
Tallinn 2018

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Jekaterina Vassiljeva 164947

ANALYSIS AND SELECTION OF BEST

CASE TOOLS BASED ON REVERSE

ENGINEERING AND PATTERNS

DETECTION FOR JAVA PROJECTS

Bachelor's thesis

Supervisor: Tarmo Veskioja

 PhD

 Research Scientist

Tallinn 2018

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Jekaterina Vassiljeva 164947

REVERSE ENGINEERINGU JA MUSTRITE

TUVASTAMISE PÕHJAL CASE

VAHENDITE VÕRDLEV ANALÜÜS JA

PARIMA VÄLJAVALIMINE JAVA

PROJEKTIDE NÄITEL
bakalaureusetöö

Juhendaja: Tarmo Veskioja

 Tehnikateaduste doktor

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Jekaterina Vassiljeva

18.05.2018

4

Abstract

The goal of this thesis is to analyse reverse engineering abilities of three selected CASE

tools for Java-based projects. Selected CASE tools are Enterprise Architect 13.0, Visual

paradigm Standard edition 15.0 and The ObjectAid UML Explorer for Eclipse IDE

v1.2.2.

The analysis is done for two main reverse engineering capabilities: reverse engineering

to class diagrams and reverse engineering to sequence diagrams.

Analysis of reverse engineering to class diagrams is based on twelve GOF design

patterns and contains class diagrams for the same set of classes created in each selected

CASE tool. CASE tools should be able to reverse engineer classes, find all relationships

between them and represent them similarly to default GOF design patterns

representation described in “Design Patterns: Elements of Reusable Object-Oriented

Software” book [1].

Analysis of reverse engineering to sequence diagram is based on reverse engineering of

one class method in each selected CASE tool. CASE tools should be able to reverse

engineer the code steps of this class method to a sequence diagram, find all messages

sent by this method and represent them correctly.

As a result of this analysis, the best CASE tool (among the compared CASE tools) for

the UML model-based documentation of legacy code for the investigated Java-based

projects will be identified.

This thesis is written in English and is 84 pages long, including 6 chapters, 59 figures

and 5 tables.

5

Annotatsioon

Reverse engineeringu ja mustrite tuvastamise põhjal CASE

vahendite võrdlev analüüs ja parima väljavalimine Java

projektide näitel

Käesoleva bakalaureusetöö eesmärgiks on analüüsida kolme valitud CASE vahendi

pöördprojekteerimise võimalusi Java projekti näitel. Valitud CASE vahendid on

Enterprise Architect 13.0, Visual paradigm Standard edition 15.0 ja The ObjectAid

UML Explorer for Eclipse IDE v1.2.2.

Analüüsis on CASE vahendeid võrreldud kahe peamise võimekuse alusel:

klassidiagrammi pöördprojekteerimine ja jadadiagrammi pöördprojekteerimine.

Klassidiagrammi pöördprojekteerimise analüüsis keskenduti kaksteistkümnele GOF

disaini mustritele, iga CASE vahendiga pöördprojekteerimise tulemus peaks sisaldama

klassdiagramme sama klasside hulga kohta. CASE vahendid peavad pöördprojekteerima

klassid, leidma kõik seosed nende vahel ja esitama need sarnaselt standardse GOF

disaini mustrite esitusega, mis on kirjeldatud raamatus „Design Patterns: Elements of

Reusable Object-Oriented Software”.

Jadadiagrammi pöördprojekteerimise analüüs põhineb ühe klassi üksiku meetodi

pöördprojekteerimisel kõigis võrreldud CASE vahendites. CASE vahendid peavad

pöördprojekteerima meetodi sammud jadadiagrammile, leidma kõik saadetud sõnumid

ja kujutama neid korrektselt.

Selle analüüsi tulemusena tuvastatakse (võrdlusse kaasatud CASE vahenditest) parim

CASE vahend Java-põhise projekti koodi UML mudeli-põhise dokumentatsiooni

tegemiseks.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 84 leheküljel, 6 peatükki, 59

joonist, 5 tabelit.

6

List of abbreviations and terms

CASE Computer-aided software engineering

IDE Integrated development environment

EA Enterprise Architect [2]

UML Unified Modeling Language [3]

GOF Gang of Four. The authors of the "Design Patterns: Elements of

Reusable Object-Oriented Software" book [1] came to be

known as the "Gang of Four”. [4]

FAS Feedback Arc Set [5]

Reverse engineering The process of analysing a subject system to identify the

system’s component and their interrelationships and create

representation of the system in another form or at a higher level

of abstraction. [6]

Design pattern Descriptions of communicating objects and classes that are

customized to solve a general design problem in a particular

context. [1]

7

Table of contents

1 Introduction ... 11

2 Methodology .. 13

3 Analysis of reverse engineering process: from java code to UML class diagram 14

3.1 Singleton ... 15

3.2 Factory method ... 20

3.3 Observer.. 25

3.4 Strategy ... 30

3.5 Iterator .. 35

3.6 Bridge ... 40

3.7 Adapter ... 42

3.8 Composite ... 45

3.9 Template method .. 48

3.10 Command.. 52

3.11 Builder .. 57

3.12 State .. 61

3.13 Summary for reverse engineering to class diagram .. 65

4 Sequence diagram reverse engineering ... 68

4.1 Java project description .. 68

4.2 Analysis of sequence diagrams... 69

4.3 Summary for reverse engineering to sequence diagram 78

5 Combined results for reverse engineering abilities ... 80

6 Summary .. 81

References .. 83

8

List of figures

Diagram 1. Singleton pattern .. 15

Diagram 2. Singleton. Enterprise Architect.. 17

Diagram 3. Singleton. Visual paradigm ... 18

Diagram 4. Singleton. The ObjectAid UML Explorer for Eclipse 19

Diagram 5. Factory method pattern .. 20

Diagram 6. Factory method. Enterprise Architect .. 22

Diagram 7. Factory method, Visual Paradigm ... 23

Diagram 8. Factory method. The ObjectAid UML Explorer for Eclipse 24

Diagram 9. Observer pattern .. 25

Diagram 10. Observer. Enterprise Architect .. 27

Diagram 11. Observer. Visual Paradigm. ... 28

Diagram 12. Observer. The ObjectAid UML Explorer .. 29

Diagram 17. Strategy pattern .. 30

Diagram 18. Strategy pattern. Enterprise Architect ... 32

Diagram 19. Strategy pattern. Visual Paradigm ... 33

Diagram 20. Strategy pattern. The ObjectAid UML Explorer for Eclipse..................... 34

Diagram 21. Iterator pattern ... 35

Diagram 22. Iterator pattern. Enterprise Architect ... 37

Diagram 23. Iterator pattern. Visual Paradigm... 38

Diagram 24. Iterator pattern. The ObjectAid UML Explorer... 39

Diagram 25. Bridge pattern .. 40

Diagram 26. Bridge. Enterprise Architect. ... 41

Diagram 27. Bridge. Visual Paradigm.. 42

Diagram 28. Bridge. The ObjectAid UML Explorer for Eclipse. 42

Diagram 29. Adapter pattern using multiple inheritances. ... 43

Diagram 30. Adapter pattern by composing object instance. ... 43

Diagram 31. Adapter. Enterprise Architect .. 44

Diagram 32. Adapter. Visual Paradigm.. 44

Diagram 33. Adapter. The ObjectAid UML Explorer.. 45

9

Diagram 34. Composite pattern .. 45

Diagram 35. Composite. Enterprise Architect.. 46

Diagram 36. Composite. Visual Paradigm ... 47

Diagram 37. Composite. The ObjectAid UML Explorer ... 47

Diagram 38. Template method pattern ... 48

Diagram 39. Template method. Enterprise Architect ... 49

Diagram 40. Template method. Visual Paradigm ... 50

Diagram 41. Template method. The ObjectAid UML Explorer 51

Diagram 42. Command pattern .. 52

Diagram 43. Command. Enterprise Architect .. 54

Diagram 44. Command. Visual Paradigm .. 55

Diagram 45. Command. The ObjectAid UML Explorer .. 56

Diagram 46. Builder pattern ... 57

Diagram 47. Builder. Enterprise Architect ... 59

Diagram 48. Builder. Visual paradigm ... 60

Diagram 49. Builder. The ObjectAid UML Explorer .. 61

Diagram 50. State pattern ... 62

Diagram 51. State. Enterprise Architect ... 63

Diagram 52. State. Visual Paradigm .. 64

Diagram 53. State. The ObjectAid UML Explorer .. 65

Diagram 54. GatewayImpl execution. Enterprise Architect sequence diagram. 70

Diagram 55. GatewayWithObserver execution. Enterprise Architect sequence diagram.

