
Tallinn 2019

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Daniel Smirnov 164056IAPB

THE DEVELOPMENT OF WEB-BASED

GRAPHICAL USER INTERFACE FOR THE

ORIGINAL EQUIPMENT MANUFACTURER

(LDI INNOVATION)

Bachelor’s thesis

Supervisor: Innokenti Sobolev

 Ph.D,

 Eduard Petlenkov

 Professor

Tallinn 2019

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Daniel Smirnov 164056IAPB

VEEBIPÕHISE GRAAFILISE

KASTUAJALIIDESE ARENDUS

ORIGINAALSEADMETE TOOTJALE

(LDI INNOVATION)

bakalaurusetöö

Juhendaja: Innokenti Sobolev

 Ph.D,

 Eduard Petlenkov

 Professor

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Daniel Smirnov

20.05.2019

4

Abstract

The main goal of this thesis is to develop a web-based graphical user interface for SFS

Cube™ instrument [1] developed and manufactured by LDI Innovation. LDI Innovation

is a company that develops innovative new products and services based on accumulated

knowledge, experience and intellectual property of the founders. The company provides

various Engeneering services including embedded and PC (Personal Computer) software

development for control, real-time asquisition and data processing.

The SFS Cube™ is designed as a compact, fast scanning spectrometer to operate in

laboratory and in industrial environment based on the measurement of the Spectral

Fluorescence Signature (SFS) of liquid, powder or solid samples [1]. The PC side

software for SFS Cube must be able to communicate with the device and to visualize the

information received from the SFS Cube™.

The aim of this project is to develop the convenient user interface for communication,

configuration and management of the device. As a result, an appropriate solution has been

found and implemented. A working web-based user interface has been presented. The

developed graphical user interface is currently in use by customer.

This thesis is written in English and contains 34 pages of text, including 6 chapters, 25

figures.

5

Annotatsioon

Veebipõhise graafilise kastuajaliidese arendus originaalseadmete tootjale

(LDI Innovation)

Käesoleva bakalaureusetöö peamiseks eesmärgiks on arendada veebipõhine graafiline

kasutajaliides SFS Cube™ seadmele, mida arendab ja toodab LDI Innovation OÜ. LDI

Innovation OÜ on Eesti ettevõte, mis arendab innovatiivseid uusi seadmeid ja teenuseid,

mis põhinevad ettevõtte asutajate aastakümnete pikkusel teadustööl ning tekkinud

kogemusel ja intellektuaalomandil. Ettevõte pakub erinevaid insenerlahendusi, mille

hulka kuuluvad sisseehitatud tarkvara ning arvutitarkvara arendamine seadmete

juhtimiseks, reaalajaliseks andmete hõiveks ning andmetöötluseks.

SFS Cube™ seade on konstrueeritud kompaktse ning kiire spektrofluoromeetrina

kasutamiseks laboratooriumis ning tööstuslikus keskkonnas. Seade põhineb vedelate,

tahkete ning pulbriliste proovide Spektraalsete Fluorestsentsi Sõrmejälgede (SFS)

mõõtmise meetodil. Seadme arvutitarkvara peab olema võimeline seadmega

kahesuunaliselt andmeid vahetama ning SFS Cube'ilt saadud andmeid visualiseerima.

Käesoleva projekti eesmärgiks oli arendada mugav kasutajaliides seadmega

kommunikeerimiseks, seadme konfigureerimiseks ning selle haldamiseks, pidades

arendusel silmas, et graafilist kasutajaliidest oleks ettevõttel tulevikus võimalik lihtsasti

ja modulaarselt uuendada.

Käesolevas töös selgitatakse, kuidas WebSocket’i abil toimub interaktiivsete andmete

visualiseerimine. Arendamiseks on kasutatud vahendeid nagu IDE PyCharm, Chrome

DevTools ja Git. Peamiseks keeleks oli valitud Python. Front-end’i jaoks kasutati CSS,

HTML, JavaScript ning Flask tehnoloogiaid. Töö käigus disainiti kasutajaliides.

Arendustegevuse tulemusel on leitud ja disainitud sobilik lahendus ning töötavat

veebipõhist kasutajaliidest on käesolevas töös esitletud. Välja arendatud graafiline

kasutajaliides on juba reaalselt kasutuses.

6

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 34 leheküljel, 6 peatükki, 25

joonist.

