
Tallinn 2018

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Silver Schnur 155387IAPB

DEVELOPMENT OF AN AUTOMATED

TESTING SYSTEM FOR SWI-PROLOG

Bachelor's thesis

Supervisor: Evelin Halling

 MSc

Tallinn 2018

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Silver Schnur 155387IAPB

SWI-PROLOGI

AUTOMAATTESTIMISSÜSTEEMI

ARENDUS

Bakalaureusetöö

Juhendaja: Evelin Halling

 MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Silver Schnur

25.05.2018

4

Abstract

The purpose of this thesis is to develop a new SWI-Prolog tester, which would replace

the existing one. The new tester should provide better feedback to students and help write

more complex tests. The focus was placed on improving the way failed tests were

detected, since the previous tester often could not discover them.

Thanks to the work detailed in this thesis a new tester was written, which uses a modified

fork of the PlUnit testing framework. The framework was modified to output results in

an easily parsable format and provide needed features to test writers. The created tester

will be integrated into the automated testing system used by the Tallinn University of

Technology.

This thesis is written in English and is 23 pages long, including 7 chapters, 5 figures and

2 tables.

5

Annotatsioon

Swi-Prologi automaattestimissüsteemi arendus

Antud lõputöö eesmärgiks on arendada uus SWI-Prologi tester, mis asendaks praeguse

testri. Uus tester peaks andma paremat tagasisidet ja võimaldama testide kirjutajatel

edastada testide kohta rohkem informatsiooni ning kirjutada keerulisemaid teste. Eriline

rõhk tuvastamisel, millised testid kukkusid läbi ja miks, sest praegune tester ei suuda tihti

seda tagastada.

Töö tulemusel valmis uus tester, mis kasutab modifitseeritud PlUniti raamistiku.

Raamistiku laiendati, et see annaks lihtsamini töödeldavat tagasisidet ja pakuks testide

kirjutamisel uusi võimalusi. Loodud tester integreeritakse Tallinna Tehnikaülikooli

automaattestimise süsteemi.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 23 leheküljel, 7 peatükki, 5

joonist ja 2 tabelit.

6

List of abbreviations and terms

SWI-Prolog Dialect of Prolog taught in Tallinn University of Technology

TUT Tallinn University of Technology

CSV Comma-separated values

Git A popular version control system

Moodle Free open-source learning management system

7

Table of Contents

1 Introduction ... 10

1.1 Overview of the automated testing system ... 10

1.2 Issues with the current tester .. 11

2 Requirements for the new tester .. 12

3 Architecture of the new tester .. 13

3.1 Unit testing framework ... 14

4 Added Features .. 15

4.1 Description.. 15

4.2 Weight .. 15

4.3 Timeout ... 16

4.4 Dependency system .. 17

5 Testing ... 19

6 Unresolved issues .. 21

7 Summary .. 22

8 References ... 23

Appendix 1 – Reference to the public repository ... 24

8

List of figures

Figure 1. Example of an email sent by the tester.. 11

Figure 2. Example usage of description ... 15

Figure 3. Example usage of weights ... 16

Figure 4. Example usage of timeout ... 17

Figure 5. Example usage of the dependency system .. 18

9

List of tables

Table 1. Test results of the current SWI-Prolog tester ... 20

Table 2. Test results of the new SWI-Prolog tester .. 20

10

1 Introduction

When learning new programming languages, an important part of the process is writing

code and verifying that it works. To help check that code written by a student is correct

and performs its task correctly Tallinn University of Technology has developed an

automated testing system, which is used by many courses. The system runs the students'

solutions against tests written by the lecturers and returns the result via email and

publishes the results on a webpage.

An important requirement of the testing system is the ability to validate code written in

different languages. For that purpose, every supported language must have its own tester.

The goal of this thesis is the development of one such tester, which will replace the

currently existing SWI-Prolog one.

1.1 Overview of the automated testing system

The main components of the automated testing system are TUT's Git server, a Moodle

based webpage, a mailing server, and the testers. First, an automatically graded project is

created using the webpage. When the project has been created, the information necessary

for testing, such as chosen tester and test files, is passed on to the rest of the system.

