
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Informatics

IDU40LT

Vladislav Goltjajev 135217IAPB

 DESIGN AND IMPLEMENTATION OF AN
INFORMATION SYSTEM FOR
DISTRIBUTING SOFTWARE

Bachelor's thesis

Supervisor: Erki Eessaar

Doctor of Philosophy
in Engineering
Associate Professor

Tallinn 2016

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Informaatikainstituut

IDU40LT

Vladislav Goltjajev 135217IAPB

TARKVARA JAOTAMISE INFOSÜSTEEMI
DISAINIMINE JA REALISEERIMINE

Bakalaureusetöö

Juhendaja: Erki Eessaar

doktor

dotsent

Tallinn 2016

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Vladislav Goltjajev

28.04.2016

3

Abstract

DESIGN AND IMPLEMENTATION OF AN INFORMATION
SYSTEM FOR DISTRIBUTING SOFTWARE

The aim of this bachelor’s degree thesis was to create a universal and flexible software

distribution web-based information system which would serve as a replacement for the

existing system for distributing software and giving access to resources (remote places

for getting software) for Tallinn University of Technology (TUT) students

(http://zaurus.ttu.ee/). The aim was to create the software part of the system by using

familiar technologies for the future maintainers, meaning using the PHP programming

language and PostgreSQL as the database management system. The system is needed

because distributors of software have to make sure that only certain people (in this case

TUT students or staff) can access these.

An Information system is not only software and hardware but also processes and people

around these. The newly created system was designed to be flexible in the sense that it

is possible to specify for different resources different processes for distributing and

granting access to these.

The usability of the new web-based system surpassed the old one with the addition of

new functionality as well as a user-friendly interface using the Twitter Bootstrap CSS

framework.

The thesis describes the structure of the project, describes its functionality, and is

finished with a comparison between the old zaurus.ttu.ee user interface and the new

software distribution system web interface.

The main result of this thesis was the creation of a functioning and customizable web-

based system. It is in PHP and associated with a PostgreSQL database that allows

students to request access to resources and files and download the requested files. The

4

http://zaurus.ttu.ee/

software is general enough to be usable in case of other organizations that require

similar functionality. The currently (as of May 2016) operational system can be found

at: http://viktor.ld.ttu.ee/software.

This thesis is written in English and is 47 pages long, including 6 chapters, 24 figures

and 1 table.

5

http://viktor.ld.ttu.ee/software

Abstract

TARKVARA JAOTAMISE INFOSÜSTEEMI DISAINIMINE JA

REALISEERIMINE

Käesoleva bakalauruse lõputöö eesmärk oli luua universaalne ja kohandatav tarkvara

jaotamise veebipõhine infosüsteem, mis asendaks olemasoleva TTÜ tarkvarajaotuse ja

ressursidele juurdepääsu (kaugkohad tarkvara allalaadimiseks) andmise süsteemi

(http://zaurus.ttu.ee/). Eesmärgiks oli luua süsteemi tarkvara osa tulevaste haldajate

jaoks tuttavaid vahendeid kasutades, täpsemalt kasutades PHP programmeerimiskeelt ja

PostgreSQL andmebaasisüsteemi.

Infosüsteem ei ole mitte ainult tarkvara ja riistvara, vaid ka protsessid ja inimesed selle

ümber. Uus süsteem kavandati paindlikuna, mis tähendab, et erinevate ressursside jaoks

saab kirjeldada erinevaid jagamise ning pääsuõiguste andmise protsesse.

Uue veebipõhise süsteemi kasutatavus ületas vana oma, kuna lisati uut funktsionaalsust

koos kasutajasõbraliku kasutajaliidesega kasutades Twitter Bootstrap CSS raamistikku.

Töö kirjeldab projekti struktuuri, liidese funktsionaalsust ja lõpeb uue ja vana tarkvara

jaotuse süsteemi kasutajaliidese võrdlusega.

Töö põhitulemuseks oli funktsioneeriva ja kohandatava veebipõhise süsteemi loomine.

See on kirjutatud PHPs ja on seotud PostgreSQL andmebaasiga. See võimaldab

üliõpilastel küsida juurdepääsu ressurssidele ja tarkvara failidele ning laadida alla

soovitud faile. Tarkvara on piisavalt üldine, et see oleks kasutatav teiste sama

funktsionaalsust vajavate organisatsioonide puhul. Hetkel (2016. aasta mai seisuga) on

töötav veebirakendus aadressil: http://viktor.ld.ttu.ee/software.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 47 leheküljel, 6 peatükki, 24

joonist, 1 tabel.

6

http://viktor.ld.ttu.ee/software
http://zaurus.ttu.ee/

List of abbreviations and terms

CASE Computer Aided Software Engineering

CASE tools are set of software application programs, which are used to
automate systems development life cycle activities [1] .

CSS Cascading style sheets

CSS is a stylesheet language that describes the presentation of an HTML
document [2] .

HTML HyperText Markup Language

HTML is a markup language for describing web documents [3] .

JavaScript Client-side scripting language for dynamically controlling HTML
elements [4] .

MIT license Software distribution license originating from the Massachusetts Institute
of Technology (MIT) that enforces very limited restrictions on the use of
copyrighted software [5] .

PEAR PHP Extension and Application Repository

PEAR is a framework and distribution system for reusable PHP
components [6] .

PHP PHP: Hypertext Preprocessor

PHP is a widely-used open source general-purpose scripting language that
is especially suited for web development and can be embedded into
HTML [7] .

SQL Structured Query Language

Programming language used for accessing and manipulating relational
databases [8] .

