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INTRODUCTION

Understanding the collective dynamics of excitable systems has long been a central ob-
jective in the study of nonlinear phenomena, with important implications for physiology,
neuroscience, and more in general complex systems. Among the most relevant biological
instances of excitable media are pancreatic 3-cells, whose ability to coordinate electrical
activity across a network is critical to the regulation of insulin secretion and, as a conse-
qguence, to glucose homeostasis. Theoretical modeling of these systems not only helps
develop a mechanistic interpretation of emergent behaviors, but also offers predictive in-
sight into how variations at the cellular or network level may affect functionality, robust-
ness, or pathological conditions. This thesis is situated at the intersection of dynamical
systems theory, cellular modeling, and systems biology, investigating how the collective
dynamics of coupled heterogeneous excitable units, particularly B-cell clusters, can be
better understood through suitably simplified mathematical models [6-8].

Despite their simplicity, models such as the FitzHugh-Nagumo (FHN) oscillator have
proven instrumental in capturing essential features of excitable cell dynamics [9-11]. In
addition, various studies have validated the use of reduced models for elucidating the
role of heterogeneity, coupling, and noise in excitable systems [12-16]. Yet, as explained
in more detail below, many open questions remain about how these factors jointly influ-
ence collective properties such as synchronization, excitability, and resonance, as well as
about the underlying mechanisms. The present thesis contributes to this discussion by
systematically analyzing the impact of heterogeneity on network behavior across a range
of topologies, both on its own and in combination with stochastic fluctuations. By leverag-
ing models such as the FHN and quartic oscillators, it offers new insight into the network
dynamics and key mechanisms.

Motivation

The main aim of this thesis work is to advance the understanding of how heterogeneity
shapes collective dynamics in excitable cell networks, with particular focus on biologically
relevant systems such as pancreatic 3-cell clusters.

The motivation for studying the role of heterogeneity in networks of excitable cells,
and B-cells in particular, is multifold. B-cells play a central role in metabolic regulation
through the secretion of insulin, a process that is tightly controlled by oscillatory electri-
cal and calcium ion activity [17, 18]. To perform this crucial function, 3-cells operate as
a coordinated ensemble of heterogeneous units, exhibiting collective behaviors such as
synchronization of bursting across islets [19]. These phenomena are believed to enhance
the effectiveness and robustness of insulin release. Importantly, pathophysiological con-
ditions such as type 2 diabetes are associated with disrupted -cell synchronization, al-
tered gap junctional coupling, and excessive heterogeneity in excitability [20, 21], making
it essential to understand how these factors contribute to the normal and pathological
states of the system. While detailed electrophysiological models of B-cells exist, their
complexity often hinders the identification of general principles. In contrast, the simpli-
fied approach taken here enables a higher-level investigation into the dynamical regimes
and mechanisms that underlie collective excitability. In addition to its biological and med-
ical relevance, the modeling of diversity in networks of excitable units inspired by -cell
clusters can deepen our understanding of the collective dynamics of a wide range of het-
erogeneous excitable systems, thus bringing an even broader motivation for the present
thesis.

12



Objectives and Outline

The main objectives of the thesis are:

e To assess the ability of reduced-order models, particularly networks of FHN oscil-
lators, to reproduce essential features of §-cell network behavior and to serve as
tools for exploring the functional role of cellular variability.

¢ To determine how the effects of diversity on the collective behavior of networks of
excitable units depend on key system parameters, such as the regime of excitability,
the coupling strength between units, and the level of external noise, if present.

¢ To investigate the distinct roles of heterogeneity and noise in shaping the dynamics
of such networks, and to disentangle their respective mechanisms of action using
reduced mathematical models.

¢ To understand whether diversity can have not only constructive but also inhibitory
effects, suppressing network synchronization under specific parameter regimes, which
may have physiological relevance.

e To characterize the emergence of diversity-induced resonance (DIR) in heteroge-
neous networks modeling -cell clusters, and to elucidate its underlying mecha-
nisms and broader relevance by drawing analogies with analogous phenomena in
mechanical systems.

¢ To investigate the role of the degree of symmetry of the diversity distribution in
shaping the collective dynamics of networks of coupled excitable units, modeled by
FHN equations.

¢ To explore the physiological relevance of the modeling results, particularly in rela-
tion to the organization, robustness, and dysfunction of collective activity in pan-
creatic islets and other heterogeneous excitable tissues.

The thesis is organized as follows:

e Chapter 1 provides a summary of the electrophysiology of excitable cells, with a
particular focus on f-cells and the biological structure of the pancreas. This is an
essential background for the following chapters of the thesis and the publications
produced during the doctoral project. The mechanisms of excitability and insulin
production are presented both at the level of individual cells and in the context of
cell-cell interactions within a cluster, emphasizing the biological relevance of cellular
heterogeneity.

¢ Chapter 2 offers an overview of the theoretical modeling of pancreatic -cells. It
begins with early models of single-cell electrophysiology and proceeds to describe
progressively more advanced frameworks, including those for multicellular systems,
which are classified according to their underlying assumptions and mathematical
formalisms. This chapter sets the stage for the original contributions of the thesis
by tracing the evolution of modeling approaches and highlighting their respective
strengths and limitations.

e Chapter 3 focuses on modeling approaches based on networks of coupled oscil-
lators, providing a brief historical overview of their development and applications
to biological systems. It introduces the FHN oscillator as a paradigmatic model of

13



excitable dynamics, providing a detailed account of its equations and bifurcation
structure. The chapter then presents the concept of diversity-induced resonance
(DIR), highlighting its relevance in the context of heterogeneous cell populations.
Finally, it discusses the B-cell network model developed in the first publication of
this doctoral work, outlining its main results and the insights it offers into the role
of heterogeneity and network structure in shaping the collective behavior of 3-cell
clusters.

Chapter 4 investigates the interplay between heterogeneity and noise, highlighting
the differences between these two types of disorder. Regimes are identified where
small amounts of noise enhance synchronization, especially when combined with
an optimal degree of heterogeneity. The potential relevance of these effects to
biological systems and, in particular, 3-cell networks is also discussed.

Chapter 5 investigates scenarios in which heterogeneity does not enhance but in-
stead inhibits synchronization in excitable networks. The analysis focuses on iden-
tifying the conditions under which diversity suppresses collective behavior, particu-
larly in a nontrivial regime where even minimal heterogeneity is sufficient to disrupt
the resonance mechanism known as self-induced stochastic resonance (SISR). This
chapter provides a counterpoint to earlier results and deepens the understanding
of how disorder can also impair, rather than facilitate, network-level responses.

Chapter 6 explores a formal dynamical equivalence between DIR in networks of
nonlinear oscillators and a physically distinct phenomenon: the resonant transloca-
tion of a polymer composed of nonlinear units along a periodic potential. By estab-
lishing this correspondence, the chapter offers mechanistic insights into the funda-
mental drivers of DIR, while extending its relevance to broader classes of physical
systems.

Chapter 7 investigates how the symmetry of the diversity distribution affects global
oscillations in networks of excitable units. Using FHN models and different network
topologies, the chapter shows that symmetric distributions can induce collective
oscillations even without oscillatory units. Two metrics are introduced to quan-
tify symmetry and predict network behavior, and a reduced two-unit model offers
mechanistic insight into the observed dynamics.

Chapters 3, 4, 5, 6, and 7 include cross-references to the corresponding publications that
have originated from the doctoral work, designated by Roman numbers. These are:

A study of the impact of diversity on a 3D network of FHN units used to model a
B-cell cluster.

. An exploration of the interplay between noise and heterogeneity in -cell networks.

. An analysis of diversity-induced effects on cell network coherence.

A study of the dynamical equivalence between polymer translocation and diversity-
induced resonance, providing new insight into the mechanisms underlying the lat-
ter.

Aninvestigation into how the symmetry of the diversity distribution influences global
oscillations in networks of excitable units.

14



While the thesis is based on the above-mentioned papers [I-V], not all of their content
is reproduced in the main text. Instead, the thesis highlights the most important results,
emphasizes their conceptual interconnections, and provides additional background on
the biological and physical systems studied. The full texts of the papers, included as Ap-
pendices, are considered as an integral part of the thesis.
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1 ELECTROPHYSIOLOGY AND HETEROGENEITY OF EXCITABLE
CELLS AND PANCREATIC 3-CELLS

1.1 Electrophysiology of Excitable Cells

Each cell that forms the human body is enclosed within a membrane, which is made of
lipid bilayers that typically have a low electrical conductivity. However, the cell membrane
has several channels that selectively allow certain chemical species to pass through it,
from the inside of the cell to the external environment or vice versa, while other species
are prevented from being exchanged. Some of the most important species that can be
exchanged are metal ions, in particular sodium (Na™), potassium (K*) and calcium (Ca?*)
ions, as well as negative counterions such as chloride (C17) [22, 23].

Under resting conditions, the concentration of negative ions within the cell is higher
than in the external environment, whereas the opposite occurs with positive ions, so that
the interior of the cell has an excess of negative charge with respect to the outside. This
means that the so called cell membrane potential is negative and usually presents values
between -60 and -100 mV, depending on the cell type [22].

Some special cell types have the ability to respond to an external electric current,
which usually comes from a neighbor cell, by sharply raising their membrane potential
to neutral or positive values (depolarization), followed by a repolarization phase that
reestablishes the negative membrane potential values associated with resting conditions.
Cells that exhibit this ability to process electric signals are located, for instance, in the brain
(neurons), heart (cardiomyocytes) and other muscles (myocytes), pancreas (f-cells), and
uterus (myometrial cells) [24].

This property is called excitability and the corresponding cells are referred to as ex-
citable. The response of excitable cells to an external signal is nonlinear, in the sense that
it occurs only if the signal intensity is higher than a certain critical value or threshold, and
once this condition is satisfied, the magnitude of the membrane potential increase, as
well as the rate at which depolarization and repolarization take place, is always the same
independently of the signal intensity [6, 22].

Looking at what happens microscopically in a neuron during the depolarization phase,
the permeability of the cell membrane to Na™ ions increases, due to the opening of spe-
cific structures inside the membrane, named Na* ion channels. This causes an influx of
such ions from the external environment into the cell, resulting in an increase in positive
charge until the membrane potential shifts from negative to positive. When the concen-
tration increase of Na™ ions inside the cell is such that an equilibrium is achieved with
the external environment, the influx of such ions stops and, at that point, the action po-
tential reaches its maximum positive value, which determines the corresponding peak
amplitude. What happens then is that Nat ion channels close while K* ion channels
open, allowing an outward flux of positive ions (K™) this time from inside the cell to the
external environment. This starts the repolarization phase, during which the membrane
potential decreases until it returns to its negative value corresponding to the cell resting
conditions [22, 23]. It should be noted that the relative importance of Na™, K* and Cat
ions in determining membrane potential variations is different depending on cell types:
In neurons, the effects of the exchange of Na* and K* ions are predominant, while in
cardiomyocytes and pancreatic 3-cells, Ca** ions assume greater relevance, as we shall
see in more detail in Section 1.2 [25].

The sequence of membrane depolarization and repolarization is called action poten-
tial. Both the amplitude and the duration of the action potential can change significantly
from one cell type to another. In particular, the duration can be as short as one millisec-
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ond in the case of neurons, while it is of the order of hundreds of milliseconds in the case
of cardiomyocytes [22]. The action potential represents a fundamental mechanism for
the propagation of electrical signals in biological cell networks. When an action poten-
tial occurs in a cell, it produces an electrical impulse that can be transmitted to one or
more neighboring cells, which in turn will generate an action potential. Thanks to this
mechanism, neurons, cardiomyocites, 3-cells, etc., are able to synchronize their electrical
oscillations and have coordinated activities, such as information transmission, mechanical
contraction, insulin production, etc., which are crucial to ensure their functionality from
a physiological standpoint [22, 26, 27].

From the above introductory description of the electrical activity of excitable cells,
it should already be clear that networks made of these cells lend themselves to being
studied and modeled as complex systems. Perhaps their most relevant features from this
standpoint are:

1. Emergence of collective behaviors. For example, in the case of pancreatic 3-cells,
which are a key topic of this thesis work, it is well-known that single cells either do
not have any electrical oscillations at all or, if they do oscillate, they present irregular
oscillation patterns [28, 29]. Instead, when they are part of a cluster, such as in
Langerhans islets, 3-cells are capable of synchronized collective oscillations, which
are essential for normal insulin production [21,26]. Therefore, this is an emergent
property of the cell network, which cannot be found in its individual constituents,
i.e., single B-cells.

2. Ability to self-organize. Still taking B-cells as an example, it has been shown that
the ability of clusters of these cells to have synchronized collective oscillations does
not necessarily rely on the existence of specialized pacemaker cells. Modeling stud-
ies have demonstrated that synchronization can be achieved as a consequence of
introducing into the network a certain degree of cell heterogeneity [30].

3. Nonlinearity. As mentioned above, the behavior of excitable cells, as well as their
interactions in a network, follow a nonlinear dynamics, where relatively small chan-
ges in a given external signal can cause very large effects in terms of cell membrane
potential variation and associated physiological responses, for instance mechanical
contraction in the case of myocites, or insulin secretion in the case of 3-cells [25,27].

1.2 B-Cells and Insulin Production Mechanism

B-Cells constitute one of the three main cell types hosted in the pancreas, i.e., a,  and
6-cells. They are responsible for the production of glucagon, insulin, and somatostatin,
respectively, which are hormones involved in the control of glucose level in the blood.
Insulin is released by B-cells when the hematic glucose level increases above a certain
threshold, and is capable of inducing the absorption of glucose by various organs, mainly
the liver, muscles and adipose tissues. Glucagon performs the opposite function, i.e., it
is produced by a-cells when the hematic glucose level becomes too low, and stimulates
the release of glucose that has been stored in the liver and muscles under the form of
glycogen, a highly branched polymer made of several thousands of glucose units [31].
Somatostatin, which is produced by &-cells, does not directly participate in glucose level
regulation, however, it is capable of partially inhibiting the activity of both o and -cells,
thus indirectly contributing to glucose control [32, 33].

o, B and d-cells are arranged in clusters, named islets of Langerhans, which in the hu-
man body are approximately a million and are spread throughout the pancreas structure.
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Figure 1: Schematic structure of a B-cell. [Reprinted from: Gerardo J Félix-Martinez and J Rafael
Godinez-Ferndndez, Mathematical models of electrical activity of the pancreatic 3-cell: A physio-
logical review, Islets, 6:3, €949195 (2014). Copyright ©2014, The Authors. Published under the CC
BY-NC license. https://doi.org/10.4161/19382014.2014.949195].

Each islet measures roughly 0.2 mm in diameter and hosts about a thousand -cells [34].
This facilitates the theoretical modeling of 3-cells, because a cluster of a thousand cells,
which is an affordable size for today’s computing power, is representative of a typical -
cell network in an islet of Langerhans and, therefore, has physiological relevance.

Fig. 1 summarizes in a simplified manner the current understanding of how a 3-cell
functions [18]. The production of insulin is triggered by an increase of the hematic glucose
concentration and, for this reason, it is named glucose-stimulated insulin secretion (GSIS).
The sequence of events that leads to insulin secretion begins with the transport of glu-
cose from the bloodstream into the -cell, operated by the so called glucose transporters
(GLUT). Glucose, which is a relatively large hydrophilic molecule, cannot travel through
the hydrophobic cell membrane by plain diffusion. This is why nature has developed ded-
icated protein structures that perform the crucial function of delivering it into the cell.
Glucose transporters are present in every cell of our body, since all cells need to uptake
glucose as a primary metabolic fuel and a key substrate for a wide range of biochemical re-
actions [35]. In the case of B-cells, in addition to this common function, glucose transport
by GLUT is essential to provide an input signal to the cell that insulin must be produced,
when the glucose level in the bloodstream becomes higher than a certain threshold.

The increased cell metabolism caused by glucose intake has the effect of converting
a proportional amount of ADP (adenosine diphosphate) to ATP (adenosine triphosphate)
in cell mitochondria. The higher ATP/ADP ratio triggers the closure of ATP-sensitive K™
channels [36, 37], stopping the outward flux of KT ions and therefore causing a build-
up of positive charges inside the cell. This results in a progressive depolarization, i.e., an
increase of the membrane potential, up to a critical threshold value that triggers the open-
ing of voltage-dependent Ca>* channels, allowing an influx of Ca** ions from the exter-
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nal environment into the cell. The consequent rise in intracellular Ca2* ion concentration
ultimately triggers insulin secretion [18], which is expelled through the cell membrane (ex-
ocytosis) and delivered to the bloodstream. The release of insulin into the bloodstream
leads to a progressive decrease in hematic glucose concentration and a consequent slow-
down in ATP production inside -cells, until the ATP/ADP ratio reduces back to a point
where ATP-sensitive K™ channels reopen, thus allowing K ions to exit the cell, starting
a repolarization phase.

The synthetic pathway by which -cells produce insulin is rather complex and occurs
through the sequential formation of two precursor molecules, preproinsulin and proin-
sulin, which involves various functional domains of the cell [38]. Since the insulin synthetic
process does not have an impact on the dynamics of electrical oscillations (at least in a
first-order approximation), it is usually ignored in the mathematical modeling of -cells.
The focus of these models is, ultimately, on the ability to predict Ca?t ion concentration
fluctuations in the cytosol, knowing that this is the key factor triggering insulin exocytosis.

As mentioned in Sec. 1.1, cell-cell communication is critical for excitable cells to syn-
chronize their electrical activity and, as a consequence, plays a key role in B-cells for the
regulation of insulin production. This communication takes place mainly through spe-
cific channels in the cell membrane structure, named gap junctions, which are made up
of assemblies of a particular protein, connexin36 (abbreviated: Cx36), and mediate the
transfer of cytoplasmic ions between neighboring cells, which are therefore electrically
coupled [39]. Through this ion exchange mechanism, gap junctions allow intracellular
Ca’* ion concentration to oscillate in a coordinated manner across Langerhans islets in
response to an increase in blood glucose level, thus stimulating collective insulin secretion
from all B-cells at the same time. Through the same mechanism, gap junctions also allow
the transmission of the signal that causes oscillations to stop when glucose concentration
returns to its basal level [40]. As a further confirmation of the criticality of cell-cell com-
munication enabled by gap junctions, age-related declines in insulin secretion have been
shown to be associated with a reduced efficiency of electrical coupling between S-cells,
leading to an increased susceptibility to type 2 diabetes [41].

The synchronized electrical oscillations of -cells within a Langerhans islet exhibit a
so called bursting pattern, characterized by the network generating rapid sequences of
spikes, known as bursts, followed by a resting phase before the next burst begins. The
period of these bursting oscillations, defined as the interval between the onset of two
successive bursts, can range from less than a minute up to 5 minutes. An example of
bursting patterns is illustrated in Fig. 2, which also shows the synchronization between
membrane potential oscillations and fluctuations in intracellular Ca2* ion concentration
[30].

1.3 Relevance of Cellular Heterogeneity

By cellular heterogeneity we mean the existence of functionally and phenotypically dis-
tinct subpopulations within the same overall cell type. It is worth pointing out that the
terms heterogeneity and diversity are commonly used as synonyms in the scientific liter-
ature to express this concept and, therefore, will be used interchangeably in this thesis.
Cellular heterogeneity is a fundamental feature of living organisms. It is increasingly
recognized as essential for the robustness, adaptability, and specialization of tissues. In
the immune system, for example, functional heterogeneity among T cells and macro-
phages enables context-dependent responses not only to infection and inflammation but
also to sterile tissue injury, where immune cells contribute to both damage control and re-
pair processes [42,43]. In the brain, diversity among neuronal and glial cell types underlies
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Figure 2: Typical profile of bursting oscillations in a faster (panel A) and slower (panel B) islet of
B-cells. In each panel, cytosolic Ca** ion and membrane potential oscillations are plotted in the up-
per and lower graph, respectively. [Reprinted from Biophysical Journal, Vol 84 /Issue 5, Min Zhang,
Paula Goforth, Richard Bertram, Arthur Sherman, Leslie Satin, The Ca%* Dynamics of Isolated Mouse
B-Cells and Islets: Implications for Mathematical Models, p. 2852-2870, Copyright 2003, with per-
mission from Elsevier. https://www.sciencedirect.com/science/article/pii/SO0006349503700149].

complex behaviors, information processing, and plasticity [44,45]. Hepatic zonation in the
liver represents another form of spatial and metabolic heterogeneity, where hepatocytes
differ according to their location in the lobule and perform region-specific metabolic func-
tions [46,47]. Similarly, in the intestinal epithelium, stem cell heterogeneity ensures tissue
renewal while maintaining responsiveness to injury and environmental changes [48, 49].
Understanding cellular heterogeneity has been significantly advanced by technologies
such as single-cell RNA sequencing (scRNA-seq), which enable high-resolution profiling
of gene expression patterns across individual cells [46, 48, 50, 51]. These insights have
reshaped current views of tissue function and disease mechanisms, including cancer, au-
toimmunity, and metabolic disorders.

Heterogeneity is also highly relevant for pancreatic 8-cells, which have traditionally
been viewed as a uniform population, while relatively recent evidence reveals significant
heterogeneity among them in terms of function, gene expression, and response to stim-
uli [52-54]. Understanding this heterogeneity is crucial for elucidating the pathological
mechanisms behind diabetes and developing targeted therapies.

Functional differences among B-cells have been observed in their insulin secretion
capacity, glucose sensitivity, and electrophysiological properties. For instance, studies
have identified subpopulations of B-cells that respond differently to glucose stimulation
[55,56]. Some B-cells act as hub cells, coordinating the activity of neighboring cells to
ensure synchronized insulin release. These hub cells exhibit higher connectivity and in-
fluence over the islet network, playing a pivotal role in the regulation of insulin secretion
dynamics [57, 58].
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Advances in single-cell RNA sequencing have revealed significant gene expression di-
versity among 3-cells. Subpopulations differ in the expression of genes associated with
insulin production, ion channel activity, mitochondrial metabolism, and stress response
pathways [59]. Some f-cells appear to be designed for rapid insulin secretion, while oth-
ers may have more protective or proliferative roles. Such diversity reflects a continuum of
functional states that likely respond dynamically to physiological or pathological changes.

B-cell heterogeneity also arises from differences in developmental origins and matu-
ration states. During pancreatic development, 3-cells differentiate at varying times and
rates, leading to a spectrum of maturation statuses within the islet. Some cells exhibit
markers of immature f-cells, while others display characteristics of fully mature, insulin-
secreting cells [53]. This developmental heterogeneity may influence the overall func-
tional capacity of the islet and its ability to respond to metabolic challenges.

In both type 1 and type 2 diabetes, 3-cell heterogeneity plays a role in disease pro-
gression. Certain subpopulations may be more prone to autoimmune attack or metabolic
dysfunction. For example, B-cells with lower insulin content or changes in how they are
recognized by the immune system, may be preferentially targeted in type 1 diabetes [54].
In type 2 diabetes, variations in stress response pathways among 3-cells can lead to differ-
ential survival and function under glucotoxic (hyperglycemic) conditions. Understanding
these differences is critical for developing strategies to preserve or restore 3-cell function
in diabetic patients.

Recognizing B-cell heterogeneity has significant implications for diabetes treatment
strategies. Efforts to generate f3-cells from stem cells for transplantation must account for
the need to replicate the diverse functional subtypes present in healthy islets. Addition-
ally, therapies aimed at preserving or enhancing 3-cell function may need to be tailored to
target specific subpopulations to be effective [55, 59]. Personalized medicine approaches
that consider -cell heterogeneity could improve treatment outcomes for individuals with
diabetes.
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2 MODELING OF [3-CELLS

A key area of focus in this thesis work is the theoretical modeling of networks of pancre-
atic B-cells. Before reviewing the main mathematical models that have been developed
over the past 40 years to mimic the electrical activity of 3-cells, we shall provide a brief
summary of their physiology, with particular reference to those aspects that are most rel-
evant to insulin secretion. Then, the review of mathematical models will be divided into
two categories: a) models of single 3-cells, and b) models of 3-cell clusters.

2.1 Models of Single 3-Cells

2.1.1 Chay-Keizer Model

The Chay-Keizer model, introduced in 1983, is usually regarded as the first mathematical
model capable of replicating the bursting oscillations of -cells, as observed in experi-
ments [60]. The model takes into account: voltage-regulated Ca2" channels; voltage-
regulated Kt channels; Na™ (and C1™) leaks; and an external current that mimics the
signal associated with the blood glucose level. It is based on a Hodgkin-Huxley-type for-
malism, meaning that the membrane current is the sum of contributions from all of the
aforementioned ionic channels. This gives rise to the following equation:

G = Ve —V) 4 286u(Veu =) + 82V V) + L 0
where C,, represents the cell membrane capacitance and V is the membrane poten-
tial. On the right hand side, the first two g terms indicate the membrane conductance per
unit area for K* and Ca?" ions respectively, with Vx and Vi, being the corresponding rest-
ing potentials. The third g term, with the corresponding resting potential V;, accounts for
a general leak conductance that encompasses sodium and chloride ion leaks, which was
supported by experimental evidence available when the Chay-Keizer model was devel-
oped. Finally, I, represents an applied external current, which can be considered as the
stimulus resulting from an increase in hematic glucose concentration.

In the Chay-Keizer model, bursting relies entirely on a single pacemaker variable, which
is the intracellular Ca?t ion concentration. However, subsequent experimental evidence
contradicted this assumption, as measurements of intracellular Ca* ion concentration in
B-cells, which became feasible a few years later, showed faster dynamics for this variable
compared to model predictions [18, 61, 62]. Nevertheless, almost all B-cell models that
were developed in subsequent years are derived from the minimal Chay-Keizer model. A
wider range of bursting patterns was obtained in subsequent models by defining a differ-
ent pacemaker variable, while using a mathematical approach analogous to that of the
Chay-Keizer model [18].

2.1.2 Phantom Burster Model

A key motivation for the development of this model [63] is the observation that clusters of
pancreatic B-cells exhibit bursting oscillations with a wide range of periods. Specifically,
while the bursting periods of isolated, individual 3-cells are either very fast or very slow (in
some cases there can even be no oscillations at all), the bursting periods observed in islets
of Langerhans (which, as explained in Section 1.2, are clusters composed of about 1,000
cells) can assume a broad spectrum of intermediate values between these extremes. To
capture this behavior, the authors of the Phantom Burster model developed a mathemat-
ical framework for -cell electrical activity capable of producing a wide range of bursting
oscillations. In their model, bursting is driven by the interaction of two oscillatory pro-
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cesses: one with a relatively short time constant and another with a much longer time
constant.

Depending on the chosen parameter regime, different dynamics emerge from this
model. In one case, the faster of the two processes exerts primary control, producing
fast bursting oscillations. In another, the slower process governs the behavior, giving rise
to slow bursting. A third, more subtle regime arises when neither process independently
dictates the bursting period. Instead, the interplay between the fast and slow processes
produces oscillations with an intermediate period (see Fig. 3). Notably, this intermediate
behavior does not require the existence of a separate process operating at that timescale;
rather, it emerges as a consequence of the combined dynamics of the two original pro-
cesses, a phenomenon referred to by the authors as phantom bursting [63].

As shown in Egs. (2)-(8) [63], similarly to other models of 3-cell activity, the Phantom
Burster model is composed of a set of fast variables (the fast subsystem) that regulate
spiking during the active phase of a burst, along with a slow negative feedback mechanism
that modulates the initiation and termination of spiking.

dV _ (IcatIx+1; +1;,+1h) 2)

dr Con

dn  no(V)—n

dt Ty

ds S1e0(V) — s

dsi _ s1=(V) =51 (4)

dt T,

ds $200(V) — s

72 _5=(V) = (5)

t TSZ

Ica = gCamw(V)(V _VCa)7 Ix = gKn(V —VK) (6)
IS] :gslsl(V_VK), ISZ :gSZSZ(V_VK) (7)
IL=gL(V-W) (8)

The fast subsystem includes two equations: one (Eqg. (2)) governing the membrane
potential, V, and another (Eq. (3)) describing the dynamics of the fast activation variable,
n. In addition to these, the model incorporates two distinct negative feedback variables,
labeled s; and s> in Egs (4) and (5), respectively. The variable s; operates on a timescale
of tens of milliseconds, classifying it as a fast variable, whereas s, evolves much more
slowly, with a time constant on the order of minutes. Consequently, s; is responsible for
driving the fast oscillations, s, governs the slow oscillations, and the interaction between
s1 and s, gives rise to intermediate oscillations in accordance with the phantom bursting
mechanism outlined previously.

In Egs. (6)-(8), the various ionic currents present in the first equation for the membrane
potential are defined. Without delving too deeply into the detailed expressions of these
currents, it can be observed that, similar to the Chay-Keizer model, we have a Ca*t ion
current (Ic,) and a KT ion current (Ix), while I is a leak current, with their respective
resting potentials Vc,, Vi, and VL. In addition, there are two further currents associated
with the slow variables s; and s,, which are denoted as I;; and I,,, respectively. While
these two currents were designated as potassium currents for the sake of specificity in the
Phantom Burster model, their exact biophysical nature was not definitively established by
the authors and may, in fact, be different [63].
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Figure 3: Bursting oscillations with intermediate period produced by the Phantom Burst-
ing model.  The bursts are generated by activity-dependent oscillations in both s; and
s».  [Reprinted from Biophysical Journal, Vol 79 /Issue 6, Richard Bertram, Joseph Pre-
vite, Arthur Sherman, Tracie A. Kinard, Leslie S. Satin, The Phantom Burster Model
for Pancreatic [-Cells, p. 2880-2892, Copyright 2000, with permission from Elsevier.
https://www.sciencedirect.com/science/article/pii/S0006349500765258].

2.1.3 Dual Oscillator Model

A key reason for the introduction of the Dual Oscillator model [17, 25, 64] was the obser-
vation, enabled by increasingly sophisticated experimental techniques, that 3-cells can
exhibit not only oscillations with fast, slow, and intermediate periods, but also compound
oscillations, where fast bursts of action potentials are grouped into episodes (see Fig. 4).
Therefore, this model is able to generate all four types of oscillatory patterns.

The key hypothesis underlying the model is that the slow component of compound
bursting is caused by glycolytic oscillations, i.e., periodic fluctuations in the concentra-
tion of metabolites produced by the biochemical reactions involved in glycolysis, whereas
faster oscillations that are superimposed are produced by the electrical activity of 3-cells.
As far as B-cell electrical activity is concerned, although the details of the two formalisms
are different, the Dual Oscillator framework can be considered analogous to the Phantom
Burster model. As we have seen, the latter is able to generate bursting oscillation periods
ranging from a few seconds to several minutes, however, it cannot produce compound
bursting. In a simplified description, it is the addition of the slower glycolytic oscillations
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Figure 4: Example of compound bursting. [Reprinted from Biophysical Journal, Vol 92 /Is-
sue 5, Richard Bertram, Leslie S. Satin, Morten Gram Pedersen, Dan S. Luciani, Arthur
Sherman, Interaction of Glycolysis and Mitochondrial Respiration in Metabolic Oscilla-
tions of Pancreatic Islets, p. 1544-1555, Copyright 2007, with permission from Elsevier.
https://www.sciencedirect.com/science/article/pii/S0006349507709621]

on top of the faster electrical ones that leads to compound bursting, and this is what the
Dual Oscillator model is capable of representing.

The complete formalism of the Dual Oscillator model is rather complex and its detailed
illustration is beyond the scope of the present thesis, which is focused on collective phe-
nomena that arise in cell clusters, rather than on modeling single cell behavior. However,
it is worth mentioning that this remains one of the models with the best ability to replicate
the full range of B-cell oscillation patterns and, notably, has been capable of reproducing
experimental observations that were made even after its introduction [18].

2.2 Modeling of 3-Cell Clusters

After providing a synthetic review of single -cell models in Sec. 2.1, we will now go
through some of the main mathematical models developed to represent multicellular
systems, i.e., B-cell clusters. The examples we will consider can be divided into three
categories [32]: a) dynamical models of electrically coupled cells, b) models based on per-
colation theory, and c) models of coupled oscillators. Given the relevance of point c) to the
research work presented in this thesis, it will be discussed in the next, dedicated chapter.

2.2.1 Dynamical Models of Electrically Coupled Cells

The most conceptually straightforward approach to develop a multicellular model is to
build a system of coupled differential equations where all relevant parameters describ-
ing the electrical cell activity (such as membrane potential, cytosolic Ca*t concentration,
etc.) are taken into account as time-dependent variables [32]. This approach clearly al-
lows the cell network to be described in as much detail and, consequently, with as much
complexity as desired. However, the computational cost associated with solving a dynam-
ical model consisting of hundreds or even thousands of individual cells, each described by
tens of coupled differential equations, can become extremely high. In addition, due to the
complexity of the system and the large number of variables involved, it can be difficult to
understand the “general picture” of the synchronization mechanisms in terms of overall
network dynamics.

In what follows, we will provide a few examples of some of the most relevant models
of this kind that can be found in the literature, with no intent to be exhaustive, but just to
share useful background information to help understand the reasons behind the choices
made in the development of the new models that will be presented later in this thesis.
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2.2.1.1 Sherman and Rinzel Model. A key question the authors of this model [65] tried
to address was why individual 3-cells often exhibit irregular spiking/bursting oscillations,
whereas cell clusters are usually very regular and synchronized. Their central hypothesis to
explain this difference was that stochastic fluctuations in single, isolated cells disrupt the
bursts, whereas when cells are electrically coupled by conductance gap junctions, these
fluctuations are shared among cells and hence dampened. The authors used the Chay-
Keizer equations (see Sec. 2.1.1) to represent single B-cells in their multicellular model
and developed the following system of coupled differential equations [65], where j =1, 2,
..., N, with N being the number of cells constituting the cluster:

dv;
Cn— = ~lon(Vjs1)) = &iccapj(V; = Vi) = ge Y (Vi = Vi) (9)
t keQ;
J
dt Tn(Vj)
dCa;
7-’ = fl—alca(V}) — keaCaj (1)

In the above Egs. (9)-(11), the independent variables are: the membrane potential,
V;; the open fraction of voltage-gated K™ channels, nj; and the concentration of free
intracellular Cat ions, Ca;.

In Eq. (9), the term fion(V;,n;) accounts for the sum of the electric currents related
to the exchange of Ca%* and Kt ions through the membrane; gx-ca captures the conduc-
tance of the K*-Ca®* channels (p; is a stochastic term that mimics the irregular spiking
observed in isolated cells); and g. is the conductance of the gap junctions, which is as-
sumed to be the same for all gap junctions and expresses the strength of the coupling
between cell j and k. The sum in Eq. (9) is taken across the cells Q; that are coupled to
the jth cell, which are its nearest neighbors and depend on the specific topology used in
the model.

In Eq. (10), 7, and A are experimentally determined time constants, while n..(V;) is
the value that n would eventually reach if the voltage V; was kept constant indefinitely.

Finally, in Eq. (11), f is the fraction of free cytosolic Ca%t ions;  is a factor used to con-
vert units of ionic current into units of concentration change over time; and k., expresses
the rate of removal of free Ca?" ions from the cytosol through various mechanisms [65].

It can be observed that Egs. (9) and (10) describe the fast spike-generating dynamics,
whereas Eq. (11) represents a slow process due to the small value of f. Thanks to the gap
junction conductance, g, coupled cells can decrease (or eliminate) differences between
their membrane potentials, which provides a synchronization mechanism for their elec-
trical oscillations.

As shown in Fig. 5, the model produces irregular spiking for a single cell, as expected
from the presence of the stochastic term p; in Eq. (9). However, an increase in the number
of cells leads to a progressive clustering of membrane potential spikes into bursts and the
development of sawtooth oscillations in intracellular calcium levels [65]. Also, the oscilla-
tory patterns generated for large cell numbers tend to resemble those corresponding to a
single deterministic cell, i.e., the case where, in Egs. (9)-(11), j = 1 only, the coupling term
in Eq. (9) is zero (because j = k = 1), and the stochastic term p; is constant and equal to
1

The Sherman and Rinzel model has provided a significant contribution to the under-
standing of Langerhans islet physiology by offering a theoretical framework that demon-
strates how gap junction coupling influences the synchronization of 3-cells. It should be
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Figure 5: Membrane potential and Ca%™ ion concentration oscillations predicted by the Sher-
man and Rinzel model, as a function of the number of cells in the network. [Reprinted from
Biophysical Journal, Vol 59 /Issue 3, A. Sherman, J. Rinzel, Model for synchronization of pancre-
atic beta-cells by gap junction coupling, p. 547-559, Copyright 1991, with permission from Elsevier.
https://www.sciencedirect.com/science/article/pii/S0O006349591822718]

pointed out that this model does not take into account heterogeneity, as all cells in the
network are described as identical.

2.2.1.2 Saadati and Jamali Model. This is a relatively recent example of a dynamical
model [66] characterized by the addition of more subtle effects besides electrical cou-
pling linked to the diffusion of Ca?>* and K* ions through gap junctions. Specifically, the
model accounts for the effects on -cell coordination of key metabolites, such as fruc-
tose 1,6-bisphosphate (FBP) and glucose 6-phosphate (G6P), which can diffuse through
gap junctions in addition to ions.

Without going into the details of each equation used in this model, the diffusion of
metabolites through gap junctions was introduced through a term

B=Y pex(X;—Xp), (12)
kGQ.j

where J,Jék represents the flux of X = FBP or G6P through the gap junctions between cell
Jjand cell k, X; and X; are the respective cytosolic concentrations of metabolites (FBP or
G6P), p. is the gap-junctional permeability, and the sum is taken across the cells Q; that
are coupled to the jth cell, which are its nearest neighbors [32].

The results of simulations produced by this model show that electrical coupling has a
greater impact on the synchronization of membrane potential oscillations than metabolic
coupling. However, when the two mechanisms of electrical and metabolic coupling are
combined, the outcome is a higher degree of synchronization compared to electrical cou-
pling alone [66].
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Figure 6: Three-dimensional structures used in multicellular models of pancreatic cells. Green and
black cells represent active and inactive cells, respectively, as modeled using the discrete prob-
abilistic approach based on percolation theory. Left: Simple Cubic Packing (SCP). Right: Hexag-
onal Cubic Packing (HCP). [Adapted from: G.J. Felix-Martinez, J.R. Godinez-Fernandez, A primer
on modeling pancreatic islets: from models of coupled beta-cells to multicellular islet models,
Islets 15, 2231609 (2023). Copyright ©2023, The Authors. Published under the CC BY-NC license.
https://doi.org/10.1080/19382014.2023.2231609].

2.2.2 Models Based on Percolation Theory

In the framework of percolation theory, interconnected 3-cells are modeled as a network,
where each cell corresponds to a node, and connections between nodes represent func-
tional coupling, meaning that if one cell is active, all its connected neighbors are consid-
ered active as well. Cell coupling is established through a probabilistic method, where
each pair of cells has a probability p of being coupled, and a probability 1 — p of remain-
ing uncoupled. According to percolation theory, there exists a critical threshold p.: when
p < pe, the network consists of small, disconnected clusters, whereas for p > p., a large,
spanning cluster emerges that connects a significant portion of the network [32]. This
represents a geometric phase transition: as the proportion of added elements reaches
the critical threshold p., isolated, small clusters suddenly merge into larger, connected
structures, referred to as spanning clusters. It is important to note that pancreatic islets
function as miniorgans, consisting not only of insulin-producing f-cells, but also of «-
cells and &-cells, which secrete glucagon and somatostatin, respectively, i.e., two other
essential hormones. f3-cells make up approximately 50% to 70% of the total cell popula-
tion, while the remaining cells are primarily oc-cells and -cells. Since a- and J-cells do
not form functional couplings with B-cells, their occupied locations effectively become
inaccessible to the B-cell network. In percolation theory terms, this results in a reduced
probability of site availability (or site open probability) for B-cells. In healthy pancreatic
islets, where f3-cells constitute 50%-70% of the total cells, this implies a corresponding
site open probability within that range [20].

Unlike full dynamical models of electrically coupled cells, these probabilistic models
offer the benefit of avoiding exhaustive representations of all underlying cellular mecha-
nisms, thereby reducing computational demands. However, this simplification can come
at the cost of diminished physiological interpretability, particularly concerning the subcel-
lular processes involved [32].
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Figure 7: Residual beta-cell mass versus gap junction conductance. Reprinted figure with permission
from [l. J. Stamper, Elais Jackson, and Xujing Wang. Phys. Rev. E 89, 012719 (2014).] Copyright 2014 by
the American Physical Society. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.89.012719

2.2.2.1 Stamper, Jackson, and Wang Model. By applying percolation theory, the au-
thors of this work [20] were able to show that proper islet function is fundamentally
dependent on the connectivity of the -cell network. Specifically, they highlighted the
existence of a critical level of 3-cell loss beyond which the network can no longer main-
tain site percolation, leading to a breakdown in connectivity. This threshold aligns closely
with experimental and clinical findings that identify a similar degree of B-cell loss as the
tipping point at which islet function fails in type 1 diabetes.

The authors modeled the structure of a pancreatic islet using a hexagonal close-packed
lattice, for which percolation theory predicts a critical site open probability, p., of approx-
imately 0.199. Since the typical site open probability for B-cell clusters ranges between
0.5and 0.7 (see Sec. 2.2.2), this indicates that in healthy islets, the 3-cell network exceeds
the percolation threshold and thus forms a spanning, connected cluster. To fall below this
critical threshold, about 72% of the B-cell in a healthy cluster would need to be lost. This
level of cell loss aligns well with clinical data that identify a similar range as the point at
which islet function begins to fail. Furthermore, the sharp, nonlinear shift from normal
function to dysfunction can be effectively described as a phase transition within a dynam-
ical system [20].

Interestingly, the model also accounts for the honeymoon phenomenon, which is a
temporary restoration of islet function that often occurs shortly after treatment begins in
type 1diabetes patients.

In general, loss of B-cell synchronization can result from reduced site occupancy (due
to cell death), weakened intercellular coupling (through impaired gap junctions), or both.
Let us consider a healthy islet positioned at point 1in a conceptual diagram (see Fig. 7),
where -cell mass and gap-junctional connectivity are fully intact [20]. As the disease
progresses, f3-cell destruction reduces site occupancy, and if this were the only factor,
the system would follow a vertical path downward to point 3. Upon crossing the critical
threshold, synchronization would collapse, leading to functional failure.
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However, type 1 diabetes also involves factors like inflammation, oxidative stress, and
hyperglycemia, which damage gap junctions and consequently reduce coupling strength.
This shifts the path leftward to point 2, where the islet loses synchronization and function,
even with a higher residual -cell mass than at point 3.

Treatment, typically aimed at improving glycemic control and reducing inflammation,
can partially restore the functionality of gap junctions. This improvement increases cou-
pling strength, moving the system back to the right across the critical line and temporarily
restoring synchronization and functionality, as seen in the honeymoon phase.

Despite this recovery, ongoing autoimmune destruction caused by type 1 diabetes con-
tinues to deplete B-cell mass. Eventually, the system declines again, passing below the
critical threshold and resulting in permanent loss of function (point 3). This trajectory ex-
plains the transient nature of the honeymoon phase, which often lasts between several
months and a couple of years, observed in many patients with type 1 diabetes after the
onset of treatment [20].
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3 MODELS OF COUPLED OSCILLATORS

In this modeling framework, the complex biological processes underlying -cell function,
such as membrane excitability, gap-junctional electrical coupling, and paracrine signal-
ing, are not modeled in mechanistic detail. Instead, the collective behavior of the f-cell
population is approximated using a simplified, abstract representation based on networks
of coupled oscillators. Typical choices for these oscillators include the Kuramoto model,
which focuses on phase interactions, and the FitzZHugh-Nagumo model, which captures
excitable dynamics with minimal complexity.

The principal advantage of this abstraction lies in its ability to reveal large-scale, emer-
gent properties of the B-cell network without requiring full biophysical detail. For ex-
ample, such models have been successfully employed to investigate the conditions un-
der which synchronization arises among -cells, to characterize the role of heterogeneity
within the cell population, and to identify subsets of cells with disproportionately strong
influence on the overall dynamics, the so-called pacemaker cells.

However, the trade-off for this conceptual simplicity is a reduced capacity to directly
relate model behavior to specific intracellular pathways or molecular mechanisms. Cel-
lular processes such as calcium handling, ion channel kinetics, and glucose metabolism
are typically excluded or only implicitly represented. As a result, while coupled oscillator
models are powerful tools for exploring the collective dynamics and coordination within
islet cell populations, they are less suited for studies that aim to directly link electrophys-
iological behavior with biochemical signaling or metabolic regulation.

Nonetheless, this class of models is a very valuable part of the theoretical toolkit in the
study of Langerhans islet and, more in general, excitable cell cluster physiology. By cap-
turing essential dynamical features of cell interactions, they enable an understanding of
phenomena at a complex systems level, which is very difficult to grasp within the plethora
of variables and parameters used in full biophysical models. Obviously, this advantage is
even more significant when accounting for cell heterogeneity, as the resulting complexity
of full biophysical models can become overwhelming.

Before presenting some of the most relevant examples of multicellular models in this
category, we first introduce the FitzHugh-Nagumo (FHN) oscillator, a commonly used non-
linear system that serves as a foundational element in this modeling framework and plays
a central role in the models developed in this thesis.

3.1 FitzHugh-Nagumo Oscillator

The FHN oscillator was presented in 1961 by R. FitzHugh [9, 10] with the aim to provide a
simplified two-dimensional version of the four-dimensional Hodgkin-Huxley model of the
action potential of squid giant axons. It is named FitzHugh-Nagumo because it was further
refined about a year later by Nagumo et al., who proved its equivalence to an electrical
circuit [11].

Therefore, the FHN oscillator is originally a neuronal dynamics model and was soon
broadly adopted for this purpose. In addition, it has been adapted into numerous vari-
ants of the original system and explored across several disciplines, owing to its structural
simplicity and the ability to capture a wide range of dynamical behaviors [67].

Both the Hodgkin-Huxley and FHN models are excitable systems, exhibiting three phases
of activity [67]:

Resting state: The system resides in a stable equilibrium, exhibiting no significant ac-
tivity in the absence of external input.

Excited state: If the external input, or stimulus, surpasses a critical threshold, the sys-
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tem is driven out of equilibrium, producing a fast and temporary response characteristic
of excitation.

Refractory period: After this response, the system enters a recovery phase during
which it is temporarily less sensitive to further stimuli and cannot be re-excited immedi-
ately.

Mathematically, the model consists of two main components [68]. The first is a voltage-
like, fast variable whose dynamics includes a cubic nonlinearity. This nonlinearity enables
the system to exhibit regenerative self-excitation through a mechanism of positive feed-
back, allowing rapid activation once a threshold is crossed. The second component is a
recovery variable that evolves more slowly and follows a linear dynamics. This variable
introduces a negative feedback that acts to stabilize the system and return it to its resting
state after excitation.

The version of the FHN equations used in most of this thesis work is as follows [9,10, 12,

1]:

x=a(x—x*/3+y), (13a)
y'z—é(x—kby—]), (13b)

where x(¢) denotes the fast variable corresponding to the cell membrane potential, while
y(t) represents the slower recovery variable. The quantity J functions as an external stim-
ulus current. The parameters a and b are proportional to the ratio of inductance to capac-
itance and to the electrical resistance of the cell membrane, respectively [12]. They are
assumed to be positive, a > 0 and b > 0, as this ensures that the behavior of the model
is physically meaningful in its typical applications. As will be shown later, these parame-
ters also play a critical role in determining both the period and the shape of the resulting
oscillations.

The above system of equations possesses an equilibrium point, whose stability is gov-
erned by a critical threshold value € of the external stimulus J. This threshold, which is
where a Hopf bifurcation takes place, determines whether the system remains at rest or
transitions into oscillatory behavior. To calculate &, let us first impose the general condi-
tion for the occurrence of an equilibrium point, which is that both derivatives, x and y, are
zero. This yields the following equations:

3
a (xh — ?h +y;,> =0, (14a)
1
- (xp +by,—J) =0, (14b)

where we have designated with x;, and y;, the coordinates of the specific equilibrium point
we are looking for, where the Hopf bifurcation occurs.