The testing is triggered by a Git hook in TUT's Git server. When a student pushes their

commits to their repository, the system pulls the changes and runs the associated tester

with the tests. Different projects are associated with different folders and the project is

selected according to the files changed by the commit. When a commit touches files

associated with multiple commits or multiple commits are pushed at the same time, the

tester is rerun for each project and commit.

Finally, the results of the tests are published to the webpage and an email is sent to the

student. On the webpage students can see the contents of the tested files and the associated

grade. In addition to that, teachers can access additional information to help detect failures

in testers.

11

1.2 Issues with the current tester

The main issue with the current SWI-Prolog tester is that it frequently fails to inform

students of failed tests. The email composed by the tester should have 3 sections: the

number of test passed, the names of the failed tests and a session ID, which is used to

debug the automated testing system in case of failure.

Figure 1. Example of an email sent by the tester

As seen on Figure 1, 4 out of the 8 tests failed, however the section which lists failed tests

only has the names of 2 tests. This is bad, because the only ways to fix the failing tests

are to either change random parts of your code or ask the lecturer or an assistant to check

what went wrong. This leads to a lot of wasted time on both parts and a decrease of overall

moral.

A secondary but also important problem is that the tester uses PlUnit which lacks several

features, which could be used to improve the grading and understandability of

assignments. The new tester should help alleviate the situation and add additional

capabilities to bring it closer to the capabilities of the current Java tester.

12

2 Requirements for the new tester

The new SWI-Prolog tester should obviously fix the problem with silently failing tests.

In addition, it would also be helpful if it output the tests which pass, since that may help

narrow down any problems in the code. A smaller but still nice-to-have feature would be

to include any syntax errors; however, this is less critical since students are not supposed

to push completely untested code.

The new tester should also add support for features most missed by the test writers. The

requested features are: descriptions, test specific timeouts, weights, and a dependency

system. Descriptions would be more suited to conveying additional information about

tests than overlong names. This is important since from the students' point of view the

entire automated testing system is a black box.

Test specific timeouts are necessary to limit the amount of time the tester spends in an

infinite loop. The automated testing system does set a timeout for every tester, but this is

generally far longer than necessary for most assignments, since it needs to accommodate

tests with significant runtimes. Having a shorter delay before a test is marked failed also

means that useful results can be provided for tests which are run after the one which got

stuck in a loop.

Weights and a dependency system can be used to create more interesting testing and

grading scenarios. Instead of a flat one point per passed test, weights can be used to award

more points for certain tests than others. Combined with a dependency system, which

would automatically fail tests, when their prerequisite tests have not passed, a much

bigger initiative can be given for completing harder parts of an assignment.

Finally, if practical, the new tester should allow reuse of the existing SWI-Prolog tests.

That means the tester should use PlUnit or PlUnit syntax with the minimal amount of

necessary changes. This is also important because the current test writers already have

experience with PlUnit and it would lessen the burden of switching to the new tester.

13

3 Architecture of the new tester

The current tester is a Python script, which copies the tests and solution into a directory

and runs the PlUnit based tests. It uses regular expressions to parse the output printed by

the PlUnit predicate run_tests. Because only the most common cases are covered, the tests

can silently fail when something unexpected happens. Most often it is because of the test

body throwing an exception.

It was elected to keep the same overall architecture because of the frequent changes made

to the automated testing system. While it is possible to write everything in SWI-Prolog

without giving away features, either by having a separate script or a monolithic design,

SWI-Prolog is obscure being the 34th language by popularity on the TIOBE index and

therefore likely to impede further development of the automated testing system due to

lack of proficiency in it [1]. In addition, the rest of the system is already written in Python.

The decision was made to output the results from the SWI-Prolog part of the tester using

a CSV format to make it easier to parse for the Python script, which will deal with

calculating the score based on test weights and composing the email. A more direct

solution using PySWIP, which would allow directly running SWI-Prolog queries from

the Python script, was considered. However, it was abandoned in favour of a simpler and

more concrete interface, which would allow to modify the tester without any knowledge

of Prolog.

To help debug failing tests the full output of standard error is included in the email sent

to students. While this may help the students access information about tests which they

are not supposed to, it was considered an acceptable risk due to how hard learning Prolog

can be for someone used to more conventional programming languages. However,

everything written to the standard output by submitted code can only be seen by the

teachers.

