
Optimization of Built-In Self-Test in
Digital Systems

HELENA KRUUS

P R E S SP R E S S

THESIS ON INFORMATICS AND SYSTEM ENGINEERING C66

TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology

Department of Computer Engineering
Chair of Computer Engineering and Diagnostics

This dissertation was accepted for the defence of the degree of Doctor of
Philosophy in Computer and Systems Engineering on July 7, 2011

Supervisor: Prof. Raimund Ubar

Opponents: Prof. Rimantas Sheinauskas,

Kaunas University of Technology, LITHUANIA

Prof. Leo Võhandu,
Tallinn University of Technology, ESTONIA

Defence: September 2, 2011

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and
achievement, submitted for the doctoral degree at Tallinn University of Technology
has not been submitted before for any degree or examination.

/Helena Kruus/

Copyright: Helena Kruus, 2011

ISSN 104-4731
ISBN 978-9949-23-149-2 (publication)
ISBN 978-9949-23-150-8 (PDF)

INFORMAATIKA JA SÜSTEEMITEHNIKA C66

Sisseehitatud enesetestimise optimeerimine
digitaalsüsteemides

HELENA KRUUS

To my family

7

Abstract

The developments in deep submicron and nanotechnologies allow new design
and process technologies to emerge. These technologies provide higher integration
densities, smaller interconnection delays and higher system performance, thus
enabling new IC paradigms.

This thesis is dedicated to investigations to improve the efficiency and quality
of Built-In Self-Test (BIST), which is a solution that allows to overcome many
problems related to VLSI and SoC testing.

First, the fault modelling techniques are described and investigated and an
overview is given about hierarchical defect modeling. Different defect modeling
techniques are described, including Structurally Synthesized Binary Decision
Diagrams, High-Level Binary Decision Diagrams and Boolean differential
algebra. The proposed defect modelling methods are used for the BIST quality
analysis.

Second, the BIST method that combines the use of pseudorandom test
sequences and precomputed deterministic vectors is investigated and the
optimization techniques for this approach are proposed.

Third, the hybrid BIST with reseeding and test set compaction method is
presented and the techniques are propsed for contrained optimization of this
approach. This approach allows to find the solution close to the shortest test under
the given memory constraint. The method does not require the calculation of the
whole solution space and therefore gives results much faster than the exhausive test
set compaction method.

The new developed BIST optimization methods were implemented in the
industrial designs of biosignal processors developed at the Centre for Integrated
Electronic Systems and Biomedical Engineering CEBE. Testability analysis of the
benchmark circuits family based on the biosignal processor designs was performed
to investigate how different structural implementations would impact on the
testability, and to find out which properties of the design will improve the
testability.

8

9

Kokkuvõte

Submikron- ja nanotehnoloogiate arengusuunad võimaldavad uute disaini- ja
tootmistehnoloogiate kasutamist. Need uued tehnoloogiad võimaldavad luua
kompaktsemaid skeeme, saavutada väiksemaid süsteemisiseid viiteid, paremat
süsteemide jõudlust ning soodustavad uute disainiparadigmade tekkimist ja
kasutamist.

Väitekiri on pühendatud digitalsüsteemide isetestimise effektiivsuse ning
kvaliteedi tõstmisega seotud uuringutele. Isetestimine on meetod, mis võimaldab
lahendada paljusid ülisuurte integraalskeemide testimisega seotud probleeme.

Esiteks on uuritud vigade modelleerimise meetodeid ning on antud ülevaade
hierarhilisest defektide modelleerimisest. On kirjeldatud erinevaid defektide
modelleerimise meetodeid, sealhulgas struktuurselt sünteesitud binaarsed
otsustusdiagrammid, kõrgetaseme binaarsed otsustusdiagrammid ning Boole’i
differentsiaalalgebra. On uuritud isetestimise meetodi effektiivsust defektidele
orienteeritud testimisel.

Teiseks on kirjeldatud isetestimise meetodit, mis võimaldab kombineerida
pseudojuhulikke ning deterministlikke testsignaale ning on välja pakutud
algoritmid selle meetodi optimeerimiseks.

Kolmandaks on kirjeldatud isetestimise meetodit kus deteministlikke
testsignaale kasutatakse nihkeregistris uute pseudojuhulike jadade genereerimiseks.
On välja töötatud algoritm, mis võimaldab kiiresti leida lühima vajalike
determinstlike testide ja pseudojuhuslike jadade kombinatsiooni, mis vastaks
etteantud mälupiirangutele. Välja töötatud meetod ei vaja kõikide võimalike
lahenduste leidmist ning seetõttu annab sobiva tulemuse kordades kiiremini kui
originaalkujul.

Välja töötatud optimeerimismeetodeid rakendati biosignaalide protsessorite
enesetestimise automatiseerimiseks Eesti Teadustippkeskuses CEBE. On läbi
viidud ka selle protsessori erinevate konfiguratsioonide testitavuse analüüs,
selgitamaks millised digitaalskeemi omadused soodustavad digitaalsüsteemide
testitavuse paranemist.

10

11

Acknowledgements

I would like to thank everyone who have supported and advised me during my
PhD studies.

First of all, I would like to sincerely express my gratitude to my supervisor
Prof. Raimund-Johannes Ubar for providing guidance, support and also
tremendous motivation and encouragement in finishing this thesis.

I would also like to thank the whole Department of Computer Engineering team
– Gert Jervan, Tarmo Robal, Elmet Orasson, Peeter Ellervee, Jaan Raik, Maksim
Jenihhin and all other friends and colleagues.

Moreover, I would like to acknowledge the organizations that have supported
my PhD studies: Tallinn University of Technology, National Graduate School in
Information and Communication Technologies (IKTDK), Centre of Research
Excellence in Dependable Embedded Systems (CREDES), Centre for Integrated
Electronic Systems and Biomedical Engineering (CEBE) and Estonian IT
Foundation (EITSA).

Finally, I would like to thank my family for the patience and support.

Helena Kruus,
Tallinn, September 2011

12

Selected publications

Journals

G. Jervan, E. Orasson, H. Kruus, R. Ubar. "Hybrid BIST Optimization Using
Reseeding and Test Set Compaction". Microprocessors and Microsystems, 32(5-6),
254 - 262. 2011

R, Ubar, M. Aarna, H. Kruus, J. Raik. "High Quality Test Generation for Digital
Systems". Romanian Journal of Information Science and Technology, 8(1), 73 - 84.
2005

Conferences

H.Kruus, R.Ubar, J.Raik. "Defect-Oriented BIST Quality Analysis". 12th
International Biennial Baltic Electronic Conference BEC 2010, Tallinn, Estonia,
October 4-6, 2010.

H. Kruus, G. Jervan, R. Ubar. "Using Tabu Search for Optimization of Memory-
Constrained Hybrid BIST" International Biennial Baltic Electronic Conference
BEC 2008, Tallinn, Estonia, October 6-8, 2008, pp.155 - 158.

G. Jervan, H. Kruus, E. Orasson, R. Ubar. "Hybrid BIST Optimization Using
Reseeding and Test Set Compaction". 10th EUROMICRO Conference on Digital
System Design DSD 2007, Lübeck, Germany, August 29-31, 2007, IEEE
Computer Society Press, pp. 596 - 603.

G. Jervan, H. Kruus, E. Orasson, R. Ubar. "Optimization of Memory-Constrained
Hybrid BIST for Testing Core-Based Systems". IEEE 2nd International
Symposium on Industrial Embedded Systems SIES 2007, Lisbon, Portugal,
July 4-6, 2007. IEEE Computer Society Press, pp.71 - 77.

R. Ubar, G. Jervan, H. Kruus, E. Orasson, I. Aleksejev. "Optimization of the Store-
and-Generate Based Built-In Self-Test". 10th Biennial Baltic Electronics
Conference BEC 2006, Laulasmaa, Estonia, October 2-4, 2006. IEEE Computer
Society Press, pp.199 - 202.

H. Kruus, E. Orasson, T. Robal, R. Ubar. "Investigating Defects in Digital Circuits
by Boolean Differential Equations". The 4th International Conference "Distance
Learning - Educational Sphere of XXI Century" DLESC'04, Minsk,
November 10-13, 2004, pp. 432 - 435.

13

G. Jervan, Z. Peng, R. Ubar, H. Kruus. "A Hybrid BIST Architecture and its
Optimization for SoC Testing". IEEE 2002 3rd International Symposium on
Quality Electronic Design ISQED 2002, San Jose, California, USA, March 18-20,
2002. IEEE Computer Society Press, 2002, pp.273 - 279.

R. Ubar, H. Kruus, G. Jervan, Z. Peng. "Using Tabu Search Method for Optimizing
the Cost of Hybrid BIST". 16th Conference on Design of Circuits and Integrated
Systems DCIS 2001, Porto, Portugal, November 20-23, pp. 445 - 450.

14

List of abbreviations

ADC Analog-to-Digital Converter
ATE Automatic Test Equipment
ATPG Automatic Test Pattern Generation
BDD Binary Decision Diagram
BIST Built-In Self-Test
CA Cellular Automata
CMOS Complementary Metal–Oxide–Semiconductor
CUT Circuit Under Test
DD Decision Diagram
DFT Design For Testability
DMBA Digital Multichannel Bioimpedance Analyzer
DSP Dedicated Signal Processor
FC Fault Coverage
FFR Fan-out Free Region
FPGA Field Programmable Array
FSM Final State Machine
GA Genetic Algorithms
HDL Hardware Description Language
HLDD High Level Decision Diagram
HTTF Hard To Test Faults
HyBIST Hybrid BIST
IC Integrated Circuit
IDDQ Quiescent supply current
ISCAS International Symposium on Circuits and Systems
JTAG Joint Test Action Group
LBIST Logic BIST
LFSR Linear Feedback Shift Register
LSSD Level Scan Sensitive Design
MISR Multiple Input Analyzer
MP-LFSR Multi-Polynomial LFSR
NoC Nework-on-Chip
ORA Output Response Analyzer
PCB Printed Circuit Board
PPB Pseudorandom Pattern Block
PRPG Pseudorandom Pattern Generator
RAM Random Access Memory
ROBDD Reduced Ordered BDD
ROM Read-Only Memory
RPR Random Pattern Resistant
RTL Register Transfer Level

15

SA Simulated Annealing
SAF Stuck-At Fault
SoC System-on-Chip
SSA Single Stuck-At Fault
SSBDD Structurally Synthesized BDD
TAM Test Access Mechanism
TPG Test Pattern Generator
TRA Test Response Analyzer
TS Tabu Search
TSP Travelling Salesman Problem
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed IC
VLSI Very Large Scale IC
WPS Weighed Pseudorandom Sequence

16

Table of Contents

Chapter 1 Intoduction ...19
1.1 Motivation ... 19
1.2 Thesis contribution .. 20
1.3 Organization of the thesis ... 21

Chapter 2 Background ..23
2.1 Testing ... 23
2.2 Failures and fault models .. 25
2.3 Test generation .. 32
2.4 Built-In Self-Test .. 34

Chapter 3 State-of-the-art of BIST ..37
3.1 Design for testability ... 37

3.1.1 Ad-Hoc techniques. ...38
3.1.2 Scan Design techniques. ..39
3.1.3 Boundary Scan ...40

3.2 Built-In Self-Test in digital systems ... 41
3.3 Fault modeling .. 42
3.4 Optimization algorithms ... 44
3.5 Conclusions ... 46

Chapter 4 Optimization algorithms ...47
4.1 Simulated annealing .. 47
4.2 Genetic algorithms .. 50
4.3 Tabu search ... 53
4.4 Conclusions ... 56

Chapter 5 Fault modeling for BIST analysis ...57
5.1 Introduction ... 57
5.2 Fault modeling with Structurally Synthesized Binary Decision
Diagrams .. 58
5.3 Fault modeling with High-Level Binary Decision Diagrams 59
5.4 Defect modeling with Boolean Differential Algebra 63
5.5 Hierarchical mapping of faults in digital systems 64
5.6 Experimental data ... 67
5.7 Conclusions ... 72

Chapter 6 Test cost minimization of Hybrid BIST ...73
6.1 Introduction ... 73
6.2 Drawbacks of the classical BIST approach ... 74
6.3 BIST impovement techniques ... 76
6.4 Hybrid BIST - basic principles ... 79

17

6.5 Hybrid BIST - cost calculation and optimization 80
6.6 Target architecture for Hybrid BIST ... 84
6.7 Cost calculation algorithms ... 85

6.7.1 ATPG based algorithm for cost calculation86
6.7.2 Fault table based algorithm for cost calculation87
6.7.3 Tabu search based algorithm for cost optimization87

6.8 Experimental results .. 89
6.8.1 Tabu search ..89
6.8.2 Comparing Tabu search to ATPG and FT based approaches92

6.9 Conclusions ... 96

Chapter 7 Constraints based optimization of Hybrid BIST with reseeding .97
7.1 Basic principle of Hybrid BIST with reseeding 97
7.2 Hybrid BIST length reduction using reseeding and test set
compaction ... 100
7.3 Optimization methods ... 103

7.3.1 Local search based algorithm for BIST length minimization103
7.3.2 Tabu search based algorithm for optimization of
memory-constrained hybrid BIST ..106

7.4 Experimental results .. 108
7.4.1 Local search based algorithm for test length minimization108
7.4.2 Hybrid BIST length reduction using reseeding and test set
compaction ..110
7.4.3 Tabu search based algorithm for optimization of
memory-constrained hybrid BIST ..116

7.5 Conclusions ... 118

Chapter 8 BIST cost minimization and testability analysis for
industrial designs ...119

8.1 The role of the cost components of the Hybrid BIST 119
8.2 Tabu Search based algorithm for minimizing the cost of reseeding ... 121
8.3 Simulated annealing based algorithm for minimizing the cost of
reseeding .. 123
8.4 Benchmark circuits family based on biosignal processor designs 125
8.5 Testability analysis of the benchmark family 128
8.6 Experimental results of BIST optimization ... 131
8.7 Conclusions ... 135

Summary ..136

References ..138

18

19

Chapter 1 Intoduction

1.1 Motivation

Continuous advances in deep submicron and nanotechnologies, as well as in design
automation are enabling engineers to design more complex integrated circuits (IC)
and driving them toward new design paradigms like System-on-Chip (SoC) and
Network-on-Chip (NoC) [1][2]. SoC is usually designed by embedding
predesigned complex functional blocks (cores) into one single chip. Such a design
style allows to reuse previous designs and lead to shorter time to market and
reduced cost.

However, increasing complexity of electronic systems has made testing and
fault diagnosis one of the most complicated and time-consuming problems in
system design and production [3]. The importance of testing, and design for
testability is growing because the expenses of testing are becoming the major
components of the design and manufacturing costs of new products. It is estimated
that 70% of the design cycle for systems is spent on test and verification [4]. The
more complex are systems getting the more probable will be the different kind of
failures, and the more important will be the problems of fault modeling, fault
detection, fault diagnosis and fault tolerance. Nanometer technologies are
introducing new challenges making test quality and dependability of systems a
very fast moving target [5]. Enhancing productivity and quality of test related
solutions is thus a key competitive aspect, both in terms of time-to-market and end-
product quality.

Simulators, fault simulators and test generators as software tools are used
widely in electronic design. The quality of these tools rely on efficient simulation,
especially in the case of simulation-based test generators (e.g. genetic algorithm-
based ones). Traditional low-level (transistor or gate-level) test simulation methods
are becoming quickly obsolete because of the rapidly increasing complexity of
systems, and high-level approaches are becoming more attractive [6][7]. However,
the trend towards higher level modeling moves us even more away from the real
life of defects and, hence, from accuracy of testing. To handle adequately defects in
deep-submicron technologies, new fault models and defect-oriented test methods
should be used. On the other hand, to cope with the complexity of designs, higher-
level approaches should be used. To get out from the deadlock, the two opposite
trends – high-level modeling and defect-orientation – should be combined into
hierarchical approaches [3].

The trend of growing complexities is the same all over the whole semiconductor
industry, and as the result has made external test increasingly difficult [8]. Due to

20

the requirements for the Automatic Test Equipment (ATE) speed and memory, the
ATE-based test solution may not always be affordable in terms of cost and
accuracy. Internal speed of SoC is constantly increasing and the technology used in
external testers is always one step behind. Therefore, in order to apply at-speed
tests and to keep the test costs under control, on-chip, Built-In Self-Test (BIST)
solutions are becoming a mainstream technology for testing complex electronic
systems. This trend evolves in accordance with predictions of International
Technology Roadmap for Semiconductors [9], which pronounces the Built-In Self-
test (BIST) being the main test technology of the future. Therefore, the ultimate
goal of any SoC test solution is SoC BIST.

Traditional methods of BIST are based on pure pseudorandom testing which
cannot quarantee the needed test quality. Therefore an intensive research has been
going on to find solutions how to combine efficiently hybrid and mixed-mode
approaches to BIST. Because of a lot of different criteria used in electronics
production like design time, testing speed, test quality, restrictions on memory cost,
hardware overhead or energy consumption, a lot of tradeoffs should be made, and
therefore appropriate test strategies and test scheduling optimization methods are
needed to come up with best solutions.

Scan paths are added to designs for implementing BIST, that can result in big
number of inputs. Therefore, it is essential to apply optimization techniques in
order to optimize the solution space. In this work, new methods for designing
optimal BIST processes in digital systems have been developed. Different
optimization methods have been implemented and evaluated with the goal to
improve the quality of BIST. To adequately evaluate the quality of testing, new
hierarchical fault modeling method is used which allows to improve the accuracy
of handling physical defects, on one hand, and to cope with the complexity of fault
management on the other hand.

