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Abstract 
 

This thesis focuses on the development of model-based testing (MBT) 
technology that can be used for testing industrial-scale reactive systems and that 
is a reasonably simple for test engineers to use after a short period of study. 

MBT is an automation approach for deriving tests automatically from the 
model of the implementation under test (IUT). In the domain of reactive 
systems the MBT is an automation approach for deriving tests automatically for 
functional black box tests of the IUT.  

Researchers have been working on reactive systems MBT for the last couple 
of decades. Several commercial tools and many academic tools are available. 
The benefits of MBT are obvious to many, at least in the research community, 
but it has yet to be accepted by the industry. The main reasons for this are the 
poor usability (modelling complexity) and weak scalability of the test 
generation methods for industrial-scale testing.  

The driving force behind my doctoral studies was a desire to create MBT 
technology for reactive systems that is easy for ordinary test engineers to use 
and that is equal to industrial-scale testing tasks. In order to be accepted by test 
engineers and to be easy to learn, the modelling paradigm of the technology 
must be well-known and accepted by the software engineering community. My 
aim was to develop an MBT technology that allows the IUT to be modelled 
using a modelling language as close to UML as possible, since UML is a widely 
accepted modelling standard in various branches of the industry. 

In carrying out this mission, the thesis proposes several novel methods and 
techniques that form its theoretical foundation: 

• iterative model checking-based test generation from deterministic 
models 

• reactive planning tester synthesis for test generation from 
nondeterministic models 

• requirement-driven testing through model composition 
The iterative test generation method is based on explicit state model 

checking. It is well known that model checking suffers from state-space 
explosions if the complexity of the model increases and/or the goal of model 
checking broadens. The iterative model checking based test generation method 
builds the tests iteratively by splitting the model checking goal into simpler sub-
goals. In each iteration only a simple sub-goal is solved, and the resulting test 
sequence is appended to the sequence generated so far according to the previous 
sub-goals. The method is therefore invulnerable to state-space explosions 
caused by the complexity of the test goal and allows tests to be generated from 
significantly larger and more complex models. Test sequences generated in such 
a way are suboptimal only. Splitting the goal into sub-goals can be viewed as 
another form of optimisation done either manually by the test engineer or 
automatically by the program. 

The reactive planning tester-based method of deriving tests for 
nondeterministic systems has significant advantages over other known methods 
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of online nondeterministic systems testing due to its longer and parametrically 
adjustable planning horizon. The reactive planning tester is synthesised offline 
using reachability analysis of the model. During the online phase the reactive 
planning tester finds the suboptimal path to the next test coverage item in the 
model. Due to the longer planning horizon the tester meets the defined test goals 
significantly sooner than random walk or anti-ant-like algorithms, for example. 

Systems testing processes in the industry are usually requirement-driven. 
This means that testing should verify whether a particular system requirement 
defined in requirements specification or other system specifications (interface 
specifications, functional specifications, etc.) is implemented correctly. The 
requirement-driven approach in MBT should be supported as early as the 
modelling phase using appropriate modelling formalisms. The requirements 
should be able to be modelled in a way that later allows parts of the model to be 
easily selected as test coverage items belonging to a particular requirement and 
a test case for this particular requirement to be generated. The thesis shows how 
the requirement-driven approach can be applied to the building of the model of 
the IUT using either composition of Uppaal [UPPA] automata or NModel 
[JVC+08] model program features. 

The principles underlying the development of these novel methods and 
techniques have been presented at international conferences and published in 
referred journals. A selection of representative papers has been compiled and 
attached to this thesis. 

The thesis describes the MBT tool that has been developed, MOTES, which 
implements novel test generation methods. MOTES is a test generator that 
generates test cases (from deterministic models) or reactive planning tester 
(from nondeterministic models) in the TTCN-3 language from extended finite 
state models (EFSM). The suitability of MOTES technology for industrial-scale 
testing tasks has been demonstrated in two case-studies in different branches of 
the industry – telecommunications software and telematics controllers. 
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Lühikokkuvõte 

 
Käesolev doktoritöö esitleb reaktiivsete süsteemide mudelipõhiseks testimiseks 
loodud tehnoloogiat, mis on kasutatav tööstuslike testimisülesannete 
lahendamiseks igapäevases inseneripraktikas ning tavaliste testiinseneride jaoks 
mõistliku pikkusega koolituse käigus lihtsalt omandatav. 

Mudelipõhine testimine on testide automatiseerimise meetod, mille puhul 
testid tuletatakse automaatselt testitava süsteemi mudelist. Reaktiivsete 
süsteemide puhul tähendab mudelipõhine testimine automaatset testide 
tuletamist süsteemi funktsionaalseks testimiseks “musta-kasti” meetodil. 

Reaktiivsete süsteemide mudelipõhise testimise alaseid teadusuuringuid on 
tehtud juba mitme viimase kümnendi jooksul. Välja on töötatud mõned 
kaubanduslikud ja hulgaliselt akadeemilisi mudelipõhise testimise vahendeid. 
Mudelipõhise testimise plussid võrreldes traditsioonilise testimisega on hästi 
teada vähemalt akadeemilistes ringkondades. Vaatamata ilmsetele eelistele ei 
ole mudelipõhine testimine leidnud veel aktsepteerimist tööstusringkondades. 
Peamisteks põhjusteks on mudelipõhiste tehnoloogiate keeruline kasutatavus ja 
nende tehnoloogiate piiratud skaleeruvus suurte tööstuslike testimisülesannete 
lahendamiseks. 

Minu doktoritöö põhiliseks liikumapanevaks jõuks oli luua reaktiivsete 
süsteemide testimiseks niisugune mudelipõhise testimise tehnoloogia, mida 
tavalistel testiinseneridel oleks lihtne kasutada ja mis samas skaleeruks hästi ka 
tööstuslike testimisülesannete vajadustele. Selleks, et mudelipõhine testimine 
lööks kasutajate hulgas läbi, peab ta põhinema üldtunnustatud ja laialt levinud 
modelleerimise formalismil. Minu eesmärgiks oli võimaldada kasutajal 
modelleerida formalismis, mis oleks võimalikult lähedane UML-le, kuna UML 
on levinud ja aktsepteeritud modelleerimiskeel mitmetes tööstusvaldkondades. 

Võetud missiooni täitmiseks oli vaja lahendada rida teoreetilisi probleeme. 
Doktoritöö esitab mitmeid autori poolt väljatöötatud uudseid meetodeid ja 
tehnikaid, mis moodustavad doktoritöö teoreetilise aluse:  

• iteratiivsel mudelikontrollil põhinev testide genereerimine 
deterministlikest süsteemi mudelitest, 

• reaktiivse planeeriva testri sünteesimine mittedeterministlike süsteemide 
mudelipõhiseks testimiseks, 

• süsteemi nõuetest juhitud mudelipõhine testimine ja nõuete esitamine 
nõuete mudelite kompositsioonina.  

Doktoritöös esitatud iteratiivne testide genereerimise meetod kasutab explicit 
state mudelikontrolli meetodit. On üldtuntud fakt, et mudelikontrolli 
põhiprobleemiks on potentsiaalne olekuruumi plahvatus mudeli või 
saavutatavuse eesmärgi keerukuse kasvades. Iteratiivsel mudelikontrollil 
põhinev testide genereerimise meetod ehitab testi iteratiivselt, lahutades 
saavutatavuse eesmärgi lihtsamateks alameesmärkideks. Igal iteratsiooni 
sammul lahendatakse ainult üks lihtsam alameesmärk ja leitud testijada 
liidetakse varemleitud testijadale. Selle meetodi puhul testieesmärgi keerukuse 
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tõus testide genereerimise keerukust ei mõjuta ja olekuruumi plahvatuse 
tõenäosust ei suurenda. 

Reaktiivse planeeriva testri abil testide genereerimine mittedeterministliku 
süsteemi testimiseks on märgatavalt efektiivsem muudest teadaolevatest 
mittedeterministlike süsteemide on-the-fly testide genereerimise meetoditest, 
seda just tänu meetodi pikemale ja parameetritega juhitavale 
planeerimishorisondile. Reaktiivselt planeeriv tester sünteesitakse enne testide 
täitmist kasutades saavutatavuse analüüsi süsteemi mudelil. Süsteemi testimisel 
leiab reaktiivselt planeeriv tester suboptimaalse tee järgmise testikatvuse 
elemendini automaatselt. Tänu pikemale planeerimishorisondile saavutab 
reaktiivselt planeeriv tester testieesmärgi oluliselt kiiremini kui juhusliku 
otsingu või “anti-sipelga” algoritmid. 

Süsteemide testimise protsessid on tööstuses enamasti nõuetepõhised. See 
tähendab, et testimise ülesandeks on kindlaks teha süsteemi vastavus 
spetsifitseeritud nõuetele. Selleks, et kasutada nõuetepõhist testimist 
mudelipõhisel testimisel, peaks nõuete spetsiifika olema arvesse võetud juba 
modelleerimisnotatsiooni valikul. Nõudeid peab olema võimalik modelleerida 
nii, et neid oleks võimalik kasutada saadud mudelil testikatvuskriteeriumitena. 
Doktoritöös on esitatud nõuetepõhise testimise tarbeks kasutatav 
modelleerimise ja mudelite kompositsiooni põhimõte, mille järgi süsteem 
modelleeritakse kui Uppaal [UPPA] automaatide või NModel 
[JVC+08]mudelprogrammide kompositsioon. 

Loetletud uudsed meetodid ja tehnikad on kantud ette rahvusvahelistel 
konverentsidel ning publitseeritud vastavate konverentside väljaannetes. Valik 
konverentsiartiklitest on lisatud käesolevasse doktoritöösse. 

Doktoritöö kirjeldab MOTES mudelipõhise testimise vahendit, mis 
realiseerib töö teoreetilises osas esitatud uudsed meetodid ja tehnikad. MOTES 
on testigeneraator, mis genereerib testitava süsteemi käitumist kirjeldavast 
deterministlikust laiendatud lõplikust olekumasinast testijadasid või 
mittedeterministlikust mudelist reaktiivselt planeeriva testri. Mõlemal juhul on 
väljundiks TTCN-3 keeles kodeeritud testiprogramm. MOTES tehnoloogia 
rakendatavust tööstuslike testimisülesannete lahendamisel on demonstreeritud 
kahel tööstuslikul näiteülesandel, mis esindavad erinevaid tehnoloogia 
valdkondi – telekommunikatsiooni tarkvara ja telemaatika kontroller. 
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1 INTRODUCTION 

1.1 Organisation of thesis 
 
The most important theoretical contributions of the research are described in the 
five research papers attached in PART III of the thesis. Several novel methods 
and techniques form the theoretical foundation of the thesis: 

• iterative model checking-based test generation from deterministic 
models 

• reactive planning tester synthesis for test generation from 
nondeterministic models 

• requirement-driven testing through model composition 
The papers are presented in logical and chronological order. This order 

represents the history of the research, which started with issues of generating 
tests from deterministic models (PAPER 1, PAPER 2). The research continued 
with more complex issues of generating tests from nondeterministic models 
(PAPER 3, PAPER 4). PAPER 5 proposes feature-by-feature modelling and the 
idea of model composition to adapt model-based testing for widely used 
requirement-driven testing processes.  

PART I includes an introduction to and scope of the thesis and related work. 
An overview of the research papers is presented here as well as an unpublished 
improvement on the test generation method originally published in PAPER 1. 

PART II of the thesis demonstrates the model-based test tool MOTES, 
which implements the research methods described in PART I. Two case studies 
are described here to demonstrate the feasibility of MOTES technology and its 
application in solving industrial-scale model-based testing tasks. 

1.2 Field of research 
 

The thesis focuses on model-based functional testing of reactive systems using 
the black box testing [BEI95] principle. The task of black box testing (also 
known as ‘behavioural testing’ or ‘functional testing’) is to verify that the 
implementation under test (IUT) conforms to the specifications. The IUT is 
viewed as a black box which transforms input into output according to its 
specifications. In automated black box testing the IUT is executed against the 
test tool, which acts as the environment for the IUT. The test tool provides input 
for the IUT and examines the actual output against that expected. Black box 
tests can be automated by the scripts that are executed by the test tool. Scripts 
can be implemented in general-purpose programming languages like Java 
[JAVA], in scripting languages like Perl [PERL], in test-dedicated languages 
like TTCN-3 [TTCN] and more. 

Although script-based automation increases black box testing productivity 
and tests repeatability in regression tests, practitioners have experienced serious 
problems in traditional script-based black box testing: 
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• Test engineers are rarely able to create a sufficient amount of test 
scripts manually to achieve adequate test coverage. Manual scripting is 
a time-consuming activity and involves an effort comparable to 
implementing the IUT itself. 
 

• In industrial projects the amount of test scripts may increase 
enormously. In the systems maintenance phase, the regression tests are 
used to verify that the old features of the IUT are still working after the 
implementation is changed. The IUT changes which affect its external 
interfaces are the reason why test scripts should be modified 
accordingly. In the case of a considerable number of legacy test scripts, 
maintenance costs may prove unacceptably high. 
 

• The high maintenance costs of test scripts is the reason why test 
coverage of legacy test suites decreases over time, since only subsets of 
existing test scripts tend to be updated. 
 

Model-based testing (MBT) refers to the automation of software black box 
testing where the test cases (test scripts) are derived, in whole or in part, from a 
model that describes the expected behaviour of the IUT [UL06]. The MBT 
workflow consists of the following primary steps: 

 
• The external behaviour of the IUT is modelled according to the relevant 

specifications of the IUT. The model presents the correct expected 
behaviour of the IUT. 
 

• The test purposes (test goals) are defined by the test engineer. The tests 
are always generated for particular test purposes that define the scope 
and coverage of the generated tests. 
 

• The tests are generated automatically from the IUT model by a test 
generation tool using the test purposes. 
 

• The generated tests are executed against the IUT to verify its 
conformity to the model. 
 

MBT has the following benefits compared to traditional script-based black box 
testing: 

 
• Modelling of the IUT for testing purposes has a similar effect on the 

quality of the IUT specification as the modelling of the IUT does on 
design and implementation purposes – it helps detect possible 
inconsistencies and ambiguities in the specification before actual 
testing.  
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• Automatic test generation is time-effective and cost-effective 
[PPW+05]. After creating the IUT model and defining the test goals, the 
remaining test generation can be fully automatic.  

  
• Automatic test generation gives better test coverage than manually 

created tests [UTT05]. Tests can be created from an IUT model for 
many different test goals simply by defining the new test goal and 
generating new tests just by pressing a button. In this way, tests for 
different use cases can easily be generated from the same model. This is 
not feasible with manually created tests: implementing all of them 
manually is normally too costly. 
 

• The maintainability of legacy tests improves. After updates in the 
behaviour or interfaces of the IUT there is no need to go through a huge 
number of legacy tests to update them accordingly. Updating the model 
alone is enough, and all tests can then be regenerated automatically 
from the model. 
 

Considerable research has been done into MBT and many relatively mature 
prototype academic tools and a number of commercial tools are already 
available.  

