
TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology

Institute of Computer Science
Chair of Theoretical Informatics

Implementing parser for CoCoViLa specification
language using context-free grammar

Master thesis

Student: Ilja Nafigin
Student code: 121841IAPM
Advisor: Pavel Grigorenko

Tallinn
2014

I declare that this thesis is the result of my own research except as cited in the
references. The thesis has not been accepted for any degree and is not concurrently
submitted in candidature of any other degree.

Signature
Name Ilja Nafigin
Date June 2, 2014

ABSTRACT

The specification language plays the central role in model-based software devel-
opment platform CoCoViLa. In CoCoViLa, domain-specific models of concepts
and computational problems are defined visually, using diagrams, or textually, us-
ing the specification language. Visual specifications are translated into the textual
form. That is why it is important to handle specifications correctly. CoCoViLa
used to have a parser based on regular expressions which contained lots of mis-
takes and also did not allow to develop and extend the specification language
without effort.

In this work the theory of formal languages is studied. The comparison of ex-
isting software tools for automatically generating parsers from context-free gram-
mars is given.

A context-free grammar of CoCoViLa specification language is created. The
realisation of a new parser generated by the chosen tool called ANTLR is de-
scribed. The evaluation of the parser is presented with the description of new
features as well as the comparison with the old parser.

CONTENTS

1. Introduction . 1
1.1 Goal of the thesis . 1
1.2 Outline of the thesis . 2

2. Theoretical overview . 3
2.1 Grammars of programming languages 3
2.2 Chomsky hierarchy . 4

2.2.1 Unrestricted grammars 4
2.2.2 Context-sensitive grammars 5
2.2.3 Context-free grammars 5
2.2.4 Regular grammars . 7

2.3 Tools for recognising, analysing and translating formal languages . 7
2.3.1 Lexer . 8
2.3.2 Parser . 8
2.3.3 Syntax tree and abstract syntax tree 12

2.4 Automata theory . 14

3. Related work . 16
3.1 Comparison of parser generations 16

3.1.1 JavaCC . 17
3.1.2 SableCC . 20
3.1.3 ANTLR . 23

3.2 Selection of parser generation 26

4. Implementation . 28
4.1 Architectural overview . 30

4.1.1 Interaction with ANTLR 30
4.1.2 Integration with CoCoViLa 32

4.2 Grammar implementation . 34
4.2.1 Porting of existing functionality 35
4.2.2 Implementation of new features 41

Contents 6

5. Evaluation of approach . 46
5.1 Performance comparison . 47

6. Conclusions . 49
6.1 Future work . 49

1. INTRODUCTION

CoCoViLa is a model-based software development platform implemented in Java
language [1]. It enables to develop visual domain-specific languages and use these
languages to specify various computational problems in a declarative manner (i.e.
specifying what should be computed instead of how). Built-in program synthe-
sis engine takes care of generating valid programs for solving specified problems
automatically. Visual specifications in CoCoViLa are translated into the textual
specification language. This is a Java-like language that allows declaring vari-
ables, specifying functional dependencies between variables, etc. The specifica-
tion language’s role is crucial to the whole platform and it is very important that
specifications implemented in this languages are handled correctly. Unfortunately,
this is not always the case.

CoCoViLa uses a manually implemented parser based on regular expressions
in order to parse specification language. And this parser is a bottleneck that pre-
vents future development and enhancement of specification language. Thus, im-
plementation of more reliable and flexible parser, which will allow to make im-
provements effortlessly and conveniently is needed.

To do this, theory of formal languages is very useful and helpful, as it studies
formal grammars, theory of automata, parsers and compilers. These branches give
basic understanding of how formal languages are structured, what they contain
and how the process of compilation works. Process of compilation includes parser
and lexer, and the theory also studies automatic parser generator, which will help
to achieve the goal of the given thesis.

1.1 Goal of the thesis

The goal of the given thesis is to come up with a solution to the problem of improv-
ing and extending the CoCoViLa specification language. To achieve this goal, the
research in the topic of compiler construction and formal languages is required.
The results of this research enable formalisation of the grammar of CoCoViLa
specification language. The grammar allows to use existing parser generators in
order to automatically construct the parser and implement improvements to lan-
guage with much less effort, than it is with the language parser, based on regular
expressions.

1. Introduction 2

1.2 Outline of the thesis

The thesis is organised as follows. The second chapter presents an overview of
theory of formal languages, i.e. description of grammars, tools for recognising
context-free languages. Third chapter includes a comparison of parser generators
conforming to certain requirements and justifies the choice made for implement-
ing a parser. Fourth chapter describes the process of implementation of a new
parser for CoCoViLa. Comparison of results with previous implementations is
presented in fifth chapter. The final, sixth chapter, includes conclusion and dis-
cussion about the possible future developments in CoCoViLa.

2. THEORETICAL OVERVIEW

2.1 Grammars of programming languages

Grammar is a fundamental formalism used to depict programs’ structure. Al-
though the grammar describes only syntactic structure, the grammar can be also
viewed as an instrument for defining semantics, as language’s semantics can be
described in the terms of syntax. Grammar is also fundamental when speaking of
language specification, as it dictates a structure on the linear sequence of tokens
that have to be used in order to create a parser, and it helps program developers
in compiling syntactically legitimate programs and to give detailed syntax-related
answers [2].

Grammar is the set of rules that explains how words are used in a language
and it consists of a set of production rules, terminals, nonterminals and a start
symbol. Production rules have left-hand side and right-hand side, separated by
a rightwards arrow, e.g. A → α. Each side contains grammar symbols: termi-
nals and/or nonterminals. Productions specify which grammar symbols may be
substituted by other symbols. To generate, or parse a string that belongs to the
language defined by the grammar, production rules are subsequently applied until
no nonterminal symbols are left, this is called the derivation of a string. Terminal
symbols cannot be changed during the application production rules. Nontermi-
nals, on the contrary, are like variables, during the derivation of strings they are
being substituted by sequences of nonterminal and terminal symbols.

In order to distinguish grammar symbol types from each other, they must have
different alphabet and style. By convention,

1. terminal symbols are written in lowercase letters and are usually taken from
the end of the English alphabet, e.g. x, y, z;

2. nonterminals are written using capital letter from the beginning of the En-
glish alphabet, e.g. A,B,C;

3. for start symbol, letter S is used;

4. symbol sequences are presented by Greek alphabet, e.g. α, β, γ;

5. for empty sequence, Greek letter ε is used.

2. Theoretical overview 4

2.2 Chomsky hierarchy

In the late 1950s [3] Noam Chomsky defined a containment hierarchy of classes
of formal languages and grammars that enables for an information technology
developer to achieve systematical linguistic goals, e.g. to create and develop a
new programming language and/or to make an existing language more specific.
As a language may be created with the use of different grammars, the grammars
are divided into different types.

According to the Chomsky’s classification there are four types of grammars:
Type-0 or the unrestricted grammars (also called recursively enumerable), Type-
1 or the context-sensitive grammars, Type-2 or the context-free grammars, and
Type-3 or the regular grammars. Formal grammar, included in the hierarchy, is
formed by a set of production rules, consisting of a start symbol, finite set of
terminal symbols and nonterminal symbols (syntactic variables).

If it is possible to develop and write a language, with the use of different types
of grammars, then the language is placed in a class of a simpler grammar. In
Chomsky classification Type-0 is seen as the most difficult and Type-3 is con-
sidered to be the simplest. Considering the fact that according to the Chomsky’s
hierarchy there are four types of grammars, and also the fact, that if a system
works on a precise level, then, generally, the system will also work on a lower
rank, then it is possible to constatate, that if a system is created using Type-3
grammar, then it is possible to create the same system, using Type-2 grammar; if
a system is created using Type-2 grammar, then it is possible to create the same
system, using Type-1 grammar; if a system is created using Type-1 grammar, then
it is possible to create the same system, using Type-0 grammar. If there is no lower
level, then it means that the system is presented using only one type of grammar.
The converse is not true. That is, it is not possible to promote a language, having
a grammar of a particular type, to a type, higher in the hierarchy.

2.2.1 Unrestricted grammars

According to the Chomsky hierarchy, the first class of complexity is called Type-
0 (also called the recursively enumerable) and to produce Turing-acceptable lan-
guages and initially it unifies other three types of formal grammar. This is the most
complex type of grammar, and therefore at this moment this class is interesting
only from the point of view of science.

As one can see from the name of the type, the complexity class has recursively
enumerable sets. It means that left hand side of the grammar rule and the right
hand side of the grammar rule may consist of any string. The only restriction is
that the left side must contain nonterminals and cannot consist of only terminals.
During the process the string may be shortened, it is not compulsory for a string

2. Theoretical overview 5

to stay the same length or to get longer.

2.2.2 Context-sensitive grammars

The second type of grammar in Chomsky hierarchy is named Type-1 and it de-
scribes and produces context-sensitive languages, wich is acceptable by a non-
deterministic (restricted) Turing machine. Principle of the type is to use infor-
mation about context before substitution is allowed, and working strings are not
shortened in the process of production.

Rule of context sensitive grammar is depicted as αAβ → αγβ, where:

1. A contains a set of terminal and/or (not less than one) nonterminal charac-
ters and cannot not empty;

2. α and β contains a set of terminal and/or nonterminal characters and may
be left empty .

3. γ contains terminal and nonterminal characters and cannot be empty.

Context of nonterminal is very important when applying context-sensitive gram-
mar’s production rules.

The context-sensitive grammar is to some degree a structural model for human
languages. Although, according to Cohen,“there is no mathematical proof of this
fact, there are mathematical proofs of the fact that context sensitive languages are
recursive” [3]. As it had been said before (“if a system is created using Type-1
grammar, then it is possible to create the same system, using Type-0 grammar”),
not all of the context-sensitive languages are recursive. They might be, but it is
not a rule.

2.2.3 Context-free grammars

The third type in Chomsky hierarchy is classified as Type-2, and it concerns pro-
duction of context-free languages, using context-free grammar, and usually it is
used to describe and analyse programming language’s syntax and to produce lan-
guages, recognisable by pushdown automaton. Context of nonterminal is not im-
portant when applying context free grammar’s production rules. Most program-
ming languages are based on the Type-2 grammar [2].

A context-free grammar G is defined by the 4-tuple: G = (V,Σ, R, S) where:

1. V – a finite set, consisting of variables (nonterminal symbols), which are
sometimes called syntactic categories;

2. Σ – a finite set of terminals, disjoint from V ;

2. Theoretical overview 6

3. R – a finite set of production rules of the grammar;

4. S ∈ V – a start symbol.

All production rules in context-free grammars should be in the form ofA→ β,
where:

1. A ∈ V ;

2. β ∈ (V ∪ Σ)∗.

