
Tallinn 2024

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Andres Vassiljuk 220683IABB, Ilja Kisseljov 213642IABB

Implementation of shopping cart and product

functionality on the example of VKM Trading

OÜ

Bachelor's thesis

Supervisor: Viljam Puusep

 MSc

Tallinn 2024

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Andres Vassiljuk 220683IABB, Ilja Kisseljov 213642IABB

Ostukorvi ja toodete funktsionaalsuse

realiseerimine VKM Trading OÜ näitel

Bakalaureusetöö

Juhendaja: Viljam Puusep

 MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Andres Vassiljuk, Ilja Kisseljov

20.05.2024

4

Abstract

This thesis explores the development and implementation of a shopping cart and product

functionality for VKM Trading OÜ, a B2B company. The shift to an online platform aims

to enhance operational efficiency and customer service. The primary goal is to create a

robust B2B e-commerce website to streamline purchasing for existing clients and attract

new customers with a user-friendly interface. The platform also equips administrators

with essential tools for database interaction and management, improving internal

processes. The project employs modern web development technologies, focusing on

product listing, shopping cart management, order processing, and user authentication.

Despite significant progress, the project is ongoing. This thesis documents the

development process, challenges encountered, and the impact on VKM Trading OÜ's

operations, aiming to drive efficiency, enhance customer satisfaction, and support future

growth.

This thesis is written in English and is 50 pages long, including 6 chapters, 39 figures and

2 tables.

5

Annotatsioon

[Thesis title in Estonian]

See bakalaureusetöö käsitleb ostukorvi ja toodete funktsionaalsuse arendamist ning

juurutamist VKM Trading OÜ näitel. VKM Trading OÜ on B2B sektoris tegutsev

ettevõte, mis pakub laia valikut tooteid erinevatele ettevõtetele. Traditsiooniliste

ärimudelite digitaliseerimine ja veebipõhiste platvormide kasutuselevõtt on muutunud

ettevõtetele strateegiliselt oluliseks, et suurendada operatiivset efektiivsust ja parandada

klienditeenindust.

Projekti peamine eesmärk on arendada välja tugev B2B e-kaubanduse veebisait, mis

lihtsustab olemasolevate klientide ostuprotsessi ning meelitab uusi kliente

kasutajasõbraliku ja tõhusa veebipõhise ostukogemuse kaudu. Lisaks sellele varustab

platvorm administraatoreid oluliste tööriistadega, mis hõlbustavad andmebaasi haldust ja

platvormi juhtimist, parandades seeläbi sisemisi protsesse ja üldist ärijuhtimist.

Projekti viivad läbi kaks tudengit, kes kasutavad kaasaegseid veebiarendustehnoloogiaid,

et luua VKM Trading OÜ spetsiifilistele vajadustele kohandatud terviklik e-kaubanduse

lahendus. Peamisteks funktsionaalsusteks on toodete nimekirja koostamine, ostukorvi

haldamine, tellimuste töötlemine ja kasutajate autentimine. Arendusprotsess hõlmab

üksikasjalikku planeerimist, disaini ja teostuse etappe, millest igaüks on suunatud

konkreetsete ärivajaduste rahuldamisele ja kasutajakogemuse parandamisele.

Praegune projekti staatus hõlmab kogu protsessi põhjalikku dokumenteerimist, alates

esialgsest nõuete kogumisest ja süsteemi disainist kuni juurutamise ja testimise

etappideni. Kuigi on tehtud märkimisväärseid edusamme, on projekt endiselt pooleli ja

vajab lõpuleviimist. See lõputöö annab üksikasjaliku ülevaate tekkivatest väljakutsetest,

lahendustest ja üldisest mõjust VKM Trading OÜ äritegevusele.

Oodatav tulemus on transformatiivne B2B e-kaubanduse platvorm, mis suurendab

efektiivsust, parandab kliendirahulolu ja positsioneerib VKM Trading OÜ tulevaseks

kasvuks konkurentsitihedas turul. Projekti jätkamise käigus keskendutakse ülejäänud

6

väljakutsete lahendamisele, kavandatud funktsioonide rakendamisele ja sujuva toimimise

tagamisele reaalses keskkonnas. Lõputöö dokumenteerib saavutatud tulemused ja

vajaliku edasise töö, pakkudes selget teekaarti projekti edukaks lõpuleviimiseks.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 50 leheküljel, 6 peatükki, 39

joonist, 2 tabelit.

7

List of abbreviations and terms

CSS

HTML

JWT

SQL

ORM

HTTP

DBMS

API

UI

UX

VS Code

SME

SPA

CI/CD

ACID

B2B

Cascading Style Sheets

Hypertext Markup Language

Json Web Token

Structured Query Language

Object–relational mapping

Hypertext Transfer Protocol

Database Management System

Application Programming Interface

User Interface

User Experience

Visual Studio Code

Small and medium-sized enterprises

Single-page application

Continuous integration and deployment

Atomicity, Consistency, Isolation, and Durability

Business to business

8

Table of contents

1 Introduction ... 13

1.1 The solvable problem ... 14

1.2 The structure of the work.. 16

2 Methodology .. 17

2.1 Description of the work process ... 17

2.1.1 Literature analysis ... 17

2.1.2 Coordination of selected technologies ... 21

2.1.3 Creating a graphic prototype ... 23

2.1.4 Gathering feedback on the prototype .. 25

2.2 Development ... 25

2.2.1 Frontend application development .. 25

2.2.2 Backend development ... 27

2.2.3 Connecting front and back application .. 29

2.2.4 Testing ... 30

2.2.5 Release plan ... 30

2.3 Description of tools .. 32

2.3.1 Why does this combination work better than others? 33

3 Why B2B ... 37

3.1 Elements ... 37

3.1.1 User Registration and Authentication: .. 37

3.1.2 Product Management: .. 37

3.1.3 Shopping Cart and Order Processing: ... 37

3.1.4 Reporting and Analytics: ... 37

3.1.5 Security and Compliance: .. 38

4 Work results ... 39

4.1 Functional requirements ... 39

4.2 Non-functional requirements .. 40

4.3 Application design .. 41

5 Analysis and conclusions .. 43

9

5.1 Comparison with Existing Software ... 43

5.1.1 User Interface Advantages Over Existing Software 43

5.1.2 User Interface Shortcomings Compared to Existing Software 43

5.1.3 Functionality Advantages Over Existing Software 43

5.1.4 Functionality Deficiencies Compared to Existing Software 43

5.2 Reflection on the work done ... 43

5.2.1 Things That Went Well ... 44

5.2.2 Things That Went Wrong .. 44

5.2.3 Usefulness of the Work Done .. 45

5.2.4 Things to Do Differently ... 46

5.3 Further Development .. 46

6 Summary .. 47

References .. 49

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 51

Appendix 2 Desktop version Figma model .. 52

Appendix 3 Phone version Figma model ... 62

Appendix 4 Endpoints table ... 63

Appendix 5 Table relations .. 67

Appendix 6 Postman ... 68

Appendix 7 Backend .. 70

Appendix 8 Test Frontend .. 72

Appendix 9 Frontend external design ... 75

10

List of figures

Figure 1 Admin page prototype in Figma .. 52

Figure 2 Home Page prototype in Figma ... 53

Figure 3 Registration, Project start & Order checkout prototype in Figma 54

Figure 4 Products page prototype in Figma ... 55

Figure 5 Unit product page prototype in Figma ... 56

Figure 6 News page prototype in Figma .. 57

Figure 7 Other news page prototype in Figma ... 58

Figure 8 Contacts page prototype in Figma ... 59

Figure 9 About us & Certificates pages prototype in Figma .. 60

Figure 10 Error 404(Not found) & Log-in pages prototype in Figma............................ 61