The transfer of the results of research into MBT to practical application has 
met with various problems. Many research tools use modelling formalisms 
which are different from those adopted in the industry for model-based design 
and development. This is partly because the models in design and development 
can be semi-formal, whereas an automatic MBT tool can only work on 
completely formal models. The difficulties of using formal languages for 
modelling IUTs have delayed their use in the industry. Another restriction in the 
practical use of MBT tools is the size and complexity of the models in the 
industry and the poor scalability of MBT tools in supporting them.  

1.3 Motivation 
 
With the increasing penetration of software-intensive systems into our everyday 
lives, the requirements of system functionalities and features have increased. At 
the same time, the requirements of system quality and reliability have also 
increased. With a growing number of requirements, the complexity of software-
intensive systems is likewise growing. This is combined with increasing error-
proneness, which is related to shortened development times.  

The need to develop high-quality applications in a shorter time and at a 
lower cost requires more structured and automated analysis, design, and testing 
techniques. Automated testing techniques are more important and add more 
value to products and services delivered to the market as rapidly as possible, 
with minimal risks. Test automation becomes more vital in maintaining a 
technological edge and controlling costs.  
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According to the Journal of Information Technology Education [SZF+04], 
companies have allocated more than 40% of their product development time to 
testing. A NIST study in the USA in 2002 [NIST] showed that more than 59.5 
billion dollars is lost every year as a result of quality problems in software 
applications, such as capabilities that do not reflect business needs, recurrent 
stability problems, errors, and crashes that sometimes lead to heavy business 
losses. 

This explains why research on increasing testing effectiveness can lead to 
significant cost-saving effects. 

1.4 Objectives of thesis 
 
The research objectives of the thesis are as follows: 

 
• To develop a novel, well-scalable method for generating tests from 

deterministic EFSM (Extended Finite State Machine) models of the 
IUT; to develop the test generator implementing the method; and to 
evaluate the feasibility of the method and the test generator in 
industrial-scale case studies. 
 

• To develop a novel, well-scalable method for generating tests from 
nondeterministic EFSM models of the IUT which, in online testing, 
achieves test goals faster than any known online testing method; and 
to develop the test generator implementing the method; to evaluate 
the feasibility of the method and test generator in industrial-scale 
case studies. 

 
The research method used in the thesis is predominantly experimental and 
constructive, and the focus of the thesis is therefore practical rather than 
theoretical. The solutions to the problems listed above are constructed using 
incremental development cycles followed by empirical evaluations. 
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2 SCOPE AND RELATED WORK 

2.1 Characteristics of reactive systems 
 
Each model-based testing approach is highly dependent on the characteristics of 
the IUT. These characteristics define the suitable modelling paradigms for each 
kind of IUT. In this thesis the MBT is applied for the testing of reactive 
systems. Reactive systems are systems which must continually respond to the 
stimuli from their environment. As such, the computations of the reactive 
system are driven by the stimuli received from the environment. In response to 
the stimuli, the IUT changes its internal state and produces responses which are 
sent back to the environment [HEL+05]. Examples of reactive systems include 
controllers in branches of industry like telecommunications, automotives, 
avionics and transport. Most real-time systems include embedded reactive 
software. Reactive systems are often critical to safety and must be thoroughly 
tested to ensure that they meet specific functional and non-functional 
requirements. Since the number of potential input sequences that reactive 
systems must handle is infinite, a great deal of testing is needed to be sure that 
the system behaves as expected.  

Software embedded in reactive systems has important characteristics that 
should be taken into account in MBT methods: 
 

• Continuous execution – typical reactive software should never stop 
functioning 
 

• Concurrency inside the software to handle concurrent processes in the 
environment 
 

• Asynchronous communication between software components internally 
and between the components of the environment 
 

• History-based behaviour – reactions to stimuli do not depend on current 
stimuli alone but also on the history of past stimuli 
 

• Time-dependent behaviour – behaviour depends on the order of stimuli, 
the time intervals between consequent stimuli, and absolute time 
 

• Multiple acceptable outputs on the same stimuli (output 
nondeterminism) are possible due to the concurrency and race 
conditions inside the reactive system 
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2.2 Taxonomy of model-based testing 
 
Model-based testing is a large domain. The term ‘model-based testing’ is 
widely used, with slightly different meanings. Surveys on different model-based 
testing approaches are presented in [BJK+05], [UTT05], [UL06], [UPL06]. 

In this thesis only a small proportion of the MBT field is covered. To place 
the thesis in the context of the MBT landscape as a whole, the framework of 
model-based testing taxonomy introduced in [UPL06] is used.  

The taxonomy of MBT includes three general classes: the model, test 
generation and test execution. Each class is divided into categories. The model-
related categories are subject, independence, characteristics and paradigm. The 
test generation class is split into test selection criteria and technology, while the 
test execution is divided into execution options. See Figure 1. 

 

Figu  

Overview of the Taxonomy for MBT in [UPL06] 

The subject defines what is modelled. The subject can be the intended behaviour 
of the IUT or the possible behaviour of the environment of the IUT, or a combination 
of the two.  

 

re 1:

Scope of thesis: 
The intended behaviour of the IUT is the subject in this 
research. The model presents the expected correct 
behaviour of the IUT, which acts as the ‘criterion of 
truth’.  
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The model f iour of the 
IUT in its i ox). This 
approach ass interfaces. 
The model e  the behaviour of the IUT as an expected reaction observed 

opment 

or IUT black box testing expresses the intended behav
nterfaces as seen from the outside of the IUT (black b
umes that the IUT is controllable and observable via its 
xpresses

in the observable interfaces to the external stimuli received by the controllable 
interfaces. This explains why the design model of system implementation 
cannot be used as such for black box testing purposes. Although the sources of 
the models for design and test purposes are the same, they model different 
aspects of the systems for different purposes. The first concentrates on the inner 
architecture and behaviour of implementation. The second concentrates solely 
on external behaviour, which is outside the controllable and observable. 

The independence aspect reflects the source of the model. If the model is 
designed directly from informal requirements specifically for testing purposes 
by a team that is independent of IUT developers, there will be a high degree of 
independence between the models created for testing and devel
purposes, and the testing is more likely to discover significant errors. 
Independence between models for testing and development purposes increases 
the chance that during modelling for testing purposes ambiguities will be able to 
be detected in the IUT specifications as a side-effect of the modelling. Reusing 
too many existing development models in creating models for testing purposes 
can weaken the independence of the test suite and reduce its capabilities to 
detect implementation errors.  

 
Scope of thesis: 
The independence aspect of the model is beyond the 
scope of this thesis. 
In the context of this research it is important that the 
model of the IUT for black box testing purposes does 
exist, but it is unimportant whether the model was 
created independently of the development model by an 
independent team. 

 
The charac l that are 
dependent o s relate to 
nondetermin ation of timing issues and to the continuous or 
event-discrete nature of the model and the IUT. 

re the input of the model can 
generate many alternative outputs in the current state of the model. 

teristics aspect describes the properties of the mode
n the characteristics of the IUT. These characteristic
ism, to the incorpor

 
• Deterministic models are those where the model’s output is 

deterministically defined by the model input and the current state. 
Nondeterministic models are those whe

Nondeterminism stems partially from the internal parallel processes of 
the IUT, timing and hardware-related asynchronous processes. Other 
sources of nondeterminism are the higher abstraction level of the model 
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compared to IUT implementation and the ambiguities in the 
specifications of the IUT. 
 

Scope of thesis: 
Both deterministic and nondeterministic models fall 
within the scope of this research.  

 
• Tim ts on the 

model. In general, the timing correctness of reactive systems is an 
portant issue to test.  

ed models are used to express the real-time constrain

im
 

Scope of thesis: 
Systems with hard real-time constraints are beyond the 
scope of this thesis. A timed model with time 
constraints is not used. Only timers and timeouts are 
used in the model to detect missing or delayed events 
in the IUT. 

 
• The 

 
model can be discrete, continuous or a mixture of both.  

Scope of thesis: 
The assumption is that the model is discrete. The 
model receives its input events at discrete time 
moments and also produces output events at discrete 
time moments. 

 
The paradig f creating 
it. Various igms are available. In the modelling of reactive 
systems the most commonly used modelling paradigms are transition-based 

nsitions represent the actions or 
operations of the system. Textual information is used to express the 

 
• 

ons attached to transitions. 
EFSM is a more compact state machine presentation than FSM, with 

 

m aspect reflects the style of the model and the notation o
modelling parad

ones. These are most natural for presenting the state-based behaviour of the IUT 
and the reactive relationships between IUT inputs and outputs. Typically 
different state machine notations are used to model reactive systems. Examples 
of transition-based modelling notations are: 
 

• Finite state machine (FSM) is a notation where the nodes represent the 
states of the system and the tra

input-output relationship on the transitions. 

Extended finite state machine (EFSM) is FSM with variables, guard 
conditions and variable assignment operati

improved expression power. 
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• 
FSMs with features that increase the 

expressive power at the next level. Parallel and hierarchical states are 

Statecharts (e.g. UML State Machines [UML], and STATEMATE 
Statecharts [HN96]) are E

represented on Statecharts. 
 

Scope of thesis: EFSMs are used to model the IUT. 
 

The test selection criteria aspect describes the different test selection criteria 
used in test g

verage in terms of model structural elements such as 
states and transitions. 

statements, decisions, 
loops and path coverage [MM63]. 

 
• 

efine or use data variables. 
Examples of data-flow oriented coverage criteria are all 

 
• 

es of 
transition-based coverage are all paths, all transitions and 

 
• Data co

input da  often used data coverage criteria 
are:  

boundaries of the input domain [KPL 04]. 
 

97].  
 

• Req e
requirem
 

eneration. 
 
• Structural model coverage is a test selection criterion that specifies the 

intended test co

 
• Control-flow oriented coverage criteria for models are derived 

from similar code coverage criteria like 

Data-flow oriented coverage criteria attempt to cover the 
control flow graph elements that d

definition−use-pairs, all definitions and all uses [BEI95]. 

Transition-based coverage criteria define the transitions of the 
model that should be visited by generated tests. Exampl

selected transitions [UL06]. 

verage is a test selection criterion that specifies the intended test 
ta coverage. The three most

 
• Boundary value criteria select test input values at the 

+

• Statistical data coverage criteria select test input values that 
follow a certain statistical distribution [HOW

• Pair-wise testing criteria select test input values so that all pairs 
of input values are tested [BG02]. 
 

uir ments coverage: this aims to generate tests so that all of the 
ents of the IUT are tested [UL06]. 
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• Explicit test case specification: this is test selection by the test engineer, 
who explicitly defines the test objectives of the model. The notation 

sed to express the test objectives may be the same as the notation used 

• 
other 

xample is to use a statistical usage model in addition to the behavioural 

• 
orm of a fault model. 

u
for the model [UPL06]. Notations commonly used for test objectives 
include FSM, UML Testing Profile (UTP) [UTP], regular expressions, 
temporal logic formulas, constraints and Markov chains [JUS08]. 
 
Random and stochastic criteria: a typical approach is to use a Markov 
chain [MT09] to specify the expected IUT usage profile. An
e
model of the IUT [CLP08].  
 
Fault-based criteria: these rely on knowledge of typically occurring 
faults, often designed in the f
 

Scope of thesis:  
Transition-based structural model coverage criteria are 
used for test selection. Requirements-coverage test 
selection is implemented by defining the requirements 
coverage using structural coverage over the model 
elements involved in modelling the requirement. 

 
The test ge nderlying 
technologies 

 

 manually. 

neration technology paradigm describes the different u
used in MBT methods: 

• Manual/Automatic: tests can be generated automatically by test 
generation tools or developed

 
Scope of thesis: 
In the thesis the control flow of the tests is generated 
automatically, while the test data used by the tests is 
prepared manually. 

 
• Ran mpling the 

inpu onkey tests). 

the Chinese Postman algorithm 
J73], which covers each arc at least once.  

 

dom generation: random generation of tests is done by sa
t space of a system (m

 
• Graph search algorithms: dedicated graph search algorithms include 

node or arc coverage algorithms such as 
[E

Scope of thesis: 
Graph search algorithms and reachability analysis are 
used in a novel method to synthesise a reactive 
planning tester for testing nondeterministic systems. 
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• Mod verify the 
prop e general 
idea rst specify the 

 

el checking: model checking is a technology used to 
erties of a system using reachability analysis [CGP99]. Th
 of test case generation with a model checker is to fi

test case in terms of reachability properties e.g. “eventually, a certain 
state is reached or a certain transition fires”. A model checker then 
yields traces which reach the given state or which eventually make the 
transition fire. Different model checking techniques exist e.g. explicit 
state model checking and symbolic model checking. 

Scope of thesis: 
The explicit state model checking is applied to test 
generation for deterministic systems. 

 
• Sym to run an 

exec raints instead of single input 
alues to generate traces [MA00]. To derive test cases these traces are 

• 
an be used in test generation in 

 similar way to model checkers, with a theorem prover replacing the 

• 
execution (offline test generation) or simultaneously 

ith it (online test generation). The term ‘on-the-fly’ is often used for 

bolic execution: the idea behind symbolic execution is 
utable model with sets of input const

v
instantiated with concrete input values 
 
Theorem proving: this is used to check the satisfiability of formulas in 
the models [Duf91]. Theorem provers c
a
model checker. 
 
Online/offline test generation defines whether the tests are generated in 
advance of test 
w
online test generation. Offline test generation is mostly used to generate 
tests for deterministic IUT, while on-the-fly generation is mostly used 
with nondeterministic IUT. 
 

Scope of thesis: 
Offline test generation is used to generate tests for 
deterministic systems.  
A mixture of offline and online test generation is used 
to generate tests for nondeterministic systems. 

2.3 Scope s
 
The scope of as a whole in 

of model-based testing taxonomy. 
es an overview of the work related 

fications, et al.). Only the expected (correct) behaviour of the IUT 

ummary and related work 

 this thesis was extracted from the MBT landscape 
the previous section using the framework 

his section summarises the scope and providT
to this scope. 

Tests are generated from the model of the IUT. The model is derived for 
testing purposes from the specifications of the IUT (requirements specifications, 
interface speci
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is 

r a test has been successful or not. It is used 
by

 approach for nondeterministic systems 
wh

iour of the IUT 
and

ts. 

al modelling language, FSM, EFSM and 
Sta

l programming languages. They have the expression power that 
ena

modelled. It is assumed in the thesis that the model of the IUT can be either 
deterministic or nondeterministic. 

From the deterministic model of the IUT, test cases with the test oracle are 
generated offline and executed online against the IUT. A test oracle is a 
mechanism for determining whethe

 comparing the output(s) of the system under testing, (for a given test case 
input), to the outputs that the oracle determines the product should have. Such 
offline-generated test cases implement a test sequence that covers the IUT 
according to the test coverage defined by the user. Many MBT solutions are 
restricted to generating the test from deterministic models only. The following 
model-based testing tools fall into this category: Conformiq Qtronic [Hui07], 
Leirios Test Generator [BBC+06] (marketed as Smartesting), Agatha [GGR+06], 
SpecExplorer [VCG+08], NModel [JVC+08], ATG [GMS+07], MiLEST 
[JUS08], and Reactis Tester [REAC]. 

