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Abstract 
 
 
 

 

The developments in deep submicron and nanotechnologies allow new design 
and process technologies to emerge. These technologies provide higher integration 
densities, smaller interconnection delays and higher system performance, thus 
enabling new IC paradigms.  

This thesis is dedicated to investigations to improve the efficiency and quality 
of Built-In Self-Test (BIST), which is a solution that allows to overcome many 
problems related to VLSI and SoC testing. 

First, the fault modelling techniques are described and investigated and an 
overview is given  about hierarchical defect modeling. Different defect modeling 
techniques are described, including Structurally Synthesized Binary Decision 
Diagrams, High-Level Binary Decision Diagrams and  Boolean differential 
algebra. The proposed defect modelling methods are used for the BIST quality 
analysis. 

Second, the BIST method that combines the use of pseudorandom test 
sequences and precomputed deterministic vectors is investigated and the 
optimization techniques for this approach are proposed. 

Third, the hybrid BIST with reseeding and test set compaction method is 
presented and the techniques are propsed for contrained optimization of this 
approach. This approach allows to find the solution close to the shortest test under 
the given memory constraint. The method does not require the calculation of the 
whole solution space and therefore gives results much faster than the exhausive test 
set compaction method. 

The new developed BIST optimization methods were implemented in the 
industrial designs of biosignal processors developed at the Centre for Integrated 
Electronic Systems and Biomedical Engineering CEBE. Testability analysis of the 
benchmark circuits family based on the biosignal processor designs was performed 
to investigate how different structural implementations would impact on the 
testability, and to find out which properties of the design will improve the 
testability. 
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Kokkuvõte 
 
 
 

 

Submikron- ja nanotehnoloogiate arengusuunad võimaldavad uute disaini- ja 
tootmistehnoloogiate kasutamist. Need uued tehnoloogiad võimaldavad luua 
kompaktsemaid skeeme, saavutada väiksemaid süsteemisiseid viiteid, paremat 
süsteemide jõudlust ning soodustavad uute disainiparadigmade tekkimist ja 
kasutamist. 

Väitekiri on pühendatud digitalsüsteemide isetestimise effektiivsuse ning 
kvaliteedi tõstmisega seotud uuringutele. Isetestimine on meetod, mis võimaldab 
lahendada paljusid ülisuurte integraalskeemide testimisega seotud probleeme. 

Esiteks on uuritud vigade modelleerimise meetodeid ning on antud ülevaade 
hierarhilisest defektide modelleerimisest. On kirjeldatud erinevaid defektide 
modelleerimise meetodeid, sealhulgas struktuurselt sünteesitud binaarsed 
otsustusdiagrammid, kõrgetaseme binaarsed otsustusdiagrammid ning Boole’i 
differentsiaalalgebra. On uuritud isetestimise meetodi effektiivsust defektidele 
orienteeritud testimisel. 

Teiseks on kirjeldatud isetestimise meetodit, mis võimaldab kombineerida 
pseudojuhulikke ning deterministlikke testsignaale ning on välja pakutud 
algoritmid selle meetodi optimeerimiseks. 

Kolmandaks on kirjeldatud isetestimise meetodit kus deteministlikke 
testsignaale kasutatakse nihkeregistris uute pseudojuhulike jadade genereerimiseks. 
On välja töötatud algoritm, mis võimaldab kiiresti leida lühima vajalike 
determinstlike testide ja pseudojuhuslike jadade kombinatsiooni, mis vastaks 
etteantud mälupiirangutele. Välja töötatud meetod ei vaja kõikide võimalike 
lahenduste leidmist ning seetõttu annab sobiva tulemuse kordades kiiremini kui 
originaalkujul. 

Välja töötatud optimeerimismeetodeid rakendati biosignaalide protsessorite 
enesetestimise automatiseerimiseks Eesti Teadustippkeskuses CEBE. On läbi 
viidud ka selle protsessori erinevate konfiguratsioonide testitavuse analüüs, 
selgitamaks millised digitaalskeemi omadused soodustavad digitaalsüsteemide 
testitavuse paranemist. 
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Chapter 1 Intoduction 

1.1 Motivation 

Continuous advances in deep submicron and nanotechnologies, as well as in design 
automation are enabling engineers to design more complex integrated circuits (IC) 
and driving them toward new design paradigms like System-on-Chip (SoC) and 
Network-on-Chip (NoC) [1][2]. SoC is usually designed by embedding 
predesigned complex functional blocks (cores) into one single chip. Such a design 
style allows to reuse previous designs and lead to shorter time to market and 
reduced cost.  

However, increasing complexity of electronic systems has made testing and 
fault diagnosis one of the most complicated and time-consuming problems in 
system design and production [3]. The importance of testing, and design for 
testability is growing because the expenses of testing are becoming the major 
components of the design and manufacturing costs of new products. It is estimated 
that 70% of the design cycle for systems is spent on test and verification [4]. The 
more complex are systems getting the more probable will be the different kind of 
failures, and the more important will be the problems of fault modeling, fault 
detection, fault diagnosis and fault tolerance. Nanometer technologies are 
introducing new challenges making test quality and dependability of systems a 
very fast moving target [5]. Enhancing productivity and quality of test related 
solutions is thus a key competitive aspect, both in terms of time-to-market and end-
product quality. 

Simulators, fault simulators and test generators as software tools are used 
widely in  electronic design. The quality of these tools rely on efficient simulation, 
especially in the case of simulation-based test generators (e.g. genetic algorithm-
based ones). Traditional low-level (transistor or gate-level) test simulation methods 
are becoming quickly obsolete because of the rapidly increasing complexity of 
systems, and high-level approaches are becoming more attractive [6][7]. However, 
the trend towards higher level modeling moves us even more away from the real 
life of defects and, hence, from accuracy of testing. To handle adequately defects in 
deep-submicron technologies, new fault models and defect-oriented test methods 
should be used. On the other hand, to cope with the complexity of designs, higher-
level approaches should be used. To get out from the deadlock, the two opposite 
trends – high-level modeling and defect-orientation – should be combined into 
hierarchical approaches [3].  

The trend of growing complexities is the same all over the whole semiconductor 
industry, and as the result has made external test increasingly difficult [8]. Due to 
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the requirements for the Automatic Test Equipment (ATE) speed and memory, the 
ATE-based test solution may not always be affordable in terms of cost and 
accuracy. Internal speed of SoC is constantly increasing and the technology used in 
external testers is always one step behind. Therefore, in order to apply at-speed 
tests and to keep the test costs under control, on-chip, Built-In Self-Test (BIST) 
solutions are becoming a mainstream technology for testing complex electronic 
systems. This trend evolves in accordance with predictions of International 
Technology Roadmap for Semiconductors [9], which pronounces the Built-In Self-
test (BIST) being the main test technology of the future. Therefore, the ultimate 
goal of any SoC test solution is SoC BIST.  

Traditional methods of BIST are based on pure pseudorandom testing which 
cannot quarantee the needed test quality. Therefore an intensive research has been 
going on to find solutions how to combine efficiently hybrid and mixed-mode 
approaches to BIST. Because of a lot of different criteria used in electronics 
production like design time, testing speed, test quality, restrictions on memory cost, 
hardware overhead or energy consumption, a lot of tradeoffs should be made, and 
therefore appropriate test strategies and test scheduling optimization methods are 
needed to come up with best solutions. 

Scan paths are added to designs for implementing BIST, that can result in big 
number of inputs. Therefore, it is essential to apply optimization techniques in 
order to optimize the solution space. In this work, new methods for designing 
optimal BIST processes in digital systems have been developed. Different 
optimization methods have been implemented and evaluated with the goal to 
improve the quality of BIST. To adequately evaluate the quality of testing, new 
hierarchical fault modeling method is used which allows to improve the accuracy 
of handling physical defects, on one hand, and  to cope with the complexity of fault 
management on the other hand. 

1.2 Thesis contribution 

The main contributions of this thesis are summarized below. 

Fault modeling methods for hybrid BIST have been desribed and the efficiency 
of classical BIST for defect-oriented fault testing was analyzed.  

Hybrid BIST approach for testing systems on chip which combines 
pseudorandom test sequnce and precomputed determinstic tests in order to achieve 
high fault coverage with optimal usage of time and memory has been desribed and 
optimization methods have been developed for selecting the optimal switching 
moment from pseudorandom test generation mode to the stored deterministic 
patterns mode. 

Hybrid BIST appoach based on reseeding of the LFSR has been desribed. 
Different optimization techniques are proposed – local search based, test set 
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compaction based on cumulative fault coverage and tabu search based optimization 
technique. The presented methods provide a possibility to find memory contrained 
test solution for every core in the multi core system and to use these solutions to 
construct an optimal test solution to the entire system. 

The testability issues of an industrial design for bioimpedance measurements 
that was developed at the Department of Computer Engineering of Tallinn 
University of Technology have been analyzed and optimized cost calculation 
methods for hybrid BIST approach with reseeding have been developed. The 
experiments have proven the feasibility and efficiency of developed methods for 
both bioimpendace design and ISCAS’89 family benchmarks. 

An overview of the optimization algorithms developed in this thesis is presented 
in Fig. 1-1. 

       

Fig. 1-1. Overview of the optimization algorithms 

1.3 Organization of the thesis 

The thesis is organized into 8 chapters.  

Chapter 2 gives the background information about testing, failures, test generation 
and the structure of the Built-In Self-Test (BIST). In Chapter 3, an overview of the 
state-of-the-art is given – issues of design for testability are discussed, application 
of Built-In Self-Test are described, short overview of some iterative optimization 
algorithms is given. Chapter 4 gives an overview of three most widely used 
iterative optimization techniques – simulated annealing, tabu search and genetic 
algorithms. Chapter 5 is dedicated to the issues of fault modeling with Decision 
Diagrams and hierarchical mapping of faults in digital systems for BIST quality 
analysis purposes. Chapter 6 explains the drawbacks of the classical BIST 
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approach and descibes hybrid BIST. Also, a test cost calculation approach is 
presented, different cost calculation algorithms are shown and  algorithms for 
optimization of test cost calculation are described and compared. In chapter 7, 
hybrid BIST with reseeding approach is discussed and algorithms for cost 
calculation optimization are presented. Chapter 8 decribes test cost minimization 
methods calculations for hybrid BIST with reseeding and analyzes the testability 
issues of the industrial design for bioimpedance measurements. 
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Chapter 2 Background   

In this chapter, some background information is provided regarding testing of 
digital systems, failures and fault models that are used, also basics of test 
generation are presented and Built-In Self-Test approach is briefly described. 

2.1 Testing 

When a product is designed, fabricated and tested and it fails the test, then the 
cause of this failure must be searched for [10]. One of the following things might 
happen: 

 the test was wrong 
 the fabrication process was faulty 
 the design was incorrect 
 the specification had a problem 

 

There are many things that might go wrong. The role of testing is to detect 
whether something went wrong and the role of diagnosis is to determine exactly 
what went wrong and where the process needs to be altered. Therefore, correctness 
and efectivness of testing is most important for quality products.  

The benefits of testing are quality and economy. These two attributes are not 
independent and neither can be defined without the other. Quality means satisfying 
the user's needs at minimum cost. So, there are many testing issues that must be 
addressed during the design and development of a product, but the ultimate goal is 
to provide quality testing in a cost effective manner [11]. This goal has become 
more difficult to achieve as VLSI and PCB circuit component densities increase so 
much that the companies report testing costs to be more than a half of the total 
product cost [12] 

The best way to ensure that the product is testable (with reasonable testing 
costs) is to consider design for testability (DFT) from the very beginning, during 
the design phase of the product life-cycle. 

Testing typically consists of applying a set of test stimuli to the inputs of the 
circuit under test (CUT) while analyzing the output responses [3]. Fig. 2-1 
represents the testing process [11]. Circuits which produce the correct output 
responses for all input stimuli pass the test and are considered fault-free. Those 
circuits that fail to produce a correct response at any point during the test sequence 
are assumed to be faulty. Testing is performed at various stages in the lifecycle of 
the device. 
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Fig. 2-1. The flow of the testing process 

 

There are many possible criteria of classification of testing activities. In general, 
two different types of testing are applied to each chip: 

1) Parametric Tests for digital circuits are concerned with the external 
behaviour of the circuits [13] and they include shorts test, opens test, maximum 
current test, leakage test, and threshold levels test. The specifications of the signal 
values on the input and output pins of the chip have a time-independent part 
(voltage and current levels) and a time-independent part (rise and fall times). A 
special case of parametric testing is IDDQ test method. IDDQ is the quiescent power 
supply current which is drawn when the chip is not switching. IDDQ tests are based 
on the fact that defects like shorts and abnormal leakage can increase IDDQ by 
orders of magntitude. It has been shown that the IDDQ test method is effective in 
detecting faults of many models. 

2) Functional Tests are aimed to determine the functional accuracy of the 
circuit under test [14]. To do that, test signals are applied to the  inputs of  the 
tested circuit and estimation of the appropriate responses is carried out. Functional 
tests cover a very high percentage of modelled faults in logic circuits and are 
mainly used during the manufacturing period, but some forms of these tests can be 
applied to the devices during the life-cycle to determine whether they work error-
free.  Realisation of the functional test usually means that the following tasks are 
solved: selection of input test signals, selections of the investigated parameters and 
test nodes, and verification of the observed output responses of the tested circuits. 

When chips are manufactured, a certain percentage is expected to be faulty 
because of the manufacturing defects. The process yield is defined as the fraction 
of defect-free parts among all parts. In reality, it is hard to determine the exact 
value of process yield, as it is impossible to detect all faulty parts. So, the value of 
yield can be approximated as a ratio: 

Number of not defective parts
Yield

Total number of parts
  

where the number of not defective parts is determined by counting the parts which 
pass the used test. 

The defect level (also known as reject rate) is the ratio of faulty parts to all 
parts that pass the test. Values of defect level are usually given in terms of defects 
per million. In general, the defect level of 500 parts per million (PPM) chips may 

Input Test 
Stimuli 

Circuit
Under Test 

Output
Response 

Compare to 
expected 
response 

Pass/Fail 
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be considered to be acceptible. The goal of zero defects manufacturing is 3.4 PPM 
or less. 

To measure the quality of the test, fault coverage (FC) is used. FC can be 
defined as the following ratio: 

Actual number of detected faults
Fault coverage

Total number of faults
  

The faults are assumed to belong to a particular fault model. In practice, it may 
be impossible to obtain a fault coverage of 100% due to the fact that there exist 
faults that are undetectable, which means there is no test to discover those faults. In 
addition, fault modelling is not perfect - some actual faults may not correspond to 
modeled faults. So, in reality the fault coverage can be expressed as fault detection 
efficiency and it can be defined in the following way: 

   
  

 n      

Number of detected faults
Fault detection efficiency

Total umber of faults number of undetectable faults



 

 To calculate the fault detection efficiency, all the undetectable faults in the 
circuit should be correctly identified, which is usually a difficult task. Fault 
covearge is linked to the yield and the defect level by following expression [15]: 

(1  ) 1 fault covrageDefect level yield    

If we assume a manufacturing process where yield is 50% and a test with fault 
coveage of 80% then , according to the given formula, defect level value would be 
about 12,95% meaning that 12,95% of shipped parts would be defective. If, for 
example, defect level of 3,4 PPM is required then with given yield of 50%, the 
fault coverage should be 95%. Improving the fault coverage can be easier and less 
expensive than improving the process yield, so it is obvious that generating test 
stimuli with high fault coverage is very important. 

2.2 Failures and fault models 

There are many ways to describe incorrectness in electrical systems. The most 
common terms that are found in literature on testing are defect, error and fault. The 
definitions of these terms, according to [10] are the following: 

Def 1.1 A defect in an electronic system is the unintended difference between the 
implemented hardware and its intended design 

Defects can occur either during manufacture or during the use of devices and 
systems. There are many things that can cause a defect [14]: manufacturing process 
(missing contacts, parasitic transistors, oxide break-down etc), process fabrication 
marginality, material and age defects and so on. 
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Def 1.2 Wrong output signal produced by a defective system is called an error. 

We can also say that an error is an "effect" caused by some defect. 

Def 1.3 Representation of a defect at the abstracted function level is called a fault 

The difference between a defect and a fault is rather subtle. Defect means there 
is something wrong in the hardware, fault means there are imperfections in the 
functionality. In general, a physical defect in a chip can produce multiple faults and 
no single test type can detect all the defects. 

Roughly, defects can be divided into two major groups [16]: 

1. soft defects - defects which may cause speed faults; show up at high speed or 
produce some temperature; they need two or more test patterns for their activation 
and test observation; require tests to be applied at speed; examples of soft errors are 
high resistance bridges, x-coupling, tunneling break etc. 

2. hard defects - defects manifested at all frequencies; a test can be applied at slow 
speed and they need only one-pattern test set; an example of a hard defect can be a 
bridge at a low resistance) 

In order to alleviate the test generation complexity, the actual defects that may 
occur in a chip need to be modelled at higher levels of abstraction [13]. The 
process of fault modelling considerably reduces the burden of testing because it 
obviates the need for deriving tests for each possible defect. This is made possible 
by the fact that many physical defects map to a single fault at the higher level. 

There are different levels of abstraction when describing a circuit  - behavioural, 
functional, structural, switch-level and geometric (Fig.  2-2) 

Behavioral description of a circuit is given by high level hardware description 
language (VHDL or Verilog, for example). It shows the data and control flow.  

Functional description is given at register-transfer level (RTL). It refines the 
behavioural description. Operations identified at the behavioral level are elaborated 
upon in more detail. RTL decription can contain registers, modules (i.e. adders and 
multipliers) and interconnect structures  (i.e. multiplexers and buses). This 
description is sometimes the product of behavioural synthesis which transforms a 
behavioural level decription into RTL circuit. 
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Structural description is given at the logic level. It consists of  logic gates, 
such as AND, OR, NOT, NAND, NOR, XOR and interconnects between them.  

Switch-level description establishes the transistor-level details of the circuit. In 
CMOS technology, each logic gate is described using an interconnection of a 
pMOS and nMOS network. These networks themselves consist of an 
interconnection of several transistors. These transistors are usually connected in 
series-parallel fashion, although non-series-parallel structures are also possible. 

Geometric decription is given at the layout level. From this description, line 
widths, inter-line and inter-component distances and device geometries can be 
determined. 

Modelling of the faults is closely related to the modelling of the circuit [10]. In 
the design hierarchy, the level refers to the degree of abstraction. Thus, the 
behavioral level (also referred to as high level) has fewer implementation details 
and fault models at this level may have no obvious correlation to manufacturing 
defects. High-level fault models play a greater role in simulation based design 
verification than in testing. 

The first requirement of a good fault model is that it accurately reflects the 
behaviour of the actual defects that can occur during the fabrication and 
manufacturing process as well as behaviour of faults that can occur during 
operation of the system [11]. The second requirement of a good model and just as 
important as the first, is that it must be computationally efficient with respect to the 
fault simulation environment. There are many fault models described in [17]. 
Unfortunately, no single fault model can accurately reflect the behaviour of all the 
possible defects that can occur.  

Behavioral fault models are defined at highest level of abstaction and they are 
based on the behavioural specification of the system. The type of faults that are 
included in a behavioural fault model depends on how easily is allows the detection 
of realistic faults at the lower levels of abstraction. 

Functional fault models are defined at the functional block level. The purpose 
of these models is to make sure that the functions of the functional block are 
executed correctly. In addition, they should also make sure that unintended 
functions are not executed. 

Structural fault models assume that the structure of the circuit is known. 
Faults under these fault models affect the interconnections in this structure. The 
most well-known fault model in this category is the single stuck-at fault model.  

Switch-level fault models are defined at transistor level. The most prominent 
faults here are stuck-open and stuck-on fault models. The stuck-open fault is the 
case when a transistor is permanently non-conducting because of the fault. In case 
of stuck-on, the transistor is permanently conducting. These faults are specifically 
suited for CMOS techology. Because of using multiple transistors to construct 
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CMOS logical gates, the stuck-at fault model cannot accurately reflect the 
behaviour of these faults. 

Geometric fault models assume the  layout of the chip is known. To develop 
these fault models, the knowledge of line widths, inter-line and inter-component 
distances and device geometries is needed. Problems with the manufacturing 
process can be detected at this level. Bridging fault model is one example of 
geometric fault models, which can lead to accurate detection of realistic defects. 

Stuck-at fault model 

The stuck-at fault (SAF) is a logical fault model that has been sucessfully used  for 
decades [3] and according to [9] will remain to be the one of the fault models most 
utilized for testing of microelectronics for the next years. 

The stuck-at fault model assumes that the elementary components are fault free 
and affects the state of logic signals on interconnects in a logic circuit, including 
primary inputs (PIs) and primary outputs (POs), internal gate inputs and outputs, 
fanout stems (sources) and fanout branches. The stuck-at fault transforms the 
correct value of the faulty signal line to appear to be stuck at constant logic value, 
either a logic 1 or logic 0 which are referred to as stuck-at-1 (SA1)  and stuck-at-0 
(SA0) respectively. 

Generally speaking, there can be several stuck-at faults simultaneously 
presented in a circuit. A circuit with n lines can have 3n-1 possible stuck 
combinations [10]. This is because each line can be in one of three states: SA1, SA0 
or fault-free. All combinations except one having all lines in fault-free state are 
counted as faults. Obviously, even a moderate value of n will give an enourmously 
large number of multiple stuck-at faults. Therefore, its is common practice to 
model only one single stuck-at fault, so an n-line circuit can have at most 2n single 
stuck-at faults. This number is further reduced by fault collapsing [17]. 

The stuck-at fault model is the most often used fault model in automatic test 
pattern generation (ATPG) systems. In ATPG systems, the following presumption 
is made - only one single and permanent fault is considered at the time. There are 
three properties that characterize a single stuck-at fault (or SSA) model: 

 only one line is faulty 
 the faulty line is permanently set either logical 1 or logical 0 
 the fault can be assumed at an input or an output of the gate 

The stuck-at fault model has been the industrial standard since 1959 and despite 
its death has been predicted there are a lot of reasons and properties making stuck-
at fault model still being widely used in testing [18]: 

 stuck-at model is simple enough and it is easily applicable 
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 as the fault behaviour can be determined logically, the simulations are 
straightforward and deterministic 

 when using the stuck-at model the result is easy to measure - detection/not 
detection are easy 

 the model is adaptable - it can be easily applied to transistors, gates, 
registers, systems etc. 

Unfortunately, the stuck-at fault model has a major disadvantage - there are 
defects that cannot be covered using this model, mainly in CMOS technologies. 
Sometimes the multiple stuck-at fault model is used, meaning that there are more 
than one stuck-at faults simultaneously present in the circuit. The disadvantage of 
this approach is a huge number of possible combinations. If the circuit has k lines it 
can have 2k single stuck-at faults, two for each line. However the number of 
multiple stuck-at faults is 3k-1 (similarly to single stuck-at fault case described 
above). Clearly, even for relatively small values of k, testing all multiple stuck-at 
faults is impossible. Also, this approach does not give the defect coverage that can 
be considered significant enough. A subset of the multiple stuck-at model, called 
the unidirectional stuck-at fault model, is also sometimes used. In this model, all 
the affected lines are assumed to be stuck at the same logic value, either 0 or 1. 

Other fault models 

The popularity of the stuck-at fault model depends on the fact that it can be applied 
to various semiconductor technologies, and the detection of all single stuck-at 
faults results in detection of majority of realistic physical defects (in many cases, 
up to 80-85% of the defects are detected). However the stuck-at fault model has its 
drawbacks (nether the less it is widely used), as many defects of the CMOS 
technologies cannot be covered  [19][20][21]. Using the multiple stuct-at fault 
model does not increase the fault coverage significantly enough.  There are number 
of other fault models that are used, such  as bridging faults, opens, delay faults, 
parametric faults. 

Bridging faults 

Bridging faults (also known as shorts) cover all defects and failure mechanisms 
that cause unintentional elctrical connections across two or more circuit nodes. The 
causes for the bridging faults can be [14]: 

 extra conducting material (e.g. photo-litographic printing error, 
conductive particle contamination etc causing horizontal shorts) 

 missing insulating material (e.g. printing error, gate oxide defect 
causing pinhole, insulating particle contamination etc. causing vertical 
shorts) 
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Bridging fault models can be derived at various levels of abstraction. At the 
geometric level, such a fault model is the most accurate. However, bridging fault 
models can also be defined at the structural or switch levels.  Bridging faults can be 
classified into two main groups: inter-gate shorts  (shorts at the logic terminals of 
the gate) and intra-gate shorts (shorts at transistor nodes). For non-CMOS 
technologies, a bridging fault between two lines is assumed to result in wired-
AND or wired-OR [22]. The wired-AND bridging fault means the signal net 
formed by the two lines will take on a logic 0 if either shorted line is sourcing a 
logic 0 (0-dominant bridge), while the wired-OR bridging fault means the signal 
net will take on a logic 1 if either of the two lines is sourcing a logic 1 (1-dominant 
bridge). However, shorts in CMOS circuit cannot be just mapped to either of 
these [13]. 

Bridging faults are sometimes also categorized as feedback and non-feedback 
faults. If one or more feedback paths are created in the circuit due to the fault, then 
it is called a feedback fault, otherwise a non-feedback fault. Non-feedback bridging 
fault coverage by SAF test is normally very high. Bridging faults can be detected 
by applying opposite logic values to the two wires [11]. IDDQ techniques can be 
used to detect bridging faults.  

Open circuit defects 

Open circuit defects (also known as opens) can be interpreted as unintentional 
electrical discontinuities. Due to defects  a node splits up into two or more distinct 
nodes. These type of defects can be caused by improper etching, masking error, 
electro-migration etc. There are two types of opens: narrow and large [20]. They 
can cause behaviour that may vary greatly and might be difficult to predict. The 
manifestation of an open defect depends not only on the size of the crack but also 
factors such as temperature, clock frequencies, location, and technological 
parameters, as well. Opens can be located at the gate level and also at the transistor 
level. 