TUT Tallinn University of Technology

7

Table of Contents

1 Introduction .. 13

1.1 Problem .. 13

1.2 Objective .. 14

1.3 Implementation methods .. 14

1.4 Finding existing software distribution systems ... 15

2 System Analysis ... 16

2.1 Actors ... 16

2.2 Areas of competence .. 16

2.3 Use case scenarios ... 16

2.3.1 Cross-cutting concerns ... 16

2.3.2 Request management .. 17

2.3.3 Resource management .. 17

2.3.4 User management ... 17

2.4 Database analysis ... 18

2.4.1 Entity-relationship diagram .. 18

2.4.2 State diagram of main request register object .. 18

2.4.3 Registers ... 18

3 Back-end Design ... 19

3.1 Back-end implementation methods ... 19

3.2 Database ... 20

3.2.1 Security ... 20

3.2.2 Data integrity .. 20

3.3 PHP .. 21

3.3.1 Security ... 21

3.3.2 Database connection ... 23

3.3.3 Views .. 24

3.3.4 Language switching .. 26

8

3.3.5 Emails ... 26

3.3.6 CSV file generation .. 27

3.3.7 File downloads .. 27

3.3.8 Home page content editing ... 28

4 Front-end Design .. 29

4.1 Prototype .. 29

4.2 Front-end implementation methods ... 29

4.3 Functionality .. 30

4.3.1 Home page .. 30

4.3.2 Navigation .. 30

4.3.3 Registration ... 31

4.3.4 Login ... 32

4.3.5 Resource list ... 32

4.3.6 Individual resource view .. 32

4.3.7 Add resource page .. 35

4.3.8 Request list ... 36

4.3.9 Individual request view .. 36

4.3.10 Account view .. 38

4.3.11 User list ... 39

4.3.12 Individual user view ... 40

4.3.13 Home page content editing ... 40

4.3.14 Application settings editing .. 41

5 Comparison Between the Old and New Versions of the System 42

6 Summary ... 44

 References .. 45

 Appendix 1 – Use Case Diagrams .. 47

 Appendix 2 – Entity-relationship Diagram .. 50

 Appendix 3 – Request State Diagram ... 51

 Appendix 4 – Physical Database Design Diagrams ... 52

 Appendix 5 – Database SQL Statement Examples .. 55

 Appendix 5 – Initial Interface Prototype .. 56

 Appendix 6 – New User Interface Screenshots .. 58

9

 Appendix 7 – Current zaurus.ttu.ee design ... 61

10

List of figures

 Figure 1: Code snippet showing the main security variables...21

 Figure 2: Code snippet showing how non-logged in users are redirected from a page..21

 Figure 3: Code snippet shown how users without administrator rights are redirected

from a page..22

 Figure 4: Code snippet showing the functions that create a password hash and validate

it...22

 Figure 5: Use of the htmlspecialchars() function to prevent-cross-site scripting...........22

Figure 6: Code snippet showing the clean_input() function..23

 Figure 7: Server's IPS detecting an SQL injection...23

Figure 8: Basic structure of PHP files used to display information to users...................24

Figure 9: Content example of translations_en.php (left) and translations_ee.php (right)

...26

 Figure 10: Code snippet describing how .csv files are created for the administrator to

download...27

 Figure 11: Home page..30

 Figure 12: Registration page...31

 Figure 13: Resource page for requesters..33

 Figure 14: Resource page for administrators (basic information)..................................34

 Figure 15: Resource page for administrators (request attribute and status controls).....34

 Figure 16: Add resource page...35

 Figure 17: Request page for software...37

 Figure 18: Submitted request..37

 Figure 19: Accepted request...38

 Figure 20: Account view..39

 Figure 21: User list...39

 Figure 22: User view..40

 Figure 23: Content editing form...41

11

 Figure 24: Application settings editing form..41

12

List of tables

Table 1: Pages shown to the user...24

13

1 Introduction

Students often find themselves in need of certain software, for which open source

alternatives either do not exist or are poorly made. TUT offers students software

downloads (for instance, Rational Rose and Enterprise Architect CASE tools) and

access to external resources such as Microsoft DreamSpark to complement their studies.

Although a system with this function already exists, it has poor usability and poor visual

design.

The author of this thesis chose this particular topic because an upgraded system for

software distribution would be a useful asset for TUT and it could be implemented

straight away and replace the existing one.

1.1 Problem

The current TUT web-based software distribution system at zaurus.ttu.ee suffers from a

number of problems:

• Poor visual design – bare HTML, almost no style or color, no consistent website
structure.

• Poor user interface – limited navigation.

• Poor functionality – students do not have a clear overview of their submitted

requests and their statuses, administrators do not get all the needed information

in a submitted requested, emails with request status updates are not sent to

students, students have to register twice to get access to local software (files) and

an external resource (Microsoft DreamSpark), no possibility to add new external

resources for which students could submit requests.

• Poor accessibility – no possibility to change the website language.

14

http://zaurus.ttu.ee/

• Errors in the implementation – students can lose access to the resources that they

requested and are thus forced to submit requests multiple times.

1.2 Objective

The objective of this thesis was the creation of a fully-functional software distribution

system to replace the existing one. The list of improvements made:

• Improved visual design – application of a modern look to all website

components.

• Improved user interface – added header and footer, improved resource list and

own request history for students, improved submitted request list, resource list

and user list view for administrators; improved individual request, resource and

user views for administrators.

• Improved functionality – simplified process of adding new resources for

administrators, added request attributes for resource requests to allow

administrators to better weigh their decision concerning requests, added emails

to requesters when a decision regarding their request is made, added comments

for request decisions, improved generation of request lists as CSV files for

administrators, added a fully customizable homepage, added secure file

downloads straight from the request page, implemented language switching on

the go, without losing query results

• Improved accessibility – added Estonian and English translations to

accommodate both local and foreign students with the ability to easily add other

language support

1.3 Implementation methods

The author used model driven development in the sense that a lot of information about

the requirements was received in the form of UML models from the supervisor. This

information was elaborated and discussed in collaboration with the supervisor. The

author created the database design model and the database implementation based on the

15

conceptual data model received as an input. The author used Enterprise Architect CASE

tool and its model transformations for that purpose. PHP was chosen as the

programming language for the creation of the website. Because the PHP version on the

server at the time of the project implementation was 5.3.5, no frameworks were chosen

and the code was written in basic PHP. PostgreSQL was chosen as the database system

for the project. These systems were selected in order to simplify maintenance of the

system by its administrators.