Nondeterminism is an essential characteristic of reactive systems, and 
working solely with deterministic models leads to excessive narrowing of the 
testing field. This thesis proposes an

ere the reactive planning tester is generated offline from the nondeterministic 
model of the IUT. The reactive planning tester is executed online against the 
IUT. It is the task of the reactive planning tester to generate tests on the fly, 
taking into account the nondeterministic responses from the IUT and the 
intended test coverage defined by the user. Other tools providing on-the-fly test 
generation for the testing of nondeterministic systems are SpecExplorer 
[VCG+08], NModel [JVC+08], and Uppaal TRON [LMN+05]. 

This thesis focuses on IUT with soft real-time properties only. Hard real-
time constraints and performance testing are beyond the scope of the thesis. In 
the context of the thesis only the correct externally visible behav

 the order of events are important. Timers and timeouts are represented in 
the IUT model to denote missing or delayed events from the IUT and to present 
delays in the test sequences.  

It is assumed in the thesis that the model of the IUT is discrete. The model 
receives its input events at discrete time moments and also produces output 
events at discrete time momen

EFSM as a subset of a UML state machine is used for modelling the IUT in 
the thesis. The following modelling notations were under consideration in the 
early stages of research: textu

techarts.  
Textual modelling languages such as Spec# (a modelling language for 

SpecExplorer [VCG+08]) and C# (a modelling language for NModel [JVC+08]), 
are high-leve

bles the modelling of almost any aspects of the system at a very detailed 
level. Textual modelling languages are hard for test engineers with limited 
programming skills to learn. They lack graphical relationships between model 
components.  
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FSMs have received extensive theoretical study by the model-based testing 
community. Researchers have been working on FSM test generation algorithms 
sin

 is widely accepted in the industry. 
Un

 making it a better choice than FSM. The benefit 
of 

ser-defined model elements 
(co

tisfy the test sequences are 
pre

ce the early 1960s. Several complete test generation methods have been 
invented for generating tests that guarantee the IUT implementation identity 
with the corresponding FSM model. Those algorithms are not typically used in 
industrial practice because they are too restrictive in that they make strong 
assumptions about the model and the IUT. FSMs lack the expression power 
required to model industrial-scale systems. Serious models built in FSM grow 
to be huge and lack readability. NModel [JVC+08], for example, supports FSM 
models in addition to C# model programs.  

Statecharts [HN96] is a state machine with hierarchical and parallel states. It 
is a powerful state machine notation which

fortunately, test generation from Statecharts presents many obstacles which 
are hard to overcome due to the existence of parallel states. Algorithms are 
available for flattening the Statecharts [Was04], [KBC05], but due to this 
flattening the traceability from generated tests back to the original model 
becomes difficult. Tracing generated tests back to the model is urgently needed 
during test execution to identify the aspects of the model that implementation 
violates. Statecharts modelling notation is used with some limitations in Qtronic 
[Hui07] and ATG [GMS+07]. 

EFSM has weaker expression power compared to the Statecharts. EFSM is a 
compact presentation of FSM,

EFSM as a graphical presentation over textual modelling notations is that it is 
more readable and understandable, but there are still people who prefer only 
textual presentations. The choice of the modelling language can be considered a 
matter of taste.   EFSM, like FSM, is a theoretically well studied notation. There 
are a large number of tools and techniques for manipulating EFSMs. The 
availability of model checking tools for experimenting with test generation from 
EFSM was one of the reasons for its selection for the modelling notation in this 
research. EFSMs have gained wide acceptance in software modelling [Ho02] 
and are used as semantic models for specification languages such as Statecharts 
and UML state machines. The timed automata notation used by the Uppaal 
TRON [LMN+05] is an extension of EFSM also.  

Model structural coverage criteria are used for test selection, which is based 
on finding transition sequences that cover u

verage items). Tests are generated according to the following test coverage 
criteria: selected states, selected transitions, all transitions, all states and all 
transition pairs. The requirements coverage criterion is implemented by 
combining the structural coverage items. Test selection based on model 
structural coverage criteria is used also by Qtronic [Hui07], Leirios [BBC+06], 
Agatha [GGR+06], and Uppaal TRON [LMN+05]. 

Test sequences (test control flow) are generated from the model 
automatically, but the test data instances that sa

pared manually in the approach proposed in this thesis. Automatic 
generation of test data instances is implemented in Qtronic [Hui07], Agatha 
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[GGR+06], SpecExplorer [VCG+08], NModel [JVC+08], MiLEST [JUS08], and 
Reactis Tester [REAC] in addition to the generation of test sequences. 

Explicit state model checking is used for offline test generation from 
deterministic models. In this research, the Uppaal Cora [UpCo] model checker 
is 

olic and bounded model checking; 

ed model checking. 
App in

items is a n te 
mo

deterministic models. The 
me

Test assessment is 
car

used as a test generation engine. Using explicit state model checking for test 
generation is not a new idea [HMR04] – the most commonly used model 
checkers in the context of testing are: 

• explicit state model checker SPIN (Simple Promela Interpreter) 
[Hol97];  

• Symbolic Analysis Laboratory SAL [MOR+04], which supports 
both symb

• symbolic model checker SMV [McM92] and its derivative NuSMV 
[CCG+99], which support symbolic and bound

ly g explicit state model checking iteratively over the set of coverage 
ovel approach in this thesis and outperforms ‘standard’ explicit sta

del checking-based test generation in scalability.  
A novel graph search and reachability algorithm is used to synthesise a 

reactive planning tester for test generation from non
thod outperforms online test generation methods which rely on random 

choice, such as TorX [BFV+99], Uppal TRON [LMN+05] and SpecExplorer 
[VCG+08], and anti-ant heuristic-based state-space exploration methods 
introduced in [LL05] and used in [VRC06] because the reactive planning tester 
results in shorter tests due to the longer planning horizon [PAPER 4]. A mixture 
of offline and online test generation is used. In the offline phase the reactive 
planning tester is synthesised from the model, while in the online phase the 
tester is executed. It autonomously finds a sub-optimal (in terms of test 
sequence length) path that traverses the test coverage items. 

The test assessment algorithm is derived from the model of the IUT that 
expresses the expected (correct) behaviour of the system. 

ried out automatically by the generated TTCN-3 test cases in the online 
phase. 
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3 GENERATING TESTS FROM DETERMINISTIC 
MODELS 
3.1 Generating tests from EFSM using guided model-checking 
 
The theoretical contribution of the thesis to generate tests from deterministic 
EFSM is presented in PAPER 1 and PAPER 2. The papers address test 
generation from the deterministic model of the IUT using model checking. 
PAPER 1 describes the test generation method and PAPER 2 describes the 
implementation of the method. 

 
The first paper is entitled “Generating tests from EFSM models using guided 
model checking and iterated search refinement” [PAPER 1]. The paper was 
written by Juhan Ernits, Kullo Raiend, Jüri Vain and the author of this thesis. It 
was presented at the First Combined International Workshops FATES 2006 and 
RV 2006 in Seattle, USA, in August 2006. 

The paper describes a method for generating test sequences from the models 
of the IUT using the guided model checker Uppaal Cora [UpCo]. The IUT is 
modelled using EFSM modelling notation. The motivation to work with EFSMs 
was justified because the specifications provided in terms of (for example) 
suitably restricted UML Statecharts can be converted into the equivalent 
EFSMs, and EFSMs provide a semantically well-defined model representation 
that can be applied to test generation. The algorithms for searching test 
sequences are relatively simple if the software is modelled using finite state 
machines (FSM), because FSM does not have variables and guard conditions, 
unlike EFSM. The existence of variables and guard conditions makes the search 
of test sequences much more complex. This complexity is caused by the large 
number of value combinations the variables can have and by the need to satisfy 
guard conditions on transitions. A well-known option for generating tests from 
EFSMs is to use the search machinery provided out of the box by model 
checkers [CGP99]. With model checkers the coverage of a test case is specified 
using reachability properties on the model. The model checker solves the 
reachability task and generates a witness trace that can be transformed into an 
abstract test sequence satisfying the specified test coverage criteria. The abstract 
test sequence can be further encoded as executable test code. 

The test generation method presented in the paper allows for the 
specification of various structural test coverage criteria in EFSM – for example, 
selected states/transitions, all transitions and all transition pairs. The paper 
proposes a method that combines the techniques of model construction with a 
novel method of reachability search in model checking which we have named 
iterated random abstraction (IRA). The problem of generating test sequences is 
formulated as a bounded reachability problem and solved through model 
checking. 

Model checking [BJK+05] is a state-space exploration-based method. The 
critical factor in space exploration-based methods is scalability i.e. the ability to 
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handle the exponential growth of the search state-space. One example of an 
issue where scalability quickly becomes acute is generating tests according to 
structural test coverage criteria that result in long witness traces – for example, 
all transitions test coverage or all possible subsequences of transitions of length 
k > 1.  

The paper describes a method of constructing Uppaal [UPPA] models to 
achieve test sequences that satisfy the test coverage criteria and experiments 
with the search options of Uppaal to achieve test sequences that are suboptimal 
in terms of length. The paper shows how guiding the search with cost variables 
influences the lengths and required amount of memory of test generation. The 
authors apply the novel bitstate hashing state-space reduction-based iterated 
random abstraction method to shorten the length of the test sequences with 
respect to the length gained using a depth-first search. In fact, the method 
merges search-guiding with the iterated random abstractions to reduce the 
lengths of the generated test sequences. As a result, the scalability of applying 
explicit state model checking for test generation increases. Uppaal and its 
guided counterpart Uppaal Cora [UpCo] were used because they enabled the 
influence of guiding and iterated random abstraction in the context of test 
generation to be demonstrated.  

The test generation method and different search strategies were compared by 
applying them to a stopwatch and INRES protocol [Hog91] case studies. The 
authors carried out a comparison of different search strategies on a stopwatch 
model. The comparison confirmed what has previously been stated: that explicit 
state model checking does not scale well for test sequence generation purposes, 
as breadth-first searches, which would yield a short sequence, run out of 
memory with simple models and depth-first searches produce very long 
sequences while consuming large amounts of memory as the model becomes 
more complex. A bitstate hashing-based iterated random abstraction method for 
checking reachability proved more scalable for test generation than the 
traditional search strategies used in model checking. Additionally, extending the 
EFSM model with guiding cost expressions yielded better results, and some 
heuristic tuning of the cost expressions drastically improved the results. 

The most important contribution of the paper is the proof it presents of the 
concept of applying guided model checking in conjunction with the iterated 
random abstraction method to generate suboptimal test sequences.   
Experiments have shown that the lengths of test sequences generated using 
explicit state model checking can be improved by combining guiding and 
iterated random abstractions. 

 
The second paper, entitled “Generating TTCN-3 test cases from EFSM 
models of reactive software using model checking” [PAPER 2], is a practical 
continuation of the studies reported in PAPER1. It describes a test generation 
tool that implements the method. The paper was written by Juhan Ernits, Kullo 
Raiend, Jüri Vain and the author of this thesis. The paper was presented at the 
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MOTES 2006 conference as part of Beiträge der 36.Jahrestagung der 
Gesellschaft für Informatik in Dresden, Germany, in October 2006. 

The paper describes the architecture and workflow of the model-based 
testing tool for the generation of executable TTCN-3 [GHR+03] test cases from 
a deterministic, strongly connected system model using the Uppaal Cora 
[UpCo] model checker. The test cases are generated for black box testing of the 
reactive IUT. In order to specify the observable behaviour of the IUT, the 
formal transition language for EFSM [Appendix A] is defined. This approach 
allows the user to specify various structural test coverage criteria of EFSMs – 
for example, selected states/transitions, all transitions and all transition pairs. 
The Uppaal model is constructed from the model of the IUT and a coverage 
criterion. Uppaal Cora is used to find an abstract test sequence that is 
suboptimal in terms of length. The problem of generating test sequences is 
formulated as a bounded reachability problem and solved by the Uppaal Cora 
model checker. When a model checker solves a reachability task it generates a 
witness trace that corresponds to an abstract test sequence. The abstract test 
sequence is further encoded to test code in the TTCN-3 language. TTCN-3 was 
selected as the output because it is a dedicated language for testing purposes, it 
is standardised, and it is widely accepted in the software testing industry 
(especially so in telecommunications). The rules for transforming the abstract 
test sequences to TTCN-3 are presented. In the approach the test cases are 
generated offline i.e. test cases are generated from the model of the IUT before 
the tests are run. 

The most important contribution of the paper lies in the value of proposing 
the complete procedure of transforming a formal IUT model into executable test 
code that satisfies user defined structural coverage criteria.  

In the paper the test generator tool does not yet have a name.  It was later 
dubbed ‘MOTES’ after the name of the conference at which the implementation 
principles were published. 

3.2 Generating tests from EFSM incrementally using model checking 
 

The test generation method which was presented in PAPER 1 and which was 
implemented according to the test tool architecture and workflow presented in 
PAPER 2 suffers from two issues that prevent it from being applied without 
improvements for industrial-scale applications testing.  

First, the method that relies on explicit state model checking suffers from the 
state-space explosion. This is a common problem in model checking. The 
method works well in experiments with small models and simple test coverage 
criteria, as reported in PAPER 1. 

The appearance of the state-space explosion depends on the size of the 
model and the complexity of the reachability problem to be solved. Having 
implemented the initial tool it was possible to experiment with industrial-scale 
models, and the results were not encouraging. 

Second, defining the reachability problem as a conjunction of the test 
coverage items and solving the reachability problem by model checking 
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provides the shortest test sequence through all of the coverage items that the 
specific model-checker can find. With this algorithm the order and amount of 
coverage items in the test sequence is out of the control of the test engineer. The 
model checker finds a test sequence that covers all of the coverage items in an 
order that depends on the search strategy of the model checker. In many cases 
this reduces the flexibility of defining test goals. Often test engineers want to 
generate tests according to more complex scenarios – for example, first 
covering item A and then B, then covering items C and D in any order and 
finally covering A and then B again. 

To overcome these issues, the method introduced in PAPER 1 was improved 
by using model checking incrementally in test generation. The core idea of 
incremental model checking lies in splitting the model checking problem into 
sub-problems and solving the sub-problems one by one, incrementally. Instead 
of immediately solving a reachability problem formulated as a conjunction of 
test coverage items, a set of coverage items is serialised and the reachability 
problem is solved individually for each coverage item in the set, one by one. 

The main advantage of incremental model checking over the original method 
is its better scalability. The original method uses a conjunction of test coverage 
items as a reachability problem. Each additional item in the conjunction makes 
solving the reachability problem harder because the model-checker has to find a 
trace that satisfies all of the items in the conjunction. An improved method with 
incremental model checking solves the reachability problem of only one 
coverage item in each model checking iteration. This means that in contrast to 
the original method, the complexity of the reachability task no longer increases 
exponentially with the number of coverage items. Instead, the complexity of the 
method with incremental model checking is only linear in the number of 
coverage items. Contemporary model checkers can solve the reachability 
problem of only one coverage item on quite large models. More extensive 
measurements are needed to make any quantitative conclusions about the limits 
of the scalability of the method. Industrial-scale case studies performed with the 
MOTES test generator, which implements incremental model checking-based 
test generation, have yet to witness any issues caused by the state-space 
explosion.  

