
THESIS ON INFORMATICS AND SYSTEM ENGINEERING C49

Model-Based Testing of Reactive
Systems

ANDRES KULL

TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology
Department of Computer Control

Dissertation was accepted for the defence of the degree of Doctor of
Philosophy in Engineering on October 15, 2009.

Supervisors: Professor Leo Mõtus
 Department of Computer Control

Tallinn University of Technology

Professor Jüri Vain
Department of Computer Sciences
Tallinn University of Technology

Opponents: Researcher Dr. Margus Veanes
 Microsoft Research, USA

 Professor Johan Lilius
Embedded Systems Laboratory

 Åbo Akademi University, Turku, Finland

Defence of the thesis: December 15, 2009

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and
achievement, submitted for the doctoral degree at Tallinn University of
Technology has not been submitted for any academic degree.

/Andres Kull/

Copyright: Andres Kull, 2009
ISSN 1406-4731
ISBN 978-9985-59-943-3

INFORMAATIKA JA SÜSTEEMITEHNIKA C49

Reaktiivsete süsteemide mudelipõhine
testimine

3

ANDRES KULL

4

Contents

Abstract .. 8
Lühikokkuvõte ... 10
Acknowledgements.. 12
Abbreviations... 13
PART I: OVERVIEW ... 15
1 INTRODUCTION .. 17

1.1 Organisation of thesis.. 17
1.2 Field of research .. 17
1.3 Motivation ... 19
1.4 Objectives of thesis ... 20

2 SCOPE AND RELATED WORK.. 21
2.1 Characteristics of reactive systems.. 21
2.2 Taxonomy of model-based testing .. 22
2.3 Scope summary and related work ... 27

3 GENERATING TESTS FROM DETERMINISTIC MODELS..................... 31
3.1 Generating tests from EFSM using guided model-checking..................... 31
3.2 Generating tests from EFSM incrementally using model checking 33

4 GENERATING TESTS FROM NONDETERMINISTIC MODELS 36
4.1 Synthesis of test purpose-directed reactive planning tester....................... 36
4.2 Case study-based performance evaluation of reactive planning tester...... 38

5 REQUIREMENT-DRIVEN TESTING.. 40
PART II: PRACTICAL RESULTS AND CASE STUDIES............................. 43
6 MOTES – TEST GENERATOR .. 45

6.1 Overview ... 45
6.2 Description of light switch example.. 46
6.3 Creating the IUT model... 49
6.4 Preparing test data ... 51
6.5 Importing the model and test data into MOTES 52
6.6 Defining test purpose (coverage/goal) .. 53
6.7 Choosing the test generation engine.. 55
6.8 Executing the test generation engine... 57

 5

7 CASE STUDIES... 58
7.1 Introduction ... 58
7.2 Testing of Sofia-SIP stack... 59

7.2.1 Overview of IUT ..59
7.2.2 Objectives of case study ...60
7.2.3 System adapter..61
7.2.4 Modelling the IUT..61
7.2.5 Test generation and execution ..64
7.2.6 Test coverage analysis ..64
7.2.7 Objectives evaluation ...66

7.3 Testing controllers of street lighting system ... 67
7.3.1 Overview of IUT ..67
7.3.2 Objectives of case study ...68
7.3.3 System adapter..70
7.3.4 Modelling the IUT..70
7.3.5 Test generation and execution ..73
7.3.6 Comparing test generation performance against manual test

scripting...74
7.3.7 Objectives evaluation ...75

7.5 Summary of case studies ... 77
8 CONCLUSIONS .. 80
REFERENCES .. 82
PART III: RESEARCH PAPERS.. 87

PAPER 1: Ernits, J. P., Kull, A., Raiend, K., Vain, J., Generating tests from
EFSM models using guided model checking and iterated search refinement.
In: Formal Approaches to Software Testing and Runtime Verification: First
Combined International Workshops FATES 2006 and RV 2006, Seattle, WA,
USA, August 15-16, 2006, Revised Selected Papers: Havelund, K., et al.
Berlin: Springer, 2006, (Lecture Notes in Computer Science; 4262), 85-99. . 89
PAPER 2: Ernits, J. P., Kull, A., Raiend, K., Vain, J., Generating TTCN-3 test
cases from EFSM models of reactive software using model checking. In:
Informatik 2006 - Informatik für Menschen: Proceedings: Beiträge der
36.Jahrestagung der Gesellschaft für Informatik e.V.(GI), 2.bis 6.Oktober
2006 in Dresden. (Ed.) Hochberger, Ch.; Liskowsky, R.. Bonn: Köllen, 2006,
(Lecture Notes in Informatics; P-94), 241 - 248. .. 107

 6

PAPER 3: Vain, J., Raiend, K., Kull, A., Ernits, J., Synthesis of test purpose
directed reactive planning tester for nondeterministic systems. In: ASE'07 :
2007 ACM/IEEE International Conference on Automated Software
Engineering, Atlanta, Georgia, November 5-9, 2007, proceedings: 22nd
IEEE/ACM International Conference on Automated Software Engineering.
ACM Press, 2007, 363 - 372. .. 117
PAPER 4: Kull, A., Raiend, K., Vain, J., Kääramees, M., Case Study Based
Performance Evaluation of Reactive Planning Tester. In: CTIT Workshop
Proceedings: 2nd Workshop on Model-based Testing in Practice (MoTiP
2009), June 23, 2009, Enschede, The Netherlands, 2009, 87 – 96. 129
PAPER 5: Ernits, J. P., Kääramees, M., Raiend, K., Kull, A., Requirements-
driven model-based testing of the IP Multimedia Subsystem. In: BEC 2008:
2008 International Biennial Baltic Electronics Conference: Proceedings: 11th
Biennial Baltic Electronics Conference, Tallinn University of Technology,
October 6-8, 2008, Tallinn, Estonia. Tallinn: Tallinn University of
Technology, 2008, 203 - 206. ... 141

LIST OF PUBLICATIONS ... 147
Appendix A: FORMAL Transition LANGUAGE FOR MOTES (MTL) 149
Appendix B: Elulookirjeldus ... 152
Appendix C: Curriculum Vitae.. 154

 7

Abstract

This thesis focuses on the development of model-based testing (MBT)
technology that can be used for testing industrial-scale reactive systems and that
is a reasonably simple for test engineers to use after a short period of study.

MBT is an automation approach for deriving tests automatically from the
model of the implementation under test (IUT). In the domain of reactive
systems the MBT is an automation approach for deriving tests automatically for
functional black box tests of the IUT.

Researchers have been working on reactive systems MBT for the last couple
of decades. Several commercial tools and many academic tools are available.
The benefits of MBT are obvious to many, at least in the research community,
but it has yet to be accepted by the industry. The main reasons for this are the
poor usability (modelling complexity) and weak scalability of the test
generation methods for industrial-scale testing.

The driving force behind my doctoral studies was a desire to create MBT
technology for reactive systems that is easy for ordinary test engineers to use
and that is equal to industrial-scale testing tasks. In order to be accepted by test
engineers and to be easy to learn, the modelling paradigm of the technology
must be well-known and accepted by the software engineering community. My
aim was to develop an MBT technology that allows the IUT to be modelled
using a modelling language as close to UML as possible, since UML is a widely
accepted modelling standard in various branches of the industry.

In carrying out this mission, the thesis proposes several novel methods and
techniques that form its theoretical foundation:

• iterative model checking-based test generation from deterministic
models

• reactive planning tester synthesis for test generation from
nondeterministic models

• requirement-driven testing through model composition
The iterative test generation method is based on explicit state model

checking. It is well known that model checking suffers from state-space
explosions if the complexity of the model increases and/or the goal of model
checking broadens. The iterative model checking based test generation method
builds the tests iteratively by splitting the model checking goal into simpler sub-
goals. In each iteration only a simple sub-goal is solved, and the resulting test
sequence is appended to the sequence generated so far according to the previous
sub-goals. The method is therefore invulnerable to state-space explosions
caused by the complexity of the test goal and allows tests to be generated from
significantly larger and more complex models. Test sequences generated in such
a way are suboptimal only. Splitting the goal into sub-goals can be viewed as
another form of optimisation done either manually by the test engineer or
automatically by the program.

The reactive planning tester-based method of deriving tests for
nondeterministic systems has significant advantages over other known methods

 8

of online nondeterministic systems testing due to its longer and parametrically
adjustable planning horizon. The reactive planning tester is synthesised offline
using reachability analysis of the model. During the online phase the reactive
planning tester finds the suboptimal path to the next test coverage item in the
model. Due to the longer planning horizon the tester meets the defined test goals
significantly sooner than random walk or anti-ant-like algorithms, for example.

Systems testing processes in the industry are usually requirement-driven.
This means that testing should verify whether a particular system requirement
defined in requirements specification or other system specifications (interface
specifications, functional specifications, etc.) is implemented correctly. The
requirement-driven approach in MBT should be supported as early as the
modelling phase using appropriate modelling formalisms. The requirements
should be able to be modelled in a way that later allows parts of the model to be
easily selected as test coverage items belonging to a particular requirement and
a test case for this particular requirement to be generated. The thesis shows how
the requirement-driven approach can be applied to the building of the model of
the IUT using either composition of Uppaal [UPPA] automata or NModel
[JVC+08] model program features.

The principles underlying the development of these novel methods and
techniques have been presented at international conferences and published in
referred journals. A selection of representative papers has been compiled and
attached to this thesis.

The thesis describes the MBT tool that has been developed, MOTES, which
implements novel test generation methods. MOTES is a test generator that
generates test cases (from deterministic models) or reactive planning tester
(from nondeterministic models) in the TTCN-3 language from extended finite
state models (EFSM). The suitability of MOTES technology for industrial-scale
testing tasks has been demonstrated in two case-studies in different branches of
the industry – telecommunications software and telematics controllers.

 9

Lühikokkuvõte

Käesolev doktoritöö esitleb reaktiivsete süsteemide mudelipõhiseks testimiseks
loodud tehnoloogiat, mis on kasutatav tööstuslike testimisülesannete
lahendamiseks igapäevases inseneripraktikas ning tavaliste testiinseneride jaoks
mõistliku pikkusega koolituse käigus lihtsalt omandatav.

Mudelipõhine testimine on testide automatiseerimise meetod, mille puhul
testid tuletatakse automaatselt testitava süsteemi mudelist. Reaktiivsete
süsteemide puhul tähendab mudelipõhine testimine automaatset testide
tuletamist süsteemi funktsionaalseks testimiseks “musta-kasti” meetodil.

Reaktiivsete süsteemide mudelipõhise testimise alaseid teadusuuringuid on
tehtud juba mitme viimase kümnendi jooksul. Välja on töötatud mõned
kaubanduslikud ja hulgaliselt akadeemilisi mudelipõhise testimise vahendeid.
Mudelipõhise testimise plussid võrreldes traditsioonilise testimisega on hästi
teada vähemalt akadeemilistes ringkondades. Vaatamata ilmsetele eelistele ei
ole mudelipõhine testimine leidnud veel aktsepteerimist tööstusringkondades.
Peamisteks põhjusteks on mudelipõhiste tehnoloogiate keeruline kasutatavus ja
nende tehnoloogiate piiratud skaleeruvus suurte tööstuslike testimisülesannete
lahendamiseks.

Minu doktoritöö põhiliseks liikumapanevaks jõuks oli luua reaktiivsete
süsteemide testimiseks niisugune mudelipõhise testimise tehnoloogia, mida
tavalistel testiinseneridel oleks lihtne kasutada ja mis samas skaleeruks hästi ka
tööstuslike testimisülesannete vajadustele. Selleks, et mudelipõhine testimine
lööks kasutajate hulgas läbi, peab ta põhinema üldtunnustatud ja laialt levinud
modelleerimise formalismil. Minu eesmärgiks oli võimaldada kasutajal
modelleerida formalismis, mis oleks võimalikult lähedane UML-le, kuna UML
on levinud ja aktsepteeritud modelleerimiskeel mitmetes tööstusvaldkondades.

Võetud missiooni täitmiseks oli vaja lahendada rida teoreetilisi probleeme.
Doktoritöö esitab mitmeid autori poolt väljatöötatud uudseid meetodeid ja
tehnikaid, mis moodustavad doktoritöö teoreetilise aluse:

• iteratiivsel mudelikontrollil põhinev testide genereerimine
deterministlikest süsteemi mudelitest,

• reaktiivse planeeriva testri sünteesimine mittedeterministlike süsteemide
mudelipõhiseks testimiseks,

• süsteemi nõuetest juhitud mudelipõhine testimine ja nõuete esitamine
nõuete mudelite kompositsioonina.

Doktoritöös esitatud iteratiivne testide genereerimise meetod kasutab explicit
state mudelikontrolli meetodit. On üldtuntud fakt, et mudelikontrolli
põhiprobleemiks on potentsiaalne olekuruumi plahvatus mudeli või
saavutatavuse eesmärgi keerukuse kasvades. Iteratiivsel mudelikontrollil
põhinev testide genereerimise meetod ehitab testi iteratiivselt, lahutades
saavutatavuse eesmärgi lihtsamateks alameesmärkideks. Igal iteratsiooni
sammul lahendatakse ainult üks lihtsam alameesmärk ja leitud testijada
liidetakse varemleitud testijadale. Selle meetodi puhul testieesmärgi keerukuse

 10

tõus testide genereerimise keerukust ei mõjuta ja olekuruumi plahvatuse
tõenäosust ei suurenda.

Reaktiivse planeeriva testri abil testide genereerimine mittedeterministliku
süsteemi testimiseks on märgatavalt efektiivsem muudest teadaolevatest
mittedeterministlike süsteemide on-the-fly testide genereerimise meetoditest,
seda just tänu meetodi pikemale ja parameetritega juhitavale
planeerimishorisondile. Reaktiivselt planeeriv tester sünteesitakse enne testide
täitmist kasutades saavutatavuse analüüsi süsteemi mudelil. Süsteemi testimisel
leiab reaktiivselt planeeriv tester suboptimaalse tee järgmise testikatvuse
elemendini automaatselt. Tänu pikemale planeerimishorisondile saavutab
reaktiivselt planeeriv tester testieesmärgi oluliselt kiiremini kui juhusliku
otsingu või “anti-sipelga” algoritmid.

Süsteemide testimise protsessid on tööstuses enamasti nõuetepõhised. See
tähendab, et testimise ülesandeks on kindlaks teha süsteemi vastavus
spetsifitseeritud nõuetele. Selleks, et kasutada nõuetepõhist testimist
mudelipõhisel testimisel, peaks nõuete spetsiifika olema arvesse võetud juba
modelleerimisnotatsiooni valikul. Nõudeid peab olema võimalik modelleerida
nii, et neid oleks võimalik kasutada saadud mudelil testikatvuskriteeriumitena.
Doktoritöös on esitatud nõuetepõhise testimise tarbeks kasutatav
modelleerimise ja mudelite kompositsiooni põhimõte, mille järgi süsteem
modelleeritakse kui Uppaal [UPPA] automaatide või NModel
[JVC+08]mudelprogrammide kompositsioon.

Loetletud uudsed meetodid ja tehnikad on kantud ette rahvusvahelistel
konverentsidel ning publitseeritud vastavate konverentside väljaannetes. Valik
konverentsiartiklitest on lisatud käesolevasse doktoritöösse.

Doktoritöö kirjeldab MOTES mudelipõhise testimise vahendit, mis
realiseerib töö teoreetilises osas esitatud uudsed meetodid ja tehnikad. MOTES
on testigeneraator, mis genereerib testitava süsteemi käitumist kirjeldavast
deterministlikust laiendatud lõplikust olekumasinast testijadasid või
mittedeterministlikust mudelist reaktiivselt planeeriva testri. Mõlemal juhul on
väljundiks TTCN-3 keeles kodeeritud testiprogramm. MOTES tehnoloogia
rakendatavust tööstuslike testimisülesannete lahendamisel on demonstreeritud
kahel tööstuslikul näiteülesandel, mis esindavad erinevaid tehnoloogia
valdkondi – telekommunikatsiooni tarkvara ja telemaatika kontroller.

 11

Acknowledgements

Writing this doctoral thesis would not have been possible without the help and
support of the kind people around me. Above all, I would like to thank my wife
Sirlis and the rest of my family for tolerating my being busy with the thesis and
for spending too little time with them. I would like to thank my parents, to
whom I am grateful for a wonderful childhood and the values they instilled in
me. My father has been my role model: he earned his PhD at the age of 48, and
I was determined to beat him on that score. At least I’ve equalled it! Thanks,
dad, for the competition!

I would like to thank my research fellows – Kullo Raiend (PhD) from Elvior;
my supervisor, Prof. Jüri Vain; Juhan Ernits (PhD); and Marko Kääramees, all
from Tallinn University of Technology – for our weekly meetings over the past
four years, our joint publications and for their cooperation on a number of
research projects. Without their support, ideas and brainstorming this thesis
would never have been possible. I would like to thank my supervisor Prof. Leo
Mõtus for his support and for thinking outside of the box. His authority and the
promises I gave him in terms of deadlines were vitally important factors in
getting the thesis finished. I would like to acknowledge the financial, academic
and technical support of the Tallinn University of Technology. I would also like
to acknowledge my colleagues in Elvior who have implemented MOTES and
worked on the case studies of the thesis. I would like to thank the ITEA2 D-
MINT project members and project leader Colin Willcock for their valuable
cooperation in applying model-based testing technology in the European
industry and understanding the model-based testing requirements of the
industry. I would like to thank Estonian Enterprises for their financial support of
the Estonian consortium of the D-MINT project.

Last but not least, I would like to thank myself for finally having completed
the thesis! I’ve spent too many years on it, and in its unfinished state it proved a
constant source of anxiety and pressure. I’m happy that at last I have time for
my next personal ‘projects’.