Figure 11 Shopping cart page prototype in Figma ... 61

Figure 12 Phone version prototype in Figma ... 62

Figure 13 Table relations .. 67

Figure 14 Postman collection structure and a test sequence example 68

Figure 15 Example of a Postman test (POST api/company) .. 69

Figure 16 Backend file structure .. 70

Figure 17 Example of a request .. 70

Figure 18 Example of a router .. 71

Figure 19 Example of a middleware... 71

Figure 20 Example of a table in admin panel in test frontend .. 72

Figure 21 Items fetched from the backend displayed in the test frontend 72

Figure 22 Item detailed view and item count calculator in test frontend 73

Figure 23 Example of an edit form in admin panel in test frontend 73

Figure 24 Basket in test frontend .. 74

Figure 25 Home page in frontend external design ... 75

Figure 26 Product page in frontend external design ... 75

Figure 27 News page in frontend external design .. 76

Figure 28 About us page in frontend external design ... 76

Figure 29 Certificates page in frontend external design ... 77

11

Figure 30 Contact page in frontend external design ... 77

Figure 31 General finder in frontend external design... 78

Figure 32 Login in frontend external design .. 78

Figure 33 Login page in frontend external design .. 79

Figure 34 Registration in frontend external design .. 79

Figure 35 Error 404 (Not found) page in frontend external design 80

Figure 36 Admin panel Products page in frontend external design 80

Figure 37 Admin panel New User page in frontend external design 81

Figure 38 Unit product (item) page in frontend external design 81

Figure 39 Footer in frontend external design ... 82

12

List of tables

Table 1 Description of pages .. 24

Table 2 List of endpoints .. 63

13

1 Introduction

In the digital age, the transformation of traditional business models into online platforms

is crucial for companies aiming to remain competitive and expand their market reach. E-

commerce solutions are at the heart of this transformation, facilitating seamless

transactions and interactions between businesses and their customers. This thesis

examines the development and implementation of shopping cart and product functionality

for VKM Trading OÜ, a company operating in the B2B sector.

VKM Trading OÜ specialises in distributing a wide range of products to various

businesses. To enhance operational efficiency and customer service, transitioning to an

online platform becomes a strategic necessity. The goal is to create a robust B2B e-

commerce website that simplifies the purchasing process for existing clients while

attracting potential new customers through a user-friendly and efficient online shopping

experience. Additionally, the platform will equip administrators with essential tools for

database interaction and platform management, streamlining internal processes and

improving overall business operations.

This project is undertaken by two students, leveraging contemporary web development

technologies to design and implement a comprehensive e-commerce solution tailored to

the specific needs of VKM Trading OÜ. Key functionalities include product listing,

shopping cart management, order processing, and user authentication. The collaborative

effort encompasses detailed planning, design, and execution phases, each aimed at

addressing specific business needs and enhancing user experience.

The current status of the project involves thorough documentation of the process from

initial requirements gathering and system design to implementation and testing phases.

This thesis provides a detailed account of the challenges encountered, solutions devised,

and the overall impact on VKM Trading OÜ’s business operations. While significant

progress has been made, it is important to note that the project is still ongoing and not yet

14

complete. This work includes an analysis of what has been achieved so far and outlines

the remaining tasks necessary for full implementation.

By examining the steps taken to develop this e-commerce platform, this thesis contributes

to the academic understanding of e-commerce implementations in the B2B sector and

offers practical insights for businesses seeking to adopt similar solutions. The anticipated

outcome is that the B2B e-commerce platform will transform VKM Trading OÜ's

operations, driving efficiency, enhancing customer satisfaction, and positioning the

company for future growth in a competitive marketplace.

1.1 The solvable problem

In the competitive B2B landscape, VKM Trading OÜ faces several inefficiencies due to

its traditional, manual processes for order management, product listings, and customer

interactions [19]. These challenges hinder the company's ability to operate efficiently,

scale effectively, and provide timely customer service [21][23][34].

Identified Challenges:

1. Manual Order Processing:

Labor-intensive and error-prone order management leads to delays and

inaccuracies.

2. Inefficient Product Management:

Updating product information and inventory levels without a digital catalogue is

cumbersome.

3. Limited Customer Interaction:

Clients face inconvenience with current methods of communication, which are

slow and restricted to business hours.

4. Scalability Issues:

The existing processes are not scalable, limiting VKM Trading OÜ's growth

potential.

15

Proposed Solution:

To address these challenges, the project proposes developing a B2B e-commerce platform

with the following key features:

1. Online Shopping Cart:

Simplifies the order placement process for clients.

2. Product Management System:

Enables real-time updates of product information and inventory levels.

3. User Accounts and Authentication:

Provides secure access for clients to manage orders and view history.

4. Order Processing Automation:

Reduces manual intervention and errors, speeding up fulfilment.

5. Admin Panel:

A user-friendly administrative panel allows company representatives to manage

products and news without programmer assistance. They can easily add, delete,

or update product information and maintain a news feed.

6. Registration Control:

New company registrations must be approved by an admin, ensuring controlled

and secure access to the platform.

By implementing this e-commerce platform, VKM Trading OÜ will improve operational

efficiency, enhance customer service, and position itself for scalable growth in the B2B

market. This solution aims to streamline processes, reduce errors, and provide a better

user experience, ultimately driving business success.

16

1.2 The structure of the work

The work is divided into several main stages, starting with the introduction to the project

and its objectives [19]. This is followed by a detailed description of the methodologies

used for system analysis, design, and development [25]. The next stage involves a

comprehensive review of B2B e-commerce literature and technologies [19][32]. The

development of the platform is documented, highlighting the implementation of key

features such as the shopping cart, product management system, user authentication,

admin panel, and customer support integration [23][27][29]. The final stage involves a

thorough analysis and comparison with existing systems [21][22]. In the analysis and

conclusions section, the project's execution process, and recommendations for future

development are evaluated [24][26]. The work concludes with a summary of the main

findings and outcomes [28][29].

17

2 Methodology

The development process for this thesis employed an inductive methodology. This

approach is ideal for creating new software, allowing us to build a functional e-commerce

platform tailored specifically for VKM Trading OÜ [25]. Inductive reasoning facilitated

the identification of general patterns and principles from specific examples, critical in

creating a product from scratch. This method also ensured a deep understanding of the

target audience's needs and preferences, resulting in a more effective solution [26].

Additionally, the inductive approach allowed for the analysis and comparison of existing

solutions to identify their strengths and weaknesses, vital for developing a product that

meets the end-users' needs [21][24].

The development was iterative, where we organised a meeting every week and shared

progress. However, as development progressed, difficulties began to arise more and more

often and meetings were postponed or completely cancelled. Due to the general lack of

time, the work schedule was free - we worked when there was time, which also

contributed to the general desynchronization [25].

We made all important decisions together. We organised a small meeting and exchanged

arguments in favour of one proposal or another. To solve less significant problems, we

had freedom of action within our areas of responsibility. If necessary, meetings were

organised with the VKM Trading OÜ representative to clarify various details of the

project [25].

2.1 Description of the work process

The development process began with a thorough analysis of the existing systems to

identify their shortcomings and determine the requirements for the new platform. The

identified requirements were divided into functional and non-functional categories to

ensure a comprehensive understanding of the system's needs [21][22].

We began the project by receiving input from our supervisors, including the system

metadata database, which already contained classifier values and test tasks. We also

received a description of the task verification logic. Our task was to implement a

18

functional, user-friendly interface intended for everyday business use, not just a prototype

but a working software solution [25]. We started by familiarising ourselves with similar

systems. Responsibilities were distributed: one person at the frontend, one person at the

backend. The backend person also worked on a simple minimalistic test frontend

prototype for frontend-backend connection testing [25].

The initial phase involved creating a prototype of the user interface using Figma. Based

on the feedback received, we made several enhancements to the user interface before

proceeding to the system implementation [26]. Additionally, we engaged with the client

(VKM Trading OÜ) to ensure the developed solution met their specific needs and

expectations [26].

On the server side, we utilised Node.js with PostgreSQL as the database. PostgreSQL was

chosen for its robustness, scalability, and support for complex queries and transactions

[27]. We used Sequelize as the ORM tool to interact with PostgreSQL, which simplifies

database operations and ensures efficient querying and data manipulation. Additionally,

the pg-hstore library was employed to serialize and deserialize the hstore data type in

PostgreSQL, allowing us to handle key-value pairs efficiently.