In literature, there exist different classifications for open defects. The basic 
general division is based on the charge transfer rate function with dependence on 
the break size and three groups can be recognized [18]: 

 almost open or resistive open 

 completely open (a stuck-open - the special case of a resistive open 
defect in which the resistance is very large) 

 tunneling open 

Some experiments with resistive open and completely open classes are reported 
in [23]. At the transistor level, classification of opens was done and six main open 
fault classes were specified in [24]. 
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Delay faults  

In order to logic circuit to operate fault-free, not only performing the logic function 
correctly is required, but also propagating the correct logic signal along paths 
within specified time limits are important.  

The delay faults cause excessive delay along a path such that the total 
propagation delay falls outside the specified limit. Studies have shown that delay 
faults can be caused by resistive bridges with a resistance value above the critical 
resistance [25][26] which could be caused by the number of reasons such as weak 
transistors, subtle manufacturing, process defects etc. 

The following models have been proposed for delay testing: 

 gate delay and transition delay fault models, where each unit is designed 
with a pre-specified nominal delay; a delay fault occurs when the time-
interval taken for a transition from the gate to output exceeds the given 
nominal delay 

 path delay fault model consideres cumulative propagation delay along a 
signal path through the circuit - in other words, the sum of all gate delays 
along the path 

 transition faults are faults of a gate characterised as slow-to-rise and slow-
to-fall types; these fault times are used in time specification testing 

 line delay faults are rising and falling delays on a given signal line 

 segment delay faults mean delay through a chain of combinatorial gates 
with a specified length L. 

Crosstalk 

The use of nanometer technologies increases cross-coupling capacitance and 
inductance between interconnects, leading to sever cross-talk effects that may 
result in improper function of the chip [3]. Crosstalk effects can be separated into 
two categories: 

 crosstalk gliches are pulses that are provoked by coupling  effect among 
interconnect lines; the magnitude of the glich depends on the ratio of the 
coupling capacitance to the line-to-ground capacitance. 

 crosstalk delays are signal delays that are provoked by the same coupling 
among interconnect lines, but it may be produced even if line drivers are 
balanced but have large loads. 

As the crosstalk causes a delay in addition to normal gate and interconnect 
delay, it is difficult to estimate the true circuit delay, which may lead to severe 
signal delay problems. 



32 
 

Several design techniques, including physical design and analysis tools, are 
being developed to help design for margin and minimization of crosstalk problems; 
however, it may be impossible to anticipate in advance the full range of process 
variations and manufacturing defects that may significantly aggravate the cross-
coupling defects. 

2.3 Test generation 

During the manufactoring process, defects may occur that may result in a faulty 
behaviour of the chip. The purpose of test generation is to generate a test vector for 
a fault in given circuit or declare it untestable. The practical version of test 
generation requires the generation of a set of test vectors which collectively detect 
all, or a maximal fraction of the testable faults in the given fault list [13].  

The tests are generated by an automatic test pattern generator (ATPG) and 
applied to the circuitry under test, using the automatic test equpment (ATE). ATPG 
is the application of algorithmic based software to generate test patterns. The 
traditional goal of ATPG is to achieve high fault coverage by producing a small 
volume of test patterns.  

Since test vectors are usually capable of detecting many faults in a circuit, fault 
simulation is typically used to evaluate the fault coverage obtained by that set of 
test vectors. 

There exist several approaches to generating test patterns. Each test generation 
algorithm is evaluated by the following measures: 

 test effectivness  
 fault coverage 
 test generation time 
 length of the generated test 

In the following, a description of some classes of test patterns are given. 

Deterministic test patterns are developed targeting a specific fault or defect in 
a given circuit. In context of Built-In Self-Test applications, they are often referred 
to as "stored patterns". Deterministic testing is also known as structural testing and 
was introduced in 1960s [3]. There are number of algorithms developed, such as  
D-algorithm [27], which uses a logical value to represesnt both "good" and the 
"faulty" circuit values simultaneously  and can generate a test for stuck-at fault as 
long as such exists. The next important algorithm developed was the PODEM 
algorithm (Path Oriented DEcision Making [28]) where path propagation 
contraints were used to limit ATPG search space and the notion of backtrace was 
introduced. FAN (fan-out oriented test generation algorithm [29]) and SOCRATES 
[30] were also very important developments, accelerating the ATPG process.  Also, 
several more advanced algorithms exist, such as dominator ATPG approach TOPS 
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(TOpological Search [31]), evaluation-frontier approach EST (Equvalent STate 
hashing [32][33], Neural Network ATPG (NNATPG, [34][35]) and others. 

Exhaustive test patterns: every possible combination of input test patterns is 
produced. When this test is applied, all detectable faults are covered for 
combinatorial circuits. As for a circuit with N inputs 2N test patterns should be 
generated, this approach is obviously not practical for the large N. 

Pseudo-exhaustive test patterns: this is an alternative for exhaustive test 
patterns [36]. The circuit is partitioned and every combinatorial logic subcircuit is 
exhaustively tested. In this case, the number of test patterns is much smaller as 
every K-input partition will receive 2K patterns and K<N. The feasibility of this 
approach is obvious if we consider for example a parity generator network of the 
TI SN54/74LS630 wich has 23 inputs and 6 outputs where each output depends on 
only 10 of the inputs [36], so instead of 223 patterns, only 6 x 210=6144 patterns are 
needed. 

Pseudo-random test patterns: typically, these patterns are produced by Linear 
Feedback Shift Registers (LFSRs) or Cellular Automata (CA), LFSRs being by far 
most popular devices in use. The patterns have characteristics similar to those of 
random patterns but deterministic algorithm is used, and the sequences are 
repeatable. The advantage of pseudorandom testing is that very simple hardware 
and small design efforts are needed to implement it and the fact that these 
sequances can be repeated (as opposed to truly random patterns which cannot be). 
However, one strong disadvantage is the fact that pseudo-random test tends to be 
very long and due to the presence of random pattern resistant faults in many cases 
the high fault coverage is hard to achieve, meaning also long test application times 
and high cost of fault simulation. So, in many cases the pseudorandom test 
sequence is combined with deterministic vectors, targeting specific faults.  

In many cases, digital sytems are implemented as sequential circuits, which 
involve combinatorial logic and memory elements - the combinatorial part 
produces the result that is stored in memory elements (usually flip-flops). The 
testing of sequential circuits is much more complex than testing of combinatorial 
logic due to the fact that these circuits contain internal memory whose state is not 
known at the beginning of the test and a test for a fault in sequential logic contains 
three parts - initialization of the internal memory, combinational test and 
observation of the sate of affected elements. To compare, any fault in 
combinational circuit can be detected by a single vector. 

There are several algorithms developed for generating test vectors for sequential 
circuits. One class on these algorithms employs time-frame expansion method - the 
most well-known of the implementations are ESSENTIAL [37], GENTEST 
[38][39], HITECH [40], SEST [41] and FASTEST [42]. Also, there are some 
approximate methods developed - SCIRSS system [43], STALLION [44] program 
and STEED [45]. In the class of simulation-based methods most well-known 
algorithms are CONTEST [46][47], CRIS [48], GATEST [49], GATTO[50] and 
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STARGATE [51][52]. Many of them are using Genetic Algorithms (GA), 
introduced by Holland [53] and described thouroughly by  Goldberg in [54]. The 
simulation-based methods are applicable to any types of circuits, combinatorial or 
sequential. 

Even though most practical circuits are sequential, they often incorporate the 
full-scan design for testability (DFT) feature, which enables tests to be generated 
using combinatorial generator. 

2.4 Built-In Self-Test 

The major argument for using Built-In Self-Test (BIST) is reduced dependence on 
expensive testers [56]. Nowadays, the testers are a major investment. As BIST 
approach can reduce or even eliminate this investment, it becomes more and more 
attractive as an alternative approach to test. To economically justify using of BIST, 
it is not even necessary to eliminate testers from the manufaturing flow completely. 
If the duration of a test can be reduced by generating stimuli and computing 
response on-chip then it becomes possible to achieve the same throughput with 
fewer, and possibly less expensive, testers. Also, when a new faster chip is 
released, the BIST circuits will benefit from that performance enhancement, 
making it possible to complete the test in less time. 

BIST can substantially reduce the data management problem related to outside 
tester. When BIST is used to test a circuit it may be that the only input stimulus 
required is a reset that puts the circuit into test mode and forces a seed value in a 
pseudo-random pattern generators (PRG). Then, if a tester is controlling the self-
test, a predetermined  number of clocks are applied to the circuit and a response, 
called a signature is read out and compared to the expected signature. 

One more advantage of  BIST is that many thousands of pseudo-random vectors 
can be applied in BIST mode in the time that takes to load a scan path a few 
hundread times. As the test vectors come from PRG, there is no storage 
requirement for test vectors. It should also be mentioned that loading the scan 
chain(s) for every vector can be time-consuming, implying tester cost, in contrast 
to BIST where a seed value is loaded and then the PRG immediately starts 
generating and applying a series of test vectors on every clock. A further benefit of 
BIST is the abilty to run at speed which improves the likelyhood of detecting delay 
errors. 

The basic architecture of BIST is shown on Fig. 2-3[11]. This BIST architecture 
includes two essential functions as well as two additional functions that are 
necessary to facilitate execution of the self-testing feature wile in the system. The 
two essential functions include the test pattern generator (TPG) and output 
response analyzer (ORA). While the TPG produces a sequence of patterns for 
testing the CUT, the ORA compacts the output responses of the CUT into some 
type of Pass/Fail indication. The other two functions needed for system-level BIST 
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include the test controller (or BIST controller) and the input isolation circuitry. 
Aside from the normal system I/O pins, the incorporation of BIST may also require 
additional I/O pins for activating the BIST sequence (the BIST Start control signal), 
reporting the results of the BIST (the Pass/Fail indication), and an optional 
indication (BIST Done) that the BIST sequence is complete and that the BIST 
results are valid and ca be read to determine the fault-free/faulty status of CUT. 

 
Fig. 2-3. Basic BIST architecture 

 

The basic building block of BIST is linear feedback shift register LFSR - a 
simple n-stage counter that can generate 2n unique input vectors but the high-order 
bit would not change until half the stimuli had been created and it would not 
change again until the counter returned to its starting value. LFSR can create 
pseudo-random sequences and it can be used to create signatures. When used to 
generate stimuli, the stimuli can be obtained serially, by either the high- or low-
order stage of LFSR, or stimuli can be acquired from all stages in parallel. 

 

 

 

 

         a) internal feedback LFSR                            b) external feedback LFSR 

 

Fig. 2-4. LFSR implementations 

 

There are two basic types of LFSR implementations, the internal feedback 
LFSR and external feedback LFSR. Both are shown in Fig 2-4. Internal and 
external feedback LFSRs are dual to each other. Both implementations require the 
same amount of logic in terms of exclusive-OR gates and flip-flops. The internal 
feedback LFSR provides the implementation with the highest maximum operating 
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frequency for use in high performance applications. The main advantage of 
external feedback LFSRs is the uniformity of the shift register; hence, there are 
some applications where external feedback is preferred. 

As BIST enables a circuit to test itself, one of the main advantages of BIST is 
that is can be easily used for all levels of testing. Also, as BIST is incorporated into 
a VLSI device, it allows at-speed testing and reduces the need for external test 
equipment. In addition, time-to-market is significantly reduced. There are, 
however, some disadvatages to BIST solution -  one of the most significant 
disadvantages is additional design time and effort that is needed. Due to additional 
circuitry, there is area overhead and performance penalies, that need to be 
considered. 
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Chapter 3 State-of-the-art of BIST  

In this chapter an overview is given about the state-of-the-art in the related fields of 
the problem investigated in the thesis. First, a general overview about the broad 
field of design for testability is given, and the conclusion is made that BIST has 
become a mainstream. Different approaches to BIST are analyzed, and the 
drawbacks are highlighted. A general conclusion is made that the problem of BIST 
optimization is insufficiently investigated. It is also found that the traditional stuck-
at-fault model is not adequate for using in evaluation of the BIST quality for deep-
submicron technologies. The state-of-the-art of fault modelling techniques for 
digital systems is presented. Finally, an overview is given about the different 
methods which can be used for solving BIST optimization tasks. 

3.1 Design for testability 

The last step of chip manufacture is the operation referred to as "testing". The goal 
of testing is to recognize whether chip is working properly, i.e. no faults exist in the 
chip and the customer will obtain a good chip with proposed property. The 
designer of a circuit must consider both design and testability properties. Design 
for testability (DFT) methodologies help to detect possible faults, keep the test 
execution time and test developing time economical [14]. 

Design for testability can loosely be defined as changes to a given circuit design 
that help decrease the overall difficulty of testing [13]. The changes to the design 
typically involve addition or modification of circuitry such that one or more new 
modes of circuit operation are provided. Each new mode of operation is called a 
test mode in which circuit is configured only for testing. During normal use, the 
circuit is configured in the normal mode and has identical input-output logic 
behaviour as the original circuit design.  

In the following, a basic overview of DFT will be given, including ad-hoc 
techniques, full and partial scan design techniques. The purpose is to provide the 
necessary background needed to understand advantages and disadvantages of 
Built-In Self-Test (BIST) compared to other DFT techniques [11].  

There are two major concepts which are commonly used in assessing and 
enhancing the testability of a circuit under test: controllability and 
observability [13]. Controllability is a measure of how difficult it is to set a line to 
a value necessary to excite a fault. Observability is a measure of how difficult it is 
to propagate a faulty signal from a line to a primary output. 

Integrated circuits are tested in the phase of prototyping new circuits and in the 
phase of serial production. The goal is to separate the good chips from the faulty 
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ones. To enable testing, various structures can be inserted into the circuit to make 
the test application easier. While the additional DFT circuitry may increase design 
time, the resultant reduction in time-to-market is realized.  

There are three main types of DFT approaches for digital circuits. These 
include: 

 ad-hoc techniques (methods that are targeting difficult-to-test parts of 
the circuit under test) 

 scan design techniques (also referred to as Level Scan Sensitive 
Design (LSSD), approaches that use scan architecture to conduct 
testing) 

 built-in self-test (incorporates test pattern generation and output 
response analysis capabilities inside the chip) 

3.1.1 Ad-Hoc techniques.  

The first DFT approach is referred to as ad-hoc DFT. The aim of this approach is 
to improve observability and controllability of the difficult-to-test portions of the 
design. Gate inputs and outputs, which are normally out of control or out of 
observation, are made accessible by inserting test points. This is usually done by 
incorporating multiplexers internal to the CUT to create one or more test modes of 
operation in which the primary inputs and outputs provide access to or from 
internal difficult-to test circuits via multiplexers. Since test points are inserted only 
where needed, control of the area overhead can be maintained and one can trade-
off area overhead for fault coverage.  

The down side of ad-hoc DFT is the number of additional I/O pins required for 
controlling the test modes, and the fact that we must determine the best place to 
insert test-points, developing test-vectors, running fault simulations, evaluating 
fault coverage, and repeating the entire process until the desired fault coverage is 
obtained.  

Typical targets for test point insertion are feedback loops, large counters, 
embedded core logic, asynchronous logic, embedded clock generators, memory 
initialization inputs, intentional redundant logic [17]. 

An example of test point insertion is illustrated in Fig. 3-1. In the presented 
case, existing test vectors previously developed for the core logic can then be used 
to test the embedded core. While the example may not be very realistic, it does 
illustrate some system level considerations that must be addressed. As long as there 
are more primary inputs and outputs than inputs to and outputs from the embedded 
core logic, only one additional pin is needed for the Test Mode input. However, as 
there are multiplexers inserted between input logic and the embedded core, the 
multiplexer delay of the performance penalty is added. Also, multiplexers are 
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added to the primary outputs, which adds the clock-to-output delay to the overall 
circuit. Therefore, in case of the time critical requirements, those primary outputs 
should be avoided.  

 

 

 

 

(a) Before ad-hoc DFT 

 

 

 

 

 

(b) After ad-hoc DFT 

Fig. 3-1. Ad-hoc DFT for embedded core logic 

3.1.2 Scan Design techniques. 

Scan design is defined as the process of using scan architecture to conduct testing. 
The main idea of scan design is to obtain control and observability for 
flip-flops [10]. This is done by adding a test mode to the circuit such that when the 
circuit is in this mode, all flip-flops functionally form one of the shift registers. The 
inputs and outputs of these shift registers (also known as scan registers) are made 
into primary inputs and primary outputs. Thus, using the test mode, all flip-flops 
can be set to any desired states by shifting the contents of the scan register out. All 
flip-flops can be set or observed in a time (in term of clock periods) that equals the 
number of flip-flops in the longest scan register. In practice, however, a design can 
have any number of them. 

As a result of adding the scan chain to the logic circuit, all flip-flops are easily 
controllable and easily observable [11]. Therefore, the problem of testing 
sequential logic circuit is reduced to simply that of testing combinatorial logic. The 
excellent controllability and observability of the flip-flops in the chain can also 
provide good controllability and observability of the embedded combinatorial logic 
of the CUT.  

The area overhead and performance penalties associated with scan design are 
due to the multiplexers added to the inputs of each flip-flop. Typical area overhead 
values are on the order of a 2% to 10% increase of the total chip area [10].  
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Scan design based DFT does have drawbacks, including long test application 
time due to the serial application of the test vectors and retrieval of test results. 
Another problem at system-level testing is the difficulty of applying the tests at the 
system operating frequency. Also, using scan design-based approach makes the 
detection of transistor stuck-off faults and delay faults detection extremely 
difficult, as the result of the test patterns shifting through the scan chain between 
the application of each vector. 

There are number of restrictions placed on circuits that are candidates for scan 
design implementation [10]. The circuit must use edge-triggered, D-type flip-flops 
that are clocked from the primary inputs. These restrictions are required in order to 
implement and correctly operate the scan chain shift register in both normal and 
scan modes of operation. Despite its drawbacks, scan design can be used at all 
levels of testing and can be applied hierarchically to chips, PCBs and systems. 

3.1.3 Boundary Scan  

The methods described are able to test an isolated part of integrated circuit (IC), or 
an isolated IC in IC tester. It assumes direct connections between IC tester and the 
tested integrated circuit [14]. 

The success of scan design led to the application of scan design-based DFT 
techniques for testing interconnect and solder joints on surface mount PCBs [11]. 
This became known as Boundary Scan, also referred to as JTAG (Joint Test Action 
Group). 

Boundary Scan is in fact a family of test methodologies aimed at resolving a 
wide range of test problems: from chip level to system level, from logic cores to 
interconnects between cores, from digital circuits to analog or mixed-mode circuits, 
and from ordinary digital designs to very high-speed designs [3].  Standard 1149.1, 
usually referred to as digital boundary-scan standard, was approved by the IEEE 
in 1990. It defines general-purpose boundary-scan implementation for digital chips. 
The architecture based on Boundary Scan enables scanning in and out a shift 
register which controls circuit inputs and outputs, and it can be used for performing 
several other functions. 

The board-level testing problems that Boundary Scan solves are significant. The 
Boundary Scan interface and circuitry can be used at all levels of testing and 
Boundary Scan can be hierarchically applied to the entire system. In addition to 
testing interconnections, the boundary scan interface provides access to other 
testing functions, including Built-In Self-Test. 

The overhead associated with Boundary Scan can be significant. For example, 
for each I/O pin, two flip-flops and two multiplexers are added. Also, other parts of 
boundary scan architecture such as TAP controller, Instruction Register, Instruction 
Decoder etc. also have considerable impact on the area overhead. 
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3.2 Built-In Self-Test in digital systems 

The rapid developments in the areas of deep-submicron electron technology are 
enabling engineers to design more and more complex integrated circuits, driving 
them towards design methodologies called System-on-Chip (SoC). SoC approach 
is very attractive from the designers’ perspective. This technology enables 
designers to embed predesigned and preverified complex functional blocks, usually 
referred as cores, into a single die. Such a design style allows designers to reuse 
previous designs and will lead to a shorter time to market and a reduced cost. The 
cores can be very different by their nature (from analog to memories, including all 
types of logic) and can be represented in several different ways (RTL code, netlist 
or layout). Testing of SoC, on the other hand, shares all the problems related to 
testing modern deep submicron chips, and introduces also some additional 
challenges due to the protection of intellectual property as well as the increased 
complexity and higher density. 

To test the individual cores of the system, the test pattern source and sink have 
to be available together with an appropriate test access mechanism (TAM) [56]. 
We can implement such a test architecture in several different ways. A widespread 
approach implements both source and sink off-chip and requires therefore the use 
of external Automatic Test Equipment (ATE). However, the complexity and speed 
of digital systems make external test difficult [58]. Since the internal speed of SoC 
is constantly increasing, the demands to the ATE memory size are increasing and 
the technology used in ATE is always one step behind. On the other hand, the ATE 
solution is becoming unacceptably expensive and inaccurate, and leading also to an 
unacceptable yield loss [9]. Therefore, in order to apply at-speed tests and to keep 
the test costs under control, on-chip test solutions are needed. Such a solution is 
usually referred to as Built-In Self-Test (BIST) [59][60]. Built-In Self-Test (BIST) 
has become a mainstream. 

BIST is aimed at detecting faulty components in a system by incorporating test 
logic on-chip. In traditional BIST, test generation is mostly performed by ad hoc 
circuitry, typically Linear Feedback Shift Registers (LFSR) [59], cellular 
automata [60] or multi-functional registers like (Built-in Logic Block Observers) 
BILBO [3][13]. As it was described in Section 2.4, the classical way to implement 
the TPG for BIST is to use linear feedback shift registers (LFSR). But as the test 
patterns generated by the LFSR are pseudorandom by their nature and have linear 
dependencies [61], the LFSR-based approach because of random pattern resistant 
(RPR) faults [3][13] often does not guarantee a sufficiently high fault coverage 
(especially in the case of large and complex designs) and demands very long test 
application times in addition to high area overheads.  

Several methods are used to improve fault coverage by inserting test points into 
the Circuit Under Test (CUT) [62], or using weighted pseudorandom sequences 
(WPS) [63]. In these approaches the hardware overhead may become large. 
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More efficient are mixed mode or hybrid BIST approaches [64]-[74] where 
deterministic data are combined with pseudorandom ones to improve detection of 
RPR faults, and compared to WPS less additional hardware is required. The 
pseudorandom and deterministic data are combined in different ways like using 
ROM compression [64], LFSR reseeding [63] either by bit-flipping [65] or bit-
fixing [66], multi-polynomial scheme[67], embedding deterministic patterns[68]. 
However, in most of these approaches the architecture is extremely tailored to the 
CUT, and any change in the CUT requires resynthesis of the complete BIST 
hardware. Another drawback of traditional BIST is the use of special hardware for 
TPG on chip, which causes area overhead and performance degradation. Recently 
new methods have been proposed to reduce the hardware overhead, which exploit 
specific functional units such as arithmetic units or processor cores for on-chip test 
generation and test response evaluation [69][70]. This approach called functional 
BIST has the same disadvantages regarding the test quality as pure pseudorandom 
testing. Therefore a research is needed here how to combine hybrid and mixed-
mode approaches with functional BIST. Because of a lot of different criteria used 
in electronics production like design time, testing speed, test quality, restrictions on 
memory cost, hardware overhead, energy consumption etc. a lot of tradeoffs should 
be made, and therefore appropriate test strategies and test scheduling optimization 
methods are needed to come up with best solutions [75]. 

The main concern of the hybrid BIST or reseeding BIST approaches has been to 
improve the fault coverage by mixing pseudorandom vectors with deterministic 
ones, while the issue of cost minimization or optimization according to the given 
criteria has not been addressed directly.  

Very important is how the quality of BIST is evaluated. The traditional 
approach to characterize the quality of BIST is to use the measure of stuck-at-fault 
coverage (SAF). However, the traditional SAF model used in testing of digital 
circuits does not quarantee the quality of testing for deep-submicron 
technologies [76][77]. For adequately characterizing the today’s BIST solutions 
and the test sequences generated by BIST, more advanced fault modeling methods 
are to be used. 

3.3 Fault modeling 

The reason why high SAF coverage can not quarantee  high quality testing is that 
the model ignores the actual behavior of deep-submicron circuits, and does not 
adequately represent the majority of real IC defects and failure mechanisms which 
often do not manifest themselves as stuck-at faults. The types of faults that can be 
observed in a real gate depend not only on the logic function of the gate, but also 
on its physical design. These facts have been well known, but usually, they have 
been ignored in engineering practice, and the SAF model is used still as de facto 
standard. In earlier works on layout-based test techniques [76][77], the whole 
circuit having hundreds of gates was analyzed as a single block. Such an approach 
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is computationally expensive and highly impractical as a method of generating 
tests for real  VLSI designs. 

Traditional fault simulators based on the single SAF model handle simple 
physical defects which force a single site to a fixed logic value of 0 or 1. For better 
modeling of arbitrary physical defects in the circuit components of nanometer 
technology, a conditional fault model has been proposed as one extension of the 
classical SAF model [78][79]. A conditional SAF model consists of a signal line 
with SAF (as a topological part of the model) and an activation condition (the 
functional part). Such a metric has been used for many years under different names 
like fault tuple model [80], pattern fault model [81], input pattern fault model [82], 
or functional fault model [83] which can represent any arbitrary change in the logic 
function of a circuit block, where a block is defined to be any combinational 
subcircuit described at any level of the design hierarchy. For complete exercising 
of blocks in combinational circuits on the gate level, a similar pattern oriented gate-
exhaustive fault model was proposed  in [84], which was extended to target bigger 
regions (collections of gates) by region-exhaustive fault model in [85]. Many 
researchers have focused on developing new fault models for particular types of 
failure mechanisms like signal line bridges [86]-[90], transistor stuck- 
opens [87][88], failures due to changes in circuit delays [93] etc. 