Strings are derived [4], that is, placed in sequence of grammar rule applica-
tions that transform the start symbol into the string. In other words, it is the re-
placement of an occurrence of the left hand side by the right hand side of the pro-
duction. If leftmost nonterminal is replaced, then it is called canonical derivation.
The derivation proves that the string belongs to the grammar’s language. During
construction of a context-free language, it is suggested to break construction into
several simple pieces, as it is easier to solve several little problems instead of one
arduous problem. If there are too many pieces, then the structure may become
very complex and therefore indirect recursion may appear. It is difficult to notice
this kind of recursion, but it may lead to infinity loop.

Context-free languages are recognised by pushdown automata. A special case
of context-free languages are deterministic context-free languages, accepted by
deterministic pushdown automata [5].

Grammar notation techniques

There are two main types of notation technique [6] for context-free grammar:

1. van Wijngaarden form;

2. Backus–Naur Form.

The first type, van Wijngaarden form, is a technique used to define in a finite
amount of rules context-free grammars, which are potentially infinite, and context-
free grammars restrict functions of meta-rules.

The second type of context-free grammars notation techniques is Backus-Naur
form. It is a formal syntax describing system, where syntax categories are sequen-
tially determined via other categories. This form is used in order to describe for-
mal context-free grammars, and to describe programming languages, document
formats, instruction sets and communication protocols.

The latter notation has a subtype – extended Backus-Naur form. The extended
form has the advantage, as it is possible to describe simple repetitional construc-
tions of indefinite length (e.g. lists, lines, sequences) without the use of recursive

2. Theoretical overview 7

rules. Another advantage of the extended version is that terminals are strictly en-
closed within quotation marks and it is possible to omit chevrons for nonterminals
(it uses only three types of brackets, vertical line, equals sign, quotation marks,
comma), whilst simple form does not use quotation marks around terminals, and
it uses chevrons and other symbols for itself and therefore the symbols are not
used in the input language and a special symbol is required in order to represent
an empty string.

Next, one can see two examples of definition the production rule with BNF
notation:

1 <varDecl> ::= <var> <varList>
2 <varList> ::= <varName> | <varName> <coma> <varList>

EBNF notation:

1 varList = var varName {coma varList}

2.2.4 Regular grammars

The last type in Chomsky hierarchy - Type-3 - contains one of the most simplest
types of formal grammar, which is called regular grammar. Outcoming regular
language may be created with context-free grammar, if the left hand side of the
rule contains nonterminal and the right hand side of the rule contains exactly one
nonterminal and terminals (terminals are not required on the right hand side of
the rule), and the given theorem was proven by Chomsky and Miller in the late
1950’s [3].

Regular grammar may be divided into leftstring and rightstring grammar, and
they are equivalent. Regular languages are recognised by finite automata [7].

2.3 Tools for recognising, analysing and translating formal
languages

In order to execute actions, described in source code of a program, the source code
should be recognised, analysed and translated. All these processes are in general
performed with a tool called compiler.

Process of recognition is the process of combining letters from the program
source code into words (tokens). This process stands for lexical analysis, and it
is performed by lexer. Process of analysing is process of combining tokens into a
tree data structure. This process is performed by syntactic analyser (parser). In the
translation phase (performed by semantic analyser) the tree structure is translated

2. Theoretical overview 8

to another formal language. This could be a high-level programming language or
a machine code.

In next subsections the author will introduce lexer and parser.

2.3.1 Lexer

In order to recognise the languages, first, a lexical analysis needs to take place.
Lexer is a program that performs such analysis by accepting sequences of sym-
bols as input. It relies on existing grammar of a language in order to produce a
sequence of tokens (meaningful character strings) that put chunks of input data
into certain significant groups. The given process is called tokenising.

Lexer works in two phases:

1. scanning – lexer is usually implemented as a finite-state automaton, defined
by regular expressions, and in this phase data is coded as a sequence of
tokens;

2. evaluating – lexer evaluates the input string in order to produce meaningful
tokens.

Every token can be presented as a structure, containing token’s identification.
Tokens might be numbers, identifiers, parenthesis, brackets etc.

Process of tokenising is needed to prepare input sequence and verify, if each
and every word that is being processed exists in the language. Lexical analysis,
performed by the lexer simplifies the implementation of a parser, as the latter does
not need to determine lexical details of the input sentence.

2.3.2 Parser

After the phase of lexical analysis is finished, the next step is started – parsing.
The process of parsing is process of syntactic analysis.

Parser is a program that builds a representative data structure of the received
input. It uses tokens, obtained during the process of tokenising, as input stream.

Parser’s responsibility is to check, if the neighbouring tokens are compatible
and if the tokens form allowable expressions. Parser is required to:

1. inform clearly and precisely about presence of errors;

2. provide fast recovery after discovering an error to continue the search for
other errors;

3. not to slow down processing of correct incoming string in case errors are
found.

2. Theoretical overview 9

During the process of finding errors and discarding them, the parser arranges
processed tokens into constituents, resulting in a parse tree, which shows infor-
mation containing syntactic relations of tokens to each other.

Depending on parser’s type and implementation, it may have components as
follows:

1. an input buffer (contains input string);

2. a stack (storage of terminals and nonterminals);

3. a parsing table (informs on the production rule that has to be used).

Parser also needs to determine, which production rule it has to use. In order to
decide that, parser has to look a particular quantity of tokens ahead. This proce-
dure is called lookahead. The number of tokens that parser can use for lookahead
is presented in brackets after the name of the parser. However, sometimes there are
no numbers in the brackets, and instead of them there is an asterisk. The asterisk
means that quantity of lookahead tokens is not limited.

There are two types of parsers: top-down parser and bottom-up parser.

Top-down parser

Parser checks for possibilities for leftmost derivations by taking a target word,
which means that it works from front to the end. It means that process first visits
current node and then visits its children. Next the parser searches for sequence
of productions that generate the target word, and it is organised by building a tree
of all of the possibilities. When and if it becomes clear that the building is not
possible any further, as the target word does not appear on the branch of the tree,
then the process of building stops. A branch of a tree is suspended [3], if at least
one of these conditions is found:

1. bad substring;

2. good substrings, but too many of them;

3. good substrings, but wrong order;

4. improper outer-terminal substring;

5. excess projected length;

6. wrong target word.

2. Theoretical overview 10

In top-down parser there is a procedure, called backtracking, which is the method
of tree search. With this method it is not needed to grow all branches instantly,
as one branch may be pursued downwards until the moment, when parser either
finds the needed word, or terminates the branch.

Top-down parsers may be divided into:

1. recursive descent parser;

2. LL parser;

3. ALL parser;

4. Earley parser.

First type, the recursive descent parser, is usually implemented manually. It
is built from a set of mutually recursive procedures, every procedure implements
one of the grammar’s production rules and therefore the result is that program’s
structure closely mirrors grammar it recognises. A type of recursive descent parser
is predictive parser, and it does not need backtracking.

The second type, LL(k) parser, is a table-based parser. The acronym means
that the parser parses the input from left to right and builds leftmost derivation of
a sentence. This parser is constructed for LL(k) grammars and in order for it to
decide, which type of production rule should be used, it reads the next-available
symbol from the input stream and the top-most symbol from the stack.

The third type is ALL parser, and the acronym stands for adaptive LL parser.
It is constructed for non-left-recursive context-free grammars and it does not need
static grammar analysis [8]. It runs subparsers for each production at a deci-
sion point; the subparser that predicts a production at the minimum lookaheads
is identified by prediction mechanism, other subparsers are suspended. In order
for the subparsers not to grow exponentially, a so-called graph-structured stack is
used [9].

The fourth type, Earley parser, is a chart-based parser (chart is a special struc-
ture introduced by Martin Kay [10]). Advantage of this parser is that it can parse
all context-free languages and it does not have limits of a particular class of lan-
guage, and it is especially useful in case left-recursively written production rules.
Earley parser has three stages it executes: prediction, scanning, completion.

Bottom-up parser

This type of parser works from the end to the front, that is from the target word
itself. It means that process first visits the children of a node and then visits the
node itself. All substrings of the working string of terminals and nonterminals that

2. Theoretical overview 11

are right halves of productions are found, and then it substitues back to the non-
terminal that might have produced working string of terminals and nonterminals.
Intermediate strings of this parser never exceed the length of the target word, and
as there are no new terminals introduced, then no bad terminals ever appear. The
parse tree, created by bottom-up parser, is wide, but not very deep.

Bottom-up parsers may be divided into:

1. precedent parser;

2. BC parser;

3. LR parser;

4. CYK parser;

5. recursive ascent parser.

First type, precedent parser, may be divided into operator-precedence parser
and simple precedence parser. Operator-precedence parser is a table-driven pro-
ductive parser mostly for grammars, where two chronological nonterminals never
occur in the right-hand side of any production rule. It is not in common use,
despite the fact that it is easy to write it by hand, and that it might be written
to consult an operator table at execution time of a program. Simple precedence
parser is efficient, if there are no erasing production rules, no useless production
rules, if there is only one Wirth–Weber precedence relationship, and if no two
distinct productions give the same result [11, 12].

Second type, BC parser, tries the production rules in system, starting from the
top, and the first production rule to match is applied, and the process is repeated
until no production rule matches. Process of the parser can be described by pro-
ductions of Robert W. Floyd, that is by production rules for rewriting a marker-
containing string, on which the production rules focus. The production has a form
α 4 β ⇒ γ 4 δ and the production means that if the marker 4 is surrounded
with α on the left hand side and β on the right hand side, then the construction is
replaced by γ 4 δ. Despite the fact that BC parser was once almost completely
superseded by LALR parser, BC parser is now again in use due to great properties
of error recovery [13].

Third type, LR parser, is a table-based parser. The acronym means that the
parser parses the input from left to right and builds rightmost reversed derivation
of a sentence. This type of parser produces one precise parse tree without as-
sumptions or backtracking. LR parser can be constructed for a wide spectrum of
grammars. It may be divided into types as follows:

2. Theoretical overview 12

1. SLR parser – it calculates lookahead sets of input symbols that appear next
through a method of approximation, which is established by the grammar,
and ignores particular context of a particular parser state. During the use of
Follow sets it does not have shift/reduce or reduce/reduce conflicts.

2. LALR parser – it calculates lookahead sets of input symbols that appear
next through a method of exploration, considers particular context of a par-
ticular parser state. During the use of LALR follow sets it does not have
any conflicts.

3. Canonical LR parser – it is constructed for all deterministic context-free
languages, as it is based on a deterministic automaton, and is based on static
state transition tables. This parser use one lookahead token.

4. GLR parser – it is a table-based parser, and it is constructed for handling
nondeterministic languages, which contain more than one leftmost deriva-
tion. This parser uses breadth-first search for processing all of the potential
interpretations of a given input. Although tables of this parser allow form-
ing multiple transitions, the parser allows shift/reduce and reduce/reduce
conflicts.