Since an entry point is needed and all currently existing tests use files with names

matching the format "test_pr[project number].pl" for it, the tester will search for files in

the testing folder named according to that pattern. In case multiple files are found, they

are both run and a separate grade is published for each file.

14

3.1 Unit testing framework

Unfortunately, due to the relative obscurity of Prolog the choice of available unit testing

framework is limited. Mostly it seems that there exists one major framework for every

dialect of Prolog. While it is possible to write code, which can run on multiple dialects

(PlUnit itself can run on SICStus and YAP in addition to SWI-Prolog), most frameworks

do not bother with it. The only other framework which runs on SWI-Prolog, Crisp, was

too small and lacking in features to be of significant help. [2]

Due to these problems, the decision was made to keep using PlUnit and to extend it to

cover the requested features. Unfortunately, it was impractical to extend PlUnit any other

way than forking, since the features required significant changes in the framework to

support them. Most notably implementing timeouts and the dependency system required

changes in the way the tests are executed.

The desire to keep the usage of the added features similar to the existing ones also

contributed to the argument for forking. Since the option lists used by the tests are type

checked on runtime, it was impossible to add anything to them from outside the

framework. In addition, the usage of PlUnit and its syntax it's necessary to add only an

import statement for the new framework to make the old tests compatible with the new

tester.

The fork also makes more use of marking tests as blocked. In PlUnit the only time a test

is marked blocked is when that option is set on the test. In addition to that, the fork will

also mark tests as blocked, when one of their prerequisites, such as setup or tests which it

depends on, fail.

The name of the fork is EPlUnit, which stands for Extended PlUnit. It is unlikely that it

will ever be fully merged back into PlUnit as some features, most notably weights, have

little to no use outside of the context of graded assignments. The fork is meant to be

installed in the SWI-Prolog libraries folder, so that all tests can use it.

15

4 Added Features

All the required new features mentioned in the requirements were added. Their intended

usage, implementation details, and syntax will be demonstrated in the order of

implementation complexity.

4.1 Description

The aim of a description is to provide a way to give more information about a test instead

of having very long names for tests. The description does not affect the way a test

functions and is included in the feedback given to students. The description must be a

textual value – accepted types are atom, string, chars and codes.

:- use_module(library('eplunit')).

:- begin_tests(description).

test(just_description, description("This test will pass")) :-

 true.

test(with_other_options, [description("The expected value of A is 3"), true(A
=:= 3)]) :-

 A = 3.

test(no_description) :-

 true.

test(multi_line_description, description("multi

line

description")) :-

 true.

:- end_tests(description).

Figure 2. Example usage of description

As it can be seen in figure 2, the description can be used alone or with other test options.

The description can also contain line breaks.

4.2 Weight

The objective of weights is to have different tests a bigger or smaller effect on the

student's grade. The weight of the test has no impact on the way or order a test is executed.

By default, the weight of a test is 1. Weight can be used to reduce a test's impact on the

grade to zero. The value of a weight must be a nonnegative integer.

16

:- use_module(library('eplunit')).

:- begin_tests(weight).

test(weight_2, [weight(2)]) :- true.

test(weight_3, [weight(3)]) :- true.

test(weight_3_fail, [weight(3), true(A =:= 2)]) :-

 A = 3.

test(weight_0, [weight(0)]) :- true.

% test(weight_invalid, weight(1.5)) :- fail. % Valid weights are only
nonnegative integers

% test(weight_invalid, weight(-1)) :- fail. % Valid weights are only
nonnegative integers

:- end_tests(weight).

Figure 3. Example usage of weights

The commented-out test will cause a domain_error to be thrown when they are left in as

the options passed to tests are checked at runtime. In its current state these tests would

give a grade of 62.5% since the third test fails and the last one does not contribute to the

total.

4.3 Timeout

Adding timeouts to tests required more significant changes to PlUnit than the previous

two features. It was somewhat surprising that PlUnit did not support setting timeouts to

tests, especially considering that SWI-Prolog has a call_with_time_limit predicate. The

feature was implemented by wrapping every test execution point with that predicate and

have EPlUnit catch the thrown time_limit_exceeded exception. By default, every test has

a time limit of 3 seconds. That can be changed by calling the set_test_options predicate

before executring the tests.