The second advantage of incremental model checking over the original 
method is better control over test coverage. With the original method the model 
checker decides the order in which it visits the test coverage items. It is not 
possible to control how many times and in what order the test coverage items 
are visited. The incremental method defines the test coverage as an ordered set 
of coverage items where the order of the coverage items is defined using a 
regular expression with interleaving parallelism throughout the coverage items. 
For instance, the regular expression <A; B; (C || D); A; B> defines 
the following order of traversing coverage items A, B, C, and D. The test 
generation starts with the solving of the reachability problem of coverage item 
A from the initial state of the model. Next, the test generation increment starts 
from the state reached after reaching coverage item A and ends when test 
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coverage item B is reached. Next, the reachability task for C and D is solved by 
model checking, finding the test sequence starting from the state after reaching 
B and ending the state after covering both C and D. Next, the test sequence from 
the current state to reach coverage item A is found and, finally, the test sequence 
from the current state to reach coverage item B is found. As a result of 
incremental model checking, the user can generate complex test scenarios 
throughout the model. This feature of the method is an essential prerequisite for 
using the method in the requirement-driven test generation process in defining 
complex test coverage criteria for complex system requirements using structural 
test coverage criteria. It makes it possible to use the method in generating tests 
for industrial-scale applications, as demonstrated in the case studies in Chapter 
7. 
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4 GENERATING TESTS FROM NONDETERMINISTIC 
MODELS 
 
The theoretical contribution of this thesis in generating tests from 
nondeterministic EFSM is presented in PAPER 3 and PAPER 4. 

4.1 Synthesis of test purpose-directed reactive planning tester 
 
The third paper is entitled “Synthesis of test purpose directed reactive 
planning tester for nondeterministic systems” [PAPER 3]. The authors of 
the paper were Jüri Vain, Kullo Raiend, Juhan Ernits and the author of this 
thesis. The paper was presented at the ACM/IEEE International Conference on 
Automated Software Engineering (ASE'07) in Atlanta, USA in November 2007. 

The paper describes the model-based construction of an on-the-fly tester for 
the black box testing of the IUT. The external behaviour of the IUT is modelled 
as an output-observable nondeterministic EFSM with the assumption that all 
transition paths are feasible. 

On-the-fly test generation is considered to be the most appropriate technique 
for nondeterministic IUT [VCG+08]. The term ‘on-the-fly’ denotes a test 
generation and execution algorithm that computes successive stimuli 
incrementally at runtime, directed by the test purpose and the observed outputs 
of the IUT. A test purpose (or test goal) is a specific objective or property of the 
IUT that the tester sets out to test. The state-space explosion problem 
experienced with many offline test generation methods is eliminated by on-the-
fly techniques because only a limited part of the state-space needs to be 
explored at any point in time. On the other hand, exhaustive planning is difficult 
on the fly due to the limitations of the available computational resources to meet 
the required response time of the tester. The tester cannot make calculations that 
are too long after the observed IUT outputs because the IUT may have time 
limits for responses. The simplest approach to the selection of test stimuli is to 
apply the ‘random walk strategy’, where no test sequence has an advantage over 
others. This is inefficient, because it is based on the random exploration of the 
state-space and leads to test cases that are unreasonably long and may not 
achieve the specified test goal. To overcome this deficiency, additional 
heuristics are applied to guide the exploration of the state-space [VRC06]. The 
other extreme of guiding is exhaustive planning by solving constraint systems at 
each stage of the test. For instance, the witness trace generated by model 
checking provides possibly the optimal selection of next test stimuli. The 
critical issue in the case of explicit state model checking algorithms is the size 
and complexity of the model leading to the explosion of the state-space, 
especially in cases such as ‘combination lock’ or deep loops in the model 
[HMR04]. 

PAPER 3 proposes a balance between the tradeoffs of using simple 
heuristics and exhaustive planning methods for on-the-fly testing. The 
principles of reactive planning are applied to the problem of test planning under 
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uncertainty. Reactive planning operates in a timely fashion and hence can cope 
with highly dynamic and unpredictable environments [WN97]. Just one 
subsequent input is computed at every step, based on the current context. 
Instead of producing a complete test plan with branches (a test tree), a set of 
decision rules is produced. The rules are constructed by applying offline 
analysis based on the given IUT model and the test purpose. A reactive planning 
tester is synthesised from the IUT model. This tester is able to generate test 
inputs on the fly depending on the observed reactions of the IUT and the test 
purpose without having a preset test tree generated in advance. The proposed 
approach leads to a tester that directs the IUT efficiently towards the user-
defined test purpose during online test execution. 

We focus on test purposes where the coverage items can be defined as a set 
of traps associated with the transitions of the IUT model [HMR04]. Traps are 
Boolean variables that are associated with the transitions of the IUT model and 
are used to measure the progress of the test run. A situation where all traps have 
been reached means that the test purpose has been achieved. The goal of the 
tester is to generate a test sequence so that all traps are visited at least once 
during the test.  

PAPER 3 presents a way of constructing a tester which, at runtime, selects a 
suboptimal test path from trap to trap by finding the shortest path to the next 
unvisited trap. The principles of reactive planning are implemented in the form 
of decision rules for selecting the shortest paths at runtime. The tester is 
synthesised as an EFSM where the rules for online planning are derived during 
tester synthesis and encoded in the transition guards of the EFSM. The decision 
rules are constructed in advance of test execution from the IUT model and test 
purpose. 

At each step of test execution only the rules associated with transitions from 
the current state of the tester EFSM are evaluated to select the next transition 
with the highest gain. Thus, the number of rules that need to be evaluated at 
each step is relatively small. The decision rules are constructed taking into 
account the reachability of all trap-equipped transitions from a given state and 
the length of the paths to them. The current value (visited or not) of each trap is 
also taken into account. The decision rules are derived by performing 
reachability analysis from the current state to all trap-equipped transitions by 
constructing the shortest path trees. The gain functions which form the terms of 
the decision rules are derived from the shortest path trees by simple rewrite 
rules. The resulting tester drives the IUT from one state to the next by 
generating inputs and by observing its outputs. When generating the next input 
for the IUT the tester takes into account which traps have already been visited. 
The execution of decision rules at the time of test execution is significantly 
faster than finding an efficient test path by state-space exploration algorithms, 
but nevertheless produces a test sequence which, lengthwise, is close to optimal. 

The main contribution of PAPER 3 is an algorithm for constructing a tester 
which selects a suboptimal test path from trap to trap on the fly by finding the 
shortest path to the next unvisited trap iteratively. No costly model exploration 
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and path finding operations are needed online. In the context of the experiments 
presented in the paper, the reactive planning tester is more efficient at runtime 
than random choice and anti-ant algorithms. The planning feature of the reactive 
planner results in significantly shorter test sequence lengths on average. The 
reactive planner outperforms anti-ant algorithms by more than the order of 
magnitude in cases where a more directed search is presumed i.e. the test 
purpose covers the model partially. 

4.2 Case study-based performance evaluation of reactive planning 
tester 
 
Contemporary on-the-fly model-based test generators which primarily focus on 
planning strategies which are computationally cheap but far from optimal cover 
just a fraction of the spectrum of test control strategies. Typical examples of 
these are simple random choice and anti-ant. Exhaustive planning during online 
testing is not feasible because of the lack of available computational resources 
to meet the required response time of the tester and because of the low 
scalability of the methods in regard to the size of the model. The reactive 
planning tester presented in PAPER 3 is targeted to fill the gap between these 
two extremes. The key idea of RPT lies in offline learning of the IUT model to 
prepare the data for efficient online reactive planning. 

In PAPER 3, experiments on a small model are conducted to compare RPT 
efficiency against the random choice and anti-ant test selection methods. 
Experiments with larger models were not possible at the time because of the 
lack of tool support. The MOTES test generator for RPT synthesis (see Chapter 
6) was available by the time of writing PAPER 4, making reporting on 
experiments with bigger models possible. The paper “Case study based 
performance evaluation of reactive planning tester” [PAPER 4] was written 
by Kullo Raiend, Jüri Vain, Marko Kääramees and the author of this thesis. It 
was presented at the 2nd Workshop on Model-Based Testing in Practice on 23 
June 2009 in Enschede, the Netherlands. The paper confirms that in industrial-
scale case studies the RPT significantly outperforms the random choice and 
anti-ant test selection methods. Based on a case study of a feeder box controller 
of a city lighting system, we demonstrated that tuning the planning horizon of 
RPT allows you to reach close to optimal tester behaviour (in terms of test 
sequence length) with computationally feasible expenses. The model in the case 
study is a strongly connected state machine with 31 states and 78 transitions. 

The experiments were performed using two different coverage criteria: all 
transitions and a single selected transition. Different RPT planning horizons (of 
between 0 and 20 steps) were used in the experiments, which showed that 
increasing the planning horizon decreases the average length of the test 
sequences exponentially while the planning time of the next step increases by 
not more than the length of the planning horizon to the power of 2. In the 
experiments, the planning time was within the range of 13-22 msec. RPT 
significantly outperforms the anti-ant and random choice methods. On average, 
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the RPT with the maximum planning horizon resulted in test sequences which 
were more than 100 times shorter than the anti-ant and random choice methods. 

The main contribution of PAPER 4 lies in the fact that it proves the 
feasibility of RPT in industrial-scale case study, demonstrating its advantages 
over the random choice and anti-ant methods, and showing the test sequence 
length and planning time dependencies on the RPT planning horizon. 
Generalisation of the results of performance analyses will require additional 
experiments with different case studies in future. 
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5 REQUIREMENT-DRIVEN TESTING 
 
The fifth paper is entitled “Requirement-driven model-based testing of the 
IP Multimedia Subsystem” [PAPER 5]. The authors of the paper were Juhan 
Ernits, Marko Kääramees, Kullo Raiend, and the author of this thesis. It was 
presented at the 2008 International Biennial Baltic Electronics Conference 
(BEC2008) in Tallinn, Estonia in October 2008. 

Software testing processes in industry are usually requirement-driven. This 
means that the testing should verify if a particular software requirement defined 
in requirement specifications and other reference specifications is implemented 
correctly. As the word ‘requirement’ has variety of meanings, the paper uses the 
definition given in [UL06]: A requirement is a testable statement of some 
functionality that the product must have. In requirement-driven testing the 
targeted test coverage is defined by covering the requirements. In the previous 
papers, structural test coverage criteria were applied to test generation. There is 
a significant issue with structural test coverage criteria for industrial users. Test 
criteria – like all transitions, all k-switches and so on – may sound like excellent 
coverage criteria for researchers, but industrial users ask which of their 
requirements such generated tests cover. They would like to track the generated 
tests and test logs back to the requirement level. They would like to know if all 
of the requirements are tested and which generated test cases cover particular 
requirements. The requirement-driven approach in testing is widely employed 
throughout the industry, using manual and script-based testing. Industry users 
ask the same of MBT. 

The requirement-driven approach in MBT should be supported as early as 
the modelling phase by using suitable modelling formalisms. The requirements 
should be able to be modelled in a way that easily allows parts of the model to 
be selected as test coverage items belonging to the particular requirement and a 
test case for this particular requirement to be generated.  

The IP Multimedia Subsystem (IMS) [IMS] is an architectural framework 
for the delivery of Internet protocol multimedia services to mobile users. The 
functionality of the system is specified to allow interoperability between 
equipment from different manufacturers. IMS was originally designed by the 
wireless standards body of the 3rd Generation Partnership Project (3GPP) 
[3GPP] and forms part of the vision for the evolution of mobile networks 
beyond GSM. The European Telecommunication Standards Institute (ETSI) 
[ETSI] has developed standardised IMS interoperability tests to verify the 
interoperability of IMS networks from different manufacturers. IMS as the IUT 
and IMS interoperability tests as the test specification were selected for a case 
study for the paper because IMS represents a typical telecommunications 
system that is specified as a collection of requirements and the IMS 
interoperability test specification specifies the subset of IMS requirements that 
should be tested to ensure interoperability. IMS interoperability tests represent 
typical requirement-driven testing used in the industry. 
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In the paper the authors examine how to build the IMS models in a way that 
provides an easy means of attaching requirements i.e. certain paragraphs in the 
specification to a specific part of the model. The IMS interoperability test 
specifications feature long lists of detailed requirements that must be satisfied 
by different components that comprise the IMS. The goal of the paper was to 
provide techniques for modelling the IUT and applying the MBT with the 
objective of achieving full requirement coverage. 

The paper presents the idea of modelling a fragment of the IMS protocol 
from the point of view of the requirements. The paper provides solutions using 
two different techniques for modelling the IMS. Both techniques serve the same 
purpose and are driven by the same basic idea.   A network of the Uppaal 
automata [UPPA] and NModel [JVC+08] model program are used to model the 
IMS according to the specifications.   The goal was to associate the model 
components as well as possible with the requirements in the specification. This 
allows the components of the model to be traced back to the paragraphs in the 
requirement specifications.  The modelling was carried out in two steps: 
modelling the infrastructure of the IMS, which is involved in all requirements 
(the general part of the model); and modelling the specific requirements or 
features as separate components of the model, which are connected to the 
general model using model composition. 

Uppaal was used to build the EFSM models of the IUT because it supports 
the composition of automata and has a model checking backend for the analysis 
of the model and for the generation of witness traces (corresponding to test 
sequences). The composition of the automata was a valuable feature to utilise 
because it allows different features of the system to be modelled as small 
feature automata and for them to be combined into a system model. NModel 
was used because it supports the composition of small model programmes that 
model certain features of the system and construct the system model feature by 
feature iteratively. An important aspect of both tools and techniques is their 
models composition support. These tools and techniques were not compared in 
the paper, but it does demonstrate how the requirement-driven approach can be 
applied to the building of the model of the IUT using either composition of 
automata or model program features. 

The paper also demonstrates that it is possible to model a IUT consisting of 
separate requirements presented as separate automata (Uppaal) or features of 
model programs (NModel) by using model composition. Requirement automata 
or features can be composed using a general infrastructure model as the basis of 
the model. In the IMS case the infrastructure model was derived from the IMS 
infrastructure requirements and specific requirements were modelled as separate 
model components in the underlying infrastructure. Using such an approach the 
different features of the model are decoupled from one another. The test 
engineer can easily define the coverage of the tests by selecting the component 
models representing the different requirements and generate corresponding test 
cases from the composition of the infrastructure model and the appropriate 
requirement models to cover the selected requirements. In this way it is easy to 

 41



generate tests that only cover selected requirements of the model and the test 
engineer can trace the requirements from the requirement specification through 
the model to the generated test cases and test logs, and vice versa. 
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PART II: PRACTICAL RESULTS AND CASE STUDIES 
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6 MOTES – TEST GENERATOR 

6.1 Overview 
 
The results of the theoretical contribution of the thesis presented in Chapters 3 
and 4 were implemented in the model-based test tool MOTES. 

