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Abstract

This study addresses the critical challenge of fostering effective teamwork in ad hoc cyber-
security incident response (IR) task teams, which are frequently assembled from diverse
personnel with limited shared operational history. Grounded in a comprehensive synthesis
of cross-disciplinary literature spanning Team Mental Model (TMM) theory, emergency
management, and temporary organizational dynamics, this research investigates the poten-
tial of a brief, theoretically-derived TMM intervention to enhance shared understanding.
The novelty lies in its application of TMM principles to the unique, high-stakes context of
ad hoc IR teams and its examination of a minimal-duration (15-minute) intervention.

A careful quasi-experimental design was employed, utilizing two matched ad hoc IR teams
to minimize bias. Participants, with pre-existing acquaintance but no daily IR collabora-
tion, engaged in pre- and post-intervention tabletop scenarios. The experimental group
received a 15-minute TMM-focused intervention (cross-training and strategy briefing),
while the control group received standard security training. TMM similarity and accuracy
were measured using a multi-faceted approach, including Likert scales, SBERT cohesion
analysis of free-text reports, and expert-derived checklists benchmarked against a Gold
Standard Model.

While the brief intervention did not yield statistically significant improvements in TMM
similarity or accuracy, the study contributes by empirically testing TMM theory in a
novel domain and highlighting the complexities of translating theory into short-duration
practical interventions for dynamic environments. The rigorous design and multi-method
TMM assessment offer methodological insights. Lessons learned inform recommendations
for future research, emphasizing the need to explore varied intervention designs, larger
samples, and the impact of contextual factors to optimize TMM development in ad hoc IR
teams.

Keywords: Cybersecurity, Cybersecurity Training, Incident Response, Team effectiveness,
Team mental models, Shared mental models

CERCS: T120 Systems engineering, computer technology, S189 Organizational science
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Annotatsioon
Vahejuhtumitele reageerimiseks töömeeskondade loomine

Käesolev uuring käsitleb kriitilist väljakutset, kuidas edendada tõhusat meeskonnatööd ad

hoc küberturvalisuse intsidentidele reageerimise (IR) töörühmades, mis sageli koostatakse
erinevatest töötajatest, kellel on piiratud ühine operatiivajalugu. Tuginedes valdkon-
dadevahelise kirjanduse laiaulatuslikule sünteesile, mis hõlmab meeskonna mentaalsete
mudelite (TMM) teooriat, hädaolukordade juhtimist ja ajutiste organisatsioonide dü-
naamikat, uurib see teadustöö lühikese, teoreetiliselt tuletatud TMM-sekkumise potentsiaali
jagatud arusaamise parandamiseks. Uudsus seisneb TMM-põhimõtete rakendamises ad

hoc IR meeskondade unikaalses, kõrge riskitasemega kontekstis ja minimaalse kestusega
(15-minutilise) sekkumise uurimises.

Rakendati hoolikat kvaasi-eksperimentaalset ülesehitust, kasutades kahte sarnastatud ad

hoc IR meeskonda, et minimeerida eelarvamusi. Osalejad, kellel oli varasem tutvus, kuid
puudus igapäevane IR-koostöökogemus, osalesid sekkumiseelsetes ja -järgsetes lauaõp-
pustes. Eksperimentaalrühm sai 15-minutilise TMM-keskse sekkumise (ristkoolitus ja
strateegiabriifing), samas kui kontrollrühm sai standardse turvakoolituse. TMM-ide sar-
nasust ja täpsust mõõdeti mitmetahulise lähenemisviisiga, sealhulgas Likerti skaalade,
vabatekstiliste raportite SBERT-ühtekuuluvuse analüüsi ja ekspertide koostatud kontroll-
nimekirjadega, mis olid benchmarkitud kuldstandardi mudeliga.

Kuigi lühike sekkumine ei toonud kaasa statistiliselt olulisi parandusi TMM-ide sarna-
suses ega täpsuses, panustab uuring TMM-teooria empiirilisse testimisse uudses valdkon-
nas ja rõhutab teooria lühiajalistesse praktilistesse sekkumistesse ülekandmise keerukust
dünaamilistes keskkondades. Range ülesehitus ja mitmemeetodiline TMM-hindamine
pakuvad väärtuslikke metodoloogilisi teadmisi. Saadud õppetunnid annavad soovitusi
tulevaseks uurimistööks, rõhutades vajadust uurida erinevaid sekkumisviise, suuremaid
valimeid ja kontekstuaalsete tegurite mõju, et optimeerida TMM-ide arengut ad hoc IR
meeskondades.
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Abbreviation Meaning
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PaaS Platform-as-a-Service
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1. Introduction

Cyber threat environment

According to the European Union Agency for Cybersecurity’s (ENISA) 2024 Threat
Landscape report[1], cyber threats have become more frequent and complex. Ransomware
attacks—where criminals lock or steal data to demand payment—and Distributed Denial-
of-Service (DDoS) attacks—which flood systems with traffic to disrupt services—remain
among the most common threats, highlighting ongoing challenges to keeping systems
running smoothly. Notably, there has been a sharp rise in Business Email Compromise
(BEC) incidents. In these attacks, cybercriminals impersonate trusted contacts, such as
company executives or partners, to deceive employees into transferring money or sensitive
information, often by manipulating existing email conversations or using fake invoices,
illustrating heightened exploitation of human factors[2], [3].

Notably, the ENISA report identifies[1] significant advancements in defensive evasion
tactics, such as Living Off The Land (LOTL) methods, allowing threat actors to blend
seamlessly with normal operational processes. Living off the Land (LOTL) refers to
attackers using trusted, built-in system tools—especially LOLBins—to avoid detection
by blending in with normal activity. This tactic is effective across various environments
(on-prem, cloud, hybrid; Windows, Linux, macOS) and reduces the need for custom
malware [4].

Cyber criminals follows the trends of software engineering and IT as well. Software-as-a-
service (SaaS) is defined as "a cloud computing service model where the provider offers use
of application software to a client and manages all needed physical and software resources"
[5]. This allows the users of the service not owning an infrastructure, minimizing the
technical capability requirements. Most of the email, instant messaging, CRM and other
services are considered SaaS and they are generally paid per operation. This, as-a-Service

approach extended to other areas like infrastructure as a service (IaaS) or platform as
a service (PaaS), depending on the shared responsibilities between the service provider
and the user. When it comes to cyber crime, the proliferation of Everything-as-a-Service
(XaaS) offerings like Malware-as-a-Service (MaaS), Phishing as a Service (PhaaS) and
Ransomware as a Service (RaaS) has been popular and evolving [1]. This lowers the bar to
enter into the criminal acts, as cyber crime became pay-per-attack service. Furthermore,
AI-based tools, such as FraudGPT, have also emerged, enabling criminals to automate and
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enhance phishing and malware deployment efforts [6].

In addition to the attacks around the EU, it is possible to find the impact and global trends
in other resources. According to Statista[7], the cost of cybercrime was estimated to be
at $8–9 trillion in 2023 and projected to exceed $15 trillion by 2029. In the USA, the
FBI received 880,418 cybercrime complaints in 2023, with losses surpassing $12.5 billion
[2]. The financial and healthcare sectors face especially high risks. Healthcare breach
costs averaged $10.93M in 2023 [8]. On the other hand, the geopolitical aspects had a
meaningful impact on cyberspace: part of the Russian invasion of Ukraine, over 4,300
cyber incidents targeted Ukrainian infrastructure in 2024 [9].

What is Incident Response?

An incident in IT service management is defined as "an unplanned interruption to a service,
or reduction in the quality of a service" [10]. However, this definition generally focuses
on availability, though vaguely it may include confidentiality and integrity aspects, which
are to be ensured for information security [11]. Therefore incident needs to be defined in
information security or cybersecurity perspective. An incident is defined as [12]:

An occurrence that actually or potentially jeopardizes the confidentiality,
integrity, or availability of an information system or the information the system
processes, stores, or transmits or that constitutes a violation or imminent threat
of violation of security policies, security procedures, or acceptable use policies.

Therefore, responding to the incidents carry a specific meaning. Aligning with the defini-
tion above, incident response (IR) in cybersecurity refers to "[t]he remediation or mitigation
of violations of security policies and recommended practices"[13]. It encompasses the
technologies and procedures for managing cyber threats and breaches in order to limit
damage and restore normal operations. The National Institute of Standards and Tech-
nology (NIST) emphasizes that a formal IR capability is crucial for "rapidly detecting
incidents, minimizing loss and destruction, mitigating the weaknesses that were exploited,
and restoring IT services" [13].

The increasing sophistication of cyber threats, as mentioned in Section 1 Cyber Threat
Environment, combined with the complexity of IR activities, highlights the critical need for
preparedness as a team. However, working as a team in the response may be challenging.
According to Kleij et al. [14]:
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From the general teams literature, it is known that teams are not easily im-
plemented, that the creation of a team of skilled members does not ensure
success, and that teamwork does not just happen. In fact, many teams never
reach their full potential, and many fail altogether.

And therefore, the teams do not exist in a vacuum; they must be built. Throughout the
years, it has been found out that effective IR training updates technical knowledge and
promotes consistent methodologies [13], enhances readiness and decision-making through
realistic simulations [15], and prepares management across legal, communications, and
operational roles through cross-functional training [16]. There are common strategies
available in literature to be explained within this research.

Task teams

Through time IR as a concept evolved in time. According to NIST SP 800-61r3, IR was
once the exclusive domain of specialized internal teams, contemporary practices reflect a
broader understanding of organizational interdependence [13]. Incident handlers remain
vital, but the success of IR now hinges on the coordinated involvement of a wide range
of internal and external actors. These participants span diverse functions and may be
geographically distributed, with roles and responsibilities that vary not only between
organizations but also across different types of incidents.

Such configurations align with the concept of a temporary organization, defined as "a set
of organizational actors working together on a complex task over a limited period of time"
[17]. They may also be described as "ad hoc teams which are gathered to solve a specific
problem" [18], or as task-focused teams formed for a limited duration [19]. While the
dynamics of these temporary, ad hoc, task-specific teams have been examined in domains
such as healthcare, emergency management, and aviation, their role in cybersecurity IR
remains underexplored. This study focuses specifically on the team-building dimension of
such temporary structures, although related aspects - including leadership, management
styles, communication practices, and coordination mechanisms - have been addressed in
the broader literature.

Building task-teams for IR

This study seeks to address team building in diverse, cross-functional, and temporary units
by investigating how targeted training interventions can improve the development of Team
Mental Models (TMM). Specifically, the research examines whether improving TMM
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similarity and accuracy leads to more effective team performance during IR scenarios. By
focusing on the cognitive and shared understanding aspects of team function rather than
solely on procedural or structural mechanisms. This study aims contribute to the broader
literature on team cognition and provides empirically grounded insights into enhancing the
performance of IR teams operating in complex, dynamic, and time-sensitive environments.
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2. Research Questions

2.1 The Main Research Question (MRQ) and Sub-Research Questions
(SRQs)

MRQ – To what extent does targeted training on Team Mental Models (TMM)
improve the effectiveness of ad hoc task teams in cybersecurity incident response?

The question is broken down into two sub-research questions (SRQs):

SRQ1 – How does TMM-specific training affect the similarity of mental models
among incident response team members compared to traditional security training?

SRQ2 – To what degree does TMM-specific training improve the accuracy of team
mental models in incident response scenarios as evaluated by domain experts?

2.2 Rationale for Research Questions

2.2.1 Main Research Question

The MRQ addresses the core hypothesis that targeted TMM training can improve incident
response effectiveness. It is specific to the experimental intervention, measurable through
the collected data, focused on the practical application, and aligned with the experimental
design.

2.2.2 SRQ1: Similarity Dimension

This question focuses on the first key dimension of TMM - similarity or sharedness across
team members. It allows for direct comparison between experimental and control groups,
can be measured through both Likert scale responses and semantic similarity analysis, and
addresses a fundamental aspect of TMM theory.
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2.2.3 SRQ2: Accuracy Dimension

This question addresses the second key dimension of TMM - accuracy of the shared
understanding. It recognizes that similarity alone is insufficient, leverages the expert
evaluation component of the methodology, and provides a quality assessment beyond mere
convergence

These research questions form a comprehensive framework that addresses both the theoret-
ical aspects of TMM (similarity and accuracy) and their practical implications for incident
response effectiveness.
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3. Literature Review

This chapter reviews the academic literature relevant to building effective ad hoc task
teams for cybersecurity incident response (IR), with particular attention to the role of Team
Mental Models (TMMs), also referred to as Shared Mental Models (SMMs). The review
begins by outlining the defining characteristics of ad hoc IR teams, drawing comparisons
with emergency response teams from other domains to establish a working definition
suitable for the cybersecurity context. It then turns to the theoretical foundations of TMMs,
examining their core dimensions—including task, team, temporal, and complexity-related
aspects—as well as their underlying mechanisms, their relationship to team processes,
and empirical findings linking TMMs to team effectiveness. Special emphasis is placed
on the unique challenges and requirements associated with TMM development in the
context of ad hoc IR teams. The chapter concludes by discussing evidence-based strategies
for fostering TMMs and addressing key methodological and conceptual issues in TMM
research, including a synthesis of commonly used measurement approaches.

3.1 Defining and Characterizing Incident Response Teams

As mentioned in the Chapter 1 Introduction, while cybersecurity incident response is often
associated with designated security teams (e.g., SOCs, CERTs, or CSIRTs), this depiction
does not fully capture the collaborative and distributed nature of incident response in
practice. According to Kleij et al. [14], the assumption that a single, autonomous,
and continuously operational team can manage all aspects of incident response often
overlooks the interdependencies, communication demands, and ad hoc collaborations that
characterize real-world incidents.

Instead, effective IR frequently requires a broader, more flexible approach involving partici-
pants from across the organization. NIST SP 800-61r3 [13] highlights that modern incident
response extends beyond the scope of dedicated incident handlers and involves a wide array
of internal and external stakeholders. While incident handlers remain critical-performing
functions such as detection, analysis, containment, and recovery-effective response in-
creasingly requires coordinated participation from leadership, technology professionals,
legal counsel, human resources, public affairs, and facilities management. These roles
contribute in domain-specific ways, such as legal review, personnel management, media
communication, or physical access. Additionally, incident response is often supported
by third-party actors, including MSSPs, cloud providers, and law enforcement, under
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a shared responsibility model that demands clear contractual delineation of duties and
communication protocols. This expanded model reflects the operational complexity of
contemporary incidents and the need for a federated, cross-functional approach to ensure
timely, compliant, and effective response actions. Bhaskar et al.’s [20] view of a security
team as "mainly an ad hoc group of company employees who are assembled together
in the event of an emergency" aligns with the previous research and NIST’s perspective.
These characteristics align closely with the concept of "task teams", "ad hoc teams" or
"temporary organizations" formed to accomplish non-continuous tasks [17].

Positioning incident response (IR) roles and responsibilities within the framework of ad

hoc, multidisciplinary task teams enables researchers to draw on a wider body of literature
to better understand the specific challenges these teams face in terms of coordination
and rapid team formation. The distinction is not that task teams are inherently superior
to regular, co-located teams who work together routinely by virtue of organizational
structure, but rather that task teams are an operational necessity given the multi-layered
and cross-functional nature of incident response.

3.2 Understanding Team Mental Models (TMMs)

Team Mental Models (TMMs) are shared cognitive structures that enable team members
to understand their tasks, coordinate their actions, and adapt to dynamic situations effec-
tively. In one of the foundational studies, Cannon-Bowers describe TMMs as "knowledge
structures held by members of a team that enable them to form accurate explanations and
expectations for the task, and, in turn, to coordinate their actions and adapt their behavior
to demands of the task and other team members" [21], or more simply, ensuring members
are "on the same page" regarding tasks and coordination [22]. These shared representa-
tions emerge through interaction and allow members to leverage structured knowledge for
coordinated action [23], [24].

3.2.1 Dimensions and Properties of TMMs

Research suggests that Team Mental Models (TMMs) are multi-dimensional constructs
encompassing several interrelated properties. The most commonly cited dimensions,
following the work of Mathieu et al. [24], [25], include the task TMM and the team
TMM. The task TMM refers to a shared understanding among team members regarding the
nature of the task itself. This includes common agreement on goals, procedures, strategies,
relevant environmental conditions, and the equipment or technology involved. In contrast,
the team TMM pertains to a shared cognitive representation of how the team functions.
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It encompasses mutual awareness of roles and responsibilities, communication patterns,
norms of interaction, and the distribution of expertise-essentially, who knows what within
the team.

Key properties commonly used to evaluate Team Mental Models (TMMs) include sim-
ilarity and accuracy. Similarity refers to the extent to which team members’ mental
models are aligned or overlapping, reflecting a shared cognitive framework that facilitates
coordination and mutual understanding [26]. Similarity denotes the extent to which team
members’ mental representations of task goals, procedures, and interdependencies overlap,
thereby enabling them to anticipate one another’s actions and coordinate with minimal
explicit communication [24], [27]. Empirical and meta-analytic studies show that higher
cognitive similarity is linked to faster responses, fewer coordination errors, and superior
performance in complex, interdependent tasks [22], [28]. However, excessive overlap
can become counterproductive: uniformly shared mental models may stifle divergent
thinking, encourage premature convergence on suboptimal solutions, and foster the kind
of confirmation bias associated with groupthink[29]–[31]. Accordingly, researchers cau-
tion that effective teams balance a common situational framework with the integration
of member-specific knowledge to avoid the pitfalls of over-similarity [28]. Both van der
Haar[32] and Hällgren[31] suggests that it is possible to decrease the impact of groupthink
as long as the team is promoting critical thinking.

Accuracy, on the other hand, denotes how closely a team’s shared mental model mirrors
a validated reference-typically an expert map of task requirements, system state, or role
interdependencies-and is commonly quantified through expert-scored knowledge tests or
structural comparisons such as Pathfinder network matching [27], [33]. Scholars distin-
guish taskwork accuracy (facts, procedures, environmental cues) from teamwork accuracy
(role understanding, coordination logic); both facets have shown positive, and sometimes
independent, links to performance [26], [34]. Empirical evidence across domains sup-
ports its value: concept-mapping studies tie greater accuracy to faster problem detection
in command-and-control simulations [27]. Yet accuracy is not a panacea. Establishing
a single "gold standard" can be contentious in ambiguous, evolving environments, and
static referents quickly lose relevance; teams whose models were initially accurate but not
updated have drifted into critical misjudgments [30].

These two dimensions and properties interact as well. For instance, high similarity on an
inaccurate model can be detrimental [24]. Both properties are foundational in assessing
the effectiveness of TMMs in supporting team performance, especially in complex and
high-stakes domains such as cybersecurity. To simplify, we can say similarity is a question
of "Are we on the same page?" while accuracy is a question of "Are we on the correct
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page?". There is a possibility for the team members to be "on the same page" (high
similarity) but on the "wrong page" (low accuracy).

3.2.2 Team Processes and Team Effectiveness

Team processes are defined as "member’s independent acts that convert inputs to outcomes
through cognitive, verbal, and behavioral activities directed toward organizing taskwork
to achieve collective goals" [35], where taskwork is described as "a team’s interactions
with tasks, tools, machines, and systems" [35], [36]. Taskwork refers to what the team
must accomplish, whereas teamwork captures how members collaborate to accomplish
it. High-quality taskwork is vital for overall performance and rests on both individual
expertise and the team’s coordinating routines. Those routines-team processes-serve to
steer, synchronize, and track the work. Although the line between taskwork and teamwork
often blurs in real settings, our emphasis here is on the coordination mechanisms that knit
task activities together so the team reaches its objectives [35]. In team processes research,
several behavioral and cognitive mechanisms have been monitored, and some of them are
described in upcoming sections.

Implicit Coordination

Implicit coordination is a dynamic and emergent team process wherein members anticipate
each other’s needs and actions based on a shared mental model of the task environment,
allowing them to adjust their own behavior accordingly without the need for explicit
communication or pre-assigned roles [37]. This anticipatory adjustment is rooted in the
team’s collective understanding of roles, objectives, and situational cues, which enables
members to synchronize actions and allocate tasks fluidly as conditions evolve. Unlike
explicit coordination, which relies on structured communication and formal delegation,
implicit coordination emerges through repeated interaction, mutual trust, and shared
cognitive frameworks. It is particularly crucial in high-tempo environments such as
incident response, where time constraints and information overload may render overt
coordination impractical or even counterproductive.