1.2 Thesis contribution

The main contributions of this thesis are summarized below.

Fault modeling methods for hybrid BIST have been desribed and the efficiency
of classical BIST for defect-oriented fault testing was analyzed.

Hybrid BIST approach for testing systems on chip which combines
pseudorandom test sequnce and precomputed determinstic tests in order to achieve
high fault coverage with optimal usage of time and memory has been desribed and
optimization methods have been developed for selecting the optimal switching
moment from pseudorandom test generation mode to the stored deterministic
patterns mode.

Hybrid BIST appoach based on reseeding of the LFSR has been desribed.
Different optimization techniques are proposed – local search based, test set

21

compaction based on cumulative fault coverage and tabu search based optimization
technique. The presented methods provide a possibility to find memory contrained
test solution for every core in the multi core system and to use these solutions to
construct an optimal test solution to the entire system.

The testability issues of an industrial design for bioimpedance measurements
that was developed at the Department of Computer Engineering of Tallinn
University of Technology have been analyzed and optimized cost calculation
methods for hybrid BIST approach with reseeding have been developed. The
experiments have proven the feasibility and efficiency of developed methods for
both bioimpendace design and ISCAS’89 family benchmarks.

An overview of the optimization algorithms developed in this thesis is presented
in Fig. 1-1.

Fig. 1-1. Overview of the optimization algorithms

1.3 Organization of the thesis

The thesis is organized into 8 chapters.

Chapter 2 gives the background information about testing, failures, test generation
and the structure of the Built-In Self-Test (BIST). In Chapter 3, an overview of the
state-of-the-art is given – issues of design for testability are discussed, application
of Built-In Self-Test are described, short overview of some iterative optimization
algorithms is given. Chapter 4 gives an overview of three most widely used
iterative optimization techniques – simulated annealing, tabu search and genetic
algorithms. Chapter 5 is dedicated to the issues of fault modeling with Decision
Diagrams and hierarchical mapping of faults in digital systems for BIST quality
analysis purposes. Chapter 6 explains the drawbacks of the classical BIST

22

approach and descibes hybrid BIST. Also, a test cost calculation approach is
presented, different cost calculation algorithms are shown and algorithms for
optimization of test cost calculation are described and compared. In chapter 7,
hybrid BIST with reseeding approach is discussed and algorithms for cost
calculation optimization are presented. Chapter 8 decribes test cost minimization
methods calculations for hybrid BIST with reseeding and analyzes the testability
issues of the industrial design for bioimpedance measurements.

23

Chapter 2 Background

In this chapter, some background information is provided regarding testing of
digital systems, failures and fault models that are used, also basics of test
generation are presented and Built-In Self-Test approach is briefly described.

2.1 Testing

When a product is designed, fabricated and tested and it fails the test, then the
cause of this failure must be searched for [10]. One of the following things might
happen:

 the test was wrong
 the fabrication process was faulty
 the design was incorrect
 the specification had a problem

There are many things that might go wrong. The role of testing is to detect
whether something went wrong and the role of diagnosis is to determine exactly
what went wrong and where the process needs to be altered. Therefore, correctness
and efectivness of testing is most important for quality products.

The benefits of testing are quality and economy. These two attributes are not
independent and neither can be defined without the other. Quality means satisfying
the user's needs at minimum cost. So, there are many testing issues that must be
addressed during the design and development of a product, but the ultimate goal is
to provide quality testing in a cost effective manner [11]. This goal has become
more difficult to achieve as VLSI and PCB circuit component densities increase so
much that the companies report testing costs to be more than a half of the total
product cost [12]

The best way to ensure that the product is testable (with reasonable testing
costs) is to consider design for testability (DFT) from the very beginning, during
the design phase of the product life-cycle.

Testing typically consists of applying a set of test stimuli to the inputs of the
circuit under test (CUT) while analyzing the output responses [3]. Fig. 2-1
represents the testing process [11]. Circuits which produce the correct output
responses for all input stimuli pass the test and are considered fault-free. Those
circuits that fail to produce a correct response at any point during the test sequence
are assumed to be faulty. Testing is performed at various stages in the lifecycle of
the device.

24

Fig. 2-1. The flow of the testing process

There are many possible criteria of classification of testing activities. In general,
two different types of testing are applied to each chip:

1) Parametric Tests for digital circuits are concerned with the external
behaviour of the circuits [13] and they include shorts test, opens test, maximum
current test, leakage test, and threshold levels test. The specifications of the signal
values on the input and output pins of the chip have a time-independent part
(voltage and current levels) and a time-independent part (rise and fall times). A
special case of parametric testing is IDDQ test method. IDDQ is the quiescent power
supply current which is drawn when the chip is not switching. IDDQ tests are based
on the fact that defects like shorts and abnormal leakage can increase IDDQ by
orders of magntitude. It has been shown that the IDDQ test method is effective in
detecting faults of many models.

2) Functional Tests are aimed to determine the functional accuracy of the
circuit under test [14]. To do that, test signals are applied to the inputs of the
tested circuit and estimation of the appropriate responses is carried out. Functional
tests cover a very high percentage of modelled faults in logic circuits and are
mainly used during the manufacturing period, but some forms of these tests can be
applied to the devices during the life-cycle to determine whether they work error-
free. Realisation of the functional test usually means that the following tasks are
solved: selection of input test signals, selections of the investigated parameters and
test nodes, and verification of the observed output responses of the tested circuits.

When chips are manufactured, a certain percentage is expected to be faulty
because of the manufacturing defects. The process yield is defined as the fraction
of defect-free parts among all parts. In reality, it is hard to determine the exact
value of process yield, as it is impossible to detect all faulty parts. So, the value of
yield can be approximated as a ratio:

Number of not defective parts
Yield

Total number of parts


where the number of not defective parts is determined by counting the parts which
pass the used test.

The defect level (also known as reject rate) is the ratio of faulty parts to all
parts that pass the test. Values of defect level are usually given in terms of defects
per million. In general, the defect level of 500 parts per million (PPM) chips may

Input Test
Stimuli

Circuit
Under Test

Output
Response

Compare to
expected
response

Pass/Fail

25

be considered to be acceptible. The goal of zero defects manufacturing is 3.4 PPM
or less.

To measure the quality of the test, fault coverage (FC) is used. FC can be
defined as the following ratio:

Actual number of detected faults
Fault coverage

Total number of faults


The faults are assumed to belong to a particular fault model. In practice, it may
be impossible to obtain a fault coverage of 100% due to the fact that there exist
faults that are undetectable, which means there is no test to discover those faults. In
addition, fault modelling is not perfect - some actual faults may not correspond to
modeled faults. So, in reality the fault coverage can be expressed as fault detection
efficiency and it can be defined in the following way:

 n

Number of detected faults
Fault detection efficiency

Total umber of faults number of undetectable faults




 To calculate the fault detection efficiency, all the undetectable faults in the
circuit should be correctly identified, which is usually a difficult task. Fault
covearge is linked to the yield and the defect level by following expression [15]:

(1) 1 fault covrageDefect level yield  

If we assume a manufacturing process where yield is 50% and a test with fault
coveage of 80% then , according to the given formula, defect level value would be
about 12,95% meaning that 12,95% of shipped parts would be defective. If, for
example, defect level of 3,4 PPM is required then with given yield of 50%, the
fault coverage should be 95%. Improving the fault coverage can be easier and less
expensive than improving the process yield, so it is obvious that generating test
stimuli with high fault coverage is very important.

2.2 Failures and fault models

There are many ways to describe incorrectness in electrical systems. The most
common terms that are found in literature on testing are defect, error and fault. The
definitions of these terms, according to [10] are the following:

Def 1.1 A defect in an electronic system is the unintended difference between the
implemented hardware and its intended design

Defects can occur either during manufacture or during the use of devices and
systems. There are many things that can cause a defect [14]: manufacturing process
(missing contacts, parasitic transistors, oxide break-down etc), process fabrication
marginality, material and age defects and so on.

26

Def 1.2 Wrong output signal produced by a defective system is called an error.

We can also say that an error is an "effect" caused by some defect.

Def 1.3 Representation of a defect at the abstracted function level is called a fault

The difference between a defect and a fault is rather subtle. Defect means there
is something wrong in the hardware, fault means there are imperfections in the
functionality. In general, a physical defect in a chip can produce multiple faults and
no single test type can detect all the defects.

Roughly, defects can be divided into two major groups [16]:

1. soft defects - defects which may cause speed faults; show up at high speed or
produce some temperature; they need two or more test patterns for their activation
and test observation; require tests to be applied at speed; examples of soft errors are
high resistance bridges, x-coupling, tunneling break etc.

2. hard defects - defects manifested at all frequencies; a test can be applied at slow
speed and they need only one-pattern test set; an example of a hard defect can be a
bridge at a low resistance)

In order to alleviate the test generation complexity, the actual defects that may
occur in a chip need to be modelled at higher levels of abstraction [13]. The
process of fault modelling considerably reduces the burden of testing because it
obviates the need for deriving tests for each possible defect. This is made possible
by the fact that many physical defects map to a single fault at the higher level.

There are different levels of abstraction when describing a circuit - behavioural,
functional, structural, switch-level and geometric (Fig. 2-2)

Behavioral description of a circuit is given by high level hardware description
language (VHDL or Verilog, for example). It shows the data and control flow.

Functional description is given at register-transfer level (RTL). It refines the
behavioural description. Operations identified at the behavioral level are elaborated
upon in more detail. RTL decription can contain registers, modules (i.e. adders and
multipliers) and interconnect structures (i.e. multiplexers and buses). This
description is sometimes the product of behavioural synthesis which transforms a
behavioural level decription into RTL circuit.

Behavioural
description

VHDL,
Verilog

Functional
description

Register-

transfer level

Structural
description

Logic gates
and inter-
connects

Switch-level
description

Transistor-
level details

Geometric
description

Layout level

Increasing level of abstraction

Fig. 2-2. Levels of abstraction in circuits

27

Structural description is given at the logic level. It consists of logic gates,
such as AND, OR, NOT, NAND, NOR, XOR and interconnects between them.

Switch-level description establishes the transistor-level details of the circuit. In
CMOS technology, each logic gate is described using an interconnection of a
pMOS and nMOS network. These networks themselves consist of an
interconnection of several transistors. These transistors are usually connected in
series-parallel fashion, although non-series-parallel structures are also possible.

Geometric decription is given at the layout level. From this description, line
widths, inter-line and inter-component distances and device geometries can be
determined.

Modelling of the faults is closely related to the modelling of the circuit [10]. In
the design hierarchy, the level refers to the degree of abstraction. Thus, the
behavioral level (also referred to as high level) has fewer implementation details
and fault models at this level may have no obvious correlation to manufacturing
defects. High-level fault models play a greater role in simulation based design
verification than in testing.

The first requirement of a good fault model is that it accurately reflects the
behaviour of the actual defects that can occur during the fabrication and
manufacturing process as well as behaviour of faults that can occur during
operation of the system [11]. The second requirement of a good model and just as
important as the first, is that it must be computationally efficient with respect to the
fault simulation environment. There are many fault models described in [17].
Unfortunately, no single fault model can accurately reflect the behaviour of all the
possible defects that can occur.

Behavioral fault models are defined at highest level of abstaction and they are
based on the behavioural specification of the system. The type of faults that are
included in a behavioural fault model depends on how easily is allows the detection
of realistic faults at the lower levels of abstraction.

Functional fault models are defined at the functional block level. The purpose
of these models is to make sure that the functions of the functional block are
executed correctly. In addition, they should also make sure that unintended
functions are not executed.

Structural fault models assume that the structure of the circuit is known.
Faults under these fault models affect the interconnections in this structure. The
most well-known fault model in this category is the single stuck-at fault model.

Switch-level fault models are defined at transistor level. The most prominent
faults here are stuck-open and stuck-on fault models. The stuck-open fault is the
case when a transistor is permanently non-conducting because of the fault. In case
of stuck-on, the transistor is permanently conducting. These faults are specifically
suited for CMOS techology. Because of using multiple transistors to construct

28

CMOS logical gates, the stuck-at fault model cannot accurately reflect the
behaviour of these faults.

Geometric fault models assume the layout of the chip is known. To develop
these fault models, the knowledge of line widths, inter-line and inter-component
distances and device geometries is needed. Problems with the manufacturing
process can be detected at this level. Bridging fault model is one example of
geometric fault models, which can lead to accurate detection of realistic defects.

Stuck-at fault model

The stuck-at fault (SAF) is a logical fault model that has been sucessfully used for
decades [3] and according to [9] will remain to be the one of the fault models most
utilized for testing of microelectronics for the next years.

The stuck-at fault model assumes that the elementary components are fault free
and affects the state of logic signals on interconnects in a logic circuit, including
primary inputs (PIs) and primary outputs (POs), internal gate inputs and outputs,
fanout stems (sources) and fanout branches. The stuck-at fault transforms the
correct value of the faulty signal line to appear to be stuck at constant logic value,
either a logic 1 or logic 0 which are referred to as stuck-at-1 (SA1) and stuck-at-0
(SA0) respectively.

Generally speaking, there can be several stuck-at faults simultaneously
presented in a circuit. A circuit with n lines can have 3n-1 possible stuck
combinations [10]. This is because each line can be in one of three states: SA1, SA0
or fault-free. All combinations except one having all lines in fault-free state are
counted as faults. Obviously, even a moderate value of n will give an enourmously
large number of multiple stuck-at faults. Therefore, its is common practice to
model only one single stuck-at fault, so an n-line circuit can have at most 2n single
stuck-at faults. This number is further reduced by fault collapsing [17].

The stuck-at fault model is the most often used fault model in automatic test
pattern generation (ATPG) systems. In ATPG systems, the following presumption
is made - only one single and permanent fault is considered at the time. There are
three properties that characterize a single stuck-at fault (or SSA) model:

 only one line is faulty
 the faulty line is permanently set either logical 1 or logical 0
 the fault can be assumed at an input or an output of the gate

The stuck-at fault model has been the industrial standard since 1959 and despite
its death has been predicted there are a lot of reasons and properties making stuck-
at fault model still being widely used in testing [18]:

 stuck-at model is simple enough and it is easily applicable

29

 as the fault behaviour can be determined logically, the simulations are
straightforward and deterministic

 when using the stuck-at model the result is easy to measure - detection/not
detection are easy

 the model is adaptable - it can be easily applied to transistors, gates,
registers, systems etc.

Unfortunately, the stuck-at fault model has a major disadvantage - there are
defects that cannot be covered using this model, mainly in CMOS technologies.
Sometimes the multiple stuck-at fault model is used, meaning that there are more
than one stuck-at faults simultaneously present in the circuit. The disadvantage of
this approach is a huge number of possible combinations. If the circuit has k lines it
can have 2k single stuck-at faults, two for each line. However the number of
multiple stuck-at faults is 3k-1 (similarly to single stuck-at fault case described
above). Clearly, even for relatively small values of k, testing all multiple stuck-at
faults is impossible. Also, this approach does not give the defect coverage that can
be considered significant enough. A subset of the multiple stuck-at model, called
the unidirectional stuck-at fault model, is also sometimes used. In this model, all
the affected lines are assumed to be stuck at the same logic value, either 0 or 1.

Other fault models

The popularity of the stuck-at fault model depends on the fact that it can be applied
to various semiconductor technologies, and the detection of all single stuck-at
faults results in detection of majority of realistic physical defects (in many cases,
up to 80-85% of the defects are detected). However the stuck-at fault model has its
drawbacks (nether the less it is widely used), as many defects of the CMOS
technologies cannot be covered [19][20][21]. Using the multiple stuct-at fault
model does not increase the fault coverage significantly enough. There are number
of other fault models that are used, such as bridging faults, opens, delay faults,
parametric faults.

Bridging faults

Bridging faults (also known as shorts) cover all defects and failure mechanisms
that cause unintentional elctrical connections across two or more circuit nodes. The
causes for the bridging faults can be [14]:

 extra conducting material (e.g. photo-litographic printing error,
conductive particle contamination etc causing horizontal shorts)

 missing insulating material (e.g. printing error, gate oxide defect
causing pinhole, insulating particle contamination etc. causing vertical
shorts)

30

Bridging fault models can be derived at various levels of abstraction. At the
geometric level, such a fault model is the most accurate. However, bridging fault
models can also be defined at the structural or switch levels. Bridging faults can be
classified into two main groups: inter-gate shorts (shorts at the logic terminals of
the gate) and intra-gate shorts (shorts at transistor nodes). For non-CMOS
technologies, a bridging fault between two lines is assumed to result in wired-
AND or wired-OR [22]. The wired-AND bridging fault means the signal net
formed by the two lines will take on a logic 0 if either shorted line is sourcing a
logic 0 (0-dominant bridge), while the wired-OR bridging fault means the signal
net will take on a logic 1 if either of the two lines is sourcing a logic 1 (1-dominant
bridge). However, shorts in CMOS circuit cannot be just mapped to either of
these [13].

Bridging faults are sometimes also categorized as feedback and non-feedback
faults. If one or more feedback paths are created in the circuit due to the fault, then
it is called a feedback fault, otherwise a non-feedback fault. Non-feedback bridging
fault coverage by SAF test is normally very high. Bridging faults can be detected
by applying opposite logic values to the two wires [11]. IDDQ techniques can be
used to detect bridging faults.