7

List of abbreviations and terms

C++ Programming language

Callback Executable code that is passing argument to other code

CLI Command Line Interpreter

Cookies Piece of data that is stored on a user side

CSS Cascading Style Sheets

DevTools Development tools

Google Chrome Cross-platform web browser developed by Google

HTML HyperText Markup Language

IDE PyCharm Integrated development environment

JavaScript The programming language of HTML and Web

JSON Lightweight data-interchange format

OEM Original equipment manufacturer

PC Personal computer

Python Programming language

RWD Responsive web design [2]

SFS Spectral Fluorescence Signature Analyzer

WebSocket Connection between browser and server. Used for data

exchange

8

Table of contents

1 Introduction .. 11

2 About the company .. 12

3 Requirements ... 13

3.1 Company’s requirements to the user interface ... 13

3.1.1 Functional requirements .. 13

3.1.2 Non-functional requirements ... 14

4 State of the art .. 15

4.1 Possible solutions .. 15

4.1.1 Web development .. 15

4.1.2 Python as programming language ... 15

4.1.3 Library choice .. 16

4.1.4 Bokeh ... 16

4.1.5 Flask ... 17

4.1.6 HTML/CSS/JavaScript .. 17

4.2 Development tools .. 17

5 Development of Graphical User Interface ... 18

5.1 Project Structure ... 18

5.1.1 Project Isolation ... 18

5.1.2 Web application architecture ... 19

5.1.3 Multi-threading .. 19

5.1.4 Configuration and Initialization ... 20

5.1.5 Jinja2 templating .. 20

5.2 Design of the interface .. 21

5.2.1 User flow ... 22

5.2.2 Elements style customization .. 24

5.3 Request flow ... 26

5.3.1 User management .. 26

5.3.2 The beginning of handling ... 27

5.3.3 Elements initialization ... 28

9

5.3.4 Interactive visualization ... 30

6 Summary .. 32

References .. 33

10

List of figures

Figure 1. Project file structure .. 18

Figure 2. Starting Bokeh and Flask servers .. 19

Figure 3. Configuration of the servers .. 20

Figure 4. Bokeh element integration into HTML using safe filter 20

Figure 5. Jinja2 HTML template .. 21

Figure 6. First page of the application, login page ... 22

Figure 7. New measure page .. 22

Figure 8. Control elements display ... 23

Figure 9. Pre-loader example.. 23

Figure 10. Date and time realization on pages using JavaScript bases 24

Figure 11. Creating controls on Bokeh ... 25

Figure 12. The Bokeh elements design before the customization 25

Figure 13. The Bokeh elements design after customization ... 25

Figure 14. CSS customization example .. 25

Figure 15. User identification handle ... 26

Figure 16. Login handler .. 27

Figure 17. Logout handler .. 27

Figure 18. Binding static method new_meas_page with new measure path name 27

Figure 19. Basic controls. ... 28

Figure 20. Render templates with creating base element ... 28

Figure 21. Getting Bokeh elements function .. 29

Figure 22. Helper for rendering roots ... 29

Figure 23. Bokeh server operation scheme .. 30

Figure 24. HTML example of some Bokeh elements and their identification. 31

Figure 25. Log of WebSocket messages in Chrome DevTools 31

11

1 Introduction

The main purpose of the thesis was to develop a web-based user interface for the OEM

(Original Equipment Manufacturer) LDI Innovation. User Interface gives interactions

between the users and machines. To develop the user-friendly interface, we must

understand and see from the different ways how the current program will be used and for

which kind of people it is specialized. Nowadays, LDI-Innovation develops and

manufactures the unique spectral analyzers based on the technology of Spectral

Fluorescence Signatures (SFS). The devices have the interface that was initially

developed in the year 2005. It uses the framework that is written in C++ language for

device control, data acquisition, analysis and visualization. While the interface has been

substantially upgraded since that, its methodology is already obsolete. Comparing with

currently available software solutions this interface does not match with the up-to-date

requirements of the company. Also, previously made interface could only work using the

executable file, so there is no opportunity to open it using installed in every computer

browser. Technologies are going on and the actuality of web-based interfaces rises every

day.

12

2 About the company

LDI Innovation is a company that keeps focus on innovative developments of new

products and services based on accumulated knowledges, experience and intellectual

property of the founders. It has a rich historical background in innovative technologies of

developing sensors that detect the organic pollution in water and on the ground, pollution

identification in liquid, powder or solid samples and remote pollution detection and

identification.