We now extract y, from Eq. (14a) and substitute it into Eq. (14b). From Eq. (14b), we
can then extract the specific value of J, which we call J;,, corresponding to the equilibrium
point where the Hopf bifurcation occurs, which by definition coincides with the threshold
€:

3
X’
Yh = —Xp+ §h7 (15)
x bx3
Jh:82x11+b}’h:xl1+b(_xh+;) =xh(1—b)+7h- (16)
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For a Hopf bifurcation to take place at this equilibrium point, the conditions to be met are
that the trace of the Jacobian matrix of the system of Egs. (13) must be zero, tr(_#) =0,
and its determinant must be positive, det(_#) > 0. The Jacobian matrix for the afore-
mentioned system is defined as

af df
dx  dy
— 17
i 9 dg| (17)
dx dy
where
3
f(xa)’):a(x_3+)’>7 (18)
1
glwy) =——(x+by=J). (19)
Therefore, after calculating the derivatives, one obtains:
2
S = {a(l_lx : _ab} : (20)

Upon imposing the condition tr(_# ) = 0 at the equilibrium point (x;,y;,) where the Hopf
bifurcation occurs, we get:

b b
tr(/):a(l—xi)—;:O = xi:l—?, (21)

from which we take the positive solution:

Xp = 1——. (22)
Let us now plug Eq. (22) into Eq. (16):

b.
8:./h :Xh(l—b)"r‘%

(o i02)-

AL ()

3a2

2 _2a%h— b?
_ e m2abo b - 2 —b. (23)
a

Eqg. (23) implies that we must assume a?—b>0,i.e., a®> b,since the Hopf bifurcation
threshold & must be real and positive to have physical meaning. From the way we have
obtained ¢, it follows that an equilibrium point of the FHN model described by Egs. (13)
is stable when |J| > € and unstable when |J| < € [12, I]. This means that, when J < —¢,
the system is in an excitable resting state (stable equilibrium point), where x(¢) has a con-
stant negative value. If the stimulus J exceeds the lower threshold, i.e. J > —¢, the system
becomes oscillatory, exhibiting periodic spiking activity (unstable equilibrium point). How-
ever, if the external stimulus increases further and exceeds the upper threshold, i.e. J > €,
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Figure 8: Plots of x(¢) produced by the FHN model, corresponding to different ranges of J values
(arbitrary units). (a) —e < J < € (periodic spiking activity). (b) J < —¢ (resting state). (c) J > €
(excitation block state).
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Figure 9: Plots of the nullclines corresponding to Egs. (24a) (blue curves) and (24b) (brown curves).
In panels (a) and (b), the intersection occurs on the left and right branch of the cubic nulicline, re-
spectively, corresponding to stability. In panel (c), the intersection occurs on the middle branch of
the cubic nullicline, corresponding to instability.

the equilibrium point becomes stable again, so the system enters an excitation block state,
where oscillations are blocked by excitation [68] and the system is in fact resting but has
a constant positive value of x(¢). This is illustrated in Fig. 8.

Animportant advantage of the FHN model is that its relative simplicity and two-dimen-
sional nature allow the entire dynamics to be visualized in a single phase portrait, whereas
the Hodgkin-Huxley model requires examining projections of trajectories in a four-dimen-
sional phase space [68]. For example, the relative positions of the two nullclines of the
FHN model help illustrate how the system responds to different values of J. The nullclines
are obtained by setting x = 0 and y = 0 in Egs. (13), and plotting y as a function of x:

3
y= —x+x—, (24a)
3
1
y= E(fo). (24b)

At the intersection of these two curves, by definition, both derivatives vanish, therefore
the intersection geometrically represents an equilibrium point. As J varies, the linear null-
cline shifts vertically, while its slope remains constant at —1/b. When |J| > &, the intersec-
tion lies on either the left branch (J < —&) or the right branch (J > €) of the cubic nullcline.
In both of these regions, |x| > 1, implying that the partial derivative with respect to x of
the right-hand side of Eq. (13a) is negative, a(1 —xz) < 0. This means negative feedback
in the fast subsystem of the model, which supports stable equilibrium points in these two
regions. In contrast, when |J| < &, the intersection occurs on the middle branch of the
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Figure 10: Examples of cubic lattice networks: on the left, homogeneous; on the right, heteroge-
neous (different types). Among the heterogeneous examples, (a) corresponds to variations in the
parameter space of the network units; (b) to variations in the coupling strength (or type of cou-
pling); (c) to variations in both the parameter space of the units and coupling.

cubic nullcline, where |x| < 1 and a(1 —x?) > 0. As a consequence, there is now posi-
tive feedback in the fast subsystem, leading to instability of the equilibrium points in this
region. This is graphically shown in Fig. 9.

3.2 Heterogeneity in Coupled Oscillator Networks

As explained in Sec. 1.3, it is widely accepted that in several biological systems, cellular
diversity plays an important constructive role, increasing the robustness, as well as the
adaptability and sensitivity to external stimuli, of tissues, cell clusters, or more generally
cell systems. It is remarkable that in complex systems physics, the same has been shown
to be true in the case of coupled oscillator networks, where heterogeneity of the compo-
nent units of the network can be responsible for the appearance of emergent properties,
amplifying the network response to an external signal and/or strengthening its stability
against external perturbations. This is one of the key reasons for using coupled oscillator
networks as a basis to model excitable cell networks, especially when investigating the
effects of cellular diversity on network synchronization.

Heterogeneity can be introduced in coupled oscillator network models by appropri-
ately varying the parameter space of the system across the population of its units. The
variation may concern either the parameters that define the dynamics of the units, or the
coupling between units, or both. Fig. 10 provides a visual illustration of these possibilities
in the case of a network with cubic lattice topology.
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3.2.1 Cartwright Model

One of the earliest studies of this kind dates back to the year 2000, when Cartwright intro-
duced a heterogeneous f3-cell network model based on diffusively coupled FHN units [12].
In this model, two distinct types of FHN units are distributed across a network with a cubic
lattice topology. Heterogeneity is introduced by randomly assigning to each unit one of

two parameter values, specifically J; = —v or J; = 4V, in the following equations:
Xi=a x,-—x?/S—ky,-—ﬁ—CZ(xj—xi) , (25a)
JEQ;
. 1
Vi=— (xi +byi —Ji) . (25b)

Egs. (25) are derived from the previously shown FHN equations for an isolated oscil-
lator, Egs. (13), with the addition of a diffusive coupling term C Zjegi (xj — x;) to the first
equation, where the sum is taken across the cells ©; that are coupled to the ith cell, which
areits six nearest neighbors in the cubic lattice. The coupling constant is assumed to be the
same across all connections; thus, heterogeneity is introduced solely through variations
in the parameter space that governs the dynamics of the individual FHN units. It should
be noted that, in this study, v is a positive quantity chosen in such a way that v > &, where
€ is defined by Eq. (23). This means that each FHN unit in the network, taken individually,
is in an excitable, non-oscillatory state; specifically, the units characterized by J; = —v
are in a resting state, while the ones with J; = +v are in an excitation block state (see
Sec. 3.1). Despite this, the study shows that by running numerical simulations on a net-
work comprising 4x4x4 FHN elements, it is possible to observe strong and synchronized
collective oscillations of the network for values of the coupling strength C above a certain
threshold. These collective oscillations represent a remarkable case of emergent network
property, considering that the parameters that define the dynamics of the individual units
correspond to quiescent states. Instead, it can be shown that a homogeneous network
with the same topology, which is composed of identical FHN units (all with J; = —v or all
with J; = 4+V) remains in a non-oscillatory state.

In this work [12], Cartwright also proposed using the above-described network of FHN
units as a model for a B-cell cluster. Building on the analogy with the results obtained from
his FHN network model, he highlighted that the presence of hubs or pacemaker cells in
B-cell clusters is not necessary for the generation of global network oscillations, as such
oscillations can emerge independently of the existence of intrinsically oscillatory units and
instead arise as a collective effect driven by network heterogeneity.

3.2.2 Diversity-Induced Resonance

In the first two decades of the current century, various theoretical studies have docu-
mented similar effects to the one presented in Ref. [12], by investigating the dependence
of collective oscillations of nonlinear oscillator networks on the heterogeneity of their dy-
namical parameters, as well as on the action of external forces/signals to which network
elements may be subjected.

In this context, Tessone et al. [13] investigated two paradigmatic examples: a network
of quartic oscillators and a network of FHN units, both characterized by diffusive, all-to-
all coupling. Like in Cartwright’s work, diversity was introduced by varying an additive
parameter in the dynamical equations, i.e., the equivalent of J; in Egs. (25). However, in
this case, the values J; were extracted from a Gaussian distribution with a mean J,, and a
standard deviation ¢, where o is a measure of the diversity of the network. Both systems
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Figure 11: DIR in an ensemble of heterogeneous, globally coupled bistable oscillators with periodic
external forcing of amplitude A. Panel (a): collective oscillatory activity 1 as a function of o for
different A values. Panel (b): 1 as a function of A for different o values. Reprinted figure with
permission from [C. Tessone, C. Mirasso, R. Toral, J. Gunton. Phys. Rev. Lett. 97, 194101 (2006).]
Copyright 2006 by the American Physical Society. https://doi.org/10.1103/PhysRevLett.97.194101

were subjected to sinusoidal external forcing through a term A sin wt. Both the mean of
the diversity distribution, J,,, and the amplitude of the external forcing, A, were chosen
so that, in the absence of diversity (i.e. for 0 = 0), the external forcing alone would not be
sufficient to push any of the network units from the region of excitability (non-oscillatory)
into the oscillatory regime. This can be expressed by saying that all network units were
subthreshold for o = 0.

Upon increasing diversity, i.e. for ¢ > 0, some units may become suprathreshold when
the external stimulus reaches its maximum intensity, if their diversity parameter J; is large
enough, meaning that they will become oscillatory. Due to the coupling term, the oscilla-
tory units will pull at least some of the units that are still intrinsically in a quiescent state,
making them oscillatory as well and producing a collective oscillatory effect.

As shown in Fig. 11(a), a plot of the collective oscillatory activity of the network as a
function of o exhibits a progressive increase up to a certain optimum value of o, followed
by a decline that tends to zero when o becomes too large. The decline is due to the
fact that, for large o values beyond the optimum, the positions of the J; values of each
unit along the J axis are so scattered that several quiescent units, being very far away
from the threshold, offer too much resistance, and the oscillatory units are not able to
pull them any more (in the FHN case, this is further complicated by the fact that some
units will even fall in the excitation block region). As a consequence, the plot shows a
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relatively sharp resonance maximum corresponding to the optimum value of diversity,
which is why this effect has been named Diversity-Induced Resonance (DIR) by the authors
[13]. Fig. 11(b) shows the dependence of the collective oscillatory activity on the external
forcing amplitude, for different values of o. If we consider the external sinusoidal force as
asignal and the oscillator network as a sensor for this signal, it is clear that an optimal level
of diversity enables a higher sensitivity and a more efficient amplification of the network
response to the signal.

Based on this reasoning, the authors speculated that cellular heterogeneity, which
can be observed in several biological systems, may play a crucial role in the physiological
efficiency of the latter, and that the degree of diversity might have been optimized by
nature through evolution in order to achieve maximum sensitivity and functionality [13].

3.2.3 Other DIR models

A few months prior to the publication by Tessone et al. [13], Paz6 and Montbri6 [69] in-
vestigated a system composed of Morris-Lecar units that were organized into two distinct
subpopulations: one consisting of identical excitable units and the other of identical os-
cillatory units. These units interacted through a global linear all-to-all coupling scheme.
Their study also highlighted the presence of a “pulling” phenomenon, whereby the oscil-
latory subpopulation could induce oscillations in the excitable units, effectively entraining
the entire network. This interaction emerged as the dominant mechanism causing the on-
set of collective oscillatory behavior within the network. Consequently, they found that
the global dynamics of the system could be inferred from the relative abundance of oscil-
latory versus excitable units.

Comparable findings were reported two years later by Chuan-Sheng et al. [70], who an-
alyzed a one-dimensional chain of heterogeneous FHN units with nearest-neighbor inter-
actions, supplemented by a certain number of randomly added long-range links, referred
to as “shortcuts”. In their model, most or all units operated below the excitation threshold
and could be induced to oscillate either by increasing heterogeneity or through external
stimulation. Their analysis demonstrated that the amplitude of global oscillations across
the network could be maximized by tuning key parameters: specifically, by selecting an
optimal level of heterogeneity, an appropriate coupling strength, and a favorable number
of shortcuts. They likewise interpreted the generation of collective oscillatory behavior
as being driven by a subset of intrinsically oscillatory elements that effectively entrain the
excitable ones through network interactions.

3.3 3D Model Based on Heterogeneous FHN Units

In this work, Scialla et al. [I] focused on the long-standing question whether hubs, or pace-
maker cells, in Langerhans islets are a permanently distinct subpopulation of 3-cells or,
vice versa, different B-cell subsets can behave like hubs or standard cells as a function
of time and external factors, such as glucose concentration. To get some insights on this
question, they modeled a Langerhans islet by a 3D system of coupled FHN units with the
same cubic lattice topology as that used by Cartwright (see Sec. 3.2.1). The cubic lattice
topology can be considered reasonably realistic in this context, because each unit of the
cubic lattice has six nearest neighbors and it has been experimentally determined that 3-
cells in a Langerhans islet have six or seven adjacent cells on average [71,72]. In addition,
the cubic lattice used in their simulations comprised 103 FHN units (10x10x10), which is
also consistent with the average number of -cells that form a Langerhans islet. There-
fore, a central objective of this study was to determine whether the existence of hub cells
and their main biophysical properties could be inferred from the overall dynamical be-
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Figure 12: Oscillation x(t) of a single FHN element for different values of parameters
a, b and an external stimulus |J| < € [see Sec. 3.1], corresponding to the oscillatory
regime. Reprinted figure with permission from [S. Scialla, A. Loppini, M. Patriarca, E. Hein-
salu. Phys. Rev. E 103, 052211 (2021)]. Copyright 2021 by the American Physical Society.
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.103.052211

havior of a network of coupled oscillators designed to replicate the electrical activity of a
B-cell cluster.

3.3.1 Choice of Model Parameters and Correlation with 3-Cell Physiology

The dynamical equations used by Scialla et al. [I] to represent their model are the same as
in the work by Cartwright [12], Egs. (25), with some important differences in the choice of
the parameter values. It should be noted that parameters a and b in Egs. (25) determine,
besides the value of € (see Eq. (23)), the shape of x(¢) oscillations. In particular, the os-
cillation period T scales proportionally with the parameter a, so that increasing a results
in longer periods. On the other hand, parameter b primarily influences the proportion
of time the system spends at higher versus lower values of x(¢) during each oscillatory
cycle. This is illustrated in Fig. 12, showing a comparison between slower (Fig. 12(A)) and
faster (Fig. 12(B)) oscillations, corresponding to different combinations of a and b values.
In most of the simulations presented in their study, Scialla et al. used the combination
a = 60 and b = 1.45, corresponding to Fig. 12(A). When time is measured in seconds,
this specific parameter combination produces an oscillatory waveform with a period of
approximately T =~ 150 s. The resulting waveform features a slightly longer duration of
the low-x(¢) phase compared to the high-x(r) phase, closely resembling the characteristic
temporal pattern of bursting oscillations observed in 3-cell clusters [30].

It should be apparent from looking at Fig. 12(A) that the fast action potential spikes
superimposed on slower bursting oscillations, which are typical features of the electri-
cal activity of B-cells (as shown previously in Fig. 2) are not explicitly represented in this
model, which relies on a FHN formulation. Nonetheless, this work was focused on ex-
ploring the collective behavior and synchronization properties of oscillator networks that
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Figure 13: Correspondence between f-cell activity and FHN oscillator states.  Reprinted
figure with permission from [S. Scialla, A. Loppini, M. Patriarca, E. Heinsalu.
Phys. Rev. E 103, 052211 (2021)]. Copyright 2021 by the American Physical Society.
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.103.052211

serve as simplified representations of B-cell clusters, with particular attention to the ef-
fects of heterogeneity. Within this modeling context, the slower bursting component is of
greater interest than the high-frequency spikes, primarily because of its established link
to pulsatile insulin secretion, which is a process of fundamental physiological significance.

The other key parameter in Egs. (25) is J;, which determines whether the ith FHN unit
is in an oscillatory state, corresponding to bursting activity (for |J;| < €), or in an excitable
state (for |J;| > €), as explained in Sec. 3.1, where an expression to determine € from the
values of @ and b is also provided (see Eq. (23)). In this model, J is correlated to the glucose
level G in the bloodstream through some function J = f(G), so that J/ < —& corresponds
to low glucose levels, where -cells are in a quiescent state; the range —€ < J < € cor-
responds to intermediate glucose levels, where B-cells are bursting; and J values above
€ are representative of high glucose levels, where B-cells are in a state of continuous fir-
ing (corresponding to excitation block), with x(¢) constantly positive. This is illustrated in
Fig. 13.

It is important to note that, since J in the FHN equations is a constant, this model
treats the glucose level in the bloodstream as a constant. This assumption is consistent
with most mathematical models that describe 3-cell electrical activity and is supported by
the relevant timescale separation: the bursting dynamics evolves much more rapidly than
the slower physiological processes responsible for altering glucose levels, such as uptake
by peripheral tissues and feedback from hepatic regulation.

To incorporate diversity within the network of coupled oscillators, the model assigns to
each FHN unit a distinct sensitivity to the external input. Mathematically, this corresponds
to associating a different value J; with each oscillator i. From a physiological perspective,
this reflects the assumption that individual B-cells within an islet exhibit varying sensitiv-
ities to glucose concentrations, a premise that aligns well with experimental findings on
B-cell heterogeneity [73-75]. The J; values were sampled from a Gaussian distribution
characterized by a mean J,,, and a standard deviation o, the latter quantifying the degree
of heterogeneity within the oscillator population [13]. As noted earlier, the mean value
Juy corresponds to the average external stimulus and serves as a proxy for blood glucose
concentration. Consequently, it can be modulated over a relatively wide range to reflect
different physiological conditions. The authors performed model simulations correspond-
ing to different J,, and o values, as will be discussed later.

The coupling strength was fixed at C = 0.15, as this value yields an efficient level of in-
teraction among network units: lower values lead to a marked reduction in the amplitude
of global oscillations, while further increases in C do not make any difference. This choice
is further justified and quantitatively illustrated in the following section. From a modeling
standpoint, it represents a biologically plausible compromise, ensuring sufficiently effec-
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Figure 14: Global oscillatory activity p (dots, solid curve, left axis) defined in Eq. (26) and fraction of
hubs F;, (crosses, dotted curve, right axis) defined in Eq. (5) as a function of population diversity o,
for different values of a and b; J,,, = 0. Reprinted figure with permission from [S. Scialla, A. Loppini,
M. Patriarca, E. Heinsalu. Phys. Rev. E 103, 052211 (2021)]. Copyright 2021 by the American Physical
Society. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.103.052211

tive coupling without exceeding realistic physiological limits.

3.3.2 Simulation Results and Estimate of Hub Percentage

After numerically solving the FHN Egs. (25) with the above-mentioned topology and pa-
rameters, the global oscillatory activity of the network, p, was calculated from the expres-
sion:

L v — 31
p_N\/tf/O dr [X(t)—X]", (26)

where N = 10° denotes the total number of units in the network, X (¢) represents the
collective oscillation obtained by summing all individual x;(¢) contributions, and X is the
time-averaged value of X (r) over the interval [0,7]. By definition, the quantity p corre-
sponds to the root mean square amplitude of the global network oscillation X (¢), which
exhibits periodic behavior. As a result, p remains effectively constant with respect to the
choice of t7, provided that ¢, is sufficiently large to encompass multiple oscillation cycles.
The authors verified that a value of 1y = 300 time units satisfies this criterion in their nu-
merical simulations.
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The dependence of the global oscillatory activity p on the diversity parameter o is
illustrated in Fig. 14(a) (solid curve). The results reveal a pronounced resonance centered
at o0 = 0.5, caused by network diversity. The peak value of p observed at this optimal
heterogeneity level is substantially higher than that obtained in the homogeneous case
(o = 0), where all elements have identical dynamical states. The specific value of ¢ at
which the resonance shows its maximum corresponds to the level of heterogeneity that
optimizes collective oscillations within the network. Based on previous studies concerning
the DIR effect [13,69,70], one can speculate that the enhancement arises, at least partially,
from interactions between units that are intrinsically oscillatory—namely, those satisfying
| /| < €—and units that, in isolation, would not oscillate due to either being in a quiescent
or excitation-block regime (|J]| > €), but are nevertheless driven into oscillatory behavior
through coupling and resonance mechanisms. However, based on Cartwright’s results [12]
(see Sec. 3.2.1), we must assume that interactions between excitable units play a critical
role as well, independently of the presence of oscillatory elements.

Following the introduction of heterogeneity through a Gaussian distribution of J; val-
ues, and the subsequent analysis of global oscillatory behavior, it becomes a natural step
to classify network elements according to their intrinsic dynamical regime. Specifically,
oscillators for which |J| < & fall within the oscillatory domain and can thus be interpreted
as pacemaker units or “hubs” within the network. Conversely, elements with |J| > € are
considered non-hubs; although they are not intrinsically oscillatory, they may be recruited
into active dynamics through their interactions with the rest of the network, with their re-
sponsiveness depending on how far their J; values lie from the oscillatory threshold.

The proportion of hubs relative to non-hubs that corresponds to the maximum of the
DIR provides an estimate of the most effective network composition, as it yields the high-
est level of global synchronization. This ratio can be quantified by evaluating the normal-
ized Gaussian integral

1 e (J—T)?
Fy o ). dJ exp |: 752 :| , (27)
which, by definition, gives the fraction of oscillators in the population whose J; values lie
within the interval |J| < €, thus representing the proportion of hubs.

The behavior of F}, as a function of the diversity parameter o, evaluated for a = 60 and
b =1.45,is depicted in Fig. 14(a) (dotted curve). At the resonance peak located at 6 = 0.5,
the calculated hub fraction is Fj, = 0.053, corresponding to approximately 5% of the total
population. This value aligns well with experimental data obtained via optogenetic tech-
niques [21,76-78], which report typical hub fractions in the range of 1-10%. It is important
to note that this prediction depends on the particular choice of model parameters a and b
in Egs. (25). The values of a and b corresponding to Fig. 14(a) were selected to reproduce
the characteristic oscillation period of individual FHN units so as to match experimental
observations of -cell dynamics, as explained in Sec. 3.3.1. The parameter values corre-
sponding to Fig. 14(b), which generate oscillations with a much shorter period, result in a
different resonance profile and fraction of individually oscillatory units.

These findings indicate that the in vivo behavior of 3-cells in Langerhans islets, when
considered from the perspective of collective dynamics and network structure, is compat-
ible with the intrinsic properties of a FHN oscillator network with cubic lattice topology
and optimal heterogeneity. Additionally, as shown in Fig. 14, increasing ¢ beyond the res-
onance optimum leads to a monotonic decline in p. For instance, at 6 = 2, where p is
reduced to approximately one-third of its peak value, the corresponding hub fraction Fj,
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drops to around 1%. This underscores the direct relationship between the proportion of
intrinsically oscillatory units and the efficiency of collective oscillations, offering a poten-
tial mechanistic insight into how disruptions in the optimal hub/non-hub balance, such as
those induced by pathological conditions, may impair coordinated activity in pancreatic
islets.

3.3.3 Effect of Faster versus Slower Oscillations

For comparison purposes, the authors repeated the simulations using the alternative pa-
rameter set a = 3 and b = 1, which corresponds to the faster oscillatory waveform de-
picted in Fig. 12(B). The detailed results are shown in Ref. [I]; we just mention here that
the estimated fraction of hubs in this case falls in the range F;, = 0.36 — 0.52, i.e., a much
higher amount than in the previously examined case, where Fj, =~ 0.05.

This comparison suggests that sustaining faster global oscillations requires a relatively
higher proportion of hubs to ensure effective synchronization across the network. This
observation is consistent with both physical reasoning and physiological plausibility. In
the case of slower oscillations, non-hub units—i.e., those that are not intrinsically oscilla-
tory—have more time to respond to network interactions and become synchronized with
the hubs through coupling mechanisms. As a result, a smaller fraction of hubs is sufficient
to achieve coherent global dynamics. In contrast, faster oscillations provide less time for
such entrainment, making synchronization more difficult unless a larger portion of the
network is composed of hub units. This contrast is intentionally accentuated in the above
comparison by employing markedly different values of a and b between the slow and fast
wave scenarios. Nonetheless, the authors conclude that it would be valuable for future
experimental studies to investigate this trend by comparing the proportion of active pace-
maker cells during slow and fast bursting oscillations in 3-cell clusters.

Another noteworthy observation is that, for both parameter combinations analyzed,
the value of o at which the diversity-induced resonance reaches its peak exceeds the
corresponding threshold € for intrinsic oscillatory behavior. Specifically, € ~ 0.033 for
a=060,b=1.45,and € =~ 0.279 for a = 3, b = 1. This suggests that network elements
with |J| > €, while not individually oscillatory, can still make a positive contribution to
resonance if their J; values are not too far from the oscillatory range. Such excitable units
can be recruited into collective oscillations via coupling, thereby enhancing the overall
synchronization. In contrast, elements located at the extreme tails of the distribution,
which lie far from the |J| < € interval, remain unresponsive to coupling and therefore
hinder global oscillatory activity. The highest network performance is thus achieved at the
diversity-induced resonance maximum, where there is an optimal balance between the
number of pacemakers and the number of excitable units that can be more easily driven
into an oscillatory behavior, while minimizing the influence of non-responsive elements.
Increasing ¢ beyond this point diminishes performance by simultaneously reducing the
fraction of hubs and easily excitable units, while increasing the proportion of inactive,
isolated elements.

3.3.4 Effect of Heterogeneity on Network Response to Varying Glucose Levels
The authors also analyzed the effect of displacing the mean value J,,, of the J; distribution
relative to the center of the intrinsic oscillatory interval |J| < €, while keeping the standard
deviation o fixed. This analysis provides insight into the network’s capacity to sustain
global oscillatory behavior when the external stimulus progressively shifts away from the
range associated with intrinsic oscillator activity.

The simulations were carried out using a = 60 and b = 1.45, corresponding to the
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Figure 15: Global oscillatory activity p, defined in Eq. (26), as a function of the aver-
age value J,, of the stimulus, for different values of population diversity ¢ (a = 60, b =
1.45). Reprinted figure with permission from [S. Scialla, A. Loppini, M. Patriarca, E. Hein-
salu. Phys. Rev. E 103, 052211 (2021)]. Copyright 2021 by the American Physical Society.
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.103.052211

reference waveform described earlier, and were performed for three different values of
o representing distinct levels of heterogeneity: o = 0 (a fully homogeneous population),
o = 0.5 (corresponding to the resonance maximum), and o = 2.0 (an example of pro-
nounced diversity).

As shown in Fig. 15, oscillator diversity significantly broadens the range of external
stimulus values J over which the network exhibits efficient global oscillations. In the ab-
sence of diversity (o = 0), all units are identical, and thus global oscillatory activity is
confined strictly to the narrow interval |J| < € ~ 0.033. In contrast, introducing hetero-
geneity enables the network to respond effectively across a much wider span of J values.
This range increases with growing o, although the efficiency of global oscillations, as quan-
tified by p, diminishes beyond the resonance optimum. This trade-off is clearly illustrated
by the comparison between the p curves for 6 = 0.5 and ¢ = 2.0, where the broader
range of activity at higher ¢ is accompanied by a noticeable reduction in amplitude.

Further insight can be gained by examining the temporal evolution of the global sig-
nal X(¢), defined as the sum of the individual x;(¢) contributions, for various degrees of
diversity. For example, at Jav = 0.5, the network exhibits resonant behavior and global
oscillations for both o = 0.5 and o = 2.0. However, a direct comparison of the corre-
sponding X (¢) traces (see Fig. 16) reveals substantial differences in both amplitude and
regularity of the oscillations, which are reflected in the respective p values for the two
parameter sets.

These differences can be attributed to two main factors: first, the broader J; distribu-
tion at higher o results in a larger fraction of units with J; values lying well outside the
oscillatory regime |J| < &, making them less responsive to coupling. Second, the number
of intrinsically oscillatory units (hubs) decreases substantially with increasing o, further
reducing the network’s ability to sustain coordinated global activity.

From a physiological perspective, progressing from lower to higher values of J along
the horizontal axis in Fig. 15 can be interpreted as simulating an increase in glucose con-
centration, ranging from basal to elevated levels, as discussed in Sec. 3.3.1 and illustrated
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Figure 16: Global network oscillation X (r) for different values of population diversity o, at the av-
erage value J,, = 0.5 of the stimulus (a = 60, b = 1.45). Reprinted figure with permission from [S.
Scialla, A. Loppini, M. Patriarca, E. Heinsalu. Phys. Rev. E 103, 052211 (2021)]. Copyright 2021 by the
American Physical Society. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.103.052211

in Fig. 13. This observation supports the idea that B-cell heterogeneity may serve as a
functional mechanism to enhance the robustness of islet oscillatory responses across a
broad spectrum of glucose levels.

Another noteworthy feature in Fig. 15 is the asymmetry in the shape of the p(J,,)
curves for o = 0.5 and o = 2.0. Specifically, the rise in oscillatory activity on the left-hand
side of each curve is more gradual compared to the steeper decline observed on the right-
hand side. Nevertheless, the right half of each curve spans a wider range of J,, values.
Interpreting this again in physiological terms, one could say that as glucose levels increase,
the network gradually enhances its collective oscillatory behavior and sustains a high level
of activity for as long as the system remains capable of compensating for the strengthening
input. This type of response profile, where global activity ramps up and is then maintained
before an eventual decline, is consistent with predictions from more detailed biophysical
models [79]. However, the model based on coupled oscillators offers a more transparent
framework for understanding the fundamental role of network dynamics and oscillator
diversity in shaping such behavior.
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4 HETEROGENEITY AND NOISE

In the past two-three decades, increasing attention has been devoted to understanding
how noise can play a constructive role in a variety of systems across biology, physics, and
chemistry. Rather than merely being an undesired perturbation, noise has been shown
to enhance or even enable complex dynamical behaviors, under certain conditions. This
line of inquiry has become a central theme in the study of complex systems, particularly
in exploring mechanisms by which variability contributes to functionality and emergent
phenomena. A landmark contribution to this area was the conceptual development of
stochastic resonance (SR), introduced in the early 1980s. Originally proposed as a mecha-
nism to account for the periodic recurrence of Earth’s ice ages [80], the idea of SR sparked
wide interdisciplinary interest. Since then, it has been extensively investigated across
numerous fields, from neuroscience [81, 82] and more generally biology to climate sci-
ence [83], chemical kinetics [15], and electronic circuits [84], demonstrating that noise,
when properly tuned, can enhance the detection or transmission of weak signals and lead
to optimized system performance.

4.1 Stochastic Resonance and Noise-Driven Resonance Phenomena

Stochastic resonance (SR) is a phenomenon that can arise in nonlinear systems subjected
simultaneously to a weak periodic input and stochastic fluctuations. Under suitable condi-
tions, the presence of noise does not simply perturb the system but instead facilitates an
enhanced response to the external signal. Specifically, when the noise intensity is tuned
appropriately, the output of the system becomes synchronized with the periodic input,
leading to an effective amplification of the signal, a counterintuitive effect that highlights
the constructive role noise can play in nonlinear dynamics [15].

The concept of SR was introduced in a seminal paper by Benzi et al. [85], in which the
authors proposed this idea as a mechanism to explain the periodic alternation between
glacial and interglacial climate states on Earth. This alternation is more or less consistent
with the period of a peak in the intensity of solar radiation, which occurs approximately
every 10° years. However, the height of this peak, corresponding to about 0.1% of the so-
lar constant, is not sufficient to explain a 10 K jump in average global temperatures, which
characterizes the alternation between glacial and interglacial climate states. Specifically,
it can be calculated that this external forcing alone cannot account for changes larger than
about 1K around a stable climate state. Benzi et al. [80] hypothesized that the alternation
may derive from the combination of two factors: a periodic external forcing, with a pe-
riod of 107 years, and an internal noise factor, associated with random fluctuations of the
Earth’s temperature, which are typically caused by large-scale oceanic and atmospheric
processes and volcanic eruptions. The latter fluctuations, which can be modeled as ran-
dom noise, are able in principle to cause transitions with a rate given by the inverse of
Kramers time. However, such transitions have a very low probability because the energy
associated with typical climatic fluctuations is much smaller than the height of the poten-
tial barrier separating stable states. Moreover, these transitions would occur randomly,
without any periodicity.

The model they used is based on the following Langevin equation [80]:

dx

o =x(a—x*)+Acosot +n&(r) (28)

where x(¢) is the dynamical variable of interest, which in this case is temperature; a is
a control parameter that defines the shape of the double-well potential (see discussion

46



U(x)
1

N [
N N

Figure 17: Plot of the symmetric double-well potential defined in Eq. (31), showing the coordinates
of the minima and the height of the potential barrier.

below); A cos @t is a weak periodic forcing; and 1) is the noise intensity. & (¢) is a Gaussian
white noise that satisfies the following conditions:

(E@)=0 (29)

(EM)E(t) =0o(t—1) (30)

Eq. (29) expresses the fact that the noise is unbiased, i.e., it fluctuates equally in the pos-
itive and negative direction. Eq. (30) states that the noise is uncorrelated in time. The
latter condition implies that the noise is white, i.e., it has equal power at all frequencies.

In the absence of external forcing (A = 0) and noise (1 = 0), the deterministic part of
Equation (28) corresponds to motion in a double-well potential:

1 1
Ux) = —Eax2 + ZX4' (31)

When a > 0, this potential has minima at x = ++/a and a maximum at x = 0, forming two
1

stable symmetric wells separated by a barrier of height AU = Zaz* as shown in Fig. 17.

Let us now consider the effect of the external periodic forcing alone, Acos wt, on a
system subjected to this double-well potential in the absence of noise, where A is cho-
sen to be small enough that the contribution from this term is not capable of causing a
transition between the two potential wells. This deterministic system will simply oscillate
around the potential minimum in one of two wells.

On the other hand, the addition to this system of white noise alone (without periodic
forcing) can cause random transitions between the two potential wells, characterized by

absence of periodicity and an average transition rate W given by [86, 87]:

vOUal (_MU) , (32
2r n

where 7, is Kramers time; U”(0) and U"”(y/a) are, respectively, the curvature of U (x)
at the maximum of the potential barrier, occurring at x=0, and at one of the potential
minima, occurring at x = /a; AU is the height of the potential barrier; and 7 is the noise
intensity defined in Eq. (28).

W=1/~
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If both the external periodic forcing (with small A) and the white noise are present
together, as in the complete Eq. (28), then there are three possible regimes: a) in the case
of small noise intensity 7, transitions between the two minima occur rarely and irregu-
larly, without periodicity; b) in the case of large values of 1, the dynamics is dominated by
noise and transitions occur very frequently and in a totally random fashion; c) for suitable,
intermediate values of 17, Kramers time becomes about equal to half the period T of the
external forcing oscillations, i.e., 7, = T'/2, with the result that the effects of the external
forcing and noise are synchronized. In this case, the system is able to transition from one
potential minimum to the other in a periodic fashion and in phase with the external signal.
This is the condition corresponding to SR, where the effect of an external forcing or signal
is amplified by a synergistic interaction with noise of appropriate intensity.

Table 1: Comparison of different noise-induced resonance phenomena

Resonance Key Mechanism System Type Role of Noise Key References
Type
Stochastic Synchronization of noise- Bistable systems Enables transitions over Benzi et al, J
Resonance induced transitions with (e.g., double-well potential barrier; max- of Physics A
(SR) a weak external periodic potential). imal efficiency when (1981) [80];
signal. Kramers time matches Benzi et al., Tel-
signal period. lus (1982) [85].
Autonomous Resonance via synchro- Bistable or excitable Induces transitions Gang et al., PRL
SR nization with internal systems with inter- aligned with emergent (1993) [88].
slow modulation; no nally fluctuating dy- timescales.
external periodicity. namics.
Self-Induced Noise-triggered tran- Excitable  systems Weak noise perturbs fast Muratov et
Stochastic sitions in fast variable with slow-fast variable; timing is set by al., Physica D
Resonance synchronized with deter- timescale  separa- slow dynamics. (2005) [89].
(SISR) ministic slow variable in tion.
a multiscale system.
Coherence Regularity emerges from Excitable systems. Noise alone induces Pikovsky and
Resonance noise alone, without any spikes; regularity is max- Kurths, PRL
(CR) periodic signal or slow imized at optimal noise (1997) [90].
modulation. intensity.

Beyond its wide range of applications across various disciplines, SR has inspired the
discovery of other constructive noise-induced phenomena that exhibit similar behavior.
For example, it has been demonstrated that SR can emerge even in the absence of an
external periodic signal, arising exclusively from the nonlinear internal dynamics of the
system [88]. This phenomenon has been referred to as autonomous SR.

Another interesting example is provided by self-induced stochastic resonance (SISR)
[89, 91], which we will describe in detail in the next section. In this case, an excitable sys-
tem, e.g., a FHN unit, characterized by a strong separation of timescales, exhibits coherent
oscillatory behavior due to the interplay between weak noise and the intrinsic slow dy-
namics of the system. Specifically, the noise perturbs the fast variable (which governs the
system’s rapid transitions), while the slow variable controls the timing at which the sys-
tem becomes sensitive to those perturbations. This concerted interaction results in the
emergence of a regular temporal structure, even though the system is not subjected to
any external modulation.

Another closely related phenomenon is coherence resonance (CR), introduced by Pi-
kovsky and Kurths [90]. Unlike both classical SR and its self-induced version, CR occurs
in the complete absence of any internal or external periodic modulation. It arises in ex-
citable systems, where the application of noise alone can induce quasi-periodic spiking
behavior. The regularity of these noise-induced spikes reaches a maximum at an optimal
noise level, beyond which the system becomes increasingly irregular again. CR is particu-
larly intriguing because it shows that intrinsic system properties, such as excitability and
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timescale separation, are sufficient to generate order from the addition of noise, even
without any guiding periodic structure.

Together, all of the above mentioned phenomena, i.e., SR, autonomous SR, SISR, and
CR, summarized in Table 1, illustrate some of the diverse and often counterintuitive ways in
which noise can improve signal processing and temporal regularity in nonlinear systems.

In addition to its impact on individual nonlinear systems, the influence of noise has
been widely investigated in the context of its capacity to enhance synchronization within
networks of coupled oscillators [92-94]. These studies have considered both scenarios,
i.e., where an external periodic driving is present and where it is absent, highlighting the
constructive role of noise in facilitating coherent collective phenomena.

4.2 Role of Noise in Biological Systems

Biological systems are inherently noisy. At all levels of organization, from signaling path-
ways used in intercellular communication, to neuronal circuits and physiological rhythms,
random fluctuations are an unavoidable consequence of the probabilistic nature of bio-
logical interactions and the influence of a fluctuating environment. While noise was his-
torically regarded as a perturbation that impairs the precision and reliability of biological
processes, it is now widely recognized that noise can play a constructive and even essen-
tial role in the functioning of living systems.

As illustrated in Sec. 4.1, one of the most compelling examples of the beneficial effect
of noise is SR. Following its introduction in the context of climate dynamics, SR has since
been observed or proposed in a wide range of biological contexts. These include sen-
sory systems, where it can enhance signal detection in mechanoreceptors, electrorecep-
tors, and photoreceptors, as well as in neural dynamics, where it can improve information
transmission and temporal precision [81, 95, 96].

Beyond single-cell dynamics, the role of noise has been extensively investigated in
networks of coupled biological oscillators, such as neural populations, genetic circuits,
and pancreatic -cells. In such systems, through mechanisms like not only SR but also au-
tonomous SR, SISR and CR, noise has been shown to facilitate synchronization, promote
coherence among oscillators, and even induce collective rhythms in the absence of ex-
ternal pacing. These effects may be particularly important in biological systems where
external periodic inputs are weak, irregular, or completely absent, and where coherent
behavior must emerge from the interplay of internal dynamics and stochastic fluctua-
tions [82,97-99].

In the case of pancreatic -cells, which exhibit bursting electrical activity that is crucial
for pulsatile insulin release, noise plays a multifaceted role. Experimental and computa-
tional studies suggest that stochastic fluctuations can both trigger and modulate bursting
patterns in Langerhans islets [17,100-102]. It has been shown that noise can enhance the
robustness of burst generation, help overcome quiescent states, and promote synchro-
nization between otherwise weakly coupled cells. These effects are important for under-
standing how oscillations in insulin secretion observed at the systemic level emerge from
complex intracellular and intercellular dynamics. Moreover, models of coupled excitable
or bursting B-cells indicate that noise may support the emergence of collective oscilla-
tions even in the absence of strong external stimuli, providing an example of autonomous
SR or SC relevant to the endocrine function.

Understanding the role of noise in biological systems is not only of theoretical interest,
but also holds practical implications. For example, it can inform the design of bioinspired
computing systems as well as neural prostheses, and in therapeutic strategies for correct-
ing pathological heart rhythms. Overall, this challenges the traditional view that biological
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function must depend on precise deterministic control, offering instead a picture of bio-
logical reliability that is deeply rooted in and enhanced by stochastic processes.

4.3 Diversity and Noise in Excitable Cell Networks

At the turn of the 21st century, it was discovered that effects qualitatively similar to those
induced by noise could also arise in networks of coupled oscillators due to population
heterogeneity, sometimes referred to as quenched disorder [12,13]. This observation led
to the formulation of the concept of DIR, described in Sec. 3.2.2, which concerns the en-
hancement of the collective response of a system to an external input that results specifi-
cally from variability among the individual units composing the network [13,103-111]. Anal-
ogously to SR, DIR has been shown to manifest in both externally driven systems and in
the absence of any external periodic forcing. In the latter case, the phenomenon is re-
ferred to as diversity-induced coherence [112]. These findings highlight a subtle interplay
between noise and diversity, which, despite their distinct origins, can lead to comparable
dynamical outcomes under certain conditions.

However, it isimportant to point out [Il] that typical noise-induced resonance phenom-
ena, e.g., SR and CR, may arise even in isolated systems consisting of a single nonlinear
element, and are therefore not necessarily collective in nature. In contrast, DIR is inher-
ently a collective effect, as it is intrinsically linked to statistical variability across a popula-
tion of interacting units. Noise can be understood as representing fluctuations over time
within the state space (or phase space) of a system, whereas heterogeneity reflects vari-
ations across a population in the parameter space of the system. In this sense, noise and
heterogeneity act as analogous sources of disorder, but they operate on distinct aspects
of the model: noise perturbs the dynamical evolution of individual systems over time,
while heterogeneity introduces static differences across members of a population [113].
Another fundamental distinction lies in the reproducibility of system responses: a hetero-
geneous population tends to exhibit consistent and repeatable dynamics across different
trials, owing to the fixed nature of parameter distributions, whereas systems influenced
by noise produce outcomes that are only consistent when considered statistically, i.e., in
terms of averaged behavior over multiple realizations [113]. Despite these important dif-
ferences between the two types of disorder, many studies have emphasized the formal
similarities between SR and DIR, often portraying them as different manifestations of the
same underlying mechanism [13,114], while other contributions have focused on how tun-
ing the level of heterogeneity can enhance noise-induced resonances or, vice versa, how
the presence of noise can amplify resonance effects arising from diversity [115-118].

Instead, relatively few works have addressed the deeper implications of the funda-
mental difference between the two mechanisms, namely that DIR stems from structural
variability in a population, while SR is driven by stochastic perturbations [119, 120]. This
conceptual distinction remains an open area of investigation and has not yet been ex-
plored in a fully systematic and quantitative manner [Il].

4.4 Interplay Between Diversity and Noise: A Quantitative Study

4.4.1 The Model

In Ref. [Il], the authors attempted to address this gap by studying a prototypical example,
represented by a network of coupled FHN units with cubit lattice topology, which was used
to model a B-cell cluster, as in Ref. [I]. The key difference versus Ref. [I] is the addition of
noise to the dynamical equations of the system, which become:
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Xi=a x,-—x?/3+yi+C Z ()ijxi)+§i(t) s (33a)
JEQ;

1
Vi= = (xitbyi—Ji). (33b)

The sum over j in Eq. (33a) is limited to the set Q; of the n = 6 neighbors coupled to the
ith oscillator. Just like in Egs. (25) for the corresponding deterministic system, the J; pa-
rameters in Egs. (33) are different for each network element and are used to introduce
diversity; the ith element will be in an oscillatory state if |J;| < € or in an excitable state
if |J;| > €, with € defined by Eq. (23) (see Sec. 3.1). The J; values, which are drawn from
a Gaussian distribution with standard deviation 6; and mean value J,,,, are randomly as-
signed to network elements. The standard deviation o, is used in the model as a measure
of oscillator population diversity, while the mean value J,,, expresses the position of the
diversity distribution with respect to the oscillatory range (—¢€,+¢€).

The term &;(¢) in Eq. (33a) is a Gaussian white noise with zero mean, standard devi-
ation o,,, and correlation function (&(t)&;(t')) = 0,28;;8(t —"), meaning that &(¢) and
(1) (i # j) are statistically independent of each other. Similarly to o, for diversity, the
standard deviation o, is used as a measure of the noise applied to each network ele-
ment. The reason for incorporating the noise term &;(¢) specifically into the first equation
(Eq. (33a)), which governs the fast variable, is to ensure that the influence of noise on the
system’s dynamics is maximized. This choice facilitates the investigation of how stochas-
tic fluctuations interact with the heterogeneity of network units. In contrast, adding the
noise term to the second equation, associated with the slower recovery variable, would
lead to a significantly reduced or no effect on network synchronization [115], as stochastic
perturbations would be averaged out to zero over time.

The authors of Ref. [Il] proposed the use of the above model to mimic various excitable
biological systems, such as pancreatic -cell clusters and some types of neurons [12, 115,
121-123]. In their study, they focused on analyzing the combined effect of diversity and
noise on the synchronization and efficiency of collective network oscillations. Their goal
was to identify potential synergies or antagonistic effects, as well as to better understand
differences in the action mechanisms of the two sources of disorder.

4.4.2 Qualitative Mean Field Analysis

The white noise term &;(¢) in Eq. (33a) can be interpreted as modeling a randomly vary-
ing external input current. Such fluctuations are able to vertically displace the nullcline
associated with the variable x;, thereby causing a momentary shift in the position of the
equilibrium point of each FHN unit. Depending on the magnitude and direction of this
shift, as well as on the specific value of the parameter J;, the unit may undergo a change
from a stable to an unstable equilibrium, or vice versa, corresponding to a transition in
the oscillator state from quiescence to active spiking, or vice versa [Il].

To study this mechanism from a collective viewpoint, one can introduce the global
variables X (t) = N~' YN x.(t) and Y (1) = N~' ¥, y,(¢) and use the transformation x, =
X + §,, assuming that diversity is small [II, lll, 13,124]. Upon substitution in Egs (33), one
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obtains

. X+8)°
X=a X+6,-f¥+yi+CE(X+6i7X75i)+§i(t) , (34a)
in—X+6i+byi_Ji7 (34b)
a

where the transformation y, =Y + 8, has not been used, because the y, terms are all
linear. Also, for simplicity, all-to-all coupling is assumed, therefore the sum in Eq. (34a)
runs over all i’s and j's.

Developing the cube of the binomial in Eq. (34a) leads to

X34 8% +3X25;+3X 87

X:a X+5i— 3

+yi+CY (X+8;-X—8) —l—éG(t)} . (35)

Under the assumption that the distribution of J; values is symmetric and &;'s are small, cor-
responding to low diversity, one can make the approximations ):ﬁ.vzl ;= 0and Zf»\':l 813 =~ (.
Therefore, averaging Eq. (35) and Eq. (34b) over all i’s leads to

X=a X—g—xiiéﬁﬂ/% (t) (36a)
- 3 Nl':l i G 9
. X +bY —J,
y:f—’_ijw’ (36b)
a

which, using the definition M = %):?’:1 52, can be rewritten as

X:a[X(l—M)—X:—i—Y—i—éc(t)] , (37a)

X +bY —Jy
; .

Y = (37b)
In Egs. (37), M expresses the level of diversity (it increases with increasing diversity and
M = 0 for a homogeneous system with 6; = 0). Noise effects are represented by a
global white noise term (1) = N~'Y,; & (t) with zero mean and correlation function
(E(1)E(1')) = N~1628(1 —1').

It is instructive to analyze how diversity and noise influence the nullclines associated
with Egs. (37). Variations in diversity, i.e., in the standard deviation o, of the J; distribu-
tion, result in a change of the parameter M. This, in turn, alters the shape of the cubic
nullcline by modifying the coefficient of the linear term in X, as illustrated in panels (a)
and (b) of Fig. 18. Such deformation of the nullcline geometry demonstrates that diversity
has the capacity to exert a substantial influence on the overall dynamics of the network,
regardless of whether the mean value J,, lies within or outside the intrinsic oscillatory
interval (—¢,+¢€).

