
Tallinn 2020

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Cheng-Yu Lu 184679IVCM

ANALYSE JOURNAL OF XFS FILESYSTEM

FOR ASSISTING IN EVENT

RECONSTRUCTION

Master’s thesis

Supervisor: Pavel Laptev

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Cheng-Yu Lu 184679IVCM

PÄEVIKUGA XFS FAILISÜSTEEMI

ANALÜÜS AITAMAKS SÜNDMUSTE

REKONSTRUEERIMISEL

Magistritöö

Juhendaja: Pavel Laptev

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Cheng-Yu Lu

18.05.2020

4

Abstract

When forensics specialists investigate incidents at a crime scene, event reconstruction

helps understand what happened on the system by methods such as examining deleted

files and previous versions of files in the period of time. To identify deleted files and

previous versions of files on the system, analysis of journal can be applied. Journaling is

one of filesystem features, which is originally used to avoid data inconsistency because

of system crash or power failure by writing data into journal to record changes made on

the system instead of directly writing data into filesystem. This paper discusses journaling

on XFS filesystem, which is a high-performance filesystem and is a default filesystem of

CentOS and RedHat Linux, and it is also found in high-end storage devices such as

network-attached storage (NAS) and storage area network (SAN) systems. It also

proposes the method for analysing XFS filesystem journals to assist in event

reconstruction, and use a self-written Python script to verify the accuracy of logic by

conducting the experiment.

This thesis is written in English and is 45 pages long, including 7 chapters, 50 figures and

12 tables.

5

Annotatsioon

PÄEVIKUGA XFS FAILISÜSTEEMI ANALÜÜS

AITAMAKS SÜNDMUSTE REKONSTRUEERIMISEL

Kohtueksperdid kasutavad erinevaid sündmuste rekonstrueerimise võtteid, et uurida

juhtumeid. Võtteid nagu: kustutatud failide uurimine ja failide eelmiste versioonide

uurimine teatud aja hetketel. Et uurida kustutatud ja eelmiseid faili versioone saab

kasutada failisüsteemi päevikupidamise funktsionaalsust. Failisüsteemi päeviku pidamist

kasutatakse, et vältida andmete kadu süsteemi kokku jooksmise või elektrikatkestuse ajal.

Seda tehakse kirjutades failidele tehtavad muudatused päevikusse mitte otse faili

süsteemi. Antud lõputöö uurib päevikuga XFS failisüsteeme, mis on suure jõudlusega

failisüsteem, mis on kasutusel CentOS ja RedHat Linuxites. Sammuti kasutatakse seda

failisüsteemi kallihinnalistes mäluseadmetes nagu võrgumälud (NAS) ja salvesti võrgud

(SAN). Lõputöös pakutakse välja ka meetod, mis abistab kohtuekspertidel kasutada XFS

failisüsteemide päevikupidamise funktsionaalsust, et rekonstrueerida sündmuseid. Välja

töötatud meetodite põhjal loodi Phytoni skript millega viidi läbi erinevad katsed, et

kinnitada meetodi täpsus.

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 45 leheküljel, 7 peatükki, 50

joonist, 12 tabelit.

6

List of abbreviations and terms

EXT Extended file system

AG Allocation group

INODE Index node

OS Operating system

FS Filesystem

DF Digital forensics

ER

NAS

SAN

Event reconstruction

Network-attached storage

Storage area network

7

Table of contents

List of figures.. 9

List of tables ... 11

1 Introduction ... 12

1.1 Research objective... 12

1.2 Scope & Novelty ... 13

2 Related work .. 14

3 Overview of XFS filesystem .. 18

3.1 Allocation groups .. 18

3.2 Superblock .. 19

3.3 Inode core ... 20

3.4 Data fork ... 22

3.5 Directories ... 23

3.6 Extent .. 33

4 Journaling of XFS .. 35

4.1 Log records ... 35

4.2 Log operations... 36

4.3 Log items .. 37

5 Journal analysis for event reconstruction .. 41

5.1 Analysis procedure .. 41

5.2 Steps of procedure ... 41

6 Experiment procedure, limitation, and comparison ... 47

6.1 Environment setting .. 47

6.2 Steps of experiment procedure ... 47

6.3 Test case ... 48

6.4 Test objectives... 48

6.5 Test result.. 49

6.6 Limitation ... 50

6.7 Comparison with other forensics tools ... 52

8

7 Summary ... 55

References .. 56

Appendix 1 – Source Code .. 60

Appendix 2 – Shell script used for creating test case ... 68

9

List of figures

Figure 1. Layout of allocation group [6] .. 18

Figure 2. Structure of superblock .. 19

Figure 3. Value of Read-write incompatible feature flags [28]..................................... 20

Figure 4. Structure of inode core ... 21

Figure 5. Definition of type of file [30] ... 23

Figure 6. Definition of data fork format [28] ... 23

Figure 7. A directory file with data stored within an inode .. 23

Figure 8 Header of short form directory .. 24

Figure 9. Layout of directory entry .. 25

Figure 10. Value of file type [32] .. 26

Figure 11. Block directory with extent .. 26

Figure 12. Overview layout of block directory .. 27

Figure 13. Structure of block directory .. 27

Figure 14. Leaf directory with 2 data extents and leaf extent 29

Figure 15. Overview layout of leaf directory ... 29

Figure 16. Structure of leaf directory’s 1st data extent .. 30

Figure 17. Structure of leaf directory’s 2nd data extent ... 30

Figure 18. Node directory with 17 extents ... 31

Figure 19. Overview layout of node directory ... 31

Figure 20. Structure of node directory’s data extent .. 31

Figure 21. Layout of B+ tree’s root node ... 32

Figure 22. One level B+ tree with 3 leaves .. 32

Figure 23. Structure of B+ tree’s leaf .. 33

Figure 24. The structure of extend record .. 34

Figure 25. The layout of log record header .. 36

Figure 26. The structure of log operation header ... 36

Figure 27. Value of log operation’s originator [36].. 37

Figure 28. Value of log operation’s flag [36] ... 37

Figure 29. Magic number of log items [36] ... 38

10

Figure 30. The structure of transaction header ... 38

Figure 31. Inode update and Inode core ... 39

Figure 32. Values to specify which parts of the inode are being updated [36] 40

Figure 33. Steps of procedure .. 41

Figure 34. Determine size of superblock by checking sector size 42

Figure 35. First block of journal .. 43

Figure 36. Byte offset of journal’s first block .. 43

Figure 37. Log record header .. 43

Figure 38. Log operations ... 44

Figure 39. Inode update & Change to Inode .. 45

Figure 40. Proposed analysis technique ... 46

Figure 41. Value of default XFS settings ... 47

Figure 42. Layout of test case .. 48

Figure 43. Result of test case ... 50

Figure 44. Remove of transaction types [40] ... 51

Figure 45. Storage properties of test case shown in UFS explorer 52

Figure 46. Unknown data type .. 53

Figure 47. Failure to recover deleted file ... 53

Figure 48. XFS test case shown in PhotoRec ... 54

Figure 49. Files recovered from PhotoRec ... 54

Figure 50. Unrecognizable file names and properties .. 54

11

List of tables

Table 1. Structure of superblock [27] .. 20

Table 2. Structure of inode core [27] ... 22

Table 3. Header of short form directory [27] ... 25

Table 4. Layout of directory entry [27] .. 25

Table 5 Structure of block directory’s header [27] ... 27

Table 6. Structure of directory entry [27] .. 28

Table 7. Structure of header of B+ tree’s leaf [27] ... 33

Table 8. The layout of log record header [27] .. 36

Table 9. The structure of log operation header [27] ... 37

Table 10. The structure of transaction header [27] ... 38

Table 11. Structure of inode update [27] ... 40

Table 12. Environment setting... 47

12

1 Introduction

As the rapid growth of new technology, the cost to acquire huge volume of storage is

getting cheaper and cheaper. Traditional filesystems are limited to support large FSs

because of the initial design, so new FSs were created. XFS is one of FSs in support of

large FSs, which includes mechanisms for managing large files, large numbers of files,

large directories, and high performance I/O [1]. Digital forensics process models have

been evolved year after year, and there are different existing models. Even though the

term is used differently in these models, one of the common steps is to examine the

artefact collected from the storage media [2]. Large amount of data brings obstacle to DF

investigation. With limited amount of time and human resource, it is hard for DF

specialists to investigate all the data. Understanding what happened on the system is

crucial to prioritize order of events for improving performance of event reconstruction.

ER examines events related to incident in order to explain the reason why objects have

properties, such as file creation time and file location [3]. Journaling is one of FS features,

which is originally used to avoid data inconsistency because of system crash or power

failure by writing data into journal to keep track of changes made on system instead of

directly writing data to FS. Journals can also be used to give information such as deleted

files and previous versions of files for assisting in ER, but few DF tools take value of

journaling into consideration [4]. XFS is a default FS of operating system such as CentOS

and Red Hat Linux, and it is also found in high-end storage devices like network-attached

storage (NAS) and storage area network (SAN) systems [5]. Related studies about XFS

FS are insufficient, and official documentation is incomplete, which makes investigation

difficult to conduct [6]. Even though there are few DF tools support XFS FS, but most of

them are proprietary [7], which makes investigation on XFS system like using a “black

box study” without considering how the conclusions were reached.

1.1 Research objective

Few forensics tools on the market supports XFS FS, and little of them are open source

tools, which makes it difficult for investigators to interpret evidence due to lack of

13

knowledge of its internal structure, and also limit investigators to rely on current

proprietary solutions. Besides, related studies about XFS FS forensics are limited, and the

official documentation is incomplete even though XFS can be found on popular OS, such

as CentOS and Red Hat Linux, and high-end storage devices like NAS and SAN, which

also brings obstacle to investigations. Journal was proven to be forensically valuable to

realized events occurred on system, but few of tools had applied it. Therefore, the

structure of XFS FS, especially journal feature, were analysed in the paper to understand

what useful information could be retrieved from journal, and the method was proposed to

present an overview of all events happened on system during a period of time for reaching

target of evidence examination, which reviews and identifies all properties of objects, and

is also a first step in event reconstruction process.