Ricoet al. [37] argue that implicit coordination becomes increasingly important as task
complexity and interdependence rise, especially under uncertainty or stress. In such
settings, successful team performance often hinges on members’ ability to detect environ-
mental cues, infer teammates’ likely responses, and act in ways that complement those
responses. This process requires a high degree of cognitive alignment, often facilitated by
prior experience, cross-training, or interventions aimed at developing Team Mental Models
(TMMs). Accordingly, implicit coordination is not merely a byproduct of team familiarity,
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but a measurable and trainable capability that reflects deeper cognitive integration within
the team.

Shared Situational Awareness

While there is no commonly accepted definition for situational awareness (SA), it is
generally perceived as knowing what’s going on, why it matters right now, and what is
likely to happen next in relation to your objectives. Since SA is subjective [38], there are
many definitions but most referenced definition belongs to Endsley:

Situation awareness is the perception of the elements in the environment within
a volume of time and space, the comprehension of their meaning, and the
projection of their status in the near future [39]

This definition contains four aspects of SA: Perception is the initial scan that gathers the
observable facts; Comprehension links those raw observations to one’s stored expertise,
turning data into meaning; Projection extends that meaning forward, forming a mental
picture of how events will probably unfold if nothing external intervenes; and Prediction

layers on an extra step, judging how possible external influences-such as new information,
actors, or environmental shifts-could alter that projected course [38]. This definition is
very close to what a mental model is, and the distinction is made such that a mental model
is the schema of a system while SA is a temporal state or schemata of a moment in time
that can evolve in time [39]. This distinction gets blurry when the temporal aspect of
TMMs are discussed. Situational awareness takes on a different meaning when it refers
to a single person versus when it describes a team or group. To clarify, Nofi argues that
achieving shared situational awareness depends on team members explicitly exchanging
their individual mental models of the situation; through this communication, a common
operating picture emerges. In short, effective communication is the decisive factor in
building and maintaining shared situational awareness [38].

Team Adaptation

Team adaptation is related to team-level behavioral and cognitive changes against changing
situations. Though there are different approaches to it. Maynard et al. [40] analyzes
team adaptation in an input-process-mediator-output model, where team adaptation is
defined as the adjustments to relevant team adaptation processes-action, interpersonal,
and transition-made in response to a disruption or trigger, whereby inputs that reflect the
team adaptability are converted into team adaptive outcomes through mediators such as
communication, coordination, and cognition. The overall process is best defined in Figure
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1 in detail. In this approach team adaptation, is not a part of TMMs, on the contrary, TMM
is an antecedent of team adaptation. Since team effectiveness develops over time and
spans several dimensions, according to Resick [41], outcomes like performance results,
behavior such as work processes and team adaptability, and cognitive elements that include
members’ attitudes and perceptions, it is reasonable to connect the team effectiveness to
TMM via adaptability.

Figure 1. Input-throughput- output model of team adaptation. [40]

On the other hand, Burke et al. conceptualize team adaptation as an output within an
input–process–output (IPO) model. Figure 2 illustrates this model, where both individual
attributes and job-design features contribute to a team’s adaptive capacity [42]. These indi-
vidual attributes include task and team expertise, preexisting mental models, team-oriented
attitudes, openness to experience, and cognitive ability. The job-design feature emphasized
in the model is self-management. Together, these inputs provide the foundational resources
for adaptation. When an environmental cue indicates a change, these inputs initiate a
four-phase adaptive cycle. In the first phase, the team assesses the situation by detecting
cues and assigning meaning to them. Next, they formulate a response plan. The third
phase involves executing the plan through mutual monitoring, communication, back-up
behavior, and leadership. Finally, the team engages in reflective learning before the next
cycle begins. Each phase is flanked by time-sensitive emergent states, such as shared
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mental models, team situational awareness, and psychological safety. According to Burke
[42], these states influence—and are influenced by—the team’s ongoing actions, forming
recursive links between cognition, emotion, and behavior. When the cycle is successfully
completed, it results in team adaptation. This adaptation can manifest as innovation or
behavioral modification and contributes to overall adaptive team performance. A feedback
loop then returns insights from this cycle back to the input side, preparing the team for
future challenges. Both Team Mental Models (referred to in the model as shared mental
models) and shared situational awareness (referred to as team situational awareness) are
classified as emergent states. These are defined as “constructs that characterize properties
of the team that are typically dynamic in nature and vary as a function of team context,
inputs, processes, and outcomes” [43].

Figure 2. Team adaptation nomological network. [42]

In both models, team adaptation is considered a property of team effectiveness and TMM
is depicted as a crucial component of team adaptation, either as an antecedent or an enabler
in multi-level feedback loop.

Big Five

The article "Is There a ’Big Five’ in Teamwork?" by Salas et al. [44] identifies five
core components essential for effective teamwork. According to the authors, the word
core is selected to express that there are other variables affecting the teamwork. The
first of these is Team Leadership, which encompasses the direction and coordination of
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team activities, performance assessment, skill development, motivation, and the creation
of a positive team environment. Effective leadership clarifies roles and fosters support
within the team. Secondly, Mutual Performance Monitoring is crucial, referring to
the capacity of team members to observe each other’s performance, offer feedback, and
provide assistance. This relies on a shared understanding of team goals and individual
contributions, enabling timely adjustments and mutual support. The third component,
Backup Behavior, involves team members actively assisting one another, particularly
during high-demand situations or when a colleague faces difficulties, by anticipating needs
and offering support to sustain overall team performance. Following this is Adaptability,
defined as the team’s proficiency in modifying its strategies and actions in response to new
information or evolving circumstances, which includes recognizing ineffective approaches
and collectively transitioning to better alternatives, mentioned in Team Adaptation section
above. Finally, Team Orientation signifies the collective inclination of members to
prioritize team objectives over individual ambitions, fostering cohesion, a shared sense of
purpose, and a strong belief in the team’s mission.

The same research defines 3 coordinating mechanisms: shared mental models1, closed-loop
communication, and mutual trust. The Figure 3 shows the relationship of TMM, being part
of the core and a support element for mutual performance monitoring, back-up behavior
and adaptability components.

1For the sake of this research shared mental model and team mental model terms are used interchangeably.
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Figure 3. Graphical Representation of High-Level Relationship Among the Big Five and
the Coordinating Mechanisms Including Research Propositions. [44]

While Salas et al. describe the Big Five as "core teamwork dimensions," they also argue
that these dimensions provide a bridge between academic theory and practical application
by offering a usable framework for understanding team processes [44]. The authors suggest
that the Big Five framework enhances our understanding of how team processes evolve,
particularly in relation to a team’s ability to perform core coordination and communication
tasks. In contrast, recent literature tends to interpret the Big Five not as dimensions but
as "team processes" in their own right [45]. Figure 4 illustrates how these components
have been reframed as primary team processes, with coordinating mechanisms positioned
as supporting elements. Although the study by Johnsen et al. does not explain why this
conceptual shift was made, the change appears to support their goal of making the Big
Five constructs more easily measurable.
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Figure 4. Proposed model of Johnsen et al. considering "Big Five" components as team
processes
Source: [45]

Team Effectiveness

It is seen that studies regarding team effectiveness have different approaches. While closed
loop communication and TMMs are considered as coordinating mechanisms improving
teamwork, meaning processes in Big Five, and indirectly the team effectiveness [44],
some research in dispersed teams suggests these coordinating mechanisms -TMMs and
structured communication- might have a more direct impact on effectiveness than the
mediating processes themselves [24], [45]. When it comes to similarity and accuracy
aspects, Lim and Klein [34] reported a direct positive relationship between TMM similarity
and team performance in their field study. A more recent and broader meta-analysis
by DeChurch and Mesmer-Magnus [46] confirms a strong positive relationship between
TMMs (both similarity and accuracy) and team performance, mediated by team processes.
However, other studies suggest interactions are key; Smith-Jentsch et al. [47] found that
neither task nor team TMMs alone directly affected efficiency, but their interaction did.

In either way, the results suggest direct and/or indirect impact of TMMs on team effective-
ness.

3.3 Team Mental Models in Task Teams: Challenges and Imperatives

Across disciplines, a range of terms—such as "task teams," "ad hoc teams," "temporary
organizations," "fluid teams," and "rapid reaction teams"—are used to describe similar
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concepts: small, multidisciplinary groups of experts assembled for a specific purpose
rather than working together on a daily basis. This study draws on all of these labels,
synthesizing insights from their respective literatures to build a unified understanding of
such ad hoc team structures.

In commercial aviation, the requirement comes from the fact that teams do not operate
together continuously; instead, their composition typically changes with nearly every
flight. These teams can thus be considered ad hoc or swift-starting teams [48], which
places additional demands on rapid team-building and the quick establishment of shared
understanding and coordination [49]. The accidents caused by problems in human commu-
nication and coordination and the solution was implementing a teamwork and leadership
focused training method called Crew Resource Management (CRM) [50] [49].

Crew Resource Management (CRM) originated in the aftermath of several high-profile
aviation accidents in the 1970s that were attributed not to technical malfunctions but
to breakdowns in teamwork, leadership, and communication [51]. In response, NASA
held a pivotal workshop in 1979 that highlighted the role of interpersonal and cognitive
factors in cockpit errors, marking the formal beginning of CRM training. The initial
programs, termed "Cockpit Resource Management," focused on individual behaviors
such as assertiveness and leadership style. Over time, CRM evolved through multiple
generations: from psychological seminars to team-based modules, and eventually to
integrated training embedded in operational and technical procedures. By the 1990s, CRM
was broadened to include all flight-related personnel, and later reframed as a comprehensive
strategy for error management that included avoiding, trapping, and mitigating human
errors. Table 1 is adapted from historical evolution of CRM approach to depict both trends
and contribution to teams.
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Table 1. CRM Skills by Generation. Adapted from [51]

CRM Generation Skill Notes

First Generation Leadership Addressed due to concerns about authoritarian cap-
tains and insufficient crew input.

Assertiveness Encouraged junior crew to challenge decisions when
appropriate, based on accident analysis.

Communication Initial programs emphasized cockpit interpersonal
dynamics.

Second Genera-
tion

Team Building Introduced to improve cockpit group dynamics.

Briefing Strategies Promoted shared understanding in temporary crew
compositions.

Decision-Making Structured approaches introduced to break error
chains.

Situational Awareness Trained crews to maintain current and predictive un-
derstanding of the environment.

Stress Management Addressed cognitive limitations and performance
degradation under stress.

Third Generation Leadership Specialized modules developed for captains assuming
command roles.

Use of Cockpit Automa-
tion

Focused on managing flight management systems
and reverting to manual control under pressure.

Fourth Genera-
tion

Proceduralized Behaviors CRM practices integrated into SOPs and checklists
for consistency.

Fifth Generation Error Management (Avoid,
Trap, Mitigate)

CRM reframed as structured behavioral countermea-
sures to manage human error.

Note: Emphasis on skills are added to emphasize the alignment of CRM research with TMM related topics.

In emergency and disaster response area, there are cross-agency teams involved in re-
sponding to natural disasters and regional or national crisis situations. As per van der
Haar’s research [32], emergency management teams consist of highly skilled individuals
collaborating to carry out urgent, unpredictable, interdependent, and high-stakes tasks,
even while team composition frequently changes. These teams share a clear, common
goal and bring together diverse expertise and resources to tackle tasks that inherently
require coordinated teamwork. Due to the frequent shifts in team membership, these teams
often lack a prior history of working together. Thus, they must rapidly learn effective
collaboration methods suited to their current team makeup and the specific demands of
each unique crisis situation. Table 2 summarizes the key characteristics of ad hoc multidis-
ciplinary emergency management teams, compared to regular teams. While van der Haar
outlines various features of task teams, only some are unique to their ad hoc nature. Both
team types share traits like high skill, interdependence, and teamwork under a common
goal. However, task teams differ in operating under time pressure, unpredictability, and
frequent changes in composition-features less typical of regular teams with more stable
membership.
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Table 2. Comparison of Task Teams and Regular Teams Based on Core Characteristics.
Adapted from [32]

Category Characteristic Task Teams Regular Teams

Team Highly skilled members + +
Mix of experience and resources + +
Interdependent + +
Frequent changes in composition + -

Task Urgent, immediate response
needed

+ -

Unpredictable + -
Highly consequential + +
Clear common goal + +
Training novice members + +
Requires teamwork + +

Note: Emphasis and regular teams comparison is not in the original research.

A similar research on task teams is conducted under the term "fluid teams". Fluid teams are
defined as "teams that are rapidly assembled from across disciplines or areas of expertise
to address a near-term problem" [52]. Fluid teams -in our case, ad hoc teams or task
teams- differ in several key ways from traditional teams, according to Driskell [52], [53].
They are rapidly assembled, often bringing together members from diverse disciplines,
which typically results in limited prior familiarity among team members. Given the
urgent nature of their tasks, these teams have little time to orient themselves or build
rapport. Operating within short time frames-ranging from a few hours to several days-fluid
teams lack the opportunity to gradually develop team cohesion or shared mental models.
Furthermore, they dissolve immediately upon task completion, with no expectation of
future collaboration. These characteristics create distinct challenges for effective team
performance. To address these, the source proposes a research agenda focused on selection,
design, and training strategies tailored to the needs of fluid teams: leadership training,
trust building, pre-briefing activities, role definition and clarification. Fluid teams research
does mention shared mental models as one of the targets in team training however does
not provide empirical data and notes this as a topic needing further research.

In addition to the aforementioned areas of research, ad hoc teams are studied in medicine,
especially emergency rooms. In hospital medicine, teams are often ad hoc, meaning
their composition frequently changes. This is especially common in academic teaching
hospitals, where team members rotate across shifts and training schedules. The fluctuating
membership presents challenges, as these teams often lack the time and continuity needed
to build a shared identity, develop mutual trust, or establish common mental models [54].
In emergency rooms, teams carry two distinct characteristics. First, they operate under
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severe time constraints, which limits opportunities for detailed planning and structured
communication during care delivery. Second, these teams are typically ad hoc in nature,
with members frequently working in shifting compositions. For such teams to function
effectively, it is essential that roles and responsibilities are clearly defined and that commu-
nication and leadership are well coordinated. However, these conditions are not always
met in practice. For example, research has shown that two-thirds of rapid response teams
failed to restore normal heart rhythm in cardiac arrest cases, largely due to deficiencies in
communication and leadership [55]. Hence, the training efforts are focusing on leadership,
team communication, and role-appropriate team behaviors [55]. This aligns with similar
approach as task team research in medicine also tries to utilize CRM as a tool [56] imported
from aviation.

In a study focused on applications of team mental models in healthcare, Burtscher et

al. [57] identify two organizational configurations where TMM research holds partic-
ular relevance: inter-professional teams and multi-team systems. According to their
analysis, inter-professional teams-comprising consultants, junior doctors, nurses, cardiac
technicians, physiotherapists, and other healthcare providers-operate in diverse clinical
contexts ranging from intensive care to psychiatric rehabilitation. The heterogeneity of
these teams presents a challenge for developing uniform approaches to TMM assessment.
Nevertheless, Burtscher et al. argue that TMM theory provides a valuable framework
for addressing professional friction arising from divergent views on patient care. They
suggest that promoting a shared understanding of patient-centered priorities could mitigate
inter-professional conflict and enhance team effectiveness. In this context, the authors
propose that attitudinal components of TMMs, such as mutual conceptions of effective
communication and a shared commitment to patient safety, may offer a more feasible focus
than procedural consensus. They further posit that the similarity of team members’ mental
models-rather than their objective accuracy-is a more appropriate metric in such settings,
and that interventions such as cross-training could play a key role in developing aligned
understandings of teamwork.

In the same work, Burtscher et al. also explore the role of TMMs in multi-team systems,
particularly within operating room environments. Here, they describe how clinical staff
simultaneously function as an overarching unit and as separate sub-teams, typically com-
prising surgeons, anesthetists, and nurses. These sub-teams alternate between phases of
close integration and periods of independent operation. The authors suggest that this struc-
tural dynamic creates the need for dual-level mental models: one that is task-specific within
each sub-team and another that supports coordination at the inter-team level. Although
Burtscher et al. note that empirical research in this area is still emerging, they contend
that existing overviews of TMM measurement methods offer a solid foundation for the
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development of future studies in multi-team clinical contexts.

This study focuses on task teams even named differently: short-lived, purpose-driven,
and cross-functional in nature. Among the two team types discussed by Burtscher et al.

[57], inter-professional teams align with our scope due to their dynamic composition and
need for rapid coordination. In contrast, multi-team systems, which involve more stable
sub-team structures and recurring collaboration patterns, fall outside the focus of this work.

It has been observed in academic literature that different research domains employ varying
taxonomies to describe identical or closely related concepts. Although the development
of a universal theory of team research remains challenging, teamwork continues to be
approached as a multidisciplinary subject. This diversity in terminological frameworks
contributes to conceptual fragmentation. The absence of a common taxonomy is believed
to hinder the formation of shared mental models concerning teamwork, team processes,
and, paradoxically, team mental models themselves.

Incident-response (IR) teams stand to benefit from the section’s findings because they dis-
play the very characteristics—rapid assembly, heterogeneous expertise, high time-pressure,
unpredictable task trajectories, and immediate dissolution—examined in aviation, disaster
management, and emergency medicine research on task, ad-hoc, and fluid teams; empirical
evidence from those domains shows that cultivating shared Team Mental Models (TMMs)
through structured briefings, clear role definition, and checklist-driven coordination mea-
surably increases decision accuracy, reduces error cascades, and shortens resolution times,
suggesting that IR teams can reap parallel gains in faster containment, lower mean-time-to-
recover, and improved cross-functional collaboration by adopting the same cognitive and
communication scaffolds.

3.4 Strategies for Developing Team Mental Models

Ad hoc incident-response teams typically lack the pre-existing familiarity and shared
experiences that drive organic development of team mental models (TMMs), making
rapid cognitive alignment both critical and difficult (see Section 3.3). To overcome this,
researchers and practitioners have devised targeted interventions that deliberately scaffold
shared cognition. Cross-training rotates team members through each other’s roles, building
inter-positional knowledge and yielding a small-to-moderate performance gain (r ≈ 0.29)
in meta-analytic studies [58]. Pre-task strategy briefings or Team Dimensional Training
focus team discussion on goals, roles and contingencies, and have been shown to produce
significant improvements in mental-model accuracy and flexibility across routine and novel
tasks [59]. Simulation-based exercises immerse teams in realistic scenarios with built-in
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feedback, fostering both perceptual cue uptake and coordination skills—studies in military
and clinical domains report 20–25% performance gains from brief debriefings alone [60].
Finally, structured guided self-correction (debriefing) sessions elicit reflection on errors and
successes, driving up to a 25% increase in learning outcomes and medium-to-large gains in
teamwork processes after just one session [60], [61]. Together, these techniques accelerate
the convergence of TMM similarity and accuracy by aligning individual understandings
around task, equipment and interaction schemas —an essential capability when teams must
“get on the same page” and "get on the correct page" under severe pressure.

Cross-Training

Cross-training involves rotating team members through each other’s roles so that individu-
als learn not only their own responsibilities but also the tasks, equipment use and decision
criteria of their peers. This approach is grounded in the Shared Mental Model (SMM)
framework, which identifies four key types of shared cognition—equipment, task, interac-
tion, and team—each of which supports coordination and performance [62]. Moreover,
cross-training develops inter-positional knowledge (IPK) —a term coined by Volpe et al.

[63] described as “a type of role knowledge in which team members have information
regarding the appropriate system operation behavior for each interdependent member
within the team structure”, and was used prior to the widespread adoption of the term
shared mental models- by focusing explicitly on the roles and responsibilities of other team
members [62], [63]. By fostering a more accurate and consistent awareness of each mem-
ber’s role, cross-training enables individuals to formulate a shared perception of the task
environment[64]. Empirical studies underscore cross-training’s value: naval cadet teams
showed significantly higher performance after a single cross-training session compared
to controls [65], and cross-training has been shown to improve team-interaction mental
models [66] as well as more accurate and shared taskwork and teamwork models[30]. A
meta-analysis by Salas, Nichols, and Driskell (2007) found that, although cross-training’s
unique contribution to performance (r = .289, z = 0.544, p = .293) was not significant
when isolated, team-training interventions that combine cross-training with adaptive coordi-
nation and guided self-correction yield stronger gains overall (r = .29)[58]. These findings
suggest that the effectiveness of cross-training depends on clearly defining the target SMM
type (“What”)—for example, whether the focus is on task procedures or interpersonal
interaction patterns—and on selecting complementary strategies (“How”) such as debriefs
or simulation exercises to reinforce the newly acquired shared cognitions [66]. While po-
tentially resource-intensive, even brief cross-training or targeted role-familiarization drills
may therefore yield substantial benefits for ad hoc teams when embedded in a broader,
multi-component training regimen.