Fourth type, CYK parser, is constructed for context-free languages in Chom-
sky normal form. Its worst-case asymptotic complexity is Θ(|G|n3) [14]. This
parser tests for opportunities to split a current sequence of words in half. It works
in two phases: recognition and construction, where in the first phase it builds a ta-
ble, where it determines which nonterminals derive which substring of a sentence,
and the second phase constructs all of the possible derivations of the sentence,
using the grammar and the table, constructed in the first phase. It is notable that
CYK parser constructs parse trees of elements on the array.

Fifth type, recursive ascent parser, is constructed for the literal implementation
of the concept of LR parsing, where every parser’s function presents one LR au-
tomaton state, and inside of every function multi-branch statement is implemented
in order to select correct action relying on a current token that had popped off the
input stack. When the popped token is identified, then, relying on the encodable
state, action (shift or reduce) is taken. If shift counter decrements to zero, then
goto action takes place, but only after multi-branch statement.

2.3.3 Syntax tree and abstract syntax tree

As it was mentioned in the previous section, parser builds a representative data
structure, which is represented by a syntax tree. The syntax tree is a scheme that
depicts syntactic structure of a written program code (see Figure 2.1). The syntax

2. Theoretical overview 13

tree is needed from the point of view of grammar for it to show different sections
and the structure of the program. Synonymous wordphrase for syntax tree is parse
tree, as syntax tree is retrieved through to the process of parsing.

Simple form of syntax tree may be unsuitable, as it contains a lot of excessive
information. In order for the tree to be more precise, parser optimizes the com-
piled syntax tree, omitting excessive punctuation and delimiters, e.g. brackets,
pluses and minuses, semicolons etc., as the structure of a tree is self-explanatory.
As a result of this process, abstract syntax tree is formed (see Figure 2.2). Abstract
syntax tree, in comparison with simple syntax tree, can modify every element

expression

expression

expression

(expression

expression

term

’1’

’+’ expression

term

variableIdentifier

’b’

)

’*’ expression

term

’10’

’+’ expression

term

’2’

Fig. 2.1: Syntax tree for (1 + b) ∗ 10 + 2

’+’

’*’

’+’

’1’ ’b’

’10’

’2’

’+’ type=mathOp

’*’ type=mathOp

’+’ type=mathOp

’1’ type=number ’b’ type=variable

’10’ type=number

’2’ type=number

Fig. 2.2: AST for (1+ b) ∗
10 + 2

Fig. 2.3: Annotated AST for (1 + b) ∗ 10 + 2

2. Theoretical overview 14

through annotations and properties, which makes compiling much more easier.
Abstract syntax tree allows to use annotations in order to add new data, e.g. type
data, optimisation data or data on source code, and context handling module finds
and inserts the annotations.

As it had been said before, parser constructs abstract syntax tree in the way that
there can be added annotations (see Figure 2.3), containing important data [15],
and thus there exists a name ”annotated abstract syntax tree”. In order for the
annotations to be flexible, that is, there must be a possibility to create, modify
and erase them, they have to fit the length of restriction. Ignoring the restrictions
may lower the speed of evaluation, and it might not be possible for the parser to
erase the unnecessary annotations and whole nodes. Flexibility of annotations is
important, as static annotations are rarely used, usually dynamic annotations are
needed.

Nodes of annotations consist of tags and values, and every node has an equiva-
lent function in the signature, and subnodes are compatible with the requirements
of the node’s type.

2.4 Automata theory

Automata theory is a field in theoretical computer science that studies abstract
machines and automata. It deals with the study of self-operating virtual machines
in order to help to have analytical knowledge of processes of input and output,
and it is very important in artificial intelligence, compiler design, formal verifica-
tion, parsing and theory of computation. Automaton is a mechanism that is rel-
atively self-operating, and it is designed to follow automatically a predetermined
sequence of operations or respond to encoded instructions [7, 16].

Automaton is a mathematical abstraction that has only one input, only one
output and only one particular state at one particular moment. Formally automaton
can be described as a 5-tuple A = (S,X, Y, δ, λ), where:

1. S – a finite set of automaton’s states;

2. X – an input alphabet;

3. Y – an output alphabet;

4. δ : S ×X → S – a function of transitions;

5. λ : S ×X → Y – a function of outputs.

Automaton has subtypes as finite-state machine and pushdown automata. If func-
tions of input and output are clearly determined for each pair (s, x) ∈ S × X

2. Theoretical overview 15

of terminals and nonterminals, then the automaton is called deterministic. If this
condition is not determined clearly, then the automaton is called nondeterministic.
This categorisation is applied to all of the subtypes of automata.

Finite-state machine is an automaton that has a finite amount of possible states,
and it has only one state at a time. The transition from one state to another is trig-
gered by a particular event or condition. It can be presented either as a state dia-
gram or as a state transition table. This automaton recognises regular languages.

Pushdown automaton is a subtype of finite automaton. The difference is that
first’s memory works as a stack to store states, and the current state of the automa-
ton depends on any previous state [7]. If pushdown automaton is deterministic,
then the automaton finishes working when it reaches the finite state, and if it is
nondeterministic, then the automaton finishes working when either stack becomes
empty or when automaton reaches the finite state. Pushdown automaton recog-
nises any context-free language.

Turing machine is a subtype of finite automaton. Visually it is represented
as a strip of tape, divided to cells, left hand side of the strip is limited and the
right hand side of the tape is infinite. Automaton proceeds symbols according to
a table of production rules, and each production rule gives instructions, whether
it is needed to write a new symbol to a particular cell, to perform a transition,
or to move one cell left or right. Turing machine is considered to be one of the
most powerful automaton, as the infinite quantity of tape gives unlimited amount
of storage space. Every part and action of the automaton is finite, discrete and
distinguishable. Turing machine recognises unrestricted (recursively enumerable)
languages.

3. RELATED WORK

Compiler construction is a very well researched topic. A lot of tools exist for
automating this process by enabling generating lexical analysers and parsers from
language specifications in the form of grammars.

In this chapter the author presents a comparative analysis of some parser gen-
erators. As a result of the analysis, one of the existing parser generators is chosen
for further usage.

3.1 Comparison of parser generations

There are a lot of solutions for generating parsers. Taking into account the goals of
the present thesis, the following requirements are formulated for including tools
in comparison:

1. include lexical parser generator;

2. generate parsers in Java language;

3. use for grammar EBNF notation or improved version of EBNF notation;

4. are still maintained.

Three syntax parser generators correspond to stated criteria: JavaCC, SableCC,
ANTLR.

The analysis is constructed as follows. Each selected parser generator is used
to implement a language for simple arithmetic calculations. The language allows
to use symbols “ + ”, “ − ”, “/”, “ ∗ ” for arithmetic operations, symbol “; ”
for separating expressions from each other, and symbol “.” as separator in float-
ing point numbers. Program, written in the language, has to execute arithmetic
calculations. Also the program has to consider a correct order of execution of
arithmetic operations.

Also there must be an opportunity in source text of a program to set several
arithmetic calculations, which will be divided by a semicolon. Spaces, tabulation
symbols, newline and carriage return must be ignored in a source text of a pro-
gram. Results of all of the arithmetic expressions, and also of original expressions,

3. Related work 17

are printed into system standart output, e.g. 12 = 6 + 2 ∗ 3, for each expression
on every line.

3.1.1 JavaCC

JavaCC1 (acronym for Java Compiler Compiler) is a LL(*) parser generator. It
was created by Sriram Sankar and Sreenivasa Viswanadha in 1996, and released
by Sun Microsystems. This tool specialises in Java, and therefore the output of
the generator is easily converted to Java program, and it has “full support for
automatic tree building and visitor pattern”. The documentation and the program
are freeware.

The first step is creating a grammar of a language, and this grammar has to
consist of several blocks. The first block describes tokens that parser should ig-
nore:

1 SKIP : {
2 " "
3 | "\r"
4 | "\n"
5 | "\t"
6 }

Second block describes allowed tokens of the language:

1 TOKEN : {
2 < NUMBER: (<DIGIT>)+ ("." (<DIGIT>)+)? >
3 | < DIGIT: ["0"-"9"] >
4 }

Here are two tokens defined: DIGIT and NUMBER.
And, finally, four production rules:

1 void calculator() : {
2 (expression() ";")* <EOF>
3 }
4 void expression() : {
5 mult() [
6 "+" expression()
7 | "-" expression()
8]
9 }

10 void mult() : {
11 term()[

1 Home page of JavaCC https://javacc.java.net

https://javacc.java.net

3. Related work 18

12 "*" mult()
13 | "/" mult()
14]
15 }
16 void term() : {
17 "(" expression() ")"
18 | token = < NUMBER >
19 }

First production rule calculator can be compared to main method in Java, it is an
entry point to the language’s grammar. It defines that program may consist of zero
or more expressions, followed by a semicolon, and ends with the end of a file.
As JavaCC does not allow to use left recursion, it is required that three different
production rules are implemented: expression for addition or subtraction, mult
for multiplication or division, and term for number or parenthesised expression.

JavaCC provides two opportunities for adding semantics to the grammar. The
first opportunity is to add Java code directly to the grammar, but it is very un-
reliable, as in this case the grammar is bound with implementation, and process
of application of different behaviours requires modification of the grammar. And
therefore it is not covered in current thesis.

The second opportunity for adding semantics is to use syntax tree and visi-
tor pattern. In order to do that one has to apply an external tool called “JTB”2.
This tool generates grammar with Java code that builds syntax tree from source
grammar, and then it is needed to apply JavaCC on grammar generated by JTB
to generate the parser. As a result, a lot of additional classes are created. Most
interesting of them are:

• DepthFirstRetArguVisitor

• DepthFirstRetVisitor

• DepthFirstVoidArguVisitor

• DepthFirstVoidVisitor

All classes implement tree visitor pattern and it is possible to extend any of them,
and override any method from parent class to add desired behaviour to the pro-
gram, for example, author of the given thesis extended the DepthFirstRetArguVis-
itor class and overrode four methods:

• public Double visit(final calculator n, final Object arg) – is invoked when
node defined by calculator is visited

2 Home page of JTB http://compilers.cs.ucla.edu/jtb/

http://compilers.cs.ucla.edu/jtb/

3. Related work 19

• public Double visit(final expression n, final Object arg) – is invoked when
node defined by expression is visited

• public Double visit(final mult n, final Object arg) – is invoked when node
defined by mult is visited

• public Double visit(final term n, final Object arg) – is invoked when node
defined by term is visited

1 public Double visit(final term n, final Object arg) {
2 Double nRes = null;
3 INode node = n.f0.choice;
4 if(node instanceof NodeToken){
5 nRes = Double.parseDouble(((NodeToken)

node).tokenImage);
6 }else if(node instanceof NodeSequence){
7 //[(, expression,)]
8 node = ((NodeSequence) node).elementAt(1);
9 if(node instanceof expression){

10 nRes = node.accept(this, arg);
11 }
12 }
13 return nRes;
14 }

In the method, presented above, the check is performed to insure, which produc-
tion rule alternative is selected, and if it is a number, then received number should
be converted from string representation to double value, and returned. Deeper
tree traversing is not possible. Otherwise, if it is a parenthesised expression, it is
required to move deeper and visit expression tree node.