The user interface prototype was made manually with HTML and CSS. However, the

resulting interface had little in common with the initial design. Feedback was

continuously received from the thesis supervisor regarding the quality and usability of

the interface to ensure maximum satisfaction with the end product.

The front end was written in HTML with Twitter Bootstrap 3 components. Animated

components required jQuery and jQueryUI, JavaScript libraries. Form validation was

implemented on the server side rather than the client side to avoid circumvention by

disabling JavaScript. Secure software and CSV file downloads were handled with PHP

scripts.

1.4 Finding existing software distribution systems

Attempts were made to find a software distribution system template online, however,

they did not yield any relevant results. Examples of keywords used in Google search

were “software download system php”, “software distribution system php”, “software

download system template”, “software distribution system template”, “software

distribution system php”.

The only somewhat relevant results found with these keywords were associated with

limiting PHP software functionality through license keys.

16

2 System Analysis

The base functionality of the resulting application has to conform to the following

requirements, posed by the supervisor.

2.1 Actors

• Administrator – responsible for request, resource, and user management

• Requester – user authorized to view active resources, submit requests, and
download files

• Web guest – user that can only view the home page, register, and log in to the
system

2.2 Areas of competence

The system has three areas of competence:

• Administrator area of competence

• Requester area of competence

• Web guest area of competence

2.3 Use case scenarios

In order to correctly analyse and implement actor-specific functionality, use case

diagrams were used (Appendix 1).

2.3.1 Cross-cutting concerns

Both the administrator and the user needed to be identified in order to use the website

(Figure 24).

17

2.3.2 Request management

The administrators need to be able to view a list of all requests, view specific requests

from that list, accept, reject or close the request, and view a list of accepted requests

submitted in a specific periods and the emails of requesters associated with those

requests (Figure 25).

The requesters need to be able to submit a request, view one’s own submitted requests,

and download the requested software files.

2.3.3 Resource management

Both the administrators and the users need to be able to view a list of active resources

(Figure 26).

The administrators need to be able to view a list of resources, both active and inactive,

add, modify, activate and inactivate individual resources.

2.3.4 User management

The web guests need to be able to register as a user of the system (Figure 27).

The requesters need to be able to view one’s own data and modify it and modify one’s

own password.

The administrators need to be able to view one’s own data and modify it, modify one’s

password, view the data of all users and modify it as well as their passwords, activate

and inactivate individual users, and add and remove administrator rights from users.

18

2.4 Database analysis

The created database accommodated all the previously discussed system requirements.

2.4.1 Entity-relationship diagram

The database had to conform to the entity-relationship diagram, posed by Erki Eessaar

(Appendix 2, Figure 28).

2.4.2 State diagram of main request register object

The state diagram for requests was provided by Erki Eessaar (Appendix 3, Figure 29).

2.4.3 Registers

The database contains four registers (Appendix 4):

• Classifier register (Figure 30)

• User register (Figure 31)

• Request register (Figure 32)

• Resource register (Figure 33)

19

3 Back-end Design

The following chapter describes the back-end design of the application.

3.1 Back-end implementation methods

Because the application is web-based, PHP was chosen as the programming language

because it is optimized for creating and rapidly deploying such applications. It is also

one of the most popular programming languages in the world, currently (as of May

2016) holding sixth place in terms of popularity [9] .

PHP does not require extensive configurations and compilation like Java, the code is

executed each time a page is loaded. The only action needed to deploy an application on

the server is to move the files containing the scripts into the HTTP server’s web page

directory.

Due to the fact that the PHP version on the server is 5.3.5, all modern frameworks are

incompatible with it. Attempts were made to install the Laravel framework, the most

advanced and popular PHP framework [10] . Laravel 4.2, the oldest Laravel version that

is still maintained, requires PHP at least version 5.4. Yii 1.1, which was supported by

the server, was not considered because the framework is deprecated and it would be

unproductive to spend time learning it when Yii 2, the modern version of the

framework, is completely different from its predecessor [11] .

Because of the aforementioned reasons and the fact that the application functionality

was not very extensive, it was decided that implementing the application with basic

PHP was the best solution.

For such a project, the database management system choice was not imperative, so

PostgreSQL was chosen as the database management system of choice for the project

20

because it was already set up and configured on the server. It provides good

functionality, and is familiar to the author.

3.2 Database

The following subchapter describes the database used in the system.

3.2.1 Security

Depending on the type of user currently browsing the application website, the

connection to the database is carried out by different database users: sd_guest,

sd_requester, sd_administrator – according to the areas of competence described in the

previous chapter. These users have the minimal set of privileges that are needed to do

their job in the database.

The database employs a public interface through the use of views and functions

(Appendix 5, Figures 34-35). This was done to simplify the process of restricting access

to certain tables for certain users.

In functions, the SECURITY DEFINER allows the function to act with the privileges of

its creator, meaning that no specific table restrictions must be imposed for database

users authorized to use the function. Therefore, all PUBLIC privileges were revoked

from all tables to ensure maximum security.

The search path includes the pg_temp schema last in order to prevent the misuse of a

SECURITY DEFINER function, due to that schema being writeable for everyone. The

PUBLIC privileges of the functions were also revoked [12] .

3.2.2 Data integrity

In order to preserve data integrity, ON UPDATE and ON TRUNCATE triggers were

added to key tables. An ON UPDATE trigger was added to the request table, preventing

invalid state changes that do not correspond to the request state diagram.

21

3.3 PHP

The following subchapter describes the PHP basis of the system.

3.3.1 Security

The main security type that prevents unauthorized users accessing restricted pages is

creating session variables that show whether or not a user is logged in and if the logged

in user is an administrator or not. The session variables are set when a user successfully

logs in (Figure 1).

Other pages include the session_handler.php file, which redirects the user to the

index.php page if the user is not logged in (Figure 2).

Pages available only to administrators include the admin_rights_handler.php file, which

redirects logged in users with no administrator rights to the home page, exactly like in

the previous example (Figure 3).