A more complex defect, such as a resistive short or open, causes multiple 
effects around the defect site. For example, the behavior of a fanout gate may be 
affected by a defect which forces on the fanout branches of the gate intermediate 
voltages. As a result, multiple faulty logic values may appear on the fanout 
branches depending on the threshold voltages of the branches. A unified fault 
model for interconnect opens and bridges using constrained multiple line stuck-at 
faults is proposed in [94]. To deal with the ambiguities of the changing logic values 
on the branches, the Byzantine fault model was introduced [95][96] where a 
floating line with n branches may lead to 2n – 1 possible fault cases. Methods are 
proposed to reduce the number of 2n – 1 to a reasonable smaller subset, which 
however needs additional information about the layout, vias or buffers, threshold 
voltages of the transistors driven by the floating nodes, or about the occurrence 
probabilities of possible logic behaviors of physical defects [95].  

To handle adequately defects in deep-submicron technologies, new defect-
oriented fault models should be used. But, the defect-orientation is increasing the 
complexity. To get out from the deadlock, hierarchical approaches for diagnostic 
modeling have been proposed. One of the attractive ways to manage hierarchy in 
diagnostic modeling (test generation, fault simulation, fault location) in a uniform 
way on different levels of abstraction is to use decision diagrams (DD) [97]-[100]. 

Binary Decision Diagrams (BDD) were first introduced for logic simulation 
in [97], and for test generation in [98][99]. In 1986, Bryant proposed a new data 
structure called reduced ordered BDDs (ROBDDs) [100]. After this publication, 
the BDDs have become very popular. In [98][101], a special class of Structurally 
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Synthesized BDDs (SSBDD) were introduced. The most significant difference 
between the function-based BDDs [100] and SSBDDs [101] is in the method how 
they are generated. While BDDs are generated on the functional basis, the SSBDDs 
are generated directly from the structure of the circuit. This allows to establish 
between the faults of the circuit and the nodes of the SSBDD one-to-one mapping. 
The idea of representing the structure in DDs was generalized from logic level 
SSBDDs to High-Level DDs (HLDD) [101][102]. The similar feature of SSBDDs 
and HLDDs to model at the nodes the faults of digital systems at different levels of 
abstraction gives a good possibility to develop a uniform fault model for digital 
systems.  

The advantage of hierarchical approaches compared to the plain gate-level 
modeling lies in the possibility of constructing test plans on higher levels, and 
modelling physical defects on more detailed lower levels. To handle physical 
defects in fault simulation, we need  higher level logic fault models for the 
following reasons: to reduce the complexity of simulation (many physical defects 
may be modelled by the same logic fault), a single logic fault model may be 
applicable to many technologies, logic fault tests may be used for physical defects 
whose effect is not well understood. But the most important reason for logical 
modelling of physical defects is to get a possibility for moving from the lower 
physical level to the higher logic level which has less complexity. Furthermore, it 
would be possible to reduce even more the complexity of fault simulation by 
moving from the logic level to the higher register transfer levels. 

3.4 Optimization algorithms 

Combinatorial optimization problems can be encountered everywhere – and, 
among other things in methods for hardware testing. Some of the most popular and 
widely used iterative optimization techniques are simulated annealing [103][104], 
genetic algorithms [105][106] and tabu search [107][108][109]. 

Simulated annealing (SA) is a general adaptive heuristic and belings to the class 
on nondeterministic algorithms [110]. It has been applied to several combinatorial 
optimization problems from various fields of science and engineering [111]. The 
term annealing refers to heating a solid to a very high temperature (whereby the 
atoms gain enough energy to break the chemical bonds and become free), and then 
slowly cooling the molten material ina controlled manner until it crystallizes. A 
simple algorithm to simulate the evolution of a solid in a heat bath to its thermal 
equlibrium was proposed in [115]. Later, the correspondence between annealing 
and combinatorial optimization was established in [103] and [104]. It was observed 
that there is a correspondence between, on one hand, a solution to the optimization 
problem and a physical state of material, and between the cost of solution of the 
combinatorial optimization problem and free energy in the molten metal. As a 
result of this analogy, a solution method  in the field of combinatorial optimization 
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was introduced. The method is based on the simulation of the physical annealing 
process, and hence the name simulated annealing. 

Genetic algorithm (GA) is a powerful domain-independent search technique 
that was inspired by the Darwinian  theory [111]. It emulates the natural process of 
evolution to perform an efficient and systematic search of the solution space to 
progress toward the optimum. It is based on the theory of natural selection that 
assumes that individuals with certain characteristics are more able to survive, and 
hence pass their characteristics to their offsprings. By establishing a 
correspondence between, on one hand a solution to the optimization problem and 
the element of the population (represented by the chromosome) and between the 
cost of the solution and the fitness of an individual in the population, a solution 
method in the field of combinatorial optimization is introduced. The methods thus 
simulates the process of natural evolution based on Darwinian principles, and 
hence the name genetic algorithm [105][106]. When employing GAs to solve a 
combinatorial optimization problem, one has to find an efficient representation in 
form of the chromosome (encoded string). Associated with each chromosome is its 
fitness value. If the process of natural reproduction is simulated, combined with the 
biological principle of survival of the fittest, then, as each generation progresses, 
better and better individuals (solutions) with higher fitness values are expected to 
be produced. 

Tabu search (TS) is based on selected concepts of artificial intelligence [111] 
and was introduced as a general iterative heuristic for solving combinatorial 
optimization problems [107][108][109]. Initial ideas of the technique were also 
proposed in Hansen’s steepest ascent mildest descent heuristic [112]. Tabu search 
is a generalization of the local search[113]. At each step, the local neighbourhood 
of the current solution is explored and the best solution of that neighbourhood is 
selected as the new current solution. But unlike the local search that stops, when no 
better solution is found, tabu search continues the search from the best solution in 
the neighbourhood, even if it is worse than the current solution. The information 
about previously visited solutions is added to the tabu list – the moves to the 
solutions in that list are not allowed, thus the cycling around previously visited 
solutions is prevented. However, if a certain criteria are satisfied (so called 
aspiration criteria) the tabu status of the solution is overridden. An example of 
such aspiration criterion is the situation when the cost of the selected solution is 
better than the best seen so far. 
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3.5 Conclusions 

1. The complexity and speed of digital systems make external test difficult. Since 
the internal speed of SoC is constantly increasing, the demands to the automated 
test equipment memory size are increasing and the technology used in ATE is 
always one step behind. Hence, in order to apply at-speed tests and to keep the test 
costs under control, Built-In Self-Test (BIST) solutions are needed. 

2. The pure pseudorandom test approaches in the BIST solutions do not guarantee 
sufficiently high fault coverage and demand very long test application times. This 
has lead to different mixed-mode and hybrid BIST methods. 

3. The main concern of the hybrid BIST and reseeding BIST approaches has been 
to improve the fault coverage by mixing pseudorandom vectors with deterministic 
ones, while the issue of BIST optimization has not been addressed directly. The 
problems of minimization of the cost of BIST processes according to given criteria 
(time, hardware cost, power consumption) at given constraints need still solutions.  

4. The traditional approach to characterize the quality of BIST is to use the 
measure of stuck-at-fault coverage (SAF). However, the traditional SAF model 
used in testing of digital circuits does not quarantee the adequate quality evaluation 
for deep-submicron technologies.  

5. To characterize adequately the today’s BIST solutions and the test sequences 
generated by BIST, more advanced defect-oriented fault modeling methods are to 
be used.  

6. The similar feature of SSBDDs and HLDDs to model at the nodes the faults of 
digital systems at different levels of abstraction gives a good possibility to develop 
a uniform fault model for digital systems for BIST quality evaluation purposes. 

7. There are several iterative optimization algorithms available. Some of the most 
popular and well-thought-out ones are simulated annealing, genetic algorithms and 
tabu search. Simulated annealing mimics the thermodynamic process of annealing, 
genetic algorithms simulate biological processes according to Darwinian theory of 
evolution, and tabu search attempts to imitate intelligent search processes through 
the use of a memory component. 
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Chapter 4 Optimization algorithms 

Combinatorial optimization problems can be encountered everywhere – and, 
among other things in methods for hardware testing. In this chapter, three 
algorithms belonging to the special class of combinatorial algorithms – general 
iterative  nondeterministic algorithms are described: simulated annealing, genetic 
algorithms and tabu search. In this work, optimization algoritms will be used to 
optimize the calculation of test cost in different hybrid Built-In Self-Test 
approaches. 

4.1 Simulated annealing 

In the following, simulated annealing (SA) will be described. SA is one of the most 
well developed and widely used iterative techniques for solving optimization 
problems. 

Simulated annealing is a general adaptive heuristic and belongs to the class of 
nondeterministic algorithms [111]. It has been applied to several combinatorial 
optimization problems from various fields of science and engineering. These 
problems include travelling salesman problem (TSP), graph partitioning, 
quadratic assignent, matching, linear arrangement and scheduling. In the area of 
engineering, simulated annealing has been applied to VLSI design (placement, 
routing, logic minimization, testing), image processing, code design, facilities 
layout, network topology design and so forth. 

One typical feature of  simulated annealing is that, besides accepting solutions 
with improved cost, it also, to a limited extent, accepts solutions with detoriated 
cost. It is this feature that gives  the heuristic  the hill climbing capability. Initially 
the probability of accepting  solutions with larger cost is large, but as the search 
progresses, only smaller detoriations are accepted, and finally only good solutions 
are accepted. A strong feature of the SA heuristic is that it is both effective and 
robust. Regardless of the choice of the initial configuration it produces high-quality 
solutions. It is also relatively easy to implement. 

Simulated annealing, like all other iterative techniques is very greedy with 
respect to runtime. The acceleration of simulated annealing has been an extensive 
area of research since the introduction of the algorithm. 

The use of simulated annealing in the combinatorial optimization was originally 
heavily inspired by an analogy between the physical annealing process of solids 
and the problem of solving large combinatorial optimization problems [113]. 
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Annealing is known as  a thermal process for obtaining low-energy states of a 
solid in a heat bath. The process consists of the two following steps [103]: 

 Increase of the temperature in the bath to a maximum value at which 
the solid melts. 

 Decrease carefully the temperature of the heat bath until the particles  
arrange themselves in ground state of solid. 

In 1953, a simple algorithm based on the Monte Carlo techniques [114] was 
introduced by Metropolis et al  [115] for simulating an evolution of the solid in the 
heat bath to the thermal equlibrium. The sequence of states is generated as follows. 
Given a current state Si of the solid with energy Ei, a subsequent state Sj with 
energy Ej is generated by applying a perturbation mechanism. This perturbation 
transforms the current state into a next state with slight distortion. For instance a 
new state can be constructed  by randomly selecting a particle and displacing it by 
some random amount. If the energy associated with the new state is lower than the 
energy of the current state, that is E = Ej – Ei ≤ 0, then the displacement is 
accepted, and the current  state becomes the new state. However, if the energy of 
the new state is higher (the energy difference is greater than zero), then the state Sj 
is accepted with a certain probability which is given by 
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where KB is the Bolzman constant and T denotes temperature. The acceptance rule 
described above is repeated a large number of times. The acceptance criterion is 
known as the Metropolis step and the procedure is known as the Metropolis 
algorithm. 

When applied in simulated annealing, the Metropolis algorithm can be used to 
generate a sequence of solutions of combinatorial optimization problem. 

Fig. 4-1 desribes the simulated annealing algorithm. The algoritm generates 
neighbours randomly. If the cost of the neighbour j is at the most the cost of the 
current solution i, then j is always accepted. If neighbour j has higher cost than i, 
then j is still accepted with a positive probability of  
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where c is a control parameter that plays the role of the temperature. The 
probability of accepting a deterioration in cost depends on the value of the control 
parameter c: the higher the value of the control parameter, the higher the 
probability of accepting deterioration. 
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procedure SIMULATED_ANNEALING 
begin 
   i:=initial solution 
   c:=initial value 
   repeat 
      for l:=0 to L do 
      begin 
         probabilistically generate neighbour j of i 
         if f(j) ≤  f(i) then accept j 
         else accept j with probability 

                    )
)()(
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c
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  

      end 
      update L 
      decrease c 
   until stopcriterion 
end; 

 

Fig. 4-1. The pseudocode of simulated annealing algorithm 

 

The value of the control parameter is decreased during the execution of the 
algorithm. In Fig. 4-1 the value L specifies the number of iterations the the control 
parameter is kept constant before it is decreased. The values of c and L and  the 
stop criterion are specified by the „cooling schedule“. 

Initially, at large values of c, large deteriorations will be accepted; as c 
decreases, only smaller deteriorations will be accepted and, finally, as the value of 
c approaches 0, no deteriorations will be accepted at all. Note that there is no 
limitation on the size of deterioration with respect to its acceptance. In simulated 
annealing, arbitrarily large deteriorations are accepted with positive probability; for 
these deteriorations, probability is small, however. This feature means that 
simulated annealing, in  contrast to iterative improvement, can escape from local 
minima while it still exibits the favourable features of iterative improvement, 
namely simplicity and general applicability. The speed of convergence of 
simulated annealing is determined by the cooling schedule. 

As simulated annealing has a so-called „hill-climbing“ ability, it can be used for 
solving problems that have a non convex solution space – SA provides the means 
to escape local optima in such cases. As will be shown later in the thesis, cost 
calculation function for hybrid built-in self-test has number of local optimas and 
therefore, SA is a suitable approach for solving the problem. 
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4.2 Genetic algorithms 

In the following, genetic algorithm is described. This search technique was 
inspired by evolution. To solve an optimization problem, a potential solution to a 
specific problem is encoded  in a simple chromosome-like data structure and 
recombination operators are applied, thus  emulating  the natural process of 
evolution. Efficient and systematic search of the solution space is performed 
obtaining the new solutions from the combinations of the existing ones. The 
algorithm  is based on the theory of natural selection that assumes that individuals 
with certain characteristics are more able to survive and hence pass their 
characteristics to their offspring. 

The genetic algorithm is  an adaptive learning heuristic. Similar to simulated 
annealing, it also belongs to the class of general nondeterministic algorithms. 
Several variations of the basic algorithm exist. 

Genetic algoritms (GAs) operate on a population (or set) of individuals (or 
solutions) encoded in strings. These strings represent points in a search space. In 
each iteration, referred to as a generation, a new set of strings that represent 
solutions (called offsprings) is created crossing some of the strings of the current 
generation [106]. Occasionally new characteristics are injected to add diversity. 
GAs combine  information exchange  along with the survival of the fittest among 
individuals to conduct the search. 

Since their appearance, GAs have been applied to solve several combinatorial 
optimization problems  from various fields of science , engineering and business. 

Genetic algorithms were invented by John Holland and  his collegues [105] in 
the early 1970s. Holland incorporated features of natural evolution to propose 
robust, computationally simple and yet powerful technique for solving difficult 
optimization problems. 

When employing GAs to solve a combinatorial optimization problem one has to 
find an efficient representation of the solution in the form of the chromosome 
(encoded string). Associated with each chromosome is its fitness value. If we 
simulate the process of natural reproduction, combined with the biological 
principle of survival of the fittest, then, as each generation progresses, better and 
better individuals (solutions) with higher fitness values are expected to be 
produced. 

The structure that encodes how the organism is to be constituted is called a 
chromosome. One or more chromosomes may be associated with each member of  
the population. The complete set of chromosomes is called a genotype and the 
resulting organism is called a phenotype. Similarly, the representation of a solution 
to the optimization problem in the form of an encoded string is termed as a 
chromosome. In most combinatorial optimization problems a single chromosome is 
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generally sufficient to represent a solution, that is the genotype and the 
chromosome are the same. 

The symbols that make up chromosome are known as genes. The different 
values of a gene are called alleles. 

The fitness value of an individual (genotype or a chromosome) is a positive 
number that is a measure of its goodness. When a chromosome represents a 
solution to the combinatorial optimization problem the fitness value indicates the 
cost of the solution. In the case of a minimization problem, solutions with lower 
cost correspond to individuals that are more fit. 

Since the GAs work with a population of solutions, an initial population 
constructor is required to generate a certain predefined number of solutions. The 
quality of the final solution produced by GA depends on the size of the population 
and how the initial population is constructed. The initial solution generally 
comprises random solutions. 

GAs work on chromosomes or pairs of chromosomes to produce a new 
solutions called offsprings. Common genetic operators are crossover and  mutation. 
They are derived by analogy from the biological process of evolution. crossover 
operator is  applied to pairs of chromosomes. The two individuals selected for 
crossover are called parents. Mutation is another genetic oprator that is applied to a 
single chromosome. The resulting individuals produced when genetic oprators are 
applied on the parents are called offsprings.  

The choice of parents for crossover from the set of individuals that form the 
population is probabilistic. To accomplish the selection, the method  called the 
roulette wheel method can be used. When using this method, the wheel is 
constructed so that each member of the population is given a sector size proptional 
to its fitness as an individual. To select the parent the wheel is spun and whichever 
individual comes up is selected as a parent. So, the individuals with lower fitness 
also have a finite but lower probability to become a parent [106]. 

Crossover is the main genetic operator. It provides a mechanism for the 
offspring to inherit the characteristics of both  parents. It operates on two parents 
(P1 and P2) to generate offsprings. 

Mutation produces incremental random changes in the offspring by randomly 
changing allele values for some genes. In case of a binary chromosomes it 
corresponds to changing single bit positions. It is not applied to all members of the 
population, but is applied probabilistically only to some. Mutation has the effect of 
perturbing a certain chromosome in order to introduce new characteristics not 
present in any element of the parent population. For example in case of binary 
chromosomes, toggling some selected bit produces the desired effect. 

The structure of a simple genetic algoritm is given in Fig. 4-2. During each 
generation of the genetic algorithm a set of offsprings are produced by application 
of the crossover operator. The crossover operator ensures that the offsprings 
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generated have a mixture of parental properties. In order to introduce new allels 
into the chromosome, with a certain probability, mutation is also applied. 
Following this, from the entire pool comprising both the parents and their 
offsprings, a fixed number of individuals  are chosen to form the population of the 
new generation. If the M best individuals are chosen from this pool, then the fitness 
of the best individual, will be the same or better than the fitness of the best 
individual in the previous generation. Similarly, the average fitness of the 
population will be the same or higher than the average fitness of the best individual 
increase in each generation. 

 

procedure GENETIC_ALGORITHM 
  M = population size            (# Of possible solutions at any instance) 
  Ng = Number of generations      (# Of possible iterations) 
  No = Number of offsprings          (To be generated by crossover) 

  P = Mutation probability           (Also called mutation rate Mr) 

  P (M)                                        (Construct initial population P) 

                 ( is population constructor) 
begin 
   for j=1 to M     (Evaluate fitness of all individuals) 
      evaluate f(P[j])    (Evaluate fitness of P) 
   end for 
    
   for i = 1 to Ng  
      for j = 1 to No 

         (x,y) (P)    (Select two parents x and y from current population) 

        offspring[j] (x,y)  (Generate offsprings by crossover of parents x and y) 
        evaluate f(offspring[j])  (Evaluate fitness of each offspring) 
      end for 
 

      for j=1 to No    (With probability P apply mutation) 

  mutated[j]  (y) 
  evaluate f(mutated[j]) 
      end for 
 

   P  Select(P, offsprings)  (Select best M solutions from parents and offsprings) 
   end for 
   return highest scoring configuration in P 
end 

 

Fig. 4-2. Structure of a simple genetic algorithm 
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4.3 Tabu search 

In this section, an optimization method called tabu search will be described, 
which is based on the selected concepts of artificial intelligence. 

Tabu search was introduced by Fred Glover [107][108][109] as a general 
iterative heuristic for solving combinatorial optimization problems. Hansen also 
proposed some initial idea for this technique in his steepest ascent mildest descent 
heuristic [112] 

The concept of the tabu search is simple and elegant. In its essence, it's a form 
of local neighbourhood search - each solution has a associated set of neighbours. A 
neighboring solution can be reached by an operation called move. Normally, the 
neighbourhood relation is assumed to be symmetric. 

Tabu search is a generalization of local search. At each step, the local 
neighbourhood of the current solution is explored and the best solution in that 
neighbourhood is selected as the new current solution. However, local search stops 
when no improved solution is found in the current neighbourhood, whereas tabu 
search continues the search from the best solution in the neighbourhood even if its 
is worse than the current solution. To prevent cycling, so-called tabu list is formed, 
containing information about the the most recently visited solutions. Moves to tabu 
solutions are not allowed. However, the tabu status of the solution can be 
overridden is some situations - for example if the cost of the selected solution is 
better than the best seen so far. This situation proves that the search is not cycling 
back but moving towards better solution. Such situations are reffered to as 
aspiration criteria. 

An algorithmic decription of a simple implementation of the tabu search is 
given in Fig. 4-3 [111]. The procedure starts from an initial feasible solution S 
(current solution) in the search space . A neighbourhood  N(S) is defined for each  
S.  A sample of neighbour solutions V*  N(S) is generated. An extreme case is to 
generate entire neighbourhood that is to take V* = N(S). Since this is generally 
impractical (computationally expensive), a small sample of neighbours is generated 
called trial solutions. From these trial solutions the best solutions, say S*V*, is 
chosen for consideration as the next solution. The move S* is considered even if  
S* is worse than S, that is Cost(S*) > Cost(S). A move from S to S* is made 
provided certain conditions are satisfied. 

Selecting the best move in V* is based on the assumption that good moves are 
more likely to reach optimal or near-optimal solutions. As mentioned before, the 
best candidate solution S*V* may or may not improve the current solution, but is 
still considered. it is this feature that enables escaping from local optima. However, 
even with this strategy, it is possible to reach a local optimum, ascend (in case of 
the minimization  problem) since moves with Cost (S*) > Cost (S) are accepted, 
and then in a later iteration return back to the same local optimum. That is, there is 
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a possibility of cycling by returning back to previously visited solutions. This may 
cause the search to go though the same subset of solutions forever. 

 

algorithm TABU_SEARCH 

  : Set of feasible solutions 
S   : Current solution 
S*  : Best admissable solution 
Cost  : Objective function 

N(S)  : Neighbourhood of  S  
V*  : Sample of neighbourhood solutions 
T  : Tabu list 
AL  : Aspiration level 
 
Begin 

Start with an initial feasible solution  S 
Initialize tabu lists and aspiration level 
For fixed number of iteartions Do 

  Generate neighbour solutions V* N(S); 
  Find best S* V* 
  If move S to S* is not in T Then 
    Accept move and update best solution; 
    Update tabu list and aspiration level; 
    Increment iteration number; 
  Else 
    If  Cost(S*) < AL Then 
      Accept move and update best solution; 
      Update tabu list and aspiration level; 
      Increment iteration number; 
    EndIf 
  EndIf 
EndFor 
End. 

 

Fig. 4-3. Algorithmic description of tabu search 

 

To prevent returning to the previously visited solutions, a tabu list is 
maintained. The list contains attributes of some most recent moves. The size of the 
tabu list is the number of iterations for which a move containing that attribute is 
forbidden  after  it has been made. One can visualize the tabu list as a window on 
accepted moves as can be seen on Fig. 4-4. 
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Tabu list prevents cycling back to the previously visited solutions. However, 
since only the attributes of moves (not complete solutions) are stored in tabu list, 
these tabu moves may also prevent the considerations of some solutions which 
were not visited earlier. In order to relax the actions of the tabu lists, aspiration 
criteria  are introduced. Then, the solutions that are the result of moves having 
attributes found in the tabu list are also considered if they satisfy the aspiration 
criteria. The aspiration criterion must make sure that the reversal of a recently 
made move leads the search to  an unvisited solution, generally a better one. 

There are several aspiration criteria that have been suggested in literature, the 
customary one, also the simplest and most commonly used, overrides the tabu 
status is the reversal of the move in the tabu list produces a solution better than the 
best obatained so far during the search. This is also known as the best solution 
aspiration criterion. 

Coming back to the algorithmic description given on Fig. 4-3, initially the 
current solution is the best solution. Copies of the current solution are perturbed 
with moves to get a new set of solutions. The best among these is selected and if it 
is not tabu then it becomes the current solution. If the move is tabu, its aspiration 
criterion is checked. If it passes  the aspiration criterion then it becomes the current 
solution.  If the move to the next solution is accepted, then the move or some of its 
attributes are stored in the tabu list. Otherwise moves are regenerated to get another 
set of new solutions. If the current solution is better than the best seen so far, then 
the best solution is updated. Whenever the move is accepted, the iteration number 
is incremented. The procedure continues for fixed number of iterations or if some 
stop criterion is satisfied. 

Previously accepted moves 
no longer in tabu list 

Recently accepted moves 
in tabu list 

Fig. 4-4 The tabu list 
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4.4 Conclusions 

1. In many optimization problems it is not possible to use optimal enumerative and 
deterministic techniques in order to find the solution. Instead, approximation 
algorithms, also known as heuristic methods, can be used. When properly 
exploited, it is usually possible to develop reasonable heuristic which will quickly 
find an acceptable solution. Examples of such algorithms are simulated annealing, 
genetic algorithms and tabu search. 

2. Simulated annealing is a general-purpose optimization technique for 
combinatorial optimization problems. Theoretical studies have shown that the 
algorithm can find global optimum provided a set of conditions on the annealing 
schedule are satisfied. For many problems, simulated annealing has produced 
excellent results but requires massive computing resources. 

3. Genetic algorithms emulate the natural process of evolution. Unlike other search 
heuristics, they conduct the search by operating on a set of solutions called a 
population.  They work with chromosomal representations (encode strings) of 
solutions. The basic idea is to combine solutions called parents to produce new 
solutions called offsprings, with the objective that the offsprings will inherit some 
parental characteristics. 

4. Tabu search is different from other techniques in several aspects. One is the use 
of memory. In addition, reasonably sized subset of neighbours is explored and the 
best move among these is chosen. Also, in tabu search, “best” refers to change in 
evaluation which depends not only on the objective/cost function but also on search 
history, region being searched, and so forth. 