Company is operating with novel Photonics, Information and Communication

technologies in industrial, environmental and security domains. Products which are

developed by the company includes photonics sensors and systems providing real-time

and online sensing solutions for industries, environmental protection, medicine and bio-

chemical security and safety.

Historically, all software developments in the company were done on C++ language.

Current products in company have the interface that was developed using framework that

is written on C++ language. The Python language was chosen for the further

developments and upgrades of the products.

The company wants to use novel technologies of software development. Comparing with

currently available software solutions the interface does not match the requirements of

the company, such as easy integrative software, independent from the executable

windows file and resizable, customizable GUI design. Nowadays, the company is focused

on using technologies that will allow in future integrating developed user interface to

other products.

13

3 Requirements

3.1 Company’s requirements to the user interface

Product in this project is modern device for the spectral fluorescence signature analyzer

named SFS-Cube™. Company’s main requirement was to develop web-based graphical

user interface for the application that would make easier for the user to communicate with

the device. The design must be understandable, intuitive and at the same time must

contain enough information about the current state of the SFS Cube™ and about the

measurements.

The current project was to develop a web-based user interface that should be easily

updated and integrated into other projects of the company. The developed application

should allow creating further projects on its base. The methodology of development was

chosen mutually with the head of company developers.

Requirements:

▪ Develop a web-based user interface by using nowadays technologies

▪ Use technologies that allow easily to integrate the developed user interface into

the other projects of the company

▪ Develop a design that can be easily updated and must be intuitive

▪ Use Python language for development along with CSS (Cascading Style Sheets),

HTML (HyperText Markup Language) and JavaScript

3.1.1 Functional requirements

▪ Real-time device operation control and status visualization

▪ Convenient measurement data visualization with customizable plots

▪ Resizable and customizable GUI layout

14

3.1.2 Non-functional requirements

▪ Multiplatform web-based interface. User interface should work in such systems

as: Linux, Macintosh, Windows

15

4 State of the art

4.1 Possible solutions

This paragraph describes the requirements suggested by the company and some of the

possible approaches are reviewed.

4.1.1 Web development

Nowadays, the popularity of Web developments is rising very fast. The usage of web-

based interfaces allows to avoid the necessity of installation of the big sized files on the

computer. A web-based interface is compatible with any device’s platform and the only

requirement is to have the appropriate browser. Being able to work on the Web-related

code elements and systems became a very important skill for the up-to-date development

of the software products. The benefit of web-based development is that there is a huge

selection of tools, frameworks and extensions, that can be used [3].

Web Applications are dynamic web sites combined with server-side programming which

provide user interactions, connecting to them to backend databases and generating results

to browser [4].

It was decided to implement the application in the form of a web site, since it contributes

to the ease of portability and accessibility for users, because of the widespread use of web

browsers.

4.1.2 Python as programming language

The Python language was chosen, because it is an interpreted, interactive, object-oriented

programming language. It provides high-level data structures such as list and associative

arrays (called dictionaries), dynamic typing and dynamic binding, modules, classes,

exceptions, automatic memory management. It has a remarkably simple and elegant

syntax and yet is a powerful and general-purpose programming language [5]. Python has

a very extensive set of machine learning libraries [7]. The compilation is not needed

because of its dynamically-typed nature and reuse of code written in other languages is

possible. For these reasons and due to the abundance of well written, well documented,

scientific Python libraries, Python has become very popular in scientific communities [8].

16

The development on Python takes less time than development on programming language

C++. The reasons why Python development takes less time are:

▪ Supports Garbage Collection. When objects are not needed Python automatically

reclaims memory from them

▪ Runnable through interpreter

▪ Dynamically typed language

▪ Language comes with a massive set on inbuilt standard libraries [6]

Python is selected as a core language in SFS Cube™ software project. It has several strong

web-development frameworks such as Flask, thus it is the best candidate for frontend

software part development as well.

4.1.3 Library choice

The main problem of choosing the framework was to find the most suitable libraries that

will cooperate with backend and at the same time will not restrict both parts of the project.

As a result, Flask web framework was chosen for the user interface. Python library –

Bokeh was chosen for generating plots, which allow for the rendering of the most

important types of graph and they are all rendered in line with the HTML web standard.