22

Figure 1: Code snippet showing the main security variables.

Figure 2: Code snippet showing how non-logged in users are redirected
from a page.

Because the PHP version on the server was 5.3.5 and password functions were only

introduced in 5.5.0, secure password hashing was implemented with the help of an

external library called phpass by Openwall [13] to enable hashing and validating

passwords with the bcrypt algorithm.

Functions to create password hashes during user registration and password modification

as well as validate passwords were implemented in the file functions.php (Figure 4),

which also includes other functions that supplement the functionality of the application.

The 10 in the PasswordHash constructor parameter indicates the number of passes, the

same number as with modern PHP versions’ native password_hash function. The

FALSE indicates the use of the existing bcrypt algorithm, which is implemented in PHP

5.3 and above.

Cross-site scripting is prevented by the use of the htmlspecialchars() PHP function,

which translates injected script tags into HTML entities, preventing their execution

(Figure 5).

23

Figure 3: Code snippet shown how users without administrator rights are
redirected from a page.

Figure 4: Code snippet showing the functions that create a password hash and validate it.

Figure 5: Use of the htmlspecialchars() function to prevent-cross-site scripting.

All user input is also checked for cross-site scripting and SQL injections with the

clean_input() function (Figure 6).

SQL injections were also prevented with parameterized queries using the

pg_query_params function and passing user input as an array of values, ensuring that

the user input is inserted as values and there is no interpolation of malicious SQL

statements into the query strings [14] .

The efficiency of the implemented SQL injection prevention measures could not be

tested due to the server at viktor.ld.ttu.ee containing an intrusion prevention system that

detects SQL injections. A message (Figure 7) appeared in the browser window when

entering “qwe@ttu.ee; drop table droppable --” in the user list query, the injection was

prevented and the client computer’s IP address was blocked from the server.

3.3.2 Database connection

The connection to the database, which is required for the functionality of almost all PHP

pages in the project, was done through the db_connection_handler.php file using the

pg_connect() function.

24

Figure 6: Code snippet showing the clean_input() function.

Figure 7: Server's IPS detecting an SQL injection.

For list pages, a separate class PostgreSQLPaginator.php [15] was created. Its

functionality is getting a list of objects from the database for a specific page as well as

generating HTML of the page indicator bar displayed below each list.

For individual SQL queries, a separate class PostgreSQLConnector.php was created.

The class deals with SQL queries that accept parameters and the ones that do not, as

well as SQL queries that are known to produce results and the ones that are not.

The PHP functions that connect to the database and retrieve data in the aforementioned

classes were preceded with the @ marker to suppress error warnings as well a try-catch

block in order to avoid leaking system and database information to the user in case of

errors.

3.3.3 Views

Because no frameworks were used, most of the project structure follows the basic model

of PHP code on top and HTML on the bottom for files that interact with the user (Figure

8) [16] .

Figure 8: Basic structure of PHP files used to display information to users.

Pages the website user sees in the browser are located in the root project directory, for

each page there is a separate file (Table 1).

25

Table 1: Pages shown to the user.

File name Function

add_resource.php Allows administrators to add resources.

edit_content.php Allows administrators to modify the HTML and PHP
content of the home page.

edit_configurations.php Allows administrators to modify email filters for user
registration and change user password settings.

index.php Displays basic website information specified by the website
administrator.

login.php Allows web guests to log into the system.

my_account.php Displays own user data to administrators and users. Allows
administrators and users to modify one’s own data and
change one’s password.

register.php Allows web guests to register in the system.

request_list.php Displays own requests for users and a full list of requests for
administrators. Allows administrators to find requests by
requester or resource name and submission date and
download a .csv file with the search results.

request.php Displays request information for users and administrators.
Allows administrators to accept or reject submitted requests
and close accepted requests. Allows users to download files
if the request is accepted.

resource_admin.php Displays resource information for administrators and allows
them to edit it.

resource_list.php Displays a list of active resources for users and a full list of
resources for administrators. Allows users and
administrators

resource.php Diplays resource information for users and allows them to
submit a request.

user_list.php Displays a full list of users for administrators. Allows
administrators to search for users by name.

user.php Displays user information for administrators. Allows
administrators to activate, deactivate the user, add and
remove administrator rights from the user, modify user data
and modify the user’s password.

26

The user also sees the header and footer, which are separate PHP files included in each

of the aforementioned page files.

3.3.4 Language switching

The footer contains links to the current page with current URI parameters, but adds

another parameter, “lang”, to it. The website supports two languages: English and

Estonian. When a user first views the website, Estonian is set as the default language.

After a user clicks on the language change icons in the footer, the page reloads with new

translations whilst retaining the previously present URI parameters, such as query

parameters for list pages.

All the text labels on the project, aside from the home page content, are parameterized

and loaded from a PHP file. There are two PHP files containing translations:

tarnslations_ee.php and translations_en.php (Figure 9). The Estonian translations were

provided by Erki Eessaar.

In order to add a new language, a new file named “translations_<language_code>.php”

must be added to the content directory of the application with the same variable names

as the other translation files. A country flag icon must be added to the img/flags

directory of the application and referenced as a link in the footer.php file in the same

manner as the other language switching links. The flag icons for the application were

taken from GoSquared. The index page is shown in English for all new added

languages, only the interface language is affected.

3.3.5 Emails

To improve user experience, emails were implemented to notify requesters of the status

of their requests whenever the request was accepted, rejected, or closed.

27

Figure 9: Content example of translations_en.php (left) and translations_ee.php (right)

https://www.gosquared.com/resources/flag-icons/

The email sending system was implemented with the PEAR Mail extension. A class

called Mailer.php was created to simplify the process of sending emails. The SMTP

server used for emails was TUT’s own onyx.ttu.ee. When the administrator makes a

decision regarding a request and adds a comment, the comment is also shown in the

email. For automatically accepted requests emails are not sent out.