By contrast, the effect of the global noise term £g(¢) is restricted to inducing vertical
displacements, either upward or downward, of the cubic nullcline. These shifts result
from instantaneous stochastic fluctuations and leave the nullcline shape unchanged (see
the comparison between dashed and solid curves in Fig. 18). This behavior implies that
noise is unlikely to exert a beneficial or resonance-enhancing influence when diversity is
already tuned to an optimal value (i.e., under the conditions that characterize DIR) and
the mean input J,, is set to zero. Under such circumstances, the network resides in an
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Figure 18: Nullclines of Egs. (37a) and (37b) for different values of J,, and M. A comparison be-
tween panel (a) and (b) shows the effect of M on the shape of the cubic nullcline. The area de-
limited by the dashed curves above and below the cubic nullcline in each panel illustrates the ef-
fect of instantaneous shifts caused by noise with an amplitude of up to #1. Reprinted with per-
mission from [Stefano Scialla, Marco Patriarca, and Els Heinsalu. The interplay between diversity
and noise in an excitable cell network model. EPL 137 (2022) 51001.] Copyright © 2022 EPLA.

https://iopscience.iop.org/article/10.1209/0295-5075/ac5cdb
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inherently oscillatory and resonant regime, and the presence of noise would more likely
act as a perturbing rather than constructive factor.

The situation changes significantly when the mean input J,, is different from zero, as
depicted in panel (c) of Fig. 18. In this case, the nonzero value of J,,, introduces a constant
term that translates the second nullcline vertically, either upward or downward, depend-
ing on the sign of J,,. This shift modifies the location of the equilibrium point of the
system and may induce a transition from an oscillatory regime to an excitable one. Un-
der such conditions, noise can constructively interact with diversity by generating rapid
vertical shifts of the cubic nullcline that partially offset the displacement caused by J,,,
thereby enabling the emergence of collective network oscillations.

It should also be noted that the system under consideration does not include a peri-
odic driving force of the form Asin Q. As discussed in the previous sections, such a term
is not required for the appearance of either noise- or diversity-induced resonance phe-
nomena. Furthermore, its inclusion would impose an additional constraint by requiring
the alignment of two characteristic timescales: the period of the external drive and the
intrinsic oscillation period of the FHN units constituting the network.

4.4.3 Key Simulation Results and Discussion

Ref. [I] presents the results of several numerical simulations aimed at quantitatively study-
ing the combined effect of diversity and noise on network synchronization. The network
topology and dimensions, the coupling constant, and the parameters a and b in the FHN
equations were the same as in Ref. [I], in order to produce a model resembling the electri-
cal behavior of pancreatic 3-cells. Consequently, the value of € was the same as in Ref. [I],
i.e., € ~0.033.

The network synchronization efficiency p was computed using the same definition as
in Ref. [l], specifically as given by Eq. 26. For each fixed value of J,y, the quantity p was
evaluated over a range of diversity values 0 < o, < 2.5, and simultaneously over a range
of noise standard deviation values 0 < ¢,, < 5. Upon plotting p as a function of both
o, and o, for the following diversity distribution mean values: J,, = 0,£0.5,£1, five
three-dimensional surfaces were obtained, showing the effect of the interaction between
diversity and noise in different J,, regimes.

In the parameter regime defined by J,, = 0 (see Fig. 19), a condition in which a substan-
tial portion, or even the entirety, of the network units fall within the intrinsic oscillatory
range, the simulation results indicate that both diversity and noise are individually capable
of inducing a resonance phenomenon. When the system is explored along the diversity
axis (i.e., setting o;,, = 0, thereby eliminating noise) or along the noise axis (i.e., o, =0,
thereby removing diversity), a clear resonance peak is observed in both cases. In each
scenario, the synchronization efficiency p reaches a peak approximately 20-25% higher
than its value at the origin of the 6,;-0,, parameter space.

Furthermore, for J,, = 0, the two sources of disorder, diversity and noise, appear to
contribute in a mutually independent manner, with no indication of a synergistic enhance-
ment. In fact, the global maximum of the response surface is located precisely at the
point corresponding to optimal diversity in the absence of noise, specifically at 6; = 0.5
and o;,, = 0. This maximum, represented by a solid blue dot in Fig. 19, lies directly on the
diversity axis.

From this optimal point, any movement toward the interior of the surface, i.e., any
increase in noise while maintaining diversity, fails to produce an additional enhancement
in global network synchronization. This observation aligns well with the predictions de-
rived from our qualitative mean-field analysis, which suggests that, under conditions of
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Figure 19: Global oscillatory activity p as a function of diversity (c;) and noise (o), for Joy = 0.
The full blue dot highlights the global surface maximum, which is coincident with the DIR maxi-
mum. The empty red dot corresponds to the noise-induced resonance maximum. Reprinted with
permission from [Stefano Scialla, Marco Patriarca, and Els Heinsalu. The interplay between diver-
sity and noise in an excitable cell network model. EPL 137 (2022) 51001.] Copyright © 2022 EPLA.
https://iopscience.iop.org/article/10.1209/0295-5075/ac5cdb

optimized diversity and J,, = 0, the addition of noise is unlikely to exert a beneficial or
amplifying effect on collective oscillatory behavior.

At the opposite extreme of the J,, spectrum, namely when J,, = *1 (see Fig. 20),
the behavior of the system differs markedly from the J,, = 0 regime. In this case, the
majority of the network units lie outside the intrinsic oscillatory interval, either below it
when J,, = —1, or above it when J,, = +1. Under such conditions, the incorporation of
noise in addition to diversity consistently produces a marked enhancement in the overall
level of network oscillatory activity.

This observation aligns with theoretical insights based on the behavior of global system
variables. When J,, = —1, most elements of the network are situated in an excitable
regime, meaning they are below the threshold required for self-sustained oscillations.
However, strong positive fluctuations introduced by the noise term can transiently elevate
these elements into the oscillatory regime by effectively injecting a temporary positive
current. Conversely, when J,, = +1, the majority of elements reside above the upper
bound of the intrinsic oscillatory range, placing them in an excitation-block state. In this
scenario, negative noise fluctuations of sufficient amplitude can lower their effective input
current, transiently bringing them into the oscillatory range.

In both conditions, the interaction between diversity and noise produces a synergistic
effect, leading to a substantial increase in network synchronization. As an illustrative ex-
ample, consider the case J,, = +1: the synchronization efficiency p increases by nearly
50% when comparing the diversity-induced peak (with p ~ 515, indicated by an empty
green dot in Fig. 20, panel (b)) to the global maximum of the response surface (with
p ~ 738, shown as a full blue dot in the same panel), which arises from the combined
influence of noise and diversity.

Another notable feature emerging from the data is that, in this regime, noise appears
to be a more effective driver of resonance than diversity alone. This is evident from the
fact that the noise-induced resonance maxima along the noise axis (denoted by empty red
dots in panels (a) and (b) of Fig. 20) are consistently higher than their diversity-induced
counterparts along the diversity axis (empty green dots in the same panels).
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Figure 20: Global oscillatory activity p as a function of diversity (c,;) and noise (o), for Joy = —1
(panel (a)) and J,, = +1 (panel (b)). The full blue and empty green/red dots in each panel high-
light the global surface maximum, the DIR maximum and the noise-induced resonance maximum,
respectively. Reprinted with permission from [Stefano Scialla, Marco Patriarca, and Els Heinsalu.
The interplay between diversity and noise in an excitable cell network model. EPL 137 (2022) 51001.]
Copyright © 2022 EPLA. https://iopscience.iop.org/article/10.1209/0295-5075/ac5cdb
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It is also important to observe that the location of the DIR peak shifts toward higher
values of o, as J,, increases in magnitude. Specifically, the diversity-induced maximum
occurs at oy = 0.5 when J,, = 0, but shifts to 6; = 1.0 for both J,, = —1 and J,, = +1 (see
empty green dots in Fig. 20, panels (a) and (b)). However, once both noise and diversity
are introduced simultaneously, the global maximum of p shifts back toward the same
optimal diversity value observed in the J,, = 0 regime (see full blue dots in Fig. 20).

The underlying mechanism can be understood as follows: noise introduces random
fluctuations that effectively “scatter” network elements across the J axis, causing them
to move toward or into the oscillatory range. The position from which each element is
stochastically displaced depends on its J; value, which itself is determined by the distribu-
tion of diversity. When this process achieves maximum efficiency, corresponding to the
global peak of the p surface, the optimal diversity for J,, = +1 converges with that found
for J,y = 0.

In summary, for J,, = %1, the interplay between diversity and stochasticity leads to a
pronounced synergistic effect. This interaction significantly broadens the region of param-
eter space where resonance phenomena are observed, compared to what is achievable
when either source of disorder, noise or diversity, is applied in isolation.

Finally, in the intermediate regime corresponding to J,, = £0.5, an in-between situa-
tion can be observed, as described in detail in Ref. [Il].

4.4.4 Concluding Remarks

The theoretical and numerical investigations presented in Ref. [Il] reveal that, although
diversity- and noise-induced synchronization exhibit certain similarities, they differ not
only in how they affect the system individually, but also in how they interact with each
other. Their combined effect depends critically on the location of the mean value J,, of
the diversity distribution relative to the intrinsic oscillatory range of the network elements.
When J,, = 0, meaning that the distribution is centered within the oscillatory regime,
diversity and noise influence synchronization independently, and no synergistic interac-
tion is observed. In contrast, when J,; = %1, so that most elements are placed outside
the oscillatory range, a clear synergy emerges between the two sources of disorder. Un-
der these conditions, their joint action leads to a pronounced enhancement of network
synchronization, with noise exerting a more dominant effect than diversity. These obser-
vations offer valuable insight into the relative contribution of diversity and noise across
different network configurations, highlighting scenarios in which one source of disorder
may effectively be disregarded.

Afurther key result is that, when noise is present, the optimal level of diversity remains
consistent across all regimes. That is, the value of 6, that maximizes synchronization ap-
pears to be an intrinsic feature of the network, independent of J,y.

The finding that diversity and noise act through distinct mechanisms, rather than as
interchangeable forms of disorder, may carry implications for biological systems. The best
balance between heterogeneity and noise could vary across biological networks, as some
systems may have evolved to rely more heavily on one form of disorder than the other,
or to a similar degree on both, depending on their functional context and required signal
processing capabilities.
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5 INHIBITORY EFFECTS OF DISORDER

In the previous sections of this thesis, we have examined systems in which heterogene-
ity, noise, or their combination played a constructive role, contributing to an amplified
response or enhanced activity of the system, either at the level of individual elements or
across an entire network. However, there are also some circumstances in which noise or
heterogeneity can play an inhibitory or antagonistic role. Clearly, we are not referring to
the trivial case, which has already been described in this thesis, where an excess of noise
or heterogeneity causes a disruption of the response, coherence, or synchronization of a
system, as this is a general and expected phenomenon. Here we refer to specific situa-
tions where the addition of a relatively low, optimal level of noise or heterogeneity results
in a major disruption or complete silencing of the activity of a system, i.e., what may be
defined as an inverse resonance effect.

5.1 Inverse Stochastic Resonance

The possibility that noise may have an inhibitory effect on the activity of neurons was
shown both experimentally and theoretically during the first decade of the present cen-
tury [125]. In their experimental investigation of neuronal pacemaker activity, Paydarfar et
al. [126] examined how noise affects excitability in an in vitro setup using squid axons. Their
results demonstrated that the application of small-amplitude stochastic currents could
trigger a switching dynamics, causing the system to alternate between sustained repeti-
tive spiking and periods of quiescent, non-firing behavior. On the theoretical side, Gutkin,
Tuckwell, and Jost [127,128] studied how noise affects rhythmic spiking in Hodgkin-Huxley
neurons. Without noise, sustained firing emerges when the input current u exceeds a
critical value .. Near this threshold (i.e., for u just slightly above ), they found that
even weak noise in the input current can markedly suppress firing, with the firing rate
exhibiting a pronounced minimum as noise increases, which is the opposite of SR or CR.
For this reason, the authors proposed the name inverse stochastic resonance (ISR) for the
phenomenon they observed. This effect proved to be robust to random initial conditions
and noise onset times. Similar results were obtained with conductance-based noise (in-
stead of current-based noise), suggesting that this behavior may be a general feature of
neuronal dynamics.

ISR has also been studied in systems based on the FHN model, both in a single FHN
unit and in networks of FHN elements [91, 129]. Taking the simpler example of a single
FHN unit, the equations to be considered, derived from Egs. (13) with the addition of a
noise term & (¢), are:

x:a[x—x3/3+y+§(t)] , (38a)

y'z—é(x—kby—]). (38b)

Here & (¢) is a Gaussian white noise with zero mean and correlation function (& (£)&(¢')) =
628(t —1'). As shown in Sec. 3.1, in the absence of noise this system is in a limit cycle
(oscillatory) regime for |J| < € and in an excitable state for |J| > €, where ¢ is defined
by Eq. (23). For ISR to occur in this context, the conditions that must be satisfied are
analogous to the ones required for the Hodgkin-Huxley model, i.e.:

e The value of J in Eq. (38b) should be such that |J| < € and, at the same time, |J| = &,

i.e., in the absence of noise the deterministic system should be in an oscillatory
regime and in close proximity to the bifurcation point (see Sec. 3.1).

58



e The additive noise term should have a small to intermediate intensity. This typically
corresponds to noise strengths in the range D ~ 1073 to 10~! (equivalent to 6, =
V2D ~ 0.04 to 0.45), where the perturbations are sufficient to transiently alter the
trajectory of the system without overwhelming the intrinsic dynamics. Excessively
strong noise can re-initiate spiking or induce irregular, erratic activity.

e There should be a large timescale difference between the fast and slow variables,
which can be ensured through a suitable choice of the system parameters. In par-
ticular, the condition a > 1 determines a pronounced separation of timescales,
whereby x exhibits fast dynamics and y evolves on a significantly slower timescale.

5.2 Diversity Induced Decoherence

We now turn to a system [lll] in which an inverse resonance effect is driven by heterogene-
ity rather than noise. To our knowledge, this is the first documented example of a non-
trivial inhibitory or antagonistic role played by heterogeneity in a complex network. The
authors of Ref. [lll] investigated how small-amplitude noise and parameter heterogeneity
influence the dynamics of a network composed of coupled excitable oscillators operat-
ing under strong timescale separation. In contrast to earlier studies, which demonstrated
that tuning network heterogeneity can improve collective phenomena such as synchro-
nization and coherence, Ref. [lll] showed that, if the network satisfies the conditions for
SISR to occur, the effect of adding diversity can only be antagonistic, leading to a reduction
or suppression of the coherence of collective oscillations.

As mentioned in Sec. 4.1, SISR occurs when an excitable system, e.g., a FHN unit, char-
acterized by a strong separation of timescales, exhibits coherent oscillatory behavior due
to the interplay between weak noise and the intrinsic slow dynamics of the system [89,91].
Specifically, the noise perturbs the fast variable, while the slow variable controls the timing
at which the system becomes sensitive to those perturbations. This concerted interaction
results in the emergence of a regular temporal structure, even though the system is not
subjected to any external modulation. It has been demonstrated that SISR can take place
not only in a single isolated FHN unit but also in a network of coupled FHN elements [130].

5.2.1 The Model

In order to study the interaction between noise and heterogeneity under the conditions
required for the emergence of SISR, following Ref. [lll], we use a network of globally cou-
pled FHN units [9-11], represented by the following equations:

% =v;(a;—v;) (vi— w,+CZ vi)+ &), (39a)
dW,‘ = o )
praial (bvi — cw;). (39b)

In this system, the state variables v;, w; represent the fast membrane potential and the
slow recovery current of the i-th unit, respectively. The indexi = 1,...,N identifies the
nodes of the network. The parameter C > 0 denotes the coupling strength, while &, with
0 < & < 1, characterizes the separation of timescales between the dynamics of v; and w;.
The constants b and ¢ are assumed to be positive.

Diversity across the network is introduced by assigning a distinct value of a; to each
unit, as will be detailed below. Stochastic fluctuations are modeled by the terms &;(z),
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which are independent Gaussian white noise processes with zero mean, standard devi-
ation o, and correlation function (n;(r)n;(t')) = 628;;6(t —t'). Therefore, the noise
intensity acting on each network unit is measured by o,,.

It should be noted that in this section we adopt a different version of the FHN model,
givenin Egs. (39), which is more suitable for the study of SISR and is consistent with the one
used in Ref. [lll]. This alternative representation emphasizes the separation of timescales
between the fast and slow variables by explicitly including the parameter € as a multi-
plicative factor in the slow equation (note that £ is a different parameter from €, used
in other sections of the thesis). This choice is particularly advantageous for SISR analysis,
where the presence of a strong timescale disparity is essential for the emergence of noise-
induced oscillations. Moreover, in contrast to the previously considered FHN equations,
the present version does not include an explicit external current term. This reflects the
typical setting of SISR, which arises intrinsically from the interplay between the system’s
internal dynamics and stochastic fluctuations, rather than being triggered by an external
forcing.

To determine the conditions under which the FHN model is in an excitable or oscillatory
regime, we perform a linear stability analysis of the fixed point at the origin. We consider
the uncoupled, noise-free system corresponding to Egs. (39), i.e.

v=vla—v)(v—1)—w, (40a)
W= E(bv—cw), (40b)

with & < 1. The origin (v,w) = (0,0) is always a fixed point of this system in the absence
of external input. To analyze its stability, we compute the Jacobian matrix _Z (see Sec. 3.1)
by evaluating the partial derivatives of the right-hand sides of Egs. (40) at the fixed point.
The Jacobian matrix at (0,0) is given by

a -1
S = {bé —cé} ’
which implies that tr(_#) = a— c& and det(_¢ ) = —ac& + b€ = €(b—ac).

The fixed point is stable when tr(_#) < 0 and det(_#) > 0, and it loses stability via a
Hopf bifurcation when the trace changes sign and the determinant remains positive. In
the limit € — 0, the trace crosses zero at a = 0, indicating that the bifurcation occurs near
this point. Assuming that the determinant is positive, i.e., &(b — ac) > 0, the system has
a stable fixed point for a > 0, corresponding to an excitable state, and transitions to an
oscillatory regime for a < 0, where the fixed point becomes unstable. This gives us the
necessary condition a > 0, i.e., excitability, to be able to observe SISR.

We also want to require that the fixed point at the origin is unique. The reason is to
ensure that the system can be in an excitable state with a stable fixed point, where it stays
at rest unless noise (in the case of SISR) triggers a spike. If there are two or more stable
fixed points, the system is bistable, not excitable: A small perturbation might move the
system from one attractor basin to another, resulting in a switch rather than a spike. The
corresponding dynamics in that case is fundamentally different, as there is no refractory
return to a single resting state.

To determine the condition under which the origin (v,w) = (0,0) is a unique fixed
point, we set to zero the right-hand sides of Eqgs. (40), as this by definition provides the
fixed points (where the two derivatives vanish). This yields the nullclines

w=v(a—v)(v—1), (41a)
w= év. (41b)
c
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Equating the two expressions for w from Egs. (41a) and (41b) gives the condition for fixed
points:

b
via—v)(v—1)=—w (42)
c
Assuming v # 0, we can divide both sides by v:
b
(a=v)(v—1)=-. (43)
c

Expanding the left-hand side and rewriting the equation as a standard quadratic, it be-
comes

—v2+(a+1)v—<a+i> =0. (44)

To ensure that the origin is the only fixed point, we require that this equation has no real
solutions (if this is the case, v = 0 becomes the only solution to Eq. (42)). This occurs when
its discriminant A is negative:

A:(a+1)2—4<a+i’>:(a—1)2—4Cb<o. (45)

Therefore, the condition for the origin to be the only fixed point is

2
(a—l)z—ﬁ<0 g Clnt) <% (46)
c 4 c

This inequality defines the interval of a values for which no additional fixed points arise
beyond the origin. It is particularly relevant when analyzing excitable or noise-induced dy-
namics, as it ensures the global uniqueness of the resting state. It is essential for studying
self-induced stochastic resonance, where noise alone causes transitions, without external
forcing or intrinsic oscillations [131-133].

Following Ref. [lll], we set b = 1 and ¢ = 2, which transforms Eq. (46) into

<=z (47)

Eq. (47) has the solution a € (1 — ﬂ, 1+ \@) Combining this with the condition for ex-
citability, i.e., a > 0, we obtain the intervala € (0, 1+ ﬂ), which ensures at the same time
the uniqueness and stability of the fixed point at the origin. To be able to observe SISR,
the g; values in Egs. (39) must be chosen within this interval. Therefore, to incorporate
heterogeneity, the parameters a; in Eq. (39a) are sampled from a Gaussian distribution
truncated within the interval ¢; € (0,1+ \ﬁ), and then randomly assigned to the individ-
ual units in the network. The mean value a,, determines the distance of the system from
the oscillatory regime (which occurs for a; < 0), while the standard deviation o, quantifies
the degree of diversity across the network.

5.2.2 Analytic Study of the Effects of Diversity on SISR

5.2.2.1 Mean-Field Approximation. We now study the effects of diversity o, on SISR
analytically and from a collective viewpoint, adopting a mean-field approximation [3, 13,
124]. This is done through an extension of the approach presented in Ref. [ll], which has
been discussed in detail in Sec. 4.4.2 of this thesis.
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Before performing variable substitutions analogous to those shown in Sec. 4.4.2, we
rewrite Eq. (39a) as:

v,-:a,-(viz—v,-)—v?—i—v?—wi—i—KZ(vj—vi)+§i(t). (48)
J

Upon introducing the global variables V(1) = N~'YY  v;(¢) and W(¢) = N~L XN wi(1),
we set v; = V + §; and substitute it into Eq. (48), obtaining:

V=a;[(V+8) = (V+8)]| - (V+8&)+(V+8) —witKY (vj—vi) +&(1). (49)

Also in this case, like in Sec. 4.4.2, we do not make the transformation y, =Y + 5,- in
Eq. (39b), because the y, terms are all linear. Eq. (49) must be averaged over all i’s to
obtain the corresponding equation for the global variable V. Assuming that the diversity
o, of the distribution of a; values is small, we make the approximation:

(@(V+8)* = (V+ &) ~ (@) ((V +8)* — (V +8)), (50)

where (...} designates an average over the N units constituting the network. Then, by
averaging Eqgs. (49) and (39b) over all i's and again assuming Zﬁ-\il 6= 0and 2{»\;1 6,3 >~
(see Sec. 4.4.2), we arrive at the following dynamical equations for the global variables V
and W:

V=V[A-V)(V-1)=3M]+MA+1)-W+E,(1), (51a)
W =2(bV—cW), (51b)

where M = N~'YY 2 and A =N"1YY | a;. M expresses the level of diversity (greater
diversity results in higher values of M and M = 0 for a homogeneous system with o, = 0),
while A is the mean value of the truncated g; distribution. Note that A is different from a,,,,
which is the mean of the full Gaussian distribution of a; values, without truncation. Noise
effects are represented by a global white noise term &, = N~' YV | & with zero mean and
correlation function (&, (t),&,(t))) = N~ 1028 (t —1').

5.2.2.2 Analysis of the Mean-Field Equations. Let us study the dynamics of Egs. (51)
in the absence of noise, that is, setting E;(¢#) = 0. In the singular limit & — 0, which
emphasizes the separation between fast and slow dynamics, the behavior of the system
simplifies considerably. For generic initial conditions, the trajectory first undergoes a rapid
vertical motion in phase space, relaxing to the nearest attracting branch of the V-nulicline.
Typically, the system is first attracted to the right stable branch, along which it slowly drifts
upwards as the slow variable W evolves. When the trajectory reaches the fold point of
the right branch, where stability is lost, it undergoes a fast jump to the left stable branch.
From there, it follows a slow descent toward the stable fixed point (V, W) located on the
left branch. Thus, in the deterministic regime, the dynamics tends to relax in a two-stage
process: fast convergence to the right branch, followed by a slow evolution and eventual
transition to the left branch [134,135]. The V nullcline is defined implicitly by the equation

VIA=V)(V—-1)=3M]|+MA+1)—-W =0, (52)

which, for fixed W, admits three real solutions: V;*(W), V5 (W), and Vg (W). These corre-
spond respectively to the left stable, intermediate unstable, and right stable branches of
the nullcline.
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Figure 21: W nullcline (blue line) and V nullcline (red curve) of Eqs. (51) intersect at a unique
fixed point (Vf,Wf). The black loop represents a typical stochastic trajectory induced by SISR,
where the horizontal parts with triple arrows indicate the fast escape at points V; and Vg from
the left and right stable branches of the V nullcline, respectively. The almost vertical parts of the
trajectory, with single arrow, represent the slow motion of W governed by Egs. (53). A = 0.1,
M = 0.045. Reprinted figure with permission from [M.E. Yamakou, E. Heinsalu, M. Patriarca, and
S. Scialla. Phys. Rev. E 106, L032401 (2022).] Copyright 2022 by the American Physical Society.
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.106.L032401

Upon substituting V = V;*(W) and V = V5 (W) into Eq. 51b, we obtain:

‘%" B [bVy (W) — W], (53a)
‘%" B BV (W) — W], (53b)

These equations govern the slow drift of the system along the respective branches of the
V nullcline in the noise-free case. Specifically, Eq. (53a) refers to the downward drift on the
left stable branch, while Eq. (53b) describes the upward drift on the right stable branch.

When a small-amplitude noise is introduced (0 < 6, < 1), the deterministic struc-
ture is perturbed, enabling the system (under certain conditions) to escape from the
metastable state associated with the left branch of the nullcline, before the stable fixed
point (V;,Wy) is reached. When this happens, SISR occurs. For SISR to be possible, the
noise must induce a horizontal transition from the left to the right branch of the V null-
cline at a critical point W = W;" > W, before the trajectory gets trapped in the basin of
attraction of the fixed point (V¢, Wy). The process is illustrated in Fig. 21.

To analyze the mechanism of this transition, one can consider that in the limit € — 0,
in which the slow variable W is effectively constant over the fast dynamics timescale, the
system of Egs. (51) reduces to a one-dimensional Langevin equation for V:

v oU(V,W)
dr av

where U (V,W) is an effective double-well potential of the form

+&a(1), (54)

4
U(V,W)= VT _a J;A) V34 (3M2+A) VZ—[W—-M(1+A)V. (55)

U(V,W) is obtained from the integral:

UW,W) = — / F(V,W)dv, (56)
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where F(V,W) is the right hand side of Eq. (51a) without the noise term and W is treated
as a constant parameter.

It is worth pointing out that the double-well potential in Eq. (55) depends on the diver-
sity parameter M. The escape from the left well occurs when noise overcomes the energy
barrier separating V;*(W) and V¢ (W), i.e., the previously defined solutions of Eq. (52).
The corresponding barrier height is

AUL(W) =UV§(W),W)—=U(V}(W),W), (57)

while the barrier for the reverse transition (which occurs independently of noise, as ex-
plained above) is
AUR(W) =U(V5 (W), W) —U (Vg (W),W). (58)

SISR requires a specific balance between the noise intensity and the height of the po-
tential barrier. If the noise is too weak, the system remains trapped near (Vy, Wy); if it is
too strong, the transitions become irregular and coherence is lost. Hence, there exists an
optimal noise interval for the occurrence of SISR, (6™, 6"*), with

. 2AUL(Wy) , 20
mln: y de: . 59
On mE 1) o (1) (59)

Here @ is the value of the energy barrier at the point W = W;, where the two barrier
functions intersect, therefore are equal, i.e., AUL(W;) = AUR(W;) = @ [89,130]. This
symmetry point identifies the optimal condition for SISR, where the barrier for escape
from the metastable state is minimal (yet still deep enough to preserve the bistable struc-
ture of the system) and the interplay between noise and timescale separation leads to
highly regular, noise-driven excursions from the metastable state.

The expressions for G,‘L“i“ and 0" in Eq. (59) can be derived as follows [86,136]. Ac-
cording to Kramers formula, the escape probability decreases exponentially with the ratio
AU /2. However, the slow evolution of W imposes a competing timescale ~ 1/, set-
ting a constraint on how long the system remains near a potential minimum before the
slow drift alters the barrier landscape. This interplay defines a critical matching condition:
escape occurs with high probability when the activation energy satisfies

2
—1n(8"") € (AUL(Wy), @), (60)

o|Q

where AU (Wy) is the barrier height from the left stable branch at the fixed point. Solving
this inequality for o, yields the optimal noise window for SISR, i.e., the values of G,r,“i“ and
o,"™ in Eq. (59).

Importantly, both AU, (W) and ® depend on the diversity parameter M. As M in-
creases, @ decreases and the double-well potential becomes shallower and less symmet-
ric [3]. From Eq. (59), we can see that this leads to a shrinkage of the noise interval in which
SISR is observed, and for sufficiently large M, the resonance is completely suppressed. In
Ref. [ll1], this phenomenon was named diversity-induced decoherence (DID).

5.2.3 Numerical Simulations

To validate the above theoretical analysis and quantitatively assess the interplay of noise
and heterogeneity in the dynamics of SISR, numerical simulations of the system defined by
Egs. (39) were carried out in Ref. [lll]. Simulations were performed using the fourth-order
Runge-Kutta algorithm for stochastic processes [137] and the Box-Muller algorithm [138].
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The integration time step was dt = 0.01, ensuring sufficient temporal resolution for both
the fast and slow dynamics of the system, and the total simulation time was 7 = 1.5 x 10°.

Each simulation involved a network of N = 100 units, where heterogeneity was in-
troduced through a random assignment of the individual parameters a;. As explained in
Sec. 5.2.1, the g; values were drawn from a truncated Gaussian distribution in the interval
(0,14 \ﬁ), with mean a,, and standard deviation 6;. The parameters a,, and ¢, con-
trol, respectively, the mean proximity to the oscillatory regime and the degree of diversity
within the network.

To characterize the macroscopic behavior, the average membrane potential across the
network,

_ 1Y
V(t) =5 L Vi), (61)
i=1

was calculated and the temporal pattern of its excursions was analyzed. The hallmark of
SISR is the appearance of quasi-periodic, noise-driven collective excursions of V(t) away
from the resting state. These excursions resemble spikes and are separated by stochastic
interspike intervals (ISIs).

The regularity of these noise-induced events was quantified using the coefficient of
variation (CV), defined as the normalized standard deviation of the ISI [90, 139]:

cv=Y~t ‘" (62)

where (t) = N~'Y¥ (1) and (22) = N~'Y¥, (?), with (;) and (t?) representing the
mean and mean squared ISI (over time) of unit i. 7, = tf“ — tf > 0 is the time elapsed
between spike ¢ and the subsequent spike, £+ 1, for unit i. The more variable the ISIs are,
the higher the CV will be. Consequently, a minimum in the CV as a function of the noise
amplitude o, indicates an optimal level of stochastic coherence, characteristic of the SISR
regime.

A first series of simulations were conducted over a range of noise intensities o;,, while
keeping other parameters fixed and in the absence of diversity (6, = 0). For each value
of g,, the system was allowed to evolve for a sufficiently long duration to collect statisti-
cally significant samples of ISIs. As shown in Fig. 22, the resulting CV curves exhibited a
well-defined minimum between two critical noise levels, G,‘l“i“ and o, which mark the
lower and upper bounds of the SISR window. These critical values were consistent with
theoretical estimates based on Kramers rate theory, as detailed in Sec. 5.2.2.2.

Subsequently, the effect of diversity combined with noise was investigated by varying
the standard deviation o, of the a; distribution at several different values of ¢,. As ex-
pected based on mean-field analysis, it was observed that the loss of coherence begins to
manifest as soon as a minimal amount of diversity is introduced into the system and in-
creases rapidly, eventually leading to the complete suppression of the resonant behavior
(see Fig. 22). The fundamental cause of this decoherence lies in the fact that heterogene-
ity progressively eliminates the energy barrier in the effective mean-field potential, as
shown in Sec. 5.2.2.2. The double-well structure of this potential is crucial for sustaining
the coherent noise-driven spiking that characterizes SISR.

Thus, the numerical simulations confirm that in the system studied in Ref. [lll], diver-
sity cannot be fine-tuned to improve coherence; instead, its effect is purely disruptive,
leading to DID. This is a particularly significant observation, as numerous previous studies
have demonstrated that adjusting the degree of heterogeneity in a network can enhance
various forms of collective behavior, including synchronization and coherence [1, Il, 12,13,
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Figure 22: Panel (a): CV versus o, and o, in 3D with the 2D projection onto (0,,0,)-
plane when a,, = 0.05. Panel (b): CV versus o, and o, in 3D with the 2D projection onto
(0n,04)-plane when a,, = 1.2. In both panels, the black and grey colors indicate values
of CV < 1, corresponding to SISR. Larger values of o, lead to larger CV values, inhibiting
SISR. Reprinted figure with permission from [M.E. Yamakou, E. Heinsalu, M. Patriarca, and S.
Scialla. Phys. Rev. E 106, L032401 (2022).] Copyright 2022 by the American Physical Society.
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.106.L.032401

103-112, 114, 140]. The absence of such an optimizing effect here highlights an important
and nontrivial departure from a well-established and widespread phenomenon observed
in a variety of network architectures and dynamical settings.

5.2.4 Biological Relevance

Itis important to emphasize that resonance phenomena in biological systems can have not
only beneficial but also detrimental effects. Emerging evidence from research on Parkin-
son’s disease [141], for example, suggests that dopaminergic neurons typically exhibit a
substantial degree of heterogeneity, and that disease progression is linked to the selec-
tive degeneration of one or more specific neuronal subpopulations. This selective cell loss
results in a reduction of neuronal diversity compared to healthy tissue. These findings sup-
port the idea that, at least in some circumstances, diversity among neuronal types may
have a protective function, acting through compensatory mechanisms to suppress harm-
ful resonant activity. When such diversity is compromised, the absence of this buffering
capacity may give rise to pathological dynamics.

Building on their theoretical findings, along with the above-mentioned experimental
observations about a potential link between reduction in neuronal diversity and hyperki-
netic disorders such as Parkinson’s disease, the authors of Ref. [lll] propose that diversity
in biological systems may have a broader functional role than previously thought. In ad-
dition to its well-known ability to enhance the detection of weak signals, heterogeneity
might also act as a regulatory mechanism that suppresses pathological or unwanted reso-
nant responses. This perspective suggests that the modulation of diversity could provide
an intrinsic means of controlling excitability and stabilizing activity in complex neural net-
works.

The ability of cellular heterogeneity to suppress resonance-like behavior might also be
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relevant in the context of pancreatic -cell networks. While synchronization of 3-cells is
essential for coordinated insulin release, excessive resonance effects could disrupt nor-
mal glucose regulation. In this context, heterogeneity in excitability or metabolic respon-
siveness might serve as a stabilizing factor, preventing pathological oscillations driven by
noise-induced collective bursting. This mechanism could play a protective role, ensur-
ing the robustness of insulin secretion dynamics under variable physiological conditions.
Conversely, loss of heterogeneity, whether due to selective 3-cell loss or dedifferentiation,
might compromise this control, potentially contributing to dysfunctional insulin dynamics
observed in diabetes.
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6 UNDERSTANDING THE MECHANISM OF DIR

In Sec. 3, we described various systems characterized by the occurrence of resonance
phenomena induced by heterogeneity. In particular, in Sec. 3.2.1 we discussed Ref. [12],
which presents a 3-cell network model based on coupled FHN units of two distinct types,
where heterogeneity is introduced by randomly assigning to each unit one of two param-
eter values, specifically J; = —v or J; = +V, in the dynamical equations of the system,
Egs. (25).

Another model (see Sec. 3.2.2), in which oscillations emerge as a result of hetero-
geneity, involves assigning to each cell a value of the forcing parameter drawn from a
continuum Gaussian distribution [13]. This model demonstrated that there exists an op-
timal degree of diversity, typically quantified by the standard deviation of the Gaussian
distribution, at which the network exhibits maximal coherence in its collective response.
This phenomenon was named DIR [13] and highlighted the constructive role that a suit-
able amount of heterogeneity can play in enhancing the overall dynamical behavior of the
system.

Both modeling approaches exhibit the emergence of oscillations driven by hetero-
geneity, as well as a pronounced resonant behavior in synchronization when certain pa-
rameters are varied. However, they employ distinct methods for introducing diversity into
the oscillator parameters. Whether the dynamical effects resulting from a Gaussian dis-
tribution of parameter values and those arising from a binary (two-value) distribution of
the bias force are equivalent or fundamentally related remains an unresolved question.
Trying to answer this question can help shed light on the fundamental mechanisms be-
hind resonance phenomena caused by diversity and is the main goal of Ref. [IV], which
this Section is mainly based on.

We will start by considering the analogy between the simpler of these two systems,
i.e., the one with a binary distribution of the bias force, and the diffusion of a dimer on
a periodic substrate potential. We will show that the diffusion resonance effect experi-
enced by the dimer when the distance between its constituting monomers has a certain
optimal value, is a mechanical analog of the oscillatory resonance shown by a network of
FHN units with a binary bias distribution. Following Ref. [IV], we will call this effect dimer-
diffusion resonance (DDR). Since DDR can be extended to the case of polymer dynamics,
as we will demonstrate, this approach will also provide a mechanical analogy to DIR, ob-
served in the case of oscillator networks with a Gaussian distribution of parameter values.
The DDR mechanism, along with its polymer-based extension, is inherently general and is
anticipated to operate across a broad class of systems and under a variety of conditions.

6.1 Dimer-Diffusion Resonance

Let us begin by considering the minimal case of a single pair of oscillators. For the sake of
simplicity, we will first examine a pair of quartic oscillators in place of FHN units. We have
already encountered quartic oscillators in Sec. 4.1, where we introduced SR. Assuming a
diffusive coupling between the two oscillators, the corresponding dynamical equations
are:

X = —V’(xl)—|—f(t)+C(x2—x]) —a,

Xy = —V'(x2) + f(1) = C(x2 —x1) +a, (63)

where V (x) is a symmetric double-well potential, which after a suitable rescaling takes
the form
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1, 14

V(x)= 2x + 4x , (64)
while f(¢) is a periodic forcing, which we assume to be represented by a simple sinusoidal,
f(¢) = bsin @t. The amplitude b is chosen to be small enough that either oscillator taken
individually (without coupling) cannot oscillate, i.e., the effective potential V (x) — xf(z)
always keeps two minima at any time ¢. Finally, the first oscillator in Egs. (63) is subjected
to a bias a = —a, while the second experiences a bias a = +a. Both the biases and the

coupling strength C are constant.
We now turn to the above-mentioned dimer analogy by rewriting Egs. (63) as follows:

X1 = —V’(x1)+f(t)+C(xz—x1 —5)7

65
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where ¢ = a/C. This highlights that the dynamics of the two-oscillator system described
by Egs. (63) are mathematically equivalent to those of a harmonic dimer with rest length
¢, formed by two particles located at x; and x,, which are linearly coupled with strength
C and evolve under the influence of the external potential V (x) — xf(z).

Continuing to build on this analogy, we define the center-of-mass coordinate X of the
dimer and the relative coordinate y as:

X1+ x

X ;
2

y=x2—Xx1. (66)

Transforming Egs. (65) into these new coordinates yields:

X:—%[v’(x-%)+v’(x+§)]+f(t), )
y==[v(x+3)-v(x-3)] -2co-0.

Let us assume the substrate potential acting on the dimer is sinusoidal, with amplitude V}
and spatial period A:

V(x) = Vpcos (2;?6) , (68)
so that
rrN _271'Vo . @
Vix) = T sm( 1 > (69)

Substituting into Egs. (67) gives:

X = nTVO [sin (W) +sin (27r()(;—y/2)ﬂ + f(t),

o 27;V0 {Sm <2n(X;y/2)) in <27?(X/1—y/2)>} _ac(y—0).

(70)

Using the trigonometric identities:

sin(A + B) +sin(A — B) = 2sinAcos B,
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sin(A + B) —sin(A — B) = 2cosAsinB, .
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we obtain:

. 2V . 27:7X y
X——)L sm( 1 )cos(x)—i—f(t),

o= V0 s (P  sin (™) —2c(y —
V= cos( 1 )sm(l) 2C(y—¥).

This shows that the dimer center-of-mass motion is governed by an effective potential of

(72)

the form:
2nX
Vet (X) = —Vpcos <7;> cos (%) . (73)
When y relaxes close to /¢, this becomes:
21X nl
Vert(X) &~ —Vp cos ) cos| 7 ) (74)

We can see that the amplitude of this effective potential is modulated by cos (”%) This
amplitude vanishes when:

%

cos(M):O = K*:&—i-n/l, neZz. (75)
A 2

Hence, when ¢ = * = 4 /2, i.e., when the distance between the monomers is half the

spatial period of the potential, the effective substrate potential seen by the center of mass

disappears, and the dimer can move with minimal resistance, leading to the DDR effect

[142-144].

These arguments also apply to the dynamics of a dimer in a double-well potential, with
the distinction that, unlike the periodic case, there exists a single resonant rest length ¢*,
approximately equal to half the separation between the two potential minima, instead of
an infinite set of resonant lengths [142]. Recalling the definition £ = a/C, it becomes clear
that DDR, which can be observed when ¢ < 4 /2, is completely analogous to the resonance
phenomenon that arises in the equivalent two-oscillator system upon fixing the bias a and
tuning the coupling strength C [IV, 12].

6.2 Extension of DDR to a Polymer

6.2.1 Networks with Two Types of Oscillators
We now examine the case in which the network is composed of an even number N of
interacting quartic oscillators governed by the equation

)'ci:—V/(xi)—i—f(t)—l—C Z (xj—x,-)—kah (76)
JEN (i)
where i =1,...,N. The sum in Eq. (76) represents the interactions between the generic

oscillator i and the other oscillators, where a linear coupling of strength C is assumed,
extending over the set of oscillators j € .4(i) that interact with oscillator i. Like in the
previous two-oscillator example, with V (x) we denote a symmetric double-well potential
and f(z) is an external time-periodic forcing.

Each oscillator is randomly assigned a bias force from a two-value discrete distribution,
such that half of the units (set I_) experience a = —a, while the complementary half (set
L) experience a = +a. This configuration yields a zero mean bias, (a) = 0. This distribu-
tion is analogous to that used in Ref. [12] in the context of FHN networks. Here, however,
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Figure 23: (a) Regular network composed of alternating types of oscillators with bias a = —a (yel-
low nodes) and a = +a (green nodes). Each node is coupled to two nearest neighbors on both
sides, so the degree is ko = 4. Blue links represent interactions between two oscillators of the same
type, green links between oscillators of different types. (b) Polymer mechanical analog in x-space.
The harmonic forces between particles of the same type tend to induce localized clusters, while
harmonic interactions between particles of different type induce the formation of two clusters at
a distance (. As a result, the system behaves similarly to two interacting monomers A and B that
compose a dimer with equilibrium length {. Reprinted from [Marco Patriarca, Stefano Scialla, Els
Heinsalu, Marius E. Yamakou, Julyan H. E. Cartwright; Dynamical equivalence between resonant
translocation of a polymer chain and diversity-induced resonance. Chaos 1July 2025; 35 (7): 073115.
https://doi.org/10.1063/5.0262633], with the permission of AIP Publishing.

we consider it first for quartic oscillators, and subsequently in Sec. 6.3 in relation to FHN
models.

We separate the system described by Eq. (76) into two coupled subsystems, corre-
sponding to the disjoint sets I, and denote the respective variables as xl.i. Accordingly,
the total interaction term can be decomposed into two partial sums involving intra- and
inter-group interactions.

As a representative configuration, we analyze a regular network in which each oscil-
lator is connected to an even number & of neighbors, with a symmetrical distribution of
the connections: half of them (ko /2) link to oscillators in the set I, and the remaining
half to those in I_. An illustration of this structure for ky = 4 is provided in Fig. 23(a). To
facilitate analysis, we begin by introducing a rescaled coupling parameter ¢ in Eq. (76),
such that C = 2¢/kg. Using this definition, the associated bias a; for each oscillator i can
be expressed as

a = — Z a;. (77)

The individual terms 2,{—‘3’ can then be incorporated into the linear coupling terms that de-

scribe the interaction between oscillator i and its ko /2 neighbors belonging to the opposite
subset. With this reformulation, Egs. (63) can be recast as

i ==V +fO+CY, (6 —x)+C Y (x] —x; —0),
jel- jely

5=V HfO+CY (o —x) —C Y (5 x5 —0).
JEl+ jel-

(78)

In both equations, the first summations on the right-hand side describe standard har-
monic interactions between oscillator i and those of the same type, while the second
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summations correspond to interactions with oscillators of the opposite type, with an equi-
librium distance

2a a
(=— == 79
koC C ( )
Upon introducing a total potential
WyB(xi,. . sxn,1) = Z[V(xi>_xif(t)]+§ Y (xj—x)
i=1 ijel_
C
+- Y j—x)+C Y (xj-x—0)? (80)
2 i,jely iel_, )GLr
we can express Eqgs. (78) as
¥ o= _iwfeg(xl XN, 1)
1 &xl— Q IR b 9
P (81)
i :7a—+Wreg(x1,...,xN,t).

This reformulation of the dynamics in terms of N interacting overdamped particles
evolving in the total potential Wreg(xl,...,xN,t) leads to a natural mechanical analogy
with a one-dimensional polymer. The polymer consists of two types of monomers, corre-
sponding to the oscillator subsets 7 and I,.. Monomers from different subsets interact
as in a dimer, with an equilibrium separation ¢ defined by Eq. (79), and therefore tend to
maintain a spacing ¢ between them (this corresponds to the final term in Eq. (80)). On
the other hand, monomers of the same type experience purely harmonic coupling, favor-
ing minimal distance (represented by the second and third terms in Eq. (80)). As a result,
elements within 7_ and within 7 tend to aggregate into two spatially localized, internally
homogeneous clusters. These clusters, labeled A and B, naturally arrange themselves at
a distance ¢ from one another, as illustrated in Fig. 23(b). Consequently, the collective
response of a network of N oscillators with a two-value bias distribution under periodic
forcing closely mirrors the behavior of a single dimer with rest length ¢, as discussed in
Sec. 6.1. Such structures also appear in physical systems; for instance, an applied electric
field acting on charged dipoles produces opposing forces on the constituent charges [143].

The mechanical analogy between a heterogeneous oscillator network and an over-
damped polymer chain provides a useful framework to estimate the resonant bias a* or
the resonant coupling c*. As a first approximation, the barrier of the double-well po-
tential can be interpreted as one of the peaks in a spatially periodic potential, such as a
sinusoidal potential. The quartic potential V (x) = —x?/2 +x*/4 exhibits two minima lo-
cated at x = £1 with depth —1 /4, implying a separation of A = 2 between adjacent wells.
This distance effectively defines the spatial period of a corresponding periodic potential.
As explained in Sec. 6.1, maximal transport occurs when the dimer rest length ¢ matches
half the period, i.e., £ = A /2 [142-144]. Applying this condition to Eq. (79), one obtains
the following estimate for the resonance condition in a regular network of degree ky:
2a _a A
k()C C N 2 ’ (82)
This criterion can be rephrased either in terms of a resonant value of the bias parameter,
a=a*, or aresonant coupling strength, ¢ = ¢*, depending on which variable is controlled.

As an example, let us consider the case of a fully connected network of N = 100 os-
cillators where the bias follows a two-value discrete distribution (as previously explained)
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and C = 1. The effective connectivity for such a network is kj = N — 1. Substituting into
Eq. (82) gives a resonant dimer length a* = 0.5, which is in excellent agreement with the
numerical results presented in Ref. [IV] (see Fig. 2(a) in the paper).

6.2.2 Networks with a Continuous Bias Distribution
In this Section, we demonstrate that DDR also arises in heterogeneous networks with
arbitrary bias distributions, and in such cases, it can be related to DIR.

Consider an all-to-all connected network of oscillators with biases assigned from a
continuous distribution P(a). The oscillators are labeled in order of increasing bias, so
that a; < ap < az < ... < ay. To be able to compare this network with a homogeneous
unbiased system, we impose the condition of zero mean bias: (a) = N! Zﬁ\':] a; =0.The
bias for each oscillator can then be expressed as

=

1
N ¢
J

a;=a;— {a) (ai—aj), (83)

1

and the equations of motion become:

N i—a;
$i==V/(w) +f0)+ £ Y (xf'—xl* : caj)

j=1

. (84)
i—1 N

=—V'(x;) + f(t) - % Zl(xi—xj—&j) +% AZI(xj—xi—fj,i).
Jj= Jj=i+

Here, the sum is split into two parts: one over indices j < i (with aj < a;) and one over
indices j > i (with a; > a;), such that all terms

am — dp

>0 if m>n, mn=1,... N, (85)

Em,n =
C

are positive and can be interpreted as equilibrium lengths for harmonic interactions.