1 public Double visit(final mult n, final Object arg) {
2 //[term, * or /, mult]
3 Double nRes = ((term)n.f0).accept(this, arg);
4 NodeChoice nodeChoice = (NodeChoice)n.f1.node;
5 if(nodeChoice != null){
6 NodeSequence nodeSequence = (NodeSequence)

nodeChoice.choice;
7 if(nodeSequence.elementAt(0).toString().equals("*")){
8 nRes = nRes *

nodeSequence.elementAt(1).accept(this, arg);
9 }else{

10 nRes = nRes /
nodeSequence.elementAt(1).accept(this, arg);

3. Related work 20

11 }
12 }
13

14 return nRes;
15 }

In method, presented above, the check is performed to insure, whether node, that
is being visited at the given moment, has only one child node, and in this case the
node is term, or if it has three children nodes: term, operator (* or /) and mult.
In both cases the term node will be visited to get the number from there. But
only in second case the mult node will be visited in order to calculate the result
of arithmetic expression, and after the mult node is visited, the value of current
node is calculated. Also in both cases the value of current node is returned. Same
logic is applied for expression production rule.

And code for last production rule calculator:

1 public Double visit(calculator n, Object arg) {
2 for (INode node : ((NodeListOptional)n.f0).nodes) {
3 //[expression, ;]
4 System.out.println(
5 ((NodeSequence)node)
6 .elementAt(0).accept(this, arg));
7 }
8 return n.f1.accept(this, arg);
9 }

In the code above there is a loop that visits all child expression nodes and prints
their values to standart output. It is important to mention that with JavaCC there
is no convenient way to receive textual representation of a node, and therefore it
was not possible to print original expression.

Only the last step remains, to launch the parser on a prepared input file:

1 InputStream stream = new FileInputStream("simple.ss");
2 Calculator s1 = new Calculator(stream);
3 calculator input = s1.calculator();
4 input.accept(new DepthFirstRetArguVisitorImpl(), null);

3.1.2 SableCC

SableCC3 is a LALR(1) parser generator for Java [17]. SableCC is a bottom-up
parser. Documentation and program are freeware.

3 Home page of SableCC http://sablecc.org

http://sablecc.org

3. Related work 21

Unlike in JavaCC, in SableCC it is required to define all tokens in lexer’s part
of a grammar (in JavaCC it was possible to inline tokens in production rules).
Also it is not possible to refer to one token from definition of another, but there
are tokens of special type (called “Helpers”) to support analogous functionality.
Rule Ignored Tokens defines tokens that should be ignored. Below is a listing
of lexer’s part of SableCC grammar file:

1 Helpers
2 digit = [’0’ .. ’9’];
3

4 Tokens
5 t_number = (digit)+ (’.’ digit+)?;
6 t_plus = ’+’;
7 t_minus = ’-’;
8 t_mult = ’*’;
9 t_div = ’/’;

10 t_l_par = ’(’;
11 t_r_par = ’)’;
12 t_blank = (’ ’ | 10 | 13 | 9)+;
13 t_semic = ’;’ ;
14

15 Ignored Tokens
16 t_blank;

The definition of production rules is similar to JavaCC:

1 Productions
2 calculator =
3 statement*;
4

5 statement =
6 expression t_semic;
7

8 expression =
9 {factor} multiplication |

10 {minus} expression t_minus multiplication |
11 {plus} expression t_plus multiplication;
12

13 multiplication =
14 {term} term |
15 {div} multiplication t_div term |
16 {mult} multiplication t_mult term;
17

18 term =

3. Related work 22

19 {number} t_number |
20 {expr} t_l_par expression t_r_par;

But there are two important differences compared to JavaCC:

1. SableCC supports left recursion, but does not allow right recursion;

2. every alternative of a production rule should be labeled (identifier in curly
brackets).

SableCC provides only one possibility to add semantics to the grammar. By
using tree traversal listeners, in contrary to visitor pattern, this does not allow nor
require manually visiting child nodes. All classes required to implement a listener
are generated by SableCC, and there is no need to use any external tools.

SableCC generates a lot of classes, but there are two important classes:

• DepthFirstAdapter

• ReversedDepthFirstAdapter

These classes implement parse tree traversal in top-down and bottom-up ways
respectively. The developer may extend any of them, and override the listener
methods. The naming convention for listener methods is as follows: every method
is prefixed by in or out, after that comes letter “A”, then comes a label of an
alternative, and at the end comes the name of a production rule. Methods prefixed
with in are invoked, when tree traveller enters the node, and methods with out
prefix are invoked before tree traveller leaves current node (all child nodes are
visited). For example, method outAMultMultiplication will be invoked, when
all child nodes of mult alternative of multiplication production rule are visited.

As with approach of using tree traversal listener pattern, provided by SableCC,
there is no convenient way to control the travelling over the parse tree, and there-
fore return statements, as in JavaCC, cannot be used. Another algorithm should be
used to implement the behaviour of arithmetic calculations’ language. One of the
possibilities to do it is by using a stack and DepthF irstAdapter. The algorithm
is as follows: when a tree node, containing a number, is reached, then it is pushed
to the stack.

1 @Override
2 public void inANumberTerm(ANumberTerm node) {
3 numbers.push(
4 Double.parseDouble(node.getTNumber().toString()));
5 }

Before leaving the node that represents a particular arithmetic operation, program
should pop two numbers from the stack, and apply required operation on them,

3. Related work 23

then the result of the process is pushed back to the stack. Code listing below
shows only adding operation, but the similar code is used for other operations, the
only difference is that another arithmetic operation is used:

1 @Override
2 public void outAPlusExpression(APlusExpression node) {
3 double left = numbers.pop();
4 double right = numbers.pop();
5 numbers.push(left+right);
6 }

As traveller reaches the statement node, the stack will contain only one value,
and it is the result of evaluation of the current expression. And the result, along
with original expression, could be printed.

1 @Override
2 public void outAStatement(AStatement node) {
3 System.out.println(
4 numbers.pop() + " = "
5 + node.getExpression().toString());
6 numbers = new Stack<>();
7 }

Only the last step remains, to launch the parser on prepared input file:

1 File inputFile = new File("file.in");
2 InputStreamReader inputStreamReader =
3 new InputStreamReader(new FileInputStream(inputFile));
4

5 PushbackReader pushBackReader
6 = new PushbackReader(inputStreamReader, 1024);
7 Lexer lexer = new Lexer(pushBackReader);
8 Parser p = new Parser(lexer);
9 Start tree = p.parse();

10 tree.apply(new CalculatorTreeWalker());

3.1.3 ANTLR

ANTLR4 (acronym for ANother Tool for Language Recognition) is an ALL(*)
parser generator [18], and it is used to design automatic lexers, parsers, tree
parsers and combined lexer-parsers. Predecessor of ANTLR (PCCTS, acronym
for Purdue Compiler Construction Tool Set) was created by Terence John Parr in

4 Home page of ANTLR http://www.antlr.org

http://www.antlr.org

3. Related work 24

1989. At the moment support is targeted more on Java and C#, but older versions
also support Ada95, ActionScript, C, Java, JavaScript, Objective-C, Perl, Python,
Ruby, and Standard ML. The documentation and program are freeware, and in ad-
dition the creator of the program has released paper-print documentation, i.e. The
Definitive ANTLR 4 Reference, which concernes the latest version of ANTLR.

Similar to JavaCC, ANTLR allows to inline tokens in production rules, so the
only tokens that should be defined for the arithmetic calculations language are
tokens that represent the number:

1 NUMBER
2 : INTEGER (’.’ INTEGER)?
3 ;
4

5 INTEGER
6 : ’0’..’9’+
7 ;

For ignored tokens:

1 WS : [\t\r\n]+ -> skip ;

Unlike SableCC and JavaCC, ANTLR allows using both left and right recur-
sion in production rules. This leads to more clear, compact and convenient way in
defining those production rules:

1 calculator
2 : (expression ’;’)+
3 ;
4

5 expression
6 : NUMBER #number
7 | ’(’ expr = expression ’)’ #expr
8 | left = expression ’*’ right = expression #mult
9 | left = expression ’/’ right = expression #div

10 | left = expression ’-’ right = expression #minus
11 | left = expression ’+’ right = expression #plus
12 ;

Similar to SableCC, alternatives also could be labeled, but with different syntax,
the identifier of a label goes after hash symbol in the same line, where alternative is
located, also it is allowed to give names inside of the production rule for subrules,
the usage of subrules’ name is covered next in current section.

ANTLR provides three possibilities to add semantics to the grammar. First
and second is similar to JavaCC: by adding Java code to the grammar and by

3. Related work 25

implementing the tree visitor. Third is similar to in SableCC method, by using
tree traversal listeners. As using Java code in the grammar is a bad approach (the
reason of that is described in section 3.1.1), and implementation of tree traveler
listener is very similar to SableCC, the usage of the tree visitor is demonstrated
below.

ANTLR generates theCalculatorBaseV isitor class. By extending this class,
and by overriding its methods, it is possible to add semantics to the language.

When visiting a tree node, represented by number alternative of production
rule expression, the following code will be invoked:

1 @Override
2 public Double visitNumber(NumberContext ctx) {
3 return Double.parseDouble(ctx.NUMBER().getText());
4 }

In the code above the textual value of a node is converted to a number, and returned
to the parent node.

In expr node, the program will get an expression from parentheses, and visit
its tree node:

1 @Override
2 public Double visitExpr(ExprContext ctx) {
3 return visit(ctx.expr);
4 }

Also the visit method for each alternative, where arithmetic happens, alterna-
tives mult, div, minus and plus should be implemented. For brevity, only one
method will be shown below (others are very similar):

1 @Override
2 public Double visitPlus(PlusContext ctx) {
3 double left = visit(ctx.left);
4 double right = visit(ctx.right);
5 return left + right;
6 }

It is notable how the value of left and right hand expressions are received, it is
done by using their labels from production rule definition left and right.

The code of method that is invoked by visiting the top tree node is as follows:

1 @Override
2 public Double visitCalculator(CalculatorContext ctx) {
3 for (ExpressionContext expressionContext :

ctx.expression()) {
4 System.out.println(

3. Related work 26

5 visit(expressionContext) + " = " +
expressionContext.getText());

6 }
7 return 0.0;
8 }

In the code above, the behaviour is similar to the one that was in JavaCC. The
program iterates over all child nodes of calculator node and visits them.

Only the last step remains, to launch the parser on prepared input file:

1 CharStream input = new ANTLRFileStream("simple.ss");
2 CalculatorLexer lexer = new CalculatorLexer(input);
3 TokenStream token = new CommonTokenStream(lexer);
4 CalculatorParser parser = new CalculatorParser(token);
5 CalculatorContext calculatorContext = parser.calculator();
6

7 CalculatorBaseVisitor<Double> visitor = new
CalculatorBaseVisitorImpl();

8

9 visitor.visit(calculatorContext);
10

11 ParseTreeWalker walker = new ParseTreeWalker();
12 walker.walk(new CalculatorBaseListener(),

calculatorContext);

3.2 Selection of parser generation

To conclude the comparison of parser generators, the justification of the selection
of the tool for implementing stated goals of the thesis is presented in this section.