3.3.6 CSV file generation

Administrators are able to generate a semicolon-separated CSV file of requests that fit

the search criteria and ordering. The script accepts the same search parameters as the

request list page.

The PHP script request_csv_generator.php (Figure 10) then generates the CSV file and

offers it for the administrator to download.

3.3.7 File downloads

Authorized users with accepted requests for software can download files from the

request page. Downloads are handled with the download.php script, which accepts the

software ID and the file name to download, for example,

http://viktor.ld.ttu.ee/software/download.php?id=34&file=README.txt.

It is not possible to download another file on the system by entering, for example,

“../../secret_directory/secret_file.txt” because the script strips the base name of the file

from the specified path and searches for the file only in the directory associated with the

28

Figure 10: Code snippet describing how .csv files are created for the administrator to download.

specified software ID. The currently logged in requester’s ID is also checked to see if it

corresponds to an accepted request for the specified software.

If the validation is successful, the script then sends out headers, the most important of

which is the content header “application/octet-stream”, which forces any file type to be

downloaded, rather than displayed in the browser (in case of text files) [17] .

3.3.8 Home page content editing

The project features a fully-customizable home page. The content can be filled with

HTML, JavaScript and PHP. The content files content_en.php and content_ee.php are

located in the same folder as the translation files.

Editing the page occurs from the user interface and not necessarily through direct

editing of the files on the server.

For the editing to work, the two content files must have write permissions enabled.

29

4 Front-end Design

The following chapter describes the front end design of the application.

4.1 Prototype

The initial prototype (Appendix 5, Figures 36-38) for the user interface was written in

HTML. The final design differs greatly from the prototype.

It was decided that implementing the user interface with Bootstrap components would

be the most time-efficient means rather than writing the HTML manually, the same was

as for the prototype.

4.2 Front-end implementation methods

The front-end was designed with Twitter Bootstrap 3, a free HTML/CSS framework

released under the MIT license. It provides a modern look and the ability to make a

fully-customizable user-friendly interface.

Some elements, such as drop-down lists and the date picker, required the inclusion of

jQuery. Jquery, also released under the MIT license is one of the most popular

JavaScript libraries [18] .

Mobile view for the website was not considered because it was expected that both

students and administrators would use the website on their PCs rather than mobile

devices, considering how the software available is intended to be installed on PCs.

It was decided to base the design on the “10 Usability Heuristics for User Interface

Design” [19] .

The resulting design was tested in Firefox 45.0.2 and Internet Explorer

11.0.9600.18282.

30

4.3 Functionality

The following subchapter describes the functionality of each view.

4.3.1 Home page

The current address (as of May 2016) of the application is

http://viktor.ld.ttu.ee/software. The user is first presented with a title page with content

specified by the administrator (Figure 11).

The user is redirected to the home page when trying to access restricted pages and when

logging out.

4.3.2 Navigation

The main navigation occurs through the header, which is different depending on the

user’s account type and reflects the allowed user actions (Appendix 6, Figures 39-42).

31

Figure 11: Home page.

http://viktor.ld.ttu.ee/software

Administrators can also see how many new requests there are that require manual

accepting. A badge indicating the number is shown next to the “Requests” tab.

The main functionality of the footer (Appendix 6, Figure 43) lies in the ability to change

the system language. In order to do that, the user can simply click on the flags in the

bottom right corner.

4.3.3 Registration

The registration page (Figure 12) contains the registration form. The mandatory fields

are indicated by red asterisks.

For all required fields, not only on this page, but on the others as well, the “required”

option in the HTML input tag is used, with server-side validation in PHP

complementing it in case the user’s browser does not support this option (for example,

Safari).

Email validation is primarily handled with the <input type=”email”> HTML tag,

however, a PHP validation function using the FILTER_VALIDATE_EMAIL filter

exists in case the user’s browser does not support this type of input. The email domain

is also checked to ensure that the user has a valid University email. Other forms of

email validation on the server side include the maximum length of 254 characters [20]

and whether or not the email is already taken by another user.

32

Figure 12: Registration page.

Only the first name is made mandatory to allow for mononymous users with no last

names to register [21] . The given name and surname are checked for the maximum

length of 100 characters.

The password must contain at least the number of characters specified by the

administrator, include a lower case letter, an upper case letter, and a number. The

password must then be entered another time in order for the user to be sure that the right

password is entered. Registration error messages are shown next to each field.

If entering valid data, in this case, test.user@ttu.ee with the password Password123 and

given name User, the user is notified that registration is successful. The user can then

immediately log into the system and start using it.

4.3.4 Login

The login page (Appendix 6, Figure 44) features the typical views one would find in

most login pages: an email and password fields.

In case the user enters a wrong password or the email does not exist in the database, a

uniform error is shown static only that the user name or password was invalid. The error

is the same for both cases, in order to prevent potential data leakage to hackers.

The page also contains a link to an advanced password management system developed

by Eerik Mägi, a TUT student [22] . It is possible to change and recover forgotten

passwords using that system.

4.3.5 Resource list

The resource list page is different for the requesters (Appendix 6, Figure 45) and

administrators (Appendix 6, Figure 46). The user is only displayed active resources,

whereas administrators can view all resources. Both account types can search for

resources based on their names.

4.3.6 Individual resource view

From the list page, requesters are redirected to the page containing basic resource data

and a form for submitting a request for the selected resource (Figure 13). If the resource

33

has any request attributes the user must provide values for the mandatory attributes but

can skip optional attributes. For instance, one might use attributes to collect information

that is needed in order to give a software license to the requester. If a description of a

request attribute is available, then it is displayed in both the text area placeholder and

the tooltip. The input for each attribute must not exceed 1000 characters.

After a requester submits a request, the requester is redirected to the submitted request

page, which will be discussed later.

If the requester views the same resource again, a message appears indicating that

repeating requests are not allowed with no ability to submit another request.

From the resource list page, administrators are redirected to a different resource view

(Figures 14-15). On this page, administrators can activate or deactivate the resource,

edit the product name, description, whether or not manual accepting is required,

software location, and the request attributes presented to requesters. Request attributes

can be added and deleted, activated or deactivated, and made mandatory or optional.