5. When solving a minimization or optimization problem where the cost curve is 
nonconvex (that is, it has multiple optima), it is necessary that the algorithms that is 
applied, has a “hill-climbing” ability in order to escape local optima. The 
algorithms presented in this section have such ability and thus can be used for 
solving this type of problems. In this research, simulated annealing and tabu 
search based approaches are used to optimize the cost of hybrid built-in self-test 
implementations, described in this work. 
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Chapter 5 Fault modeling for BIST analysis 

In this chapter, an overview is given about hierarchical defect modeling. Different 
defect modeling techniques are described, including Structurally Synthesized 
Binary Decision Diagrams, High-Level Binary Decision Diagrams and Boolean 
algebra. Also, experimental data on defect-oriented testing has been presented. The 
goal of this research was to investigate different fault models  
to be used in quality analysis of the BIST structures. 

5.1 Introduction 

One of the key problems in testing today’s complex digital systems is: how to 
improve the testing quality at increasing complexities of systems? Two main trends 
can be observed when searching solutions for the problem: defect-orientation, and 
high-level modeling. Unfortunately, these trends are contradictory. Low-level 
defect modeling methods cannot be used for complex digital systems because of 
their complexity. On the other hand, high-level methods used for managing the 
complexity, loose in the accuracy of handling defects. To get out from the 
deadlock, these two opposite trends – high-level modeling and defect-orientation – 
should be combined into hierarchical approaches.  

It has been shown that high SAF coverage cannot guarantee high quality of 
testing, for example, for CMOS integrated circuits [116]. The reason is that the 
SAF model ignores the actual behaviour of CMOS circuits, and does not 
adequately represent the majority of real IC defects and failure mechanisms. These 
facts are well known but usually, they have been ignored in engineering practice. 
In earlier works on layout-based test techniques [117], a whole circuit having 
hundreds of gates was analyzed as a single block. Such an approach is 
computationally expensive and highly impractical as a method of generating tests 
for real VLSI designs. 

To handle physical defects in fault simulation, we still need logic fault models 
for the following reasons: to reduce the complexity of simulation (many physical 
defects may be modelled by the same logic fault), a single logic fault model may be 
applicable to many technologies, logic fault tests may be used for physical defect 
whose effect is not well understood. But the most important reason for logical 
modelling of physical defects is to get a possibility for moving from the lower 
physical level to the higher logic level which has less complexity. 

In this chapter, an approach is presented to model physical defects by generic 
Boolean differential equations with the goal to map them from the physical level to 
the logic level. A new fault model is defined on that basis called functional fault 
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model. It is shown how the functional fault model can be retreated as a uniform 
interface for mapping faults from a given arbitrary level of abstraction to the next 
higher level in test generation processes. This mapping faults from level to level is 
demonstrated on the basis of the model of decision diagrams. 

5.2 Fault modeling with Structurally Synthesized Binary 
Decision Diagrams 

In [116][117], an extension of the traditional model of Binary Decision Diagrams 
(BDD) was intrrodused called Structurally Synthesized BDDs (SSBDD). The name 
of this extension came from the fact that the model was synthesized not from the 
Boolean function as in the case of BDDs, but directly from the structure of the 
logic gate-level circuit by superposition of elementary BDDs of the gates. This 
method of synthesis created the possibility to map directly the faults of the circuit 
to the model of SSBDD. 

Let us have a tree-like gate level combinational circuit with n inputs. For such a 
circuit we can create by a superposition of elementary BDDs of the gates a SSBDD 
with n nodes [116]. Between  the paths in the tree and the nodes in the graph, there 
exists a one-to-one mapping. Every combinational circuit can be regarded as a 
network of modules, where each module represents a fan-out-free region (FFR) of 
maximum size. The SSBDD model for a given circuit can be regarded as a set of 
SSBDDs, where each of them represents such a FFR. This way of modeling the 
circuit by BDDs allows to keep the complexity of the model (the total number of 
nodes in all graphs) linear to the number of gates in the circuit.  

Definition 5.1. SSBDD model for a given combinational circuit is a set of 
SSBDDs covering all FFRs of maximum size and a set of 1-node SSBDDs 
covering all primary inputs which have fan-out branches. 

As a side effect of the synthesis of the SSBDD model, we have got a strict 
relationship between the nodes in the SSBDDs and the signal paths in the modules 
(FFRs) of the circuit.  

SSBDDs reflect two types of mapping between the graph model and the related 
logic circuit:  

(1) the nodes in SSBDDs represent signal paths, and  

(2) certain groups of the nodes in SSBDDs represent certain subcircuits of 
the whole circuit.  

Example 5.1. In Fig.5-1, we have a combinational circuit with a FFR-module and 
a SSBDD which represents the function and the structure of the module. To each of 
all 7 signal paths in the circuit, a node in the SSBDD corresponds. For example, to 
the path L(71) = (71,a,d,e,y) from the input of the module 71 through internal nodes 
a, d, and e in the module up to the output y, the node 71 in the SSBDD corresponds.  
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On the other hand, for example, the group of nodes 6 and 73 in the SSBDD 
represent a subcircuit of two gates c and y in the circuit.  
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Fig. 5-1. Combinational circuit and SSBDD 

  
Direct relation of nodes to signal paths and groups of nodes to subcircuits 

allowes to handle with SSBDDs easily such problems like fault modeling and fault 
diagnosis. Since the node 71 in the graph represents the path L(71) = (71,a,d,e,y) in 
the circuit, it is easy to understand that the stuck-at-fault 71  α,  where α  {0,1}, 
in the graph represent a subset of faults in the circuit 71  α, a   α, d  α, e   α, 
y  α. In such a way, the set of all faults in the original circuit can be pruned by 
using the SSBDD model. 

In the following we will consider how the faults can be represented  at higher 
levels of abstractions by High-Level Decision Diagrams (HLDD) to cope with the 
complexity problem. 

5.3 Fault modeling with High-Level Binary Decision 
Diagrams 

High-level approaches to diagnostic analysis of digital systems lay on different 
languages and models. Most frequent examples are state transition diagrams for 
finite state machines (FSM), abstract execution graphs, register transfer level 
(RTL) flowcharts, system graphs, instruction set architecture (ISA) descriptions, 
hardware description languages (HDL, VHDL, Verilog, System C), Petri nets for 
system level description. All these models need dedicated for the given language 
manipulation algorithms, which makes it difficult to create a uniform high-level 
approach to diagnostic analysis of digital systems. Existing high-level modeling 
methods which are efficient for simulation, lack the capability of analytical 
reasoning that is needed for formalizing test generation and fault diagnosis 
problems.  

Promising opportunities for multi-level and hierarchical diagnostic modeling of 
digital systems provide decision diagrams (DD) because of their uniform cover of 
different levels of abstraction, and because of their capability for uniform graph-



60 
 

based fault analysis and diagnostic reasoning. High-Level Decision Diagrams 
(HLDD) for representing digital systems at higher levels of abstraction were 
introduced in [116].  

The goal of using HLDDs was to generalize the logic level methods and 
algorithms of fault simulation, test generation and fault diagnosis from logic level 
to higher RTL and functional levels.  For this purpose, the class of variables was 
extended from Boolean ones to the Boolean Vector, and integer variables, and the 
class of Boolean functions was extended to the data manipulation operations 
typically used in high-level descriptions of digital systems. 

In Fig.5-2 an example of a RTL data-path and its HLDD is presented. The 
variables R1 and R2  represent registers, IN denotes the input bus, the integer 
variables y1, y2 , y3, y4  represent control signals,  M1, M2, M3 are multiplexers, and 
the functions R1+R2 and R1*R2 represent the adder and multiplier, correspondingly. 
Each node in the DD represents a subcircuit of the system (e.g. the nodes y1, y2, y3, 
y4 represent multiplexers and decoders). The whole DD describes the behaviour of 
the input logic of the register R2. To test a node in the DD means to test the 
corresponding to the node component or subcircuit. 
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Fig. 5-2. Representing a register transfer level data path by a HLDD 

 

Depending on the class of the system (or its representation level), we may have 
various HLDDs where the nodes have different interpretations and relationships to 
the system structure. In the RTL descriptions, we usually partition the system into 
control and data paths. In this case, the nonterminal nodes in the HLDDs 
correspond to the control path, and they are labeled by state or output variables of 
the control part, serving as addresses or instruction words. On the other hand, the 
terminal nodes in the HLDDs correspond to the data path, and they are labeled by 
the data words or functions of data words, which correspond to buses, registers, or 
data manipulation blocks. When using HLDDs for describing complex digital 
systems, we have to represent the system by a suitable set of interconnected 
components (combinational or sequential subcircuits). Thereafter, we have to 
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describe the components by their functions which can be represented by HLDDs. 
The methods for synthesis of HLDDs for representing digital systems were 
described in [118].  

HLDDs allow to represent formally and in a uniform way different high-level 
faults that traditionally are represented informally and in different languages. Let 
us define the formal fault model on HLDDs in the following way by showing the 
interrelations with the informal  high-level fault model  introduced for RTL circuits 
or microprocessors in [119][120][121].  

Definition 5.2. Fault model for internal (nonterminal) nodes of HLDDs. In the case 
of register-transfer level (RTL) addressing schemes or for microprocessor 
adressing mechanisms, for a given source address any of the following may happen 
(multiplexer behavior faults) : 

‐ no source is selected; 
‐ a wrong source is selected; 
‐ more than one source is selected and the multiplexer output is either a 

wired-AND or a wired-OR function of the sources, depending on the 
technology. 

All these faults can be related to the faults of internal nodes of the HLDDs which 
leads to the exhausted testing of the nonterminal nodes of HLDDs for correct 
behavior of all edges of the nodes.  

Definition 5.3. Fault model for terminal nodes of HLDDs. In the case of data-
transfer along the buses between the registers and functional units of the RTL 
circuits or in microprocessors, the following may happen: 

‐ one or more lines can be stuck at 0 or 1; 
‐ one or more lines may form a wired-OR or wired-AND function due to 

shorts or spurious coupling;  
‐ data manipulation faults.    

All these faults can be related to the faults of terminal nodes of the HLDDs, which 
leads either to the exhausted testing of the functions at the nodes, or to generating 
the test for the node function or data transfer at the lover hierarchical level based 
on the structural model 

The disadvantage of the referenced RTL or microprocessor fault models are in 
that they are defined in a very dedicated way and cannot be extended to cover the 
general digital systems test problem. The fault model of HLDDs allows a formal 
approach and is general for all digital systems described by the HLDD model. 

Example 5.2. Consider a generic RTL statement as a pseudoinstruction in the 
following form [119]: 

K: (T,C) Rd    f(RS1, RS2,…, RSn),   N.                    (5-1) 

Here K is the RTL statement label,  T  is the timing, and  C  is the logic  condition 
to execute this statement,  Rd   is the destination register,  RSi  is the i-th source 
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register,  f   is an operation on source registers,    represents data transfer, and   
N  represents a jump to statement  N.   
 
Rd

T

C f(RS1, RS2,…, RSn)

NextState
K T

C N

K

 
 

Fig. 5-3. Generic partial HLDD for the generic statement (5-1) 

 
The statement (5-1) can be represented by the partial HLDD model, depicted in 

Fig. 5-3. The model consists of two graphs for calculating the content of the 
destination register Rd , and the NextState, respectively. Here, the labels K and N 
are interpreted as the State and NextState variables, respectively. Between the 
variables of the statement (5-1) and the nodes of the HLDD, there exists one-to-one 
mapping. There is also one-to-one mapping between the nodes K(N),  T, and C of 
the HLDD model and the corresponding registers of the RTL circuit. The terminal 
node f(R) in the graph Rd represents a functional unit for data manipulations. 

Based on the above notation, nine categories of functional faults can be 
identified as follows: 

F1: label faults denoted by (K/K’), which means that the label K will be changed 
to K’ due to the low-level faults;  

F2: timing faults (T/T’); 
F3: logic condition faults (C/C’); 
F4: register decoding faults (Ri/Ri’); 
F5: function decoding faults (f/f’); 
F6: control faults ( N/ N’); 
F7: data storage faults ((Ri)/(Ri)’), which means that the content of the register R is 

changed from (R) to (R)’ due to the low-level faults; 
F8: data transfer faults (/’), which means that the fault occurs in the transfer 

path between the sources and the destination; 
F9: data manipulation (function execution) faults ((f)/(f)’, which means the 

operation execution fault – the operation f is executed, but the result of the 
operation is wrong. 

In the HLDD fault model, the RTL faults F1 – F5 are represented by the faults 
of the nonterminal nodes of the HLDDs, whereas the RTL faults F6 – F9 are 
represented by the faults of the shown terminal nodes (the HLDDs  for the 
decoding functions of f and R are not shown in Fig. 5-3). 
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5.4 Defect modeling with Boolean Differential Algebra 

New failure mechanisms in today’s deep-submicron electronic devices cannot be 
modeled by traditional stuck-at faults (SAF) which in case of DDs are directly 
associated with the nodes of the graphs. As the result, new advanced fault models 
are continuously being developed to improve the confidence of test quality 
measures and to increase the accuracy of fault diagnosis. The types of faults that 
can be observed in a real gate depend not only on the logic function of the gate, but 
also on its physical design. Good possibilities to combine logical and physical level 
fault modeling provide pattern fault model [122] or conditional fault 
models [78][79]. A similar pattern related fault modeling approach called 
functional fault model was presented in [123] for the module level fault diagnosis 
in combinational circuits.  

Consider a parametric model of a component (e.g. a complex gate) in a 
combinational circuit with a correct function  y = fy (x1,x2,...xn), and including  a 
Boolean fault variable   to represent an arbitrary physical defect ( = 0 when the 
defect is missing, and  = 1 when the defect is present) as a generic function 

 yyny ffxxxfy ),,...,,(** 21                    (5-2) 

where fy
 represents the faulty function of the component because of the defect . 

The solution Wy() of the Boolean differential equation  

                                                             1
*




 yf

                                          (5-3)
 

describes a condition which activates the defect  to produce an error on the output 
y of the component. The parametric modeling of a given defect  by the condition 
Wy() = 1 allows to use it either for defect-oriented fault simulation (to check 
whether the condition Wy() = 1 is fulfilled), or for defect-oriented test generation 
under the constraint Wy() = 1 when a test pattern is searched for detecting the 
defect  .  

If the components of the circuit represent standard library (complex) gates, the 
described analysis for finding conditions should be made once for all library 
components, and the sets of calculated conditions will be included into the library 
of components in the form of fault tables. The defect characterization may be 
computationally expensive, but it is performed only once for each library cell. The 
defect lists WF

y of library components embedded in the circuit can be extended by 
additional physical defect lists WS

y for the interconnect structure in the neighboring 
of the component to take into account also different defects (bridging faults, 
crosstalks etc.) outside the components. For these defects additional 
characterization should be carried out by a similar way as for the library cells. 
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Example 5.3. Consider a subcircuit (module or complex gate) of two simple gates 
with outputs y and c in the circuit in Fig.5-1 (shown by the area in grey colour).  
The Boolean function of the module is 

736 xxey  . 

Consider a defect inside the module in the form of a bridging fault of the wired-
AND type between the nodes e and x73 . The faulty function of the module with the 
defect can be presented as 

67367373 xxexexexy  . 

Using the defect variable  for the short, we can create a generic differential 
equation for this defect and solve it as follows: 

)()()(* 736736673736 xxxxexxexxey   

1)(                         

))(())((*

73736736

736
736

736736
















xexxxxe

xx
xxe

xxxxey

 

As it results from the single solution of this differential equation, the bridging 
fault between the nodes e and x73 inside the module can be activated by the 

condition 1)( 73  xeWy  which will be satisfied by the input signals of the 

module e = 1, and x73 = 0. 

The example illustrated how the arbitrary physical defects can be mapped from 
the low physical (e.g. transistor circuit) level to higher logic level. The 
precondition for such a mapping is the possibility of representing the circuit with 
the defect by a faulty Boolean function. 

5.5 Hierarchical mapping of faults in digital systems 

The method of defining faults by logic conditions Wy() allows us to unify the 
diagnostic modelling of components of a circuit (or system) without going into 
structural details of components, or into the diagnostic simulation of 
interconnection network of components. In both cases, a condition Wy() describes 
how a lower level fault   should be activated to a given higher-level node in a 
circuit (or system). The conditions Wy() can be used both in fault simulation and 
in test generation.  
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Fig. 5-4. Mapping faults from lower level to higher level 

 

Consider a node k in a circuit (Fig.5-4) as the output of a module Mk, and which 
is represented by a function variable yk. Let us associate with the node k a set of 
faults Rk = RF

k  RS
k  where RF

k is the subset of faults in the module Mk, and RS
k is a 

subset of structural faults (defects) in the “neighbourhood” of Mk in the higher level 
environment. Denote by Wk() the condition when the fault   Rk will change the 
value of yk. Denote by WF

k the set of conditions Wk() which activate the defects  
  RF

k and by WS
k the set of conditions Wk() which activate the defects   RS

k. 

By using the sets of conditions WF
k and  WS

k we can set up a mapping of faults 
from lower level to higher level for test generation purposes, and also in opposite 
direction, from a higher level to a lower level for fault simulation or fault diagnosis 
purposes.  

In test generation, to map a lower level fault   Rk  to the  higher level variable 
yk, a solution of the equation W= 1 is needed.  In other words, if the condition  
W= 1 is fulfilled then the presence of the defect   Rk  will change the value of 
the variable yk. 

In fault simulation (or in fault diagnosis) an erroneous value of yk (denoted by a 
Boolean differential dyk  = 1) can be formally explained by implication 

n
nk WWWdy   ...2

2
1

1                   (5-4) 

where for j = 1,2,…n: j  Rk . To the higher level event dyk  = 1, we set into 
correspondence a lower level event j if the condition Wj = 1 is fulfilled.  

For hierarchical testing purposes we should construct for each module Mk of the 
circuit a list of faults Rk with logical conditions W for each fault   Rk. The set of 
conditions WF

k for the functional faults   RF
k of the module can be found by low 

level test generation for the defects in the module. The set of conditions WS
k for the 
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structural faults   RS
k in the environment of the module can be found by Boolean 

differential analysis of generic fault-free/faulty functions as explained above.  
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Fig. 5-5. Hierarchical approach to diagnostic modeling of digital systems 

 

In Fig. 5-5, a hierarchical testing concept based on parametric fault modeling 
and functional fault model for a 3-level system is illustrated. In the functional 
approach, only the information about the functional behaviour is used. In the 
structural approach, tests are targeted to detect the faults in the networked 
components and in the network interconnections. 

Let Y be the system variable representing an observable point of the system, yM 
be an output variable of a logic level module, and yG be the output of a complex 
gate with a defect . Then, the condition of detecting the defect  on Y is 

W  = Y/yM      yM /yG    W
 = 1, 

where Y/yM  means the fault propagation condition calculated by high-level 
modeling, yM/yG  is the fault propagation condition (Boolean derivative) 
calculated by gate-level modeling, and W is the functional fault condition for a 
given gate calculated from the differential equation (5-3) by the gate preanalysis. 

Example 5.4. Consider the following two examples of fault mappings between 
different levels of abstractions for digital systems. For the mappings, Decision 
Diagrams provide a suitable uniform environment.  

(1) The nodes of SSBDDs represent signal lines in a digital circuit, where physical 
defects  may cause erroneous signals if the conditions W= 1 are satisfied. Hence, 
to model a SAF fault of the node m at the conditions W= 1 is equivalent to 
mapping the physical defect  to the logic level by means of SSBDD. The 
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conditions are calculated at the lower transistor level by using Boolean differential 
algebra or simulation tools, whereas the modeling of faults (e.g. during fault 
simulation or test generation) is carried out at the logic level with SSBDDs.  

(2) The nodes of HLDDs represent modules in a digital system, where defects  
inside the module may  cause erroneous signals on the outputs of the module, if the 
input conditions (patterns or pattern sequences) W= 1 on the inputs of the modules 
are satisfied. Hence, to model the behaviour of a node in a HLDD at the conditions 
W= 1 is equivalent to mapping the module level defect  to the system level by 
means of HLDD. The conditions are calculated at the module level by test 
generation, for example, with SSBDDs, whereas the modeling of faults (e.g. during 
high-level fault simulation or test generation) is carried out at the system level with 
HLDDs.  

The main concept of the fault model used in HLDDs is to test exhaustively each 
node. For non-terminal nodes which model the control variables such a concept is 
meaningful because of the low number of possible values for these variables. The 
situation is different with terminal nodes which model the units of data paths. In 
this case, hierarchical approach is advisable. Assume the terminal node R1 * R2 in a 
graph in Fig. 5-2  labeled by multiplication expression. The high-level test pattern 
(control word) for activating the working mode R2 = R1 * R2 is fault simulated 
using the HLDD. The set of local test patterns {R1

t, R2
t} to be applied to the inputs 

R1 and R2 of the multiplier, are fault simulated at the lower gate-level. The set of 
patterns {R1

t, R2
t} can be regarded as a set of conditions (as the functional fault 

model) when fault modeling the terminal node R1 * R2. On the other hand, the set 
of local test patterns {R1

t, R2
t} can be regarded as interface between two levels in 

hierarchical fault modeling: the conditions are generated at lower level and used in 
the higher level.  

A novel functional fault model was introduced, which is a general concept for 
mapping faults in digital systems between different levels of abstraction. The 
conditional SAF model can be regarded as a special case of fault mapping from 
physical to logic level. 

5.6 Experimental data 

The defect-oriented conception of hierarchical diagnostic modeling of digital 
circuits was compared with the traditional SAF model oriented approach for the 
ISCAS’85 benchmark family. Only bridging faults between lines in transistor 
circuits were considered. The experiments showed the advantage of the defect-
oriented conception. The investigations have been carried out in cooperation with 
TU Warsaw and IISAS Bratislava targeted to defect-oriented test pattern 
generation [124]. 
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Table 5-1. Comparison of SAF and defect-oriented test generation 

 

 
Circuit 

Defect coverage, % 

For 100% SAF test 
Defect‐oriented 
test generation 

OR 
model 

AND 
model 

OR 
model 

AND 
model 

c17  92.59  100.0  100.0  100.0 

c432  99.38  99.33  100.0  100.0 

c499  92.80      100.0  92.80  100.0 

c880  95.95  100.0  95.95  100.0 

c1355  93.42  100.0  93.42  100.0 

c1908  92.91  99.94  92.91  100.0 

c3540  94.21  99.68  94.38  99.74 

c5315  94.71  100.0  94.71  100.0 

c6288  92.59  100.0  92.59  100.0 

 
 

The results are depicted in Table 5-1. In the left part of the table, comparison with 
traditional SAF test of 100% fault coverage is given. We see that, especially for the 
OR-shorts the defect coverage of the 100% SAF tests is rather low, and the quality 
of these tests cannot be trusted.  

In the right part of the table, the results of defect-oriented test generation are 
given. In some cases, we see that defect-orientation can help to increase the fault 
coverage. The cases where 100% coverage was not achieved show that the not 
detected defects are with high probability redundant. This conclusion about the 
redundancy of defects could not be made based on the SAF-oriented test results in 
the left part of the table, since for these tests the detection of bridging fault defects 
were not the target. 

 

 

 

 

 

 

 

 
 

 

 

Fig. 5-6. Comparison of plain gate-level and hierarchical test generation 
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In Fig. 5-6 an example is depicted to illustrate the impact of fault mapping from 
gate level to system level on the efficiency of test generation. Test generation 
experiments were carried out for a benchmark family of  RISC processors which 
vary in the the instruction set (processors with 4, 8 and 16 instructions) and in the 
bitwidth (4, 8, 16 and 32-bit processors) [124]. Test generation for data 
manipulation modules represented by the terminal nodes of HLDDs was carried 
out on the logic level with SSBDDs. The locally generated test vectors were used 
as conditions for testing the terminal nodes in the HLDDs. During test generation 
for HLDDs, no logic level details were considered, all the operatios were carried 
out exclusively on the hig-level. The experimental results (test generation times 
in s) are shown in Fig.5-6 for 12 different processors, differing in the complexity 
(bit width, size of the instruction set), where the high-level ATPG is compared to a 
commercial gate-level ATPG tool. Here we see, the higher is the complexity of the 
digital system, the larger is the advantage of the high-level ATPG compared to the 
low-level ATPG, in other words, the larger is the impact of the hierarchical fault 
mapping concept. 

In addition, the experiments were carried out to determine the  efficiency on 
pseudorandom test sequence generated by Built-In Self-Test giving high percent of 
SAF fault coverage for defect-oriented testing. 

The experiments were carried out in two stages: 

(1) the experiments to find best pseudorandom test sequences for the ISCAS’85 
benchmarks – the LFSR configuration that would result in the shortest 
sequence giving high fault coverage (100% was reached in the most cases) 

(2) defect-oriented fault simulation was carried out 

In Fig. 5-7, an example of experimental data for one of the ISCAS’85 
benchmarks is shown.  