1.2 Scope & Novelty

As mentioned above, the objective of the paper is mainly focused on evidence

examination in event reconstruction process, which is an important first step to list and

identify characteristics of entire objects occurred on system in a period of time. To

achieve the objective, the journal of XFS FS was chosen as the primary scope to verify

the assumption that that it is possible for DF investigators to realize events occurred on

systems through journal.

The internal structure of journal on XFS FS has not yet been researched in detail, which

is short of academic papers to introduce operation principles behind it, and the official

documentation had already stopped updating. The novelty of the paper is to analyse the

journal of XFS FS, and propose a method that how journal can be applied in XFS system

forensics. Besides, result of this paper was used to compare with current proprietary and

open source tools to comprehend advantages and disadvantages by using retrieved

information from journal.

The rest of this paper is organized as follows. Related work is presented in Section 2 to

review and learn from previous research work. The overview of XFS FS is introduced in

Section 3, and journaling feature of XFS FS is described in Section 4. In Section 5,

analysing of journal is performed to realize how journaling can help in ER, and

experiment procedure is in Section 6 to verify the logic from Section 5 is feasible. In the

end, summary and future work is presented in Section 7.

14

2 Related work

Event reconstruction

To get better understanding of digital investigation, important definitions, such as digital

data, and digital object, were introduced to help comprehend fundamental terminology of

investigation. Digital object is composed of digital data, and digital data can be presented

in physical or numerical form. Characteristics of digital object have states to identify their

values. When there is change of state in digital object, digital event is occurred, and digital

incident is recognized if law violation is involved in digital event. An event-based DF

framework, which was improved from process model using in physical crime scenes, was

proposed by Carrier and Spafford. The model is divided into five phases, and event

reconstruction is critical in both phases of physical and digital crime scene investigation

to reconstruct physical and digital events for answering questions about incident [8].

Carrier and Spafford mentioned that the objective of digital investigation was to find a

person who should be responsible of incident. For reaching the objective, event

reconstruction plays an important role. Event reconstruction is the process to realize cause

and effect of objects by examining characteristics of object, such as creation time and

location of objects, and reconstructing timeline of events that lead to incident to test the

hypothesis. Moreover, evidence examination is the first step in event reconstruction to

record properties of evidence by inspecting all associated information of objects and

distinguishing characteristics they have [3]. Large volume of data in investigation due to

increase of storage capacity, resulted in one of challenges in event reconstruction. With

overwhelming amount of data, investigators had trouble conducting analysis with limited

amount of time and resource as stated by Chabot, Aurélie, Christophe, and Tahar. About

event reconstruction tools, data source can be used as one of ways to categorize event

reconstruction methods. Single source event reconstruction tool, like timestamp in FS,

cannot present whole picture of events happened on system. Therefore, multi-source

approach is recommended to provide complete information by collecting data from

sources, such as logs files, FS, and OS information, but it is also complicated to analyse

data from distinct sources [9]. Jeyaraman and Atallah classified event reconstruction tools

as tools using ex post evidence and ex ante logging according to usage time of tool. Hard

15

disk image is the main source of ex post evidence, and tools like The Sleuth Kit examines

retrieved data after occurrence of incident. In comparison, host-based logging, such as

Windows Event Viewer, which starts recording log events before happening of incident,

is an example of ex ante logging tool, and it provides more information as reference [10].

Desired information

Questions related to who, what, when, how, where and why should be taken into

consideration by investigators, but only few of them could be responded by information

collected on today’s systems because OSs and FSs were designed without thinking DF in

mind, or because storage space was limited as noted by Buchholz, and Spafford.

Preferable information, just as file creation time and user id of the process performing file

creation, access, or modification, were also discussed, but how to retrieve and collect

them acts differently depending on characteristic of each system [11]. Lillis, Becker,

Sullivan, and Scanlon mentioned the significance of timeline reconstruction for assisting

in investigation, but it could encounter problems, such as retrieving temporary

information from unstructured text, and collecting time data with inconsistent format

from different sources [12]. Fourteen types of timestamp changing rule were categorized

by Jang, Hwang, and Kim to understand actions leading to change of timestamp on system.

For instance, creation, copy, and copy from different file system, can alter the value of

timestamp, which is useful information to help identify factors influencing change of

timestamp under different conditions for assisting in investigation [13].

Filesystem journal

Journaling filesystem was originally designed to prevent from time-consuming

consistency checks on filesystem through reviewing journal to see recent disk write

operations for decreasing required time to remount the system. FSs, such as XFS, only

recorded limited amount of operations which influence metadata, but it was enough to get

the system back to consistent state by log records. Nevertheless, file content was still

possible to get corrupted because operations on blocks of file data were not logged as said

by Bovet and Cesati [14]. Carrier remarked that file system journals had not been applied

to most forensics tools yet even though it was valuable to investigations. FS events

happened lately can be observed by journal, which can help with event reconstruction of

incident [15]. Precious evidence in association with network intrusions, financial fraud,

16

software piracy, and child pornography could be retrieved from file system journals. Also,

the next generation of computer forensics tools should take file system journal into

consideration as said by Choo [16]. Swenson, Philhps, and Shenoi also discussed that

deleted files and previous version of files could be observed through analysing journal

feature of journaling FSs, and only few digital forensics tools considered journaling

during recovery process. Reiser and ext3 journaling analysis were conducted to verify the

argument, and research on other FSs, such as NTFS of Windows and HFSJ of Mac OS X,

could be executed as future work [4].

XFS filesystem

“A single XFS file system can be 18,000 petabytes and a single file can be 9,000

petabytes”. XFS also provides marvellous input and output execution, which makes it a

suitable candidate as a large FS. Besides, many of techniques used in JFS, such as extent-

based addressing structures and dynamic inode allocation, could also be discovered in

XFS as mentioned by Best [17]. Lu and Arpaci-Dusseau discussed the complexity of FSs,

and it kept getting more and more complicated. XFS had around 64K line of codes, which

increased difficulty for understanding its internal structure [18]. XFS data loss bug was

mentioned by Yang, Twohey, Engler, and Musuvathi that crash during the creation of

“lost+found” could lead to corruption in root directory even on a clean file system, which

could destroy the whole file system [19]. Park, Chang, and Shon gave an overview about

analysing the XFS FS based on understanding its internal structure, and they

demonstrated a method to recover the deleted files. Journaling was applied as a part of

elements to retrieve metadata of deleted files, but it was conducted through reverse

engineering without describing the underlying operations and layout of journal because

of incomplete official documentation, which limited the possible functionality of

journaling in XFS forensics [6]. About journaling mode, three kinds of journaling modes

were introduced by Prabhakaran and Arpaci-Dusseau, and they were writeback mode,

ordered mode, and data journaling mode. Only FS metadata is written into journal and

there is no ordering between journal and data writes in writeback mode. In contrast, data

blocks written to fixed location are ordered prior to filesystem metadata in journal in

ordered mode, which provides guarantee for both data and metadata to restore from

inconsistent state after recovery. In data journaling mode, both data and metadata are

written into journal before they are written to their locations, which gives the same

consistency as ordered mode but with distinct performance [20]. Tamma and

17

Venugopalan verified that XFS adopted ordered journaling mode by conducting

experiment to postpone the data blocks in the SBA driver, and examined the

corresponding metadata writes were postponed by the same time [21]. XFS applied write

barrier to assure the recovery, but write ordering could influence performance, which was

a trade-off between performance and reliability as stated by Konishi, Amagai, Sato,

Hifumi, Kihara, and Moriai [22]. Kieseberg, Schrittwieser, Mulazzani, Huber, and

Weippl analysed the internal structure of B+ tree, which was one of data structures used

in XFS system to store data. Owing to the characteristics of B+ tree, it can disturb

malicious personnel to modify the records, which can prevent data from manipulation

[23]. Signatures of B+ trees, proposed by Kieseberg, Schrittwieser, Morgan, Mulazzani,

Huber, and Weippl, could be used in index reorganizations to help reconstruct old version

of files [24]. Majore, Lee, and Shon mentioned the large filesystem and efficient

parallelism support of XFS FS, which makes XFS FS be used commercially and

scientifically. Two files explore and recovery tools, UFS explorer and PhotoRec, were

compared briefly to know their recovery capability toward XFS FS. The disadvantages

of dependence on few supporting tools were indicated to strengthen the reason to develop

new tool for XFS FS [25].

18

3 Overview of XFS filesystem

XFS is a journaling FS which was originally created by Silicon Graphics for IRIX OS,

and it was ported to Linux kernel and supported on most Linux distributions [26]. This

section describes the overview of XFS FS, especially features which are used together

with the journaling feature in Section 4 for understand how journaling can be used as a

support in ER in Section 5.

3.1 Allocation groups

XFS FS is partitioned into allocation groups. Each AG has the same size, and can be

thought of as an individual FS with its own superblock, free space management, and inode

allocation and tracking [6]. Because of characteristic that every AG manages its own

space, processing multiple operations simultaneously in XFS is feasible. Multiple

operations are executed in AGs in FS, but only one operation can be written in each AG

at the same time [25]. Other FSs just as EXT use block group, which is similar to the

concept of AG. File objects in XFS FS can be allocated across AGs, and those can be

reached by using AG relative pointer. The layout of AG is shown in Figure 1.

Figure 1. Layout of allocation group [6]

19

3.2 Superblock

Superblock with one sector size in length contains fields to describe general information

of whole FS, and it is stored in big-endian order, which is used for most of XFS fields

except for log items which are in host byte order. Overall system information such as

block size, inode size, number of free inodes is documented in superblock. Primary

superblock located in AG 0 is read to mount FS successfully, and secondary superblocks

located at the opening of each AG are used as backups when primary superblock is

corrupted [27]. The structure of superblock is shown as in Figure 2, and description of

important fields is summarized in Table 1. The correspondence between highlighted area

in figures and fields in tables can be classified into two types, and they can be matched

orderly. If data is a fixed sized structure, the fields are interpreted by offsets from the

beginning. Otherwise, the fields are interpreted by length as shown later in Table 4 if the

data is variable size.