 .. 71

Diagram 56. Main execution, one level deep. Visual paradigm sequence diagram. 73

Diagram 57. Main execution, two levels deep. Visual paradigm sequence diagram. 74

Diagram 58. Main function one level deep. The ObjectAid UML Explorer for Eclipse

sequence diagram. .. 76

Diagram 59. Main function two levels deep. The ObjectAid UML Explorer for Eclipse

sequence diagram. .. 77

10

List of tables

Table 1. Points summary table for GOF pattern representation assessment of CASE

tools .. 66

Table 2. Voting table for GOF pattern representation assessment of CASE tools 67

Table 3. Sequence diagram reverse engineering abilities of CASE tools 78

Table 4. Voting table for Sequence diagram reverse engineering abilities of CASE tools

 .. 79

Table 5. Voting table for combined results for reverse engineering abilities 80

11

1 Introduction

Nowadays fast and agile development process is a requirement for most enterprises.

This requirement often does not allow developers to spend much time on system design

and documentation. As a result, knowledge of the system remains in developer’s heads.

If developer leaves the company or project goes to maintenance to another team, then

knowledge gets lost [7].

These forces developers sometimes to slow down and invest time into the

documentation of existing codebase. CASE tools with reverse engineering capabilities

can help to speed up this process. The author of this thesis did not encounter automatic

reverse engineering of code as part of the courses she took during the bachelor studies.

Therefore this was an additional incentive to further study reverse engineering of code

in this thesis.

This thesis does not contain all possible alternatives for CASE tools and all design

patterns. It contains a proposed approach to analyse and evaluate CASE tools reverse

engineering capabilities. As a result, it helps to select the best CASE tool for reverse

engineering of Java code from selected CASE tools.

There are various CASE tools with different capabilities. For analysis and research,

three modern CASE tools were selected. Each of them can be used for documentation of

legacy code for Java projects. They are Enterprise Architect 13.0 [2], Visual paradigm

Standard edition [8] and The ObjectAid UML Explorer for Eclipse IDE [9].

The goal of this thesis is to identify which of these three CASE tools fits best for

documentation of Java-based projects. Two parameters will be used for comparison.

1. CASE tool should be able to represent GOF design patterns on UML class

diagrams. This representation should be similar to standard GOF design patterns

presentation. For classes used to represent GOF design pattern reverse

engineering CASE tool should be able to identify all classes, parameters and

methods of this classes and relationships between them.

12

GOF patterns that will be analysed are twelve out of twenty-three GOF design

patterns.

1. Singleton

2. Factory

3. Observer

4. Strategy

5. Iterator

6. Bridge

7. Adapter

8. Composite

9. Template method

10. Command

11. Builder

12. State

2. The CASE tool should be able to create sequence diagrams using reverse

engineering capability, find all messages sent in the method and represent all

messages correctly.

13

2 Methodology

The first part of the thesis contains an analysis of class diagrams generated by each

CASE tool for each design pattern out of twelve predefined GOF design patterns.

Analysis of each design pattern will follow the same steps. The first step of this thesis

describes existing GOF design patterns definitions and its standard UML representation

based on the book “Design Patterns: Elements of Reusable Object-Oriented Software”

by Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides [1]. The second step

describes java project per design pattern used for reverse engineering and describes

classes that represent the GOF pattern. The third step contains an analysis of UML

representation and UML diagrams generated by each CASE tool.

The next part of the thesis contains an analysis of sequence diagrams generated by

reverse engineering. One sequence diagram will be created for the same class method

using each CASE tool. The UML representation of generated sequence diagram by each

CASE tool will then be analysed.

Last part will summarise results of previous parts and rank the CASE tools. If the

unequivocally best CASE tool cannot be identified, then summarise the relative

dominance of CASE tools based on subsets of features.

Project with reverse engineered UML diagrams for all CASE tools will be uploaded to

[10].

14

3 Analysis of reverse engineering process: from java code to

UML class diagram

In this chapter, UML representation of twelve GOF design patterns is compared in three

CASE tools Enterprise Architect 13.5, Visual Paradigm 15.0 Standard edition and

ObjectAid UML Explorer for Eclipse IDE v1.2.2.

A subset of GOF design patterns used for analysis was based on two reasons. The first

reason is that all three types (creational, behavioural, and structural) of GOF design

patterns should be represented. Second is based subjective opinion of the author about

the importance of selected GOF design patterns over others.

The author reverses engineer different java projects and extract elements that represent

different GOF design patterns to UML class diagrams and analyse these diagrams.

Projects used in the thesis:

1. TestNG testing framework, v6.14.3 [11]

2. “Design patterns implemented in Java” project in GitHub [12] particularly

Singleton [13], Adapter [14] and Command [15]

3. Two java applications that author wrote as an exercise for one of the university

courses [16]. Code: [17] [18]

To simplify comparison grade from zero to three will be assigned to each CASE tool for

each design pattern. Following grading rules will be used:

0 – could not identify any parts of a design pattern

1 – more than one expected part is missing

2 – identify almost everything except one part

3 – identify all parts of a design pattern

15

3.1 Singleton

3.1.1 Pattern definition

Singleton is a creational pattern that ensures a class only has one instance, and provide a

global point of access to it. [1]

Singleton contains a private constructor, private static property that stores class instance

and public static method to access this instance.

Diagram 1. Singleton pattern

3.1.2 Java project description

For Singleton design pattern analysis, singleton implementations from “Design patterns

implemented in Java” project in GitHub is used [12]. This project contains example

implementation for many design patterns. It also explains different ways of how the

same design pattern can be implemented.

For Singleton pattern, this project contains five implementations of the ivory tower. An

ivory tower is a place where wizards can study magic. Only one ivory tower can exist.

All wizards should use the same ivory tower.

Three implementations are close to standard singleton described in 3.1.1. They have

private static property that stores instance of the class and public static method to

retrieve an instance of the class. Difference between them is in the implementation of

the constructor of the class and validations that are done during getInstance() call.

One implementation is based on particular java data type called enum. It does not have a

private static instance and a public method to access this instance, because enum by

itself is constant.

16

The last implementation has a public static method to access instance, but it does not

store instance as the property of singleton class. It is using additional private static

HelperHolder class to store instance.

3.1.3 Pattern UML representation analysis

For each singleton implementation, all three CASE tools have identified property that

store instances as private and static correctly and marked it with underline and minus

sign. Minus sign means that property has private access level. Underline means that it is

static.

The way how CASE tools represent instance property is different for each CASE tool.

Enterprise architect shows it as part of the class Rectangle. ObjectAid UML Explorer

shows it as a unidirectional self-association with 0 or 1 multiplicity and label with the

property name. Visual paradigm combines both approaches. It has a property with

singleton type in a class rectangle and unidirectional self-association but without

multiplicity identifier.

All three CASE tools correctly identified public static methods to access private

instance as well and marked them with underline and plus sign. Plus sign means that

method has public access level. All CASE tools get 3 points.

Other noticeable difference between CASE tools is a way of “part-of” relationship

representation. Visual parading and The ObjectAid UML Explorer use containment

association to mark that HelperHolder class is part of

InitializingOnDemandHolderIdiom class. Enterprise Architect changes the class name

to format OuterClass::NestedClass to show the same relationship.

17

Diagram 2. Singleton. Enterprise Architect

«enumeration»
EnumIvoryTower

 INSTANCE

+ toString(): String

InitializingOnDemandHolderIdiom
{leaf}

- InitializingOnDemandHolderIdiom()
+ getInstance(): InitializingOnDemandHolderIdiom

«static»
InitializingOnDemandHolderIdiom::HelperHolder

- INSTANCE: InitializingOnDemandHolderIdiom = new Initializin... {readOnly}

IvoryTower
{leaf}

- INSTANCE: IvoryTower = new IvoryTower() {readOnly}

- IvoryTower()
+ getInstance(): IvoryTower

ThreadSafeDoubleCheckLocking
{leaf}

- instance: volatile ThreadSafeDoubleCheckLocking

- ThreadSafeDoubleCheckLocking()
+ getInstance(): ThreadSafeDoubleCheckLocking

ThreadSafeLazyLoadedIvoryTower
{leaf}

- instance: ThreadSafeLazyLoadedIvoryTower

- ThreadSafeLazyLoadedIvoryTower()
+ getInstance(): ThreadSafeLazyLoadedIvoryTower

-INSTANCE

18

Diagram 3. Singleton. Visual paradigm

19

Diagram 4. Singleton. The ObjectAid UML Explorer for Eclipse

20

3.2 Factory method

3.2.1 Pattern definition

The factory method is a creational pattern. It is used Define an interface for creating an

object, but let subclasses decide which class to instantiate. Factory Method lets a class

defer instantiation to subclasses. [1]

The pattern contains factory abstract class or interface, the concrete implementation of

the factory class, product abstract class or interface and concrete implementation of the

product class.