32



Simulation-Based Training (SBT)

Simulation-Based Training places teams in realistic, dynamic scenarios that mirror the
demands and constraints of their actual tasks, thereby enabling shared experiential learning
and the implicit construction of both task and team TMMs through collaborative problem
solving [67], [68]. In domains where live practice is too costly or hazardous—such as
cybersecurity incident response—task simulations provide rich contextual instruction
that fosters shared strategic knowledge while preserving safety [69]. Effective SBT
for team situational awareness must incorporate scenarios that challenge individuals to
assess critical cues and that require coordinated team processes, from rapid information
exchange to decision-making under pressure [69]. Moreover, feedback loops are essential:
participants need timely, specific feedback on how their actions and interactions influence
both individual performance and team outcomes. A thorough task-analysis should precede
scenario design to identify the most consequential and difficult contingencies that teams
are likely to face, ensuring that practice is targeted to those high-impact events. The
tabletop exercises employed in this thesis adhere to these principles by offering a safe yet
demanding environment in which ad hoc IR teams can rehearse cue recognition, interaction
protocols, and adaptive coordination—all critical to forging robust shared mental models
before confronting real-world cyber incidents.

Team Dimensional Training / Strategy Briefings

This approach focuses on explicit discussion and clarification of team goals, strategies,
roles, expectations and potential contingencies before task execution, with the aim of
establishing a shared baseline of task and team TMMs that members can draw upon during
performance [59], [61], [62]. Empirical work by Marks and colleagues demonstrated that
both structured team-interaction training and enhanced leader briefings yield significant
main effects on mental-model similarity and accuracy across routine and novel environ-
ments [59]. These interventions not only prepared teams to confront varied scenarios by
fostering accurate and similar knowledge structures, but also improved the flexibility of
member mental models, enabling coordinated adaptation when circumstances changed.
Critically, enhanced briefings and interaction training were associated with more effec-
tive communication processes and higher overall team performance, with the linkage
between shared mental models and performance being particularly pronounced in novel,
high-uncertainty contexts. For ad hoc teams facing time constraints, such pre-task brief-
ings offer a time-efficient means of achieving initial cognitive alignment and equipping
members to adjust their shared cognitions as the task environment evolves.
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Guided Team Self-Correction / Debriefing

Guided Team Self-Correction, commonly known as debriefing, refers to a structured,
expert-facilitated review conducted immediately after task execution. During this pro-
cess, teams systematically reflect on their actions, identify coordination breakdowns and
set concrete improvement goals guided by a cognitive model of ideal performance [61].
Smith-Jentsch et al.’s empirical work in a military context demonstrated that a single
guided debrief significantly enhances team-mental-model accuracy and teamwork pro-
cesses compared to conventional reviews [61]. Meta-analytic evidence across domains
such as healthcare, aviation and first responders shows that debriefings under twenty
minutes yield average performance gains of 20–25% and medium-to-large effects on
learning and non-technical skills [60]. Cybersecurity incident response shares the high-
stakes, time-pressured and interdependent task structure of these settings, making brief,
facilitator-led debriefs directly applicable to IR training. In our tabletop exercises, inserting
a five- to ten-minute guided debrief immediately after each scenario not only reinforces
the micro-intervention’s focus on shared perception of critical cues but also provides the
reflective feedback loop needed to translate individual insights into a coherent, collective
understanding. This integration of debriefing into the TMM protocol leverages proven
military and clinical practices to accelerate the development and retention of robust shared
mental models in ad hoc teams facing evolving cyber threats.

Storytelling

Storytelling, according to Tesler et al., involves the planned use of narrative as a struc-
tured team intervention, aiming to increase the similarity and accuracy of team mental
models (TMMs) by providing memorable and relatable scenarios. Unlike purely analytical
briefings or structured reflection sessions, storytelling explicitly leverages emotional and
cognitive engagement through narrative structure—presenting a coherent story with clear
beginning, conflict, and resolution—to facilitate shared understanding and retention of
core teamwork concepts such as timing, communication, and coordination [70]. Tesler
et al. empirically demonstrated that storytelling significantly enhanced TMM similarity
when combined with guided team reflexivity sessions. Specifically, storytelling improved
team members’ shared mental models about task sequence and coordination requirements,
resulting in measurable performance benefits compared to groups who received identical
factual content without narrative context. Thus, storytelling represents a viable comple-
mentary training approach, reinforcing analytical briefing and debriefing strategies by
anchoring cognitive lessons within emotionally salient, memorable scenarios.
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Communication Protocols and Tools

Structured communication protocols—most notably Closed-Loop Communication
(CLC)—and standardized reporting formats serve as coordinating mechanisms that
underpin both the "Big Five" team processes and the continuous updating of shared
mental models [44]. Empirical work by Johnsen et al. in geographically dispersed
emergency-dispatch teams demonstrated that CLC exerts one of the strongest influences
on team processes (unstandardized β ≈ 3.19, p < .001), which in turn supports perfor-
mance satisfaction, situational awareness and interrelated Shared Mental Models (SMMs)
[45]. These findings indicate that confirmatory exchanges—where senders seek explicit
acknowledgment of received information—both reduce misunderstandings and furnish the
feedback loops essential for revising task- and team-related mental models, particularly
when direct observation is impossible.

Meta-analytic evidence further confirms the power of structured communication: Salas
et al. (2005) reviewed multiple studies and found that protocols like CLC and standard-
ized checklists yield medium to large correlations (r ≈ 0.30–0.45) with measures of
coordination and overall team performance [44]. Technology platforms—such as shared
incident-management dashboards and live incident timelines—extend these principles by
creating a persistent, common operational picture that reinforces equipment and interac-
tion SMMs in real time. In our tabletop IR exercises, embedding CLC expectations into
every scenario and using a shared digital whiteboard will ensure participants continually
articulate, confirm and correct their mental representations of both technical events and
each other’s roles, thereby strengthening both the similarity and accuracy of team mental
models under pressure.

3.5 Measurement Considerations and Critical Perspectives on TMM
Research

While the Team Mental Model (TMM) construct offers valuable insights into team cog-
nition and performance, a critical perspective acknowledges several ongoing debates,
limitations, and measurement challenges within the literature. Understanding these nu-
ances is crucial for interpreting TMM research and applying the concepts appropriately,
particularly in complex domains like cybersecurity incident response.
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3.5.1 Heterogeneity in TMM Measurement

A significant challenge in synthesizing TMM research is the lack of standardized measure-
ment approaches. The meta-analysis by Burtscher et al. [57] highlighted this heterogeneity
across 33 studies, revealing diverse methods for assessing different TMM types and
properties. Table 3 provides a summary adapted from their findings.
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As summarized in Table 3, the meta-analysis conducted by Burtscher et al. [57] illustrates
the considerable methodological heterogeneity in how team mental models (TMMs) have
been studied across domains. The table categorizes 33 empirical studies by team cluster,
TMM type, measured property, data collection methods, and analytic techniques. In terms
of TMM types, the most frequently examined categories were task models (appearing in
13 studies) and team models (11 studies), followed by interaction models (7 studies) and
attitude-based models (4 studies). These types were not evenly distributed across domains;
for example, task TMMs were particularly common in command and control teams, while
attitude and team models appeared more often in student, business, and service teams.

Regarding TMM properties, similarity was by far the most frequently assessed attribute
across clusters. It appeared in the majority of studies regardless of team type, including
negotiation, action, and project teams. In contrast, accuracy was assessed in only 9
studies overall and was primarily associated with command and control and action teams.
Complexity, although conceptually distinct from similarity and accuracy, was not explicitly
addressed in any of the studies included in the review.

Measurement methods also varied considerably. Likert-scale questionnaires were the
most commonly used technique, appearing in 10 studies across various clusters. Pair-
wise comparison ratings were used in 9 studies, particularly in command and control and
business settings. Other approaches such as concept mapping, card sorting, and open-ended
questions were present but less frequent. For example, concept maps were used in 3 studies,
and open-ended responses were reported in another 3. Card sorting appeared mainly in
action teams.

The analytic methods were equally diverse. Pathfinder, a structural analysis tool, was
used in 5 studies-mostly in the command and control and action team domains. Average
agreement methods, such as interrater agreement indices, were used in 4 studies. The
rwg statistic, which measures within-group agreement, appeared in 3 studies. Other
analytical approaches included individual coding (3 studies), content analysis (2 studies),
multidimensional scaling (1 study), coefficient of variation (1 study), and Euclidean
distance (1 study). Some studies employed multiple techniques, and several analytic
methods were applied to both quantitative (e.g., Likert data) and qualitative (e.g., open-
ended responses) sources.

Across clusters, different combinations of TMM types, properties, and methods were
used, suggesting that choices may have been shaped by contextual or domain-specific
factors. However, no single dominant approach was observed. The wide range of data
collection and analysis strategies across the studies in this review demonstrates the diversity
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of methodological choices in the TMM literature up to that point. This variation is not
limited to individual studies but reflects broader patterns across team types and settings,
highlighting the fragmented state of measurement practices in the field. While this review
does not prescribe a unified method, it systematically documents the approaches used and
presents a clear picture of the field’s methodological diversity.

3.5.2 Ongoing Debates and Critical Considerations

Beyond specific measurement techniques, several broader debates and limitations persist in
the study of team mental models (TMMs). One key issue concerns the trade-offs between
structural and perceptual measures, according to Mohammed et al. [22], [46], [71]. Struc-
tural methods, such as Pathfinder and concept mapping, offer objective representations
but are often laborious to implement. In contrast, perceptual measures-including question-
naires and agreement indices like rwg-are more practical but introduce subjectivity [22],
[46], [71].

Another ongoing debate involves the tension between context-specificity and generalizabil-
ity. While there is a need for measures that are sensitive to the nuances of specific tasks,
researchers also strive for instruments that can be applied across diverse teams and domains
[71]. Relatedly, questions arise regarding the generalizability of findings derived from
controlled laboratory settings or stable, experienced teams-such as those in aviation-to
high-stress, dynamic, and unfamiliar environments like those faced by ad hoc incident
response teams [72].

Further, Janis [29] points out that there are potential downsides to high levels of cognitive
similarity or convergence within teams. Although such alignment may facilitate coor-
dination, it can also suppress creativity, reduce vigilance, and increase susceptibility to
groupthink, ultimately hindering the team’s ability to respond effectively to novel situa-
tions. This underscores the importance of considering cognitive diversity and the role of
constructive disagreement.

In addition, TMMs are dynamic and evolve over time through interaction and shared
experiences [22], [73]. Yet many studies continue to rely on static pre/post measures,
limiting our understanding of TMM development trajectories. There is a clear need for
longitudinal research designs to better capture these temporal dynamics.

Finally, TMMs represent just one component within the broader system of team cognition.
Constructs such as transactive memory systems-knowing who knows what-and shared
situation awareness-understanding the current operational context-interact with TMMs
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in complex ways. Measuring TMMs in isolation may therefore provide an incomplete or
distorted picture of team cognitive functioning [67].

3.6 Team Mental Models, Task Teams and Cybersecurity Incident
Response

3.6.1 TMM literature and IR

There are some recent work on mental models in cybersecurity as well. In one of the
studies, Van den Berg offers an "essential set" of mental models designed to give managers,
technicians, and policy-makers a shared vocabulary for analyzing cyber risk [74]. The
framework begins with a three-layer view of cyberspace that distinguishes the technical
IT/OT infrastructure, the socio-technical layer of human-system activity, and an outer
governance layer of rules and institutions. Each layer is paired with a clarifying concept:
the OSI/TCP-IP stack (augmented by the IT-OT split) for infrastructure, the four-stage
learning ladder for secure behavior in the socio-technical realm, and Lessig’s modalities of
regulation-laws, norms, markets, and architecture-for governance. In the research, security
is cast as a risk-management loop. Van den Berg adopts the ISO/TC 262 cycle (from
critical-activity identification through monitoring) and couples it with two visual aids: the
bow-tie model, which links threats, controls, and recovery measures, and the likelihood-by-
impact risk matrix used for quick appraisal. The classical "avoid, transfer, accept, mitigate"
response set shows how decisions flow from the matrix, while a Swiss-cheese depiction of
defense-in-depth illustrates the value of layered controls. Finally, two governance-oriented
diagrams-the institutionalization ladder for public-private partnerships and a direct-versus-
indirect social-contract view of responsibilities-round out the toolkit. Together, these
models form a concise repertoire that stakeholders can assemble as needed to reason about
cyber threats and controls, although Van den Berg notes that detailed guidance on balanced
mitigation selection and large-scale cooperation remains an open research priority.

In another work in mental models, Murimi and colleagues provide a decade-long review of
how users conceptualize cybersecurity through mental models [75]. Drawing on more than
forty studies, they divide existing work into two overarching categories: folk models, which
rely on everyday analogies such as physical burglary, medical infection, criminal activity,
warfare, or market failure, and formal models, which originate in engineering or cognitive
science and include constructs such as error-and-blocking state diagrams, control-loop
representations (e.g. OODA), firewall state models, encryption “black-box” schemata, and
usable-security frameworks. Their survey shows that folk metaphors dominate popular
risk communication, whereas formal models appear mainly in expert training and tool
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design. The authors also report empirical evidence that users with formal cybersecurity
exposure articulate longer, more domain-specific descriptions of threats than those with
only informal exposure, indicating that expertise shapes both the richness and precision of
mental model content. Across the surveyed literature, Murimi et al. [75] emphasize that
mental models are neither universally "correct" nor "incorrect"; rather, their value lies in
the behaviors they elicit. In some cases even incomplete or inaccurate conceptions can still
prompt sound protective actions, whereas technically accurate models may fail to influence
behavior at all. Consequently, the review argues that effective security interventions
should focus less on teaching canonical models and more on fostering representations that
reliably trigger desirable practices. To that end, the paper evaluates three broad design
strategies: removing users from security decision loops ("stupid" approach), educating
users in technical detail, and aligning interfaces and messages with the ways users already
think about security ("understand-how-users-think" approach); the authors favor the latter
two while warning against one-size-fits-all automation. The article closes by calling for
a curated, standardized repository of widely used cybersecurity mental models-akin to
the MITRE CVE database-to guide future research, training, and tool development, and it
highlights the influence of social factors, workforce needs, and emerging technologies on
the evolution of user mental models.

Empirical work that focuses directly on mental models within cybersecurity incident-
response (IR) teams remains limited but illustrative. In one of the earliest large-scale
studies, Tjaden and colleagues asked ninety practitioners from different Computer Security
Incident Response Teams (CSIRTs) to enumerate the information they would need during
a simulated botnet crisis; the resulting lists showed little overlap, leading the authors to
conclude that the group “did not exhibit a shared mental model for decision making” [76].
Follow-up analyses ranked each information item by perceived importance and collection
difficulty, producing a prioritized schema that could serve as a baseline expert model for
training. Steinke et al. synthesized behavioral findings from nuclear-power control rooms,
military command posts, and emergency medical services, mapping validated interventions-
cross-training, guided self-correction, after-action reviews-onto CSIRT workflows [77].
Complementing these organizational studies, Maier’s work on expert-novice differences in
cyber-attack visualization shows that dashboards aligned with expert mental representations
reduce triage time for all user categories [78]. Kullman and co-authors extend this line
by proposing stereoscopic visual analytics explicitly designed around analysts’ internal
models of network evidence [79]. Despite such advances, the systematic measurement of
TMM accuracy-as opposed to similarity-remains rare in Cyber-IR settings, echoing gaps
documented in broader meta-analyses [57].

In cybersecurity area, mental models are lacking empirical studies in incident response in
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general. Further research is needed.

3.6.2 Task Team literature and IR

As explained previously, what makes task teams different is that they have "frequent
changes in composition" while their tasks are "urgent", "unpredictable", and requiring
"immediate response" [32]. Being the unique characteristics, it is better to focus on this
aspect.

Due to one of the characteristics frequent changes in team composition, task teams en-
counter challenges in maintaining stable TMMs. Driskell et al. argue that frequent
membership changes significantly disrupt the similarity and stability of TMMs because
each addition or removal of a member requires realignment of shared knowledge, roles, and
expectations, hindering rapid coordination and cohesion [80]. This frequent recomposition
is common in cyber incident response teams (CIRTs), which routinely integrate specialized
personnel such as forensic experts or legal advisors, complicating the formation of stable
and cohesive TMMs [13].

Additionally, urgency and the need for immediate response inherent in task teams place
substantial demands on rapid cognitive synchronization among members. Lim and Klein
observed that teams engaged in urgent tasks frequently rely on structured communication
and predefined operating procedures to quickly align their mental models, which can
result in sacrificing detailed accuracy checks for quicker action [34]. This urgency directly
impacts CIRTs, where immediate responses to cyber threats such as ransomware or active
intrusions are necessary. CIRTs commonly use structured incident-handling protocols like
those outlined by NIST to expedite coordination and action under pressure [13].

Lastly, unpredictability significantly influences the accuracy and stability of TMMs within
task teams. Uitdewilligen and Waller found that unpredictable task environments hinder
a team’s ability to maintain accurate and complete mental models, leading to continuous
updates and adaptations in response to new information or evolving conditions [81].
This unpredictability is especially relevant to CIRTs, where cyber incidents constantly
evolve. Hence, structured training exercises, such as scenario-based tabletop simulations
recommended by NIST, become essential tools for improving adaptability and maintaining
accurate mental models in cyber incident responders [82].

In addition to the focus common characteristics, cross-domain studies may provide ex-
amples of how task-team concepts translate into measurable outcomes. Aviation research
shows that short, scripted briefings increase TMM similarity and reduce coordination
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errors during abnormal flight procedures [83]. In emergency medicine, leadership as-
signment combined with a communication checklist significantly improves the likelihood
of restoring sinus rhythm in cardiac-arrest cases, an effect attributed to faster alignment
of team expectations [77]. Within cybersecurity, the exercise reported by Tjaden et al.

demonstrated that even experienced responders may lack a common schema for prior-
itizing evidence, thereby prolonging investigation timelines [76]. Their proposed next
steps-instrumented ticketing systems and virtual training environments designed around
a shared incident schema-illustrate how domain-specific artifacts can serve as external
memory aids that hasten TMM convergence. Steinke et al.’s comparative review further
recommends cross-training and guided self-correction for CSIRTs, interventions already
validated in military and healthcare teams [77]. Complementary conceptual work argues
that a holistic set of mental models-spanning layers of cyberspace, risk-assessment cycles,
and kill-chain stages-can give heterogeneous stakeholders a common vocabulary for dis-
cussing threats and mitigations [74]. Reassessing IR teams as task teams and making use
of task team literature allows us to frame incident response in the teamwork perspective.
However, it may be noted that considering MITRE ATT&CK Framework or the Cyber
Kill Chain® by Lockheed Martin as mental model items is a valuable contribution in
understanding TMM and cybersecurity.

3.6.3 Summary

The literature review provides a structured foundation for examining the potential influence
of targeted training on Team Mental Models (TMM)—shared cognitive representations
among team members regarding team roles, tasks, goals, and the operational environ-
ment—in improving the effectiveness of ad hoc task teams during cybersecurity incident
response. Ad hoc task teams refer to temporary teams assembled rapidly to address specific
tasks, typically with limited prior interaction. While direct research on TMM training
within the specific context of incident response remains limited, insights were drawn from
a broader set of disciplines where team-based decision-making under pressure is well
studied. Domains such as aviation, military operations, emergency medicine, and high-
reliability organizations have contributed substantially to the conceptual understanding of
TMMs and their operational benefits. These fields provide robust empirical evidence that
targeted training aimed at developing shared mental models can enhance team coordination,
reduce miscommunication, and improve adaptive performance in dynamic, high-stakes
environments.

Within the literature, a contrast is evident between traditional cybersecurity training—which
emphasizes individual technical proficiency—and TMM-focused approaches, which aim to
cultivate shared understanding across team members regarding roles, goals, and situational
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dynamics. Notably, two key aspects of TMMs—similarity and accuracy—are consistently
linked to improved team outcomes. Similarity refers to the degree of overlap or congruence
among team members’ mental representations ("Are we on the same page?"), while
accuracy pertains to how well these shared representations match an expert-derived or
objectively correct understanding of the task environment ("Are we on the correct page?").
There is a possibility for the team members to be "on the same page" (high similarity) but
on the "wrong page" (low accuracy).