4.1.4 Bokeh

Bokeh is an interactive visualization library that targets modern web browsers for

presentation. Its goal is to provide elegant, concise construction of versatile graphics, and

to extend this capability with high-performance interactivity over very large or streaming

datasets. Bokeh can help anyone who would like to quickly and easily create interactive

plots, dashboards, and data applications [9]. In current project Bokeh is used as an

independent server and it is starting as a separate server. The reason why Bokeh is used

as a separate server is that it affords many novel and powerful capabilities, such as:

▪ UI widgets and plot selections driving computations and plot updates.

▪ Intelligent server-side downsampling of large datasets.

▪ Streaming data automatically updating plots.

17

▪ Plot and dashboard publishing for wider audiences [9].

4.1.5 Flask

The reason why Flask was chosen is that it is a lightweight Web framework written in

Python [10]. It allows easily and comfortable start developing user interfaces. Due to the

fact, that by company was required to create flexible and integrative web-based user

interface we suggested to choose pure CSS, HTML and JavaScript for developing. The

Flask that is responsible for generating and delivering pages to the client.

Flask pros:

▪ Routing URL

▪ Integration with Jinja2, which is one of the most powerful Python template

engine

▪ Pluggable session management

▪ Interactive web-based debugger

▪ Flexible application configuration managements [10]

4.1.6 HTML/CSS/JavaScript

Modern web applications cannot avoid the use of HTML, CSS and JavaScript [11]. Was

used to take technologies, which lie in a web-based development. HTML is responsible

for the structure of pages using markup [12] and CSS for the style of the elements which

are used in HTML. JavaScript is most commonly used in web browsers, and, in that

context, the general-purpose core is extended with objects that allow scripts to interact

with the user, control the web browser, and alter the document content that appears within

the web browser window [13] that is the reason why JavaScript is used in the

development.

4.2 Development tools

During developments was used IDE (Integrated Development Environment) PyCharm

and Google Chrome's built-in DevTools [14]. As a tool for exchanging code with other

developers in our team was used Git.

18

5 Development of Graphical User Interface

In this paragraph reviews the creation of graphical user interface, project structure and

methods, which were used while developing the application.

5.1 Project Structure

The whole project consists of several logical modules, such as: logical device (SFS

Cube™), Backend, Database, Analysis and GUI, but within this thesis we will review

only GUI and partially backend part of the web application. The Figure 1 demonstrates

the file structure of the project, where each of the system components is in a separate

subdirectory. The web server with the client part is in the frontend directory; This

component is central to this thesis.

Figure 1. Project file structure

5.1.1 Project Isolation

In order, to ensure the independence of the project from the Python system interpreter and

globally installed libraries, we use the virtualenv tool, with which you can create an

isolated environment with the required version of the interpreter and libraries inside the

project directory, thereby avoiding possible conflicts due to versions, since the

application may be dependent on specific library versions. The virtualenv tool is designed

19

as a CLI (Command Line Interpreter) module, and makes it easy to switch between virtual

environments, activating them transparently for applications [15]. On the Figure 1, we

can see the venv subdirectory containing all the dependencies of the project, and after

activating the virtual environment, all Python packages will be installed locally in this

directory.

5.1.2 Web application architecture

Web application consists of two main parts, which are implemented as interacted

subsystems on the separate servers:

• Page server (Flask), which generates and returns final html pages to the client. It

is the first level server which interacts with the client.

• The server based on Bokeh is responsible for creating plot components for graphs

and delivering them to the server pages as inline HTML elements; later, it acts as

a point for synchronization of graphs using the WebSocket protocol.

5.1.3 Multi-threading

Traditionally, to scale server applications in Python, a multi-process approach is used.

Due to the fact, that whole application (server and client side) is intended for local work

on the client machine, we use a simple multi-thread approach for reducing process

management costs, because we have only one process. The multithreading library is

lightweight, shares memory, responsible for responsive user interface and is used well for

input/output bound applications [16]. In our case it means that both servers will run in the

separate threads. Therefore, for example, server’s start and shutdown can be simply

performed. It can be seen on the Figure 2.

from core import BOKEH_SERVER, WEB_SERVER
BOKEH_SERVER.start()
WEB_SERVER.start()

Figure 2. Starting Bokeh and Flask servers

20

5.1.4 Configuration and Initialization

Configuration is going on the initialization of the servers. In this case configuration is

done as a simple Python code. Figure 3 shows the ports which are given for the current

servers.