Resource description can contain HTML, and a preview of the description can be seen

below the field so that the administrator can see how requesters would see the

description.

34

Figure 13: Resource page for requesters

When changing the resource’s name, a check is made to determine if that name already

exists in the database. If it does, an error is displayed under the resource name field.

When specifying a software location, the administrator can immediately see whether or

no the entered file path is correct by the text output below the field. The directory is

scanned and the file contents are displayed. Software locations must also be unique for

each added resource and if a software location currently in use is specified, an error is

shown under the software location field.

35

Figure 14: Resource page for administrators (basic information).

Figure 15: Resource page for administrators (request attribute and status controls).

Activating and deactivating a resource is done by pressing the “activate resource” and

“deactivate resource” buttons. When the resource is inactive, it cannot be updated and

new request attributes cannot be added. The only action available is activation. To

update request attributes, the administrator must make all the needed changes and press

“update resource”.

When removing a request attribute, a check is made to determine if there is a submitted

request which contains a value associated with this attribute. If a value exists, an error

message is displayed near the attribute marked for deletion. It is possible to make such

attributes inactive, meaning that one does not see the attributes and thus does not have

to provide values for these in case of new requests.

Request attribute names must be unique for a resource. If the user enters duplicate

attribute names, errors are shown stating that the attribute name already exists for the

selected resource. If all changes are valid, a success message appears when updating the

resource.

4.3.7 Add resource page

The add resource page contains a form administrators can fill out to add a resource

(Figure 16). If the resource type is software, an additional field to enter the software

location is added.

36

Figure 16: Add resource page.

The resource name and location, in the case of software, are checked to determine if

they already exist in the database. If they do, an error is shown under the fields. If a

request attribute is added and the name is not filled, an error is shown under the attribute

name field.

If the entered data is valid, the resource is registered and a success message is shown.

4.3.8 Request list

Requesters can only see requests submitted by themselves. Administrators can view the

full list of requests (Appendix 6, Figures 47-48).

In the query form, administrators can specify requester first and last names as well as

requested resources, request statuses, and find requests submitted after a specific date. If

no statuses are selected, a search is performed for all statuses.

The date picker [23] was implemented with jQuery and jQuery UI libraries. It supports

localizations (Appendix 6, Figure 49) and does not select future dates and dates older

than 01.01.2000.

The “CSV” button allows administrators to download the request list fitting the search

criteria to a .csv file.

If no requests are found, a message is shown and the CSV button is hidden.

4.3.9 Individual request view

Requesters, after submitting a request for a resource, are redirected to the request page

(Figure 17). If the resource does not require manual accepting by administrators, a

message is shown that the request is automatically accepted. The page contains the

request data, submitted request attribute values, and files available for download if the

resource type is software.

37

The user can immediately start downloading the files if the request is accepted by

selecting the file links. If the request is later closed, the download links are removed and

the user is not able to download files any more even if manually using a previously

acquired download link.

For administrators, the request page contains a form for accepting, rejecting, or closing

requests (Figures 18-19). If a request is submitted, the administrator can accept or reject

it. An optional comment can be included, which will be shown in the request

information as well as the email sent to the requester.

38

Figure 17: Request page for software.

Figure 18: Submitted request.

After accepting or rejecting a request, a success message will appear. If the request

status is “accepted”, the administrator can close the request and disable access to the

resource. The comment submitted during request closing will overwrite the existing

comment made during request accepting.

After a request is closed, a success message is shown and no further actions can be done

with the request.

4.3.10 Account view

For both requesters and administrators, the account view is the same (Figure 20). The

page contains two forms: one for updating account details and the other for updating the

password. The form validation is done in the same manner as with user registration,

with the single addition of the old password field.

The account view also contains a link to the aforementioned advanced password

changing system.

39

Figure 19: Accepted request.

The user must enter the old password and specify the new one two times in order to

change it. If the old password is invalid or the new password is too weak or does not

match the confirmation password, errors are displayed below the fields. If valid data is

entered, a success message is shown.

4.3.11 User list

Administrators can view the full list of users registered in the system (Figure 21). The

query form allows searching for user first names, last names and emails.

40

Figure 20: Account view.

Figure 21: User list.

4.3.12 Individual user view

From the user list page, administrators are redirected to the user view page (Figure 22).

Administrators can update the user’s details, activate and deactivate the user, add and

remove administrator rights from user and update a user’s password. Form validation is

done the same way as in the account view page and the success and error messages are

identical.

When viewing own user details, administrators cannot remove administrator rights and

deactivate themselves.

4.3.13 Home page content editing

Administrators can edit the HTML and PHP content of the home page (Figure 23).

After editing the code and pressing the “save” button, the page content is immediately

reflected.

If the files that contain the content are not found or do not have write permissions, an

error message is displayed for each file.

41

Figure 22: User view.

4.3.14 Application settings editing

Administrators can specify which email domains are allowed during new user

registration, the minimum password length and password recovery resource links

(Figure 24).

42

Figure 24: Application settings editing form.

Figure 23: Content editing form.

5 Comparison Between the Old and New Versions of the

System

The current version of the system, located at http://zaurus.ttu.ee/, has many drawbacks

as compared to the newly created system (Appendix 7).

The first thing one notices is the almost complete lack of any design and the prevalence

of grey color in all elements (Appendix 7, Figure 50). The first distinguishing lack of

functionality is seen in the inability to change the user interface language, which greatly

limits its accessibility to foreign students. This limitation is fixed in the new system

version by allowing users to switch between English and Estonian.

The login page (Appendix 7, Figure 51) contains unnecessary information about

available resources.

The registration page (Appendix 7, Figure 52) does not explicitly show which fields are

required and which are not. It was presumed that the bold field labels were supposed to

be indicative of the fields being mandatory, however, a red asterisk, the common

indicator in such cases, would be more suitable. The only user information

administrators can base their decisions on are the student code and studied IT subjects,

which allows for poor flexibility in terms of adding resources that require more

information about the requester to base the request decision on (Appendix 7, Figure 53).