Offset (in hex) Variable name Description

0x00-03 (4 bytes) sb_magicnum Magic number “XFSB”.

0x04-07 (4) sb_blocksize Block size (in bytes), which is basic unit

of space allocation.

0x30-37 (8) sb_logstart First block number for the journaling log.

Figure 2. Structure of superblock

20

0x38-3F (8) sb_rootino Inode number of root directory.

0x54-57 (4) sb_agblocks AG size (in blocks).

0x64-65 (2) sb_versionnum Lower nibble is used to identify FS

version.

0x66-67 (2) sb_sectsize Sector size (in bytes).

0x68-69 (2) sb_inodesize Inode size (in bytes).

0x6A-6B (2) sb_inopblock Number of inodes per block.

0x7B (1) sb_inopblog Log 2 value of sb_inopblock.

0x7C (1) sb_agblklog Log 2 value of sb_agblocks.

0xC0 (1) sb_dirblklog Log 2 multiplier that determines the

granularity of directory block allocations

in fsblocks.

0xD8-DB (4) sb_features_incompat Read-write incompatible feature flags.

The kernel cannot read or write this FS if

it doesn’t understand the flag. The

defined value is shown in Figure 3.

Table 1. Structure of superblock [27]

3.3 Inode core

Index node (Inode) includes metadata of FS objects such as regular files and directories.

Each FS object is bind to one inode number. Files can have the same inode number when

hard links are created. Hard link is like an alias to the original file which points to the

same block location as the original file, which means deletion of original file will not

Figure 3. Value of Read-write incompatible feature flags [28]

21

affect access of data. In comparison, soft link has its own inode number, and it is like a

shortcut pointing to the original file without containing the content of data, so deletion of

the original file will make soft link inaccessible. Inode in XFS FS is composed of three

parts: inode core, data fork, and attribute fork [29]. Inode core contains overall

information of inode, and it occupies 176 bytes on a v5 FS. The structure of inode core is

shown as in Figure 4, and description of important fields is summarized in Table 2.

Offset (in hex) Variable

name

Description

0x00-01 (2 bytes) di_magic Magic number “IN”.

0x02-03 (2) di_mode The first four bits are used for type of file, and the

rest 12 bits are mode access bits.

0x04 (1) di_version Version of inode.

0x05 (1) di_format Format of data fork.

0x08-0B (4) di_uid Owner’s UID.

0x10-13 (4) di_nlink Number of links to the inode from directories.

0x30-33 (4) di_ctime Last changed time.

0x38-3F (8) di_size Regular file: file size (in bytes); Directory: space

taken by directory entries; Link: length of symlink

Figure 4. Structure of inode core

22

0x40-47 (8) di_nblocks Number of blocks used to store the inode’s data

fork.

0x4C-4F (4) di_nextents Number of data extents associated with this inode.

0x50-51 (2) di_anextents Number of extended attribute extents associated

with this inode.

0x52 (1) di_forkoff Offset to inode’s extended attribute fork.

0x53 (1) di_aformat Format of the attribute fork.

0x90-93 (4) di_crtime Creation time.

0x98-9F (8) di_ino Inode number.

Table 2. Structure of inode core [27]

3.4 Data fork

Data fork is determined by both format of data fork and type of file listed in inode core,

and it starts after inode core at offset 176 (0xb0) in a v3 inode. In Figure 5, stat.h header

file, which can be found on POSIX and Unix-like systems, contains definition of

constants describing types of file. Type of file includes categories just as regular files,

directories, symbolic links, and other file types. For example, S_IFREG represents

regular file, and S_IFDIR represents directory. The calculation of filetype is determined

by file bitwise AND with S_IFMT. Format of data fork specifies how the data is stored

in FS and is defined in kernel file as shown in Figure 6. XFS_DINODE_FMT_LOCAL

means all data is stored within inode. XFS_DINODE_FMT_EXTENTS expects that

additional extent list is used to point to the location where the data is stored.

XFS_DINODE_FMT_BTREE anticipates that root node of B+ tree is stored in data fork,

and it points to other nodes or leaves of B+ tree [27]. In this paper, directories will be

focused because FS objects are listed as directory entries on the FS. All three type of data

fork format mentioned above can be seen in directory. For example, as shown in Figure

7, value of byte offset 0x02’s left nibble equals to 4 in decimal, and value of byte offset

0x05 equals to 1 in decimal. By interpreting the values, this inode is a directory and its

data is stored locally within inode.

23

Figure 5. Definition of type of file [30]

Figure 6. Definition of data fork format [28]

Figure 7. A directory file with data stored within an inode

3.5 Directories

Directory is composed of directory entries, and can be differentiated by the value of file

mode specified in inode core. Each directory entry contains name of file and inode

number, which can be used to match with information documented in inode core to

24

understand the status change of file for journal analysis in later section. The size of a

directory block is calculated by sb_blocksize × 2sb_dirblklog, which is different from FS

block size. Directory is categorized into the following types: short form directory, block

directory, leaf directory, node directory, and B+ tree directory [27].

Short form directory

Short form directory is used when amount of directory entries is able to store within inode.

Short form directory begins with a header to record number of directory entries and parent

inode, and it is followed by an array of variable-length directory entries. Each directory

entry contains fields like file name, inode number, parent and so on [31]. To improve

performance without checking file type from inode every time, file type is cached in

directory entry but only if XFS_SB_FEAT_INCOMPAT_FTYPE is set in superblock.

Amount of directory entries saved within inode is uncertain, and it depends on factors just

as length of file name, inode size, and extended attribute fork [27]. For instance, as shown

in Figure 8 and Table 3, there are two directory entries under this short form directory, so

each directory entry can be found immediately after the header. Taking first directory

entry created for testing as an example, it is called “1qaz”, which is a regular file with

inode number 67 in decimal as shown in Figure 9 and Table 4.

Offset (in hex) Variable name Description

0x00 (1 byte) count Number of directory entries.

Figure 8 Header of short form directory

25

0x01 (1) i8count Number of directory entries requiring 64-bit

entries.

0x02-05 (4) parent Inode number of parent directory.

Table 3. Header of short form directory [27]

Length (in bytes) Variable name Description

1 namelen Length of name (in bytes)

2 offset Offset tag used to assist with directory iteration.

varies, depending

on namelen

name Name of directory entry

1 byte ftype File type of inode, the value of file type is defined

in source code as shown in Figure 10.

4 or 8 bits,

depending on

count and i8count

in header

inumber Inode number

Table 4. Layout of directory entry [27]

Figure 9. Layout of directory entry

26

Block directory

Block directory is used when amount of directory entries exceeds free space in inode.

Extent map is stored in data fork area within inode core, and block of directory entries is

pointed to by the offset specified in extent map [6]. For example, as shown in Figure 11,

directory with extent inside inode can be recognized by checking left nibble of byte offset

0x02 (4: directory) and 0x05 (2: extent list) in inode core, and there is one extent record

following inode core by checking byte offset 0x4C-4F. The fields of extent record are not

byte aligned but presented in bits, so the conversion between hexadecimal and binary is

necessary. The introduction of extent and address conversion are presented in later

sections. Taking the extent record as an example, the location of extent record can be

reached by converting absolute block number into block address, and it is offset 65536

bytes in this case.

Figure 10. Value of file type [32]

Figure 11. Block directory with extent

27

As seen from the layout of block directory in Figure 12, block directory begins with a

header to describe general information, and it is followed by free space array to track

unused space. Next, directory entries are listed to provide information such as inode

number and name, which can be used for analysis later. Unused entries are free space

documented in free space array, which can be used when new directory entries added.

Leaf entry stores hash value of directory entry’s name for fast directory entry lookup,

and tail record documents amount of leaf and free leaf entries [1].

Continuing with the sample case, block directory is reached by moving 65536 bytes

from the beginning of FS, and it can be assured by magic number at the first four bytes.

Different from short form directory seen in last section, “.” and “..” are always the first

two directory entries, which are used to present current directory and parent directory

[27]. The third directory entry is a regular file called “test01” with inode number 67,

which was created for testing. The structure of header and directory entry are shown in

Figure 13 and Table 5 and 6.

Offset (in hex) Variable name Description

0x00-03 (4 bytes) magic Magic number “XDB3”.

0x28-2F (8) owner Inode number that this block belongs to.

Table 5 Structure of block directory’s header [27]

Figure 12. Overview layout of block directory

Figure 13. Structure of block directory

28

Length (in bytes) Variable name Description

8 inumber Inode number that this entry points to.

1 namelen Length of name (bytes).

namelen name Name of this entry.

1 ftype File type of the inode. The defined value is the

same as short form directory shown in Figure 10.

varies padding Padding for 64 bits alignment

2 tag Offset from the start of block (in bytes).

Table 6. Structure of directory entry [27]

Leaf directory

Leaf directory is used when directory entries occupy more than one extent. Extent list is

adopted to point to block of directory entries, and leaf has its own separate extent instead

of storing all together within the same extent as the block directory does. Leaf extent is

the last extent in extent list, and logical block offset of leaf extent is calculated by

XFS_DIR2_LEAF_OFFSET (32 GB) / sb_blocksize [27]. As displayed in Figure 14, leaf

directory can also be identified by using the same method as described in block directory

section, and it has two data extents and leaf extent in this sample case. From the overview

layout of leaf directory shown in Figure 15, leaf entries and tail record are moved to its

own leaf extent with additional header and free space array to track unused entries in each

extent, which makes it have more space to save directory entries.

29

In the sample case as shown in Figure 16 and 17, both data extents can be reached by

using the same address conversion as mentioned in later section. Leaf directory can be

identifed by its magic number at first four bytes, and it also begins with two directory

entries to indicate current and parent directory in its first data extent. The structure of leaf

directory’s header and directory entry are the same as block directory except that magic

number “XDD3” is used in leaf directory.