WEB_PORT = 5000
BOKEH_SERVER_PORT = 5001

Figure 3. Configuration of the servers

Thanks to multi-thread approach server setup is simple (Figure 2).

5.1.5 Jinja2 templating

In projects for dynamic pages generation on the server-side template engines is a common

way which reduces the size of the source code of the pages and achieve high reuse of the

composite code, which is repeated. Jinja2 is a modern and designer-friendly templating

language for Python, modelled after Django’s templates [17], and in this project the

choice was made in favor of Jinja2.

In the process of templating is going the placement of HTML-elements generated by the

Bokeh server. Since by default Jinja2 escapes HTML special characters, we must use the

safe filter (Figure 4), which disables escaping and the “trusted” string will be output as

is.

<div class="rightcolumn">
 <div class="row">
 <div class="column">
 <div class="data">
 {{ bk_plot | safe }}
 </div>
 </div>
 </div>
</div>

Figure 4. Bokeh element integration into HTML using safe filter

21

5.2 Design of the interface

Graphical User Interface design took a big part of a development, because it should be

flexible and integrative, using pure CSS, HTML and JavaScript. The developing of design

consists of several parts:

▪ The understanding what does client wants to get

▪ The developing of the prototype and showing of it to the client

▪ Finding optimal solution in CSS and HTML to avoid the excess code lines

The required design was developed. We were using the nesting of elements for creating

the base HTML template (Figure 5). The nesting of elements means that we can position

elements in any way and the whole design template will adapt and resize automatically.

{% block content %}

 <div class="base-body">

 <div class="leftcolumn">

 <div class="row">

 <div class="column">

 <div class="data"></div>

 </div>

 </div>

 <div class="row">

 <div class="column">

 <div class="data"></div>

 </div>

 </div>

 </div>

 <div class="rightcolumn">

 <div class="row">

 <div class="column">

 <div class="data"></div>

 </div>

 </div>

 <div class="row">

 <div class="column">

 <div class="data"></div>

 </div>

 </div>

 </div>

 </div>

{% endblock %}

Figure 5. Jinja2 HTML template

22

5.2.1 User flow

Login page is the first page which user sees. On Figure 6 we can see the design of the

login page, which is flexible and looks the same on different screen resolutions.

Figure 6. First page of the application, login page

After the authorization, client is going to another page (Figure 7) where we can see

displaying of current day, month, year and time, which is realized by using JavaScript

(Figure 10).

Figure 7. New measure page

On the left side of the screen we can see the control elements, such as range sliders, input

box, select box and sliders (Figure 8). These elements were created on Bokeh side. The

creation of this elements is shown on Figure 11.

23

Figure 8. Control elements display

While the loading of elements is not completed the animated pre-loader (Figure 9) is

running on the page with disabling the elements on the current page. This functionality is

implemented only on last measure page, because only there can be elements which are

taking time to occur in the window.

Figure 9. Pre-loader example

24

5.2.2 Elements style customization

Function on Figure 10 sets to HTML element the current date and time. That was one of

the requirements from the clients, because this functionality allow people to manage the

time which is going during the processes. For example, for the client is comfortable when

he can follow the time while using this user interface.

function date_time(id) {
 date = new Date;
 year = date.getFullYear();
 d = date.getDate();
 day = date.getDay();
 h = date.getHours();
 var month = [Jan", "Feb", Mar", "Apr",

 "May", "Jun",

 "Jul", "Aug", "Sep",

 "Oct", "Nov", "Dec"];
 months = month[date.getMonth()];
 if (d < 10) d = "0" + d;
 if (h < 10) h = "0" + h;
 m = date.getMinutes();
 if (m < 10) m = "0" + m;
 s = date.getSeconds();
 if (s < 10) s = "0" + s;
 result = d + ' ' + months + ' ' + year + ' ' + h + ':' + m + ':' + s;
 document.getElementById(id).innerHTML = result;
 setTimeout('date_time("' + id + '");', '1000');
 return true;
}

Figure 10. Date and time realization on pages using JavaScript bases

On Figure 7 on the left side of the screen we can see the controls elements, which were

done on Bokeh server side. Figure 11 displays the creation of the controls. The method

widgetbox [18] allows us to group the elements on Bokeh server side. We can see that

was used sizing_mode=’stetch_both’ that means that component is completely

responsive, independently in width and height, and will occupy all the available

horizontal and vertical space, even if this changes the aspect ratio of the component [19].

