TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology

Department of Informatics

IDU40LT
Vladislav Goltjajev 1352171APB

DESIGN AND IMPLEMENTATION OF AN
INFORMATION SYSTEM FOR
DISTRIBUTING SOFTWARE

Bachelor's thesis

Supervisor:  Erki Eessaar

Doctor of Philosophy
in Engineering
Associate Professor

Tallinn 2016



TALLINNA TEHNIKAULIKOOL
Infotehnoloogia teaduskond

Informaatikainstituut

IDU40LT
Vladislav Goltjajev 1352171APB

TARKVARA JAOTAMISE INFOSUSTEEMI
DISAINIMINE JA REALISEERIMINE

Bakalaureusetdo

Juhendaja: Erki Eessaar
doktor

dotsent

Tallinn 2016



Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.
Author: Vladislav Goltjajev

28.04.2016



Abstract

DESIGN AND IMPLEMENTATION OF AN INFORMATION
SYSTEM FOR DISTRIBUTING SOFTWARE

The aim of this bachelor’s degree thesis was to create a universal and flexible software
distribution web-based information system which would serve as a replacement for the
existing system for distributing software and giving access to resources (remote places
for getting software) for Tallinn University of Technology (TUT) students

(http://zaurus.ttu.ee/). The aim was to create the software part of the system by using

familiar technologies for the future maintainers, meaning using the PHP programming
language and PostgreSQL as the database management system. The system is needed
because distributors of software have to make sure that only certain people (in this case

TUT students or staff) can access these.

An Information system is not only software and hardware but also processes and people
around these. The newly created system was designed to be flexible in the sense that it
is possible to specify for different resources different processes for distributing and

granting access to these.

The usability of the new web-based system surpassed the old one with the addition of
new functionality as well as a user-friendly interface using the Twitter Bootstrap CSS

framework.

The thesis describes the structure of the project, describes its functionality, and is
finished with a comparison between the old zaurus.ttu.ee user interface and the new

software distribution system web interface.

The main result of this thesis was the creation of a functioning and customizable web-
based system. It is in PHP and associated with a PostgreSQL database that allows

students to request access to resources and files and download the requested files. The

4


http://zaurus.ttu.ee/

software is general enough to be usable in case of other organizations that require
similar functionality. The currently (as of May 2016) operational system can be found

at: http://viktor.ld.ttu.ee/software.

This thesis is written in English and is 47 pages long, including 6 chapters, 24 figures
and 1 table.


http://viktor.ld.ttu.ee/software

Abstract
TARKVARA JAOTAMISE INFOSUSTEEMI DISAINIMINE JA
REALISEERIMINE

Kéesoleva bakalauruse 16putdooé eesmirk oli luua universaalne ja kohandatav tarkvara
jaotamise veebipdhine infosiisteem, mis asendaks olemasoleva TTU tarkvarajaotuse ja
ressursidele juurdepddsu (kaugkohad tarkvara allalaadimiseks) andmise siisteemi

(http://zaurus.ttu.ee/). Eesmirgiks oli luua siisteemi tarkvara osa tulevaste haldajate

jaoks tuttavaid vahendeid kasutades, tipsemalt kasutades PHP programmeerimiskeelt ja

PostgreSQL andmebaasisiisteemi.

Infosiisteem ei ole mitte ainult tarkvara ja riistvara, vaid ka protsessid ja inimesed selle
iimber. Uus siisteem kavandati paindlikuna, mis tdhendab, et erinevate ressursside jaoks

saab kirjeldada erinevaid jagamise ning padsudiguste andmise protsesse.

Uue veebipohise siisteemi kasutatavus iiletas vana oma, kuna lisati uut funktsionaalsust

koos kasutajasdbraliku kasutajaliidesega kasutades Twitter Bootstrap CSS raamistikku.

T606 kirjeldab projekti struktuuri, liidese funktsionaalsust ja 16peb uue ja vana tarkvara

jaotuse siisteemi kasutajaliidese vordlusega.

To6 pohitulemuseks oli funktsioneeriva ja kohandatava veebipohise silisteemi loomine.
See on kirjutatud PHPs ja on seotud PostgreSQL andmebaasiga. See vdimaldab
iilliopilastel kiisida juurdepddsu ressurssidele ja tarkvara failidele ning laadida alla
soovitud faile. Tarkvara on piisavalt iildine, et see oleks kasutatav teiste sama
funktsionaalsust vajavate organisatsioonide puhul. Hetkel (2016. aasta mai seisuga) on

tootav veebirakendus aadressil: http://viktor.ld.ttu.ee/software.

Loputdd on kirjutatud inglise keeles ning sisaldab teksti 47 lehekiiljel, 6 peatiikki, 24

joonist, 1 tabel.


http://viktor.ld.ttu.ee/software
http://zaurus.ttu.ee/

CASE

CSS

HTML

JavaScript

MIT license

PEAR

PHP

SQL

TUT

List of abbreviations and terms

Computer Aided Software Engineering

CASE tools are set of software application programs, which are used to
automate systems development life cycle activities [1] .

Cascading style sheets

CSS is a stylesheet language that describes the presentation of an HTML
document [2] .

HyperText Markup Language

HTML is a markup language for describing web documents [3] .
Client-side scripting language for dynamically controlling HTML

elements [4] .

Software distribution license originating from the Massachusetts Institute
of Technology (MIT) that enforces very limited restrictions on the use of
copyrighted software [5] .

PHP Extension and Application Repository

PEAR is a framework and distribution system for reusable PHP
components [6] .

PHP: Hypertext Preprocessor

PHP is a widely-used open source general-purpose scripting language that
is especially suited for web development and can be embedded into
HTML [7] .

Structured Query Language

Programming language used for accessing and manipulating relational
databases [8] .

Tallinn University of Technology



Table of Contents

I IntrodUCHION. ..eeieiiiiiiiiiiiiiiiiiiiiciice e 13
1.1 Problem. . ces e 13
1.2 ODJECHVE. et 14
1.3 Implementation methods........cceeeeiiiiiiiiiiiiiiiiiiieeis 14
1.4 Finding existing software distribution SYStemMS......oceeveeereneeieiieiiiiiiiiiiiiieenne 15

2 SyStem ANALYSIS...eeeieiiiiiiiiiiese s 16
2.1 ACLOTS. it 16
2.2 Areas Of COMPELENCE. .cuueeiiiiiiiisiiieieeese e 16
2.3 USE CASC SCOMAITOS. .ueeueeeurieetitieitiiiteitiitieiteiteeteiteiee ettt e et ene e 16

2.3.1 CrosS-Cutting CONMCETMS. cuuueuutiaiiiniiiiitiieeit st st see e 16
2.3.2 Request Management. ... e e 17
2.3.3 RESOUICe MANAZEMENT . .uueeeseeeiireaietieeiiieiieeeeiiieeeeiieeeeeiieeeeiiiieeeeiieeeeeeee 17
2.3.4 USer ManagemeNnt. ...ceeueeeureereiiiiiiieiiieiieiiieiieiiieiecieeieeieeeee e 17
2.4 Database analysis......ueueuiesieiiiiiiiiiiiiie e 18
2.4.1 Entity-relationship diagram........coeoeeeeeeeieieniiiiiiiiiieieiiseieieiea, 18
2.4.2 State diagram of main request register ObJeCt....ouueenireeiiiiiiiiiiiiiiiiiiiin 18

243 REGISIOIS. oecueieiiiiiiiiiiiiiiiiiiieii i 18

3 Back-end DeSI@N....ccuiieiiiiiiiieieiie e 19
3.1 Back-end implementation methods........cceceeiiiiiiiiiiiiiiiiiiiiiiiieecien 19
3.2 Database..ccuueeeiieiiiiiii it 20
3.2.1 SECUIIEY..ecurieiiiiiiiiiiiiiiiiiiteieee e 20
3.2.2 Data INtEIIEY..ecueeieiseiie it 20
B33PHP .o 21
3.3 ] SCCUITEY . eutteetiiieteeie ettt ettt 21
3.3.2 Database COMNECHION. . eueererreneiiiiiiiiiiiiiiieiiieieeiee e 23
3.3.3 VIBWS. it 24
3.3.4 Language sWitChiNg......cccueiiiiiiiiiiiiiiiiiesieiesseesses 26




3. 3.0 EMAILS. ettt ettt ettt eeeeeeeeeeeetteteatetttataaaaaaaeeeas 26

3.3.6 CSV file generation.......ccueeuieiiiiiiiiiieiissesese s 27
3.3.7 File dOWNIOAAS. . eceuviieeiiiiiiiiiiiiiiieeiieeeiee ettt 27
3.3.8 Home page content editing......cceeueeeeneeniniiniiiiiiiiiiiiiiiiiiiieiiecieeeeee 28

4 Front-end DeSIGN.....uecuiriiiiiiiiiiiesee et 29
4.1 ProtOtYPe. e 29
4.2 Front-end implementation methodS........cceeeeeiiiiiiiiiiiiiiiiiiiiiieieeie 29
4.3 Functionality......oeeeueesieiiiiiiiiiiiiiiieeseeee e 30
4.3.1 HOME PAZE..cueiuriniiiiiiiiiiiiiiiiiiiicieieeeceeeceicceceece e 30
4.3.2 NaVIGAON ettt 30
4.3.3 ROISTAtION. c.eeeeeiieiiiieiiiiiiiie ettt ettt eeee e e e e e e 31
434 LOGIN.eitiiiiiiiiiei e 32
4.3.5 RESOUICE LISt ittt 32
4.3.6 Individual reSOUICE VIEW.....ueesueesiiiiiiiiiiiiiiieeieieeeseeseee e 32
4.3.7 Add 1eSOUICE PAGEC....eeeuieiiiiiiiiiiesee e 35
4.3.8Request 1St .ueuuieiiiiiiiiiiiiiieiiees e 36
4.3.9 Individual reqUESt VIEW.....eeeiseiiiisiieiiiiiiesteeseseese s 36
4.3.10 ACCOUNE VIEW..eeiutiiiiiiiiiiieitee st 38
4311 USEE TiSteeeuiieieiieiiiieiiiieiiieeie ettt 39
4.3.12 Individual USer VIEW......cecesuiisiiiiiiiiiiiiiiieee e, 40
4.3.13 Home page content €diting.......coueueeneiiieiiiniiiiiiisiiisiesiiesieseesne, 40
4.3.14 Application settings editing......ccueeniiiiiiiiiiiiiiiiiieseicsees e 41