For the development of the user interface, we chose React and TypeScript due to their

flexibility and robustness. React allowed us to build a dynamic and responsive interface,

while TypeScript provided strong typing and error checking, which enhanced the code

quality and maintainability [29]. SCSS was used for styling, allowing us to write modular

and reusable CSS with improved readability and maintainability [29]. Additionally,

HTML was used to structure the web pages [30].

The development was carried out using Git for version control, which facilitated

collaboration and code management [31]. Given the tight deadlines, we had to quickly

learn new technologies while simultaneously working on the development. This included

familiarising ourselves with React, TypeScript, SCSS, HTML, and the implementation

of JWT for secure sensitive data transmission [32]. We also used the PostgreSQL client

for Node.js (pg) and the pg-hstore library for handling key-value pairs [28].

Throughout the project, we faced challenges in communication due to different schedules.

Balancing rapid learning of new technologies with the development process, all within a

compressed timeline, was demanding [25]. However, we have successfully developed the

19

most crucial structures and functionalities supporting the further development of the B2B

e-commerce platform adapted to the needs of VKM Trading OÜ [19].

It is important to note that the project is not yet completed, and its finalisation will be

carried out at a later stage. We plan to continue refining and enhancing the platform based

on further feedback and testing to ensure it fully meets the requirements and expectations

of VKM Trading OÜ [24].

2.1.1 Literature analysis

The development and implementation of our e-commerce platform are guided by several

key insights drawn from relevant academic literature and industry best practices.

The adoption of e-commerce applications by small and medium-sized enterprises (SMEs)

is influenced by factors such as perceived relative advantage, compatibility with existing

systems, and cost considerations. SMEs are more likely to adopt e-commerce solutions

that offer clear benefits, integrate seamlessly with their current practices, and are

economically viable [19]. This underscores the importance of demonstrating the tangible

benefits of our platform and ensuring it aligns well with VKM Trading OÜ's existing

workflows.

Secure client authentication and session management are critical components of our

platform. The use of JSON Web Tokens (JWT) for secure authentication ensures that our

user sessions are managed securely and efficiently [20].

Performance optimization is another crucial aspect. The impact of Object-Relational

Mapping (ORM) frameworks on query performance emphasizes the need for careful

ORM usage and the potential incorporation of custom SQL queries for performance-

critical operations. This is essential for maintaining efficient database interactions and

ensuring the platform's responsiveness [21].

The choice of a single-page application (SPA) framework significantly affects the user

experience. It has been demonstrated that React generally outperforms other frameworks

like AngularJS and Angular 2 in terms of performance and maintainability [1][22].

20

Node.js offers scalability and efficiency for handling heavy network loads, which is

critical for our backend performance. However, the learning curve associated with its

asynchronous nature requires focused training for our developers to ensure effective

implementation [23].

Differential testing of ORM systems can significantly enhance the robustness and

correctness of our ORM system. By comparing query results across different

implementations, we can detect and address bugs, ensuring reliable database interactions

[24].

Implementing a continuous integration and deployment (CI/CD) pipeline will be crucial

for maintaining high availability and scalability of our platform. While we have initialized

Docker, future implementation of CI/CD frameworks will streamline our deployment

processes and ensure consistent updates [26].

Effective state management is essential for a smooth user experience in our React

applications. The use of observables and actions for efficient and reactive state

management in mobx will simplify state management and improve performance, making

our codebase more maintainable [1][27].

User interface design principles are fundamental to creating an intuitive and user-friendly

platform. Clear entry and exit points, consistent logic, and immediate feedback for user

actions will enhance the usability and overall user experience of our e-commerce platform

[28].

Writing clean, maintainable code is crucial for the long-term success of our platform.

Using descriptive names and ensuring each function has a single responsibility will make

our codebase easier to understand and maintain, facilitating better collaboration and more

efficient debugging [29].

The architectural principles of DBMS [31] support our choice of PostgreSQL for our e-

commerce platform. PostgreSQL's efficient resource management, robust query

optimization, and adherence to ACID properties align with these principles, ensuring

21

reliable and efficient database operations. This alignment guarantees that our platform

can handle high transactional demands while maintaining data integrity and performance.

The article on JSON Web Tokens (JWT) provides a standard for securely transmitting

claims between parties. JWTs are compact, URL-safe, and can be signed or encrypted to

ensure integrity and confidentiality. Implementing JWTs in our project will enhance the

security and efficiency of client authentication and session management [32].

The article highlights TypeScript's role as a statically typed superset of JavaScript,

providing a smooth transition for JavaScript developers without major rewrites. It

emphasizes TypeScript's advanced type system, which helps catch errors at compile time

and enhances code reliability. Implementing TypeScript in our project will improve code

quality and maintenance while offering enhanced tooling and IDE support for a better

development experience [33].

The reference provides standardized data models for core business functions like product

management, ordering, and invoicing. These templates ensure robust and scalable

database designs, streamlining development and reducing errors in our data architecture.

Utilizing these models will enhance the efficiency and reliability of our e-commerce

platform's database system [35].

2.1.2 Coordination of selected technologies

PostgreSQL - DBMS for data storage.

The backend uses PostgreSQL for managing and storing application data [5].

Express.js - Web framework for Node.js.

Handles HTTP requests, routing, middleware, and API endpoints in the backend [4].

React - Library for building user interfaces.

The frontend uses React to create the user interface [1].

Node.js - JavaScript runtime environment for server-side execution.

Runs the backend server and handles server-side logic [3].

22

TypeScript - Statically typed programming language that extends JavaScript.

Used as the primary language for both client and server to enhance reliability and ease of

development [2].

23

Tools and Development Environment:

VSCode - Source code editor.

Used for writing, editing, and debugging code. It supports many extensions that make it

easier to work with various programming languages and technologies.

WinRar - File archiving program.

Used for compressing and decompressing files and archives.

Pgadmin - Graphical interface for managing PostgreSQL.

Used for administering PostgreSQL databases and executing queries.

Git - Version control system.

Used for tracking changes in code and collaborating on projects.

Drawio - Tool for creating diagrams.

Used for creating diagrams like class diagrams and flowcharts.

Figma - Tool for interface design and prototyping.

Used for developing user interface mockups and interactive prototypes.

Postman - Tool for testing APIs.

Used for developing, testing, and debugging APIs.

Windows 11 - Operating system.

Used as the primary operating system for development. It provides the necessary

environment to work with the various tools and technologies used in the project.

2.1.3 Creating a graphic prototype

Following the selection of technologies, detailed discussions on the web application's

functionality were conducted, and the minimum number of necessary pages was

determined. Figma was chosen as the application for creating the prototype because of its

extensive functionality for creating detailed prototypes of web applications and its

24

convenient feature for demonstrating the prototype to third parties. As a result, the

following page concepts were developed:

Table 1 Description of pages

Admin - Products -

NewUsers - Users -

NewCompanies -

Companies

The Admin Interface serves as the central hub for managing various

aspects of the VKM Trading OÜ platform. Administrators can

handle product listings, user registrations, and company profiles.

The Products page allows adding, updating, and removing products

to keep the catalogue current. The New Users section displays

pending registrations for approval, and the Users page manages all

user accounts, including password resets and updates. Similarly, the

New Companies page lists company registrations awaiting

approval, while the Companies page maintains and updates

company profiles, ensuring streamlined and effective platform

management.

Home The main landing page provides general information about the

platform, login functionality, and language selection options.

Products Displays a comprehensive list of products available on the platform,

categorised for easy browsing. Includes detailed product

descriptions, pricing, and availability.

News A section for company news and updates. Admins can post news

articles, announcements, and other relevant updates.

Contacts Provides contact information for VKM Trading OÜ, including

phone numbers, email addresses, and physical addresses.

About Contains detailed information about VKM Trading OÜ, its mission,

values, and history.

Certificates Lists various certifications and accreditations that VKM Trading

OÜ has earned, demonstrating the company's credibility and

standards.

Not Found A default page shown when users navigate to a nonexistent or

broken link on the platform.

Login The page where users enter their credentials to access the platform.

It includes fields for username and password, and links for

password recovery and new user registration.