 12

Abbreviations

3GPP 3rd Generation Partnership Project
API Application Programming Interface
ATA Analogue Telephone Adapter
C A programming language
CASE Computer Aided Software Engineering
C# A programming language
C++ A programming language
EFSM Extended Finite State Machine
ETSI European Telecommunication Standards Institute
FBCU Feeder Box Control Unit
FSM Finite State Machine
GSM Global System for Mobile communications
IETF Internet Engineering Task Force
IMS IP Multimedia Subsystem
IP Internet Protocol
IRA Iterated Random Abstraction
IUT Implementation Under Test
LOC Lines of Code
MBT Model-Based Testing
MTL Formal Transition Language for MOTES
RPT Reactive Planning Tester
SA System Adapter or SUT Adapter
SIP Session Initiation Protocol
SUT System (or Software) Under Test
TTCN-3 Testing and Test Control Notation Version 3
UA User Agent
UAC User Agent Client
UAS User Agent Server
UDP User Datagram Protocol
UML Unified Modelling Language
USSD Unstructured Supplementary Service Data
UTP UML Testing Profile
VoIP Voice over IP
XMI XML Metadata Interchange
XML Extensible Markup Language

 13

 14

PART I: OVERVIEW

 15

 16

1 INTRODUCTION

1.1 Organisation of thesis

The most important theoretical contributions of the research are described in the
five research papers attached in PART III of the thesis. Several novel methods
and techniques form the theoretical foundation of the thesis:

• iterative model checking-based test generation from deterministic
models

• reactive planning tester synthesis for test generation from
nondeterministic models

• requirement-driven testing through model composition
The papers are presented in logical and chronological order. This order

represents the history of the research, which started with issues of generating
tests from deterministic models (PAPER 1, PAPER 2). The research continued
with more complex issues of generating tests from nondeterministic models
(PAPER 3, PAPER 4). PAPER 5 proposes feature-by-feature modelling and the
idea of model composition to adapt model-based testing for widely used
requirement-driven testing processes.

PART I includes an introduction to and scope of the thesis and related work.
An overview of the research papers is presented here as well as an unpublished
improvement on the test generation method originally published in PAPER 1.

PART II of the thesis demonstrates the model-based test tool MOTES,
which implements the research methods described in PART I. Two case studies
are described here to demonstrate the feasibility of MOTES technology and its
application in solving industrial-scale model-based testing tasks.

1.2 Field of research

The thesis focuses on model-based functional testing of reactive systems using
the black box testing [BEI95] principle. The task of black box testing (also
known as ‘behavioural testing’ or ‘functional testing’) is to verify that the
implementation under test (IUT) conforms to the specifications. The IUT is
viewed as a black box which transforms input into output according to its
specifications. In automated black box testing the IUT is executed against the
test tool, which acts as the environment for the IUT. The test tool provides input
for the IUT and examines the actual output against that expected. Black box
tests can be automated by the scripts that are executed by the test tool. Scripts
can be implemented in general-purpose programming languages like Java
[JAVA], in scripting languages like Perl [PERL], in test-dedicated languages
like TTCN-3 [TTCN] and more.

Although script-based automation increases black box testing productivity
and tests repeatability in regression tests, practitioners have experienced serious
problems in traditional script-based black box testing:

 17

• Test engineers are rarely able to create a sufficient amount of test
scripts manually to achieve adequate test coverage. Manual scripting is
a time-consuming activity and involves an effort comparable to
implementing the IUT itself.

• In industrial projects the amount of test scripts may increase
enormously. In the systems maintenance phase, the regression tests are
used to verify that the old features of the IUT are still working after the
implementation is changed. The IUT changes which affect its external
interfaces are the reason why test scripts should be modified
accordingly. In the case of a considerable number of legacy test scripts,
maintenance costs may prove unacceptably high.

• The high maintenance costs of test scripts is the reason why test
coverage of legacy test suites decreases over time, since only subsets of
existing test scripts tend to be updated.

Model-based testing (MBT) refers to the automation of software black box
testing where the test cases (test scripts) are derived, in whole or in part, from a
model that describes the expected behaviour of the IUT [UL06]. The MBT
workflow consists of the following primary steps:

• The external behaviour of the IUT is modelled according to the relevant

specifications of the IUT. The model presents the correct expected
behaviour of the IUT.

• The test purposes (test goals) are defined by the test engineer. The tests
are always generated for particular test purposes that define the scope
and coverage of the generated tests.

• The tests are generated automatically from the IUT model by a test
generation tool using the test purposes.

• The generated tests are executed against the IUT to verify its
conformity to the model.

MBT has the following benefits compared to traditional script-based black box
testing:

• Modelling of the IUT for testing purposes has a similar effect on the

quality of the IUT specification as the modelling of the IUT does on
design and implementation purposes – it helps detect possible
inconsistencies and ambiguities in the specification before actual
testing.

 18

• Automatic test generation is time-effective and cost-effective
[PPW+05]. After creating the IUT model and defining the test goals, the
remaining test generation can be fully automatic.

• Automatic test generation gives better test coverage than manually

created tests [UTT05]. Tests can be created from an IUT model for
many different test goals simply by defining the new test goal and
generating new tests just by pressing a button. In this way, tests for
different use cases can easily be generated from the same model. This is
not feasible with manually created tests: implementing all of them
manually is normally too costly.

• The maintainability of legacy tests improves. After updates in the
behaviour or interfaces of the IUT there is no need to go through a huge
number of legacy tests to update them accordingly. Updating the model
alone is enough, and all tests can then be regenerated automatically
from the model.

Considerable research has been done into MBT and many relatively mature
prototype academic tools and a number of commercial tools are already
available.

The transfer of the results of research into MBT to practical application has
met with various problems. Many research tools use modelling formalisms
which are different from those adopted in the industry for model-based design
and development. This is partly because the models in design and development
can be semi-formal, whereas an automatic MBT tool can only work on
completely formal models. The difficulties of using formal languages for
modelling IUTs have delayed their use in the industry. Another restriction in the
practical use of MBT tools is the size and complexity of the models in the
industry and the poor scalability of MBT tools in supporting them.

1.3 Motivation

With the increasing penetration of software-intensive systems into our everyday
lives, the requirements of system functionalities and features have increased. At
the same time, the requirements of system quality and reliability have also
increased. With a growing number of requirements, the complexity of software-
intensive systems is likewise growing. This is combined with increasing error-
proneness, which is related to shortened development times.

The need to develop high-quality applications in a shorter time and at a
lower cost requires more structured and automated analysis, design, and testing
techniques. Automated testing techniques are more important and add more
value to products and services delivered to the market as rapidly as possible,
with minimal risks. Test automation becomes more vital in maintaining a
technological edge and controlling costs.

 19

According to the Journal of Information Technology Education [SZF+04],
companies have allocated more than 40% of their product development time to
testing. A NIST study in the USA in 2002 [NIST] showed that more than 59.5
billion dollars is lost every year as a result of quality problems in software
applications, such as capabilities that do not reflect business needs, recurrent
stability problems, errors, and crashes that sometimes lead to heavy business
losses.

This explains why research on increasing testing effectiveness can lead to
significant cost-saving effects.

1.4 Objectives of thesis

The research objectives of the thesis are as follows:

• To develop a novel, well-scalable method for generating tests from

deterministic EFSM (Extended Finite State Machine) models of the
IUT; to develop the test generator implementing the method; and to
evaluate the feasibility of the method and the test generator in
industrial-scale case studies.

• To develop a novel, well-scalable method for generating tests from
nondeterministic EFSM models of the IUT which, in online testing,
achieves test goals faster than any known online testing method; and
to develop the test generator implementing the method; to evaluate
the feasibility of the method and test generator in industrial-scale
case studies.

The research method used in the thesis is predominantly experimental and
constructive, and the focus of the thesis is therefore practical rather than
theoretical. The solutions to the problems listed above are constructed using
incremental development cycles followed by empirical evaluations.

 20

2 SCOPE AND RELATED WORK

2.1 Characteristics of reactive systems

Each model-based testing approach is highly dependent on the characteristics of
the IUT. These characteristics define the suitable modelling paradigms for each
kind of IUT. In this thesis the MBT is applied for the testing of reactive
systems. Reactive systems are systems which must continually respond to the
stimuli from their environment. As such, the computations of the reactive
system are driven by the stimuli received from the environment. In response to
the stimuli, the IUT changes its internal state and produces responses which are
sent back to the environment [HEL+05]. Examples of reactive systems include
controllers in branches of industry like telecommunications, automotives,
avionics and transport. Most real-time systems include embedded reactive
software. Reactive systems are often critical to safety and must be thoroughly
tested to ensure that they meet specific functional and non-functional
requirements. Since the number of potential input sequences that reactive
systems must handle is infinite, a great deal of testing is needed to be sure that
the system behaves as expected.

Software embedded in reactive systems has important characteristics that
should be taken into account in MBT methods:

• Continuous execution – typical reactive software should never stop
functioning

• Concurrency inside the software to handle concurrent processes in the
environment

• Asynchronous communication between software components internally
and between the components of the environment

• History-based behaviour – reactions to stimuli do not depend on current
stimuli alone but also on the history of past stimuli

• Time-dependent behaviour – behaviour depends on the order of stimuli,
the time intervals between consequent stimuli, and absolute time

• Multiple acceptable outputs on the same stimuli (output
nondeterminism) are possible due to the concurrency and race
conditions inside the reactive system

 21

2.2 Taxonomy of model-based testing

Model-based testing is a large domain. The term ‘model-based testing’ is
widely used, with slightly different meanings. Surveys on different model-based
testing approaches are presented in [BJK+05], [UTT05], [UL06], [UPL06].

In this thesis only a small proportion of the MBT field is covered. To place
the thesis in the context of the MBT landscape as a whole, the framework of
model-based testing taxonomy introduced in [UPL06] is used.

The taxonomy of MBT includes three general classes: the model, test
generation and test execution. Each class is divided into categories. The model-
related categories are subject, independence, characteristics and paradigm. The
test generation class is split into test selection criteria and technology, while the
test execution is divided into execution options. See Figure 1.

Figu

Overview of the Taxonomy for MBT in [UPL06]

The subject defines what is modelled. The subject can be the intended behaviour
of the IUT or the possible behaviour of the environment of the IUT, or a combination
of the two.

re 1:

Scope of thesis:
The intended behaviour of the IUT is the subject in this
research. The model presents the expected correct
behaviour of the IUT, which acts as the ‘criterion of
truth’.

 22

The model f iour of the
IUT in its i ox). This
approach ass interfaces.
The model e the behaviour of the IUT as an expected reaction observed

opment

or IUT black box testing expresses the intended behav
nterfaces as seen from the outside of the IUT (black b
umes that the IUT is controllable and observable via its
xpresses

in the observable interfaces to the external stimuli received by the controllable
interfaces. This explains why the design model of system implementation
cannot be used as such for black box testing purposes. Although the sources of
the models for design and test purposes are the same, they model different
aspects of the systems for different purposes. The first concentrates on the inner
architecture and behaviour of implementation. The second concentrates solely
on external behaviour, which is outside the controllable and observable.

The independence aspect reflects the source of the model. If the model is
designed directly from informal requirements specifically for testing purposes
by a team that is independent of IUT developers, there will be a high degree of
independence between the models created for testing and devel
purposes, and the testing is more likely to discover significant errors.
Independence between models for testing and development purposes increases
the chance that during modelling for testing purposes ambiguities will be able to
be detected in the IUT specifications as a side-effect of the modelling. Reusing
too many existing development models in creating models for testing purposes
can weaken the independence of the test suite and reduce its capabilities to
detect implementation errors.

Scope of thesis:
The independence aspect of the model is beyond the
scope of this thesis.
In the context of this research it is important that the
model of the IUT for black box testing purposes does
exist, but it is unimportant whether the model was
created independently of the development model by an
independent team.

The charac l that are
dependent o s relate to
nondetermin ation of timing issues and to the continuous or
event-discrete nature of the model and the IUT.

re the input of the model can
generate many alternative outputs in the current state of the model.

teristics aspect describes the properties of the mode
n the characteristics of the IUT. These characteristic
ism, to the incorpor

• Deterministic models are those where the model’s output is

deterministically defined by the model input and the current state.
Nondeterministic models are those whe

Nondeterminism stems partially from the internal parallel processes of
the IUT, timing and hardware-related asynchronous processes. Other
sources of nondeterminism are the higher abstraction level of the model

 23

compared to IUT implementation and the ambiguities in the
specifications of the IUT.

Scope of thesis:
Both deterministic and nondeterministic models fall
within the scope of this research.

• Tim ts on the

model. In general, the timing correctness of reactive systems is an
portant issue to test.

ed models are used to express the real-time constrain

im

Scope of thesis:
Systems with hard real-time constraints are beyond the
scope of this thesis. A timed model with time
constraints is not used. Only timers and timeouts are
used in the model to detect missing or delayed events
in the IUT.

• The

model can be discrete, continuous or a mixture of both.

Scope of thesis:
The assumption is that the model is discrete. The
model receives its input events at discrete time
moments and also produces output events at discrete
time moments.

The paradig f creating
it. Various igms are available. In the modelling of reactive
systems the most commonly used modelling paradigms are transition-based

nsitions represent the actions or
operations of the system. Textual information is used to express the

•

ons attached to transitions.
EFSM is a more compact state machine presentation than FSM, with

m aspect reflects the style of the model and the notation o
modelling parad

ones. These are most natural for presenting the state-based behaviour of the IUT
and the reactive relationships between IUT inputs and outputs. Typically
different state machine notations are used to model reactive systems. Examples
of transition-based modelling notations are:

• Finite state machine (FSM) is a notation where the nodes represent the
states of the system and the tra

input-output relationship on the transitions.

Extended finite state machine (EFSM) is FSM with variables, guard
conditions and variable assignment operati

improved expression power.

 24

•
FSMs with features that increase the

expressive power at the next level. Parallel and hierarchical states are

Statecharts (e.g. UML State Machines [UML], and STATEMATE
Statecharts [HN96]) are E

represented on Statecharts.

Scope of thesis: EFSMs are used to model the IUT.

The test selection criteria aspect describes the different test selection criteria
used in test g

verage in terms of model structural elements such as
states and transitions.

statements, decisions,
loops and path coverage [MM63].

•

efine or use data variables.
Examples of data-flow oriented coverage criteria are all

•

es of
transition-based coverage are all paths, all transitions and

• Data co

input da often used data coverage criteria
are:

boundaries of the input domain [KPL 04].

97].

• Req e
requirem

eneration.

• Structural model coverage is a test selection criterion that specifies the

intended test co

• Control-flow oriented coverage criteria for models are derived

from similar code coverage criteria like

Data-flow oriented coverage criteria attempt to cover the
control flow graph elements that d

definition−use-pairs, all definitions and all uses [BEI95].

Transition-based coverage criteria define the transitions of the
model that should be visited by generated tests. Exampl

selected transitions [UL06].

verage is a test selection criterion that specifies the intended test
ta coverage. The three most

• Boundary value criteria select test input values at the

+

• Statistical data coverage criteria select test input values that
follow a certain statistical distribution [HOW

• Pair-wise testing criteria select test input values so that all pairs
of input values are tested [BG02].

uir ments coverage: this aims to generate tests so that all of the
ents of the IUT are tested [UL06].

 25

• Explicit test case specification: this is test selection by the test engineer,
who explicitly defines the test objectives of the model. The notation

sed to express the test objectives may be the same as the notation used

•
other

xample is to use a statistical usage model in addition to the behavioural

•
orm of a fault model.

u
for the model [UPL06]. Notations commonly used for test objectives
include FSM, UML Testing Profile (UTP) [UTP], regular expressions,
temporal logic formulas, constraints and Markov chains [JUS08].

Random and stochastic criteria: a typical approach is to use a Markov
chain [MT09] to specify the expected IUT usage profile. An
e
model of the IUT [CLP08].

Fault-based criteria: these rely on knowledge of typically occurring
faults, often designed in the f

Scope of thesis:
Transition-based structural model coverage criteria are
used for test selection. Requirements-coverage test
selection is implemented by defining the requirements
coverage using structural coverage over the model
elements involved in modelling the requirement.

The test ge nderlying
technologies

 manually.

neration technology paradigm describes the different u
used in MBT methods:

• Manual/Automatic: tests can be generated automatically by test
generation tools or developed

Scope of thesis:
In the thesis the control flow of the tests is generated
automatically, while the test data used by the tests is
prepared manually.

• Ran mpling the

inpu onkey tests).

the Chinese Postman algorithm
J73], which covers each arc at least once.

dom generation: random generation of tests is done by sa
t space of a system (m

• Graph search algorithms: dedicated graph search algorithms include

node or arc coverage algorithms such as
[E

Scope of thesis:
Graph search algorithms and reachability analysis are
used in a novel method to synthesise a reactive
planning tester for testing nondeterministic systems.

 26

• Mod verify the
prop e general
idea rst specify the

el checking: model checking is a technology used to
erties of a system using reachability analysis [CGP99]. Th
 of test case generation with a model checker is to fi

test case in terms of reachability properties e.g. “eventually, a certain
state is reached or a certain transition fires”. A model checker then
yields traces which reach the given state or which eventually make the
transition fire. Different model checking techniques exist e.g. explicit
state model checking and symbolic model checking.

Scope of thesis:
The explicit state model checking is applied to test
generation for deterministic systems.

• Sym to run an

exec raints instead of single input
alues to generate traces [MA00]. To derive test cases these traces are

•
an be used in test generation in

 similar way to model checkers, with a theorem prover replacing the

•
execution (offline test generation) or simultaneously

ith it (online test generation). The term ‘on-the-fly’ is often used for

bolic execution: the idea behind symbolic execution is
utable model with sets of input const

v
instantiated with concrete input values

Theorem proving: this is used to check the satisfiability of formulas in
the models [Duf91]. Theorem provers c
a
model checker.

Online/offline test generation defines whether the tests are generated in
advance of test
w
online test generation. Offline test generation is mostly used to generate
tests for deterministic IUT, while on-the-fly generation is mostly used
with nondeterministic IUT.

Scope of thesis:
Offline test generation is used to generate tests for
deterministic systems.
A mixture of offline and online test generation is used
to generate tests for nondeterministic systems.

2.3 Scope s

The scope of as a whole in

of model-based testing taxonomy.
es an overview of the work related

fications, et al.). Only the expected (correct) behaviour of the IUT

ummary and related work

 this thesis was extracted from the MBT landscape
the previous section using the framework

his section summarises the scope and providT
to this scope.

Tests are generated from the model of the IUT. The model is derived for
testing purposes from the specifications of the IUT (requirements specifications,
interface speci

 27

is

r a test has been successful or not. It is used
by

 approach for nondeterministic systems
wh

iour of the IUT
and

ts.

al modelling language, FSM, EFSM and
Sta

l programming languages. They have the expression power that
ena

modelled. It is assumed in the thesis that the model of the IUT can be either
deterministic or nondeterministic.