5 Comparison Between the Old and New Versions of the System.........cccceeceeeennennnee.. 42
6 SUMMATY....ueiiiiiiiiieii ettt ese e 44
ReEfOIeNCES. ot 45
Appendix 1 — Use Case DIa@rams......ecuueeneesiiiiiiiiiiiiiiiisieieieseaeseiee e 47
Appendix 2 — Entity-relationship Diagram.........ccocceeviiiiiieiiiiiiiiiiiiieiiiiiiiieee 50
Appendix 3 — Request State DIagraml......coeeeeeeeiiiiiniiiniiiiiiiiiiiiiiiiiiieiieiceeee, 51
Appendix 4 — Physical Database Design Diagrams...........oceeeveeeieiiieiiieiieiiiiiiiiiinenee. 52
Appendix 5 — Database SQL Statement EXamples.......oc.ceevvieeiiuiiiiieeeiiiiiiiieeiiiiinnenn.. 55
Appendix 5 — Initial Interface Prototype.......ccceeuesiiiiniiiiiiiiiiiiiiiiiiicseeeie 56
Appendix 6 — New User Interface Screenshots........cccceeieeiiiiiiiiiiiiiiiiiiiiiiiieenn 58




Appendix 7 — Current zaurus.ttu.ee design

10



List of figures

Figure 1: Code snippet showing the main security variables............cocevevviiiiiiennnenne. 21
Figure 2: Code snippet showing how non-logged in users are redirected from a page..21

Figure 3: Code snippet shown how users without administrator rights are redirected

110000 I 0 TSRS UR PP 22
Figure 4: Code snippet showing the functions that create a password hash and validate

L T PO U PP U PTOTRRUPPPRROPPPRO: 22
Figure 5: Use of the htmlspecialchars() function to prevent-cross-site scripting........... 22
Figure 6: Code snippet showing the clean_input() function...........cccccceevuiiiieniiinneennnn. 23
Figure 7: Server's IPS detecting an SQL 1NjeCtion.........cceecveeviieriieniienieeniiee e 23
Figure 8: Basic structure of PHP files used to display information to users................... 24

Figure 9: Content example of translations_en.php (left) and translations_ee.php (right)

......................................................................................................................................... 26
Figure 10: Code snippet describing how .csv files are created for the administrator to

AOWNIOA. ...ttt et ettt et 27
Figure 11: HOME PAZE...ccuviiiiieeiieeiie ettt ettt etae e e tre e e e e nsraaeeeeensaaaaeens 30
Figure 12: RegiStration PAZE.......ccueeiuieruieeiieiieeieesiie ettt ettt siee e e s esbee e as 31
Figure 13: Resource page for reqUESTETS. ......couieiierieeiieiie ettt eiree e eiree e 33
Figure 14: Resource page for administrators (basic information)...........cccceeceeveveeneeennn 34
Figure 15: Resource page for administrators (request attribute and status controls).....34
Figure 16: Add r€SOUICE PAZE....ccuvieuieriiieiieeie ettt ettt st et 35
Figure 17: Request page for SOftWare...........cccevieviiiiiniiiiiiinieceeeeee e 37
Figure 18: SUbmMitted reqUESL.......cc.eeriiiiiriiiieieeieeee e 37
Figure 19: AcCepted T@QUESL......cccuviieeieeeiieeeiie ettt e et e e et e e e e e e e e nnaaeas 38
Figure 20: ACCOUNE VIEW......iiiiiiiiiiiiiieiiesie ettt ettt ettt ettt e et e e s baeeeenneeeeaes 39
FIUIE 212 USEIE LISttt st 39
FIUIE 22: USCT VIEW....eeuiiiiiiiiieiieieeiiesit ettt ettt ettt ettt st e bt et e et esateesnteesnneas 40
Figure 23: Content editing fOTm.........cccueiiiiiiiiiiiiiieee e 41

11



Figure 24: Application settings editing fOrm............ceceviererienienienenieneeceeeeee

12



Table 1: Pages shown to the user

List of tables

13



1 Introduction

Students often find themselves in need of certain software, for which open source
alternatives either do not exist or are poorly made. TUT offers students software
downloads (for instance, Rational Rose and Enterprise Architect CASE tools) and
access to external resources such as Microsoft DreamSpark to complement their studies.
Although a system with this function already exists, it has poor usability and poor visual

design.

The author of this thesis chose this particular topic because an upgraded system for
software distribution would be a useful asset for TUT and it could be implemented

straight away and replace the existing one.

1.1 Problem

The current TUT web-based software distribution system at zaurus.ttu.ee suffers from a

number of problems:

* Poor visual design — bare HTML, almost no style or color, no consistent website
structure.

* Poor user interface — limited navigation.

* Poor functionality — students do not have a clear overview of their submitted
requests and their statuses, administrators do not get all the needed information
in a submitted requested, emails with request status updates are not sent to
students, students have to register twice to get access to local software (files) and
an external resource (Microsoft DreamSpark), no possibility to add new external

resources for which students could submit requests.

* Poor accessibility — no possibility to change the website language.

14


http://zaurus.ttu.ee/

Errors in the implementation — students can lose access to the resources that they

requested and are thus forced to submit requests multiple times.

1.2 Objective

The objective of this thesis was the creation of a fully-functional software distribution

system to replace the existing one. The list of improvements made:

Improved visual design — application of a modern look to all website

components.

Improved user interface — added header and footer, improved resource list and
own request history for students, improved submitted request list, resource list
and user list view for administrators; improved individual request, resource and

user views for administrators.

Improved functionality — simplified process of adding new resources for
administrators, added request attributes for resource requests to allow
administrators to better weigh their decision concerning requests, added emails
to requesters when a decision regarding their request is made, added comments
for request decisions, improved generation of request lists as CSV files for
administrators, added a fully customizable homepage, added secure file
downloads straight from the request page, implemented language switching on

the go, without losing query results

Improved accessibility — added Estonian and English translations to
accommodate both local and foreign students with the ability to easily add other

language support

1.3 Implementation methods

The author used model driven development in the sense that a lot of information about

the requirements was received in the form of UML models from the supervisor. This

information was elaborated and discussed in collaboration with the supervisor. The

author created the database design model and the database implementation based on the

15



conceptual data model received as an input. The author used Enterprise Architect CASE
tool and its model transformations for that purpose. PHP was chosen as the
programming language for the creation of the website. Because the PHP version on the
server at the time of the project implementation was 5.3.5, no frameworks were chosen
and the code was written in basic PHP. PostgreSQL was chosen as the database system
for the project. These systems were selected in order to simplify maintenance of the

system by its administrators.

The user interface prototype was made manually with HTML and CSS. However, the
resulting interface had little in common with the initial design. Feedback was
continuously received from the thesis supervisor regarding the quality and usability of

the interface to ensure maximum satisfaction with the end product.

The front end was written in HTML with Twitter Bootstrap 3 components. Animated
components required jQuery and jQueryUI, JavaScript libraries. Form validation was
implemented on the server side rather than the client side to avoid circumvention by
disabling JavaScript. Secure software and CSV file downloads were handled with PHP

scripts.

1.4 Finding existing software distribution systems

Attempts were made to find a software distribution system template online, however,
they did not yield any relevant results. Examples of keywords used in Google search
were “software download system php”, “software distribution system php”, “software
download system template”, “software distribution system template”, “software

distribution system php”.

The only somewhat relevant results found with these keywords were associated with

limiting PHP software functionality through license keys.

16



2 System Analysis

The base functionality of the resulting application has to conform to the following

requirements, posed by the supervisor.

2.1 Actors

* Administrator — responsible for request, resource, and user management

* Requester — user authorized to view active resources, submit requests, and
download files

* Web guest — user that can only view the home page, register, and log in to the
system

2.2 Areas of competence
The system has three areas of competence:
* Administrator area of competence

* Requester area of competence

*  Web guest area of competence

2.3 Use case scenarios

In order to correctly analyse and implement actor-specific functionality, use case

diagrams were used (Appendix 1).

2.3.1 Cross-cutting concerns

Both the administrator and the user needed to be identified in order to use the website

(Figure 24).

17



2.3.2 Request management

The administrators need to be able to view a list of all requests, view specific requests
from that list, accept, reject or close the request, and view a list of accepted requests
submitted in a specific periods and the emails of requesters associated with those

requests (Figure 25).

The requesters need to be able to submit a request, view one’s own submitted requests,
and download the requested software files.

2.3.3 Resource management

Both the administrators and the users need to be able to view a list of active resources

(Figure 26).

The administrators need to be able to view a list of resources, both active and inactive,

add, modify, activate and inactivate individual resources.

2.3.4 User management

The web guests need to be able to register as a user of the system (Figure 27).

The requesters need to be able to view one’s own data and modify it and modify one’s

own password.

The administrators need to be able to view one’s own data and modify it, modify one’s
password, view the data of all users and modify it as well as their passwords, activate

and inactivate individual users, and add and remove administrator rights from users.

18



2.4 Database analysis

The created database accommodated all the previously discussed system requirements.