In addressing the first sub-research question, the review suggests that TMM-specific train-
ing leads to greater similarity in mental models among participants than conventional
security training, thereby supporting more synchronized and efficient team behavior. Con-
cerning the second sub-research question, studies from adjacent domains show that teams
undergoing TMM-focused preparation generate mental models that align more closely with
expert expectations, particularly in simulated or high-fidelity task environments. These
findings, though not originating directly from incident response settings, provide a plausible
theoretical and practical basis for applying TMM training to cybersecurity contexts. Thus,
the literature collectively supports the relevance and potential utility of TMM-specific
training for improving the effectiveness of incident response teams, while underscoring
the need for further empirical investigation tailored to cybersecurity operations.

Drawing upon these insights, this study investigates whether targeted TMM training can
enhance the effectiveness of ad hoc cybersecurity incident response teams. Specifically,
the Main Research Question (MRQ) asks whether a structured TMM intervention
improves overall team effectiveness in these time-constrained, high-stakes environments.
To operationalize this inquiry, two sub-research questions are posed: Sub-Research
Question 1 (SRQ1) asks whether the intervention increases the similarity of team members’
mental models compared to conventional cybersecurity training, while Sub-Research
Question 2 (SRQ2) examines whether it improves the accuracy of those models, aligning
them more closely with expert expectations. These questions, grounded in the literature
reviewed, guide the methodological design described in the following section.
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4. Methodology

4.1 Research Design and Exercise Setup

This study employed a quasi-experimental pre-test/post-test control group design to inves-
tigate the impact of a targeted training intervention on the development of Team Mental
Models (TMM) within ad hoc cybersecurity incident response (IR) teams. The core hy-
pothesis posits that enhancing TMM similarity and accuracy through training can improve
IR team processes and performance, drawing upon established links between shared mental
models and team effectiveness [21], [24], [46].

The experimental setup involved two distinct teams, designated Team A (Control Group)
and Team B (Experimental Group), participating in a simulated IR tabletop exercise. The
use of tabletop exercises provides a controlled yet realistic environment to observe team
dynamics and decision-making processes in response to simulated cybersecurity incidents,
a common approach in IR training and research [77].

This pre-post design with a control group allows for comparison of changes within each
team (pre vs. post) and between the teams (experimental vs. control), helping to isolate the
specific effect of the TMM-focused training intervention [34]. The use of two different
scenarios (A and B) aimed to mitigate learning effects specific to a single scenario, although
potential differences in scenario difficulty remain a consideration.

Each team consisted of 9 people, and one of them were the team leader as incident
commander. Team leaders are not elected but assigned by the seniority -department
managers. The exercise is executed in English language. The team composition is not
balanced but randomized for the quasi-experiment, however the small group size has
limitations on balancing properly to be explained in Discussion sections.

In order to let the participants focus on the exercise, the exercise held in a location out of
office building but close to it. No laptops were allowed to prevent distraction, except for the
presentation laptop facilitator used to present. Each team member signed the consent form
for individual consent, provided both in English and Estonian language (see Appendix 7
and 7). A separate form is signed by a company official to allow usage of this exercise
as an academic material (see Appendix 7). Control group started at 09.30 and finished
around 12.30, while experimental group started at 14.00 and finished round 17.00. The
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team leaders were given the incident response playbooks, and related policies printed out.

The exercise followed a structured sequence:

1. Pre-Training Scenario (Scenario A): Both teams independently participated in
the first tabletop scenario, simulating a specific cybersecurity incident. This phase
established a baseline measure of TMM similarity and accuracy for each team before
any intervention.

2. Intervention Phase: Following Scenario A, a break was provided. During this
break:

■ Team A (Control Group): Received a pseudo-training session focused on
general security hygiene principles, unrelated to TMM development. This
controlled for potential Hawthorne effects or the simple effect of receiving any
training.

■ Team B (Experimental Group): Received a targeted training intervention
specifically designed to enhance TMM development. This training provided ex-
plicit methods and strategies for teams to build shared understanding regarding
task requirements, team roles, situational awareness, and communication proto-
cols, consistent with principles of team training aimed at improving cognitive
states [59], [84], [85].
As part of the training, participants were introduced to strategies outlined in
Section 3.4 Strategies for Developing Team Mental Models to support team pro-
cesses during the incident. While the tabletop exercise provided a simulation-
based environment, additional support was offered through structured elements
such as strategy briefings, debriefings, and the use of storytelling as practi-
cal tools for enhancing shared understanding. Given that the team operated
in a co-located setting, communication protocols and physical tools—such
as whiteboards, post-it notes, and related materials—were incorporated into
the simulation setup. These resources also served as integral components of
the storytelling approach, helping to externalize and spatially represent the
evolving team mental model throughout the scenario.
Due to the randomized composition of the teams, responsibilities had to be
redistributed at the outset of the exercise, with the exception of the team leader,
who was assigned based on staff seniority. In this context, cross-training did
not function as an optional team development strategy but rather became a
necessary task, particularly in cases where the team leader needed to reassign
key roles using available personnel.

3. Post-Training Scenario (Scenario B): Both teams independently participated in
a second, distinct tabletop scenario. This phase measured TMM similarity and
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accuracy after the intervention, allowing for assessment of training impact.

4.1.1 Scenarios

Scenario A The scenario A is a data breach scenario based on an initial vector provided
by a human error. In order to provide a simulated environment, the attack is tested on a lab
environment and actual logs are generated. Then, the user name, host name, IP addresses
and similar details are replaced with the scenario-related information. Logs are provided
in a single HTML-page (see Figure 5) that imitates a SIEM interface.

The attacker manages to exfiltrate cardholder data (CHD) from the company. "At a
minimum, cardholder data consists of the full PAN. Cardholder data may also appear in the
form of the full PAN plus any of the following: cardholder name, expiration date and/or
service code" [86], while PAN is an "[a]cronym for “primary account number.” Unique
payment card number (credit, debit, or prepaid cards, etc.) that identifies the issuer and the
cardholder account".

The incident begins with a compromised VS Code (an integrated development environment
(IDE)) extension update, leading to the installation of a malicious service that establishes
a persistent tunnel using VS Code’s Remote Tunnels feature. The attacker performs
initial reconnaissance; current user, environment variables, computer information, net-
work information, and checks for known folders for possible sensitive data. Attacker
then discovers basic information in the developer’s source code and configurations about
names and addresses of servers in the network. Afterwards, attacker finds credentials in a
Notepad++ (an open source text editor) backup file, uses these credentials for accessing
to a production server using file shares user has access to, downloads and compresses
the files, and finally exfiltrates cardholder data files through the established tunnel. Key
indicators include Windows event logs on privileged service call and process creation
(Security-4673 and Security-4688, Sysmon-1), service installation (System-7045),
specific process/command line activity (Security-4688, Sysmon-1), PowerShell Script-
Block logs (PowerShell-4104), and firewall logs showing large POST requests to the
tunnel domain.

The expected response involves immediate isolation of the compromised developer machine
and the server, triaging the incident by reviewing logs (EDR, firewall, SIEM), identifying
and removing the persistence mechanism (malicious service), scoping the incident (data
accessed/exfiltrated), revoking compromised credentials, preserving forensic evidence
(images, logs), identifying the root cause (VS Code extension), reporting, remediation
(hardening, monitoring), and triggering compliance processes (PCI DSS due to cardholder
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Figure 5. A screenshot of the simulated SIEM dashboard showing remote tunnel installation
log
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data).

Scenario B Scenario B is based on a real-life incident which has a great writeup written
by a security company [87]. It consists of a ransomware attack chaining several vulnera-
bilities on VMware and ESX platform. For this scenario, no logs are provided as SIEM
server is also encrypted, making it significantly harder than Scenario A. The team had to
work together to create a timeline of incidents and mental model with no visual helpers.

The incident starts with a web shell (shell.php) uploaded to a web VM, detected by
file integrity monitoring. The attacker then exploits a vulnerability (CVE 2025-22224)
to escape the VM and compromise the underlying hypervisor. From the hypervisor, the
attacker deploys and executes ransomware, encrypting multiple VMs (including critical
ones like the SIEM) residing on a shared datastore. The attack culminates in a ransom
note appearing in vCenter. Key indicators include firewall logs (POST to upload.php),
file integrity alerts, ESX host logs (vmkernel.log, process activity), increased storage
activity, service failures on encrypted VMs, datastore logs showing file renames, and the
ransom note.

The expected response prioritizes halting the ransomware spread without shutting down

the compromised hypervisor initially to allow for live forensics. This involves isolating
ESX host network interfaces and unmounting the datastore. Live forensics (memory dump,
processes, network connections) should be performed before acquiring disk images. Triage
involves confirming the web shell, ESX host compromise, and scope of encryption. Since
the SIEM is likely compromised, alternative logging sources must be used. Recovery
involves restoring from backups. Communication, reporting, remediation (patching/re-
building ESX host, hardening), and secondary containment of the initial web VM are also
crucial.

4.2 Measurement of Team Mental Models (TMM)

Measuring the complex construct of TMM requires a multi-faceted approach, as recom-
mended by measurement literature [88], [27]. This study employed distinct methods to
capture both the similarity (convergence of understanding among team members) and
accuracy (correspondence of team understanding with expert knowledge) of TMMs,
leveraging the data collected during the pre- and post-training tabletop exercises.

49



4.2.1 Measuring TMM Similarity

The measure of team mental model similarity is measured by questionnaire items was
evaluated by analyzing each Likert-scale response using parametric tests appropriate for
repeated measures. Repeated-measures ANOVA was applied to assess the main effects
of time (pre- vs. post-training), group (control vs. experimental), and their interaction,
reporting F -statistics, p-values, and ω2 effect sizes. Where the omnibus ANOVA indi-
cated directional trends or significant effects, follow-up analyses were conducted using
paired or independent-samples t-tests. Bonferroni correction was applied where multiple
comparisons were required, and Cohen’s d with 95% confidence intervals was reported.
This approach aligns with established practices in TMM measurement using perceptual
similarity metrics, as outlined in [22], [57] and discussed in Section 3.5.

For the free-text incident-report narratives, this study adopted an embedding-based co-
hesion measure derived from Sentence-BERT (SBERT). Each participant’s full response
was encoded into a single 384-dimensional vector and compared to all peers via cosine
similarity; the resulting row-wise average yields one “cohesion” score per person per
timepoint. Within-subject changes in cohesion for the experimental group were tested with
the Wilcoxon signed-rank test (rank-biserial effect size), and between-group differences
in change scores (∆ = post − pre) were evaluated using the Mann–Whitney U test (rank-
biserial effect size). Embedding-based semantic comparison offers a structural method to
complement perceptual metrics, addressing the trade-off between subjective and objective
techniques noted in [22], [71].

By combining repeated-measures ANOVA and targeted t-tests for structured questionnaire
data with SBERT-based cohesion scoring and nonparametric hypothesis tests for free-text
data, this methodology provides a robust, assumption-aware assessment of Team Mental
Model similarity and its evolution under different training conditions. This mixed-method
triangulation directly responds to the call in TMM literature for multimodal approaches to
mitigate mono-method bias and to capture both explicit and latent model structures [22],
[27], [57].

4.2.2 Measuring TMM Accuracy

Sub-Research Question 2 (SRQ2) focuses on whether Team Mental Model (TMM) training
improves the accuracy of teams’ shared understanding of incident scenarios. In our design,
each team appointed a department head as its leader based on seniority—rather than
election—who was responsible for producing a single, team-level incident report for each
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scenario. All other participants completed an identical report template individually, but
team leaders were explicitly instructed to consult with their members to craft a more
accurate, collective representation.

TMM accuracy was measured as the degree of correspondence between each team’s
overall report and an objectively defined benchmark model. Drawing on Mathieu et al.

[24] and Cannon-Bowers et al. [21], accuracy reflects how closely a team’s shared mental
model matches an expert or “Gold Standard” model of the task environment. Rather than
relying on holistic expert ratings—which may conflate conceptual understanding with
writing style—this study operationalizes accuracy through structured content analysis
of the complete team report. This follows the guidance of [57] and addresses concerns
regarding construct validity raised in Section 3.5.

For each scenario (A and B), a scenario-specific Gold Standard Model was first synthe-
sized by consolidating all critical facts, decision points, and prescribed actions from the
scenario description and response plan. Based on this benchmark, a ten-item checklist was
developed to target verifiable elements in the team reports—such as identification of the
initial attack vector, recognition of hypervisor compromise, and recommendation of system
isolation. Each checklist item was designed to be scored as present or absent, eliminating
the need for subjective interpretation of prose quality. This structured approach responds
to the critique that many TMM accuracy assessments suffer from unclear or subjective
scoring frameworks [27], [67].

This approach was chosen because it directly operationalizes TMM accuracy against an
objective, scenario-relevant standard and focuses on concrete report content rather than
writing fluency. The structured checklist enhances inter-rater consistency, minimizes bias
due to report completeness, and remains feasible within the scope of a master’s thesis.
Application of these checklists to the four team reports produced quantitative accuracy
scores, which were analyzed using a Difference-in-Differences (DiD) framework. This
approach compared pre-to-post changes in the experimental group against those in the
control group, enabling the isolation of the effect of TMM training on teams’ mental model
accuracy. In doing so, this measurement method addresses common challenges in TMM
research, including issues of reliability, ecological validity, and scoring fidelity discussed
in Section 3.5 and in prior critiques [22], [57], [73].
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5. Results

The first subsection employs t-tests and ANOVA to compare within-group and inter-group
result similarities to assess Sub-Research Question (SRQ) 1. It is tested if the team
intervention via team training improved TMM similarity within the experimental group.
The similarity results are going to be compared between control group and experimental
group for pre and post-training setups.

The second section addresses SRQ 2, examining whether the TMM-specific training inter-
vention led to a greater improvement in Team Mental Model (TMM) accuracy compared
to the general security training. TMM accuracy was measured using the custom checklists
derived from the Gold Standard Models for each scenario, applied to the team leader
reports. Scores represent the number of key elements correctly identified or addressed out
of a possible 10 for each scenario.

5.1 Similarity

In similarity assessments, two distinct approaches were employed corresponding to two
different types of questions. First, Likert-scale items were analyzed using JASP[89] to
perform t-tests and ANOVA. Second, free-text responses in the reports were examined for
semantic similarity. For this analysis, Python code and Sentence-BERT (SBERT) were
utilized.

5.1.1 Likert scale questions

t-tests

The paired samples t-tests, given in Table 4, revealed diverse patterns of change in par-
ticipant scores across the training period. Notably, Questions 1d, 1e, 2a, and 2b showed
statistically significant declines post-training, with large to very large effect sizes (Cohen’s
d = 0.95 to 2.28), suggesting meaningful performance deterioration on those items. These
findings warrant careful attention, as they may reflect unintended consequences of the
intervention, measurement artifacts, or topic-specific challenges.

Encouragingly, several items showed positive trends, even if not statistically significant.
Question 1b, for instance, showed a moderate improvement (t(16) = 1.692, p = 0.110,
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d = −0.827), and 1a and 6b showed small non-significant gains, with effects in the
expected direction. While these did not reach the conventional p < 0.05 threshold, their
effect sizes and direction suggest potential for improvement with a larger sample or
adjusted training content.

Table 4. Paired Samples T-Test Results Across All Questions

Question t df p Cohen’s d 95% CI (d) Interpretation

1a 0.212 15 0.835 -0.438 [-1.369, 0.494] Small increase post-training; not statistically sig-
nificant.

1b 1.692 16 0.110 -0.827 [-1.861, 0.208] Moderate improvement; p > 0.05, CI includes
0.

1c -0.270 17 0.790 0.127 [-0.784, 1.038] Small decrease; not significant.
1d -3.557 17 0.002 1.498 [0.559, 2.437] Significant decline post-training. Large effect.
1e -3.439 17 0.003 1.448 [0.519, 2.376] Significant decline. Large effect.
2a -5.477 15 < .001 2.280 [1.191, 3.369] Strong significant decline. Very large effect.
2b -2.266 16 0.038 0.945 [0.051, 1.838] Statistically significant decline. Large effect.
2c -1.683 16 0.112 0.702 [-0.180, 1.585] Moderate decline; not statistically significant.
6a -1.417 16 0.176 0.591 [-0.290, 1.472] Moderate decline; not statistically significant.
6b 0.436 16 0.668 -0.182 [-1.063, 0.698] Small non-significant improvement.

Presented in Table 5, independent samples t-tests compared post-training performance
between control and experimental groups. None of the comparisons reached statistical
significance, but several comparisons showed moderate to large effect sizes, particularly for
Questions 1a (d = 0.776) and 1b (d = −0.956). The wide confidence intervals for these
effects included zero, indicating that although the magnitude of the observed differences
is notable, statistical certainty is lacking—potentially due to limited sample size or high
variance.

Table 5. Independent Samples T-Test Results (Post-Test Comparison Between Groups)

Question t df p Cohen’s d 95% CI (d) Interpretation

1a -1.602 14 0.132 0.776 [-0.266, 1.818] Moderate group difference favoring experimen-
tal; not significant.

1b 2.012 15 0.063 -0.956 [-2.016, 0.104] Large effect favoring control; close to signifi-
cant.

2a 1.633 16 0.122 -0.756 [-1.722, 0.211] Moderate effect favoring control; not significant.
2b -0.351 16 0.730 0.165 [-0.725, 1.054] Minimal difference; not significant.

Overall, these results highlight both positive indicators—like upward trends in some
questions—and areas of concern, particularly where training appears to coincide with a
significant performance drop. Importantly, the presence of moderate effects with non-
significant p-values emphasizes the value of effect size interpretation and the need for
continued monitoring or refinement of the training program.
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Repeated Measures ANOVA Tests

To assess the impact of the training intervention on questionnaire responses, repeated
measures ANOVA was applied independently to each item. This approach allowed for the
evaluation of three distinct effects: the main effect of time (pre-training vs. post-training),
the main effect of group (control vs. experimental), and the interaction between time
and group. The use of repeated measures improves statistical power by accounting for
within-subject variance [90]. For each item, within-subjects results report F -statistics,
p-values, and effect sizes using omega squared (ω2), which provides a less biased estimate
of explained variance in small samples [91]. Between-subjects effects are also included to
examine overall differences between groups irrespective of time.

To aid interpretation, descriptive statistics are presented for each group at both time points,
including means, standard deviations, and standard errors. In cases where directional trends
were observed, line plots are provided to illustrate temporal patterns. Additionally, post
hoc comparisons between groups at the post-test stage were conducted using independent-
samples t-tests. These tests report mean differences, t-values, Bonferroni-adjusted p-values
to correct for multiple comparisons, and effect sizes using Cohen’s d, along with 95%
confidence intervals for the magnitude of effects. Effect size reporting and confidence
intervals are essential for assessing the practical relevance of findings beyond p-value
thresholds [91], [92]. This combination of inferential testing, effect quantification, and
visualization facilitates a robust and interpretable analysis of item-level training effects.

To assess the effects of the training intervention across multiple questionnaire items,
repeated-measures ANOVA was employed as the primary inferential framework. This
allowed us to evaluate both the main effect of time (pre- vs. post-training) and the
interaction between time and group (control vs. experimental). For each question, it
was reported whether the change over time reached statistical significance and whether
any group-specific patterns were observed. The ANOVA results were complemented by
descriptive statistics to identify trends in group means, and post hoc independent samples
t-tests were applied to compare group scores at post-test. These post hoc tests allowed
for clearer interpretation of group-level differences, even when omnibus effects were not
significant, particularly through effect size estimates and directional changes.

Comprehensive, question-by-question ANOVA tables—including F -statistics with degrees
of freedom, exact p-values, and ω2 effect sizes—alongside full post hoc t-test outputs
(mean differences, Bonferroni-adjusted p-values, 95% confidence intervals, and Cohen’s
d) and corresponding descriptive statistics and line plots are provided in Appendix 7. This
material offers the granular evidence underpinning the summary results in Table 6.

54



Table 6 presents a comprehensive overview of these findings. Each row corresponds to a
single question and reports the p-values for time and interaction effects, the general trend
in score direction, the interpretation of the post hoc comparison, and a final synthesized
assessment. To enhance interpretability, a categorical classification scheme was introduced
to distinguish between significant positive or negative effects, near-significant changes,
and directional trends lacking statistical significance. This allows for greater resolution
in evaluating practical training outcomes. For instance, while Question 1d showed no
group interaction, it revealed a strong and statistically significant drop in scores over-
all—confirmed by descriptive statistics and post hoc testing. Conversely, Question 1b
exhibited a promising upward trend in the experimental group, with near-significance in
the interaction term and a moderate effect size, indicating a potential training benefit that
may warrant further investigation in future studies.
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5.1.2 Free-text Similarity

Participants described incident timelines in their own words using a free-text section,
allowing us to capture their mental models. For the assessment of free-text similarity,
Sentence-BERT (SBERT) was selected as the underlying embedding model[93].