The css_classes which are given allows us to customize the displaying of the elements

(Figure 11).

25

preset_controls = widgetbox(meas_name_text_input,
 preset_dropdown,
 ex_slider,
 em_slider,
 ex_step_dropdown,
 em_step_dropdown,
 gain_slider,
 accumulation_slider,
 sizing_mode='stretch_both',
 css_classes=['col-flex-panel',

'stretch-controls'])

Figure 11. Creating controls on Bokeh

The developing Responsive Web Design is one of the main goals of my thesis. RWD

(Responsive Web Design) is a web development approach that creates dynamic changes

to the appearance of the web application [2]. Every element, which is generated on Bokeh

server side has its own CSS style, that means to create responsible elements we need to

rewrite the given CSS of the elements. The Figure 12 shows how does control elements

looks without CSS customization.

Figure 12. The Bokeh elements design before the customization

To customize elements was chosen Flexible Layout Module [20] that allows to create the

flexible elements, which will resize automatically and seems appropriate (Figure 13).

Figure 13. The Bokeh elements design after customization

For example, on Figure 14 we can see how was removed the title CSS place from the

Bokeh elements.

.no-title-slider label, .no-title-slider .bk-slider-value {
 display: none !important;
}

Figure 14. CSS customization example

26

5.3 Request flow

In this paragraph step-by-step process of handling request from the user will be fully

described and how does client agent (browser etc.), Bokeh and Flask servers are

interacting with each other.

5.3.1 User management

Almost all pages of the project need basic user identification. Whole application works

locally on the user’s side and there is no need for a full implementation of the mechanism

for managing sessions and security of the users. We can identify users just by login.

Authorization will be stored as a record in cookies; To check this information, it is

reasonable to register a callback by Flask.before_request [21], which is called every time

before starting the processing of a request. This callback reads the login from cookies and

if it is not set, the server returns redirect to the login page (Figure 15). Otherwise, the

username will be stored in a global variable, and the query will continue. Some pages do

not need authorization, so being on one of them, the check does not occur.

@staticmethod
@app.before_request
def before_request():
 global username
 username = request.cookies.get('username')
 if request.path in ('/', '/login', '/static/logIn.css'):
 return
 if not username:
 return redirect('/login')

Figure 15. User identification handle

The login handler, represented in Figure 16, is responsible for the login page. It performs

two functions depending on the HTTP method: if it is a GET method, it simply returns

the login page; if it is a POST method, it expects a completed form with a username, and

if this data is available, identification is complete. The server returns redirection to the

default page and sets the username in the cookie. Such a combination of two methods

(GET and POST) in one handler is a common practice in Flask, in case the code is small.

27

@staticmethod
@app.route("/login", methods=['GET', 'POST'])
def login():
 if request.method == 'GET':
 return render_template('login.html')

 username = request.form.get('username')

 if not username:
 return redirect('/login')

 response = redirect(url_for('new_meas_page'))

 response.set_cookie('username', username)
 return response

Figure 16. Login handler

After the work, the user has the opportunity to log out. As a result, it will go to the address

/logout, and the server will clear the user name. Figure 17 shows the handler that is

responsible for this.

@staticmethod

@app.route("/logout")

def logout():

 response = redirect('/login')

 response.set_cookie('username', '')
 return response

Figure 17. Logout handler

5.3.2 The beginning of handling

If the client was successfully identified, the execution of the request proceeds to a pattern

matching to select one of the handlers registered by the Flask.route function. This

process, also called routing, is performed inside the Flask framework. Figure 18 shows

the binding of the handler to the path.

@staticmethod
@app.route("/new_meas")
def new_meas_page():
 allow = {'bk_plot', 'bk_preset_controls'}
 return FlaskServerThread._compile_template("new_meas.html", "New
 Measure", allow, 'new')

Figure 18. Binding static method new_meas_page with new measure path name

28

If the target handler is not found, the HTTP error 404 Not found is returned, otherwise

almost all the handlers start generating a page that is executed by the _compile_template

function (Figure 20). Before rendering the page template, it requests prepared elements

from the Bokeh server using the _pull_bokeh_roots (Figure 21) function, which are then

used in templating. It also independently requests basic controls, such as the header, main

menu (Figure 19) and footer, which should be placed on each page. The process of

requesting items is described in detail in section 5.3.3.

Figure 19. Basic controls.