2.4.1 Entity-relationship diagram

The database had to conform to the entity-relationship diagram, posed by Erki Eessaar
(Appendix 2, Figure 28).

2.4.2 State diagram of main request register object

The state diagram for requests was provided by Erki Eessaar (Appendix 3, Figure 29).

2.4.3 Registers

The database contains four registers (Appendix 4):

* C(lassifier register (Figure 30)
* User register (Figure 31)
* Request register (Figure 32)

* Resource register (Figure 33)

19



3 Back-end Design

The following chapter describes the back-end design of the application.

3.1 Back-end implementation methods

Because the application is web-based, PHP was chosen as the programming language
because it is optimized for creating and rapidly deploying such applications. It is also
one of the most popular programming languages in the world, currently (as of May

2016) holding sixth place in terms of popularity [9] .

PHP does not require extensive configurations and compilation like Java, the code is
executed each time a page is loaded. The only action needed to deploy an application on
the server is to move the files containing the scripts into the HTTP server’s web page

directory.

Due to the fact that the PHP version on the server is 5.3.5, all modern frameworks are
incompatible with it. Attempts were made to install the Laravel framework, the most
advanced and popular PHP framework [10] . Laravel 4.2, the oldest Laravel version that
is still maintained, requires PHP at least version 5.4. Yii 1.1, which was supported by
the server, was not considered because the framework is deprecated and it would be
unproductive to spend time learning it when Yii 2, the modern version of the

framework, is completely different from its predecessor [11] .

Because of the aforementioned reasons and the fact that the application functionality
was not very extensive, it was decided that implementing the application with basic

PHP was the best solution.

For such a project, the database management system choice was not imperative, so

PostgreSQL was chosen as the database management system of choice for the project

20



because it was already set up and configured on the server. It provides good

functionality, and is familiar to the author.

3.2 Database

The following subchapter describes the database used in the system.

3.2.1 Security

Depending on the type of user currently browsing the application website, the
connection to the database is carried out by different database users: sd_guest,
sd_requester, sd_administrator — according to the areas of competence described in the
previous chapter. These users have the minimal set of privileges that are needed to do

their job in the database.

The database employs a public interface through the use of views and functions
(Appendix 5, Figures 34-35). This was done to simplify the process of restricting access

to certain tables for certain users.

In functions, the SECURITY DEFINER allows the function to act with the privileges of
its creator, meaning that no specific table restrictions must be imposed for database
users authorized to use the function. Therefore, all PUBLIC privileges were revoked

from all tables to ensure maximum security.

The search path includes the pg temp schema last in order to prevent the misuse of a
SECURITY DEFINER function, due to that schema being writeable for everyone. The
PUBLIC privileges of the functions were also revoked [12] .

3.2.2 Data integrity

In order to preserve data integrity, ON UPDATE and ON TRUNCATE triggers were
added to key tables. An ON UPDATE trigger was added to the request table, preventing

invalid state changes that do not correspond to the request state diagram.

21



3.3 PHP

The following subchapter describes the PHP basis of the system.

3.3.1 Security

The main security type that prevents unauthorized users accessing restricted pages is
creating session variables that show whether or not a user is logged in and if the logged
in user is an administrator or not. The session variables are set when a user successfully

logs in (Figure 1).

if (validate_password (fpassword, fFuser['password hash']l)) |

if (fuser['is actiwve'] = 'f'}) |
£login error = Str_login error;
} else [
if (fuser['iz admin'] == 't'}) |
#_SESSION['user is admin'] = true;
} else |
§_SESSION['user is admin'] = false;

}

£id = suzer(['u=ser_id'];
§_SESSION['user id'] = &id;

Figure 1: Code snippet showing the main security variables.

Other pages include the session handler.php file, which redirects the user to the

index.php page if the user is not logged in (Figure 2).

if (empty (5_SESSTION['user id']})} {
header ('Location: index.php'):
exit;

1 else |

Figure 2: Code snippet showing how non-logged in users are redirected
from a page.

Pages available only to administrators include the admin_rights _handler.php file, which
redirects logged in users with no administrator rights to the home page, exactly like in

the previous example (Figure 3).

22



<?php
if (!isset(s_SESSION['user iz admin'])

| §_SE3SSION['user is admin'] == false) {
header('Location: index.php'):
exit;

}

Figure 3: Code snippet shown how users without administrator rights are
redirected from a page.

Because the PHP version on the server was 5.3.5 and password functions were only
introduced in 5.5.0, secure password hashing was implemented with the help of an
external library called phpass by Openwall [13] to enable hashing and validating
passwords with the berypt algorithm.

Functions to create password hashes during user registration and password modification
as well as validate passwords were implemented in the file functions.php (Figure 4),
which also includes other functions that supplement the functionality of the application.
The 10 in the PasswordHash constructor parameter indicates the number of passes, the
same number as with modern PHP versions’ native password hash function. The
FALSE indicates the use of the existing berypt algorithm, which is implemented in PHP

5.3 and above.

function get password hash(spassword)

i
fhasher = new PasawordHash (10, FALSE);
return shasher->HashPasaword(spassword) ;

function validate password({$fpassword, $Spassword_hash)
{
thasher = new PasswordHash (10, FALSE):
return shasher->CheckPassword((string)spassword, $password _hash);

1
Figure 4: Code snippet showing the functions that create a password hash and validate it.

Cross-site scripting is prevented by the use of the htmlspecialchars() PHP function,
which translates injected script tags into HTML entities, preventing their execution

(Figure 5).

<form id="legin-form" method="post" action="<?= htmlspecialchars (§_SERVER["PHP_SELF"]) ?>" role="form">

Figure 5: Use of the htmlspecialchars() function to prevent-cross-site scripting.

23



All user input is also checked for cross-site scripting and SQL injections with the

clean_input() function (Figure 6).

function clean input (fdata)
{
global Sconnection;
tdate = trim({sdata):

tdata = atripslashes{fdata):
$data = htmlspecialchars {$data);
sdata = pg_escape_string($connection, sdata);

return sdata;
I

Figure 6: Code snippet showing the clean_input() function.

SQL injections were also prevented with parameterized queries using the
pg_query params function and passing user input as an array of values, ensuring that
the user input is inserted as values and there is no interpolation of malicious SQL

statements into the query strings [14] .

The efficiency of the implemented SQL injection prevention measures could not be
tested due to the server at viktor.ld.ttu.ee containing an intrusion prevention system that
detects SQL injections. A message (Figure 7) appeared in the browser window when

2

entering “qwe@ttu.ee; drop table droppable --” in the user list query, the injection was

prevented and the client computer’s IP address was blocked from the server.

Blocked because of IPS attack

An attack was detected, originating from your system. Please contact the system administrator.

Figure 7: Server's IPS detecting an SQL injection.

3.3.2 Database connection

The connection to the database, which is required for the functionality of almost all PHP
pages in the project, was done through the db_connection handler.php file using the

pg_connect() function.

24



For list pages, a separate class PostgreSQLPaginator.php [15] was created. Its
functionality is getting a list of objects from the database for a specific page as well as

generating HTML of the page indicator bar displayed below each list.

For individual SQL queries, a separate class PostgreSQLConnector.php was created.
The class deals with SQL queries that accept parameters and the ones that do not, as

well as SQL queries that are known to produce results and the ones that are not.

The PHP functions that connect to the database and retrieve data in the aforementioned
classes were preceded with the @ marker to suppress error warnings as well a try-catch
block in order to avoid leaking system and database information to the user in case of

€ITors.

3.3.3 Views

Because no frameworks were used, most of the project structure follows the basic model
of PHP code on top and HTML on the bottom for files that interact with the user (Figure
8)[16].

<?php
svarl = 1;

Pl

Fvar? =
=
<!DOCTYPE html>

<html>

<hody >

<pr<?= fvarl » + «<?= svari? "> = <= svarl + svar? =/p>
</body >

</html>

Figure 8: Basic structure of PHP files used to display information to users.

Pages the website user sees in the browser are located in the root project directory, for

each page there is a separate file (Table 1).

25



Table 1: Pages shown to the user.

File name

Function

add_resource.php

Allows administrators to add resources.

edit_content.php

Allows administrators to modify the HTML and PHP
content of the home page.

edit_configurations.php

Allows administrators to modify email filters for user
registration and change user password settings.

index.php Displays basic website information specified by the website
administrator.
login.php Allows web guests to log into the system.

my_account.php

Displays own user data to administrators and users. Allows
administrators and users to modify one’s own data and
change one’s password.

register.php

Allows web guests to register in the system.

request_list.php

Displays own requests for users and a full list of requests for
administrators. Allows administrators to find requests by
requester or resource name and submission date and
download a .csv file with the search results.

request.php

Displays request information for users and administrators.
Allows administrators to accept or reject submitted requests
and close accepted requests. Allows users to download files
if the request is accepted.

resource_admin.php

Displays resource information for administrators and allows
them to edit it.

resource_list.php

Displays a list of active resources for users and a full list of
resources for administrators. Allows users and
administrators

resource.php

Diplays resource information for users and allows them to
submit a request.

user_list.php

Displays a full list of users for administrators. Allows
administrators to search for users by name.

user.php

Displays user information for administrators. Allows
administrators to activate, deactivate the user, add and
remove administrator rights from the user, modify user data
and modify the user’s password.

26




The user also sees the header and footer, which are separate PHP files included in each

of the aforementioned page files.

3.3.4 Language switching

The footer contains links to the current page with current URI parameters, but adds
another parameter, “lang”, to it. The website supports two languages: English and
Estonian. When a user first views the website, Estonian is set as the default language.
After a user clicks on the language change icons in the footer, the page reloads with new
translations whilst retaining the previously present URI parameters, such as query

parameters for list pages.