Figure 14. Leaf directory with 2 data extents and leaf extent

Figure 15. Overview layout of leaf directory

30

Node directory

Node directory is similar to leaf directory, but additional node extent is added to track

location of leaf entries, and free space array is moved to its own extent. Node directory is

used when there are multiple leaf extents, which means there are more directory entries

to be recorded than leaf directory [27]. As displayed in Figure 18, node directory can also

be identified by using the same method as shown in block directory section, and it has ten

data extents, node extent, five leaf extents, and freeindex extent in this sample case. The

overview layout of node directory is displayed in Figure 19.

Figure 16. Structure of leaf directory’s 1st data extent

Figure 17. Structure of leaf directory’s 2nd data extent

31

In the sample case, data extents can be reached by using the same address conversion as

mention in later section. The structure of leaf directory’s header and directory entry are

the same as leaf directory.

Figure 18. Node directory with 17 extents

Figure 19. Overview layout of node directory

Figure 20. Structure of node directory’s data extent

32

B+ tree directory

B+ tree directory is used when extent maps exceed space available in inode. B+ tree extent

list is adopted to store block of directory entries. Root node of B+ tree is stored in data

fork area of inode with information like offset and block number for locating B+ tree’s

leaf and node, and its layout is displayed in Figure 21. Directory entries are stored in data

extent pointed by leaf of B+ tree, and leaf of B+ tree can be directly reached if B+ tree is

only one level, or indirectly reached with node extent involved if B+ tree is multilevel

[27]. There are also four types of extents in B+ tree directory as described in node

directory. For example, as shown in Figure 22, B+ tree directory can be recognized by

checking left nibble of byte offset 0x02 (4: directory) and 0x05 (3: B+ tree root). Root

node of B+ tree begins with information to describe this B+ tree, and it is the one level

B+ tree with three leaves in the sample case. After general information of information, it

continues with an array of offset and block number, which can help reach location of each

leaf in B+ tree.

Figure 21. Layout of B+ tree’s root node

Figure 22. One level B+ tree with 3 leaves

33

Taking first leaf as an example, by moving 1355776 bytes from the beginning of FS, the

first leaf of B+ tree is reached by checking magic number in its header. The structure of

its header is shown in Figure 23 and Table 7. Directory entries can be further discovered

by analysing data extents in leaf of B+ tree, and the layout of data extent is the same as

the one discussed in previous section.

Offset (in hex) Variable name Description

0x00-03 (4 bytes) bb_magic Magic number “BMA3”.

0x04-05 (2) bb_level Level of the tree in which this block is found.

0x06-07 (2) bb_numrecs Number of records in this block.

0x08-0F (8) bb_leftsib FS block number of the left sibling of this B+tree

node.

0x10-17 (8) bb_rightsib FS block number of the left sibling of this B+tree

node.

0x38-3F (8) bb_owner AG number that this B+tree block belongs to.

Table 7. Structure of header of B+ tree’s leaf [27]

3.6 Extent

Extent is a region of continuous blocks used to store data of file as close as possible to

reduce the possibility of fragmentation for improving FS performance, and more than one

extent can be allocated to a file. Extent list maps the offset to the corresponding extent,

Figure 23. Structure of B+ tree’s leaf

34

which makes existence of sparse file feasible [33]. The structure of extent is shown in

Figure 24, and value is presented in bits, not byte aligned.

Two types of extent lists exist in XFS FS, which are extent list within inode data fork,

and B+ tree extent list. Extent list within inode data fork is adopted when there is free

space to store whole extent list in data fork of inode, and it can have up to 21 extent maps

assuming there is no extended attribute fork. B+ tree extent list is used when there are too

many extent maps to fit inside inode. Only root node of B+ tree is stored in data fork of

inode, and it stores offset and block number to point directly to leaves or through other

nodes in between depending on levels of B+ tree [27].

Figure 24. The structure of extend record

35

4 Journaling of XFS

Power failure and system crash between write to FS can make data inconsistent, and

traditional FSs take time to check entire FS when mounting FS at the next boot [34].

Journaling is a FS feature used to store changed operations which have not been

committed to FS, and XFS is one of the journaling FSs. By using the journal, FS only

read and execute uncommitted operations in the journal to recover to consistent status

instead of spending time checking whole FS [35]. Owing to the characteristic of journal,

analysing journal can also be used to help identify operations occurred on the system,

which can assist in understanding previous versions of files and deleted files. Official

documentation of XFS data structure stopped updating since 2006, leaving journaling part

empty without finishing, which could make it difficult to realize the logic behind

journaling. Due to the contribution of XFS development community, many parts of data

structure including journaling were introduced to the public, which gives an opportunity

to save time focusing on analysis instead of starting to do research from the scratch. XFS

journal is composed of log records, and each log record contains part or entire transaction.

Transaction is made up of log operations, and it starts with an operation to begin a new

transaction and ends with commitment. Each transaction is stored in circular queue and

is hold in the cache until oldest item is overwritten, so it is possible to contain copy of the

most recent data to aid in ER [1].

4.1 Log records

From the information recorded in superblock, the first block of journal can be reached.

Log record begins with a 512 bytes header to document general information of this log

record, and it starts with a magic number “0xfeedbabe” to help make sure at the start

location of this log record. Log sequence number corresponds to the given location in

journaling log, and it is split into two parts. The first four bytes describe cycle number,

which increases as circular queue is full, and the rest four bytes describe block number,

which is block offset from the beginning of journaling log and it is set when commitment

is done [27]. The layout of log record header is shown in Figure 25 and Table 8.

36

Offset (in hex) Variable name Description

0x00-04 (4 bytes) h_magicno Magic number “0xfeedbabe”.

0x08-0B (4) h_version Log record version.

0x0C-0F (4) h_len Length of log record (in bytes).

0x10-17 (8) h_lsn Log sequence number.

0x28-2B (4) h_num_logops Number of log operations.

Table 8. The layout of log record header [27]

4.2 Log operations

After the log record header, a series of log operations are used to represent part or entire

transaction. XFS applies a mechanism of write ahead transaction log, and it can

asynchronously write logs into system, which can bundle many log operations into one

log write [1]. Each log operation can be divided into header and data. For example, as

shown in Figure 26 and Table 9, the first one in transaction always starts with an operation

to start a new transaction, which can be identified by originator XFS_TRANSACTION

(0x69) and flag XLOG_START_TRANS (0x01) of this operation [27]. The originator

and flag’s value of the log operation are defined in source code as depicted in Figure 27

and 28.

Figure 25. The layout of log record header

Figure 26. The structure of log operation header

37

Length (in bytes) Variable name Description

4 oh_tid Transaction ID.

4 oh_len Number of bytes in log item.

1 oh_clientid Originator of this operation.

1 oh_flags Flag of this operation

2 oh_res2 Padding

Table 9. The structure of log operation header [27]

Figure 27. Value of log operation’s originator [36]

Figure 28. Value of log operation’s flag [36]

4.3 Log items

Each log operation can be divided into header and data. Data stored in log operation

includes categories such as log item or element of AG like superblock. As shown in

Figure 29, each log item can be distinguished by its own magic number, and it is stored

in host byte order, depending on machine’s processor to determine how data is presented,

which is different from the big-endian order which is typically used in XFS [27].

38

Transaction header is always used as a first data payload to start a transaction, and it can

be followed by number of other log items or elements of AG. As shown in Figure 30 and

Table 10, the data is presented in little-endian order because of testing machine’s

processor, so the order of bytes needs to be read from right to left.

Length (in bytes) Variable name Description

4 th_magic Magic number “TRAN”.

4 th_tid Transaction ID.

4 th_num_items Number of operations appearing after this

operation, not including the commit operation.

Table 10. The structure of transaction header [27]

To understand how metadata of FS object is changed to achieve the goal of aiding in ER,

inode update log item and inode afterward are taken into consideration. Inode update log

item documents metadata change to inode, and updated inode is stored immediately right

Figure 29. Magic number of log items [36]

Figure 30. The structure of transaction header

39

after it in the next log operation [27]. By analysing the updated inode in journal, it is

possible to have a general overview of what occurred on the FS related to FS objects

during the period time based on current data saved in circular journaling log. For example,

as shown in Figure 31 and Table 11, inode update begins with a magic number, and it is

presented in host byte order, which is little endian order on testing machine. From the

data of inode update, there are two log operations following this inode update, and inode

core and data fork’s local data are updated. The inode being updated is the one with inode

number 64. Therefore, inode core and data fork after inode update can be used to

understand information of inode at the moment. For instance, inode number 64 is a short

form directory with one regular file called “1qaz” under it.

Length (in bytes) Variable name Description

2 ilf_type Magic number “0x123b”.

2 ilf_size Number of operations involved in this update,

including this format operation.

4 ilf_fields Specifies which parts of the inode are being

updated. This can be certain combinations of the

values shown in Figure 32.

Figure 31. Inode update and Inode core

40

2 ilf_asize Size of the attribute fork (in bytes).

2 ilf_dsize Size of the data fork (in bytes).

8 ilf_ino Absolute node number.

Table 11. Structure of inode update [27]

Figure 32. Values to specify which parts of the inode are being updated [36]

41

5 Journal analysis for event reconstruction

5.1 Analysis procedure

Based on the features of XFS introduced above, the analysis procedure is designed to

understand what happened on the system [6]. To begin with, superblock analysis is

conducted to get the overall information of FS and first block of journal for reaching the

start of journaling log. Second, by moving to the beginning of journaling log, journal

analysis is executed to traverse transactions to find inode update information and inode

followed by for realizing change of inode in different period of time. Filename is

documented under directory entry, and FS is designed in hierarchical structure, starting

from root directory [37]. By using the inode number of root directory getting from

superblock, directory entries analysis is conducted by traversing all files under directory

files. Finally, by comparing the information stored in directory entries with information

stored in inode core of journal, timeline of FS change with metadata can be summarized

to help understand status of files in the period of time for assisting in ER. The flow of

analysis procedure can be seen graphically as displayed in Figure 33. In the following

steps of procedure, the sample case of analysis is also conducted to help interpret the

procedure.