25

2.1.4 Gathering feedback on the prototype

Gathering feedback on the prototype was a crucial step in the development process. We

presented the prototype to various stakeholders and gathered their input through informal,

verbal feedback sessions [26]. This method allowed us to quickly capture reactions and

suggestions, which we then incorporated into subsequent iterations of the design [26].

Additionally, feedback from the client, VKM Trading OÜ, was collected to ensure the

platform met their specific requirements and expectations [26]. This feedback provided

valuable insights into user experience and functionality, guiding us in refining the

platform to better meet the needs and expectations of VKM Trading OÜ and its clients

[26].

2.2 Development

2.2.1 Frontend application development

The frontend development for the B2B e-commerce platform of VKM Trading OÜ was

meticulously planned and executed using modern technologies, including React,

TypeScript, SCSS, and HTML [1][2].

Technology Choices:

React was chosen for its component-based architecture, enabling efficient handling of

dynamic content and creation of reusable UI components, ensuring consistency and

reduced development time. Despite being new to the team, TypeScript was selected for

its static typing capabilities, which helped catch errors early in the development process,

reducing runtime errors and improving code maintainability [1][2].

Development Workflow:

The development process began with creating wireframes and high-fidelity prototypes

using Figma. These prototypes were instrumental in gathering feedback from

stakeholders and refining the design. Once the design was approved, it was translated into

functional React components [1].

26

Wireframing and Prototyping:

Initial wireframes were created to outline the UI structure, which were then transformed

into detailed Figma prototypes. Feedback was collected from various stakeholders,

including potential users and the client, to refine the design. This iterative process ensured

that the design was both user-friendly and met business requirements.

Component Development:

Prototypes were converted into React components. This involved creating individual UI

elements like buttons, forms, and navigation menus as reusable components [1]. These

components adhered to the design specifications and were styled using SCSS for modular,

maintainable, and reusable CSS. HTML was used to structure the web pages, ensuring

semantic and accessible markup.

State Management:

To manage the application state, mobx was integrated. Mobx allowed for centralised state

management, ensuring data consistency across different parts of the application. This was

crucial for handling complex state transitions and maintaining a predictable state

throughout the app. At the current stage it is only implemented in the test frontend.

API Integration:

Axios was used for API integration, facilitating communication between the frontend and

backend services. This enabled dynamic data fetching and real-time updates, ensuring

that the UI remained responsive and up-to-date with the latest information from the

server. The integration process involved setting up axios instances, configuring request

and response interceptors, and handling various HTTP methods for CRUD operations. At

the current stage it is only implemented in the test frontend.

Styling:

SCSS was chosen for styling the components, utilising its features like variables, nesting,

and mixins to create a clean and maintainable stylesheet structure. This approach allowed

for easy modifications and ensured a consistent look and feel across the application. The

use of SCSS also enabled better organisation of styles, making it easier to apply global

themes and component-specific styles.

27

Challenges and Solutions:

- Learning TypeScript: Although TypeScript was mostly new to the team, its adoption

significantly improved code quality. The initial learning curve was managed through

dedicated study and practice, which paid off in the form of fewer runtime errors and more

maintainable code.

- Translating Figma Designs: Ensuring that the final product matched the Figma designs

required close attention to detail. This process involved iterative testing and adjustments

to align the React components with the visual and functional specifications of the

prototypes [1].

- State and Props Management: Managing state and props was a difficult task to

accomplish without any experience. Especially promise handling in mobx took a lot of

time to understand.

Project Status:

Despite significant progress, the project is not yet complete and has not been deployed

for use. Future development plans include implementing additional features, enhancing

security measures, and optimising performance. The foundation laid during this

development phase has equipped the team with valuable experience and skills,

positioning them well for completing and refining the platform to meet the evolving needs

of VKM Trading OÜ and its clients.

2.2.2 Backend development

Data Collection, Analysis, and Technology Stack Selection

Before starting the project, it was essential to study available technologies, compare them,

and form a stack suitable for the project's tasks. Information sources included official

documentation, thematic forums, and discussions with professionals in web application

development. Key factors in selecting the technology were the availability and volume of

learning materials, ease of use, and simplicity.

Basic Backend Development

Once the stack was determined, the initial step involved initialising the project with

Node.js and installing fundamental libraries such as Express, pg, pg-hstore, Sequelize,

28

cors, dotenv, and nodemon. Configuration and utility files with environment variables

and helper functions were then created and adjusted. Subsequently, the foundation of the

application was established by creating a PostgreSQL database and setting up necessary

connections.

Database Design

With the basic backend elements in place, the next task was to design the database based

on information and business logic provided by the client. During development, new

requirements and clarifications were continuously incorporated, resulting in

corresponding changes to the database.

Designing a flexible and understandable data architecture was a key requirement. Initial

tables were created to store data about users, products, product characteristics, and

auxiliary tables for product and characteristic typology, as well as for managing

relationships between primary tables. Following discussions and revisions, a relational

diagram was drawn up based on the chosen architecture.

All relationships and fields were defined in the application using Sequelize. Models were

then used to create corresponding tables in the database, with Pgadmin utilised for

database overview.

Backend Framework - Requests, Models, Routing, Error Handling, Middleware,

Roles

With the database and its connection established, the development of the application's

framework began. Initially, a routing file was created using Express to link all routes from

different parts of the application. Separate route files were then developed for each section

of the application, describing all primary routes for accessing tables and user operations.

To separate request handling logic, controllers were created for each table. Initial requests

were defined to retrieve all data, fetch single objects, and add new objects. The UUID

library was installed for generating string identifiers. As products included images, the

express-fileupload library was installed to handle files from requests, and the path module

29

was used for moving files. Files received from requests were transferred to a designated

folder.

For user operations, registration and authentication mechanisms were implemented using

JWT. User data in the database is stored in encrypted form, with the bcrypt library

installed for hashing.

Postman was employed to facilitate request testing, with environment variables and

collections set up for convenience and efficiency. All requests were tested and verified in

Postman.

Middleware for user role verification and error handling was also developed, with a

separate file for defining different error types.

Docker Setup

Understanding Docker principles, installation, and configuration were key steps when the

backend foundation was ready and tested. Docker files necessary for application

operation were created, including Docker images, containers, and required connections.

PostgreSQL, Pgadmin, and the current backend version were installed in Docker. The

correctness of Docker's operation was verified. At this stage, Docker preparation for

backend deployment on a public domain was carried out, though it was not used in

development to avoid slowing down the launch and debugging processes.

Refinement and Error Correction

The existing code was reviewed, with stability enhanced by adding validation in requests

and additional error handling. Postman tests were refined, with missing tests added and

redundant ones removed.

2.2.3 Connecting front and back application

The integration of the frontend and backend applications was essential for the B2B e-

commerce platform for VKM Trading OÜ. We designed a RESTful API using Node.js

and Express to handle client requests, with endpoints for user authentication, product

30

management, and order processing. JSON Web Tokens (JWT) ensured secure data

transmission. On the frontend, API calls were made using axios, connecting React

components to backend services for dynamic data fetching and state management. Mobx

was used for state management. This seamless integration resulted in a secure, efficient,

and maintainable platform. Although as 2 versions of the frontend were simultaneously

in development, only the test frontend is linked to the frontend at the current stage.

2.2.4 Testing

To ensure the robustness and reliability of the backend, we utilised Postman due to our

prior experience with it. Postman tests are written in JavaScript, which is convenient

given our project's reliance on TypeScript and JavaScript [31][32].

We began by studying the structure and functionality of tests in Postman, familiarising

ourselves with the syntax and basic principles [31].

After establishing the primary requests and integrating them into Postman, we developed

tests to cover various scenarios, such as unauthorised requests, requests without

appropriate permissions, invalid requests, and duplicate data entries [32]. These tests also

evaluated response times, status codes, response structures, and other critical aspects [32].

All tests were organised into collections for ease of navigation, with a master collection

allowing for the sequential execution of all tests, significantly improving efficiency and

usability [31].

The tests were structured as usage scenarios, ensuring comprehensive coverage. For

example, a scenario involving the feature and featureType tables included steps for

adding, modifying, and subsequently deleting test data, avoiding persistent changes in the

database [32]. Environmental variables were employed throughout the tests, supporting

the addition of new tests and enhancing current ones [31].