From the deterministic model of the IUT, test cases with the test oracle are
generated offline and executed online against the IUT. A test oracle is a
mechanism for determining whethe

 comparing the output(s) of the system under testing, (for a given test case
input), to the outputs that the oracle determines the product should have. Such
offline-generated test cases implement a test sequence that covers the IUT
according to the test coverage defined by the user. Many MBT solutions are
restricted to generating the test from deterministic models only. The following
model-based testing tools fall into this category: Conformiq Qtronic [Hui07],
Leirios Test Generator [BBC+06] (marketed as Smartesting), Agatha [GGR+06],
SpecExplorer [VCG+08], NModel [JVC+08], ATG [GMS+07], MiLEST
[JUS08], and Reactis Tester [REAC].

Nondeterminism is an essential characteristic of reactive systems, and
working solely with deterministic models leads to excessive narrowing of the
testing field. This thesis proposes an

ere the reactive planning tester is generated offline from the nondeterministic
model of the IUT. The reactive planning tester is executed online against the
IUT. It is the task of the reactive planning tester to generate tests on the fly,
taking into account the nondeterministic responses from the IUT and the
intended test coverage defined by the user. Other tools providing on-the-fly test
generation for the testing of nondeterministic systems are SpecExplorer
[VCG+08], NModel [JVC+08], and Uppaal TRON [LMN+05].

This thesis focuses on IUT with soft real-time properties only. Hard real-
time constraints and performance testing are beyond the scope of the thesis. In
the context of the thesis only the correct externally visible behav

 the order of events are important. Timers and timeouts are represented in
the IUT model to denote missing or delayed events from the IUT and to present
delays in the test sequences.

It is assumed in the thesis that the model of the IUT is discrete. The model
receives its input events at discrete time moments and also produces output
events at discrete time momen

EFSM as a subset of a UML state machine is used for modelling the IUT in
the thesis. The following modelling notations were under consideration in the
early stages of research: textu

techarts.
Textual modelling languages such as Spec# (a modelling language for

SpecExplorer [VCG+08]) and C# (a modelling language for NModel [JVC+08]),
are high-leve

bles the modelling of almost any aspects of the system at a very detailed
level. Textual modelling languages are hard for test engineers with limited
programming skills to learn. They lack graphical relationships between model
components.

 28

FSMs have received extensive theoretical study by the model-based testing
community. Researchers have been working on FSM test generation algorithms
sin

 is widely accepted in the industry.
Un

 making it a better choice than FSM. The benefit
of

ser-defined model elements
(co

tisfy the test sequences are
pre

ce the early 1960s. Several complete test generation methods have been
invented for generating tests that guarantee the IUT implementation identity
with the corresponding FSM model. Those algorithms are not typically used in
industrial practice because they are too restrictive in that they make strong
assumptions about the model and the IUT. FSMs lack the expression power
required to model industrial-scale systems. Serious models built in FSM grow
to be huge and lack readability. NModel [JVC+08], for example, supports FSM
models in addition to C# model programs.

Statecharts [HN96] is a state machine with hierarchical and parallel states. It
is a powerful state machine notation which

fortunately, test generation from Statecharts presents many obstacles which
are hard to overcome due to the existence of parallel states. Algorithms are
available for flattening the Statecharts [Was04], [KBC05], but due to this
flattening the traceability from generated tests back to the original model
becomes difficult. Tracing generated tests back to the model is urgently needed
during test execution to identify the aspects of the model that implementation
violates. Statecharts modelling notation is used with some limitations in Qtronic
[Hui07] and ATG [GMS+07].

EFSM has weaker expression power compared to the Statecharts. EFSM is a
compact presentation of FSM,

EFSM as a graphical presentation over textual modelling notations is that it is
more readable and understandable, but there are still people who prefer only
textual presentations. The choice of the modelling language can be considered a
matter of taste. EFSM, like FSM, is a theoretically well studied notation. There
are a large number of tools and techniques for manipulating EFSMs. The
availability of model checking tools for experimenting with test generation from
EFSM was one of the reasons for its selection for the modelling notation in this
research. EFSMs have gained wide acceptance in software modelling [Ho02]
and are used as semantic models for specification languages such as Statecharts
and UML state machines. The timed automata notation used by the Uppaal
TRON [LMN+05] is an extension of EFSM also.

Model structural coverage criteria are used for test selection, which is based
on finding transition sequences that cover u

verage items). Tests are generated according to the following test coverage
criteria: selected states, selected transitions, all transitions, all states and all
transition pairs. The requirements coverage criterion is implemented by
combining the structural coverage items. Test selection based on model
structural coverage criteria is used also by Qtronic [Hui07], Leirios [BBC+06],
Agatha [GGR+06], and Uppaal TRON [LMN+05].

Test sequences (test control flow) are generated from the model
automatically, but the test data instances that sa

pared manually in the approach proposed in this thesis. Automatic
generation of test data instances is implemented in Qtronic [Hui07], Agatha

 29

[GGR+06], SpecExplorer [VCG+08], NModel [JVC+08], MiLEST [JUS08], and
Reactis Tester [REAC] in addition to the generation of test sequences.

Explicit state model checking is used for offline test generation from
deterministic models. In this research, the Uppaal Cora [UpCo] model checker
is

olic and bounded model checking;

ed model checking.
App in

items is a n te
mo

deterministic models. The
me

Test assessment is
car

used as a test generation engine. Using explicit state model checking for test
generation is not a new idea [HMR04] – the most commonly used model
checkers in the context of testing are:

• explicit state model checker SPIN (Simple Promela Interpreter)
[Hol97];

• Symbolic Analysis Laboratory SAL [MOR+04], which supports
both symb

• symbolic model checker SMV [McM92] and its derivative NuSMV
[CCG+99], which support symbolic and bound

ly g explicit state model checking iteratively over the set of coverage
ovel approach in this thesis and outperforms ‘standard’ explicit sta

del checking-based test generation in scalability.
A novel graph search and reachability algorithm is used to synthesise a

reactive planning tester for test generation from non
thod outperforms online test generation methods which rely on random

choice, such as TorX [BFV+99], Uppal TRON [LMN+05] and SpecExplorer
[VCG+08], and anti-ant heuristic-based state-space exploration methods
introduced in [LL05] and used in [VRC06] because the reactive planning tester
results in shorter tests due to the longer planning horizon [PAPER 4]. A mixture
of offline and online test generation is used. In the offline phase the reactive
planning tester is synthesised from the model, while in the online phase the
tester is executed. It autonomously finds a sub-optimal (in terms of test
sequence length) path that traverses the test coverage items.

The test assessment algorithm is derived from the model of the IUT that
expresses the expected (correct) behaviour of the system.

ried out automatically by the generated TTCN-3 test cases in the online
phase.

 30

3 GENERATING TESTS FROM DETERMINISTIC
MODELS
3.1 Generating tests from EFSM using guided model-checking

The theoretical contribution of the thesis to generate tests from deterministic
EFSM is presented in PAPER 1 and PAPER 2. The papers address test
generation from the deterministic model of the IUT using model checking.
PAPER 1 describes the test generation method and PAPER 2 describes the
implementation of the method.

The first paper is entitled “Generating tests from EFSM models using guided
model checking and iterated search refinement” [PAPER 1]. The paper was
written by Juhan Ernits, Kullo Raiend, Jüri Vain and the author of this thesis. It
was presented at the First Combined International Workshops FATES 2006 and
RV 2006 in Seattle, USA, in August 2006.

The paper describes a method for generating test sequences from the models
of the IUT using the guided model checker Uppaal Cora [UpCo]. The IUT is
modelled using EFSM modelling notation. The motivation to work with EFSMs
was justified because the specifications provided in terms of (for example)
suitably restricted UML Statecharts can be converted into the equivalent
EFSMs, and EFSMs provide a semantically well-defined model representation
that can be applied to test generation. The algorithms for searching test
sequences are relatively simple if the software is modelled using finite state
machines (FSM), because FSM does not have variables and guard conditions,
unlike EFSM. The existence of variables and guard conditions makes the search
of test sequences much more complex. This complexity is caused by the large
number of value combinations the variables can have and by the need to satisfy
guard conditions on transitions. A well-known option for generating tests from
EFSMs is to use the search machinery provided out of the box by model
checkers [CGP99]. With model checkers the coverage of a test case is specified
using reachability properties on the model. The model checker solves the
reachability task and generates a witness trace that can be transformed into an
abstract test sequence satisfying the specified test coverage criteria. The abstract
test sequence can be further encoded as executable test code.

The test generation method presented in the paper allows for the
specification of various structural test coverage criteria in EFSM – for example,
selected states/transitions, all transitions and all transition pairs. The paper
proposes a method that combines the techniques of model construction with a
novel method of reachability search in model checking which we have named
iterated random abstraction (IRA). The problem of generating test sequences is
formulated as a bounded reachability problem and solved through model
checking.

Model checking [BJK+05] is a state-space exploration-based method. The
critical factor in space exploration-based methods is scalability i.e. the ability to

 31

handle the exponential growth of the search state-space. One example of an
issue where scalability quickly becomes acute is generating tests according to
structural test coverage criteria that result in long witness traces – for example,
all transitions test coverage or all possible subsequences of transitions of length
k > 1.

The paper describes a method of constructing Uppaal [UPPA] models to
achieve test sequences that satisfy the test coverage criteria and experiments
with the search options of Uppaal to achieve test sequences that are suboptimal
in terms of length. The paper shows how guiding the search with cost variables
influences the lengths and required amount of memory of test generation. The
authors apply the novel bitstate hashing state-space reduction-based iterated
random abstraction method to shorten the length of the test sequences with
respect to the length gained using a depth-first search. In fact, the method
merges search-guiding with the iterated random abstractions to reduce the
lengths of the generated test sequences. As a result, the scalability of applying
explicit state model checking for test generation increases. Uppaal and its
guided counterpart Uppaal Cora [UpCo] were used because they enabled the
influence of guiding and iterated random abstraction in the context of test
generation to be demonstrated.

The test generation method and different search strategies were compared by
applying them to a stopwatch and INRES protocol [Hog91] case studies. The
authors carried out a comparison of different search strategies on a stopwatch
model. The comparison confirmed what has previously been stated: that explicit
state model checking does not scale well for test sequence generation purposes,
as breadth-first searches, which would yield a short sequence, run out of
memory with simple models and depth-first searches produce very long
sequences while consuming large amounts of memory as the model becomes
more complex. A bitstate hashing-based iterated random abstraction method for
checking reachability proved more scalable for test generation than the
traditional search strategies used in model checking. Additionally, extending the
EFSM model with guiding cost expressions yielded better results, and some
heuristic tuning of the cost expressions drastically improved the results.

The most important contribution of the paper is the proof it presents of the
concept of applying guided model checking in conjunction with the iterated
random abstraction method to generate suboptimal test sequences.
Experiments have shown that the lengths of test sequences generated using
explicit state model checking can be improved by combining guiding and
iterated random abstractions.

The second paper, entitled “Generating TTCN-3 test cases from EFSM
models of reactive software using model checking” [PAPER 2], is a practical
continuation of the studies reported in PAPER1. It describes a test generation
tool that implements the method. The paper was written by Juhan Ernits, Kullo
Raiend, Jüri Vain and the author of this thesis. The paper was presented at the

 32

MOTES 2006 conference as part of Beiträge der 36.Jahrestagung der
Gesellschaft für Informatik in Dresden, Germany, in October 2006.

The paper describes the architecture and workflow of the model-based
testing tool for the generation of executable TTCN-3 [GHR+03] test cases from
a deterministic, strongly connected system model using the Uppaal Cora
[UpCo] model checker. The test cases are generated for black box testing of the
reactive IUT. In order to specify the observable behaviour of the IUT, the
formal transition language for EFSM [Appendix A] is defined. This approach
allows the user to specify various structural test coverage criteria of EFSMs –
for example, selected states/transitions, all transitions and all transition pairs.
The Uppaal model is constructed from the model of the IUT and a coverage
criterion. Uppaal Cora is used to find an abstract test sequence that is
suboptimal in terms of length. The problem of generating test sequences is
formulated as a bounded reachability problem and solved by the Uppaal Cora
model checker. When a model checker solves a reachability task it generates a
witness trace that corresponds to an abstract test sequence. The abstract test
sequence is further encoded to test code in the TTCN-3 language. TTCN-3 was
selected as the output because it is a dedicated language for testing purposes, it
is standardised, and it is widely accepted in the software testing industry
(especially so in telecommunications). The rules for transforming the abstract
test sequences to TTCN-3 are presented. In the approach the test cases are
generated offline i.e. test cases are generated from the model of the IUT before
the tests are run.

The most important contribution of the paper lies in the value of proposing
the complete procedure of transforming a formal IUT model into executable test
code that satisfies user defined structural coverage criteria.

In the paper the test generator tool does not yet have a name. It was later
dubbed ‘MOTES’ after the name of the conference at which the implementation
principles were published.

3.2 Generating tests from EFSM incrementally using model checking

The test generation method which was presented in PAPER 1 and which was
implemented according to the test tool architecture and workflow presented in
PAPER 2 suffers from two issues that prevent it from being applied without
improvements for industrial-scale applications testing.

First, the method that relies on explicit state model checking suffers from the
state-space explosion. This is a common problem in model checking. The
method works well in experiments with small models and simple test coverage
criteria, as reported in PAPER 1.

The appearance of the state-space explosion depends on the size of the
model and the complexity of the reachability problem to be solved. Having
implemented the initial tool it was possible to experiment with industrial-scale
models, and the results were not encouraging.

Second, defining the reachability problem as a conjunction of the test
coverage items and solving the reachability problem by model checking

 33

provides the shortest test sequence through all of the coverage items that the
specific model-checker can find. With this algorithm the order and amount of
coverage items in the test sequence is out of the control of the test engineer. The
model checker finds a test sequence that covers all of the coverage items in an
order that depends on the search strategy of the model checker. In many cases
this reduces the flexibility of defining test goals. Often test engineers want to
generate tests according to more complex scenarios – for example, first
covering item A and then B, then covering items C and D in any order and
finally covering A and then B again.

To overcome these issues, the method introduced in PAPER 1 was improved
by using model checking incrementally in test generation. The core idea of
incremental model checking lies in splitting the model checking problem into
sub-problems and solving the sub-problems one by one, incrementally. Instead
of immediately solving a reachability problem formulated as a conjunction of
test coverage items, a set of coverage items is serialised and the reachability
problem is solved individually for each coverage item in the set, one by one.

The main advantage of incremental model checking over the original method
is its better scalability. The original method uses a conjunction of test coverage
items as a reachability problem. Each additional item in the conjunction makes
solving the reachability problem harder because the model-checker has to find a
trace that satisfies all of the items in the conjunction. An improved method with
incremental model checking solves the reachability problem of only one
coverage item in each model checking iteration. This means that in contrast to
the original method, the complexity of the reachability task no longer increases
exponentially with the number of coverage items. Instead, the complexity of the
method with incremental model checking is only linear in the number of
coverage items. Contemporary model checkers can solve the reachability
problem of only one coverage item on quite large models. More extensive
measurements are needed to make any quantitative conclusions about the limits
of the scalability of the method. Industrial-scale case studies performed with the
MOTES test generator, which implements incremental model checking-based
test generation, have yet to witness any issues caused by the state-space
explosion.

The second advantage of incremental model checking over the original
method is better control over test coverage. With the original method the model
checker decides the order in which it visits the test coverage items. It is not
possible to control how many times and in what order the test coverage items
are visited. The incremental method defines the test coverage as an ordered set
of coverage items where the order of the coverage items is defined using a
regular expression with interleaving parallelism throughout the coverage items.
For instance, the regular expression <A; B; (C || D); A; B> defines
the following order of traversing coverage items A, B, C, and D. The test
generation starts with the solving of the reachability problem of coverage item
A from the initial state of the model. Next, the test generation increment starts
from the state reached after reaching coverage item A and ends when test

 34

coverage item B is reached. Next, the reachability task for C and D is solved by
model checking, finding the test sequence starting from the state after reaching
B and ending the state after covering both C and D. Next, the test sequence from
the current state to reach coverage item A is found and, finally, the test sequence
from the current state to reach coverage item B is found. As a result of
incremental model checking, the user can generate complex test scenarios
throughout the model. This feature of the method is an essential prerequisite for
using the method in the requirement-driven test generation process in defining
complex test coverage criteria for complex system requirements using structural
test coverage criteria. It makes it possible to use the method in generating tests
for industrial-scale applications, as demonstrated in the case studies in Chapter
7.

 35

4 GENERATING TESTS FROM NONDETERMINISTIC
MODELS

The theoretical contribution of this thesis in generating tests from
nondeterministic EFSM is presented in PAPER 3 and PAPER 4.

4.1 Synthesis of test purpose-directed reactive planning tester

The third paper is entitled “Synthesis of test purpose directed reactive
planning tester for nondeterministic systems” [PAPER 3]. The authors of
the paper were Jüri Vain, Kullo Raiend, Juhan Ernits and the author of this
thesis. The paper was presented at the ACM/IEEE International Conference on
Automated Software Engineering (ASE'07) in Atlanta, USA in November 2007.

The paper describes the model-based construction of an on-the-fly tester for
the black box testing of the IUT. The external behaviour of the IUT is modelled
as an output-observable nondeterministic EFSM with the assumption that all
transition paths are feasible.

On-the-fly test generation is considered to be the most appropriate technique
for nondeterministic IUT [VCG+08]. The term ‘on-the-fly’ denotes a test
generation and execution algorithm that computes successive stimuli
incrementally at runtime, directed by the test purpose and the observed outputs
of the IUT. A test purpose (or test goal) is a specific objective or property of the
IUT that the tester sets out to test. The state-space explosion problem
experienced with many offline test generation methods is eliminated by on-the-
fly techniques because only a limited part of the state-space needs to be
explored at any point in time. On the other hand, exhaustive planning is difficult
on the fly due to the limitations of the available computational resources to meet
the required response time of the tester. The tester cannot make calculations that
are too long after the observed IUT outputs because the IUT may have time
limits for responses. The simplest approach to the selection of test stimuli is to
apply the ‘random walk strategy’, where no test sequence has an advantage over
others. This is inefficient, because it is based on the random exploration of the
state-space and leads to test cases that are unreasonably long and may not
achieve the specified test goal. To overcome this deficiency, additional
heuristics are applied to guide the exploration of the state-space [VRC06]. The
other extreme of guiding is exhaustive planning by solving constraint systems at
each stage of the test. For instance, the witness trace generated by model
checking provides possibly the optimal selection of next test stimuli. The
critical issue in the case of explicit state model checking algorithms is the size
and complexity of the model leading to the explosion of the state-space,
especially in cases such as ‘combination lock’ or deep loops in the model
[HMR04].