5.2 Steps of procedure

Superblock analysis

Every AG begins with superblock, and the primary superblock is stored at AG 0 with one

sector in length. First of all, value of sector size is read from primary superblock. With

value of sector size, entire length of superblock can be determined and read to get the

Figure 33. Steps of procedure

42

entire superblock. As show in Figure 34, The sector size of sample case image is 0x0200,

which is 512 bytes in decimal.

Second, to move to the beginning location of journal, first block of journal in superblock

is read. There are two types of addressing schemes in XFS FS: absolute and relative

address. Absolute address includes both AG number and offset from the start of that AG,

and it is 64-bit address which is used in superblocks and directory entries. In contrast,

relative address contains only offset from the start of AG [38]. Owing to the

characteristics of addressing scheme in XFS, address conversion is necessary to reach to

the exact location of journal. Log 2 value of AG, which is number of bits for the relative

block offset, can be used to help convert block number into absolute block address. AG

number is number of bits above relative block offset. The byte address of journal’s first

block is calculated by using the following equation, and can be reached by moving result

value of bytes from the beginning of FS. Value of AG size and block size can also be

retrieved from superblock.

(AG no. * AG size + relative block offset) * block size

In the sample case as shown in Figure 35, the first block of journal is

0x0000000000020004, which is 00100000000000000100 in binary. Log 2 value of AG

is 0x10, which is 16 in decimal, meaning the last 16 bits of journal’s block number

represent relative block offset, and the remaing bits above is used to represent AG

number. For this reason, AG number is 2 and the relative offset is 4, so the abosulte block

address of journal’s first block is (2 * 64000 + 4) * 4096 = 524304384 bytes. After

moving the value of byte offset from the start of FS, journaling log is reached by spotting

magic number “0xfeedbabe” at first four bytes as shown in Figure 36.

Figure 34. Determine size of superblock by checking sector size

43

Journal analysis

Journal is consisted of sequence of log records. Each log record begins with a 512 bytes

header, and the first four bytes of header are presented as 0xfeedbabe in hexadecimal

format, which is a magic number of log record. Magic number, just like file signature, is

used to identify format of file, and it is largely used in file carving in DF. When traversing

through log records, the first four bytes are compared with magical number to assure it is

located at the header of log record. Next, from the start of header, value of bytes occupied

by log operations and data region is read, and this value can be used to check there are

still any following log records or not if the length of log record is greater than zero while

going over log records. In the sample case, the magic number “0xfeedbabe” is stored in

the first four bytes, and the following log operations and data region occupy 1536 bytes

as displayed in Figure 37.

After getting the value of bytes occupied by log operations and data, the pointer can be

moved 512 bytes behind from the start of log record to check log operations in the log

record. Each log operation starts with an operation header, and the first four bytes of data

are used for storing transaction ID. The first log operation is used to start a transaction,

and the last one is used to commit a transaction. Existence of transaction ID is reviewed

Figure 35. First block of journal

Figure 36. Byte offset of journal’s first block

Figure 37. Log record header

44

together with first and last log operation to know the scope of log operations in the log

record. From each log operation header, number of bytes in data region, originator of the

operation, and log operation flag can be retrieved. Based on the values gotten above,

operation type, such as start of transaction, commitment of transaction, and any log items

or data can be identified and handled separately. As shown in Figure 38, the first log

operation with transaction ID set to 0x00000001, originator set to XFS_TRANSACTION

(0x69) and flag set to XLOG_START_TRANS (0x01) indicates a beginning of new

transaction, and it is always followed by the transaction header as payload to start a new

transaction, which can be detected by its magic number (0x5452414E). After a series of

log operations, the transaction is finished by commitment with log operation’s flag set to

XLOG_COMMIT_TRANS (0x02), and padding the remaining space with zero.

Log items followed by log operation header come with different types. As mentioned in

previous section, inode update and the inode afterward are focused in this analysis. Inode

updates are used to record change to different parts of inode. Update to inode can be done

granularly in prevention of resource competency caused by simultaneous updates [1].

Inode update has magic number of 0x123b, and it is also presented in host-endian order.

Inode updates records information related to inode being changed, such as parts of the

inode being updated and absolute inode number. The inode is recorded right after inode

update, which can be used for directory entries analysis later. In the sample case as

displayed in Figure 39, data related to inode change is saved in log operations after inode

update. Inode core can be recognized by magic number (0x494E), and this inode is a

Figure 38. Log operations

45

directory whose data fork is stored within inode. From the next log operation, the data

fork of inode is stored to tell us how many directory entries under this directory, and there

is one regular file called “1qaz” under this directory.

Directory entries analysis

For understanding change of FS objects on system to help prioritize the order of DF

investigation, a technique is proposed. The visual display of the proposed technique is

shown in Figure 40, and the process is introduced as follows. First, journaling log is

traversed to find all inode update and change to inode. All inode core items in the

journaling log are stored in a separate list with some information such as inode number

and file type. At the same time, if inode is a directory file, the data fork of inode is stored

in another list. Next, from the list of directory inode’s data fork, directories are iterated to

compare with list of inode core items. Only inode core items whose file creation time is

smaller or equal to directory last changed time are filtered out to compare in each round.

Directory entries under the directory are traversed to match with inode core item by

comparing condition such as inode number, file type, and time. After comparison, action

executed on FS object can be determined just like creation, modification, or deletion. By

combing matched information from inode core item and directory entry, table of FS

objects can be created to achieve of goal of assisting in ER. Additional operations are also

necessary for handling different situations such as renaming of FS object, which changes

Figure 39. Inode update & Change to Inode

46

the name of directory entry but also has the same inode number, and it is similar to

behaviour of hard link.

Figure 40. Proposed analysis technique

47

6 Experiment procedure, limitation, and comparison

6.1 Environment setting

Physical / Virtual machine Virtual machine

Operation system CentOS 7 64-bits

(Host machine: Windows 10)

Kernel version 3.10.0-1062

Table 12. Environment setting

6.2 Steps of experiment procedure

(1) Creating a 1 GB file with null characters inserted

(2) Formatting the newly created file as XFS FS with default options. The value of default

setting is show in Figure 41.

(3) Creating a loop device with the newly created file

(4) Making a new directory to be used as a mount point of XFS FS

(5) Mounting the XFS FS on the newly created directory

(6) Creating, Modifying, Deleting FS objects on XFS FS by shell script

(7) Creating a bit-by-bit copy image of XFS FS

(8) Copying the image file to host machine

(9) Analysing with the self-written Python script (Source code in Appendix 1)

Figure 41. Value of default XFS settings

48

6.3 Test case

After mounting the XFS FS, the self-written shell script was executed. The content of

shell script is shown in Appendix 2. In this shell script, FS objects test01 to test07 and

dir01 to dir03 were created sequentially as the layout shown in Figure 42. Second,

directory test02 was renamed to test02n, and character special device test03 under

renamed directory test02n was deleted. Next, directory dir02 was renamed to dir02n, and

FIFO test05 under this directory was deleted.

6.4 Test objectives

As mentioned in previous section, evidence examination is the first step in event

reconstruction process by inspecting all associated information of objects and

distinguishing characteristics they have. For achieving the goal to assist in event

reconstruction, the following test objectives were designed:

(1) Creation of different FS objects, ranging from regular file to symbolic link.

(2) Testing FS objects under different locations, such as root directory and multi-layer

directories.

(3) Update of parent location’s name after renaming directory.

(4) Deletion of different FS objects.

Figure 42. Layout of test case

49

6.5 Test result

(1) Creation of different FS objects, ranging from regular file to symbolic link

As shown in Figure 43, all types of FS objects created from test case were successfully

identified by checking the column Filetype from the output result. For example, dir01 is

a directory, and test01 is a regular file, which were as expected as presented in the test

case. By recognizing type of FS objects, classification of files can be conducted to

investigate by groups.

(2) Testing FS objects under different locations, such as root directory and multi-layer

directories.

FS system objects were intentionally created under different directories. For example,

socket file test06 was created under root directory, and regular file test01 was created

under directory dir01, which is one layer under root directory. Under directory test02,

which is two layers under root directory, character special device file test03 was created.

From FileLocation field of the output result in Figure 43, all FS objects located under

different directories were successfully identified, which assured that files under different

locations could be searched.

(3) Update of parent location’s name after renaming directory.

Renaming of file is frequently used as a method to evade investigation. In the test case,

dir02 and test02 were renamed for checking update status of parent location. As seen in

Figure 43, by checking fields of Filename and Action, dir02 was modified to dir02n, and

test02 was modified to test02n.

(4) Deletion of different FS objects.

Understanding deleted files is important topic in data recovery. In the test case, test03 and

test05 were deleted. From the Action field of output result, the deletion of file was

successfully identified. Also, because these two files were deleted after directory

renaming, the FileLocation of both files were also updated to new directory names.

However, there is some observation deserved for further investigation. First, after

renaming directory, there were no log items in journaling log to update all FS objects

under this directory, but new directory was given only until actions happened such as data

50

deletion in this case. Besides, the journaling log was not shown or inode number was

modified to zero when deletion of FS objects like socket and symbolic link happened,

which made it difficult to differentiate the happening of events.

6.6 Limitation

XFS source code is evolving year after year because of active XFS development

community. Even though the general data structure of XFS hasn’t changed, there are still

some minor change comparing to information in documentation such as some defined

values were removed. Depending on kernel version used, it is possible to have difference

as what was documented in this paper. For example, transaction type of transaction header

in log items was originally defined with different type of values such

XFS_TRANS_CREATE for identifying usage of transaction, but most values were

removed with only XFS_TRANS_CHECKPOINT left as shown in Figure 44. Journaling

logs are stored in circular queue, so it can only show you change of FS objects during a

period of time based on journal size. Owing to characteristic of circular log, it is possible

to have some residual data of previous records left, and it can be spotted by checking

scope of transactions according to transaction ID. Journaling log is also possible to store

in separate physical storage, which can be identified by checking the value in superblock.