It can be seen that pseudorandom test sequence has different efficiencies in 
detecting stuck-at faults and different classes of defects or combinations of them. 
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Fig. 5-7. Fault coverage by pseudorandom test sequence in case of SAF 
and defect-oriented fault simulation for c6288 

 

Table 5-2. Test qualities at different simulated fault classes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Circuit  Test 
length 

SAF 
cover 
% 

Defect coverage, % 

Counted defects  Probabil. defects 

AND  OR  Total  AND  OR  Total 

c432  100
200
300 

95,5
98,9
100 

95,0
98,3
100 

96,6
98,8
100 

95,8
98,5
100 

96,1
98,5
100 

97,8
99,0
100 

97,0 
98,8 
100 

c499  750
1000
1270 

98,9
99, 4
100 

99,0
99,4
100 

92,1
92,4
92,8 

95,6
95,9
96,4 

99,5
99,7
100 

85,5
85,6
85,8 

92,5 
92,7 
92,9 

c880  500
820
3355 

98,2
99,5
100 

99,3
99,6
100 

95,7
96,0
92,5 

97,5
97,8
96,3 

99,4
99,7
100 

92,2
92,4
96,2 

95,8 
96,1 
98,1 

c1355  200
750
1315 

90,9
97,9
100 

93,9
98,4
100 

88,5
92,1
93,4 

91,2
95,3
96,7 

95,5
98,9
100 

85,0
87,1
87,8 

90,3 
93,0 
93,9 

c1908  750
1200
2075 

96,5
98,9
100 

98,7
99,2
100 

92,0
92,3
93,4 

95,3
95,8
96,7 

99,2
99,6
100 

85,5
85,7
92,9 

92,4 
92,6 
96,5 

c3540  1500
2500
10000 

91,3
92,5
98,1 

90,3
91,1
97,1 

82,6
83,7
91,9 

86,5
87,4
94,5 

90,3
90,9
97,0 

85,7
86,6
88,5 

88,0 
88,7 
92,7 

c5315  750
1110
4100 

99,6
99,9
100 

100
100
100 

94,7
94,7
94,7 

97,4
97,4
97,4 

100
100
100 

91,1
91,1
91,1 

95,6 
95,6 
95,6 

c6288  20
40
55 

98,9
99,9
100 

100
100
100 

92,6
92,6
92,6 

96,3
96,3
96,3 

100
100
100 

85,3
85,3
85,3 

92,7 
92,7 
92,7 
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Table 5-2 presents the experimental results for resynthesised ISCAS’85 
benchmarks. As it can be seen from the results, the pseudorandom test sequence is 
quite efficient in covering AND-type shorts but in case of OR-type shorts the 
coverage tends to be quite low. Also, it is obvious that similarly to the results 
shown in Table 5-1, even though pseudorandom sequence giving 100% stuck-at 
fault is giving quite high defect coverage, in many cases it is still not enough and 
many defects remain untested.  In addition, typically for such built-in self-test 
approach, the test sequences tend to be very long leading to long test application 
times. 

The fact that the pseudorandom test sequence often fails to reach satisfactory 
defect coverage can be explained by the fact that in these cases we are dealing with 
either redundant or random pattern resistant (so-called "hard-to-test") defects.  This 
issue could be addressed by generating test patterns targeting specifically these 
defects. 

 Table 5-3 presents the correlation between fault coverage and test length for 
some benchmark circuits. As it can be seen, 100% coverage of stuck-at faults can 
be reached with much shorter pseudorandom test sequence than the highest 
achievable defect coverage. This result clearly shows that there is the need to 
consider extended classes of defects, and not only the simple SAF class when 
determining the length of the pseudorandom test of acceptable quality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5-3. Comparison of test lengths for SAF coverage 
and total (SAF and defects) coverage 

 
Circuit  Fault 

coverage. % 
Test  length  Test length

correlation SAF  Total 
(SAF & 
Defects) 

c432  100.00  297  297  1.00 

c880  97.78 
100.00 

535
3352 

656
‐ 

1.23
N/A 

c1355  97.31 
100.00 

617
1315 

1315
‐ 

2.40
N/A 

c1908  96.26 
100.00 

716
2054 

1096
‐ 

1.53
N/A 

c5315  97.35 
100.00 

148
4026 

465
‐ 

3.14
N/A 

c6288  96.29 
100.00 

14
51 

20
‐ 

1.43
N/A 

 



72 
 

5.7 Conclusions 

1. An approach is presented to map faults between the levels of abstraction in 
digital systems to improve the efficiency of fault simulation and test generation.  

2. For modelling physical defects, generic Boolean differential equations were 
introduced which allow to map the physical faults from lower physical level to 
higher logic level. 

3. It was shown that the Decision Diagrams provide an efficient tool for uniform 
fault mapping in digital systems from lower levels to higher levels of abstraction.  

4. A new functional fault model was developed as a uniform basis for modelling 
arbitrary physical defects. It was shown how the functional fault model can be 
regarded as a uniform interface for mapping faults from lower levels to higher 
levels.  

5. The conditional SAF model can be regarded as a special case of the functional 
fault model to facilitate fault mapping from physical to logic level. 

6. Experimental data demonstrate that the higher is the complexity of the digital 
system, the larger is the advantage of the hierarchical ATPG compared to the plain 
low-level ATPG, in other words, the larger is the impact of the hierarchical fault 
mapping concept. 

7. Experimental data also showed that BIST test that has 100% stuck-at fault 
covarage, can reach quite high defect coverage but in many cases the test quality is 
not satisfactory, thus extended fault model should be used. This fact explains the 
need of evaluation of the BIST quality using defect-oriented functional fault model 
instead of traditional SAF model. 
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Chapter 6 Test cost minimization of Hybrid 
BIST 

Classical Built-In Self-Test solutions are in large part based on using LFSRs for 
generating pseudorandom test sequences and also test response compaction. In this 
chapter, an approach known as hybrid BIST is described, which combines 
pseudorandom test patterns with stored precomputed deterministic test patterns. 
Methods are described for finding optimal balance between pseudorandom and 
stored patterns. In order to speed up the calculation process, a method based on 
tabu search has been applied to find the global cost minimum. 

6.1 Introduction 

To test  the individual cores of the system the test pattern source and sink have to 
be available together with an appropriate test access mechanism (TAM [56] as 
depicted in Fig. 6-1. 

 

 

 

Fig. 6-1. Testing a System-on-chip 
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The traditional approach implements both source and sink off-chip and 
therefore requires the use of external Automatic Test Equipment (ATE). But, as the 
requirements for the ATE speed and memory size are continuously increasing, the 
ATE solution can be unacceptably expensive and inaccurate. Therefore, in order to 
apply at-speed tests and to keep the test costs under control, on-chip solutions are 
becoming more and more popular. Such a solution is usually referred to as Built-In 
Self-Test (BIST). The classical BIST has been described in Chapter 2. 

The main idea behind BIST approach is to eliminate or reduce the need for an 
external tester by integrating active test infra-structure on a chip. The test patterns 
are not any more generated externally as it is done with Automatic Test Equipment 
(ATE), but internally, using special BIST circuitry. 

6.2 Drawbacks of the classical BIST approach 

The classical way to implement TPG for logic BIST (LBIST) is to use linear 
feedback shift registers (LFSR). But as the test patterns generated by LFSR are 
pseudorandom by their nature [61] and  have linear dependencies, the LFSR based 
approach often does not guarantee a sufficiently high fault coverage (especially in 
the case of large and complex designs) and demands very long test application 
times in addition to high area overheads. 

The pseudorandom test sequence can be more than ten times longer than the 
deterministic sequence with the similar efficiency [13]. The reason of this problem 
is the presence of so-called random pattern resistant faults [125] in the circuitry. 
The random-pattern resistant faults are those that are detected by only few patterns, 
sometimes just one. Obviously, if this pattern is not generated by the LFSR during 
the test, the fault will remain undetected. 

The typical situation where the described situation occurs is when the circuit 
includes large input AND (NAND) logic functions or large input OR (NOR) logic 
functions [11]. A large AND (NAND) function will produce a logic 1 (logic 0) 
infrequently due to the equal likelihood of logic 1s and logic 0s in each bit of the 
pseudo-random test patterns. Similarly a large OR (NOR) function will produce a 
logic 0 infrequently. Faults that would require many logic 1s generated at the 
output of a large AND function or logic 0s at the output of a large OR function are 
not easily detected. Fig. 6-2 illustrates the situation when the stuck-at-1 fault needs 
to be detected on the output of OR-gate. To detect this fault, we would need a test 
pattern consisting of all 0s to activate the fault. The more inputs the gate has the 
lower is the probability of discovering such fault. 

x1

xn stuck‐at‐1

y

 

                                           Fig. 6-2. PR-resistant fault - OR gate 
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In general, pseudorandom test patterns can seldom achieve 100% fault 
coverage. Fig. 6-3 shows the fault coverage of pseudorandom tests as a function of 
the test length for ISCAS'85 benchmark [126]. This figure illustrates an inherent 
property of pseudorandom test: the first few test vectors can detect a large number 
of faults while later test vectors detect few new faults if any. Moreover, many 
faults will never be detected with pseudorandom tests alone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6-3. Pseudorandom tests form some ISACS'85 circuits 
 

Therefore, several questions have to be answered while developing a LFSR-
based self-test solution: 

 What is the fault coverage achievable with pseudorandom patterns, 
compared to that of deterministic test methods? 

 Will the required fault coverage be achieved by the number of 
pseudorandom patterns that can be generated in some acceptable interval of 
time? 

 What are the characteristics of LFSR that produce the test sequence with 
acceptable fault coverage? 

Such an analysis shows that in most cases the pseudorandom test leads to either 
unacceptably long test sequences or  fault coverage figures that are not acceptable 
and much below those achievable by deterministic test sequences. 
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One solution to this problem is to complement pseudorandom test patterns with 
deterministic test patterns, applied from an on-chip memory, in special situations, 
from an ATE, using different techniques. These approaches are usually referred to 
as mixed-mode or hybrid BIST approaches [127].  

6.3 BIST impovement techniques 

Different methods have been proposed for improving the classical BIST schemes. 
For example, the fault coverage can be increased by  modifying the CUT by either 
inserting the test points [62] or by redesigning the CUT itself [128]. The drawback 
of those techniques is that generally they add additional logic to the circuitry that 
can degrade the performance. 

Some other approaches are using weighted pseudorandom sequences for BIST 
fault coverage improvement. In these approaches additional logic is needed to 
weight the probability of each bit in the test sequence. An example of practical 
application for weighted pseudo-random test patterns is a CUT that incorporates a 
global reset or preset to the flip-flops. Frequent resetting of flip-flops by 
pseudorandom test pattern will clear the test data propagated into the flip-flops and 
prevent internal faults from being detected. In a study of pseudorandom test 
patterns applied to the 1989 International Symposium on Circuits and Systems 
(ISCAS'89) sequential benchmark circuits [129], it was found that single stuck-at 
level-gate fault coverage was as low as 11% to 15% for circuits that had global 
resets or presets to the flip-flops due to this fault-detection blocking effect of 
pseudorandom patterns [130]. When the reset/preset signal is controlled by other 
means, which can include the use of weighted pseudorandom test patterns, the fault 
coverage climbs greater than  90% for these circuits. A solution to this problem is 
to take the equal likelihood of 0s and 1s in pseudorandom sequences of an LFSR 
and use additional logic to create weighted pseudorandom  patterns [131]. For 
example, more frequent logic 1s can be generated by a logical NAND of two or 
more bits of LFSR. Given that the probability of a given bit in LFSR being a 
logic 0 is approximately 0.5 (denoted p0 0.5) NANDing two bits of the LFSR will 
produce a bit that has p0 0,25; NANDing three bits will result in p0 0,125 and so 
on. Fig. 6-4 shows an example of weighted LFSR based TPG where each of the 
normal LFSR outputs has p0 0.5 for a given test pattern while the weighted output 
has p0 0,125.  

The probabilities (or weights) can be controlled for a higher coverage test 
patterns generation and/or shorter length BIST sequences for a given CUT [132]. 
Of course the weights and the number of CUT inputs that need to be "weighted" 
has to be determined on a case-by-case basis since this is a function of the CUT. 
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Fig. 6-4. Example of weighted LFSR implementation 

 

The weight logic can be placed either at the input of the scan chain [133] or in 
the individual scan cells themselves [63]. The disadvantage of the WPS approach is 
that the weight sets have to be stored on chip and additional control logic is 
required to switch between weights. Therefore, the silicon area overhead may 
become too large, as the weighting requires extra hardware in terms of the 
NAND/NOR gates as well as additional LFSR bits since multiple bits are logically 
combined to produce a single test pattern bit. The increased area overhead along 
with the increased design time are a limitation of this TPG approach. However, the 
weighted-LFSR is a powerful technique for increasing fault coverage in circuits 
with pseudorandom pattern resistant circuits. 

A third alternative for improving the fault-coverage is to use a mixed or hybrid 
approach [72][73][127][134] -[136]. Such approaches use pseudorandom patterns 
to cover easy-to-detect faults and  subsequently, deterministic patterns to target the 
remaining hard-to-detect faults. 

There are number of ways for generating patterns on-chip. Three of them are 
described in the following 

ROM compression 

The simplest approach for generating deterministic patterns on-chip is to store 
them in a read-only memory (ROM). The problem is that quite often the solutions 
require a big size of ROM to store all the necessary patterns. There have been 
several ROM compression techniques proposed that allow reducing the size of 
ROM [64][67][137]-[139] 

LFSR reseeding 

Instead of storing the test patterns in ROM, there are many techniques developed 
for storing LFSR seeds that can be used to generate pseudorandom test 
patterns [63]. The LFSR that is used for generating the pseudorandom patterns is 
also used for generating the deterministic patterns  by reseeding it with the 
computed seeds. The seeds can be computed  with linear algebra as described 
in [63].  Because the seeds are smaller than the test patterns themselves, they 
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require less ROM storage. One problem is that for LFSR with a fixed 
characteristics (feedback) polynomial, it may not always be possible to find a seed 
that will efficiently generate the required deterministic test patterns. A solution to 
that problem was proposed in [67], where a multiple-polynomial LFSR (MP-
LFSR) is used. Fig. 6-5 shows such an MP-LFSR. 

An MP-LFSR is an LFSR with a reconfigurable feedback network. A 
polynomial identifier is stored with each seed to select the characteristic 
polynomial that will be used for that seed. Techniques for further reductions in 
storage can be achieved by using variable-length seeds [140], a special ATPG 
algorithm [141], folding counters [142] and seed encoding [143]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6-5. Reseeding with multiple-polynomial LFSR 

 

Embedding deterministic patterns 

One more approach for mixed-mode BIST is to embed the deterministic patterns in 
the pseudorandom sequence. Many of the pseudorandom patterns generated during 
pseudorandom testing do not detect any new faults, so some of those "useless" 
patterns can be transformed into deterministic patterns that detect PR-resistant 
faults [67]. This can be done by adding mapping logic between the scan chains and 
the CUT or in a less intrusive way by adding the mapping logic at the inputs to the 
scan chains to either perform a bit fixing [66]or bit-flipping [144]. Fig. 6-6 
illustrates this approach as shown in [67]. 
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The main strength of the described approaches lays in the possibility to have a 
trade-off between test data storage and test application time by varying the ratio of 
pseudorandom and deterministic test patterns. In general, such a hybrid approach 
reduces the memory requirements compared to the pure deterministic testing, while 
providing higher fault coverage and reduced test times compared to the stand-alone 
BIST solution. 

6.4 Hybrid BIST - basic principles 

Usually, in self-test approaches some type of pseudorandom test patterns is used. 
But as test patterns generated by LFSR are pseudorandom by their nature, the 
generated test sequences are usually very long and not sufficient to detect all the 
faults. To avoid the test quality loss due to random pattern resistant faults and in 
order to speed up the testing process, deterministic patterns targeting the random 
resistant and difficult to test faults have to be applied. 

In the previous sections, some methods based on this concept were described. 
These methods successfully increased the quality of the test by targeting random 
pattern resistant faults. However, these described approaches were able to find a 
solution in situations when test process was constrained by limitations such as 
memory or test time, which is often the case in realistic situations. 

The hybrid BIST approach  used in this work has been described in [127] and it 
is based on  the intelligent combination of pseudorandom and deterministic test 
sequences that would provide a high-quality test solution. 

This hybrid BIST approach is illustrated in Fig. 6-7. It starts with on-line 
generation of pseudorandom test sequence with a length of L. On the next stage, a 
stored test approach with length S takes place [127]. For the stored approach, 
precomputed test patterns are applied to the core under test to reach the desirable 

Pattern Generator 

Mapping Logic 

Circuit Under Test 

Original test patterns 

Transformed test patterns 

Fig. 6-6. Using the mapping logic
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coverage level. The precomputed deterministic set of test patterns is stored in the 
memory. For off-line generation of the deterministic set, arbitrary software test 
generators based on deterministic, random or genetic algorithms may be used 
[145]. 

Definition:  A hybrid BIST set THk = {PRk, DTk} for a core Ck is a sequence of 
tests, constructed from a subset of the complete pseudorandom test sequence PRk  
PRF

k, and a subset of the complete deterministic test sequence DTk  DTF
k. The test 

sequences PRk and DTk complement each other to achieve the maximum achievable 
fault coverage, and define the hybrid test set THk. 

 

 

 

 

 

 

 

 

 

 

 

 

In general, a shorter pseudorandom test implies a larger deterministic set. This 
requires additional memory space, but at the same time, shortens the overall test 
process, since deterministic test vectors are more effective in covering faults than 
the pseudorandom ones. A longer pseudorandom test, on the other hand will lead to 
longer test application time with reduced memory requirements [127]. 

6.5 Hybrid BIST - cost calculation and optimization 

The important parameter of hybrid BIST is the length L of the pseudorandom 
test sequence. It determines the behaviour of the whole process. In case a shorter 
pseudorandom test set is used, the larger deterministic set will be needed. Larger 
deterministic test set requires additional memory for these patterns to be stored. 
This approach, however, shortens the overall test. On the other hand, a longer 

Fig. 6-7. Hybrid BIST fault coverage
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pseudorandom test will lead to longer test application time with reduced memory 
requirements. Therefore it is crucial to determine the optimal test length of 
pseudorandom test in order to minimize the total testing cost. 

The total cost of BIST solution consisting of pseudorandom test patterns and 
stored test patterns is graphically shown on Fig. 6-8. The horizontal axis denotes 
the fault coverage achieved by the pseudorandom test before switching from the 
pseudorandom to the stored test. Zero fault coverage is the case when only stored 
test patterns are used and therefore the cost of stored test is the biggest at this point. 
The figure illustrates the situation where 100% fault coverage is achievable  with 
pseudorandom test alone, although this can demand a very long pseudorandom test 
sequence (in particular, in the case of large and complex designs, 100% fault 
coverage might not be achievable at all).  

Test cost

Cost of stored
test CMEM

to reach 100%
fault coverage

Cost of
pseudorandom

test CGEN

CTOTAL

Cmin
100%

Pseudorandom test
coverage (%)

 
Fig. 6-8. Cost calculation for hybrid BIST 

 
Therefore, the total cost of  the hybrid BIST CTOTAL can be defined as follows: 

CTOTAL = CGEN + CMEM L+S 

where CGEN  is the cost related to the time for generating L pseudorandom test 
patterns (number of clock cycles), CMEM is the memory cost for storing S 
precomputed test patterns needed to improve the results of the pseudorandom test 
sequence [126].  and  are constants to map the test length  and memory space to 
the costs of the two parts of the test solutions to be mixed.  

Fig. 6-8 illustrates how the cost of pseudorandom test CGEN is increasing when 
striving to higher fault coverage. In general, it can be very expensive (time-
consuming) to achieve high fault coverage with pseudorandom patterns only. The 
CMEM curve on the other hand, describes the cost we have to pay for storing 
additional pre-computed tests at the given fault coverage reached by pseudorandom 
testing to achieve the required fault coverage level. The total cost of CTOTAL is the 
sum of the mentioned costs L and S. The weights  and  reflect the correlation 
between the cost and pseudorandom test time (number of clock cycles used) or 
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between the cost and the memory size needed for storing the precomputed test 
sequence. For simplicity it is assumed that  = 1 and  = B where B is the number 
of bytes of the input vector to be applied to the core under test CUT. Hence, in the 
following the number of clocks used for pseudorandom test generation and the 
number of bytes in the memory needed for storing precomputed test patterns are 
used are the cost units. The total cost CTOTAL is illustrated in Fig. 6-8 where the 
minimum point is marked as Cmin.  

In many situations, 100% fault coverage is not achievable with only 
pseudorandom vectors. Therefore, an assumption has to be included into total cost 
calculation. This situation is illustrated in Fig. 6-9 where the horizontal axis 
indicates the number on pseudorandom patterns applied, instead of the fault 
coverage level. The curve of the total cost CTOTAL is still the sum of two cost curves 
CGEN+CMEM with the new assumption that the maximum fault coverage is 
achievable only by either the hybrid BIST or pure deterministic test. Fig. 6-9 
illustrates the calculation of the Cost curve under these more realistic assumptions. 

Cost Number of remaining
faults after applying k
pseudorandom test
patterns rNOT(k)

Total cost
CTOTAL

Cost of
pseudorandom test

patterns CGEN

Cost of stored
test CMEM

Time/Memory
 

 

 

The main purpose of the approaches described in this chapter is to develop a 
fast method for finding the length L of the pseudorandom test sequence when the 
total cost CTOTAL has the minimal value Cmin. 

Creating the curve CMEM is not difficult. For that purpose, a simulation of the 
behaviour of LFSR, a pseudorandom test pattern generator (PRG) is needed. The 
fault simulation should be carried out for the complete test sequence generated by 
LFSR. As a result of such a simulation, for each clock cycle the list of faults can be 
found, which were covered at this clock cycle. By removing these faults from the 
complete fault list, it is possible to know the number of faults remaining to be 
tested. 

Fig. 6-9. Cost calculation of hybrid BIST under realistic assumptions 
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Table 6-1 represents a fragment of the results of BIST simulation for ISCAS'85 
circuit c880. In this table: 

 k denotes the number of clock cycles 
 rDET(k) is the number of new faults detected (covered) by the test pattern  

generated at the clock signal k 
 rNOT(k) is the number of remaining faults after applying the sequence of 

patterns generated by the k clock signals 
 FC(k) is the fault coverage reached by the sequence of patterns generated 

by the k clock signals 
 

Table 6-1. BIST analysis data 
 
k  rDET(k)  rNOT(k)  FC(k)  t(k)   k  rDET(k)  rNOT(k)  FC(k)  t(k) 

0  155  839  15.59%  104   148  13  132  86.72%  46 

1  76  763  23.24%  104   200  18  114  88.53%  41 

2  65  698  29.78%  100   322  13  101  89.53%  35 

3  90  608  38.83%  101   411  31  70  92.96%  26 

4  39  564  43.26%  99   707  24  46  95.37%  17 

5  104  421  57.65%  99   954  18  28  97.18%  12 

10  66  355  64.28%  95   1535  4  24  97,58%  11 

15  66  355  64.28%  92   1560  8  16  98.39%  7 

20  44  311  68.71%  87   2153  11  5  99.50%  3 

28  42  269  72.94%  81   3449  2  3  99.70%  2 

50  51  218  78.07%  74   4519  2  1  99.89%  1 

70  57  161  83.80%  58   4520  1  0  100.00%  0 

100  16  145  85.41%  52        
 

In the list of BIST simulation results not all clock cycles are presented. We are 
only interested in the clock numbers at which at least one new fault will be 
covered, and thus the total fault coverage for the pseudorandom test sequence up to 
this clock number increases. Let us call such clock numbers and the corresponding 
pseudorandom test patterns resultative clocks and resultative patterns. The rows in 
Table 6-1 represent the resultative clocks, but not all (only some resultative points 
are given for illustrative purpose), for the circuit c880. 

If we decide to switch from the online pseudorandom test generation mode to 
the deterministic stored pattern mode after the clock number k, the L = k.  

More difficult is to find the values of S, the cost for storing additional 
deterministic patterns in order to reach the given fault coverage level (100% in the 
ideal case). Let t(k) be the number of test patterns needed to cover rNOT(k) not yet 
detected faults (these patterns should be precomputed and used as stored test 
patterns). The calculation of the data in the column t(k) of Table 6-1 is the most 
expensive procedure. 
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6.6 Target architecture for Hybrid BIST 

In the following, two possible solutions are presented for implementing the hybrid 
BIST - hardware based and software based. 

A hardware based hybrid BIST architecture is depicted in Fig. 6-10 where the 
pseudorandom pattern generator (PRPG) and the Multiple Input Signature 
Analyzer (MISR) are implemented inside the circuit under test (CUT). The 
deterministic test patterns are pre-computed off-line and stored inside the system. 

To avoid the hardware overhead caused by the PRPG and MISR, and the 
performance degradation due to excessively large LFSRs, a software based hybrid 
BIST can be used where pseudorandom test patterns are produced by the test 
software. However, the cost calculation and optimization algorithms are general, 
and can be applied as well to the hardware based as to the software based hybrid 
BIST solutions. 

 
Fig. 6-10. Hardware based hybrid BIST architecture 

In case of the software based solution, the test program, together with test data 
(LFSR polynomials, initial states, pseudorandom test length, signatures), is kept in 
ROM. The deterministic test vectors are generated during the development process 
and are stored  in the same place. For transporting the test patterns, we assume that 
some form of TAM is available. 

In test mode, the test program is executed in the processor core. The test 
program proceeds in two successive stages. In the first stage the pseudorandom test 
pattern generator which emulates LFSR, is executed. In the second stage the test 
program will apply precomputed deterministic test vectors to the core under test. 
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The pseudorandom TPG software is the same for all cores in the system and is 
stored as one single copy. All characteristics of the LFSR needed for the emulation 
are specific to each core and are stored in ROM. They will be loaded upon request. 
Such an approach is very effective in the case of multiple cores, because for each 
additional core, only the BIST characteristics for this core have to be stored. The 
general concept of the software based pseudorandom TPG is depicted in Fig. 6-11. 

 
Fig. 6-11. LFSR emulation 

Although it is assumed that the best possible pseudorandom sequence is used, 
not always all parts of the system are testable by a pure pseudorandom sequence. It 
can also take a very long test application time to reach a good fault coverage level. 
In case of the hybrid BIST, we can dramatically reduce the length of the initial 
pseudorandom sequence by complementing it with deterministic stored test 
patterns, and achieve 100% fault coverage. The method proposed in the paper helps 
to find tradeoffs between the length of the best pseudorandom test sequence and 
the number of stored deterministic patterns. 

6.7 Cost calculation algorithms 

In the following, different cost calculation algorithms are presented for calculating 
and optimization of hybrid BIST cost. 

In Table 6-1 the test data for c880 was presented, where the column t(k) 
represents the number of patterns needed to cover the fault that have not been 
covered yet. As it has been mentioned, calculation of t(k) is quite difficult. In the 
following, two approaches are described to calculate the values of t(k). These 
algorithms are desribed in [126][146]. 