All the text labels on the project, aside from the home page content, are parameterized
and loaded from a PHP file. There are two PHP files containing translations:
tarnslations ee.php and translations en.php (Figure 9). The Estonian translations were

provided by Erki Eessaar.

$tr_home page = "Kodu"; $tr home page = "Home";
§tr_register = "Registreeri"; str_register = "Register";
#tr_log_in = "Logl sisse"; 5tr_log_in = "Log in";

Figure 9: Content example of translations_en.php (left) and translations ee.php (right)

In order to add a new language, a new file named “translations_<language code>.php”
must be added to the content directory of the application with the same variable names
as the other translation files. A country flag icon must be added to the img/flags
directory of the application and referenced as a link in the footer.php file in the same
manner as the other language switching links. The flag icons for the application were
taken from GoSquared. The index page is shown in English for all new added

languages, only the interface language is affected.

3.3.5 Emails

To improve user experience, emails were implemented to notify requesters of the status

of their requests whenever the request was accepted, rejected, or closed.

27


https://www.gosquared.com/resources/flag-icons/

The email sending system was implemented with the PEAR Mail extension. A class
called Mailer.php was created to simplify the process of sending emails. The SMTP
server used for emails was TUT’s own onyx.ttu.ee. When the administrator makes a
decision regarding a request and adds a comment, the comment is also shown in the

email. For automatically accepted requests emails are not sent out.

3.3.6 CSV file generation

Administrators are able to generate a semicolon-separated CSV file of requests that fit
the search criteria and ordering. The script accepts the same search parameters as the

request list page.

The PHP script request_csv_generator.php (Figure 10) then generates the CSV file and

offers it for the administrator to download.

if {lempty ($results)) |
header ('Content-Type: text/csv; charset=utf-8');
header ('Content-Disposition: attachment: filename=requests.csv'):
soutput = @fopen({'php:/foutput', 'w'};

foreach ($results as $row) |
@fputcav (Soutput, Srow, ":"):

}

} elzse |
die(str no requests_ found warning);
}
Figure 10: Code snippet describing how .csv files are created for the administrator to download.

3.3.7 File downloads

Authorized users with accepted requests for software can download files from the
request page. Downloads are handled with the download.php script, which accepts the

software ID and the file name to download, for example,
http://viktor.ld.ttu.ee/software/download.php?1d=34&file=README..txt.

It is not possible to download another file on the system by entering, for example,
“./J../secret_directory/secret_file.txt” because the script strips the base name of the file

from the specified path and searches for the file only in the directory associated with the

28



specified software ID. The currently logged in requester’s ID is also checked to see if it

corresponds to an accepted request for the specified software.

If the validation is successful, the script then sends out headers, the most important of
which is the content header “application/octet-stream”, which forces any file type to be
downloaded, rather than displayed in the browser (in case of text files) [17] .

3.3.8 Home page content editing

The project features a fully-customizable home page. The content can be filled with
HTML, JavaScript and PHP. The content files content _en.php and content ee.php are

located in the same folder as the translation files.

Editing the page occurs from the user interface and not necessarily through direct

editing of the files on the server.

For the editing to work, the two content files must have write permissions enabled.

29



4 Front-end Design

The following chapter describes the front end design of the application.

4.1 Prototype

The initial prototype (Appendix 5, Figures 36-38) for the user interface was written in
HTML. The final design differs greatly from the prototype.

It was decided that implementing the user interface with Bootstrap components would
be the most time-efficient means rather than writing the HTML manually, the same was

as for the prototype.

4.2 Front-end implementation methods

The front-end was designed with Twitter Bootstrap 3, a free HTML/CSS framework
released under the MIT license. It provides a modern look and the ability to make a

fully-customizable user-friendly interface.

Some elements, such as drop-down lists and the date picker, required the inclusion of
JjQuery. Jquery, also released under the MIT license is one of the most popular

JavaScript libraries [18] .

Mobile view for the website was not considered because it was expected that both
students and administrators would use the website on their PCs rather than mobile

devices, considering how the software available is intended to be installed on PCs.

It was decided to base the design on the “10 Usability Heuristics for User Interface
Design” [19] .

The resulting design was tested in Firefox 45.0.2 and Internet Explorer

11.0.9600.18282.

30



4.3 Functionality

The following subchapter describes the functionality of each view.

4.3.1 Home page

The current address (as of May 2016) of the application is

http://viktor.ld.ttu.ee/software. The user is first presented with a title page with content

specified by the administrator (Figure 11).

\:-“iiu A Home 2 Register  *JLogin

TUT Software Distribution

Requesting software or access fo it through some other environment (Dreamspark) that is needed in the informatics or business information technology

related courses in the Tallinn University of Technology.
Currently available resources

l\ﬁﬂrlggcrﬁg {)ta 13

In this page you can register to TUT-related Microsoft DreamSpark Premium program. In registration page you can create request for new DreamSpark
account.

Below you find some possible guestions and answers about registration

Frequently Asked Questions

Q Am | qualified to register as TUT DreamSpark user?

A: If you are taking currently some IT-related courses in Tallinn Technical University then you are qualified and account will be created.

Q: What information | need to provide in registration form?

A: Certainly enter information about IT related courses you take in TUT. You also have fo provide your TUT e-mail address but you have it already
to register in the system.

@ Tallinna Tehnikadlikool

§|§!
K]

Figure 11: Home page.

The user is redirected to the home page when trying to access restricted pages and when

logging out.

4.3.2 Navigation

The main navigation occurs through the header, which is different depending on the

user’s account type and reflects the allowed user actions (Appendix 6, Figures 39-42).

31


http://viktor.ld.ttu.ee/software

Administrators can also see how many new requests there are that require manual

accepting. A badge indicating the number is shown next to the “Requests” tab.

The main functionality of the footer (Appendix 6, Figure 43) lies in the ability to change
the system language. In order to do that, the user can simply click on the flags in the

bottom right corner.

4.3.3 Registration

The registration page (Figure 12) contains the registration form. The mandatory fields

are indicated by red asterisks.

# Home 2 Register =Jlogin

Email

Allowed email domains: ttu.ee, dcc.tiu.ee

Given name
Surname
Password @

Confirm password

Figure 12: Registration page.

For all required fields, not only on this page, but on the others as well, the “required”
option in the HTML input tag is used, with server-side validation in PHP
complementing it in case the user’s browser does not support this option (for example,

Safari).

Email validation is primarily handled with the <input type="email”> HTML tag,
however, a PHP validation function using the FILTER VALIDATE EMAIL filter
exists in case the user’s browser does not support this type of input. The email domain
is also checked to ensure that the user has a valid University email. Other forms of
email validation on the server side include the maximum length of 254 characters [20]

and whether or not the email is already taken by another user.

32



Only the first name is made mandatory to allow for mononymous users with no last
names to register [21] . The given name and surname are checked for the maximum

length of 100 characters.

The password must contain at least the number of characters specified by the
administrator, include a lower case letter, an upper case letter, and a number. The
password must then be entered another time in order for the user to be sure that the right

password is entered. Registration error messages are shown next to each field.

If entering valid data, in this case, test.user@ttu.ee with the password Password123 and
given name User, the user is notified that registration is successful. The user can then

immediately log into the system and start using it.
4.3.4 Login
The login page (Appendix 6, Figure 44) features the typical views one would find in

most login pages: an email and password fields.

In case the user enters a wrong password or the email does not exist in the database, a
uniform error is shown static only that the user name or password was invalid. The error

is the same for both cases, in order to prevent potential data leakage to hackers.

The page also contains a link to an advanced password management system developed
by Eerik Migi, a TUT student [22] . It is possible to change and recover forgotten

passwords using that system.

4.3.5 Resource list

The resource list page is different for the requesters (Appendix 6, Figure 45) and
administrators (Appendix 6, Figure 46). The user is only displayed active resources,
whereas administrators can view all resources. Both account types can search for

resources based on their names.

4.3.6 Individual resource view

From the list page, requesters are redirected to the page containing basic resource data

and a form for submitting a request for the selected resource (Figure 13). If the resource

33



has any request attributes the user must provide values for the mandatory attributes but
can skip optional attributes. For instance, one might use attributes to collect information
that is needed in order to give a software license to the requester. If a description of a
request attribute is available, then it is displayed in both the text area placeholder and

the tooltip. The input for each attribute must not exceed 1000 characters.

After a requester submits a request, the requester is redirected to the submitted request

page, which will be discussed later.

\ﬁiin A Home '™ Browse resources My requests Signed in as Test User & My account C* Log out

Dreamspark

Juurdepaasu kisimine Microsoft Dreamspark keskkonnale
Requesting Access to the Microsoft Dreamspark environment.

¥ Kursused @

Submit request

Back fo list

Figure 13: Resource page for requesters

If the requester views the same resource again, a message appears indicating that

repeating requests are not allowed with no ability to submit another request.

From the resource list page, administrators are redirected to a different resource view
(Figures 14-15). On this page, administrators can activate or deactivate the resource,
edit the product name, description, whether or not manual accepting is required,
software location, and the request attributes presented to requesters. Request attributes

can be added and deleted, activated or deactivated, and made mandatory or optional.

Resource description can contain HTML, and a preview of the description can be seen
below the field so that the administrator can see how requesters would see the

description.

34



When changing the resource’s name, a check is made to determine if that name already

exists in the database. If it does, an error is displayed under the resource name field.

When specifying a software location, the administrator can immediately see whether or
no the entered file path is correct by the text output below the field. The directory is
scanned and the file contents are displayed. Software locations must also be unique for
each added resource and if a software location currently in use is specified, an error is

shown under the software location field.

luiii\ ftHome  ERequests  /#Tools ~ Signed in as Viadislav Goltjajev & My account G+ Log out

Resource name

Dreamspark *
Resource type Access
Status Active &

[[] Accept required
Resource description &

<div class="text-center"><img style="widih: 40%; height. auto" src="img/Dreamspark.png"></div><br> il
Juurdepaasu kisimine Microsoft Dreamspark keskkonnale

< [m

<p>Requesting Access to the Microsoft Dreamspark environment.