PAPER 3 proposes a balance between the tradeoffs of using simple
heuristics and exhaustive planning methods for on-the-fly testing. The
principles of reactive planning are applied to the problem of test planning under

 36

uncertainty. Reactive planning operates in a timely fashion and hence can cope
with highly dynamic and unpredictable environments [WN97]. Just one
subsequent input is computed at every step, based on the current context.
Instead of producing a complete test plan with branches (a test tree), a set of
decision rules is produced. The rules are constructed by applying offline
analysis based on the given IUT model and the test purpose. A reactive planning
tester is synthesised from the IUT model. This tester is able to generate test
inputs on the fly depending on the observed reactions of the IUT and the test
purpose without having a preset test tree generated in advance. The proposed
approach leads to a tester that directs the IUT efficiently towards the user-
defined test purpose during online test execution.

We focus on test purposes where the coverage items can be defined as a set
of traps associated with the transitions of the IUT model [HMR04]. Traps are
Boolean variables that are associated with the transitions of the IUT model and
are used to measure the progress of the test run. A situation where all traps have
been reached means that the test purpose has been achieved. The goal of the
tester is to generate a test sequence so that all traps are visited at least once
during the test.

PAPER 3 presents a way of constructing a tester which, at runtime, selects a
suboptimal test path from trap to trap by finding the shortest path to the next
unvisited trap. The principles of reactive planning are implemented in the form
of decision rules for selecting the shortest paths at runtime. The tester is
synthesised as an EFSM where the rules for online planning are derived during
tester synthesis and encoded in the transition guards of the EFSM. The decision
rules are constructed in advance of test execution from the IUT model and test
purpose.

At each step of test execution only the rules associated with transitions from
the current state of the tester EFSM are evaluated to select the next transition
with the highest gain. Thus, the number of rules that need to be evaluated at
each step is relatively small. The decision rules are constructed taking into
account the reachability of all trap-equipped transitions from a given state and
the length of the paths to them. The current value (visited or not) of each trap is
also taken into account. The decision rules are derived by performing
reachability analysis from the current state to all trap-equipped transitions by
constructing the shortest path trees. The gain functions which form the terms of
the decision rules are derived from the shortest path trees by simple rewrite
rules. The resulting tester drives the IUT from one state to the next by
generating inputs and by observing its outputs. When generating the next input
for the IUT the tester takes into account which traps have already been visited.
The execution of decision rules at the time of test execution is significantly
faster than finding an efficient test path by state-space exploration algorithms,
but nevertheless produces a test sequence which, lengthwise, is close to optimal.

The main contribution of PAPER 3 is an algorithm for constructing a tester
which selects a suboptimal test path from trap to trap on the fly by finding the
shortest path to the next unvisited trap iteratively. No costly model exploration

 37

and path finding operations are needed online. In the context of the experiments
presented in the paper, the reactive planning tester is more efficient at runtime
than random choice and anti-ant algorithms. The planning feature of the reactive
planner results in significantly shorter test sequence lengths on average. The
reactive planner outperforms anti-ant algorithms by more than the order of
magnitude in cases where a more directed search is presumed i.e. the test
purpose covers the model partially.

4.2 Case study-based performance evaluation of reactive planning
tester

Contemporary on-the-fly model-based test generators which primarily focus on
planning strategies which are computationally cheap but far from optimal cover
just a fraction of the spectrum of test control strategies. Typical examples of
these are simple random choice and anti-ant. Exhaustive planning during online
testing is not feasible because of the lack of available computational resources
to meet the required response time of the tester and because of the low
scalability of the methods in regard to the size of the model. The reactive
planning tester presented in PAPER 3 is targeted to fill the gap between these
two extremes. The key idea of RPT lies in offline learning of the IUT model to
prepare the data for efficient online reactive planning.

In PAPER 3, experiments on a small model are conducted to compare RPT
efficiency against the random choice and anti-ant test selection methods.
Experiments with larger models were not possible at the time because of the
lack of tool support. The MOTES test generator for RPT synthesis (see Chapter
6) was available by the time of writing PAPER 4, making reporting on
experiments with bigger models possible. The paper “Case study based
performance evaluation of reactive planning tester” [PAPER 4] was written
by Kullo Raiend, Jüri Vain, Marko Kääramees and the author of this thesis. It
was presented at the 2nd Workshop on Model-Based Testing in Practice on 23
June 2009 in Enschede, the Netherlands. The paper confirms that in industrial-
scale case studies the RPT significantly outperforms the random choice and
anti-ant test selection methods. Based on a case study of a feeder box controller
of a city lighting system, we demonstrated that tuning the planning horizon of
RPT allows you to reach close to optimal tester behaviour (in terms of test
sequence length) with computationally feasible expenses. The model in the case
study is a strongly connected state machine with 31 states and 78 transitions.

The experiments were performed using two different coverage criteria: all
transitions and a single selected transition. Different RPT planning horizons (of
between 0 and 20 steps) were used in the experiments, which showed that
increasing the planning horizon decreases the average length of the test
sequences exponentially while the planning time of the next step increases by
not more than the length of the planning horizon to the power of 2. In the
experiments, the planning time was within the range of 13-22 msec. RPT
significantly outperforms the anti-ant and random choice methods. On average,

 38

the RPT with the maximum planning horizon resulted in test sequences which
were more than 100 times shorter than the anti-ant and random choice methods.

The main contribution of PAPER 4 lies in the fact that it proves the
feasibility of RPT in industrial-scale case study, demonstrating its advantages
over the random choice and anti-ant methods, and showing the test sequence
length and planning time dependencies on the RPT planning horizon.
Generalisation of the results of performance analyses will require additional
experiments with different case studies in future.

 39

5 REQUIREMENT-DRIVEN TESTING

The fifth paper is entitled “Requirement-driven model-based testing of the
IP Multimedia Subsystem” [PAPER 5]. The authors of the paper were Juhan
Ernits, Marko Kääramees, Kullo Raiend, and the author of this thesis. It was
presented at the 2008 International Biennial Baltic Electronics Conference
(BEC2008) in Tallinn, Estonia in October 2008.

Software testing processes in industry are usually requirement-driven. This
means that the testing should verify if a particular software requirement defined
in requirement specifications and other reference specifications is implemented
correctly. As the word ‘requirement’ has variety of meanings, the paper uses the
definition given in [UL06]: A requirement is a testable statement of some
functionality that the product must have. In requirement-driven testing the
targeted test coverage is defined by covering the requirements. In the previous
papers, structural test coverage criteria were applied to test generation. There is
a significant issue with structural test coverage criteria for industrial users. Test
criteria – like all transitions, all k-switches and so on – may sound like excellent
coverage criteria for researchers, but industrial users ask which of their
requirements such generated tests cover. They would like to track the generated
tests and test logs back to the requirement level. They would like to know if all
of the requirements are tested and which generated test cases cover particular
requirements. The requirement-driven approach in testing is widely employed
throughout the industry, using manual and script-based testing. Industry users
ask the same of MBT.

The requirement-driven approach in MBT should be supported as early as
the modelling phase by using suitable modelling formalisms. The requirements
should be able to be modelled in a way that easily allows parts of the model to
be selected as test coverage items belonging to the particular requirement and a
test case for this particular requirement to be generated.

The IP Multimedia Subsystem (IMS) [IMS] is an architectural framework
for the delivery of Internet protocol multimedia services to mobile users. The
functionality of the system is specified to allow interoperability between
equipment from different manufacturers. IMS was originally designed by the
wireless standards body of the 3rd Generation Partnership Project (3GPP)
[3GPP] and forms part of the vision for the evolution of mobile networks
beyond GSM. The European Telecommunication Standards Institute (ETSI)
[ETSI] has developed standardised IMS interoperability tests to verify the
interoperability of IMS networks from different manufacturers. IMS as the IUT
and IMS interoperability tests as the test specification were selected for a case
study for the paper because IMS represents a typical telecommunications
system that is specified as a collection of requirements and the IMS
interoperability test specification specifies the subset of IMS requirements that
should be tested to ensure interoperability. IMS interoperability tests represent
typical requirement-driven testing used in the industry.

 40

In the paper the authors examine how to build the IMS models in a way that
provides an easy means of attaching requirements i.e. certain paragraphs in the
specification to a specific part of the model. The IMS interoperability test
specifications feature long lists of detailed requirements that must be satisfied
by different components that comprise the IMS. The goal of the paper was to
provide techniques for modelling the IUT and applying the MBT with the
objective of achieving full requirement coverage.

The paper presents the idea of modelling a fragment of the IMS protocol
from the point of view of the requirements. The paper provides solutions using
two different techniques for modelling the IMS. Both techniques serve the same
purpose and are driven by the same basic idea. A network of the Uppaal
automata [UPPA] and NModel [JVC+08] model program are used to model the
IMS according to the specifications. The goal was to associate the model
components as well as possible with the requirements in the specification. This
allows the components of the model to be traced back to the paragraphs in the
requirement specifications. The modelling was carried out in two steps:
modelling the infrastructure of the IMS, which is involved in all requirements
(the general part of the model); and modelling the specific requirements or
features as separate components of the model, which are connected to the
general model using model composition.

Uppaal was used to build the EFSM models of the IUT because it supports
the composition of automata and has a model checking backend for the analysis
of the model and for the generation of witness traces (corresponding to test
sequences). The composition of the automata was a valuable feature to utilise
because it allows different features of the system to be modelled as small
feature automata and for them to be combined into a system model. NModel
was used because it supports the composition of small model programmes that
model certain features of the system and construct the system model feature by
feature iteratively. An important aspect of both tools and techniques is their
models composition support. These tools and techniques were not compared in
the paper, but it does demonstrate how the requirement-driven approach can be
applied to the building of the model of the IUT using either composition of
automata or model program features.

The paper also demonstrates that it is possible to model a IUT consisting of
separate requirements presented as separate automata (Uppaal) or features of
model programs (NModel) by using model composition. Requirement automata
or features can be composed using a general infrastructure model as the basis of
the model. In the IMS case the infrastructure model was derived from the IMS
infrastructure requirements and specific requirements were modelled as separate
model components in the underlying infrastructure. Using such an approach the
different features of the model are decoupled from one another. The test
engineer can easily define the coverage of the tests by selecting the component
models representing the different requirements and generate corresponding test
cases from the composition of the infrastructure model and the appropriate
requirement models to cover the selected requirements. In this way it is easy to

 41

generate tests that only cover selected requirements of the model and the test
engineer can trace the requirements from the requirement specification through
the model to the generated test cases and test logs, and vice versa.

 42

PART II: PRACTICAL RESULTS AND CASE STUDIES

 43

 44

6 MOTES – TEST GENERATOR

6.1 Overview

The results of the theoretical contribution of the thesis presented in Chapters 3
and 4 were implemented in the model-based test tool MOTES.

MOTES is a tool which generates TTCN-3 tests from the EFSM model of
the IUT. It accepts EFSM models of the IUT prepared using third party UML
CASE tools. Currently it supports models exported from Poseidon for UML
[PUML] and Artisan Studio [ARTI] CASE tools. Context variables and the
interfaces of the IUT should be defined in TTCN-3. Test data instances and
templates are also defined in TTCN-3. In the future it will also be possible to
define the data with CASE tools, using class and object diagrams. Tests
produced by MOTES in TTCN-3 language can be executed by any TTCN-3 test
tool against the IUT (see Figure 2).

Third party

Figure 2: MOTES context

In order to generate tests from deterministic EFSM, the iterative model
checking based test generator is used in MOTES. The generator is based on the
method described in Section 3.2. It produces an abstract test sequence (a

User

Test data

Any TTCN-3 executive

Tests in TTCN-3

IUT interface specification
(message types, ports)

Model of the IUT
UML state machine

IUT

UML CASE tool

test coverage,
other options

Written in TTCN-3

IUT input messages

IUT output messages

 45

sequence of transitions) driven by the user-defined test coverage. The abstract
test sequence is converted to TTCN-3 test cases as described in PAPER 2. The
resulting TTCN-3 test cases can be executed against the IUT.

To generate tests from the nondeterministic model, the abstract RPT is
generated using the method described in Section 4.1. The abstract RPT is
converted into TTCN-3 in order to execute it against the IUT. RPT
implementation in TTCN-3 is an on-the-fly test generator that autonomously
finds the test sequence that satisfies the user-defined test coverage of the
nondeterministic IUT.

The test generation workflow and the most important features of MOTES are
explained in the sections below using a simple light switch example.

6.2 Description of light switch example

The implementation under test in the example is a Light Switch
which turns a light on or off at the user’s request (Figure 3).

Figure 3: Light Switch use cases

The Light Switch is typically driven by a human (the environment) and
must implement the following functional requirements:

Requirement 1: The light is switched on at the request of the
environment.

Requirement 2: The light is switched off at the request of the
environment.

Requirement 3: If the light is already on or off, requesting the same
operation (turning the light on or off, respectively) does
not change the system state.

Let us suppose that the Light Switch receives messages from the
Environment, which is represented by an external technical system or human

 46

user. All activities are initiated by the environment. After receiving input from
the environment, the Light Switch reacts by turning the light on or off.
Thus the state of the IUT (light on/off) responds to the Environment after the
request is fulfilled.

Figure 4: Light Switch context

The Light Switch is controllable by the environment through the
iLights interface (Figure 4). The interface defines the following messages
between the Light Switch and the Environment:

TurnOn: request from the Environment to the Light Switch to

turn the light on
TurnOff: request from the Environment to the Light Switch to

turn the light off
LightIsOn: response from the Light Switch to the Environment

indicating that the light is on
LightIsOff: response from the Light Switch to the Environment

indicating that the light is off

The messages TurnOn and TurnOff are sent over the iLights interface by
the Environment. After handling the messages, the Light Switch
responds in regard to its state by using the messages LightIsOn or
LightIsOff (see interaction diagrams in Figure 5).

Let us assume that the tests should be generated from the model of the Light
Switch according to Table 1.

 47

Figure 5: Interaction diagrams

Table 1: Test purposes

Test purpose 1 Test that the Light Switch turns the light from off to
on

Reference Requirement 1
Preconditions The light is off
Input The request message TurnOn is sent by the

Environment to the Light Switch
Expected results The response message LightIsOn is sent by the IUT to

the Environment

Test purpose 2 Test that the Light Switch turns the light from on to
off

Reference Requirement 2
Preconditions The light is on
Input The request message TurnOff is sent by the

Environment to the Light Switch
Expected results The response message LightIsOff is sent by the IUT to

the Environment

 48

Test purpose 3 Test that the light remains off when the Light Switch
is commanded to switch the light from off to off

Reference Requirement 3
Preconditions The light is off
Input The request message TurnOff is sent by the

Environment to the Light Switch
Expected results The response message LightIsOff is sent by the IUT to

the Environment

Test purpose 4 Test that the light remains on when the Light Switch is
commanded to switch the light from on to on

Reference Requirement 3
Preconditions The light is on
Input The request message TurnOn is sent by the

Environment to the Light Switch
Expected results The response message LightIsOn is sent by the IUT to

the Environment

6.3 Creating the IUT model

The model of the IUT for MOTES consists of the EFSM, descriptions of the
context variables and interface specifications.

EFSM is used to model the behaviour of the IUT. MOTES does not have its
own editor for EFSMs: third party UML CASE tools are used to create them. At
the time of writing, MOTES is able to import state machines from Poseidon for
UML [PUML] and Artisan Studio [ARTI] CASE tools. In the future it is
expected to be able to import state machines from any UML CASE tool that
supports exports in XMI 2.1 format. EFSMs for MOTES are drawn as flat UML
state models without parallel and hierarchical states. UML state machines do
not have a formally specified language for the presentation of guard conditions,
input events and actions on transitions. Because it is only possible to generate
tests from the formal system model, a formal transition language (MTL) was
developed for MOTES which is used in transitions of the EFSM. MTL is
presented in Appendix A.

Example: Figure 6 below presents the EFSM model of the IUT in the Light
Switch example.

• LightSwitch_Off and LightSwitch_On model light states.
• It is assumed that the initial state of the Light Switch is off.
• Transitions T1, T2, T3, T4, T7 and T8 model transitions

between states as described in Table 2.

 49

Figure 6: Light Switch model drawn in Poseidon

Table 2: Table of transitions

• All of the use cases described above are covered by these transitions.
• The function silence(float Duration_sec) helps visualise

the test execution process by adding a delay between tests.
• The model has no transition guards or context variables.

Context variables are the variables that are used in EFSM to store state
information in addition to the control states of the EFSM.

Interface specifications define the input/output ports used in the model. The
ports define the IUT interface towards its environment. Port definitions define
the data type of the messages that the ports accept.

 It would be possible to define context variables and ports in UML using
classes, and they would be instantiated using objects derived from these classes.
In MOTES a different approach is taken: the aim of MOTES is to generate
TTCN-3 test cases, and to streamline the test generation process the context
variables and ports are defined directly in TTCN-3 files in the current version.

 50

Example: The TTCN-3 TestConfiguration module in Figure 7 describes
the TTCN-3 test component Tester, its interface for communicating with the
IUT iLights and the message types (Command and Output) accepted by
the port. In addition, it defines the function silence(float
duration_sec).

module TestConfiguration {

// Test configuration definitions

// Import message type definitions
import from TestData all;
// Define tester ports
type port iLightsPortType message {

out Command;
in Output
};

// Define tester with a message port iLights
type component Tester {

port iLightsPortType iLights;
};

//Define functions
//The function silence is introduced in the state model
for
//visualizing of lamp switching at test running

// Silence (no output)
function silence (in float duration) runs on Tester {

timer timerSilence;
timerSilence.start(duration);
alt {

[] timerSilence.timeout {
//OK
}

[] any port.receive {
log("A message was received during

required
 silence time!");
setverdict (inconc);
stop;
}

}
};

}

Figure 7: TestConfiguration module in TTCN-3

6.4 Preparing test data

Test control-flow is generated by MOTES automatically from the IUT model.
The test data used by the tests should be prepared manually. Like context

 51

variables and interface definitions, the test data are also defined and instantiated
directly in TTCN-3.