The ways to find t(k) 

 ATPG based approach 
 fault table based approach 
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Let us have the following notations: 
 i - the current number of the entry in the table of BIST analysis data; 
 k(i) - the number  of the clock cycle of the resultative clock at entry i 
 RDET(i) - the set of new faults detected (covered) by the pseudorandom test 

pattern which is generated at the efficient clock signal number k(i) 
 RNOT(i) - the set of not yet covered faults after applying the pseudorandom 

test pattern number k(i) 
 T(i) -the set of test patterns needed and found by the ATPG to cover the 

faults in RNOT(i) 
 N - the number of all resultative patterns in the sequence created by the 

pseudorandom test. 
 FT - the fault table for a given set of test patterns T and for the given set of 

faults R: the table defines the subsets R(tj)  R of detected faults for each 
pattern tj  T 
 

6.7.1 ATPG based algorithm for cost calculation 

This ATPG based algorithm generates a new deterministic test set for the not yet 
detected faults at every resultative clock cycle. In this way we have the complete 
test set (consisting of pseudorandom and deterministic test vectors) for every 
resultative clock, which can reach maximum achievable fault coverage. The 
number of deterministic test vectors at all resultative clocks are then used to create 
the curve CMEM(S). This algorithm is straightforward but very time consuming 
because of repetitive use of ATPG. 

 
ATPG based approach algorithm of generation t(k): 

 
1. Let k := N; 
2. Generate for RNOT(k) a test T(k), T := T(k), t(k) := |T|; 
3. For all k = N‐1, N‐2, .. 1: 

Generate for the faults RNOT(k) not covered by T a test set T(k), 
T := T+T(k), t(k) := |T|; 

4. END. 

 

Since usage of ATPG is very time consuming procedure, another algorithm was 
proposed, based on iterative transformations of fault tables. This algorithm allows a 
dramatic reduction of computation time for the hybrid BIST cost calculation. 
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6.7.2 Fault table based algorithm for cost calculation 

This fault table based starts by generating a test set T for all detectable faults. 
Based on the fault simulation results a fault table FT will be created. By applying k 
pseudorandom patterns, we can remove from the original fault table all faults, 
which were covered by the pseudorandom vectors and by using static test 
compaction reduce the original deterministic test set. Those modifications should 
be performed iteratively for all possible breakpoints to calculate the curve 
CMEM(S) and to use this information to find the optimal CTOTAL. 

 
Fault table based approach algorithm of generation t(k) 
 

1. Calculate the whole test T = {tj} for the whole set of faults R by any ATPG to reach 
as high fault coverage as possible; 

2. Create for T and R the fault table FT = {R(tj)}; 
3. Take k = 0, Tk = T, Rk = R, FTk = FT; 
4. Take k = k+1; 
5. calculate by fault simulation RDET(k); 

6. Update the fault table: j, tj  Tk: R(tj)‐RDET(k); 

7. Remove from the test set Tk all the test patterns tj  Tk where R(tj) = ; 

8. If T(k) =    go to END; 
9. Optimize the test set Tk by any test compaction algorithm; t(k) = |Tk|; go to 4; 
10. END. 

 
In the case of very large circuits both of these algorithms may lead to very 

expensive and time consuming experiments. It would be desirable to find the 
global optimum of the total cost curve by as few selected values of k as possible. 

In the following, an approach based on a tabu search is shown that allows to 
speed up the calculations. 

 

6.7.3 Tabu search based algorithm for cost optimization 

For reducing the number of total calculations in ATPG based and fault table based 
algorithms for finding the minimum value, the method of tabu search  
[107][108][109] as a general iterative heuristic for solving combinatorial 
optimization  problems can be used. The main ideas of this approach are presented 
in Chapter 4. The description of the algorithm is given in Fig. 6-12. 

The procedure of tabu search for hybrid BIST cost optimization starts from an 
initial feasible solution SO (current solution) in the search space . In the 
presented approach, the fast estimation method proposed in [127]  is used to find 
the initial solution. The estimation method is based on  number of  not yet covered 
faults RNOT(i) and can  be obtained from the pseudorandom test simulation results 
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(Table 6-1). A neighbourhood N(SO) is defined for each SO. Based on 
experimental results its was concluded that the most efficient step size for defining 
the neighbourhood N(SO) was 3% of efficient clocks. Larger step size, even if it 
can give a considerable speedup, will decrease the accuracy of the final result. A 
sample of neighbour solutions V*  N(SO) is generated. An extreme case is to 
generate the entire neighbourhood, that is to take V* = N(SO). Since it is generally 
impractical (computationally expensive), a small sample of neighbours (V*  
N(SO)) is generated, and called trial solutions (|V*| = n << |N(SO)|). In case of 
ISCAS'85 benchmark circuits the best results were obtained when the size of the 
sample neighbourhood was 4. Increase of the size V* had no effect to the 
improvement of the results. From these trial solutions the best solution  SO*  V* 
is chosen for the consideration as the next solution. The move to SO* is considered 
even if SO* is worse than SO, that is, Cost(SO*) > Cost(SO). A move from SO to 
SO* is made provided certain conditions are satisfied. The best candidate solution 
SO*  V* may or may not improve the current solution but is still considered. It is 
this feature that enables escaping from local optima. 

 
Start with initial solution SO   
BestSolution:=SO; 

Initialize Tabu list T:= 
While number of empty iterations <E 
       Or there is no return to previously visited solution 
           Do 

              Generate the sample of neighbour solutions V* N(SO); 
               Find best Cost(SO*  V*); 
M:          If move to solution SO* is not in the T Then 
                        SOtrial :=SO*; 
                        Update Tabu list; 
               Else 

                         Find the next best Cost(SO*  V*);                          
                         Go to M; 
               End If; 
               If Cost(SOtrial )<Cost(BestSolution) Then 
                     BestSolution:=SOtrial; 
               Else 
                     Increment number of empty iterations E; 
              End If; 
End While; 
END. 

Fig. 6-12. Tabu search based algorithm 
 

One of the parameters of the algorithm is the size of the tabu list. A tabu list T is 
maintained to prevent returning to previously visited solutions. The list contains 
information that to some extent forbids the search from returning to a previously 
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visited solutions. Generally the tabu list size is small. The size can be determined 
by experimental runs, watching the occurrence of cycling when the size is too 
small, and the deterioration of solution quality when the size is too large [111]. 
Results have shown that the best average size of the tabu list for the ISCAS'85 
benchmark family was 3. The size of the tabu list can be determined by 
experimental runs, watching the occurrence of cycling when the size is too small 
and the deterioration of the solution quality when the size is too large. 

Let's have the following additional notations: 

 E - number of allowed empty iterations (i.e. iterations that do not result in 
finding a new best solution) defined for each circuit 

 SOtrial - solution generated from current solution as a result of the move. 

For finding a good initial feasible solution in order to make tabu search more 
productive, a fast estimation method for a local optimal L proposed in  [127]is 
used. For this estimation, the number of not yet covered faults in RNOT(i) can be 
used. The value of RNOT(i) can be acquired directly from the PRG simulation 
results and be available for every significant time moment (Table 6-1). Based on 
the value of RNOT(i) it is possible to estimate the expected number of test 
patterns needed for covering the faults in RNOT(i). The starting point for the tabu 
search procedure can be found by giving rough estimation of the total cost  based 
on the value of RNOT(i). Based on the statistical analysis of the costs calculated 
for ISCAS'85 benchmark circuits, in [127] the following approximation was 
proposed: one remaining fault results in 0,45 test patterns needed to cover it. In this 
way, a simplified cost prediction function was derived: 

C'TOTAL(k)=CGEN(k) + 0,45RNOT(k) 

The value k*, where C'TOTAL(k*)=min(C'TOTAL(k)) was used as the initial solution 
for tabu search. 

6.8 Experimental results 

6.8.1 Tabu search 

Experiments were carried out on ISCAS'85 benchmarks in order to demonstrate the 
advantage of tabu search compared to the known methods. Turbo Tester 
toolset [147] was used for deterministic test pattern generation, fault simulation, 
and test set compaction. 

Investigations were carried out to find the best initial solution, the step defining 
N(S), the size of V* and the size of tabu list for using the tabu strategy in a most 
efficient way. 

For finding the best initial solution the cost prediction proposed in [126] was 
used. For finding the tabu list size, experiments were carried out with different 
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sizes of the list. Results showed that the best average size for the ISCAS'85 
benchmark family was 3. Smaller list size would cause cycling around local 
minimum, larger size would result in deterioration of the solution quality (see 
Fig. 6-13a  and Fig. 6-13b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The size of the sample of neighbourhood solutions V* giving the best results for 
all circuits, was 4. Smaller size would make the process of finding the minimum 
very long, resulting in very small speedup. Larger size of V* did not improve the 
results.  

Fig. 6-13(a) Dependency of solution esimation accuracy from the Tabu list size 
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Fig. 6-13(b) Dependancy of the solution estimation accuracy from the Tabu list size 
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The efficiency of the search depends significantly of the step size defining the 
neighbourhood N(S). Based on the experimental results, the charts of dependency 
of overall estimation accuracy and the overall speedup from step size were 
composed. Analyzing results depicted in Fig. 6-14a and Fig. 6-14b led to the 
conclusion that the most admissible step size can be counted as 3% of the 
resultative clocks where the average estimation accuracy is the highest. Though the 
larger step size would give us the increase of the speedup, it was found 
inadmissible because of the rapid decrease in the cost estimation accuracy. 
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Investigations were carried out to find out the criteria to stop iterations. 
Analysing the experiments with a fixed number of iterations to find out which 
number of empty iterations E (iterations not giving new best cost) will most 
probably end up in getting no better solution, the value was found E=7. The other 
criteria to stop the iterations is the return of the search to a previously visited 
solution. 

The results of optimization of the hybrid BIST for the ISCAS'85 benchmark 
circuits obtained using the parameters described above are depicted in Table 6-2 
The number of cost calculations is given in row 6, the number of total iterations in 
row 8. 

Table 6-2(a) Experimental results - cost optimization using Tabu search 

  c432  c499  c880  c1355  c1908 

Simulated clocks  780  2036  5589  1552  5803 

Resultative clocks  81  114  114  109  183 

Actual total cost  165  398  366  374  487 

Estimated total cost  165  398  367  376  487 

Estimation accuracy, %  100.00  100.00  99.73  99.47  100.00 

Number of calculations  11  19  15  18  28 

Speedup  7.36  6.00  7.60  6.06  6.54 

Iterations made  7  14  10  13  17 

 

Table 6-2(b) Experimental results - cost optimization using Tabu search 

  c2670  c3540  c5315  c6288  c7552 

Simulated clocks  6581  8734  2318  210  18704 

Resultative clocks  118  265  252  53  279 

Actual total cost  2397  771  1072  63  3203 

Estimated total cost  2420  771  1103  63  3213 

Estimation accuracy, %  99.05  100.00  97.19  100.00  99.69 

Number of calculations  9  16  12  15  8 

Speedup  13.11  16.56  21.00  3.53  34.87 

Iterations made  6  10  9  12  5 

 

6.8.2 Comparing Tabu search to ATPG and FT based approaches 

Experiments were carried out on the ISCAS'85 benchmark circuits for comparing 
the previously described algorithms based on ATPG and fault table, and for 
investigating the efficiency of tabu search based method for optimizing hybrid 
BIST. Again, Turbo Tester toolset was used. 

The results of the experiments are presented in Table 6-3 and Table 6-4 and 
illustrated by a diagram in Fig. 6-15. 
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Fig. 6-15. Percentage of test patterns in the optimized test sets 

compared to the original test sets. 

For calculating the total cost of hybrid BIST the previously described formula 
was used: CTOTAL=L+S. For simplicity, it is assumed that   = 1 and   = B 
where B is the number of bytes of the input test vector applied to the CUT. To 
carry out some experimental work for demonstrating the feasibility and efficiency 
of the algorithm, the number of clocks is used as a cost for pseudorandom test 
generator and the number of bytes is used as a cost for storing precomputed 
deterministic test patterns. 

In the columns of the Table 6-3 the following data is depicted: ISCAS'85 
benchmark circuit name, L - length of the pseudorandom test sequence, FC - fault 
coverage, S - number of test patterns generated by deterministic ATPG to be stored 
in BIST, CT - total cost of BIST. 

In the Table 6-4 the following data is shown: TG - the time (sec) needed for 
ATPG to generate the deterministic test set, TA - the time (sec) needed for carrying 
out manipulation on fault tables (subtracting faults, and compacting test set), N - 
number of efficient patterns in the pseudorandom sequence, T1 and T2 -  
the time (sec) to find the optimal cost by using tabu search. TS - the number of 
calculations in tabu search, Acc - accuracy of the tabu search solution in 
percentage compared to the exact solution found from the full cost curve. The total 
testing time for ATPG and FT based algorithms and for tabu search was calculated 
as follows: 

T1 = N * TG, 
T2 = TG + N * TA, 

T3 = T2 * (TS/N) + , 
 
respectively, where  is the time needed to perform the tabu search calculations 
(was below 0.1 sec in given experiments). 



94 
 

 

Table 6-3. Experimental results - pseudorandom, stored and hybrid test 

Circuit  Pseudorandom test  Stored test  Hybrid test 

L  FC  S  FC  L  S  CT 

c432  780  93.0  80  93.0  91  21  196 

c499  2036  99.3  132  99.3  78  60  438 

c880  5589  100.0  77  100.0  121  48  505 

c1355  1522  99.5  126  99.5  122  52  433 

c1908  5803  99.5  143  99.5  105  123  720 

c2670  6581  84.9  155  99.5  444  77  2754 

c3540  8734  95.5  211  95.5  297  110  1067 

c5315  2318  98.9  171  98.9  711  12  987 

c6288  210  99.3  45  99.3  20  20  100 

c7552  18704  93.7  267  97.1  583  61  2169 

 

In fact, the values for TG and TA differ for the different values of i = 1,2,..,N. 
However the differences were in the range of few percents which allowed us to 
neglect this impact and to use the average values of TG and TA. 

In Fig. 6-15 the amount of pseudorandom and deterministic test patterns in the 
optimal BIST solution is compared to the sizes of pseudorandom and deterministic 
test sets when only either of the sets is used. In the typical cases less than half of 
the deterministic vectors and only a small fraction of pseudorandom vectors are 
needed, however the maximum achievable fault coverage is guaranteed and 
achieved. 

Table 6-4. Experimental results - calculation cost 

Circuit  Calculation cost 

  TG  TA  N  T1  T2  T3  TS  Acc 

c432  20.1  0.01  81  1632  21  2.85  11  100.0 

c499  0.7  0.02  114  174  3  0.50  19  100.0 

c880  0.2  0.02  114  17  2  0.26  15  99.7 

c1355  1.2  0.03  109  133  5  0.83  18  99.5 

c1908  11.7  0.07  183  2132  25  3.83  28  100.0 

c2670  1.9  0.09  118  230  13  0.99  9  99.1 

c3540  85.3  0.14  265  22601  122  7.37  16  100.0 

c5315  10.3  0.11  252  2593  38  1.81  12  97.2 

c6288  3.8  0.04  53  200  6  1.70  15  100.0 

c7552  53.8  0.27  279  15004  129  3.70  8  99.7 

 

Fig.  6-16 compares the costs of different approaches using for Hybrid BIST 
cost calculation the equation CTOTAL=L+S  with parameters  = 1 and  = B 
where B is the number of bytes of the input vector to be applied on the CUT. As 
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pseudorandom test is usually the most expensive method, it has been selected as 
reference with given value 100%. The other methods give considerable reduction 
in terms of cost, and as it can be seen, hybrid BIST approach has significant  
advantage compared to the pure pseudorandom or stored  test approach in most 
cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 6-16. Cost comparison of different methods. 
Cost of pseudorandom test is taken as 100% 
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6.9 Conclusions 

1. In this chapter, hybrid BIST approach for testing systems-on-chips has been 
described. It supports the combination of pseudorandom test patterns with 
deterministic test patterns in a cost-effective way. The self-test architecture can be 
implemented either in classical way, by using LFSRs, or in software to reduce the 
area overhead and to take advantage of the SoC architecture. 

2. For selecting the optimal switching point from pseudorandom test mode to 
stored test mode, two approaches - ATPG and fault table based algorithms were 
described that allow calculating the complete cost curve of different hybrid BIST 
solutions. 

3. The tabu search approach based algorithm for finding a global minimum in a 
search space containing many local minimums was presented and described. The 
proposed solution was developed to reduce the number of calculations in search for 
the optimal solution for hybrid BIST. The speedup of using tabu search for 
ISCAS'85 benchmark family varies from 3,5 to 34,9 (10,5 in average) in 
comparison to fault table manipulations based algorithm, whereas the calculated 
accuracy of the solution (the minimum cost compared to the exact minimum) was 
not less than 97,2% for the whole family of ISCAS'85 benchmarks. 

4. The experimental results demonstrate the feasibility of the method and 
algorithms described, and the efficiency of the fault table based cost calculation 
method combined with tabu search for finding optimized cost-effective solutions 
for hybrid BIST. 
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Chapter 7 Constraints based optimization of 
Hybrid BIST with reseeding 

In this chapter, hybrid BIST algorithms that combine stored precomputed  and 
pseudorandom test vectors in order to perform SoC testing under given memory 
contraints, such that the test time is minimized, but miaximum achievable fault 
coverage is still guaranteed. The methods provide possibility to find a memory 
contrained  test solution for every individual core in the system. The experiments 
have been conducted on different ISCAS benchmarks and the results are compared 
with the techniques developed earlier. The results show the feasibility and 
advantage of the new proposed approaches. 

7.1 Basic principle of Hybrid BIST with reseeding 

To illustrate the reseeding BIST method let us depict all possible N test patterns as 
a line (Fig. 7-1 and Fig. 7-2). When using hybrid BIST methodology many faults 
will be covered by pseudorandom patterns and the remaining hard to test faults 
(HTTF) are covered by M deterministic patterns. The method could be improved if 
we could devise such a pseudorandom sequence which would also cover HTTFs. 
The solution is to use many smaller pseudorandom sequences, starting with some 
specific test pattern (for example, a test pattern targeting HTTF) as a seed. 
Consequently, the full test set will be constructed as a collection of pseudorandom 
pattern blocks (PPB), represented in Fig. 7-2 as separate intervals, in such a way 
that all HTTF will be covered by these test patterns. Each block has its own seed. 
The main problem of this approach is how to calculate the number and size of 
PPBs ad how these tests should be spread all over test patterns, i.e. which seeds for 
PPBs should be used. The limiting factor is that in general case, we don't know 
which faults are HTTF and which test patterns are needed for detecting them. 
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Fig. 7-1. Hybrid BIST with M deterministic test vectors 
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Fig. 7-2. Reseeding with R seeds (R<M) 

 

Such a test set can be found using the following algorithm. Let DT be the 
deterministic test set for a given CUT, and R the set of all possible faults in the 
CUT. Let us call all the faults in RH  R, which are covered only by a single test 
pattern DT, HTTFs. With DTH  DT we denote the subset of test patterns which 
cover HTTFs RH. Obviously DTH = RH. The first seed Ti  DTH for the first 
pseudorandom pattern block Bi, i = 1, will be selected from the DTH.  
Let bi =Bibe the length of the block Bi. The algorithm now removes all the faults 
covered by Bi from R, and keeps in DT only these patterns that are needed for 
covering the faults in the updated R. A new RH  R, and a new DTH  D are 
calculated, and the next seed Ti  DTH, i = 2 from the updated DTH will be chosen 
for starting the next block Bi, i = 2, of pseudorandom patterns. This procedure 
should be continued the set of faults R is empty. Let the number of iterations be k. 
Then the length of the full test is calculated as  





k

i
ibL

1

 

and the amount of memory M needed for storing the seeds is determined by k test 
patterns that are needed to generate these k blocks. The characteristics of the 
solutions L and M are heavily depending on the lengths of the blocks. These blocks 
can be with equal length or variable length. In order to illustrate the situation the 
simulations have been carried out for a range of different block lengths for the 
ISCAS benchmarks to see how the values of L and M are changing with the length 
of b. As an example in Fig. 7-3 the curves of L1(b), L2(b) and M(b) for ISCAS 
circuit c1908 have been depicted. L1(b) is the length of the final test set under 
given memory constraint when the length of the blocks is equal, and L2(b) is the 
test length when the length of the block is variable. The variable length is a result 
of a simple optimization procedure where all blocks are fault simulated in order to 
remove useless patterns from the end of the block. Useless patterns are those that 
do not detect any new faults.  
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Fig. 7-3. Comparison of equal length reseeding versus 

variable length reseeding for the circuit c1908 

In Fig. 7-4 a possible structure of the assumed BIST architecture is 
shown [148]. ROM contains the seeds. Each pattern Pi in the ROM serves as an 
initial state of the LFSR for test pattern generation. BIST controller counts the 
number of Li pseudorandom patterns that are generated starting from Pi. After 
finishing the cycle, ROM controller is forwarding the next pattern Pi+1 from the 
ROM to the core under test. The important task is to find lengths of the blocks so 
that L = min at the given constraint M   Mmax.  

There are two important issues to consider when constructing the reseeding 
based solutions: the number of seeds and the number of pseudorandom patterns 
generated from each seed. Both have significant impact on the final solution in 
terms of fault coverage, test length and test memory requirements. In the following 
sections some approaches will be described to perform and optimize hybrid BIST 
with reseeding to obtain the test that satisfies the given memory constraint. 
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Fig. 7-4. Test Architecture for hybrid BIST with reseeding 
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7.2 Hybrid BIST length reduction using reseeding and test 
set compaction 

In the following, a method is described for finding the length of pseudorandom 
seeds, such that the test memory (number of seeds) is constrained, the test time is 
minimized, and the maximum achievable fault coverage guaranteed. The 
pseudocode of the algoritm is shown in Fig. 7-5. 

 
Algorithm using reseeding and test set compaction 
 
- Generate deterministic test patterns; 
- for ( each deterministic pattern ) 

- Form a block by generating L pseudorandom patterns, using   
deterministic pattern as a seed; 
- Fault simulate the block; 

- block_length = 1; 
- loop ( until L has been reached ) 

- for each ( block )  
- calculate coverage summary (block_length);  
// Find coverage summary for a block with block_length 
// number of vectors starting from the beginning 
- minimize the block length;   
// finds a point within a block from where the  
// fault coverage is not any more increasing. Removes  
// the useless pseudorandom vectors  

- order blocks based on length  
// order the tests in increasing length (shortest first) 
- minimize the number of blocks 
// finds minimal number of blocks needed to obtain  
// the maximum fault coverage: remaining_blocks 
- initialize total_coverage_summary; 
- for each ( remaining_block ); // calculates final test length 

- optimize block length; 
// remove all unnecessary pseudorandom patterns 
// that do not contribute to the final fault coverage 
// taking into consideration ALL blocks that have been 
// applied earlier (using total coverage summary) 
- total_coverage_summary += coverage( block );  
// add new faults from a block into total coverage summary 

- set block_length (block_length += block_length/stepping_const);   
// next iteration step 

- done; 

Fig. 7-5. The pseudocode of the algorithm using reseeding and test set compaction 

 

Let DT be the deterministic test set DT = {DTi} for a given CUT and R the set 
of possible faults in the CUT. Let us denote by R(DTi)  R the subset of faults 
detected by a test pattern DTi  DT. We assume that DT obtains the maximum 
achievable fault coverage, hence R(DT) = R. 

Algorithm starts by generating pseudorandom sequences PRi with a given 
length L where DTi is used as a seed for the pseudorandom sequence. Let us denote 
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the set of these hybrid sequences as PR = {PRi}. For all PRi  PR and for each test 
pattern tk  PRi cumulative fault coverage can be calculated as: 

R

tR

PRFC ij PRtkj
j

ki





;,1

,

)(

)(                                          (7-1) 

Thereafter the pseudorandom sequences can be minimized. From each PRi  
PR all pseudorandom test patterns tj, tj+1, ..., tL where FC(PRi,k) = FC(PRi,k-1), for all 
k = j, j+1, ... , L will be removed, because these patterns will not contribute for the 
increase in fault coverage. These first steps are illustrated on Fig. 7-6. Let us 
denote Li the new reduced length of the pseudorandom sequence PRi, with FC(PRi) 
the fault coverage of the sequence PRi calculated using the Equation (7-1) of the 
last pattern in PRi and with R(PRi)  R the subset of faults detected by PRi. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7-6. First minimization of the pseudorandom sequences. 

 

Thereafter, all hybrid test sequences PRi will be ordered in increasing order, so 
that Li  Li-1 for every i=1,2, ..., N where N = DT. 

Consider now a composite hybrid test sequence PT, composed of all sequences 
PRi  PR in the order how they were ranked. Since all initially generated 
deterministic test patterns t  DT are included in PT, we have 

FC(PT) =  FC(DT), 
R(PT) =  FC(DT) = R. 

 DT1 DT2 DTN …

DT1 DT2 DTN …

L

Deterministic test vector (seed) DTi 
Pseudorandom test sequence PRi 
Pseudorandom sequence removed with the 
first minimization 

Li

PR1 PR2 PRN
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To minimize the length of the multi-seed hybrid test sequence we will use here 
the test pattern optimization algorithm. In this algorithm the minimal subset  Tmin of 
the given test set T will be found based on the information of fault subsets R(t) 
detected by the test patterns ti  PR, so that the fault coverage remains the same 
FC(Tmin) = FC(T). To do this we interpret the sequences PRi  PR as test patterns  
t  T, and the fault sets R(PRi), respectively as fault sets R(t). As the result of 
optimization we will find a minimal subset PRmin  PR, so that  
FC(PRmin) =  FC(PR). This step is rather fast as we do not optimize at the level of 
individual patterns but only at the level of complete sequences (blocks). 

Now a new composite hybrid sequence PTmin will be created from the ordered 
set of subsequences PTmin = (PR1, PR2,…, PRm) where m < N. 