This structure suggests a mechanical analog of a heterogeneous oscillator network: a
1D polymer composed of N monomers located at positions x;, where each monomer inter-
acts with all others via harmonic springs. The monomers align in order of increasing bias,
forming a well-ordered chain without frustration, since the equilibrium lengths satisfy the
consistency condition ¢;; = £ + {;;. For example, the interaction between monomers 1
and 3 is stabilized by the relation ¢3; = ¢»1 + #3, reinforcing the ordered structure—see
Fig. 24.

Because interactions scale with |a; — a |, the system self-organizes into a configuration
where monomer positions reflect bias values. With increasing number of interactions, the
chain rigidity grows, leading to a well-defined structure with total length

N—1
ay —a
bou= ) b1 == (86)
i=1
Rewriting the dynamics in gradient form,
. d ol
xi:—a—Xi Qu (xl,...,xN,t), (87)
with total potential
C
WH (et t) = YV () — () xi] + 5 Z (xj—xi— L)% (88)

i i<j
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Figure 24: Mechanical analog of a small network of four oscillators. Each oscillator interacts with
all others via consistent equilibrium distances, forming a robust 1D chain, as defined in Eq. (85).
Reprinted from [Marco Patriarca, Stefano Scialla, Els Heinsalu, Marius E. Yamakou, Julyan H.
E. Cartwright; Dynamical equivalence between resonant translocation of a polymer chain and
diversity-induced resonance. Chaos 1July 2025; 35 (7): 073115. https://doi.org/10.1063/5.0262633],
with the permission of AIP Publishing.

shows that the system evolves as an overdamped polymer in a collective potential.

Numerical simulations (see Ref. [IV] for details) confirm that global oscillations cor-
respond to complete translocations of the polymer across the potential wells, in which
the monomers preserve their order. When network parameters prevent a collective os-
cillatory state, no polymer translocation or partial translocation occurs so that the entire
polymer, or a segment, stays in the same potential well. This supports previous obser-
vations [13] that excessive diversity in the bias can hinder collective network dynamics,
preventing the emergence of DIR.

6.3 DDR and Polymer Translocation in Networks of FHN Units

All considerations made for quartic oscillators also apply to FHN oscillators [9-11]. The
equations for a single FHN oscillator can be written as

. !
x=-V(x)—y+a, (©9)
y=oax—Py,

where V(x) is the same quartic potential as in Eq. (53), and o, f are constants defining
the slow variable y. The constant bias a appears in the fast equation for x, as opposed to
other versions of the FHN equations. This equation form facilitates the comparison with
the quartic oscillator case and implies no loss of generality, since different formulations
of the FHN equations can be transformed into one another by appropriately rescaling the
variables and shifting the y coordinate.

Next, we consider two coupled FHN units with linear coupling in x; and x;,

x1=—=V'(x1) =y1 +C(x2 —x1) +ai,
X =—V'(x2) —y2 = Clxr —x1) + a2,
Y1 = oxy — By,

Y2 = axy —Bys.

(90)
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Setting a; = —a, a, = +a, and defining £ = a/C, the system becomes

0 g

X1 = —TXIWFAW(XI,@) — Vi,

) 0
X = T WFHN (x1,%2) =2, (91)
X2

y1 = ax; — By,

y2 = axa — By2,
with effective potential

dim C 2
Wenn (x1,%2) :V(x1)+V(x2)+§(xz—x1 —0)°. (92)

As in the quartic case, the x-variables describe a dimer of rest length ¢ moving in V(x),
while the y-variables provide active modulation. If ¢, B are such that the y-sector alone
cannot push the system across the potential barrier, the dimer remains confined. How-
ever, harmonic coupling can enable translocation with a resonance near £ = A /2.

This generalizes to a network of N FHN units with arbitrary zero-mean bias distribution

P(a), governed by
d

X,’ a WFd}-IIr’G(xh”.’ XN) — Vi, (93)
(xxl ﬁyl

For a regular network with degree ko, consisting of two oscillator types with a = +a, the
potential reads

N C
W;ﬁﬁl()‘lam,xN) = ZVW*E Z (xjfx,')z
*%.U =) +C Z xj—xi—L)? (94)

identical to Eq. (80) but without external forcing. The resonance condition is the same as
in Eq. (82).
In the fully connected case with symmetric P(a), the total potential is

WFfﬁllll (X1, s X ZV Xi)+ = Z Xi— jl ) (95)

I<j

matching Eq. (88) apart from the external drive. Simulations for N all-to-all connected FHN
oscillators with bimodal bias P(a) confirm a DDR response similar to quartic oscillators,
as shown in detail in Ref. [IV]. The alignment in response curves and resonant lengths £*
stems from the shared bistable potential V (x).

6.4 Final Considerations

The study reported in Ref. [IV] demonstrates that DIR can be understood as a general phe-
nomenon arising in systems where heterogeneity allows for optimal collective response.
By interpreting the dynamics of heterogeneous oscillator networks as equivalent to a poly-
mer system with nonlocal harmonic interactions, the study provides a mechanical anal-
ogy that clarifies how synchronization emerges and how resonance conditions are deter-
mined. This framework is validated both in networks of quartic and FHN oscillators.
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Importantly, the findings bridge DDR and DIR under a unified perspective, showing
that both effects arise from the interaction between distributed biases and coupling in
the system. The results may help guide the analysis and design of other complex systems
where disorder can play a constructive role in enhancing collective dynamics.
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7 SIMMETRY OF THE DIVERSITY DISTRIBUTION AS A
DETERMINANT OF GLOBAL OSCILLATIONS

In the preceding chapters, we investigated the mechanisms that govern the emergence of
global oscillations in heterogeneous networks of excitable units, with particular empha-
sis on diversity-induced effects. A central theme was the phenomenon of DIR, wherein
an optimal degree of heterogeneity among the units can lead to coherent macroscopic
oscillations, even when the individual units are not oscillatory in isolation.

A common assumption in previous studies [13, 69, 70] has been that the key deter-
minant for the emergence of global oscillations is the presence of a sufficient fraction of
individually oscillatory units that are able to “pull” the remaining, excitable ones through
the coupling terms. However, recent findings from Ref. [V] suggest that the symmetry of
the diversity distribution—rather than the number of oscillatory units per se—may play a
fundamental role in determining the dynamical regime of the network.

Therefore, in this chapter, we extend our analysis to systematically examine how the
degree of symmetry of the diversity distribution influences collective network behavior
across three different coupling topologies: all-to-all, cubic lattice, and small-world (New-
man-Watts). Based on results from Ref. [V], we show that symmetric distributions pro-
mote global oscillations even in the absence of oscillatory units, while asymmetric ones
may suppress oscillations even when a significant fraction of the units are individually ac-
tive. This result generalizes the mechanism of DIR by highlighting a structural property,
i.e., symmetry, as a key determinant of emergent behavior in excitable systems.

7.1 Model Framework

We consider a network of N coupled FHN units, governed by the equations:

Xi=al|xi—x/3+y+C Y (xj—x)| . (96a)
jeM

1
yi= - (xi+byi—Ji) , (96b)

where x; and y; represent the fast and slow variables, respectively, of the i-th unit; @ and
b are parameters chosen based on physiological constraints; C is the uniform coupling
strength; and J; is a bias term encoding intrinsic heterogeneity.

Unless otherwise specified, all numerical simulations presented in this chapter use
the following parameter values: a = 60, b = 1.45, and C = 0.15. The coupling strength
C = 0.15 corresponds to the minimal value required for the onset of collective oscillations
and aligns with findings from previous studies [I]. The parameters a and b are also taken
from earlier work [I-11], where they were calibrated to reproduce key electrophysiological
features of pancreatic 3-cells. While variations in a and b affect the value of € and alter
the geometry of the nullclines in Egs. (96), the qualitative behaviors that will be discussed
in the rest of this chapter remain robust with respect to these changes.

The coupling topology in Egs. (96) is defined by the set _4; of neighbors of unit i, which
can vary depending on whether we consider an all-to-all, cubic lattice, or small-world net-
work. It should be noted that Egs. (96) are identical to Egs. (25), already shown in Chap-
ter 2, with the only difference that .4; can change as a function of the coupling topology.

As established in Chapter 2, the dynamical regime of each unit is determined by the
parameter J;: the unit is excitable for |J;| > & and oscillatory otherwise. The threshold &
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is determined analytically via the linear stability analysis of the fixed point:

2 2 2 2
e Va —b(3a*—2a bfb). (97)
3a3

In earlier chapters, we considered heterogeneity by assigning J; values drawn from
symmetric Gaussian distributions usually centered at Jy = 0, with the standard deviation
o controlling the degree of diversity in the network [13, I, Il]. Here, following Ref. [V], we
extend the analysis by examining how the shape and symmetry of the distribution from
which the J; values are drawn affects the network behavior. To this aim, we consider mod-
ified distributions obtained by truncating the normal distribution, either on one or both
sides, as well as half-normal distributions. These variants, discussed in detail in Sec. 7.3, al-
low us to explore the impact of different types and degrees of asymmetry on the network

dynamics.

7.2 Mean-Field Analysis

Recall from Chapter 3 that a mean-field approximation of the full network dynamics leads
to a reduced system for the average variables X (¢) and Y (¢) [ll, VI

. X3
X=a X(l—M)—?-i—Y , (98a)

Y:—é(X—bYJrJ), (98b)

where M expresses the level of diversity, larger M values meaning greater diversity. J is the
average of the J; values over the N units constituting the network. As detailed in Chapter
3 and in Ref. [ll, V], Egs. (98) are derived under the assumption that the deviations J; of
individual units from the mean field are small and symmetrically distributed. Specifically,
the approximations N"! YV | §;20and N-' YV | §? = 0 are used to neglect the first and
third moments of the deviation distribution. These conditions are satisfied only when the
diversity distribution of the bias parameters J; is symmetric (e.g., Gaussian or uniform
with zero mean) and narrow enough so that higher-order fluctuations around the mean
can be ignored.

If the diversity distribution is asymmetric, the above terms must be retained, as their
contribution becomes non-negligible. Their presence leads to a displacement of the equi-
librium point of the system along the cubic nullcline (see Fig. 18 in Chapter 4), either to-
ward the ascending or descending branch depending on the sign of the asymmetric terms.
As a consequence, increasing diversity under these conditions may shift the system to-
ward an excitable rather than an oscillatory regime. Furthermore, if the asymmetry in the
distribution of J; values results in a substantial deviation of the mean J,, from its origi-
nal position, this additional shift can further stabilize the system and suppress collective
oscillations.

Although these arguments are qualitative, they highlight the critical role played by the
symmetry of the diversity distribution in shaping the global dynamics of the network. In
particular, they provide insight into network behaviors that cannot be accounted for by
simpler criteria, such as the proportion of oscillatory versus excitable units.

7.3 Numerical Simulations

We now present a set of representative examples to illustrate how the symmetry of the di-
versity distribution influences the emergence of global oscillations in networks of excitable

78



units. The examples cover a range of diversity distributions and are tested across differ-
ent network topologies. While numerical results are shown for selected cases, the qual-
itative outcome—namely, the presence or absence of collective oscillatory activity—was
found to be consistent across all three considered configurations: all-to-all coupling, cu-
bic lattice, and cubic lattice with added small-world features. The latter was implemented
following the Newman-Watts model, using rewiring probabilities in the range 0 < p <
1 [145].

7.3.1 Symmetry Metrics

To quantify the degree of symmetry of the diversity distributions, following Ref. [V], we
introduce two metrics: the Normalized Center of Mass (hnCOM) and the Symmetry Balance
Score (SBS). The nCOM captures the displacement of the overall mass of the J; distribution
with respect to the center of the oscillatory regime:

X (i —Jo)|
N-¢ '

nCOM = (99)
Here, Jy is the midpoint of the oscillatory interval, which we take as 0 in our case. Values
nCOM < 1 indicate that the distribution is fairly symmetric or centered within the oscilla-
tory interval, while values nCOM > 1 signify that the distribution is predominantly skewed
to one side.

Instead, the SBS measures the relative balance of units with positive and negative J;

values:
sps — Min(Ve N-) (100)
max(N4,N_)
where Ny and N_ are the number of units with J; > Jy and J; < Jp, respectively. SBS
ranges from 0 (maximal asymmetry) to 1 (perfect balance).

These two metrics provide complementary characterizations of the diversity distri-
bution. While nCOM reflects mass displacement, SBS captures population balance. Both
factors influence the effective dynamics of the network, as shown by the following results.

Table 2 reports the values of nCOM and SBS for all diversity distributions analyzed
in the following sections, together with the corresponding ratios of oscillatory to non-
oscillatory units. The latter ratio has been the principal criterion adopted in previous
studies to predict the emergence of global network oscillations. However, this approach
is applicable only to a limited class of distributions and suffers from the lack of a well-
defined threshold above which collective oscillations are reliably expected. In Table 2, we
have adopted a threshold value of approximately 0.3, which correctly anticipates the be-
havior of the distribution shown in Fig. 32. Nevertheless, prior work has reported cases in
which global oscillations occurred even with an oscillator-to-excitable unit ratio as low as
0.25 [69], underscoring the limitations of this criterion.

7.3.2 Half-normal Diversity Distributions
We begin by analyzing half-normal diversity distributions and consider as a first example
a truncated case with J,, = 0 and o = 0.5, in which J; values are drawn exclusively from
the interval [0, €). In this configuration, all units are individually oscillatory, but the distri-
bution is asymmetric, as values are sampled only from the positive semiaxis (Fig. 25).
Numerical simulations based on Egs. (96) for both cubic lattice (with N = 1000) and
all-to-all (with N = 125) topologies confirm that this network exhibits strong global oscil-
lations. The collective activity is quantified by the parameter p, defined as in Chapter 3
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Table 2: Comparison of symmetry metrics and oscillatory behavior for the nine bias distributions
corresponding to Figs 2-10. Green indicates correct predictions, while red highlights discrepan-
cies. The criterion for global network oscillations is shown in parentheses in each column heading.
[Reprinted from: M. Patriarca, S. Scialla, E. Heinsalu, M. E. Yamakou, and J. H. E. Cartwright, Effect
of diversity distribution symmetry on global oscillations of networks of excitable units. arXiv preprint
arXiv:2507.09804 (2025). https://doi.org/10.48550/arXiv.2507.09804 (Submitted to Phys. Rev. E)].

Oscillator, Normalized

istributi Nonoscillator Ratio Center of Mass
Distribution (>03) (<1) Score (> 0) Oscillations?

Symmetry Balance Global
Figure

2 Inf. 0.50 n.a. Yes

0.5 1.52 n.a. No

7 0 1.37 0.045 Yes
8 | /\ N 0 1.47 0.015 No
—_—
9 B / \\\\ f 0.25 25.15 0.00 No
10 - A N . o 24.01 0.26 Yes
and 4 [1, 11, V]:
p=N"2/([S(t) - 5]?), (101)

where N is the number of units, S(r) = ¥, x;(t), and S = (S(¢)) denotes the time average
of S(z). Values of p = 1 indicate strong collective oscillations, while p = 0 corresponds to
an incoherent or quiescent network state.

We next consider a similar diversity distribution where J; values are still sampled only
from the positive semiaxis, but within the interval (€, 2¢], so that all units are individually
excitable. In this case, the network does not exhibit collective oscillations, as shown in
Fig. 26, regardless of the coupling topology.

We then analyze an intermediate case in which half the units are selected from [0, €)
(oscillatory) and half from (&, 2¢] (excitable), forming a truncated half-normal distribution
that includes both types (Fig. 27). Despite its asymmetry, this distribution supports strong
global oscillations, similar to the fully oscillatory case in Fig. 25. Results are shown for the
cubic lattice, but analogous behavior is observed with all-to-all coupling.

This outcome is consistent with previous studies [13, 69, 70], which attributed the
emergence of global oscillations to a pull mechanism, whereby the oscillatory units en-
train the excitable ones. To test the limits of this mechanism, we consider a case where the
fraction of excitable units is increased to two-thirds, yielding a 1:2 oscillatory-to-excitable
ratio (Fig. 28). Under these conditions, collective oscillations are suppressed, likely due to
both the reduced fraction of oscillatory units and the higher asymmetry of the distribu-
tion.
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Figure 25: Truncated half-normal diversity distribution comprising oscillatory units only (Jav = 0,
o = 0.5). The yellow area highlights the portion of the Gaussian used to sample J; values. In this
case, the lack of symmetry does not inhibit global network oscillations. The nCOM parameter (nCOM
=0.50, Table 2) correctly predicts the emergence of collective oscillations. [Reprinted from: M. Pa-
triarca, S. Scialla, E. Heinsalu, M. E. Yamakou, and J. H. E. Cartwright, Effect of diversity distribu-
tion symmetry on global oscillations of networks of excitable units. arXiv preprint arXiv:2507.09804
(2025). https://doi.org/10.48550/arXiv.2507.09804 (Submitted to Phys. Rev. E)].
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ALLTO-ALL p=00]
(N=125)

Figure 26: Truncated half-normal diversity distribution comprising excitable units only. The yellow
area highlights the portion of the Gaussian used to sample J; values. Here, the asymmetry prevents
global oscillations. The nCOM value (1.50) correctly predicts this outcome (Table 2). [Reprinted from:
M. Patriarca, S. Scialla, E. Heinsalu, M. E. Yamakou, and J. H. E. Cartwright, Effect of diversity distribu-
tion symmetry on global oscillations of networks of excitable units. arXiv preprint arXiv:2507.09804
(2025). https://doi.org/10.48550/arXiv.2507.09804 (Submitted to Phys. Rev. E)].

As summarized in Table 2, the distributions in Fig. 25 and Fig. 27, both with nCOM < 1,
support global oscillations, while those in Fig. 26 and Fig. 28, with nCOM > 1, do not. Thus,
the nCOM parameter successfully distinguishes between oscillatory and non-oscillatory
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Figure 27: Truncated half-normal diversity distribution comprising equal fractions of oscillatory
and excitable units (50/50%). The yellow area highlights the portion of the Gaussian used
to sample J; values. Global oscillations are maintained despite the asymmetry. The nCOM
value (0.99) correctly predicts this result (Table 2). [Reprinted from: M. Patriarca, S. Scialla,
E. Heinsalu, M. E. Yamakou, and J. H. E. Cartwright, Effect of diversity distribution symmetry
on global oscillations of networks of excitable units. arXiv preprint arXiv:2507.09804 (2025).
https://doi.org/10.48550/arXiv.2507.09804 (Submitted to Phys. Rev. E)].
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Figure 28: Truncated half-normal diversity distribution comprising one-third oscillatory and two-
thirds excitable units. The yellow area highlights the portion of the Gaussian used to sample J;
values. The increased asymmetry results in the suppression of global oscillations. The nCOM
value (1.52) correctly captures this outcome (Table 2). [Reprinted from: M. Patriarca, S. Scialla,
E. Heinsalu, M. E. Yamakou, and J. H. E. Cartwright, Effect of diversity distribution symmetry
on global oscillations of networks of excitable units. arXiv preprint arXiv:2507.09804 (2025).
https://doi.org/10.48550/arXiv.2507.09804 (Submitted to Phys. Rev. E)].

regimes in all cases examined here. Notably, the oscillator fraction criterion fails to ac-
count for the absence of global oscillations in the distribution corresponding to Fig. 28,
highlighting the greater relevance of symmetry-based criteria.
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7.3.3 Normal Diversity Distributions

i
i
Excitabjle

Oscillatory Excifcﬁon Block
% . i ;\’
L] - L]
2 !S 0 {!g +2€ J;
CUBIC LATTICE r p=108
(N=1000)
ALLTO-ALL | ‘ -
(N=125) [ p=1.12

Figure 29: Truncated normal diversity distribution comprising excitable units only. The units are
symmetrically distributed on the two sides of the mode in a 1/1 ratio. The yellow area highlights
the portion of the Gaussian used to sample J; values. This fully symmetric distribution gives rise
to global network oscillations. The symmetry measures (nCOM = 0, SBS = 0.95) correctly pre-
dict this behavior, whereas the oscillator fraction criterion fails. [Reprinted from: M. Patriarca, S.
Scialla, E. Heinsalu, M. E. Yamakou, and J. H. E. Cartwright, Effect of diversity distribution symme-
try on global oscillations of networks of excitable units. arXiv preprint arXiv:2507.09804 (2025).
https://doi.org/10.48550/arXiv.2507.09804 (Submitted to Phys. Rev. E)].
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Figure 30: Truncated normal diversity distribution with a 5/95% ratio of units on the two sides of
the mode. Despite the asymmetry, the network displays global oscillations. Symmetry metrics cor-
rectly rank this case as more likely to oscillate than those in Figs. 26, 28, and 31. [Reprinted from: M.
Patriarca, S. Scialla, E. Heinsalu, M. E. Yamakou, and J. H. E. Cartwright, Effect of diversity distribu-
tion symmetry on global oscillations of networks of excitable units. arXiv preprint arXiv:2507.09804
(2025). https://doi.org/10.48550/arXiv.2507.09804 (Submitted to Phys. Rev. E)].

We now consider truncated normal diversity distributions where J; values are drawn
from both sides of the mode of a Gaussian. In the first example (Fig. 29), the distribution
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Figure 31: Truncated normal diversity distribution with a 1/99% ratio of units on the two sides of
the mode. The asymmetry is sufficient to suppress global oscillations, as confirmed by all metrics in
Table 2. [Reprinted from: M. Patriarca, S. Scialla, E. Heinsalu, M. E. Yamakou, and J. H. E. Cartwright,
Effect of diversity distribution symmetry on global oscillations of networks of excitable units. arXiv

preprint arXiv:2507.09804 (2025). https://doi.org/10.48550/arXiv.2507.09804 (Submitted to Phys.
Rev. E)].
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Figure 32: Truncated normal diversity distribution with excitable units drawn from (—eo, —¢) and
oscillatory units from (—¢g,+¢). The resulting asymmetry (nCOM = 25.15) leads to the absence of
global oscillations. [Reprinted from: M. Patriarca, S. Scialla, E. Heinsalu, M. E. Yamakou, and J. H. E.
Cartwright, Effect of diversity distribution symmetry on global oscillations of networks of excitable

units. arXiv preprint arXiv:2507.09804 (2025). https://doi.org/10.48550/arXiv.2507.09804 (Sub-
mitted to Phys. Rev. E)].

is fully symmetric, with excitable units equally distributed across the two tails. Despite
the absence of individually oscillatory units, the network exhibits global oscillations, con-
sistent with the low nCOM and high SBS values. This behavior cannot be explained using
the oscillator fraction criterion, which would predict no collective activity.

We then introduce asymmetry by drawing a greater fraction of units from the positive
side of the distribution. In Fig. 30, the asymmetry is relatively high (95/5%) but still such
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Figure 33: Truncated normal distribution with excitable units only, drawn symmetrically from
(—oo,—€) U (4€,+0o0). The relative symmetry results in global oscillations despite the absence
of oscillatory units. SBS = 0.26 and nhCOM = 24.01. [Reprinted from: M. Patriarca, S. Scialla,
E. Heinsalu, M. E. Yamakou, and J. H. E. Cartwright, Effect of diversity distribution symmetry
on global oscillations of networks of excitable units. arXiv preprint arXiv:2507.09804 (2025).
https://doi.org/10.48550/arXiv.2507.09804 (Submitted to Phys. Rev. E)].

that global oscillations can occur, while in Fig. 31, a more pronounced asymmetry (99/1%)
leads to their suppression. Although the nCOM < 1 criterion is not satisfied in either case,
the nCOM and SBS metrics correctly rank the tendency of the two distributions to support
global oscillations in the order Fig. 30 > Fig. 31.

As a further example, we examine a case in which the mode of the distribution lies
below the oscillatory range (Fig. 32), resulting in a highly asymmetric distribution. In this
case, the network does not display global oscillations, which is consistent with the very
high nCOM value and low oscillator fraction. However, a more symmetric distribution
composed solely of excitable units (Fig. 33), drawn from both extremes of the Gaussian,
does give rise to oscillations. The SBS values for the two distributions are consistent with
simulation results. The nCOM criterion fails to predict this behavior directly, however, it
still correctly ranks the symmetry of Fig. 33 as higher than that of Fig. 32, aligning with
the observed dynamics. Instead, the oscillator fraction criterion is unable to explain the
behavior of the distribution corresponding to Fig. 33.

Figure 29 shows a symmetric distribution of excitable units, similar to the configura-
tion studied in Ref. [12]. Despite the absence of individually oscillatory units, the network
exhibits global oscillations—consistent with its high symmetry and unlike what would be
expected from the oscillator fraction criterion.

7.4 Two-Unit Reduction and Effective Potential

To gain insight into how collective oscillations can arise in networks where all or most units
are individually excitable, we consider a minimal system of two coupled FHN units [IV, V].
While the FHN model is not a gradient system and lacks a true potential, an effective
pseudo-potential can be defined for the fast variables by treating the slow variables y; as
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Symmetric biases (b = —)2)

Figure 34: Contour plots of the effective pseudo-potential from Eq. (104). Top: symmetric case with
J1 = —1.2, J, = 1.2. Bottom: asymmetric case with J| = J, = 1.2. Other parameters: C = 0.5,
€ = 1.0, y; = J;. A cyclic valley forms only in the symmetric case. [Reprinted from: M. Patriarca,
S. Scialla, E. Heinsalu, M. E. Yamakou, and J. H. E. Cartwright, Effect of diversity distribution sym-
metry on global oscillations of networks of excitable units. arXiv preprint arXiv:2507.09804 (2025).
https://doi.org/10.48550/arXiv.2507.09804 (Submitted to Phys. Rev. E)].

quasi-static [lll]. The dynamics for the fast variables reads:

3

s1=aln =T 4y +Cln—x)), (102a)
X3
f=afn- 2+ +Cn—x), (102b)

while the slow variables evolve as in Eq. (96b). Under the approximation a > 1, the asso-
ciated effective pseudo-potential becomes

C
Ver(x1,X2;y1,¥2) = Vi(x1501) + Va(x2532) + 5(}61 —x2)%, (103)
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with local terms | |

Vi(xisyi) = _Exiz + Ex? +xiyi, (i=1,2). (104)
Here, the quadratic term promotes synchronization, while the local pseudo-potentials re-
flect the individual unit dynamics. For uncoupled excitable units, the system relaxes to a
fixed point. However, moderate coupling deforms the landscape, possibly forming a cyclic
valley that enables a collective oscillatory state.

This mechanism critically depends on symmetry: if the J; values of the two units lie
on opposite sides of the oscillatory interval center, the pseudo-potentials are tilted in op-
posite directions, yielding a double-well-like structure that supports a limit cycle (Fig. 34,
upper panel). If the J; values have the same sign, the landscape collapses into a single
minimum (Fig. 34, lower panel), precluding oscillations.

This concept can be generalized to larger systems, by dividing the population into two
subgroups based on the sign of J; and defining average coordinates (x.,y+) and (x_,y_)
for each. The dynamics of these coarse-grained variables can be approximated by a two-
unit system with effective pseudo-potential

C
Vetr (x,20-) = Vi (23 y4) + V- (aiy-) + 5 (- —x )7, (105)
where . |
Vi(xsiys) = _Exi + Exi + XY+ (106)

If the subgroup averages J and J_ are positioned symmetrically with respect to the
center of the oscillatory interval, the resulting landscape can support global oscillations,
even in populations composed largely or entirely of excitable units. Instead, if both sub-
groups are biased in the same direction, the system stabilizes at a single minimum, and
oscillations do not arise.

7.5 Discussion and Implications

This analysis shows that diversity-induced resonance can arise not only from an optimal
level of heterogeneity but also from an optimal structure of the heterogeneity distribution.
Symmetric diversity distributions can generate coherence in excitable media, regardless of
whether individually oscillatory units are present. The nCOM and SBS metrics developed
here can be used to predict the dynamical regime of a network based on its diversity
distribution structure.

From a biological perspective, this mechanism may help explain how collective oscilla-
tions in cellular networks are maintained or disrupted under conditions such as disease or
aging, which can introduce asymmetries in the distribution of excitability thresholds—for
instance, through selective cell loss or uneven degradation of cellular function [146-149].

In conclusion, we have shown that the symmetry of the diversity distribution plays a
fundamental role in determining the emergence of global oscillations in networks of ex-
citable units. Through a combination of numerical simulations, mean-field analysis, and
minimal models, we provided mechanistic insights showing that symmetric distributions
robustly support collective oscillations across different topologies, whereas increasing
asymmetry tends to suppress them. These findings substantially extend the current un-
derstanding of the principles governing collective dynamics in heterogeneous networks,
moving beyond earlier interpretations based solely on the numerical ratio of oscillatory
to excitable units. We hope this work will pave the way for future studies exploring how
asymmetries in the diversity distribution influence the dynamics of biological and syn-
thetic excitable systems.
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CONCLUSIONS

This thesis investigated the emergent dynamics of excitable cell networks, with a spe-
cific focus on how heterogeneity influences synchronization, resonance, and information
propagation within systems inspired by pancreatic -cell clusters. Using mathematical
modeling approaches based on networks of coupled nonlinear oscillators, we examined
both constructive and inhibitory roles played by diversity, alone or in conjunction with
stochastic fluctuations.

The central motivation was grounded in biological observations: in pancreatic islets,
collective electrical and calcium oscillations among -cells are essential for coordinated
insulin release and metabolic regulation. Yet, the mechanisms underlying such coordina-
tion, particularly in the presence of intercellular variability, remain only partially under-
stood. This work contributed to addressing this gap by developing and analyzing reduced-
order, yet physiologically meaningful, models capable of shedding light on how heteroge-
neous components can give rise to coherent macroscopic behavior.

Summary of Main Findings

The first part of the thesis (Chapters 1-2) provided a physiological and modeling overview
of excitable cells, with an emphasis on 3-cells. The electrophysiology of action potentials,
the role of membrane ion channels, and the architecture of Langerhans islets were dis-
cussed to justify the relevance of simplified mathematical models such as FHN oscillators
for capturing essential aspects of 3-cell dynamics.

In Chapter 3, we examined networks of FHN oscillators with parameter heterogene-
ity and showed that diversity can enhance collective synchronization through the phe-
nomenon of DIR. This mechanism was demonstrated in fully connected and three-dimen-
sional networks, where an optimal level of heterogeneity in the excitability parameter led
to maximal amplitude and coherence of the collective response. Importantly, this effect
was observed in a model specifically tuned to replicate -cell dynamics, establishing a
potential physiological role for heterogeneity within islets and enabling the prediction of
the proportion of hub cells in agreement with experimental observations.

Chapter 4 addressed the interplay between heterogeneity and noise, contrasting two
fundamentally different sources of disorder. Through a combined numerical and mean-
field approach, we showed that noise and diversity can independently or synergistically
enhance collective behavior, depending on the operating regime of the network. In par-
ticular, When most of the population is outside the intrinsic oscillatory range, noise and
heterogeneity can act together to induce collective oscillations; however, when a high
percentage of units is near or inside the oscillatory threshold, their effects become in-
dependent. These results illustrate that the two forms of disorder are not simply inter-
changeable but interact in a nonlinear and context-dependent manner.

Chapter 5 explored scenarios in which diversity plays an inhibitory role, contrary to
the constructive function emphasized in earlier chapters and in the existing literature.
Specifically, we investigated how even a minimal degree of heterogeneity can suppress the
phenomenon of self-induced stochastic resonance (SISR), a form of noise-driven synchro-
nization that emerges in excitable systems. This effect, which we named diversity-induced
decoherence (DID), was characterized both numerically and analytically, providing a coun-
terexample that highlights the dual nature of heterogeneity, capable of both facilitating
and impairing collective behavior depending on system conditions.

In Chapter 6, we bridged the gap between the abstract DIR mechanism and a physical
system by establishing a formal equivalence between diversity-induced synchronization in
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oscillator networks and the resonant translocation of a polymer composed of nonlinear
units through a periodic potential. This analogy, based on the concept of dimer diffusion
resonance (DDR), elucidated the mechanical principles behind the DIR phenomenon and
offered a broader framework in which to interpret it. The mapping to polymer dynamics
suggests that DIR may be a generic feature of spatially extended systems with competing
length scales and local asymmetries.

Chapter 7 extended the analysis of excitable networks by investigating the role of sym-
metry in the diversity distribution of excitability parameters. Using networks of FHN os-
cillators with various truncations of Gaussian distributions and different topologies (all-
to-all, cubic lattice, and small-world), the study showed that symmetric distributions ro-
bustly support global oscillations, whereas increasing asymmetry tends to suppress them,
even when a high fraction of units is individually oscillatory. Standard criteria based on
the oscillator-to-non-oscillator ratio proved inadequate to explain the observed dynam-
ics. Instead, the newly introduced symmetry metrics, nCOM and SBS, proved to be more
accurate predictors of global oscillations. This suggests that the symmetry of the diversity
distribution, rather than its mean or variance alone, plays a decisive role in determining
whether coherence emerges or fails in heterogeneous excitable networks.

Conceptual Contributions
The thesis offers several conceptual insights:

e Reduced-order models such as FHN oscillator networks, when properly tuned, are
capable of replicating key features of B-cell network behavior and can be used to
test hypotheses about the physiological role of cell variability.

e Heterogeneity and noise, although often lumped together as forms of disorder, act
through distinct mechanisms and have different implications for network dynamics.

e Diversity is not inherently beneficial or detrimental: its impact depends on the un-
derlying regime of excitability, coupling strength, and the presence of noise.

¢ DIR, aresonance mechanism that occurs in heterogeneous oscillator networks such
as the ones we used to model B-cell clusters, can also be reproduced in mechanical
analogs, highlighting its universal dynamical features.

e The degree of symmetry in the diversity distribution, rather than the fraction of
oscillatory units, is a key determinant of global coherence in excitable networks,
with potential implications for biological systems affected by aging or disease.

Implications for Biological Systems

Although this work was grounded in simplified mathematical representations, the find-
ings have implications for understanding physiological and pathophysiological processes
in pancreatic islets and other excitable tissues:

e The existence of hub-like B-cells or functional subpopulations may be interpreted
as a manifestation of optimal heterogeneity that supports synchronization.

¢ The degradation of gap junction coupling or increase in heterogeneity due to dis-
ease (e.g., in type 2 diabetes) could push the system from a DIR-favorable regime
into one where synchronization is impaired.

¢ Interventions aiming to restore islet function may benefit from understanding the
critical levels of diversity that optimize rather than suppress coordination.
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Outlook and Future Directions

Several future research avenues emerge from the present work:

1. Time-Dependent Parameters: Incorporating dynamic changes in excitability, due
to metabolic feedback or plasticity mechanisms, could reveal richer forms of reso-
nance and adaptation.

2. Multiscale Modeling: Bridging the current reduced-order models with more de-
tailed biophysical representations (e.g., including ion channel kinetics or glucose
metabolism) could improve physiological representativity.

3. Heterogeneous Topologies: Another direction for future research is to study poten-
tially more realistic network structures, such as additional small-world or scale-free
networks, reflecting the nonuniform connectivity seen in biological tissues.

4. Symmetry Effects: Further investigation of how symmetry in parameter distribu-
tions influences collective behavior may reveal new general organizing principles
and offer novel control strategies for complex excitable systems.

5. Control and Modulation: Understanding how to externally modulate heterogene-
ity (e.g., through pharmacological means) to steer the system toward beneficial dy-
namical regimes represents a potential translational application.

In conclusion, this thesis has aimed to establish a coherent theoretical framework
for understanding how heterogeneity-alone or in combination with noise—shapes the
dynamics of excitable networks. Far from being a mere source of variability, diversity
emerges as a fundamental determinant of collective behavior, capable of modulating, en-
hancing, or suppressing global oscillations. By drawing conceptual links between biologi-
cal systems and abstract physical models, this work not only advances our understanding
of B-cell network function and dysfunction, but also lays the groundwork for extending
these insights to a broader class of complex dynamical systems.

90



List of Figures

N

12

13
14

15

16

17
18

19
20
21

22
23
24
25
26
27
28

29
30

31

32

Schematic structure of a B-cell ......cooviiiiiiii 18
Typical profile of bursting oscillations in B-cells .................ccooiiiiiiin, 20
Bursting oscillations with intermediate period produced by the Phantom
Bursting model ... ... e 24
Example of compound bursting ... 25
Membrane potential and Ca®* ion concentration oscillations predicted by
the Sherman and Rinzel model ... 27
Three-dimensional structures used in multicellular models of pancreatic
CeIlS e e 28
Residual beta-cell mass versus gap junction conductance .................... 29
Plots of x(¢) (fast variable) produced by the FHN model ...................... 34
Nullclinesof the FHN mModel ... i 34
Examples of cubic lattice networks...........ccoooiiiiiiii 35
DIRin an ensemble of heterogeneous, globally coupled bistable oscillators
with periodic external forcing ...........coiiiiiiiiiiii 37
Oscillation x(¢) of a single FHN element for different values of the equation
[T 1 1 1= =T 3 39
Correspondence between f-cell activity and FHN oscillator states .......... 40
Global oscillatory activity p and fraction of hubs Fj, as a function of popu-
1atioN dIVEISItY O oot s 41
Global oscillatory activity p as a function of the average value J,, of the
stimulus, for different values of population diversity o ....................... 44
Global network oscillation X (¢) for different values of population diversity
o, at the average value J,, = 0.5 of the stimulus ..........................o. 45
Plot of a symmetric double-well potential ...l 47
Nullclines of mean-field FHN equations for different values of the stimulus
Jov and diversity parameter M ... ..oooviiiiiiii i 53
Global oscillatory activity p as a function of diversity () and noise (o),
FOr Ty = 0 oo e 55
Global oscillatory activity p as a function of diversity (c;) and noise (c;,),
forJyy = —land Jay = 1 oeiiiii e 56
Typical stochastic trajectory induced by SISR ...........ccoiiiiiiiiiii .. 63
Inhibition of SISR caused by different degrees of heterogeneity ............. 66
Polymer mechanical analogs ..........cooiiiiiiiiiiii e 71
Mechanical analog of a small network of four oscillators..................... 74

Truncated half-normal diversity distribution comprising oscillatory units only 81
Truncated half-normal diversity distribution comprising excitable units only 81
Truncated half-normal diversity distribution comprising equal fractions of

oscillatory and excitable units ... 82
Truncated half-normal diversity distribution comprising one-third oscilla-
tory and two-thirds excitable units..........coooiiiiiiii i 82
Truncated normal diversity distribution comprising excitable units only..... 83
Truncated normal diversity distribution with a 5/95% ratio of units on the
twosidesof the mode ......coooiiiiiiii e 83
Truncated normal diversity distribution with a 1/99% ratio of units on the
twosidesofthemode ......oooiiiiiiiii e 84
Truncated normal diversity distribution with excitable units drawn from
(—co, —¢&) and oscillatory units from (—€,+€) ......cooiiiiiiiii 84

91



33 Truncated normal distribution with excitable units only, drawn symmetri-

cally from (—eo, —€) U (+€,490) veviriiriiniiiniiiinienene.

34  Contour plots of the effective pseudo-potential from Eq. (104)

92



List of Tables

1 Comparison of different noise-induced resonance phenomena

2 Comparison of symmetry metrics and oscillatory behavior for the nine bias

distributions shownin Chapter 7 ...

93



References

[1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

(13]

(14]

[15]

[16]

[17]

S. Scialla, A. Loppini, M. Patriarca, and E. Heinsalu, “Hubs, diversity, and synchro-
nization in FitzZHugh-Nagumo oscillator networks: Resonance effects and biophysi-
cal implications,” Phys. Rev. E, vol. 103, p. 052211, 2021.

S. Scialla, M. Patriarca, and E. Heinsalu, “The interplay between diversity and noise
in an excitable cell network model,” EPL, vol. 137, p. 51001, 2022.

M. E. Yamakou, E. Heinsalu, M. Patriarca, and S. Scialla, “Diversity-induced deco-
herence,” Phys. Rev. E, vol. 106, p. L032401, 2022.

M. Patriarca, S. Scialla, E. Heinsalu, M. E. Yamakou, and J. H. E. Cartwright, “Dynam-
ical equivalence between resonant translocation of a polymer chain and diversity-
induced resonance,” Chaos, vol. 35, p. 073115, 2025.

S. Scialla, M. Patriarca, E. Heinsalu, M. E. Yamakou, and J. H. E. Cartwright, “Effect
of diversity distribution symmetry on global oscillations of networks of excitable
units,” Phys. Rev. E, vol. 112, p. 054201, 2025.

J. P. Keener and J. Sneyd, Mathematical Physiology, vol. 8 of Interdisciplinary Ap-
plied Mathematics. Springer, 1998.

E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability
and Bursting. MIT Press, 2007.

J. Rinzel and B. Ermentrout, “Analysis of neural excitability and oscillations,” Meth-
ods in Neuronal Modeling, pp. 251-291, 1989.

R. Fitzhugh, “Thresholds and plateaus in the hodgkin-huxley nerve equations,” Jour-
nal of General Physiology, vol. 43, pp. 867-896, may 1960.

R. FitzHugh, “Impulses and physiological states in theoretical models of nerve mem-
brane,” Biophysical Journal, vol. 1, pp. 445-466, jul 1961.

J. Nagumo, S. Arimoto, and S. Yoshizawa, “An active pulse transmission line simu-
lating nerve axon,” Proceedings of the IRE, vol. 50, pp. 2061-2070, oct 1962.

J. H. E. Cartwright, “Emergent global oscillations in heterogeneous excitable media:
The example of pancreatic 8 cells,” Physical Review E, vol. 62, pp. 1149-1154, July
2000.

C. J. Tessone, C. R. Mirasso, R. Toral, and J. D. Gunton, “Diversity-induced reso-
nance,” Phys. Rev. Lett., vol. 97, p. 194101, Nov 2006.

A. S. Pikovsky and J. Kurths, “Coherence resonance in a noise-driven excitable sys-
tem,” Physical Review Letters, vol. 78, no. 5, pp. 775-778, 1997.

L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, “Stochastic resonance,” Re-
views of Modern Physics, vol. 70, no. 1, pp. 223-287, 1998.

B. Lindner, J. Garcia-Ojalvo, A. Neiman, and L. Schimansky-Geier, “Effects of noise
in excitable systems,” Physics Reports, vol. 392, no. 6, pp. 321-424, 2004.

R. Bertram, L. Satin, M. Zhang, P. Smolen, and A. Sherman, “Calcium and glycolysis
mediate multiple bursting modes in pancreatic islets,” Biophysical Journal, vol. 87,
pp. 3074-3087, Nov. 2004.

94



(18]

[19]

[20]

(21]

[22]

(23]
[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

G. J. Félix-Martinez and J. R. Godinez-Fernandez, “Mathematical models of electri-
cal activity of the pancreatic 3-cell: A physiological review,” Islets, vol. 6, p. €949195,
May 2014.

R. K. P. Benninger and D. W. Piston, “Cellular communication and heterogeneity in
pancreatic islet insulin secretion dynamics,” Trends in Endocrinology & Metabolism,
vol. 25, no. 8, pp. 399-406, 2014.

I. J. Stamper, E. Jackson, and X. Wang, “Phase transitions in pancreatic islet cellu-
lar networks and implications for type-1 diabetes.,” Physical review. E, Statistical,
nonlinear, and soft matter physics, vol. 89, p. 012719, Jan. 2014.

N. R. Johnston, R. K. Mitchell, E. Haythorne, M. P. Pessoa, F. Semplici, J. Fer-
rer, L. Piemonti, P. Marchetti, M. Bugliani, D. Bosco, E. Berishvili, P. Duncanson,
M. Watkinson, J. Broichhagen, D. Trauner, G. A. Rutter, and D. J. Hodson, “Beta cell
hubs dictate pancreatic islet responses to glucose,” Cell Metab., vol. 24, pp. 389-
401, Sept. 2016.

L. S6rnmo and P. Laguna, “Chapter 1 - introduction,” in Bioelectrical Signal Pro-
cessing in Cardiac and Neurological Applications (L. S6rnmo and P. Laguna, eds.),
Biomedical Engineering, pp. 1-24, Burlington: Academic Press, [nachdr.] ed., 2005.

B. Hille, lon Channels of Excitable Membranes. Sinauer Associates, 3rd ed., 2001.

B. P. Bean, “The action potential in mammalian central neurons,” Nature Reviews
Neuroscience, vol. 8, pp. 451-465, 2007.

R. Bertram, L. S. Satin, M. G. Pedersen, D. S. Luciani, and A. Sherman, “Interaction
of glycolysis and mitochondrial respiration in metabolic oscillations of pancreatic
islets,” Biophysical Journal, vol. 92, pp. 1544-1555, Mar. 2007.

R. K. P. Benninger and D. W. Piston, “Cellular communication and heterogeneity in
pancreatic islet insulin secretion dynamics,” Trends in Endocrinology & Metabolism,
vol. 25, no. 8, pp. 399-406, 2014.

G. A. Rutter and D. J. Hodson, “Beta cell connectivity in pancreatic islets: a type
2 diabetes target?,” Cellular and Molecular Life Sciences, vol. 77, no. 1, pp. 27-38,
2020.

M. Pérez-Armendariz, C. Roy, D. C. Spray, and M. V. Bennett, “Biophysical properties
of gap junctions between freshly dispersed pairs of mouse pancreatic beta cells,”
Biophysical Journal, vol. 59, pp. 76-92, Jan. 1991.

R. Lupi, F. Dotta, L. Marselli, and et al., “Prolonged exposure to free fatty acids has
cytostatic and pro-apoptotic effects on human pancreatic islets: evidence that 8-
cell death is caspase mediated, partially dependent on ceramide pathway, and bcl-2
regulated,” Diabetes, vol. 51, no. 5, pp. 1437-1442, 2007.

M. Zhang, P. Goforth, R. Bertram, A. Sherman, and L. Satin, “The ca, dynamics of
isolated mouse f-cells and islets: Implications for mathematical models,” Biophys-
ical Journal, vol. 84, pp. 2852-2870, May 2003.

S. A. Daghlas and S. S. Mohiuddin, Biochemistry, Glycogen. StatPearls Publishing,
Treasure Island (FL), 2023.

95



[32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

G. J. Félix-Martinez and J. R. Godinez-Fernandez, “A primer on modelling pancreatic
islets: from models of coupled B-cells to multicellular islet models,” Islets, vol. 15,
July 2023.

E. P. Liao, B. Brass, Z. Abelev, and L. Poretsky, “Endocrine pancreas,” in Principles of
Diabetes Mellitus (L. Poretsky, ed.), pp. 43-55, Cham: Springer International Pub-
lishing, 2017.

M. Feldman, L. S. Friedman, and L. J. Brandt, Sleisenger and Fordtran’s gastrointesti-
nal and liver disease E-book: pathophysiology, diagnosis, management. Elsevier
health sciences, 2020.

A. M. Navale and A. N. Paranjape, “Glucose transporters: physiological and patho-
logical roles,” Biophysical Reviews, vol. 8, pp. 5-9, Jan. 2016.

P. Detimary, S. Dejonghe, Z. Ling, D. Pipeleers, F. Schuit, and J.-C. Henquin, “The
changes in adenine nucleotides measured in glucose-stimulated rodent islets occur
*x N

in B cells but not in & cells and are also observed in human islets*,” Journal of
Biological Chemistry, vol. 273, no. 51, pp. 33905-33908, 1998.

I. R. Sweet, D. L. Cook, E. Delulio, A. R. Wallen, G. Khalil, J. Callis, and J. Reems, “Reg-
ulation of atp/adp in pancreatic islets,” Diabetes, vol. 53, pp. 401-409, 02 2004.

Z. Fu, E. R. Gilbert, and D. Liu, “Regulation of insulin synthesis and secretion and
pancreatic beta-cell dysfunction in diabetes,” Current Diabetes Reviews, vol. 9,
pp. 25-53, Nov. 2012.

V. Serre-Beinier, D. Bosco, L. Zulianello, A. Charollais, D. Caille, E. Charpantier, B. R.
Gauthier, G. R. Diaferia, B. N. Giepmans, R. Lupi, P. Marchetti, S. Deng, L. Buhler,
T. Berney, V. Cirulli, and P. Meda, “Cx36 makes channels coupling human pancreatic
B-cells, and correlates with insulin expression,” Human Molecular Genetics, vol. 18,
pp. 428-439, 11 2008.