Diagram 5. Factory method pattern

3.2.2 Java project description

For factory method analysis I use TestNG test framework project [11].

TestNG project one of the implementations of factory method design pattern is

DefaultListenerFactory class.

DefaultListenerFactory is concrete class. It implements an interface called

ITestNGListenerFactory. Factory method name is createListener. This method can

create an instance of any class that extends the interface of ITestNGListener.

21

TestNG have many interfaces that extend ITestNGListener and realisation for some of

them. Not all classes that extend ITestNGListener are shown in the diagrams.

3.2.3 Pattern UML representation analysis

All three CASE tools found inheritance dependency between ITestNGListenerFactory

interface and DefaultListenerFactory class. For this interface and class, CASE tools also

found dependency relationships with ITestNGListener.

None of the CASE tools displays dependency association between factory interface or

realisation and concrete implementation of ITestNGListener and gets 2 points for this

pattern representation.

22

Diagram 6. Factory method. Enterprise Architect

«interface»
ITestNGListener

DefaultListenerFactory
{leaf}

+ createListener(Class<? extends ITestNGListener>): ITestNGListener

«interface»
ITestNGListenerFactory

+ createListener(Class<? extends ITestNGListener>): ITestNGListener

«interface»
IClassListener

+ onBeforeClass(ITestClass): void
+ onAfterClass(ITestClass): void

«interface»
IConfigurable

+ run(IConfigureCallBack, ITestResult): void

«interface»
IConfigurationListener

+ onConfigurationSuccess(ITestResult): void
+ onConfigurationFailure(ITestResult): void
+ onConfigurationSkip(ITestResult): void

«interface»
IHookable

+ run(IHookCallBack, ITestResult): void

«interface»
IMethodInterceptor

+ intercept(List<IMethodInstance>, ITestContext): List<IMethodInstance>

«interface»
IReporter

+ generateReport(List<XmlSuite>, List<ISuite>, String): void

«interface»
ISuiteListener

+ onStart(ISuite): void
+ onFinish(ISuite): void

«interface»
ITestListener

+ onTestStart(ITestResult): void
+ onTestSuccess(ITestResult): void
+ onTestFailure(ITestResult): void
+ onTestSkipped(ITestResult): void
+ onTestFailedButWithinSuccessPercentage(ITestResult): void
+ onStart(ITestContext): void
+ onFinish(ITestContext): void

InstanceOrderingMethodInterceptor

+ intercept(List<IMethodInstance>, ITestContext): List<IMethodInstance>

PreserveOrderMethodInterceptor

+ intercept(List<IMethodInstance>, ITestContext): List<IMethodInstance>

ExitCodeListener

+ getStatus: ExitCode
+ hasTests: boolean
+ generateReport(List<XmlSuite>, List<ISuite>, String): void
+ onTestStart(ITestResult): void
+ onTestSuccess(ITestResult): void
+ onTestFailure(ITestResult): void
+ onTestSkipped(ITestResult): void
+ onTestFailedButWithinSuccessPercentage(ITestResult): void
+ onStart(ITestContext): void
+ onFinish(ITestContext): void

23

Diagram 7. Factory method, Visual Paradigm

24

Diagram 8. Factory method. The ObjectAid UML Explorer for Eclipse

25

3.3 Observer

3.3.1 Pattern definition

The observer is a behavioural pattern used to define a one-to-many dependency between

objects so that when one object changes state, all its dependents are notified and

updated automatically. [1]

The pattern contains the subject interface, concrete subject implementation, observer

interface and concrete observer implementation. In this context, the subject is an

abstract class, that stores list of observers and notifies all of them when its state

changes. Concrete subject stores state and notify observers when its state changes. The

observer is an interface for sending updates. The concrete observer is storing observer

state and maintains its consistency with the subject.

Diagram 9. Observer pattern

3.3.2 Java project description

For observer design pattern analysis, I am using small java application that the author

wrote as an exercise for Software Architecture and Design course (IDU1550).

26

This application implements logic for the gateway, that opens only when a person pays

for entrance and closes when one person passes the gate. If a person tries to pass

without paying, an alarm is triggered. Gateway implementation is using observer GOF

pattern to notify about payments and alarms. It is using java.util.Observable and

java.util.Observer classes from Java core library to implement observer pattern.

3.3.3 Pattern UML representation analysis

In this project, Java core library implementation of subject and observer are used.

Source code for java.util.Observable and java.util.Observer is not imported to the CASE

tools projects. The minimal expectation in this case that CASE tools will be able to see

and indicate on diagrams that classes implement or extend Observable and Observer.

Visual Paradigm and The ObjectAid UML Explorer could not find dependencies

between StatusObserver and GatewayWithObserver classes. These CASE tools also do

not indicate that StatusObserver is implementing Observer and GatewayWithObserver

extends Observable. None parts of design pattern were found, and both CASE tools get

0 points.

Enterprise Architect could not find dependencies between StatusObserver and

GatewayWithObserver classes as well, but on the right corner of the class box, it

indicates that StatusObserver implements Observer and GatewayWithObserver

generalises Observable. Most important parts of the pattern were found, and Enterprise

Architect gets 2 points.

27

Diagram 10. Observer. Enterprise Architect

Observable

v2::GatewayWithObserver

- status: GatewayStatus

+ GatewayWithObserver()
+ open(): void
+ close(): void
+ setOpen(): void
+ setClosed(): void
+ pay(): void
+ alarm(): void
+ pass(): void
+ coin(): void

v2::ClosedStatus

+ pass(p: Gateway): void
+ coin(p: Gateway): void

v2::OpenStatus

+ pass(p: Gateway): void
+ coin(p: Gateway): void

Observer

v2::StatusObserver

+ update(o: Observable, arg: Object): void

«interface»
gateway::GatewayStatus

+ pass(p: Gateway): void
+ coin(p: Gateway): void

«interface»
gateway::Gateway

+ pass(): void
+ coin(): void
+ open(): void
+ close(): void
+ setOpen(): void
+ setClosed(): void
+ pay(): void
+ alarm(): void

-status

28

Diagram 11. Observer. Visual Paradigm.

29

Diagram 12. Observer. The ObjectAid UML Explorer

30

3.4 Strategy

3.4.1 Pattern definition

The strategy is a behavioural pattern. The primary intent of this pattern is to define a

family of algorithms, encapsulate each one, and make them interchangeable. Strategy

lets the algorithm vary independently from clients that use it. [1]

Diagram 13. Strategy pattern

3.4.2 Java project description

For strategy pattern analysis I use TestNG test framework project [11].

In TestNG project strategy pattern is represented with InvocationStrategy interface. This

interface is realised by 4 concrete classes:

• InvokeBeforeInvocationWithoutContextStrategy,

• InvokeBeforeInvocationWithContextStrategy,

• InvokeAfterInvocationWithoutContextStrategy,

• InvokeAfterInvocationWithContextStrategy

InvocationStrategy interface and its implementations are nested classes of

InvokedMethodListenerInvoker class.

InvokedMethodListenerInvoker class stores map of strategies as private static property

and retrieves required for listener type strategy using the private obtainStratefyFor

method.

31

3.4.3 Pattern UML presentation analysis

All CASE tools identified realisation relationships between InvocationStrategy and four

realisations of this class.

Enterprise Architect identified that InvokedMethodListenerInvoker has a dependency

relationship with InvocationStrategy. CASE tools marked that strategy classes are

nested classes for InvokedMethodListenerInvoker by changing the name of the class to

format “outerClassName::nestedClassName”. All design pattern parts were found, and

Enterprise Architect gets 3 points.

Visual paradigm shows that strategy classes are nested classes or are “part-of”

InvokedMethodListenerInvoker using containment association, but the CASE tool does

not show the dependency between InvocationStrategy and

InvokedMethodListenerInvoker. One part of design pattern was not found, and Visual

paradigm gets 2 points.

