hõlbustavad meil oma ideid jagada, aga ka ära 
kasutada teadmisi nende laiemalt tuntud mõistete kohta. 

DA on meetod reeglite analüüsimiseks. Püütakse vastata küsimustele: „Kes nad 
on?“, „Kuidas saame neid kirjeldada?“, „Mis neid teistest eristab?“, et kirjeldada 
klassi kuuluvaid objekte. Determinatsioonanalüüsi võib lugeda klassifitseerimis-
meetodiks ning saab seostada ka assotsiatsioonireeglitega. 

Käesolevas töös on DAd arendatud selle erinevates lähenemistes esinevate 
puuduste kõrvaldamiseks, peamiselt liiasuse vähendamise suunas. Nullfaktorid 
(NF) on elemendid, mis põhjustavad liiasust ja ei tohi esineda reeglite eelduse 
osas. Defineerisime kaht tüüpi nullfaktorid. 

Töös esitatakse järgmised DA arendused: 
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 Samm-sammuline meetod: aitab liiasust vähendada, leides erineva 
pikkusega mittelõikuvaid reegleid. 

 Esimene lõikuvate reeglite algoritm leiab võimalikult väikese arvu 
(võimalikult lühikesi) reegleid. 

 DSR-lähenemine: selle asemel, et leida üks paljudest eksisteerivatest 
kirjeldustest, leiab kõik mitteliiased reeglid; seda reeglihulka saab 
kasutada sobiva katte leidmiseks. 

 Nullfaktorivaba DA: leiab kõik mitteliiased reeglid kõigi klasside jaoks 
(mitte vaid ühe määratud klassi jaoks) ning rikastab neid 
klassifikatsioonireegleid positiivsete ja negatiivsetete assotsiatsiooni-
reeglitega. 

Hüpoteeside generaator on andmekaeve meetod, mis kasutab algoritm MONSA 
pakutavaid võimalusi. Näitame, et HG/MONSA leiab kõik suletud hulgad (closed 
sets). 

Muutsime MONSAt nii, et see leiab kõik minimaalsed generaatorid koos neile 
vastava suletud hulga, „välistatud faktorite“ ja klassiga. Elemendid suletud hulga 
ja selle generaatori vahel moodustavad järelduse assotsiatsioonireeglile, mille 
eelduseks on generaator. Välistatud faktoriteks on elemendid, mis ei esine suletud 
hulgas, need moodustavad järelduse osa negatiivsele assotsiatsioonireeglile. 
Leidsime, et elemendid suletud hulga ja selle generaatori vahel vastavad ühele 
(DA) nullfaktori tüübile ja et klassi saab tuvastada samamoodi kui neid 
nullfaktoreid. Pannes kõik kokku, lõime MONSAst tuletatud algoritmi 
nullfaktorivaba DA jaoks, mis leiab kolme tüüpi reegleid ühise eelduse osaga: 
klassifikatsioonireeglid, positiivsed ja negatiivsed assotsiatsioonireeglid. 

Et suletud hulk koos kõigi oma minimaalsete generaatoritega moodustab 
ekvivalentsiklassi, lõime ka algoritmi, mis leiab kõik ekvivalentsiklassid. 

Lõpuks kogusime GH ja DA poolt lahendatavad ülesanded ühtsesse raamistikku, 
mida kutsume universaalseks hüpoteeside generaatoriks. 