R. K. P. Benninger, W. S. Head, M. Zhang, L. S. Satin, and D. W. Piston, “Gap junctions
and other mechanisms of cell-cell communication regulate basal insulin secretion
in the pancreatic islet,” The Journal of Physiology, vol. 589, pp. 5453-5466, Nov.
20M.

B. E. Peercy and D. J. Hodson, “Insulin release: Synchronizing beta cells in the pan-
creas,” elife, vol. 13, p. €95103, jan 2024.

T. A. Wynn and K. M. Vannella, “Macrophages in tissue repair, regeneration, and
fibrosis,” Immunity, vol. 44, no. 3, pp. 450-462, 2016.

F. Ginhoux and S. Jung, “Monocytes and macrophages: developmental pathways
and functional diversification,” Nature Reviews Immunology, vol. 14, no. 6, pp. 392-
404, 2014.

J. DeFelipe, “From the connectome to the synaptome: an epic love story,” Science,
vol. 330, no. 6008, pp. 1198-1201, 2010.

R. J. Zatorre, R. D. Fields, and H. Johansen-Berg, “Plasticity in gray and white: neu-
roimaging changes in brain structure during learning,” Nature Neuroscience, vol. 15,
no. 4, pp. 528-536, 2012.

926



[46]

[47]

[48]

[49]

[50]

[51]

(52]

(53]

[54]

[55]

[56]

(57]

(58]

[59]

[60]

K. B. Halpern, R. Shenhav, and E. E. Massasa, “Single-cell spatial reconstruction re-
veals global division of labour in the mammalian liver,” Nature, vol. 542, pp. 352-
356, 2017.

R. Gebhardt and M. Matz-Soja, “Liver zonation: novel aspects of its regulation and
its impact on homeostasis,” World Journal of Gastroenterology, vol. 20, no. 26,
pp. 8491-8504, 2014.

M. Biton, A. Haber, and N. e. a. Rogel, “Tissue specialization and homeostasis
achieved by the cooperative gene regulation of stem cells,” Cell, vol. 175, no. 4,
pp. 934-947.e15, 2018.

P. W. Tetteh, H. F. Farin, and H. Clevers, “Stem cell dynamics in homeostasis and in-
jury of the intestinal epithelium,” Nature Reviews Gastroenterology & Hepatology,
vol. 12, no. 7, pp. 383-391, 2016.

R. Satija, J. A. Farrell, D. Gennert, A. F. Schier, and A. Regev, “Spatial reconstruction
of single-cell gene expression data,” Nature Biotechnology, vol. 33, no. 5, pp. 495-
502, 2015.

L.Zhang, S.Zhang, and Y. e. a. Ma, “Cell-type-specific spatial transcriptome mapping
reveals subpopulations in the mouse brain,” Nature Neuroscience, vol. 24, no. 10,
pp. 1484-1494, 2021.

D. G. Pipeleers, “Heterogeneity in pancreatic beta-cell population,” Diabetes,
vol. 41, no. 7, pp. 777-781, 1992.

G. Dominguez Gutierrez, J. Gromada, and L. Sussel, “Heterogeneity of the pancre-
atic beta cell,” Frontiers in Genetics, vol. 8, p. 22, 2017.

D. Nasteska and D. J. Hodson, “The role of beta cell heterogeneity in islet function
and insulin release,” Journal of Molecular Endocrinology, vol. 61, no. 1, pp. R43-R60,
2018.

R. K. Benninger and D. J. Hodson, “New understanding of 3-cell heterogeneity and
in situ islet function,” Diabetes, vol. 67, no. 4, pp. 537-547, 2018.

R. T. Scarl, K. L. Corbin, N. W. Vann, H. M. Smith, L. S. Satin, A. Sherman, and C. S.
Nunemaker, “Intact pancreatic islets and dispersed beta-cells both generate intra-
cellular calcium oscillations but differ in their responsiveness to glucose,” Cell Cal-
cium, vol. 83, p. 102081, 2019.

C-L. Lei, J. A. Kellard, M. Hara, J. D. Johnson, B. Rodriguez, and L. J. Briant, “Beta-
cell hubs maintain Ca%t oscillations in human and mouse islet simulations,” Islets,
vol. 10, no. 4, pp. 151-167, 2018. PMID: 30142036.

B. E. Peercy and A. S. Sherman, “Do oscillations in pancreatic islets require pace-
maker cells?,” Journal of Biosciences, vol. 47, Feb. 2022.

N. Aldous, A. S. M. Moin, and E. M. Abdelalim, “Pancreatic 3-cell heterogeneity
in adult human islets and stem cell-derived islets,” Cellular and Molecular Life Sci-
ences, vol. 80, no. 1, p. 176, 2023.

T. R. Chay and J. Keizer, “Minimal model for membrane oscillations in the pancreatic
beta-cell,” Biophysical journal, vol. 42, no. 2, pp. 181-189, 1983.

97



[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

(74]

M. Valdeolmillos, R. M. Santos, D. Contreras, B. Soria, and L. M. Rosario, “Glucose-
induced oscillations of intracellular ca®** concentration resembling bursting electri-
cal activity in single mouse islets of langerhans,” FEBS Letters, vol. 259, pp. 19-23,
Dec. 1989.

R. M. Santos, L. M. Rosario, A. Nadal, J. Garcia-Sancho, B. Soria, and M. Valdeolmil-
los, “Widespread synchronous [ca2+]i oscillations due to bursting electrical activity
in single pancreatic islets,” Pflugers Archiv European Journal of Physiology, vol. 418,
pp. 417-422, May 1991.

R.Bertram, J. Previte, A. Sherman, T. A. Kinard, and L. S. Satin, “The phantom burster
model for pancreatic 3-cells,” Biophysical Journal, vol. 79, pp. 2880-2892, Dec.
2000.

R. Bertram, A. Sherman, and L. S. Satin, “Metabolic and electrical oscillations:
partners in controlling pulsatile insulin secretion,” American Journal of Physiology-
Endocrinology and Metabolism, vol. 293, pp. E890-E900, Oct. 2007.

A. Sherman and J. Rinzel, “Model for synchronization of pancreatic beta-cells by gap
junction coupling,” Biophysical Journal, vol. 59, pp. 547-559, Mar. 1991.

M. Saadati and Y. Jamali, “The effects of beta-cell mass and function, intercellular
coupling, and islet synchrony on Ca2* dynamics,” Scientific Reports, vol. 11, May
2021.

D. Cebrian-Lacasa, P. Parra-Rivas, D. Ruiz-Reynés, and L. Gelens, “Six decades of
the fitzhugh-nagumo model: A guide through its spatio-temporal dynamics and
influence across disciplines,” Physics Reports, vol. 1096, pp. 1-39, Dec. 2024.

E. M. Izhikevich and R. FitzHugh, “FitzHugh-Nagumo model,” Scholarpedia, vol. 1,
no. 9, p. 1349, 2006. revision #123664.

D. Paz6 and E. Montbrid, “Universal behavior in populations composed of excitable
and self-oscillatory elements,” Phys. Rev. E, vol. 73, p. 055202, May 2006.

S. Chuan-Sheng, C. Han-Shuang, and Z. Ji-Qian, “Amplified signal response by neu-
ronal diversity on complex networks,” Chinese Physics Letters, vol. 25, p. 1591, may
2008.

S. J. Persaud, A. C. Hauge-Evans, and P. M. Jones, “Chapter 15 - Insulin-Secreting
Cell Lines: Potential for Research and Diabetes Therapy,” in Cellular Endocrinology
in Health and Disease (A. Ulloa-Aguirre and P. M. Conn, eds.), pp. 239-256, Boston:
Academic Press, 2014.

D. Nasteska and D. J. Hodson, “The role of beta cell heterogeneity in islet function
and insulin release,” J. Mol. Endocrinol., vol. 61, pp. R43-R60, July 2018.

T. Aizawa, T. Kaneko, K. Yamauchi, H. Yajima, T. Nishizawa, T. Yada, H. Matsukawa,
M. Nagai, S. Yamada, Y. Sato, M. Komatsu, N. Itoh, H. Hidaka, Y. Kajimoto, and
K. Hashizume, “Size-related and size-unrelated functional heterogeneity among
pancreatic islets,” Life Sci., vol. 69, pp. 2627-2639, Oct. 2001.

M. Karaca, “In vivo functional heterogeneity among f-cells,” Islets, vol. 2, pp. 124-
126, Mar. 2010.

98



[75]

[76]

[77]

(78]

[79]

[80]

(81]

(82]

(83]

[84]

(85]

(86]

(87]

(88]

(89]

[90]

M. Riz, M. Braun, and M. G. Pedersen, “Mathematical modeling of heterogeneous
electrophysiological responses in human S-cells.,” PLoS Comput. Biol., vol. 10,
p. 1003389, Jan. 2014.

J. Kolic and J. Johnson, “Specialized hub beta cells trade maximal insulin production
for perfect timing,” Cell Metab., vol. 24, pp. 371-373, Sept. 2016.

M. J. Westacott, N. W. F. Ludin, and R. K. P. Benninger, “Spatially organized -cell
subpopulations control electrical dynamics across islets of Langerhans,” Biophys. J.,
vol. 113, pp. 1093-1108, Sept. 2017.

V. Salem, L. D. Silva, K. Suba, E. Georgiadou, S. N. M. Gharavy, N. Akhtar, A. Martin-
Alonso, D. C. A. Gaboriau, S. M. Rothery, T. Stylianides, G. Carrat, T. J. Pullen, S. P.
Singh, D. J. Hodson, I. Leclerc, A. M. J. Shapiro, P. Marchetti, L. J. B. Briant, W. Dis-
taso, N. Ninov, and G. A. Rutter, “Leader f3-cells coordinate Ca?t dynamics across
pancreatic islets in vivo,” Nature Metabolism, vol. 1, pp. 615-629, June 2019.

. J. Stamper and X. Wang, “Integrated multiscale mathematical modeling of insulin
secretion reveals the role of islet network integrity for proper oscillatory glucose-
dose response,” J. Theor. Biol., vol. 475, pp. 1-24, Aug. 2019.

R. Benzi, A. Sutera, and A. Vulpiani, “The mechanism of stochastic resonance,” Jour-
nal of Physics A: Mathematical and General, vol. 14, no. 11, pp. L453-L457, 1981.

F. Moss, D. Pierson, and D. O’Gorman, “Stochastic resonance: Tutorial and update,”
International Journal of Bifurcation and Chaos, vol. 4, no. 6, pp. 1383-1397, 1994.

M. D. McDonnell and D. Abbott, “What is stochastic resonance? definitions, mis-
conceptions, debates, and its relevance to biology,” PLoS Computational Biology,
vol. 5, no. 5, p. e1000348, 2009.

C. Nicolis, “Stochastic aspects of climatic transitions—responses to periodic forc-
ing,” Tellus, vol. 34, no. 1, pp. 1-9, 1982.

S. Fauve and F. Heslot, “Stochastic resonance in a bistable system,” Physics Letters
A, vol. 97, no. 1-2, pp. 5-7,1983.

R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani, “Stochastic resonance in climatic
change,” Tellus, vol. 34, no. 1, pp. 10-16, 1982.

H. Kramers, “Brownian motion in a field of force and the diffusion model of chemical
reactions,” Physica, vol. 7, pp. 284-304, Apr. 1940.

T. Wellens, V. Shatokhin, and A. Buchleitner, “Stochastic resonance,” Reports on
Progress in Physics, vol. 67, p. 45, dec 2003.

H. Gang, T. Ditzinger, C. Z. Ning, and H. Haken, “Stochastic resonance without ex-
ternal periodic force,” Physical Review Letters, vol. 71, no. 6, pp. 807-810, 1993.

C. B. Muratoy, E. Vanden-Eijnden, and W. E, “Self-induced stochastic resonance in
excitable systems,” Physica D: Nonlinear Phenomena, vol. 210, pp. 227-240, 2005.

A. S. Pikovsky and J. Kurths, “Coherence resonance in a noise-driven excitable sys-
tem,” Physical Review Letters, vol. 78, no. 5, pp. 775-778, 1997.

99



[91]

[92]

[93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

M. E. Yamakou and J. Jost, “A simple parameter can switch between different weak-
noise-induced phenomena in a simple neuron model,” Europhysics Letters, vol. 120,
p. 18002, 2017.

P. Jung and G. Mayer-Kress, “Spatiotemporal stochastic resonance in excitable me-
dia,” Phys. Rev. Lett., vol. 74, pp. 2130-2133, mar 1995.

H. Busch and F. Kaiser, “Influence of spatiotemporally correlated noise on structure
formation in excitable media,” Phys. Rev. E, vol. 67, apr 2003.

F. Liu and W. Wang, “Stochastic resonance in a globally coupled neuronal network,”
J. Phys. Soc. Jpn., vol. 68, pp. 3456-3461, oct 1999.

J. K. Douglass, L. Wilkens, E. Pantazelou, and F. Moss, “Noise enhancement of in-
formation transfer in crayfish mechanoreceptors by stochastic resonance,” Nature,
vol. 365, pp. 337-340, 1993.

A. Longtin, “Autonomous stochastic resonance in bursting neurons,” Phys. Rev. E,
vol. 55, pp. 868-876, Jan 1997.

P. Hanggi, “Stochastic resonance in biology. how noise can enhance detection of
weak signals and help improve biological information processing,” ChemPhysChem,
vol. 3, no. 3, pp. 285-290, 2002.

T. Mori and S. Kai, “Noise-induced entrainment and stochastic resonance in human
brain waves,” Phys. Rev. Lett., vol. 88, may 2002.

C. V. Rao, D. M. Wolf, and A. P. Arkin, “Control, exploitation and tolerance of intra-
cellular noise,” Nature, vol. 420, pp. 231-237, nov 2002.

T. R. Chay and H. S. Kang, “Role of single-channel stochastic noise on bursting clus-
ters of pancreatic beta-cells,” Biophysical Journal, vol. 54, no. 3, pp. 427-435, 1988.

P. Smolen, “A model for glycolytic oscillations based on skeletal muscle phospho-
fructokinase kinetics,” Journal of Theoretical Biology, vol. 174, no. 2, pp. 137-148,
1995.

M. G. Pedersen, “Phantom bursting is highly sensitive to noise and unlikely to ac-
count for slow bursting in beta-cells: considerations in favor of metabolically driven
oscillations,” Journal of Theoretical Biology, vol. 248, no. 2, pp. 391-400, 2007.

R. Toral, E. Hernandez-Garcia, and J. D. Gunton, “Diversity-induced resonance in
a system of globally coupled linear oscillators,” Int. J. Bifurcation Chaos, vol. 19,
p. 3499-3508, Oct. 2009.

H. Chen, Z. Hou, and H. Xin, “Threshold-diversity-induced resonance,” Physica A
Statistical Mechanics and its Applications, vol. 388, p. 2299-2305, June 2009.

L. Wu, S. Zhu, and X. Luo, “Diversity-induced resonance on weighted scale-free net-
works,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 20, p. 033113,
Sept. 2010.

L. Wu, S. Zhu, X. Luo, and D. Wu, “Effects of clustering on diversity-induced reso-
nance in hidden metric spaces,” Phys. Rev. E, vol. 81, p. 061118, June 2010.

100



[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

M. Patriarca, S. Postnova, H. A. Braun, E. Hernandez-Garcia, and R. Toral, “Diversity
and noise effects in a model of homeostatic regulation of the sleep-wake cycle,”
PLoS Comput. Biol., vol. 8, p. €1002650, Aug. 2012.

C. J. Tessone, A. Sanchez, and F. Schweitzer, “Diversity-induced resonance in the
response to social norms,” Phys. Rev. E, vol. 87, p. 022803, Feb. 2013.

M. Patriarca, E. Hernandez-Garcia, and R. Toral, “Constructive effects of diversity
in a multi-neuron model of the homeostatic regulation of the sleep-wake cycle,”
Chaos, Solitons & Fractals, vol. 81, p. 567-574, Dec. 2015.

M. Grace and M.-T. Hiitt, “Pattern competition as a driver of diversity-induced res-
onance,” Eur. Phys. J. B, vol. 87, p. 29, Feb. 2014.

X. Liang, X. Zhang, and L. Zhao, “Diversity-induced resonance for optimally
suprathreshold signals,” Chaos: An Interdisciplinary Journal of Nonlinear Science,
vol. 30, p. 103101, Oct. 2020.

N. K. Kamal and S. Sinha, “Dynamic random links enhance diversity-induced coher-
ence in strongly coupled neuronal systems,” Pramana - J. Phys., vol. 84, pp. 249-
256, jan 2015.

E. Hunsberger, M. Scott, and C. Eliasmith, “The competing benefits of noise and
heterogeneity in neural coding,” Neural Comput., vol. 26, p. 1600-1623, Aug. 2014.

C. J. Tessone, A. Scire, R. Toral, and P. Colet, “Theory of collective firing induced by
noise or diversity in excitable media,” Phys. Rev. E, vol. 75, p. 016203, jan 2007.

C. Degli Esposti Boschi, E. Louis, and G. Ortega, “Triggering synchronized oscillations
through arbitrarily weak diversity in close-to-threshold excitable media,” Phys. Rev.
E, vol. 65, p. 012901, Dec 2001.

Y-Y. Li, B. Jia, H.-G. Gu, and S.-C. An, “Parameter diversity induced multiple spa-
tial coherence resonances and spiral waves in neuronal network with and without
noise,” Commun. Theor. Phys., vol. 57, pp. 817-824, may 2012.

Y-Y.Li and X.-L. Ding, “Multiple spatial coherence resonances and spatial patterns in
a noise-driven heterogeneous neuronal network,” Commun. Theor. Phys., vol. 62,
pp. 917-926, dec 2014.

M. Gassel, E. Glatt, and F. Kaiser, “Doubly diversity-induced resonance,” Phys. Rev.
E, vol. 76, p. 016203, jul 2007.

C. Zhou, J. Kurths, and B. Hu, “Array-enhanced coherence resonance: Nontrivial
effects of heterogeneity and spatial independence of noise,” Phys. Rev. Lett., vol. 87,
p. 098101, aug 2001.

E. Glatt, M. Gassel, and F. Kaiser, “Noise-induced synchronisation in heterogeneous
nets of neural elements,” Europhys. Lett., vol. 81, p. 40004, jan 2008.

R. Poznanski and O. Umino, “Syncytial integration by a network of coupled bipolar
cells in the retina,” Progress in Neurobiology, vol. 53, pp. 273-291, Oct. 1997.

E. Andreu, E. Fernandez, E. Louis, G. Ortega, and J. V. Sadnchez-Andrés, “Role of
architecture in determining passive electrical properties in gap junction-connected
cells,” Eur. J. Physiol., vol. 439, no. 6, p. 789, 2000.

101



[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

I. Vragovic, E. Louis, C. Degli Esposti Boschi, and G. Ortega, “Diversity-induced syn-
chronized oscillations in close-to-threshold excitable elements arranged on regular
networks: Effects of network topology,” Physica D: Nonlinear Phenomena, vol. 219,
no. 2, pp. 111-119, 2006.

R. C. Desai and R. Zwanzig, “Statistical mechanics of a nonlinear stochastic model,”
J. Stat. Phys., vol. 19, p. 1, jan 1978.

M. Uzuntarla, J. R. Cressman, M. Ozer, and E. Barreto, “Dynamical structure un-
derlying inverse stochastic resonance and its implications,” Phys. Rev. E, vol. 88,
p. 042712, Oct 2013.

D. Paydarfar, D. B. Forger, and J. R. Clay, “Noisy inputs and the induction of on-off
switching behavior in a neuronal pacemaker,” Journal of Neurophysiology, vol. 96,
no. 6, pp. 3338-3348, 2006. PMID: 16956993.

B. S. Gutkin, J. Jost, and H. C. Tuckwell, “Inhibition of rhythmic neural spiking by
noise: the occurrence of a minimum in activity with increasing noise,” Naturwis-
senschaften, vol. 96, pp. 1091-1097, Sept. 2009.

H. C. Tuckwell, J. Jost, and B. S. Gutkin, “Inhibition and modulation of rhythmic
neuronal spiking by noise,” Phys. Rev. E, vol. 80, p. 031907, Sep 2009.

M. E. Yamakou, J. Zhu, and E. A. Martens, “Inverse stochastic resonance in adap-
tive small-world neural networks,” Chaos: An Interdisciplinary Journal of Nonlinear
Science, vol. 34, p. 113119, 11 2024.

M. E. Yamakou and J. Jost, “Control of coherence resonance by self-induced stochas-
tic resonance in a multiplex neural network,” Phys. Rev. E, vol. 100, p. 022313, Aug
2019.

R.E. L. DeVille and E. Vanden-Eijnden, “Self-induced stochastic resonance for brow-
nian ratchets under load,” Communications in Mathematical Sciences, vol. 5, no. 2,
pp. 431-446, 2007.

M. E. Yamakou and J. Jost, “Coherent neural oscillations induced by weak synaptic
noise,” Nonlinear Dynamics, vol. 93, no. 4, pp. 2121-2144, 2018.

M. E. Yamakou, P. G. Hjorth, and E. A. Martens, “Optimal self-induced stochastic
resonance in multiplex neural networks: Electrical vs. chemical synapses,” Frontiers
in Computational Neuroscience, vol. 14, p. 62, 2020.

C. Kuehn, Multiple Time Scale Dynamics, vol. 191 of Applied Mathematical Sciences.
Springer, 2015.

N. Fenichel, “Geometric singular perturbation theory for ordinary differential equa-
tions,” Journal of Differential Equations, vol. 31, pp. 53-98, 1979.

M. FREIDLIN, “On stochastic perturbations of dynamical systems with fast and slow
components,” Stochastics and Dynamics, vol. 01, no. 02, pp. 261-281, 2001.

N. J. Kasdin, “Runge-kutta algorithm for the numerical integration of stochastic dif-
ferential equations,” Journal of Guidance, Control, and Dynamics, vol. 18, no. 1,
pp. 114-120, 1995.

102



[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

D. E. Knuth, “The art of computer programming, vol. 2, addison-wesley,” Reading,
MA, p. 51, 1973.

M. Masoliver, N. Malik, E. Schoéll, and A. Zakharova, “Coherence resonance in a
network of fitzhugh-nagumo systems: Interplay of noise, time-delay, and topology,”
Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 27, p. 101102, 10 2017.

T. Shibata and K. Kaneko, “Heterogeneity-induced order in globally coupled chaotic
systems,” EPL (Europhysics Letters), vol. 38, no. 6, p. 417, 1997.

D. M. Vogt Weisenhorn, F. Giesert, and W. Wurst, “Diversity matters - heterogeneity
of dopaminergic neurons in the ventral mesencephalon and its relation to parkin-
son’s disease,” Journal of Neurochemistry, vol. 139, no. S1, pp. 8-26, 2016.

E. Heinsalu, M. Patriarca, and F. Marchesoni, “Dimer diffusion in a washboard po-
tential,” Phys. Rev. E, vol. 77, p. 021129, 2008.

E. Heinsalu, M. Patriarca, and F. Marchesoni, “Stochastic resonance in a surface
dipole,” Chem. Phys., vol. 375, no. 2, pp. 410-415, 2010.

M. Patriarca, P. Szelestey, and E. Heinsalu, “Brownian model of dissociated disloca-
tions,” Acta Phys. Pol. B, vol. 36, p. 1745, 2005.

M. Newman and D. Watts, “Renormalization group analysis of the small-world net-
work model,” Phys. Lett. A, vol. 263, no. 4, pp. 341-346, 1999.

D. M. Vogt Weisenhorn, F. Giesert, and W. Wurst, “Diversity matters-heterogeneity
of dopaminergic neurons in the ventral mesencephalon and its relation to parkin-
son’s disease,” J. Neurochem., vol. 139, pp. 8-26, 2016.

S. Efrat, “Beta-cell dedifferentiation in type 2 diabetes: Concise review,” Stem Cells,
vol. 37, no. 10, pp. 1267-1272, 2019.

F. Leenders, E. J. P. de Koning, and F. Carlotti, “Pancreatic 3-cell identity change
through the lens of single-cell omics research,” Int. J. Mol. Sci., vol. 25, no. 9, p. 4720,
2024.

J. U.Wagner and S. Dimmeler, “Cellular cross-talks in the diseased and aging heart,”
J. Mol. Cell. Cardiol., vol. 138, pp. 136-146, 2020.

M. V. Tamm, E. Heinsalu, S. Scialla, and M. Patriarca, “Learning thresholds lead to
stable language coexistence,” Phys. Rev. E, vol. 111, no. 2, p. 024304, 2025.

L. Marcotullio, P. Grdb, S. Scialla, and P. Saveyn, “Understanding perfume deposition
mechanisms on different textile substrates in a realistic laundering process,” Journal
of Surfactants and Detergents, vol. 28, no. 4, pp. 731-745, 2025.

X. Han, S. Scialla, E. Limiti, E. T. Davis, M. Trombetta, A. Rainer, S. W. Jones, E. Mauri,
and Z. J. Zhang, “Nanoscopic gel particle for intra-articular injection formulation,”
Biomaterials Advances, vol. 163, p. 213956, 2024.

S. Scialla, J. K. Liivand, M. Patriarca, and E. Heinsalu, “A three-state language com-
petition model including language learning and attrition,” Frontiers in Complex Sys-
tems, vol. 1, 2023.

103



[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

E. Mauri and S. Scialla, “Nanogels based on hyaluronic acid as potential active car-
riers for dermatological and cosmetic applications,” Cosmetics, vol. 10, no. 4, p. 113,
2023.

S. M. Giannitelli, E. Limiti, P. Mozetic, F. Pinelli, X. Han, F. Abbruzzese, F. Basoli, D. D.
Rio, S. Scialla, F. Rossi, M. Trombetta, L. Rosano, G. Gigli, Z. J. Zhang, E. Mauri, and
A. Rainer, “Droplet-based microfluidic synthesis of nanogels for controlled drug de-
livery: tailoring nanomaterial properties via pneumatically actuated flow-focusing
junction,” Nanoscale, vol. 14, no. 31, pp. 11415-11428, 2022.

E. Limiti, P. Mozetic, S. M. Giannitelli, F. Pinelli, X. Han, D. D. Rio, F. Abbruzzese, F. Ba-
soli, L. Rosano, S. Scialla, M. Trombetta, G. Gigli, Z. J. Zhang, E. Mauri, and A. Rainer,
“Hyaluronic acid-polyethyleneimine nanogels for controlled drug delivery in cancer
treatment,” ACS Applied Nano Materials, vol. 5, no. 4, pp. 5544-5557, 2022.

K. A. Berrington, V. M. Burke, P. G. Burke, and S. Scialla, “Electron impact excitation
of n=3 states of C Ill: an application of a new R-matrix package,” Journal of Physics
B: Atomic, Molecular and Optical Physics, vol. 22, no. 4, pp. 665-676, 1989.

F. A. Gianturco, L. C. Pantano, and S. Scialla, “Low-energy structure in electron-silane
scattering,” Phys. Rev. A, vol. 36, no. 2, pp. 557-563, 1987.

F. A. Gianturco and S. Scialla, “Low-energy electron scattering from water
molecules: A study of angular distributions,” The Journal of Chemical Physics,
vol. 87, no. 11, pp. 6468-6473, 1987.

F. A. Gianturco and S. Scialla, “Local approximations of exchange interaction in
electron-molecule collisions: the methane molecule,” Journal of Physics B: Atomic
and Molecular Physics, vol. 20, no. 13, pp. 3171-3189, 1987.

P. Morganti and S. Scialla, “Nanoparticles, nanofibrils, and tissues as novel carriers
in cosmetic dermatology,” in Soft Particles, pp. 257-287, Elsevier, 2023.

S. Scialla and O. Todini, “Liquid bleach formulations,” in Handbook of Detergents,
Part D, pp. 179-206, CRC Press, 2005.

S. Scialla, “The formulation of liquid household cleaners,” in Handbook of Deter-
gents, Part D, pp. 153-177, CRC Press, 2005.

F. A. Gianturco and S. Scialla, “A parameter-free theoretical model for low-energy
electron scattering from polyatomic molecules,” in Nonequilibrium Processes in Par-
tially lonized Gases, pp. 323-332, Springer US, 1990.

F. A. Gianturco and S. Scialla, “Electron scattering by polyatomic molecules: Recent
advances in theory and calculations,” in Electron-Molecule Scattering and Photoion-
ization, pp. 169-186, Springer US, 1988.

104



Acknowledgements

First and foremost, | would like to express my deepest gratitude to my wife for her unwa-
vering support and patience throughout the long journey that led to this thesis. Her un-
derstanding during the countless hours | spent engaged in research and writing has been
a source of strength and reassurance. Without her encouragement and quiet endurance,
this work would not have been possible.

I am profoundly thankful to my PhD supervisors and lifelong friends, Dr. Marco Pa-
triarca and Dr. Els Heinsalu, for their invaluable guidance, insightful feedback, and con-
tinuous encouragement. Their willingness to support and mentor me as | embarked on
a PhD program at this stage in life — beyond the age of 60 — was both very generous
and inspiring. Their confidence in my ability to contribute meaningfully to the scientific
community has been a major motivation throughout this endeavor.

Importantly, this journey was enabled by the Open University program at Tallinn Uni-
versity of Technology and the research activities carried out at the National Institute of
Chemical Physics and Biophysics. | also gratefully acknowledge the financial support pro-
vided by the Estonian Research Council through grant PRG1059.

Finally, to all those who have supported me directly or indirectly — colleagues, friends,
and family — thank you. Your encouragement and belief in the value of lifelong learning
have helped make this remarkable achievement possible.

105



Abstract
The Role of Heterogeneity in the Dynamics of Excitable Cell
Networks

Excitable cells such as neurons, cardiomyocytes, and pancreatic 3-cells exhibit dynamic
behaviors that are fundamental to biological function, including signal transmission, mus-
cle contraction, and hormone secretion. In the case of pancreatic 3-cells, electrical and
calcium oscillations across cellular networks regulate insulin release and thus play a crucial
role in glucose homeostasis. Recent studies have highlighted that the functional perfor-
mance of such networks is critically shaped by the presence of intrinsic heterogeneity.
This thesis investigates the interplay of heterogeneity, coupling topology, and stochastic
fluctuations in excitable cell networks, with an emphasis on identifying conditions under
which these factors either promote or suppress collective behavior such as synchroniza-
tion and resonance.

A primary goal of the thesis is to gain a better understanding of the influence of het-
erogeneity on the collective behavior of excitable cell networks, focusing on pancreatic
B-cell clusters as a representative biological example. While individual 3-cells often ex-
hibit irregular or absent oscillatory activity, their synchronization within clusters enables
robust and pulsatile insulin secretion. However, the mechanisms by which heterogeneity
among cells contributes to or detracts from this coordinated behavior remain not fully
understood. Notably, while a multitude of previous studies have shown that stochastic
noise can enhance responsiveness in nonlinear systems (e.g., stochastic resonance), the
concept that diversity among network elements may similarly play a constructive dynam-
ical role, referred to as diversity-induced resonance (DIR), is comparatively recent and less
studied.

This thesis addresses the open questions: a) Under what conditions does cellular het-
erogeneity enhance or suppress collective oscillations in excitable networks, and how
does its influence compare with or complement that of intrinsic noise? b) What are the
underlying dynamical mechanisms? c¢) What is the biological relevance of these effects,
particularly for 3-cell networks?

To address these questions, the thesis develops and analyzes a series of mathemati-
cal models. The FitzZHugh-Nagumo (FHN) oscillator is employed as a prototypical model
of excitable cell dynamics, due to its balance between simplicity and ability to reproduce
fundamental features of action potentials. Networks of diffusively coupled FHN units are
constructed to mimic B-cell clusters and investigated under different regimes of parame-
ter heterogeneity and noise intensity.

The methodology combines numerical simulations with analytical techniques such as
bifurcation analysis and mean-field approximations. Heterogeneity is introduced either as
a discrete bimodal distribution or as a continuous (e.g., Gaussian) distribution of excitabil-
ity parameters. Noise is modeled as additive stochastic perturbations. The response of
the system is quantified via synchronization measures, oscillation amplitude, coherence,
and response curves.

The thesis yields several novel insights:

¢ Modeling 3-Cell Network Dynamics with FHN Oscillators: A Langerhans islet model
based on a 3D network of heterogeneous FHN oscillators with parameter hetero-
geneity exhibits a resonance-like peak in collective oscillatory activity, analogous to
stochastic resonance. Thanks to the choice of model parameters, which are repre-
sentative of B-cell electrical activity in a realistic cluster, it illustrates how physio-
logical diversity among f-cells can enhance synchronized bursts resulting in more
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efficient insulin secretion.

¢ Hubs and Network Structure: The above model also suggests that the presence
in Langerhans islets of a specific subset of highly active B-cells (hub cells) can be
regarded as an emergent property of the network. The percentage of such hubs
corresponding to the DIR peak (estimated by the model) aligns with recent experi-
mental findings.

¢ Interplay Between Noise and Diversity: The combination of noise and heterogene-
ity leads to regimes of both synergy and competition. When most of the network
population is outside the intrinsic oscillatory range, noise and diversity tend to co-
operate, enhancing synchronization. Instead, when a high percentage of units is
near the oscillatory threshold, diversity and noise influence synchronization inde-
pendently, and no synergistic interaction is observed. In contrast to previous stud-
ies, this highlights that heterogeneity and noise represent fundamentally distinct
sources of disorder which, although capable of producing analogous effects under
certain conditions, generally influence the dynamics of complex systems in different
ways.

¢ Inhibitory Role of Diversity: While it is known from previous studies that diversity
is capable of enhancing global network oscillations and amplifying signals, this the-
sis identifies a specific regime in which small levels of diversity are shown, for the
first time, to suppress synchronization, inhibiting self-induced stochastic resonance
(SISR). This result illustrates that heterogeneity can also have a destabilizing effect,
depending on the dynamical regime.

¢ Mechanical Analogy with Polymer Translocation: A dynamical equivalence is de-
monstrated between DIR in oscillator networks and the resonant translocation of
a polymer across a periodic potential. This analogy offers mechanistic insight into
the underlying physical principles of DIR and supports its interpretation as a gener-
alizable phenomenon.

e Symmetry of Diversity Distribution: The degree of symmetry in the diversity distri-
bution—rather than the mere fraction of intrinsically oscillatory units—is a key de-
terminant of global coherence in excitable networks. Networks with symmetric or
moderately asymmetric distributions exhibit robust synchronization, while strongly
asymmetric ones fail to sustain collective oscillations, even when a significant frac-
tion of units is oscillatory. This suggests that structural features of variability, such
as distributional symmetry, play a central role in shaping emergent dynamics and
may be critical for understanding dysfunction in biological systems affected by aging
or disease.

In conclusion, this work advances the understanding of how heterogeneity shapes col-
lective dynamics in excitable cell networks, particularly in biologically relevant systems
such as pancreatic 3 -cell clusters. While diversity is often viewed as a mere source of dis-
order, the results presented here demonstrate its dual role as both a potential enhancer
and inhibitor of coordinated activity, depending on system parameters. Furthermore, the
development of an abstract polymer model reinforces the universality of the DIR mecha-
nism across different physical systems.

By bridging simplified dynamical models with biological phenomena, the thesis offers a
theoretical foundation that complements experimental efforts in § -cell physiology. These
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insights may ultimately inform the design of therapeutic strategies in type 2 diabetes,
where restoring or preserving functional B -cell heterogeneity could improve Langerhans
islet performance.
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Kokkuvote
Heterogeensuse roll ergastatavate rakuvorgustike diinaamikas

Ergastatavad rakud, nagu neuronid, kardiomUotstitidid ja pankrease 3-rakud, omavad dii-
naamilist kaitumist, mis on fundamentaalne erinevate bioloogiliste protsesside toimu-
miseks; naiteks signaalitilekanne, lihaskontraktsioon ja hormoonide sekretsioon. Pank-
rease f3-rakkude puhul reguleerivad rakuvérgustikes aset leidvad elektrilised ja kaltsiu-
mi taseme ostsillatsioonid insuliini vabanemist ning omavad seega keskset rolli gliikoosi
homdostaasis. Hiljutised uuringud on nadidanud, et sdaraste vorgustike funktsionaalne toi-
mimine on oluliselt seotud nende heterogeensusega. Kaesolev vaitekiri uurib heterogeen-
suse, interaktsiooni ja stohhastiliste fluktuatsioonide vastastikmadjusid ergastatavates ra-
kuvérgustikes, eesmargiga teha kindlaks, milliste tingimuste korral toimub kollektiivse kai-
tumise, nagu naiteks siisteemis ilmneva siinkronisatsiooni voi resonantsi, soodustamine
vOi parssimine.

Viitekirja Uheks peamiseks eesmérgiks on, keskendudes pankrease -rakkude klastri-
te naitele, paremini moista, kuidas heterogeensus mojutab ergastatavates rakuvorgusti-
kes ilmnevat kollektiivset diinaamikat. Kuigi B-rakud tksikult ostsilleerivad enamasti kas
ebaregulaarset voi lldse mitte, siis klastrites toimub nende slinkronisatsioon, mis tagab
tohusa ja pulseeruva insuliini sekretsiooni. Kuidas rakkude heterogeensus seda koordi-
neeritud kaitumist soodustab voi takistab, pole kaugeltki veel selge. Mitmed varasemad
uuringud on ndidanud, et stohhastiline miira voib tugevdada mittelineaarsete stisteemide
tundlikkust (nt stohhastiline resonants), kuid hiljuti on niidatud ning hakatud suuremat
tahelepanu p6érama sellele, et ka vorgustiku elementide mitmekesisus voib omada konst-
ruktiivset diinaamilist rolli; seda nahtust nimetatakse mitmekesisuse poolt indutseeritud
resonantsiks (MIR).

Vaitekiri kasitleb jargmisi kiisimusi: a) Millistel tingimustel tugevdab véi péarsib rakku-
de heterogeensus kollektiivseid ostsillatsioone ergastatavates vorgustikes ning milline on
sdarane heterogeensuse moju vorreldes stisteemi sisemise miiraga? b) Millised on aset
leidvate nahtuste aluseks olevad diinaamilised mehhanismid? c) Milline on nende nih-
tuste olulisus bioloogiliste stisteemide, eeskatt -rakkude vorgustike, jaoks?

Nende kiisimuste uurimiseks pakutakse vaitekirjas vélja ja anallilisitakse mitmeid ma-
temaatilisi mudeleid. Ergastatavate rakkude diinaamika prototiiiipilise mudelina on ka-
sutatud FitzHugh-Nagumo (FHN) ostsillaatorit, kuna see on Uthtaegu lihtne, kuid véimal-
dab samas siiski reprodutseerida aktsioonipotentsiaalide péhiomadusi. Kirjeldamaks 3-
rakkude klastreid, on konstrueeritud difuusselt seotud FHN-ostsillaatorite vorgustikud,
mille kditumist on uuritud erinevate heterogeensuse ning miira intensiivsuse reziimides.

Uurimist6o6 kaigus on kasutatud erinevaid numbrilisi ja analiiiitilisi meetodeid, nagu
bifurkatsiooni analiits ja keskmise valja lahendus. Heterogeensus on toodud sisse sisse kas
parameetrite diskreetse bimodaalse jaotuse voi pideva (nt Gaussi) jaotuse kaudu. Miira
on modelleeritud additiivsete stohhastiliste perturbatsioonidena. Siisteemi reageeringut
on moddetud slinkroonisatsiooni iseloomustavate suuruste, ostsillatsioonide amplituudi,
koherentsuse ja vastus koverate abil.

T60 kaigus on joutud mitmete uute teadmisteni:

o [3-rakkude vorgustike diinaamika modelleerimine FHN-ostsillaatorite abil: Langer-
hansi saare mudel, mille aluseks on 3D vérgustik, mis koosneb heterogeensetest
FHN-ostsillatoritest, nditab, et kollektiivsete ostsillatsioonide aktiivsus omab reso-
nantsile omast maksimumi. Tanu mudelis kasutatavatele parameetrite realistlikele
vaartustele, mis vastavad f-rakkude elektrilisele aktiivsusele reaalsetes klastrites,
demonstreerib see tulemus, kuidas 3-rakkude fusioloogiline mitmekesisus vaib voi-
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mendada slinkroniseeritud kaitumist ja parandada insuliini sekretsiooni téhusust.

¢ Solmpunktid ja vorgustiku struktuur: Ulalkirjeldatud mudel viitab, et Langerhan-
si saartes leidub kindel hulk vaga aktiivseid -rakke (s6lmrakke), mida voib pida-
da vorgustikule iseloomulikuks omaduseks. Selliste rakkude mudeli poolt hinnatud
osakaal, mis vastab MIR maksimumile, on heas kooskdlas ka hiljutiste eksperimen-
taalsete tulemustega.

e Miira ja mitmekesisuse vastasmoju: Miira ja heterogeensuse koostoime tulemu-
seks voib olla nii stinergia kui ka konkurents. Kui suurem osa vorgustiku elementidest
on valjaspool sisemiste ostsillatsioonide reziimi, toimivad miira ja mitmekesisus tks-
teist toetavalt ja suurendavad slinkronisatsiooni. Kui suur osa elementidest on aga
ostsillatsioonide ilmnemise piiril, méjutavad miira ja mitmekesisus stinkronisatsioo-
ni eraldi ning stinergia puudub. See viib uudsele ja veidi ootamatule jareldusele, et
heterogeensus ja miira on oma olemuselt fundamentaalselt erinevad korraparatu-
se allikad, mis voivad teatud tingimuste juures viia sarnaste efektide ilmnemisele,
kuid mis Uldiselt mojutavad kompleksete stisteemide diinaamikat erinevalt.

¢ Mitmekesisuse parssiv moju: Varasematest uuringutest on teada, et mitmekesisus
vOib voimendada signaale ja vorgustikus aset leidvaid globaalseid vénkumisi. Kdes-
olev vaitekiri niitab, et teatud reziimis voib viaike mitmekesisus stinkronisatsiooni
hoopis pdrssida ja takistada iseenesliku stohhastilise resonantsi (ISR) tekkimist. See-
ga voib heterogeensus, soltuvalt diinaamilisest reziimist, omada ja destabiliseerivat
maoju.

¢ Mehaaniline analoogia poliimeeri translokatsiooniga: On niidatud, et ostsillaato-
rite vorgustikus ilmnev MIR ja poliimeeri resonantne translokatsioon perioodilisel
potentsiaalil on diinaamiliselt ekvivalentsed. See analoogia aitab méoista MIR-i alu-
seks olevaid flitisikalisi mehhanisme ja tldist ilmingut.

¢ Mitmekesisuse jaotuse siimmeetria: Ergastatavates vorgustikes ilmnev globaalne
koherentsus on maaratud mitmekesisuse jaotuse siimmeetria poolt, mitte iseenes-
likult ostsilleeruvate tihikute osakaalu poolt. Vorgustikes, kus mitmekesisuse jaotus
on siimmeetriline voi veidi asimmeetriline, leiab aset tugev silinkronisatsioon, sa-
mas kui tugev asiimmeetria parsib kollektiivseid vonkumisi, isegi kui suur osa k-
sustest on ostsilleruvas olekus. See viitab, et varieeruvuse struktuursed omadused,
nagu naiteks parameetrite jaotuse simmeetria, omavad olulist rolli siisteemi di-
naamika jaoks ja voivad olla maarava tahtsusega bioloogiliste stisteemide talitlus-
hairete moistmiseks, nditeks vananemise voi haiguste korral.

Kokkuvottes aitab kdesolev t66 paremini moista, kuidas heterogeensus mojutab kol-
lektiivset diinaamikat ergastatavates rakuvorgustikes, eriti bioloogiliselt olulistes stisteemi-
des, nagu pankrease f3-rakkude klastrid. Kuigi mitmekesisust peetakse sageli pelgalt kor-
raparatuse allikaks, niitavad kdesolevas vaitekirjas esitatud tulemused, et soltuvalt siis-
teemi parameetritest, voib mitmekesisus koordineeritud toimimist nii soodustada kui ka
parssida. Lisaks toetab abstraktne poliimeeri mudel MIR-mehhanismi Uldistatavust erine-
vate flilisikaliste slisteemide jaoks.

Uhendades endas lihtsustatud diinaamilisi mudeleid ja bioloogilisi nahtusi, pakub vii-
tekiri teoreetilist alust, mis tiiendab [-rakkude flsioloogia eksperimentaalset uurimist.
Saadud teadmised voivad aidata kaasa to6tamaks valja 2. tlilipi diabeedi ravi strateegiaid,
eesmargiga taastada voi sailitada §-rakkude funktsiooni.
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Hubs, diversity, and synchronization in FitzHugh-Nagumo oscillator networks:
Resonance effects and biophysical implications
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Using the FitzZHugh-Nagumo equations to represent the oscillatory electrical behavior of B-cells, we develop
a coupled oscillator network model with cubic lattice topology, showing that the emergence of pacemakers or
hubs in the system can be viewed as a natural consequence of oscillator population diversity. The optimal hub
to nonhub ratio is determined by the position of the diversity-induced resonance maximum for a given set of
FitzHugh-Nagumo equation parameters and is predicted by the model to be in a range that is fully consistent
with experimental observations. The model also suggests that hubs in a 8-cell network should have the ability to
“switch on” and “off” their pacemaker function. As a consequence, their relative amount in the population can
vary in order to ensure an optimal oscillatory performance of the network in response to environmental changes,

such as variations of an external stimulus.

DOI: 10.1103/PhysRevE.103.052211

I. INTRODUCTION

Pancreatic -cells in Langerhans islets are characterized by
a remarkable coordination of their periodic electrochemical
activity, which is linked to their ability to secrete insulin in
a pulsatile manner [1-4]. Pulsatile release is thought to be
essential for the efficacy of insulin on its target organs and
is disrupted in type 2 diabetes [5-8]. This justifies the vast
amount of literature aimed at understanding the mechanism
of B-cell electrical oscillations and their synchronization in
Langerhans islets, both from the standpoint of cell biology
and in terms of biophysical models describing B-cell clusters
as networks of coupled oscillators [9-22].

In recent years an increasing number of studies have fo-
cused on elucidating the behavior and function of pacemaker
cells, also named “hubs” or “leaders,” i.e., subpopulations of
B-cells showing higher oscillatory activity [17,23-28]. Due
to their ability to respond earlier to changes in glucose con-
centration in the blood stream, hubs would play a crucial
role in determining the dynamics of electrical activity of
B-cell clusters, by initiating and synchronizing coordinated
electrical oscillations across an islet. While the presence of
pacemaker cells in Langerhans islets has been hypothesized
several times [29—34], the confirmation of their existence via
direct observation has become feasible only in recent years,
by leveraging new imaging techniques based on optogenetics
and recombinant fluorescent probes [23-26].
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Ta.loppini @unicampus.it
*marco.patriarca@kbfi.ee
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In spite of this exciting progress and improved understand-
ing, some key questions remain unanswered, specifically: (a)
Are hubs a permanently distinct subpopulation of S-cells, or
can different B-cell subsets turn into hubs or nonhubs as a
function of time and external factors, such as glucose con-
centration? and (b) What are the mechanisms that drive the
overall frequency of bursting events, i.e., the global oscillatory
behavior of an islet as a whole? While we do not aim to
find a definitive solution to these problems, we will show
that studying the fundamental dynamical properties of a 3D
system of coupled oscillators, mimicking some key features of
the electrical behavior of B-cells, can provide useful insights
to understand the collective cell network behavior and to guide
future research.

Individual B-cells that have been isolated from an islet
exhibit a heterogeneous electrical activity, ranging from a qui-
escent state, where their membrane potential stays constantly
polarized, to continuous spiking (repeated action potential fir-
ings) or bursting events that occur irregularly as a function of
time (discrete groups of repeated firings, followed by a period
of quiescence) [35-37]. In contrast, when the same cells are
part of an islet, they show strikingly coordinated and regular
bursting oscillations, characterized by a period typically rang-
ing from 2 to 5 minutes [38,39]. Such membrane potential
oscillations are coherent with cytosolic Ca>* ion level fluc-
tuations and correspond to a pulsatile insulin secretion from
B-cells, which is so important for glucose homeostasis and
progressively gets lost in type 2 diabetes [7,40—42].

From a dynamical standpoint, bursting activity can be
conceived as periodic oscillations of an excitable dynamical
system, triggered by an external force that is strong enough
to overcome the excitability threshold. In the case of B-
cell islets, this force originates from a series of metabolic

©2021 American Physical Society
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processes triggered by glucose in the blood stream, therefore
it is a function of glucose concentration.