Resource description
preview

= I\Ddi!gé?wﬁggark

Juurdepaasu Kusimine Microsoft Dreamspark keskkonnale.
Requesting Access to the Microsoft Dreamspark environment.

Figure 14: Resource page for administrators (basic information).

Attribute name

Kursused *

Attribute description

Miliiste IT kursuste jaoks seda vaja laheb? In what IT courses do you need it?

Is active
Is mandatery

= Remove request aftribute
4 Add request attribute

Back fo list

Figure 15: Resource page for administrators (request attribute and status controls).

35



Activating and deactivating a resource is done by pressing the “activate resource” and
“deactivate resource” buttons. When the resource is inactive, it cannot be updated and
new request attributes cannot be added. The only action available is activation. To
update request attributes, the administrator must make all the needed changes and press

“update resource”.

When removing a request attribute, a check is made to determine if there is a submitted
request which contains a value associated with this attribute. If a value exists, an error
message is displayed near the attribute marked for deletion. It is possible to make such
attributes inactive, meaning that one does not see the attributes and thus does not have

to provide values for these in case of new requests.

Request attribute names must be unique for a resource. If the user enters duplicate
attribute names, errors are shown stating that the attribute name already exists for the
selected resource. If all changes are valid, a success message appears when updating the

resource.

4.3.7 Add resource page

The add resource page contains a form administrators can fill out to add a resource
(Figure 16). If the resource type is software, an additional field to enter the software

location is added.

i Mrome  QRequests  /F Tools - signed in as Viadislav Goltjajev & My account G+ Log out

Resource name

@ Software Access

Resource location @

Accept required

Resource description &

Figure 16: Add resource page.

36



The resource name and location, in the case of software, are checked to determine if
they already exist in the database. If they do, an error is shown under the fields. If a
request attribute is added and the name is not filled, an error is shown under the attribute

name field.
If the entered data is valid, the resource is registered and a success message is shown.

4.3.8 Request list

Requesters can only see requests submitted by themselves. Administrators can view the

full list of requests (Appendix 6, Figures 47-48).

In the query form, administrators can specify requester first and last names as well as
requested resources, request statuses, and find requests submitted after a specific date. If

no statuses are selected, a search is performed for all statuses.

The date picker [23] was implemented with jQuery and jQuery UI libraries. It supports
localizations (Appendix 6, Figure 49) and does not select future dates and dates older

than 01.01.2000.

The “CSV” button allows administrators to download the request list fitting the search

criteria to a .csv file.
If no requests are found, a message is shown and the CSV button is hidden.

4.3.9 Individual request view

Requesters, after submitting a request for a resource, are redirected to the request page
(Figure 17). If the resource does not require manual accepting by administrators, a
message is shown that the request is automatically accepted. The page contains the
request data, submitted request attribute values, and files available for download if the

resource type is software.

37



lﬁiin #A Home W Browse resources My requesis Signed in as Test User A Wy account C» Log out

Resource name Enterprise Architect (11)
Submitted on 06.05.2016 21:36
Status Accepted ity

Download files
EA11.10.1107.9.zip
LOEMIND.bxt
README txt

TUTKeySiorage bat

Back to list

Figure 17: Request page for software.

The user can immediately start downloading the files if the request is accepted by
selecting the file links. If the request is later closed, the download links are removed and
the user is not able to download files any more even if manually using a previously

acquired download link.

For administrators, the request page contains a form for accepting, rejecting, or closing
requests (Figures 18-19). If a request is submitted, the administrator can accept or reject
it. An optional comment can be included, which will be shown in the request

information as well as the email sent to the requester.

il MArtvome LD Requests@)  FTools ~ Signed in as Vladislav Goltjajev & My account  ©Log out

Resource name Dreamspark
Submitted by Test User (test.user@tiu.ee)
Submitted on 06.05.2016 22:13
Status Submitted B

Kursused @

DBlandll
Comment

Back to list

Figure 18: Submitted request.

38



] #A Home & Requests # Tools ~ Signed in as Viadislav Goltjajev & My account > Log out

Resource name Dreamspark

Submitted by Test User (test.user@ttu_ee)

Submitted on 06.05.2016 22:13

Status Accepted iy

Commenter Viadislav Goltjajev (viadislav goltjajev@ttu ee)

Comment time 06.05.2016 22:16

Comment Request accepied, we will contact you with further information.
Kursused @
DBlandll

Comment &

Back to list

Figure 19: Accepted request.

After accepting or rejecting a request, a success message will appear. If the request
status is “accepted”, the administrator can close the request and disable access to the
resource. The comment submitted during request closing will overwrite the existing

comment made during request accepting.

After a request is closed, a success message is shown and no further actions can be done

with the request.

4.3.10 Account view

For both requesters and administrators, the account view is the same (Figure 20). The
page contains two forms: one for updating account details and the other for updating the
password. The form validation is done in the same manner as with user registration,

with the single addition of the old password field.

The account view also contains a link to the aforementioned advanced password

changing system.

39



in A Home W Browse resources My requesis Signed in as Test User ;3 My account (» Log out

Email

test.user@tiu.ee *

Given name

Test *

surname

User

Last login 22.05.2016 18:01

Update account

Old password

*
New password @

*
Confirm new password

*

Advanced password management

Change password

Figure 20: Account view.

The user must enter the old password and specify the new one two times in order to
change it. If the old password is invalid or the new password is too weak or does not
match the confirmation password, errors are displayed below the fields. If valid data is

entered, a success message is shown.

4.3.11 User list

Administrators can view the full list of users registered in the system (Figure 21). The

query form allows searching for user first names, last names and emails.

lﬁiin frtome  ERequests /& Tools ~ Signed in as Viadislav Goltjaiev & My accoun C* Log out
Q Search

Name Email Account type Status Last login

Eerik Magi eerik magi@ttu ee User Active 18.05.2016 01:56
Erki Eessaar Erki.Eessaar@tiu.ee User Active 22052016 1716
Test Admin test.admin@ttu.ee Administrator Active 20.05.2016 00:06
Test User test.user@ttu.ee User Active 22.05.2016 18:01
Vladislav Goltjajev viadislav.goltjajevi@ttu ee Administrator Active 23.05.2016 02:15

Figure 21: User list.

40



4.3.12 Individual user view

From the user list page, administrators are redirected to the user view page (Figure 22).

':'iiii‘ frHome  ERequests  / Tools - Signed in as Viadislav Goltjajev. & My account G+ Log out

Email

test user@tiu ee *
First name

Test *
Last name

User
Account type User
Status Active
Last login 06.05.2016 22:12

Update user details

New password @

ew passwo *

Confirm new password

M NEW passwo *

Change password

Figure 22: User view.

Administrators can update the user’s details, activate and deactivate the user, add and
remove administrator rights from user and update a user’s password. Form validation is
done the same way as in the account view page and the success and error messages are

identical.

When viewing own user details, administrators cannot remove administrator rights and

deactivate themselves.

4.3.13 Home page content editing

Administrators can edit the HTML and PHP content of the home page (Figure 23).
After editing the code and pressing the “save” button, the page content is immediately

reflected.

If the files that contain the content are not found or do not have write permissions, an

error message is displayed for each file.

41



Home EE:

| »

=<div class="text-justify"=
«div class="text-center"=
<h2><?=§ir_sd_fitle ?></h2>
</div=
<div class="vspacer-20px"></div>

m

<p>TTUs informaatika ja ariinfotehnoloogia erialade jaoks vajalike programmide allalaadimine v8i neile juurdepaasu taotlemine ménes teises
keskkonnas (Microsoft Dreamspark) </p>

<?php

$connector = new PostgreSQL Connector($connection);

$sgl = "SELECT software_id, access_id, name FROM active_resource_list_limited";
$results = $connector-»executeQueryWithResuli($sql).

7

<?php if (lempty($results)). 2=

Home EN:

»

«div class="ftext-justify"=
<div class="texi-center"»
<h2=<7= $tr_sd_title ?=</h2>
<idiv
<div class="vspacer-20px"=</div=

K|

<p=Requesting software or access fo it through some other environment (Dreamspark) that is needed in the informatics or business information
technology related courses in the Tallinn University of Technology.</p>

<?php

$connector = new PostgreSQLConnector($connection);

$sgl = "SELECT software_id, access_id, name FROM active_resource_list_limited";
$results = $connector-rexecuteQueryWithResult(3sql),

7=

<?php if {lempty($results)): 2=

Figure 23: Content editing form.

4.3.14 Application settings editing

Administrators can specify which email domains are allowed during new user
registration, the minimum password length and password recovery resource links

(Figure 24).

Wi MHome  E@Requests /£ Tools ~ Signed in as Viadislav Goltjiajev & My account (& Log out

Edit email filters

Enter permitted email domains for new users. Current users will not be affected. Each domain must be on a new line
and MUST NOT contain the '@' characier. If the domain list is empty. all emails are permitted

ttuee
dec tiuee

Edit password settings
Minimum password length

10 ¥*

Link to password changing resource

hitp:/viktor.ld.ttu.ee/passwords/

Link to password recovery resource

hitp://iviktor Id.ttu_ee/passwords/?page=ForgotPassword

Figure 24: Application settings editing form.

42



5 Comparison Between the Old and New Versions of the

System

The current version of the system, located at http://zaurus.ttu.ee/, has many drawbacks

as compared to the newly created system (Appendix 7).

The first thing one notices is the almost complete lack of any design and the prevalence
of grey color in all elements (Appendix 7, Figure 50). The first distinguishing lack of
functionality is seen in the inability to change the user interface language, which greatly
limits its accessibility to foreign students. This limitation is fixed in the new system

version by allowing users to switch between English and Estonian.