Frontend testing has not been performed at this stage. Further development and testing of

the frontend will be necessary to ensure full integration and functionality [29].

2.2.5 Release plan

This section outlines the release plan for the project, based on the current development

status and future goals.

31

Finalising Frontend Development

Properly linking the production frontend to the backend.

Enhancing interfaces for all key functions (product management, cart, order placement,

user registration, and authentication).

Integrating additional libraries and tools to improve user experience

Integrating Additional Features

Implementing a news and newsletter system.

Integrating external APIs to expand functionality (e.g., chat, notifications).

Testing and Debugging

Conducting a full cycle of functional and user testing.

Fixing identified bugs and optimising performance.

Preparation for Deployment

Configuring the environment for deploying the application on a public hosting platform.

Ensuring data security and compliance with GDPR requirements.

Deployment on Public Hosting

Deploying the application using Docker on the chosen platform.

Setting up automated CI/CD to simplify subsequent releases and updates.

Post-Release Maintenance

Monitoring and supporting the application's functionality.

Collecting and analysing user feedback to further improve the system.

Future Development Plans

After the initial release, further development is planned to transform the project into a

full-fledged online store with expanded features:

Payment System Integration

Connecting payment gateways for online payments.

User Management Enhancements

32

Including capabilities for administrators to manage roles and permissions.

Integration with External Systems

Connecting to ERP systems and other business management tools.

Analytics Expansion

Implementing tools for sales analysis and user activity monitoring.

Cybersecurity Enhancements

Continuously updating and improving security measures in response to new threats and

requirements.

2.3 Description of tools

Node.js - a runtime environment for JavaScript that allows the execution of JS code on

the server side [3].

Used for creating server-side applications, handling HTTP requests, interacting with

databases, and other server tasks.

Node.js is well-suited for building scalable network applications, particularly when

working with web sockets and handling multiple connections [27].

Express - a minimalist and flexible framework for Node.js applications that provides

powerful features for web and mobile applications.

Used to create server-side web applications, manage routing, handle requests and

responses.

Express simplifies the development of server-side code through middleware and routing,

making the code cleaner and easier to understand [28].

TypeScript - a superset of JavaScript that adds strong typing and object-oriented

concepts.

Used for writing code on both the client and server side, providing greater code safety

and easier scalability.

Typing helps in large and complex projects to detect errors early in the development

process, simplifies refactoring, and enhances code quality [2][29].

33

PostgreSQL - powerful, open-source relational database management system that

supports SQL.

Used to store, process, and securely access data in the application.

PostgreSQL supports advanced features such as complex queries, transactions, and JSON

support, making it ideal for enterprise-level applications [28].

Docker a platform for developing, shipping, and running applications in containers.

Used to package the application along with its dependencies into standardised units for

development or deployment.

Docker ensures ease and convenience of deployment, as well as consistency between

development and production environments [33].

2.3.1 Why does this combination work better than others?

The combination of these technologies offers a powerful full stack for developing modern

web applications. Using JavaScript and TypeScript throughout the stack makes it easier

for developers to move between the client and server sides. Docker makes it easy to

deploy and scale applications, and PostgreSQL provides reliable data storage. This makes

the stack powerful, flexible, and suitable for developing high-performance web

applications [2].

Libraries:

Express - a minimalist and flexible web framework for Node.js that provides powerful

features for creating web and mobile applications.

Used to create server-side applications, manage routing, handle HTTP requests and

responses, and implement middleware.

Advantages:

▪ Simple to use and configure.

▪ Middleware support for adding various functionalities.

▪ Extensive ecosystem of plugins and extensions.

▪ High performance due to its minimalist architecture.

34

CORS - (Cross-Origin Resource Sharing) is middleware for Express that allows web

applications to perform cross-domain requests.

Used to configure and allow cross-domain requests, ensuring secure interactions between

the client and server located on different domains.

Advantages:

▪ Easy integration with Express applications.

▪ Flexible settings for managing permissions.

▪ Enhanced security through access control.

Dotenv - a module for loading environment variables from a .env file.

Used to manage application configuration by loading environment variables from a .env

file, avoiding the need to store sensitive information in code.

Advantages:

▪ Simplifies configuration management.

▪ Enhances security by keeping sensitive information out of the codebase.

▪ Easy to change configuration without altering the code.

JSON Web Token (JWT) - a standard for creating access tokens used to transfer data

between parties in a compact and secure format.

Used for user authentication, secure data transmission between client and server, and

session management.

Advantages:

▪ High level of security.

▪ Easy to use and integrate.

▪ Lightweight and scalable.

▪ Independent of server session.

pg and pg-hstore

Pg is a PostgreSQL client for Node.js, and pg-hstore is a serializer for PostgreSQL's

hstore data type.

Pg is used for interacting with the PostgreSQL database, executing SQL queries, and

retrieving data. Pg-hstore is used for processing hstore data.

Advantages:

▪ Reliability and performance.

▪ Support for all PostgreSQL features.

35

▪ Easy to use and integrate with other libraries.

Sequelize - a powerful and popular ORM for Node.js that supports multiple SQL dialects,

including PostgreSQL.

Sequelize simplifies working with databases by providing a high-level API for interacting

with them. It allows developers to use an object-oriented approach for data manipulation,

automatically managing SQL queries, table associations, and data model synchronisation.

Advantages:

▪ Accelerates development.

▪ Reduces the amount of code.

▪ Enhances code readability and maintainability.

▪ Supports associations, validations, and migrations.

Express-fileupload - middleware for file uploads in Express applications.

Used to handle file uploads on the server, saving and processing uploaded files.

Advantages:

▪ Simple integration and use.

▪ Supports various file types.

▪ Configurable upload parameters.

Bcrypt - a library for hashing passwords, ensuring their secure storage.

Used to hash passwords before storing them in the database and to verify passwords

during user authentication.

Advantages:

▪ High level of security.

▪ Protection against brute force attacks.

▪ Easy to integrate and use.

Fs-extra - an extension of the standard fs module for working with the file system, adding

additional methods.

Used for improved interaction with the file system, providing additional methods for

working with files and directories.

Advantages:

▪ Extended capabilities compared to the standard fs module.

▪ Support for asynchronous and synchronous methods.

36

▪ Easy to use and integrate.

UUID - a library for generating unique identifiers (UUIDs).

Used to create unique keys for database records, session identifiers, and other objects

requiring uniqueness.

Advantages:

▪ Guaranteed uniqueness of identifiers.

▪ Easy to use and integrate.

▪ Support for various versions of UUID.

Nodemon - utility that automatically restarts the server when project files are changed.

Used to speed up development by automatically restarting the application when changes

are made to the code.

Advantages:

▪ Speeds up the development process.

▪ Reduces manual operations.

▪ Easy to integrate and use.

Mobx - a library for state management in React applications, based on reactive

programming [1].

Used to simplify state management and automatically update the interface when the state

changes.

Advantages:

▪ Reactive interface updates [1].

▪ Simple and flexible use.

▪ Support for complex data structures and dependencies.

37

3 Why B2B

The B2B functionality on the VKM Trading OÜ platform is designed to meet the specific

needs of business clients, ensuring a seamless and efficient user experience. This section

describes the main features and functionalities to be implemented to support B2B

operations [19][34].

3.1 Elements

3.1.1 User Registration and Authentication:

The platform includes a robust user registration and authentication system tailored for

B2B clients. Only businesses can register, ensuring that all users are legitimate business

entities [32]. Registrations must be approved by an administrator to gain access to the

platform [25]. Once registered, users can log in using secure authentication methods,

including the use of JSON Web Tokens (JWT) for secure data transmission [32].

3.1.2 Product Management:

The product management functionality allows VKM Trading OÜ to efficiently manage

their product catalogue. Administrators can add, update and remove products through an

intuitive admin panel. The system supports detailed product descriptions, pricing, and

categorization, ensuring that clients have access to accurate and up-to-date product

information [30].

3.1.3 Shopping Cart and Order Processing:

The shopping cart feature enables business clients to select and manage products they

wish to purchase. The system supports bulk ordering, multiple product variations. Once

the selection is complete, clients can place orders [29].