Because of the above mentioned heterogeneity, S-cells
have been a source of inspiration for modeling studies about
the effects of diversity on the synchronization of oscillator
networks [43,44], which has then become a key research
topic in complex systems dynamics. Numerous studies have
documented the emergence of resonance effects, i.e., the am-
plification of global network oscillations due to diversity, for
both bistable and excitable oscillator networks [45-54]. This
effect has been named diversity-induced resonance [45] and
constitutes an important phenomenon in the context of the
present work, where it will be studied by choosing network
configurations, topology, and coupling relevant to realistic
B-cell clusters.

Indeed, previous studies about diversity-induced resonance
focused on S-cells have not considered the role of pacemakers
or hubs, also due to the fact that their existence in Langerhans
islets has been confirmed only relatively recently. The goal
of the present work is to investigate whether the existence
and key biophysical properties of hubs can be predicted from
the general dynamical properties of a network of coupled
oscillators mimicking B-cell electrical behavior.

The paper is organized as follows. In Sec. IIA we sum-
marize the FitzHugh-Nagumo model. In Sec. IIB we build
a coupled oscillator network model that incorporates hetero-
geneity and cubic lattice topology. In Sec. III A we define a
metric for estimating the global network oscillation activity
and show the emergence of diversity-induced resonance from
our model, upon varying oscillator population heterogeneity.
In Sec. III B we demonstrate that the presence of pacemakers
or hubs in the network can be viewed as a natural consequence
of oscillator diversity optimization. We also use the model to
estimate the percentage of hubs in a network with topological
and oscillatory features similar to those of f-cell clusters in
Langerhans islets. In Sec. IIIC we show that, with respect
to the homogeneous system, diversity allows the network to
exhibit a more efficient oscillatory response to a range of
external stimulus values. Finally, in Sec. IV we discuss the
relevance of our results to the understanding of the collective
behavior of S-cells in Langerhans islets, as well as poten-
tial correlations with physiological mechanisms underlying
pathological conditions, such as type 2 diabetes. We also pro-
vide perspective on future extensions of this work, such as its
comparison to biophysical models and possible applications
to other biological systems.

II. MODEL
A. FitzHugh-Nagumo model

Since our aim is to focus mainly on trends and understand-
ing fundamental mechanisms, we will describe individual
oscillators by the FitzHugh-Nagumo model, defined by the
following dimensionless equations [44,55-57]:

f=alx—x3/3+y), (1a)
V= —(x+by—J)/a. (1b)

Here x(¢) is proportional to the membrane potential and
¥(t) is a recovery variable. The quantity J plays the role of

an external stimulus, and in physiological terms it is related to
the glucose level G in the blood stream through some function,
J = f(G). Parameters a and b are proportional, respectively,
to the ratio between inductance and capacitance and to the
electrical resistance of the S-cell membrane [44]. As will be
shown later, they also determine oscillation period and shape.

The above equations are characterized by an equilibrium
point, whose stability is determined by the threshold value &
of the external stimulus J:

2 2 2

€:3a —2a°b—b m (2)

3a3

The equilibrium point is stable when |J| > ¢ and unstable
when |J| < e. This means that, when |J| < ¢, the system
oscillates, while for |J| > ¢, it is either in an excitable state
(J < —e¢), corresponding to a constant negative value of x(z),
or in an “‘excitation block” state (J > ¢), corresponding to a
constant positive value of x(¢) [44,56]. From the standpoint of
the electrical behavior of B-cells, we assume that the interval
|[/| < & corresponds to bursting oscillations, while J < —¢
represents a quiescent polarized state and J > ¢ a continuous
firing state [44] (see Fig. 1).

It may seem strange that we correlate J, which can assume
both positive and negative values, to glucose level, which
is a positive quantity. However, we are not interested in a
quantitative correlation between J and glucose level, but want
to study trends and mechanisms. Therefore, we just need to
keep in mind that J can vary from negative values below
—eg, corresponding to a low glucose level; to negative, zero,
or positive values in the range —e < J < ¢, corresponding to
intermediate glucose levels; and up to positive values above
¢, which are representative of high glucose levels; see Fig. 1.
Notice that all the values J > —e correspond to glucose levels
Gy > Gy > 0, where Gy, denotes the activation threshold to
induce electrical oscillations in B-cells.

It is also worth pointing out that J is a constant term in
our model equations. This is consistent with most mathe-
matical models on B-cell electrical activity and is justified
by the timescale of bursting, which is much faster than the
time required to promote significant glucose variations due to
peripheral tissue absorption and hepatic feedback.

The values of parameters a and b in Egs. (1a)-(1b) de-
termine, besides the width of the |J| < ¢ interval, the shape
of x(t) oscillations. Specifically, the oscillation period T is
proportional to parameter a (higher values of a correspond
to longer oscillation periods), whereas the main effect of pa-
rameter b is to modulate the ratio between the time spent by
the system at elevated versus lower x(¢). This is illustrated in
Fig. 2, showing a comparison between slower [Fig. 2(a)] and
faster [Fig. 2(b)] oscillations, corresponding to different com-
binations of a and b values. We will use the combination a =
60, b = 1.45 [Fig. 2(a)] in most of the calculations presented
in this work. If time is expressed in seconds, this combi-
nation of values generates a wave with period 7 ~ 150 s
and a slightly longer duration of low versus high x(¢) phases,
which matches the typical profile of bursting oscillations in
B-cell clusters [39].

It is worth noting that B-cells have complex dynamical
features that are not captured in our approach, i.e., faster
action potential spikes superimposed on the slower bursting
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FIG. 1. Correspondence between S-cell activity and FitzZHugh-Nagumo oscillator states.

oscillations, which we reproduce by a FitzHugh-Nagumo de-
scription. However, our focus is on the collective dynamics
and synchronization of oscillator networks representative of
B-cell clusters, and the role of heterogeneity. In this con-
text, the slower bursting oscillations are more relevant than
the action potential spikes, also due to their correlation with
pulsatile insulin release, which is critically important from a
physiological standpoint.

B. Heterogeneous model

In order to describe a S-cell cluster mimicking a Langer-
hans islet, we need to build a 3D network of FitzHugh-
Nagumo oscillators, which are coupled to their neighbors via
coupling factors C;;(x; — x;), where i and j are indexes that
identify an oscillator i and one of its coupled nearest neighbors
j. We make the simplified assumption that the value of the
coupling constant is the same for each oscillator in the net-
work, i.e., it is independent of i and j, C;; = C, and that each
oscillator is connected to the same number n of neighbors.
Then the corresponding FitzHugh-Nagumo equations for the
ith oscillator in the network become [44]

)'ci:a|:x,-—x?/3 +y+C Z(x_,-—xi):|, (3a)

Jeln}i
Yi = —(x; + by; — Ji)/a, (3b)
(@) 3; a=60 b=145
15F
x(t) Oi—
_1.5§_/
_3:‘H‘lu"|‘H‘luuluuluuluul
(o) 3 a=3 b=1

-1.5

T T TR T ST T
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t
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FIG. 2. Oscillation x(¢) of a single FitzHugh-Nagumo element
for different values of parameters a, b and an external stimulus J <
|e| [see Eq. (2)], corresponding to the oscillatory regime.

where the sum over j in Eq. (3a) is limited to the set {n}; of
the n neighbors coupled to the ith oscillator.

In order to introduce diversity in our coupled oscillator
network [45], we have assumed in Eq. (3b) that each oscillator
has a different sensitivity to the external stimulus, which is
equivalent to associating a different J; value to each oscillator
i. In physiological terms, this can be interpreted as attributing
to each B-cell in an islet a different sensitivity to glucose level,
which is a realistic assumption based on available experimen-
tal evidence of S-cell heterogeneity [58-61].

We draw the J; values from a Gaussian distribution with
mean J,, and standard deviation o, which measures the diver-
sity of the oscillator population [45]. As discussed previously,
the mean value of the external stimulus, J,,, is related to
glucose level in blood and can therefore be varied in a rel-
atively broad range. For simplicity, we initially study the
case J,y = 0, corresponding to a distribution with a certain
number of oscillators, depending on the value of o, in the
oscillatory regime (|J;| < ¢), and equal numbers of oscillators
in the excitable state (J; < —¢) and in the excitation block
state (J; > +e¢).

Using this J; distribution, we numerically solve the
FitzHugh-Nagumo equations for a network of 10° oscil-
lators with cubic lattice topology, where each element is
coupled to its six nearest neighbors. The J; values from the
Gaussian distribution are randomly assigned to network os-
cillators throughout the 10 x 10 x 10 cube geometry. While
the cubic geometry is a simplification, both the total number
of oscillators and the number of nearest neighbors per oscil-
lator are consistent with what is known about the structure of
Langerhans islets, where each S-cell is electrically coupled
via gap junctions to six or seven neighbor cells on average
[62,63].

We set the coupling constant C = 0.15 because this value
provides an optimal coupling efficiency (lower values cause
a steep decrease of global network oscillations, while go-
ing higher does not result in a significant increase). This is
illustrated in more detail in the next section and is a reason-
able choice to ensure effective but not unrealistically strong
coupling, considering that our goal is to mimic a biological
system.

III. RESULTS
A. Diversity-induced resonance

After solving the FitzHugh-Nagumo equations (3a)—(3b),
corresponding to the above described topology, we compute
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FIG. 3. Global oscillatory activity p as a function of coupling
strength C, for different values of population diversity o. The vertical
dashed line at C = 0.15 corresponds to the coupling strength used in
the simulations.

the global oscillatory activity of the network [44],

a1 oo
p—N\/tffO dr (X (0) - X1 @

Here N = 103 is the total number of oscillators, X (7) is the
sum over all i of the individual x;(¢) functions, and X is the
mean of X (¢) in the time interval [0, #7]. By its very definition,
p is the root mean square amplitude over time of the global
network oscillation X (¢), which has a periodic character. As
a consequence, o is substantially independent of #;, if #; is
sufficiently large. We verified that by setting t; = 300 time
units, this condition is satisfied in our calculations.

We simulate numerically the oscillator network for a range
of population diversity values o, while keeping other pa-
rameters constant, i.e., a = 60, b = 1.45, and C = 0.15. As
mentioned in Sec. II B, this choice of C corresponds to an
optimal coupling efficiency, i.e., to the beginning of a plateau
when plotting p against C, as shown in Fig. 3 for ¢ = 0 and
o =0.5.

Using the above parameters, the results for the global os-
cillatory activity p are plotted versus o in Fig. 4(a) and show a
clear diversity-induced resonance maximum at ¢ = 0.5. This
value of o represents the degree of population diversity result-
ing in the most efficient global network oscillations, due to the
interaction between network elements that are individually in
an oscillatory regime, i.e., elements for which |J| < ¢, and el-
ements that would be, individually, in a nonoscillatory regime,
due to either quiescence or excitation block state (|J| > ¢), but
are in fact oscillating due to network coupling and resonance
effects. Notably, the p value corresponding to the diversity-
induced resonance maximum is significantly higher than the
one achieved with a homogeneous population (o = 0) where
every element of the network is in the same oscillatory state.

B. Emergence of hubs from diversity optimization

After introducing oscillator diversity via a Gaussian distri-
bution of J; values and observing the results in terms of global
network oscillations, it becomes quite natural to identify

(a) 1500 — — 0.25
1200 0.20
900 0.15

p Fh
600 0.10
300 0.05

0 0

(b) 800 1.00
600 0.75

P 00 050 I

200 0.25

]
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o T

FIG. 4. Global oscillatory activity p (dots, solid curve, left axis)
defined in Eq. (4) and fraction of hubs F}, (crosses, dotted curve, right
axis) defined in Eq. (5) as a function of population diversity o, for
different values of a and b; J,, = 0.

network elements corresponding to the interval |/| < &, which
are intrinsically in an oscillatory regime, as pacemakers or
“hubs” of the system. Instead, elements outside the |/| < ¢
range are nonhubs, which can become active as a consequence
of their network interactions and depending on how far their
individual values J; are from the |/| < € range.

The hub to nonhub ratio corresponding to the diversity-
induced resonance maximum represents the most efficient
network configuration, because it maximizes global network
oscillations. We can estimate this ratio by computing the fol-
lowing normalized Gaussian integral,

_ 1 ¢ (J _Juv)z
e

which by definition expresses the fraction of oscillators with
J; values inside the |J| < ¢ range, i.e., the fraction of hubs in
the population.

The dependence of Fj, on o for a =60 and b = 1.45 is
shown in Fig. 4(a). The optimal fraction of hubs correspond-
ing to the diversity-induced resonance maximum (o = 0.5)
is F, = 0.053. This means a percentage of hubs in the total
network population of about 5%, in good agreement with ex-
perimental observations of pacemaker S-cells in Langerhans
islets based on optogenetic methods [23-26], which report
this fraction to be 1%-10%. This prediction of our model is
dependent on a specific choice of a, b values in Egs. (3a)-(3b),
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by which we have empirically matched the oscillation period
of individual FitzHugh-Nagumo elements with that experi-
mentally observed for 8-cells, as explained in Sec. IT A.

The above results show that in vivo B-cell behavior in
Langerhans islets, from the standpoint of collective dynamics
and network configuration, is consistent with the intrinsic
properties of a FitzHugh-Nagumo oscillator network with op-
timal diversity. From Fig. 4(a) one can also see that moving
towards higher o values beyond the diversity resonance max-
imum at o = 0.5, the slope of p becomes progressively more
negative, and, for o = 2, where p is almost one third of its
maximum value, the fraction of hubs, F,, drops to about 1%.
This illustrates the correlation between percentage of hubs
and global oscillatory efficiency of the network and helps
understanding what may happen in Langerhans islets, when
the optimal hub to nonhub ratio is altered by a pathological
condition.

For comparison, we repeat the calculations using the val-
ues @ =3 and b =1 that correspond to the faster wave in
Fig. 2(b). As shown in Fig. 4(b), for these values of a and
b the global oscillatory activity p(o ) exhibits a more complex
resonance pattern with two maxima, one at ¢ =~ 0.4 and the
other at o = 0.6. The corresponding F;, values are Fj, = 0.52
and Fj, = 0.36, respectively.

The above comparison indicates that faster global oscil-
lations require a higher relative number of hubs to maintain
a good coordination of the oscillator network, which makes
sense from both a physical and a physiological standpoint.
In the case of a slower wave, network elements that are not
initially or individually in an oscillatory state have more time
to become active and synchronize with hubs via coupling
effects, and therefore a lower number of hubs is required to
obtain efficient global oscillations. With a faster wave, syn-
chronization is more challenging and can be achieved only
with a sufficiently high percentage of hubs in the network.
This difference is deliberately exaggerated in our faster wave
example, by choosing very different values of a and b versus
the slower wave example used in our calculations. However,
it would be interesting to look for a confirmation of this trend
in future experimental work, by comparing the number of
detectable hubs in slow versus fast bursting oscillations of
B-cell clusters.

It is also worth noting that in both combinations of a, b pa-
rameters we studied, the o value where the diversity-induced
resonance maximum occurs is larger than the correspond-
ing € (¢ = 0.033 for a =60, b= 1.45 and € ~ 0.279 for
a =3, b=1). This may be due to a positive contribution
to network resonance from elements that are outside the in-
trinsic oscillatory range |J| < &, but not too far away from
it. These excitable elements can easily start oscillating and
contribute to resonance thanks to coupling. Instead, ele-
ments that are far away from the oscillatory range, i.e., at
the tails of the distribution, remain quiescent regardless of
coupling, therefore are detrimental to global oscillatory effi-
ciency. The best network oscillatory performance is achieved
at the diversity-induced resonance maximum, due to an opti-
mal balance of these opposite effects. When o is increased
beyond the resonance maximum, the network loses effi-
ciency, because not only the amount of pacemakers and more
easily excitable elements decreases but also, at the same
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FIG. 5. Global oscillatory activity p, defined in Eq. (4), as a
function of the average value J,, of the stimulus, for different values
of population diversity o (a = 60, b = 1.45).

time, the amount of the most distant, quiescent elements
increases.

C. The optimal hub to nonhub ratio maximizes the dynamic
range of response to glucose level

We now study what happens when we shift the position
of the mean value J,, of the J; distribution with respect to
the midpoint of the |J| < ¢ interval, keeping o constant. This
will give us information about the ability of the oscillator
population to cope with a stimulus corresponding to J values
that are increasingly distant from the range corresponding to
the intrinsic oscillatory regime.

We perform the calculations with @ = 60 and b = 1.45,
corresponding to the reference wave, for three different de-
grees of diversity: o =0 (homogeneous system), o = 0.5
(the diversity-induced resonance maximum), and o = 2.0 (as
an example of large diversity).

The results reported in Fig. 5 show that oscillator diversity
is able to considerably increase the range of the external
stimulus J, where the network exhibits efficient global os-
cillations. If all network elements were identical (o = 0),
their global oscillatory activity would be limited to the nar-
row interval |J| < ¢ ~ 0.033. Instead, oscillator diversity and
coupling allow the network to respond effectively to a much
broader range of J. This range gets broader and broader as o
is increased; however, at the same time, increasing o causes
a progressively weaker response in terms of global oscillatory
efficiency, as shown by the comparison between p curves for
o =05and o =2.0.

It is also helpful to look at the behavior of X (¢) [the sum
of the individual x;(z)] for different values of . For instance,
for J,y = 0.5, the network is in a resonant state and presents
global oscillations for both o = 0.5 and ¢ = 2.0. However, a
comparison between the corresponding X (¢) curves shows a
large difference in terms of oscillation amplitude and regular-
ity (Fig. 6), which then reflects into very different p values for
the two parameter sets. This large difference is a consequence
both of a broader J; distribution, which causes more network
elements to have J; values that are increasingly far away from
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FIG. 6. Global network oscillation X (¢) for different values of
population diversity o, at the average value J,, = 0.5 of the stimulus
(a =60, b = 1.45).

the oscillatory range |J| < &, and of a significantly lower
number of hubs.

In physiological terms, moving from lower to higher values
of J in Fig. 5 can be considered equivalent to increasing
glucose concentration from basal up to elevated levels, as
explained in Sec. IT A. This illustrates that 8-cell diversity can
be a mechanism to achieve a much more robust oscillatory
behavior of islets in response to varying glucose levels.

It is also interesting to observe that the increase of oscil-
latory activity from left to right of the 0 = 0.5 and 0 = 2.0
curves in Fig. 5 is less steep than the drop on the right side;
however, at the same time, the right half of the curve is more
extended. Again, reading this in physiological terms, we could
say that as glucose concentration is gradually increased, the
network responds by progressively increasing its oscillatory
activity, which is then kept as high as possible for as long
as the system is able to cope with the increasing external
signal strength. A similar response profile has been predicted
also by more complex biophysical models [64]; however our
approach and analysis helps to clarify and understand the
underlying network dynamics.

IV. CONCLUSIONS

Using the FitzHugh-Nagumo equations to represent the
electrical behavior of B-cells, we developed a coupled oscil-
lator network model with cubic lattice topology and showed
that the optimization of diversity results in the emergence of
pacemakers or hubs, which play a key role in determining the
global oscillatory behavior of the network. The optimal hub to
nonhub ratio predicted by the model is defined by the position
of the diversity-induced resonance maximum and depends on
oscillation period and shape, which are determined by the
FitzHugh-Nagumo equation parameters. If we select these
parameters in order to match the experimentally measured
period of bursting oscillations in B-cell clusters, we find that
the corresponding hub percentage predicted by the model
(about 5%) is in very good agreement with observations of

pacemaker S-cells in Langerhans islets based on optogenetic
methods, i.e., in vivo B-cell behavior in islets is in this re-
spect consistent with the intrinsic oscillatory properties of a
heterogeneous, coupled FitzHugh-Nagumo oscillator network
embedded in a cubic lattice.

The model also gives an approximate indication of the hub
percentage threshold below which the oscillatory performance
of a network gets significantly worse, i.e., around 3%, which
may be indicative of the level of B-cell population alteration
corresponding to a pathological condition, such as type 2
diabetes. Furthermore, the results obtained suggest the trend
that higher bursting oscillation frequencies should correspond
to larger hub to nonhub ratios, which would be interesting to
verify in future experimental work.

We also showed that diversity is a key mechanism to
significantly broaden the dynamic range and robustness of
the network response to an external stimulus, i.e., glucose
concentration in the case of B-cells. This is relevant from
a physiological viewpoint, and, again, an altered network
configuration with suboptimal diversity and hub to nonhub
ratio will reflect into a compromised oscillatory performance,
which in the case of 8-cells translates into an insulin secretion
profile that may be insufficient or does not have the required
pulsatile characteristics.

Looking back at a key question we asked in the in-
troduction, i.e., whether hubs are a permanently distinct
subpopulation of B-cells, our model suggests that the relative
number of hubs in a network can change as a consequence of
the external stimulus strength. Therefore, network elements
that are nonhubs can turn into hubs and vice versa, as the
network reconfigures itself in response to an environmental
change. Whether hubs are a permanently distinct subpop-
ulation is irrelevant from the standpoint of the dynamical
behavior of the oscillator network; however, the model sug-
gests that hubs should have the ability to “turn on” and “off”
their pacemaker function in order to ensure optimal network
performance in different conditions.

Topics for future extensions of this work include a com-
parison of the insights from our approach to biophysical
modeling predictions, as well as an in-depth investigation
of the combined effects on resonance phenomena of hetero-
geneity, stochasticity, and connectivity, which have been so
far partially studied [65]. In addition, we will consider the
opportunity to apply our approach or its adaptations to other
biological systems beyond B-cells, e.g., cardiomyocytes and
neurons.
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Abstract — We study the effects of the interplay between diversity and noise in a 3D network of
FitzHugh-Nagumo elements, with topology and dimensions chosen to model a pancreatic -cell
cluster, as an example of an excitable cell network. Our results show that diversity and noise
are non-equivalent sources of disorder that have different effects on the network dynamics: their
synchronization mechanisms may act independently of one another or synergistically, depending
on the mean value of the diversity distribution compared to the intrinsic oscillatory range of the

network elements.

Copyright © 2022 EPLA

Introduction. — The study of the beneficial role of dis-
order in a broad range of biological, physical, and chemi-
cal phenomena has become a fundamental research topic
in complex systems dynamics. A seminal work in the field
was the introduction of stochastic resonance (SR) in the
early eighties, initially proposed to explain the occurrence
of Earth ice ages [1] and later on studied by numerous
authors across various disciplines [2-11]. SR can happen
when a nonlinear system is driven simultaneously by a
periodic external forcing and noise, resulting in an ampli-
fication of the system response to the external signal [12].

Some of the subsequent studies showed that significant
noise-driven effects, analogous to SR, can be observed also
without periodicity of the external signal [13], and even
in the absence of any external signal, as in self-induced
stochastic resonance [14,15] and coherence resonance [16].
Coherence resonance (CR) is an ordered response of a non-
linear excitable system to an optimal noise amplitude, re-
sulting in regular pulses. Beyond its effects on a single
nonlinear unit, the role of noise was also extensively stud-
ied from the standpoint of its ability to improve synchro-
nization in coupled oscillator networks, again both in the
absence and in the presence of an external forcing [17-19].
Broadly speaking, one may say that the first twenty years
of research in this field focused, to a large degree, on the
effects of noise in bistable or excitable systems [20,21],
comprising either several or just one element.

(3)E-mail: stefano.sciallaGkbfi.ee (corresponding author)
(®)E-mail: marco .patriarca@kbfi.ee
(©)E-mail: els.heinsalu@kbfi.ee

At the beginning of the new century, it was found that
somewhat analogous effects to those of noise can be pro-
duced in networks of coupled oscillators through the het-
erogeneity of the oscillator population [22,23]. This led
to the introduction of diversity-induced resonance (DIR),
which denotes the amplification of a network response to
an external signal, driven by the heterogeneity of network
elements [23-32]. Just like SR, also DIR can occur both
in the presence and in the absence of an external forcing.
In the latter case it has been named diversity-induced co-
herence [33]. This provides an example of the non-trivial
analogies and differences between the effects that noise
and diversity can have on a given system.

It is clear from the above that SR and CR can occur even
in systems made of a single element, therefore they are not
intrinsically collective phenomena, whereas, by definition,
DIR represents a collective disorder effect driven by pop-
ulation heterogeneity.

Most of the previous literature has emphasized either
the analogies between SR and DIR [23,34], considering
them as two faces of the same medal, or the possibility
to enhance resonance induced by noise thanks to diversity
optimization (or vice versa) [35-38].

Relatively little work [39,40] has been devoted to the im-
plications of the above-mentioned intrinsic difference be-
tween the two phenomena, which has not yet been fully
analyzed. In general, it is not straightforward to distin-
guish between the effects of a purely external noise and
those of chaotic fluctuations associated to a set of de-
grees of freedom. Such a distinction is difficult to achieve
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and represents a currently open problem of statistical
mechanics [41,42]. Numerical methods aimed at extract-
ing information on the inner dynamics of a system, by
analyzing the corresponding time series, encounter subtle
difficulties that prevent a simple distinction between the
effects due to noise and those due to the couplings with
other degrees of freedom (see, e.g., ref. [43]). However, in
some cases, in which a set of relevant degrees of freedom is
known and can be effectively separated from the rest of the
system, as for the heterogeneous noisy oscillator network
considered here, it is possible to infer the separate effects
of noise and disorder by studying the system response to
different levels of fluctuations and diversity.

In this paper, by systematically investigating the pro-
totypical model of a heterogeneous network of pancreatic
B-cells [22,44] with the addition of noise, we provide in-
sights into the different mechanisms by which diversity
and noise can have markedly distinct effects on the net-
work dynamics. Langerhans islets, located in the pan-
creas, host approximately one thousand [-cells clustered
together and electrically connected via resistive gap junc-
tions. The main function of S-cells is the production of
insulin, which happens in response to the glucose level in
the blood stream. During insulin production, the electri-
cal potentials of [S-cells cycle synchronously in slow os-
cillations (bursts). Various models of pancreatic [-cells
have been proposed, in order to explain the origin of such
synchronized oscillations. The beneficial effects of the
heterogeneity of individual S-cells on global oscillations
had been recognized in refs. [45,46]. In ref. [22], using
a simplified FitzHugh-Nagumo model of the [-cell net-
work, Cartwright recognized the general constructive role
of heterogeneity from a complex systems perspective; and,
in particular, the fact that diversity can explain the emer-
gence of synchronization in Langerhans islets, without the
need to assume the presence of pacemakers, analogous to
the myocardial pacemaker cells. Similar synchronization
mechanisms have been shown also in other biological sys-
tems [47,48]. Later on, besides the constructive role of
noise [49], also the beneficial role of diversity was recog-
nized in the framework of more detailed models of S-cell
networks [50].

Model. — As a paradigmatic example of a system of
coupled nonlinear units, we investigate an excitable net-
work of FitzHugh-Nagumo elements.

Individual elements of such network are described by the
dimensionless FitzHugh-Nagumo equations [22,44,51-53]:

a(z —2*/3 +y),
—(x+by —J)/a.

(1)
(2)

When modelling the behavior of a 3-cell, the variable z(t)
represents the fast relaxing membrane potential, while y(t)
is a recovery variable mimicking the slow potassium chan-
nel gating. Depending on the value of J, the unit will be
in an oscillatory state if |J| < € or in an excitable state if

< R
[

|J| > €, where

2 942p _ b2
6:3a a'b b\/m.

3a?

®3)

In addition to determining the width of the oscillatory
interval (—¢, +¢), parameters a and b define the oscillation
waveform and period.

Moving from the description of a single element to that
of a heterogeneous 3D network of N FitzHugh-Nagumo
units, we assume a cubic lattice topology. This implies
that each element is coupled to its six nearest neighbors
via a coupling term Cjj(x; —x;), where ¢ and j are indexes
that identify an element 7 and one of its coupled neighbors
j, and Cj; is the interaction strength. Notice that the
choice of a cubic lattice topology is consistent with what
is known about the architecture of -cell clusters, where
each cell is surrounded on average by 6-7 neighbor cells [54,
55]. We make the simplifying assumption that the value
of the coupling constants is the same for each network
element, Cj; = C for any 1, j. Since we want to study the
interplay between diversity and noise, we also add a noise
term &;(t) to the first equation. Then the corresponding
FitzHugh-Nagumo equations for the i-th element of the
network are [22,44]:

3
T =a x,-f%erv‘, +C Z (x]-fxi)Jr&,(t)], (4)
je{n}t:
—(xi + by; — J;)/a. (5)

The sum over j in eq. (4) is limited to the set {n}; of
the n = 6 neighbors coupled to the i-th oscillator.

The J; parameters in eq. (5) are different for each net-
work element and are used to introduce diversity; the i-th
element will be in an oscillatory state if |.J;| < ¢ or in an
excitable state if |J;| > e. The J; values are drawn from
a Gaussian distribution with standard deviation o4, mean
value J,,, and are randomly assigned to network elements.
The standard deviation o4 will be used in what follows as a
measure of oscillator population diversity, while the mean
value J,, expresses how far the whole population is from
the oscillatory range (—¢, +¢).

The term &;(¢) in eq. (4) is a Gaussian noise with zero
mean, standard deviation o,, and correlation function
(&(E& () = 0,20;6(t — '), meaning that & (¢) and &;(t)
(i # j) are statistically independent of each other. The
standard deviation o, will be used in this work as a mea-
sure of noise applied to each network element.

The reason why we add &;(¢) to the first equation for
the fast variable is that this maximizes the effects of noise,
making it easier to study its combination with diversity.
Introducing &;(t) into the second equation would result
in a minimal impact of noise on network synchroniza-
tion [35], due to the slower dynamics of the refractory
variable. Noise effects would be mostly averaged out to
zero by time integration and coupling, as we will show
below with some numerical simulations.

Yi
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The above model, which to our knowledge is studied
here for the first time in the version we propose, can
be used to mimic various excitable biological systems,
such as pancreatic -cell clusters and some types of neu-
rons [22,35,44,56-58]. In what follows we use the model to
analyze the combined effect of diversity and noise, acting
together on the same network. In particular, we are in-
terested in potential synergies or antagonisms, as well as
in a possible hierarchy between the two sources of disor-
der, which in spite of some analogies have fundamentally
different synchronization mechanisms.

Qualitative theoretical analysis. — The white noise
&i(t) in eq. (4) can represent a randomly fluctuating ex-
ternal current, which is able to shift the nullcline of the
x variable up or down and, therefore, to instantaneously
change the position of the equilibrium point of each os-
cillator. Depending on the extent of the shift and on the
value of J;, this may result in a switch from a stable to
an unstable equilibrium (or vice versa), corresponding to a
transition from a resting to a spiking state of the oscillator
(or vice versa).

This mechanism can be further illustrated, following
ref. [23], by introducing the global variables X (t) =
N1t le\; xi(t) and Y(t) = N71 ZZJ\; yi(t). We then de-
fine §; as the difference between z; and X, i.e., x; = X +0;,
and introduce M = N*12£161-2 [23,59]. Therefore,
M will increase when diversity increases. By averaging
egs. (4) and (5) over all N network elements, we obtain
the equations for the global variables X, Y:

X =a[XQ1-M)-X3/3+Y +&(1)],
Y = —(X +bY — Ju)/a.

(6)
(7)

Here noise effects are represented by a global white noise
term () = N~1Y, &(t) with zero mean and correlation
function (€ (H)éa(t')) = N~ta25(t —t').

It is instructive to observe the different impact of di-
versity and noise on the nullclines of eqs. (6) and (7).
A change in diversity, i.e., in the standard deviation of
the J; distribution, causes a change in M, which affects
the shape of the cubic nullcline by changing the coefficient
of the linear term X (see fig. 1, panels (a) and (b)). This
indicates that diversity can have a significant effect on
overall network dynamics, independently of whether the
mean value J,, is inside or outside the intrinsic oscillatory
range (—¢,+¢). On the other hand, the global noise term
&c(t) can only cause rigid shifts, positive or negative, of
the cubic nullcline along the vertical axis, as a consequence
of its instantaneous fluctuations (compare the dashed and
solid lines in fig. 1). This suggests that noise is unlikely to
play a constructive role when diversity is optimized (i.e.,
in the conditions corresponding to a DIR) and J,, = 0.
In this situation, noise will likely act as a perturbation of
the system, which is already in an intrinsically oscillatory
and resonant state.

Let us now consider what happens when J,, # 0 (see
fig. 1(c)). In this case, the constant term J,, determines a

Jav=0

M=0.5 (@)

Fig. 1: Nullclines of egs. (6) and (7) for different values of
Jav and M. A comparison between panel (a) and (b) shows
the effect of M on the shape of the cubic nullcline. The area
delimited by the dashed curves above and below the cubic null-
cline in each panel illustrates the effect of instantaneous shifts
caused by noise with an amplitude of up to +1.

rigid shift, upwards or downwards, of the second nullcline.
This can significantly change the position of the equilib-
rium point of the system dynamics, turning the network
from oscillatory into excitable. In these conditions, noise
can play a synergistic role with diversity, by causing in-
stantaneous rigid shifts of the cubic nullcline that coun-
terbalance the effect of Jyy, thus triggering global network
oscillations.

It should be noted that we did not add a periodic driving
force to our system equations, of the type Asin(Qt). As
mentioned in the introduction, this term is not necessary
to observe either stochastic or diversity-induced resonance
effects and its presence would introduce the additional
constraint of matching two time scales, i.e., the driving
force period and the oscillation period of the FitzHugh-
Nagumo elements constituting the network.

Numerical results and discussion. — In order to
quantitatively study the combined effect of diversity and
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Fig. 2: Global oscillatory activity p, defined in eq. (8), as a
function of diversity (o4) and noise (o,), for Jay = 0. The
full blue dot highlights the global surface maximum, which is
coincident with the DIR maximum. The empty red dot corre-
sponds to the noise-induced resonance maximum.

noise, we numerically solve the FitzHugh-Nagumo equa-
tions (4) and (5) for a network of 10? elements with the
above-mentioned topology and the following system pa-
rameters: a = 60, b = 1.45, C' = 0.15. The selected values
of a and b generate a waveform and period similar to those
of bursting oscillations of pancreatic S-cells [44] and, ac-
cording to eq. (3), £ &~ 0.033. We set the coupling con-
stant C' = 0.15, since, as we verified in an earlier work [44],
the oscillatory response of the system is substantially un-
changed by further increasing C' beyond C' = 0.15.

We run simulations for a range of diversity values o4
(from o4 = 0 to o4 = 2.5) and, at the same time, for a
range of white noise standard deviation values o, (from
on = 0to o, =5.0). We repeat this for each of the follow-
ing diversity distribution mean values: J,, = 0,£0.5, +1.

For each simulation, corresponding to a set of o4, 0,
and J,, values, we quantify the network synchroniza-
tion efficiency by computing the global oscillatory activity
p [22,44],

p=N""W(S®) - 81), (8)

where N = 102 is the total number of oscillators, S(t) =
>, @i(t), and S = (S(t)), with (...) denoting a time av-
erage. The results for the global oscillatory activity p are
plotted vs. o4 and o, generating five three-dimensional
surfaces corresponding to each of the above-listed J,, val-
ues.

In the J,y = 0 regime (fig. 2), where a relatively high
fraction or all of the network elements are inside the in-
trinsic oscillatory range, simulation results show that both
diversity and noise are able to generate a resonance on
their own. If we move along the diversity axis (o, = 0,
no noise) or along the noise axis (04 = 0, no diversity),
we observe in both cases a resonance maximum that is
about 20-25% higher than the p value corresponding to
the origin. In addition, the two sources of noise seem to
act independently of one another, showing no evidence of
a synergy. As a matter of fact, the global maximum of
the surface coincides with the diversity-induced resonance

600
Q 400

Fig. 3: Global oscillatory activity p, defined in eq. (8), as a
function of diversity (o4) and noise (0v,), for Jaoy = —1 (panel
(a)) and Joy = +1 (panel (b)). The full blue and empty
green/red dots in each panel highlight the global surface max-
imum, the DIR maximum and the noise-induced resonance
maximum, respectively.

maximum, therefore it occurs on the diversity axis, i.e., at
oq = 0.5, 0, = 0. If, from this global maximum (shown
as a full blue dot in fig. 2), we move in any direction to-
wards the middle of the surface, i.e., if we add noise, there
is no gain in terms of collective oscillatory activity. This
is consistent with the predictions of our qualitative theo-
retical analysis, indicating that noise is unlikely to play a
constructive role for J,, = 0, when diversity is optimized.

Moving to the opposite end of the .J,, range, i.e.,
Jay = 1 (fig. 3), we observe a very different situation.
In this regime most network elements are outside the in-
trinsic oscillatory range, either below (Ja, = —1) or above
it (Joy = +1). Here the addition of noise to diversity al-
ways results in a significant increase of the network oscilla-
tory activity. In line with the theoretical analysis based on
global system variables, this can be explained by consider-
ing that, in the case of J,, = —1, most network elements
are below the excitation threshold, i.e., in an excitable
state, and can be pushed up into the oscillatory range
by an instantaneous injection of positive external current,
deriving from sufficiently large noise fluctuations with pos-
itive sign. Vice versa, in the case of Jy, = +1, most ele-
ments are above the upper limit of the intrinsic oscillatory
range, i.e., in an excitation block state, and can be pushed
down into the oscillatory range by an instantaneous injec-
tion of negative external current, deriving from negative
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noise fluctuations with sufficiently large modulus. In both
cases, the addition of noise on top of diversity causes a
synergistic effect and a remarkable network synchroniza-
tion improvement: for instance, the network oscillatory
activity for J,, = +1 raises by almost 50%, if we com-
pare the DIR maximum (p &~ 515, empty green dot in
fig. 3, panel (b)), to the global maximum of the p sur-
face (p =~ 738, full blue dot in fig. 3, panel (b)) resulting
from the combination of diversity and noise effects. It is
also apparent from the data that, in this regime, noise is
more efficient than diversity, as shown by the significantly
higher noise-induced resonance maxima along the noise
axis (empty red dots in fig. 3, panel (a) and (b)), com-
pared to their equivalents along the diversity axis (empty
green dots in fig. 3, panel (a) and (b)).

It is worth noting that the position of the DIR gets
shifted towards higher values of o4 going from J,, = 0 to
Jay = £1. The DIR maximum is at o4 = 0.5 for J,y, = 0,
vs. oq = 1 for both J,y = —1 and J,y = +1 (empty green
dots in fig. 3, panels (a) and (b)). However, when we com-
bine together noise and diversity, the position of the global
maximum goes back to the same optimal diversity value
found for J,, = 0 (full blue dots in fig. 3, panels (a) and
(b)). The mechanism of this effect is that noise stochas-
tically “throws” network elements towards the oscillatory
range, and it does so with respect to an average position
on the J-axis that is determined, for each element, by
its J; coefficient, deriving from the diversity distribution.
When this mechanism reaches the highest efficiency, i.e.,
at the global maximum of the surface, the optimal diver-
sity for J,, = %1 tends to be equal to that for J,, = 0.
We may conclude that, in the J,, = 41 regime, there is
a strong synergy between diversity and stochastic effects,
which significantly broadens the range of resonant states of
the network vs. what can be observed when either source
of disorder is applied individually.

Finally, in the intermediate regime corresponding to
Jay = £0.5 (fig. 4), we observe an in-between situation,
with various regions of the p surface where the combina-
tion of diversity and noise produces a synergy and an ex-
tension of the resonant range of the network. For example,
at Joy = —0.5 (and o, = 0), there are no network oscilla-
tions for diversity values o4 = 0.0 and o4 = 0.25, whereas,
with the addition of noise, resonant states are observed in
both cases, starting from o0, = 1 and o, = 0.5, respec-
tively. We point out that, also in this regime, the global
maximum of the p surface due the combined diversity-
and noise-induced resonance occurs, for J,, = —0.5, at
o4 = 0.5 (full blue dot in fig. 4, panel (a)) and is shifted
to smaller values with respect to the DIR maximum in
the absence of noise (64 = 0.75, empty green dot in fig. 4,
panel (a)). Therefore, the mechanism described in the
previous paragraph, regarding the tendency of the opti-
mal diversity value to be equal to that for J,, = 0, is at
play here as well.

In order to confirm the rationale for our choice of adding
the noise term &;(t) into the first FitzHugh-Nagumo

Fig. 4: Global oscillatory activity p, defined in eq. (8), as a
function of diversity (o4) and noise (o), for Jay = —0.5 (panel
(a)) and Jav = +0.5 (panel (b)). The full blue and empty
green/red dots in each panel highlight the global surface max-
imum, the DIR maximum and the noise-induced resonance
maximum, respectively.

Fig. 5: Global oscillatory activity p, defined in eq. (8), as a
function of diversity (oq) and noise (on), for Joy = 0 (panel
(a)) and Jay = —1 (panel (b)), when noise is added into the
second equation, eq. (5).
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equation, eq. (4), we also performed some simulations
where &;(t) was added instead into the second equation,
eq. (5). We did this for J,, = 0 and Jo, = —1. As ex-
pected, the results reported in fig. 5 show that in this case
the effect of noise is negligible and the network dynamics
is entirely determined by diversity [35].

Conclusions. — Our theoretical and numerical anal-
ysis shows that, while there are some analogies between
diversity- and noise-induced network synchronization, the
two effects are substantially different and interact with
each other differently, depending on the distance of the
mean value of the diversity distribution from the intrin-
sic oscillatory range of the network elements. Specifically,
when the diversity distribution is centered around the in-
trinsic oscillatory range (J,y = 0), diversity and noise act
independently of one another and there is no indication
of a synergy. On the other hand, when the mean value
of the diversity distribution is far away from the intrinsic
oscillatory range (J., = £1), then there is a clear syn-
ergy between the two sources of disorder, which deter-
mines a major improvement of network synchronization.
In addition, in this regime, noise can improve network
synchronization more effectively than diversity. This pro-
vides useful indications on the relative importance of the
two effects in different network configurations, and on the
possibility to neglect one or the other as a consequence.

Another important finding is that the optimal diversity
value of the network is the same in all regimes, if noise is
taken into account. In other words, when noise effects are
added, the amount of diversity that maximizes collective
oscillatory efficiency seems to be an intrinsic property of
the network, independent of J,, .

The fact that diversity and noise are not equivalent
sources of disorder, but have distinct effects on the
network dynamics, may have implications for biological
systems.  Our results suggest that different network
configurations can lead to a hierarchy between the two
sources of disorder. This may have driven the exploitation
of diversity and noise to a different degree in different
biological systems during their evolution, depending on
their specific nature and on the types of signals that
trigger their activity.

As a potential future extension of this work, we plan to
study and map out the oscillatory activity of individual
network units, again as a function of diversity and noise,
in order to further understand the underlying synchroniza-
tion phenomena at a microscopic level.
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‘We analyze the effect of small-amplitude noise and heterogeneity in a network of coupled excitable oscillators
with strong timescale separation. Using mean-field analysis, we uncover the mechanism of a nontrivial effect—
diversity-induced decoherence (DIDC)—in which heterogeneity modulates the mechanism of self-induced
stochastic resonance to inhibit the coherence of oscillations. We argue that DIDC may offer one possible mech-
anism via which, in excitable neural systems, generic heterogeneity and background noise can synergistically
prevent unwanted resonances that may be related to hyperkinetic movement disorders.

DOI: 10.1103/PhysRevE.106.1.032401

The role of disorder in the dynamics of complex networks
has been extensively studied in terms of noise and diver-
sity (i.e., heterogeneity) effects [1-6]. For example, Shibata
and Kaneko showed that heterogeneity enhances regularity
in the collective dynamics of coupled map lattices, even if
each element has chaotic dynamics [7]. Later, Cartwright
observed the emergence of collective network oscillations in a
cubic lattice of locally coupled and diverse FitzHugh-Nagumo
(FHN) units, none of which were individually in an oscilla-
tory state [8]. Tessone et al. demonstrated an amplification
of the response of a coupled oscillator network to an ex-
ternal signal, driven by an optimal level of heterogeneity of
its elements, and named this effect diversity-induced reso-
nance (DIR) [9-18]. Other authors showed that DIR can occur
even in the absence of an external forcing [19,20]. Some of
these studies concluded that stochastic resonance and DIR are
substantially analogous phenomena [9,21] to the point that
diversity may be viewed as a form of quenched noise.

Diversity in complex networks dynamics has also been
studied in terms of its interaction with noise by introducing
both types of disorder in a system. Most of this research high-
lighted the possibility to amplify resonance effects caused by
noise thanks to diversity optimization, and vice versa [22-25].
Recently, Scialla et al. [26] showed that the impact of diversity
on network dynamics can be significantly different from that
of noise and may result in an antagonistic effect, depending on
the specific network configuration. At the same time, however,
various regions of synergy between the two types of disorder,
giving rise to strong resonance effects, were observed. Also,
it has been shown that diversity in a network of FHN neurons
can enhance coherence resonance (CR) [27], which is a regu-
lar response (i.e., a limit cycle behavior) to an optimal noise
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amplitude [28], occurring when the system is bounded near
the bifurcation thresholds [29,30].

Another form of noise-induced resonance is self-induced
stochastic resonance (SISR), which has a different mechanism
from CR for the emergence of regular oscillations [31,32].
SISR occurs when a small-amplitude noise perturbing the
fast variable of an excitable system with a strong timescale
separation results in the onset of coherent oscillations [32,33].
Due to the peculiarity of operating at relatively weak noise,
SISR represents a particularly interesting case to study the
effects of the interplay between noise and diversity. This is
relevant to the potential role of SISR as a signal amplifica-
tion mechanism in biological systems, given that diversity is
inherent to networks of neurons or other cells.

In this Letter, we demonstrate that in contrast to previous
literature, showing that network diversity can be optimized to
enhance collective behaviors such as synchronization or co-
herence [7-21,26,27], the effect of diversity on SISR, instead,
can only be antagonistic. This indicates that the enhancement
or deterioration of a noise-induced resonance phenomenon by
diversity strongly depends on the underlying mechanism.

We point out that not only constructive but also destructive
resonance effects may have significant biological conse-
quences. For instance, an increasing number of studies on
Parkinson’s disease [34] indicate that dopaminergic neurons
are characterized by a relatively high degree of heterogeneity
and disease progression is associated with the death of only
one or a few specific dopaminergic neuron subpopulations,
leading to a loss of neuron diversity with respect to healthy
brain tissues. Thus, the role of diversity in biological systems
might be also to inhibit unwanted resonances through com-
pensatory mechanisms between different neuron subtypes,
which can result in pathological conditions, if missing.

There is still a very limited understanding of the named
phenomena from a complex systems modeling viewpoint,
as previous works have focused mostly on systems and
conditions that favor constructive resonance effects. In this
paper, we uncover a diversity-induced decoherence (DIDC)

©2022 American Physical Society
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mechanism, where, in contrast to its effect on CR, diversity
deteriorates the coherence of oscillations due to SISR.

As a paradigmatic model with well-known biological rel-
evance, we study the effects of diversity in a network of
globally coupled FHN units [35-37]:

i = vila; — v;)(v; w;
N
+ Ky =)+ i) (1
j=1
dw
dut) = &(bv; — cw;).

Here (v;, w;) € R? represent the fast membrane potential
and slow recovery current variables of the elements, respec-
tively; the index i =1,..., N stands for nodes; K > 0 is
the synaptic coupling strength; 0 < & < 1 is the timescale
separation between v; and w;; and b, ¢ > 0 are constant pa-
rameters. Diversity is introduced by assigning to each network
element i a different value of g;, as specified below. The
terms 7; (i = 1, ..., N) are independent Gaussian noises with
zero mean, standard deviation o,, and correlation function
(ni(t), n;(") = 0"25,-]~(t —t"). The noise intensity applied to
each neuron will be measured by o,.

The excitable regime where the network defined by Eq. (1)
has a unique and stable fixed point is the required determin-
istic state for the occurrence of SISR [38—40]. When n; = 0,
the point (v, w) = (0, 0) becomes a fixed point of Eq. (1) and
is unique if and only if

(ai—17 b

4 T @

For the fixed point (v, wy) = (0, 0) to be stable, we must
have trJ;; < 0 and detJ;; > 0, where J;; is the Jacobian matrix
of the linearized Eq. (1). Since ¢, ¢ > 0, we have trJ;; < 0 and
detJ;; > O only if

—3v7 4 2(a;i + Dy —a; < 0. 3)

To ensure that the network defined by Eq. (1) lies in the ex-
citable regime required for SISR, in the following we set b =
1 and ¢ = 2. We also set ¢ = 0.001, K = 0.1, and N = 100.
To introduce diversity, the values of g; are drawn from a trun-
cated Gaussian distribution in the interval a; € (0, 1 + +/2),
and are randomly assigned to network elements. The standard
deviation o, and mean a,, of the distribution measure diver-
sity and how far the network is from the oscillatory regime
(corresponding to a; < 0), respectively.