MOTES is a tool which generates TTCN-3 tests from the EFSM model of 
the IUT. It accepts EFSM models of the IUT prepared using third party UML 
CASE tools. Currently it supports models exported from Poseidon for UML 
[PUML] and Artisan Studio [ARTI] CASE tools. Context variables and the 
interfaces of the IUT should be defined in TTCN-3. Test data instances and 
templates are also defined in TTCN-3. In the future it will also be possible to 
define the data with CASE tools, using class and object diagrams. Tests 
produced by MOTES in TTCN-3 language can be executed by any TTCN-3 test 
tool against the IUT (see Figure 2).  

Third party 

  

Figure 2: MOTES context 

In order to generate tests from deterministic EFSM, the iterative model 
checking based test generator is used in MOTES. The generator is based on the 
method described in Section 3.2. It produces an abstract test sequence (a 
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sequence of transitions) driven by the user-defined test coverage. The abstract 
test sequence is converted to TTCN-3 test cases as described in PAPER 2. The 
resulting TTCN-3 test cases can be executed against the IUT. 

To generate tests from the nondeterministic model, the abstract RPT is 
generated using the method described in Section 4.1. The abstract RPT is 
converted into TTCN-3 in order to execute it against the IUT. RPT 
implementation in TTCN-3 is an on-the-fly test generator that autonomously 
finds the test sequence that satisfies the user-defined test coverage of the 
nondeterministic IUT. 

The test generation workflow and the most important features of MOTES are 
explained in the sections below using a simple light switch example. 

6.2 Description of light switch example 

The implementation under test in the example is a Light Switch 
which turns a light on or off at the user’s request (Figure 3).  

 

Figure 3: Light Switch use cases 

The Light Switch is typically driven by a human (the environment) and 
must implement the following functional requirements:  

Requirement 1:  The light is switched on at the request of the 
environment.  

Requirement 2:  The light is switched off at the request of the 
environment.  

Requirement 3: If the light is already on or off, requesting the same 
operation (turning the light on or off, respectively) does 
not change the system state. 

Let us suppose that the Light Switch receives messages from the 
Environment, which is represented by an external technical system or human 
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user. All activities are initiated by the environment. After receiving input from 
the environment, the Light Switch reacts by turning the light on or off. 
Thus the state of the IUT (light on/off) responds to the Environment after the 
request is fulfilled.  

 

Figure 4: Light Switch context 

The Light Switch is controllable by the environment through the 
iLights interface (Figure 4). The interface defines the following messages 
between the Light Switch and the Environment: 

 
TurnOn: request from the Environment to the Light Switch to 

turn the light on  
TurnOff: request from the Environment to the Light Switch to 

turn the light off  
LightIsOn: response from the Light Switch to the Environment 

indicating that the light is on 
LightIsOff: response from the Light Switch to the Environment 

indicating that the light is off 
 
The messages TurnOn and TurnOff are sent over the iLights interface by 
the Environment. After handling the messages, the Light Switch 
responds in regard to its state by using the messages LightIsOn or 
LightIsOff (see interaction diagrams in Figure 5).  
 
Let us assume that the tests should be generated from the model of the Light 
Switch according to Table 1. 
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Figure 5: Interaction diagrams 

Table 1: Test purposes 

Test purpose 1 Test that the Light Switch turns the light from off to 
on 

Reference Requirement 1 
Preconditions The light is off 
Input The request message TurnOn is sent by the 

Environment to the Light Switch 
Expected results The response message LightIsOn is sent by the IUT to 

the Environment 
 

Test purpose 2 Test that the Light Switch turns the light from on to 
off  

Reference Requirement 2 
Preconditions The light is on 
Input The request message TurnOff is sent by the 

Environment to the Light Switch 
Expected results The response message LightIsOff is sent by the IUT to 

the Environment 
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Test purpose 3 Test that the light remains off when the Light Switch 
is commanded to switch the light from off to off  

Reference Requirement 3 
Preconditions The light is off 
Input The request message TurnOff is sent by the 

Environment to the Light Switch 
Expected results The response message LightIsOff is sent by the IUT to 

the Environment 
 

Test purpose 4 Test that the light remains on when the Light Switch is 
commanded to switch the light from on to on  

Reference Requirement 3 
Preconditions The light is on 
Input The request message TurnOn is sent by the 

Environment to the Light Switch 
Expected results The response message LightIsOn is sent by the IUT to 

the Environment 
 

6.3 Creating the IUT model 
 

The model of the IUT for MOTES consists of the EFSM, descriptions of the 
context variables and interface specifications. 

 
EFSM is used to model the behaviour of the IUT. MOTES does not have its 
own editor for EFSMs: third party UML CASE tools are used to create them. At 
the time of writing, MOTES is able to import state machines from Poseidon for 
UML [PUML] and Artisan Studio [ARTI] CASE tools. In the future it is 
expected to be able to import state machines from any UML CASE tool that 
supports exports in XMI 2.1 format. EFSMs for MOTES are drawn as flat UML 
state models without parallel and hierarchical states. UML state machines do 
not have a formally specified language for the presentation of guard conditions, 
input events and actions on transitions. Because it is only possible to generate 
tests from the formal system model, a formal transition language (MTL) was 
developed for MOTES which is used in transitions of the EFSM. MTL is 
presented in Appendix A.  

 
Example: Figure 6 below presents the EFSM model of the IUT in the Light 
Switch example. 

• LightSwitch_Off and LightSwitch_On model light states. 
• It is assumed that the initial state of the Light Switch is off. 
• Transitions T1, T2, T3, T4, T7 and T8 model transitions 

between states as described in Table 2. 
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Figure 6: Light Switch model drawn in Poseidon 

Table 2: Table of transitions 

 
 

• All of the use cases described above are covered by these transitions.  
• The function silence(float Duration_sec) helps visualise 

the test execution process by adding a delay between tests. 
• The model has no transition guards or context variables. 

 
Context variables are the variables that are used in EFSM to store state 
information in addition to the control states of the EFSM. 

Interface specifications define the input/output ports used in the model. The 
ports define the IUT interface towards its environment. Port definitions define 
the data type of the messages that the ports accept. 

 It would be possible to define context variables and ports in UML using 
classes, and they would be instantiated using objects derived from these classes. 
In MOTES a different approach is taken: the aim of MOTES is to generate 
TTCN-3 test cases, and to streamline the test generation process the context 
variables and ports are defined directly in TTCN-3 files in the current version. 
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Example: The TTCN-3 TestConfiguration module in Figure 7 describes 
the TTCN-3 test component Tester, its interface for communicating with the 
IUT iLights and the message types (Command and Output) accepted by 
the port. In addition, it defines the function silence(float 
duration_sec). 
 
module TestConfiguration { 

// Test configuration definitions 
 
// Import message type definitions 
import from TestData all; 
// Define tester ports 
type port iLightsPortType message { 

out Command; 
in Output 
}; 
 

// Define tester with a message port iLights 
type component Tester { 

port iLightsPortType iLights; 
}; 
 

//Define functions 
//The function silence is introduced in the state model 
for 
//visualizing of lamp switching at test running 
 
// Silence (no output) 
function silence (in float duration) runs on Tester { 

timer timerSilence; 
timerSilence.start(duration); 
alt { 

[] timerSilence.timeout { 
//OK 
} 

[] any port.receive { 
log("A message was received during 

required 
    silence time!"); 
setverdict (inconc); 
stop; 
} 

} 
}; 

} 

Figure 7: TestConfiguration module in TTCN-3 

6.4 Preparing test data 
 

Test control-flow is generated by MOTES automatically from the IUT model. 
The test data used by the tests should be prepared manually. Like context 
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variables and interface definitions, the test data are also defined and instantiated 
directly in TTCN-3. 

Example: Figure 8 below includes the test data definitions for the Light 
Switch example. The TTCN-3 module TestData defines the possible 
messages (Command) sent to the IUT, such as TurnOn and TurnOff, and 
possible response messages (Output) from SUT, such as LightIsOn and 
LightIsOff. 

 
module TestData { 
 

// Message type definitions 
type charstring Command; // Light switch input command type 
type charstring Output; // Light switch output type 
 
// Message instance definitions 
 
// Light switch commands 
template Command TurnOn := "turnOn"; // Command for turning the 

// lights on 
template Command TurnOff := "turnOff"; // Command for turning the 

        // lights off 
template Command Exit := "exit"; // Command for exiting the 

   // implementation 
template Command UnknownCmd := "xyz"; // An example of unknown 
                                 // command for the implementation 

 
//Light switch outputs 
//Expected output lightIsOn 
template Output LightIsOn := "lightIsOn"; 
//Expected output lightIsOff 
template Output LightIsOff := "lightIsOff"; 
//When the implementation starts the expected output contains  
// string 'ready' 
template Output Greetings := pattern "*ready*"; 
//Response to the unknown command contains string 'Unrecognized' 
template Output UnrecognizedText := pattern "*Unrecognized*"; 
//Response to the exiting command contains string 'Exiting' 
template Output Exiting := pattern "*Exiting*"; 
} 

Figure 8: TestData module in TTCN-3 

6.5 Importing the model and test data into MOTES 
 

The test project browser view in MOTES includes a pre-defined structure of 
artefact folders for the maintaining of a clear structure for the test generation 
project (Figure 9).  
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Figure 9: Test project browser view in MOTES 

Those predefined folders are used to organise the input and output artefacts of 
the test project: 

• Data definitions – for storing data definition TTCN-3 files 
• Generated TTCN-3 modules – for storing the TTCN-3 files generated 

by MOTES 
• Resource Sets – for storing resource files that link together the relevant 

input artefacts for a particular test generation task or purpose (IUT 
model, data definitions, configurations and context variable definitions). 
Different models and different test data instances are needed for 
different test generation purposes. The term ‘resource set’ is used in 
MOTES for such collections of data. The concept of the resource set 
corresponds to a project in software development environments like 
Borland Delphi and Microsoft Visual Studio. 

• IUT state models – for storing the state models of the IUT (in XMI 
format) 

• Test System Configuration – for storing test system configuration 
definition TTCN-3 files 

 
The user must import EFSM model files exported from the UML tool, TTCN-3 
files with context variables, interface definitions and test data to the relevant test 
project folders. Next, the user must create a new resource set to link together 
the relevant input resources using a resource set editor. 

Example: Figure 10 illustrates the resource set editor using the resources of 
the Light Switch example displayed. 

6.6 Defining test purpose (coverage/goal) 
 

MOTES uses model structural test coverage elements to define test coverage. 
The following coverage criteria are available: 

 
• selected elements (states/transitions) 
• all transitions 
• all n-transition sequences where n>=2 
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Figure 10: Resource set editor in MOTES 

Selected elements (selected states and transitions) used to define test coverage 
can be selected from the list of EFSM transitions and states. It is possible to 
create ordered sets of coverage items and to define how many times each 
coverage item or a subset of the item should be covered. Complex test scenarios 
can be created using ordered sets of coverage items. For example, it is possible 
to define that the test generator should find a test that first covers transition T1, 
then covers transitions T2 and T3 three times and finally covers transition T1 
once again. 

All transitions test coverage defines that the test generator should find a test 
that covers all of the transitions of the EFSM at least once. 

All n-transition sequences is a test coverage criterion that allows long and 
exhaustive tests that cover all subsequent transition sequences of n transitions to 
be created. In MOTES n can be 2 or 3. 

 
Example: Let us use selected elements coverage in the Light Switch 
example to define a complex coverage scenario. After selecting the Selected 
Elements option, the dialogue box in Figure 11 opens. The left-hand pane 
includes a list of all states and transitions in the EFSM. The right-hand pane is a 
tree-view editor that allows the selected elements coverage to be constructed for 
the model. The available elements can be dragged from the left-hand pane to the 
suitable place in the right-hand pane. 
  
The tree-view selected elements coverage editor has a root node that can be 
either sets or lists. Sets and lists contain elements, and elements can also be sets 
or lists. All elements in a set and list must be covered by the generated tests. In 
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the case of sets, the order of elements is not important to the user and the test 
generator decides the order itself. In the case of lists, the order of covering the 
elements is defined by the order of the elements in the list. The number in front 
of an element defines how many times the particular element must be covered 
by the generated test case.  

 

 

Figure 11: Selected elements coverage editor in MOTES 

6.7 Choosing the test generation engine 
 
MOTES includes two test generation engines: 

 
• model checking engine 
• reactive planning tester engine 

 
The test generation preferences view in MOTES is presented in Figure 12. The 
model checking engine can be selected using the radio button Generate 
test sequence and the reactive planning tester engine can be selected using 
the radio button Generate reactive planning tester. 

 
The model checking engine implements the test generation method presented in 
PAPER 1, PAPER 2, and Section 3.2. The engine is used to generate test cases 
for the deterministic IUT. The engine produces test cases that deterministically 
control the execution of the deterministic IUT through the sequence of 
transitions on the IUT model.  The test cases produced cannot test 
nondeterministic IUT because they always expect deterministic IUT behaviour 
in response to the generated stimuli. The engine utilises the Uppaal Cora model 
checker [UpCo] in finding test sequences. The most important configuration 
parameter for the model checking engine is use iterative mode. If the 
parameter is checked, the model checker works in iterative mode according to 
the algorithm described in Section 3.2. With each iteration the shortest path to 
the nearest unvisited trap is found. This is a greedy algorithm which returns a 
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suboptimal test sequence.   Iterative model checking makes it possible to find 
test sequences from state models which are not strongly connected in the case of 
limited computer memory. If use iterative mode is not checked, the 
model checker attempts to find the whole test sequence with the minimum 
length required to reach the test purpose. 

 

 

Figure 12: MOTES test generation preferences 

The reactive planning tester engine implements the test generation method 
presented in PAPER 3. It does not generate predefined test cases, but rather a 
reactive planning tester which, in the online phase, generates test stimuli on the 
fly. The reactive planning tester can be used to generate tests for deterministic or 
nondeterministic IUT. The reactive planning tester engine uses the reachability 
analysis in synthesising the reactive planning tester, which is generated in 
TTCN-3 and can be executed by any TTCN-3 executive in the same way as 
TTCN-3 test cases produced by the model checking engine. The intelligence of 
the reactive planning tester is encoded in gain functions that characterise the 
potential choices of test stimuli. In the online testing phase the reactive planning 
tester must decide which move from those possible to make. For each possible 
move it calculates the gain function and makes the move which promises 
maximum gain. The gain function gives a higher value if the next move will lead 
to a larger amount of unvisited coverage items faster. The reactive planning 
tester engine can be configured using the following configuration parameters 
(see also Figure 12): 
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• max depth of shortest-paths tree in gain 

function 
The parameter defines the look-ahead planning horizon. It also 
defines the maximum path length of the shortest path starting from 
the root of the shortest-path tree. In other words, it defines the length 
of the planning horizon in transitions where the reactive planning 
tester looks ahead. The gain functions are calculated taking into 
account the trap amount and location in the tree. Planning within the 
horizon is precise. 

• max visibility range of traps in gain function 
The visibility parameter defines the visibility horizon of the traps. 
Within the visibility range only the reachability of the traps is 
important, not the exact location, as in the previous parameter. The 
visibility parameter can also be bigger than the planning horizon. In 
the event that the trap is outside of the planning horizon but within 
the visibility horizon, the planning algorithm knows that the trap is 
reachable from the given shortest-path tree but does not know 
exactly how far away the trap is. 