The login page (Appendix 7, Figure 51) contains unnecessary information about

available resources.

The registration page (Appendix 7, Figure 52) does not explicitly show which fields are
required and which are not. It was presumed that the bold field labels were supposed to
be indicative of the fields being mandatory, however, a red asterisk, the common
indicator in such cases, would be more suitable. The only user information
administrators can base their decisions on are the student code and studied IT subjects,
which allows for poor flexibility in terms of adding resources that require more

information about the requester to base the request decision on (Appendix 7, Figure 53).

Adding and editing resources (Appendix 7, Figure 54, provided by Erki Eessaar) offers
some degree of flexibility, however, the inability to specify resource-specific request

attributes is a considerable disadvantage.

Users are divided into two groups, ones who apply specifically for the DreamSpark
program and those who apply for software downloads. There is a separate registration

form for DreamSpark accounts.

43


http://zaurus.ttu.ee/

The DreamSpark user type page, contains only the option to update user details. The
page also contains unnecessary available resource information, when there is no option

of making requests.

Error handling on the system is also poorly implemented, seeing that PHP errors show

debug data to the user.

Everything is incoherently cramped together on one page. The new design addresses
this issue by splitting up the website part of the system into separate pages, each with its
own function. This is an example of applying separation of concerns design principle

[24] .

44



6 Summary

The goal of this thesis was to design and implement a universal system for distributing
software and granting access to other resources for students. The system had to be
written in PHP and connected to a PostgreSQL database, and be an upgrade to the

currently existing TUT software distribution system.

The set goal was completely fulfilled. The system is functional and ready to be used.
Language support for the system is not limited to English and Estonian. If necessary, it

can be expanded to include other languages with minimal code changes.

The implemented system is generic enough to be usable in case of other organizations
that need the same functionality. As it sometimes happens in the software field, after
implementing the system one starts to see other possible use cases of the system. In this
case the system can be used to distribute other content as well assuming that the content
is in files. The only problem in case of the current implementation is that it refers to the
concept "software" not to more generic concept "content". Regarding the original task

of the system one should not consider this as a weakness.

Due to time constraints, some features were left unimplemented, such as sorting
resource, request and user lists, which may be considered as a possible future

improvement.

Another possible improvement would be rewriting the website part of the system using
the Laravel PHP framework. Among other features, such as pagination, emails,
localizations, support for multiple databases with a simple query interface, it would not
be necessary to implement own measures of security, as they would already be available
out of the box, such as cross-site scripting prevention, user authentication and even a

system for resetting passwords.

45



References

[1] Software Case Tools Overview — TutorialsPoint (2016) —

http://www.tutorialspoint.com/software_engineering/case tools_overview.htm
[Online] (21.05.2016)

[2] CSS Tutorial — W3Schools (2015) — http://www.w3schools.com/css/ [Online]
(10.03.2016)

[3] HTML Introduction — W3Schools (2016) —
http://www.w3schools.com/html/html_intro.asp [Online] (10.03.2016)

[4] About JavaScript — Mozilla Developer Network (2016) —
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About JavaScript
[Online] (16.03.2016)

[5] MIT License — Open Source Initative — https://opensource.org/licenses/MIT
[Online] (17.04.2016)

[6] PEAR - PHP Extension and Application Repository — The PHP Group (2016) —
https://pear.php.net/ [Online] (25.04.2016)

[7] PHP — The PHP Group (2016) — http:/php.net/ [Online] (25.02.2016)

[8] SQL Tutorial - W3Schools (2016) — http://www.w3schools.com/sgl/ [Online]
(25.02.2016)

[9] TIOBE Index for May 2016 — TIOBE (2016) — http://www.tiobe.com/tiobe_index
[Online] (14.03.2016)

[10] Why laravel is best php framework in 2016 — Amar InfoTech (2016) —
http://www.amarinfotech.com/why-laravel-is-best-php-framework-in-2016.html

[Online] (01.03.2016)

[11] Upgrading from Version 1.1 — Yii Framework (2014) —
http://www.yiiframework.com/doc-2.0/guide-intro-upgrade-from-v1.html
[Online] (01.03.2016)

[12] CREATE FUNCTION — PostgreSQL Documentation (2016) —
http://www.postgresql.org/docs/9.1/static/sql-createfunction.html (22.05.2016)

[13] phpass — Openwall — http://www.openwall.com/phpass/ [Online] (07.03.2016)
[14] pg_query params — The PHP Group (2016) —
http://php.net/manual/en/function.pg-query-params.php [Online] (07.04.2016)

46


http://php.net/manual/en/function.pg-query-params.php
http://www.openwall.com/phpass/
http://www.postgresql.org/docs/9.1/static/sql-createfunction.html
http://www.yiiframework.com/doc-2.0/guide-intro-upgrade-from-v1.html
http://www.amarinfotech.com/why-laravel-is-best-php-framework-in-2016.html
http://www.tiobe.com/tiobe_index
http://www.w3schools.com/sql/
http://php.net/
https://pear.php.net/
https://opensource.org/licenses/MIT
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
http://www.w3schools.com/html/html_intro.asp
http://www.w3schools.com/css/
http://www.tutorialspoint.com/software_engineering/case_tools_overview.htm

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

How to Paginate Data with PHP — Envato Tuts+ (2009) —
http://code.tutsplus.com/tutorials/how-to-paginate-data-with-php--net-2928

[Online] (01.03.2016)

Web Applications I materials — Tanel Tammet (2014) — http://lambda.ee/wiki/V
%C3%B5rgurakendused 1 (20.03.2016)

Force file download with php using header() —StackOverflow (2013) —
http://stackoverflow.com/questions/8485886/force-file-download-with-php-using-
header [Online] (26.04.2016)

Usage of JavaScript libraries broken down by ranking — Q-Success (2016) —
http://w3techs.com/technologies/cross/javascript_library/ranking (01.04.2016)

10 Usability Heuristics for User Interface Design — Jakob Nielsen (1995) —
https://www.nngroup.com/articles/ten-usability-heuristics/ [Online] (13.03.2016)
RFC 3696 addendum — RFC Editor (2005) — https://www.rfc-
editor.org/errata_search.php?rfc=3696 [Online] (19.03.2016)

Falsehoods Programmers Believe About Names — Kalzumeus (2010) —

https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-
names/ [Online] (15.03.2016)

Eraldiseisev iseteeninduslik paroolide vahetamise veebitarkvara olemasolevate
rakenduste jaoks — Eerik Migi (2016) Bakalaureusetos. TTU
Informaatikainstituut.

Datepicker — jQuery UI (2016) - https://jqueryui.com/datepicker/ [Online]
(01.04.2016)

Separation of Concerns — Wikipedia (2016) —

https://en.wikipedia.org/wiki/Separation_of concerns [Online] (22.05.2016)

47


https://en.wikipedia.org/wiki/Separation_of_concerns
https://jqueryui.com/datepicker/
https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/
https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/
https://www.rfc-editor.org/errata_search.php?rfc=3696
https://www.rfc-editor.org/errata_search.php?rfc=3696
https://www.nngroup.com/articles/ten-usability-heuristics/
http://w3techs.com/technologies/cross/javascript_library/ranking
http://stackoverflow.com/questions/8485886/force-file-download-with-php-using-header
http://stackoverflow.com/questions/8485886/force-file-download-with-php-using-header
http://lambda.ee/wiki/V%C3%B5rgurakendused_I
http://lambda.ee/wiki/V%C3%B5rgurakendused_I
http://code.tutsplus.com/tutorials/how-to-paginate-data-with-php--net-2928

Appendix 1 — Use Case Diagrams

uc Cross-cutting concerns /

b

Identify user
Administrator Requester
(from (from
Aress of Aresz of
competence) competence)

Figure 24: Cross-cutting concerns.

uc Request management /

View all the

requests
Submit request . __.—"“
Zuincludes

View a request

View the list of -
submitted requests

V"

Requester Y\\ T
(From \\ocirldudE»__“
Areas of ™ a
compefence) - % Reject i -
: ~ -
View own requests xincludex
-
LY
A
-
~

Close request

View the list of e-
mails of requesters

Figure 25: Request management.

48



uc Resource management/

Register resource
Requester
[from

Areas of
competence]

3

Activate resource Web Guest

View active
Modify resource A bt

W

t

Administrator from

Areas of
competence]

[from
Areaz of
competence)

Inactivate resource

e

View all the
resources

Figure 26: Resource management.




uc User management

gi a5 user Wi ok cebl e — == —— == Activate user
«includes
Web Guest
[from ?‘_ i
Areaz of \ T~
competence) \ OtII'IdLIdEnH ”
A
«includes
‘\ Inactivate user
!
Look user data \
Administrator
View own data
(from
ompeience)
Requester
(from
Areaz of
compefence) X
Modify own data
Modify user data
'y
xincludex
P} v
I,,f’ «includes
|
Medify user
passwaord

Figure 27: User management.



Appendix 2 — Entity-relationship Diagram

class ERD

For instance, Enterprise
Architect and Rational
Rose

Register of requests::

Request decision_comment

mment: char
ecision_time: date

+commenter

1

Reqister of users:User

- first_name: char

- is_sctive: boolean
- is_admin: boclean +requester
- last_login: timestamp

Register of resources::

Register of
Software

- resgurces::

Access

- location: char {id}

\

Resource type

“ Resource type

Reqister of resources::
Resource

- description: char

For instance, to
Microzoft Dreamspark

Register of resources::
Resource_request_attribute

- is_sccept required: boolean 1
- is_sctive: boolean

- name: char {id}

- reguest_resdme: char

1

Reqister of requests::
Request

last_name: char

password: char
wida

e_mail: char

+cument state 1

Register of classifiers:
Request_state_type

- name: char {id}

aidn

request_state type_code: int

- woeation_time: timestamp

Reqister of requests::

Request_wvalue

- reguest_value: char

- desoiption: char

0.*|- is_active: boolean

- is_mandatory: booclean
- name: char

1

«invariants

IThe name must be
unique within the
resource}

atinvariants B
{Each request must provide a
value for each mandatory
rescurce request atiribute.
Each request must provide
wvalues only for those resource
request attributes that belong
to the requested resource.}

Figure 28: Entity-relationship diagram.