Example: Figure 8 below includes the test data definitions for the Light
Switch example. The TTCN-3 module TestData defines the possible
messages (Command) sent to the IUT, such as TurnOn and TurnOff, and
possible response messages (Output) from SUT, such as LightIsOn and
LightIsOff.

module TestData {

// Message type definitions
type charstring Command; // Light switch input command type
type charstring Output; // Light switch output type

// Message instance definitions

// Light switch commands
template Command TurnOn := "turnOn"; // Command for turning the

// lights on
template Command TurnOff := "turnOff"; // Command for turning the

 // lights off
template Command Exit := "exit"; // Command for exiting the

 // implementation
template Command UnknownCmd := "xyz"; // An example of unknown
 // command for the implementation

//Light switch outputs
//Expected output lightIsOn
template Output LightIsOn := "lightIsOn";
//Expected output lightIsOff
template Output LightIsOff := "lightIsOff";
//When the implementation starts the expected output contains
// string 'ready'
template Output Greetings := pattern "*ready*";
//Response to the unknown command contains string 'Unrecognized'
template Output UnrecognizedText := pattern "*Unrecognized*";
//Response to the exiting command contains string 'Exiting'
template Output Exiting := pattern "*Exiting*";
}

Figure 8: TestData module in TTCN-3

6.5 Importing the model and test data into MOTES

The test project browser view in MOTES includes a pre-defined structure of
artefact folders for the maintaining of a clear structure for the test generation
project (Figure 9).

 52

Figure 9: Test project browser view in MOTES

Those predefined folders are used to organise the input and output artefacts of
the test project:

• Data definitions – for storing data definition TTCN-3 files
• Generated TTCN-3 modules – for storing the TTCN-3 files generated

by MOTES
• Resource Sets – for storing resource files that link together the relevant

input artefacts for a particular test generation task or purpose (IUT
model, data definitions, configurations and context variable definitions).
Different models and different test data instances are needed for
different test generation purposes. The term ‘resource set’ is used in
MOTES for such collections of data. The concept of the resource set
corresponds to a project in software development environments like
Borland Delphi and Microsoft Visual Studio.

• IUT state models – for storing the state models of the IUT (in XMI
format)

• Test System Configuration – for storing test system configuration
definition TTCN-3 files

The user must import EFSM model files exported from the UML tool, TTCN-3
files with context variables, interface definitions and test data to the relevant test
project folders. Next, the user must create a new resource set to link together
the relevant input resources using a resource set editor.

Example: Figure 10 illustrates the resource set editor using the resources of
the Light Switch example displayed.

6.6 Defining test purpose (coverage/goal)

MOTES uses model structural test coverage elements to define test coverage.
The following coverage criteria are available:

• selected elements (states/transitions)
• all transitions
• all n-transition sequences where n>=2

 53

Figure 10: Resource set editor in MOTES

Selected elements (selected states and transitions) used to define test coverage
can be selected from the list of EFSM transitions and states. It is possible to
create ordered sets of coverage items and to define how many times each
coverage item or a subset of the item should be covered. Complex test scenarios
can be created using ordered sets of coverage items. For example, it is possible
to define that the test generator should find a test that first covers transition T1,
then covers transitions T2 and T3 three times and finally covers transition T1
once again.

All transitions test coverage defines that the test generator should find a test
that covers all of the transitions of the EFSM at least once.

All n-transition sequences is a test coverage criterion that allows long and
exhaustive tests that cover all subsequent transition sequences of n transitions to
be created. In MOTES n can be 2 or 3.

Example: Let us use selected elements coverage in the Light Switch
example to define a complex coverage scenario. After selecting the Selected
Elements option, the dialogue box in Figure 11 opens. The left-hand pane
includes a list of all states and transitions in the EFSM. The right-hand pane is a
tree-view editor that allows the selected elements coverage to be constructed for
the model. The available elements can be dragged from the left-hand pane to the
suitable place in the right-hand pane.

The tree-view selected elements coverage editor has a root node that can be
either sets or lists. Sets and lists contain elements, and elements can also be sets
or lists. All elements in a set and list must be covered by the generated tests. In

 54

the case of sets, the order of elements is not important to the user and the test
generator decides the order itself. In the case of lists, the order of covering the
elements is defined by the order of the elements in the list. The number in front
of an element defines how many times the particular element must be covered
by the generated test case.

Figure 11: Selected elements coverage editor in MOTES

6.7 Choosing the test generation engine

MOTES includes two test generation engines:

• model checking engine
• reactive planning tester engine

The test generation preferences view in MOTES is presented in Figure 12. The
model checking engine can be selected using the radio button Generate
test sequence and the reactive planning tester engine can be selected using
the radio button Generate reactive planning tester.

The model checking engine implements the test generation method presented in
PAPER 1, PAPER 2, and Section 3.2. The engine is used to generate test cases
for the deterministic IUT. The engine produces test cases that deterministically
control the execution of the deterministic IUT through the sequence of
transitions on the IUT model. The test cases produced cannot test
nondeterministic IUT because they always expect deterministic IUT behaviour
in response to the generated stimuli. The engine utilises the Uppaal Cora model
checker [UpCo] in finding test sequences. The most important configuration
parameter for the model checking engine is use iterative mode. If the
parameter is checked, the model checker works in iterative mode according to
the algorithm described in Section 3.2. With each iteration the shortest path to
the nearest unvisited trap is found. This is a greedy algorithm which returns a

 55

suboptimal test sequence. Iterative model checking makes it possible to find
test sequences from state models which are not strongly connected in the case of
limited computer memory. If use iterative mode is not checked, the
model checker attempts to find the whole test sequence with the minimum
length required to reach the test purpose.

Figure 12: MOTES test generation preferences

The reactive planning tester engine implements the test generation method
presented in PAPER 3. It does not generate predefined test cases, but rather a
reactive planning tester which, in the online phase, generates test stimuli on the
fly. The reactive planning tester can be used to generate tests for deterministic or
nondeterministic IUT. The reactive planning tester engine uses the reachability
analysis in synthesising the reactive planning tester, which is generated in
TTCN-3 and can be executed by any TTCN-3 executive in the same way as
TTCN-3 test cases produced by the model checking engine. The intelligence of
the reactive planning tester is encoded in gain functions that characterise the
potential choices of test stimuli. In the online testing phase the reactive planning
tester must decide which move from those possible to make. For each possible
move it calculates the gain function and makes the move which promises
maximum gain. The gain function gives a higher value if the next move will lead
to a larger amount of unvisited coverage items faster. The reactive planning
tester engine can be configured using the following configuration parameters
(see also Figure 12):

 56

• max depth of shortest-paths tree in gain

function
The parameter defines the look-ahead planning horizon. It also
defines the maximum path length of the shortest path starting from
the root of the shortest-path tree. In other words, it defines the length
of the planning horizon in transitions where the reactive planning
tester looks ahead. The gain functions are calculated taking into
account the trap amount and location in the tree. Planning within the
horizon is precise.

• max visibility range of traps in gain function
The visibility parameter defines the visibility horizon of the traps.
Within the visibility range only the reachability of the traps is
important, not the exact location, as in the previous parameter. The
visibility parameter can also be bigger than the planning horizon. In
the event that the trap is outside of the planning horizon but within
the visibility horizon, the planning algorithm knows that the trap is
reachable from the given shortest-path tree but does not know
exactly how far away the trap is.

• max testing time before reset
This parameter defines the maximum testing time for a situation
where some of the traps have yet to be visited. In nondeterministic
models, restarting the IUT may increase the chance of visiting
unvisited traps after reset.

• max number of resets
This parameter defines the maximum number of IUT resets that are
performed in trying to cover traps that have yet to be covered.

• continue running if max gain function value is
zero :from transitions that have gain function
values equal to max value
In the case of equal gain values, this parameter allows you to select
the next transition from the alternatives either randomly or with an
anti-ant algorithm.

6.8 Executing the test generation engine

Once the steps above are completed, the user presses the “G” button and the test
generator does the rest. The TTCN-3 test cases or reactive planning tester
TTCN-3 code are generated under the current resource set. The generated
TTCN-3 files can be imported to any TTCN-3 test tool and run against the IUT.

 57

7 CASE STUDIES

7.1 Introduction

This chapter demonstrates the applicability of the MOTES test generator and
the feasibility of the underlying methods and techniques in industrial-scale case
studies. It presents case studies from different branches of the industry:
telecommunications and telematics. Whilst evaluating the overall applicability
of the technology, the case studies also have their own slightly different
objectives to evaluate.

The following two case studies are demonstrated:

• Sofia-SIP stack testing
• feeder box control unit testing

The case study sections include the following sub-sections:

• overview of IUT
• objectives of case study
• system adapter
• modelling the IUT
• test generation and execution
• objectives evaluation

Finally, the evaluation results of the case studies are summarised and issues for
further study are outlined.

Both case studies were performed using the same workflow and set of tools
(Figure 13):

• Poseidon for UML CASE tool by Gentleware [PUML] was used for
the state machine modelling.

• MOTES was used to generate TTCN-3 tests from the model of the
IUT.

• MessageMagic by Elvior [ELMM] was used to execute the
generated TTCN-3 tests against the IUT.

• A case study-specific system adapter designed to connect IUT and
MessageMagic was developed for each case study.

 58

Figure 13: Common architecture of test environments in case studies

7.2 Testing of Sofia-SIP stack

7.2.1 Overview of IUT

The Session Initiation Protocol (SIP) is a signalling protocol widely used for
setting up and closing down multimedia communication sessions such as voice
and video calls over the Internet. Other feasible application examples include
video conferencing, streaming multimedia distribution, instant messaging,
presence information and online games. The protocol can be used for creating,
modifying and terminating two-party (unicast) or multiparty (multicast)
sessions consisting of one or more media streams. The modification can involve
changing addresses or ports, inviting more participants, adding or deleting
media streams and more.

SIP was originally designed by Henning Schulzrinne and Mark Handley in
1996. The latest version of the specification is RFC 3261[SIP] from the Internet
Engineering Task Force (IETF) SIP Working Group. In November 2000, SIP
was accepted as a 3GPP signalling protocol and permanent element of the IMS
architecture for IP-based streaming multimedia services in cellular systems.

SIP User Agents (UAs) are the end-user devices used for creating and
managing SIP sessions. A SIP UA has two main components. The User Agent
Client (UAC) sends messages and answers with SIP responses. The User Agent
Server (UAS) responds to SIP requests sent by the peer. SIP UAs may work in
point-to-point mode. Typical implementations of a UA are SIP soft-phones, SIP
hard-phones, and SIP-enabled analogue telephone adapters.

Sofia-SIP [SOFI] is an open-source SIP User-Agent library that complies
with the IETF RFC3261 specification [SIP]. Sofia-SIP can be used as a building
block for SIP client software for uses such as VoIP, instant messaging and other
real-time and person-to-person communication services. The primary target

 59

platform for Sofia-SIP is GNU/Linux, although it also targets the embedded
world. Sofia-SIP is based on a SIP stack originally developed at the Nokia
Research Centre. The Sofia-SIP library is written in C. The Sofia-SIP stack has
an API interface towards applications that are using the SIP stack and a network
interface between two SIP stacks.

7.2.2 Objectives of case study

The conformance of the Sofia-SIP protocol stack to the SIP specification [SIP]
was tested in the case study. The target was to generate tests according to the
test purposes specified in the ETSI conformance test specification for SIP
applications [ConfS]. SIP functionality as a whole was not tested in the case
study, but only the SIP UAC part using the UDP transport.

The following aspects were evaluated in the case study:

• Overall feasibility of MOTES technology for conformance testing of

industrial-scale telecommunications applications. Sofia-SIP is a
typical telecommunications protocol application that is far from being
too trivial. The specification describing IUT functionality in the scope
of the case study is around 80 pages in length [SIP]. Test specifications
for the same functionality include around 15 pages [ConfS].
Implementation of the Sofia-SIP functionality in the scope of the case
study included around 500 lines of C++ code [SOFC].

• Adaptability of MOTES technology for the requirement-driven
testing process. Test generation in MOTES is based on model
structural coverage criteria. This is a very different approach compared
to the requirement-driven testing process used widely in the industry. In
the state model of the IUT the requirements are usually spread
throughout the model and can partly overlap. Telecommunications
systems testing specified by ETSI processes is strictly requirement-
based. Test purposes in the test specifications define which features of
the IUT should be tested and how they should be tested [ETPR].

o The possibility of mapping the requirement-based approach to
the test generation method using structural coverage of the
model was evaluated.

o The testing power of the generated test cases was evaluated
compared to the test purposes specified in the test specification
[ConfS].

• Feasibility of the EFSM for modelling industrial-scale
telecommunications applications. The modelling power, size,
complexity and readability of the resulting EFSM were evaluated.

 60

• Feasibility of the iterative model checking based test generation
method. The applicability of the method for generating test cases from
the deterministic model was evaluated. Whether the case study
application could be modelled using a deterministic model was also
evaluated, as was whether the use of a deterministic model could cause
any issues.

• Bug detection ability of generated tests. The Sofia-SIP stack library
has been available to developers for some time. The quality of Sofia-
SIP implementation is otherwise unknown. Therefore it was interesting
to observe whether the case study would reveal any real bugs in its
implementation.

7.2.3 System adapter

The test environment of Sofia-SIP contains Sofia-SIP implementation (IUT), a
system adapter and MessageMagic for executing TTCN-3 test cases. The
system adapter connects the IUT to the MessageMagic test tool.

Sofia-SIP has two interfaces: an API providing services for the application
layer (the functions nua_create, nua_destroy, nua_invite,
nua_bye and a callback_function) and an interface towards the
network communicating with other SIP peers on the Internet (SIP messages
over the transport layer). In the test environment, TTCN-3 test cases executed
by MessageMagic simulate both – an application layer over API and other SIP
peers over the network interface. The system adapter is connected to
MessageMagic through a TTCN-3 standardised TRI interface (Figure 14).

Figure 14: Sofia-SIP test environment

7.2.4 Modelling the IUT

The model was built using information from two documents – the SIP
specification [SIP] and the ETSI conformance test specification for SIP

 61

[ConfS]. The target was to create tests for the SIP UAC with UDP transport
satisfying the relevant test purposes in the conformance test specification.

Discussion

The IUT model is always built to test particular functionalities and for particular
testing needs. It is very important to understand in MBT that the model of the
IUT should be created on the right abstraction level. Only those features that
need to be tested should be present in the model, and they must be modelled on
the same abstraction level that the tests need to verify them. In this way the
model created for test purposes remains readable and maintainable and the tests
generated from the model test the features on the right abstraction level.

It is often claimed that the more detail in which you model your system the
better the tests with better test coverage you will generate. In principle this is
true, but the trade-off is model complexity. Models which are too complex are
often poorly readable, hard to maintain and may cause performance problems
for test generation tools and methods. A model by its very definition is an
abstraction of reality designed to keep things comprehensible. A graphical
model that presents the IUT details on the level of very high granularity is a
graphical programming language and therefore looses many benefits that
modelling should give to users.

Test purposes in ETSI conformance test specification for SIP

The scope of the case study includes 88 test purposes in the SIP conformance
specification [ConfS].

An example of a typical SIP test purpose is as follows:

TPId: SIP_CC_OE_CR_V_008:
Ensure that the IUT, once a dialog has been established, having sent a BYE
request, on receipt of a Success (200 OK) response considers the session and
the dialog terminated.

This test purpose, as with all other test purposes in [ConfS], is highly abstract.
Test purposes miss many important details for building tests that meet test
purposes. The test purposes must be analysed and interpreted by a test engineer
who knows the SIP specification in order to put them into a formal language for
modelling or test case implementation. In the case study, such analysis was
completed before the SIP UAC model was constructed.

Modelling approach in case study

The model was built according to test purposes. Only SIP UAC behaviour that
was required to be tested by the test purposes was modelled. During the

 62

modelling the SIP specification [SIP] was consulted to translate the abstract test
purposes into formal modelling language.

The resulting deterministic EFSM of the SIP UAC includes the behaviour
that was required to be tested by the given test purposes. The model has 19
states and 52 transitions. A fragment of the model is presented in Figure 15. The
model has 24 context variables. It is hard to measure the time spent building the
model. In the case study the MBT process was iterative, consisting of the study
of the SIP specifications, updating the model with certain aspects of SIP
functionality, updating the system adapter, generating test cases and running
them against the IUT. Usually after each update the test execution failed, and
often the reasons were incorrect model or incorrect test data. The total time
spent on the case study was 50 man days. This includes everything from
analysis of the SIP specification to the situation where the test cases for all
planned test purposes were generated and executed.

Figure 15: Fragment of Sofia-SIP UAC model

 63

7.2.5 Test generation and execution

Although the model of SIP UAC includes the behaviour for testing all of the
given test purposes, the model does not have information as to which parts of
the model implement particular test purposes. It is not possible to tell the
MOTES test generator to take the SIP UAC model and generate a test case that
covers the test purpose SIP_CC_OE_CR_V_008, for example. MOTES uses
model structural coverage defined as set of coverage items (selected states and
transitions). Therefore, the test coverage specified by the test purposes should
be transformed to the form of the model structural coverage items.

It was possible to define test coverage using model structural coverage items
for 78 test purposes out of 88 (87%) defined in the SIP conformance
specification [ConfS] and to generate test cases from them. For the remaining
10 test purposes, the equivalent test coverage was not possible to define using
the structural coverage items and tests were not generated. For example, test
purposes that require modelling of parallel transactions were not possible
because MOTES lacks the feature of modelling parallel transactions and
generating tests for them. Therefore, it was not possible to generate test cases
for parallel INVITE transactions.

For generating tests according to 78 test purposes, 35 different test goals
were created. Each of the test goals was built to generate tests for one or several
test purposes. The test cases generated for the 78 test purposes amounted to
17,500 lines of TTCN-3 code.

In addition to the test purposes of the SIP conformance specification, the
tests were generated from the same model using the all transitions test purpose.
All transitions of the model are able to be visited with a test sequence of 120
steps. The all transitions test purpose resulted in 2900 TTCN-3 lines of code
(LOC). In addition to the generated TTCN-3 code, around 1690 TTCN-3 lines
of code were written manually:

• data types – 780 LOC
• templates – 800 LOC
• test system configuration and TTCN-3 custom functions – 110 LOC

The generated test cases were executed using the MessageMagic TTCN-3
test tool [ELMM] against the Sofia-SIP stack. The test environment is presented
in Figure 14. The execution of the test cases discovered 5 bugs in the Sofia-SIP
stack library.

7.2.6 Test coverage analysis

Test coverage analysis was carried out in order to determine the quality
(coverage) of the generated test cases compared to the intended test coverage
specified by the test purposes.

 64

Tests generated from the model may result in test cases that have:

• the same coverage as defined by the test purposes;
• stronger coverage than defined by the test purposes; or
• weaker coverage than defined by the test purposes.

A generated test with the same coverage as specified by the test purpose tests
precisely (and only) the aspects specified by the test purpose. Successful
completion of the test case means that the test purpose has been met, while
failure means that it has not been met.