The ObjectAid UML Explorer identified nested classes and marked them with

containment association. This CASE tool was able to locate that

InvokedMethodListenerInvoker has two private map variable, which store references to

InvocationStrategy classes. It indicated this relationship using association with zero to

many multiplicities and label with the property name. Representation of this pattern is

different from Enterprise Architect, but all parts of design pattern were found, and

CASE tool gets 3 points.

32

Diagram 14. Strategy pattern. Enterprise Architect

InvokedMethodListenerInvoker

- m_listenerMethod: InvokedMethodListenerMethod
- m_testContext: ITestContext
- m_testResult: ITestResult
- strategies: Map<InvokedMethodListenerSubtype, Map<InvokedMethodListenerMethod, InvocationStrategy>> = Maps.newHashMap()
- INVOKE_WITH_CONTEXT_STRATEGIES: Map<InvokedMethodListenerMethod, InvocationStrategy> = Maps.newHashMap()
- INVOKE_WITHOUT_CONTEXT_STRATEGIES: Map<InvokedMethodListenerMethod, InvocationStrategy> = Maps.newHashMap()

+ InvokedMethodListenerInvoker(InvokedMethodListenerMethod, ITestResult, ITestContext)
+ invokeListener(IInvokedMethodListener, IInvokedMethod)
- obtainStrategyFor(IInvokedMethodListener, InvokedMethodListenerMethod)

«static»
InvokedMethodListenerInvoker::InvokeBeforeInvocationWithContextStrategy

+ callMethod(IInvokedMethodListener2, IInvokedMethod, ITestResult, ITestContext)

«static»
InvokedMethodListenerInvoker::InvokeAfterInvocationWithContextStrategy

+ callMethod(IInvokedMethodListener2, IInvokedMethod, ITestResult, ITestContext)

«static»
InvokedMethodListenerInvoker::InvokeAfterInvocationWithoutContextStrategy

+ callMethod(IInvokedMethodListener, IInvokedMethod, ITestResult, ITestContext)

«static»
InvokedMethodListenerInvoker::InvokeBeforeInvocationWithoutContextStrategy

+ callMethod(IInvokedMethodListener, IInvokedMethod, ITestResult, ITestContext)

«static,interface»

LISTENER_TYPE > IInvokedMethodListener

InvocationStrategy

+ callMethod(LISTENER_TYPE, IInvokedMethod, ITestResult, ITestContext)

< LISTENER_TYPE->IInvokedMethodListener2 >

< LISTENER_TYPE->IInvokedMethodListener2 >< LISTENER_TYPE->IInvokedMethodListener >

< LISTENER_TYPE->IInvokedMethodListener >

33

Diagram 15. Strategy pattern. Visual Paradigm

34

Diagram 16. Strategy pattern. The ObjectAid UML Explorer for Eclipse

35

3.5 Iterator

3.5.1 Pattern definition

An iterator is a behavioural pattern used to provide a way to access the elements of an

aggregate object sequentially without exposing its underlying representation. [1]

Diagram 17. Iterator pattern

3.5.2 Java project description

For iterator pattern analysis I use TestNG test framework project [11].

As iterator interface TestNG project uses java.util.Iterator interface defined in Java core

library. There are three implementations of iterator interface in this project.

• OneToTwoDimArrayIterator

• OneToTwoDimIterator

• ArrayIterator

MethodInvocationHelper class is instantiating these iterators during

invokeDataProvider method execution.

36

3.5.3 Pattern UML presentation analysis

Enterprise Architect identified that three concrete iterators are implementing iterator

interface, but it could not determine dependency relationship between iterators and

MethodInvocationHelper class. One part of design pattern is missing, and this CASE

tool gets 2 points.

Visual Paradigm does not show that concrete iterators implement iterator interface and

does not see dependency between iterators and MethodInvocationHelper class. This

CASE tool could not identify any parts of the pattern and gets 0 points.

The ObjectAid UML Explorer identified a dependency between iterators and

MethodInvocationHelper class but does not show that concrete iterators implement

iterator interface. One most important part of design pattern is missing, that is why

CASE tool gets 1 point.

37

Diagram 18. Iterator pattern. Enterprise Architect

Iterator

OneToTwoDimIterator

- m_iterator: Iterator<Object> {readOnly}

+ OneToTwoDimIterator(Iterator<Object>)
+ hasNext(): boolean
+ next(): Object[]
+ remove(): void

Iterator

ArrayIterator

- m_objects: Object ([][]) {readOnly}
- m_count: int

+ ArrayIterator(Object[][])
+ hasNext(): boolean
+ next(): Object[]
+ remove(): void

Iterator

OneToTwoDimArrayIterator

- m_objects: Object ([]) {readOnly}
- m_count: int

+ OneToTwoDimArrayIterator(Object[])
+ hasNext(): boolean
+ next(): Object[]
+ remove(): void

MethodInvocationHelper

invokeMethodNoCheckedException(Method, Object, List<Object>): Object
invokeMethodConsideringTimeout(ITestNGMethod, ConstructorOrMethod, Object, Object[], ITestResult): void
invokeMethod(Method, Object, List<Object>): Object
invokeMethod(Method, Object, Object[]): Object
invokeDataProvider(Object, Method, ITestNGMethod, ITestContext, Object, IAnnotationFinder): Iterator<Object[]>
- getParameters(Method, ITestNGMethod, ITestContext, Object, IAnnotationFinder): List<Object>
invokeHookable(Object, Object[], IHookable, Method, ITestResult): void
invokeWithTimeout(ITestNGMethod, Object, Object[], ITestResult): void
invokeWithTimeout(ITestNGMethod, Object, Object[], ITestResult, IHookable): void
- invokeWithTimeoutWithNoExecutor(ITestNGMethod, Object, Object[], ITestResult, IHookable): void
- invokeWithTimeoutWithNewExecutor(ITestNGMethod, Object, Object[], ITestResult, IHookable): void
invokeConfigurable(Object, Object[], IConfigurable, Method, ITestResult): void

38

Diagram 19. Iterator pattern. Visual Paradigm

39

Diagram 20. Iterator pattern. The ObjectAid UML Explorer

40

3.6 Bridge

3.6.1 Pattern definition

The bridge is a structural pattern used to decouple an abstraction from its

implementation so that the two can vary independently. [1]

Diagram 21. Bridge pattern

3.6.2 Java project description

For bridge pattern analysis I use TestNG test framework project [link].

In the TestNG project, bridge pattern is used to decouple annotation finder and test

methods implementations. In this case, IAnnotationFinder acts as a bridge between

BaseTestMethod and its implementations. The project contains only one

implementation of IAnnotationFinder, but other implementations can be added easily

without significant changes in BaseTestMethod or its implementations.

3.6.3 Pattern UML presentation analysis

All CASE tools determined that BaseTestMethod have four methods that extend it. As

expected, CASE tools marked this relationship with generalisation arrow.

41

All CASE tools identified that IAnnotationFinder is an interface and have one

realisation called JDK15AnnotationFinder. CASE tools marked this relationship using

realisation arrow.

All CASE tools identified an association between BaseTestMethod and

IAnnothationFinder interface as well. It is represented by association arrow, but

aggregation arrow was expected.

Enterprise Architect and The ObjectAid UML Explorer discovered dependency

relationships between FactoryMethod, ConfigurationMethod, TestNGMethod and

IAnnotationFinder. It is expected because in some methods these classes use

IAnnotationFinder instance stored in BaseTestMethod. It means that these CASE tools

identified all expected parts and got 3 points. Visual paradigm could not identify this

dependency and gets 2 points.

Diagram 22. Bridge. Enterprise Architect.

«interface»
annotations::

IAnnotationFinder

internal::
BaseTestMethod

internal::
ConfigurationMethod

internal::
FactoryMethod

internal::
TestNGMethod

junit::
JUnitTestMethod

annotations::
JDK15AnnotationFinder

#m_annotationFinder

42

Diagram 23. Bridge. Visual Paradigm

Diagram 24. Bridge. The ObjectAid UML Explorer for Eclipse.

3.7 Adapter

3.7.1 Pattern definition

The adapter is the structural pattern used to convert the interface of a class into another

interface clients expect. Adapter lets classes work together that could not otherwise

because of incompatible interfaces. [1]

43

Adapter pattern can be applied to the class by using multiple inheritances or to the

object by composing object instance.

Diagram 25. Adapter pattern using multiple inheritances.