SBERT is a Siamese extension of the Transformer-based Bidirectional Encoder Repre-
sentations from Transformers (BERT) architecture, developed to produce semantically
meaningful, fixed-size embeddings for entire sentences or short texts. Unlike models
that operate at the token level, SBERT captures sentence-level semantics, making it par-
ticularly useful for handling variations in phrasing, domain-specific terminology, and
paraphrasing—common features of incident-report narratives. This capability ensures that
semantically similar statements are mapped to nearby vectors in the embedding space.
SBERT operates by using two identical BERT encoders with shared weights to inde-
pendently process pairs of input sentences. The resulting token-level outputs are then
aggregated into a single vector, typically via mean pooling over the final hidden states.
During fine-tuning, SBERT is trained on tasks such as natural language inference or seman-
tic textual similarity, using classification or regression objectives to align cosine similarity
scores with human-annotated semantic judgments. This training process enables SBERT
to represent subtle differences in meaning and contextual similarity, making it well-suited
for measuring cohesion in textual data.

Free-text incident reports capture nuanced descriptions of events, often featuring incon-
sistent terminology and varied phrasing; comparing their semantic content therefore
requires embeddings that balance high accuracy with computational efficiency. By produc-
ing sentence embeddings that accurately reflect semantic content, SBERT allows direct
comparison of report pairs through cosine-similarity measures, supporting tasks such as
clustering, retrieval, and statistical analysis.

The all-MiniLM-L6-v2 variant of SBERT was selected to balance semantic precision
with computational efficiency [94]. This particular architecture was not chosen based on
corpus size, but rather for its demonstrated capability to produce high-quality sentence
embeddings that effectively capture subtle semantic relationships, even within small
datasets. Previous studies have shown that SBERT consistently outperforms standard
BERT models on semantic textual similarity benchmarks, requiring minimal fine-tuning
[93]. These characteristics make SBERT particularly suitable for evaluating cohesion in
free-text incident reports, where the objective is to assess conceptual consistency rather
than to train a language model from the ground up.
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This model produces 384-dimensional embeddings while occupying only 22 MB on
disk, in contrast to BERT-base’s 420 MB footprint. Despite its compact size, MiniLM
retains over 99 % of BERT-base’s performance on extractive QA (SQuAD 2.0) and the
GLUE suite, using only half of the Transformer parameters and FLOPs, and yields a
2.7× inference speed-up on GPU hardware (e.g. processing upwards of 2 000 sentences
per second). These characteristics make all-MiniLM-L6-v2 particularly well-suited for
large-scale, interactive analyses of free-text incident reports.

Tests Each participant’s free-text response was reduced to a single SBERT-based cohe-
sion score by encoding the complete response into a 384-dimensional embedding vector ei,
followed by computing the average cosine similarity between ei and all other participants’
embeddings within the same experimental condition. Formally, for N valid responses in a
condition,

scorei =
1

N − 1

N∑
j=1
j ̸=i

cos
(
ei, ej

)
.

This procedure produces one independent observation per person, thereby satisfying the
assumptions of paired and independent nonparametric tests.

For each participant, the pre-training cohesion score prei and the post-training score posti

were recorded, and the change score was computed as:

∆i = posti − prei.

To assess whether Team Mental Model (TMM) training induced a within-subject improve-
ment, a paired Wilcoxon signed-rank test was applied to compare prei and posti scores
within the experimental group. To isolate the training effect from potential practice effects
or scenario familiarity, the distributions of ∆i were further compared between control and
experimental participants using an independent-samples Mann–Whitney U test.

This participant-level framework provides a transparent and assumption-light evaluation
of semantic convergence. By reducing each report to a single cohesion score and testing
pre-post and between-group differences using nonparametric methods, the analysis directly
quantifies whether TMM training produced a statistically reliable increase in participants’
alignment of incident-report language.

SBERT calculations were implemented in Python using the SentenceTransformers library.
The complete source code is available in Appendix 7. Then, the extracted and computed
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fields -namely participant_id, group, pre_score, post_score, and delta_score- are exported
into a CSV file for further analysis in JASP.

Table 7 reports the participant-level SBERT cohesion scores (mean cosine similarity to all
peers) before and after training for both control and experimental groups. Figure 6 shows
the group-level means before and after training, with error bars omitted for clarity.

Table 7. Participant-Level SBERT Cohesion Scores by Group and Timepoint

Group Pre-training Post-training

Control 0.4764 0.4480
Experimental 0.4633 0.4785

Pre Post
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Figure 6. Mean SBERT cohesion scores before and after training for control and experi-
mental groups.

Pre- vs. post-training cohesion within each group was tested using the Wilcoxon signed-
rank test. Results are shown in Table 8.

Table 8. Wilcoxon Signed-Rank Tests of Pre vs Post Cohesion

Comparison W p Rank-biserial r

Control (pre vs post) 45.0 0.423 –0.250
Experimental (pre vs post) 18.0 0.456 0.265

Neither the control refresher nor the Team Mental Model training produced a statistically
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significant within-participant change in cohesion (p > 0.4 in both cases).

Each participant’s change score (∆ = post − pre) was subsequently computed and com-
pared between groups using the Mann–Whitney U test. Descriptive means appear in
Table 9, and the test results in Table 10.

Table 9. Descriptive Statistics of Change Scores ∆

Group Mean ∆ Median ∆

Control −0.0284 −0.0027
Experimental +0.0152 −0.0254

Table 10. Mann–Whitney U Test on Change Scores ∆

Test U p Rank-biserial r

Experimental vs Control ∆ 20.0 0.397 0.286

Control Experimental
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Figure 7. Mean change in SBERT cohesion (∆) by group.

Figure 7 plots the group means of ∆; control shows a slight decrease, experimental a slight
increase, but the difference is non-significant.

Although the experimental group’s mean cohesion rose descriptively from 0.4633 to
0.4785, the Wilcoxon signed-rank test was non-significant (W = 18.0, p = 0.456, r = 0.265).
The control group’s mean fell slightly, also non-significant (W = 45.0, p = 0.423, r =
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-0.250). Comparing change scores, the experimental cohort’s modest gain (+0.0152) did
not significantly exceed the control’s loss (-0.0284) (U = 20.0, p = 0.397, r = 0.286). These
results indicate that, with the current sample, Team Mental Model training did not produce a
reliably greater improvement in semantic cohesion than the control intervention, suggesting
that observed fluctuations may stem from practice effects or individual variability rather
than the TMM curriculum.

5.2 Accuracy

This section addresses Sub-Research Question 2 (SRQ2) by examining whether the team
mental model (TMM)–specific training produced a greater improvement in TMM accuracy
than the general security training. Accuracy was operationalized through custom checklists
derived from the Gold-Standard Models for each scenario; the resulting scores, which range
from 0 to 10, reflect the number of key elements correctly identified in the team-leader
reports.

5.2.1 Accuracy Scores and Within-Team Changes

Table 11 reports the accuracy scores for both teams across the two scenarios together
with the within-team change from Scenario A (pre-training) to Scenario B (post-training).
Because the checklist is capped at ten points, each one-point change represents a 10 percent
shift in the proportion of Gold-Standard elements captured.

Table 11. TMM accuracy scores (0–10 scale) and corresponding within-team changes

Team Scenario A (Pre) Scenario B (Post) Change (∆)

Control 5.0 4.5 −0.5
Experimental 4.5 5.5 +1.0

The baseline scores in Scenario A were comparable, with control group recording 5.0
points and experimental group 4.5 points. After training, control group’s accuracy declined
to 4.5, yielding a within-team change of −0.5 points (a 5 percent decrease), whereas
experimental group’s accuracy increased to 5.5, corresponding to a within-team gain of
+1.0 points (a 10 percent increase). Although both teams still captured only about half of
the Gold-Standard content, experimental group exhibited a clear post-training improvement
while control group did not.
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5.2.2 Difference-in-Differences Analysis

To isolate the relative effect of the TMM-specific training, a difference-in-differences
(DiD) estimate was computed by subtracting the change observed in the control group
from that observed in the experimental group:

DiD = ∆experimental group −∆control group = (+1.0)− (−0.5) = +1.5. (5.1)

The positive DiD value of +1.5 indicates that, relative to the control group, the TMM-
specific training was associated with an additional 1.5-point improvement in checklist
accuracy. On the 0–10 scale, this corresponds to an incremental gain of 15 percent of the
total possible score. Because the checklist length is constant across teams and scenarios,
any linear rescaling (for example, expanding the checklist to 20 items and doubling all raw
scores) would leave the sign and proportional meaning of the DiD unchanged.
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6. Discussion

6.1 Study Aim and Theoretical Framing

This study presents a novel investigation across three complementary domains: Team
Mental Models (TMMs), task teams, and cybersecurity incident response (IR). Although
TMM theory has been extensively examined in military, aviation, and healthcare settings
[21], [24], its application to the unique socio-technical environment of cybersecurity
IR constitutes a significant theoretical extension. The cybersecurity domain—with its
highly technical and rapidly evolving threats, abstract risk landscape, and need for diverse
expertise—pushes established TMM principles to their limits, demanding rapid, shared
understanding under extreme complexity, ambiguity, and time pressure.

Temporary task teams and ad hoc IR cells alike struggle to develop shared cognition when
members have limited prior collaboration and only minutes to align on procedures [14],
[17], [20]. While structured interventions can mitigate these barriers [35], most prior work
examines programs lasting hours or longer—leaving open the question of how quickly
TMMs can form in genuine emergency contexts. We therefore ask: How can shared

mental models be accelerated to operational effectiveness in teams assembled reactively to

emerging cyber threats?

Our Main Research Question (MRQ) investigates whether a structured TMM proto-
col—comprising cross-training and strategy briefing—can enhance overall team effec-
tiveness in ad hoc IR teams. To operationalize this, we contrasted two nine-member
teams (intervention vs. control) in a quasi-experimental exercise. Measurement combined
Likert-scale similarity ratings and SBERT-based semantic cohesion of free-text summaries
with expert-derived checklists aligned to Endsley’s situational-awareness levels [30], [93].
Although neither similarity nor accuracy improvements reached statistical significance,
the observed descriptive shifts delineate the boundary conditions of micro-intervention
efficacy. Beyond theoretical contributions, this research offers a replicable mixed-method
pipeline—integrating semantic embeddings, expert checklists, and surveys—that can
be adopted for future studies of rapid team-cognition development in high-stakes, time-
sensitive settings.

Controlled quasi-experiments with ad hoc incident-response teams remain rare within cy-
bersecurity research. Our study therefore offers incremental theoretical and methodological
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insights while avoiding overstatement of its scope. On the theoretical side, we test whether
shared-cognition constructs, developed for stable organizations, remain relevant in volatile
incidents, and we challenge assumptions about the time needed for model convergence.
Methodologically, we integrate SBERT-based semantic cohesion with expert-benchmarked
checklists and conventional surveys in a mixed-method pipeline that balances automation
with rigorous validation. This design aims to capture both implicit and explicit facets of
team cognition while providing a scalable template for future work where rapid alignment
is mission-critical.

The research questions translate these design choices into testable claims about similarity
and accuracy. SRQ1 investigates whether embedding metrics detect meaningful conver-
gence of mental models immediately after a brief intervention in a live incident-response
exercise. SRQ2 evaluates whether those converged representations align with standards
produced by experienced responders, thereby gauging the practical value of concise
team-mental-model protocols under pressure. Together, the findings offer a cautious
lower-bound estimate of micro-intervention effectiveness in cybersecurity incidents and
refine theory on how shared models stabilize when decisions unfold within minutes.

6.2 Effects on Team Mental Model similarity (SRQ1)

Analysis of the nine-item Likert instrument and of free-text SBERT cohesion scores yielded
no statistically significant interaction effects attributable to the TMM briefing. This finding
contrasts with previous TMM research in stable teams, where interventions typically
produce measurable convergence in mental models [22], [24]. The absence of significant
effects aligns with theoretical propositions that shared cognition development requires
sufficient time to process and integrate new information [27]. In temporary teams, this
process may be particularly challenging due to limited shared history and the cognitive
demands of simultaneously learning new information while applying it to complex tasks
[14], [17].

Paired-samples t-tests showed no reliable pre-post change: Question 1a t(15) =

0.212, p = .835 and Question 4a t(16) = 0.944, p = .358 (Table 4). The corresponding
independent-samples comparisons remained non-significant (all |t| < 1.1, p > .30)
and the Time × Team interaction for the composite similarity score was likewise null,
F (1, 15) = 0.388, p = .543 (Table 6). The Wilcoxon tests applied to within-group
cohesion changes and the Mann-Whitney comparison of change scores between groups
also remained non-significant. Taken together, these converging null findings indicate
that the short briefing did not measurably align how team members conceptualized the
incident, suggesting that the 15-minute threshold may be insufficient for meaningful TMM
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convergence in ad hoc cybersecurity IR teams.

These results differ from findings in more stable team contexts, where even brief interven-
tions have shown some effect on mental model similarity [26], [35]. For instance, Marks et

al. [35] found that cross-training interventions produced significant improvements in team
mental model similarity, but their interventions were longer and conducted with teams
that had more opportunity for interaction. Similarly, Mathieu et al. [26] observed that
mental model similarity developed over time through team interaction, suggesting that
our 15-minute intervention may have been too brief to overcome the barriers to shared
cognition in newly formed teams. The non-significant SBERT cohesion results also align
with challenges noted by Mohammed et al. [22] regarding the measurement sensitivity
required to detect subtle shifts in mental model convergence, particularly in early stages of
team formation.

Future research should explore whether extending the intervention duration—perhaps to
30 or 45 minutes—might cross a critical threshold for TMM similarity development in
ad hoc teams. Additionally, investigating staged interventions (e.g., brief initial training
followed by structured reflection points during task execution) might reveal more effec-
tive approaches for accelerating mental model convergence in time-constrained settings.
Methodologically, incorporating network analysis of team communication patterns along-
side semantic similarity measures could provide more sensitive detection of emerging
shared understanding before it manifests in explicit mental model measures [30].

6.3 Effects on Team Mental Model accuracy (SRQ2)

The theoretical foundation of Team Mental Model accuracy posits that teams with more
accurate mental models—those that align with expert or "gold standard" conceptualiza-
tions—should perform more effectively in complex tasks [21], [24]. As Wulff et al.

[95] emphasize, for scientific discoveries to be valid, a phenomenon must be accurately
described, and its interpretation must withstand scrutiny by addressing appropriate coun-
terfactuals and systematically eliminating competing explanations. In our study, it is
attempted to enhance TMM accuracy through targeted cross-training, providing team mem-
bers with insight into others’ roles and responsibilities—a theoretically sound approach
supported by previous research [35].

The checklist showed a descriptive gain of one point for the experimental team and a
loss of half a point for the control team; the resulting Difference-in-Differences estimate
was +1.5 points (15%), but no follow-up test reached significance (see Table 11). This
pattern aligns with theoretical expectations that accuracy may be more responsive to
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brief interventions than similarity [33], [34], as accuracy can improve through individual
learning even before team-level convergence occurs. The descriptive improvement, while
not statistically significant, suggests that the intervention may have initiated a positive
trajectory in mental model accuracy that might become more pronounced with additional
training or experience.

The differential response between the experimental and control teams warrants closer
examination. The experimental team’s modest gain in accuracy points to potential bene-
fits of the TMM intervention for enhancing individual team members’ understanding of
correct response procedures. Conversely, the control team’s slight decline in accuracy
raises questions about potential interference effects when teams receive general security
information rather than targeted TMM training. This pattern, though not statistically sig-
nificant, is theoretically consistent with research suggesting that non-targeted information
can sometimes create cognitive interference in complex task environments [27].

As a result, the data do not provide significant evidence that fifteen minutes of TMM
training can materially sharpen a team’s collective grasp of incident facts or required ac-
tions. However, the descriptive pattern suggests that accuracy improvements may precede
similarity developments in the TMM formation process, consistent with theoretical models
of team cognition development [22], [26]. While our results did not show statistically
significant improvements in TMM accuracy following the intervention, this finding itself
contributes to theoretical understanding by delineating boundary conditions for TMM de-
velopment. The theoretical assumption that shared understanding can be rapidly developed
through brief interventions may require qualification: the 15-minute timeframe tested in
our study appears insufficient to meaningfully alter the accuracy of team members’ mental
models in the complex socio-technical domain of cybersecurity incident response.

These findings partially align with previous research on TMM accuracy in other domains.
Edwards et al. [33] found that brief training interventions could improve the accuracy of
team mental models in military teams, though their interventions were longer in duration.
Similarly, Lim and Klein [34] observed that accuracy was sometimes more responsive to
training than similarity, particularly in the early stages of team development. The modest
descriptive improvement observed in our study, while not reaching statistical significance,
suggests similar mechanisms may be at work in cybersecurity IR teams, albeit requiring
more intensive intervention to reach significant levels of improvement.

An important methodological limitation emerged in our measurement strategy. Although
team performance appeared strong based on observer notes, the written reports—used
as our primary assessment tool—were consistently of lower quality. As Wulff et al.
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observe, “measurement error in model predictors is one of the sources of endogeneity”
that can undermine the validity of study outcomes [95]. This disparity between observed
performance and written documentation raises concerns that our accuracy metric may have
reflected participants’ writing proficiency rather than the actual quality of their team mental
models, potentially masking the effects of the intervention. To address this issue, future
studies should incorporate complementary measurement strategies, such as structured
real-time observation protocols, to more reliably assess TMM accuracy.

Future research should investigate whether the descriptive accuracy improvements ob-
served here might reach statistical significance with larger sample sizes or slightly longer
interventions. Additionally, exploring differential effects of various intervention compo-
nents (e.g., isolating the effects of cross-training versus strategy briefing) could reveal
which elements most effectively enhance mental model accuracy in ad hoc teams. Incorpo-
rating process measures during task execution would also help clarify whether accuracy
improvements manifest in actual decision-making behaviors before becoming detectable
in post-task assessments.

6.4 Self-Reflection

Implementation constraints All exercise artifacts were presented in English, and the
exercise itself was conducted in English. Although English is the official language of the
company, a language barrier was still present, as only one of the eighteen participants was a
native speaker. This linguistic heterogeneity introduces theoretical considerations regarding
the interaction between language processing and cognitive load in TMM development
[27]. When team members must simultaneously translate technical concepts and integrate
new information into their mental models, the cognitive resources available for model
development may be significantly reduced, potentially explaining some of the limited
intervention effects observed.

Previous TMM research has rarely addressed multilingual contexts explicitly, representing
a gap in the literature that our study helps illuminate. However, research on team cognition
in multinational teams [80] suggests that linguistic diversity can create additional barriers
to shared understanding. Our observations of language-related challenges align with these
findings and extend them to the cybersecurity IR domain, where technical terminology
adds another layer of complexity.

A concise form and a short pre-exercise tutorial could reduce cognitive load and missing
data. Because outcome measurement relied on self-completed reports, behaviors that
observers noted in real time were not always captured, underscoring the need for future
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studies to integrate trained raters armed with behaviorally anchored check-lists. Future
research should also consider developing and validating multilingual TMM assessment
instruments or incorporating translation support to reduce language-related cognitive
load. Additionally, studies might explicitly compare TMM development in linguistically
homogeneous versus heterogeneous teams to isolate the effects of language diversity on
intervention efficacy.

Upon closer examination of our intervention design, the language-related limitations
underscore the significance of accounting for linguistic diversity when developing TMM
training protocols. The effectiveness of the intervention may have been enhanced through
the inclusion of visual elements, clearer and more accessible language, or multilingual
support materials—each aimed at reducing the cognitive demands placed on non-native
English speakers. This highlights a key consideration for both the methodological design
of future studies and the practical implementation of TMM-based interventions within
multinational organizational settings.

Scenario imbalance Scenario A offered a live log view that scaffolded timeline recon-
struction, whereas Scenario B omitted this aid and included fewer hints, imposing greater
cognitive demand. Such asymmetry risks ceiling effects in one condition and floor effects
in the other, thereby obscuring treatment differences. From a theoretical perspective, this
scenario imbalance interacts with the core TMM development processes we aimed to study.
When cognitive resources are disproportionately allocated to basic information gathering
(as in Scenario B), fewer resources remain available for the higher-order integration pro-
cesses necessary for mental model development and alignment [27], [39]. This imbalance
may have particularly affected the experimental team, who faced the more challenging
scenario after receiving the TMM intervention, potentially masking intervention effects.