A generated test with stronger coverage than specified by the test purpose
tests more aspects than specified by the test purpose. For example, the message
sent by the IUT might have several fields and the expected values of all of these
are specified by the model. At the same time, the test purpose may only require
the testing of the value of one of these against the expected value. Successful
completion of such a test case proves that the test purpose has been met, but
failure does not prove that the test purpose has not been met. For example, the
expected value of a field specified by the test purpose may match the actual
value in the received message (i.e. test case execution is successful against the
test purpose) but the mismatch of the actual value against the expected value of
another field in the same message may make the test case fail.

The test purposes define the precondition states. They assume that
implementation is in the precondition state before a specified test begins. How
the precondition state should be achieved is never defined by the test purposes:
it is given that the precondition should be met before the test can start. The
execution of the test case generated from the state model starts from the initial
state of the model and covers the model items according to the test purpose.
This means that the generated test covers not only the functionality required by
the test purposes, but also the functionality to reach the precondition state. A
generated test of this kind covers the model more broadly than specified by the
test purpose and has stronger coverage than the test purpose.

A generated test with weaker coverage than specified by the test purpose
tests fewer aspects than defined by the test purpose. For example, the test
purpose “Ensure that the IUT, to establish a call, sends an INVITE request
including a From header with a TAG parameter” cannot be covered precisely
because, with a static template, the presence of a TAG cannot be checked in the
current MOTES implementation. The generated test case tests all other aspects
specified by the test purpose except the presence of the TAG parameter.
Successful completion of such a test case does not prove that the test purpose
has been met, but failure proves that the test purpose has not been met.

Test coverage analysis of 78 generated test cases against the corresponding
test purposes gave the following results:

• 3 test cases matched the test coverage required by the corresponding
test purposes

• 69 test cases had stronger test coverage than required by the
corresponding test purposes

 65

• 6 test cases had weaker test coverage than required by the
corresponding test purposes

7.2.7 Objectives evaluation

The evaluation results of the case study objectives are as follows:

Overall feasibility of MOTES technology for conformance testing of
industrial-scale telecommunications applications

The Sofia-SIP stack is a typical telecommunications protocol application. The
case study demonstrated that MOTES technology is feasible for conformance
testing of such applications.

Adaptability of MOTES technology for the requirement-driven testing
process

As expected, adapting MOTES technology for requirement-driven testing
causes some issues. The elements of the model that are involved by modelling
particular requirements of the IUT are spread throughout the model. This makes
it hard to understand in which part of the model and how a particular
requirement is modelled. Tracking the requirements from specification to model
is highly complicated.

In the case study the test purposes were mapped to the model structural
coverage items in order to generate test cases according to the specified test
purposes. It was demonstrated that for most test purposes (87%) the mapping
was possible.

The test coverage of the generated test cases against the test purposes was
compared. It was demonstrated that in most cases (69 test purposes out of 78)
the generated test case resulted in stronger test coverage than specified by the
corresponding test purpose. Only in some cases (3 test purposes out of 78) did
the generated test case result in weaker test coverage than specified by the
corresponding test purpose.

Feasibility of EFSM for modelling industrial-scale telecommunications
applications

The case study demonstrated that EFSM has enough modelling power to model
industrial-scale telecommunications applications. The complexity of the
resulting EFSM is on the edge of readability and maintainability. The lack of
hierarchical states in the modelling notation was experienced as a drawback.

Feasibility of the iterative model checking-based test generation method

The use of the deterministic model was justified in the case study. The SIP stack
UAC component itself exhibits well-specified deterministic behaviour and the

 66

implementation does not have internal sources of nondeterminism. The iterative
model checking-based test generator engine was used for test generation in the
case study. The iterative method did the work for all test purposes that were
able to be defined using the sets of model structural coverage items. In addition,
the tests were created for the all transitions test purpose, which resulted in a test
sequence of 120 transitions. Note that attempting this on the same model and
same test goal with normal model checking (not iterative) did not produce
results, because the model checker froze after consuming all of the available
1GB memory resources allocated to it.

Bug detection ability of generated tests

The Sofia-SIP stack library has been available to developers for some years.
The quality of Sofia-SIP implementation is otherwise unknown. During the
case study 5 bugs were detected in Sofia-SIP implementation.

7.3 Testing controllers of street lighting system

7.3.1 Overview of IUT

The IUT of this case study is a Feeder Box Control Unit (FBCU), a subsystem of the
street lighting control system operating in Tartu, the second biggest city in Estonia.

The street lighting system monitors and controls several hundred street
lighting feeder boxes. Each feeder box provides a power supply to several
groups of connected street lights. The street lighting control system controls the
feeder boxes over a commercial GSM network. The FBCU is the control device
of the feeder box (see Figure 16). It remotely controls the street lights,
switching them on and off based on the light conditions, time of day or direct
operator request. It is possible to continuously alter the time the lights come on
as the seasons change and to take into account the weather conditions, the
location of the lights and the nature of the environment they are lighting at
particular time. The network enables feeder boxes to send monitoring and alarm
information back to the lighting operator. The control system collects data about
input and output feeder behaviour, identifies lighting failures and produces
comprehensive reports on the status of the lights, faults and energy
consumption. The general architecture of the street lighting control system is
shown in Figure 16.

The communication between the FBCU and lighting control system is
implemented using GSM USSD communication. A typical scenario of
communication between the lighting operator and FBCU is as follows:

1. The lighting operator sends a message for a feeder box to a mobile
operator USSD gateway through the Internet.

2. The USSD gateway receives the message and forwards it to the
mobile network.

3. The mobile network dispatches the message to the FBCU of the feeder
box.

 67

4. The FBCU executes the command and responds to the mobile
network.

5. The message is sent from the mobile network to the USSD gateway.
6. The USSD gateway forwards the message to the lighting operator.

Figure 16: Architecture of street lighting control system

The FBCU consists of a microcontroller, an interface to the integrated GSM
modem, a SIM card socket, impulse power supply units and protection circuits
between the micro controller pins and FBCU external connectors.

Figure 17: FBCU

7.3.2 Objectives of case study

The case study was performed as part of the ITEA2 D-MINT project [DMIN]
by an Estonian consortium to evaluate model-based testing and related
technology in the field of telematics. The testing scope in the case study
included the start-up and power control features of the FBCU.

 68

The following aspects were evaluated in the case study:

• Overall feasibility of MOTES technology for testing hybrid

industrial-scale controllers. FBCU is a complex hybrid embedded
system consisting of hardware and software components. It
communicates with the environment using analogue and discrete
input/output signals. In addition, it communicates over the GSM
modem through messages. The specification describing the
functionality of the IUT in the scope of the case study includes 18 use
cases described over 45 pages. The embedded software of FBCU
includes about 4000 lines of C code.

• Combining MOTES technology with the complex hybrid system
adapter. The test tool, which has message-based communication with
the IUT, had to be connected to the electrical input/output signals of the
IUT. This required a complex system adapter containing software and
hardware components to control and observe the IUT in the tests. In
addition the system adapter had to have a component which would
allow visual monitoring of the electrical signal characteristics in order
to trace test case influence at the IUT pin level.

• Applicability of MOTES technology for exploratory testing. The
term ‘exploratory testing’ is normally used as the opposite of automatic
script-based testing [Bach03]. It refers to manual testing where a skilled
test engineer manually explores the state-space of the application trying
to break the system. According to advocates of exploratory testing,
script-based testing can never lead to equally good results compared to
exploratory testing because the scripting is not flexible and it takes too
much time to code the intelligence of the test engineer into the test
script. The applicability of MOTES technology for exploratory testing
was evaluated in the case study.

• Feasibility of EFSM for modelling hybrid industrial-scale
controllers. The modelling power, size, complexity, and readability of
the resulting EFSM were evaluated in the case study.

• Feasibility of the iterative model checking-based test generation
method. The applicability of the method for generating test cases from
the deterministic model was evaluated. Although the FBCU is
nondeterministic in nature, as discovered in the case study, the
nondeterminism was abstracted away using FunctionCall and
interleave constructs of MTL [Appendix A]. Using custom TTCN-
3 functions the interleaving and nondeterministic behaviour of the
FBCU was hidden in the system model. The feasibility of the new
construct was evaluated in the case study.

• Feasibility of the reactive planning tester-based test generation
method. Reactive planning tester-based test generation was evaluated
on the nondeterministic model of the FBCU. The feasibility of the RPT

 69

method, its scalability and performance against random choice and anti-
ant on-the-fly test generation methods were evaluated.

• Ability of generated tests to detect bugs. Although FBCU was already
part of the field tests when the case study began, it was still under
development. A couple of new hardware versions and several new
software versions were introduced during the case study. Therefore, it
was essential to assume that real bugs would be detected. The nature of
the detected bugs was evaluated.

• Suitability of MOTES technology for incremental system
development. Due to the incremental development of the FBCU during
the case study it was possible to evaluate MOTES technology in the
system development maintenance phase. The maintenance phase is
characterised by changing system requirements with redesign,
reimplementation, and retesting phases. The performance of automatic
test generation against the estimated performance of manual test
creation in the maintenance phase was able to be compared.

7.3.3 System adapter

Because of the complex electrical interface of the FBCU the most time-
consuming activities in building the test environment were those related to the
system adapter. The system adapter is a complex system of hardware and
software components. The hardware consists of commercial measurement and
control devices connected to the pins of the FBCU. These devices provide
current to the FBCU, read its output pins and write data to its input pins. The
devices are controlled by the virtual instruments of the LabVIEW [LabV]
environment. The task of the LabVIEW virtual instruments is to receive the
output messages produced by the TTCN-3 test code running on the
MessageMagic TTCN-3 test tool [ELMM] in order to convert them into the
control messages of the control devices that will provide the corresponding
electrical signals to the FBCU. The LabVIEW virtual instruments read FBCU
electrical output signals via the measurement devices and convert them to the
input messages for the TTCN-3 test code running in MessageMagic (Figure 18).

7.3.4 Modelling the IUT

The FBCU is specified in the requirements specification, which includes use
cases of FBCU behaviour. The requirements specification used in the case study
was the best that can be expected. It was created by a skilled analyst who
understood the test automation issues and was able to create specification that
already included use cases in terms of logical signals, not in terms of electrical
signals and their levels.

The case study included testing of the following functionalities of the FBCU:
• power supply management
• siren control
• door switch control

 70

Figure 18: Test environment of FBCU

Modelling approach

Two modelling phases can be distinguished in the case study: the initial phase
and the maintenance phase.

Initial phase

The initial phase included an analysis of the IUT based on the requirement
document and interviews with the developers of the FBCU. In this phase several
increments of the models for different testing purposes were created. The initial
phase appeared to be quite a long process because it was performed in parallel
with the development of the system adapter. There was a lot of experimenting
and trial-and-error involved in the process due to the complex nature of the
system adapter. Often there were two options – either to define something
differently within the model or to re-implement something differently in the
system adapter. Studying the problem area of the physical controller and
understanding the relationship between different electrical signals was also
difficult for the software test engineers. As most of the time was spent clarifying
and experimenting with the model and system adapter, it is difficult to view the
modelling phase as a task in itself. It is almost impossible to estimate how much
of the work was spent modelling the IUT and how much developing the system
adapter and integrating the IUT into the test environment. In general, the initial
phase lasted for approximately 42 man weeks. It was estimated that the
performance of the test case creation in the first phase using automatic model
generation would still exceed the performance of the TTCN-3 coding for the
same amount of tests by around 2.5 times.

A deterministic model with 16 states, 51 transitions and 6 context variables
was created during the initial phase. A fragment of the model is presented in
Figure 19.

 71

Figure 19: Fragment of FBCU deterministic model

Maintenance phase

The maintenance phase began after a new important requirement for the FBCU
was set by the customers: “It is very important to save the battery life, because
it is costly to change the batteries on site”. This requirement radically changed
the start-up and power control functionalities of the FBCU. It was defined that
starting from a particular battery current level, all of the functions of the FBCU
should be shut down. This was very different from the previous requirements,
where the FBCU attempted to be fully operational as long as the battery allowed

 72

it to be. Due to the radical change in the behaviour of the IUT the existing
models had to be modified to such an extent that it made more sense to create
them again from scratch. As the problem area was already well-known and the
system adapter was ready, the building of new models only took 10 man days.

A deterministic model with 20 states, 44 transitions and 6 context variables
was created. The resulting model more or less covered the same scope of
functionality as the model created during the initial phase.

In addition, a nondeterministic model was created to evaluate the feasibility
and performance of the RPT method. The strongly connected state model of the
FBCU includes 31 states and 78 transitions. Pairs of nondeterministic
transitions depart from seven states of the model and a group of three
nondeterministic transitions depart from one state of the model. The
nondeterministic model was derived from the corresponding deterministic
model by flattening the deterministic EFSM and adding a couple of
nondeterministic transitions. A fragment of the nondeterministic model is
presented in Figure 20.

7.3.5 Test generation and execution

Initial phase

The test case generated according to the all transitions test purpose includes a
test sequence with 112 steps and 3000 LOC.

The test case generated according to the all transition pairs test purpose
includes a test sequence with 286 steps and 4230 LOC.

In addition, tests were generated for 8 selected test purposes using test
coverage defined by an ordered set of states and transitions. The generated test
cases for these test purposes include 20,000 LOC in total.

Maintenance phase

The test case generated from the deterministic model according to the all
transitions test purpose includes a test sequence with 75 steps and 2950 LOC.

The test case generated from the same model according to the all transition
pairs test purpose includes a test sequence with 491 steps and 5080 LOC.
In addition, test cases were generated for 4 selected test purposes using test
coverage defined by an ordered set of states and transitions. The generated tests
for these test purposes include 10,000 LOC in total.

Reactive planning tester implementation in TTCN-3 generated from the
nondeterministic model includes 5180 LOC.

 73

Figure 20: Fragment of FBCU nondeterministic model

7.3.6 Comparing test generation performance against manual test scripting

The benefits of automatic test generation compared to manual test scripting
were estimated in the case study. The amount of generated TTCN-3 code was
taken as the basis of evaluation. The amount of work required to manually
create the same amount of TTCN-3 test code was calculated on the basis of the
past TTCN-3 coding performance statistics available in Elvior.

MBT in general and MOTES technology in particular proved the benefits
over manual test scripting. The productivity of system modelling and automatic
test generation exceeds the manual process by many times. Building a model
and a system adapter for the first time for an unknown field can take more time,

 74

but in the maintenance phase, when there is an existing system adapter and
model, subsequent changes are very fast. Additional tests can be created from
the same model within moments and the generated tests are sure to be clean of
bugs.

In the initial phase a considerable amount of time was spent on tasks such as
analysing the IUT, building the system adapter, integrating the IUT into the test
environment and creating models for first time. In this phase the performance
was not much better compared to manual test scripting. The performance
measurements of the case study exhibit around 60% of time savings over
manual test building.

In the maintenance phase the time savings can be significant. With the
know-how from the initial phase, it only took 10 days to build the new models
from scratch and to generate new TTCN-3 test cases with the same coverage as
in the initial phase. The code size of the generated TTCN-3 test cases was
around 18 kLOC. Using the manual process, the writing of the same amount of
test cases (to achieve the same test coverage) and to debug them would have
required around 360 days (with test case coding performance of 50 LOC/day).
Therefore the advantage of automatic test generation over the manual process
appears to be around 36 times greater in the maintenance phase.

7.3.7 Objectives evaluation

The evaluation results of the case study objectives are as follows:

Overall feasibility of MOTES technology for testing hybrid industrial-scale
controllers

The case study demonstrated that MOTES model-based testing technology in
general is feasible for testing hybrid industrial-scale controllers like the FBCU.
The case study demonstrated that most of the difficulties were in the building of
the system adapter, not in modelling and test generation.

Combining MOTES technology with the complex hybrid system adapter

System adapter development proved to be the most time-consuming activity in
test environment building for the model-based testing of hybrid systems. The
case study demonstrated that such development of a complex system adapter
only pays off if the test environment is reused over a longer period. Without
regression testing needs in the maintenance phase, investing in such a system
adapter is a waste of time and money. As demonstrated in the case study, only
one significantly new increment in the maintenance phase justifies the
investment made in building the system adapter.

Disclaimer: although discovered in the case study, the issues with the system
adapter do not speak against MBT and MOTES technology. A similar system
adapter is also needed in the event that the test cases are written manually
without any MBT technology.

 75

Applicability of MOTES technology for exploratory testing

The case study demonstrated that MOTES technology in particular and model-
based testing in general is applicable for exploratory testing. In the case study, a
general start-up and power control model was built which allows different
current levels to be set up in start-up. Long test sequences with different
powering schemes were generated from the same model by playing with
different test coverage criteria. Several bugs in the controller were detected
using such tests. Changing the coverage criteria and generating new test cases
from the existing model is very simple and takes just a few seconds. Many
experiments can be done in this way, as in exploratory testing, but in addition
the IUT can be tested in a more systematic way with better coverage and
repeatable results. These are significant benefits of model-based exploratory
testing over manual exploratory testing.

Feasibility of EFSM for modelling hybrid industrial-scale controllers

The case study demonstrated that EFSM has enough modelling power to model
hybrid industrial controllers. The EFSMs built in the case study contain, on
average, 18 states, 47 transitions and 6 context variables. The complexity of
such EFSMs is on the edge of readability and maintainability. The lack of
hierarchical and parallel states in the modelling notation used was experienced
as a drawback.

Feasibility of the iterative model checking-based test generation method

Although the FBCU is nondeterministic in nature, the nondeterminism was
abstracted away using FunctionCall and interleave constructs of
MTL. Because the models of the IUT did not include kinds of nondeterminism
other than the order of expected receiving messages, the deterministic model
with abstraction worked well in the case study.

Generating tests according to all transitions and all transition pair test
purposes (which resulted in test sequences of 112 and 286 steps respectively)
demonstrated the feasibility of the iterative model checking-based test
generation method for generating serious test cases.

Feasibility of the reactive planning tester-based test generation method

Reactive planning tester-based test generation was evaluated on the
nondeterministic model of the FBCU. The feasibility of the RPT method, its
scalability and performance against random choice and anti-ant on-the-fly test
generation methods were evaluated in the experiments of the case study. The
method of the experiments and the results are presented in PAPER 4. In short,
reactive planning tester-based test generation gives significantly shorter test
sequences than other on-the-fly test generation methods like random choice and

 76

anti-ant. This is achieved by the longer planning horizon of the RPT compared
to other methods. The experiments demonstrated that increasing the planning
horizon decreases the length of the test sequences exponentially. The online
planning time only increases by a power of 2 in the length of the planning
horizon.