17

:- use_module(library('eplunit')).

% :- set_test_options([timeout(5)]). % Un comment this line to increase the
default timeout

:- begin_tests(timeout).

test(pass, timeout(0.1)) :- pass

test(pass2, [timeout(0.1), true(A =:= 3)]) :- A = 3.

test(fail, [timeout(0.1)]) :- sleep(1).

test(timeout_by_default) :- sleep(4).

test(timeout_even_with_increased_limit) :- sleep(6).

% test(impossible_timeout, [timeout(0)]) :- true. % Domain error

% test(impossible_timeout2, [timeout(-1)]) :- fail. % Domain error

:- end_tests(timeout).

Figure 4. Example usage of timeout

The first two test always pass and the third always fails. The fourth test will timeout with

the default time limit, however, by uncommenting the second line it will pass. The fifth

test will fail even with the extended time limit. The last two commented-out tests show

that setting the timeout to a nonpositive value causes a domain error, since that makes no

sense. The same applies to the default time limit.

4.4 Dependency system

The dependency system required the most work, because it affects the order tests are

executed and can even block tests from executing. It is used to have a more defined

boundary between grades for more advanced version of the same task and enforce

constraints such as: tests belonging to the block A must be passed before tests in block B

can be attempted.

The dependency system is composed of two parts: the first part is run before any tests and

it determines the order in which test blocks should be executed. The second part verifies

that none of the tests belonging in the prerequisite test blocks have failed. If any

prerequisite tests have failed or been blocked all the tests which belong in the current test

block will be marked as blocked.

In order for the dependency system to work, the dependency graph between different

blocks must be a directed acyclic graph. If a cycle is detected in the dependency graph,

then a invalid_dependency_graph exception is thrown and the testing is aborted. If a test

block that is marked as a dependency is not found, then an existance_error is thrown and

testing is also aborted.

18

:- use_module(library('eplunit')).

:- begin_tests(final, [dependson([basic, advanced])]).

test(final_blocked) :- true.

:- end_tests(final).

:- begin_tests(advanced, [dependson([basic])]).

test(advanced_fail) :- fail.

:- end_tests(advanced).

:- begin_tests(basic).

test(basic_success) :- true.

:- end_tests(basic).

% fails due to cyclic dependency

% :- begin_tests(loop, [dependson([loop])]).

% test(advanced_success) :- true.

% :- end_tests(loop).

% fails due to nonexistent dependency

% :- begin_tests(invalid_dependency, [dependson([invalid])]).

% test(advanced_success) :- true.

% :- end_tests(invalid_dependency).

Figure 5. Example usage of the dependency system

Due to the dependency system, the testing blocks are actually executed in the reverse

order. Since test advanced_fail will fail, test final_blocked will be marked as blocked

instead of passed. Uncommenting either of the commented-out test blocks will cause an

exception to be thrown at run time, due to the previously described constraints.

19

5 Testing

While all added features have a test to demonstrate their usage, the main focus of testing

is on finding out cases tests which might silently fail. For that purpose, a test setup was

created to run the author's Git repository from the course "Logic Programming" against

the same course's tests. Unfortunately, due to the possibility that the tests will be reused

next year, neither the tests nor the authors solutions will be published.

The test was first will be ran with the current tester to establish a baseline and then with

the new tester to compare the results. The test tracks the number of times a project's tests

were run and the amount of passed, failed, blocked, and silently failed tests. The used Git

repository has 81 commits, out of which 71 contain files covered by the assigned 12

automatically graded projects.

In both cases, the total number of run tests and the number of passed tests should be

identical, since the same set of tests is used. It is expected that the number of silently

failed tests will decrease and the number of failed and blocked tests will increase. The

goal to reach zero silently failed tests.

In the following tables the project column records the name of the folder for each project.

The second column shows how many tests were associated with each project. The runs

column shows how many times all the tests associated with the project were run. The last

four columns show how many tests across all runs passed, failed, were blocked or silently

failed. The second to last row shows the sum of all the preceding numbers in the same

column. Total number of test run is the sum of all passed, failed, blocked and silently

failed tests.