JavaCC is not the best solution, as it has very poor documentation, and there-
fore it is very difficult to develop a language parser, using this tool. Also, in order
to create a parse tree, it is needed to use a third party tool. It is noticeable that this
method of creating parse trees is a workaround, as parse trees are built with the
help of Java code, which is not written by hand, but still it is added to grammar.
Also, labeling of alternatives is missing, and this circumstance complicates the
development, as one has to find the needed alternative by hand, and also one has
to guess, in which position in the array it is located. It means that even any minor
change in the grammar will require for the review of whole written code in order
to check, whether the selection of alternative in changed production rule is still
valid. These factors are the main reasons for the author to exclude this program.

In comparison with JavaCC, SableCC has better documentation, but it still
causes problems for a developer during the process of development. Despite the

3. Related work 27

fact that SableCC provides labeling of alternatives and internal tool for creating
syntax trees, it leaves an impression that the product is still in a raw stage of
development. Especially it is expressed by the lack of integration with IDE. Alike
JavaCC, SableCC, unfortunately, does not meet the requirements, and therefore it
is not chosen.

ANTLR, in comparison with other above-described programs, has very good
documentation. It is documented in a book “The Definitive ANTLR 4 Refer-
ence” [18], which is written by the creator of the program. The book is not only
documentation to ANTLR, but it also contains a lot of useful information about
and for the development of languages. Also, a great distinction from JavaCC and
SableCC is that ANTLR provides possibility of using simultaneously left recur-
sion and right recursion in production rules. This program has very good inte-
gration with IDE, and it also has an integrated tool for visual representation of a
parse tree, which makes the process of development of a grammar much simpler,
and it also makes the process of searching for the errors in grammar graphical,
fast and simple. ANTLR met all of the requirements, needed for developing a
language, and for this reason the author of the given thesis chose ANTLR as a
tool for developing a parser for CoCoViLa specification language.

4. IMPLEMENTATION

CoCoViLa is a model-based framework for developing and using visual domain-
specific languages (VDSLs). Textual models underlying diagrams and visual ob-
jects are implemented in a declarative language called the specification language.

Until the process of present thesis’ work had started, CoCoViLa had a hand-
written specification language parser that used regular expression in order to pro-
cess statements of the specification language. Regular expressions are not flexible
and it is not easy to understand and change them, it was difficult to maintain the
parser and introduce new syntactic constructions to the language. The main goal
of this work was to create a possibility for the specification to be parsed in a much
more flexible way, using automatically generated parser from a given formal lan-
guage grammar specification. ANTLR was chosen as a suitable parser generator
for this task.

CoCoViLa enables to specify computational problems, either visually or tex-
tually, using the specification language. Specifications are added to Java classes.
Classes, annotated with such specifications, in CoCoViLa context are called meta-
classes and their corresponding specifications are metainterfaces. The following
example of specification will be used to demonstrate various statements of the
specification language:

1 specification ExampleSpec {
2 int a,b,c,d,x,y,z,aliasElem; //variable declaration
3 alias (int) ali = (a,b); //alias declaration
4 a = 1; //equation
5 b = 5+a; //equation
6 c = d/z + y; //equation
7 [x->d],z,ali->c{someJavaMethod}; //axiom
8 x = 2; //equation
9 z = 11; //equation

10 d = x+10; //equation
11 aliasElem = ali.0; //equation
12 }

Every declaration of specification should start with a keyword specification,
it should be followed by the name of the specification, in this case ExampleSpec,

4. Implementation 29

and the code of the specification is enclosed in curly brackets. In code example
above first line of the code of specification contains declaration of variables. In
this case there are several variables of type integer with names declared: a, b, c,
d, x, y, z and aliasElem. A regular expression used to parse such statement in
CoCoViLa was as follows:

1 ˆ *(static)? *([a-zA-Z_][0-9a-zA-Z_]*
2 (([\\.][a-zA-Z_][0-9a-zA-Z_]*)*)[0-9a-zA-Z_$]*
3 (\\[\\])*) (([a-zA-Z_$][0-9a-zA-Z_$]* ?, ?)*
4 ?[a-zA-Z_$][0-9a-zA-Z_$]* ?$)

Also the code of specification includes a declaration of an alias (second line of
specification). Alias in CoCoViLa specification language is a special data struc-
ture that may be compared with a tuple. Syntax of declaration of an alias is as fol-
lows: first is the keyword alias, then in the parentheses comes type of variables,
which will be contained in alias (a type with parentheses may not be present). In
our case type of alias is integer. Next is the name of alias, after that equals sign,
and then in parentheses, separated with a comma, come names of variables, which
are contained in an alias. Access to elements inside alias, according to the syntax,
is as follows: on the left hand side of the dot, contains the name of alias, and on
the right hand side of the dot contains index of the element inside an alias (starting
from zero). Example of this is on the last line of example specification. Next is
presented a regular expression, used in CoCoViLa, which is needed for handling
an alias declaration:

1 alias *(\\((*[ˆ\\(\\)]+ *)\\))*
2 *([ˆ=]+) *= *\\((.*)\\) *

In CoCoViLa specification language there does not exist such thing as assign-
ing the value to a variable. Instead of that there exist equations (in the above-
presented example of the code all lines that set equations have corresponding
comment equation). Equations set to the CoCoViLa language methods that can
be used by the program in order to calculate value of one or another variable from
other variables, or, in other words, set arithmetic dependency between variables.
In the example above CoCoViLa finds a way on how to compute a variable y. It
is known that variable d can be calculated from variable x, and value of variable
x is known, and it equals 2, and value of variable z is also known, and it equals
11. Also program knows value of a variable c, which can be calculated with the
help of an axiom (meaning of an axiom will be described later). The following is
a regular expression used to parse equations:

1 *([ˆ=]+) *= *([-_0-9a-zA-Z.()\\+*/ˆ]+) *$

4. Implementation 30

Function of axiom is similar to function of equation, but unlike equation, ax-
iom sets not arithmetic dependency, but functional dependency between variables.
Syntax of axiom is as follows: a possibly empty list of input variables followed
by − > symbol, separating the list of axiom’s output. After output, in the curly
brackets, a name of a Java method is specified, and it implements this functional
dependency. Inputs of axiom can be either variables or subtasks. Subtasks (in the
list of inputs set in square brackets) stand for function arguments, and CoCoViLa
synthesizes it’s implementation automatically. This axiom, in the example above,
can be read as follows: variable c can be calculated by calling a Java method
someJavaMethod from the underlying Java class passing a function that calcu-
lates d from x and variables z and ali as arguments. Next, a regular expression
for parsing axioms is presented:

1 (.*) *-> *(.+) *\\{(.+)\\}

All of the presented examples of regular expressions, which were used in Co-
CoViLa parser, are difficult to understand and to maintain, if process of mainte-
nance is needed.

Further, the author presents a detailed architectural overview of the realisation
of a new parser, and explains, how the new parser is integrated into the CoCoViLa
system, and what is improved in comparison with the old hand-written parser.

4.1 Architectural overview

In the upcoming section of the thesis, the author presents a high-level architec-
tural description of implementation of a new parser, which was generated using
ANTLR. The purpose of created classes and their interaction with existing Co-
CoViLa code are described.

4.1.1 Interaction with ANTLR

The Class diagram (see Figure 4.1) represents interaction between the classes,
created by the author, with the classes, generated and provided by ANTLR. Three
colours are used in the scheme:

1. green – classes, created by the author;

2. blue – classes, which already existed in the library of ANTLR;

3. yellow – classes, generated by ANTLR.

Next, the author will describe the functions of every class depicted in the
scheme.

4. Implementation 31

Fig. 4.1: ANTLR classes relation

SpecificationLanguageListener is an interface, which is needed in order to im-
plement tree traversal pattern. All of the methods, needed for the implementation
of the pattern, are located in this interface. For every production rule there are
two methods, and every method has a prefix - either it is enter, or it is exit. The
methods are invoked respectively, when tree traversal visits a tree node, which
corresponds to a production rule, or when tree traversal finishes the process of
visiting a tree node (after all children tree nodes of current tree node are visited).

As during the process of implementation of an interface in Java language it is
needed to override all of the methods of the interface, and in the generated class
that is meant to create a tree traversal listener are too many methods, which is very
uncomfortable for a developer, then, in order to ease developer’s work, ANTLR
generates one additional (adapter) class, which is called SpecificationLanguage-
BaseListener. This class implements an interface, called SpecificationLanguage-
Listener, and overrides all of the methods, which are defined in the interface, by
giving them empty implementation. Due to this advantage, which is presented
by ANTLR, developer can extend the class of SpecificationLanguageBaseLis-
tener instead of implementing SpecificationLanguageListener interface, in order

4. Implementation 32

to create one’s own listener, and therefore developer can just simply override only
needed methods.

As a result of the process, described above, a class called SpecificationLan-
guageListenerImpl is created. This class contains whole logic, which is needed
for processing the specification language, and the result of the author’s work is the
implementation of a pattern, called tree traversal listener.

The next class – ClassF ieldDeclarator – is a helper-class, which is used in
SpecificationLanguageListenerImpl, and one needs it for creating and man-
aging context of variables.

The class, which can be though of as an entering point into a parser, is called
SpecificationLoader. This class may be compared with a class from Java API,
called ClassLoader. It can either accept a source code of a specification, pre-
sented as a string, as a whole, and also the name of the specification, or as a path
to the file, where the specification is kept. In this case, if no file is found in the
assigned path, or if there is no description of the specification given, then an ex-
ception, called SpecificationNotFoundException, is thrown. SpecificationLoader
also stores information on all of the specifications, which are processed during the
life cycle of the given class, and, if it is necessary, then one may obtain informa-
tion from it by the name of processed specification. The class is also responsible
for communication with ANTLR’s library. SpecificationLoader initialises classes
that are described next:

1. SpecificationLanguageLexer – lexical analyser for specification language;
this class prepares tokens for next class;

2. SpecificationLanguageParser – class that receives a stream of tokens and
does the actual parsing;

3. ParseTreeWalker – the class is responsible for traversing the syntax tree; it
invokes methods of the listener (see next point);

4. SpecificationLanguageListenerImpl – an implementation of a tree traversal
listener.

4.1.2 Integration with CoCoViLa

Previously, the author of the given thesis presented an architectural overview of
Class diagram of ANTLR classes, in this section the author will describe another
Class diagram - CoCoViLa classes (see Figure 4.2). In this depicted scheme one
may see how the author-created classes interact with CoCoViLa/ANTLR classes.