• max testing time before reset 
This parameter defines the maximum testing time for a situation 
where some of the traps have yet to be visited. In nondeterministic 
models, restarting the IUT may increase the chance of visiting 
unvisited traps after reset.  

• max number of resets 
This parameter defines the maximum number of IUT resets that are 
performed in trying to cover traps that have yet to be covered. 

• continue running if max gain function value is 
zero :from transitions that have gain function 
values equal to max value  
In the case of equal gain values, this parameter allows you to select 
the next transition from the alternatives either randomly or with an 
anti-ant algorithm. 

 

6.8 Executing the test generation engine 
 

Once the steps above are completed, the user presses the “G” button and the test 
generator does the rest. The TTCN-3 test cases or reactive planning tester 
TTCN-3 code are generated under the current resource set. The generated 
TTCN-3 files can be imported to any TTCN-3 test tool and run against the IUT. 
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7 CASE STUDIES 

7.1 Introduction 
 
This chapter demonstrates the applicability of the MOTES test generator and 
the feasibility of the underlying methods and techniques in industrial-scale case 
studies. It presents case studies from different branches of the industry: 
telecommunications and telematics. Whilst evaluating the overall applicability 
of the technology, the case studies also have their own slightly different 
objectives to evaluate. 
  
The following two case studies are demonstrated: 

• Sofia-SIP stack testing 
• feeder box control unit testing 

 
The case study sections include the following sub-sections: 

• overview of IUT 
• objectives of case study 
• system adapter 
• modelling the IUT  
• test generation and execution 
• objectives evaluation 

 
Finally, the evaluation results of the case studies are summarised and issues for 
further study are outlined.  

 
Both case studies were performed using the same workflow and set of tools 
(Figure 13): 

• Poseidon for UML CASE tool by Gentleware [PUML] was used for 
the state machine modelling. 

• MOTES was used to generate TTCN-3 tests from the model of the 
IUT. 

• MessageMagic by Elvior [ELMM] was used to execute the 
generated TTCN-3 tests against the IUT. 

• A case study-specific system adapter designed to connect IUT and 
MessageMagic was developed for each case study. 
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Figure 13: Common architecture of test environments in case studies 

7.2 Testing of Sofia-SIP stack 

7.2.1 Overview of IUT 
 
The Session Initiation Protocol (SIP) is a signalling protocol widely used for 
setting up and closing down multimedia communication sessions such as voice 
and video calls over the Internet. Other feasible application examples include 
video conferencing, streaming multimedia distribution, instant messaging, 
presence information and online games. The protocol can be used for creating, 
modifying and terminating two-party (unicast) or multiparty (multicast) 
sessions consisting of one or more media streams. The modification can involve 
changing addresses or ports, inviting more participants, adding or deleting 
media streams and more. 

SIP was originally designed by Henning Schulzrinne and Mark Handley in 
1996. The latest version of the specification is RFC 3261[SIP] from the Internet 
Engineering Task Force (IETF) SIP Working Group. In November 2000, SIP 
was accepted as a 3GPP signalling protocol and permanent element of the IMS 
architecture for IP-based streaming multimedia services in cellular systems. 

SIP User Agents (UAs) are the end-user devices used for creating and 
managing SIP sessions. A SIP UA has two main components. The User Agent 
Client (UAC) sends messages and answers with SIP responses. The User Agent 
Server (UAS) responds to SIP requests sent by the peer. SIP UAs may work in 
point-to-point mode. Typical implementations of a UA are SIP soft-phones, SIP 
hard-phones, and SIP-enabled analogue telephone adapters. 

Sofia-SIP [SOFI] is an open-source SIP User-Agent library that complies 
with the IETF RFC3261 specification [SIP]. Sofia-SIP can be used as a building 
block for SIP client software for uses such as VoIP, instant messaging and other 
real-time and person-to-person communication services. The primary target 
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platform for Sofia-SIP is GNU/Linux, although it also targets the embedded 
world. Sofia-SIP is based on a SIP stack originally developed at the Nokia 
Research Centre. The Sofia-SIP library is written in C. The Sofia-SIP stack has 
an API interface towards applications that are using the SIP stack and a network 
interface between two SIP stacks. 

7.2.2 Objectives of case study 
 
The conformance of the Sofia-SIP protocol stack to the SIP specification [SIP] 
was tested in the case study. The target was to generate tests according to the 
test purposes specified in the ETSI conformance test specification for SIP 
applications [ConfS]. SIP functionality as a whole was not tested in the case 
study, but only the SIP UAC part using the UDP transport. 

 
The following aspects were evaluated in the case study: 

 
• Overall feasibility of MOTES technology for conformance testing of 

industrial-scale telecommunications applications. Sofia-SIP is a 
typical telecommunications protocol application that is far from being 
too trivial. The specification describing IUT functionality in the scope 
of the case study is around 80 pages in length [SIP]. Test specifications 
for the same functionality include around 15 pages [ConfS]. 
Implementation of the Sofia-SIP functionality in the scope of the case 
study included around 500 lines of C++ code [SOFC].  
  

• Adaptability of MOTES technology for the requirement-driven 
testing process. Test generation in MOTES is based on model 
structural coverage criteria. This is a very different approach compared 
to the requirement-driven testing process used widely in the industry. In 
the state model of the IUT the requirements are usually spread 
throughout the model and can partly overlap. Telecommunications 
systems testing specified by ETSI processes is strictly requirement-
based. Test purposes in the test specifications define which features of 
the IUT should be tested and how they should be tested [ETPR].  

o The possibility of mapping the requirement-based approach to 
the test generation method using structural coverage of the 
model was evaluated. 

o The testing power of the generated test cases was evaluated 
compared to the test purposes specified in the test specification 
[ConfS]. 
 

• Feasibility of the EFSM for modelling industrial-scale 
telecommunications applications. The modelling power, size, 
complexity and readability of the resulting EFSM were evaluated. 
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• Feasibility of the iterative model checking based test generation 
method. The applicability of the method for generating test cases from 
the deterministic model was evaluated. Whether the case study 
application could be modelled using a deterministic model was also 
evaluated, as was whether the use of a deterministic model could cause 
any issues. 
 

• Bug detection ability of generated tests. The Sofia-SIP stack library 
has been available to developers for some time. The quality of Sofia-
SIP implementation is otherwise unknown. Therefore it was interesting 
to observe whether the case study would reveal any real bugs in its 
implementation. 

7.2.3 System adapter 
 
The test environment of Sofia-SIP contains Sofia-SIP implementation (IUT), a 
system adapter and MessageMagic for executing TTCN-3 test cases. The 
system adapter connects the IUT to the MessageMagic test tool.  

Sofia-SIP has two interfaces: an API providing services for the application 
layer (the functions nua_create, nua_destroy, nua_invite, 
nua_bye and a callback_function) and an interface towards the 
network communicating with other SIP peers on the Internet (SIP messages 
over the transport layer). In the test environment, TTCN-3 test cases executed 
by MessageMagic simulate both – an application layer over API and other SIP 
peers over the network interface. The system adapter is connected to 
MessageMagic through a TTCN-3 standardised TRI interface (Figure 14). 

 

 

Figure 14: Sofia-SIP test environment 

7.2.4 Modelling the IUT 
 
The model was built using information from two documents – the SIP 
specification [SIP] and the ETSI conformance test specification for SIP 
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[ConfS]. The target was to create tests for the SIP UAC with UDP transport 
satisfying the relevant test purposes in the conformance test specification.  

 
Discussion 

 
The IUT model is always built to test particular functionalities and for particular 
testing needs. It is very important to understand in MBT that the model of the 
IUT should be created on the right abstraction level. Only those features that 
need to be tested should be present in the model, and they must be modelled on 
the same abstraction level that the tests need to verify them. In this way the 
model created for test purposes remains readable and maintainable and the tests 
generated from the model test the features on the right abstraction level.  

It is often claimed that the more detail in which you model your system the 
better the tests with better test coverage you will generate. In principle this is 
true, but the trade-off is model complexity. Models which are too complex are 
often poorly readable, hard to maintain and may cause performance problems 
for test generation tools and methods. A model by its very definition is an 
abstraction of reality designed to keep things comprehensible. A graphical 
model that presents the IUT details on the level of very high granularity is a 
graphical programming language and therefore looses many benefits that 
modelling should give to users. 

 
Test purposes in ETSI conformance test specification for SIP 

 
The scope of the case study includes 88 test purposes in the SIP conformance 
specification [ConfS]. 

 
An example of a typical SIP test purpose is as follows: 

 
TPId: SIP_CC_OE_CR_V_008:  
Ensure that the IUT, once a dialog has been established, having sent a BYE 
request, on receipt of a Success (200 OK) response considers the session and 
the dialog terminated. 

 
This test purpose, as with all other test purposes in [ConfS], is highly abstract. 
Test purposes miss many important details for building tests that meet test 
purposes. The test purposes must be analysed and interpreted by a test engineer 
who knows the SIP specification in order to put them into a formal language for 
modelling or test case implementation. In the case study, such analysis was 
completed before the SIP UAC model was constructed. 

 
Modelling approach in case study 

 
The model was built according to test purposes. Only SIP UAC behaviour that 
was required to be tested by the test purposes was modelled.  During the 
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modelling the SIP specification [SIP] was consulted to translate the abstract test 
purposes into formal modelling language. 

The resulting deterministic EFSM of the SIP UAC includes the behaviour 
that was required to be tested by the given test purposes. The model has 19 
states and 52 transitions. A fragment of the model is presented in Figure 15. The 
model has 24 context variables. It is hard to measure the time spent building the 
model. In the case study the MBT process was iterative, consisting of the study 
of the SIP specifications, updating the model with certain aspects of SIP 
functionality, updating the system adapter, generating test cases and running 
them against the IUT. Usually after each update the test execution failed, and 
often the reasons were incorrect model or incorrect test data. The total time 
spent on the case study was 50 man days. This includes everything from 
analysis of the SIP specification to the situation where the test cases for all 
planned test purposes were generated and executed. 

  

 

Figure 15: Fragment of Sofia-SIP UAC model 
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7.2.5 Test generation and execution 
 
Although the model of SIP UAC includes the behaviour for testing all of the 
given test purposes, the model does not have information as to which parts of 
the model implement particular test purposes. It is not possible to tell the 
MOTES test generator to take the SIP UAC model and generate a test case that 
covers the test purpose SIP_CC_OE_CR_V_008, for example. MOTES uses 
model structural coverage defined as set of coverage items (selected states and 
transitions). Therefore, the test coverage specified by the test purposes should 
be transformed to the form of the model structural coverage items. 

It was possible to define test coverage using model structural coverage items 
for 78 test purposes out of 88 (87%) defined in the SIP conformance 
specification [ConfS] and to generate test cases from them. For the remaining 
10 test purposes, the equivalent test coverage was not possible to define using 
the structural coverage items and tests were not generated. For example, test 
purposes that require modelling of parallel transactions were not possible 
because MOTES lacks the feature of modelling parallel transactions and 
generating tests for them. Therefore, it was not possible to generate test cases 
for parallel INVITE transactions.  

For generating tests according to 78 test purposes, 35 different test goals 
were created. Each of the test goals was built to generate tests for one or several 
test purposes. The test cases generated for the 78 test purposes amounted to 
17,500 lines of TTCN-3 code. 

In addition to the test purposes of the SIP conformance specification, the 
tests were generated from the same model using the all transitions test purpose. 
All transitions of the model are able to be visited with a test sequence of 120 
steps. The all transitions test purpose resulted in 2900 TTCN-3 lines of code 
(LOC). In addition to the generated TTCN-3 code, around 1690 TTCN-3 lines 
of code were written manually: 

• data types – 780 LOC 
• templates – 800 LOC 
• test system configuration and TTCN-3 custom functions – 110 LOC 

The generated test cases were executed using the MessageMagic TTCN-3 
test tool [ELMM] against the Sofia-SIP stack. The test environment is presented 
in Figure 14. The execution of the test cases discovered 5 bugs in the Sofia-SIP 
stack library. 

7.2.6 Test coverage analysis 
 
Test coverage analysis was carried out in order to determine the quality 
(coverage) of the generated test cases compared to the intended test coverage 
specified by the test purposes. 
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Tests generated from the model may result in test cases that have: 

• the same coverage as defined by the test purposes; 
• stronger coverage than defined by the test purposes; or 
• weaker coverage than defined by the test purposes. 

A generated test with the same coverage as specified by the test purpose tests 
precisely (and only) the aspects specified by the test purpose. Successful 
completion of the test case means that the test purpose has been met, while 
failure means that it has not been met. 

A generated test with stronger coverage than specified by the test purpose 
tests more aspects than specified by the test purpose. For example, the message 
sent by the IUT might have several fields and the expected values of all of these 
are specified by the model. At the same time, the test purpose may only require 
the testing of the value of one of these against the expected value. Successful 
completion of such a test case proves that the test purpose has been met, but 
failure does not prove that the test purpose has not been met. For example, the 
expected value of a field specified by the test purpose may match the actual 
value in the received message (i.e. test case execution is successful against the 
test purpose) but the mismatch of the actual value against the expected value of 
another field in the same message may make the test case fail.  

The test purposes define the precondition states. They assume that 
implementation is in the precondition state before a specified test begins. How 
the precondition state should be achieved is never defined by the test purposes: 
it is given that the precondition should be met before the test can start. The 
execution of the test case generated from the state model starts from the initial 
state of the model and covers the model items according to the test purpose. 
This means that the generated test covers not only the functionality required by 
the test purposes, but also the functionality to reach the precondition state. A 
generated test of this kind covers the model more broadly than specified by the 
test purpose and has stronger coverage than the test purpose. 

A generated test with weaker coverage than specified by the test purpose 
tests fewer aspects than defined by the test purpose. For example, the test 
purpose “Ensure that the IUT, to establish a call, sends an INVITE request 
including a From header with a TAG parameter” cannot be covered precisely 
because, with a static template, the presence of a TAG cannot be checked in the 
current MOTES implementation. The generated test case tests all other aspects 
specified by the test purpose except the presence of the TAG parameter.  
Successful completion of such a test case does not prove that the test purpose 
has been met, but failure proves that the test purpose has not been met. 

Test coverage analysis of 78 generated test cases against the corresponding 
test purposes gave the following results: 

• 3 test cases matched the test coverage required by the corresponding 
test purposes 

• 69 test cases had stronger test coverage than required by the 
corresponding test purposes 
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• 6 test cases had weaker test coverage than required by the 
corresponding test purposes 

7.2.7 Objectives evaluation  
 
The evaluation results of the case study objectives are as follows: 

 
Overall feasibility of MOTES technology for conformance testing of 
industrial-scale telecommunications applications 

 
The Sofia-SIP stack is a typical telecommunications protocol application. The 
case study demonstrated that MOTES technology is feasible for conformance 
testing of such applications.   
 
Adaptability of MOTES technology for the requirement-driven testing 
process 

 
As expected, adapting MOTES technology for requirement-driven testing 
causes some issues. The elements of the model that are involved by modelling 
particular requirements of the IUT are spread throughout the model. This makes 
it hard to understand in which part of the model and how a particular 
requirement is modelled. Tracking the requirements from specification to model 
is highly complicated.  