Ability of generated tests to detect bugs

Although FBCU was already in field tests when the case study began, it was
still under development. A couple of new hardware versions and several new
software versions were introduced during the case study. 3 software bugs were
detected during the case study.

Suitability of MOTES technology for incremental system development

Due to the incremental development of the FBCU during the case study, it was
possible to evaluate MOTES technology in the system development
maintenance phase. The maintenance phase is characterised by changing system
requirements with redesign, reimplementation and retesting phases. Model-
based testing in general and MOTES technology in particular are efficient for
incremental system development as demonstrated by the test creation
performance measurements in the maintenance phase of the case study. Any
automated test environment pays off when reused several times during the
product life cycle. The same is true for MBT. The case study demonstrated that
the benefits of MBT in the maintenance phase can be enormous.

7.5 Summary of case studies

Two different case studies from different branches of the industry were
conducted. Table 3 summarises their qualitative and quantitative aspects and
results in order to place the case studies in a broader perspective and to compare
them against each other.

The most important lessons learned from the case studies were as follows:
1. The system models in the case studies model a large amount of

requirements of the system. The ability of MOTES technology to cope with
such models is evidence that the technology is applicable to model-based
testing of industrial-scale applications.

2. MOTES technology is generally applicable for functional black box testing
as shown in two different case studies from different fields.

3. The iterative model checking-based test generation method implemented in
MOTES is feasible and scalable for industrial-scale deterministic
application testing.

4. The RPT-based test generation method implemented in MOTES is feasible
and scalable for industrial-scale nondeterministic application testing. RPT
generates significantly shorter test sequences than other online test
generation methods like anti-ant and random choice. Efficiency is provided

 77

with affordable online calculation time which remains in the range of tens
of milliseconds.

5. EFSM is feasible for modelling the IUTs in the demonstrated case studies
but it was found that flat EFSM models of such a size are on the edge of
readability and maintainability. There is an urgent need for Statecharts
modelling notation with hierarchical and parallel states.

Table 3: Case studies in numbers

Aspect SIP case study FBCU case study

 initial phase maintenance
phase

Field of industry telecommunications
software telematics/controllers

Specification size (pages) app. 90 app. 50
IUT implementation size (LOC) about 500 (C++) about 400 (GNU C)
Time spent on case study
(weeks) 10 42 2

Deterministic/nondeterministic
model deterministic deterministic both

Number of models 1 1 2
Average number of
states/transitions/context
variables in model

19/52/24 16/51/6 25/61/3

Average length of test sequence
for all transitions coverage 120 112 75

Total number of generated test
cases 36 10 6

Average LOC in generated test
cases app. 570 app. 2700 app. 3000

Average test code generation
productivity 410 LOC/day 128 LOC/day 1 800 LOC/day

Test generation performance
over manual coding app. 8 x app. 2.5 x app. 36 x

6. MOTES technology can, to some extent, be adapted for the requirement-

driven testing process by defining the test purposes using model structural
coverage items. It was demonstrated in the SIP case study that this is
possible, but it lacks the means of tracing the requirements through the
model to the test cases and test logs. Further research is needed for
modelling requirements in a way that allows parts of the model to be easily
selected as test coverage items and a test case to be generated for a
particular requirement. PAPER 5 proposes an idea of model composition.
More advanced development of the idea is a topic for future research.

7. Currently, MOTES technology is not able to generate test data
automatically. Only test sequences and evaluation of the actual outputs
against those expected can be generated automatically. Input data instances
are prepared manually for test sequences. This is a drawback that slows
down model-based testing and prevents the use of data coverage criteria for

 78

test generation. Further research is needed to generate input data instances
automatically.

8. The case studies, and especially the FBCU case study, demonstrated model-
based test generation productivity against traditional manual test case
development. After the initial investments are made in the building of the
system adapter and knowledge has been gained about the problem area
during the initial phase, model-based testing becomes highly productive in
the maintenance phase, as demonstrated in the FBCU case study (Table 1).

9. The FBCU case study demonstrated MBT feasibility for exploratory testing.

 79

8 CONCLUSIONS

MBT is an automation approach for deriving tests automatically from the model
of the implementation under test (IUT). In reactive systems the MBT is an
automation approach for deriving tests automatically for IUT functional black
box tests.

The main motivation behind my doctoral studies was to create an MBT tool
for reactive systems that is relatively easy for test engineers to use and which
meets the needs of industrial-scale model-based testing. My aim was to develop
a technology that allows the IUT to be modelled using a modelling language as
close to UML as possible, since UML is a widely accepted modelling standard
that is used in different branches of industry.

Several novel methods and techniques were proposed that form the
theoretical foundation of the thesis:

• iterative model checking-based test generation from deterministic
models

• synthesis of reactive planning tester for test generation from
nondeterministic models

• requirement-driven testing through model composition
The reported iterative test generation method is based on explicit state

model-checking. It is a well-known issue that model checking suffers a state-
space explosion when the complexity of the model and/or reachability goal
increases. The iterative model checking-based test generation method builds the
tests iteratively by splitting the reachability goal into less complex sub-goals. In
each iteration only one sub-goal is solved and the resulting test sequence is
appended to the test sequence generated for the previous sub-goals. The method
is therefore not vulnerable to a state- space explosion caused by the complexity
of the test goal and allows tests to be generated from significantly larger and
more complex models. Test sequences generated in such a way are suboptimal
only. Splitting the goal into sub-goals can be viewed as another optimisation
task done either manually by the test engineer or by program automatically by
the program.

The reactive planning tester-based method of deriving tests for
nondeterministic systems has significant advantages over other known on-the-
fly testing methods due to its longer planning horizon. The reactive planning
tester is synthesised offline using reachability analysis of the model. During the
online phase the reactive planning tester is able to find the suboptimal way to
the next test coverage item automatically. Due to the longer planning horizon
the reactive planning tester meets the defined test goals significantly faster than
random walk or anti-ant-like on-the-fly testing algorithms, for example.

In industry, software testing processes are usually requirement-driven. This
means that testing should verify whether a particular software requirement
defined in requirements specification or other specifications is implemented
correctly. The requirement-driven approach in MBT should be supported as

 80

early as the modelling phase by suitable modelling formalisms. The
requirements should be able to be modelled in a way that later allows parts of
the model to be easily selected as test coverage items belonging to the particular
requirement and a test case to be generated for this particular requirement. It is
shown how the requirement-driven approach can be applied in building the
model of the IUT using either a composition of Uppaal [UPPA] automata or
NModel model program [JVC+08] features.

The reasoning behind the development of these theoretical methods and
techniques has been presented at international conferences and published in
refereed journals. A selection of representative papers has been collated and
attached to this thesis.

The practical part of the thesis includes a description of the MOTES test tool
and technology, which implements the novel test generation methods presented
in the thesis. The MOTES tool is a test generator which generates test cases in
TTCN-3 language from extended finite state models (EFSM). The applicability
of MOTES technology has been demonstrated in two industrial scale case
studies. The thesis presents the results and lessons learned from these case
studies in different branches of industry – telecommunications software and
telematics controllers.

The research presented in the thesis highlighted several topics that will
require attention in future research. This thesis focuses on EFSM notation for
modelling the IUT. EFSM is a state machine without hierarchical and parallel
states. For users to accept the MBT it is important to provide them with the
chance to also use hierarchical and parallel states. Generating tests from models
that also have hierarchical and parallel states is an important topic of future
research. The thesis pays close attention and reports on good results in
generating test sequences from deterministic and nondeterministic models. The
test data for the generated tests were still prepared manually. Automatic test
data generation is the next important topic for future research. The state models
of the system were the only modelling artefacts used in this research. In practice
there are several modelling artefacts the user would like to use in parallel to
model different aspects of the systems. Building the system model from
integrated sub-models that use different modelling artefacts is another important
topic of future research.

 81

REFERENCES

[3GPP] 3GPP web pages, http://www.3gpp.org/.
[ARTI] Artisan Studio products web pages,

http://www.artisansoftwaretools.com/products/
artisan-studio.

[Bach03] Bach, J.: Exploratory Testing Explained,
http://www.satisfice.com/articles/et-
article.pdf.

[BBC+06] Bernard, E., Bouquet, F., Charbonnier, A., Legeard, B., Peureux,
F., Utting, M., Torreborre, E: Model-based Testing from UML
Models. In: MBT'2006, Model-based Testing Workshop,
INFORMATIK'06, volume P-94 of LNI, Lecture Notes in
Informatics, Dresden, Germany, pages 223 - 230, October 2006.

[BEI95] Beizer, B.: Black-Box Testing: Techniques for Functional Testing
of Software and Systems. ISBN-10: 0471120944. John Wiley &
Sons, Inc, 1995.

[BG02] Blass, A., Gurevich, Y.: Pairwise Testing. In: Bulletin of the
European Association for Theoretical Computer Science, Number
78, October 2002, 100-132, 2002.

[BFV+99] Belinfante, A., Feenstra, J., Vries, R. d., Tretmans, J., Goga, N.,
Feijs, L., Mauw, S., Heerink, L.: Formal test automation: A simple
experiment. In: Csopaki, G., Dibuz, S., Tarnay, K. (eds.) 12th Int.
Workshop on Testing of Communicating Systems, pp. 179 - 196.
Kluwer Academic Publishers, 1999.

[BJK+05] Model-Based Testing of Reactive Systems, Editors: Broy, M.,
Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A., no. 3472.
In LNCS, Springer-Verlag, 2005.

[CCG+99] Cimatti, A., Clarke, E. M., Giunchiglia, F., Roveri, M.: NUSMV:
A New Symbolic Model Verifier. In: CAV '99: Proceedings of the
11th International Conference on Computer Aided Verification,
pages 495 - 499, London, UK, Springer-Verlag, 1999.

[CGP99] Clarke, E. M., Grumberg, O., Peled, D. A.: Model checking, MIT
Press, Cambridge, MA, USA, 1999.

[CLP08] Carter, J. M., Lin, L., Poore, J. H.: Automated Functional Testing
of Simulink Control Models. In Proceedings of the 1st Workshop
on Model-based Testing in Practice – MoTiP 2008. Editors: Bauer,
T., Eichler, H., Rennoch, A., ISBN: 978-3-8167-7624-6, Berlin,
Germany. Fraunhofer IRB Verlag, 2008.

[ConfS] Methods for Testing and Specification (MTS): Conformance Test
Specification for SIP (IETF RFC 3261). Part 2: Test Suite
Structure and Test Purposes (TSS & TP), ETSI TS 102 027-2
V4.1.1 (2006-07), http://www.etsi.org, 2006.

[DMIN] ITEA2 D-MINT project web pages,
http://www.d-mint.org.

 82

[Duf91] Duffy, D. A.: Principles of automated theorem proving, ISBN:0-
471-92784-8, John Wiley & Sons, Inc. New York, NY, USA,
1991.

[EJ73] Edmonds, J., Johnson, E. L.: Matching, Euler Tours, and the
Chinese Postman, Mathematical Programming, 5:88-124, 1973.

[ELMM] MessageMagic TTCN-3 test tool, Elvior MessageMagic product
web pages, http://messagemagic.elvior.com.

[ETPR] Methods for Testing and Specification (MTS): Internet Protocol
Testing (IPT): Testing: Methodology and Framework, ETSI EG
202 568 (V1.1.3), http://www.etsi.org.

[ETSI] European Telecommunication Standards Institute (ETSI) web
pages, http://www.etsi.org.

[GGR+06] Gaston, C., Gall, P., Rapin, N., Touil, A.: Symbolic Execution
Techniques for Test Purpose Definition. In: Testing of
Communicating Systems, Lecture Notes in Computer Science,
Volume 3964, pages 1 – 18, Springer Berlin / Heidelberg, 2006.

[GHR+03] Grabowski, J., Hogrefe, D., Réthy, G., Schieferdecker, I., Wiles,
A., Willcock, C.: An introduction to the testing and test control
notation (TTCN-3): Computer Networks: The International Journal
of Computer and Telecommunications Networking, Vol 42, Issue
3, June 2003; pp. 375-403.

[GMS+07] Gadkari, A. A., Mohalik, S., Shashidhar, K. C., Yeolekar, A.,
Suresh, J., Ramesh, S.: Automatic Generation of Test-Cases Using
Model Checking for SL/SF Models. In Proceedings of
MoDeVVa’07 in conjunction with MoDELS2007. Nashville,
Tenesee. 2007.

[HEL+05] Helmerich, A., Koch, N. and Mandel, L., Braun, P., Dornbusch, P.,
Gruler, A., Keil, P., Leisibach, R., Romberg, J., Schätz, B., Wild,
T. Wimmel, G.: Study of Worldwide Trends and R&D Programmes
in Embedded Systems in View of Maximising the Impact of a
Technology Platform in the Area, Final Report for the European
Commission, Brussels Belgium, 2005.

[HMR04] Hamon, G., de Moura, L., Rushby, J.: Generating efficient test sets
with a model checker. In: 2nd International Conference on
Software Engineering and Formal Methods, Beijing, China, IEEE
Computer Society, pp. 261–270, 2004.

[HN96] Harel, D., Naamad, A.: The STATEMATE semantics of
statecharts. In: ACM Transactions on Software Engineering and
Methodology (TOSEM), Volume 5, Issue 4 (October 1996), pages
293 – 333, ISSN:1049-331X, 1996.

[Ho02] Hong, H. S., Lee, I., Sokolsky, O., Ural, H.: A temporal logic
based theory of test coverage and generation. In: TACAS ’02:
Proceedings of the 8th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, London,
UK, Springer-Verlag, pp. 327–341, 2002.

 83

[Hog91] Hogrefe, D.: OSI-formal specification case study: The INRES
protocol and service, Technical Report 91-012, University of Bern,
1991.

[Hol97] Holzmann, G. J.: The Model Checker SPIN. In: IEEE Transactions
of Software Engineering, 23(5), pp. 279 - 295, 1997.

[HOW97] Howden, W. E.: Systems testing and statistical test data coverage.
In:
Proceedings of the 21st International Computer Software and
Applications Conference (COMPSAC), pages 500 – 504, IEEE
Computer Society Washington, DC, USA, 1997.

[Hui07] Huima, A.: Implementing Conformiq Qtronic. In: Testing of
Software and Communicating Systems, Lecture Notes in Computer
Science, Volume 4581, pages 1 – 12, Springer Berlin / Heidelberg,
2007.

[IMS] IP Multimedia Subsystem – Wikipedia, the Free Encyclopaedia.
http://en.wikipedia.org/wiki/IP_Multimedia_Su
bsystem

[JAVA] Java web page, http://java.sun.com.
[JUS08] Justyna, Z.-N.: Model-based Testing of Real-Time Embedded

Systems in the Automotive Domain. PhD Thesis, Faculty IV –
Electrical Engineering and Computer Science, Technical
University Berlin. Berlin, Germany, 2008.

[JVC+08] Jacky, J., Veanes, M., Campbell, C., Schulte, W.: Model-based
Software Testing and Analysis with C#. Cambridge University
Press, 2008.

[KBC05] Alnins, A., Barzdins, J., Celms E.: Model transformation language
MOLA. In: Proceedings of MDAFA: Model-Driven Architecture -
Foundations and Applications. Workshop, Linköping , SUEDE
(10/06/2004), Lecture notes in computer science, vol. 3599, pp. 62-
76, 2005.

[KLP+04] Kosmatov, N., Legeard, B., Peureux, F., Utting, M.: Boundary
coverage criteria for test generation from formal models. In
Proceedings of the 15th International Symposium on Software
Reliability Engineering. ISSN: 1071-9458, ISBN: 0-7695-2215-7,
Pages: 139 – 150. IEEE Computer Society Washington, DC, 2004.

[LabV] National Instruments, LabVIEW product web pages,
http://www.ni.com/LabVIEW/.

[LL05] Li, H., Lam, C. P.: Using anti-ant-like agents to generate test
threads from the UML diagrams. In: TestCom, pages 69–80, 2005.

[LMN+05] Larsen, K. G., Mikucionis, M., Nielsen, B., Skou, A.: Testing Real-
time Embedded Software using UPPAAL-TRON - An Industrial
Case Study. In: Proceedings of the 5th ACM International
Conference on Embedded Software. Jersey City, NJ, USA.
September 18-22, pp. 299-306, 2005.

 84

http://www.ni.com/labview/

[MA00] Marre, B., Arnould, A.: Test sequences generation from LUSTRE
descriptions: GATEL. In Proceedings of ASE of the 15th IEEE
International Conference on Automated Software Engineering,
pages 229 – 237, ISBN: 0-7695-0710-7, Grenoble, France. IEEE
Computer Society Washington, DC, 2000.

[McM92] McMillan, K. L.: The SMV system. Technical Report CMU-CS-92-
131, Carnegie-Mellon University, 1992.

[MM63] Miller, J. C., Maloney, C. J.: Systematic mistake analysis of digital
computer programs, Communications of the ACM, vol. 6, pp. 58-
63, 1963.

[MOR+04] de Moura, L., Owre, S., Rueÿ, H., Rushby, J., Shankar, N., Sorea,
M., Tiwari, A.: SAL 2. In: Rajeev Alur and Doron Peled, editors,
Computer-Aided Verification, CAV 2004, volume 3114 of Lecture
Notes in Computer Science, pages 496 - 500, Boston, MA, July
2004. Springer-Verlag. 2004.

[MT09] Meyn, S., Tweedie, R. L.: Markov Chains and Stochastic Stability.
ISBN 978-0-521-73182-9, Cambridge University Press, 2009.

[NIST] NIST, http://www.nist.gov/director/prog-
ofc/report02-3.pdf.

[PERL] Perl web page, http://www.perl.org
[PPW+05] Pretschner, A., Prenninger, W., Wagner, S., Kühnel, C.,

Baumgartner, M., Sostawa, B., Zölch, R., Stauner, T.: One
evaluation of model-based testing and its automation. In
Proceedings of the 27th International Conference on Software
Engineering, St. Louis, MO, U.S.A., Pages: 392 – 401, ISBN: 1-
59593-963-2. ACM New York, NY, USA, 2005.

[PUML] Poseidon for UML, Gentleware product pages,
http://www.gentleware.com.

[REAC] Reactis, Reactive Systems, Inc., http://www.reactive-
systems.com.

[SIP] SIP: Session Initiation Protocol. The Internet Engineering Task
Force, RFC 3261, http://www.ietf.org/rfc/rfc3261.
txt.