Open circuit defects

Open circuit defects (also known as opens) can be interpreted as unintentional
electrical discontinuities. Due to defects a node splits up into two or more distinct
nodes. These type of defects can be caused by improper etching, masking error,
electro-migration etc. There are two types of opens: narrow and large [20]. They
can cause behaviour that may vary greatly and might be difficult to predict. The
manifestation of an open defect depends not only on the size of the crack but also
factors such as temperature, clock frequencies, location, and technological
parameters, as well. Opens can be located at the gate level and also at the transistor
level.

In literature, there exist different classifications for open defects. The basic
general division is based on the charge transfer rate function with dependence on
the break size and three groups can be recognized [18]:

 almost open or resistive open

 completely open (a stuck-open - the special case of a resistive open
defect in which the resistance is very large)

 tunneling open

Some experiments with resistive open and completely open classes are reported
in [23]. At the transistor level, classification of opens was done and six main open
fault classes were specified in [24].

31

Delay faults

In order to logic circuit to operate fault-free, not only performing the logic function
correctly is required, but also propagating the correct logic signal along paths
within specified time limits are important.

The delay faults cause excessive delay along a path such that the total
propagation delay falls outside the specified limit. Studies have shown that delay
faults can be caused by resistive bridges with a resistance value above the critical
resistance [25][26] which could be caused by the number of reasons such as weak
transistors, subtle manufacturing, process defects etc.

The following models have been proposed for delay testing:

 gate delay and transition delay fault models, where each unit is designed
with a pre-specified nominal delay; a delay fault occurs when the time-
interval taken for a transition from the gate to output exceeds the given
nominal delay

 path delay fault model consideres cumulative propagation delay along a
signal path through the circuit - in other words, the sum of all gate delays
along the path

 transition faults are faults of a gate characterised as slow-to-rise and slow-
to-fall types; these fault times are used in time specification testing

 line delay faults are rising and falling delays on a given signal line

 segment delay faults mean delay through a chain of combinatorial gates
with a specified length L.

Crosstalk

The use of nanometer technologies increases cross-coupling capacitance and
inductance between interconnects, leading to sever cross-talk effects that may
result in improper function of the chip [3]. Crosstalk effects can be separated into
two categories:

 crosstalk gliches are pulses that are provoked by coupling effect among
interconnect lines; the magnitude of the glich depends on the ratio of the
coupling capacitance to the line-to-ground capacitance.

 crosstalk delays are signal delays that are provoked by the same coupling
among interconnect lines, but it may be produced even if line drivers are
balanced but have large loads.

As the crosstalk causes a delay in addition to normal gate and interconnect
delay, it is difficult to estimate the true circuit delay, which may lead to severe
signal delay problems.

32

Several design techniques, including physical design and analysis tools, are
being developed to help design for margin and minimization of crosstalk problems;
however, it may be impossible to anticipate in advance the full range of process
variations and manufacturing defects that may significantly aggravate the cross-
coupling defects.

2.3 Test generation

During the manufactoring process, defects may occur that may result in a faulty
behaviour of the chip. The purpose of test generation is to generate a test vector for
a fault in given circuit or declare it untestable. The practical version of test
generation requires the generation of a set of test vectors which collectively detect
all, or a maximal fraction of the testable faults in the given fault list [13].

The tests are generated by an automatic test pattern generator (ATPG) and
applied to the circuitry under test, using the automatic test equpment (ATE). ATPG
is the application of algorithmic based software to generate test patterns. The
traditional goal of ATPG is to achieve high fault coverage by producing a small
volume of test patterns.

Since test vectors are usually capable of detecting many faults in a circuit, fault
simulation is typically used to evaluate the fault coverage obtained by that set of
test vectors.

There exist several approaches to generating test patterns. Each test generation
algorithm is evaluated by the following measures:

 test effectivness
 fault coverage
 test generation time
 length of the generated test

In the following, a description of some classes of test patterns are given.

Deterministic test patterns are developed targeting a specific fault or defect in
a given circuit. In context of Built-In Self-Test applications, they are often referred
to as "stored patterns". Deterministic testing is also known as structural testing and
was introduced in 1960s [3]. There are number of algorithms developed, such as
D-algorithm [27], which uses a logical value to represesnt both "good" and the
"faulty" circuit values simultaneously and can generate a test for stuck-at fault as
long as such exists. The next important algorithm developed was the PODEM
algorithm (Path Oriented DEcision Making [28]) where path propagation
contraints were used to limit ATPG search space and the notion of backtrace was
introduced. FAN (fan-out oriented test generation algorithm [29]) and SOCRATES
[30] were also very important developments, accelerating the ATPG process. Also,
several more advanced algorithms exist, such as dominator ATPG approach TOPS

33

(TOpological Search [31]), evaluation-frontier approach EST (Equvalent STate
hashing [32][33], Neural Network ATPG (NNATPG, [34][35]) and others.

Exhaustive test patterns: every possible combination of input test patterns is
produced. When this test is applied, all detectable faults are covered for
combinatorial circuits. As for a circuit with N inputs 2N test patterns should be
generated, this approach is obviously not practical for the large N.

Pseudo-exhaustive test patterns: this is an alternative for exhaustive test
patterns [36]. The circuit is partitioned and every combinatorial logic subcircuit is
exhaustively tested. In this case, the number of test patterns is much smaller as
every K-input partition will receive 2K patterns and K<N. The feasibility of this
approach is obvious if we consider for example a parity generator network of the
TI SN54/74LS630 wich has 23 inputs and 6 outputs where each output depends on
only 10 of the inputs [36], so instead of 223 patterns, only 6 x 210=6144 patterns are
needed.

Pseudo-random test patterns: typically, these patterns are produced by Linear
Feedback Shift Registers (LFSRs) or Cellular Automata (CA), LFSRs being by far
most popular devices in use. The patterns have characteristics similar to those of
random patterns but deterministic algorithm is used, and the sequences are
repeatable. The advantage of pseudorandom testing is that very simple hardware
and small design efforts are needed to implement it and the fact that these
sequances can be repeated (as opposed to truly random patterns which cannot be).
However, one strong disadvantage is the fact that pseudo-random test tends to be
very long and due to the presence of random pattern resistant faults in many cases
the high fault coverage is hard to achieve, meaning also long test application times
and high cost of fault simulation. So, in many cases the pseudorandom test
sequence is combined with deterministic vectors, targeting specific faults.

In many cases, digital sytems are implemented as sequential circuits, which
involve combinatorial logic and memory elements - the combinatorial part
produces the result that is stored in memory elements (usually flip-flops). The
testing of sequential circuits is much more complex than testing of combinatorial
logic due to the fact that these circuits contain internal memory whose state is not
known at the beginning of the test and a test for a fault in sequential logic contains
three parts - initialization of the internal memory, combinational test and
observation of the sate of affected elements. To compare, any fault in
combinational circuit can be detected by a single vector.

There are several algorithms developed for generating test vectors for sequential
circuits. One class on these algorithms employs time-frame expansion method - the
most well-known of the implementations are ESSENTIAL [37], GENTEST
[38][39], HITECH [40], SEST [41] and FASTEST [42]. Also, there are some
approximate methods developed - SCIRSS system [43], STALLION [44] program
and STEED [45]. In the class of simulation-based methods most well-known
algorithms are CONTEST [46][47], CRIS [48], GATEST [49], GATTO[50] and

34

STARGATE [51][52]. Many of them are using Genetic Algorithms (GA),
introduced by Holland [53] and described thouroughly by Goldberg in [54]. The
simulation-based methods are applicable to any types of circuits, combinatorial or
sequential.

Even though most practical circuits are sequential, they often incorporate the
full-scan design for testability (DFT) feature, which enables tests to be generated
using combinatorial generator.

2.4 Built-In Self-Test

The major argument for using Built-In Self-Test (BIST) is reduced dependence on
expensive testers [56]. Nowadays, the testers are a major investment. As BIST
approach can reduce or even eliminate this investment, it becomes more and more
attractive as an alternative approach to test. To economically justify using of BIST,
it is not even necessary to eliminate testers from the manufaturing flow completely.
If the duration of a test can be reduced by generating stimuli and computing
response on-chip then it becomes possible to achieve the same throughput with
fewer, and possibly less expensive, testers. Also, when a new faster chip is
released, the BIST circuits will benefit from that performance enhancement,
making it possible to complete the test in less time.

BIST can substantially reduce the data management problem related to outside
tester. When BIST is used to test a circuit it may be that the only input stimulus
required is a reset that puts the circuit into test mode and forces a seed value in a
pseudo-random pattern generators (PRG). Then, if a tester is controlling the self-
test, a predetermined number of clocks are applied to the circuit and a response,
called a signature is read out and compared to the expected signature.

One more advantage of BIST is that many thousands of pseudo-random vectors
can be applied in BIST mode in the time that takes to load a scan path a few
hundread times. As the test vectors come from PRG, there is no storage
requirement for test vectors. It should also be mentioned that loading the scan
chain(s) for every vector can be time-consuming, implying tester cost, in contrast
to BIST where a seed value is loaded and then the PRG immediately starts
generating and applying a series of test vectors on every clock. A further benefit of
BIST is the abilty to run at speed which improves the likelyhood of detecting delay
errors.

The basic architecture of BIST is shown on Fig. 2-3[11]. This BIST architecture
includes two essential functions as well as two additional functions that are
necessary to facilitate execution of the self-testing feature wile in the system. The
two essential functions include the test pattern generator (TPG) and output
response analyzer (ORA). While the TPG produces a sequence of patterns for
testing the CUT, the ORA compacts the output responses of the CUT into some
type of Pass/Fail indication. The other two functions needed for system-level BIST

35

include the test controller (or BIST controller) and the input isolation circuitry.
Aside from the normal system I/O pins, the incorporation of BIST may also require
additional I/O pins for activating the BIST sequence (the BIST Start control signal),
reporting the results of the BIST (the Pass/Fail indication), and an optional
indication (BIST Done) that the BIST sequence is complete and that the BIST
results are valid and ca be read to determine the fault-free/faulty status of CUT.

Fig. 2-3. Basic BIST architecture

The basic building block of BIST is linear feedback shift register LFSR - a
simple n-stage counter that can generate 2n unique input vectors but the high-order
bit would not change until half the stimuli had been created and it would not
change again until the counter returned to its starting value. LFSR can create
pseudo-random sequences and it can be used to create signatures. When used to
generate stimuli, the stimuli can be obtained serially, by either the high- or low-
order stage of LFSR, or stimuli can be acquired from all stages in parallel.

 a) internal feedback LFSR b) external feedback LFSR

Fig. 2-4. LFSR implementations

There are two basic types of LFSR implementations, the internal feedback
LFSR and external feedback LFSR. Both are shown in Fig 2-4. Internal and
external feedback LFSRs are dual to each other. Both implementations require the
same amount of logic in terms of exclusive-OR gates and flip-flops. The internal
feedback LFSR provides the implementation with the highest maximum operating

36

frequency for use in high performance applications. The main advantage of
external feedback LFSRs is the uniformity of the shift register; hence, there are
some applications where external feedback is preferred.

As BIST enables a circuit to test itself, one of the main advantages of BIST is
that is can be easily used for all levels of testing. Also, as BIST is incorporated into
a VLSI device, it allows at-speed testing and reduces the need for external test
equipment. In addition, time-to-market is significantly reduced. There are,
however, some disadvatages to BIST solution - one of the most significant
disadvantages is additional design time and effort that is needed. Due to additional
circuitry, there is area overhead and performance penalies, that need to be
considered.

37

Chapter 3 State-of-the-art of BIST

In this chapter an overview is given about the state-of-the-art in the related fields of
the problem investigated in the thesis. First, a general overview about the broad
field of design for testability is given, and the conclusion is made that BIST has
become a mainstream. Different approaches to BIST are analyzed, and the
drawbacks are highlighted. A general conclusion is made that the problem of BIST
optimization is insufficiently investigated. It is also found that the traditional stuck-
at-fault model is not adequate for using in evaluation of the BIST quality for deep-
submicron technologies. The state-of-the-art of fault modelling techniques for
digital systems is presented. Finally, an overview is given about the different
methods which can be used for solving BIST optimization tasks.

3.1 Design for testability

The last step of chip manufacture is the operation referred to as "testing". The goal
of testing is to recognize whether chip is working properly, i.e. no faults exist in the
chip and the customer will obtain a good chip with proposed property. The
designer of a circuit must consider both design and testability properties. Design
for testability (DFT) methodologies help to detect possible faults, keep the test
execution time and test developing time economical [14].

Design for testability can loosely be defined as changes to a given circuit design
that help decrease the overall difficulty of testing [13]. The changes to the design
typically involve addition or modification of circuitry such that one or more new
modes of circuit operation are provided. Each new mode of operation is called a
test mode in which circuit is configured only for testing. During normal use, the
circuit is configured in the normal mode and has identical input-output logic
behaviour as the original circuit design.

In the following, a basic overview of DFT will be given, including ad-hoc
techniques, full and partial scan design techniques. The purpose is to provide the
necessary background needed to understand advantages and disadvantages of
Built-In Self-Test (BIST) compared to other DFT techniques [11].

There are two major concepts which are commonly used in assessing and
enhancing the testability of a circuit under test: controllability and
observability [13]. Controllability is a measure of how difficult it is to set a line to
a value necessary to excite a fault. Observability is a measure of how difficult it is
to propagate a faulty signal from a line to a primary output.

Integrated circuits are tested in the phase of prototyping new circuits and in the
phase of serial production. The goal is to separate the good chips from the faulty

38

ones. To enable testing, various structures can be inserted into the circuit to make
the test application easier. While the additional DFT circuitry may increase design
time, the resultant reduction in time-to-market is realized.

There are three main types of DFT approaches for digital circuits. These
include:

 ad-hoc techniques (methods that are targeting difficult-to-test parts of
the circuit under test)

 scan design techniques (also referred to as Level Scan Sensitive
Design (LSSD), approaches that use scan architecture to conduct
testing)

 built-in self-test (incorporates test pattern generation and output
response analysis capabilities inside the chip)

3.1.1 Ad-Hoc techniques.

The first DFT approach is referred to as ad-hoc DFT. The aim of this approach is
to improve observability and controllability of the difficult-to-test portions of the
design. Gate inputs and outputs, which are normally out of control or out of
observation, are made accessible by inserting test points. This is usually done by
incorporating multiplexers internal to the CUT to create one or more test modes of
operation in which the primary inputs and outputs provide access to or from
internal difficult-to test circuits via multiplexers. Since test points are inserted only
where needed, control of the area overhead can be maintained and one can trade-
off area overhead for fault coverage.

The down side of ad-hoc DFT is the number of additional I/O pins required for
controlling the test modes, and the fact that we must determine the best place to
insert test-points, developing test-vectors, running fault simulations, evaluating
fault coverage, and repeating the entire process until the desired fault coverage is
obtained.

Typical targets for test point insertion are feedback loops, large counters,
embedded core logic, asynchronous logic, embedded clock generators, memory
initialization inputs, intentional redundant logic [17].

An example of test point insertion is illustrated in Fig. 3-1. In the presented
case, existing test vectors previously developed for the core logic can then be used
to test the embedded core. While the example may not be very realistic, it does
illustrate some system level considerations that must be addressed. As long as there
are more primary inputs and outputs than inputs to and outputs from the embedded
core logic, only one additional pin is needed for the Test Mode input. However, as
there are multiplexers inserted between input logic and the embedded core, the
multiplexer delay of the performance penalty is added. Also, multiplexers are

39

added to the primary outputs, which adds the clock-to-output delay to the overall
circuit. Therefore, in case of the time critical requirements, those primary outputs
should be avoided.

(a) Before ad-hoc DFT

(b) After ad-hoc DFT

Fig. 3-1. Ad-hoc DFT for embedded core logic

3.1.2 Scan Design techniques.

Scan design is defined as the process of using scan architecture to conduct testing.
The main idea of scan design is to obtain control and observability for
flip-flops [10]. This is done by adding a test mode to the circuit such that when the
circuit is in this mode, all flip-flops functionally form one of the shift registers. The
inputs and outputs of these shift registers (also known as scan registers) are made
into primary inputs and primary outputs. Thus, using the test mode, all flip-flops
can be set to any desired states by shifting the contents of the scan register out. All
flip-flops can be set or observed in a time (in term of clock periods) that equals the
number of flip-flops in the longest scan register. In practice, however, a design can
have any number of them.

As a result of adding the scan chain to the logic circuit, all flip-flops are easily
controllable and easily observable [11]. Therefore, the problem of testing
sequential logic circuit is reduced to simply that of testing combinatorial logic. The
excellent controllability and observability of the flip-flops in the chain can also
provide good controllability and observability of the embedded combinatorial logic
of the CUT.

The area overhead and performance penalties associated with scan design are
due to the multiplexers added to the inputs of each flip-flop. Typical area overhead
values are on the order of a 2% to 10% increase of the total chip area [10].

Input
Logic

Embedded
Core

Output
Logic

Primary
Inputs

Primary
Outputs

Input
Logic

Embedded
Core

Output
Logic

Primary
Inputs

Primary
Outputs

40

Scan design based DFT does have drawbacks, including long test application
time due to the serial application of the test vectors and retrieval of test results.
Another problem at system-level testing is the difficulty of applying the tests at the
system operating frequency. Also, using scan design-based approach makes the
detection of transistor stuck-off faults and delay faults detection extremely
difficult, as the result of the test patterns shifting through the scan chain between
the application of each vector.

There are number of restrictions placed on circuits that are candidates for scan
design implementation [10]. The circuit must use edge-triggered, D-type flip-flops
that are clocked from the primary inputs. These restrictions are required in order to
implement and correctly operate the scan chain shift register in both normal and
scan modes of operation. Despite its drawbacks, scan design can be used at all
levels of testing and can be applied hierarchically to chips, PCBs and systems.