MONSA ja kõik teised töös esitatud algoritmid põhinevad monotoonsete 
süsteemide teoorial. Loodud NF-vaba DA algoritm sobib mitmete edasiste 
arenduste aluseks. 
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Appendix A 
Kuusik, R. and Lind, G. (2008). Algorithm MONSA for All Closed Sets Finding: 
basic concepts and new pruning techniques. WSEAS Transactions on Information 
Science and Applications, 5(5), 599-611. 
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Appendix B 
Lind, G. and Kuusik, R. (2007). Some Ideas for Determinacy Analysis 
Realisation. Proceedings of the 11th IASTED International Conference on 
Artificial Intelligence and Soft Computing. Palma de Mallorca, Spain, August 29-
31, 2007 (pp. 185-190). ACTA Press. 
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Appendix C 
Lind, G. and Kuusik, R. (2008). Some Problems in Determinacy Analysis 
Approaches Development. Proceedings of the 2008 International Conference on 
Data Mining (DMIN 2008), Las Vegas, Nevada, USA, July 14-17, 2008, Volume 
I, pp. 102-108. CSREA Press. 
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Appendix D 
Kuusik, R. and Lind, G. (2010). Some Developments of Determinacy Analysis. 
Advanced Data Mining and Applications: The 6th International Conference on 
Advanced Data Mining and Applications (ADMA2010), Chongqing, China, 
November 19-21, 2010. LNAI 6440, pp. 593-602. Berlin Heidelberg: Springer-
Verlag. 
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Appendix E 
Kuusik, R. and Lind, G. (2011). New Developments of Determinacy Analysis. 
Advanced Data Mining and Applications - 7th International Conference: ADMA 
2011, Beijing, China, December 17-19, 2011. II; LNCS 7121, p. 223−236. 
Springer. 
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Appendix F 
Lind, G. and Kuusik, R. (2016). Algorithm for Finding Zero Factor Free Rules. 
Man-Machine Interactions 4: 4th International Conference on Man-Machine 
Interactions, ICMMI 2015 Kocierz Pass, Poland, October 6-9, 2015. AISC 391, 
pp. 421-435. Springer. 
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Appendix G 
Output of generator of hypotheses: 

a) Intersections 
b) Trees 

 

 On the left: nodes have been selected by maximal frequency 
 On the right: nodes have been selected by minimal frequency 

 

a) Intersections 

Alustatud: 2013 11 6 18 49 
30.859 
 
Fail: C:\…\SMorn.txt 
Objekte failis: 14, objektis 
tunnuseid: 5 
Objektid:  
Tunnused: 1-4 
Objekte valjavotus: 14 
Minimaalne lubatud sagedus = 1 
Juhtsageduse valik: max sagedus 
 
T4.2=8 
T4.2&T3.1=4 
T4.2&T3.1&T1.1=2 
T4.2&T3.1&T1.1&T2.2=1 
T4.2&T3.1&T1.1&T2.3=1 
T4.2&T3.1&T2.2=2 
T4.2&T3.1&T2.2&T1.3=1 
T4.2&T3.1&T2.3=2 
T4.2&T3.1&T2.3&T1.2=1 
T4.2&T3.2=4 
T4.2&T3.2&T1.3=2 
T4.2&T3.2&T1.3&T2.1=1 
T4.2&T3.2&T1.3&T2.2=1 
T4.2&T3.2&T2.1=2 
T4.2&T3.2&T2.1&T1.1=1 
T4.2&T3.2&T1.2&T2.3=1 
T4.2&T1.1=3 
T4.2&T1.3=3 
T4.2&T1.3&T2.2=2 
T4.2&T2.2=3 
T4.2&T2.3=3 
T4.2&T2.3&T1.2=2 
T3.1=7 
T3.1&T2.2=4 
T3.1&T2.2&T1.3=2 

Alustatud: 2013 11 6 18 50 
12.781 
 
Fail: C:\…\SMorn.txt 
Objekte failis: 14, objektis 
tunnuseid: 5 
Objektid:  
Tunnused: 1-4 
Objekte valjavotus: 14 
Minimaalne lubatud sagedus = 1 
Juhtsageduse valik: min sagedus 
 