[SOFC] Sofia SIP Library. Release 1.12.10, http://sofia-
sip.sourceforge.net/relnotes/relnotes-
sofia/sip-1.12.10.txt.

[SOFI] Sofia SIP library tutorial, web pages,
http://wiki.opensource.nokia.com/projects/Sof
iaTutorial.

[SZF+04] Scott, E., Zadirov, A., Feinberg, S., Jayakody, R. The Alignment of
Software Testing Skills of IS Students with Industry Practices – A
South African Perspective, Journal of Information Technology
Education, Volume 3, 2004.

[TTCN] TTCN-3 web page, http://www.ttcn-3.org.

 85

[UL06] Utting M., Legeard B. Practical Model-Based Testing: A Tools
Approach. ISBN-13: 9780123725011. Elsevier Science &
Technology Books, 2006.

[UML] OMG: UML 2.0 Superstructure Final Adopted Specification,
http://www.omg.org/cgi-bin/doc?ptc/2003-08-02
[05/09/08].

[UpCo] Uppaal Cora web pages, http://www.cs.aau.dk/
~behrmann/cora/.

[UPL06] Utting M., Pretschner A., Legeard B. A taxonomy of model-based
testing, ISSN: 1170-487X, 2006.

[UPPA] Uppaal web pages, http://www.uppaal.com/.
[UTP] OMG: UML 2.0 Testing Profile. Version 1.0 formal / 05-07-07.

Object Management Group, 2005.
[UTT05] Utting M. Model-Based Testing. In Proceedings of the Workshop

on Verified Software: Theory, Tools, and Experiments VSTTE
2005. 2005.

[VCG+08] Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann,
N., Nachmanson, L.: Model-Based Testing of Object-Oriented
Reactive Systems with Spec Explorer. In: Formal Methods and
Testing, vol. 4949, pp. 39-76, Springer Verlag, 2008.

[VRC06] Veanes, M., Roy, P., Campbell, C.: Online testing with
reinforcement learning. In: Havelund, K., Núñez, M., Rosu, G.,
Wolff, B. (eds.), FATES/RV, volume 4262 of LNCS, pp. 240 – 253,
Springer Verlag, 2006.

[Was04] Wasowski, A.: Flattening statecharts without explosions. In: ACM
SIGPLAN Notices, Volume 39 , Issue 7, pp. 257 – 266, ACM New
York, NY, USA, 2004.

[WN97] Williams, B. C., Nayak, P. P.: A reactive planner for a model-
based executive. In Proc. of 15th International Joint Conference on
Artificial Intelligence, IJCAI, pages 1178–1185, 1997.

 86

PART III: RESEARCH PAPERS

 87

PAPER 1: Ernits, J. P., Kull, A., Raiend, K., Vain, J., Generating
tests from EFSM models using guided model checking and
iterated search refinement. In: Formal Approaches to Software
Testing and Runtime Verification: First Combined International
Workshops FATES 2006 and RV 2006, Seattle, WA, USA, August
15-16, 2006, Revised Selected Papers: Havelund, K., et al. Berlin:
Springer, 2006, (Lecture Notes in Computer Science; 4262), 85-
99.

PAPER 2: Ernits, J. P., Kull, A., Raiend, K., Vain, J., Generating
TTCN-3 test cases from EFSM models of reactive software using
model checking. In: Informatik 2006 - Informatik für Menschen:
Proceedings: Beiträge der 36.Jahrestagung der Gesellschaft für
Informatik e.V.(GI), 2.bis 6.Oktober 2006 in Dresden. (Ed.)
Hochberger, Ch.; Liskowsky, R.. Bonn: Köllen, 2006, (Lecture
Notes in Informatics; P-94), 241 - 248.

PAPER 3: Vain, J., Raiend, K., Kull, A., Ernits, J., Synthesis of test
purpose directed reactive planning tester for nondeterministic
systems. In: ASE'07 : 2007 ACM/IEEE International Conference
on Automated Software Engineering, Atlanta, Georgia, November
5-9, 2007, proceedings: 22nd IEEE/ACM International
Conference on Automated Software Engineering. ACM Press,
2007, 363 - 372.

PAPER 4: Kull, A., Raiend, K., Vain, J., Kääramees, M., Case Study
Based Performance Evaluation of Reactive Planning Tester. In:
CTIT Workshop Proceedings: 2nd Workshop on Model-based
Testing in Practice (MoTiP 2009), June 23, 2009, Enschede, The
Netherlands, 2009, 87 – 96.

PAPER 5: Ernits, J. P., Kääramees, M., Raiend, K., Kull, A.,
Requirements-driven model-based testing of the IP Multimedia
Subsystem. In: BEC 2008: 2008 International Biennial Baltic
Electronics Conference: Proceedings: 11th Biennial Baltic
Electronics Conference, Tallinn University of Technology,
October 6-8, 2008, Tallinn, Estonia. Tallinn: Tallinn University
of Technology, 2008, 203 - 206.

LIST OF PUBLICATIONS

Kull, A., Raiend, K., Vain, J., Kääramees, M. (2009). Case Study Based
Performance Evaluation of Reactive Planning Tester. In: CTIT Workshop
Proceedings: 2nd Workshop on Model-based Testing in Practice (MoTiP 2009),
June 23, 2009, Enschede, The Netherlands, 2009, 87 – 96.

Ernits, J. P., Kääramees, M., Raiend, K., Kull, A. (2008). Requirements-driven
model-based testing of the IP Multimedia Subsystem. In: BEC 2008: 2008
International Biennial Baltic Electronics Conference: Proceedings: 11th
Biennial Baltic Electronics Conference, Tallinn University of Technology,
October 6-8, 2008, Tallinn, Estonia. Tallinn: Tallinn University of Technology,
2008, 203 - 206.

Vain, J., Raiend, K., Kull, A., Ernits, J. (2007). Synthesis of test purpose
directed reactive planning tester for nondeterministic systems. In: ASE'07: 2007
ACM/IEEE International Conference on Automated Software Engineering,
Atlanta, Georgia, November 5-9, 2007, proceedings: 22nd IEEE/ACM
International Conference on Automated Software Engineering. ACM Press,
2007, 363 - 372.

Kull, A., Raiend, K., Vain, J. (2007). Executable black-box tester model
synthesis from a non-deterministic EFSM of the system. In: Info- ja
kommunikatsioonitehnoloogia doktorikooli IKTDK teise aastakonverentsi
artiklite kogumik : 11.-12. mai 2007, Viinistu Kunstimuuseum: [Tallinn:
Tallinna Tehnikaülikooli Kirjastus], 2007, 105 - 108.

Vain, J., Raiend, K., Kull, A., Ernits, J. (2007). Synthesis of test purpose
directed reactive planning tester for nondeterministic systems (extended
abstract). In: NWTP'07/FLACOS'07 Workshop Proceedings: Nordic Workshop
in Programming Theory 2007, Oslo, 10.-12. October, 2007. (Ed.) Johnsen, E.
B.; Owe, O.; Schneider G., Oslo: University of Oslo, 2007, 55 - 57.

Ernits, J. P., Kull, A., Raiend, K., Vain, J. (2006). Generating TTCN-3 test
cases from EFSM models of reactive software using model checking. In:
Informatik 2006 - Informatik für Menschen: Proceedings: Beiträge der
36.Jahrestagung der Gesellschaft für Informatik e.V.(GI), 2.bis 6.Oktober 2006
in Dresden. (Ed.) Hochberger, Ch.; Liskowsky, R., Bonn: Köllen, 2006,
(Lecture Notes in Informatics; P-94), 241 - 248.

Ernits, J. P., Kull, A., Raiend, K., Vain, J. (2006). Generating tests from EFSM
models using guided model checking and iterated search refinement. In: Formal

 147

Approaches to Software Testing and Runtime Verification: First Combined
International Workshops FATES 2006 and RV 2006, Seattle, WA, USA, August
15-16, 2006, Revised Selected Papers: (Ed.) Havelund, K., et al., Berlin:
Springer, 2006, (Lecture Notes in Computer Science; 4262), 85 - 99.

Kull, A. (2004). Improving Embedded Software Testing. In: Proceedings 8th
World Multi-Conference on Systemics, Cybernetics and Informatics: 8th World
Multi-Conference on Systemics, Cybernetics and Informatics, July 18-21, 2004,
Orlando, Florida, USA.. , 2004, 270 - 274.

 148

APPENDIX A: FORMAL TRANSITION LANGUAGE
FOR MOTES (MTL)

Identifier ::= <IDENTIFIER>

FloatValue ::= <FLOATING_POINT_LITERAL>

CharValue ::= <CHARACTER_LITERAL>

Cstring ::= <STRING_LITERAL>

Number ::= (<NUMBER>|"0")

TransitionExpression ::= ((GuardCondition)?(Trigger)?
TriggerEffectSeparator(
EffectEffect)?<EOF>)

TriggerEffectSeparator ::= (("|"))

TriggerSingle ::= ((TimeTrigger|MessageTrigger)
<EOF>)

Trigger ::= ((TimeTrigger|MessageTrigger))

GuardConditionSingle ::= ("["Expression"]"<EOF>)

GuardCondition ::= ("["Expression"]")

Port ::= (Identifier Colon)

MessageTrigger ::= ((Port)?Identifier
("("InputParams")")?)

InputParams ::= (InputParam(","InputParam)*)

InputParam ::= (SingleExpression(AssignmentChar
(SingleExpression |
Ttcn3TemplateMechanism))*)

InputParamSelection ::= ((EqualOp|RelOp)
(Ttcn3TemplateMechanism|
Expression))

InputParamAssignment ::= (AssignmentChar Expression)

TimeTrigger ::= (Identifier ".timeout")

EffectSingle ::= (Action (";" Action)*<EOF>)

Effect ::= (Action (";" Action)*)

Action ::= ((StartTimer|StopTimer|
FunctionCall|
ContextVariableExpression|
SendMessage|Quiescence|
Interleave))

ContextVariableExpression ::= (Assignment)

SendMessage ::= (Message(SendMaxDelay)?)

Message ::= ((Port)?Identifier
("("OutputParams")")?)

OutputParams ::= (OutputParam(","OutputParam)*)

OutputParam ::= (SingleExpression(AssignmentChar
(SingleExpression|
Ttcn3TemplateMechanism))*)

StartTimer ::= (TimerRef ".start"
("("(TimerValue)")")?)

 149

TimerValue ::= ((Identifier|FloatValue))

StopTimer ::= (TimerRef ".stop")

Quiescence ::= ("quiescence" "("TimerValue")")

Interleave ::= ("interleave" "("Message",
"Message(","Message)*")"
(SendMaxDelay)?)

FunctionCall ::= ("fn:"Identifier"("(Value
(","Value)*)?")")

TimerRef ::= (Identifier(ArrayOrBitRef)?)

SendMaxDelay ::= ("maxDelay" "("FloatValue")")

Ttcn3TemplateMechanism ::= (("?"|"*"|"-"))

Value ::= ((VariableRef|PredefinedValue))

PredefinedValue ::= ((BooleanValue|Cstring|Number|
FloatValue|CharValue))

VariableRef ::= ((Identifier
(ExtendedFieldReference)?))

Expression ::= ((SingleExpression|
ArrayExpression))

ArrayExpression ::= (("{"(ArrayElementExpressionList)
?"}"))

ArrayElementExpressionList ::= ((Expression(","Expression)*))

BooleanExpression ::= ((SingleExpression))

Assignment ::= ((VariableRef AssignmentChar
Expression))

SingleExpression ::= ((AndExpression
(OrOp AndExpression)*))

AndExpression ::= ((NotExpression(AndOp
NotExpression)*))

NotExpression ::= ((("!")?EqualExpression))

EqualExpression ::= ((RelExpression(EqualOp
RelExpression)*))

RelExpression ::= ((AddExpression(RelOp
AddExpression)?))

AddExpression ::= ((MulExpression(AddOp
MulExpression)*))

MulExpression ::= ((UnaryExpression(MultiplyOp
UnaryExpression)*))

UnaryExpression ::= (((UnaryOp)?Primary))

Primary ::= ((Value|"("SingleExpression")"))

ExtendedFieldReference ::= ((((Dot Identifier)|
ArrayOrBitRef)+))

ArrayOrBitRef ::= (("["FieldOrBitNumber"]"))

FieldOrBitNumber ::= ((SingleExpression))

AndOp ::= (("&"|"&&"))

OrOp ::= (("|"|"||"))

AddOp ::= (("+"|"-"))

MultiplyOp ::= (("*"|"/"|"mod"|"rem"))

 150

UnaryOp ::= (("+"|"-"))

RelOp ::= (("<"|">"|">="|"<="))

EqualOp ::= (("=="|"!="))

Dot ::= (("."))

Dash ::= (("-"))

Minus ::= ((Dash))

SemiColon ::= ((";"))

Colon ::= ((":"))

AssignmentChar ::= (("="))

BooleanValue ::= (("true"|"false"))

 151

APPENDIX B: ELULOOKIRJELDUS

1. Isikuandmed

Ees- ja perekonnanimi: Andres Kull
Sünniaeg ja -koht: 17.09.1961, Tallinn, Eesti
Kodakondsus: Eesti

2. Kontaktandmed

Aadress: Merirahu 49, Tallinn, Eesti
Telefon: +372 5021203
E-posti aadress: andres.kull@elvior.ee

3. Hariduskäik

Õppeasutus
(nimetus lõpetamise ajal)

Lõpetamise aeg Haridus
(eriala/kraad)

Tallinna 46. Keskkool Juuni 1980 Keskharidus
Tallinna Polütehniline

Instituut
Juuni 1985 Süsteemiinsener/Kõrgharidus

4. Keelteoskus

Keel Tase
eesti emakeel

inglise väga hea
vene väga hea

soome väga hea
saksa algaja

5. Teenistuskäik

Töötamise
aeg

Tööandja nimetus Ametikoht

1992 – praegu Elvior OÜ, Tallinn, Eesti juht
1990 – 1992 VTT Electronics, Oulu, Soome teadur
1985 – 1990 Protsessijuhtimise labor, Tallinna

Polütehniline Instituut, Tallinn, Eesti
nooremteadur

1983 – 1985 Protsessijuhtimise labor, Tallinna
Polütehniline Instituut, Tallinn, Eesti

assistent

 152

6. Teadustegevus

1983 – 1990: Bensoehappe tootmisprotsessi automatiseerimine.
1985 – 1990: Tehnoloogiliste protsesside automaatjuhtimissüsteemide

analüüs ja projektreerimine, teadmuste esitamine reaalaja
juhtimissüsteemides, protsessijuhtimissüsteemide model-
leerimine. Protsessijuhtimissüsteemi ja tema keskkonna
formaalse operatsioonilise mudeli (Discrete Event
Operational Specification Model) väljatöötamine. CASE
tööriista prototüübi arendamine selle mudeli
evalueerimiseks.

1990 – 1992: Sardsüsteemide modelleerimine, koodi genereerimine.
Sardsüsteemide testimine arvutis simuleeritud
keskkonnas.

2003 – 2009: Reaktiivsete süsteemide mudelipõhine testimine.

7. Kaitstud lõputööd

“Distributed process control for benzoic acid plant”, Tallinna
Polütehniline Instituut, automaatika kateeder, diplomitöö, 1985.

8. Teadustöö põhisuunad

Süsteemide automaatse testimise meetodid
Reaktiivsete süsteemide mudelipõhine testimine

 153

APPENDIX C: CURRICULUM VITAE

1. Personal data

Name: Andres Kull
Date and place of birth: 17.09.1961, Tallinn, Estonia

2. Contact information

Address: Merirahu 49, Tallinn, Eesti
Phone: +372 5021203
E-mail: andres.kull@elvior.ee

3. Education

Educational institution Graduation
year

Education
(field of study/degree)

Tallinna 46. Keskkool 1980 Secondary
Tallinna Polütehniline

Instituut
1985 System engineer/M. Sc.

4. Language competence/skills

Language Level
Estonian mother tongue, native
English very good
Russian very good
Finnish very good
German beginner

5. Professional Employment

Period Organisation Position
1992 – current Elvior OÜ, Tallinn, Estonia CEO
1990 – 1992 VTT Electronics, Oulu, Finland researcher
1985 – 1990 Laboratory of Process Control, Tallinn

University of Technology, Tallinn, Estonia
junior

researcher
1983 – 1985 Laboratory of Process Control, Tallinn

University of Technology, Tallinn, Estonia
assistent

 154

6. Scientific work

1983 – 1990: Automating of benzoic acid plant.
1985 – 1990: Analysis and design of process control systems,

knowledge presentation in real-time process control
systems, modeling of process control systems. I worked
out a formal operational modeling notation for process
control system and its environment (Discrete Event
Operational Specification Model) and developed a
prototype CASE tool for evaluating the concept.

1990 – 1992: Embedded systems modelling and code generation.
Testing embedded software in simulated environment.

2003 – 2009: Model based testing of reactive systems.

7. Defended theses

“Distributed process control for benzoic acid plant”, Tallinna
Polütehniline Instituut, Department of Automatic Control, M. Sc., 1985.

8. Current research topics

Automated testing methods of systems
Model based testing of reactive systems

 155

	Abbreviations
	1 INTRODUCTION
	1.1 Organisation of thesis
	1.2 Field of research
	1.3 Motivation
	1.4 Objectives of thesis

	2 SCOPE AND RELATED WORK
	2.1 Characteristics of reactive systems
	2.2 Taxonomy of model-based testing

	3 GENERATING TESTS FROM DETERMINISTIC MODELS
	3.1 Generating tests from EFSM using guided model-checking
	3.2 Generating tests from EFSM incrementally using model che

	4 GENERATING TESTS FROM NONDETERMINISTIC MODELS
	4.1 Synthesis of test purpose-directed reactive planning tes
	4.2 Case study-based performance evaluation of reactive plan

	5 REQUIREMENT-DRIVEN TESTING
	6 MOTES – TEST GENERATOR
	6.1 Overview
	6.2 Description of light switch example
	6.3 Creating the IUT model
	6.4 Preparing test data
	6.5 Importing the model and test data into MOTES
	6.6 Defining test purpose (coverage/goal)
	6.7 Choosing the test generation engine
	6.8 Executing the test generation engine

	7 CASE STUDIES
	7.1 Introduction
	7.2 Testing of Sofia-SIP stack
	7.3 Testing controllers of street lighting system
	7.5 Summary of case studies

	8 CONCLUSIONS
	REFERENCES
	APPENDIX A: FORMAL TRANSITION LANGUAGE FOR MOTES (MTL)