3.1.3 Boundary Scan

The methods described are able to test an isolated part of integrated circuit (IC), or
an isolated IC in IC tester. It assumes direct connections between IC tester and the
tested integrated circuit [14].

The success of scan design led to the application of scan design-based DFT
techniques for testing interconnect and solder joints on surface mount PCBs [11].
This became known as Boundary Scan, also referred to as JTAG (Joint Test Action
Group).

Boundary Scan is in fact a family of test methodologies aimed at resolving a
wide range of test problems: from chip level to system level, from logic cores to
interconnects between cores, from digital circuits to analog or mixed-mode circuits,
and from ordinary digital designs to very high-speed designs [3]. Standard 1149.1,
usually referred to as digital boundary-scan standard, was approved by the IEEE
in 1990. It defines general-purpose boundary-scan implementation for digital chips.
The architecture based on Boundary Scan enables scanning in and out a shift
register which controls circuit inputs and outputs, and it can be used for performing
several other functions.

The board-level testing problems that Boundary Scan solves are significant. The
Boundary Scan interface and circuitry can be used at all levels of testing and
Boundary Scan can be hierarchically applied to the entire system. In addition to
testing interconnections, the boundary scan interface provides access to other
testing functions, including Built-In Self-Test.

The overhead associated with Boundary Scan can be significant. For example,
for each I/O pin, two flip-flops and two multiplexers are added. Also, other parts of
boundary scan architecture such as TAP controller, Instruction Register, Instruction
Decoder etc. also have considerable impact on the area overhead.

41

3.2 Built-In Self-Test in digital systems

The rapid developments in the areas of deep-submicron electron technology are
enabling engineers to design more and more complex integrated circuits, driving
them towards design methodologies called System-on-Chip (SoC). SoC approach
is very attractive from the designers’ perspective. This technology enables
designers to embed predesigned and preverified complex functional blocks, usually
referred as cores, into a single die. Such a design style allows designers to reuse
previous designs and will lead to a shorter time to market and a reduced cost. The
cores can be very different by their nature (from analog to memories, including all
types of logic) and can be represented in several different ways (RTL code, netlist
or layout). Testing of SoC, on the other hand, shares all the problems related to
testing modern deep submicron chips, and introduces also some additional
challenges due to the protection of intellectual property as well as the increased
complexity and higher density.

To test the individual cores of the system, the test pattern source and sink have
to be available together with an appropriate test access mechanism (TAM) [56].
We can implement such a test architecture in several different ways. A widespread
approach implements both source and sink off-chip and requires therefore the use
of external Automatic Test Equipment (ATE). However, the complexity and speed
of digital systems make external test difficult [58]. Since the internal speed of SoC
is constantly increasing, the demands to the ATE memory size are increasing and
the technology used in ATE is always one step behind. On the other hand, the ATE
solution is becoming unacceptably expensive and inaccurate, and leading also to an
unacceptable yield loss [9]. Therefore, in order to apply at-speed tests and to keep
the test costs under control, on-chip test solutions are needed. Such a solution is
usually referred to as Built-In Self-Test (BIST) [59][60]. Built-In Self-Test (BIST)
has become a mainstream.

BIST is aimed at detecting faulty components in a system by incorporating test
logic on-chip. In traditional BIST, test generation is mostly performed by ad hoc
circuitry, typically Linear Feedback Shift Registers (LFSR) [59], cellular
automata [60] or multi-functional registers like (Built-in Logic Block Observers)
BILBO [3][13]. As it was described in Section 2.4, the classical way to implement
the TPG for BIST is to use linear feedback shift registers (LFSR). But as the test
patterns generated by the LFSR are pseudorandom by their nature and have linear
dependencies [61], the LFSR-based approach because of random pattern resistant
(RPR) faults [3][13] often does not guarantee a sufficiently high fault coverage
(especially in the case of large and complex designs) and demands very long test
application times in addition to high area overheads.

Several methods are used to improve fault coverage by inserting test points into
the Circuit Under Test (CUT) [62], or using weighted pseudorandom sequences
(WPS) [63]. In these approaches the hardware overhead may become large.

42

More efficient are mixed mode or hybrid BIST approaches [64]-[74] where
deterministic data are combined with pseudorandom ones to improve detection of
RPR faults, and compared to WPS less additional hardware is required. The
pseudorandom and deterministic data are combined in different ways like using
ROM compression [64], LFSR reseeding [63] either by bit-flipping [65] or bit-
fixing [66], multi-polynomial scheme[67], embedding deterministic patterns[68].
However, in most of these approaches the architecture is extremely tailored to the
CUT, and any change in the CUT requires resynthesis of the complete BIST
hardware. Another drawback of traditional BIST is the use of special hardware for
TPG on chip, which causes area overhead and performance degradation. Recently
new methods have been proposed to reduce the hardware overhead, which exploit
specific functional units such as arithmetic units or processor cores for on-chip test
generation and test response evaluation [69][70]. This approach called functional
BIST has the same disadvantages regarding the test quality as pure pseudorandom
testing. Therefore a research is needed here how to combine hybrid and mixed-
mode approaches with functional BIST. Because of a lot of different criteria used
in electronics production like design time, testing speed, test quality, restrictions on
memory cost, hardware overhead, energy consumption etc. a lot of tradeoffs should
be made, and therefore appropriate test strategies and test scheduling optimization
methods are needed to come up with best solutions [75].

The main concern of the hybrid BIST or reseeding BIST approaches has been to
improve the fault coverage by mixing pseudorandom vectors with deterministic
ones, while the issue of cost minimization or optimization according to the given
criteria has not been addressed directly.

Very important is how the quality of BIST is evaluated. The traditional
approach to characterize the quality of BIST is to use the measure of stuck-at-fault
coverage (SAF). However, the traditional SAF model used in testing of digital
circuits does not quarantee the quality of testing for deep-submicron
technologies [76][77]. For adequately characterizing the today’s BIST solutions
and the test sequences generated by BIST, more advanced fault modeling methods
are to be used.

3.3 Fault modeling

The reason why high SAF coverage can not quarantee high quality testing is that
the model ignores the actual behavior of deep-submicron circuits, and does not
adequately represent the majority of real IC defects and failure mechanisms which
often do not manifest themselves as stuck-at faults. The types of faults that can be
observed in a real gate depend not only on the logic function of the gate, but also
on its physical design. These facts have been well known, but usually, they have
been ignored in engineering practice, and the SAF model is used still as de facto
standard. In earlier works on layout-based test techniques [76][77], the whole
circuit having hundreds of gates was analyzed as a single block. Such an approach

43

is computationally expensive and highly impractical as a method of generating
tests for real VLSI designs.

Traditional fault simulators based on the single SAF model handle simple
physical defects which force a single site to a fixed logic value of 0 or 1. For better
modeling of arbitrary physical defects in the circuit components of nanometer
technology, a conditional fault model has been proposed as one extension of the
classical SAF model [78][79]. A conditional SAF model consists of a signal line
with SAF (as a topological part of the model) and an activation condition (the
functional part). Such a metric has been used for many years under different names
like fault tuple model [80], pattern fault model [81], input pattern fault model [82],
or functional fault model [83] which can represent any arbitrary change in the logic
function of a circuit block, where a block is defined to be any combinational
subcircuit described at any level of the design hierarchy. For complete exercising
of blocks in combinational circuits on the gate level, a similar pattern oriented gate-
exhaustive fault model was proposed in [84], which was extended to target bigger
regions (collections of gates) by region-exhaustive fault model in [85]. Many
researchers have focused on developing new fault models for particular types of
failure mechanisms like signal line bridges [86]-[90], transistor stuck-
opens [87][88], failures due to changes in circuit delays [93] etc.

A more complex defect, such as a resistive short or open, causes multiple
effects around the defect site. For example, the behavior of a fanout gate may be
affected by a defect which forces on the fanout branches of the gate intermediate
voltages. As a result, multiple faulty logic values may appear on the fanout
branches depending on the threshold voltages of the branches. A unified fault
model for interconnect opens and bridges using constrained multiple line stuck-at
faults is proposed in [94]. To deal with the ambiguities of the changing logic values
on the branches, the Byzantine fault model was introduced [95][96] where a
floating line with n branches may lead to 2n – 1 possible fault cases. Methods are
proposed to reduce the number of 2n – 1 to a reasonable smaller subset, which
however needs additional information about the layout, vias or buffers, threshold
voltages of the transistors driven by the floating nodes, or about the occurrence
probabilities of possible logic behaviors of physical defects [95].

To handle adequately defects in deep-submicron technologies, new defect-
oriented fault models should be used. But, the defect-orientation is increasing the
complexity. To get out from the deadlock, hierarchical approaches for diagnostic
modeling have been proposed. One of the attractive ways to manage hierarchy in
diagnostic modeling (test generation, fault simulation, fault location) in a uniform
way on different levels of abstraction is to use decision diagrams (DD) [97]-[100].

Binary Decision Diagrams (BDD) were first introduced for logic simulation
in [97], and for test generation in [98][99]. In 1986, Bryant proposed a new data
structure called reduced ordered BDDs (ROBDDs) [100]. After this publication,
the BDDs have become very popular. In [98][101], a special class of Structurally

44

Synthesized BDDs (SSBDD) were introduced. The most significant difference
between the function-based BDDs [100] and SSBDDs [101] is in the method how
they are generated. While BDDs are generated on the functional basis, the SSBDDs
are generated directly from the structure of the circuit. This allows to establish
between the faults of the circuit and the nodes of the SSBDD one-to-one mapping.
The idea of representing the structure in DDs was generalized from logic level
SSBDDs to High-Level DDs (HLDD) [101][102]. The similar feature of SSBDDs
and HLDDs to model at the nodes the faults of digital systems at different levels of
abstraction gives a good possibility to develop a uniform fault model for digital
systems.

The advantage of hierarchical approaches compared to the plain gate-level
modeling lies in the possibility of constructing test plans on higher levels, and
modelling physical defects on more detailed lower levels. To handle physical
defects in fault simulation, we need higher level logic fault models for the
following reasons: to reduce the complexity of simulation (many physical defects
may be modelled by the same logic fault), a single logic fault model may be
applicable to many technologies, logic fault tests may be used for physical defects
whose effect is not well understood. But the most important reason for logical
modelling of physical defects is to get a possibility for moving from the lower
physical level to the higher logic level which has less complexity. Furthermore, it
would be possible to reduce even more the complexity of fault simulation by
moving from the logic level to the higher register transfer levels.

3.4 Optimization algorithms

Combinatorial optimization problems can be encountered everywhere – and,
among other things in methods for hardware testing. Some of the most popular and
widely used iterative optimization techniques are simulated annealing [103][104],
genetic algorithms [105][106] and tabu search [107][108][109].

Simulated annealing (SA) is a general adaptive heuristic and belings to the class
on nondeterministic algorithms [110]. It has been applied to several combinatorial
optimization problems from various fields of science and engineering [111]. The
term annealing refers to heating a solid to a very high temperature (whereby the
atoms gain enough energy to break the chemical bonds and become free), and then
slowly cooling the molten material ina controlled manner until it crystallizes. A
simple algorithm to simulate the evolution of a solid in a heat bath to its thermal
equlibrium was proposed in [115]. Later, the correspondence between annealing
and combinatorial optimization was established in [103] and [104]. It was observed
that there is a correspondence between, on one hand, a solution to the optimization
problem and a physical state of material, and between the cost of solution of the
combinatorial optimization problem and free energy in the molten metal. As a
result of this analogy, a solution method in the field of combinatorial optimization

45

was introduced. The method is based on the simulation of the physical annealing
process, and hence the name simulated annealing.

Genetic algorithm (GA) is a powerful domain-independent search technique
that was inspired by the Darwinian theory [111]. It emulates the natural process of
evolution to perform an efficient and systematic search of the solution space to
progress toward the optimum. It is based on the theory of natural selection that
assumes that individuals with certain characteristics are more able to survive, and
hence pass their characteristics to their offsprings. By establishing a
correspondence between, on one hand a solution to the optimization problem and
the element of the population (represented by the chromosome) and between the
cost of the solution and the fitness of an individual in the population, a solution
method in the field of combinatorial optimization is introduced. The methods thus
simulates the process of natural evolution based on Darwinian principles, and
hence the name genetic algorithm [105][106]. When employing GAs to solve a
combinatorial optimization problem, one has to find an efficient representation in
form of the chromosome (encoded string). Associated with each chromosome is its
fitness value. If the process of natural reproduction is simulated, combined with the
biological principle of survival of the fittest, then, as each generation progresses,
better and better individuals (solutions) with higher fitness values are expected to
be produced.

Tabu search (TS) is based on selected concepts of artificial intelligence [111]
and was introduced as a general iterative heuristic for solving combinatorial
optimization problems [107][108][109]. Initial ideas of the technique were also
proposed in Hansen’s steepest ascent mildest descent heuristic [112]. Tabu search
is a generalization of the local search[113]. At each step, the local neighbourhood
of the current solution is explored and the best solution of that neighbourhood is
selected as the new current solution. But unlike the local search that stops, when no
better solution is found, tabu search continues the search from the best solution in
the neighbourhood, even if it is worse than the current solution. The information
about previously visited solutions is added to the tabu list – the moves to the
solutions in that list are not allowed, thus the cycling around previously visited
solutions is prevented. However, if a certain criteria are satisfied (so called
aspiration criteria) the tabu status of the solution is overridden. An example of
such aspiration criterion is the situation when the cost of the selected solution is
better than the best seen so far.

46

3.5 Conclusions

1. The complexity and speed of digital systems make external test difficult. Since
the internal speed of SoC is constantly increasing, the demands to the automated
test equipment memory size are increasing and the technology used in ATE is
always one step behind. Hence, in order to apply at-speed tests and to keep the test
costs under control, Built-In Self-Test (BIST) solutions are needed.

2. The pure pseudorandom test approaches in the BIST solutions do not guarantee
sufficiently high fault coverage and demand very long test application times. This
has lead to different mixed-mode and hybrid BIST methods.

3. The main concern of the hybrid BIST and reseeding BIST approaches has been
to improve the fault coverage by mixing pseudorandom vectors with deterministic
ones, while the issue of BIST optimization has not been addressed directly. The
problems of minimization of the cost of BIST processes according to given criteria
(time, hardware cost, power consumption) at given constraints need still solutions.

4. The traditional approach to characterize the quality of BIST is to use the
measure of stuck-at-fault coverage (SAF). However, the traditional SAF model
used in testing of digital circuits does not quarantee the adequate quality evaluation
for deep-submicron technologies.

5. To characterize adequately the today’s BIST solutions and the test sequences
generated by BIST, more advanced defect-oriented fault modeling methods are to
be used.

6. The similar feature of SSBDDs and HLDDs to model at the nodes the faults of
digital systems at different levels of abstraction gives a good possibility to develop
a uniform fault model for digital systems for BIST quality evaluation purposes.

7. There are several iterative optimization algorithms available. Some of the most
popular and well-thought-out ones are simulated annealing, genetic algorithms and
tabu search. Simulated annealing mimics the thermodynamic process of annealing,
genetic algorithms simulate biological processes according to Darwinian theory of
evolution, and tabu search attempts to imitate intelligent search processes through
the use of a memory component.

47

Chapter 4 Optimization algorithms

Combinatorial optimization problems can be encountered everywhere – and,
among other things in methods for hardware testing. In this chapter, three
algorithms belonging to the special class of combinatorial algorithms – general
iterative nondeterministic algorithms are described: simulated annealing, genetic
algorithms and tabu search. In this work, optimization algoritms will be used to
optimize the calculation of test cost in different hybrid Built-In Self-Test
approaches.

4.1 Simulated annealing

In the following, simulated annealing (SA) will be described. SA is one of the most
well developed and widely used iterative techniques for solving optimization
problems.

Simulated annealing is a general adaptive heuristic and belongs to the class of
nondeterministic algorithms [111]. It has been applied to several combinatorial
optimization problems from various fields of science and engineering. These
problems include travelling salesman problem (TSP), graph partitioning,
quadratic assignent, matching, linear arrangement and scheduling. In the area of
engineering, simulated annealing has been applied to VLSI design (placement,
routing, logic minimization, testing), image processing, code design, facilities
layout, network topology design and so forth.

One typical feature of simulated annealing is that, besides accepting solutions
with improved cost, it also, to a limited extent, accepts solutions with detoriated
cost. It is this feature that gives the heuristic the hill climbing capability. Initially
the probability of accepting solutions with larger cost is large, but as the search
progresses, only smaller detoriations are accepted, and finally only good solutions
are accepted. A strong feature of the SA heuristic is that it is both effective and
robust. Regardless of the choice of the initial configuration it produces high-quality
solutions. It is also relatively easy to implement.

Simulated annealing, like all other iterative techniques is very greedy with
respect to runtime. The acceleration of simulated annealing has been an extensive
area of research since the introduction of the algorithm.

The use of simulated annealing in the combinatorial optimization was originally
heavily inspired by an analogy between the physical annealing process of solids
and the problem of solving large combinatorial optimization problems [113].

48

Annealing is known as a thermal process for obtaining low-energy states of a
solid in a heat bath. The process consists of the two following steps [103]:

 Increase of the temperature in the bath to a maximum value at which
the solid melts.

 Decrease carefully the temperature of the heat bath until the particles
arrange themselves in ground state of solid.