@staticmethod
def _compile_template(body_template, title, allowed, bk_app):
 allow = {'sfs_start_stop_btn', 'device_status', 'progress_bar',
'bk_popup_div'}
 kwargs, script = FlaskServerThread._pull_bokeh_roots(allow, 'ctrl')

 kw, bk_script = FlaskServerThread._pull_bokeh_roots(allowed, bk_app)
 kw['bk_script'] = bk_script

 return render_template(body_template, title=title, username=username,

 **kwargs, **kw, ftr_bk_script=script)

Figure 20. Render templates with creating base element

5.3.3 Elements initialization

The page server (Flask) creates a request to the Bokeh server to create the necessary

elements. However, before that, we must create a separate session for each user, in which

the bokeh server will manage the life cycle of the created elements. Its unique identifier

(session_id) is equal to the user's login name and Bokeh’s handler name - it allows

maintaining a shared view in different browser tabs opened by an individual user.

For the plots creation is responsible the handler, which is implemented on the side of the

Bokeh server, whose name is specified in bk_app, but its description is beyond the scope

of this thesis.

29

Next, the Bokeh server initializes the internal state of each element using the identifier of

the created earlier session and returns them to the page server (Flask) over the network as

a special objects. The functionality that is described is shown on Figure 21.

@staticmethod
def _pull_bokeh_roots(allowed, bk_app):
 with pull_session(session_id=username + '_' + bk_app,
 url='http://localhost:5001/' + bk_app) as session:
 bokeh_roots = RenderItem(sessionid=session.id,
 roots=session.document.roots,
 use_for_title=False)
 log.debug(bokeh_roots)
 script = CUSTOM_JS_FOR_3D_PLOT + \
 script_for_render_items(None, [bokeh_roots],
 app_path='/' + bk_app,
 absolute_url='http://localhost:5001/'
 + bk_app)
 roots_dict = FlaskServerThread.roots_prepare(bokeh_roots, allowed)
 return roots_dict, script

Figure 21. Getting Bokeh elements function

Inside the _pull_bokeh_roots function, the auxiliary method roots_prepare (Figure 22) is

used, which from the container of Bokeh objects (bokeh_roots) renders the final HTML

code for each element. Since each object is uniquely named, it is convenient to return a

dictionary, where the key is the name of the element, and the value is its HTML code.

The method also accepts a set of expected names (allow), and if an element with a name

that is not in allow was detected, a warning is logged, since unexpected elements will

later lead to an error during the page generation stage.

@staticmethod
def roots_prepare(bokeh_roots, allow):
 d = {}
 for root in bokeh_roots.roots:
 d[root.name] = div_for_render_item(root)
 if root.name not in allow:
 log.error('Here is some root that is not in allowed or html

 template.')
 return d

Figure 22. Helper for rendering roots

30

Finally, the resulting dictionary will be passed to the render_template [22] function as

unpacked key word arguments to provide access to the elements inside the template.

5.3.4 Interactive visualization

After the prepared HTML page is sent to the client, the interaction with the client is still

going on. Since the server side of the application connects to scientific devices and is a

source of dynamic data, continuous synchronization of elements with the Bokeh server is

necessary to support interactive visualization. The Figure 23 [23] demonstrates the

principle of this work.

Figure 23. Bokeh server operation scheme

In the previous section 5.3.3, during initialization, to each object is assigned a unique

identifier, which is reflected in the HTML code of the element. This identifier is then used

when sending events using a WebSocket connection. The example is shown on the Figure

24.

31

Figure 24. HTML example of some Bokeh elements and their identification.

The connection is duplex; events are sent in both directions, which allows the server to

react in real time to user input and redraw plots when updating the data source on the

server side. These messages are transmitted in JSON format and the Figure 25 shows the

payload of some events; as we can see, the identifier and other metadata are transmitted.

Figure 25. Log of WebSocket messages in Chrome DevTools

32

6 Summary

The aim of this thesis was to develop web-based GUI for the original equipment

manufacturer (LDI Innovation) that would make it easier for the user to communicate

with the device, provide better capabilities for data management, and make the user

interface ready for integration of novel software solutions. LDI Innovation is a

manufacturer which is engaged in scientific.

First, the Python language was selected as core language along with CSS, HTML and

JavaScript. Flask web framework was selected for GUI, because it is lightweight, and it

uses Jinja2 template engine. These instruments allow to start developing faster and to

save the time for the writting the programm code.