T1.2=4 
T1.2&T2.1&T3.2&T4.1=1 
T1.2&T2.2&T3.1&T4.1=1 
T1.2&T2.3&T4.2=2 
T1.2&T2.3&T4.2&T3.1=1 
T1.2&T2.3&T4.2&T3.2=1 
T1.2&T3.1=2 
T1.2&T3.2=2 
T1.2&T4.1=2 
T2.1&T3.2=4 
T2.1&T3.2&T1.1&T4.2=1 
T2.1&T3.2&T1.3=2 
T2.1&T3.2&T1.3&T4.1=1 
T2.1&T3.2&T1.3&T4.2=1 
T2.1&T3.2&T4.1=2 
T2.1&T3.2&T4.2=2 
T2.3=4 
T2.3&T1.1&T3.1&T4.1=1 
T2.3&T1.1&T3.1=2 
T2.3&T1.1&T3.1&T4.2=1 
T2.3&T3.1=3 
T2.3&T3.1&T4.2=2 
T2.3&T4.2=3 
T1.1=5 
T1.1&T2.2=2 
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T3.1&T2.2&T1.3&T4.1=1 
T3.1&T2.2&T4.1=2 
T3.1&T2.2&T4.1&T1.2=1 
T3.1&T1.1=3 
T3.1&T1.1&T2.3=2 
T3.1&T1.1&T2.3&T4.1=1 
T3.1&T2.3=3 
T3.1&T4.1=3 
T3.1&T1.2=2 
T3.2=7 
T3.2&T2.1=4 
T3.2&T2.1&T1.3=2 
T3.2&T2.1&T1.3&T4.1=1 
T3.2&T2.1&T4.1=2 
T3.2&T2.1&T4.1&T1.2=1 
T3.2&T1.3=3 
T3.2&T4.1=3 
T3.2&T4.1&T1.1&T2.2=1 
T3.2&T1.1=2 
T3.2&T1.2=2 
T3.2&T2.2=2 
T2.2=6 
T2.2&T1.3=3 
T2.2&T4.1=3 
T2.2&T1.1=2 
T4.1=6 
T4.1&T1.1=2 
T4.1&T1.2=2 
T4.1&T1.3=2 
T1.1=5 
T1.3=5 
T1.2=4 
T2.3=4 
 
 
Lopetatud: 2013 11 6 18 49 
31.292 

T1.1&T2.2&T3.1&T4.2=1 
T1.1&T2.2&T3.2&T4.1=1 
T1.1&T3.2=2 
T1.1&T4.1=2 
T1.1&T3.1=3 
T1.1&T3.1&T4.2=2 
T1.1&T4.2=3 
T1.3=5 
T1.3&T2.2&T3.1=2 
T1.3&T2.2&T3.1&T4.1=1 
T1.3&T2.2&T3.1&T4.2=1 
T1.3&T4.1=2 
T1.3&T2.2=3 
T1.3&T2.2&T3.2&T4.2=1 
T1.3&T2.2&T4.2=2 
T1.3&T3.2=3 
T1.3&T3.2&T4.2=2 
T1.3&T4.2=3 
T2.2=6 
T2.2&T3.2=2 
T2.2&T4.1=3 
T2.2&T4.1&T3.1=2 
T2.2&T4.2=3 
T2.2&T4.2&T3.1=2 
T2.2&T3.1=4 
T4.1=6 
T4.1&T3.1=3 
T4.1&T3.2=3 
T3.1=7 
T3.1&T4.2=4 
T3.2=7 
T3.2&T4.2=4 
T4.2=8 
 
 
Lopetatud: 2013 11 6 18 50 
13.263 

 

b) Trees 

Alustatud: 2013 11 1 17 37 
44.122 

 
Fail: C:\…\SMorn.txt 
Objekte failis: 14, objektis 
tunnuseid: 5 
Objektid:  
Tunnused: 1-4 
Objekte valjavotus: 14 
Minimaalne lubatud sagedus = 1 
Juhtsageduse valik: max sagedus 
 

Alustatud: 2013 11 1 17 35 
48.862 

 
Fail: C:\…\SMorn.txt 
Objekte failis: 14, objektis 
tunnuseid: 5 
Objektid:  
Tunnused: 1-4 
Objekte valjavotus: 14 
Minimaalne lubatud sagedus = 1 
Juhtsageduse valik: min sagedus 
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(8) 0.500(4)0.500(2)0.500(1) 
T4.2=>T3.1  ->T1.1  ->T2.2 
                    0.500(1) 
                    ->T2.3 
            0.500(2)0.500(1) 
            ->T2.2  ->T1.3 
            0.500(2)0.500(1) 
            ->T2.3  ->T1.2 
    0.500(4)0.500(2)0.500(1) 
    =>T3.2  ->T1.3  ->T2.1 
                    0.500(1) 
                    ->T2.2 
            0.500(2)0.500(1) 
            ->T2.1  ->T1.1 
            0.250(1) 
            ->T1.2&T2.3 
    0.375(3) 
    =>T1.1 
    0.375(3)0.667(2) 
    =>T1.3  ->T2.2 
    0.375(3) 
    =>T2.2 
    0.375(3)0.667(2) 
    =>T2.3  ->T1.2 
 