In 1953, a simple algorithm based on the Monte Carlo techniques [114] was
introduced by Metropolis et al [115] for simulating an evolution of the solid in the
heat bath to the thermal equlibrium. The sequence of states is generated as follows.
Given a current state Si of the solid with energy Ei, a subsequent state Sj with
energy Ej is generated by applying a perturbation mechanism. This perturbation
transforms the current state into a next state with slight distortion. For instance a
new state can be constructed by randomly selecting a particle and displacing it by
some random amount. If the energy associated with the new state is lower than the
energy of the current state, that is E = Ej – Ei ≤ 0, then the displacement is
accepted, and the current state becomes the new state. However, if the energy of
the new state is higher (the energy difference is greater than zero), then the state Sj
is accepted with a certain probability which is given by

)(

)(TK

E

Beacceptprob






where KB is the Bolzman constant and T denotes temperature. The acceptance rule
described above is repeated a large number of times. The acceptance criterion is
known as the Metropolis step and the procedure is known as the Metropolis
algorithm.

When applied in simulated annealing, the Metropolis algorithm can be used to
generate a sequence of solutions of combinatorial optimization problem.

Fig. 4-1 desribes the simulated annealing algorithm. The algoritm generates
neighbours randomly. If the cost of the neighbour j is at the most the cost of the
current solution i, then j is always accepted. If neighbour j has higher cost than i,
then j is still accepted with a positive probability of

)
)()(

(exp
c

jfif 


where c is a control parameter that plays the role of the temperature. The
probability of accepting a deterioration in cost depends on the value of the control
parameter c: the higher the value of the control parameter, the higher the
probability of accepting deterioration.

49

procedure SIMULATED_ANNEALING
begin
 i:=initial solution
 c:=initial value
 repeat
 for l:=0 to L do
 begin
 probabilistically generate neighbour j of i
 if f(j) ≤ f(i) then accept j
 else accept j with probability

)
)()(

(exp
c

jfif 


 end
 update L
 decrease c
 until stopcriterion
end;

Fig. 4-1. The pseudocode of simulated annealing algorithm

The value of the control parameter is decreased during the execution of the
algorithm. In Fig. 4-1 the value L specifies the number of iterations the the control
parameter is kept constant before it is decreased. The values of c and L and the
stop criterion are specified by the „cooling schedule“.

Initially, at large values of c, large deteriorations will be accepted; as c
decreases, only smaller deteriorations will be accepted and, finally, as the value of
c approaches 0, no deteriorations will be accepted at all. Note that there is no
limitation on the size of deterioration with respect to its acceptance. In simulated
annealing, arbitrarily large deteriorations are accepted with positive probability; for
these deteriorations, probability is small, however. This feature means that
simulated annealing, in contrast to iterative improvement, can escape from local
minima while it still exibits the favourable features of iterative improvement,
namely simplicity and general applicability. The speed of convergence of
simulated annealing is determined by the cooling schedule.

As simulated annealing has a so-called „hill-climbing“ ability, it can be used for
solving problems that have a non convex solution space – SA provides the means
to escape local optima in such cases. As will be shown later in the thesis, cost
calculation function for hybrid built-in self-test has number of local optimas and
therefore, SA is a suitable approach for solving the problem.

50

4.2 Genetic algorithms

In the following, genetic algorithm is described. This search technique was
inspired by evolution. To solve an optimization problem, a potential solution to a
specific problem is encoded in a simple chromosome-like data structure and
recombination operators are applied, thus emulating the natural process of
evolution. Efficient and systematic search of the solution space is performed
obtaining the new solutions from the combinations of the existing ones. The
algorithm is based on the theory of natural selection that assumes that individuals
with certain characteristics are more able to survive and hence pass their
characteristics to their offspring.

The genetic algorithm is an adaptive learning heuristic. Similar to simulated
annealing, it also belongs to the class of general nondeterministic algorithms.
Several variations of the basic algorithm exist.

Genetic algoritms (GAs) operate on a population (or set) of individuals (or
solutions) encoded in strings. These strings represent points in a search space. In
each iteration, referred to as a generation, a new set of strings that represent
solutions (called offsprings) is created crossing some of the strings of the current
generation [106]. Occasionally new characteristics are injected to add diversity.
GAs combine information exchange along with the survival of the fittest among
individuals to conduct the search.

Since their appearance, GAs have been applied to solve several combinatorial
optimization problems from various fields of science , engineering and business.

Genetic algorithms were invented by John Holland and his collegues [105] in
the early 1970s. Holland incorporated features of natural evolution to propose
robust, computationally simple and yet powerful technique for solving difficult
optimization problems.

When employing GAs to solve a combinatorial optimization problem one has to
find an efficient representation of the solution in the form of the chromosome
(encoded string). Associated with each chromosome is its fitness value. If we
simulate the process of natural reproduction, combined with the biological
principle of survival of the fittest, then, as each generation progresses, better and
better individuals (solutions) with higher fitness values are expected to be
produced.

The structure that encodes how the organism is to be constituted is called a
chromosome. One or more chromosomes may be associated with each member of
the population. The complete set of chromosomes is called a genotype and the
resulting organism is called a phenotype. Similarly, the representation of a solution
to the optimization problem in the form of an encoded string is termed as a
chromosome. In most combinatorial optimization problems a single chromosome is

51

generally sufficient to represent a solution, that is the genotype and the
chromosome are the same.

The symbols that make up chromosome are known as genes. The different
values of a gene are called alleles.

The fitness value of an individual (genotype or a chromosome) is a positive
number that is a measure of its goodness. When a chromosome represents a
solution to the combinatorial optimization problem the fitness value indicates the
cost of the solution. In the case of a minimization problem, solutions with lower
cost correspond to individuals that are more fit.

Since the GAs work with a population of solutions, an initial population
constructor is required to generate a certain predefined number of solutions. The
quality of the final solution produced by GA depends on the size of the population
and how the initial population is constructed. The initial solution generally
comprises random solutions.

GAs work on chromosomes or pairs of chromosomes to produce a new
solutions called offsprings. Common genetic operators are crossover and mutation.
They are derived by analogy from the biological process of evolution. crossover
operator is applied to pairs of chromosomes. The two individuals selected for
crossover are called parents. Mutation is another genetic oprator that is applied to a
single chromosome. The resulting individuals produced when genetic oprators are
applied on the parents are called offsprings.

The choice of parents for crossover from the set of individuals that form the
population is probabilistic. To accomplish the selection, the method called the
roulette wheel method can be used. When using this method, the wheel is
constructed so that each member of the population is given a sector size proptional
to its fitness as an individual. To select the parent the wheel is spun and whichever
individual comes up is selected as a parent. So, the individuals with lower fitness
also have a finite but lower probability to become a parent [106].

Crossover is the main genetic operator. It provides a mechanism for the
offspring to inherit the characteristics of both parents. It operates on two parents
(P1 and P2) to generate offsprings.

Mutation produces incremental random changes in the offspring by randomly
changing allele values for some genes. In case of a binary chromosomes it
corresponds to changing single bit positions. It is not applied to all members of the
population, but is applied probabilistically only to some. Mutation has the effect of
perturbing a certain chromosome in order to introduce new characteristics not
present in any element of the parent population. For example in case of binary
chromosomes, toggling some selected bit produces the desired effect.

The structure of a simple genetic algoritm is given in Fig. 4-2. During each
generation of the genetic algorithm a set of offsprings are produced by application
of the crossover operator. The crossover operator ensures that the offsprings

52

generated have a mixture of parental properties. In order to introduce new allels
into the chromosome, with a certain probability, mutation is also applied.
Following this, from the entire pool comprising both the parents and their
offsprings, a fixed number of individuals are chosen to form the population of the
new generation. If the M best individuals are chosen from this pool, then the fitness
of the best individual, will be the same or better than the fitness of the best
individual in the previous generation. Similarly, the average fitness of the
population will be the same or higher than the average fitness of the best individual
increase in each generation.

procedure GENETIC_ALGORITHM
 M = population size (# Of possible solutions at any instance)
 Ng = Number of generations (# Of possible iterations)
 No = Number of offsprings (To be generated by crossover)

 P = Mutation probability (Also called mutation rate Mr)

 P (M) (Construct initial population P)

 ( is population constructor)
begin
 for j=1 to M (Evaluate fitness of all individuals)
 evaluate f(P[j]) (Evaluate fitness of P)
 end for

 for i = 1 to Ng
 for j = 1 to No

 (x,y) (P) (Select two parents x and y from current population)

 offspring[j] (x,y) (Generate offsprings by crossover of parents x and y)
 evaluate f(offspring[j]) (Evaluate fitness of each offspring)
 end for

 for j=1 to No (With probability P apply mutation)

 mutated[j]  (y)
 evaluate f(mutated[j])
 end for

 P  Select(P, offsprings) (Select best M solutions from parents and offsprings)
 end for
 return highest scoring configuration in P
end

Fig. 4-2. Structure of a simple genetic algorithm

53

4.3 Tabu search

In this section, an optimization method called tabu search will be described,
which is based on the selected concepts of artificial intelligence.

Tabu search was introduced by Fred Glover [107][108][109] as a general
iterative heuristic for solving combinatorial optimization problems. Hansen also
proposed some initial idea for this technique in his steepest ascent mildest descent
heuristic [112]

The concept of the tabu search is simple and elegant. In its essence, it's a form
of local neighbourhood search - each solution has a associated set of neighbours. A
neighboring solution can be reached by an operation called move. Normally, the
neighbourhood relation is assumed to be symmetric.

Tabu search is a generalization of local search. At each step, the local
neighbourhood of the current solution is explored and the best solution in that
neighbourhood is selected as the new current solution. However, local search stops
when no improved solution is found in the current neighbourhood, whereas tabu
search continues the search from the best solution in the neighbourhood even if its
is worse than the current solution. To prevent cycling, so-called tabu list is formed,
containing information about the the most recently visited solutions. Moves to tabu
solutions are not allowed. However, the tabu status of the solution can be
overridden is some situations - for example if the cost of the selected solution is
better than the best seen so far. This situation proves that the search is not cycling
back but moving towards better solution. Such situations are reffered to as
aspiration criteria.

An algorithmic decription of a simple implementation of the tabu search is
given in Fig. 4-3 [111]. The procedure starts from an initial feasible solution S
(current solution) in the search space . A neighbourhood N(S) is defined for each
S. A sample of neighbour solutions V*  N(S) is generated. An extreme case is to
generate entire neighbourhood that is to take V* = N(S). Since this is generally
impractical (computationally expensive), a small sample of neighbours is generated
called trial solutions. From these trial solutions the best solutions, say S*V*, is
chosen for consideration as the next solution. The move S* is considered even if
S* is worse than S, that is Cost(S*) > Cost(S). A move from S to S* is made
provided certain conditions are satisfied.

Selecting the best move in V* is based on the assumption that good moves are
more likely to reach optimal or near-optimal solutions. As mentioned before, the
best candidate solution S*V* may or may not improve the current solution, but is
still considered. it is this feature that enables escaping from local optima. However,
even with this strategy, it is possible to reach a local optimum, ascend (in case of
the minimization problem) since moves with Cost (S*) > Cost (S) are accepted,
and then in a later iteration return back to the same local optimum. That is, there is

54

a possibility of cycling by returning back to previously visited solutions. This may
cause the search to go though the same subset of solutions forever.

algorithm TABU_SEARCH

 : Set of feasible solutions
S : Current solution
S* : Best admissable solution
Cost : Objective function

N(S) : Neighbourhood of S 
V* : Sample of neighbourhood solutions
T : Tabu list
AL : Aspiration level

Begin

Start with an initial feasible solution S
Initialize tabu lists and aspiration level
For fixed number of iteartions Do

 Generate neighbour solutions V* N(S);
 Find best S* V*
 If move S to S* is not in T Then
 Accept move and update best solution;
 Update tabu list and aspiration level;
 Increment iteration number;
 Else
 If Cost(S*) < AL Then
 Accept move and update best solution;
 Update tabu list and aspiration level;
 Increment iteration number;
 EndIf
 EndIf
EndFor
End.

Fig. 4-3. Algorithmic description of tabu search

To prevent returning to the previously visited solutions, a tabu list is
maintained. The list contains attributes of some most recent moves. The size of the
tabu list is the number of iterations for which a move containing that attribute is
forbidden after it has been made. One can visualize the tabu list as a window on
accepted moves as can be seen on Fig. 4-4.

55

Tabu list prevents cycling back to the previously visited solutions. However,
since only the attributes of moves (not complete solutions) are stored in tabu list,
these tabu moves may also prevent the considerations of some solutions which
were not visited earlier. In order to relax the actions of the tabu lists, aspiration
criteria are introduced. Then, the solutions that are the result of moves having
attributes found in the tabu list are also considered if they satisfy the aspiration
criteria. The aspiration criterion must make sure that the reversal of a recently
made move leads the search to an unvisited solution, generally a better one.

There are several aspiration criteria that have been suggested in literature, the
customary one, also the simplest and most commonly used, overrides the tabu
status is the reversal of the move in the tabu list produces a solution better than the
best obatained so far during the search. This is also known as the best solution
aspiration criterion.

Coming back to the algorithmic description given on Fig. 4-3, initially the
current solution is the best solution. Copies of the current solution are perturbed
with moves to get a new set of solutions. The best among these is selected and if it
is not tabu then it becomes the current solution. If the move is tabu, its aspiration
criterion is checked. If it passes the aspiration criterion then it becomes the current
solution. If the move to the next solution is accepted, then the move or some of its
attributes are stored in the tabu list. Otherwise moves are regenerated to get another
set of new solutions. If the current solution is better than the best seen so far, then
the best solution is updated. Whenever the move is accepted, the iteration number
is incremented. The procedure continues for fixed number of iterations or if some
stop criterion is satisfied.

Previously accepted moves
no longer in tabu list

Recently accepted moves
in tabu list

Fig. 4-4 The tabu list

56

4.4 Conclusions

1. In many optimization problems it is not possible to use optimal enumerative and
deterministic techniques in order to find the solution. Instead, approximation
algorithms, also known as heuristic methods, can be used. When properly
exploited, it is usually possible to develop reasonable heuristic which will quickly
find an acceptable solution. Examples of such algorithms are simulated annealing,
genetic algorithms and tabu search.

2. Simulated annealing is a general-purpose optimization technique for
combinatorial optimization problems. Theoretical studies have shown that the
algorithm can find global optimum provided a set of conditions on the annealing
schedule are satisfied. For many problems, simulated annealing has produced
excellent results but requires massive computing resources.

3. Genetic algorithms emulate the natural process of evolution. Unlike other search
heuristics, they conduct the search by operating on a set of solutions called a
population. They work with chromosomal representations (encode strings) of
solutions. The basic idea is to combine solutions called parents to produce new
solutions called offsprings, with the objective that the offsprings will inherit some
parental characteristics.

4. Tabu search is different from other techniques in several aspects. One is the use
of memory. In addition, reasonably sized subset of neighbours is explored and the
best move among these is chosen. Also, in tabu search, “best” refers to change in
evaluation which depends not only on the objective/cost function but also on search
history, region being searched, and so forth.

5. When solving a minimization or optimization problem where the cost curve is
nonconvex (that is, it has multiple optima), it is necessary that the algorithms that is
applied, has a “hill-climbing” ability in order to escape local optima. The
algorithms presented in this section have such ability and thus can be used for
solving this type of problems. In this research, simulated annealing and tabu
search based approaches are used to optimize the cost of hybrid built-in self-test
implementations, described in this work.

57

Chapter 5 Fault modeling for BIST analysis

In this chapter, an overview is given about hierarchical defect modeling. Different
defect modeling techniques are described, including Structurally Synthesized
Binary Decision Diagrams, High-Level Binary Decision Diagrams and Boolean
algebra. Also, experimental data on defect-oriented testing has been presented. The
goal of this research was to investigate different fault models
to be used in quality analysis of the BIST structures.

5.1 Introduction

One of the key problems in testing today’s complex digital systems is: how to
improve the testing quality at increasing complexities of systems? Two main trends
can be observed when searching solutions for the problem: defect-orientation, and
high-level modeling. Unfortunately, these trends are contradictory. Low-level
defect modeling methods cannot be used for complex digital systems because of
their complexity. On the other hand, high-level methods used for managing the
complexity, loose in the accuracy of handling defects. To get out from the
deadlock, these two opposite trends – high-level modeling and defect-orientation –
should be combined into hierarchical approaches.

It has been shown that high SAF coverage cannot guarantee high quality of
testing, for example, for CMOS integrated circuits [116]. The reason is that the
SAF model ignores the actual behaviour of CMOS circuits, and does not
adequately represent the majority of real IC defects and failure mechanisms. These
facts are well known but usually, they have been ignored in engineering practice.
In earlier works on layout-based test techniques [117], a whole circuit having
hundreds of gates was analyzed as a single block. Such an approach is
computationally expensive and highly impractical as a method of generating tests
for real VLSI designs.

To handle physical defects in fault simulation, we still need logic fault models
for the following reasons: to reduce the complexity of simulation (many physical
defects may be modelled by the same logic fault), a single logic fault model may be
applicable to many technologies, logic fault tests may be used for physical defect
whose effect is not well understood. But the most important reason for logical
modelling of physical defects is to get a possibility for moving from the lower
physical level to the higher logic level which has less complexity.

In this chapter, an approach is presented to model physical defects by generic
Boolean differential equations with the goal to map them from the physical level to
the logic level. A new fault model is defined on that basis called functional fault

58

model. It is shown how the functional fault model can be retreated as a uniform
interface for mapping faults from a given arbitrary level of abstraction to the next
higher level in test generation processes. This mapping faults from level to level is
demonstrated on the basis of the model of decision diagrams.