Diagram 26. Adapter pattern by composing object instance.

3.7.2 Java project description

For adapter design pattern analysis, adapter pattern implementation from “Design

patterns implemented in Java” project in GitHub [12] is used.

In the project, we have a captain who has row skill. Captain can row the rowing boat.

Then requirements change, and captain needs to operate a fishing boat that can only sail

using his rowing ability. In this case, fishing boat adapter will help. The adapter is

implementing rowing boat interface but using fishing boat sailing functionality for

rowing.

44

3.7.3 Pattern UML presentation analysis

All CASE tools found realisation dependency between FishingBoatAdapter and

RowingBoat interface.

All CASE tools found an association between FishingBoatAdapter and FishingBoat.

There is only one difference between representations by different CASE tools.

Enterprise architect and Visual paradigm show it as a solid line with variable name

value and shows variable with type FishingBoat inside the class box. The ObjectAid

UML Explorer only indicates an association with the label.

All CASE tools identified all design pattern parts, and each gets 3 points.

Diagram 27. Adapter. Enterprise Architect

Diagram 28. Adapter. Visual Paradigm

Captain

- rowingBoat: RowingBoat

+ Captain()
+ Captain(rowingBoat: RowingBoat)
+ setRowingBoat(rowingBoat: RowingBoat): void
+ row(): void

FishingBoat

- LOGGER: Logger = LoggerFactory.g... {readOnly}

+ sail(): void

FishingBoatAdapter

- boat: FishingBoat

+ FishingBoatAdapter()
+ row(): void

«interface»
RowingBoat

+ row(): void

-rowingBoat

-boat

45

Diagram 29. Adapter. The ObjectAid UML Explorer

3.8 Composite

3.8.1 Pattern definition

Composite is a structural pattern used to compose objects into tree structures to

represent part-whole hierarchies. Composite lets clients treat individual objects and

compositions of objects uniformly. [1]

Diagram 30. Composite pattern

46

3.8.2 Java project description

Small java application that the author wrote as an exercise in Software Architecture and

Design course (IDU1550) [16] is used for composite design pattern analysis.

This application purpose to draw the Sierpinski triangle [19]. SierpinskiTriangle stores

information about points that indicate triangle tops and between which program draw

lines. SierpinskiUhend stores information about parent triangle and child triangles.

3.8.3 Pattern UML presentation analysis

Diagrams generated by all CASE tools contain generalisation relationship between

SierpinskiUhend and SierpinskiTriangle, but none of them includes composition line

between this classes. Instead, diagrams show association line with variable name as a

label and zero to more multiplicity. It is counted as missing part of design pattern, and

each CASE tool gets 2 points.

Diagram 31. Composite. Enterprise Architect

SierpinskiTriangle

- points: List<Point>

+ SierpinskiTriangle(a: Point, b: Point, c: Point)
+ iterator(): Iterator<? extends Point>

SierpinskiUhend

- triangles: List<SierpinskiTriangle> = new ArrayList<>() {readOnly}

+ SierpinskiUhend(a: Point, b: Point, c: Point, degree: int)
+ iterator(): Iterator<? extends Point>

-triangles

0..*

47

Diagram 32. Composite. Visual Paradigm

Diagram 33. Composite. The ObjectAid UML Explorer

48

3.9 Template method

3.9.1 Pattern definition

Template method is the behavioural pattern used to Define the skeleton of an algorithm

in operation, deferring some steps to subclasses. Template Method lets subclasses

redefine certain steps of an algorithm without changing the algorithm's structure. [1]

Diagram 34. Template method pattern

3.9.2 Java project description

For template method pattern analysis I use TestNG test framework project [11].

TestNG project contains abstract class BaseMultiSuitePanel that contains two abstract

methods called getHeader and getContent. Sever subclasses implement this abstract

class and its abstract methods.

3.9.3 Pattern UML presentation analysis

Diagrams generated by each CASE tool contain BaseMultiSuirePanel class box, and its

abstract methods names have italic formatting. Each CASE tool was able to find

generalisation relationship between BaseMultiSuirePanel abstract class and its

implementations.

All design pattern parts were identified correctly, and all CASE tools get 3 points.

49

Diagram 35. Template method. Enterprise Architect

BasePanel

BaseMultiSuitePanel

~ getHeader(ISuite): String
~ getContent(ISuite, XMLStringBuffer): String
+ BaseMultiSuitePanel(Model)
+ generate(XMLStringBuffer): void
+ getClassName(): String
+ getPanelName(ISuite): String

ChronologicalPanel

+ ChronologicalPanel(Model)
+ getPrefix(): String
+ getHeader(ISuite): String
+ getContent(ISuite, XMLStringBuffer): String
+ getNavigatorLink(ISuite): String

GroupPanel

+ GroupPanel(Model)
+ getPrefix(): String
+ getHeader(ISuite): String
+ getContent(ISuite, XMLStringBuffer): String
+ getNavigatorLink(ISuite): String

IgnoredMethodsPanel

+ IgnoredMethodsPanel(Model)
+ getPrefix(): String
+ getHeader(ISuite): String
+ getContent(ISuite, XMLStringBuffer): String
+ getNavigatorLink(ISuite): String

ReporterPanel

+ ReporterPanel(Model)
+ getPrefix(): String
+ getHeader(ISuite): String
+ getContent(ISuite, XMLStringBuffer): String
+ getNavigatorLink(ISuite): String

TestNgXmlPanel

+ TestNgXmlPanel(Model)
+ getPrefix(): String
+ getHeader(ISuite): String
+ getContent(ISuite, XMLStringBuffer): String
+ getNavigatorLink(ISuite): String

TestPanel

+ TestPanel(Model)
+ getPrefix(): String
+ getHeader(ISuite): String
+ getContent(ISuite, XMLStringBuffer): String
+ getNavigatorLink(ISuite): String
+ getClassName(): String

TimesPanel

- m_totalTime: Map<String, Long> = Maps.newHashMap()

+ TimesPanel(Model)
+ getPrefix(): String
+ getHeader(ISuite): String
- js(ISuite): String
+ getContent(ISuite, XMLStringBuffer): String
- prettyDuration(long): String
+ getNavigatorLink(ISuite): String

50

Diagram 36. Template method. Visual Paradigm

51

Diagram 37. Template method. The ObjectAid UML Explorer

52

3.10 Command

3.10.1 Pattern definition

Command is behavioural design pattern and is used to encapsulate a request as an

object, thereby letting you parameterize clients with different requests, queue or log

requests, and support undoable operations. [1]

Diagram 38. Command pattern

3.10.2 Java project description

Project from “Design patterns implemented in Java” project in GitHub [12] is used for

command design pattern analysis. This project contains example implementation for

many design patterns.

There is a wizard (invoker) who can cast a spell (command). Wizard can cast two spells:

invisibility spell and shrink spell (concrete commands). Spells store state and target. It

allows to revert spells or execute them again on the same target. Wizard cast spells on a

target (receiver). Goblin is the only one available target.

3.10.3 Pattern UML presentation analysis

All CASE tools correctly identified

53

• generalisation between Command class and concrete spells, Target class and

Goblin class

• association between concrete spells and Target class

Enterprise architect and The ObjectAid UML Explorer recognised that Wizard has a

dependency relationship with Target. Visual paradigm could not find dependency

between them.

All CASE tools see redoStack and undoStack properties for Wizard, but only The

ObjectAid UML Explorer displays it as association with Command class with zero or

more multiplicity.

The ObjectAid UML Explorer determined all parts of design pattern and got 3 points.

Enterprise Architect could not find one relationship and gets 2 points. Visual Paradigm

could not identify two separate relationships and gets 1 point.

54

Diagram 39. Command. Enterprise Architect

Command

+ execute(target: Target): void
+ undo(): void
+ redo(): void
+ toString(): String

Goblin

+ Goblin()
+ toString(): String

InvisibilitySpell

- target: Target

+ execute(target: Target): void
+ undo(): void
+ redo(): void
+ toString(): String

ShrinkSpell

- oldSize: Size
- target: Target

+ execute(target: Target): void
+ undo(): void
+ redo(): void
+ toString(): String

Target

- LOGGER: Logger = LoggerFactory.g... {readOnly}
- size: Size
- visibility: Visibility

+ getSize(): Size
+ setSize(size: Size): void
+ getVisibility(): Visibility
+ setVisibility(visibility: Visibility): void
+ toString(): String
+ printStatus(): void

Wizard

- LOGGER: Logger = LoggerFactory.g... {readOnly}
- undoStack: Deque<Command> = new LinkedList<>()
- redoStack: Deque<Command> = new LinkedList<>()

+ Wizard()
+ castSpell(command: Command, target: Target): void
+ undoLastSpell(): void
+ redoLastSpell(): void
+ toString(): String

-target -target

55

Diagram 40. Command. Visual Paradigm

56

Diagram 41. Command. The ObjectAid UML Explorer

57

3.11 Builder

3.11.1 Pattern definition

The builder is the creational pattern used to separate the construction of a complex

object from its representation so that the same construction process can create different

representations. [1]

Diagram 42. Builder pattern

3.11.2 Java project description

TestNG test framework project [11] is used for builder pattern analysis.