(7) 0.571(4)0.500(2)0.500(1) 
T3.1=>T2.2  ->T1.3  ->T4.1 
            0.500(2)0.500(1) 
            ->T4.1  ->T1.2 
    0.429(3)0.667(2)0.500(1) 
    =>T1.1  ->T2.3  ->T4.1 
    0.429(3) 
    =>T2.3 
    0.429(3) 
    =>T4.1 
    0.286(2) 
    =>T1.2 
 
(7) 0.571(4)0.500(2)0.500(1) 
T3.2=>T2.1  ->T1.3  ->T4.1 
            0.500(2)0.500(1) 
            ->T4.1  ->T1.2 
    0.429(3) 
    =>T1.3 
    0.429(3)0.333(1) 
    =>T4.1  ->T1.1&T2.2 
    0.286(2) 
    =>T1.1 
    0.286(2) 
    =>T1.2 
    0.286(2) 
    =>T2.2 
 

 
(4) 0.250(1) 
T1.2=>T2.1&T3.2&T4.1 
    0.250(1) 
    =>T2.2&T3.1&T4.1 
    0.500(2)   0.500(1) 
    =>T2.3&T4.2->T3.1 
               0.500(1) 
               ->T3.2 
    0.500(2) 
    =>T3.1 
    0.500(2) 
    =>T3.2 
    0.500(2) 
    =>T4.1 
 
(4)      0.250(1) 
T2.1&T3.2=>T1.1&T4.2 
         0.500(2)0.500(1) 
         =>T1.3  ->T4.1 
                 0.500(1) 
                 ->T4.2 
         0.500(2) 
         =>T4.1 
         0.500(2) 
         =>T4.2 
 
(4) 0.250(1) 
T2.3=>T1.1&T3.1&T4.1 
    0.500(2)   0.500(1) 
    =>T1.1&T3.1->T4.2 
    0.750(3)0.667(2) 
    =>T3.1  ->T4.2 
    0.750(3) 
    =>T4.2 
 
(5) 0.400(2)0.500(1) 
T1.1=>T2.2  ->T3.1&T4.2 
            0.500(1) 
            ->T3.2&T4.1 
    0.400(2) 
    =>T3.2 
    0.400(2) 
    =>T4.1 
    0.600(3)0.667(2) 
    =>T3.1  ->T4.2 
    0.600(3) 
    =>T4.2 
 
(5) 0.400(2)   0.500(1) 
T1.3=>T2.2&T3.1->T4.1 
               0.500(1) 
               ->T4.2 
    0.400(2) 
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(6) 0.500(3) 
T2.2=>T1.3 
    0.500(3) 
    =>T4.1 
    0.333(2) 
    =>T1.1 
 
(6) 0.333(2) 
T4.1=>T1.1 
    0.333(2) 
    =>T1.2 
    0.333(2) 
    =>T1.3 
 
(5) 
T1.1 
 
(5) 
T1.3 
 
(4) 
T1.2 
 
(4) 
T2.3 
 
 

Lopetatud: 2013 11 1 17 37 44.5 

    =>T4.1 
    0.600(3)0.333(1) 
    =>T2.2  ->T3.2&T4.2 
            0.667(2) 
            ->T4.2 
    0.600(3)0.667(2) 
    =>T3.2  ->T4.2 
    0.600(3) 
    =>T4.2 
 
(6) 0.333(2) 
T2.2=>T3.2 
    0.500(3)0.667(2) 
    =>T4.1  ->T3.1 
    0.500(3)0.667(2) 
    =>T4.2  ->T3.1 
    0.667(4) 
    =>T3.1 
 
(6) 0.500(3) 
T4.1=>T3.1 
    0.500(3) 
    =>T3.2 
 
(7) 0.571(4) 
T3.1=>T4.2 
 
(7) 0.571(4) 
T3.2=>T4.2 
 
(8) 
T4.2 
 
 

Lopetatud: 2013 11 1 17 35 
49.318 
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