5.2 Fault modeling with Structurally Synthesized Binary
Decision Diagrams

In [116][117], an extension of the traditional model of Binary Decision Diagrams
(BDD) was intrrodused called Structurally Synthesized BDDs (SSBDD). The name
of this extension came from the fact that the model was synthesized not from the
Boolean function as in the case of BDDs, but directly from the structure of the
logic gate-level circuit by superposition of elementary BDDs of the gates. This
method of synthesis created the possibility to map directly the faults of the circuit
to the model of SSBDD.

Let us have a tree-like gate level combinational circuit with n inputs. For such a
circuit we can create by a superposition of elementary BDDs of the gates a SSBDD
with n nodes [116]. Between the paths in the tree and the nodes in the graph, there
exists a one-to-one mapping. Every combinational circuit can be regarded as a
network of modules, where each module represents a fan-out-free region (FFR) of
maximum size. The SSBDD model for a given circuit can be regarded as a set of
SSBDDs, where each of them represents such a FFR. This way of modeling the
circuit by BDDs allows to keep the complexity of the model (the total number of
nodes in all graphs) linear to the number of gates in the circuit.

Definition 5.1. SSBDD model for a given combinational circuit is a set of
SSBDDs covering all FFRs of maximum size and a set of 1-node SSBDDs
covering all primary inputs which have fan-out branches.

As a side effect of the synthesis of the SSBDD model, we have got a strict
relationship between the nodes in the SSBDDs and the signal paths in the modules
(FFRs) of the circuit.

SSBDDs reflect two types of mapping between the graph model and the related
logic circuit:

(1) the nodes in SSBDDs represent signal paths, and

(2) certain groups of the nodes in SSBDDs represent certain subcircuits of
the whole circuit.

Example 5.1. In Fig.5-1, we have a combinational circuit with a FFR-module and
a SSBDD which represents the function and the structure of the module. To each of
all 7 signal paths in the circuit, a node in the SSBDD corresponds. For example, to
the path L(71) = (71,a,d,e,y) from the input of the module 71 through internal nodes
a, d, and e in the module up to the output y, the node 71 in the SSBDD corresponds.

59

On the other hand, for example, the group of nodes 6 and 73 in the SSBDD
represent a subcircuit of two gates c and y in the circuit.

&

&

&

&

&

&

&

1
2

3

4

5

6

7

71

72

73

a

b

c

d

e

y

Module
6 73

1

2

5

72
71

y

0

1

Fig. 5-1. Combinational circuit and SSBDD

Direct relation of nodes to signal paths and groups of nodes to subcircuits

allowes to handle with SSBDDs easily such problems like fault modeling and fault
diagnosis. Since the node 71 in the graph represents the path L(71) = (71,a,d,e,y) in
the circuit, it is easy to understand that the stuck-at-fault 71  α, where α  {0,1},
in the graph represent a subset of faults in the circuit 71  α, a   α, d  α, e   α,
y  α. In such a way, the set of all faults in the original circuit can be pruned by
using the SSBDD model.

In the following we will consider how the faults can be represented at higher
levels of abstractions by High-Level Decision Diagrams (HLDD) to cope with the
complexity problem.

5.3 Fault modeling with High-Level Binary Decision
Diagrams

High-level approaches to diagnostic analysis of digital systems lay on different
languages and models. Most frequent examples are state transition diagrams for
finite state machines (FSM), abstract execution graphs, register transfer level
(RTL) flowcharts, system graphs, instruction set architecture (ISA) descriptions,
hardware description languages (HDL, VHDL, Verilog, System C), Petri nets for
system level description. All these models need dedicated for the given language
manipulation algorithms, which makes it difficult to create a uniform high-level
approach to diagnostic analysis of digital systems. Existing high-level modeling
methods which are efficient for simulation, lack the capability of analytical
reasoning that is needed for formalizing test generation and fault diagnosis
problems.

Promising opportunities for multi-level and hierarchical diagnostic modeling of
digital systems provide decision diagrams (DD) because of their uniform cover of
different levels of abstraction, and because of their capability for uniform graph-

60

based fault analysis and diagnostic reasoning. High-Level Decision Diagrams
(HLDD) for representing digital systems at higher levels of abstraction were
introduced in [116].

The goal of using HLDDs was to generalize the logic level methods and
algorithms of fault simulation, test generation and fault diagnosis from logic level
to higher RTL and functional levels. For this purpose, the class of variables was
extended from Boolean ones to the Boolean Vector, and integer variables, and the
class of Boolean functions was extended to the data manipulation operations
typically used in high-level descriptions of digital systems.

In Fig.5-2 an example of a RTL data-path and its HLDD is presented. The
variables R1 and R2 represent registers, IN denotes the input bus, the integer
variables y1, y2 , y3, y4 represent control signals, M1, M2, M3 are multiplexers, and
the functions R1+R2 and R1*R2 represent the adder and multiplier, correspondingly.
Each node in the DD represents a subcircuit of the system (e.g. the nodes y1, y2, y3,
y4 represent multiplexers and decoders). The whole DD describes the behaviour of
the input logic of the register R2. To test a node in the DD means to test the
corresponding to the node component or subcircuit.

*

+
IN

>

y4

>

y3

=0
=1

M
3

=2

=3

y1

=0

=1

M
1

y2

=0

=1

M
2

R1

b d

c
a

e R2

Fig. 5-2. Representing a register transfer level data path by a HLDD

Depending on the class of the system (or its representation level), we may have
various HLDDs where the nodes have different interpretations and relationships to
the system structure. In the RTL descriptions, we usually partition the system into
control and data paths. In this case, the nonterminal nodes in the HLDDs
correspond to the control path, and they are labeled by state or output variables of
the control part, serving as addresses or instruction words. On the other hand, the
terminal nodes in the HLDDs correspond to the data path, and they are labeled by
the data words or functions of data words, which correspond to buses, registers, or
data manipulation blocks. When using HLDDs for describing complex digital
systems, we have to represent the system by a suitable set of interconnected
components (combinational or sequential subcircuits). Thereafter, we have to

61

describe the components by their functions which can be represented by HLDDs.
The methods for synthesis of HLDDs for representing digital systems were
described in [118].

HLDDs allow to represent formally and in a uniform way different high-level
faults that traditionally are represented informally and in different languages. Let
us define the formal fault model on HLDDs in the following way by showing the
interrelations with the informal high-level fault model introduced for RTL circuits
or microprocessors in [119][120][121].

Definition 5.2. Fault model for internal (nonterminal) nodes of HLDDs. In the case
of register-transfer level (RTL) addressing schemes or for microprocessor
adressing mechanisms, for a given source address any of the following may happen
(multiplexer behavior faults) :

‐ no source is selected;
‐ a wrong source is selected;
‐ more than one source is selected and the multiplexer output is either a

wired-AND or a wired-OR function of the sources, depending on the
technology.

All these faults can be related to the faults of internal nodes of the HLDDs which
leads to the exhausted testing of the nonterminal nodes of HLDDs for correct
behavior of all edges of the nodes.

Definition 5.3. Fault model for terminal nodes of HLDDs. In the case of data-
transfer along the buses between the registers and functional units of the RTL
circuits or in microprocessors, the following may happen:

‐ one or more lines can be stuck at 0 or 1;
‐ one or more lines may form a wired-OR or wired-AND function due to

shorts or spurious coupling;
‐ data manipulation faults.

All these faults can be related to the faults of terminal nodes of the HLDDs, which
leads either to the exhausted testing of the functions at the nodes, or to generating
the test for the node function or data transfer at the lover hierarchical level based
on the structural model

The disadvantage of the referenced RTL or microprocessor fault models are in
that they are defined in a very dedicated way and cannot be extended to cover the
general digital systems test problem. The fault model of HLDDs allows a formal
approach and is general for all digital systems described by the HLDD model.

Example 5.2. Consider a generic RTL statement as a pseudoinstruction in the
following form [119]:

K: (T,C) Rd  f(RS1, RS2,…, RSn),  N. (5-1)

Here K is the RTL statement label, T is the timing, and C is the logic condition
to execute this statement, Rd is the destination register, RSi is the i-th source

62

register, f is an operation on source registers,  represents data transfer, and 
N represents a jump to statement N.

Rd

T

C f(RS1, RS2,…, RSn)

NextState
K T

C N

K

Fig. 5-3. Generic partial HLDD for the generic statement (5-1)

The statement (5-1) can be represented by the partial HLDD model, depicted in

Fig. 5-3. The model consists of two graphs for calculating the content of the
destination register Rd , and the NextState, respectively. Here, the labels K and N
are interpreted as the State and NextState variables, respectively. Between the
variables of the statement (5-1) and the nodes of the HLDD, there exists one-to-one
mapping. There is also one-to-one mapping between the nodes K(N), T, and C of
the HLDD model and the corresponding registers of the RTL circuit. The terminal
node f(R) in the graph Rd represents a functional unit for data manipulations.

Based on the above notation, nine categories of functional faults can be
identified as follows:

F1: label faults denoted by (K/K’), which means that the label K will be changed
to K’ due to the low-level faults;

F2: timing faults (T/T’);
F3: logic condition faults (C/C’);
F4: register decoding faults (Ri/Ri’);
F5: function decoding faults (f/f’);
F6: control faults ( N/ N’);
F7: data storage faults ((Ri)/(Ri)’), which means that the content of the register R is

changed from (R) to (R)’ due to the low-level faults;
F8: data transfer faults (/’), which means that the fault occurs in the transfer

path between the sources and the destination;
F9: data manipulation (function execution) faults ((f)/(f)’, which means the

operation execution fault – the operation f is executed, but the result of the
operation is wrong.

In the HLDD fault model, the RTL faults F1 – F5 are represented by the faults
of the nonterminal nodes of the HLDDs, whereas the RTL faults F6 – F9 are
represented by the faults of the shown terminal nodes (the HLDDs for the
decoding functions of f and R are not shown in Fig. 5-3).

63

5.4 Defect modeling with Boolean Differential Algebra

New failure mechanisms in today’s deep-submicron electronic devices cannot be
modeled by traditional stuck-at faults (SAF) which in case of DDs are directly
associated with the nodes of the graphs. As the result, new advanced fault models
are continuously being developed to improve the confidence of test quality
measures and to increase the accuracy of fault diagnosis. The types of faults that
can be observed in a real gate depend not only on the logic function of the gate, but
also on its physical design. Good possibilities to combine logical and physical level
fault modeling provide pattern fault model [122] or conditional fault
models [78][79]. A similar pattern related fault modeling approach called
functional fault model was presented in [123] for the module level fault diagnosis
in combinational circuits.

Consider a parametric model of a component (e.g. a complex gate) in a
combinational circuit with a correct function y = fy (x1,x2,...xn), and including a
Boolean fault variable  to represent an arbitrary physical defect ( = 0 when the
defect is missing, and  = 1 when the defect is present) as a generic function

 yyny ffxxxfy),,...,,(** 21 (5-2)

where fy
 represents the faulty function of the component because of the defect .

The solution Wy() of the Boolean differential equation

 1
*




 yf

 (5-3)

describes a condition which activates the defect  to produce an error on the output
y of the component. The parametric modeling of a given defect  by the condition
Wy() = 1 allows to use it either for defect-oriented fault simulation (to check
whether the condition Wy() = 1 is fulfilled), or for defect-oriented test generation
under the constraint Wy() = 1 when a test pattern is searched for detecting the
defect  .

If the components of the circuit represent standard library (complex) gates, the
described analysis for finding conditions should be made once for all library
components, and the sets of calculated conditions will be included into the library
of components in the form of fault tables. The defect characterization may be
computationally expensive, but it is performed only once for each library cell. The
defect lists WF

y of library components embedded in the circuit can be extended by
additional physical defect lists WS

y for the interconnect structure in the neighboring
of the component to take into account also different defects (bridging faults,
crosstalks etc.) outside the components. For these defects additional
characterization should be carried out by a similar way as for the library cells.

64

Example 5.3. Consider a subcircuit (module or complex gate) of two simple gates
with outputs y and c in the circuit in Fig.5-1 (shown by the area in grey colour).
The Boolean function of the module is

736 xxey  .

Consider a defect inside the module in the form of a bridging fault of the wired-
AND type between the nodes e and x73 . The faulty function of the module with the
defect can be presented as

67367373 xxexexexy  .

Using the defect variable  for the short, we can create a generic differential
equation for this defect and solve it as follows:

)()()(* 736736673736 xxxxexxexxey 

1)(

))(())((*

73736736

736
736

736736
















xexxxxe

xx
xxe

xxxxey

As it results from the single solution of this differential equation, the bridging
fault between the nodes e and x73 inside the module can be activated by the

condition 1)(73  xeWy which will be satisfied by the input signals of the

module e = 1, and x73 = 0.

The example illustrated how the arbitrary physical defects can be mapped from
the low physical (e.g. transistor circuit) level to higher logic level. The
precondition for such a mapping is the possibility of representing the circuit with
the defect by a faulty Boolean function.

5.5 Hierarchical mapping of faults in digital systems

The method of defining faults by logic conditions Wy() allows us to unify the
diagnostic modelling of components of a circuit (or system) without going into
structural details of components, or into the diagnostic simulation of
interconnection network of components. In both cases, a condition Wy() describes
how a lower level fault  should be activated to a given higher-level node in a
circuit (or system). The conditions Wy() can be used both in fault simulation and
in test generation.

65

Component
Low level

kWF
k

WS
k

Environment

Bridging fault

Mapping

Mapping

High level

Component
Low level

kWF
k

WS
k

Environment

Bridging fault

Mapping

Mapping

High level

Fig. 5-4. Mapping faults from lower level to higher level

Consider a node k in a circuit (Fig.5-4) as the output of a module Mk, and which
is represented by a function variable yk. Let us associate with the node k a set of
faults Rk = RF

k  RS
k where RF

k is the subset of faults in the module Mk, and RS
k is a

subset of structural faults (defects) in the “neighbourhood” of Mk in the higher level
environment. Denote by Wk() the condition when the fault   Rk will change the
value of yk. Denote by WF

k the set of conditions Wk() which activate the defects
  RF

k and by WS
k the set of conditions Wk() which activate the defects   RS

k.

By using the sets of conditions WF
k and WS

k we can set up a mapping of faults
from lower level to higher level for test generation purposes, and also in opposite
direction, from a higher level to a lower level for fault simulation or fault diagnosis
purposes.

In test generation, to map a lower level fault   Rk to the higher level variable
yk, a solution of the equation W= 1 is needed. In other words, if the condition
W= 1 is fulfilled then the presence of the defect   Rk will change the value of
the variable yk.

In fault simulation (or in fault diagnosis) an erroneous value of yk (denoted by a
Boolean differential dyk = 1) can be formally explained by implication

n
nk WWWdy   ...2

2
1

1 (5-4)

where for j = 1,2,…n: j  Rk . To the higher level event dyk = 1, we set into
correspondence a lower level event j if the condition Wj = 1 is fulfilled.

For hierarchical testing purposes we should construct for each module Mk of the
circuit a list of faults Rk with logical conditions W for each fault   Rk. The set of
conditions WF

k for the functional faults   RF
k of the module can be found by low

level test generation for the defects in the module. The set of conditions WS
k for the

66

structural faults   RS
k in the environment of the module can be found by Boolean

differential analysis of generic fault-free/faulty functions as explained above.

Circuit

Module

System

Network
of gates

Gat e

Functional
approach

Fki Test

F k Test

W F
ki

W S
ki

F Test

W F
k

W S
k

Structural
approach

Network
of modules

W d
ki

Fig. 5-5. Hierarchical approach to diagnostic modeling of digital systems

In Fig. 5-5, a hierarchical testing concept based on parametric fault modeling
and functional fault model for a 3-level system is illustrated. In the functional
approach, only the information about the functional behaviour is used. In the
structural approach, tests are targeted to detect the faults in the networked
components and in the network interconnections.

Let Y be the system variable representing an observable point of the system, yM
be an output variable of a logic level module, and yG be the output of a complex
gate with a defect . Then, the condition of detecting the defect  on Y is

W = Y/yM   yM /yG  W
 = 1,

where Y/yM means the fault propagation condition calculated by high-level
modeling, yM/yG is the fault propagation condition (Boolean derivative)
calculated by gate-level modeling, and W is the functional fault condition for a
given gate calculated from the differential equation (5-3) by the gate preanalysis.

Example 5.4. Consider the following two examples of fault mappings between
different levels of abstractions for digital systems. For the mappings, Decision
Diagrams provide a suitable uniform environment.

(1) The nodes of SSBDDs represent signal lines in a digital circuit, where physical
defects  may cause erroneous signals if the conditions W= 1 are satisfied. Hence,
to model a SAF fault of the node m at the conditions W= 1 is equivalent to
mapping the physical defect  to the logic level by means of SSBDD. The

67

conditions are calculated at the lower transistor level by using Boolean differential
algebra or simulation tools, whereas the modeling of faults (e.g. during fault
simulation or test generation) is carried out at the logic level with SSBDDs.

(2) The nodes of HLDDs represent modules in a digital system, where defects 
inside the module may cause erroneous signals on the outputs of the module, if the
input conditions (patterns or pattern sequences) W= 1 on the inputs of the modules
are satisfied. Hence, to model the behaviour of a node in a HLDD at the conditions
W= 1 is equivalent to mapping the module level defect  to the system level by
means of HLDD. The conditions are calculated at the module level by test
generation, for example, with SSBDDs, whereas the modeling of faults (e.g. during
high-level fault simulation or test generation) is carried out at the system level with
HLDDs.