Previous experimental research on TMMs has emphasized the importance of equivalent
task difficulty across conditions [26], [35]. Our experience aligns with methodological
observations by Mohammed et al. [22], who noted that scenario characteristics can
significantly influence the measurement of TMM constructs. The challenge of creating
balanced scenarios while maintaining ecological validity represents an ongoing tension in
TMM research, particularly in complex domains like cybersecurity where standardizing
task difficulty is inherently challenging.

Independent pilot testing and iterative adjustment of scenario difficulty would help equalize
cognitive load across conditions and yield cleaner contrasts. Future studies should consider
employing expert panels to rate scenario difficulty across multiple dimensions (information
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availability, technical complexity, time pressure) to ensure better calibration. Alternatively,
within-subjects designs where teams encounter multiple scenarios of varying difficulty
might help control for these effects, though such designs introduce their own challenges
regarding practice effects and experimental duration.

A critical examination of our experimental design reveals that the scenario imbalance un-
derscores a broader tension between ecological validity and experimental control in TMM
research. Although real-world cybersecurity incidents inherently differ in complexity and
information availability, experimental settings demand more precisely calibrated scenarios
to reliably attribute effects to specific interventions. Future studies may benefit from
hybrid designs that preserve ecological realism while introducing greater control—such as
modular scenarios that can be dynamically adjusted in response to team performance to
ensure a consistent level of challenge.

Team Composition and Leadership Effects Random assignment did not eliminate
expertise asymmetry: the control-team leader had prior penetration-testing and incident-
response experience, while the experimental-team leader had little relevant background
and, according to facilitator notes, did not apply the newly taught techniques. Specifically,
the control-team leader possessed years of experience in cybersecurity, including three
years specializing in penetration testing, and had previously participated in four major
incident response exercises.

In contrast, the experimental-team leader had a primarily management background with
only basic security awareness training and no formal certifications in cybersecurity. More
crucially, despite receiving training in specific methods such as strategic briefing techniques
defined in our literature review, the experimental team leader failed to implement any of
these approaches during the exercise. This implementation failure represents a fundamental
disconnect between training and behavioral change, essentially nullifying a key aspect of
our intervention. By definition, training aims to produce behavioral change; in this respect,
our intervention failed at the leadership level despite apparent engagement during the
training session itself. This leadership implementation gap likely contributed significantly
to the lack of measurable TMM improvements in the experimental team.

This expertise asymmetry introduces important theoretical considerations regarding the
role of leadership in TMM development. Research on team leadership suggests that leaders
serve as cognitive anchors for their teams, particularly in novel or ambiguous situations [96].
When leaders possess domain expertise, they can facilitate more accurate mental model
development among team members through guided sensemaking and expert direction.
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Conversely, when leaders lack domain expertise or fail to model trained behaviors, team
members may default to existing mental models rather than incorporating new frameworks
[24]. The control team leader’s expertise may have partially compensated for the lack
of TMM intervention, while the experimental team leader’s limited engagement with the
training may have attenuated potential intervention benefits.

In addition, this leadership arrangement represents a potential outlier within our study
design. André emphasizes that outliers must be treated with caution in experimental
research, warning that “any outlier exclusion procedure that is not blind to the hypothesis
that researchers want to test may result in inflated Type I errors.” [97] In line with this
guidance, we chose not to exclude the data related to the team leader but to explicitly
acknowledge its potential influence as a contextual factor when interpreting our findings.
Moreover, excluding the team leader from similarity calculations while still incorporating
their input as the accuracy reference would compromise the internal consistency and
validity of the measurement framework.

Previous research has demonstrated that leader characteristics significantly influence team
cognition development. Zaccaro et al. [96] found that leader expertise can accelerate
team mental model formation, while Burke et al. [42] observed that leaders who model
desired behaviors facilitate faster adoption of shared frameworks. Our observations align
with these findings, suggesting that leader expertise and engagement may moderate the
effects of formal TMM interventions. This interaction between leadership and intervention
efficacy represents an important consideration for TMM research that has received limited
attention in the literature.

Reassessing our intervention design, the disparity in leader expertise underscores the
importance of accounting for leadership dynamics in the development of team mental
models. The effectiveness of the intervention may have been enhanced by incorporating
leader-specific components, such as guidance on modeling and reinforcing the targeted
behaviors. Moreover, ensuring that team leaders are actively engaged and visibly commit-
ted to the intervention appears to be a critical factor in shaping its overall impact. Future
efforts should consider integrating tailored elements for leaders, along with implementation
fidelity checks, to support more consistent and effective delivery across teams.

Session timing In addition to other influencing factors, the experimental group com-
pleted its scenario late in the afternoon, at which point clear signs of fatigue were observed.
Although sessions were scheduled during regular business hours, teams were required to
convene off-site, and this change in setting did not reduce participants’ workload earlier in
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the day. As a result, the emergence of fatigue in the experimental group was understandable.
These circumstances likely compromised internal validity and reduced the effectiveness
of the experimental manipulation. To address such issues, future studies should consider
controlling for differences in expertise through stratified randomization or matched-pair
designs to ensure comparable leadership capability across groups. Furthermore, counter-
balancing the timing of sessions would help control for fatigue-related effects. Researchers
may also explore the interaction between leader expertise and TMM-focused interventions
by manipulating both variables within a factorial design framework.

Intervention design for behavioral change A significant methodological challenge
emerged in our study regarding intervention fidelity. Despite receiving specific training in
strategic briefing techniques and other TMM-enhancing methods, the experimental team
leader did not implement these approaches during the post-intervention exercise. This
implementation failure highlights a fundamental challenge in training-based interventions:
as McCambridge et al. (2014) [98] note, behavioral interventions aim to produce change,
but this change is contingent on participants’ willingness and ability to apply the training.

Despite the experimental group’s exposure to a 15-minute briefing on TMM strategies
during the intervention phase, the incident commander’s delegation style, utilization of com-
munication aids and overall coordination behavior in Scenario B remained practically in-
distinguishable from baseline performance, a result that the Knowledge–Attitude–Behavior
(KAB) model helps to illuminate. According to KAB theory, the acquisition of declara-
tive or procedural knowledge constitutes only an initial cognitive shift whose practical
value is realized only when it instigates concomitant changes in attitudes—such as the
leader’s belief in the efficacy of shared cognition—and in turn fortifies the self-efficacy
and motivational states that support behavioral enactment [99], [100]. Meta-analytic and
experimental evidence drawn from health education, organizational safety and cybersecu-
rity contexts consistently shows that interventions limited to didactic information transfer
rarely produce measurable behavioral change unless they are complemented by affective
persuasion, repeated behavioral rehearsal, real-time feedback and environmental reinforce-
ment [101], [102]. In the present study, the intervention delivered only the knowledge
component: the leader received a lecture-style download with no opportunities to practice
the recommended communication scripts, to receive formative coaching or to observe
model performances that could recalibrate his attitudes toward collaborative command;
moreover, no post-exercise fidelity checks or performance cues were embedded to sup-
port ongoing adoption. Implementation-science literature emphasizes that such fidelity
drivers—continuous coaching, performance metrics and context-embedded prompts—are
indispensable when behavioral change hinges on a single high-leverage actor, particularly
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in time-pressured incident response settings where entrenched command habits prevail
[103]. Absent these KAB-aligned supports, the leader’s pre-existing attitudes and habitual
behaviors likely dominated, leaving the cognitive gains inert and explaining the observed
null effect on TMM similarity and incident-response performance.

Future research must include the TMM strategies as ground rules or procedures in the
exercise, rather than a helper body of knowledge in the intervention. When there is no
behavioral change on the experiment group after intervention, it was not reasonable to
have a measurement result that does not reflect the effectiveness of the intervention. The
TMM strategies must be listed as implementable instructions to be integrated, either as
team rituals or structured communication methods.

Situational awareness lens on the pattern Endsley’s three-level SA framework [39]
clarifies the asymmetric outcome. Questions 1 and 4 target Level 1 perception, Questions 2
and 6 tap Level 2 comprehension and rudimentary projection, while the free-text question
spans all SA levels. The only consistent descriptive gain surfaced at the factual-perception
layer: participants in the experimental group recalled isolated incident indicators slightly
better, but that gain did not propagate upward to shared comprehension or coordinated
projection. This pattern aligns with theoretical models of situation awareness development,
which suggest that perception (Level 1) typically develops before comprehension (Level
2) and projection (Level 3) [39]. It also corresponds to theoretical propositions about the
sequential nature of TMM development, where factual alignment often precedes deeper
conceptual integration [22], [26].

This finding parallels research by Cooke et al. [30], who observed that team training inter-
ventions often impact lower-level cognitive processes before affecting higher-order team
cognition. Similarly, Endsley’s work with aviation teams [39] demonstrated that situation
awareness develops sequentially, with perception improvements preceding comprehension
and projection gains. Our results extend these observations to the cybersecurity domain,
suggesting similar cognitive development patterns despite the unique characteristics of IR
contexts.

In other words, the intervention bolstered what teams noticed yet failed to transform that
noticing into a convergent understanding of what the cues meant or what would happen
next. Future research should investigate whether extended or repeated interventions
might facilitate the progression from improved perception to enhanced comprehension
and projection. Studies might also explore targeted interventions specifically designed to
accelerate the development of Level 2 and Level 3 situation awareness in ad hoc teams,
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potentially through structured sense-making exercises or guided scenario walkthroughs.

Reevaluating our intervention design, the variation in effects across situation awareness
(SA) levels suggests that the 15-minute format may have been more effective in sup-
porting perceptual processes than in fostering higher-order cognitive functions such as
comprehension and projection. Future interventions could be strengthened by explicitly
targeting all SA levels, incorporating dedicated elements to develop deeper understanding
and forward-looking reasoning. Furthermore, refining the measurement approach to more
precisely capture changes at each SA level may help identify subtle improvements that
may have gone undetected with the current instruments.

Methodological Limitations The sample of eighteen individuals and two team-level
checklists yielded less than forty per cent power to detect moderate effects, raising the
risk of Type II error. This statistical limitation intersects with theoretical considerations
regarding the measurement of team cognition constructs. TMM theory suggests that mental
models are multidimensional, dynamic constructs that may require multiple measurement
approaches to fully capture [22], [27]. Our limited sample size and measurement ap-
proach may have been insufficient to detect subtle but theoretically meaningful changes in
these complex constructs, particularly given the brief nature of the intervention and the
challenging task environment.

Our measurement approach relied primarily on written incident reports to assess TMM
accuracy and similarity. While this method offered practical advantages in our experimen-
tal setting, it introduced significant limitations. As observed during the exercise, teams
demonstrated more sophisticated coordination and understanding than was reflected in their
written reports. This created a noticeable disconnect between actual team performance
and the primary measurement instrument. Wulffet al. [95] highlight that “knowledge of
performance may also bias how observers rate the [leadership],” pointing to the complex
relationship between actual performance and its documentation. In our case, the inverse
may have occurred: teams exhibited effective real-time performance, yet failed to ade-
quately capture this in written form, resulting in measurement error that may have obscured
the effects of the intervention. Moreover, this discrepancy raises specific concerns about
construct validity—whether our written-report instrument truly measured the cognitive
constructs associated with TMMs, or instead reflected unrelated factors such as writing
proficiency, documentation habits, or motivation to complete the report. This methodologi-
cal issue underscores the importance of adopting multi-method assessment strategies in
TMM research, particularly in high-tempo environments where written documentation
may be deprioritized or inconsistently executed.
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Mono-method bias persists because the Likert items were purpose-built and lack external
validation, and language dependence further limits generalisability. These methodological
challenges echo concerns raised by Mohammed et al. [22] regarding the measurement
of TMM constructs. Their comprehensive review highlighted the importance of using
multiple, validated measurement approaches to capture the multidimensional nature of
team cognition. Similarly, Cooke et al. [27] emphasized the need for ecologically valid
measurement approaches that capture both explicit and implicit aspects of team knowledge.
Our study’s limitations align with these methodological challenges, which remain persistent
issues in TMM research.

These constraints counsel caution in extrapolating conclusions beyond the present setting.
Future research should address these limitations through larger samples, validated measure-
ment instruments, and mixed-method approaches that triangulate findings across multiple
data sources. Developing and validating domain-specific TMM measurement instruments
for cybersecurity IR would be particularly valuable for advancing research in this area.
Additionally, incorporating physiological or behavioral measures alongside self-report
instruments might provide more sensitive detection of TMM development, particularly in
early stages.

Reevaluating our methodological approach, the identified limitations illustrate the inherent
difficulty of investigating complex cognitive constructs within ecologically valid settings.
While laboratory-based studies may provide greater statistical power through larger sample
sizes, they often do so at the expense of the contextual nuance that defines real-world
incident response environments. Future research could benefit from innovative study
designs that seek to balance these trade-offs—such as employing multiple case studies
with standardized measurement frameworks or utilizing simulation-based methodologies
that support larger participant groups while preserving situational authenticity.

Practical implications Even a micro-intervention can nudge factual recall upward, but
achieving genuine mental model convergence appears to require more extensive practice,
structured debriefing, or guided role rotation. This observation aligns with theoretical
models of expertise development and skill acquisition [104], which suggest that complex
cognitive skills typically require deliberate practice and feedback to develop fully. In
the context of TMM theory, our findings suggest that different aspects of team cogni-
tion may develop at different rates and through different mechanisms [22], [26], with
factual knowledge responding more quickly to brief interventions than deeper conceptual
alignment.
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Organizations that routinely assemble temporary incident-response cells may benefit
from pairing short briefings with observer-based feedback loops if the goal is to forge
a common cognitive picture rather than merely improve individual fact retention. This
recommendation aligns with research by Marks et al. [35], who found that team debriefs
significantly enhanced the effectiveness of cross-training interventions. Similarly, Mathieu
et al. [24] observed that feedback mechanisms accelerated the development of shared
mental models in aviation teams. Our findings extend these observations to cybersecurity
contexts, suggesting similar principles apply despite the unique characteristics of IR
environments.

Future implementations could explore integrated approaches that combine brief initial
training with structured reflection points during incident response. Organizations might
also consider developing standardized TMM support tools that can be rapidly deployed
during incidents, such as shared visualization platforms or structured communication
protocols. Evaluating the effectiveness of such integrated approaches would provide
valuable insights for both research and practice.

Reflecting on the practical implications of our findings, the modest impact of the brief
intervention underscores the ongoing tension between operational constraints and the
cognitive demands of effective team coordination in cybersecurity incident response.
Although organizations typically face strict time limitations for team preparation during
incidents, our results indicate that even modest increases in preparatory effort and sustained
support may contribute meaningfully to team performance. Identifying the appropriate
balance between time investment and cognitive gains remains a key consideration for both
future research and practical implementation in organizational settings.

6.5 Directions for Further Inquiry

Future work is advised to employ larger samples, balanced scenarios, and multi-method
assessments that fuse questionnaires with behavioral observation and communication
analysis. From a theoretical perspective, such methodological refinements would help
address fundamental questions about the development trajectory of TMMs in ad hoc

teams [22], [27]. By capturing both explicit and implicit aspects of team cognition across
multiple time points, future research could clarify the mechanisms through which shared
understanding develops in temporary teams and identify critical thresholds for intervention
efficacy. Experiments that vary the briefing dosage—from the present 15-minute primer
to ∼ 30-minute or staged brief-plus-reflection formats—may help pinpoint the minimum
viable intervention for TMM convergence.
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Given the significant limitations we encountered with report-based measurement, future
research should specifically incorporate trained observers into the experimental design.
These observers should use standardized behavioral markers and interaction pattern coding
to directly assess team cognition manifestations during task execution, rather than relying
primarily on post-hoc self-reports. Observer-based measurement would be particularly
valuable for capturing the quality of team coordination, information sharing patterns,
and decision-making processes that may reflect shared mental models but fail to appear
in written reports. Additionally, recording and analyzing team communications could
provide more direct evidence of mental model convergence or divergence as it occurs in
real-time, offering insights that our report-based approach could not capture. In parallel,
researchers should test workflow-embedded scaffolds—e.g., automated role prompts or
checklist pop-ups inside chat-ops and SOAR tools—to evaluate whether digital supports
can substitute for longer classroom training. Moreover, manipulating linguistic load by
comparing English-only materials with simplified or fully translated versions would clarify
how language barriers and cognitive load jointly affect TMM formation.

Additionally, future studies should directly address the disconnect between observed team
performance and documentation quality by implementing dual measurement approaches.
This could include real-time performance metrics captured during the exercise alongside
traditional report-based assessments, allowing researchers to quantify the gap between
actual performance and its documentation. Such an approach would help clarify whether
non-significant findings reflect true intervention limitations or measurement artifacts arising
from documentation challenges in high-pressure environments.

Additionally, researchers are encouraged to report results both with and without outliers, as
recommended by Wulff et al. [95], in order to provide transparency regarding the influence
of exceptional cases—such as the control team leader in our study. In retrospect, our
experimental design did not anticipate the potential impact of outliers and incorporated a
strong dependence on team leaders for coordinating the exercise. Future studies should
pre-register explicit outlier-handling rules and complement classical analyses with robust
statistics (e.g., trimmed means or bootstrapped confidence intervals) to mitigate undue
leverage. As a result, the presence of an outlier in one of these leadership roles had
a disproportionate effect on both team dynamics and outcome measures. Design-wise,
building redundancy into critical roles—such as appointing a deputy leader or rotating the
incident-commander function—will help ensure that single exceptional performers neither
mask nor exaggerate intervention effects.

Longitudinal follow-up would clarify whether brief gains in perception decay or consoli-
date, and rigorous treatment-fidelity checks are likely to be important when team leaders
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are expected to model the trained techniques. Future designs should also target all three lev-
els of situation awareness, assessing whether perception gains cascade into comprehension
and projection under extended or repeated interventions. This recommendation builds on
research by Mathieu et al. [26], who observed that mental models evolve over time through
team interaction and experience. Similarly, Burke et al. [42] emphasized the importance
of implementation fidelity in team training interventions, particularly regarding leadership
behaviors. Our suggestions extend these insights to the specific challenges of cybersecurity
IR contexts, where time constraints and high stakes create unique conditions for TMM
development. To specifically address intervention implementation challenges, future re-
search should incorporate structured implementation protocols with explicit behavioral
checkpoints for team leaders. These might include pre-briefing commitment contracts,
mid-exercise coaching interventions, or post-training behavioral rehearsal to increase the
likelihood that trained techniques are actually implemented. This approach would help
distinguish between intervention ineffectiveness (where properly implemented techniques
fail to produce effects) and implementation failure (where techniques are never properly
applied).

Beyond methodological refinements, future research should explore several theoretical
questions raised by our findings. First, studies might investigate the differential devel-
opment of various TMM content domains in cybersecurity contexts, examining whether
task-related, team-related, or technology-related mental models respond differently to
brief interventions. Second, research could explore the interaction between individual
expertise and team-level cognition, clarifying how diverse knowledge backgrounds influ-
ence TMM development in ad hoc teams. Finally, studies might examine how different
intervention components (e.g., cross-training, strategy briefing, role rotation) contribute
to TMM development, potentially identifying more efficient approaches for accelerating
shared understanding in time-constrained settings.

6.6 Summary

Across SRQ 1 and SRQ 2, the evidence indicates that the main research question was not

supported: a 15-minute TMM briefing produced a modest rise in factual accuracy but no
detectable gain in mental-model similarity. This result refines theory in three ways. First,
it implies that 15 minutes may approach the lower boundary for effective TMM work in
ad hoc cybersecurity teams. Second, it suggests that elements of team cognition develop
at different speeds—surface-level facts may adjust quickly, whereas deeper conceptual
alignment lags [22], [26]. Third, it reinforces calls to account for leadership, expertise
distribution, and task complexity when translating TMM theory to new domains [27].
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Several factors probably muted the intervention’s impact: language burden, complex
reporting requirements, scenario imbalance, leader-experience disparities, and end-of-
day fatigue. These challenges echo those identified in other ecologically valid TMM
studies [22], [96]. Compared with work on stable military or aviation teams [24], [35],
our findings hint that temporary response cells may require either longer or differently
structured interventions.

The study nonetheless contributes methodologically by combining semantic similarity anal-
ysis with traditional surveys, extending the TMM toolset for capturing multidimensional
cognition.

Two limitations warrant emphasis. First, the experimental team leader did not apply the
briefing strategies, exposing a fidelity gap. Future designs will likely need accountability
checks to ensure leaders model the intervention. Second, written reports proved a blunt
instrument for latent cognition; the disconnect between team behavior and report quality
raises concerns about construct validity.

Addressing these issues—through streamlined instruments, balanced scenarios, observer
ratings, stronger fidelity controls, and workflow-embedded cognitive scaffolds—could
clarify the true value of TMM briefings. Embedding TMM principles directly into incident-
management platforms may also help organizations that lack time for extensive pre-incident
training. Progress will depend on transparent, pre-registered studies that blend theoretical
rigor with operational viability.