Python is a popular language used in DF because of simplicity of syntax and

comprehensive inbuilt modules, and that is also one of the reasons why the test script

written in Python, but the possibility of incorporation the script with open source tools is

Figure 43. Result of test case

51

relatively low now. For instance, Autopsy, one of the most famous open source DF tools

developed by Dr. Brian Carrier, provides chance to write custom modules using Python.

As mentioned in Open Source Digital Forensics Conference, there are three challenges

developing forensics application including input types, user interaction, and analytics,

and Autopsy takes care of the first two of them, allowing analytics module to be

developed [39]. However, supporting of XFS FS was not available in Autopsy when the

time paper was written, which made it difficult to contribute XFS related code to the open

source community. Besides, PhotoRec, which would be used as tool comparison in the

next section, supports XFS filesystem, but the source codes were written in C language,

and is mainly focused on data recovery by using data carving instead of journaling

technique proposed in this paper. The self-written Python script doesn’t take concision

and efficiency into consideration and it is developed for static analysis, which means

appropriate hardware or software write blocker should be used to avoid corruption of data

preservation. The source codes were only used to propose a method for getting an

overview of events on system for DF investigation assistance, which can provide people

interested in XFS forensics as an inspiration to further explore and develop related

functions or tools in XFS system forensics. Also, hard link is the FS object which has the

same inode number with the original file but with different name, and it is not defined in

FS as any of file types, so how to differentiate between hard link and renamed file from

journal can be analysed further.

Figure 44. Remove of transaction types [40]

52

6.7 Comparison with other forensics tools

As discussed in previous section, there are few tools supporting XFS FS, but most of tools

mentioned in studies are proprietary with only one open source tool Photorec [7][9]. In

this section, one proprietary tool, UFS explorer, and one open source tool, PhotoRec,

were used in comparison with the test result achieved in this paper.

(1) UFS explorer

UFS explorer was developed by SysDev Laboratories LLC in 2004 as a data access

solution for non-Windows FSs. From the company’s website, there are different kind of

tools provided for data recovery, such as UFS Explorer Standard Recovery and UFS

Explorer Professional Recovery. UFS Explorer Professional Recovery were used to test

the test case created above. After downloading and installing the software from the

website, the test case was loaded into the software for analysis. First, from the Storage

properties as seen in Figure 45, the software successfully identified the image belongs to

XFS FS, and information was the same as default settings set in creation of FS. Next,

when exploring the FS as shown in Figure 46, the structure was basically the same as the

test case, but filetype of test06 was shown unknown from the output, which was not able

to recognize its type as a socket file. The same situation could also be applied to test04

under directory dir02n. Filetype of block special device was unable to identify in the case.

In Figure 47, by executing option to scan for lost data, deleted files, just as test03 under

directory test02n and test05 under dir02, were not able to recover from the system. Also,

the existence of those deleted files could not be realized.

Figure 45. Storage properties of test case shown in UFS explorer

53

Figure 46. Unknown data type

Figure 47. Failure to recover deleted file

(2) PhotoRec

PhotoRec is a free and open-source software developed by Christophe GRENIER for data

recovery using data carving techniques. As shown in Figure 48, by adding the test image

into the software, XFS filesystem was also successfully identified as the UFS explorer

did but without system properties. Owing to the characteristic that the software was

mainly designed for data recovery, many file formats can be chosen to recover from the

system. The result was saved to the chosen folder after specifying destination folder and

clicking Search button, and there were four files recovered from the image as shown in

Figure 49. By checking the result files in the directory, the names of files were all

randomized without knowing the original filenames and other file properties as shown in

Figure 50.

54

Figure 48. XFS test case shown in PhotoRec

Figure 49. Files recovered from PhotoRec

Figure 50. Unrecognizable file names and properties

55

7 Summary

With limited amount of time and human resource, how to arrange time appropriately in

DF investigation becomes important. Inexpensive cost of storage acquirement makes

setting up a large system in a short time easy no matter through lease from cloud service

provider or personal owned server, which brings not only convenience to enterprises but

also more and more data to be analysed by DF specialists. Identifying events from FS can

help prioritize order of investigation for ER to understand cause and effect of events

during a period of time. Journaling is originally developed to prevent data inconsistency

caused by system crash, but it can also be applied to realize status change of FS objects

on system due to the characteristic that any change is first stored in journal before makes

a commitment to the system. CentOS and Red Hat Linux are used by many enterprises as

OS of server because of its high performance, which is owing to the design of XFS FS.

There are not enough studies about XFS, and official documentation is incomplete, which

makes knowledge to underlying structure of XFS insufficient. In this paper, an overview

layout of XFS was introduced to first understand how data is stored on system, and a

method to analyse XFS journal was proposed to help understand change of FS objects.

To prove the accuracy of the logic, experiment was also conducted. Even though

experiment was done with few directory entries involved, it can be expanded to research

on more directory entries by referencing the data structure and journal analysis above.

The concept of journaling analysis can be applied to other journaling FSs with similar

data structures to get an overview of events happened on system in future work. Besides,

further actions such as file carving and file recovering can be combined together to

resume file into previous versions of files based on the result gotten from journal analysis

for assisting in DF investigation.

56

References

[1] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and G. Peck,

“Scalability in the XFS File System”, USENIX Annual Technical Conference, 1996.

[2] X. Du, N. Le-Khac, and M. Scanlon, “Evaluation of Digital Forensic Process Models

with Respect to Digital Forensics as a Service”, arXiv.org, Cornell University, 2017.

[3] B. Carrier, and E. Spafford, “Defining Event Reconstruction of Digital Crime Scenes”,

J Forensic Sci, Vol. 49, No. 6, 2004.

[4] C. Swenson, R. Philhps, and S. Shenoi, “File System Journal Forensics”, Advances in

Digital Forensics III. DigitalForensics 2007. IFIP — The International Federation for

Information Processing, vol 242. Springer, New York, NY, 2007.

[5] R. Carbone, “Forensic analysis of SGI IRIX disk volume”, Defence Research and

Development Canada, 2016

[6] Y. Park, H. Chang, and T. Shon, “Data investigation based on XFS file system

metadata”, Multimed Tools Appl 75, 2015.

[7] K. Ghazinour, D. Vakharia, K. Kannaji, and R. Satyakumar, “A Study on Digital

Forensic Tools”, IEEE International Conference on Power, Control, Signals and

Instrumentation Engineering (ICPCSI), 2017.

[8] B. Carrier, EH. Spafford, “An event-based digital forensic investigation framework”,

Digital Forensic Research Conference, 2004.

[9] Y. Chabot, B. Aurélie, N. Christophe, K. Tahar, “Event Reconstruction: A state of the

art”, Handbook of Research on Digital Crime, Cyberspace Security, and Information

Assurance, 2015

[10] S. Jeyaraman, M. Atallah, “An empirical study of automatic event reconstruction

systems”, Digital Investigation, Volume 3, 2006.

57

[11] F. Buchholz, E. Spafford, “On the role of file system metadata in digital forensics”,

Digital Investigation, Volume 1, Issue 4, 2004

[12] D. Lillis, B. Becker, T. O'Sullivan, M. Scanlon, “Current challenges and future

research areas for digital forensic investigation”, arXiv.org, Cornell University, 2016.

[13] D. Jang, G. Hwang, and K. Kim, “Understanding anti-forensic techniques with

timestamp manipulation”, IEEE 17th International Conference on Information Reuse and

Integration, 2016.

[14] D. Bovet, and M. Cesati, “Understanding the Linux kernel”, O'Reilly Media, Inc.,

2006.

[15] B. Carrier, “File system forensic analysis”, Addison Wesley Professional, 2005.

[16] K. Choo, “Organised crime groups in cyberspace: a typology”, Trends Organ Crim

11, 2008.

[17] S. Best, “Journaling File Systems”, Linux Magazine, 2002.

[18] L. Lu, A. Arpaci-Dusseau, R. Arpaci-Dusseau, and S. Lu, “A Study of Linux File

System Evolution”, 11th USENIX Conference on File and Storage Technologies (FAST

’13), 2013.

[19] J Yang, P Twohey, D Engler, and M Musuvathi, “Using model checking to find

serious file system errors”, ACM Transactions on Computer Systems, 2006.

[20] V. Prabhakaran, A. Arpaci-Dusseau, and R. Arpaci-Dusseau, “Analysis and

Evolution of Journaling File Systems”, USENIX Annual, 2005.

[21] K. Tamma, and S. Venugopalan, “Failure Analysis of SGI XFS File System”,

Computer Sciences Department, University of Wisconsin, 2014.

[22] R. Konishi, Y. Amagai, K. Sato, H. Hifumi, S. Kihara, and S. Moriai, “The Linux

Implementation of a Log-structured File System”, ACM SIGOPS Operating Systems

Review, 2006.

58

[23] P. Kieseberg, S. Schrittwieser, M. Mulazzani, M. Huber, and E. Weippl, "Trees

Cannot Lie: Using Data Structures for Forensics Purposes," European Intelligence and

Security Informatics Conference, Athens, 2011.

[24] P. Kieseberg, S. Schrittwieser, L. Morgan, M. Mulazzani, M. Huber, and E. Weippl,

“Using the structure of B+‐trees for enhancing logging mechanisms of databases”,

International Journal of Web Information Systems, 2013.

[25] S. Majore, C. Lee, and Taeshik Shon, “XFS File System and File Recovery Tools”,

International Journal of Smart Home Vol. 7, No. 1, 2013.

[26] J. Mostek, B. Earl, S. Levine, S. Lord, R. Cattelan, K. McDonell, T. Kline, B. Gaffey,

and R. Ananthanarayanan, “Porting the SGI XFS File System to Linux”, USENIX Annual

Technical Conference, 2000.

[27] XFS.org, “XFS Filesystem Disk Structures 3rd Edition” [Online], Available:

https://mirrors.edge.kernel.org/pub/linux/utils/fs/xfs/docs/xfs_filesystem_structure.pdf

[Accessed: 23.03.2020].