The main concept of the fault model used in HLDDs is to test exhaustively each
node. For non-terminal nodes which model the control variables such a concept is
meaningful because of the low number of possible values for these variables. The
situation is different with terminal nodes which model the units of data paths. In
this case, hierarchical approach is advisable. Assume the terminal node R1 * R2 in a
graph in Fig. 5-2 labeled by multiplication expression. The high-level test pattern
(control word) for activating the working mode R2 = R1 * R2 is fault simulated
using the HLDD. The set of local test patterns {R1

t, R2
t} to be applied to the inputs

R1 and R2 of the multiplier, are fault simulated at the lower gate-level. The set of
patterns {R1

t, R2
t} can be regarded as a set of conditions (as the functional fault

model) when fault modeling the terminal node R1 * R2. On the other hand, the set
of local test patterns {R1

t, R2
t} can be regarded as interface between two levels in

hierarchical fault modeling: the conditions are generated at lower level and used in
the higher level.

A novel functional fault model was introduced, which is a general concept for
mapping faults in digital systems between different levels of abstraction. The
conditional SAF model can be regarded as a special case of fault mapping from
physical to logic level.

5.6 Experimental data

The defect-oriented conception of hierarchical diagnostic modeling of digital
circuits was compared with the traditional SAF model oriented approach for the
ISCAS’85 benchmark family. Only bridging faults between lines in transistor
circuits were considered. The experiments showed the advantage of the defect-
oriented conception. The investigations have been carried out in cooperation with
TU Warsaw and IISAS Bratislava targeted to defect-oriented test pattern
generation [124].

68

Table 5-1. Comparison of SAF and defect-oriented test generation

Circuit

Defect coverage, %

For 100% SAF test
Defect‐oriented
test generation

OR
model

AND
model

OR
model

AND
model

c17 92.59 100.0 100.0 100.0

c432 99.38 99.33 100.0 100.0

c499 92.80 100.0 92.80 100.0

c880 95.95 100.0 95.95 100.0

c1355 93.42 100.0 93.42 100.0

c1908 92.91 99.94 92.91 100.0

c3540 94.21 99.68 94.38 99.74

c5315 94.71 100.0 94.71 100.0

c6288 92.59 100.0 92.59 100.0

The results are depicted in Table 5-1. In the left part of the table, comparison with
traditional SAF test of 100% fault coverage is given. We see that, especially for the
OR-shorts the defect coverage of the 100% SAF tests is rather low, and the quality
of these tests cannot be trusted.

In the right part of the table, the results of defect-oriented test generation are
given. In some cases, we see that defect-orientation can help to increase the fault
coverage. The cases where 100% coverage was not achieved show that the not
detected defects are with high probability redundant. This conclusion about the
redundancy of defects could not be made based on the SAF-oriented test results in
the left part of the table, since for these tests the detection of bridging fault defects
were not the target.

Fig. 5-6. Comparison of plain gate-level and hierarchical test generation

Bit Width

0.21
0.49

1.16

3.74

0.19
0.5

1.25

4.26

0.29

0.75

1.86

5.57

0

1

2

3

4

5

6

4 8 16 32 4 8 16 32 4 8 16 32

HTPG

Comm. Tool

 4 8 16 Instructions

69

In Fig. 5-6 an example is depicted to illustrate the impact of fault mapping from
gate level to system level on the efficiency of test generation. Test generation
experiments were carried out for a benchmark family of RISC processors which
vary in the the instruction set (processors with 4, 8 and 16 instructions) and in the
bitwidth (4, 8, 16 and 32-bit processors) [124]. Test generation for data
manipulation modules represented by the terminal nodes of HLDDs was carried
out on the logic level with SSBDDs. The locally generated test vectors were used
as conditions for testing the terminal nodes in the HLDDs. During test generation
for HLDDs, no logic level details were considered, all the operatios were carried
out exclusively on the hig-level. The experimental results (test generation times
in s) are shown in Fig.5-6 for 12 different processors, differing in the complexity
(bit width, size of the instruction set), where the high-level ATPG is compared to a
commercial gate-level ATPG tool. Here we see, the higher is the complexity of the
digital system, the larger is the advantage of the high-level ATPG compared to the
low-level ATPG, in other words, the larger is the impact of the hierarchical fault
mapping concept.

In addition, the experiments were carried out to determine the efficiency on
pseudorandom test sequence generated by Built-In Self-Test giving high percent of
SAF fault coverage for defect-oriented testing.

The experiments were carried out in two stages:

(1) the experiments to find best pseudorandom test sequences for the ISCAS’85
benchmarks – the LFSR configuration that would result in the shortest
sequence giving high fault coverage (100% was reached in the most cases)

(2) defect-oriented fault simulation was carried out

In Fig. 5-7, an example of experimental data for one of the ISCAS’85
benchmarks is shown.

It can be seen that pseudorandom test sequence has different efficiencies in
detecting stuck-at faults and different classes of defects or combinations of them.

70

Fig. 5-7. Fault coverage by pseudorandom test sequence in case of SAF
and defect-oriented fault simulation for c6288

Table 5-2. Test qualities at different simulated fault classes

Circuit Test
length

SAF
cover
%

Defect coverage, %

Counted defects Probabil. defects

AND OR Total AND OR Total

c432 100
200
300

95,5
98,9
100

95,0
98,3
100

96,6
98,8
100

95,8
98,5
100

96,1
98,5
100

97,8
99,0
100

97,0
98,8
100

c499 750
1000
1270

98,9
99, 4
100

99,0
99,4
100

92,1
92,4
92,8

95,6
95,9
96,4

99,5
99,7
100

85,5
85,6
85,8

92,5
92,7
92,9

c880 500
820
3355

98,2
99,5
100

99,3
99,6
100

95,7
96,0
92,5

97,5
97,8
96,3

99,4
99,7
100

92,2
92,4
96,2

95,8
96,1
98,1

c1355 200
750
1315

90,9
97,9
100

93,9
98,4
100

88,5
92,1
93,4

91,2
95,3
96,7

95,5
98,9
100

85,0
87,1
87,8

90,3
93,0
93,9

c1908 750
1200
2075

96,5
98,9
100

98,7
99,2
100

92,0
92,3
93,4

95,3
95,8
96,7

99,2
99,6
100

85,5
85,7
92,9

92,4
92,6
96,5

c3540 1500
2500
10000

91,3
92,5
98,1

90,3
91,1
97,1

82,6
83,7
91,9

86,5
87,4
94,5

90,3
90,9
97,0

85,7
86,6
88,5

88,0
88,7
92,7

c5315 750
1110
4100

99,6
99,9
100

100
100
100

94,7
94,7
94,7

97,4
97,4
97,4

100
100
100

91,1
91,1
91,1

95,6
95,6
95,6

c6288 20
40
55

98,9
99,9
100

100
100
100

92,6
92,6
92,6

96,3
96,3
96,3

100
100
100

85,3
85,3
85,3

92,7
92,7
92,7

71

Table 5-2 presents the experimental results for resynthesised ISCAS’85
benchmarks. As it can be seen from the results, the pseudorandom test sequence is
quite efficient in covering AND-type shorts but in case of OR-type shorts the
coverage tends to be quite low. Also, it is obvious that similarly to the results
shown in Table 5-1, even though pseudorandom sequence giving 100% stuck-at
fault is giving quite high defect coverage, in many cases it is still not enough and
many defects remain untested. In addition, typically for such built-in self-test
approach, the test sequences tend to be very long leading to long test application
times.

The fact that the pseudorandom test sequence often fails to reach satisfactory
defect coverage can be explained by the fact that in these cases we are dealing with
either redundant or random pattern resistant (so-called "hard-to-test") defects. This
issue could be addressed by generating test patterns targeting specifically these
defects.

 Table 5-3 presents the correlation between fault coverage and test length for
some benchmark circuits. As it can be seen, 100% coverage of stuck-at faults can
be reached with much shorter pseudorandom test sequence than the highest
achievable defect coverage. This result clearly shows that there is the need to
consider extended classes of defects, and not only the simple SAF class when
determining the length of the pseudorandom test of acceptable quality.

Table 5-3. Comparison of test lengths for SAF coverage
and total (SAF and defects) coverage

Circuit Fault

coverage. %
Test length Test length

correlation SAF Total
(SAF &
Defects)

c432 100.00 297 297 1.00

c880 97.78
100.00

535
3352

656
‐

1.23
N/A

c1355 97.31
100.00

617
1315

1315
‐

2.40
N/A

c1908 96.26
100.00

716
2054

1096
‐

1.53
N/A

c5315 97.35
100.00

148
4026

465
‐

3.14
N/A

c6288 96.29
100.00

14
51

20
‐

1.43
N/A

72

5.7 Conclusions

1. An approach is presented to map faults between the levels of abstraction in
digital systems to improve the efficiency of fault simulation and test generation.

2. For modelling physical defects, generic Boolean differential equations were
introduced which allow to map the physical faults from lower physical level to
higher logic level.

3. It was shown that the Decision Diagrams provide an efficient tool for uniform
fault mapping in digital systems from lower levels to higher levels of abstraction.

4. A new functional fault model was developed as a uniform basis for modelling
arbitrary physical defects. It was shown how the functional fault model can be
regarded as a uniform interface for mapping faults from lower levels to higher
levels.

5. The conditional SAF model can be regarded as a special case of the functional
fault model to facilitate fault mapping from physical to logic level.

6. Experimental data demonstrate that the higher is the complexity of the digital
system, the larger is the advantage of the hierarchical ATPG compared to the plain
low-level ATPG, in other words, the larger is the impact of the hierarchical fault
mapping concept.

7. Experimental data also showed that BIST test that has 100% stuck-at fault
covarage, can reach quite high defect coverage but in many cases the test quality is
not satisfactory, thus extended fault model should be used. This fact explains the
need of evaluation of the BIST quality using defect-oriented functional fault model
instead of traditional SAF model.

73

Chapter 6 Test cost minimization of Hybrid
BIST

Classical Built-In Self-Test solutions are in large part based on using LFSRs for
generating pseudorandom test sequences and also test response compaction. In this
chapter, an approach known as hybrid BIST is described, which combines
pseudorandom test patterns with stored precomputed deterministic test patterns.
Methods are described for finding optimal balance between pseudorandom and
stored patterns. In order to speed up the calculation process, a method based on
tabu search has been applied to find the global cost minimum.

6.1 Introduction

To test the individual cores of the system the test pattern source and sink have to
be available together with an appropriate test access mechanism (TAM [56] as
depicted in Fig. 6-1.

Fig. 6-1. Testing a System-on-chip

74

The traditional approach implements both source and sink off-chip and
therefore requires the use of external Automatic Test Equipment (ATE). But, as the
requirements for the ATE speed and memory size are continuously increasing, the
ATE solution can be unacceptably expensive and inaccurate. Therefore, in order to
apply at-speed tests and to keep the test costs under control, on-chip solutions are
becoming more and more popular. Such a solution is usually referred to as Built-In
Self-Test (BIST). The classical BIST has been described in Chapter 2.

The main idea behind BIST approach is to eliminate or reduce the need for an
external tester by integrating active test infra-structure on a chip. The test patterns
are not any more generated externally as it is done with Automatic Test Equipment
(ATE), but internally, using special BIST circuitry.

6.2 Drawbacks of the classical BIST approach

The classical way to implement TPG for logic BIST (LBIST) is to use linear
feedback shift registers (LFSR). But as the test patterns generated by LFSR are
pseudorandom by their nature [61] and have linear dependencies, the LFSR based
approach often does not guarantee a sufficiently high fault coverage (especially in
the case of large and complex designs) and demands very long test application
times in addition to high area overheads.

The pseudorandom test sequence can be more than ten times longer than the
deterministic sequence with the similar efficiency [13]. The reason of this problem
is the presence of so-called random pattern resistant faults [125] in the circuitry.
The random-pattern resistant faults are those that are detected by only few patterns,
sometimes just one. Obviously, if this pattern is not generated by the LFSR during
the test, the fault will remain undetected.

The typical situation where the described situation occurs is when the circuit
includes large input AND (NAND) logic functions or large input OR (NOR) logic
functions [11]. A large AND (NAND) function will produce a logic 1 (logic 0)
infrequently due to the equal likelihood of logic 1s and logic 0s in each bit of the
pseudo-random test patterns. Similarly a large OR (NOR) function will produce a
logic 0 infrequently. Faults that would require many logic 1s generated at the
output of a large AND function or logic 0s at the output of a large OR function are
not easily detected. Fig. 6-2 illustrates the situation when the stuck-at-1 fault needs
to be detected on the output of OR-gate. To detect this fault, we would need a test
pattern consisting of all 0s to activate the fault. The more inputs the gate has the
lower is the probability of discovering such fault.

x1

xn stuck‐at‐1

y

 Fig. 6-2. PR-resistant fault - OR gate

75

In general, pseudorandom test patterns can seldom achieve 100% fault
coverage. Fig. 6-3 shows the fault coverage of pseudorandom tests as a function of
the test length for ISCAS'85 benchmark [126]. This figure illustrates an inherent
property of pseudorandom test: the first few test vectors can detect a large number
of faults while later test vectors detect few new faults if any. Moreover, many
faults will never be detected with pseudorandom tests alone.

Fig. 6-3. Pseudorandom tests form some ISACS'85 circuits

Therefore, several questions have to be answered while developing a LFSR-
based self-test solution:

 What is the fault coverage achievable with pseudorandom patterns,
compared to that of deterministic test methods?

 Will the required fault coverage be achieved by the number of
pseudorandom patterns that can be generated in some acceptable interval of
time?

 What are the characteristics of LFSR that produce the test sequence with
acceptable fault coverage?

Such an analysis shows that in most cases the pseudorandom test leads to either
unacceptably long test sequences or fault coverage figures that are not acceptable
and much below those achievable by deterministic test sequences.

 116 231 343 462 578 693 809 924
Number of test patterns

Progressive coverage of test patternsFault coverage (%)

100

80

60

40

20

0

76

One solution to this problem is to complement pseudorandom test patterns with
deterministic test patterns, applied from an on-chip memory, in special situations,
from an ATE, using different techniques. These approaches are usually referred to
as mixed-mode or hybrid BIST approaches [127].

6.3 BIST impovement techniques

Different methods have been proposed for improving the classical BIST schemes.
For example, the fault coverage can be increased by modifying the CUT by either
inserting the test points [62] or by redesigning the CUT itself [128]. The drawback
of those techniques is that generally they add additional logic to the circuitry that
can degrade the performance.

Some other approaches are using weighted pseudorandom sequences for BIST
fault coverage improvement. In these approaches additional logic is needed to
weight the probability of each bit in the test sequence. An example of practical
application for weighted pseudo-random test patterns is a CUT that incorporates a
global reset or preset to the flip-flops. Frequent resetting of flip-flops by
pseudorandom test pattern will clear the test data propagated into the flip-flops and
prevent internal faults from being detected. In a study of pseudorandom test
patterns applied to the 1989 International Symposium on Circuits and Systems
(ISCAS'89) sequential benchmark circuits [129], it was found that single stuck-at
level-gate fault coverage was as low as 11% to 15% for circuits that had global
resets or presets to the flip-flops due to this fault-detection blocking effect of
pseudorandom patterns [130]. When the reset/preset signal is controlled by other
means, which can include the use of weighted pseudorandom test patterns, the fault
coverage climbs greater than 90% for these circuits. A solution to this problem is
to take the equal likelihood of 0s and 1s in pseudorandom sequences of an LFSR
and use additional logic to create weighted pseudorandom patterns [131]. For
example, more frequent logic 1s can be generated by a logical NAND of two or
more bits of LFSR. Given that the probability of a given bit in LFSR being a
logic 0 is approximately 0.5 (denoted p0 0.5) NANDing two bits of the LFSR will
produce a bit that has p0 0,25; NANDing three bits will result in p0 0,125 and so
on. Fig. 6-4 shows an example of weighted LFSR based TPG where each of the
normal LFSR outputs has p0 0.5 for a given test pattern while the weighted output
has p0 0,125.

The probabilities (or weights) can be controlled for a higher coverage test
patterns generation and/or shorter length BIST sequences for a given CUT [132].
Of course the weights and the number of CUT inputs that need to be "weighted"
has to be determined on a case-by-case basis since this is a function of the CUT.

77

Fig. 6-4. Example of weighted LFSR implementation

The weight logic can be placed either at the input of the scan chain [133] or in
the individual scan cells themselves [63]. The disadvantage of the WPS approach is
that the weight sets have to be stored on chip and additional control logic is
required to switch between weights. Therefore, the silicon area overhead may
become too large, as the weighting requires extra hardware in terms of the
NAND/NOR gates as well as additional LFSR bits since multiple bits are logically
combined to produce a single test pattern bit. The increased area overhead along
with the increased design time are a limitation of this TPG approach. However, the
weighted-LFSR is a powerful technique for increasing fault coverage in circuits
with pseudorandom pattern resistant circuits.

A third alternative for improving the fault-coverage is to use a mixed or hybrid
approach [72][73][127][134] -[136]. Such approaches use pseudorandom patterns
to cover easy-to-detect faults and subsequently, deterministic patterns to target the
remaining hard-to-detect faults.