In sum, although the briefing did not yield statistically significant gains, the study advances
understanding of rapid TMM development in high-stakes, temporary teams and illustrates
a mixed-method evaluation framework for future investigations.
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7. Conclusion

This thesis investigated ways to strengthen the cognitive foundations of ad hoc cybersecu-
rity incident-response teams. Drawing on research from multiple areas of research, it tested
whether a brief Team Mental Model (TMM) training (team intervention) could improve
shared understanding and coordination.

Eighteen volunteers were randomly assigned to two matched teams that tackled pre- and
post-intervention tabletop scenarios. Reduced bias is ensured by the quasi-experiment: a
control and an experimental group tested pre- and post-training scenarios. Control group
took a pseudo-training while experimental group took the TMM-focused training material.
TMM similarity and accuracy were measured with three tools: Likert items, SBERT-based
semantic indices, and a domain-expert checklist. This mixed-method design offers a
reusable template for future team-cognition studies.

The training, unfortunately, did not produce statistically significant gains in TMM similarity
or accuracy, although the experimental group showed a small descriptive increase in
factual recall. These results suggest that TMM-specific trainings may raise individual cue
recognition but are unlikely, by themselves, to create the deeper shared models needed for
rapid, coordinated action. Contextual factors such as language load, scenario imbalance,
and uneven expertise, probably diluted any treatment effect.

Even with non-significant outcomes, the study contributes empirical evidence on the
lower limits of TMM interventions for temporary teams. It also demonstrates a practical
measurement bundle that combines narrative and survey data.

Two limitations deserve emphasis, out of many others mentioned in the Chapter 6 Discus-
sion: First, the experimental group team leader failed to implement the training strategies,
highlighting a gap between the design and implementation; future studies should include
accountability checks. When experiment group does not implement the requested strate-
gies, measurement of the outcome does not provide value. Second, written reports captured
performance poorly, questioning construct validity; observer ratings or live-feed analytics
may offer richer data.

While the theoretical background, experiment design and metrics were successful, the
unforeseen implementation issues affected the outcomes. Therefore, the study is an
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artifact of lessons learned in the applied research area. Researchers might now test longer
or repeated trainings, add discourse-analytic pipelines, and run multi-site replications
across languages and organizations. Embedding TMM scaffolds directly into incident-
management platforms could help teams that lack time for extensive pre-incident training.
By outlining both the promise and the limits of micro-duration TMM training, this work
provides a springboard for improving the cognitive readiness of ad hoc IR teams.
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Appendix 2 - Teabeleht ja Informeeritud Nõusoleku Vorm

1. Kutsung ja Eesmärk

Sind kutsutakse osalema simuleeritud küberintsidendi lahendamise lauharjutuses. Uuringu
eesmärgid on kahetised:

■ Äriline - tugevdada organisatsiooni valmisolekut ja otsustusprotsesse küberkriisi
tingimustes.

■ Akadeemiline - analüüsida grupidünaamikat ja otsustusmehhanisme eelretsenseeri-
tava sotsiaalteadusliku publikatsiooni tarbeks.

Enne otsuse tegemist loe palun alljärgnev teave hoolikalt läbi ja küsi julgelt küsimusi.

2. Mida Osalemine Kaasab?

■ 3-tunnine lauharjutus (pluss 15-minutiline paus) 22. aprillil 2025, kas sessioonil
09:30–12:30 või 14:00–17:00.

■ Mängid harjutuse jooksul oma tavapärast operatiiv- või juhtimisrolli, reageerides
stsenaariumi inject’idele.

■ Sinult palutakse täita isikliku ja meeskonna tasandi intsidiraportid.
– Meeskonnajuhid koondavad meeskonnatasandi raporti.

■ Ühtegi tootmissüsteemi reaalajas ei kasutata.

3. Vabatahtlik Osalemine ja Loobumisõigus

Osalemine on täiesti vabatahtlik. Võid igal ajal ilma põhjendusi esitamata ja tagajärgedeta
loobuda. Loobumise korral kustutatakse kõik sinu isikuga seostatavad salvestised ja
märkmed, mis pole veel anonüümseks muudetud.

4. Riskid ja Ebamugavused

■ Vähene psühholoogiline pinge, mis sarnaneb realistliku ärilise õppusega.
■ Võimalik mainekahju, kui individuaalsed tulemused avalikustataks. Leevendus:

tulemused pseudonümiseeritakse ja esitatakse üksnes koondkujul.
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■ Kui tunned ebamugavust, võid harjutuse peatada või lõpetada.

5. Kasu

■ Kiired organisatsioonilised õppetunnid kübervastupanuvõime parandamiseks.
■ Isiklik oskusareng kriisijuhtimises.
■ Meeskonna ühise vaimse mudeli ja situatsiooniteadlikkuse tugevdamine.
■ Panus akadeemilisse teadmusesse; leiud avalikustatakse anonüümsel kujul.

6. Andmekaitse ja Konfidentsiaalsus

■ Andmekontroller: <REDACTED>
■ Õiguslik alus: GDPR art. 6(1)(f) õigustatud huvi & art. 6(1)(e) avalikes huvides

tehtav teadustöö; art. 9(2)(j) eriliigiliste andmete töötlemine teaduse eesmärgil.
■ Kogutavad andmed: intsidiraportid, kirjalikud märkmed, rolliinfo.
■ Säilitamine ja turve: krüpteeritud hoiustamine EL serverites; juurdepääs ainult

uurimisrühmal; säilitusaeg 3 kuud, seejärel kustutamine.
■ Pseudonümiseerimine: nimed asendatakse koodidega; võtmetabel hoitakse eraldi.
■ Andmeedastus: andmeid ei edastata väljapoole EL/EER ilma täiendavate kaitse-

meetmeteta.

7. Tulemuste Kasutamine ja Võimalik Ärikasutus

Uurimistulemusi võidakse kasutada:

■ sisejäreldusraportis organisatsioonile;
■ konverentsiettekannetes või teadusartiklites (sotsiaalteadus, küberjulgeolek).

Otseste tsitaatide kasutamiseks küsitakse allpool eraldi nõusolekut.

8. Hüvitis ja Kindlustus

■ Rahalist tasu ei maksta; pakutakse kergeid suupisteid ja jooke.
■ Tegevus on mitteinvasiivne ja madala riskiga; eraldi tervisekindlustus ei ole vajalik.

Kohaldub tööandja vastutuskindlustus.
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9. Nõusoleku Kinnitus

Kinnitan, et olen käesoleva teabe läbi lugenud ja aru saanud.

Mõistan, et osalemine on vabatahtlik ja võin igal ajal loobuda.

Annan nõusoleku anonüümsete tsitaatide kasutamiseks akadeemilistes väljaannetes.

Annan nõusoleku minu isikuandmete töötlemiseks ülaltoodud eesmärkidel.

Osaleja nimi: Kuupäev:

Allkiri:

Uurija allkiri: Kuupäev:

See dokument on koostatud eesti keeles. Ingliskeelne versioon (“Information Sheet & Informed

Consent Form”) on võrdväärselt kehtiv.
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Appendix 3 - Information Sheet & Informed Consent Form

1. Invitation & Purpose

You are invited to take part in a simulated cyber-incident response exercise. The purpose is twofold:

■ Business – to strengthen our organization’s preparedness and decision-making under cyber-

crisis conditions.

■ Academic – to analyze group dynamics and decision processes for a peer-reviewed social-

science publication.

Before you decide, please read the following information carefully and feel free to ask questions.

2. What Will Participation Involve?

■ A 3-hour tabletop session (plus a 15-minute break) facilitated on 22 April 2025, one of the

sessions 09:30–12:30 or 14:00–17:00.

■ You will play your normal operational/management role while responding to unfolding

scenario injects.

■ Incident report documents will be requested to fill in at person and team level.

■ Team leaders are responsible for consolidating a team-level incident report.

■ No live production systems will be accessed.

3. Voluntary Participation & Right to Withdraw

Your participation is entirely voluntary. You may withdraw at any point without giving a reason

and without penalty. If you withdraw, any recordings or notes that can still be linked to you will be

securely deleted.

4. Risks & Discomforts

■ Minimal psychological stress comparable to a realistic business exercise.

■ Potential reputational concern if individual performance were disclosed. Mitigation: results

will be pseudonymized and only aggregated in reports.

■ If you experience discomfort, you may pause or stop the exercise at any time.
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5. Benefits

■ Immediate organizational insights to improve cyber-resilience.

■ Personal skill development in crisis leadership.

■ Building team shared mental model and situational awareness.

■ Contribution to academic knowledge; findings will be publicly shared in anonymized form.

6. Data Protection & Confidentiality

■ Data Controller: REDACTED
■ Legal Basis: GDPR Art. 6(1)(f) legitimate interest & Art. 6(1)(e) research in the public

interest; Art. 9(2)(j) for any special-category data.

■ Data Collected: Incident reports, written notes, role information.

■ Storage & Security: Encrypted storage on EU servers; access limited to research team;

retention for 3 months, then deletion.

■ Pseudonymisation: A coded ID key will replace names; the key is stored separately.

■ Data Transfers: No transfers outside the EU/EEA without additional safeguards.

7. Use of Results & Possible Commercial Uses

Research outputs may be:

■ Internal after-action report for the organization.

■ Conference papers / journal articles (social-science, cybersecurity).

Separate consent is sought below for direct quotations.

8. Compensation & Insurance

■ No monetary compensation is offered; refreshments will be provided.

■ The activity is non-interventional and low-risk; separate health insurance is not deemed

necessary. Standard employer liability insurance applies.

9. Consent Statement

I confirm that I have read and understood the information above.

I understand participation is voluntary and I may withdraw at any time.

I consent to the use of anonymized quotations in academic publications.
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I consent to the processing of my personal data for the purposes outlined.

Participant’s Name: Date:

Signature:

Researcher’s Signature: Date:

This document is provided in English. An Estonian translation (“Teabeleht ja Informeeritud

Nõusoleku Vorm”) will be supplied upon request. Both language versions are of equal validity.
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Appendix 4 - Organizational Consent Form for Academic
Use

1. Parties

Organization:

(legal name & registration number)

Authorized signatory (manager):

Title/Position:

Research team:

Institution (University / Research body):

Contact (email / phone):

2. Description of the Exercise & Study

A cyber-incident response tabletop exercise will be conducted on (date) at (location). The session

is designed to:

■ Enhance the organization’s operational readiness and crisis-management capability.

■ Generate anonymized empirical data for a social-science research project analyzing decision-

making, teamwork, and organizational learning in cyber-crisis contexts.

3. Scope of Consent

By signing this form, the organization grants the research team a non-exclusive, royalty-free license

to collect, analyse, and publish the materials generated during the exercise, including:

■ Observation notes, anonymized transcripts, or chat logs.

■ Aggregated metrics (e.g., response timelines, decision points).

■ De-identified artifacts (playbooks, whiteboard photos, etc.).

Publication outlets may include peer-reviewed journals, academic conferences, teaching materials,

and open-access repositories. No confidential business information or personal data identifying the
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organization or individual employees will be disclosed without additional written permission.

4. Data Handling & Confidentiality

■ Raw data containing business-sensitive details will be stored on an encrypted, access-

controlled research drive accessible only to the named researchers.

■ De-identification follows GDPR Articles 5(1)(b & c) and relevant institutional data-

management policies.

■ The organisation may review redacted datasets or request removal of proprietary details prior

to publication.

5. Intellectual Property & Commercialization

■ Copyright in resulting academic works remains with the authors or their institutions.

■ This consent does not transfer any rights to the organization’s trademarks, trade secrets,

software, or other proprietary assets.

■ No commercial use of proprietary information will occur without a separate, explicit agree-

ment.

6. Voluntary Nature & Right to Withdraw

Granting consent is voluntary. The organization may withdraw consent any time before first
publication by written notice to the researcher. Materials already published prior to withdrawal

cannot be retracted, but no further use will be made.

7. Term of Consent

This consent remains valid for three (3) years from the date of signature unless revoked earlier

under Section 6.
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8. Signatures

Place & Date:

Authorized Signatory (signature):

Name (print):

Title / Position:

Researcher (signature):

Name & Institution (print):

Please retain a copy of this form for your records.

100



Appendix 5 - Detailed statistical analysis of SRQ1

Question 1a There was no significant main effect of time, F (1, 14) = 0.176, p = 0.681,

ω2 = 0.000, suggesting that overall scores did not change significantly from pre- to post-training.

The interaction between time and group was also not statistically significant, F (1, 14) = 2.547,

p = 0.133, ω2 = 0.015, although it showed a small effect. These results are reported in Table 12.

Table 12. Within-Subjects Effects — Question 1a

Effect df F p ω2

Time 1, 14 0.176 0.681 0.000
Time × Team 1, 14 2.547 0.133 0.015

The between-subjects analysis (Table 13) indicated that overall group membership (control vs.

experimental) was not associated with significant differences in responses, F (1, 14) = 1.217,

p = 0.289, ω2 = 0.007.

Table 13. Between-Subjects Effects — Question 1a

Effect df F p ω2

Team 1, 14 1.217 0.289 0.007

Descriptive statistics presented in Table 14 showed a small improvement in the control group’s mean

score (from M = 5.222 to M = 5.556), while the experimental group’s mean decreased (from

M = 6.429 to M = 5.857). The post hoc test (Table 15) revealed a mean difference of -0.754

between groups (Control - Experimental), which was not statistically significant, t(14) = −1.103,

p = 0.289, with a moderate effect size (d = −0.514).

Table 14. Descriptive Statistics — Question 1a

Group Time Mean SD SE

Control Pre 5.222 1.856 0.619
Control Post 5.556 1.667 0.556
Experimental Pre 6.429 0.787 0.297
Experimental Post 5.857 1.069 0.404

While not statistically significant, this suggests a moderate trend favoring the experimental group’s

initial advantage eroding post-training, and a mild gain in control. Although the results were not
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statistically significant, the data hint at differential trends between groups worth monitoring in

future sessions or with larger sample sizes.

Table 15. Post Hoc Test — Question 1a

Comparison Mean Difference t (df = 14) p (Bonf.) Cohen’s d

Control - Experimental -0.754 -1.103 0.289 -0.514
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Question 1b There was no statistically significant main effect of time, F (1, 15) = 1.986,

p = 0.179, ω2 = 0.054, although a small effect size was observed, indicating some variability in

responses over time, as shown in Table 16. The interaction between time and group approached

significance, F (1, 15) = 4.353, p = 0.055, with a moderate effect size (ω2 = 0.151), suggesting a

potentially meaningful differential change between the control and experimental groups over time.

Table 16. Within-Subjects Effects — Question 1b

Effect df F p ω2

Time 1, 15 1.986 0.179 0.054
Time × Team 1, 15 4.353 0.055 0.151

The between-subjects analysis did not show a statistically significant difference between the

control and experimental groups, F (1, 15) = 0.514, p = 0.484, with essentially no effect size

(ω2 = 0.000), as shown in Table 17.

Table 17. Between-Subjects Effects — Question 1b

Effect df F p ω2

Team 1, 15 0.514 0.484 0.000

Descriptive statistics in Table 18 show a clear increase in the experimental group’s mean score from

M = 5.429 (SD = 0.787) to M = 6.286 (SD = 0.951), whereas the control group experienced a

slight decline. This positive trend for the experimental group is visually confirmed in Figure 8,

which highlights the diverging trajectories of the two groups.

Table 18. Descriptive Statistics — Question 1b

Group Time Mean SD SE

Control Pre 5.667 1.000 0.354
Control Post 5.444 1.014 0.359
Experimental Pre 5.429 0.787 0.297
Experimental Post 6.286 0.951 0.359
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Figure 8. Mean pre- and post-training scores for control and experimental groups on
Question 1b.

Table 19. Post Hoc Test — Question 1b

Comparison M Diff t (df = 15) p (Bonf.) Cohen’s d

Control - Experimental -0.762 0.717 0.484 0.644

The post hoc test (Table 19) comparing overall means between groups revealed a moderate-to-large

effect size (d = 0.644), though the difference was not statistically significant, t(15) = 0.717,

p = 0.484. This suggests that while the experimental group’s performance improved more

noticeably, the variation was not strong enough to reach significance in this sample.

Question 1c There was no significant main effect of time, F (1, 15) = 0.082, p = 0.778,

with a negligible effect size (ω2 = 0.000), indicating that scores did not differ overall from

pre- to post-training. Additionally, there was no significant interaction between time and group,

F (1, 15) = 0.111, p = 0.743, ω2 = 0.000 (Table 20), suggesting that the pattern of change over

time was similar for both groups.

Table 20. Within-Subjects Effects — Question 1c

Effect df F p ω2

Time 1, 15 0.082 0.778 0.000
Time × Team 1, 15 0.111 0.743 0.000
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The between-subjects analysis revealed no statistically significant group difference, F (1, 15) =

0.018, p = 0.895, and a near-zero effect size (ω2 = 0.000), indicating that overall responses were

similar across control and experimental teams (Table 21).

Table 21. Between-Subjects Effects — Question 1c

Effect df F p ω2

Team 1, 15 0.018 0.895 0.000

Descriptive statistics (Table 22) show a mild improvement in the experimental group from M =

6.143 to M = 6.286, while the control group declined slightly from M = 5.889 to M = 5.556.

While not statistically significant, this small improvement in the experimental group is visually

illustrated in Figure 9, suggesting a potential positive trend that may warrant monitoring in larger

samples.

Table 22. Descriptive Statistics — Question 1c

Group Time Mean SD SE

Control Pre 5.889 1.269 0.423
Control Post 5.556 0.726 0.257
Experimental Pre 6.143 0.690 0.261
Experimental Post 6.286 0.951 0.359
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Figure 9. Mean pre- and post-training scores for control and experimental groups on
Question 1c.

The post hoc test (Table 23) revealed a negligible difference between groups, t(15) = 0.133,
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p = 0.895, and a very small effect size (d = 0.106), supporting the conclusion that group-level

differences on this item were minimal in this sample.

Table 23. Post Hoc Test — Question 1c

Comparison M Diff t (df = 15) p (Bonf.) Cohen’s d

Control - Experimental -0.143 0.133 0.895 0.106
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Question 1d A significant main effect of time was observed, F (1, 15) = 16.140, p = 0.001,

with a large effect size (ω2 = 0.482), indicating that participants’ scores declined significantly

from pre- to post-training (Table 24). However, the Time × Team interaction was not significant,

F (1, 15) = 0.377, p = 0.549, ω2 = 0.000, suggesting the decline was consistent across both

groups.

Table 24. Within-Subjects Effects — Question 1d

Effect df F p ω2

Time 1, 15 16.140 0.001 0.482
Time × Team 1, 15 0.377 0.549 0.000

The between-subjects analysis (Table 25) showed no significant group effect, F (1, 15) = 0.805,

p = 0.384, ω2 = 0.000, indicating that the overall performance did not differ significantly between

control and experimental groups.

Table 25. Between-Subjects Effects — Question 1d

Effect df F p ω2

Team 1, 15 0.805 0.384 0.000

Descriptive statistics (Table 26) showed that the control group’s mean score dropped substantially

(from M = 6.444 to M = 4.889), while the experimental group showed a smaller decline (from

M = 6.143 to M = 5.571). This general downward trend is illustrated in Figure 10, where both

lines slope downward, but more sharply for the control group.

Table 26. Descriptive Statistics — Question 1d

Group Time Mean SD SE

Control Pre 6.444 0.726 0.257
Control Post 4.889 1.054 0.373
Experimental Pre 6.143 0.690 0.261
Experimental Post 5.571 0.787 0.297
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Figure 10. Mean pre- and post-training scores for control and experimental groups on
Question 1d.

Table 27. Post Hoc Test — Question 1d

Comparison M Diff t (df = 15) p (Bonf.) Cohen’s d

Control - Experimental -0.476 -0.897 0.384 -0.463

The post hoc test (Table 27) showed a non-significant difference between groups, t(15) = −0.897,

p = 0.384, with a moderate effect size (d = −0.463). Although the difference is not statistically

reliable, the sharper decline in the control group may indicate vulnerability that merits further

observation in future iterations.

Question 1e A statistically significant main effect of time was found, F (1, 15) = 15.130,

p = 0.001, with a large effect size (ω2 = 0.459), suggesting a meaningful decline in scores

from pre- to post-training (Table 28). However, the interaction between time and team was not

statistically significant, F (1, 15) = 0.004, p = 0.949, ω2 = 0.000, indicating that this decline

occurred similarly across both control and experimental groups.