51




Appendix 3 — Request State Diagram

stm Lifecycle of requests /J

itial

User submits a8 reguest
User submits a request [is_scoept_required=FALSE or the
[is_scoept_required=TRUE; rescurce does not have this attribute;
mandatory request attribute mandatory request attribute values are

values are provided] provided]

Administrator decides to sccept
Isystem possibly sends e-mail

Administrator decides to reject Administrator understands that he/she has made a
/Registers the reason; system mistake or does not want to alllow the access any more
possibly sends e-mail fsystem possibly sends e-mail
Rejected
Closed

Figure 29: Request state diagram.

52



Appendix 4 — Physical Database Design Diagrams

class Classifier regiﬁter/

request state_type E

won | Lmins
“PHK. reguest_state_code: smallint

- name: varchar[200)

xPHx
+  p_reguest_state code{smallint)

wlniques
+  reguest_state_name_unigue{varchar)

Figure 30: Classifier register.

class User register /

sd_user E

woolumns
*PK user_id: integer
- email: varchar(254)
- password_hash: varchar{258)
= first_name: varchar{100})
is_active: boolean = true
is_admin: boolean = false
last_login: timestamp without time zone = localtimestamp{0})
last_name: varchar{100})

b

+  pd_user_id{integer)
achedis

+  email_is_ttu_email{varchar)

+  password_hash_no_spaces|varchar)

+  password_hash_not_empty{varchar)
wlniques

+  sd_user_email_unigque{varchar)

+  sd_user password_hash_unigue{varchar)

Figure 31: User register.

53



class Request register

request E
awcolumns
“FK request_id: serial E
= uest state_type
“FK. request_state_code: smallint = 1 g - =
“FK. requester integer s T
*  oreation_time: timestamp without time zone = localtimestamp{0) +pi_request_state_code *PK request_state_code: smallint
[request_stste_code = - nam r.‘,ha? 200
_ = PRy —— =
«Fi o request_state_code) e 1
+  fi_reguest_reguest_state_typesmallint) - «Pls
7 EIOETIZECT LemiTieie +fi_request_request_state_type + pi_request_state code(smallint)
“'"fjex” ] aunigues
+  ixfe_request_request_state_type{smallint) +ph_request_id +  request_state_name_unigue{varchar)
+  ixfe_request_sd_user{integer) - = -
«FHa i S\\w Fla
o RilmI= EEEE {IE:]I.I‘E-'ST id = request_id)
+fi_request_decision_comment_request
+pi_reguest_id 1 \D..' 0.4
+fi_request_sd_user
{request_id = request_id) request_decision_comment E
1
FK:
e acolumns
“pfk request_id: integer
+fi_request_value_request|0..7 *FK. commenter: integer
- comment_time: timestamp without time zone = localtimestamp{0}
request_walue % - comment: varchar{1000)
wcolumns aFHa
“pfi request_id: integer +  fu_request_decision_comment_reguest{integer)
“pfi attribute_id: integer {requester = user_id) +  fi_request decision_comment_sd_user(integer)
= attribute_value: text i
+  ixfi_request_decision_comment_reguest{integer)
«Fkax aFka 2 - .
. +  ixfi_request_decision_comment_sd_user{integer)
+  fi_request_value_request{integer)
+  fa_request_value_rescurce_request_atfribute(integer) «PHe
) - pi_request_decision_comment_id{integer)
windexs
+  ixfe_request_value_resource_request_attribute{integer) 0. / +& _request_decision_comment_sd_user
«Pls - - - T
+ pk_request_id_sttribute_id{integer, integer)
{commenter = user_id)
£

| a.= «FKa
+fi_request_value_rescurce_request_stiribute

{attribute_id = attribute_id)
] .
«FKa *pi_user_id 1) 1 +pk_user id

+pk_attribute_id 1

resource_request_attribute E

Figure 32: Request register.

54



class Resource register/

resource E

acolumne +pk_rescurce_id

*PK resource_id: serisl
- name: varchar{200} 1
= is_active: boolean = true

(access id = resource_id)
is_sccept reguired: boolean = false ) T -

desoription: varchar{1000}) wFka 1\\

+fi_scoess_resource 0.7
wPkw —
+  ph_resource_id{zerial) T
aUniguUeEs
+  resource_name_unigue{varchar) +pk_resource_id wColumine
\ ] 1 “ofK acoess_id: serial
+pl_resource_id
aFKa
+  fu_scoess_resource({serisl)
wPHx
[software_id = resource_id) Topes _idiserial)
Y

(resource_id = resource_id)

l wFHx
aF K

+fu_software_resource
+fu_attribute_rescurce

0.=
o=
software E
resource_request attribute E
xoolumne
acolumne “pfi software_id: serial
*PK attribute_id: serial - location: warchar{1000})
*FK resource_id: serial
*  name: varchar(200) wF K .
- is_mandatory: boolean = true +  fi_software_resource{serial)
= is_active: boolean = true aPKn
desoription: warchar{1000}) + pi_software_name{serial)
aUniguUEs
wFke . . +  sowhware_|location_unigue{warchar)
+  fu_athibute_resource({serial)

windexs
+ ixfi_attribute_resource{serial)
wP
+  pi_stiribute id{serial)
wUniques
+  stiribute_name_resource_unigue({serial, warchar)

Figure 33: Resource register.

55




Appendix 5 — Database SQL Statement Examples

CREATE OR EEPLACE VIEW user list AS
SELECT uszer id,

email,

first name,

laszt _name,

laszt login,

is actiwve,

iz admin

FROM =d user

ORDER BY first name ASC;
COMMENT ON VIEW uwser list

IS 'Shows li=st of user ID=, emails, first and last names, last login dates
and or not a user iz active and i=s an administrator.';

Figure 34: Example of a view used in the system.

CEEATE OR REFLACE FUNCTION update user last login(sd user.user id%TYFE)
RETURNS VCID
AS EE
UPDATE =d user SET last login=DEFAULT WHERE user_id=$;;
£ LANGUAGE SQL
EETUERNS NULL OH HULL INFUT
SECURITY DEFIHER
SET zearch path = public, pg temp:
COMMENT ON FUNCTION update user last login(sd user.user id%TYPE)

e, Fails if no u=ser

S

IS5 '"Updates user last login da ID i= specified.’':

Figure 35: Example of a function used in the database.

56



Appendix 5 — Initial Interface Prototype

EST | ENG | RUS

{ TALLINNA TEHNIKAULIKOOL
| TALLINN UNIVERSITY OF TECHNOLOGY

TTU Licensed software distribution

N

TUT students studying IT-related subjects are eligible to download licensed software from the
local server after registering. Students with a TUT email account are also eligible fo register for
Microsoft DreamSpark and download Microsoft products such as Microsoft Windows and
Microsoft Visio.

Home

Requests are considered on Tuesdays and Fridays.

Available software on the local server:
> Enterprise Architect
> Rational Suite ver 7.0 (2006)
> Rational Suite + XDE + RPW ver 2003.06.15
> RUP
> Visual Basic 6

Downloading instructions

NB! If your request for Rational or Visual Basic 6 has not been confirmed, please refer to the
lecturer whose subjects you intend to use the software for.

For other enquiries, please email Tarmo Veskioja (tarmo veskioja@ttu ee).

016 Tallinna Tehnik:

Figure 36: Home page prototype.

57



TALLINNA TEHNIKAULIKOOL
TALLINN UNIVERSITY OF TECHNOLOGY

TTU Licensed software distribution

Home ‘ DreamSpark ‘ | Login Register

A E-mai

&  Password

LOGIN

Questions: tarmo veskioja@ttu.ee

6 Tallinna Tehnikaiilikool

Figure 37: Login page prototype.

{ TALLINNA TEHNIKAULIKOOL
| TALLINN UNIVERSITY OF TECHNOLOGY

TTU Licensed software distribution

* E-mail (@ttu.ee):
* First name:

* Last name:

* Password:

* Confirm password:
* TUT student code:

* Studied [T-related subjects:

REGISTER

2016 Tallinna Tehnikad

Figure 38: Registration page prototype.

58



Appendix 6 — New User Interface Screenshots

il A Home

2 Register  4JLlogin

Figure 39: Non-logged in user header.

‘:"uiii' # Home ™ Browse resources My requests Signed in as Test User & My account G Log out

Figure 40: Requester header.

Wi Mrtome  QRequests /£ Tools -

Signed in as Viadislav Goltjiajev & My account G+ Log out
Resource list
Add resource H . -
TUT Software Distribution
User list
Requesting soft some other environment (Dreamspark) that is needed in the informatics or business information technology
related courses  Edit home page content  nology.
Application settings
Figure 41: Administrator header.
it MHome [DRequests @ A Tools - Signed in as Vladislav Goltjajev & My account  (Log out
Figure 42: Header with one new request.
® Tallinna Tehnikatlikool .

Figure 43: Footer.

59



# Kodu 2 Registreeri

& | Email

& | Passy

Unustasid parooli?

Logi

Figure 44: Login page.