Adding and editing resources (Appendix 7, Figure 54, provided by Erki Eessaar) offers

some degree of flexibility, however, the inability to specify resource-specific request

attributes is a considerable disadvantage.

Users are divided into two groups, ones who apply specifically for the DreamSpark

program and those who apply for software downloads. There is a separate registration

form for DreamSpark accounts.

43

http://zaurus.ttu.ee/

The DreamSpark user type page, contains only the option to update user details. The

page also contains unnecessary available resource information, when there is no option

of making requests.

Error handling on the system is also poorly implemented, seeing that PHP errors show

debug data to the user.

Everything is incoherently cramped together on one page. The new design addresses

this issue by splitting up the website part of the system into separate pages, each with its

own function. This is an example of applying separation of concerns design principle

[24] .

44

6 Summary

The goal of this thesis was to design and implement a universal system for distributing

software and granting access to other resources for students. The system had to be

written in PHP and connected to a PostgreSQL database, and be an upgrade to the

currently existing TUT software distribution system.

The set goal was completely fulfilled. The system is functional and ready to be used.

Language support for the system is not limited to English and Estonian. If necessary, it

can be expanded to include other languages with minimal code changes.

The implemented system is generic enough to be usable in case of other organizations

that need the same functionality. As it sometimes happens in the software field, after

implementing the system one starts to see other possible use cases of the system. In this

case the system can be used to distribute other content as well assuming that the content

is in files. The only problem in case of the current implementation is that it refers to the

concept "software" not to more generic concept "content". Regarding the original task

of the system one should not consider this as a weakness.

Due to time constraints, some features were left unimplemented, such as sorting

resource, request and user lists, which may be considered as a possible future

improvement.

Another possible improvement would be rewriting the website part of the system using

the Laravel PHP framework. Among other features, such as pagination, emails,

localizations, support for multiple databases with a simple query interface, it would not

be necessary to implement own measures of security, as they would already be available

out of the box, such as cross-site scripting prevention, user authentication and even a

system for resetting passwords.

45

References

[1] Software Case Tools Overview – TutorialsPoint (2016) –
http://www.tutorialspoint.com/software_engineering/case_tools_overview.htm
[Online] (21.05.2016)

[2] CSS Tutorial – W3Schools (2015) – http://www.w3schools.com/css/ [Online]
(10.03.2016)

[3] HTML Introduction – W3Schools (2016) –
http://www.w3schools.com/html/html_intro.asp [Online] (10.03.2016)

[4] About JavaScript – Mozilla Developer Network (2016) –
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
[Online] (16.03.2016)

[5] MIT License – Open Source Initative – https://opensource.org/licenses/MIT
[Online] (17.04.2016)

[6] PEAR - PHP Extension and Application Repository – The PHP Group (2016) –
https://pear.php.net/ [Online] (25.04.2016)

[7] PHP – The PHP Group (2016) – http://php.net/ [Online] (25.02.2016)

[8] SQL Tutorial – W3Schools (2016) – http://www.w3schools.com/sql/ [Online]
(25.02.2016)

[9] TIOBE Index for May 2016 – TIOBE (2016) – http://www.tiobe.com/tiobe_index
[Online] (14.03.2016)

[10] Why laravel is best php framework in 2016 – Amar InfoTech (2016) –
http://www.amarinfotech.com/why-laravel-is-best-php-framework-in-2016.html
[Online] (01.03.2016)

[11] Upgrading from Version 1.1 – Yii Framework (2014) –
http://www.yiiframework.com/doc-2.0/guide-intro-upgrade-from-v1.html
[Online] (01.03.2016)

[12] CREATE FUNCTION – PostgreSQL Documentation (2016) –
http://www.postgresql.org/docs/9.1/static/sql-createfunction.html (22.05.2016)

[13] phpass – Openwall – http://www.openwall.com/phpass/ [Online] (07.03.2016)

[14] pg_query_params – The PHP Group (2016) –
http://php.net/manual/en/function.pg-query-params.php [Online] (07.04.2016)

46

http://php.net/manual/en/function.pg-query-params.php
http://www.openwall.com/phpass/
http://www.postgresql.org/docs/9.1/static/sql-createfunction.html
http://www.yiiframework.com/doc-2.0/guide-intro-upgrade-from-v1.html
http://www.amarinfotech.com/why-laravel-is-best-php-framework-in-2016.html
http://www.tiobe.com/tiobe_index
http://www.w3schools.com/sql/
http://php.net/
https://pear.php.net/
https://opensource.org/licenses/MIT
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
http://www.w3schools.com/html/html_intro.asp
http://www.w3schools.com/css/
http://www.tutorialspoint.com/software_engineering/case_tools_overview.htm

[15] How to Paginate Data with PHP – Envato Tuts+ (2009) –
http://code.tutsplus.com/tutorials/how-to-paginate-data-with-php--net-2928
[Online] (01.03.2016)

[16] Web Applications I materials – Tanel Tammet (2014) – http://lambda.ee/wiki/V
%C3%B5rgurakendused_I (20.03.2016)

[17] Force file download with php using header() –StackOverflow (2013) –
http://stackoverflow.com/questions/8485886/force-file-download-with-php-using-
header [Online] (26.04.2016)

[18] Usage of JavaScript libraries broken down by ranking – Q-Success (2016) –
http://w3techs.com/technologies/cross/javascript_library/ranking (01.04.2016)

[19] 10 Usability Heuristics for User Interface Design – Jakob Nielsen (1995) –
https://www.nngroup.com/articles/ten-usability-heuristics/ [Online] (13.03.2016)

[20] RFC 3696 addendum – RFC Editor (2005) – https://www.rfc-
editor.org/errata_search.php?rfc=3696 [Online] (19.03.2016)

[21] Falsehoods Programmers Believe About Names – Kalzumeus (2010) –
https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-
names/ [Online] (15.03.2016)

[22] Eraldiseisev iseteeninduslik paroolide vahetamise veebitarkvara olemasolevate
rakenduste jaoks – Eerik Mägi (2016) Bakalaureusetöö. TTÜ
Informaatikainstituut.