Similarly to the first depiction of diagram, the author used in this diagram
colours as well: blue and green. Classes, coloured in blue, represent classes that

4. Implementation 33

Fig. 4.2: CoCoViLa classes relation

existed in CoCoViLa; classes, coloured in green, represent classes created by the
author for the new parser.

The box named CoCoViLa contains three classes:

1. Synthesizer;

2. PackageXmlProcessor;

3. ProgramRunner.

These three classes are needed for the interaction between a user and CoCoViLa.
During the time, when the program runs, these classes may invoke Specification
loader in order to receive inner data structure, obtained from the source code of
specification.

The data structure, needed for description of specification, is represented by
AnnotatedClass, which is the main container-class for storing structure of specifi-
cation. It stores types of data, which are described by next classes:

1. ClassField - class, needed for storing information on declared variables;

4. Implementation 34

2. Alias - class that extends ClassField, and it is needed for storing information
on declared aliases;

3. ClassRelation - one of the key classes of CoCoViLa, which is used for set-
ting arithmetic dependencies between variables that can be set with the help
of equation or for setting functional dependencies between variables that
can be set with the help of an axiom; it stores the following information:

(a) from which variables (called inputs), declared in specification, could
be calculated other variables (called outputs);

(b) which operations have to be executed with inputs in order to receive
output;

4. SubtaskClassRelation - it is needed for setting subtasks inside of an axiom.

4.2 Grammar implementation

The author of the given thesis had two main problems, which had to be solved:

1. create new grammar for the specification language that would completely
reflect the old functionality of the specification language;

2. add to the specification language new syntactic opportunities (e.g. one of
the new opportunities that was added is initiation of a variable in the same
line, where it was initially declared).

Before the two main problems, which were depicted above, were solved, it
was utterly difficult for a developer to manage the code in a way a developer
can manage it now, e.g. in the situation, described in the brackets on the second
position of the enumeration, by using regular expressions. It can be depicted
in a way that if one would take an example of a regular expression (shown in
the beginning of the Implementation section), and would add a possibility for
initiation of a variable in the same line, where it was initially declared, then the
graphic representation of the regular expression would become very difficult to
understand. It means that it would become incomprehensible to the developer of
the code and more incomprehensible to another developer, who will overtake the
code in order to continue developing it, using regular expressions.

Next the author explains how these two problems were solved, what was used,
and also explains, how it works.

4. Implementation 35

4.2.1 Porting of existing functionality

In order to create new grammar for language specification parser generator, the
author took the grammar, which was not complete and was not being used, a large
number of programs, written in specification language, and also had a detailed
study of source code of the given parser and of regular expressions that were used
in it. As a result the new grammar was created, and this grammar will be described
in this section. In addition to the description of grammar, the author will describe
actions, which are performed in class SpecificationLanguageListenerImpl,
which, as it had been described in the previous section, is the listener for the
ParseTreeWalker class that traverses parse tree, which was created from the
source code of specification with the help of the grammar.

Despite the fact that although ANTLR allows to inline tokens, it would be
more comfortable, if some tokens were defined for the lexer. Next is presented the
part of grammar that defines tokens for the lexer.

1 NUMBER
2 : INTEGER (’.’ INTEGER)?
3 ;
4

5 INTEGER
6 : ’0’..’9’+
7 ;
8

9 STRING : ’"’ (ESC|.)*? ’"’ ;
10 fragment ESC : ’\\"’ | ’\\\\’ ;
11

12 IDENTIFIER
13 : LETTER LETTER_OR_DNUMBER*
14 ;
15 fragment LETTER : [a-zA-Z$_];
16 fragment LETTER_OR_DNUMBER : [a-zA-Z0-9$_];
17

18 ALIAS_ELEMENT_REF
19 : ’.’ NUMBER+
20 ;
21 //IGNORED TOKENS
22 WS : [\t\r\n]+ -> skip ;
23 COMMENT : ’//’ .*? ’\r’? ’\n’ -> skip;
24 BLOCK_COMMENT : ’/*’ .*? ’*/’ -> skip;
25

26 JAVA_BEFORE_SPEC : .*? ’/*@’ -> skip;
27 JAVA_AFTER_SPEC : ’@*/’ .*? -> skip;

4. Implementation 36

Tokens INTEGER and NUMBER are needed for defining numbers with floating
point. Token STRING defines how a string can be defined in the language. It
can be any text between double quotes, and a helping token ESC is needed so
that inside a string could be written a double quotes symbol, but before that it
is needed to escape it with the help of reverse solidus (\). Also is defined the
token IDENTIFIER. After the comment IGNORED TOKENS there are
defined symbols that have to be ignored by the lexer. These symbols are spaces,
tabulation symbols, newlines, carriage return, and also comments.

After all of the tokens are defined, basic production rules have to be described.
These production rules will be used very often in further definition of the grammar.
Next, one can see corresponding code:

1 type
2 : (classType | primitiveType) (’[’ ’]’)*
3 ;
4

5 classType
6 : IDENTIFIER (’.’ IDENTIFIER)*
7 ;
8

9 primitiveType
10 : ’boolean’
11 | ’char’
12 | ’byte’
13 | ’short’
14 | ’int’
15 | ’long’
16 | ’float’
17 | ’double’
18 ;
19

20 variableIdentifier
21 : IDENTIFIER (’.’ IDENTIFIER)* ALIAS_ELEMENT_REF*

(’.’ variableIdentifier)?
22 ;
23

24 variableIdentifierList
25 : variableIdentifier (’,’ variableIdentifier)*
26 ;

Next two presented production rules are needed in order to describe declara-
tions of class of specification. Production rule, named metaInterface, determines
the structure of specification’s declaration, after the keyword specification is set

4. Implementation 37

the name of the specification, and after the name of specification’s class it is possi-
ble to set a name of the class that contains basic specification. In order to describe
links to basic specification, a production rule, named superMetaInterface, is used.
Next, one can see an example:

1 metaInterfase
2 : ’specification’ IDENTIFIER (superMetaInterface)?
3 ’{’ specification ’}’
4 ;
5 superMetaInterface
6 : ’super’ classType (’,’ classType)*
7 ;

At that moment, when ParseTreeWalker invokes SpecificationLanguageListener-
Impl, it will create a new instance of AnnotatedClass’s class, and will save it in the
class variable, also to the AnnotatedClass will be added information about basic
specification.

Next, a production rule, called specification, is specified. It defines that
specification can consist from zero or more statements, and every statement ends
with semicolon.

1 specification
2 : (statement ’;’)*
3 ;

The production rule for statement consists of following cases:

1 statement
2 : variableDeclaration | constantDeclaration |

variableAssignment
3 | axiom | goal | aliasDeclaration | aliasDefinition |

equation
4 ;

Next are presented the production rules to which the production rule statements
refers to.

Declaration of variables and constants is handled by the following production
rules:

1 variableDeclaration
2 : ’static’? type IDENTIFIER (’,’ IDENTIFIER)*
3 ;
4 constantDeclaration
5 : ’const’ type IDENTIFIER ’=’ expression
6 ;

4. Implementation 38

Variable can be declared as follows: at first, type of a variable has to be written,
then, separated by a comma, comes name of these variables. Also, before the type
of a variable, a keyword static may stand. One constant can be defined, and to do
that, before it’s type has to be written keywordCONST , and after the type should
come the name for that constant, after that equals sign, and then the value itself.
When a node (corresponding to one of two above-listed production rules) of the
parse tree is visited, then SpecificationLanguageListenerImpl creates a new
instance of ClassF ield class, and adds it to the instance of AnnotatedClass,
which is previously saved as class variable.

Although it had been said before that there is no such thing as assigning a
value to a variable in a specification language, and instead of that equations are
used, not all of data types allow the use of arithmetic operations. In order to make
possible the use of those data types in specification language, next production
rules are used:

1 variableAssignment
2 : variableIdentifier ’=’ variableAssigner
3 ;
4

5 variableAssigner
6 : array
7 | ’new’ classType ’(’ expression (’,’ expression)* ’)’
8 | STRING
9 | ’true’

10 | ’false’
11 ;
12

13 array
14 : ’{’ (inArrayVariableAssigner (’,’

inArrayVariableAssigner)*)? ’}’
15 ;
16

17 inArrayVariableAssigner
18 : variableAssigner | variableInitializer
19 ;
20

21 variableInitializer
22 : array
23 | expression
24 ;

Production rule variableAssignment determines that on the left hand side of equals
sign the identifier of a variable can be written (defined by variableIdentifier

4. Implementation 39

production rule), and on the left hand side of equals sign can be written either an
array, or code of creating new instance of class in Java, or string, or true, or false
can be written. Also the example above defines how an array should look like.
This is the structure that is set in curly braces and is either a zero or more elements,
divided by a comma. Each element can be either an expression or another array,
or a string, or true, or false, or a code that creates a new instance of the class
in Java. When a node (corresponding to production rule variableAssignment)
of the parse tree is visited, new ClassRelation is created, containing information
about the name of variable and about its value. This class relation is also added to
an instance of AnnotatedClass in SpecificationLanguageListenerImpl.

The next group of rules is needed for defining axioms. A production rule,
called axiom, describes that on the left hand side of symbol − > possible inputs
of axiom are described, also in the case, if to the input of axiom is passed a list of
variables, which is described by production rule variableIdentifierList, then to
the list of these variables will be given a label inputV ariables. On the right hand
side of symbol − > output data of axiom is described, and also that after the list
of output variables in parentheses may be written an exception class, that can be
thrown, during function’s run time, and the name of the realisation is presented in
curly brackets in the end of the axiom. Also to the list of output variables is given
label outputV ariables.

1 axiom
2 : (inputVariables = variableIdentifierList |

subtaskList
3 | (subtaskList ’,’ inputVariables =

variableIdentifierList)) ’->’
4 outputVariables = variableIdentifierList (’,’

exceptionList)? ’{’ method = IDENTIFIER ’}’ ;
5

6 subtask
7 : ’[’ (context = classType ’|-’)? inputVariables =

variableIdentifierList ’->’ outputVariables =
variableIdentifierList ’]’

8 ;
9

10 subtaskList
11 : subtask (’,’ subtask)*
12 ;
13

14 exceptionList
15 : ’(’ classType ’)’ (’,’ ’(’ classType ’)’)*
16 ;

4. Implementation 40

When a node (corresponding to production rule axiom) of the parse tree is visited,
new ClassRelation is created, a list of input variables, output variables, and the
name of a function that implements functional dependency, which is implemented
by a current axiom are set. Also, if it is needed, then to the ClassRelation is
added class SubtaskClassRelation, which, in turn, contains information about
subtasks that are passed to axiom’s input. This ClassRelation is also added to
an instance of AnnotatedClass’s class, which is already stored in a variable of
SpecificationLanguageListenerImpl class.