The builder is implemented as a nested class for Arguments class. Arguments class is

nested inside AbstractParallelWorker class. TestRunner calls arguments builder when

the createWorkers function is executed.

In this implementation of builder pattern, builder interface is not used. Because of that,

expect that director will have association or dependency relationship with concrete

builder implementation.

3.11.3 Pattern UML presentation analysis

All CASE tools identified that builder has an association with Arguments and stores

instance of Arguments class as private property.

58

Visual Paradigm and The ObjectAid UML explorer could identify nesting of classes.

Enterprise architect recognised that Arguments are nested inside

AbstractParallelWorker but could not determine that Builder is nested inside

Arguments.

Enterprise Architect and Visual Paradigm could not identify that TestRunner class have

a dependency on Builder, Arguments and AbstractParallelWorker classes and get 2

points. The ObjectAid UML Explorer identifies dependencies for TestRunner class

correctly and gets 3 points.

59

Diagram 43. Builder. Enterprise Architect

AbstractParallelWorker

+ newWorker(XmlSuite.ParallelMode): AbstractParallelWorker
+ createWorkers(Arguments): List<IWorker<ITestNGMethod>>

«static»
AbstractParallelWorker::Arguments

- methods: List<ITestNGMethod>
- invoker: IInvoker
- configMethods: ConfigurationGroupMethods
- classMethodMap: ClassMethodMap
- listeners: List<IClassListener>
- testContext: ITestContext
- finder: IAnnotationFinder

- Arguments()
+ getMethods(): List<ITestNGMethod>
+ getInvoker(): IInvoker
+ getConfigMethods(): ConfigurationGroupMethods
+ getClassMethodMap(): ClassMethodMap
+ getTestContext(): ITestContext
+ getFinder(): IAnnotationFinder

«static»
Builder

- instance: Arguments

+ Builder()
+ methods(List<ITestNGMethod>): Builder
+ invoker(IInvoker): Builder
+ configMethods(ConfigurationGroupMethods): Builder
+ classMethodMap(ClassMethodMap): Builder
+ listeners(Collection<IClassListener>): Builder
+ testContext(ITestContext): Builder
+ finder(IAnnotationFinder): Builder
+ build(): Arguments

TestRunner
Class

This class takes care of running one Test.

-instance

60

Diagram 44. Builder. Visual paradigm

61

Diagram 45. Builder. The ObjectAid UML Explorer

3.12 State

3.12.1 Pattern definition

State is behavioural design pattern used to allow an object to alter its behaviour when its

internal state changes. The object will appear to change its class. [1]

62

Diagram 46. State pattern

3.12.2 Java project description

Small java application that the author wrote as an exercise in Software Architecture and

Design course (IDU1550) [16]is used for state pattern analysis.

This application implements logic for the gateway that opens only when a person pays

for entrance and closes when one person passes the gate. If a person tries to pass

without paying, an alarm is triggered.

3.12.3 Pattern UML presentation analysis

All CASE tools identified a dependency between concrete state implementations

(ClosedStatus and OpenStatus) and GatewayStatus interface. All of them have the same

set of methods.

All CASE tools identified that GatewayImpl class have private property with

GatewayStatus type called status, but none of them identified an association between

this classes as aggregation.

Each CASE tool differently identified multiplicity for this association. Enterprise

Architect does not have any multiplicity. Visual paradigm identified it as precisely one

instance. The ObjectAid UML Explorer classified multiplicity as zero instances or one

63

instance. In this case, the Visual Paradigm is the CASE tools that identified multiplicity

correctly because the status property has an initial value that is not null.

All CASE tools identified all main parts of design pattern, and all CASE tools get 3

points.

Diagram 47. State. Enterprise Architect

ClosedStatus

+ pass(p: Gateway): void
+ coin(p: Gateway): void

GatewayImpl

- status: GatewayStatus = new ClosedStatus()

+ open(): void
+ close(): void
+ setOpen(): void
+ setClosed(): void
+ pay(): void
+ alarm(): void
+ pass(): void
+ coin(): void

OpenStatus

+ pass(p: Gateway): void
+ coin(p: Gateway): void

«interface»
gateway::GatewayStatus

+ pass(p: Gateway): void
+ coin(p: Gateway): void

«interface»
gateway::Gateway

+ pass(): void
+ coin(): void
+ open(): void
+ close(): void
+ setOpen(): void
+ setClosed(): void
+ pay(): void
+ alarm(): void

-status

64

Diagram 48. State. Visual Paradigm

65

Diagram 49. State. The ObjectAid UML Explorer

3.13 Summary for reverse engineering to class diagram

This section contains summary table based on analysis of design patterns representation

for three CASE tools used for analysis and voting table for each CASE tool pair [20].

All GOF design patterns are counted as equally important.

The table contains assessment for each pattern and CASE tool pair. Assessment scale is

based on following values:

0 – could not identify any parts of a design pattern

1 – more than one expected part is missing

2 – identify almost everything except one part

3 – identify all parts of a design pattern

66

Table 1. Points summary table for GOF pattern representation assessment of CASE

tools

GOF pattern Enterprise Architect Visual Paradigm The ObjectAid UML

Explorer for Eclipse

Singleton 3 3 3

Factory method 2 2 2

Observer 2 0 0

Strategy 3 2 3

Iterator 2 0 1

Bridge 3 2 3

Adapter 3 3 3

Composite 2 2 2

Template method 3 3 3

Command 2 1 3

Builder 2 2 3

State 3 3 3

Total 30 23 29

67

Table 2. Voting table for GOF pattern representation assessment of CASE tools

 Enterprise

Architect

The ObjectAid

UML Explorer

for Eclipse

Visual

Paradigm

Votes

Enterprise

Architect

0 2 5 7

The ObjectAid

UML Explorer

for Eclipse

2 0 5 7

Visual Paradigm 0 0 0 0

In table 2, CASE tool pairs are compared with each other for each GOF pattern. If one

CASE tool is better than another is, then it gets 1 point. Usually, the sum of points for

each pair is added to the table. Then all point for each row sums up to get a final grade.

The more correct approach based on minimum FAS (Feedback Arc Set) [5] tries to find

such a reordering of the voting table so that the sum of cells below the main diagonal is

minimal. In this case, both approaches give the same reordering.

We can see that Enterprise Architect and The ObjectAid UML Explorer are better that

Visual paradigm for five GOF design patterns. Enterprise Architect is better than The

ObjectAid UML Explorer for two GOF design patterns, but The ObjectAid UML

Explorer is better than Enterprise Architect for two GOF design patterns as well.

As a result, Enterprise Architect and The ObjectAid UML Explorer have same grades in

the voting table, but Enterprise Architect does not have any 0 points in Table 1 and have

more total points. Based on that, Enterprise Architect is the best CASE tool for three

selected CASE tools.

These results are based on the assumption that the reverse engineering of each GOF

design pattern is equally important. If the importance varies, then one would have to

weigh the points and votes in tables 1 and 2. However, since it is difficult to find

information about the relative importance different patterns (and varying importance

might depend on the individual development project), this additional weighing was left

out of the approach used in this thesis.

68

4 Sequence diagram reverse engineering

Analysis of sequence diagram reverse engineering is focused on basic reverse

engineering functionality, such as identifying class instances used in reverse engineered

method, identifying messages sent to that class instances, representing them correctly.

Simple java project was used for that purpose.

The scope of this analysis is limited and more complex projects (with asyncronouse

calls or loops) can reveal other strengths and weaknesses of used CASE tool. This can

influence the current ranking of CASE tools and change results.

4.1 Java project description

Small java application that author wrote as an exercise in Software Architecture and

Design course (IDU1550) [16] is used to analyse sequence diagrams functionality.