[23] Datepicker – jQuery UI (2016) - https://jqueryui.com/datepicker/ [Online]
(01.04.2016)

[24] Separation of Concerns – Wikipedia (2016) –
https://en.wikipedia.org/wiki/Separation_of_concerns [Online] (22.05.2016)

47

https://en.wikipedia.org/wiki/Separation_of_concerns
https://jqueryui.com/datepicker/
https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/
https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/
https://www.rfc-editor.org/errata_search.php?rfc=3696
https://www.rfc-editor.org/errata_search.php?rfc=3696
https://www.nngroup.com/articles/ten-usability-heuristics/
http://w3techs.com/technologies/cross/javascript_library/ranking
http://stackoverflow.com/questions/8485886/force-file-download-with-php-using-header
http://stackoverflow.com/questions/8485886/force-file-download-with-php-using-header
http://lambda.ee/wiki/V%C3%B5rgurakendused_I
http://lambda.ee/wiki/V%C3%B5rgurakendused_I
http://code.tutsplus.com/tutorials/how-to-paginate-data-with-php--net-2928

Appendix 1 – Use Case Diagrams

48

Figure 25: Request management.

Figure 24: Cross-cutting concerns.

49

Figure 26: Resource management.

50

Figure 27: User management.

Appendix 2 – Entity-relationship Diagram

51

Figure 28: Entity-relationship diagram.

Appendix 3 – Request State Diagram

52

Figure 29: Request state diagram.

Appendix 4 – Physical Database Design Diagrams

53

Figure 30: Classifier register.

Figure 31: User register.

54

Figure 32: Request register.

55

Figure 33: Resource register.

Appendix 5 – Database SQL Statement Examples

56

Figure 34: Example of a view used in the system.

Figure 35: Example of a function used in the database.

Appendix 5 – Initial Interface Prototype

57

Figure 36: Home page prototype.

58

Figure 37: Login page prototype.

Figure 38: Registration page prototype.

Appendix 6 – New User Interface Screenshots

59

Figure 39: Non-logged in user header.

Figure 40: Requester header.

Figure 41: Administrator header.

Figure 42: Header with one new request.

Figure 43: Footer.

60

Figure 45: Resource list page for requesters.

Figure 46: Resource list page for administrators.

Figure 44: Login page.

61

Figure 47: Request list for requesters.

Figure 48: Request list for administrators.

Figure 49: Date picker with different localizations.

Appendix 7 – Current zaurus.ttu.ee design

62

Figure 50: zaurus.ttu.ee home page.

Figure 51: zaurus.ttu.ee login page.

Figure 52: zaurus.ttu.ee registration

Figure 53: zaurus.ttu.ee request submission.

63

64

Figure 54: zaurus.ttu.ee resource management.

	1 Introduction 13
	1.1 Problem 13
	1.2 Objective 14
	1.3 Implementation methods 14
	1.4 Finding existing software distribution systems 15

	2 System Analysis 16
	2.1 Actors 16
	2.2 Areas of competence 16
	2.3 Use case scenarios 16
	2.4 Database analysis 18

	3 Back-end Design 19
	3.1 Back-end implementation methods 19
	3.2 Database 20
	3.3 PHP 21

	4 Front-end Design 29
	4.1 Prototype 29
	4.2 Front-end implementation methods 29
	4.3 Functionality 30

	5 Comparison Between the Old and New Versions of the System 42
	6 Summary 44
	References 45
	Appendix 1 – Use Case Diagrams 47
	Appendix 2 – Entity-relationship Diagram 50
	Appendix 3 – Request State Diagram 51
	Appendix 4 – Physical Database Design Diagrams 52
	Appendix 5 – Database SQL Statement Examples 55
	Appendix 5 – Initial Interface Prototype 56
	Appendix 6 – New User Interface Screenshots 58
	Appendix 7 – Current zaurus.ttu.ee design 61
	1 Introduction
	1.1 Problem
	1.2 Objective
	1.3 Implementation methods
	1.4 Finding existing software distribution systems

	2 System Analysis
	2.1 Actors
	2.2 Areas of competence
	2.3 Use case scenarios
	2.3.1 Cross-cutting concerns
	2.3.2 Request management
	2.3.3 Resource management
	2.3.4 User management

	2.4 Database analysis
	2.4.1 Entity-relationship diagram
	2.4.2 State diagram of main request register object
	2.4.3 Registers

	3 Back-end Design
	3.1 Back-end implementation methods
	3.2 Database
	3.2.1 Security
	3.2.2 Data integrity

	3.3 PHP
	3.3.1 Security
	3.3.2 Database connection
	3.3.3 Views
	3.3.4 Language switching
	3.3.5 Emails
	3.3.6 CSV file generation
	3.3.7 File downloads
	3.3.8 Home page content editing

	4 Front-end Design
	4.1 Prototype
	4.2 Front-end implementation methods
	4.3 Functionality
	4.3.1 Home page
	4.3.2 Navigation
	4.3.3 Registration
	4.3.4 Login
	4.3.5 Resource list
	4.3.6 Individual resource view
	4.3.7 Add resource page
	4.3.8 Request list
	4.3.9 Individual request view
	4.3.10 Account view
	4.3.11 User list
	4.3.12 Individual user view
	4.3.13 Home page content editing
	4.3.14 Application settings editing

	5 Comparison Between the Old and New Versions of the System
	6 Summary
	References
	Appendix 1 – Use Case Diagrams
	Appendix 2 – Entity-relationship Diagram
	Appendix 3 – Request State Diagram
	Appendix 4 – Physical Database Design Diagrams
	Appendix 5 – Database SQL Statement Examples
	Appendix 5 – Initial Interface Prototype
	Appendix 6 – New User Interface Screenshots
	Appendix 7 – Current zaurus.ttu.ee design