20

Project Tests in project Runs Passed Failed Blocked Silently failed

PR01 2 1 2 0 0 0

PR02 24 1 24 0 0 0

PR03 10 3 30 0 0 0

PR04 8 2 8 0 0 8

PR05 28 15 387 2 0 31

PR06 3 10 16 14 0 0

PR07 24 2 48 0 0 0

PR08 8 18 90 6 0 48

PR09 4 12 25 17 0 6

PR10 8 7 41 8 0 7

PR11 4 4 6 0 0 10

PR12 3 3 7 2 0 0

Total: 127 78 684 49 0 110

Total number of tests run: 843

Table 1. Test results of the current SWI-Prolog tester

As seen in table 1, more than two thirds of failed tests failed silently, which was a

significant obstacle for students, since they had no idea about which part they should

focus on to improve their grade.

Project Tests in project Runs Passed Failed Blocked Silently failed

PR01 2 1 2 0 0 0

PR02 24 1 24 0 0 0

PR03 10 3 30 0 0 0

PR04 8 2 8 8 0 0

PR05 28 15 387 33 0 0

PR06 3 10 16 14 0 0

PR07 24 2 48 0 0 0

PR08 8 18 90 54 0 0

PR09 4 12 25 23 0 0

PR10 8 7 41 15 0 0

PR11 4 4 6 6 4 0

PR12 3 3 7 2 0 0

Total: 127 78 684 155 4 0

Total number of tests run: 843

Table 2. Test results of the new SWI-Prolog tester

Compared to the results of the current tester, the new one shows significant improvement

in reporting failing tests. The number of silently failing tests has dropped to zero, which

means the new tester accomplishes its main goal of providing better feedback for failing

tests.

21

6 Unresolved issues

There are some topics which are not covered by this thesis, yet could benefit from more

attention in the future. The most beneficial of which is backporting some of the new

features of EPlUnit into PlUnit. While weights certainly have limited value outside of the

designed system, at least test specific timeouts can help design time sensitive systems. In

addition, getting necessary features merged back into PlUnit would mean less overhead

in keeping the developed tester up to date with new SWI-Prolog releases.

Another problem is the fact that the developed tester has little protection against students

committing code which could print out test inputs or tests. The current design protects

against only the simplest of such attacks – using write or print predicates to write

information to standard output. There are currently no protections against printing writing

anything to standard error, since everything written there is included in the email, which

is sent to students, to make debugging easier.

Finally, there some PlUnit features which do make sense or work well in the context of

this tester. Most notable of those is the fixme option on tests and test boxes. It is meant to

be used for tests, which are expected to fail but will not hamper the ability to execute

other tests [3]. While it may sound useful, it is usually expected that the students code

passes all tests. The main reason to avoid using fixme when writing tests is that the way

it is implemented means that tests marked with it provide poor feedback in case of failure.

22

7 Summary

TUT uses an automate testing system, which lets programming courses create

automatically graded assignments. This helps conserve time by avoiding most of the

manual checking of assignments. The system depends on different testers to provide the

necessary testing functionality for taught programming languages. The SWI-Prolog tester

currently in use had been identified as a particularly lacking in feedback and features.

According to the work laid out in this thesis, a new tester was designed and implemented.

Based on a test with real world data it provides better feedback to students than the current

one. In addition, several new features were implemented which will help in writing more

advanced tests and testing scenarios. Switching to the new tester should be easy, since it

uses the same syntax as the previous tester. Existing tests only need to import the new

testing framework to use the benefits of the new system.

The new tester should be integrated into the automated testing system with little difficulty

and should be in use by the autumn semester of 2018.

23

References

[1] “TIOBE Index,” [Online]. Available: https://www.tiobe.com/tiobe-index/.

[Accessed 23 05 2018].

[2] D. Feng, “Investigating Prolog Based Unit Test,” Leuven, 2012.

[3] J. Wielemaker, “Prolog Unit Tests,” [Online]. Available: http://www.swi-

prolog.org/pldoc/doc_for?object=section(%27packages/plunit.html%27).

[Accessed 24 5 2018].

24

Appendix 1 – Reference to the public repository

The developed tester, EPlUnit, and tests have been published in a public Github

repository. It is accessible from https://github.com/thunkk/swipl-tester.