In the case study the test purposes were mapped to the model structural 
coverage items in order to generate test cases according to the specified test 
purposes. It was demonstrated that for most test purposes (87%) the mapping 
was possible.  

The test coverage of the generated test cases against the test purposes was 
compared. It was demonstrated that in most cases (69 test purposes out of 78) 
the generated test case resulted in stronger test coverage than specified by the 
corresponding test purpose. Only in some cases (3 test purposes out of 78) did 
the generated test case result in weaker test coverage than specified by the 
corresponding test purpose.  

 
Feasibility of EFSM for modelling industrial-scale telecommunications 
applications  
 
The case study demonstrated that EFSM has enough modelling power to model 
industrial-scale telecommunications applications. The complexity of the 
resulting EFSM is on the edge of readability and maintainability. The lack of 
hierarchical states in the modelling notation was experienced as a drawback. 

 
Feasibility of the iterative model checking-based test generation method 
 
The use of the deterministic model was justified in the case study. The SIP stack 
UAC component itself exhibits well-specified deterministic behaviour and the 
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implementation does not have internal sources of nondeterminism. The iterative 
model checking-based test generator engine was used for test generation in the 
case study. The iterative method did the work for all test purposes that were 
able to be defined using the sets of model structural coverage items. In addition, 
the tests were created for the all transitions test purpose, which resulted in a test 
sequence of 120 transitions. Note that attempting this on the same model and 
same test goal with normal model checking (not iterative) did not produce 
results, because the model checker froze after consuming all of the available 
1GB memory resources allocated to it.     

 
Bug detection ability of generated tests  
 
The Sofia-SIP stack library has been available to developers for some years. 
The quality of Sofia-SIP implementation is otherwise unknown.   During the 
case study 5 bugs were detected in Sofia-SIP implementation. 

7.3 Testing controllers of street lighting system  

7.3.1 Overview of IUT 
 
The IUT of this case study is a Feeder Box Control Unit (FBCU), a subsystem of the 
street lighting control system operating in Tartu, the second biggest city in Estonia.  

The street lighting system monitors and controls several hundred street 
lighting feeder boxes. Each feeder box provides a power supply to several 
groups of connected street lights. The street lighting control system controls the 
feeder boxes over a commercial GSM network. The FBCU is the control device 
of the feeder box (see Figure 16). It remotely controls the street lights, 
switching them on and off based on the light conditions, time of day or direct 
operator request. It is possible to continuously alter the time the lights come on 
as the seasons change and to take into account the weather conditions, the 
location of the lights and the nature of the environment they are lighting at 
particular time. The network enables feeder boxes to send monitoring and alarm 
information back to the lighting operator. The control system collects data about 
input and output feeder behaviour, identifies lighting failures and produces 
comprehensive reports on the status of the lights, faults and energy 
consumption.   The general architecture of the street lighting control system is 
shown in Figure 16. 

The communication between the FBCU and lighting control system is 
implemented using GSM USSD communication. A typical scenario of 
communication between the lighting operator and FBCU is as follows: 

1. The lighting operator sends a message for a feeder box to a mobile 
operator USSD gateway through the Internet. 

2. The USSD gateway receives the message and forwards it to the 
mobile network. 

3. The mobile network dispatches the message to the FBCU of the feeder 
box. 
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4. The FBCU executes the command and responds to the mobile 
network. 

5. The message is sent from the mobile network to the USSD gateway. 
6. The USSD gateway forwards the message to the lighting operator. 

 

 

Figure 16: Architecture of street lighting control system 

The FBCU consists of a microcontroller, an interface to the integrated GSM 
modem, a SIM card socket, impulse power supply units and protection circuits 
between the micro controller pins and FBCU external connectors.  

 

 

Figure 17: FBCU 

7.3.2 Objectives of case study 
 
The case study was performed as part of the ITEA2 D-MINT project [DMIN] 
by an Estonian consortium to evaluate model-based testing and related 
technology in the field of telematics. The testing scope in the case study 
included the start-up and power control features of the FBCU.  
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The following aspects were evaluated in the case study: 

 
• Overall feasibility of MOTES technology for testing hybrid 

industrial-scale controllers. FBCU is a complex hybrid embedded 
system consisting of hardware and software components. It 
communicates with the environment using analogue and discrete 
input/output signals. In addition, it communicates over the GSM 
modem through messages. The specification describing the 
functionality of the IUT in the scope of the case study includes 18 use 
cases described over 45 pages. The embedded software of FBCU 
includes about 4000 lines of C code. 

• Combining MOTES technology with the complex hybrid system 
adapter. The test tool, which has message-based communication with 
the IUT, had to be connected to the electrical input/output signals of the 
IUT. This required a complex system adapter containing software and 
hardware components to control and observe the IUT in the tests. In 
addition the system adapter had to have a component which would 
allow visual monitoring of the electrical signal characteristics in order 
to trace test case influence at the IUT pin level.  

• Applicability of MOTES technology for exploratory testing. The 
term ‘exploratory testing’ is normally used as the opposite of automatic 
script-based testing [Bach03]. It refers to manual testing where a skilled 
test engineer manually explores the state-space of the application trying 
to break the system. According to advocates of exploratory testing, 
script-based testing can never lead to equally good results compared to 
exploratory testing because the scripting is not flexible and it takes too 
much time to code the intelligence of the test engineer into the test 
script. The applicability of MOTES technology for exploratory testing 
was evaluated in the case study. 

• Feasibility of EFSM for modelling hybrid industrial-scale 
controllers. The modelling power, size, complexity, and readability of 
the resulting EFSM were evaluated in the case study. 

• Feasibility of the iterative model checking-based test generation 
method. The applicability of the method for generating test cases from 
the deterministic model was evaluated. Although the FBCU is 
nondeterministic in nature, as discovered in the case study, the 
nondeterminism was abstracted away using FunctionCall and 
interleave constructs of MTL [Appendix A]. Using custom TTCN-
3 functions the interleaving and nondeterministic behaviour of the 
FBCU was hidden in the system model. The feasibility of the new 
construct was evaluated in the case study.  

• Feasibility of the reactive planning tester-based test generation 
method. Reactive planning tester-based test generation was evaluated 
on the nondeterministic model of the FBCU. The feasibility of the RPT 
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method, its scalability and performance against random choice and anti-
ant on-the-fly test generation methods were evaluated. 

• Ability of generated tests to detect bugs. Although FBCU was already 
part of the field tests when the case study began, it was still under 
development. A couple of new hardware versions and several new 
software versions were introduced during the case study. Therefore, it 
was essential to assume that real bugs would be detected. The nature of 
the detected bugs was evaluated. 

• Suitability of MOTES technology for incremental system 
development. Due to the incremental development of the FBCU during 
the case study it was possible to evaluate MOTES technology in the 
system development maintenance phase. The maintenance phase is 
characterised by changing system requirements with redesign, 
reimplementation, and retesting phases. The performance of automatic 
test generation against the estimated performance of manual test 
creation in the maintenance phase was able to be compared.  

7.3.3 System adapter 
 

Because of the complex electrical interface of the FBCU the most time-
consuming activities in building the test environment were those related to the 
system adapter. The system adapter is a complex system of hardware and 
software components. The hardware consists of commercial measurement and 
control devices connected to the pins of the FBCU. These devices provide 
current to the FBCU, read its output pins and write data to its input pins. The 
devices are controlled by the virtual instruments of the LabVIEW [LabV] 
environment. The task of the LabVIEW virtual instruments is to receive the 
output messages produced by the TTCN-3 test code running on the 
MessageMagic TTCN-3 test tool [ELMM] in order to convert them into the 
control messages of the control devices that will provide the corresponding 
electrical signals to the FBCU. The LabVIEW virtual instruments read FBCU 
electrical output signals via the measurement devices and convert them to the 
input messages for the TTCN-3 test code running in MessageMagic (Figure 18). 

7.3.4 Modelling the IUT 
 
The FBCU is specified in the requirements specification, which includes use 
cases of FBCU behaviour. The requirements specification used in the case study 
was the best that can be expected. It was created by a skilled analyst who 
understood the test automation issues and was able to create specification that 
already included use cases in terms of logical signals, not in terms of electrical 
signals and their levels. 

The case study included testing of the following functionalities of the FBCU: 
• power supply management 
• siren control 
• door switch control 
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Figure 18: Test environment of FBCU 

Modelling approach 
 

Two modelling phases can be distinguished in the case study: the initial phase 
and the maintenance phase. 

 
Initial phase 

 
The initial phase included an analysis of the IUT based on the requirement 
document and interviews with the developers of the FBCU. In this phase several 
increments of the models for different testing purposes were created. The initial 
phase appeared to be quite a long process because it was performed in parallel 
with the development of the system adapter. There was a lot of experimenting 
and trial-and-error involved in the process due to the complex nature of the 
system adapter. Often there were two options – either to define something 
differently within the model or to re-implement something differently in the 
system adapter. Studying the problem area of the physical controller and 
understanding the relationship between different electrical signals was also 
difficult for the software test engineers. As most of the time was spent clarifying 
and experimenting with the model and system adapter, it is difficult to view the 
modelling phase as a task in itself. It is almost impossible to estimate how much 
of the work was spent modelling the IUT and how much developing the system 
adapter and integrating the IUT into the test environment. In general, the initial 
phase lasted for approximately 42 man weeks. It was estimated that the 
performance of the test case creation in the first phase using automatic model 
generation would still exceed the performance of the TTCN-3 coding for the 
same amount of tests by around 2.5 times. 

A deterministic model with 16 states, 51 transitions and 6 context variables 
was created during the initial phase. A fragment of the model is presented in 
Figure 19. 

 71



 

Figure 19: Fragment of FBCU deterministic model 

Maintenance phase 
 

The maintenance phase began after a new important requirement for the FBCU 
was set by the customers: “It is very important to save the battery life, because 
it is costly to change the batteries on site”. This requirement radically changed 
the start-up and power control functionalities of the FBCU. It was defined that 
starting from a particular battery current level, all of the functions of the FBCU 
should be shut down. This was very different from the previous requirements, 
where the FBCU attempted to be fully operational as long as the battery allowed 
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it to be. Due to the radical change in the behaviour of the IUT the existing 
models had to be modified to such an extent that it made more sense to create 
them again from scratch. As the problem area was already well-known and the 
system adapter was ready, the building of new models only took 10 man days. 

A deterministic model with 20 states, 44 transitions and 6 context variables 
was created. The resulting model more or less covered the same scope of 
functionality as the model created during the initial phase. 

In addition, a nondeterministic model was created to evaluate the feasibility 
and performance of the RPT method. The strongly connected state model of the 
FBCU includes 31 states and 78 transitions. Pairs of nondeterministic 
transitions depart from seven states of the model and a group of three 
nondeterministic transitions depart from one state of the model. The 
nondeterministic model was derived from the corresponding deterministic 
model by flattening the deterministic EFSM and adding a couple of 
nondeterministic transitions. A fragment of the nondeterministic model is 
presented in Figure 20. 

7.3.5 Test generation and execution 
 
Initial phase 

 
The test case generated according to the all transitions test purpose includes a 
test sequence with 112 steps and 3000 LOC. 

The test case generated according to the all transition pairs test purpose 
includes a test sequence with 286 steps and 4230 LOC. 

In addition, tests were generated for 8 selected test purposes using test 
coverage defined by an ordered set of states and transitions. The generated test 
cases for these test purposes include 20,000 LOC in total.   

 
Maintenance phase 

 
The test case generated from the deterministic model according to the all 
transitions test purpose includes a test sequence with 75 steps and 2950 LOC. 

The test case generated from the same model according to the all transition 
pairs test purpose includes a test sequence with 491 steps and 5080 LOC. 
In addition, test cases were generated for 4 selected test purposes using test 
coverage defined by an ordered set of states and transitions. The generated tests 
for these test purposes include 10,000 LOC in total.  

Reactive planning tester implementation in TTCN-3 generated from the 
nondeterministic model includes 5180 LOC.  

 

 73



 

Figure 20: Fragment of FBCU nondeterministic model 

7.3.6 Comparing test generation performance against manual test scripting 
 

The benefits of automatic test generation compared to manual test scripting 
were estimated in the case study. The amount of generated TTCN-3 code was 
taken as the basis of evaluation. The amount of work required to manually 
create the same amount of TTCN-3 test code was calculated on the basis of the 
past TTCN-3 coding performance statistics available in Elvior.  

MBT in general and MOTES technology in particular proved the benefits 
over manual test scripting. The productivity of system modelling and automatic 
test generation exceeds the manual process by many times. Building a model 
and a system adapter for the first time for an unknown field can take more time, 
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but in the maintenance phase, when there is an existing system adapter and 
model, subsequent changes are very fast. Additional tests can be created from 
the same model within moments and the generated tests are sure to be clean of 
bugs. 

In the initial phase a considerable amount of time was spent on tasks such as 
analysing the IUT, building the system adapter, integrating the IUT into the test 
environment and creating models for first time. In this phase the performance 
was not much better compared to manual test scripting. The performance 
measurements of the case study exhibit around 60% of time savings over 
manual test building.  

In the maintenance phase the time savings can be significant. With the 
know-how from the initial phase, it only took 10 days to build the new models 
from scratch and to generate new TTCN-3 test cases with the same coverage as 
in the initial phase. The code size of the generated TTCN-3 test cases was 
around 18 kLOC. Using the manual process, the writing of the same amount of 
test cases (to achieve the same test coverage) and to debug them would have 
required around 360 days (with test case coding performance of 50 LOC/day). 
Therefore the advantage of automatic test generation over the manual process 
appears to be around 36 times greater in the maintenance phase. 

7.3.7 Objectives evaluation 
 
The evaluation results of the case study objectives are as follows: 
 
Overall feasibility of MOTES technology for testing hybrid industrial-scale 
controllers 

 
The case study demonstrated that MOTES model-based testing technology in 
general is feasible for testing hybrid industrial-scale controllers like the FBCU. 
The case study demonstrated that most of the difficulties were in the building of 
the system adapter, not in modelling and test generation. 

 
Combining MOTES technology with the complex hybrid system adapter 

 
System adapter development proved to be the most time-consuming activity in 
test environment building for the model-based testing of hybrid systems. The 
case study demonstrated that such development of a complex system adapter 
only pays off if the test environment is reused over a longer period. Without 
regression testing needs in the maintenance phase, investing in such a system 
adapter is a waste of time and money. As demonstrated in the case study, only 
one significantly new increment in the maintenance phase justifies the 
investment made in building the system adapter.  

Disclaimer: although discovered in the case study, the issues with the system 
adapter do not speak against MBT and MOTES technology. A similar system 
adapter is also needed in the event that the test cases are written manually 
without any MBT technology.  
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Applicability of MOTES technology for exploratory testing 
 

The case study demonstrated that MOTES technology in particular and model-
based testing in general is applicable for exploratory testing. In the case study, a 
general start-up and power control model was built which allows different 
current levels to be set up in start-up. Long test sequences with different 
powering schemes were generated from the same model by playing with 
different test coverage criteria. Several bugs in the controller were detected 
using such tests. Changing the coverage criteria and generating new test cases 
from the existing model is very simple and takes just a few seconds. Many 
experiments can be done in this way, as in exploratory testing, but in addition 
the IUT can be tested in a more systematic way with better coverage and 
repeatable results. These are significant benefits of model-based exploratory 
testing over manual exploratory testing. 