The next step will be minimization of the total length of the sequence PTmin. As 
the result, a reduced final multi-seed hybrid sequence PT * will be created.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7-7. Calculation of the final hybrid sequence 

To do that we calculate again the cumulative fault coverages for all the test 
patterns tk   PTmin similarly to Equation (7-1) for all subsequences PRi  PRmin in 
the order how they were ranked and put into PTmin. After calculating the fault 
coverage of a current subsequence PRi in PT * we remove from PRi all the test 
patterns tj, tj+1, …, tL,i  where FC(PRi,k) = FC(PRi,k-1), for all k = j, j+1 ,…, Li. This 
procedure is illustrated in Fig. 7-7. As the optimization procedure takes into 
account only the cumulative fault coverage of earlier blocks and does not analyze 
individual patterns in the current block, then also this step is rather fast. 
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Since the described reduction of the whole multi-seed hybrid sequence will not 
reduce the fault coverage, we have 

FC(PT*) =  FC(PT) =  FC(DT). 

As a result of this algorithm we can find the length of a hybrid sequence for any 
arbitrary memory constraint. As a by-product we can also find the length of the 
longest hybrid block, that remained at the end of the optimization sequence.  

Such an optimization is very necessary when developing a solution for testing 
core-based systems, such as SoCs or NoCs. The memory constraints can be seen as 
limitations of the on-chip memory or ATE, where the deterministic test set will be 
stored, and are therefore of great practical importance. 

7.3 Optimization methods 

7.3.1 Local search based algorithm for BIST length minimization  

 
In this section, a local search based algorithm for test legth minimization is 
described. The algorithm consists of two main parts – in the first part a solution 
satisfying the memory contraint is found, in the second part the search is performed 
in the neighbourhood of the solution to find an optimal solution, keeping in mind 
the given memory constraint. The pseudocode of the algorithm is presented in Fig 
7-8. 
 
Local search based algorithm 

 

- blockSize = initialBlockSize; 
- currentMemory = seedCount (blockSize); 
 
- while (currentMemory > maxMemory) 

- blockSize' = blockSize + blockSize; 
- currentMemory' = seedCount (blockSize); 
- memory = currentMemory' - currentMemory; 
 
- speed = memory/blockSize; 
- blockSize = ROUNDUP ((currentMemory'-maxMemory)/speed); 
 
- blockSize = blockSize'; 
- currentMemory = currentMemory'; 

 
- do 

- step = ROUNDUP (step/2); 
- chooseBest (HyBISTLength(blockSize+step),  
              HyBISTLength(blockSize-step)); 

- until step =1; 

 
Fig. 7-8. Local search based algorithm for test length minimization 
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The key notations of the algorithm are presented in Fig. 7-9 where both block 
length and memory curves are presented. 

 

 

 

 

 

 

 

 

 

 

The algorithm is initialized with a given block size initialBlockSize and a step 
length initBlockSize that determines the next block size to be investigated. For the 
both block sizes the numbers of seeds that are needed to perform the test are 
calculated. Seeds are chosen from the precomputed set of deterministic test vectors 
DT in accordance to the method described in Section 7.1. First steps of the 
algorithm are illustrated in Fig. 7-10.  

 

Fig. 7-10. Local search based algorithm - first steps 
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Fig. 7-9. Illustration of the key terms used in the local search based algorithm 
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Based on this data, so-called speed is calculated by which it is expected to reach 
the given memory constraint maxMemory. The speed determines the next block 
size calculated via blockSize and again the corresponding number of seeds that 
are needed is calculated. After that, the data is analyzed to determine what is the 
next expected block size that would satisfy the memory constraint maxMemory. 
This process is repeated until the memory constraint is not satisfied. 

The second part of the algorithm is illustrated in Fig. 7-11. In the second  part, 
the search of the optimal solution is performed considering the memory constraint 
maxMemory. The length of the hybrid BIST is analyzed using the function 
chooseBest which determines the next possible solution (the one having the sorter 
Hybrid BIST length) within the neighbourhood of the current solution determined 
by the value of step. At every iteration, step becomes smaller thus approaching the 
optimal solution or the solution close to optimal.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7-11. Local search based approach - the second part of the algorithm 

 

As an example several search processes for the ISCAS'85 circuit c880 with 
different initial block sizes and different first step lengths are shown on Fig. 7-12 
to illustrate how optimum is approached when applying the described algorithm. 

 

 

 

 

Solution 1 Solution 2

Step 1. Choose best from Solution 1 and Solution 2

step step

Solution 1 Solution 2

Step 2. Choose best from Solution 3 and Solution 4

step/2 step/2

Solution space
maxMemory



106 
 

 

 

 

 

 

 

 

 

 

 

Fig. 7-12. Search process of looking for the optimal solution 

7.3.2 Tabu search based algorithm for optimization of memory-
constrained hybrid BIST 

The method described in the previous section gives us the exact best solution that 
satisfies the predefined memory constraint. However, this method is quite time-
consuming and computationally heavy as the entire solution space needs to be 
calculated. Therefore, a new heuristic is needed for finding the optimal solution 
and in the following, a new method is proposed, that allows to find the solution for 
the predined memory contraint  by calculating only a subset of the solution space. 

As it can be seen from the simulations and experiments presented earlier, the 
solution space is not linear, containing number of local optima. Experimental data 
for benchmark circuit  c7552 is shown on Fig. 7-13. 
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Different search processes with 
different initial conditions 

Fig. 7-13. Relationships between number of seeds, maximal block size and 
total length for ISCAS benchmark c7552.
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The proposed method takes into consideration all the key issues of applying re-
seeding based approaches and is based on tabu search which allows escaping from 
the local optima in the solution space that may satisfy the given memory constraint 
but not being best possible solution or close to that. 

The pseudocode of the algorithm is presented in Fig. 7-14.  

Tabu Search based algorithm 
 
- Generate set of deterministic test patterns DT such that best possible 

coverage is achieved; 
- Choose block length L of an initial solution; 
- Declare initial solution the best solution 
- Calculate the initial solution SI, apply test block compaction 
   //generate pseudorandom blocks of length 
   //L for all deterministic patterns 
   //remove test patterns that do not 
   //contribute to overall fault coverage 
- Initialize Tabu List 
- until stopping criteria met 
  - Calculate the current solution S, apply test block compaction 
  - Update Tabu List 
  - Create the neighbourhood N(S) of the 
    current solution 
  - Calculate the solutions in N(S), apply test block compaction 
  - Find best S' solution from N(S) 
    //find the shortest test set 
    //where the number of deterministic test 
    //patterns satisfies given 
    //memory constraint M 
  - loop (until solution S* is found) 
    - if S' is not in Tabu List then 
         - trial solution S*=S' 
         - Update Tabu List 
      else 
         - Find the next best S' 
  - if the current solution is best seen so far 
      Update best solution 
      //if the test set is shorter 
      //than the previous best solution 
  //next iteration step 
- done 

 

Fig. 7-14. The pseudocode of the tabu search based algorithm  

The main steps of the algorithm are illustrated in Fig. 7-15. The algorithm starts 
from the initial solution defined by the longest pseudorandom  block length L of 
the test set. Based on the statistical analysis of performed experiments, the initial 
solution  was determined by: 

L=0,3*number of deterministic test vectors 

Next, initial solution is calculated using the method described in Section 7.2 
resulting in a set of precomputed deterministic test vectors from the set DT and the 
corresponding pseudorandom test sequences. Then, a test set compaction is 
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applied, to remove the test patterns which do not contribute to fault coverage. After 
that, tabu list is initialized and the search loop is started. Inside the loop, the 
neighbourhood of the current solution is calculated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the generated neighbourhood, the best feasible solution is chosen for the 
consideration as the next solution. If that solution happens to be in the tabu list the 
next best solution is chosen, thus giving the search process a chance to escape from 
the local optima and eventually reach a solution close to the best one. The search 
loop continues until stopping criteria are met - either the search returns to the point 
that was already passed or the number of empty iterations (i.e. iterations that do not 
result in finding a new best solution) exceeds the given constraint E. 

7.4 Experimental results 

7.4.1 Local search based algorithm for test length minimization  

Experiments were performed on ISCAS'85 benchmark circuits. The results are 
depicted in Table 7-1. Test length L and the number of seeds k for different 
memory constrains Mmax were calculated. For each circuit, experiments with three 
different memory constraints were carried out. The algorithm was executed several 
times for different starting points and lengths of iteration steps, and for each run of 

Step 1. Initial solution.
Max block length L

Step 2. Generate solution 
neighbourhood N(S)

Step 3. Choose the best solution 
from N(S) and update the TABU list

T1        T2         ...

Trial solution S*

Fig. 7-15. Tabu search based algorithm 



109 
 

the algorithm, the solution and the number of itearations to reach it were found. 
The minimum and maximum number of iterations are depicted in columns 3 and 4. 
Column 5 shows lower bound of number of iterations for exhaustive search.For 
each experiment the exact minimum was reached (the exact minimum was 
determined based on the complete curves as shown on Fig. 7-3). In the presented 
experiments, the fixed length of pseudorandom pattern blocks (PPBs) was 
investigated. The algorithm can also be used for variable length PPBs.  

 

Circuit  Constraint 
Mmax 

Min no. of 
iterations 

Max no. of 
iterations 

Exhaustive 
search 

Test length 
L 

No. of 
seeds k 

1  2  3  4  5  6  7  

c880 

20  6  8  18  360  20 

15  7  13  30  450  15 

12  13  12  50  600  12 

c1908 

60  6  8  14  840  60 

40  9  11  45  1776  40 

35  11  14  51  1785  35 

c2670 

70  9  11  16  1120  70 

67  7  15  34  2278  67 

65  15  18  67  4288  64 

c3540 

60  5  10  16  896  56 

40  10  12  36  1224  34 

30  10  13  55  1650  30 

c7552 

90  7  8  17  1513  89 

75  9  13  42  3150  75 

70  11  13  58  4060  70 

In Table 7-2 the length of the test created by this “store-and-generate” 
approach is compared with the length of pure pseudorandom and pure deterministic 
test approaches. In columns 3 and 4 the lengths of the test with fixed and variable 
lengths, correspondingly, are given. 

Table 7-2. Comparison of “store-and-generate” with other test sequences 

Circuit  Pseudorandom 
test length 

“Store and generate” test 
length 

Deterministic 
test length 

No. of seeds 

1  2  3  4  5  6 

c880  2694  600  208  56  12 

c1908  4420  1785  1358  119  35 

c2670  22682  4288  535  155  65 

c3540  9631  1650  1095  211  30 

c7552  24337  4060  1344  254  70 

Experiments showed that the method converges well to the exact minimum 
whereas the number of iterations does not exceed 18. Compared to exhaustive 
search the speedup achieved by this method was from 1,5 up to 5,5. 

Table 7-1. Characteristics of the benchmark circuits 
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7.4.2 Hybrid BIST length reduction using reseeding and test set 
compaction 

Experiments were carried out on the ISCAS'85 and ISCAS'89 benchmark 
circuits for investigating the efficiency of the method for reducing the test length 
based on the proposed algorithm of calculating the hybrid test sets for each 
possible memory constraint. All ISCAS'89 circuits have been redesigned to include 
full scan path. For some tasks (like ATPG and fault simulation) tools from the 
Turbo Tester toolset [147] were used.  

The results are presented in Table 7-3 and Table 7-4 where the length of the 
final solution under different memory constraints (different number of seeds) is 
depicted. Also, the described method has been compared to the hybrid BIST 
method proposed in [149] and to the “store-and-generate” approach with local 
search based algorithm [150], described in Section 7.3.1 The method proposed 
in [149] was originally developed for multi-core systems but it can equally well be 
used also for individual cores. These techniques have one serious shortcoming. The 
deterministic and pseudorandom test sets are calculated in isolation and the 
sequences were applied sequentially. Therefore, it might happen that the test 
sequences could be substantially shortened if the tests are applied in different 
order. This issue was addressed in the approach where test set compaction was 
implemented.  

Table 7-3. Comparison of test length, ISCAS'85 

Circuit 
Memory 
Constraint 

(bits) 
Nr. of seeds 

Test length 

Reseeding 
and test set 
compaction 

Hybrid BIST 
[149] 

Store and 
generate 
[150] 

c499 

820  20  313  492  940 

1230  30  236  326  540 

1640  40  174  193  400 

2050  50  140  149  350 

c1908 

990  30  777  1318  1680 

1320  40  589  869  1240 

1650  50  444  735  1050 

1914  58  337  667  870 

c2670 

11650  50  238  598  6400 

12582  54  211  342  2538 

13048  56  171  311  1568 

13980  60  148  290  1080 

c5315 

2670  15  663  753  1290 

6230  35  273  451  560 

7476  42  173  299  504 

8188  46  134  268  368 

c7552 

19665  95  379  900  1140 

21114  102  333  500  714 

23805  115  210  334  460 

25668  124  165  192  372 
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Table 7-4. Comparison of test lengths, ISCAS'89 

Circuit 
Memory 

Constraint (test 
patterns) 

Test Length (scan cycles) 

Reseeding and 
test set 

compaction 

Hybrid BIST 
[149] 

s3330 

79  1272  1347 

70  2121  1636 

67  2775  1861 

s4863 

29  87  154 

24  165  211 

19  255  298 

s6669 

10  102  211 

7  121  304 

4  143  626 

 

In all the presented solutions the fault coverage was guaranteed at the same 
level as it was obtained by the deterministic generator. 

As it can be seen from the results the method with reseeding and test set 
compaction can always find a test set that is shorter than the test set found using 
methods from [149] and [150]. The main explanation lies in the fact that the new 
method handles the deterministic and pseudorandom sequences together and the 
test sets are optimized using a fast optimization method, based on cumulative fault 
coverage figures. The implementation of the store and generate method [150] is not 
optimizing the length of the individual hybrid blocks (the reseeding blocks are 
generated in isolation) and therefore also the results are worse than result of hybrid 
BIST [149].  

In order to illustrate the importance of the test set compaction, the lengths of 
reseeding blocks for the same arbitrary solution are compared in Table 7-5. As it 
can be seen the length of reseeding blocks is substantially longer when no 
compaction is used and with proposed method we can reduce the size of the hybrid 
block. This means that many pseudorandom test patterns that are not contributing 
to the overall fault coverage and are only prolonging the test sequences have 
successfully been removed. 
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Table 7-5. Comparison of block sizes 

Circuit 

Reseeding and 
test set 

compaction 

Store and 
generate 
[150] 

 

Circuit 

Reseeding and 
test set 

compaction 

Store and 
generate 
[150] 

Max block size   Max block size 

c432 

11  28   

c2570 

15  128 

7  14   8  47 

4  8   7  28 

3  5   4  18 

2  4   2  13 

c499 

23  47   

c3540 

6  15 

10  18   5  10 

6  10   3  7 

4  7   2  4 

3  4   

c5315 

10  16 

c1908 

30  56   5  12 

21  31   4  8 

13  21   3  5 

10  15   

c7552 

10  12 

9  13   6  7 

c1355 

10  31   3  4 

6  12   2  3 

4  7      
3  6      

 

 

In Fig. 7-16 and Fig. 7-17, more detailed results of some circuits are depicted. 
In Fig. 7-16 the relationships between the memory constraint (nr. of seeds), the test 
length and the length of the shortest block are illustrated. As it can be seen from 
these charts the reduction of the number of seeds will increase the length of the 
blocks and consequently, also the test length will be increased. 
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Fig. 7-16. Relationships between number of seeds, maximal block size  

and total test length 
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Fig. 7-17. Relationship between the test length and number of seeds. 

 

In Fig. 7-17 this relationship is illustrated in more straightforward manner, 
showing how the test length is increasing if the number of seeds is reducing. 
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The CPU times have not been included in these experimental results, as with the 
described method the entire solution space is being calculated, while the method 
described in [149] and store and generate approach [150] can find a single solution 
for a predefined memory constraint. This requires an optimization heuristic that 
would help to avoid calculation of the complete curves and thereafter the 
comparison of CPU times would be also possible. 

In Fig. 7-18 the total cost of the hybrid BIST solution for different number of 
seeds are depicted. The cost calculation is performed according to the formula: 

CTOTAL = CPR + CDET +CMEM  PRL+DETS+βS 

where CPR is the cost of pseudorandom sequence, CDET is the cost of applying 
deterministic patterns and CMEM  is related to the cost of storing deterministic test 
patterns in the memory; L is the length of the pseudorandom test, S is the number 
of deterministic vectors used. Parameters αPR and βPR can be used to align the 
application times of different test sequences. Constant β can be used to map the 
number of test patterns in the deterministic test sequence into the memory cost, 
measured in bits. 

In the experiments described above, the parameters PR, DET and   had the 
same value. In Fig. 7-18 the situation where the tester (or on-chip memory) has 
different value is illustrated. The curve Total Cost has been calculated so that  
PR= DET  =   = 1. For the Total Cost 2 PR= DET=1, β  = 2, and for Total Cost 3 
PR= DET = 1, β  = 6. The values β  = 2 and β  = 6 mean that it is respectively two 
times and six times more expensive to store one deterministic pattern than to 
generate one pseudorandom pattern. These curves can be used for finding total cost 
minimums and to deduce from this information also the optimal number of seeds, 
which according to the presented algorithm also determines the optimal block 
sizes. Here it can be seen that the memory component influences the total cost of 
hybrid BIST solution significantly.  

 

 

 

 

 

 

 

 

Fig. 7-18.  Comparison of the total test cost using different memory cost parameters. 
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7.4.3 Tabu search based algorithm for optimization of memory-
constrained hybrid BIST 

 

Experiments were carried out on ISCAS'85 and ISCAS'89 benchmarks. ISCAS'89 
circuits were redesigned in order to include full scan path. The results of these 
experiments are shown in Table 7-6 and Table 7-7. In these tables, the test lengths 
under different memory contraints found by the Tabu Search based method and test 
lengths that are found by the reseeding with test set compaction method where the 
full curve is calculated, are depicted. 

Table 7-6. Comparison of test lengths and number 
of calculations for ISCAS'85 benchmarks 

 

Circuit 
Memory 
Constraint 

(bits) 

Tabu Search based 
optimization 

Reseeding and 
test set compaction 

Test 
Length 

Nr. of 
calculations 

Test 
Length 

Nr. of 
calculations 

c499 

2050  140  15  140 

144 
1640  179  15  174 

1230  236  14  236 

820  335  11  313 

c1908 

1980  392  12  337 

159 
1650  444  11  444 

1320  600  8  589 

990  778  13  777 

c2670 

13980  183  17  148 

181 
12815  201  15  191 

11650  252  11  238 

10485  366  13  361 

c5315 

8010  157  10  141 

144 
6230  273  11  273 

4450  433  9  433 

2670  691  22  663 

c7552 

23805  210  34  210 

167 
21735  333  31  333 

19665  408  20  379 

17595  790  9  790 

Average    370  15  358  159 
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Table 7-7. Comparison of test lengths and number of calculations 
for ISCAS'89 benchmarks 

 

Circuit 
Memory 
Constraint

(bits) 

Tabu Search based 
optimization 

Reseeding and 
test set compaction 

Test 
Length 

Nr. of 
calculations

Test 
Length 

Nr. of 
calculations 

s3330 

4000  637  24  637 

120 3800  730  22  694 

3600  869  20  861 

s4863 

2205  79  15  64 

144 1470  99  17  87 

980  202  13  202 

s6669 

2158  56  5  43 

95 1162  76  7  75 

415  123  16  114 

Average    319  15  309  120 

 

As it can be seen from the presented results, the length of the test found by the 
tabu search based method is not always exact minimum but nevertheless its length 
is quite close to the shortest test under the given memory constraint found by 
exhaustive method. However, the number of calculations needed to find the 
solutions significantly smaller when compared to the results of the reseeding and 
compaction approach. 

It can be seen that the tabu search based method allows to find the close to 
optimum solution for ISCAS’85 benchmarks in average 10 times faster than the 
exhaustive search, whereas the calculated average test length is only 3,12% worse 
than the average exact optimum. For ISCAS’89, the method is in average 7,75 
times faster and, the calculated average test length is 3,39% worse. 
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7.5 Conclusions 

 
1. In this chapter, several approaches to optimization of the hybrid BIST with 
reseeding have been described. The purpose was to develop methods for finding an 
optimal balance between the number of precomputed deterministic test vectors and 
pseudorandom test sequences taking into consideration the constrained memory 
size (number of LFSR seeds) and guaranteeing maximum achievable fault 
coverage. 

2. The BIST synthesis method is based on the test set compaction using cumulative  
fault coverage of the hybrid test sequences. The method provides a possibility to 
find a memory constrained test solution and to use it for constructing an optimal 
test solution for the entire system. 

3. Two methods were developed for optimization of the BIST sequence, the local 
search method and tabu search method. 

4. In the local search method, two different scenarios were considered, where the 
length of the pseudorandom blocks was either constant or variable. In the latter 
case the total length of the test was considerably smaller. However, in the case of 
the variable block length the memory cost would increase, since for each seed  the 
length of the block should be stored as well.  

5. The second described method incorporates the ideas of the test set compaction 
approach with an approach known as tabu search which is targeting optimization 
of the problems with multiple local optima. The experiments showed that the 
approach allows to find the solution quite close to the shortest test under the given 
memory constraint. This method does not require the calculation of the whole 
solution space and therefore gives results much faster than the exhaustive search 
method. 
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Chapter 8 BIST cost minimization and 
testability analysis for industrial designs 

In this chapter, the methods of minimization of cost for hybrid BIST with reseeding 
are developed and experimental results are presented for the biosignal processors 
and also ISCAS’89 family benchmarks. Experiments are carried out with the 
industrial design developed at the Centre for Integrated Electronic Systems and 
Biomedical Engineering CEBE for acquiring and measuring bioimpedance signals. 
The testability of these designs is thoroughly analyzed. Different testability 
characteristics are taken into consideration and the impact of alterations made to 
the original design are investigated.  

8.1 The role of the cost components of the Hybrid BIST 

The function to calculate the cost of the hybrid BIST solution was thoroughly 
described in Chapter 6. Let us recall that the total cost of the hybrid BIST CTOTAL 
can be defined as follows: 

CTOTAL = CGEN + CMEM L+S 
 
where CGEN  is the cost related to the time for generating L pseudorandom test 
patterns (number of clock cycles), CMEM is the memory cost for storing S 
precomputed test patterns needed to improve the results of the pseudorandom test 
sequence [126].  and  are the constants to map the test  length and memory space 
to the costs of the two parts of the test solutions to be mixed.  

It is obvious that the correspondence values of  and  have a great influence 
on the total cost of the applied test. When  >>  it means the time used by the test 
has more impact on the total cost of the test than the memory needed to store the 
seeds that are used in the test, that is – the more time the test application takes, the 
more expensive it becomes. On the other hand  <<  means that the memory 
component of the total cost is more significant – the more seeds need to be stored, 
the more expensive will be the test. 

Fig. 8-1 represents the situation where the memory component  (which 
represents the cost of storing one test pattern in the memory) has different values 
for the ISCAS’89 circuit s13207. 
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 a) β = 25                                                      b) β=75 

  

 

 

 

 

 

 

 

c) β=100                                                 d) β=500 

 

Fig. 8-1. The cost curve for ISCAS’89 benchmark s13207 
for different values of memory component 

 

Experiments showed that for the ISCAS’89 benchmarks the cost function becomes 
nonconvex in case when the value of time component α is 1 and the value of 
memory component β is between 25 and 750, that is when the memory component 
of the total cost is 25 to 750 times more “expensive”. When memory component β 
is less than 25 the cost function tends to be linearly dependent from the time 
component – the longer time is needed for applying the test, the higher the value of 
the cost function is, that is – the more expensive the test becomes. When memory 
component β is more than 750 the cost function tends to be linearly dependent from 
the memory component – the more expensive it is to store one precomputed test 
pattern, the higher value of the cost function is. 
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In the area where the cost function is nonconvex, suitable optimization 
algorithms are needed to perform fast calculations in order to find the solution (the 
combination of seeds and the corresponding pseudorandom test blocks) with 
minimal cost taking into consideration the time and memory component. 

8.2 Tabu Search based algorithm for minimizing the cost 
of reseeding  

As the as the test cost function is nonconvex in certain range, in order to find the 
minimum  value and reduce the number of calculations needed, the tabu search 
based method for the hybrid BIST with reseeding (described in Chapter 7) was 
implemented, as this approach allows escaping local optima while performing the 
search. 

The algorithm is described in Fig. 8-2. 

The algorithm starts from generating the set of deterministic patterns DT. Then, 
the pseudorandom blocks of length L0 (that denotes the block length of the initial 
solution) are generated so that the patterns in DT are used as seeds. Thereafter, all 
the created blocks PRi are minimized – the patterns that do not contribute to the 
fault coverage of the block are removed. After the minimization is performed, the 
blocks are reordered in increasing order and test pattern optimization algorithm is 
applied, that takes into account cumulative fault coverage of the blocks and 
removes the patterns that do not contribute to overall fault coverage (see details in 
Section 7.2). The remaining test set that consists of precomputed patterns (seeds) 
and the compressed pseudorandom sequences, is the initial solution S0. The cost of 
the solution is calculated, according to the cost calculation function shown in 
Section 8.1. 

Initial solution S0 is the starting point of the algorithm. The values are set for 
current solution SCURR=S0, best solution SBEST=SCURR. Also, the tabu list is 
initialized. After that, the loop starts to find optimal solution. 