Sometimes an axiom can have simplified view, that is, it can have only a list of
input variables and a list of output variables, which are divided by a symbol − >.
In this case axiom is called goal, and it is described by a following production
rule:

1 goal
2 : inputVariables = variableIdentifierList? ’->’

outputVariables = variableIdentifierList
3 ;

In SpecificationLanguageListenerImpl the goal is processed in a similar way
to the axiom, the difference is that no information about subtask and functions is
saved in ClassRelation, as goal does not have them.

Next unit of production rules processes everything related to aliases. Alias can
be declared together with variables, which are stored in it. For this process pro-
duction rules aliasDeclaration and aliasStructure are needed. The production
rule aliasDefinition is used for aliases previously declared without the given
structure.

1 aliasDeclaration
2 : ’alias’ (’(’ type’)’)? IDENTIFIER (’=’ aliasStructure)?
3 ;
4

5 aliasStructure
6 : ’(’ (variableAlias=variableIdentifierList |

’*.’wildcardAlias=IDENTIFIER)’)’
7 ;
8

9 aliasDefinition
10 : variableIdentifier ’=’ ’[’ variableIdentifierList ’]’
11 ;

When a node (corresponding to production rule aliasDeclaration) of the parse
tree is visited, a special object of class, called Alias is created. It stores its struc-
ture, that is parsed by aliasStructure production rule, and this alias is stored in

4. Implementation 41

AnnotatedClass. If the structure of the alias is not defined at the moment of
declaration (defined later), then it is done during traverse of the parse tree, which
corresponds to production rule aliasDefinition, and at this moment Specifica-
tionLanguageListenerImpl finds inAnnotatedClass a needed instance ofAlias’s
class, and then saves its structure.

In order to define equations in specification language, production rule equa-
tion is used. This production rule defines that two expression, divided by a symbol
=, can be written. Production rule expression describes all of the possible arith-
metic expressions, which can be described in specification language. Alternatives
in production rule expression are composed in a way and have such an order
that during the process of building of parser tree for this production rule, the tree
reflects a correct order of performing arithmetic operations.

1 equation
2 : left = expression ’=’ right = expression
3 ;
4

5 expression
6 : term
7 | ’(’ expression ’)’
8 | ’-’ expression
9 | IDENTIFIER ’(’ expression ’)’

10 | left = expression op=(’*’ | ’/’) right = expression
11 | left = expression op=(’+’ | ’-’) right = expression
12 | expression ’ˆ’ expression
13 ;
14

15 term
16 : NUMBER
17 | variableIdentifier
18 ;

During the process of visiting a node (corresponding to production rule equation)
of the parse tree, SpecificationLanguageListenerImpl invokes equation solver.
Equation solver is a component in CoCoViLa, which tries to solve a given equa-
tion for every variable that occurs in it. As a result, for each variable in equation (if
such equation is solvable for this variable), an instance of ClassRelation is cre-
ated. After that all instances of ClassRelations are added to AnnotatedClass.

4.2.2 Implementation of new features

Implementation of the context-free grammar for the specification language, de-
scribed in the previous section, completely reflected already existing functionality

4. Implementation 42

and capabilities of the language in CoCoViLa. With the previous parser based on
regular expressions, it was very difficult and time-consuming task to extend the
specification language by adding new syntactic structures. Keeping the main goal
in mind, it was decided to add new functionality to CoCoViLa by introducing new
features to the specification language.

Improvements to the language include:

1. unified syntax for declaring alias with and without assigning its structure
(earlier, if the structure of alias was set at the time of declaring the alias,
then it was described in parentheses, and if the structure of alias was set
after the declaration of alias, then it was necessary to use square brackets);

1 alias x = (a, b);
2 alias y;
3 y = (c, d); //previously: y = [c, d];

2. assigning values to variables in the same line with their declaration;

1 //previously:
2 String s;
3 s = "example";
4 //now:
5 String s = "example";

3. possibility to declare several constants in one line;

4. possibility to make more convenient setting of variables of one specifica-
tion, if it is used in source code of another specification. For example, if
there is specification A, and there are defined two integer-type variables,
named innerV ariable1 and innerV ariable2, then during the process of
writing a code for another specification, e.g. for B, it would be possible to
write a part of code as follows:

1 A specA (innerVariable1=12, innerVariable2=5);

The most simplest task was implementing a requirement, presented under first
item of enumerated list. In order to create a unified form of alias’ structure defi-
nition syntax, the author had just to change the production rule aliasDefinition,
and now it is presented as follows:

1 aliasDefinition
2 : variableIdentifier ’=’ aliasStructure
3 ;

4. Implementation 43

Also the author modified code in SpecificatioLanguageListenerImpl. Now,
when a node (corresponding to production rule aliasDeclaration) of the parse
tree is visited, then SpecificatioLanguageListenerImpl creates an alias and
adds it to AnnotatedClass, and additionally saves a reference of the alias in its
class variable. When a node (corresponding to production rule aliasDefinition)
of the parse tree is visited, SpecificatioLanguageListenerImpl finds in An-
notatedClass an alias with corresponding name and saves it in its class variable.
Next, when a node (corresponding to production rule aliasStructure) of the parse
tree is visited, then SpecificatioLanguageListenerImpl simply assigns struc-
ture to the alias (SpecificatioLanguageListenerImpl already has a reference
to the alias in its class variable). Changing brackets might seem a trivial task,
however it was not the case with previous parser, since adding new or modify-
ing existing regular expression lead to conflicting situations and lots of effort in
identifying and fixing them.

In order to implement points 2 and 3 (i.e. to set values to variables during
the time of their declaration and to declare several constants as one string), it
was necessary to remove production rule constantDeclaration, and to change
production rule variableDeclaration. Also the author added two new production
rules: variableModifier and variableDeclarator.

1 variableDeclaration
2 : variableModifier? type variableDeclarator (’,’

variableDeclarator)*
3 ;
4

5 variableModifier
6 : ’static’ # staticVariable
7 | ’const’ # constantVariable
8 ;
9 variableDeclarator

10 : IDENTIFIER (’=’ variableInitializer)? #
variableDeclaratorInitializer

11 | IDENTIFIER (’=’ variableAssigner) #
variableDeclaratorAssigner

12 ;

Now the SpecificatioLanguageListenerImpl uses for declaration of variables
a helper-class, called ClassF ieldDeclarator. When a node (corresponding to
production rule variableDeclaration) of the parse tree is visited, then Speci-
ficatioLanguageListenerImpl sets a type of variable in ClassF ieldDeclarator
(either it is constant or static). As it can be seen from the example above, af-
ter the type of the variable comes a list that is determined by the production rule

4. Implementation 44

variableDeclarator. This production rule has two alternatives: variableDeclara-
torInitializer and variableDeclaratorAssigner. When a node (determined by
either of these two alternatives) of the parse tree is visited, then SpecificatioLan-
guageListenerImpl will give a command to ClassF ieldDeclarator to create a
variable with a name that was transmitted with the token IDENTIFIER. The
only difference is that in the alternative of variableDeclaratorAssigner, in re-
cently created ClassF ield, is set the value that is processed with the help of pro-
duction rule variableAssigner, but if there is variableDeclaratorInitializer,
then it is regarded as equation which needs to be handled. When a parse tree
walker finishes visiting a node (corresponding to production rule variableDec-
laration) of the parse tree, then SpecificatioLanguageListenerImpl resets all
data that is stored in ClassF ieldDeclarator.

In order to implement the last point, a new alternative specificationV ariable
was added to production rule variableDeclarator, and also two additional pro-
duction rules were defined: specificationV ariableDeclaration and specifica-
tionVariableDeclarator.

1 variableDeclarator
2 : IDENTIFIER (’=’ variableInitializer)? #

variableDeclaratorInitializer
3 | IDENTIFIER (’=’ variableAssigner) #

variableDeclaratorAssigner
4 | IDENTIFIER (’(’ specificationVariableDeclaration

’)’)? # specificationVariable
5 ;
6

7 specificationVariableDeclaration
8 : specificationVariableDeclarator (’,’

specificationVariableDeclarator)*
9 ;

10

11 specificationVariableDeclarator
12 : IDENTIFIER ’=’ expression
13 ;

In this case, in some part the actions are similar to the procedure of declar-
ing a variable, but in some part they have some differences. Production rule
variableDeclaration sets a type of a variable in ClassF ieldDeclarator (in this
case type of a variable is the name of another specification’s class). Next, when
a node (corresponding to production rule specificationV ariableDeclarator) of
the parse tree is visited, then the data, processed by this production rule, is pro-
cessed as a regular equation. It is not needed to declare a variable (which name

4. Implementation 45

was transmitted with the token IDENTIFIER), as it is declared in another
specification.

5. EVALUATION OF APPROACH

Usage of parser generator brings a valuable effort for future development and
enhancement of CoCoViLa specification language. Below is presented a list of
benefits:

1. Grammar as a language syntax reference. One may just open the gram-
mar file and understand the syntax of specification language. Even if one is
not familiar with ANTLR and EBNF notation, it is possible to get familiar
with basics of them in just a couple of minutes in order to read and under-
stand the grammar. In contrast to this, regular expressions may be difficult
to understand even for an experienced developer, as it is troublesome to get
a clear picture of regular expressions;

2. Labels instead of groups. In production rule it is possible to use labels in
order to simplify access to parts of production rule. In regular expressions
one should use groups and sequence number (index) of a group in order
to retrieve access to a part of expression. If later one new group is added
between two already existing groups, then one should review whole source
code of a system in order to find locations, where this regular expression is
used, and update indexes;

3. Reusable code. In contrast to regular expressions, production rules can be
easily split in smaller and simpler parts. This is not only more convenient
and more transparent way to define grammar, but it also presents an oppor-
tunity to reuse those parts in case of necessity in different production rules
in various parts of grammar, allowing to lead one of the most important
principles of software design: “Don’t repeat yourself” [19]

4. Fixed bugs caused by the old parser Some bugs from the previous parser
based on regular expressions were fixed. For example, old parser was un-
able to handle a situation, when a value of a variable of type String con-
tained a semicolon symbol or double quotes symbol. Second example, if a
statement was followed by a comment on the same line, then next line was
completely ignored. Below a code example that cannot be parsed with old
parser is presented:

5. Evaluation of approach 47

1 String str1 = "hello \"CoCoViLa\" user";
2 String str2 = "String with ; mark";//next line ignored
3 int a,b,c;

5. Improved error handling. If during the parsing process a regular expres-
sion does not find a matching substring, then it just fails without any de-
scription. ANTLR, on the contrary, provides information on any particular
token that causes an error, and suggests token that is expected instead of
an erroneous one. For instance, if one tries to parse following code, it will
obviously fail:

1 int varname 1;

But the error text shown with old and new parser, is different. Old parser
shows uninformative message:

Syntax error on line ’int varname 1’

On the contrary, new parser gives additional information that helps to find
an error:

Specification parsing error:
int varname 1;

ˆ
extraneous input ’1’ expecting ’,’, ’;’, line: 3

6. Less boilerplate code. ANTLR provides implementation of tree traversal
and tree walker patterns that could be easily used in a program. Thus it is
not needed to write boilerplate code over and over again.