Table 28. Within-Subjects Effects — Question 1e

Effect df F p ω2

Time 1, 15 15.130 0.001 0.459
Time × Team 1, 15 0.004 0.949 0.000
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The between-subjects analysis (Table 29) revealed no significant effect of team membership,

F (1, 15) = 0.136, p = 0.718, with a negligible effect size (ω2 = 0.000), indicating similar overall

response levels between groups.

Table 29. Between-Subjects Effects — Question 1e

Effect df F p ω2

Team 1, 15 0.136 0.718 0.000

Descriptive statistics (Table 30) show a decline in both groups: the control group dropped from

M = 6.444 to M = 5.000, while the experimental group decreased from M = 6.286 to M =

5.714. The visual representation in Figure 11 confirms a downward slope in both groups’ scores,

consistent with the significant main effect of time.

Table 30. Descriptive Statistics — Question 1e

Group Time Mean SD SE

Control Pre 6.444 0.726 0.257
Control Post 5.000 1.414 0.500
Experimental Pre 6.286 0.951 0.359
Experimental Post 5.714 1.113 0.421
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Figure 11. Mean pre- and post-training scores for control and experimental groups on
Question 1e.
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Table 31. Post Hoc Test — Question 1e

Comparison M Diff t (df = 15) p (Bonf.) Cohen’s d

Control - Experimental -0.286 -0.370 0.718 -0.181

The post hoc test (Table 31) confirmed that the difference in scores between groups was not

statistically significant, t(15) = −0.370, p = 0.718, with a small effect size (d = −0.181). While

both groups declined, the experimental group retained a slight advantage.
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Question 2a A highly significant main effect of time was found, F (1, 14) = 32.810, p < 0.001,

with a very large effect size (ω2 = 0.665), indicating a substantial drop in responses from pre- to

post-training (Table 32). The interaction between time and team was not statistically significant,

F (1, 14) = 0.547, p = 0.471, ω2 = 0.000, suggesting this pattern was similar across both control

and experimental groups.

Table 32. Within-Subjects Effects — Question 2a

Effect df F p ω2

Time 1, 14 32.810 <.001 0.665
Time × Team 1, 14 0.547 0.471 0.000

Between-subjects analysis (Table 33) showed no significant group effect, F (1, 14) = 1.143,

p = 0.304, with a small effect size (ω2 = 0.016), indicating that group assignment alone did not

meaningfully influence the results.

Table 33. Between-Subjects Effects — Question 2a

Effect df F p ω2

Team 1, 14 1.143 0.304 0.016

Descriptive statistics (Table 34) illustrate a sharp decrease in both groups: the control group dropped

from M = 6.444 to M = 4.667, and the experimental group from M = 6.571 to M = 5.286.

This substantial drop, consistent across groups, is visualized in Figure 12.

Table 34. Descriptive Statistics — Question 2a

Group Time Mean SD SE

Control Pre 6.444 0.726 0.257
Control Post 4.667 1.000 0.354
Experimental Pre 6.571 0.535 0.202
Experimental Post 5.286 0.951 0.359
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Figure 12. Mean pre- and post-training scores for control and experimental groups on
Question 2a.

Table 35. Post Hoc Test — Question 2a

Comparison M Diff t (df = 14) p (Bonf.) Cohen’s d

Control - Experimental -0.619 -1.093 0.304 -0.546

Post hoc comparison (Table 35) showed a non-significant difference between groups, t(14) =

−1.093, p = 0.304, with a moderate effect size (d = −0.546). While statistical significance was

not reached, the direction and size of the effect suggest some differential group dynamics worth

further examination.
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Question 2b As shown in Table 36, there was a significant main effect of time, F (1, 15) =

5.137, p = 0.039, with a moderate effect size (ω2 = 0.199), indicating a meaningful drop in

scores from pre- to post-training. The interaction between time and team was not significant,

F (1, 15) = 0.388, p = 0.543, suggesting the pattern was similar across both groups.

Table 36. Within-Subjects Effects — Question 2b

Effect df F p ω2

Time 1, 15 5.137 0.039 0.199
Time × Team 1, 15 0.388 0.543 0.000

The between-subjects analysis (Table 37) revealed no significant group differences, F (1, 15) =

0.123, p = 0.730, ω2 = 0.000.

Table 37. Between-Subjects Effects — Question 2b

Effect df F p ω2

Team 1, 15 0.123 0.730 0.000

Descriptive statistics in Table 38 show that both groups experienced a drop. The control group

declined from M = 6.000 to M = 5.111, while the experimental group went from M = 6.143 to

M = 5.571. These patterns are visualized in Figure 13.

Table 38. Descriptive Statistics — Question 2b

Group Time Mean SD SE

Control Pre 6.000 0.866 0.306
Control Post 5.111 1.364 0.481
Experimental Pre 6.143 0.378 0.143
Experimental Post 5.571 1.272 0.481
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Figure 13. Mean pre- and post-training scores for control and experimental groups on
Question 2b.

Table 39. Post Hoc Test — Question 2b

Comparison M Diff t (df = 15) p (Bonf.) Cohen’s d

Control - Experimental -0.248 -0.352 0.730 -0.176

Post hoc results (Table 39) showed that the group-level difference was not significant, t(15) =

−0.352, p = 0.730, with a small effect size (d = −0.176).

Question 2c As presented in Table 40, the repeated measures ANOVA showed no statistically

significant main effect of time, F (1, 15) = 3.085, p = 0.099, although the effect size was moderate

(ω2 = 0.121), suggesting a possible trend. The interaction between time and team was negligible,

F (1, 15) = 0.045, p = 0.834, with no meaningful effect size (ω2 = 0.000).

Table 40. Within-Subjects Effects — Question 2c

Effect df F p ω2

Time 1, 15 3.085 0.099 0.121
Time × Team 1, 15 0.045 0.834 0.000

Between-subjects differences were not statistically significant either, F (1, 15) = 0.210, p = 0.653,
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as shown in Table 41, and the effect size (ω2 = 0.000) confirms minimal difference due to group.

Table 41. Between-Subjects Effects — Question 2c

Effect df F p ω2

Team 1, 15 0.210 0.653 0.000

Table 42 and Figure 14 present the descriptive trends. The control group showed a decrease from

M = 6.333 to M = 5.889, while the experimental group improved slightly from M = 5.857

to M = 6.000. These movements—though small—align with the moderate within-subjects time

effect noted earlier, suggesting opposite directional changes.

Table 42. Descriptive Statistics — Question 2c

Group Time Mean SD SE

Control Pre 6.333 0.500 0.189
Control Post 5.889 0.928 0.350
Experimental Pre 5.857 0.899 0.340
Experimental Post 6.000 0.816 0.309
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Figure 14. Mean pre- and post-training scores for control and experimental groups on
Question 2c.

Table 43. Post Hoc Test — Question 2c

Comparison M Diff t (df = 15) p (Bonf.) Cohen’s d

Control - Experimental 0.222 0.458 0.653 0.227
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Post hoc testing confirmed the lack of group difference, t(15) = 0.458, p = 0.653, and a small

effect size (d = 0.227) was observed (Table 43).
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Question 6a As shown in Table 44, the repeated measures ANOVA revealed no statistically

significant main effect of time, F (1, 15) = 2.009, p = 0.178, with a small effect size (ω2 = 0.083).

This suggests the training did not result in a reliable overall change in scores for this question.

Additionally, the time-by-group interaction was not significant, F (1, 15) = 0.186, p = 0.672,

indicating no differential effect between groups over time.

Table 44. Within-Subjects Effects — Question 6a

Effect df F p ω2

Time 1, 15 2.009 0.178 0.083
Time × Team 1, 15 0.186 0.672 0.000

As detailed in Table 45, the between-subjects analysis also showed no significant group-level

differences, F (1, 15) = 0.145, p = 0.708, with a negligible effect size (ω2 = 0.000).

Table 45. Between-Subjects Effects — Question 6a

Effect df F p ω2

Team 1, 15 0.145 0.708 0.000

Table 46 and Figure 15 show the mean performance scores for each group. The control group

showed a decline from M = 6.000 to M = 5.333, while the experimental group showed a slight

decrease from M = 5.571 to M = 5.429. Although the changes are small, both moved in the same

downward direction.

Table 46. Descriptive Statistics — Question 6a

Group Time Mean SD SE

Control Pre 6.000 0.816 0.308
Control Post 5.333 1.000 0.377
Experimental Pre 5.571 1.134 0.428
Experimental Post 5.429 0.976 0.369
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Figure 15. Mean pre- and post-training scores for control and experimental groups on
Question 6a.

Table 47. Post Hoc Test — Question 6a

Comparison M Diff t (df = 15) p (Bonf.) Cohen’s d

Control - Experimental 0.190 0.381 0.708 0.194

The post hoc results (see Table 47) suggest that the difference in post-training scores between the

control and experimental groups was not significant (p = 0.708), and the observed effect size

was small (d = 0.194). This aligns with earlier ANOVA results, indicating no meaningful group

differences or strong training impact for this item.

Question 6b The repeated measures ANOVA revealed no significant main effect of time,

F (1, 15) = 0.226, p = 0.641, with a negligible effect size (ω2 = 0.000), as shown in Table 48.

Likewise, the interaction between time and team was not significant, F (1, 15) = 0.399, p = 0.538,

indicating consistent patterns across both groups.

Table 48. Within-Subjects Effects — Question 6b

Effect df F p ω2

Time 1, 15 0.226 0.641 0.000
Time × Team 1, 15 0.399 0.538 0.000
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As shown in Table 49, the between-subjects analysis also yielded no significant effect, F (1, 15) =

0.159, p = 0.695, with no measurable between-group difference (ω2 = 0.000).

Table 49. Between-Subjects Effects — Question 6b

Effect df F p ω2

Team 1, 15 0.159 0.695 0.000

Descriptive statistics (Table 50) show little change in either group. The control group increased

slightly from M = 5.333 to M = 5.556, while the experimental group remained stable from

M = 5.571 to M = 5.429. These trends are visualized in Figure 16 and support the lack of

statistical effects in the ANOVA.

Table 50. Descriptive Statistics — Question 6b

Group Time Mean SD SE

Control Pre 5.333 1.225 0.462
Control Post 5.556 1.667 0.629
Experimental Pre 5.571 1.134 0.428
Experimental Post 5.429 0.787 0.297
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Figure 16. Mean pre- and post-training scores for control and experimental groups on
Question 6b.

Table 51. Post Hoc Test — Question 6b

Comparison M Diff t (df = 15) p (Bonf.) Cohen’s d

Control - Experimental 0.127 0.399 0.695 0.199
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The post hoc comparison between groups confirmed the lack of statistical difference, p = 0.695,

with a very small effect size (d = 0.199), reinforcing the earlier conclusion of minimal group

separation for this question, as shown in (see Table 51).
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Question 6c As shown in Table 52, there was no significant main effect of time, F (1, 15) =

1.227, p = 0.285, with a small effect size (ω2 = 0.027), indicating that training did not produce

a meaningful overall shift in scores. The time-by-group interaction was also not significant,

F (1, 15) = 0.682, p = 0.422, showing no differential change across teams.

Table 52. Within-Subjects Effects — Question 6c

Effect df F p ω2

Time 1, 15 1.227 0.285 0.027
Time × Team 1, 15 0.682 0.422 0.000

Between-subjects effects were also not statistically significant, F (1, 15) = 0.184, p = 0.674, with

negligible group-level differences, as shown in Table 53.

Table 53. Between-Subjects Effects — Question 6c

Effect df F p ω2

Team 1, 15 0.184 0.674 0.000

Table 54 shows that the control group remained steady (M = 6.000 both pre- and post-training),

while the experimental group showed a small decrease (M = 6.000 to M = 5.429). Figure 17

illustrates this modest divergence.

Table 54. Descriptive Statistics — Question 6c

Group Time Mean SD SE

Control Pre 6.000 0.816 0.308
Control Post 6.000 0.816 0.308
Experimental Pre 6.000 0.816 0.308
Experimental Post 5.429 0.787 0.297

121



Pre Post
5

5.5

6

6.5

Time

M
ea

n
Sc

or
e

Control Experimental

Figure 17. Mean pre- and post-training scores for control and experimental groups on
Question 6c.

Table 55. Post Hoc Test — Question 6c

Comparison M Diff t (df = 15) p (Bonf.) Cohen’s d

Control - Experimental 0.190 0.436 0.674 0.218

The post hoc test confirms no statistically significant difference between the groups (p = 0.674),

and the effect size was small (d = 0.218), consistent with the small changes observed descriptively

(see Table 55).

Question 6d As shown in Table 56, there was no significant main effect of time, F (1, 15) =

0.275, p = 0.608, with a negligible effect size (ω2 = 0.000). The interaction between time and

team was also not statistically significant, F (1, 15) = 0.040, p = 0.844, indicating no notable

differential trends across the groups.

Table 56. Within-Subjects Effects — Question 6d

Effect df F p ω2

Time 1, 15 0.275 0.608 0.000
Time × Team 1, 15 0.040 0.844 0.000
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Between-subjects effects were not significant either, F (1, 15) = 0.133, p = 0.720, and the effect

size was zero, confirming minimal overall differences between the control and experimental groups

(Table 57).

Table 57. Between-Subjects Effects — Question 6d

Effect df F p ω2

Team 1, 15 0.133 0.720 0.000

Descriptive statistics (Table 58) show a flat trend: both control and experimental groups had

identical pre- and post-training scores (M = 5.667 and M = 5.571 respectively). These results

are illustrated in Figure 18, where both lines remain nearly horizontal.

Table 58. Descriptive Statistics — Question 6d

Group Time Mean SD SE

Control Pre 5.667 1.000 0.377
Control Post 5.667 1.000 0.377
Experimental Pre 5.571 1.134 0.428
Experimental Post 5.571 1.134 0.428
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Figure 18. Mean pre- and post-training scores for control and experimental groups on
Question 6d.
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Table 59. Post Hoc Test — Question 6d

Comparison M Diff t (df = 15) p (Bonf.) Cohen’s d

Control - Experimental 0.095 0.366 0.720 0.188

The post hoc comparison in Table 59 confirmed the absence of a meaningful difference between

control and experimental groups. The p-value (p = 0.720) and the very small effect size (d = 0.188)

are in line with the flat descriptive and inferential trends observed across the board.
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Appendix 6 - Source code for SBERT

The following script automates the extraction of participant-level SBERT cohesion scores from

raw free-text responses and prepares the results for downstream analysis in JASP. It processes

four input CSV files—each containing participant_id and response columns corresponding to

control and experimental groups, both pre- and post-training. After removing any blank entries, the

script employs the all-MiniLM-L6-v2 sentence transformer model to generate embeddings for each

complete response. For each condition, it computes a cosine similarity matrix and averages the

pairwise similarities to produce a single cohesion score for each participant at each time point.

Next, the script pivots these long-form scores into a wide table, infers each participant’s group

(control vs experimental), and computes pre–post differences (delta_score). The final output, par-

ticipant_scores_wide.csv, contains exactly the columns needed - participant_id, group, pre_score,

post_score, and delta_score - for performing paired Wilcoxon and independent Mann–Whitney U

tests in JASP.

1

2 import pandas as pd

3 import numpy as np

4 from sentence_transformers import SentenceTransformer , util

5

6 # 1. Configuration

7 MODEL_NAME = ’all -MiniLM -L6-v2’

8 dataset = {

9 ’ctrl_pre’: ’data/control -pre.csv ’,

10 ’ctrl_post’: ’data/control -post.csv ’,

11 ’exp_pre’: ’data/experimental -pre.csv ’,

12 ’exp_post’: ’data/experimental -post.csv ’

13 }

14

15 # 2. Initialize SBERT

16 model = SentenceTransformer(MODEL_NAME , device=’cpu’)

17

18 # 3. Compute per -participant SBERT cohesion scores in "long" form

19 records = []

20 for condition , path in dataset.items ():

21 # Load each condition ’s CSV; expect columns: participant_id,

response

22 df = pd.read_csv(path , keep_default_na=False)

23 # Drop blank responses

24 valid = df[df[’response ’].str.strip () != ’’]

25 if valid.empty:

26 continue
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27

28 pids = valid[’participant_id’].tolist ()

29 texts = valid[’response ’].tolist ()

30

31 # Embed all valid responses

32 embs = model.encode(

33 texts ,

34 convert_to_tensor=True ,

35 batch_size=32,

36 show_progress_bar=False

37 )

38

39 # Cosine -similarity matrix

40 sim_mat = util.cos_sim(embs , embs).cpu() .numpy ()

41 np.fill_diagonal(sim_mat , np.nan)

42

43 # Row -wise mean -> one score per participant

44 scores = np.nanmean(sim_mat , axis =1)

45

46 # Record results

47 for pid , score in zip(pids , scores):

48 records.append ({

49 ’participant_id’: pid ,

50 ’condition ’: condition ,

51 ’score’: float(score)

52 })

53

54 # 4. Build a long -form DataFrame

55 df_scores = pd.DataFrame.from_records(records)

56

57 # 5. Pivot to wide form: one column per condition

58 df_wide = df_scores.pivot(index=’participant_id’, columns=’condition ’,

values=’score’)

59

60 # 6. Infer group membership

61 df_wide[’group’] = np.where(df_wide[’ctrl_pre’].notna (), ’control ’, ’

experimental ’)

62

63 # 7. Assemble pre , post , and delta columns

64 df_wide[’pre_score’] = df_wide[’ctrl_pre’].fillna(df_wide[’exp_pre’])

65 df_wide[’post_score’] = df_wide[’ctrl_post’].fillna(df_wide[’exp_post’

])

66 df_wide[’delta_score’] = df_wide[’post_score’] - df_wide[’pre_score ’]

67

68 # 8. Select and reorder for export

69 out = df_wide.reset_index()[[

70 ’participant_id’,
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71 ’group’,

72 ’pre_score’,

73 ’post_score’,

74 ’delta_score’

75 ]]

76

77 # 9. Save wide CSV for JASP

78 out.to_csv(’participant_scores_wide.csv ’, index=False)

79 print(f"Wrote {len(out)} participants to ’participant_scores_wide.csv ’"

)

Listing 1. Source code for data preparation running SBERT against free-text raw data
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Appendix 7 - Checklists for SRQ2

This section reproduces the gold-standard models derived from the exercise scenarios, together

with the checklists used to measure Team Mental Model (TMM) Accuracy for SRQ2 based on

the content of the team-leader reports.

How to Use the Checklists

■ Review team-leader reports - read each of the four reports (Team A/Scenario A, Team

A/Scenario B, Team B/Scenario A, Team B/Scenario B).

■ Apply the relevant checklist - use Checklist A for Scenario A reports and Checklist B for

Scenario B reports.

■ Score each item
– Yes (1 point) - the report clearly and correctly addresses the item.

– Partial (0.5 points) - the report mentions the item but is inaccurate, incomplete, or

vague.

– No (0 points) - the report omits or fully misstates the item.

■ Calculate the total score - sum the item scores to obtain an overall accuracy score for each

report.
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Scenario A: Supply-Chain Attack via VS Code Extension

# Checklist Item Answer Score
1 Correctly identified the Kill Chain phase? 7

2 Correctly identified the operational impact? 2

3 Correctly identified event class? Data breach

4 Correctly identifies the initial vector as a software up-

date/extension issue?

5 Mentions the installation or presence of an unexpect-

ed/malicious service?

6 Identifies unusual network traffic/tunnelling (e.g. to

*.dev.tunnels.ms)?

7 Mentions discovery/use of credentials found locally

(e.g. Notepad++ backup)?

8 Recognises potential or confirmed data exfiltration?

9 Recommends isolation of affected systems (dev ma-

chine and server)?

10 Acknowledges potential compliance implications (e.g.

PCI DSS)?

Total Score (Scenario A):
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Scenario B: Ransomware via Web Shell & VM Escape

# Checklist Item Answer Score
1 Correctly identified the Kill Chain phase? 7

2 Correctly identified the operational impact? 4

3 Correctly identified event class? Ransomware

4 Correctly identifies the initial vector as a web-shell

upload?

5 Mentions the compromise of the hypervisor itself (VM

escape)?

6 Identifies the loss/compromise of critical infrastructure

(e.g. SIEM)?

7 Explicitly advises against immediate shutdown of

compromised server to allow live forensics?

8 Suggests restoring affected VMs from backups as the

primary recovery method?

9 Acknowledges the need to use alternative logging

sources due to SIEM compromise?

10 Mentions patching/rebuilding the compromised hyper-

visor as part of remediation?

Total Score (Scenario B):
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