First, the neighbourhood N of the current solution is generated (neighbouring 
solutions are defined by the length of the pseudorandom block). For neighbours, 
the solutions are calculated (by generating the test set consisting of deterministic 
seeds and corresponding pseudorandom test pattern blocks). Then, the costs of all 
solutions in the generated neighbourhood are calculated. The solution STRIAL with 
best cost in the neighbourhood is chosen and compared with the tabu list. If the 
solution STRIAL is not in tabu list, it is chosen as the next current solution SCURR. If 
the solution is tabu then the next best solution from the neighbourhood is chosen. 
The chosen current solution SCURR is compared to best solution seen so far SBEST 
and if the cost of SCURR is better than the cost of SBEST then SCURR becomes the best 
solution SBEST. The loop continues until the stop criterion is met – the search return 
to an already visited solution or there in no improvement in SBEST for defined 
number of steps. 
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Tabu Search based algorithm 

- Generate set of deterministic test patterns DT 
- Choose the block length L0 of the initial solution 
- Generate the initial solution S0 based L0 

//generate pseudorandom blocks with length L0 for all 
//patterns from the set DT 
//apply test set compaction removing the patterns that 
//do not contribute to the overall FC 

- Calculate Cost (S0) 
- Declare current solution SCURR=S0 
- Declare best solution SBEST = SCURR 
- Initialize tabu list TL 
- repeat (until stopping criterion met) 

 Generate neighbourhood N of SCURR 
 Calculate the solutions in N, apply test set compaction 

//generate pseudorandom blocks of length LN1, LN2 etc. 
//apply test block compaction based on FC 
//rearrange the blocks 
//minimize the number of blocks 
//apply test set compaction 

 Calculate the Cost of solutions in N 
 Find best Cost(STRIALN) 
 loop (until best solution STRIALN is found) 

 if STRIAL is not in TL, then 
 Declare SCURR=STRIAL 
 Update TL 

 else  
 find the next best STRIAL 

 if Cost (SCURR)< Cost(SBEST) 
 Declare SBEST=SCURR  

- done 

 
Fig. 8-2. Tabu search based algorithm for reducing number of calculations 

 

The resulting SBEST is the solution found by the algorithm. 

In the presented approach, the following algorithm parameters were chosen: 

initial solution S0: 0,3*length of the deterministic test 
size of the neighbourhood: Size (N) = 10 
tabu list TL  length: Length (TL) = 7 
stopping criterion: 10 unresulative iterations 
 
The experimental results of using the method are described and discussed in 

Section 8.6 
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8.3 Simulated annealing based algorithm for minimizing 
the cost of reseeding 

As simulated annealing possesses the “hill climbing” property needed for escaping 
local optima of nonconvex solution space, an optimization algorithm for reducing 
the number of calculations in order to find minimal cost of hybrid BIST with 
reseeding was also implemented using an approach of simulated annealing. The 
description of the algorithm is shown in Fig. 8-3. 

Simulated annealing based algorithm 

- Generate set of deterministic test patterns DT 
- Choose the block length L0 of the initial solution 
- Generate the initial solution S0 based L0 

//generate pseudorandom blocks with length L0 for all 
//patterns from the set DT 
//apply test set compaction removing the patterns that 
//do not contribute to the overall FC 

- Calculate Cost (S0) 
- Declare current solution SCURR=S0 
- Declare new solution SNEW=S0 
- Declare best solution SBEST = SCURR 
- Set initial temperature T 
- repeat 

 repeat 
 Generate neighbour SNEW of the current solution SCURR 

//generate pseudorandom blocks of length LN 
//apply test block compaction based on FC 
//rearrange the blocks 
//minimize the number of blocks 
//apply test set compaction 

 Calculate Cost (SNEW) 
 Calculate Cost = Cost (SCURR)-Cost(SNEW) 
 if (Cost<0) then 

 Declare SCURR=SNEW 
 if Cost(SCURR)<Cost(SBEST) then 

 Declare SBEST=SCURR 
 else  

 if (random_number < -Cost/T)  
 SCURR=SNEW 

 reduce the value of M 
 until M=0 
 reduce the value of T 

- until max number of empty Markov’s chains achieved 
- SBEST is the solution 

 
 

 

The algorithm starts from generating the set of deterministic patterns DT. Then, 
the pseudorandom blocks of  length L0 (that denotes the block length of the initial 
solution) are generated so that patterns in DT are used as seeds. Thereafter, all the 

Fig. 8-3. Simulated annealing based algorithm for reducing the number of calculations 
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created blocks PRi are minimized – the patterns that do not contribute to the fault 
coverage of the block are removed. After minimization is performed, the blocks are 
reordered in increasing order and test pattern optimization algorithm is applied, that 
takes into account cumulative fault coverage of the blocks and removes the patterns 
that do not contribute to overall fault coverage (see details in Section 7.2). The 
remaining test set that consists of precomputed patterns (seeds) and the compressed 
pseudorandom sequences, is the initial solution S0. The cost of the solution is 
calculated, according to the cost function.  

Solution S0 becomes the starting point of the algorithm. It is also declared to be 
the current solution SCURR and the best solution SBEST (solution with the best cost 
seen so far). The important parameter of simulated annealing – the initial 
temperature T is set. After that, the calculations are performed in a loop – the heart 
of the algorithm, the Metropolis procedure which simulates annealing of metal at 
given temperature. In this loop, a local neighbour is chosen from the 
neighbourhood of SCURR. For the chosen neighbour (determined by the block length 
LN) the solution SNEW is generated (by generating the test set consisting of 
deterministic seeds and corresponding pseudorandom test pattern blocks). The cost 
of the generated solution is calculated. Now, if the Cost(SNEW) is better than the 
Cost(SCURR), the new solution is accepted, thus SCURR=SNEW. In case Cost(SNEW) is 
worse than Cost (SCURR), the solution SNEW might still be accepted on probabilistic 
basis (here, the “hill climbing” property of simulated annealing is realized). The 
random number is generated in range 0 to 1. In case this generated number is 

smaller than 
T

Cost
e


 where Cost is the difference of costs and T is the 

current temperature, the uphill solution is accepted. The loop is performed M times 
(the value of M represents the amount of time for which annealing must be applied 
at given temperature T). After that, the value of temperature T is reduced (based on 
cooling rate defined by αSA) and the value of  M that defines the duration of the one 
annealing loop is also reduced. The loop is repeated with decreasing values of T 
and M until the given number of unresultative Markov’s chains is achieved. 

In the current approach, based on empirical studies, the following parameters 
for simulated annealing were chosen: 

initial solution: 0,3*length of the deterministic test 
initial temperature: T = 100 
constant to determine cooling schedule: αSA = 0,9 
initial value of length of Metropolis procedure: M = 15 
constant to reduce value of M in a controlled manner: βSA = 1,1 

The experimental results of using the method are described and discussed in 
Section 8.6 

 



125 
 

8.4 Benchmark circuits family based on biosignal 
processor designs 

In biomedical engineering, bioimpedance is a term used to describe the response of 
a living organism to an externally applied electric current. Measurement of 
electrical bioimpedance enables to characterize tissues and organs, to get 
diagnostic images, etc.[152]. Multi-channel data-acquisition devices are used often 
in biomedicine to measure the properties of organs and tissues. The main reason is 
the fact that the useful information is hidden under background signals generated 
by the normal body activity [153][154]. An example would be respiration 
generated noise when measuring heart activities. Electrical bioimpedance  

Ż=R + jX 

is determined by measuring of voltage response V to the excitation current I flow 
through the tissue or organ, and calculated as 

Ż=V/I 

The impedance of tissues and organs is measured between the electrodes having 
different locations. Multisite and multifrequency bioimpedance information has a 
great diagnostic value [156][157]. 

In the following, the DSP (digital signal processing)-based solution for a multi-
frequency measurement unit prototype has been described.  

The basic architecture of the digital multichannel bioimpedance analyzer 
(DMBA) is shown in Fig. 8-4 [153]. The parameters of the response receiving part 
(multiplexer and signal analyzer) are defined by the use of single analog-to-digital 
converter (ADC) for multichannel measurements. For instance, practical 
measurement on body surface (thorax EBI measurements) with 8 excitation sources 
and also 8 response signals require operating in the frequency range of interest 
between 30 kHz and 100 kHz. The task can be accomplished using single ADC 
with at least 10MHz multisampling rate. The resolution must be between 18 to 20 
to represent low (0.01% range) impedance changes adequately [158]. 

 
Fig. 8-4. A simplified block diagram of DMBA 
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The heart of the electronic test arrangement (prototype) is the Field 
Programmable Gate Array (FPGA) SpartanTM-3 from Xilinx. The FPGA handles 
input channel selection, sampling pulse generation, preamplifier gain control, 
compensating voltage code generation, reading samples from ADCs (analog-to-
digital converters). The functional block diagram of the FPGA unit is shown on 
Fig. 8-5. 

 
Fig. 8-5. Functional block of the FPGA unit with I/O connections 

and peripheral components 
 

There has been a number of different modifications developed in order to 
compare different architectural solutions of this functionality.  

 
Fig. 8-6. Schematic of the industrial design 

 

The part controlled 
by the FPGA
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Fig. 8-6 shows an example block diagram of the design – reconfigurable multi-
channel multi-frequency application specific signal processor (DSP), which was 
designed for acquiring and measuring bioimpedance signals.  

The acquired data is first sampled, then sorted and finally processed. The 
processing includes calculating the values that are needed to calculate the 
bioimpedance of the tissue. The sampling order is controlled by a programmable 
decoder, implemented in block RAM. The sampled data is then placed into one of 
two on-chip memories, which are working in parallel – when one is collecting the 
incoming data, the other is sending the previously collected values for processing. 
Data is accumulated and accumulation registering is performed. After that, data 
from registered accumulators are multiplexed to a single output register. 

The general structure of the 8-channel signal processor for bioimpedance 
measurements is shown in Fig. 8-7. During the design process, alterations were 
made to both preprocessor part of the design and the integrator part of the design, 
resulting in eight different configurations performing the same function: 8a,8b, 
8be,8bk,8bs,8c,8d and 8de. The goal of the research in this thesis was to 
investigate how different structural implementations would impact on the 
testability of the design, and to find out which properties of the design will cause 
worse testability. 

Fig. 8-8 shows which successive changes were introduced into the designs. 
Design 8a was the original version with eight data channels, other designs are 
different alterations. 

 
Fig. 8-7. General structure of the biosignal processor 
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Fig. 8-8. Overview of the benchmark designs 

8.5 Testability analysis of the benchmark family 

Testability analysis of different configurations of biosignal processor design 
was performed by using deterministic and pseudorandom test pattern generators, 
fault simulator and by using the algorithms for hybrid BIST optimization 
developed in this thesis. Several testability characteristics were analyzed: the test 
length achieved and the needed time for deterministic test pattern generation, the 
time needed for fault simulation and for the pseudorandom test generation, the 
hybrid BIST length and the calculated optimal test cost of hybrid BIST. The results 
are presented in Table 8-1. 

Table 8-1. Testability characteristics of 8-channel signal processors 

Design  Deter‐
ministic 

test length 

Deter‐
ministic test 
generation 
time, s 

Fault 
simulation 
time, s 

Random 
test 

generation 
time, s 

HyBIST 
length 

HyBIST 
optimal 
cost 

8a   1364  47  13,7  1408  23 038  197 823 

8b  1201  34  11,8  1130  18 540  138 324 

8be  995  114  27,9  2784  14 202  104 474 

8bk  1288  35  11,3  1129  17 497  144 876 

8bs  1186  296  69,0  7095  14 086  113 038 

8c  1320  75  15,5  1583  35 641  224 121 

8d  1394  62  16,6  1647  32 610  209 384 

8de  1096  112  33,4  3344  33 968  162 557 

 



129 
 

The most significant changes in testability characteristics because of the design 
modifications are highlighted in Table 8-2. 

Table 8-2. Changes in testability characteristics because of the design modifications 

Design  Deter‐
ministic test 

length 

Deter‐
ministic test 
generation 
time, s 

Fault 
simulation 
time, s 

Random 
test 

generation 
time, s 

HyBIST 
length 

HyBIST 
optimal 
cost 

8a  8b             
8b  8be             
8b  8bk             

8bk  8bs             
8a  8c             
8c  8d             
8d  8de             

 

The different design implementations are characterized by different levels of 
sharing of resources such as input buffers, preprocessing units, adders and 
subtractors in preprocessors, and integrators. Sharing of the resources was 
accompanied by introducing additional multiplexers and control circuits which in 
their turn increased the number of reconvergent fan-out branches in the topology of 
the circuits. A rough estimation of the number of convergent control signals is 
given in Table 8-3. 

Table 8-3. Modifications in the different benchmark designs 

 
Design 

Number of reconvergent control 
signals 

 
Modification made in the designs 

Pre‐ 
processor 

Integrator  Total 

8a 
8b 
8bk 
8c 
8d 

32
32
64
32
32 

64
64
64
64
64 

96
96
128
96
96 

Initial design 
Shared preprocessor 

Shared preprocessor and adder/subtractor 
Initial design with input buffers 

Shared preprocessor 

8be 
8de 

32
32 

512
512 

544
544 

Shared preprocessor and integrator 
Shared preprocessor and integrator 

8bs  64  1536  1600  Maximum sharing of resources 

 

The transition from 8a to 8b was the replacement of eight different channels in 
preprocessing part of the circuit by one common channel, thus the redundancy was 
removed, resulting in shared preprocessor. This change resulted in improvement of 
all the testability characteristics under consideration. The best improvements were 
seen in reduction of test generation time (generation of deterministic test 1,4 times 
and generation of pseudorandom test 1,25 times faster). Fault simulation time was 
1,16 times faster. Also, the optimal cost and the test length of the hybrid BIST 



130 
 

(with reseeding) significantly improved – one of the reasons is smaller number of 
inputs in 8b which results in the less cost of the memory component of the hybrid 
BIST.  

The transition from 8b to 8be was the replacement of eight channels of 
integrators with one channel. Multiplexers were added to the inputs of adders in the 
integrator. As it can be seen from the presented results, deterministic test length 
improved - it was 1,2 times shorter which can be explained by the reduction of the 
circuit because of sharing a single channel instead of using eight different channels. 
On the other hand, the time needed for deterministic test generation was 3,35 times 
higher because of increasing of the number of reconvergent control signals in the 
circuit from 94 to 544, which causes higher number of backtracks during search for 
consistent solutions. Also, fault simulation time became 2,36 times slower, and the 
time needed for pseudorandom test generation was 2,46 times higher. This is 
explained by the use of exact critical path tracing algorithm [159] used for fault 
simulation which is highly sensitive to the number of reconvergent control signals. 
Since pseudorandom test generation uses the same fault simulator, the test 
generation time consequently as well increases as well. The cost of the hybrid 
BIST was improved due to the smaller number of deterministic vectors needed.  

The transition from 8b to 8bk was using one adder/subtractor and additional 
multiplexers in the preprocessor part. The increase of the reconvergent control 
signals (from 96 to 128) did not significantly influence the testability of the circuit.  

 The transition from 8bk to 8bs combined the preprocessor part of the design 
8bk and the integrator part of the design 8be. As it can be seen from the  
Table 8-3, the number of reconvergent control signals increased drastically (128 for 
8bk and 1600 for 8bs). Table 8-2 shows worsening of the testability 
characteristics regarding test generation and fault simulation: the time of 
deterministic test generation became 8,45 times longer, the time of fault simulation 
6,1 times longer, and the time of random test generation became 6,28 times longer. 
On the other hand, because of the reduction in circuit size, the length of 
deterministic test set became slightly shorter (1,08 times). The length of optimal 
hybrid BIST was 1,24 times shorter and optimal cost was 1,28 times smaller due to 
the smaller number of seeds needed to achieve the best possible fault coverage. 

The transition from 8a to 8c resulted in adding additional buffer registers to the 
inputs of input buffers. The eight channels of data remained. In Table 8-2 it can be 
seen that test generation and fault simulation time related characteristics have 
become worse: generation time of deterministic test became 1,59 times longer, 
generation time of random test became 1,13 times longer and fault simulation time 
became 1,13 times longer. This worsening of indicators can be explained by the 
increase of the number of reconvergencies because of adding control signals for 
addressing the buffer registers. The test length did not change because of the circuit 
size remained the same.  The length of hybrid BIST sequence test became 1,54 
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times longer, and the cost of Hybrid BIST was bigger for 8c due to the bigger 
number of inputs (buffer registers).  

In the transition from 8c to 8d eight channels of the preprocessor were 
removed and replaced with a single channel. Multiplexers were added to the inputs 
of the preprocessor. The characteristics that changed most significantly were 
deterministic test generation time (became shorter) and the length of the optimal 
hybrid BIST became slightly shorter, similarly as in the case of “from 8a to 8b” 

In transition from 8d to 8de, the eight channels of integrator were replaced by 
a single channel and also some multiplexers were added. This change resulted in a 
bigger number of reconvergent control signals (Table 8-3) and, consequently, also 
in longer times for test generation and fault simulation: test generation time for 
deterministic test was 1,81 times longer and test generation time for random test 
was 2,03 times longer. Fault simulation time was 2,01 times longer. The length of 
deterministic test set was 1,27 times shorter and the cost of the optimal hybrid 
BIST test was 1,28 times smaller (due to the smaller number of seeds needed). This 
case affected the testability characteristics in the similar way as in the case 
 “from 8b to 8bk” 

8.6 Experimental results of BIST optimization 

Experiments were performed on ISCAS’89 benchmarks and on the different 
configurations of the biosignal processor design to investigate the efficiency of the 
described optimization algorithms. The circuits were redesigned to include full 
scan path. 

The results for ISCAS’89 benchmarks are presented in Table 8-4, where the 
number of calculations needed to find the minimum value of the cost function is 
shown for all three cases – exhaustive calculation, tabu search based algorithm and 
simulated annealing based algorithm. In all solutions the highest fault coverage 
was guaranteed. 

For test cost was defined by the formula, which takes into account the 
deterministic part of the test sequence: 

CTOTAL = CGEN + CMEM  L+βS 

where L is the total length of the pseudorandom sequences of the test and S is the 
number of precomputed deterministic test patterns, stored in the memory. 
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The values of parameters were chosen as follows: 

α   = 1 (the cost of applying one test pattern) 
β  = 3*B (the cost of storing one deterministic test in memory; B is the 

number of bits of the input vector, 3 is the cost of storing one bit in the memory) 

Table 8-4. Comparison of Tabu search and Simulated annealing 
 based approaches for ISCAS’89 

Circuit  s3271  s3330  s5378  s13207  s15850  s3982  Average 

Test Length  314  950  1896  1733  606  3982   

No. of seeds  24  83  55  195  208  484 

Length of the PR block  21  29  52  20  7  22 

Real best cost  938  4270  3821  7778  3518  17500 

Best cost found by SA  938  4270  3821  7778  3518  17500 

Best cost found by TS  950  4300  3821  7778  3558  17500 

No. of calculations  3000  1500  2500  2000  2000  500  1917 

No. of calculations by SA  81  49  53  71  52  141  75 

No. of calculations by TS  24  25  20  35  34  106  41 

 

For calculating the test cost of the biosignal processor design, the values of the 
constants were chosen as follows: 

α = 1 (the cost of applying one test pattern) 
β: number of bytes needed to store one deterministic test in memory 

Table 8-5(a) Comparison of TS and SA based approaches for biosignal processor 

Design  8a  8b  8be  8bk  Average 

No. of primary inputs  2528  1744  1744  1744   

No. of nods  31070  23785  26263  23656 

Test Length  28038  18540  14202  17497 

Fault coverage, %  98,69  98,31  98,19  98,25 

No. of seeds  539  552  416  587 

Length of the PR block  174  116  89  97 

Real best cost  197823  138324  104474  144876 

Best cost found by SA  197823  138324  104474  144876 

Best cost found by TS  200382  142037  106725  148805 

No. of calculations  1500  1500  1500  1500  1500 

No. of calculations by SA  103  65  73  51  73 

No. of calculations by TS  54  31  29  21  34 
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Table 8-5(b) Comparison of TS and SA based approaches for biosignal processor 

Design  8bs  8c  8d  8de  Average 

No. of primary inputs  1744  3043  2707  2707   

No. of nods  26868  34314  33577  35600 

Test Length  14086  35641  32610  33968 

Fault coverage, %  97,85  97,97  98,83  98,71 

No. of seeds  456  496  523  424 

Length of the PR block  66  231  210  121 

Real best cost  113038  224121  209384  162557 

Best cost found by SA  113698  224121  210359  162557 

Best cost found by TS  120848  224123  212270  163423 

No. of calculations  1500  1500  1500  1500  1500 

No. of calculations by SA  51  134  45  62  73 

No. of calculations by TS  32  43  37  42  39 

As it can be seen from the presented results, simulated annealing based 
approach can in almost all cases find the exact solution with the smallest value of 
the cost function. The tabu search based approach needs less calculations but does 
not always guarantee the best possible solution. However, if the solution found by 
tabu search based approach is not really the best possible, it is still quite close to 
minimal solution. For both ISCAS’89 benchmarks and the biosignal processor 
designs, simulated annealing based method found the solution in average about 20 
times faster and the tabu search based method found the solution in average about 
40 times faster. 

Additional experiments were carried out in order to determine if the described 
approaches are also applicable in cases where the cost function loses its parabolic 
nature. Examples of such cases are presented in Fig. 8-9. 

     

 

 

 

 

 

 
 

a) β=1                                                           b) β=2000 
 

Fig. 8-9. The cost curve for ISCAS’89 benchmark s13207 
for extreme  values of memory component  
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Table 8-6. The search results for extreme values of β for benchmark s13207 

  β=1  β=2000 

No. of seeds  304  19 

Length of the PR block  1  1565 

Real best cost  304  64040 

Best cost found by SA  379  73179 

Best cost found by TS  379  76084 

No. of calculations  1500  1500 

No. of calculations by SA  38  511 

No. of calculations by TS  40  175 

 

Experiments showed that even in these extreme cases, the algorithms are 
applicable and capable of finding the solution that is close to optimal. Table 8-6 
shows the results for extreme case for circuit s13207 (also illustrated on Fig. 8-9) 
– in one case cost of storing one deterministic test pattern in memory β = 1, and in 
the other case the cost of storing one deterministic test pattern in memory 
β = 2000. As it can be seen, in case of both approaches the search time is similar in 
case of “cheap” memory and tends to be quite long in the case of “expensive” 
memory.  
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8.7 Conclusions 

1. Two algorithms for cost minimization of hybrid BIST with reseeding based on 
tabu search and simulated annealing were presented, described and investigated.   

2. The impact of constants α and β in the cost function of the hybrid BIST with 
reseeding was investigated, where α represents the cost of applying one test vector 
thus allowing to measure the time component of the total cost and β represents the 
cost of storing one precomputed test pattern (seed for LFSR) thus allowing to 
measure the memory component of the total cost. 

3. Experimental research was carried out both on the ISCAS’89 and on the 
industrial circuits which represented a family of biosignal processors. In all 
processors the same functions were implemented, however by different circuit 
architectures and sharing of resources. 

4. Experiments showed that the cost minimization based on simulated annealing 
and tabu search are suitable for solving the problem, giving the minimal or near 
minimal solution within reasonable time cost – number of times faster than in case 
where it is needed to calculate the whole cost curve 

5. Experiments also showed that simulated annealing based solution tends to be 
more exact but takes more time than tabu search based solution; tabu search based 
solution will give less exact results but works faster than simulated annealing 
based approach. 

6. In cases, where the cost function tends to lose its parabolic nature – that is, when 
the value of memory component β is either very small or very big compared to the 
time component α, the presented algorithms are also capable of finding the 
solutions with a close to minimal cost. 

7. It has been shown that the BIST quality considerably depends on the testability 
of circuits. By experimental research a correlation was established between the 
structural properties of circuits and their testability characteristics. It was shown 
that sharing of resources, which leads to the increase of number of 
reconvergencies, on one hand, will increase the time needed for test generation and 
fault analysis, but on the other, hand will reduce the test length. 
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Summary 

 

In this thesis, several important issues in the area of built-in self-test of digital 
systems were presented: 

 defect-oriented analysis of pseudorandom built-in self-test efficiency was 
investigated 

 optimization techniques for different approaches of hybrid built-in self-test 
were developed 

 throughout the research, two optimization techniques tabu search and 
simulated annealing were taken as basis of algorithms and compared with 
each other. 

 the testability issues and relations to BIST of the industrial circuits 
developed for bioimpedance measurements were analyzed 

Research on different fault models with the goal of adequate representing of 
physical defects for improving the quality of BIST analysis was carried out. A 
novel defect-oriented functional fault model called also conditional SAF model 
was introduced to support high quality BIST analysis. 

As the classical built-in self-test approach has a number of drawbacks, there are 
many improvement techniques proposed. In this work, the emphasis was made on 
hybrid BIST approach – the combination of precomputed deterministic tests stored 
in memory and pseudorandom sequence, and on the “store-and-generate” BIST 
approach based on reseeding the LFSR. 

In order to evaluate the test, a cost function was introduced that takes into 
consideration, on one hand, the cost related to applying the test patterns, and on the 
other hand, the cost related to storing the deterministic test patterns in on-chip 
memory. This cost function allows to find an optimal balance between 
pseudorandom and deterministic test sets, and to perform the hybrid self-test with 
minimum cost of both, time and memory, and without losing in test quality 

For the Hybrid BIST with reseeding, the methods were developed which allow 
to minimize the test length at the given constraints for memory cost, and the 
methods which allow to optimize the BIST regarding both, time and memory.  

The algorithms developed for solving the optimization tasks  
are based on two methods: tabu search and simulated annealing. Experiments 
showed that the proposed optimization techniques allow to find the optimal balance 
between the deterministic data and pseudorandom sequences for both the hybrid 
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BIST where pseudorandom sequence is combined with deterministic patterns and 
for “store-and-generate” hybrid BIST with reseeding. The results obtained by 
simulated annealing were more exact, but needed more calculation time, tabu 
search allowed to obtain results faster, but the solution found was less exact. 
However, the difference was still minor. Therefore, if the solution needs to be 
found fast, tabu search can be used, but if the exact solution is more important, 
then simulated annealing should be used. 

A special testability related experimental research was carried out  
for a family of industrial designs - for different modifications of the biosignal 
processor system. The developed cost optimization techniques have proven to be 
feasible and efficient for creating an optimal "store-and-generate" type BIST with 
minimum cost for these systems. However, the testability analysis of the whole 
family showed that the quality and cost of the BIST may considerably depend on 
the structure of the biosignal processor. 
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