5.1 Performance comparison

Performance comparison was made to check, whether new parser works faster or
not. The results of this comparison are presented in Table 5.1. Performance of
parser, based on regular expressions, and parser, generated with ANTLR, was
measured and compared in the following way. To measure the performance,
the author of the given thesis used 15 different specifications (from a CoCoViLa
package of modelling and simulation of complex hydraulic-mechanical systems).
Each specification had different length (number of lines). Every specification was
parsed 10 times with each parser, and time needed for parsing, was measured, and

5. Evaluation of approach 48

Specification length (lines) New parser (ms) Old parser (ms)
205 315,4 49,6
240 370,1 52
427 572,1 103,2
502 779 170,5
586 810,5 138,3
631 819,9 142,8
826 853,2 156,5
943 998,7 165,8
1261 1310,3 258,2
1460 1553,6 404,4
1705 1882,2 368,7
2083 1932,3 434,6
2196 2095,5 483,1
2217 2083 474,2
2308 2320,7 526,4

Tab. 5.1: Performance comparison

as a result the average time was calculated. The comparison was performed on a
standard laptop with Intel i5 2.40GHz CPU and 4Gb of RAM.

Despite the fact that new parser is slower, this difference is negligible, consid-
ering the following reasons:

1. the parsing process is only one step among other automatic steps performed
by CoCoViLa, running the generated program, especially complex simula-
tions might take minutes, so in practice, time used for parsing process is not
noticeable;

2. slower performance of new parser is compensated with the fact that new
parser reduces effort to language development process.

6. CONCLUSIONS

In this thesis, a context-free grammar for the specification language of CoCoViLa
was formalised and a parser was generated automatically from the grammar.

First, the author studied computing-related grammars from the area of formal
languages, and as a result decided in favour of one type of grammar, i.e. context-
free grammar, as it appeared to be the most suitable type for achieving the goals
that were set. In addition, the techniques designed for analysis of formal languages
were studied.

Second, a comparative analysis of existing parser generators that suited the set
goals was conducted. The criteria of choosing a generator were presented, prin-
ciples of their operating processes and examples of their operation were demon-
strated. The comparison resulted in choosing a specific parser generator (ANTLR)
for implementing CoCoViLa parser.

In the third part of the thesis author introduced the CoCoViLa specification
language and how parser, based on regular expressions, worked. Then, the process
of creating a grammar for specification language of CoCoViLa by means of the
chosen parser generator was explained. The examples of parse rules along with
detailed explanation on how they are handled in code were given.

Finally, the author summarised the work that was done, evaluated results, com-
pared parser, based on regular expression, with newly implemented parser, based
on ANTLR. Both parsers were benchmarked in order to compare their operation
speeds.

In conclusion, formal specification of CoCoViLa language gives much better
understanding of language syntax and provides flexibility and reduces effort in
adding new syntactic constructions to the specification language.

6.1 Future work

In the terms of future work, the following points and suggestions can be outlined
for implementing in CoCoViLa:

1. Equation solver that is used in CoCoViLa accepts equations in string format
only, parses it and builds tree structure that is needed for solving equations.
But it is unreasonable to convert tree structure of an equation created by

6. Conclusions 50

generated parser back to string format. Thus author would recommend to
replace it and implement new equation solver, which could accept equations
in tree structure;

2. There are still a lot of places in CoCoViLa outside of parser that still use
regular expression for parsing. For example, during code generation, equa-
tions are parsed again to find variables in order to replace them with their
actual values. It would be better to create special structure for equations
that could track all variables and provide convenient way to assign values
for those variables without regular expressions;

3. Generated parser provides good error handling for syntax only, but seman-
tic errors are handled in different methods, and do not have standart logic of
sending error messages to an end user. Often it is not possible to provide a
clear error message about a reason of an error, and also to specify exact oc-
curring position in code (line number). In order to make it more centralised,
it is suggested to use Aspect Oriented Programming, and benefits of using
such an approach are presented in the author’s Bachelor’s thesis [20].

CoCoViLa spetsikatsioonikeele parseri realiseerimine
kontekstivaba grammatika põhjal

Magistritöö

Ilja Nafigin, 121841IAPM

Resümee

CoCoViLa on Java keeles realiseeritud mudelipõhine tarkvara arendamise plat-
vorm. See võimaldab visuaalsete valdkonnaspetsiifiliste keelte arendamist ning
nende keelte kasutamist erinevate arvutuslike probleemide määratlemisel deklarati-
ivsel viisil. CoCoViLas on visuaalsed spetsifikatsioonid tõlgitud tekstilisteks spet-
sifikatsioonikeelteks. See on Javaga sarnanev keel, mis võimaldab muutujate dekla-
reerimist, määratledes muutujatevahelisi funktsionaalseid sõltuvusi jne. CoCoV-
iLa kasutab spetsifikatsioonikeele parsimiseks regulaaravaldistel põhinevat süntak-
sianalüsaatorit ning see on kitsaskoht (“bottleneck”), mis teeb keeruliseks spetsi-
fikatsioonikeele arendamist ja täiustamist tulevikus.

Antud töös on esitatud CoCoViLa spetsifikatsioonikeele uue süntaksianalüsaa-
tori teostamise protsess. See protsess on jaotatud kaheks põhiosaks: teoreetiliseks
ja praktiliseks. Esimeses osas on esitatud teoreetiline ülevaade vana süntaksianalü-
saatori asendamise võimaluse leidmiseks. Lahendus peab manuaalse süntaksiana-
lüsaatori teostamise asemel kasutama süntaksianalüsaatori generaatorit. Seega on
vajalik leida olemasolev süntaksianalüsaatori genereerimise programm. Valimis-
protsess on toodud töö teoreetilises osas.

Käesoleva töö teine osa kirjeldab süntaksianalüsaatori generaatori teostust,
kuidas on see CoCiViLas intergreeritud. Kirjeldus sisaldab näiteid koodidest ja
klassidiagrammidest. On esitatud hinnang antud tööle ning samuti tehtud kokkuvõ-
te neist tulemustest, mis on saavutatud uue genereeritud süntaksianalüsaatori abil.
Tulemused sisaldavad uusi spetsifikatsioonikeele teostusfunktsioone ja parsimise
protsessist kõrvaldatud programmivigu.

Pakutud lähenemine võimaldab kontekstivaba grammatika kasutamisel spet-
sifikatsioonikeele formaalse kirjeldamise korral ja keele süntaksianalüsaatori au-
tomaatse genereerimise korral arendada spetsifikatsioonikeelt väiksema pingutuse
ja kõrgema usaldusväärsusega võrreldes regulaaravaldistel põhineva süntaksianalü-
saatoriga.

BIBLIOGRAPHY

[1] http://www.cs.ioc.ee/cocovila/, “CoCoViLa — Model-Based Software De-
velopment Platform.” www.cs.ioc.ee/cocovila/. [Online; accessed
May 2014].

[2] Dick Grune, Henri E. Bal, Ceriel J.H. Jacobs, and Koen G. Langendoen,
Modern Compiler Design. WILEY, 2000.

[3] Daniel I. A. Cohen, Introduction to computer theory. WILEY, 2 ed., 1997.

[4] Jacques Loeckx, Kurt Mehlhorn, and Reinhard Wilhelm, Foundations of
Programming Language. WILEY, 1988.

[5] Michael Sipser, Introduction to the theory of computation. PWS, 1997.

[6] Dick Grune and Ceriel J. H. Jacobs, Parsing Techniques: A Practical Guide.
Springer, 2 ed., 2007.

[7] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman, Introduction to
Automata Theory, Languages and Computation. Addison-Wesley, 2 ed.,
2001.

[8] Terence Parr and Kathleen Fisher, “Ll(*): The foundation of the antlr parser
generator,” SIGPLAN Notices, vol. 46, pp. 425–436, June 2011.

[9] Terence Parr, Sam Harwell, and Kathleen Fisher, “Adaptive ll(*) parsing:
The power of dynamic analysis.” http://www.antlr.org/papers/
allstar-techreport.pdf.

[10] M. Kay, “Chart generation,” in Proceedings of the 34th Annual Meeting
on Association for Computational Linguistics, ACL ’96, (Stroudsburg, PA,
USA), pp. 200–204, Association for Computational Linguistics, 1996.

[11] S. L. Graham and S. P. Rhodes, “Practical syntactic error recovery,” Com-
munications of the ACM, vol. 18, pp. 639–650, Nov. 1975.

www.cs.ioc.ee/cocovila/
http://www.antlr.org/papers/allstar-techreport.pdf
http://www.antlr.org/papers/allstar-techreport.pdf

Bibliography 53

[12] M. J. Fischer, “Some properties of precedence languages,” in Proceedings
of the First Annual ACM Symposium on Theory of Computing, STOC ’69,
(New York, NY, USA), pp. 181–190, ACM, 1969.

[13] Dick Grune and Ceriel J. H. Jacobs, Parsing Techniques: A Practical Guide.
Ellis Horwood Ltd, 1991.

[14] F. Benhamou, ed., CP’06: Proceedings of the 12th International Confer-
ence on Principles and Practice of Constraint Programming, (Berlin, Hei-
delberg), Springer-Verlag, 2006.

[15] M.G.J. van den Brand and C. Groza, “The algebraic specification of an-
notated abstract syntax trees.” http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.38.3593&rep=rep1&type=
pdf, 1994.

[16] Merriam-Webster inc, Webster’s Dictionary. Konemann UK Ltd, 2000.

[17] E. Gagnon, “SableCC, an object-oriented compiler framework,” Master’s
thesis, McGill University, 1998.

[18] Terence Parr, The Definitive ANTLR 4 Reference. Pragmatic Bookshelf,
2013.

[19] Andrew Hunt and David Thomas, The Pragmatic Programmer. Addison-
Wesley Professional, 1999.

[20] Ilja Nafigin, “OOP ning AOP võrdlus: rakenduslik erinevuste analüüs, kasu-
tades Java JDK ja AspectJ,” Bachelor’s Thesis, Tallinnn University of Tech-
nology, 2012.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.38.3593&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.38.3593&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.38.3593&rep=rep1&type=pdf

	Introduction
	Goal of the thesis
	Outline of the thesis

	Theoretical overview
	Grammars of programming languages
	Chomsky hierarchy
	Unrestricted grammars
	Context-sensitive grammars
	Context-free grammars
	Regular grammars

	Tools for recognising, analysing and translating formal languages
	Lexer
	Parser
	Syntax tree and abstract syntax tree

	Automata theory

	Related work
	Comparison of parser generations
	JavaCC
	SableCC
	ANTLR

	Selection of parser generation

	Implementation
	Architectural overview
	Interaction with ANTLR
	Integration with CoCoViLa

	Grammar implementation
	Porting of existing functionality
	Implementation of new features

	Evaluation of approach
	Performance comparison

	Conclusions
	Future work