 
Feasibility of EFSM for modelling hybrid industrial-scale controllers 

 
The case study demonstrated that EFSM has enough modelling power to model 
hybrid industrial controllers. The EFSMs built in the case study contain, on 
average, 18 states, 47 transitions and 6 context variables. The complexity of 
such EFSMs is on the edge of readability and maintainability. The lack of 
hierarchical and parallel states in the modelling notation used was experienced 
as a drawback. 
   

Feasibility of the iterative model checking-based test generation method 
 
Although the FBCU is nondeterministic in nature, the nondeterminism was 
abstracted away using FunctionCall and interleave constructs of 
MTL. Because the models of the IUT did not include kinds of nondeterminism 
other than the order of expected receiving messages, the deterministic model 
with abstraction worked well in the case study. 

Generating tests according to all transitions and all transition pair test 
purposes (which resulted in test sequences of 112 and 286 steps respectively) 
demonstrated the feasibility of the iterative model checking-based test 
generation method for generating serious test cases.  
 
Feasibility of the reactive planning tester-based test generation method 
 
Reactive planning tester-based test generation was evaluated on the 
nondeterministic model of the FBCU. The feasibility of the RPT method, its 
scalability and performance against random choice and anti-ant on-the-fly test 
generation methods were evaluated in the experiments of the case study. The 
method of the experiments and the results are presented in PAPER 4. In short, 
reactive planning tester-based test generation gives significantly shorter test 
sequences than other on-the-fly test generation methods like random choice and 
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anti-ant. This is achieved by the longer planning horizon of the RPT compared 
to other methods. The experiments demonstrated that increasing the planning 
horizon decreases the length of the test sequences exponentially. The online 
planning time only increases by a power of 2 in the length of the planning 
horizon. 
 
Ability of generated tests to detect bugs  

 
Although FBCU was already in field tests when the case study began, it was 
still under development. A couple of new hardware versions and several new 
software versions were introduced during the case study. 3 software bugs were 
detected during the case study.   

 
Suitability of MOTES technology for incremental system development  
 
Due to the incremental development of the FBCU during the case study, it was 
possible to evaluate MOTES technology in the system development 
maintenance phase. The maintenance phase is characterised by changing system 
requirements with redesign, reimplementation and retesting phases. Model-
based testing in general and MOTES technology in particular are efficient for 
incremental system development as demonstrated by the test creation 
performance measurements in the maintenance phase of the case study. Any 
automated test environment pays off when reused several times during the 
product life cycle. The same is true for MBT. The case study demonstrated that 
the benefits of MBT in the maintenance phase can be enormous. 

7.5 Summary of case studies 
 
Two different case studies from different branches of the industry were 
conducted. Table 3 summarises their qualitative and quantitative aspects and 
results in order to place the case studies in a broader perspective and to compare 
them against each other. 

The most important lessons learned from the case studies were as follows: 
1. The system models in the case studies model a large amount of 

requirements of the system. The ability of MOTES technology to cope with 
such models is evidence that the technology is applicable to model-based 
testing of industrial-scale applications.   

2. MOTES technology is generally applicable for functional black box testing 
as shown in two different case studies from different fields. 

3. The iterative model checking-based test generation method implemented in 
MOTES is feasible and scalable for industrial-scale deterministic 
application testing. 

4. The RPT-based test generation method implemented in MOTES is feasible 
and scalable for industrial-scale nondeterministic application testing. RPT 
generates significantly shorter test sequences than other online test 
generation methods like anti-ant and random choice. Efficiency is provided 
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with affordable online calculation time which remains in the range of tens 
of milliseconds.  

5. EFSM is feasible for modelling the IUTs in the demonstrated case studies 
but it was found that flat EFSM models of such a size are on the edge of 
readability and maintainability. There is an urgent need for Statecharts 
modelling notation with hierarchical and parallel states.  

Table 3: Case studies in numbers 

Aspect SIP case study FBCU case study 

  initial phase maintenance 
phase 

Field of industry telecommunications 
software telematics/controllers 

Specification size (pages) app. 90 app. 50 
IUT implementation size (LOC) about 500 (C++) about 400 (GNU C) 
Time spent on case study 
(weeks) 10 42 2 

Deterministic/nondeterministic 
model deterministic deterministic both 

Number of models 1 1 2 
Average number of 
states/transitions/context 
variables in model 

19/52/24 16/51/6 25/61/3 

Average length of test sequence 
for   all transitions coverage 120 112 75 

Total number of generated test 
cases 36 10 6 

Average LOC in generated test 
cases app. 570 app. 2700 app. 3000 

Average test code generation 
productivity 410 LOC/day 128 LOC/day 1 800 LOC/day 

Test generation performance 
over manual coding app. 8 x app. 2.5 x app. 36 x 

 
6. MOTES technology can, to some extent, be adapted for the requirement-

driven testing process by defining the test purposes using model structural 
coverage items. It was demonstrated in the SIP case study that this is 
possible, but it lacks the means of tracing the requirements through the 
model to the test cases and test logs. Further research is needed for 
modelling requirements in a way that allows parts of the model to be easily 
selected as test coverage items and a test case to be generated for a 
particular requirement. PAPER 5 proposes an idea of model composition. 
More advanced development of the idea is a topic for future research. 

7. Currently, MOTES technology is not able to generate test data 
automatically. Only test sequences and evaluation of the actual outputs 
against those expected can be generated automatically. Input data instances 
are prepared manually for test sequences. This is a drawback that slows 
down model-based testing and prevents the use of data coverage criteria for 
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test generation. Further research is needed to generate input data instances 
automatically. 

8. The case studies, and especially the FBCU case study, demonstrated model-
based test generation productivity against traditional manual test case 
development. After the initial investments are made in the building of the 
system adapter and knowledge has been gained about the problem area 
during the initial phase, model-based testing becomes highly productive in 
the maintenance phase, as demonstrated in the FBCU case study (Table 1).  

9. The FBCU case study demonstrated MBT feasibility for exploratory testing.  
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8 CONCLUSIONS 
 
MBT is an automation approach for deriving tests automatically from the model 
of the implementation under test (IUT). In reactive systems the MBT is an 
automation approach for deriving tests automatically for IUT functional black 
box tests.  

The main motivation behind my doctoral studies was to create an MBT tool 
for reactive systems that is relatively easy for test engineers to use and which 
meets the needs of industrial-scale model-based testing. My aim was to develop 
a technology that allows the IUT to be modelled using a modelling language as 
close to UML as possible, since UML is a widely accepted modelling standard 
that is used in different branches of industry.  

Several novel methods and techniques were proposed that form the 
theoretical foundation of the thesis: 

• iterative model checking-based test generation from deterministic 
models 

• synthesis of reactive planning tester for test generation from 
nondeterministic models 

• requirement-driven testing through model composition 
The reported iterative test generation method is based on explicit state 

model-checking. It is a well-known issue that model checking suffers a state-
space explosion when the complexity of the model and/or reachability goal 
increases. The iterative model checking-based test generation method builds the 
tests iteratively by splitting the reachability goal into less complex sub-goals. In 
each iteration only one sub-goal is solved and the resulting test sequence is 
appended to the test sequence generated for the previous sub-goals. The method 
is therefore not vulnerable to a state- space explosion caused by the complexity 
of the test goal and allows tests to be generated from significantly larger and 
more complex models. Test sequences generated in such a way are suboptimal 
only. Splitting the goal into sub-goals can be viewed as another optimisation 
task done either manually by the test engineer or by program automatically by 
the program. 

The reactive planning tester-based method of deriving tests for 
nondeterministic systems has significant advantages over other known on-the-
fly testing methods due to its longer planning horizon. The reactive planning 
tester is synthesised offline using reachability analysis of the model. During the 
online phase the reactive planning tester is able to find the suboptimal way to 
the next test coverage item automatically. Due to the longer planning horizon 
the reactive planning tester meets the defined test goals significantly faster than 
random walk or anti-ant-like on-the-fly testing algorithms, for example. 

In industry, software testing processes are usually requirement-driven. This 
means that testing should verify whether a particular software requirement 
defined in requirements specification or other specifications is implemented 
correctly. The requirement-driven approach in MBT should be supported as 
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early as the modelling phase by suitable modelling formalisms. The 
requirements should be able to be modelled in a way that later allows parts of 
the model to be easily selected as test coverage items belonging to the particular 
requirement and a test case to be generated for this particular requirement. It is 
shown how the requirement-driven approach can be applied in building the 
model of the IUT using either a composition of Uppaal [UPPA] automata or 
NModel model program [JVC+08] features. 

The reasoning behind the development of these theoretical methods and 
techniques has been presented at international conferences and published in 
refereed journals. A selection of representative papers has been collated and 
attached to this thesis. 

The practical part of the thesis includes a description of the MOTES test tool 
and technology, which implements the novel test generation methods presented 
in the thesis. The MOTES tool is a test generator which generates test cases in 
TTCN-3 language from extended finite state models (EFSM). The applicability 
of MOTES technology has been demonstrated in two industrial scale case 
studies. The thesis presents the results and lessons learned from these case 
studies in different branches of industry – telecommunications software and 
telematics controllers.  

The research presented in the thesis highlighted several topics that will 
require attention in future research. This thesis focuses on EFSM notation for 
modelling the IUT. EFSM is a state machine without hierarchical and parallel 
states. For users to accept the MBT it is important to provide them with the 
chance to also use hierarchical and parallel states. Generating tests from models 
that also have hierarchical and parallel states is an important topic of future 
research. The thesis pays close attention and reports on good results in 
generating test sequences from deterministic and nondeterministic models. The 
test data for the generated tests were still prepared manually. Automatic test 
data generation is the next important topic for future research. The state models 
of the system were the only modelling artefacts used in this research. In practice 
there are several modelling artefacts the user would like to use in parallel to 
model different aspects of the systems. Building the system model from 
integrated sub-models that use different modelling artefacts is another important 
topic of future research. 
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APPENDIX A: FORMAL TRANSITION LANGUAGE 
FOR MOTES (MTL) 

 
Identifier ::= <IDENTIFIER> 

FloatValue ::= <FLOATING_POINT_LITERAL> 

CharValue ::= <CHARACTER_LITERAL> 

Cstring ::= <STRING_LITERAL> 

Number ::= (<NUMBER>|"0") 

TransitionExpression ::= ((GuardCondition)?(Trigger)?  
TriggerEffectSeparator( 
EffectEffect)?<EOF>) 

TriggerEffectSeparator ::= (("|")) 

TriggerSingle ::= ((TimeTrigger|MessageTrigger)  
<EOF>) 

Trigger ::= ((TimeTrigger|MessageTrigger)) 

GuardConditionSingle ::= ("["Expression"]"<EOF>) 

GuardCondition ::= ("["Expression"]") 

Port ::= (Identifier Colon) 

MessageTrigger ::= ((Port)?Identifier  
("("InputParams")")?) 

InputParams ::= (InputParam(","InputParam)*) 

InputParam ::= (SingleExpression(AssignmentChar  
(SingleExpression |  
Ttcn3TemplateMechanism))*) 

InputParamSelection ::= ((EqualOp|RelOp)  
(Ttcn3TemplateMechanism|  
Expression)) 

InputParamAssignment ::= (AssignmentChar Expression) 

TimeTrigger ::= (Identifier ".timeout") 

EffectSingle ::= (Action (";" Action)*<EOF>) 

Effect ::= (Action (";" Action)*) 

Action ::= ((StartTimer|StopTimer|  
FunctionCall| 
ContextVariableExpression|  
SendMessage|Quiescence|  
Interleave)) 

ContextVariableExpression ::= (Assignment) 

SendMessage ::= (Message(SendMaxDelay)?) 

Message ::= ((Port)?Identifier  
("("OutputParams")")?) 

OutputParams ::= (OutputParam(","OutputParam)*) 

OutputParam ::= (SingleExpression(AssignmentChar  
(SingleExpression|  
Ttcn3TemplateMechanism))*) 

StartTimer ::= (TimerRef ".start"  
("("(TimerValue)")")?) 
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TimerValue ::= ((Identifier|FloatValue)) 

StopTimer ::= (TimerRef ".stop") 

Quiescence ::= ("quiescence" "("TimerValue")") 

Interleave ::= ("interleave" "("Message", 
"Message(","Message)*")" 
(SendMaxDelay)?) 

FunctionCall ::= ("fn:"Identifier"("(Value  
(","Value)*)?")") 

TimerRef ::= (Identifier(ArrayOrBitRef)?) 

SendMaxDelay ::= ("maxDelay" "("FloatValue")") 

Ttcn3TemplateMechanism ::= (("?"|"*"|"-")) 

Value ::= ((VariableRef|PredefinedValue)) 

PredefinedValue ::= ((BooleanValue|Cstring|Number|  
FloatValue|CharValue)) 

VariableRef ::= ((Identifier  
(ExtendedFieldReference)?)) 

Expression ::= ((SingleExpression|  
ArrayExpression)) 

ArrayExpression ::= (("{"(ArrayElementExpressionList) 
?"}")) 

ArrayElementExpressionList ::= ((Expression(","Expression)*)) 

BooleanExpression ::= ((SingleExpression)) 

Assignment ::= ((VariableRef AssignmentChar  
Expression)) 

SingleExpression ::= ((AndExpression  
(OrOp AndExpression)*)) 

AndExpression ::= ((NotExpression(AndOp  
NotExpression)*)) 

NotExpression ::= ((("!")?EqualExpression)) 

EqualExpression ::= ((RelExpression(EqualOp  
RelExpression)*)) 

RelExpression ::= ((AddExpression(RelOp  
AddExpression)?)) 

AddExpression ::= ((MulExpression(AddOp  
MulExpression)*)) 

MulExpression ::= ((UnaryExpression(MultiplyOp  
UnaryExpression)*)) 

UnaryExpression ::= (((UnaryOp)?Primary)) 

Primary ::= ((Value|"("SingleExpression")")) 

ExtendedFieldReference ::= ((((Dot Identifier)| 
ArrayOrBitRef)+)) 

ArrayOrBitRef ::= (("["FieldOrBitNumber"]")) 

FieldOrBitNumber ::= ((SingleExpression)) 

AndOp ::= (("&"|"&&")) 

OrOp ::= (("|"|"||")) 

AddOp ::= (("+"|"-")) 

MultiplyOp ::= (("*"|"/"|"mod"|"rem")) 
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UnaryOp ::= (("+"|"-")) 

RelOp ::= (("<"|">"|">="|"<=")) 

EqualOp ::= (("=="|"!=")) 

Dot ::= ((".")) 

Dash ::= (("-")) 

Minus ::= ((Dash)) 

SemiColon ::= ((";")) 

Colon ::= ((":")) 

AssignmentChar ::= (("=")) 

BooleanValue ::= (("true"|"false")) 
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