3.1.4 Reporting and Analytics:

The platform plans to provide detailed reporting and analytics tools for both

administrators and clients. Administrators will be able to generate reports on sales,

38

inventory, and customer activity, enabling them to make informed business decisions

[27]. Clients will have access to their order history, track order statuses, and view

personalised product recommendations based on their purchasing behaviour [30]. These

features are currently in the planning stage and will be implemented as the project

progresses, enhancing the platform's functionality and user experience [24].

3.1.5 Security and Compliance:

Ensuring the security and compliance of the platform is a top priority. Planned security

measures include advanced encryption, secure data storage, and regular security audits

[32]. We aim to comply with industry standards and regulations, such as GDPR, to protect

client data and ensure the platform operates within legal requirements [32]. These

measures are currently in the planning stage and will be implemented as the project

progresses, ensuring that the platform remains secure and compliant as it continues to

develop [24].

By incorporating these features, the B2B platform for VKM Trading OÜ provides a

comprehensive solution tailored to the needs of business clients. The focus on secure,

efficient, and user-friendly functionalities ensures that clients can manage their

purchasing processes effectively, leading to improved satisfaction and business growth

[19][23][30].

39

4 Work results

4.1 Functional requirements

Admin Panel

The admin panel serves as the central hub for managing the various aspects of the VKM

Trading OÜ platform. It provides a comprehensive set of tools for administrators to

manage products, user registrations, and company profiles. Key functionalities include:

Product Management: Administrators can add, update, and delete products.

User and Company Management: The admin panel allows for the review and approval of

new user and company registrations. This controlled registration process ensures that only

legitimate business entities gain access to the platform.

Discount Management: Administrators can assign discounts to specific products and

assign the discounts to specific users, facilitating promotional activities and customer-

specific pricing strategies.

Product Overview and Storefront

The product overview and storefront functionalities are crucial for providing users with a

seamless browsing and shopping experience. These include:

Product Listings: A comprehensive list of products available on the platform, categorised

for easy browsing. Users can view detailed product information, including specifications

and pricing.

Basket

The basket functionality allows users to select and manage the products they wish to

purchase. Key features include:

Quantity and Pricing Management: Users can select the desired quantity of each product,

with real-time updates on pricing based on the selected quantity. A built-in calculator

helps users determine the number of pallets and packages required.

40

Order Summary: The cart page provides quantities and prices of the selected products,

enabling users to review their order before proceeding to checkout.

User and Company Registration and Authentication

A robust registration and authentication system is essential for ensuring the security and

integrity of the platform. This includes:

User Registration: New users must register and provide necessary information.

Registrations are reviewed and approved by administrators to ensure legitimacy.

Company Registration: Similar to user registration, new companies must also register and

undergo an approval process. This ensures that all entities on the platform are verified

businesses.

Authentication: Secure authentication mechanisms, including the use of JSON Web

Tokens (JWT), ensure that user data is protected during login and subsequent interactions

with the platform.

4.2 Non-functional requirements

Connecting the Final Frontend to the Backend

Currently, only a test frontend is connected to the backend for debugging purposes.

To do: Integrate the fully developed frontend with the backend to ensure seamless

interaction and data flow.

Automation of Company Verification for Registration

Currently company registrations are manually verified by administrators.

To do: Develop an automated system to verify company registrations, reducing

administrative workload and enhancing security.

Frontend Testing

Currently frontend testing has not yet been implemented.

To do: Implement comprehensive frontend testing to ensure reliability and functionality,

using tools like Jest and React Testing Library [1].

41

Personal page

Currently not implemented

To do: Create a user dashboard where users can view active discounts, personal

information, and order history, and manage their accounts.

Calculation of Final Order Price

Currently the final order price calculation is incomplete.

To do: Implement dynamic calculation of the final order price, including taxes, shipping

costs, and other relevant factors.

Calculation of Discounted Prices

Currently discounts are not yet integrated into the price calculation.

To do: Develop functionality to apply discounts to product prices and display the

discounted prices to users.

News and Newsletter System

Currently not implemented

To do: Create a system for posting news updates and sending newsletters to registered

users.

4.3 Application design

The application is designed to be a B2B trading platform for VKM Trading OÜ. Each

registration request from companies and users is individually reviewed by a VKM

Trading OÜ employee [25].

The user can browse the product catalogue on the store page, where search tools are

implemented for convenience. Each product can be viewed individually, displaying all its

characteristics [30]. On this page, the user can also add the product to their cart by

selecting the required quantity [29]. Orders are made in quantities corresponding to pallets

and/or packages, and the built-in calculator assists in this process [30]. The user can then

proceed to the cart page to review their order, where the selected quantity and prices of

the products are displayed [29].

42

The administrator has the same capabilities as a regular user but additionally has access

to the admin panel. The admin panel contains tools for database management [27]. Here,

they can review registration requests, assign discounts to users, view, modify, delete, and

add new entries to the database, such as products, discounts, and more [27].

The goal of this project is to establish a foundation for a comprehensive trading platform.

At this stage, certain features such as payment processing, Smart ID and ID card

authentication, public hosting, and other functionalities that require thorough preparation,

cybersecurity, and strong integration with VKM Trading OÜ's business processes are not

yet implemented [24].

43

5 Analysis and conclusions

5.1 Comparison with Existing Software

5.1.1 User Interface Advantages Over Existing Software

The new B2B platform offers several user interface improvements over the existing VKM

Trading OÜ website. It provides a more interactive and user-friendly experience,

including a shopping cart, real-time product updates, and an intuitive admin panel for

easy product management [30]. These features significantly enhance the efficiency and

convenience of the purchasing process for users [29].

5.1.2 User Interface Shortcomings Compared to Existing Software

Despite these improvements, the new interface may lack some advanced features found

in leading e-commerce platforms, such as personalized user experiences and

comprehensive analytics dashboards [24]. Users accustomed to simpler interfaces might

find the new system more complex initially, presenting a potential learning curve [30].

5.1.3 Functionality Advantages Over Existing Software

The new platform introduces substantial functional enhancements, including automated

order processing, real-time inventory management, and secure sensitive data transmission

using JWT [32]. These features streamline business operations and improve overall

transaction efficiency, providing significant advantages over the existing static

informational site [19][21].

5.1.4 Functionality Deficiencies Compared to Existing Software

However, the platform may still lack certain advanced functionalities present in top-tier

B2B solutions, such as integrated payment gateways and sophisticated search capabilities

[24]. Initial versions might also lack robust integration with external ERP systems, which

are critical for some businesses [24][26].

5.2 Reflection on the work done

The project greatly benefited from several courses taken during the academic program.

The "Database" course provided essential knowledge for effective database design and

44

management, ensuring a robust foundation for the platform's data handling [28]. "ISAII"

was invaluable for understanding REST API development and testing, which was crucial

for building and verifying the backend services [27]. The "ISAIII" course, which covered

full-stack development and Vue.js, was particularly useful as Vue.js concepts were

similar to React, facilitating a smoother transition and implementation of the frontend

[1][29].

5.2.1 Things That Went Well

The database design was executed effectively, providing a robust foundation for data

management [28]. Additionally, using Postman for API testing facilitated efficient

development and troubleshooting, enabling rapid issue resolution [31]. We successfully

transferred the visual designs from Figma to the frontend, maintaining the intended

aesthetic and functionality [26]. Working with styles in SCSS was particularly interesting,

allowing us to create a visually appealing and cohesive user interface [29].

5.2.2 Things That Went Wrong

We encountered several challenges during the project that contributed to its incomplete

status. Communication issues due to differing schedules among team members led to

significant delays, as coordinating tasks and meetings became difficult [25]. Additionally,

parallel development efforts caused synchronization problems, necessitating frequent

adjustments to the backend based on evolving client requirements [25].

Managing two different frontend versions and working separately on these versions

created integration challenges, further complicating the development process.

Specifically, ensuring consistency between the two versions required additional time and

effort, leading to delays in the overall timeline [25].

Learning and implementing new technologies also required more time than anticipated.