This application implements logic for the gateway, that opens only when a person pays

for entrance and closes when one person passes the gate. If a person tries to pass

without paying, an alarm is triggered. Gateway interface has two realisations. The first

realisation is using State GOF pattern. The second realisation is using State GOF pattern

and Observer GOF pattern to notify about payments and alarms.

For reverse engineering of the sequence diagram based on this application, main()

method is used. This method is executing the same sequence of actions for each

realisation of Gateway interface.

public class Main {

 public static void main(String[] args) {

 System.out.println("-------- v1 ----------");

 Gateway gate = new GatewayImpl();

 start(gate);

 System.out.println("\n-------- v2 ----------");

 GatewayWithObserver gate2 = new GatewayWithObserver();

 StatusObserver observer = new StatusObserver();

 gate2.addObserver(observer);

 start(gate2);

 }

69

 private static void start(Gateway gate) {

 gate.pass();

 gate.coin();

 gate.coin();

 gate.pass();

 gate.pass();

 }

}

4.2 Analysis of sequence diagrams

4.2.1 Enterprise Architect

Enterprise Architect requires executing the code in order to reverse engineer the code to

sequence diagram. It is using debugging functionality to record execution steps. To

record each function call user requires going through each class and marking it with

recording marker. It is time consuming and might be hard to setup for libraries.

Lifeline in sequence diagram created by Enterprise Architect contains only concrete

classes. It uses anonymous instances for these classes. In this case, a lifeline has

“:className” naming format. When named instances are used lifeline name have

format “instanceFormat:className”. Sequence diagram does not have numbering for

messages.

Sequence diagram does not contain information about initialisation of StatusObserver

and GatewayImpl classes but contains a message that triggers the creation of

GatewayWithObserver class. It is related to the fact GatewayWithObserver have a

constructor defined in executed code. StatusObserver and GatewayImpl classes use the

default constructor, and there is no way to set recorder marker for this type of

constructor.

In UML sequence diagrams when the object is created, it should be shown on the same

height as creation message [21] and use dashed line for the message. When

GatewayWithObserver is created for instance lifeline is not shown on the same level as

creation message, and a solid line is used.

Sequence diagram contains all execution of methods marked for recording. However,

the original code includes calls to classes and methods that are part of Java core

libraries. For example, GatewayWithObserver class extends java.util.Observable [22]

70

class. The main method calls an addObserver method on GatewayWithObserver, but it

is not recorded, because you cannot set recorder marker on external library code.

Diagram 50. GatewayImpl execution. Enterprise Architect sequence diagram.

:OpenStatus:ClosedStatus:GatewayImpl:Main

setClosed()

start(gateway.Gateway)

coin(gateway.Gateway)

coin(gateway.Gateway)

pass(gateway.Gateway)

setOpen()

pass(gateway.Gateway)

open()

pass()

pass(gateway.Gateway)

pass()

main(String[])

coin()

coin()

alarm()

alarm()

pass()

close()

pay()

71

Diagram 51. GatewayWithObserver execution. Enterprise Architect sequence diagram.

:OpenStatus:StatusObserver:ClosedStatus:GatewayWithObserver:Main

pass()

coin(gateway.Gateway)

coin(gateway.Gateway)

coin()

close()

setClosed()

main(String[])

update(java.util.Observable, java.lang.Object)

GatewayWithObserver()

alarm()

coin()

setOpen()

pass(gateway.Gateway)

alarm()

pay()

start(gateway.Gateway)

pass(gateway.Gateway)

start(gateway.Gateway)

pass()

update(java.util.Observable, java.lang.Object)

setClosed()

pass()

pass(gateway.Gateway)

update(java.util.Observable, java.lang.Object)

open()

72

4.2.2 Visual Paradigm

The visual paradigm can generate sequence diagrams without code execution. Initially,

it creates sequence diagram only for a specified method and does not go deeper

(Diagram 56).

On generated diagram lifelines use named instances, and instance name is equal to the

variables used in the code. The diagram contains numbering for messages, and it uses

nested numbering by default, but the user can change it to single level numbering.

Visual paradigm was able to find creation messages for all classes used in the main

method. It is showing it with dashed line and instance placed on the same level as

creation message.

Visual paradigm was able to find and display call to addObserver method that is part of

extended java.util.Observable [23] class, but it does not show calls to

System.out.println() method.

If the user needs to go deeper into the code, then right-click on a method that needs to

be reverse engineered in sequence diagram and select “Instant Reverse Java Code”. The

author tried this with both start method calls (Diagram 57).

After that numbering on diagram got broken. On diagram with a deeper level of code,

details numbering becomes mixed. Visual paradigm uses nested numbering before start

method call and single level numbering after it.

Visual paradigm was unable to understand that in message number 1.2 instance of

GatewayImpl class was passed to start method and in message number 11 instance of

GatewayWithObserver was used. Instead, it created new lifelines for two instances of

Gateway interface used by two start method calls. Because pass() and coin() messages

are passed to Gateway interface, there is no way to go even deeper in code and see on

the same diagram that pass() and coin() methods do. To see that pass() and coin()

methods do user need to create a new sequence diagram for each class method.

73

Diagram 52. Main execution, one level deep. Visual paradigm sequence diagram.

74

Diagram 53. Main execution, two levels deep. Visual paradigm sequence diagram.

75

4.2.3 The ObjectAid UML Explorer for Eclipse

The ObjectAid UML Explorer for Eclipse does not need to execute code to generate

sequence diagram. The user can drag and drop required method on the diagram, then

right-click on the method name and select “Add Called Operations”. This action will

show only calls for methods, which are one level deep (Diagram 58). If the user needs

to go deeper in the code repeating of the same operation on required method will help.

For lifelines name The ObjectAid UML Explorer uses named classes in case if the

variable was created for a class in the main method and anonymous instances for classes

that do not have variables created in the specified method. Sequence diagram does not

contain numbering for messages.

The CASE tool found all initialisation calls for all classes initialised in the main

method. It displays it using a solid line, and lifeline boxes are not shown on the same

level as creation message.

The CASE tool found all calls to user code and to Java core libraries including a call to

the addObserver method for GatewayWithObserver class that is part of extended

java.util.Observable [23] class and println method call for java.io.PrintStream.

When tried to go more in-depth for the start method, the CASE tool could not

understand that instance of the concrete class was passed to it and created to a lifeline

for Gateway interface instance and showed all calls to it instead of concrete class.

The addObserver method call is marked as critical by the CASE tool. It means that this

code can be executed only by one thread at the time. It is valid marking because

addObserver [22] is a synchronised method [24].

76

Diagram 54. Main function one level deep. The ObjectAid UML Explorer for Eclipse

sequence diagram.

77

Diagram 55. Main function two levels deep. The ObjectAid UML Explorer for Eclipse

sequence diagram.

78

4.3 Summary for reverse engineering to sequence diagram

This section contains table summarising abilities of each CASE tool for sequence

diagram reverse engineering and voting table for each CASE tool pair [20]. All abilities

counted as equally important.

Symbols meaning:

+ - functionality supported,

– - functionality not supported,

+/– - functionality partially supported

Table 3. Sequence diagram reverse engineering abilities of CASE tools

 Enterprise

Architect

Visual

Paradigm

The ObjectAid

UML Explorer

for Eclipse

Does not require code execution – + +

Lifeline have named instances – + +

Lifeline have anonymous instances + + +

Can record calls to external libraries – +/–

Calls to methods

of extended

classes only

+

Initialisation using constructors

defined in code is shown
+ + +

Initialisation using default

constructors is shown
– + +

Instance creation represented as per

UML definition
– + –

Messages numbering – +/–

Broken when

going to deeper

levels.

–

Can see calls to concrete instances

when method accepts interface
+ – –

79

Table 4. Voting table for sequence diagram reverse engineering abilities of CASE tools

 Visual

Paradigm

The ObjectAid

UML Explorer

for Eclipse

Enterprise

Architect

Votes

Visual

Paradigm

0 2 6 8

The ObjectAid

UML Explorer

for Eclipse

1 0 4 5

Enterprise

Architect

1 1 0 2

Results in table 4 show that Visual Paradigm is a CASE tool with the best set of

functions for reverse engineering of methods to sequence diagrams and its

representation of sequence diagrams is closest to the standard.

80

5 Combined results for reverse engineering abilities

This section contains information combined from summaries from chapter 3 and 4. It

provides a selection of a best CASE tool from selected CASE tool.