Secondly, the design of the interface and its intuitive placement of the elements were

discussed with the head of the company. The expected result was obtained.

In conclusion, the main goal of this thesis was done successfully. The GUI that was

developed is currently in use by the clients of LDI Innovation.

33

References

[1] LDI Innovation, "SFS-Cube - LDI Innovation," [Online]. Available: https://ldi-

innovation.com/index.php/sfs-cube/. [Accessed 17 05 2019].

[2] A. Schade, "Responsive Web Design (RWD) and User Experience," Nielsen Norman

Group, 05 05 2014.

[3] D. Terrence, "26 Tools and Frameworks for HTML-based Desktop and Web App

Interfaces," Visual Studio Magazine, 25 01 2017.

[4] B. Kohan, "Guide to Web Application Development," [Online]. Available:

https://www.comentum.com/guide-to-web-application-development.html. [Accessed 17

05 2019].

[5] M. Sanner, "Python: A Programming Language for Software Integration and

Development," Journal of Molecular Graphics and Modelling, 1998.

[6] S. Raschka, Python Machine Learning, United Kingdom: Packt Publishing Ltd., 2015.

[7] L. Barnard and M. Mertik, "Usability of Visualization Libraries for Web Browsers,"

International Journal of Computer Applications (0975 - 8887), vol. 121, 2015.

[8] Educba, "Python vs C++," [Online]. Available: https://www.educba.com/python-vs-c-

plus-plus/. [Accessed 17 05 2019].

[9] Bokeh Development Team, "Bokeh: Python library for interactive visualization," 2018.

[Online]. Available: https://bokeh.pydata.org/en/latest/. [Accessed 17 05 2019].

[10] M. Copperwaite and C. Leifer, Learning Flask Framework, United Kingdom: Packt

Publishing Ltd., 2015.

[11] M. Grinberg, Flask Web Development, O'Reilly Media, 2018, p. 12.

[12] Refsnes Data, "Introduction to HTML," 1998. [Online]. Available:

https://www.w3schools.com/html/html_intro.asp. [Accessed 17 05 2019].

[13] D. Flanagan, JavaScript: The Definitive Guide, Fifth Edition, O'Reilly Media, 2006, p. 1.

[14] Google, "Chrome DevTools, Tools for Web Developers," [Online]. Available:

https://developers.google.com/web/tools/chrome-devtools/. [Accessed 17 05 2019].

[15] I. Bicking, "Virtualenv," 2007. [Online]. Available: https://virtualenv.pypa.io/en/latest/.

[Accessed 17 05 2019].

[16] N. Bosco, "Multithreading vs Multiprocessing in Python," 26 11 2017. [Online].

Available: https://blog.usejournal.com/multithreading-vs-multiprocessing-in-python-

c7dc88b50b5b. [Accessed 17 05 2019].

[17] A. Ronacher, "Jinja2 Documentation," 2008. [Online]. Available:

http://jinja.pocoo.org/docs/2.10/. [Accessed 17 05 2019].

[18] Bokeh Development Team, "Bokeh: Python library for interactive visualization," 2018.

[Online]. Available:

https://bokeh.pydata.org/en/latest/docs/reference/models/layouts.html#bokeh.models.lay

outs.WidgetBox. [Accessed 17 05 2019].

[19] Bokeh Development Team, "Bokeh: Python library for interactive visualization," 2018.

[Online]. Available:

34

https://bokeh.pydata.org/en/latest/docs/reference/models/layouts.html#bokeh.models.lay

outs.LayoutDOM.sizing_mode. [Accessed 17 05 2019].

[20] Refsnes Data, "CSS FlexBox (Flexible Box)," 1998. [Online]. Available:

https://www.w3schools.com/css/css3_flexbox.asp. [Accessed 2019 05 17].

[21] Pallets Team, "API-Flask 1.0.2 documentation," 2010. [Online]. Available:

http://flask.pocoo.org/docs/1.0/api/. [Accessed 17 05 2019].

[22] Pallets Team, "API-Flask 1.0.2 documentation," 2010. [Online]. Available:

http://flask.pocoo.org/docs/1.0/api/#flask.render_template. [Accessed 17 05 2019].

[23] Bokeh Developer Team, "Running a Bokeh Server," 2018. [Online]. Available:

https://bokeh.pydata.org/en/latest/docs/user_guide/server.html. [Accessed 2019 05 17].