While courses like "Database," "ISAII," and "ISAIII" provided a solid foundation, the

practical application of these concepts in a real-world project presented unforeseen

difficulties [28][29]. Troubleshooting and debugging new technologies such as React,

Node.js, mobx, and TypeScript demanded extensive research and problem-solving,

extending our development timeline [29][27][30].

45

Frequent changes in project requirements from the client added another layer of

complexity. As new features and adjustments were requested, we had to continually

revise our development plans and rework existing components, leading to further delays

[24].

Moreover, the integration of new features often uncovered unforeseen technical

challenges [24]. The initial lack of a structured development order and clear prioritization

of tasks also contributed to inefficiencies. Without a well-defined roadmap, we often

found ourselves juggling multiple tasks simultaneously, leading to fragmented focus and

slower progress [25].

Overall, these challenges combined with the need to balance academic responsibilities

and project deadlines prevented us from completing the project within the planned time

frame. However, the experience gained has provided valuable insights that will guide

future development efforts [24][25].

5.2.3 Usefulness of the Work Done

The project provided valuable experience in real-world development and project

management, as well as proficiency in modern technologies like React, TypeScript, and

Node.js [29][27]. These skills are highly applicable in future projects and contribute to

professional growth [1][2][30].

Additionally, the project underscored the importance of effective communication and task

distribution within the team. Regular meetings and calls were crucial for aligning on

project goals, addressing issues promptly, and ensuring everyone was on the same page

[25]. The experience highlighted how vital it is to have clear communication channels

and well-defined roles to streamline development processes [25]. This project also

emphasised the need for regular feedback loops and collaborative problem-solving, which

are essential practices for any successful development team [25]. These lessons in

teamwork and project coordination will be invaluable in any future professional

endeavours [24].

46

5.2.4 Things to Do Differently

For future projects, improving communication strategies and Git workflows would

enhance coordination [25]. Establishing a more structured development order could

streamline the process and reduce synchronization issues [25]. Better planning and

regular check-ins could mitigate many of the problems encountered [25].

5.3 Further Development

Further development of the platform could involve implementing a payment system to

support online transactions, adding Smart ID authentication for enhanced security, and

deploying the application using Docker on the client’s domain to improve control and

scalability [33]. Expanding database management tools could enhance data handling and

analytics [28]. Enhancing cybersecurity measures is crucial to protect user data and

system integrity [32]. Optimizing the platform for performance improvements and

developing more advanced query capabilities to handle complex data requests would also

be beneficial [24][27].

47

6 Summary

This project aimed to develop a comprehensive B2B e-commerce platform for VKM

Trading OÜ, significantly enhancing the functionality compared to the existing

informational site. Key improvements include an interactive user interface, real-time

product management, automated order processing, and secure data transmission

[19][30][32]. These advancements mark a substantial step forward in operational

efficiency and customer satisfaction [29].

Despite these significant achievements, the project is still ongoing and has not yet been

deployed for use. Several challenges have contributed to this delay. Communication

issues due to differing schedules among team members led to significant delays in

coordination and task execution [25]. Parallel development efforts caused

synchronization problems, necessitating frequent adjustments to the backend based on

evolving client requirements [25]. Additionally, managing two different frontend

versions and working separately on these versions created integration challenges, further

complicating the development process [25]. The learning curve associated with new

technologies such as React, TypeScript, mobx and Node.js also required additional time

for troubleshooting and debugging [29].

Future development plans include integrating additional features such as payment

systems, advanced security measures, and improved database tools [24][32][28]. These

enhancements are crucial for ensuring the platform meets the evolving needs of VKM

Trading OÜ and its clients [24]. The anticipated outcome is that the B2B e-commerce

platform will transform VKM Trading OÜ's operations, driving efficiency, enhancing

customer satisfaction, and positioning the company for future growth in a competitive

marketplace [19][21].

In summary, while the project has made considerable progress and introduced significant

functional improvements, ongoing efforts are needed to complete the platform [25].

Continued work will focus on addressing the remaining challenges, implementing

48

planned features, and ensuring seamless operation in a real-world environment [25][27].

This thesis documents both the accomplishments to date and the work still required,

providing a roadmap for the project's successful completion [24]. Through this

comprehensive approach, VKM Trading OÜ is poised to leverage the full potential of a

robust, user-friendly, and efficient B2B e-commerce platform [19][24].

49

References

[1] React.js Documentation, „Learn - React”, [Online]. Available: https://react.dev/learn

[Accessed 23 05 2024].

[2] TypeScript Documentation, „Docs - TypeScript”, [Online]. Available:

https://www.typescriptlang.org/docs/ [Accessed 12 03 2024].

[3] Node.js Documentation, „API Documentation - Node.js”, [Online]. Available:

https://nodejs.org/docs/latest/api/ [Accessed 11 05 2024].

[4] Express.js Documentation, „Installing - Express”, [Online]. Available:

https://expressjs.com/en/starter/installing.html [Accessed 18 04 2024].

[5] PostgreSQL Documentation, „Docs - PostgreSQL”, [Online]. Available:

https://www.postgresql.org/docs/ [Accessed 25 05 2024].

[6] Sequelize ORM Documentation, „Docs - Sequelize v6”, [Online]. Available:

https://sequelize.org/docs/v6/ [Accessed 16 03 2024].

[7] JWT Documentation, „jsonwebtoken - npm”, [Online]. Available:

https://www.npmjs.com/package/jsonwebtoken [Accessed 18 04 2024].

[8] bcrypt Documentation, „bcrypt - npm”, [Online]. Available:

https://www.npmjs.com/package/bcrypt [Accessed 04 03 2024].

[9] Docker Documentation, „Docs - Docker”, [Online]. Available: https://docs.docker.com

[Accessed 20 05 2024].

[10] Visual Studio Code Documentation, „Docs - Visual Studio Code”, [Online]. Available:

https://code.visualstudio.com/docs [Accessed 03 03 2024].

[11] MobX Documentation, „README - MobX”, [Online]. Available:

https://mobx.js.org/README.html [Accessed 15 05 2024].

[12] Axios Documentation, „Intro - Axios”, [Online]. Available: https://axios-

http.com/docs/intro [Accessed 14 05 2024].

[13] Tailwind CSS Documentation, „Installation - Tailwind CSS”, [Online]. Available:

https://tailwindcss.com/docs/installation [Accessed 05 05 2024].

[14] Vite Documentation, „Guide - Vite”, [Online]. Available: https://vitejs.dev/guide/ [Accessed

06 05 2024].

[15] ESLint Documentation, „Getting Started - ESLint”, [Online]. Available:

https://eslint.org/docs/latest/use/getting-started [Accessed 22 04 2024].

[16] Postman Documentation, „Overview - Postman”, [Online]. Available:

https://learning.postman.com/docs/introduction/overview/ [Accessed 27 04 2024].

[17] Bootstrap Documentation, „Introduction - Bootstrap v5.3”, [Online]. Available:

https://getbootstrap.com/docs/5.3/getting-started/introduction/ [Accessed 01 05 2024].

[18] Figma Documentation, „Design Basics - Figma”, [Online]. Available:

https://www.figma.com/resource-library/design-basics/ [Accessed 15 02 2024].

[19] Ghobakhloo, M., Arias‐Aranda, D., & Benitez‐Amado, J. (2011). Adoption of e‐commerce

applications in SMEs. Industrial Management & Data Systems, 111(8), 1238-1269.

https://react.dev/learn
https://www.typescriptlang.org/docs/
https://nodejs.org/docs/latest/api/
https://expressjs.com/en/starter/installing.html
https://www.postgresql.org/docs/
https://sequelize.org/docs/v6/
https://www.npmjs.com/package/jsonwebtoken
https://www.npmjs.com/package/bcrypt
https://docs.docker.com/
https://code.visualstudio.com/docs
https://mobx.js.org/README.html
https://axios-http.com/docs/intro
https://axios-http.com/docs/intro
https://tailwindcss.com/docs/installation
https://vitejs.dev/guide/
https://eslint.org/docs/latest/use/getting-started
https://learning.postman.com/docs/introduction/overview/
https://getbootstrap.com/docs/5.3/getting-started/introduction/
https://www.figma.com/resource-library/design-basics/

50

[20] Ethelbert, O., Moghaddam, F. F., Wieder, P., & Yahyapour, R. (2017, August). A JSON

token-based authentication and access management schema for cloud SaaS applications. In

2017 IEEE 5th International Conference on Future Internet of Things and Cloud (FiCloud)

(pp. 47-53). IEEE.