[28] GitHub, Source code of Linux kernel [Online], Available:

https://github.com/torvalds/linux/blob/master/fs/xfs/libxfs/xfs_format.h [Accessed:

24.03.2020].

[29] C. Hellwig, “XFS the big storage file system for Linux”, ;login:: the magazine of

USENIX & SAGE, Vol. 34, Nº. 5, 2009.

[30] GitHub, Source code of Linux kernel [Online], Available:

https://github.com/torvalds/linux/blob/master/include/uapi/linux/stat.h [Accessed:

24.03.2020].

[31] Z. Wang, “Research of Data Storage Mode and Recovery Method Based on XFS

File System”, 7th IEEE International Conference on Software Engineering and Service

Science (ICSESS), 2016.

[32] GitHub, Source code of Linux kernel [Online], Available:

https://github.com/torvalds/linux/blob/master/fs/xfs/libxfs/xfs_da_format.h [Accessed:

25.03.2020].

https://mirrors.edge.kernel.org/pub/linux/utils/fs/xfs/docs/xfs_filesystem_structure.pdf
https://github.com/torvalds/linux/blob/master/fs/xfs/libxfs/xfs_format.h
https://github.com/torvalds/linux/blob/master/include/uapi/linux/stat.h
https://github.com/torvalds/linux/blob/master/fs/xfs/libxfs/xfs_da_format.h

59

[33] J. Florido, “Journal File Systems”, Linux Gazette, 2000.

[34] K. Eckstein, “Forensics for advanced UNIX file systems”, Proceedings from the

Fifth Annual IEEE SMC Information Assurance Workshop, 2004.

[35] K. Fairbanks, “A technique for measuring data persistence using the Ext4 file system

journal”, IEEE 39th Annual Computer Software and Applications Conference, Taichung,

2015.

[36] GitHub, Source code of Linux kernel [Online], Available:

https://github.com/torvalds/linux/blob/master/fs/xfs/libxfs/xfs_log_format.h [Accessed:

25.03.2020].

[37] K. Fairbanks, “An analysis of Ext4 for digital forensics”, IEEE 39th Annual

Computer Software and Applications Conference, 2012.

[38] Hal Pomeranz, “XFS (Part 1) – The Superblock” [Online], Available:

https://righteousit.wordpress.com/2018/05/21/xfs-part-1-superblock/ [Accessed:

26.03.2020].

[39] Eugene Livis, “Writing Autopsy Python Modules” [Online],

http://www.osdfcon.org/presentations/2018/Eugene-Livis-Writing-Autopsy-Python-

Modules.pdf [Accessed: 10.05.2020].

[40] GitHub, xfs: remove transaction types [Online],

https://github.com/torvalds/linux/commit/710b1e2c2948c1e5d0499def5273ecbc647234

2d [Accessed: 26.03.2020].

https://righteousit.wordpress.com/2018/05/21/xfs-part-1-superblock/
http://www.osdfcon.org/presentations/2018/Eugene-Livis-Writing-Autopsy-Python-Modules.pdf
http://www.osdfcon.org/presentations/2018/Eugene-Livis-Writing-Autopsy-Python-Modules.pdf
https://github.com/torvalds/linux/commit/710b1e2c2948c1e5d0499def5273ecbc6472342d
https://github.com/torvalds/linux/commit/710b1e2c2948c1e5d0499def5273ecbc6472342d

60

Appendix 1 – Source Code

import sys

import re

import platform

import datetime

from bitstring import BitArray

import pandas as pd

Current architectures: https://en.wikipedia.org/wiki/Endianness

Values in host byte order: transaction header(0x5452414E), buffer write
log(0x123C), inode update(0x123B), inode core(0x494E), inode
creation(0x123F), efi(0x1236)

print(platform.processor(), '\n')

sb = None # superblock

sb_blocksize = None # block size

sb_sectsize = None # sector size

sb_logstart = None # first block of journal

sb_rootino = None # Root inode number for the filesystem

sb_agblocks = None # AG size (in blocks)

sb_inodesize = None # Inode size (in bytes)

sb_inopblock = None # Inodes/block

sb_inopblog = None # log2(inode/block)

sb_agblklog = None # log2(AG size) rounded up

is_shortformdir = False

Open in binary mode (read using byte data)

with open(r"test.img", "rb") as f:

 f.seek(102)

 sb_sectsize = int.from_bytes(f.read(2), byteorder='big')

print("Sector size:", sb_sectsize, "bytes\n")

with open(r"test.img", "rb") as f:

 sb = f.read(sb_sectsize)

Block address conversion

sb_blocksize = int.from_bytes(sb[4:8], byteorder='big')

sb_agblklog = int.from_bytes(sb[124:125], byteorder='big')

For an external log device, this will be zero. Conditional judgement here !

bin_len = len(BitArray(bytes=sb[48:56]).bin)

agno = int(BitArray(bytes=sb[48:56]).bin[:bin_len-sb_agblklog], 2)

rel_offset = int(BitArray(bytes=sb[48:56]).bin[-sb_agblklog:], 2)

sb_agblocks = int.from_bytes(sb[84:88], byteorder='big')

sb_logstart = (agno * sb_agblocks + rel_offset) * sb_blocksize

Inode address conversion

sb_inopblog = int.from_bytes(sb[123:124], byteorder='big')

61

bin_len_rootino = len(BitArray(bytes=sb[56:64]).bin)

agno_rootino = int(BitArray(bytes=sb[56:64]).bin[:bin_len_rootino-
(sb_inopblog + sb_agblklog)], 2)

rel_offset_rootino = int(BitArray(bytes=sb[56:64]).bin[-(sb_inopblog +
sb_agblklog):], 2)

sb_inopblock = int.from_bytes(sb[106:108], byteorder='big')

rel_block = int(rel_offset_rootino / sb_inopblock)

rel_inode = rel_offset_rootino % sb_inopblock

sb_inodesize = int.from_bytes(sb[104:106], byteorder='big')

sb_rootino = int.from_bytes(sb[56:64], byteorder='big')

sb_rootino_offset = ((agno_rootino * sb_agblocks + rel_block) * sb_blocksize)
+ (rel_inode * sb_inodesize)

h_magicno = b'\xfe\xed\xba\xbe' # The magic number of log records

pattern = re.compile(h_magicno)

h_len = None # Length of the log record, in bytes

h_num_logops = None # The number of log operations in this record

xlog_op = None # Log operation

oh_tid = None # Transaction ID of this operation

oh_len = None # Number of bytes in the data region

oh_clientid = None # The originator of this operation

oh_flags = None # Specifies flags associated with this operation

xlog_item = None # Log item

ctime = None

location = None

direntries = []

num_direntries = 0

inode_list = []

def inode_core(arg):

 print('Inode core')

 byte_ord = 'little'

 di_mode_filetype = int.from_bytes(arg[3:4], byteorder=byte_ord) >> 4

 di_format = int.from_bytes(arg[5:6], byteorder=byte_ord)

 di_uid = int.from_bytes(arg[8:12], byteorder=byte_ord)

 di_nlink = int.from_bytes(arg[16:20], byteorder=byte_ord)

 di_atime = datetime.datetime.fromtimestamp(int.from_bytes(arg[32:36],
byteorder=byte_ord)).strftime('%Y-%m-%d %H:%M:%S')

 di_mtime = datetime.datetime.fromtimestamp(int.from_bytes(arg[40:44],
byteorder=byte_ord)).strftime('%Y-%m-%d %H:%M:%S')

 di_ctime = datetime.datetime.fromtimestamp(int.from_bytes(arg[48:52],
byteorder=byte_ord)).strftime('%Y-%m-%d %H:%M:%S')

 di_size = int.from_bytes(arg[56:64], byteorder=byte_ord)

 di_blocks = int.from_bytes(arg[64:72], byteorder=byte_ord)

 di_nextents = int.from_bytes(arg[76:80], byteorder=byte_ord)

 di_anextents = int.from_bytes(arg[80:82], byteorder=byte_ord)

 di_forkoff = int.from_bytes(arg[82:83], byteorder=byte_ord)

 di_aformat = int.from_bytes(arg[83:84], byteorder=byte_ord)

 di_next_unlinked = int.from_bytes(arg[96:100], byteorder=byte_ord)

 di_crtime = datetime.datetime.fromtimestamp(int.from_bytes(arg[144:148],
byteorder=byte_ord)).strftime('%Y-%m-%d %H:%M:%S')

62

 di_ino = int.from_bytes(arg[152:160], byteorder=byte_ord)

 global inode_list

 inode_list.append([di_ino, di_mode_filetype, di_uid, di_crtime,
di_ctime])

 global is_shortformdir

 global ctime

 global location

 # How to identify it has short form directory ?

 # 82 Inode offset to xattr (8 byte multiples) 0x23 = 35 * 8 = 280

 # 83 Extended attribute type flag (see below) 1

 if (di_ino == sb_rootino or (di_mode_filetype == 4 and di_format == 1 and
di_forkoff != 0)):

 is_shortformdir = True

 ctime = di_ctime

 location = di_ino

def buffer_log(arg):

 print('Buffer log')

def inode_update(arg):

 print('Inode update')

def inode_creation(arg):

 print('Inode creation')

def efi(arg):

 print('EFI')

def efd(arg):

 print('EFD')

def others(arg):

 global is_shortformdir

 if (arg[0:4] == b'\x4E\x41\x52\x54'):

 print('Transaction header')

 elif (arg[0:4] == b'\x58\x41\x47\x49'):

 print('AGI')

 elif (arg[0:4] == b'\x49\x41\x42\x33'):

 print('Inode b+ tree')

 elif (arg[0:4] == b'\x58\x46\x53\x42'):

 print('Superblock')

 elif (arg[0:4] == b'\x58\x41\x47\x46'):

 print('AG free')

 elif (arg[0:4] == b'\x41\x42\x33\x43'):

 print('Free b+tree count')

 elif (arg[0:4] == b'\x41\x42\x33\x42'):

 print('Free b+tree offset')

 elif is_shortformdir:

63

 print(arg)

 count = int.from_bytes(arg[0:1], byteorder='big')

 i8count = int.from_bytes(arg[1:2], byteorder='big')

 len_inumber = 4 if (i8count == 0) else 8

 parent = int.from_bytes(arg[2:6], byteorder='big')

 dir_entries = arg[6:]

 global ctime

 global location

 global direntries

 global num_direntries

 direntries.append([location, ctime])

 if (count + i8count != 0):

 for i in range(count + i8count):

 namelen = int.from_bytes(dir_entries[0:1], byteorder='big')

 if (namelen == 0):

 break

 offset = int.from_bytes(dir_entries[1:3], byteorder='big')

 name = dir_entries[3:3+namelen]

 ftype = dir_entries[3+namelen:4+namelen]

 inumber =
int.from_bytes(dir_entries[4+namelen:4+namelen+len_inumber], byteorder='big')

 dir_entries = dir_entries[4 + namelen + len_inumber:]

 direntries[num_direntries].append([name, ftype, inumber])

 print('Name:', name, 'Length:', namelen, 'Inode:', inumber)

 is_shortformdir = False

 num_direntries += 1

def identify_logitem(arg):

 switcher = {

 b'\x4E\x49': inode_core,

 b'\x3C\x12': buffer_log,

 b'\x3B\x12': inode_update,

 b'\x3F\x12': inode_creation,

 b'\x36\x12': efi,

 b'\x37\x12': efd,

 }

 func = switcher.get(arg[0:2], others)

 func(arg)

with open(r"test.img", "rb") as f:

 # Move to the start of journal

 f.seek(sb_logstart)

 while True:

 # Check if the first 4 byte match the journal magic no.

 if(pattern.match(f.read(4))):

 h_len = int.from_bytes(f.read(16-4)[-4:], byteorder='big')

64

 # Length of log record is 0, means no more log record

 if h_len == 0:

 break

 h_num_logops = int.from_bytes(f.read(44-16)[-3:],
byteorder='big')

 # Read the remaining of log operation

 f.read(512-44)

 xlog_op = f.read(h_len)

 i = 0

 remaining = h_len

 # Check if trans. ID exists

 while (int.from_bytes(xlog_op[i:i+5], byteorder='big') != 0):

 if (xlog_op[i+4:i+8] == b'\x00\x00\x00\x01'): # Why 128???

 oh_len = 128

 else:

 oh_len = int.from_bytes(xlog_op[i+4:i+8],
byteorder='big')

 oh_clientid = xlog_op[i+8:i+9]

 oh_flags = xlog_op[i+9:i+10]

 # Make sure remaining data are still enough

 remaining = remaining - 12

 if (oh_len > remaining):

 break

 # XFS_TRANSACTION: Operation came from a transaction

 #if (oh_clientid == b'\x69'):

 if (oh_flags == b'\x01'):

 print('Start a new transaction')

 elif (oh_flags == b'\x02'):

 print('Commit this transaction\n')

 is_shortformdir = False

 else:

 xlog_item = xlog_op[i+12:i+12+oh_len]

 identify_logitem(xlog_item)

 # Move to next log item

 i = i + 12 + oh_len

for i in range(len(direntries)):

 for j in range(2, len(direntries[i])):

 if (direntries[i][j][1] == b'\x01'):

 direntries[i][j][1] = 'Regular file'

 elif (direntries[i][j][1] == b'\x02'):

 direntries[i][j][1] = 'Directory'

 elif (direntries[i][j][1] == b'\x03'):

 direntries[i][j][1] = 'Character special device'

 elif (direntries[i][j][1] == b'\x04'):

 direntries[i][j][1] = 'Block special device'

 elif (direntries[i][j][1] == b'\x05'):

 direntries[i][j][1] = 'FIFO'

 elif (direntries[i][j][1] == b'\x06'):

 direntries[i][j][1] = 'Socket'

 elif (direntries[i][j][1] == b'\x07'):

65

 direntries[i][j][1] = 'Symlink'

for i in range(len(inode_list)):

 if (inode_list[i][1] == 8):

 inode_list[i][1] = 'Regular file'

 elif (inode_list[i][1] == 4):

 inode_list[i][1] = 'Directory'

 elif (inode_list[i][1] == 2):

 inode_list[i][1] = 'Character special device'

 elif (inode_list[i][1] == 6):

 inode_list[i][1] = 'Block special device'

 elif (inode_list[i][1] == 1):

 inode_list[i][1] = 'FIFO'

 elif (inode_list[i][1] == 12):

 inode_list[i][1] = 'Socket'

 elif (inode_list[i][1] == 10):

 inode_list[i][1] = 'Symlink'

 elif (inode_list[i][1] == 0):

 inode_list[i][1] = 'Deleted File'

print(direntries)

print(inode_list)

results = []

inode_temp = []

file_temp = [[64, 'Root Directory']]

is_hardlink = False

for i in range(len(direntries)):

 # No directory entries

 if len(direntries[i]) == 2:

 continue

 # Update parent directory name, especially root directory

 for n in range(len(file_temp)):

 if (direntries[i][0] == file_temp[n][0]):

 direntries[i][0] = file_temp[n][1]

 # Filter out inode creation time <= directory last change time

 for j in range(len(inode_list)):

 if (inode_list[j][3] <= direntries[i][1]):

 inode_temp.append(inode_list[j])

 # Traverse directory entries

 for k in range(2, len(direntries[i])):

 for l in range(len(inode_temp)):

 # Created file: inode num is the same, inode creation time =
changed time

 if (direntries[i][k][2] == inode_temp[l][0] and inode_temp[l][3]
== inode_temp[l][4]):

 results.append([inode_temp[l][0],
direntries[i][k][0].decode('utf-8'), inode_temp[l][1], direntries[i][0],
'Created', inode_temp[l][2], inode_temp[l][3], inode_temp[l][4]])

 # Update current file inode num & name, used for update
parent directory

 for o in range(len(file_temp)):

66

 if [inode_temp[l][0], direntries[i][k][0].decode('utf-
8')] not in file_temp and file_temp[o][0] != inode_temp[l][0]:

 file_temp.append([inode_temp[l][0],
direntries[i][k][0].decode('utf-8')])

 # Deleted file: file type is deleted file

 elif (direntries[i][k][2] == inode_temp[l][0] and
inode_temp[l][1] == 'Deleted File'):

 results.append([inode_temp[l][0],
direntries[i][k][0].decode('utf-8'), inode_temp[l][1], direntries[i][0],
'Deleted', inode_temp[l][2], inode_temp[l][3], inode_temp[l][4]])

 for o in range(len(file_temp)):

 if [inode_temp[l][0], direntries[i][k][0].decode('utf-
8')] not in file_temp and file_temp[o][0] != inode_temp[l][0]:

 file_temp.append([inode_temp[l][0],
direntries[i][k][0].decode('utf-8')])

 # Modified file: inode num is the same, inode creation time !=
changed time

 elif (direntries[i][k][2] == inode_temp[l][0] and
inode_temp[l][3] != inode_temp[l][4]):

 #print(direntries[i][k])

 results.append([inode_temp[l][0],
direntries[i][k][0].decode('utf-8'), inode_temp[l][1], direntries[i][0],
'Modified', inode_temp[l][2], inode_temp[l][3], inode_temp[l][4]])

 for o in range(len(file_temp)):

 if [inode_temp[l][0], direntries[i][k][0].decode('utf-
8')] not in file_temp and file_temp[o][0] != inode_temp[l][0]:

 file_temp.append([inode_temp[l][0],
direntries[i][k][0].decode('utf-8')])

 # Rename: inode num is the same, file name not the same, directory
last change time <= inode last changed time

 temp_name = None

 temp_name1 = None

 temp_ctime = None

 for p in range(len(results)):

 if (direntries[i][k][2] == results[p][0] and
direntries[i][k][0].decode('utf-8') != results[p][1] and direntries[i][1] <=
results[p][7]):

 temp_name = results[p][1]

 temp_name1 = direntries[i][k][0].decode('utf-8')

 temp_ctime = results[p][7]

 results[p][1] = direntries[i][k][0].decode('utf-8')

 results[p][2] = direntries[i][k][1]

 results[p][3] = direntries[i][0]

 # Update current file inode num & name, used for update
parent directory

 for o in range(len(file_temp)):

 if (direntries[i][k][2] == file_temp[o][0] and
direntries[i][k][0].decode('utf-8') != file_temp[1]) :

 file_temp[o][1] = direntries[i][k][0].decode('utf-8')

 # Rename: update file location

 for p in range(len(results)):

 if (results[p][3] == temp_name and results[p][7] >= temp_ctime):

 results[p][3] = temp_name1

67

 # Remove inodes already compared

 for m in range(len(inode_temp)):

 if inode_temp[m] in inode_list:

 inode_list.remove(inode_temp[m])

 inode_temp = []

test = [['Inode', 'Filename', 'Filetype', 'FileLocation', 'Action', 'Account
(UID)', 'Creation Time', 'Last Changed Time']]

Remove duplicate entries

for a in results:

 if a not in test:

 test.append(a)

df = pd.DataFrame(test[1:], columns=test[0])

df.to_csv(r'test.csv', index=False)

68

Appendix 2 – Shell script used for creating test case

#!/bin/sh

sudo mkdir dir{01..02}

cd dir01

sleep 10

sudo touch test01

sleep 10

sudo mkdir test02

cd test02

sleep 10

sudo mknod test03 c 89 1

cd ../../dir02

sleep 10

sudo mknod test04 b 89 1

sleep 10

sudo mkfifo test05

sleep 10

sudo mkdir dir03

cd ..

sleep 10

sudo python -c "import socket as s; sock = s.socket(s.AF_UNIX);
sock.bind('test06')"

sleep 10

sudo ln -s test01 test07

sleep 10

sudo mv dir01/test02 dir01/test02n

sleep 10

sudo mv dir02 dir02n

sleep 10

sudo rm dir02n/test05