To study the effects of diversity o, on SISR analytically,
we apply the mean-field approach, introducing the global vari-
ables V(1) =NV v(t) and W(t) =N~ N w).
Adapting the method used in Refs. [9,26,41], we set v; =
V + 6, in Eq. (1), alongside the assumptions that Zf;l 5 =0,
Y, 5 =0

We further assume that the standard deviation o, of the a;
distribution is small, allowing the approximation

([@l(V 48" = (V 4+ 8)1) = (a){(V +8)* — (V +8)), b

where (...) denotes an average over the N neurons. We note
that the Gaussian distribution of @; ~ N (a,,, 04) in the range
0,14+ +2)is always truncated whenever a given value of a,,

0.1

0.08

=0.06

0.04

0.02

FIG. 1. W nullcline (blue line) and V nullcline (red curve) of
Eq. (5) intersect at a unique fixed point (Vy, Wy). Note that if V; <
Vinin, then (Vg, Wy) is stable and, in addition, if W € [Win, W],
then W, Wy € [Whin, Wiax]. The black loop represents a typical
stochastic trajectory induced by SISR, where the horizontal parts
with triple arrows indicate the fast escape at points W;* and Wy’ from
the left and right stable branches of the V' nullcline, respectively. The
almost vertical parts of the trajectory, with single arrow, represent
the slow motion of W governed by Egs. (6). Note that W > Wy.
A=0.1,M =0.045.

and/or o, pushes a; out of bounds, especially when a,, is very
close to the boundaries of (0, 1 + ﬁ).

Using these assumptions and averaging Eq. (1) over the N
neurons, we obtain the following dynamical equations for the
global variables V and W:

‘%’ — VIA-V)V - 1)—3M]

b OMALD W+, ®)
W oy —ew)
dt & N

where M = N"' YN 62 and A=N"'YN 4. M can be
considered as a diversity parameter in that it increases with
diversity in the network and M = 0 for a homogeneous system
(o4 = 0). Noise effects are represented by a global white
noise term n, = N~! Z?’:l n; with zero mean and correlation
function (n,(t), n,(t")) = N~'a28(t —1').

When there is no noise in the first equation of Eq. (5),
n,() =0, then in the adiabatic limit ¢ — 0, for any ini-
tial condition of Eq. (5) the system relaxes to V = V(W)
and then to V = V;*(W), where Vg (W) and V;*(W) are the
right and left stable branches of the V nullcline, respectively.
Solving V[(A - V)V — 1) =3M]+MA + 1) — W =0 for
V, we get three real and ordered solutions, namely, V;*(W) <
V(W) < Vg (W), which are all functions of W.

Inserting V = V;*(W) and V = Vg (W) in the equation for
W in Eq. (5) gives

dl = e[bVF(W)— W]
dt 6)

dw
o e[bVE(W) — cW1.

The first (second) equation of Eq. (6) together with the ex-
pression of V*(W) [V§(W)] governs the slow motion of W
down (up) the left (right) stable branch of the V nullcline (see
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Fig. 1) to the leading order arising on the O(s™") timescale
when ¢ — 0.

Now, if we switch on the noise, i.e., n,(t) # 0 with a
small amplitude, 0 < o, < 1, the first equation of Eq. (6) is
not valid all the way down to the stable fixed point (V;, Wy)
[in fact, for SISR to occur, the point (V, W) should never
be reached, otherwise, the trajectory would be trapped in
the basin of attraction of the stable fixed point for a long
time, thereby invoking a Poissonian spike train, leading to the
nonoccurrence of SISR], which is located on the left stable
branch of the V nullcline, ie., Vy < Vpin (see Fig. 1). But
the first equation of Eq. (6) still governs the slow motion of
W until the well-defined point W;* > W;, where a horizontal
escape (invoked by noise) of a trajectory from the left stable
branch of the V nullcline occurs.

The same dynamics occur for the second equation of
Eq. (6) except that the horizontal escape from the right stable
branch of the V nullcline certainly occurs with or without
noise. This is because the right (unlike the left) stable branch
of the V nullcline has no fixed point to trap the trajectories
and destroy the regularity of spikes. Thus, our analysis focuses
only on the stochastic dynamics of the trajectories on the left
stable branch.

To understand the escape mechanism of a trajectory from
the left stable branch of the V' nullcline at point W;*, we con-
sider the limit ¢ — 0, where the timescale separation between
V and W becomes very large and Eq. (5) reduces to the 1D
Langevin equation:

dv AUV, W)
= (). O

dt v
In this limit, W which comes from the solution of the first
equation of Eq. (6) is practically frozen and can be considered
as a fixed parameter, its time variation providing only a O(¢)
contribution to the dynamics governed by Eq. (7). The func-
tion U(V, W) in Eq. (7) is an effective double-well potential
parametrically dependent on M:

4
UV, W)= VT ~4 “;A>V3 + (3M2+A)V2
— W —M(1+A)V. ®)

Based on large deviations theory [42,43] and Kramers’
law [44], we write for Eq. (5) the generic conditions for the
occurrence of SISR in slow-fast dynamical systems in the
standard form [45,46] as follows [33,39,47]:

Vf < Vmin

lim [12 ln(e’l)] € (AU(W)), @)
(04,6)=>(0,0) | 2 (©)
WL* > Wf
AULEW), AURW) /' W € [Wain, Wina].

Here, (Vinins Wiin) and (Vinax, Wiax) are, respectively, the min-
imum and maximum points of the V nullcline, (Vy, Wy) is
the unique (and stable) fixed point of Eq. (5), and W/ is the
value of W that satisfies the first equation of Eq. (6) and at
which the trajectories escape almost surely from the left stable
branch of the V nullcine. The left (AU*(W) > 0) and right

()]
0.021
< 001
=~ AUNw) | autw) | autw) C
> M=0.001 | M=0.01 | M=0.045 | AU"(W)
M=0.065
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\
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FIG. 2. Landscape of U(V, W) and energy barriers AUXR(W)
for different values of M. (a) U(V, W) is asymmetric [AU*(W) >
AURW)] when W(=0.07) > W,. (b) U(V,W) is asymmetric
[AU(W) < AUR(W)] when W (= 0.04) < W,. (c) U(V, W) is sym-
metric [AUL(W) = AUR(W)] at W, = 0.0621 > W; = 0.0376. A =
0.1.

(AURW) > 0) energy barriers of U(V, W) are

{AUL(W) =UWVFW), W) —=UVFW), W) (10

AURW) = UWVg(W), W) —U(Vg(W), W),

which are both non-negative and monotonic functions of W,
see Fig. 3(a). Figure 2 shows the landscape of U (V, W) and
how AU'ER (W) varies with M. We note that the asymmetry
of U(V,W) is governed by W and the double-well tends
to disappear upon increasing M, resulting in a loss of the
bistability required for SISR occurrence. ® represents the
intersection point of AUY(W) and AUR(W) at W,, a point
at which the two energy barriers are equal to each other. This
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FIG. 3. (a) Variation of AU’ (dashed lines) and AU® (solid
lines) versus W intersecting at W = W, = 0.0621 for values of M =
{0.001, 0.01, 0.045, 0.065} shown in Fig. 2. (b) Variation of ® versus
M.A=0.1.

happens when U (V, W) is symmetric at W, > Wy, i.e.,
® = (AULW,) - AUEW,) = AURW,), W, > Wy}, (11)

At point W, the escape of a trajectory V from the left stable
branch and from the right stable branch of the V nullcline are
both equally less probable.

In Eq. (9), the first condition ensures that the fixed point
is unique and stable; the second condition ensures that a tra-
jectory can escape (almost surely) from the left stable branch
of the V nullcline at the escape point W = W*; the third
condition ensures that the trajectory escapes before it reaches
the stable fixed point, so it does not get trapped into the basin
of attraction of this fixed point for too long; and in the fourth
condition, the monotonicity of AUX(W) and AUR(W) in the
interval [Win, Winax] ensures that the escape points W;* and
Wy on the left and right stable branches of the V nullcline
are unique, which would in turn ensure the periodicity of the
trajectory leading to coherent spiking.

Since Wy is the lowest attainable point of a trajectory
on the left stable branch of the V nullcline and the interval
(AUL(Wf), ®) in the second condition in Eq. (9) is open,
SISR deteriorates (i.e., the spiking becomes less coherent) and
eventually disappears, moving away from the center of the
interval. Thus, for a given ¢ < 1, we use the boundaries of
this interval to calculate the minimum (U,;“i") and maximum
(o,"®) noise intensity between which the highest degree of
SISR can be achieved:

: 2AULW, 29
O,mln — ( f) , o_'max — . (12)
" In(s~1) ' In(e~1)

The quantities 0" and 6,"* have a dependence on the diver-
sity parameter M through U(V, W) and V¢ r(W). Thus, the
length of the interval (o,;“i", o,"*) can be controlled by M. Itis
worth noting that when o,, = 0, diversity alone cannot induce
SISR. This is because no single neuron in the network can
spike as long as the excitability parameter (which is also the
heterogeneity parameter) a; ~ N (a,, o) liesin (0, 1 + +/2),
i.e., the excitable regime.

The occurrence of SISR depends on whether the parameter
values of the system, including M, satisfy the four conditions
Eq. (9) in the double limit (o;, ¢) — (0, 0). Hence, it suffices
to study the variation of ® versus M to uncover the effect
of diversity on the degree of SISR. This is done in Fig. 3,
showing that ® decreases upon increasing M. Thus, DIDC
occurs when diversity in the network increases, leading to a
deterioration and eventually destruction of the coherence of
the spike train due to SISR, by shrinking the length of the
interval (o™, ¢"4) toward zero.

We corroborate the theoretical analysis via numerical
simulations. We numerically integrate Eq. (1) for N = 100
neurons using the fourth-order Runge-Kutta algorithm for
stochastic processes [48] and the Box-Muller algorithm [49].
The integration time step is dt = 0.01 and the total simulation
time is 7 = 1.5 x 10°. For each realization, we choose for
the ith neuron random initial conditions [v;(0), w;(0)], with
uniform probability in the ranges v;(0) € (—1, 1) and w;(0) €
(0.2, 1). After an initial transient time Ty = 2.5 x 10°, we
start recording the neuron spiking times #{ (¢ € N counts the
spiking times). Averages are taken over 15 realizations, which
warrant appropriate statistical accuracy.

We illustrate the effect of diversity, synaptic noise, and
distance of the excitable network from the oscillatory regime,
measured by oy, 0,,, and a,,, respectively, on the degree of co-
herence of the spikes induced by SISR. We use the coefficient
of variation (cv) given by the normalized standard deviation of
the mean interspike interval (ISI) [28]. For N coupled neurons,
the cv is given by [50]

V= ———— (13)

where (t) = N"' 3N (z) and (2) = N7' N | (¢2), with
(t;) and (riz) representing the mean and mean squared ISI
(over time), T; = tl.“'l — tf > 0, of neuron i.

We determine the spike occurrence times from the instant
the membrane potential variable v; crosses the threshold vy, =
0.3. The cv will be higher the more variable the mean ISIs are.
Thus, since Poisson spike train events are independent and all
have a normalized standard deviation of unity (i.e., cv = 1),
they can be used as reference for the average variability of
spike trains of the network [51]. When cv > 1, the average
variability of spike trains of the network is higher than a Pois-
son process. When cv < 1, the average spiking activity of the
network becomes more coherent, with cv = 0 corresponding
to perfectly periodic spike trains. The degree of coherence
is illustrated in Fig. 4, which depicts cv against the synaptic
noise o, and diversity parameter o, at two different values of
Q.
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FIG. 4. (a) cv versus o, and o, in 3D with the 2D projection onto
(04, 04) plane when a,, = 0.05. (b) cv versus o, and o, in 3D with
the 2D projection onto (o, 04) plane when a,, = 1.2. In both panels,
the black and grey colors indicate values of cv < 1. Larger values of
o, inhibit SISR leading to larger cv values.

In Fig. 4(a), the mean value a,, = 0.05 is close to the lower
bound of the interval (0, 1 + ﬁ), i.e., close to the oscillatory
regime. It can be observed that when o, € [107*, 1073] and
o, € [0.0001, 0.7), we have a low cv € [0.107, 0.207], indi-
cating a high degree of coherence due to SISR. For o, > 0.7,
the o, interval in which cv < 0.207 has shrunk to zero, i.e.,
cv > 0.276 for all o, values, indicating a significant deteriora-
tion and eventual destruction of the coherence as o, increases.

In Fig. 4(b), the mean of the diversity distribution is fixed
at a higher value a,, = 1.2. In this case, the unique fixed point
(vy, wy) = (0, 0) becomes even more stable than in Fig. 4(a).
Small diversities o, € [0.0001, 0.3) and weak synaptic noise
intensities o, < 6 x 1073 are not strong enough to induce
spiking; thus the network remains inactive and the value of
cv is undefined.

For 0, <9 x 10™* and o, > 2, neurons respond differ-
ently to the synaptic noise due to the diverse strengths of
the excitable regimes. Due to the all-to-all coupling in the
network, the large diversity boosts the weak synaptic noise,
leading to the production of spikes. However, because the
diversity is large, the conditions required for SISR are violated
and the spikes produced are incoherent—see in Fig. 4(b) the
yellow region bounded by o, < 9 x 10~*and o, € [1.7, 2.4],

where cv > 1.5. At a relatively stronger synaptic noise in-
tensity, i.e., 0, =4 x 1073 and a very small diversity of
o4 = 0.001, the degree of coherence due to SISR is best and
cv = 0.14. As o, increases while the synaptic noise is fixed at
0, =4 x 1073, the degree of SISR deteriorates and cv > 1.

The results in Fig. 4 were obtained for a specific value
of the time scale parameter (¢ = 0.001), which is a crucial
parameter for SISR. Moreover, additional simulations per-
formed for other values of ¢ < 1 and K € (0.025, 1.0) (not
shown) lead to qualitatively similar results.

In conclusion, we have provided evidence that there are
complex network configurations and parameter regimes where
diversity can only cause a deterioration of well-known res-
onance phenomena, such as SISR. This is predicted by our
mean field analysis and confirmed by numerical simulations.

The decoherence effect appears as soon as there is a mini-
mal degree of diversity in the system and rapidly grows up to
a complete resonance muting as diversity increases. The basic
mechanism of this effect is that diversity causes a partial or
complete disappearance of the energy barrier in the mean field
double-well potential, responsible for the coherent spiking
corresponding to SISR. The fact that in this system diversity
cannot be optimized to enhance coherence, but can only dis-
rupt it, is a nontrivial result. This is because the possibility
to adjust diversity to amplify collective network behaviors has
been previously demonstrated across a broad range of network
types, configurations, and conditions and is, therefore, a very
general phenomenon [7-21,26].

We have illustrated the effect of DIDC in a prototypical ex-
citable model network, which suggests that the effect may be
common to other physical, chemical, and biological systems.
Based on our analysis and on experimental evidence that a
neuron diversity loss can be associated to hyperkinetic disor-
ders characterized by involuntary movements, we hypothesize
that diversity may be used in biological systems not only to
amplify weak signals, as suggested by previous literature, but
also as an efficient control mechanism to prevent undesired
resonances.
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ABSTRACT

Networks of heterogeneous oscillators are often seen to display collective synchronized oscillations, even when single elements of the network
do not oscillate in isolation. It has been found that it is the diversity of the individual elements that drives the phenomenon, possibly leading
to the appearance of a resonance in the response. Here, we study the way in which heterogeneity acts in producing an oscillatory regime
in a network and show that the resonance response is based on the same physics underlying the resonant translocation regime observed in
models of polymer diffusion on a substrate potential. Such a mechanical analog provides an alternative viewpoint that is useful to interpret

£1:06:02 20z AInr 0g

and understand the nature of collective oscillations in heterogeneous networks.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0262633

Many networks of cells in the human body, including neurons,’
B-cells in the pancreatic islets of Langerhans,” and the car-
diomyocytes of the heart muscle,’ present synchronized electrical
oscillations. Likewise, other collectives of bio-oscillators show
synchronized oscillations, populations of fireflies being a promi-
nent example.” In the case of B-cells in the pancreas, responsible
for the pulsatile release of the hormone insulin, isolated cells do
not oscillate or present irregular oscillation patterns,” a fact that
points to some collective effect at the origin of the observed coher-
ent oscillations. Collective effects are known to be fundamental
for the concerted working of neurons as well,” and also in the case
of heart cells, the role of non-oscillating cells has been recently
revisited.’ Building on related previous work motivated by the
applications to S-cell networks,”~ the goal of the present article
is to revisit some simple models of heterogeneous networks of
nonlinear oscillators, such as FitzHugh-Nagumo (FN) and quar-
tic oscillators, and show their dynamical equivalence to a problem
from a very different area of science, the dynamics of a polymer on

a one-dimensional substrate. This equivalence provides an intu-
itive interpretation of the mechanisms and a simple formulation
of the conditions for the appearance of collective oscillations.

1. INTRODUCTION

Understanding the mechanisms underlying synchronization in
networks of nonlinear oscillators is an active field of research with
numerous applications.'”’" In particular, networks of oscillators
have a crucial role in modeling many biological systems. The human
body, for example, contains multiple different networks of cells,
including neurons, B-cells in the pancreatic islets of Langerhans,’
and the cardiomyocytes of the heart muscle,’ all of which present
synchronized electrical oscillations.

The origin of the oscillations in B-cell networks’ is a long-
standing question still without a complete answer. Various theoret-
ical works have suggested that the heterogeneity of S-cells in the

Chaos 35, 073115 (2025); doi: 10.1063/5.0262633
Published under an exclusive license by AIP Publishing
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islets of Langerhans has a key role in producing coherent oscilla-
tions. The complexity of the problem is enhanced by the fact that
the consequences of heterogeneity can be very different, ranging
from the appearance of synchronization to the inhibition of the
coherence of oscillations.'” The possible effects of heterogeneity on
initiating oscillations were pointed out in Ref. 13, where it was
shown that diversifying the parameters of a Chay-Keizer model of
B-cell dynamics'* can lead to synchronized oscillations, whereas the
corresponding homogeneous model does not present oscillations.
However, the general meaning of this fact in relation to complex
and dynamical systems remained unexplored.

The heterogeneous S-cell network model introduced in Ref. 7
is based on coupled FitzHugh-Nagumo (FN) oscillators of two
different types, characterized by a fixed forcing parameter f that
can assume one of the two possible values, either f; or f,. In this
minimal model, synchronization can appear when some diversity
is introduced in the system, as an emergent process induced by
the interactions between these two different types of cells for suit-
able values of the coupling constant—whereas the corresponding
homogeneous system made up of identical cells would remain in
a non-oscillatory state—as observed experimentally;” synchroniza-
tion shows a sharp resonance around a specific strength of coupling
between the oscillators.

Another model presenting the appearance of heterogeneity-
induced oscillations assigns cells a set of values of the forcing param-
eter distributed according to a continuum Gaussian distribution."”
This model revealed the existence of an optimal level of diversity,
quantified, e.g., by the standard deviation of the Gaussian distribu-
tion, at which the network presents the highest coherent response, a
phenomenon named diversity-induced resonance (DIR). Both mod-
els present heterogeneity-induced oscillations and a clear resonant
behavior of synchronization as some parameters are varied but using
different prescriptions for diversifying the parameters of the oscilla-
tors. Whether the effects induced by a Gaussian distribution'” and a
two-value distribution of the bias forces’ are equivalent or related to
each other is still an open problem.

Considering the question from a general dynamical perspec-
tive, the first approach to the diversification of the parameters, using
a continuum distribution, emphasizes the analogy between DIR
and stochastic resonance,>'* while the second approach, using a
two-value distribution, points to some simple underlying process.
We show that such a process exists and coincides with the reso-
nance effect of a dimer diffusing on a periodic substrate potential:
The dimer attains an optimal diffusion rate at a suitable equilibrium
rest length (distance between monomers)."”~'” We propose to call
such an effect dimer-diffusion resonance (DDR). As we will discuss,
DDR can be generalized straightforwardly to the case of a polymer,
and in that case, it represents the basis of a simple mechanical analog
of the appearance of DIR in an oscillator network. The DDR mech-
anism and its extension to polymers are general in nature and are
expected to act in a wide category of systems and under different
conditions.

Il. QUARTIC OSCILLATORS

In this section, we study the synchronization of a heteroge-
neous network of quartic oscillators. The results obtained can be
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directly reapplied also to the case of FN oscillators, considered in
Sec. 111 D.

A. Dynamical equations

Consider a network of N linearly coupled quartic oscillators
evolving according to the equation

b= V@) +fO+C Y (g—x)+ap m

JjeN (D

where i = 1,...,N. The sum in Eq. (1) represents the interactions
between the generic oscillator i and the other oscillators, where a
linear coupling of strength C is assumed, extending over the set
of oscillators je.#'(i) that interact with oscillator i. With V(x),
we denote a symmetric double-well potential and f(t) is an exter-
nal time-periodic forcing. In addition, a; stands for a diversified
constant bias force acting on the ith oscillator.

Equation (1) has the same form as the equations that describe
N overdamped coupled particles with coordinates x;, moving in an
oscillating potential V(x) — f(t) x, and subject to constant diversi-
fied biases a;. Assuming a suitable rescaling of the space and time
coordinates, the potential V(x) in the present case has the following
symmetric form:

Vix) = —%xz + ix“, (2)

with a maximum V(x=0)=0 and two minima V(x = %1)
=—1/4.

In contrast to excitable oscillators, e.g., FitzHugh-Nagumo
(FN) oscillators, quartic oscillators do not exhibit spontaneous oscil-
lations. In order to produce an oscillatory regime, a periodic forcing
f(t) is added, with a simple sinusoidal form, an amplitude b, and a
time period T = 27 /w,

f(t) = bsin(wt). (3)

In the following, we keep the amplitude b constant and small enough
that an isolated oscillator cannot oscillate, i.e., the effective potential
[V(x) — xf(t)] maintains two minima at any time t. We are inter-
ested in determining under which conditions a coupling between
the oscillators together with a level of diversification in the set of
bias forces a; induces the appearance of global oscillations in an
otherwise silent network. To make comparisons consistent with the
case of isolated oscillators, for any choice of biases {a;}, we assume a
zero-mean bias (a) = >, a;/N = 0.

B. Effects of diversification on a fully connected
network

As discussed in the Introduction, two possible means of diversi-
fication that can induce an oscillatory regime are as follows: (a) The
zero-mean Gaussian distribution P;(a) with standard deviation
o = 0, (used in the study of DIR"),

Pi(a) =

1 ( a® ) @
———exp|—— ),
J2no? 207
(b) the two-value zero-mean distribution P,(a), with standard devi-
ation o = g, that assigns to the oscillators either a bias a = —a or

Chaos 35, 073115 (2025); doi: 10.1063/5.0262633
Published under an exclusive license by AIP Publishing

35,073115-2

£1:06:02 20z AInr 0g



Chaos ARTICLE

a = +a (used in Ref. 7),
1
Py(a) = 5[5(0+ﬁ)+5(ﬂ*5)]» (5)

where §(+) is the Dirac delta function.

In the following, we explore the response of an all-to-all con-
nected network of N quartic oscillators to a bimodal distribution of
bias forces a;. The distribution is assumed to be the superposition of
two Gaussian distributions P (a) with mean values 4-a and with the
same standard deviation o,

1
P(a) = E[P-(a) + P (a)]

1 (a+a)> (a—a)>
Wz {exp [—72%2 i| + exp [—72%2 “ (6)

The distribution P(a) is symmetric with respect to a = 0 and has the
mean value (a) = 0. For generic values 4,0, > 0, the distribution
P(a) represents a hybrid diversification strategy that is intermediate
between P;(a) and P,(a). For a — 0, the distribution P(a) reduces
to the zero-mean normal distribution P, (a) given by Eq. (4), while
for o, — 0, it becomes the two-point distribution P,(a) given by
Eq. (5). An example of the distribution P(a) can be seen in Fig. 1. The
standard deviation of this bimodal distributionis o = \/a* + ¢2; for
a — 0, it reduces to 0 = o, of the Gaussian distribution, while for
o, — 0, it reduces to o = a of the bimodal distribution (thus, the
parameter a represents both the absolute value of the modes and the
standard deviation of the bimodal distribution).

We consider as a working example the all-to-all connected
network topology that allows a clear comparison with the results
obtained in Ref. 15 for DIR; we study its response to the bimodal

FIG. 1. Example of bimodal bias distribution function P(a) (black curve) for
0,/a = 2/3, resulting from the superposition of the partial bias distribution func-
tions %Pi (a) of the two different types of oscillators (orange and green dashed
curves)—these distributions are defined in Eq. (6). For comparison, we draw also
the limiting Gaussian distribution function P; (a) (blue dotted-dashed curve), given
by Eq. (4), obtained for @ — 0 keeping the standard deviation o, constant, and
the two-value §-distribution function P,(a) (visualized as two red vertical lines),
given by Eq. (5), obtained for o, — 0 keeping a constant.

pubs.aip.org/aip/cha

bias distribution P(a) in the a-o, plane of the standard deviations
of the two limiting distributions given by Eq. (4), used for inducing
DIR,"” and the two-value distribution (5), used in Ref. 7 to induce
collective oscillations in an excitable medium. In this way, we can
address the question, how different ways to diversify the constant
bias forces a; affect the synchronization properties of the oscillator
network and provide clues about the origin of the oscillatory regime.
We explore a fully connected network of N = 100 quartic oscil-
lators assuming the following parameter values: Rescaled coupling
C = ¢/N =0.01, when choosing ¢ = 1; tilting amplitude b = 0.2
and tilting period 27 /@ = 200.0; average bias (a) = Y, a;/N = 0.
We measure the global response of the system through the
quantity (8X(t)%), representing a mean square deviation of the oscil-
lator coordinates averaged in time and over the system oscillators,

1 t
X0 = ¢ / ds[X(s) — (XN, @)
0
where

Xo= 5 Eu0. xoy=1 [ axe. ®
; 0

In the case of quartic oscillators and for FN oscillators discussed in
Sec. 111 D, (X()) converges to zero in the long time limit.

The behavior of (8X(t)?) in the (@ 0,)-plane is shown in
Fig. 2(a). The DIR response of the system is obtained in the limit
a — 0 and corresponds to the (blue) tick isoline at a = 0. Instead,
in the limit o, = 0, the corresponding tick (red) isoline represents
the response of the oscillator network to the two-point distribution
of the bias a.

A relevant feature of the responses depicted in Fig. 2(a) is
that the isolines obtained in the limiting cases @ — 0 and 0, — 0
are qualitatively similar to each other. Their direct comparison in
Fig. 2(c) shows that both the curves present a (resonance) peak at the
common value 0, = a &~ 1/2. Considering that the two curves were
obtained using different diversification procedures and are defined
using different variables, their similarity suggests a common under-
lying origin of the respective resonances. At the same time, there
are some important differences, namely, the red isoline at o, ~ 0 is
sharper, suggesting the existence of a well-defined resonant condi-
tion, while the tail of the blue isoline at @ = 0 is broader, a fact that
is discussed below.

11l. OSCILLATOR NETWORK AS A POLYMER
A. Dimer-diffusion resonance

In general, the phenomenon of DIR is based on assigning a
(Gaussian) distribution of parameters to the single oscillators, and,
thus, it is not obvious how to define it for small N. However, it is pos-
sible to diversify the constant bias forces even in a small system by
assigning to each pair of oscillators i and j opposite biases a; = —a
and a; = +a. This remains valid even in the minimal case of a single
pair of oscillators (N = 2) described by the equations

—V'(x) +f(t) + C(x2 — x1) — @,
=V (x) +f(t) = C(xa — x1) + @,

X1

©)

*
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FIG. 2. (a) Asymptotic global oscillatory activity /(3X?), defined in Egs. (7) and (8), in the plane a-o, of a heterogeneous network of quartic oscillators subject to a periodic
forcing. a represents the standard deviation for the two-value distribution (5), just as o, for the Gaussian distribution (4), so that both quantities measure the diversity of the
system. (b) As in (a), but for FN oscillators. In both cases, the blue curves represent the limits for 2 — 0 and reproduce the results of DIR, "® while the red curves correspond
to the limit o, — 0 for a network with a two-value bias distribution as in Ref. 7. (c) and (d) A direct comparison between the blue and the red curves reveals a common
resonance peak around a standard deviation a, o, ~ 0.5, when the same potential V(x) (2) is used. The resonances appear suddenly at some threshold of diversity; however,
the resonance disappears equally fast at some threshold value of a in the case of the two-value bias distribution, while it decreases slowly as o, increases for the Gaussian
bias distribution. For both systems, the total number of oscillators is N = 100, the coupling constant ¢ = 1, and the final simulation time t = 2000. The oscillating force
acting on the quartic oscillators, defined in Eq. (3), has period = = 200 and amplitude b = 0.2. The constants in the FN oscillator, Eq. (37), are « = 0.02 and 8 = 0.04.

where the first oscillator is subject to a bias a = —a and the second
one to a bias a = +a. Numerical simulations of this simple two-
oscillator system present features analogous to those of the complex
network with the two-value bias distribution of Eq. (5), discussed in
Sec. I1 B, suggesting that even in the minimal case of the two-particle
system described by Eq. (9) the same mechanism, underlying the
global oscillations observed in larger networks, is in action.

It is possible to rewrite Eq. (9) in the form

1 ==-V@x)+f)+Cly—x —0), (10)
X ==V (x)+f() —Clx, —x1 — 0),

where ¢ = a/C, which shows the equivalence of the two-oscillator
problem (9) with that of the motion of a harmonic dimer of rest
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length £, composed of two monomers with coordinates x; and
x, linearly coupled with a strength C, moving in the potential
V(x) — xf(t). The dynamical equation (10) for a dimer correspond-
ing to two coupled quartic oscillators can be derived from an
effective potential Winm (x1, X2, 1),

. 9 im, : 0 imy
X = _TXIW?) (X1, %2,8), X = _BTCZW?) (1, %2, ), (11)

where

) C
WaM(xr, X2, £) = V1) + V(2 — (a1 + 2)f() + 3 (o—x—07%.
(12)

Here, the last term describes the monomer-monomer interaction
within the dimer with equilibrium length ¢.

In Refs. 17-19, it was shown that in a spatially periodic poten-
tial, a dimer exhibits a resonant behavior for an optimal value £* of
the rest length £ close to half spatial period, at which diffusion and
drift under an external force are highest. We identify this type of res-
onance, referred to in the introduction as DDR, as the mechanism
responsible for the resonant bias observed in Ref. 7 and revealed by
the red isoline at o, — 0 in Fig. 2(a).

A simple mechanical explanation of DDR lies in the fact that,
for a suitable value ¢ = ¢* of the equilibrium dimer length, the
forces acting on the first and second monomer cancel each other,
and, therefore, the action of the substrate potential on the dimer
is minimized.””-"” In the particular case of a sinusoidal potential,
V(x) = Vy cos(2mx/A), where V; and A are the amplitude and spa-
tial period, respectively, and the effective amplitude of the periodic
potential felt by the center of mass of the dimer is reduced from V; to
Vo cos( (x, — x1)/A), which implies that when the distance between
the monomers is half the spatial period of the potential, x, — x|
= {* = 1/2, the substrate potential disappears—see Refs. 17-19 for
details.

These considerations remain valid when applied to the motion
of a dimer in a double-well potential, with the difference that there
will be only one resonant rest length £*, given approximately by half
the distance between the potential minima, while in the case of a
periodic potential, there are infinite resonant lengths £ = £* 4 ni
differing by an integer multiple # of the spatial period A."*

The optimal rest length £* = a/c depends on the ratio between
the bias force and the coupling constant so that one can equally well
study the emergence of an optimal rest length £* fixing the bias a
and varying the coupling ¢, as done in Ref. 7, or vice versa, fixing ¢
and varying a, as we do here.

Thus, the two-value distribution (5) represents a “pure DDR”
diversification strategy for the bias forces acting on the oscillators,
so that the surface plots and the curves in Fig. 2 represent direct
comparisons between a diversity-induced and a dimer-diffusion res-
onant response that provides information on their analogies and
differences.

Above, we discussed the dimer analog emerging from the DDR
mechanism when N = 2; however, the DDR mechanism also acts
in networks of oscillators with N > 2, leading to the analogy with a
polymer composed of N monomers. Before discussing the case of a
network composed of an even number N > 2 of interacting oscilla-
tors (Sec. 111 B), let us discuss the example of a small system with an
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odd number of heterogeneous oscillators, N = 3. We assume first-
neighbor coupling and a symmetrical zero-mean bias distribution
corresponding to the biases a; = —a, a, = 0, and a; = +a. Then,
the system is described by the equations

k= =V(x) +f(t) + Clx, — x1)) — &,
b= =V(®) +f) - Cla—x)+Cla—x),  (13)
k= —V'(x3) + f(H) — C (s — x3) + @@

These equations can be recast in the form of the equations of a trimer
with equilibrium distance ¢ = a/C between monomers,

X ==V (x) +f(t) +Clxy —x; — £),
N=—-V@@)+ft) —C—x1— )+ C(xs —x, — ), (14)
X3 ==V (x3) +f(t) — C(x3 —x, — £).

Like for the dimer, also in this case, the equilibrium distance ¢
between consecutive monomers determines the mobility properties
of the trimer through the DDR mechanisms, and a resonance in the
mobility is to be expected when £ is close to half the distance between
the potential minima.

Similarly to the case N = 3, for general odd values of N, the
biases have to assume at least three different values if the con-
straint (a) = 0 is to be fulfilled, for example, the values a = —a for
(N — 1)/2 oscillators, a = +a for another (N — 1)/2 oscillators, and
a = 0 for one oscillator.

In general, for any network with N > 2, the topology of the
networks is crucial for the dynamics, each different topology defin-
ing a different polymer analog. In particular, the behaviors of two
networks with even and odd numbers of oscillators but otherwise
equivalent to each other can differ significantly. For some systems,
however, the contribution of a single oscillator becomes negligible
in the limit of large N, for example, in large fully connected net-
works since it scales as 1/N. In this case, the dynamics of a network
composed of an even number N of oscillators with a two-value bias
distribution (a = =£a) is practically equivalent to that of a network
with an odd number of oscillators N + 1 obtained by adding an
oscillator with bias a = 0.

Furthermore, as previously mentioned, certain minimal mod-
els exhibit synchronization due to interactions between different cell
types for specific coupling strengths, displaying a sharp resonance at
a critical coupling strength.” This effect is also present in our model
[Fig. 2(a)]. The question now is: How sensitive is this resonance to
variations in coupling strength c? To address this question, a phase
diagram or bifurcation analysis could precisely characterize the
non-oscillatory-to-oscillatory transition. Notably, both the center
and width of the coupling strength window supporting oscillations
can be derived analytically—without additional numerics—using
an effective-barrier argument, phase-diagram boundaries, the full
width at half maximum (FWHM) estimate, and bifurcation criteria.

To see this, we begin with the dimer diffusion, which shows
that a synchronized network effectively moves in a one-dimensional
potential whose barrier height depends on the coupling c. The
effective barrier is

Veir(c) = Vo |cos(m a/c)|. (15)
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FIG. 3. Atwo-parameter space (a — c) bifurcation diagram with the curve cmin (2)
and cpex(@) obtained implicitly from cos(wa/c) = Viit/Vo. A shaded band
between them indicates the oscillatory regime, with the outside region being
non-oscillatory. The resonance peak is marked at the dashed line a/c = 1 /2.
Parameter values used: A = 1.0, Vo = 1.0.

A linear stability analysis of the synchronized fixed point
{x; = X*} shows that it loses stability when this barrier reaches the
critical value V.. Hence, the bifurcation condition is

Veii(c) = Verr <= Vo lcos(rw a/¢)| = Verir. (16)
Solving cos(rr a/c) = Vit/ Vo gives two boundary curves,

a Vit a Vit
b4 =arccos| — |, m — =m —arccos| — |, (17)
V V.

Cmin 0 Cmax 0

which separate the non-oscillatory region (¢ < cmin OF € > Cmax)
from the oscillatory band cpin < ¢ < cmax (see Fig. 3).

To compute the full width at half maximum (FWHM) of the
resonance peak, note that the amplitude of oscillation is maxi-
mal where Vg(c) is minimal (zero at the optimum c* = 2a). By
definition, the half-maximum points are those values of ¢ at which
the barrier has risen to half its peak-lowering effect. Since the peak
lowering is measured from Vg(c*) = 0 up to its maximum value V,
half of that is V;/2. Hence, we set

Vi _ 1
Vesr(c) = 70 = |cos(ma/c)| = 3 (18)
Solving
1 a w 2
aj)l=> = m-== = 19
|cos(mr a/c)| 3 T c : or 3 (19)
yields the two half-maximum couplings
3
Cmax =38,  Cmin = - @ (20)
2
so that the FWHM is
3_
FWHM = Cpox — Cmin = 5 a. (21)
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For a = 0.5, we get FWHM = 0.75, consistent with the sharp
peak of the red isoline in Fig. 2(a). This illustrates that the resonance
is narrow (relatively sharp) and sensitive to variation in the coupling
strength ¢, especially when a becomes smaller, as indicated in the
bifurcation diagram in Fig. 3.

B. Networks with two types of oscillators

Next, we consider a network composed of an even number N
of interacting quartic oscillators, described by Eq. (1), characterized
by the two-value bias distribution of Eq. (5), in which a subset I of
(N/2) oscillators is subject to the bias force a = —a and the com-
plementary subset I, with the remaining (N/2) oscillators to the
opposite bias a = +a. The mean bias in the system is, therefore,
(a) = 0. Such a distribution of the bias forces is analogous to that
employed in Ref. 7 for the study of a network of FN oscillators;
here, it is considered in the framework of quartic oscillators and in
Sec. 111 D in relation to a network of FN oscillators, in order to study
when and how it can induce global oscillations.

We divide the system of Eq. (1) into two subsystems corre-
sponding to the oscillator sets I, and indicate the respective coor-
dinates with x. Correspondingly, also the sum in Eq. (1) can be
divided into two partial sums.

As an example, we consider the case of a regular network
where each oscillator has an even number k; of links equally shared
between (ko/2) oscillators of the set I, and (ky/2) oscillators of the
set I_; the system is illustrated in Fig. 4(a) for ko = 4. We start by
introducing a rescaled coupling ¢ in Eq. (1),

C = 2c/ko.

Then, for each oscillator i, we can rewrite the corresponding bias
a; as a; = (2/ko) iji/lz a;. The various terms (2a;/ky) can then
be absorbed into the linear expressions describing the interaction
between oscillator i and the oscillators j of the other type. In this

way, Eq. (9) can be rewritten as

==V (5)+fo+Cy (x;—x;) + CZ(xj*—x;—e) ,

jel- jels
(22)
i=-V () +f+Cy (x;_x,*) - CZ(xi*_xj—_g) .
Jjel+ jel-

Here, the first sums on the right-hand side represent simple har-
monic interactions of oscillator i with oscillators of the same type
and the second sums interactions with oscillators of the other type,
characterized by an equilibrium distance,
2a _a

T kC ¢
The dynamical equations can be rewritten with the help of the total
potential Wof(x1, . .., xy, £) as

(23)

. 0 e
X == I Qg(xl, S XN D), (29)
v 0 e
X = _ﬁwQ (X155 XN 1), (25)

i

Chaos 35, 073115 (2025); doi: 10.1063/5.0262633
Published under an exclusive license by AIP Publishing

35,073115-6

£1:08:02 520z AInr 0g



Chaos ARTICLE

pubs.aip.org/aip/cha

15t neighbors interaction
21 peighbors interaction

FIG. 4. (a) Regular network composed of alternating types of oscillators with bias a = —a (yellow nodes) and a = +a (green nodes). Each node is coupled to two nearest
neighbors on both sides, so the degree is ky = 4. Blue links represent interactions between two oscillators of the same type; green links between oscillators of different types.
(b) Polymer mechanical analog in x-space. The harmonic forces between particles of the same type tend to induce localized clusters, while harmonic interactions between
particles of different types induce the formation of two clusters at a distance £. As a result, the system behaves similarly to two interacting monomers A and B that compose

a dimer with equilibrium length £.

where
ol C
Web(xr, ... xw ) = ;[V(x,-) - xfo] + 5 ; (x — x;)°
+ g Z (x—x)"+C Z (o — x; — 0)°.

ijelt iel- jel4

(26)

This reformulation of the problem as that of N interacting over-
damped particles moving in the total potential ng(xl, co XN D)
suggests a simple mechanical analog of the N-oscillator network,
namely, a polymer moving in a 1D x-space, composed of two types
of particles, belonging to the sets I_ and I,. Pairs of particles of dif-
ferent types interact with each other as monomers of a dimer with
an equilibrium length ¢ given by Eq. (23) and, therefore, tend to be
at a distance £ from each other [corresponding to the last sum in the
total potential in Eq. (26)]; instead, pairs of particles of the same type
interact through simple harmonic forces and tend to remain as close
as possible [second and third sums in Eq. (26)]. As a result, parti-
cles of the same type belonging either to I_ or I, will form distinct
homogeneous localized clusters: cluster A made up of the particles
in I_ and another B composed of the particles in I, which will tend
to be at a distance ¢ from each other [see Fig. 4(b)]. Therefore, the
global response of a N-oscillator (regular) network with two-value
bias distribution to an external periodic forcing is expected to be
similar to that of a single dimer with equilibrium length ¢, discussed
in Sec. 11l A—see also Refs. 17-19. Systems of this type occur natu-
rally, for example, the action of an applied electric field on charged
dipoles generates opposite forces on the charged monomers."”

The dynamical analogy between a network of oscillators and
an overdamped polymer can be used to estimate the resonant value

a* of the red isoline at o, =0 in Fig. 2(a). In a first approx-
imation, we can assimilate the barrier of the bistable potential
to one of the barriers of a periodic potential, e.g., a sinusoidal
potential. Since the potential V(x) = —x*/2 + x*/4 has two minima
V(x = £1) = —1/4, their separation A =2 would represent the
period of the hypothetical periodic potential, in which it is known
that the dimer will exhibit a resonant response when its rest length ¢
is equal to half the spatial period A."”~"” Using Eq. (23), we obtain the
following approximate resonance condition for a regular network of
degree ko:

2a

k C

ol

A
> (27)

The condition is determined by the ratio a/c so that the resonance
can be characterized in terms of a resonant bias @ = a* or resonant
coupling ¢ = ¢*.

In the example of the all-to-all connected network of oscilla-
tors studied above, with bias distribution given by Eq. (5), discussed
in Sec. 11 B, we have ¢ =1 and N = 100. Thus, since a fully con-
nected network is a particular case of a regular network with degree
ko =N—1, from Eq. (27), we obtain a resonant dimer length
a* = 0.5, which coincides with the resonant bias value observed in
the simulations—see the red curve in Fig. 2(a) obtained in the limit
o, — 0.

As an example of dynamics of an oscillator network with
bimodal distribution, Figs. 5(a) and 5(b) show the time evolution of
the coordinates x;(¢) of a small system with N = 20 heterogeneous
quartic oscillators, with a bimodal bias distribution with a = 0.5.
The blow-up at small times in Fig. 5(a) shows the fast relaxation
of the system toward the polymer-like configuration in which the
monomers order themselves according to the respective value of
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FIG. 5. Time evolution of the coordinates x;(f), i = 1,. .., N, of N = 20 heterogeneous quartic oscillators in a fully connected network with coupling ¢ = 1, subject to a
periodic forcing with amplitude b = 0.2 and period = = 200. (a) Short-time evolution (logarithmic time scale) for a two-value bias distribution similar to that of Ref. 7 with
a = 0.5 (asmall standard deviation o, = 0.025 has been used for a better visualization), showing that, starting from random initial positions, the oscillators reach the periodic
regime already within the first period 7. (b) Same system as in (a) but showing the time evolution over a time interval equal to 3<. (c) and (d) As in (a) and (b), respectively, but
for a Gaussian bias distribution with zero-mean value and standard deviation, o, = 0.5. The dotted lines mark the times t, = nz that are multiples of the period of external

forcing.

the bias—see also the translocation process in Fig. 8 (Multimedia
available online).

In resonance conditions, such a process takes place fast, in a
way basically independent of the number of oscillators N. The relax-
ation to the polymer configuration, which coincides with the onset
of the oscillatory regime, is visualized in Fig. 6 for a network of quar-
tic oscillators through the corresponding global oscillatory activity
v/ (6X?) defined by Egs. (7) and (8). For both cases, of a network in
the DDR and DIR regimes, the curves show that the onset of oscil-
lations takes place within the time interval (0, 7), independently of
the system size N.

Furthermore, the numerical value of the oscillatory activity
reached is the same asymptotic value reported in Fig. 7, even though
the time average is computed over a much shorter time interval. The
system approaches a stable oscillatory regime that remains as such
at all times. The different values of the oscillatory activity shown in

Fig. 2 are due only to the different numbers of monomers involved
in the oscillations. In the mechanical analogy of a polymer translo-
cation, the maximal oscillatory activity corresponds to a complete
translocation, while smaller values of the oscillatory activity cor-
respond to a partial translocation, in which only a fraction of the
monomers moves periodically to the other side of the potential bar-
rier, while a certain number of monomers remain stuck in one of the
two potential wells.

C. Network with general bias distribution:
Diversity-induced resonance

In this section, we show that DDR takes place in heterogeneous
networks with an arbitrary bias distribution, and in this case, it can
be put into correspondence with DIR.
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FIG. 6. Time evolution of the asymptotic global oscillatory activity v/ (5X?) defined in Egs. (7) and (8) in a network of quartic oscillators in the resonant regime for different
numbers of oscillators N in the legend. Left (DDR): Network with the two-value bias distribution Eq. (5) with @ = 0.5 in the DDR regime. Right (DIR): Network with the

Gaussian bias distribution Eq. (4) with o, = 0.5 in the DIR regime.

Let us consider the case of an all-to-all connected network, in
which the bias values are assigned to the N oscillators according to
some continuous distribution P(a), labeling the oscillators in order
of increasing bias, i.e., a; < a, < ... < ay. In order to compare the
effects of diversity with respect to a homogeneous network of unbi-
ased oscillators, the only constraint on the distributions is that the
mean value is zero, (a) = N7! Zil a; = 0. Then, we can rewrite the
bias of the ith oscillator as

(a,- — a]-) s (28)

a;=a;— (a) =

Z| =
.Mz

-
X

1% neighbors interaction
------ 2" peighbors interaction
""" 3" neighbors interaction

A 4

X

FIG. 7. Mechanical analog of a small network of four oscillators. Each oscilla-
tor interacts with all other oscillators, but the equilibrium distances of all different
interactions are consistent with each other according to Eq. (30) and produce a
robust 1D chain structure.

and Eq. (1) becomes

X;

N
—V) A0+ 5 D (x,» — i+ ”’:“")
j=1

i—1 N
= V) 0 — £ == ) + 5 > (5= %= ).
j=1 j=itl
29

Here, we have split the sum into two contributions: A sum over
oscillators with j < i (therefore, with a; < a;) and another sum over
oscillators with j > i (with a; > a;), changing the sign of the first
contribution. In this way, all the quantities £,,, in the interaction
terms in Eq. (29) are positive,

Ay — Ay .
lopn = >0 if m>n;
c

mn=1,...,N,  (30)

and can be interpreted as the equilibrium lengths of the corre-
sponding harmonic interaction between the generic mth and nth
oscillators.