[21] Colley, D., Stanier, C., & Asaduzzaman, M. (2018, August). The impact of object-relational

mapping frameworks on relational query performance. In 2018 International Conference on

Computing, Electronics & Communications Engineering (iCCECE) (pp. 47-52). IEEE.

[22] Molin, E. (2016). Comparison of single-page application frameworks. A method of how to

compare Single-Page Application frameworks written in JavaScript.

[23] Shah, H., & Soomro, T. R. (2017). Node. js challenges in implementation. Global Journal

of Computer Science and Technology, 17(2), 73-83.

[24] Sotiropoulos, T., Chaliasos, S., Atlidakis, V., Mitropoulos, D., & Spinellis, D. (2021, May).

Data-oriented differential testing of object-relational mapping systems. In 2021 IEEE/ACM

43rd International Conference on Software Engineering (ICSE) (pp. 1535-1547). IEEE.

[25] Masse, M. (2011). REST API design rulebook: designing consistent RESTful web service

interfaces. " O'Reilly Media, Inc.".

[26] Abhishek, M. K., Rao, D. R., & Subrahmanyam, K. (2022). Framework to deploy containers

using kubernetes and ci/cd pipeline. International Journal of Advanced Computer Science

and Applications, 13(4).

[27] Podila, P., & Weststrate, M. (2018). MobX Quick Start Guide: Supercharge the client state

in your React apps with MobX. Packt Publishing Ltd.

[28] Blair-Early, A., & Zender, M. (2008). User interface design principles for interaction design.

Design Issues, 24(3), 85-107.

[29] Martin, R. C. (2009). Clean code: a handbook of agile software craftsmanship. Pearson

Education.

[30] Zhang, Y., Vasilescu, B., Wang, H., & Filkov, V. (2018, October). One size does not fit all:

an empirical study of containerized continuous deployment workflows. In Proceedings of

the 2018 26th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (pp. 295-306).

[31] Hellerstein, J. M., Stonebraker, M., & Hamilton, J. (2007). Architecture of a database system.

Foundations and Trends® in Databases, 1(2), 141-259.

[32] Jones, M., Bradley, J., & Sakimura, N. (2015). Json web token (jwt) (No. rfc7519).

[33] Bierman, G., Abadi, M., & Torgersen, M. (2014). Understanding typescript. In ECOOP

2014–Object-Oriented Programming: 28th European Conference, Uppsala, Sweden, July

28–August 1, 2014. Proceedings 28 (pp. 257-281). Springer Berlin Heidelberg.

[34] Starplast, „Home - Starplast”. [Online]. Available: https://starplast.ee [Accessed 15 05

2024].

[35] Silverston, L. (2011). The data model resource book, Volume 1: A library of universal data

models for all enterprises. John Wiley & Sons.

https://starplast.ee/

51

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

We, Andres Vassiljuk & Ilja Kisseljov

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Implementation of shopping cart and product functionality on the example of

VKM Trading OÜ”, supervised by Viljam Puusep

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

20.05.2024

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation thesis

that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis is based

on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her graduation thesis

consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive license shall not be

valid for the period.

52

Appendix 2 Desktop version Figma model

Figure 1 Admin page prototype in Figma

53

Figure 2 Home Page prototype in Figma

54

Figure 3 Registration, Project start & Order checkout prototype in Figma

55

Figure 4 Products page prototype in Figma

56

Figure 5 Unit product page prototype in Figma

57

Figure 6 News page prototype in Figma

58

Figure 7 Other news page prototype in Figma

59

Figure 8 Contacts page prototype in Figma

60

Figure 9 About us & Certificates pages prototype in Figma

61

Figure 10 Error 404(Not found) & Log-in pages prototype in Figma

Figure 11 Shopping cart page prototype in Figma

62

Appendix 3 Phone version Figma model

Figure 12 Phone version prototype in Figma

63

Appendix 4 Endpoints table

Table 2 List of endpoints

Method Endpoint Description

POST api/item Create new item (Admin)

GET api/item Get all items

GET api/item/:id Get a specific item

DELETE api/item/:id Delete a specific item

(Admin)

PUT api/item/:id Update a specific item

(Admin)

POST api/itemType Create new item type

(Admin)

GET api/itemType Get all item types

GET api/itemType/:id Get a specific item type

DELETE api/itemType/:id Delete a specific item type

(Admin)

PUT api/itemType/:id Update a specific item

type (Admin)

POST api/feature Create new feature

(Admin)

GET api/feature Get all features

64

GET api/feature/:id Get a specific feature

DELETE api/feature/:id Delete a specific feature

(Admin)

POST api/featureType Create new feature type

(Admin)

GET api/featureType Get all feature types

GET api/featureType/:id Get a specific feature type

DELETE api/featureType/:id Delete a specific feature

type (Admin)

PUT api/featureType/:id Update a specific feature

type (Admin)

POST api/discount Create new discount

(Admin)

GET api/discount Get all discounts

GET api/discount/:id Get a specific discount

GET api/discount/byItem/:itemId Get discounts by item

DELETE api/discount/:id Delete a specific discount

(Admin)

PUT api/discount/:id Update a specific discount

(Admin)

POST api/userDiscount Create new user discount

(Admin)

65

GET api/userDiscount Get all user discounts

GET api/userDiscount/:id Get a specific user

discount

GET api/userDiscount/byUser/:userId Get user discounts by user

DELETE api/userDiscount/:id Delete a specific user

discount (Admin)

PUT api/userDiscount/:id Update a specific user

discount (Admin)

GET api/basket Get all baskets

GET api/basket/:id Get a specific basket

PUT api/basket/:id Update a specific basket

POST api/basketItem Create new basket item

(Admin)

GET api/basketItem Get all basket items

GET api/basketItem/:id Get a specific basket item

GET api/basketItem/byBasket/:basketId Get basket items by basket

DELETE api/basketItem/:id Delete a specific basket

item

PUT api/basketItem/:id Update a specific basket

item

POST api/company Create new company

66

GET api/company Get all companies

GET api/company/:id Get a specific company

DELETE api/company/:id Delete a specific company

(Admin)

PUT api/company/:id Update a specific

company (Admin)

POST api/user/registration Register new user

POST api/user/login Login

GET api/user/auth Authorise current user

GET api/user Get all users (Admin)

GET api/user/:id Get a specific user

(Admin)

DELETE api/user/:id Delete a specific user

(Admin)

PUT api/user/:id Update a specific user

(Admin)

67

Appendix 5 Table relations

Figure 13 Table relations

68

Appendix 6 Postman

Figure 14 Postman collection structure and a test sequence example

69

Figure 15 Example of a Postman test (POST api/company)

70

Appendix 7 Backend

Figure 16 Backend file structure

Figure 17 Example of a request

71

Figure 18 Example of a router

Figure 19 Example of a middleware

72

Appendix 8 Test Frontend

Figure 20 Example of a table in admin panel in test frontend

Figure 21 Items fetched from the backend displayed in the test frontend

73

Figure 22 Item detailed view and item count calculator in test frontend

Figure 23 Example of an edit form in admin panel in test frontend

74

Figure 24 Basket in test frontend

75

Appendix 9 Frontend external design

Figure 25 Home page in frontend external design

Figure 26 Product page in frontend external design

76

Figure 27 News page in frontend external design

Figure 28 About us page in frontend external design

77

Figure 29 Certificates page in frontend external design

Figure 30 Contact page in frontend external design

78

Figure 31 General finder in frontend external design

Figure 32 Login in frontend external design

79

Figure 33 Login page in frontend external design

Figure 34 Registration in frontend external design

80

Figure 35 Error 404 (Not found) page in frontend external design

Figure 36 Admin panel Products page in frontend external design

81

Figure 37 Admin panel New User page in frontend external design

Figure 38 Unit product (item) page in frontend external design

82

Figure 39 Footer in frontend external design