Class diagrams are more helpful for overall system understanding and are considered

more important for software maintenance [25] than sequence diagrams. Because of that

1 point for class diagrams reverse engineering in Table 2 is equal to 2 points in Table 5.

Table 5. Voting table for combined results for reverse engineering abilities

 Enterprise

Architect

Visual

Paradigm

The ObjectAid

UML Explorer

for Eclipse

Votes

Enterprise

Architect

0 11 5 16

Visual

Paradigm

6 0 2 8

The ObjectAid

UML Explorer

for Eclipse

8 11 0 19

Even if Enterprise Architect was the best for class diagrams reverse engineering, and

Visual paradigm was the best for sequence diagrams reverse engineering, both of this

CASE tools are weak in another reverse engineering ability. It allowed The ObjectAid

UML Explorer to get a best total score for both reverse engineering abilities. If the class

diagrams are to be considered more important than sequence diagrams, then the ranking

of these 3 CASE tools will hold.

81

6 Summary

This thesis does not include all possible variation of CASE tools and does not analyse

all design patterns. It contains a proposed approach for evaluation of CASE tools based

on their reverse engineering capabilities. As a result, this approach identifies the best

CASE tool from the selection.

The goal of this bachelor thesis “Analysis and selection of best CASE tools based on

reverse engineering and patterns detection for java project” is to identify which of three

selected CASE tools is the best for reverse engineering of Java-based software to UML

model-based documentation.

Three selected CASE tools are Enterprise Architect 13.0, Visual paradigm 15.0

Standard edition and The ObjectAid UML Explorer v1.2.2.

The analysis is based on two CASE tools reverse engineering capabilities.

The first capability is reverse engineering of Java code to class diagrams and the ability

to represent GOF design patterns in generated class diagrams. The analysis was based

on twelve out of twenty-three GOF design patterns.

Results in Table 1 show that Enterprise Architect is the best CASE tool for reverse

engineering Java code to class diagrams. Enterprise Architect represented all GOF

patterns with enough details on UML diagrams to identify patterns. The ObjectAid

UML Explorer is close to Enterprise Architect, but it could not represent observer and

iterator design patterns. Even the fact that it shows some patterns with more details than

Enterprise Architect does not help it to be the best. Visual Paradigm is the worst of three

selected CASE tools. This CASE tool had issues with factory method, observer, iterator

and command design pattern representations.

Another CASE tools capability is reverse engineering of Java code to a sequence

diagram.

For reverse engineering of methods to sequence diagrams, Enterprise Architect is the

worst choice. It is hard to setup because it requires executing code and setup recording

82

markers. This CASE tool cannot record calls to external libraries, like java core libraries

and calls to default constructors.

Visual Paradigm and The ObjectAid UML Explorer are both good in the generation of

sequence diagrams using reverse engineering. However, Visual Paradigm is better in the

representation of lifelines for newly created instances, and it has numbering for

messages. It allows calling Visual Paradigm the best for sequence diagrams for reverse

engineering.

By the combined results of the analysis given in Table 5, it can be concluded that The

ObjectAid UML Explorer is the best from selected CASE tools for documentation of

java code using reverse engineering because it showed good results for both analysed

capabilities. It was almost as good as Enterprise Architect in the representation of GOF

design patterns and better than Enterprise Architect in reverse engineering of sequence

diagrams. Visual Paradigm was a bit better than The ObjectAid UML Explorer in

sequence diagrams reverse engineering, but Visual Paradigm was worse than it in class

diagram reverse engineering.

83

References

[1] E. Gamma, R. Helm, R. Johnson and J. Vlissides, “Design Patterns: Elements of

Reusable Object-Oriented Software,” 1995.

[2] “Enterprise Architect,” Sparx Systems Pty Ltd., [Online]. Available:

http://sparxsystems.com/products/ea/.

[3] “The Object Management Group,” [Online]. Available: https://www.omg.org.

[4] “GangOfFour,” [Online]. Available: http://wiki.c2.com/?GangOfFour.

[5] T. Veskioja, Stable marriage problem and college admission, 2005.

[6] E. J. Chikofsky and J. Cross, “Reverse engineering and design recovery: a

taxonomy,” IEEE Software, vol. 7, no. 1, pp. 13-17, 1990.

[7] L. C. Briand, “Software documentation: how much is enough?,” in Seventh

European Conference on Software Maintenance and Reengineering, 2003.

[8] “Visual paradigm,” [Online]. Available: https://www.visual-paradigm.com/.

[9] “The ObjectAid UML Explorer for Eclipse,” [Online]. Available:

http://www.objectaid.com/home.

[10] J. Vassiljeva, “All project with reverse engineered UML diagrams,” [Online].

Available: https://bitbucket.org/Camio/loputoo/src/master/.

[11] “TestNG testing framework source code,” [Online]. Available:

https://github.com/cbeust/testng/tree/6.14.3.

[12] “Design patterns implemented in Java,” [Online]. Available:

https://github.com/iluwatar/java-design-patterns.

[13] “Design patterns implemented in Java, Singleton,” [Online]. Available:

https://github.com/iluwatar/java-design-patterns/tree/master/singleton.

[14] “Design patterns implemented in Java, Adapter,” [Online]. Available:

https://github.com/iluwatar/java-design-patterns/tree/master/adapter.

[15] “Design patterns implemented in Java, Command,” [Online]. Available:

https://github.com/iluwatar/java-design-patterns/tree/master/command.

[16] A. Torim, “IDU1550 Tarkvara arhitektuur ja disain,” [Online]. Available:

https://moodle.hitsa.ee/enrol/index.php?id=14074.

[17] J. Vassiljeva, “Gateway java application code,” [Online]. Available:

https://bitbucket.org/Camio/loputoo/src/master/gateway/.

[18] J. Vassiljeva, “Sierpienski implementation, source code,” [Online]. Available:

https://bitbucket.org/Camio/loputoo/src/master/sierpinski/.

[19] Wikipedia, “Sierpinski triangle,” [Online]. Available:

https://en.wikipedia.org/wiki/Sierpinski_triangle.

[20] L. Võhandu, K. Raidma and T. Veskioja, “Subjektiivsetest hinnangutest

objektiivsete tulemusteni,” [Online]. Available:

http://maurus.ttu.ee/ained/IDN5120/doc/11/IDN5120_Loeng1_2013_2sept.ppt.

[21] C. Larman, “15.7 Basic Sequence Diagram Notation,” in Applying UML and

Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative

Development, 2 ed., 2004.

84

[22] “Source code for java.util.Observable,” [Online]. Available:

http://book2s.com/java/src/package/java/util/observable.html.

[23] “Standard Edition 8 API Specification, java.util.Observable,” Java™ Platform,

[Online]. Available:

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Observable.html.

[24] “The Java™ Tutorials. Synchronized Methods,” Oracle, [Online]. Available:

https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html.

[25] S. Cozzetti B. de Souza, N. Anquetil and K. M. de Oliveira, “A study of the

documentation essential to software maintenance,” in 23rd annual international

conference on Design of communication: documenting & designing for pervasive

information, Coventry, United Kingdom, 2005.

[26] “Enterprise Architect - Use Patterns,” [Online]. Available:

http://www.sparxsystems.com/resources/developers/use_uml_patterns.html.

[27] P. M. I. P. Ghulam Rasool, “Pages Evaluation of design pattern recovery tools,”

Procedia Computer Science, vol. 3, pp. 813-819, 2011.

[28] Z. Marco, “Data mining techniques for design pattern detection,” 2012.

[29] M. Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley

Longman Publishing Co., 2002.

[30] Osman, Hafeez and Chaudron, Michel, “Correctness and Completeness of CASE

Tools in Reverse Engineering Source Code into UML Model,” The GSTF Journal

on Computing (JoC), 2012.

[31] D. Cutting and J. Noppen, “An extensible benchmark and tooling for comparing

reverse engineering approaches.,” International Journal on Advances in Software,

vol. 8, pp. 115-124, 2015.

[32] B. Bellay and H. Gall, “A comparison of four reverse engineering tools,” in

Proceedings of the Fourth Working Conference on Reverse Engineering,

Amsterdam, 1997.

[33] N. Shi and R. A. Olsson, “Reverse Engineering of Design Patterns from Java

Source Code,” 21st IEEE/ACM International Conference on Automated Software

Engineering (ASE'06), pp. 123-134, 2006.

[34] “Programming Tutorials by SourceTricks,” [Online]. Available:

http://www.sourcetricks.com/2013/04/composite-pattern.html.