# Home '™ Browse resources My requesis Signed in as Test User & My account
Q Search
Click on a resource to see its description and submit a request.
Resource name Resource type
Dreamspark Access
Enterprise Architect (11) Software
Enterprise Architect (12) Software
Rational Rose Software

Figure 45: Resource list page for requesters.

frHome A Requests  /Tools ~ Signed in as Viadislav Goltjaiev & My account
Q, | search resou Search
Resource hame Resource type Status
Dreamspark Access Active 4/
Enterprise Architect (11) Software Active: 4
Enterprise Architect (12) Software Active 4
Rational Rose Software Active v

Figure 46: Resource list page for administrators.

60

=] Logi sisse

G Log out

G+ Log out



‘i| .:‘ A Home ' Browse resources My requests Signed in as Test User & My account G Log out

Resource name Submitted on Status

Dreamspark 02.05.2016 16:14 Submitted g

__-,,

Figure 47: Request list for requesters.

Wi MHome QRequests Tools ~ signed in as Viadislav Goltjajev & My account G Log out
Q Search
=
Submitted Accepted Rejected Closed csv

Resource name Submitted by Submitted on Status
Enterprise Architect (11) test user@ttu ee 22 052016 0042 Accepted i
Enterprise Architect (12) test.user@tiu.ee 21.05.2016 23:28 Closed x
Dreamspark test.user@tiu.ee 06.05.2016 22:13 Accepted W
Dreamspark testuser@tiu ee 06.05.2016 22:09 Closed x
Enterprise Architect (11) testuser@ttu ee 06.05.2016 21:36 Closed x
Dreamspark test user@ttu.ee 02.05.2016 17:43 Rejected L]
Dreamspark test.user@tiu.ee 02.05.2016 17:22 Closed x
Dreamspark test.user@tiu.ee 02.05.2016 17:14 Closed x
Rational Rose testuser@tiu ee 02.05.2016 17:04 Closed x
Dreamspark testuser@ttu ee 02.05.2016 16:14 Rejected Led

‘|

Figure 48: Request list for administrators.

Show requests not older than pdita taotluseid, mis pole vanemad kui

sul © May 2016 o Mai 2016 tud

Mo Tu We Th Fr 5Sa Su E T K N R L P

Figure 49: Date picker with different localizations.

61



Appendix 7 — Current zaurus.ttu.ee design

DreamSpark programmi kasutajatale / for DreamSpark users - go to http://zaurus.ttu.ee/dreamspark/

Siin serveris on v&imalik registreerida ennast KOHALIKUS SERVERIS oleva tarkvara allatdmbajaks (Rational . Visual Basic 6)

Rationali allalaadimise kinnitusi ja li fe jagamisi tehakse reeglina 2 korda nadalas: teisipaeval ja reedel

Tarkvara allalaad TTU IT tudengitele - alla-laadimine kohalikust serverist (Rational , Visual Basic 6): KOHALIKU SERVERT KASUTAJA

Allalaadimise juhend

Peale konto registreerimise aktsepteerimist naidatakse teile linki, sellelt lingilt

saate peale autentimist tarkvara alla laadida. Veebserver kusib teilt allalaadimislingile vajutades
kasutajanime ja parooli. Sisestage sama kasutajanimi japarool mida kasutate veebisiisteemi sisse
logimiseks

Allalaadimis ja registreerimsiprobleemide probleemide korral
poorduge aadressil tarmo.veskioja@ttu.ee

NB! NB! RATIONALI JA VISUAL BASIC6 TARKVARA JAGAMISE SISULISTE KUSIMUSTEGA (niiteks miks on alla-laadimis soov kinnitamata) POORDUGE SELLE OPPEJOU
POOLE KELLE AINE RAAMES TE TARKVARA KASUTADA SOOVITE !

Tarkvara véivad kasutada ainult TTU IT erialasid dppivad tudengid.

Figure 50: zaurus.ttu.ee home page.

[registreeri kohaliku serveri kasutajaks]

kasutajanimi:
parool:
login_
Tarkvara mis on saadaval sellest serverist
Enterprise Architect
Rational Suite ver 7.0 (2006)
Rational Suite + XDE + RPW ver 2003.06.15
RUP
Visual Basic 6

Figure 51: zaurus.ttu.ee login page.

62



Registreerimine kohaliku server: tarkvara kasutajaks
kasutajanimi:
parool:
eesnimi:
perekonnanimi:
e _mail:

matrilli number:

dpitavad IT ained:

registreerin ” katkesta

Figure 52: zaurus.ttu.ee registration

[algusse] [registreeritud kasutamised][konto andmed] [log1 vilja]

sisse logitud-2016-5-2 19:23:16

kasutaja-testuser(07

kasutaja tiiiip: kohalik server

kasutajale testuser(07 registreeritud tarkvara seisund: allalaadimine kinni

‘ni.tnetus: kirjeldus: || Filtreeri || Naita kdik |‘
41 [kinni

‘ni_mi ‘Entcrprise Architect

Ikirjeldus \

‘asukoht ‘ligipéi:as aktsepteerimata

‘i.ﬂsta_lleerimisvﬁti ‘ligipii:as aktsepteerimata

| [Regareen

nimi kirjeldus
Enterprise Architect vaata andmeid ja registreeri
Rational Suite ver 7.0 (2006) vaata andmeid ja registreeri
Rational Suite + XDE + RPW wver 2003.06.15 vaata andmeid ja registreeri
RUP Rational Unified Process vaata andmeid ja registreeri
Visual Basic 6 vaata andmeid ja registreeri

Figure 53: zaurus.ttu.ee request submission.

63



[alousse] [objektid] [MS kasutajad] [MS-i maili-fail] [tvhijenda ms emaili-fail] [uus objekt] [logi vlja]
sisse logitnd-2016-4-29 10:51:25

kasutajajvri

| Akisepteeri koik |

| |ki|:u:|i

Inirmi [x1

|faj]jkataloog |Iusrflm:aIfapacheﬂhtdncsfsoﬁﬁsiksf
larjeldus

miirkus

|vabalt allalaetav? | [
lindividuaalsed vétmed || |

|ava]jlc? ||:|

|vﬁti |

|Dbjel-:tit[ﬁ'rp | allalaetaviso -

|5i5u tiitip | raamat -
|kasutata'ms |véhemkasutatav -

| [Savesta

[lisa vt
kasutaja tarkvara seisund

nimetus
ee vaata'muuda I genereeri paroolifailid ]
Enterprise Architect vaata‘muuda I generaeri paroolifailid ]
Eational Suite ver 7.0 (2006) vaata'mumda I genereern parooclifailid ]

Rational Suite + XDE + EPW ver 2003.06.15 vaata'muuda I genereeri paroolifailid ]

RUP vaata-"muudal generaeri paroolifailid ]
Visual Basic 6 vaata-"muudal generaeri paroolifailid ]
xl vaalaf'muudal generaeri paroolifailid ]

Figure 54: zaurus.ttu.ee resource management.

64



	1 Introduction 13
	1.1 Problem 13
	1.2 Objective 14
	1.3 Implementation methods 14
	1.4 Finding existing software distribution systems 15

	2 System Analysis 16
	2.1 Actors 16
	2.2 Areas of competence 16
	2.3 Use case scenarios 16
	2.4 Database analysis 18

	3 Back-end Design 19
	3.1 Back-end implementation methods 19
	3.2 Database 20
	3.3 PHP 21

	4 Front-end Design 29
	4.1 Prototype 29
	4.2 Front-end implementation methods 29
	4.3 Functionality 30

	5 Comparison Between the Old and New Versions of the System 42
	6 Summary 44
	References 45
	Appendix 1 – Use Case Diagrams 47
	Appendix 2 – Entity-relationship Diagram 50
	Appendix 3 – Request State Diagram 51
	Appendix 4 – Physical Database Design Diagrams 52
	Appendix 5 – Database SQL Statement Examples 55
	Appendix 5 – Initial Interface Prototype 56
	Appendix 6 – New User Interface Screenshots 58
	Appendix 7 – Current zaurus.ttu.ee design 61
	1 Introduction
	1.1 Problem
	1.2 Objective
	1.3 Implementation methods
	1.4 Finding existing software distribution systems

	2 System Analysis
	2.1 Actors
	2.2 Areas of competence
	2.3 Use case scenarios
	2.3.1 Cross-cutting concerns
	2.3.2 Request management
	2.3.3 Resource management
	2.3.4 User management

	2.4 Database analysis
	2.4.1 Entity-relationship diagram
	2.4.2 State diagram of main request register object
	2.4.3 Registers


	3 Back-end Design
	3.1 Back-end implementation methods
	3.2 Database
	3.2.1 Security
	3.2.2 Data integrity

	3.3 PHP
	3.3.1 Security
	3.3.2 Database connection
	3.3.3 Views
	3.3.4 Language switching
	3.3.5 Emails
	3.3.6 CSV file generation
	3.3.7 File downloads
	3.3.8 Home page content editing


	4 Front-end Design
	4.1 Prototype
	4.2 Front-end implementation methods
	4.3 Functionality
	4.3.1 Home page
	4.3.2 Navigation
	4.3.3 Registration
	4.3.4 Login
	4.3.5 Resource list
	4.3.6 Individual resource view
	4.3.7 Add resource page
	4.3.8 Request list
	4.3.9 Individual request view
	4.3.10 Account view
	4.3.11 User list
	4.3.12 Individual user view
	4.3.13 Home page content editing
	4.3.14 Application settings editing


	5 Comparison Between the Old and New Versions of the System
	6 Summary
	References
	Appendix 1 – Use Case Diagrams
	Appendix 2 – Entity-relationship Diagram
	Appendix 3 – Request State Diagram
	Appendix 4 – Physical Database Design Diagrams
	Appendix 5 – Database SQL Statement Examples
	Appendix 5 – Initial Interface Prototype
	Appendix 6 – New User Interface Screenshots
	Appendix 7 – Current zaurus.ttu.ee design