The form of the equations above suggests that a polymer rep-
resents a mechanical analog of a heterogeneous network, where by
polymer we mean a 1D chain of N mutually interacting monomers
with coordinates {x;}. The interactions between monomers are non-
local, i.e., each monomer i interacts with all the other (N —1)
monomers in the system due to the all-to-all multiple harmonic
interactions of the network. In this 1D polymer model, monomers
will order themselves so that x; < x, < -+ < xy_; < xn, L€, in
order of increasing bias. Despite the arbitrariness of the set of bias
values {a;}, the resulting system is not frustrated because the vari-
ous interactions contribute in a consistent way to maintain the same
mutual equilibrium distances between monomers and reinforce the
global ordered equilibrium structure of the polymer. This follows
directly from the fact that by definition £; = £y + € for any i,j, k
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[see Eq. (30)]. For example, the interaction between monomers 1
and 2 has an equilibrium length ¢,; and that between monomers
2 and 3 an equilibrium length £3,; but monomer 1 also interacts
harmonically with monomer 3, with an equilibrium length given
by definition by the right value £3; = £5; + {3, for stabilizing also
the 1-2 and 1-3 interactions—see scheme in Fig. 7. This is valid
for each of the N(N — 1)/2 interactions inside the system since, in
general, the interaction between monomer i and monomer j has an
equilibrium length proportional to |a; — a;|. Thus, the order of the
monomers within the polymer is determined in a unique way by the
N values of the bias: From the monomer with the smallest x coor-
dinate, corresponding to the oscillator with the minimum value of
the bias, to monomers associated with larger and larger values of
bias, until the monomer with the largest coordinate, correspond-
ing to the oscillator with the largest bias. The larger the number of
mutual interactions, the more rigid the structure of the polymer will
be, and, eventually, a well-defined configuration of the 1D chain will
emerge, with equilibrium distances between two generic monomers
iand j given by £;; = |a; — a;|/c. The total equilibrium length of the
polymer is £y, = Zi}‘ Li1 = (ay —ay)/c.

The mechanical analog is apparent by rewriting the equations
of motion Eq. (29) as

. Gl

= —a—mwfg“(xl,,..,xm £ (€2))
a;
0.50
0.25
0
-0.25

-1t . ! { 1 050
-2 -1 0 1 2
xr

pubs.aip.org/aip/cha

where the effective total potential is simply given by

Wa G, x )= Y [V — i) ] + g 3 (—xi—t;)"
i i<j
(32)
and the sums are extended over all the oscillators.

Numerical simulations show that the collective oscillations of
the network correspond to (complete) periodic translocations of the
polymer across the potential barrier, from one potential well to the
other. During the translocation, all the monomers maintain their
order in the polymer. An example of translocation is shown in Fig. 8
(Multimedia available online). When the network does not manage
to reach a collective oscillatory state, depending on the parameter
values, the translocation can be partial, i.e., a part of the polymer
remains in the same potential well, or it can not take place at all
and the polymer remains entirely bound on one side of the potential
barrier. These results confirm the picture that, in DIR scenarios with
high levels of diversity, oscillators subject to a bias that is too large in
modulus may prevent the whole system from undergoing collective
oscillations."”

Figure 8 also shows that the oscillators perform their oscilla-
tions consecutively, one after another, with a finite delay depending
on the bias distribution. In other words, the oscillators, even if oscil-
lating with the same frequency, cannot be in phase. In this respect,

(b) a;
2

0.75
5
= 0.50
ol
g
= 0.25
=
| 0
.
B
S—
? -0.25
=
=
= -0.50
>~ | ]
-0.75
=3 -1 1 2

FIG. 8. Translocation of the effective polymer corresponding to a fully connected network of N = 20 heterogeneous quartic oscillators with coupling ¢ = 1, subject to the
time-periodic forcing defined in Eq. (3) with amplitude b = 0.2 and period = = 200. (a) Network with bias values extracted from the two-value distribution (5) with @ = 0.5;
for reasons of visualization, the distribution used is actually a bimodal distribution (6) with a small o, = 0.02. Multimedia available online. (b) Network with bias values
extracted from the zero-mean Gaussian distribution (4) with o, = 0.5. Multimedia available online. Monomers and corresponding trajectories are color-coded according to
the respective values of the external biases a;. During each oscillation of the network, corresponding to a double (back and forth) translocation of the polymer, monomers
move in a file maintaining the same order based on the bias value, the leftmost (rightmost) monomer having the smallest (largest) bias.
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a single collective oscillation resembles the propagation of a pulse
along an excitable medium.

The response of an all-to-all connected oscillator network in
the DIR regime is represented by the blue curve in Fig. 2. The DIR
peak is located at the same numerical value of the optimal dis-
tance, 0, &~ a* = 0.5, because as o, increases starting from o, = 0,
the system will begin to include an appreciable fraction of oscilla-
tors characterized by the resonant equilibrium length a = a* only
when the value o, & a* is reached. The DIR response (blue curve)
decreases slower than the red curve, a fact that can be expected
because, also at o, > a*, the distribution P, (a) will include a fraction
of values of a around a = a*. On the contrary, a two-value distri-
bution P,(a) with a value of a appreciably different from a* will
not contain oscillators with equilibrium lengths around the optimal
value.

D. FitzHugh-Nagumo oscillators

All the considerations made above for quartic oscillators also
apply to the case of FitzHugh-Nagumo oscillators.”’~*> We start
from the equations of a single FN oscillator, written in the form

x=-V(x)—y+a,
X , x)—y+a (33)
y=ax—By,

where V(x) is assumed as the same quartic potential equation (2)
considered above, & and B are constants defining the dynamics of
the slow degree of freedom y, and the constant bias term a appears in
the equation for the fast coordinate x instead of the equation of y, as
in other formulations of the FN dynamics (one can switch between
the various formulations through suitable rescaling of the variables
and a shift of the y variable). In this form, it is easier to compare
how the DDR mechanism acts within the FN dynamics with respect
to the case of quartic oscillators.

Let us consider first the equations of two coupled FN oscilla-
tors, linearly coupled in the variables x; and x,,

% ==V(x) =y +Clx—x)+a,

X = —V(X?) =y = Clxy —x1) + aa, (34)
1 =axi — By,
Yo =axy — fy.

Setting the bias forces of the two oscillators equal in modulus and
opposite in sign, i.e., 4, = —a and a, = +a, and introducing the
length ¢ = a/C, we can rewrite Eq. (34) as

. d ;
X1 = —TXlWﬂi’i‘(%Xz) =Y

- a im
X2 = ——W‘SN (x1,%2) — y2,

9,
(35)
»=ax — By,
};z =0X; — /3)'2,

where the potential W;“I\',“(xl,xz) is similar to the potential of the
quartic oscillators defined in Eq. (12), apart from the fact that there

pubs.aip.org/aip/cha

is no external oscillating force,
. C
Wi (x1,20) = Vi) + Vir) + 5 (e —x — 0. (36)

In fact, also in this case, the x-sector (the equations for x; and x;)
describes the translational motion in the x-space of a dimer of rest
length £ = a/C, composed of two monomers with coordinates x;
and x,. In addition, the y-sector can be interpreted as describing the
internal dynamics of the dimer through the additional coordinates
y1 and y,, which produce an alternating tilting force acting on the
x-degrees of freedom. In other words, Eq. (35) can be interpreted as
describing an active dimer moving on the substrate potential V(x).
If the values of the parameters « and $ are such that the y degree of
freedom does not manage to produce a force that pushes the dimer
onto the other side of the potential barrier, the system will remain
in a silent state. However, the harmonic coupling between the two
monomers can drastically change the situation and translocation
can take place, with a resonance at a rest length £ approximately
equal to half the distance between the two potential minima.

The above considerations can be generalized to the case
of N coupled FN oscillators subject to diversified bias forces a;
(i=1,...,N) extracted from an arbitrary distribution P(a) with
(a) = 0, described by the equations

il

X = ——W, sen s XN) — Vi

X; ox, N (X1 XN) = ) 37)
yi = axi— By

For a regular network with degree k;, composed of two types of
FN oscillators subject to a bias a = +a, analogous to that depicted
in Fig. 4, the corresponding potential Wy = Wiy is similar to
the quartic oscillators potential of the analogous regular network
given by Eq. (26), with the difference that there is no external
time-periodic force,

N
" c
Wik, xw) = 3 V) + 5 > —x)?
i=1

ijel_

+§Z(xj—xi)2+c > g—xm— 0

ijely iel_ jel4

(38)

Also the corresponding resonance condition is unchanged with
respect to Eq. (27).

Finally, in the case of a fully connected network of FN
oscillators, with diversified bias forces a; extracted from a gen-
eral symmetrical bias distribution P(a), the effective potential
WiN = Wg“hl}(xl,...,xN) is similar to the potential defined in
Eq. (32) of a network of quartic oscillators (apart from the time-
periodic force),

C
Wil (i, ..., 2n) :ZV(Xi)'FSZ(Xj—Xi—(ﬁ)Z- (39)
i i<j

For the latter case, we performed numerical simulations of an all-to-
all connected network of N FN oscillators with bias forces a; diver-
sified according to the bimodal distribution Eq. (6). The response of
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the system in the -0, parameter plane, measured through its oscil-
latory activity, is shown in Fig. 2(b). One can note the close similarity
with the response of a system of quartic oscillators, Fig. 2(a), which
best illustrates the common DDR underlying action. Also, the DDR
limit (blue curve) and the DIR limit (red curve) compare with each
other similarly to the case of quartic oscillators. The similarity of the
responses and the resonant equilibrium lengths £* are due to the fact
that DDR mainly depends on the form of the bistable potential V(x),
which has been assumed to be the same in the various oscillator
networks considered above.

IV. CONCLUSION

In this paper, we have shown that DDR and DIR are related to
each other and have provided evidence that DDR can explain DIR
in simple terms.

First, we have shown that a harmonic dimer moving in an
external periodic potential is a mechanical equivalent of a system
of two coupled bistable oscillators and that the existence of a specific
rest length at which the harmonic dimer does not feel the external
potential and moves as a free particle is analogous to the resonant
oscillatory behavior of the bistable system, observed for a specific
value of the modulus of the bias forces acting on the two oscillators.

Then, moving from simpler two-element systems, of more
intuitive interpretation, to systems made of N units, we have pro-
vided evidence of a connection between a network of bistable or
excitable (FN) units and a “polymer,” i.e., a chain of interacting par-
ticles moving on a one-dimensional substrate, which allows one to
predict the existence of DIR and to derive analytically the conditions
for synchronization. Notably, these predictions are fully consistent
with the results of numerical simulations presented here and in
previous studies by various authors.

The polymer mechanical analogy allowed us to predict that,
also in the case of coupled FN units, one must expect a resonant,
oscillatory behavior of the network if the condition Eq. (27) is ver-
ified, even when the value of a is such that each network element
is, individually, in an excitable, i.e., non-oscillatory state. This is
consistent with the numerical results presented in Ref. 7.

The dynamical analogy between nonlinear oscillator networks
and 1D polymers offers a general way to study and predict the
synchronization properties of other nonlinear systems, with a wide
range of possible applications, from oscillating biological networks
to technological networks. A regular network characterized by a
general distribution f(a) of bias forces has a mechanical analogy in
the dynamics of a polymer in the case of both DIR of forced sys-
tems, where diversity reproduces effects similar to the noise-induced
effects of stochastic resonance, and excitable systems where diver-
sity can induce a diversity-induced coherence resonance. The same
dynamical analogy can explain other collective phenomena, such as
the diversity-enhanced stability introduced in Ref. 23.

There are various directions to be explored that are open to
further research. The present paper focuses on regular, and, in par-
ticular, fully connected networks, but the effects of heterogeneity in
networks with a general topology represent a relevant side of the
problem. Also, although our analysis is based on the assumption that
the distribution of bias forces acting on the bistable or excitable units
that constitute the network is symmetric and with a zero-mean bias

pubs.aip.org/aip/cha

value, the same approach can be extended to distributions that are
asymmetric and with non-zero-mean bias, a topic that we will deal
with in the future.

Even if the types of oscillators considered here are usually stud-
ied for historical reasons in the regime of slow oscillations (slow
forcing in the case of the quartic oscillators) or a clear slow/fast sep-
aration of time scales (in the case of FN oscillators), an interesting
question to be explored in future work concerns the conditions of
resonance in regimes that have no such time-scale constraints.

Finally, the theoretical ideas discussed in this paper can find an
interesting and challenging field of application when compared with
the experimental knowledge on biological cells—in particular, B-cell
networks”'—developed in recent years.
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‘We show that the degree of symmetry of the diversity distribution is the key determinant of global oscillations
in coupled networks of FitzHugh-Nagumo units, used as prototypical examples of excitable systems. In these en-
sembles, symmetric diversity reliably yields resonant collective oscillations—even when all units are individually

excitable—whereas asymmetric diversity suppresses them. Two symmetry-based metrics predict the presence or
absence of global oscillations from the distribution alone. A simple mean-field mechanism, corroborated by a
minimal two-unit analysis, explains how symmetry creates a landscape that supports limit cycles. These results
identify diversity distribution symmetry as a key mechanism for emergent synchronization in excitable media.

DOI: 10.1103/lvb3-dc11

I. INTRODUCTION

The impact of diversity, or heterogeneity, on the global
oscillations of a network of coupled excitable units has been
the subject of many studies [1-17]. Beyond its intrinsic rele-
vance to dynamical systems theory, interest in these excitable
media also stems from their use as models for complex and
important biological oscillators, such as cardiac tissue [18-21]
and excitable endocrine cells of the pancreas [22,23]. A funda-
mental question related to the understanding of these systems
concerns the mechanisms leading to collective oscillations or
quiescence of a network of diverse units, some of which are
individually in an excitable (nonoscillatory) state, while others
are individually oscillatory.

Previous studies emphasized the ratio of oscillatory to
excitable units as a key determinant of global network os-
cillations. In FitzHugh-Nagumo (FHN) networks with linear
all-to-all coupling, Tessone et al. showed that diversity and
external forcing can shift a fraction of units above thresh-
old, turning them from excitable to oscillatory. The resulting
oscillatory units then “pull” the remaining excitable ones
via coupling, producing collective oscillatory behavior, i.e.,
diversity-induced resonance (DIR) [2]. The pull effect be-
tween oscillatory and excitable units was observed to be
the main mechanism driving global network oscillations also
by Pazé and Montbrié [24], where a diverse population of
Morris-Lecar units subjected to all-to-all coupling was stud-
ied. Analogous conclusions were drawn by Shen et al. [25],
who examined a nearest-neighbor coupled, one-dimensional
chain of heterogeneous FHN elements, to which they added
random long-range connections.

Importantly, global network oscillations can be observed
even in heterogeneous systems that do not have any oscillatory
units at all. Cartwright showed that a medium comprising
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diverse FHN units, which individually were all in an excitable,
nonoscillatory state, was capable of spontaneously giving rise
to collective network oscillations [1].

A closely related line of work considers network aging,
where the fractions of active and inactive units determine
global activity and one seeks the critical inactive fraction
beyond which function is lost [26-35]. In biological tissues,
however, aging and disease rarely affect all subpopulations
uniformly, leading to unequal loss of functional cell mass
and thus skewed (asymmetric) diversity distributions [36-39],
which provides a biological motivation for our focus on di-
versity distribution symmetry. To our knowledge, the role of
this factor in driving network-level synchronization has not
yet been explicitly addressed.

In the present work, we argue that the symmetry of
the diversity distribution is a primary determinant of global
network oscillations in heterogeneous FHN ensembles. In
particular, we show, across different network topologies, that
symmetric distributions robustly generate resonant collective
oscillations, whereas asymmetric (skewed) distributions sup-
press them. We also develop a mean-field analysis that retains
the third central moment and explains how skewness biases
the effective drive and shifts the nullcline intersections. A
minimal two-unit reduction with an effective pseudopotential
visualizes how symmetry carves a cyclic valley that supports
limit cycles, while asymmetry collapses the dynamics to a
single equilibrium.

In terms of paper structure, we first introduce the model
and the mean-field analysis (Secs. II and III). Then, in Sec. IV,
we present numerical results showing symmetry-driven os-
cillations across topologies, followed by the description of a
minimal two-unit pseudopotential mechanism in Sec. V. We
also provide perspective on the relevance of our symmetry-
based analysis beyond FHN unit networks (Sec. VI). In

©2025 American Physical Society
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the Conclusions (Sec. VII), after summarizing the implica-
tions of this work for emergent synchronization in excitable
media, we connect our analysis to realistic networks, discuss
its limitations relative to biological heterogeneity, and outline
directions for future work.

II. MODEL

As a paradigmatic example of excitable systems, we study
networks of FHN units with different topologies, i.e., cubic
lattice, all-to-all coupling, and small-world (Newman-Watts).

An individual FHN unit can be described by the following
dimensionless equations [1,40—43]:

¥ =alx—x/3+y), (1a)
—(x+by—J)/a, (1b)

y
where x is the fast activator variable, y is the slow inhibitor
variable, and a and b are parameters related to the electrical
properties of the unit [1]. The value of parameter J determines
whether the unit is in the oscillatory regime, which occurs for
|[J] < &, or in the excitable one, corresponding to |J| > &, with
¢ defined as

_ 3a® = 2a%b — b?
- 3a3

We now build a network of heterogeneous and coupled
FHN units, assuming for simplicity that the coupling constant

C is the same for all units. The FHN equations for the ith
oscillator in the network then become [1]:

e a? —b. 2)

Gi=a|lxi—x/3+y+CYy (;—x)|. ()
J

yi = —(x;i + byi — Ji)/a, (3b)

where the sum over j in the coupling term in Eq. (3a), in the
three topologies we will examine, is: (a) limited to the six
nearest neighbors of the ith unit, in the case of cubic lattice
topology; (b) running over all network elements, in the case
of global coupling; and (c) limited to the units that are linked
to the ith element, in the case of Newman-Watts networks.
Unless otherwise indicated, in all numerical simulation ex-
amples presented in this paper, the parameter values in the
FHN equations (3) are set as follows: a = 60, b = 1.45, and
C = 0.15. The value of the coupling constant C = 0.15 is the
minimum required to observe collective network oscillations
and is consistent with results from previous studies [43]. The
values of parameters a and b derive from previous work by
some of the authors of this paper, aimed at modeling the
electrical behavior of S-cells in the pancreas [43]. Of course,
changing a and b affects not only the value of & but also the
shape and position of the nullclines of Eqgs. (3). However, the
overall qualitative trends described in Sec. III and exemplified
in Sec. IV do not depend substantially on a and b.
Heterogeneity or diversity is introduced into Egs. (3) by
randomly assigning a different J; value to each unit i. In the
case of symmetric diversity distributions, we draw J; values
from a Gaussian with mean J,, and standard deviation o.
Therefore, the latter will determine the degree of diversity
of the units constituting the network [2,43,44]. To represent

asymmetry and study its effects, as shown in more detail in
Sec. IV, we introduce truncations in the normal distribution
of J; values and will also consider half-normal distributions.
We examine different cases where truncations are introduced
both on the sides and in the middle of the above distributions.

III. MEAN-FIELD ANALYSIS

Before presenting numerical results, let us analyze the dy-
namics of some of the above-mentioned systems through a
mean-field approach [2,44], focusing on the differences be-
tween symmetric and asymmetric diversity distributions.

Let wus introduce the global variables X(¢)=
N7'YN x(t) and Y(@)=N"'SN y.(r). We then use
the transformation x, = X + §, [2,44—46]. Upon substitution
in the FHN Egs. (3) we obtain [2]

; X +68)°

X:a[X—l—é,-—%—i—yi
+CZ<X+5_,-—X—5,->], (42)

. X+ 68 +byi—J;

y= S (4b)

a

We have not used the transformation y, =Y + §,, because
the y, terms are all linear. Also, for simplicity, we only con-
sider the case of all-to-all coupling, therefore the sum in
Eq. (4a) runs over all i’s and j’s. Using (8;) = 0 (by defini-
tion) and the identity (X + &)%) = X3 + 3X(8?) + (5}), and
noting that for all-to-all coupling (1/N)Y; > SO —x) =
>°;8; — 2.8 = 0, averaging Eqs. (4) over i gives the exact
mean-field equations

; x’ M3
X=a[x -2 —xmM+v-2), (5)
3 3
. X +bY —Ju
y2_+7’ (5b)
a

where M = (§?) and 13 = (57).

If the J; distribution is symmetric about its mean and we
work in a small-diversity regime in which |3 <« M (in fact,
M = O(c?) and u3 = O(c*)), then the skewness term is sub-
leading and we can set @3 =~ 0. The mean field then reduces

to
. X3

x:a[X(l—M)—?JrY], (6a)

X +bY —Jy

- .

Y = (6b)
In Eqgs. (6), M expresses the level of diversity, larger M values
meaning greater diversity.

In Fig. 1 we plot the nullclines of Egs. (6) for different
levels of diversity. It can be observed that, upon increasing
M, the equilibrium points of the system tend to approach each
other on the middle branch of the cubic nullcline, as shown by
the comparison between M = 0 and M = 0.3. Eventually, as
shown for M = 0.6, the equilibrium points merge, via a sub-
critical saddle-node bifurcation of fixed points, into a unique
unstable equilibrium point, resulting in enhanced global os-
cillatory activity of the network. As M is further increased
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FIG. 1. Nullclines of Egs. (6) for different values of diversity M. System parameters are: a = 60, b = 1.45, J,, = 0.

to M = 1.1, the middle branch disappears—the cubic null-
cline now becomes monotonic—so that the unique remaining
equilibrium point becomes stable via a subcritical Hopf bi-
furcation, resulting in an excitable, nonoscillatory medium.
Therefore, the mean-field analysis predicts that, upon in-
creasing M, i.e., diversity, the network should go through an
intermediate region of optimal diversity values, characterized
by resonant, global oscillatory behavior, followed by a pro-
gressive decrease of collective oscillations up to an excitable
state in the limit of large M. This is the DIR effect described
in the literature [2-6,8,9,11,24,25,43,44].

If the J; distribution is asymmetric, then w3 # 0 and one
must use Egs. (5). At stationarity, equating the nullclines gives
Y=-X(1-M+X =t X e

b b’
X3 Jav "3 X
—X(A-M)+ === _Z) -2, 7
(1 =M)+3 < e R )
so w3 does not alter the Y-nullcline Y = % — %; instead it

shifts the X-nullcline vertically by +u3/3. Equivalently, for
the purpose of determining fixed points via Eq. (7), one may
define an effective mean J,f\ff =Juo — g 3.

To connect w3 to the diversity parameter distribution, we
linearize the single-unit steady-state equations around the syn-
chronous equilibrium (all units identical: M = 3 = 0) and
obtain the susceptibility

_ox” 1/b

= = 8
=T TAmexiyC—1 ®

where x*(J; X, Y') denotes the single-unit steady state at fixed
mean field (X, Y). This yields

3 ()

M=~ x%6?, uz=~ xuy’ = X37/1(J)‘73! 9)

where o2, ,ugj), and yl(j) are the variance, third central
moment, and skewness of the J distribution, respectively.
Equations (7)—(9) therefore predict that (i) variance enters via
M =~ x2¢? and reduces the linear coefficient 1 — M in the
cubic X-nullcline (narrowing its S-shape and delimiting the
DIR window), while (ii) skewness shifts the X-nullcline verti-
cally by +u3/3 (leaving the Y-nullcline unchanged), thereby
moving the nullcline intersections and the onset of global
oscillations.

The above considerations, although qualitative, illustrate
that the degree of symmetry of the diversity distribution has
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a crucial impact on the network’s ability to exhibit global
oscillations.

IV. RESULTS

We now examine a series of network examples with vary-
ing diversity distributions and topologies to illustrate how the
diversity distribution symmetry affects the global oscillatory
activity of the network. For each diversity distribution, we
study three topologies, i.e., cubic lattice, all-to-all coupling,
and cubic lattice augmented with small-world features. We
implement the latter according to the Newman-Watts model,
with 0.1 rewiring probability [47].

A. Symmetry metrics

Let us first introduce some metrics to quantify the degree of
symmetry of the various bias distributions we are considering.
We will utilize two parameters: a “normalized center of mass”
(nCOM) and a “symmetry balance score” (SBS).

We define the nCOM of a distribution as

|G = o)
Ne ’

where N is the number of elements in the distribution; Jy is
the center of the oscillatory interval, which in our examples
is Jop = 0 since the oscillatory interval is (—¢&, +¢); and ¢,
defined in Eq. (2), provides a normalization factor that makes
nCOM independent of the width of the oscillatory interval.
The nCOM quantifies the aggregate shift of the distribu-
tion with respect to the center of the oscillatory range and
takes values in the interval [0, c0). Values of nCOM € [0, 1)
correspond to a fairly symmetric (or moderately asymmet-
ric) distribution centered in the oscillatory range (—e¢, +¢),
whereas nCOM € [1, co) indicates increasing asymmetry,
with the mass of the distribution predominantly concentrated
on one side of the center and outside the oscillatory range.
Therefore, we expect that distributions with nCOM € [0, 1)
should correspond to networks characterized by sustained col-
lective oscillations, whereas nCOM > 1 should be indicative
of the absence of global oscillatory activity.
The SBS is instead defined as

min(N,, N_)
max(Ny, N_)’

where N, and N_ denote, respectively, the number of ele-
ments in the distribution such that J; > Jy and J; < Jy. The
SBS, which can be viewed as an adaptation of the imbalance
ratio used in classification problems [48], captures the balance
in the number of components on either side of Jy and can vary
between 0 and 1. A value of SBS = 1 indicates a perfectly
symmetric distribution with equal populations on both sides
of Jy, while values equal to or close to zero correspond to
highly imbalanced (asymmetric) distributions. Consequently,
we expect bias distributions with very low or zero SBS to
be unable to exhibit global network oscillations, while SBS
values significantly higher than zero and up to 1 should give
rise to collective oscillations.

Together, these two metrics provide complementary in-
formation: nCOM reflects the net displacement of the
distribution’s mass from the center of the oscillatory range,

nCOM = (10)

SBS = an

while SBS evaluates whether the distribution is balanced in
terms of the number of components on each side.

However, it should be noted that while nCOM can be
calculated for any distribution, SBS is only applicable to dis-
tributions that have at least one element on either side of J;.
For instance, if Jy = 0 and all J;’s are positive, SBS would
always assume the same value (SBS = 0) regardless of the
shape of the distribution, therefore it is not meaningful in such
cases. In addition, both nCOM and SBS do not explicitly in-
corporate third-moment information nor the variance-to-state
mapping that sets M; nCOM only reflects skewness via its
induced mean shift, and SBS only via sign imbalance. For this
reason they can fail in some specific cases, as will be discussed
in Secs. IVB-IV C.

Both metrics should be experimentally observable with
standard recordings. SBS only requires classifying units as
spontaneously oscillatory versus quiescent at a fixed drive
(e.g., from Ca* or voltage optical maps); the resulting counts
yield SBS. nCOM can be estimated by applying a slow ramp
of the control parameter (bias current, glucose, or pacing
drive) to locate each unit within its oscillatory window and
then averaging the normalized positions. Such ramp/threshold
protocols are routine in cardiac optical mapping and excitable
media [18,20] and in pancreatic islets with Ca*" imaging
under glucose ramps [22].

It should be pointed out that although all FHN networks
considered in this study have an oscillatory interval centered
at zero (Jyo = 0), our conclusions regarding the effects of dis-
tribution symmetry remain valid for any value of J, that may
arise in different formulations of the FHN equations.

Table I reports the nCOM and SBS values for all the di-
versity distributions that will be considered in the following
sections, alongside the corresponding ratios of oscillatory to
nonoscillatory units, that is, the main criterion considered
in previous literature. Beyond being strictly applicable only
to a narrow subset of distributions, a key limitation of this
criterion is the absence of a clear threshold ratio, above which
global network oscillations are expected to emerge. In Ta-
ble I, we have assumed this threshold to be 0.3, allowing
a correct prediction for the distribution shown in Fig. 4(a).
However, there are examples from the literature where an
oscillator/nonoscillator ratio of 0.25 resulted in collective net-
work oscillations [24].

B. Half-normal diversity distributions
1. Oscillatory units only

We begin our analysis by studying half-normal diversity
distributions and take as a first example a truncated distribu-
tion, with J,y =0 and o = 0.5, where J; values are drawn
exclusively from the interval [0, ¢). This means that all net-
work units are individually in an oscillatory state and the
diversity distribution is relatively asymmetric, because we are
picking J; values from the positive semiaxis only [Fig. 2(a)].

After numerically solving the FHN equations (3) for each
studied topology, we compute the normalized oscillatory ac-
tivity of the network, p, from the expression

VASE) =57, 12

pENm
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TABLE I. Comparison of symmetry metrics and oscillatory behavior for the nine bias distributions shown in the paper. Green indicates
correct predictions, while red highlights discrepancies. Results for Fig. 3(b) appear in orange, indicating a borderline case. The criterion for
global network oscillations is shown in parentheses in each column heading.

Oscillator/Nonoscillator

Normalized Center of

Symmetry Balance

Figure Distribution Ratio (>0.3) Mass (<1) Score (> 0) Global Oscillations?
2(a) L /I\\ n.a. Yes

2(b) , /\ na No

2(0) / l\ na Yes

2d) I /I\ 0.5 na No

3@ / / \ 0 Yes

3(b) B /\ (bordiif{rllocase)
4(a) q\ No

4(b) /\ 0 24.01 Yes

where N is the total number of units, S(r) = >, x;(¢), and
S = (S(t)), with (...) denoting a time average. Here, the
normalization factor o, denotes the time-standard deviation
of a single, isolated unit whose diversity parameter is fixed
at the midpoint of the oscillatory interval (Jo = 0 for FHN
units), i.e., o, = /{(x,(t) — (x,))?). A strong collective oscil-
latory activity corresponds to p = 1, while p & 0 indicates no
activity.

As shown in Fig. 2(a), a network with the above diver-
sity distribution exhibits strong collective oscillations in each
studied topology. Therefore, asymmetry does not prevent a
network made solely of oscillatory units from being in a
globally oscillatory state.

2. Excitable units only

Let us now examine the behavior of a network whose
constituent units are still picked exclusively from the positive
semiaxis, but all of them are individually in an excitable state,
since they belong to the interval (g, 2¢]. In this case, as shown
in Fig. 2(b), the asymmetry in the diversity distribution is

able to prevent collective network oscillations for all studied
topologies.

3. Both types of units

But what happens in the case of a truncated, half-normal di-
versity distribution that includes both excitable and oscillatory
units? For instance, let us consider the diversity distribution
shown in Fig. 2(c). Here, half of the units are picked from the
interval [0, ) and are therefore individually oscillatory, while
the remaining half belong to the interval (e, 2¢] and as such
are excitable. As shown in Fig. 2(c), the outcome in terms
of global network oscillations is similar to that in Fig. 2(a),
i.e., the network is in a resonant oscillatory state even though
the diversity distribution is asymmetric and there is a sub-
stantial number of units that are individually nonoscillatory.
It is worth pointing out that this outcome is consistent with
previous studies reported in the literature [2,24,25], which
explained this dynamics on the basis of a mechanism where
the oscillatory units pull the other units, generating global
oscillations. In line with this reasoning, if we now add more
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FIG. 2. Truncated half-normal diversity distributions studied in Sec. IV B. The shaded areas highlight the portions of the Gaussian that
have been used to sample J; values (green for oscillatory, yellow for excitable units). Following are the p values corresponding to each
panel, for the lattice, all-to-all, and small-world topologies; an italicized label states whether the symmetry-based prediction matches the
simulated outcome. (a) Lattice: p = 1.00; All-to-All: p = 1.00; Small-World: p = 1.00; Correct (Osc.) (b) Lattice: p = 0.00; All-to-All:
p = 0.00; Small-World: p = 0.00; Correct (Non-Osc.) (c) Lattice: p = 0.98; All-to-All: p = 0.97; Small-World: p = 0.98; Correct (Osc.)
(d) Lattice: p = 0.00; All-to-All: p = 0.00; Small-World: p = 0.00; Correct (Non-Osc.).

excitable units to the diversity distribution, achieving a 2/1
ratio of excitable to oscillatory units, as shown in Fig. 2(d),
we observe that global network oscillations disappear.
According to the pull mechanism, this happens because the
relative amount of nonoscillatory units has now become too
high. However, we should also point out that the diversity
distribution shown in Fig. 2(d) is more asymmetric than the
one in Fig. 2(c).

Looking at the symmetry parameter values reported in Ta-
ble I for the four distributions examined in this subsection, we
can observe that the distributions in Figs. 2(a) and 2(c) have
nCOM values lower than 1 and, as such, give rise to global
network oscillations. Instead, those in Figs. 2(b) and 2(d),
which are less symmetric, have nCOM > 1 and, accordingly,
do not produce sustained collective oscillations. Therefore,
nCOM is able to correctly predict all four cases, whereas the
oscillator fraction criterion fails to explain the lack of global
oscillations for the distribution corresponding to Fig. 2(d).

C. Normal diversity distributions

‘We now turn to examples of truncated normal distributions
of J; values, i.e., diversity distributions characterized by the

presence of J; values on both sides of the mode of the parent,
nontruncated Gaussian.

1. Excitable units only: Sy tric sub lati

POV

The first case we analyze is an extension of the system pre-
sented in Ref. [1]. In that study, the network population was
divided into two subgroups, made of identical units with J;
values below and above the oscillatory interval —¢ < J; < ¢,
respectively. Here, we consider a diversity distribution made
of excitable units only, which are symmetrically positioned
on the two sides of the mode of a Gaussian, as shown in
Fig. 3(a). This distribution is fully symmetric, with nCOM =
0 and SBS = 0.95 (Table I), and produces strong collective
network oscillations, just like the system in Ref. [1]. There is
no way to explain or predict the oscillatory behavior of this
network based on the ratio between oscillatory and excitable
units, whereas the observed dynamics is fully consistent
with our considerations about the symmetry of the diversity
distribution.

2. Excitable units only: Highly asy tric sub, lati

(' 4

We now introduce a degree of asymmetry into the diversity
distribution of Fig. 3(a), by picking a different number of units
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FIG. 3. Truncated normal diversity distributions studied in
Sec. IV C. The shaded areas highlight the portions of the Gaussian
that have been used to sample J; values (green for oscillatory, yellow
for excitable units). Following are the p values corresponding to
each panel, for the lattice, all-to-all, and small-world topologies;
an italicized label states whether the symmetry-based prediction
matches the simulated outcome. (a) Lattice: p = 1.01; All-to-
All: p = 1.00; Small-World: p = 1.01; Correct (Osc.) (b) Lattice:
p = 0.98; All-to-All: p = 0.00; Small-World: p = 0.98; Borderline
(Metrics Predict Non-Osc.) (c¢) Lattice: p = 0.00; All-to-All: p =
0.00; Small-World: p = 0.00; Correct (Non-Osc.).

from either side of the truncated Gaussian. Specifically, a frac-
tion of the total number of units equal to 0.95 are taken from
the positive side and 0.05 from the negative one [Fig. 3(b)].
In Fig. 3(c) we push this asymmetry even further, by picking
0.99 of the units from the positive side and only 0.01 from the
negative one.

Simulation results show that a 95/5% ratio of positive
to negative J; values corresponds to a borderline situation,
where the network is still capable of global oscillations with
the lattice and small-world topologies, but not with all-to-all
coupling. Instead, at the even more asymmetric 99/1% ratio
there are no oscillations regardless of the topology.

Upon comparing the diversity distributions in Fig. 3(b) and
Fig. 3(c) to that in Fig. 2(b), we should point out that the latter
is more asymmetric than both of the former, as shown by its
higher nCOM value (Table I). Among these three distribu-
tions, only the one with the lowest nCOM value, i.e., with
the lowest degree of asymmetry [corresponding to Fig. 3(b)],
is able to produce sustained collective oscillations in two out
of three tested topologies. Notice that the nCOM parameter
correctly indicates that the relative tendency to global oscilla-
tions should be in the order Fig. 3(b) > Fig. 3(c) > Fig. 2(b),
in line with the increasing symmetry (i.e., decreasing nCOM
values) of the distributions.

3. Distributions with subthreshold mode

As final examples of normal diversity distributions, we
study two cases where the mode of the distribution is sub-
threshold, i.e., below the interval of oscillatory J; values (in
all previous cases, the mode of the distribution was positioned
at the center of the oscillatory interval). In Fig. 4(a), excitable
units have J; values distributed over the range (—oo, —¢),
while J; values for oscillatory units are picked from (—¢, +¢).
Here we see again that the network has no collective oscil-
latory activity, which can be explained by both the criterion
based on the numerical ratio between oscillatory and excitable
units (too low in this case), and considerations related to the
degree of symmetry of the diversity distribution, which is also
very low (nCOM = 25.15).

However, if we consider the distribution shown in Fig. 4(b),
where there are no oscillatory units but the excitable ones
are now distributed over the range (—oo, —¢) U (+¢, +00),
we observe that the network is again able to exhibit global
oscillations, in spite of a diversity distribution that includes
Ji values extremely far away from the oscillatory range.
Rather than from the ratio between oscillatory and excitable
units, this behavior can only be inferred from considera-
tions based on the greater symmetry of the distribution in
Fig. 4(b) (nCOM = 24.01, SBS = 0.26) compared to the one
in Fig. 4(a) (nCOM = 25.15, SBS = 0). Here too, the nCOM
parameter fails to predict the global oscillations of the net-
work configuration corresponding to Fig. 4(b), however, it
correctly ranks Figs. 4(a) and 4(b) in terms of their respective
degrees of symmetry and tendencies to give rise to collective
oscillations.

V. PSEUDOPOTENTIAL ANALYSIS

To understand the mechanism through which populations
of units that are all, or predominantly, in an excitable state can
give rise to collective network oscillations, it is instructive to
consider the case of a minimal system composed of only two
coupled FHN units [49]. Although the FHN model is not a
gradient system and does not possess a true potential function,
it is still possible to define an effective pseudopotential for
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FIG. 4. Truncated half-normal diversity distributions studied in Sec. IV B. The shaded areas highlight the portions of the Gaussian that
have been used to sample J; values (green for oscillatory, yellow for excitable units). Following are the p values corresponding to each
panel, for the lattice, all-to-all, and small-world topologies; an italicized label states whether the symmetry-based prediction matches the
simulated outcome. (a) Lattice: p = 0.00; All-to-All: p = 0.00; Small-World: p = 0.00; Correct (Non-osc.) (b) Lattice: p = 1.09; All-to-All:

p = 1.00; Small-World: p = 1.10; nCOM incorrect, SBS correct (Osc.).

the fast variables under the assumption that the slow variables
y; are quasistatic over fast timescales [46]. For two coupled
units, the fast variables obey

3
X =a[x|—%‘+y1+C(xz—X1)}, (13a)

3
o= a[xz ~ 2 4y 4o —m], (13b)

3
while the slow variables still follow Eq. (3b).
Treating y; and y, as quasiconstants on the fast timescale
(a > 1), one can define an effective pseudopotential

C
Vete (X1, X251, ¥2) = Vi(xr; 1) + Valxas y2) + E(xl — )%,
(14)

where the local terms V| and V; are defined as

Vixisyi) = —3x7 + Hxf +xy (i=1,2). (15)

Each term V;(x;;y;) represents the local pseudopotential of
a single FHN unit at fixed y;, while the quadratic coupling
term acts to reduce deviations between the two fast variables,
favoring synchronization. When C = 0, the landscape consists
of two independent tilted wells, and the system relaxes to a
fixed point if both units are excitable (|J;| > ¢). However, for
moderate coupling, the quadratic term %(xl — x2)? deforms
the landscape, lowering the barrier between the wells and
creating a cyclic valley that can support a limit cycle, even
though neither unit would oscillate in isolation.

This two-unit mechanism serves as a coarse-grained proxy
for larger networks once units segregate into two sign-defined
clusters around the excitability threshold, so that intracluster
states are tight and interactions are mediated by the population
mean (see below).

Importantly, this collective oscillation can only occur if
the respective J; parameters of the two excitable units are on
opposite sides of the oscillatory threshold; that is, they must
be positioned symmetrically with respect to the center of the
oscillatory interval (—g, 4+¢). This symmetric configuration
ensures that the wells of the two local pseudopotentials are
tilted in opposite directions [due to the opposite signs of the xy
terms in Eqgs. (15)], forming a double-well-like landscape with

a cyclic saddle path that the system can move along (Fig. 5,
upper panel). If instead the two J;’s are on the same side, the
landscape collapses into a single minimum and no oscillatory
path can emerge, regardless of coupling (Fig. 5, lower panel).

The two-unit pseudopotential analysis extends to an N-unit
system via a coarse-grained reduction based on the sign of
the bias parameters J;. Let us partition the population into
two subgroups with fractions w and w_=1—w (units with
Ji > 0 and J; < 0). Let us define subgroup averages (x4, yy)
and (x_, y_). For all-to-all coupling, the subgroup means obey
Xy =--+Cw_(x_—xy)and x_ =-- -+ Cwi(xy —x_),
so their interaction has the same form as in the two-unit case
with an effective coupling Ceit = C wyw_. We absorb this
rescaling into C below for notational simplicity. The subgroup
biases are J = (J;);,-0 and J_ = (J;),<0, obtained by taking
the average of the J; values for each subpopulation. The effec-
tive pseudopotential then takes the form

) ) Cett 2
Verr (e, x-) = V(s y0) + Vo (s y-) + 7(x+ —x),
(16)

where

Vi(rgsye) = —ixd + 5xd +oxye, (17)

are the coarse-grained local pseudopotentials for each cluster.
In this reduction, the symmetry condition J; &~ —J_ corre-
sponds in the mean-field picture to a small effective intercept
shift (J:\ff ~ (), while within-subgroup spreads contribute to
the variance M. Thus, the existence of a cyclic valley in Ve is
the geometric counterpart of the mean-field regime where the
X -nullcline retains its S-shape and the Y-nullcline intersects
it near the cubic’s central branch (see Fig. 1); as M grows,
the S—shape narrows and eventually disappears, destroying the
cyclic valley. This coarse-grained link is accurate when (i) the
slow-fast separation holds (a > 1), (ii) intrasubgroup disper-
sion is moderate so subgroup means are representative, and
(iii) coupling is sufficiently dense that subgroup interactions
are mean-field-like. Consequently, even when both subgroups
are individually excitable (or contain a large excitable frac-
tion), a limit cycle can emerge provided their average biases
lie on opposite sides of the oscillatory interval, which cre-
ates opposing tilts and a cyclic valley; if the subpopulations
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Symmetric biases (1 = —J)

FIG. 5. Contour plots of the effective pseudopotential defined
by Eq. (14) in the symmetric (upper panel) and asymmetric (lower
panel) cases. In the symmetric case, a double-well-like landscape
emerges from the sum of the coupling term with the two local pseu-
dopotentials V;(x;;y;) and V5(x2;y,), which are tilted in opposite
directions due to the different signs of the respective xy terms. In
the asymmetric case, the potential landscape collapses into a single
minimum as the xy terms have the same sign. Parameter values: C =
0.5,6 =1.0,/, =1.2(J; = —1.2and J; = 1.2 in the symmetric and
asymmetric case, respectively). The slow variables y, and y, are kept
constant and set equal to J; and J,, respectively.

are biased in the same direction (asymmetry), the effective
landscape collapses into a single minimum and global oscilla-
tions do not arise.

VI. EXTENSION BEYOND FHN NETWORKS

The symmetry-based analysis we applied to networks of
FHN units does not rely on model-specific waveforms. It
rests on two characteristics that many excitable/oscillatory
models share under electrical or diffusive coupling: (i) a
diversity parameter 6; (analogous to J; in our FHN analy-
sis) that shifts each unit relative to a model-specific center
6y of the single-cell oscillatory window, and (ii) Laplacian
(diffusive) coupling. Examples include Type-II Morris-Lecar
[50], Hindmarsh-Rose [51], Izhikevich [52], and reduced

conductance-based models with gap-junction-like coupling
[53,54].

If we define h; := 6; — 6, the symmetry of the ensemble is
encoded in the distribution of {/;} about zero. When this dis-
tribution is balanced, i.e., it has approximately zero mean and
small odd moments, positive and negative deviations cancel.
When it is asymmetric, e.g., with a biased mean or a dispro-
portion in positive versus negative signs, the cancellation is
lost.

Two key mechanisms explain the advantage of symmetric
{h;} distributions:

(i) Close to the oscillatory threshold, many models can
be simplified to a linearized dynamics, in which the initial
tendency of unit i’s oscillations to grow or fade reverses when
h; changes sign; a symmetric spread of {£;} therefore keeps the
network, on average, close to the balance point where small
oscillations neither grow nor die out, so modest coupling
can push the population-average activity into self-sustained
oscillations. Instead, an asymmetric spread pulls the average
away from that balance and increases the cross-unit spread
that coupling must overcome to induce global oscillations.

(ii) For diffusive coupling on any graph Laplacian L, the
population sum S(r) = ", x;(¢) satisfies

N
SO = fi..:6) + K1'Lx),  (18)

i=1

where K > 0 is a scalar coupling gain multiplying the Lapla-
cian L. We assume L has zero column sums (17 L = 0), hence
17(KL)x = 0 and the coupling does not contribute to S. Thus,
coupling only rebalances which units are more or less active
and, on average, does not add or subtract any net tendency to
oscillate at the population level. Consequently, the size of the
coherent population-average signal is set by how completely
the unit-specific biases (set by A;) cancel across the group:
a symmetric distribution of {;} maximizes cancellation of
opposite-sign biases and promotes synchronization, whereas
an asymmetric distribution leaves a residual bias that persists
in the population-mean dynamics.

These arguments depend only on the existence of a param-
eter /; that determines the single-cell transition to oscillations,
and the structure of diffusive coupling. Consequently, the
qualitative ranking observed for the families of diversity
distributions we studied is expected to carry over to other
excitable models under the same coupling regime.

Obviously, quantitative thresholds will vary with model
details, such as single-cell amplitudes, phase response proper-
ties, and coupling gain/topology. Deviations may occur when
heterogeneity is genuinely multiparametric (not well captured
by a single h; coordinate), when coupling is nondiffusive
(breaking 1T L = 0), or far from threshold where higher-order
nonlinearities dominate. Within these limits, the symmetry of
the diversity parameter distribution is a key determinant of
whether coupling can assemble microscopic activity into a
coherent macroscopic oscillation.

VII. CONCLUSIONS

We have shown that the symmetry of the diversity dis-
tribution is a primary determinant of global oscillations in
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networks of coupled excitable units, using FHN as a pro-
totypical model. Whereas prior work emphasized the ratio
of oscillatory to excitable elements, our results reveal that
symmetry of the excitability distribution is a more general pre-
dictor of oscillatory behavior, deepening our understanding of
how structural and statistical properties of heterogeneity shape
the collective behavior of excitable systems.

Using half-normal and truncated normal test cases, we
documented that symmetric diversity robustly yields global
oscillations even when all units are individually excitable,
whereas asymmetric diversity suppresses collective activity.
We proposed two complementary metrics—the normalized
center of mass (nCOM) and the symmetry balance score
(SBS)—that capture distinct aspects of symmetry and offer
simple predictive diagnostics. A minimal two-unit reduction
with an effective pseudopotential visualizes the mechanism:
symmetry creates a cyclic valley that supports limit cy-
cles, while asymmetry collapses the dynamics to a single
equilibrium.

In biological networks, the diversity parameter is the
unit-specific bias J;, which we interpret as an effective
drive/threshold. The population {J;} defines the diversity dis-
tribution in our framework. J; values can be inferred from ex-
perimentally accessible observables—including, for example,
rheobase current, glucose threshold for Ca?t oscillations, in-
trinsic pacemaker bias, ion-channel conductances, metabolic
drive (e.g., glucokinase activity), and gap-junctional coupling
strength.

All of these observables map, via linear susceptibilities
around the operating point, to the scalar J; hence, their
population distribution is the diversity distribution in our
framework. For pancreatic islets, single-cell data show broad,
often skewed variability in metabolic and electrical param-
eters and coupling [23,55], making symmetry/asymmetry
directly testable via population distributions of glucose thresh-
olds or Ca?t oscillation onsets. Our findings suggest that
physiological or pathological changes that alter the balance
or symmetry of cellular populations can profoundly influence
the emergence or loss of coherent dynamics, with implications
for tissue and network function.

Since our mean-field criteria depend on the first three
moments of the effective drive distribution (through M and
the skewness—induced shift of the nullcline intercept), our
qualitative predictions extend beyond the specific distribution
families used here to any distribution with finite vari-
ance and third moment—including moderately multimodal
or heavy-tailed cases once mapped through susceptibility.
However, strongly multimodal populations with weak in-
tercluster coupling, or heavy-tailed laws with ill-defined
moments, can induce additional bifurcations and fall outside
the present framework. We also believe that our symmetry-
based analysis should generalize to other excitable-network
models with diffusive coupling, because it assumes only a
unit-level bifurcation parameter governing the onset of os-
cillations and a symmetric cross-unit distribution of that
parameter.

Exploring strongly multimodal regimes with data-driven
mixture models and testing the symmetry metrics on empiri-
cally observed heterogeneity (e.g., in B-cell networks [55]) are
natural directions for future work, together with the extension
to other excitable models through numerical simulations.
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