There are number of ways for generating patterns on-chip. Three of them are
described in the following

ROM compression

The simplest approach for generating deterministic patterns on-chip is to store
them in a read-only memory (ROM). The problem is that quite often the solutions
require a big size of ROM to store all the necessary patterns. There have been
several ROM compression techniques proposed that allow reducing the size of
ROM [64][67][137]-[139]

LFSR reseeding

Instead of storing the test patterns in ROM, there are many techniques developed
for storing LFSR seeds that can be used to generate pseudorandom test
patterns [63]. The LFSR that is used for generating the pseudorandom patterns is
also used for generating the deterministic patterns by reseeding it with the
computed seeds. The seeds can be computed with linear algebra as described
in [63]. Because the seeds are smaller than the test patterns themselves, they

78

require less ROM storage. One problem is that for LFSR with a fixed
characteristics (feedback) polynomial, it may not always be possible to find a seed
that will efficiently generate the required deterministic test patterns. A solution to
that problem was proposed in [67], where a multiple-polynomial LFSR (MP-
LFSR) is used. Fig. 6-5 shows such an MP-LFSR.

An MP-LFSR is an LFSR with a reconfigurable feedback network. A
polynomial identifier is stored with each seed to select the characteristic
polynomial that will be used for that seed. Techniques for further reductions in
storage can be achieved by using variable-length seeds [140], a special ATPG
algorithm [141], folding counters [142] and seed encoding [143].

Fig. 6-5. Reseeding with multiple-polynomial LFSR

Embedding deterministic patterns

One more approach for mixed-mode BIST is to embed the deterministic patterns in
the pseudorandom sequence. Many of the pseudorandom patterns generated during
pseudorandom testing do not detect any new faults, so some of those "useless"
patterns can be transformed into deterministic patterns that detect PR-resistant
faults [67]. This can be done by adding mapping logic between the scan chains and
the CUT or in a less intrusive way by adding the mapping logic at the inputs to the
scan chains to either perform a bit fixing [66]or bit-flipping [144]. Fig. 6-6
illustrates this approach as shown in [67].

Decoding
logic

LFSR

. . .

. .

Poly. ID Seeds

79

The main strength of the described approaches lays in the possibility to have a
trade-off between test data storage and test application time by varying the ratio of
pseudorandom and deterministic test patterns. In general, such a hybrid approach
reduces the memory requirements compared to the pure deterministic testing, while
providing higher fault coverage and reduced test times compared to the stand-alone
BIST solution.

6.4 Hybrid BIST - basic principles

Usually, in self-test approaches some type of pseudorandom test patterns is used.
But as test patterns generated by LFSR are pseudorandom by their nature, the
generated test sequences are usually very long and not sufficient to detect all the
faults. To avoid the test quality loss due to random pattern resistant faults and in
order to speed up the testing process, deterministic patterns targeting the random
resistant and difficult to test faults have to be applied.

In the previous sections, some methods based on this concept were described.
These methods successfully increased the quality of the test by targeting random
pattern resistant faults. However, these described approaches were able to find a
solution in situations when test process was constrained by limitations such as
memory or test time, which is often the case in realistic situations.

The hybrid BIST approach used in this work has been described in [127] and it
is based on the intelligent combination of pseudorandom and deterministic test
sequences that would provide a high-quality test solution.

This hybrid BIST approach is illustrated in Fig. 6-7. It starts with on-line
generation of pseudorandom test sequence with a length of L. On the next stage, a
stored test approach with length S takes place [127]. For the stored approach,
precomputed test patterns are applied to the core under test to reach the desirable

Pattern Generator

Mapping Logic

Circuit Under Test

Original test patterns

Transformed test patterns

Fig. 6-6. Using the mapping logic

80

coverage level. The precomputed deterministic set of test patterns is stored in the
memory. For off-line generation of the deterministic set, arbitrary software test
generators based on deterministic, random or genetic algorithms may be used
[145].

Definition: A hybrid BIST set THk = {PRk, DTk} for a core Ck is a sequence of
tests, constructed from a subset of the complete pseudorandom test sequence PRk 
PRF

k, and a subset of the complete deterministic test sequence DTk  DTF
k. The test

sequences PRk and DTk complement each other to achieve the maximum achievable
fault coverage, and define the hybrid test set THk.

In general, a shorter pseudorandom test implies a larger deterministic set. This
requires additional memory space, but at the same time, shortens the overall test
process, since deterministic test vectors are more effective in covering faults than
the pseudorandom ones. A longer pseudorandom test, on the other hand will lead to
longer test application time with reduced memory requirements [127].

6.5 Hybrid BIST - cost calculation and optimization

The important parameter of hybrid BIST is the length L of the pseudorandom
test sequence. It determines the behaviour of the whole process. In case a shorter
pseudorandom test set is used, the larger deterministic set will be needed. Larger
deterministic test set requires additional memory for these patterns to be stored.
This approach, however, shortens the overall test. On the other hand, a longer

Fig. 6-7. Hybrid BIST fault coverage

Fault
coverage

100%

L

Deterministic test

Pseudorandom test

S

81

pseudorandom test will lead to longer test application time with reduced memory
requirements. Therefore it is crucial to determine the optimal test length of
pseudorandom test in order to minimize the total testing cost.

The total cost of BIST solution consisting of pseudorandom test patterns and
stored test patterns is graphically shown on Fig. 6-8. The horizontal axis denotes
the fault coverage achieved by the pseudorandom test before switching from the
pseudorandom to the stored test. Zero fault coverage is the case when only stored
test patterns are used and therefore the cost of stored test is the biggest at this point.
The figure illustrates the situation where 100% fault coverage is achievable with
pseudorandom test alone, although this can demand a very long pseudorandom test
sequence (in particular, in the case of large and complex designs, 100% fault
coverage might not be achievable at all).

Test cost

Cost of stored
test CMEM

to reach 100%
fault coverage

Cost of
pseudorandom

test CGEN

CTOTAL

Cmin
100%

Pseudorandom test
coverage (%)

Fig. 6-8. Cost calculation for hybrid BIST

Therefore, the total cost of the hybrid BIST CTOTAL can be defined as follows:

CTOTAL = CGEN + CMEM L+S

where CGEN is the cost related to the time for generating L pseudorandom test
patterns (number of clock cycles), CMEM is the memory cost for storing S
precomputed test patterns needed to improve the results of the pseudorandom test
sequence [126].  and  are constants to map the test length and memory space to
the costs of the two parts of the test solutions to be mixed.

Fig. 6-8 illustrates how the cost of pseudorandom test CGEN is increasing when
striving to higher fault coverage. In general, it can be very expensive (time-
consuming) to achieve high fault coverage with pseudorandom patterns only. The
CMEM curve on the other hand, describes the cost we have to pay for storing
additional pre-computed tests at the given fault coverage reached by pseudorandom
testing to achieve the required fault coverage level. The total cost of CTOTAL is the
sum of the mentioned costs L and S. The weights  and  reflect the correlation
between the cost and pseudorandom test time (number of clock cycles used) or

82

between the cost and the memory size needed for storing the precomputed test
sequence. For simplicity it is assumed that  = 1 and  = B where B is the number
of bytes of the input vector to be applied to the core under test CUT. Hence, in the
following the number of clocks used for pseudorandom test generation and the
number of bytes in the memory needed for storing precomputed test patterns are
used are the cost units. The total cost CTOTAL is illustrated in Fig. 6-8 where the
minimum point is marked as Cmin.

In many situations, 100% fault coverage is not achievable with only
pseudorandom vectors. Therefore, an assumption has to be included into total cost
calculation. This situation is illustrated in Fig. 6-9 where the horizontal axis
indicates the number on pseudorandom patterns applied, instead of the fault
coverage level. The curve of the total cost CTOTAL is still the sum of two cost curves
CGEN+CMEM with the new assumption that the maximum fault coverage is
achievable only by either the hybrid BIST or pure deterministic test. Fig. 6-9
illustrates the calculation of the Cost curve under these more realistic assumptions.

Cost Number of remaining
faults after applying k
pseudorandom test
patterns rNOT(k)

Total cost
CTOTAL

Cost of
pseudorandom test

patterns CGEN

Cost of stored
test CMEM

Time/Memory

The main purpose of the approaches described in this chapter is to develop a
fast method for finding the length L of the pseudorandom test sequence when the
total cost CTOTAL has the minimal value Cmin.

Creating the curve CMEM is not difficult. For that purpose, a simulation of the
behaviour of LFSR, a pseudorandom test pattern generator (PRG) is needed. The
fault simulation should be carried out for the complete test sequence generated by
LFSR. As a result of such a simulation, for each clock cycle the list of faults can be
found, which were covered at this clock cycle. By removing these faults from the
complete fault list, it is possible to know the number of faults remaining to be
tested.

Fig. 6-9. Cost calculation of hybrid BIST under realistic assumptions

83

Table 6-1 represents a fragment of the results of BIST simulation for ISCAS'85
circuit c880. In this table:

 k denotes the number of clock cycles
 rDET(k) is the number of new faults detected (covered) by the test pattern

generated at the clock signal k
 rNOT(k) is the number of remaining faults after applying the sequence of

patterns generated by the k clock signals
 FC(k) is the fault coverage reached by the sequence of patterns generated

by the k clock signals

Table 6-1. BIST analysis data

k rDET(k) rNOT(k) FC(k) t(k) k rDET(k) rNOT(k) FC(k) t(k)

0 155 839 15.59% 104 148 13 132 86.72% 46

1 76 763 23.24% 104 200 18 114 88.53% 41

2 65 698 29.78% 100 322 13 101 89.53% 35

3 90 608 38.83% 101 411 31 70 92.96% 26

4 39 564 43.26% 99 707 24 46 95.37% 17

5 104 421 57.65% 99 954 18 28 97.18% 12

10 66 355 64.28% 95 1535 4 24 97,58% 11

15 66 355 64.28% 92 1560 8 16 98.39% 7

20 44 311 68.71% 87 2153 11 5 99.50% 3

28 42 269 72.94% 81 3449 2 3 99.70% 2

50 51 218 78.07% 74 4519 2 1 99.89% 1

70 57 161 83.80% 58 4520 1 0 100.00% 0

100 16 145 85.41% 52

In the list of BIST simulation results not all clock cycles are presented. We are
only interested in the clock numbers at which at least one new fault will be
covered, and thus the total fault coverage for the pseudorandom test sequence up to
this clock number increases. Let us call such clock numbers and the corresponding
pseudorandom test patterns resultative clocks and resultative patterns. The rows in
Table 6-1 represent the resultative clocks, but not all (only some resultative points
are given for illustrative purpose), for the circuit c880.

If we decide to switch from the online pseudorandom test generation mode to
the deterministic stored pattern mode after the clock number k, the L = k.

More difficult is to find the values of S, the cost for storing additional
deterministic patterns in order to reach the given fault coverage level (100% in the
ideal case). Let t(k) be the number of test patterns needed to cover rNOT(k) not yet
detected faults (these patterns should be precomputed and used as stored test
patterns). The calculation of the data in the column t(k) of Table 6-1 is the most
expensive procedure.

84

6.6 Target architecture for Hybrid BIST

In the following, two possible solutions are presented for implementing the hybrid
BIST - hardware based and software based.

A hardware based hybrid BIST architecture is depicted in Fig. 6-10 where the
pseudorandom pattern generator (PRPG) and the Multiple Input Signature
Analyzer (MISR) are implemented inside the circuit under test (CUT). The
deterministic test patterns are pre-computed off-line and stored inside the system.

To avoid the hardware overhead caused by the PRPG and MISR, and the
performance degradation due to excessively large LFSRs, a software based hybrid
BIST can be used where pseudorandom test patterns are produced by the test
software. However, the cost calculation and optimization algorithms are general,
and can be applied as well to the hardware based as to the software based hybrid
BIST solutions.

Fig. 6-10. Hardware based hybrid BIST architecture

In case of the software based solution, the test program, together with test data
(LFSR polynomials, initial states, pseudorandom test length, signatures), is kept in
ROM. The deterministic test vectors are generated during the development process
and are stored in the same place. For transporting the test patterns, we assume that
some form of TAM is available.

In test mode, the test program is executed in the processor core. The test
program proceeds in two successive stages. In the first stage the pseudorandom test
pattern generator which emulates LFSR, is executed. In the second stage the test
program will apply precomputed deterministic test vectors to the core under test.

85

The pseudorandom TPG software is the same for all cores in the system and is
stored as one single copy. All characteristics of the LFSR needed for the emulation
are specific to each core and are stored in ROM. They will be loaded upon request.
Such an approach is very effective in the case of multiple cores, because for each
additional core, only the BIST characteristics for this core have to be stored. The
general concept of the software based pseudorandom TPG is depicted in Fig. 6-11.

Fig. 6-11. LFSR emulation

Although it is assumed that the best possible pseudorandom sequence is used,
not always all parts of the system are testable by a pure pseudorandom sequence. It
can also take a very long test application time to reach a good fault coverage level.
In case of the hybrid BIST, we can dramatically reduce the length of the initial
pseudorandom sequence by complementing it with deterministic stored test
patterns, and achieve 100% fault coverage. The method proposed in the paper helps
to find tradeoffs between the length of the best pseudorandom test sequence and
the number of stored deterministic patterns.

6.7 Cost calculation algorithms

In the following, different cost calculation algorithms are presented for calculating
and optimization of hybrid BIST cost.

In Table 6-1 the test data for c880 was presented, where the column t(k)
represents the number of patterns needed to cover the fault that have not been
covered yet. As it has been mentioned, calculation of t(k) is quite difficult. In the
following, two approaches are described to calculate the values of t(k). These
algorithms are desribed in [126][146].

The ways to find t(k)

 ATPG based approach
 fault table based approach

86

Let us have the following notations:
 i - the current number of the entry in the table of BIST analysis data;
 k(i) - the number of the clock cycle of the resultative clock at entry i
 RDET(i) - the set of new faults detected (covered) by the pseudorandom test

pattern which is generated at the efficient clock signal number k(i)
 RNOT(i) - the set of not yet covered faults after applying the pseudorandom

test pattern number k(i)
 T(i) -the set of test patterns needed and found by the ATPG to cover the

faults in RNOT(i)
 N - the number of all resultative patterns in the sequence created by the

pseudorandom test.
 FT - the fault table for a given set of test patterns T and for the given set of

faults R: the table defines the subsets R(tj)  R of detected faults for each
pattern tj  T

6.7.1 ATPG based algorithm for cost calculation

This ATPG based algorithm generates a new deterministic test set for the not yet
detected faults at every resultative clock cycle. In this way we have the complete
test set (consisting of pseudorandom and deterministic test vectors) for every
resultative clock, which can reach maximum achievable fault coverage. The
number of deterministic test vectors at all resultative clocks are then used to create
the curve CMEM(S). This algorithm is straightforward but very time consuming
because of repetitive use of ATPG.

ATPG based approach algorithm of generation t(k):

1. Let k := N;
2. Generate for RNOT(k) a test T(k), T := T(k), t(k) := |T|;
3. For all k = N‐1, N‐2, .. 1:

Generate for the faults RNOT(k) not covered by T a test set T(k),
T := T+T(k), t(k) := |T|;

4. END.

Since usage of ATPG is very time consuming procedure, another algorithm was
proposed, based on iterative transformations of fault tables. This algorithm allows a
dramatic reduction of computation time for the hybrid BIST cost calculation.

87

6.7.2 Fault table based algorithm for cost calculation

This fault table based starts by generating a test set T for all detectable faults.
Based on the fault simulation results a fault table FT will be created. By applying k
pseudorandom patterns, we can remove from the original fault table all faults,
which were covered by the pseudorandom vectors and by using static test
compaction reduce the original deterministic test set. Those modifications should
be performed iteratively for all possible breakpoints to calculate the curve
CMEM(S) and to use this information to find the optimal CTOTAL.

Fault table based approach algorithm of generation t(k)

1. Calculate the whole test T = {tj} for the whole set of faults R by any ATPG to reach
as high fault coverage as possible;

2. Create for T and R the fault table FT = {R(tj)};
3. Take k = 0, Tk = T, Rk = R, FTk = FT;
4. Take k = k+1;
5. calculate by fault simulation RDET(k);

6. Update the fault table: j, tj  Tk: R(tj)‐RDET(k);

7. Remove from the test set Tk all the test patterns tj  Tk where R(tj) = ;

8. If T(k) =  go to END;
9. Optimize the test set Tk by any test compaction algorithm; t(k) = |Tk|; go to 4;
10. END.

In the case of very large circuits both of these algorithms may lead to very

expensive and time consuming experiments. It would be desirable to find the
global optimum of the total cost curve by as few selected values of k as possible.

In the following, an approach based on a tabu search is shown that allows to
speed up the calculations.

6.7.3 Tabu search based algorithm for cost optimization

For reducing the number of total calculations in ATPG based and fault table based
algorithms for finding the minimum value, the method of tabu search
[107][108][109] as a general iterative heuristic for solving combinatorial
optimization problems can be used. The main ideas of this approach are presented
in Chapter 4. The description of the algorithm is given in Fig. 6-12.

The procedure of tabu search for hybrid BIST cost optimization starts from an
initial feasible solution SO (current solution) in the search space . In the
presented approach, the fast estimation method proposed in [127] is used to find
the initial solution. The estimation method is based on number of not yet covered
faults RNOT(i) and can be obtained from the pseudorandom test simulation results

88

(Table 6-1). A neighbourhood N(SO) is defined for each SO. Based on
experimental results its was concluded that the most efficient step size for defining
the neighbourhood N(SO) was 3% of efficient clocks. Larger step size, even if it
can give a considerable speedup, will decrease the accuracy of the final result. A
sample of neighbour solutions V*  N(SO) is generated. An extreme case is to
generate the entire neighbourhood, that is to take V* = N(SO). Since it is generally
impractical (computationally expensive), a small sample of neighbours (V* 
N(SO)) is generated, and called trial solutions (|V*| = n << |N(SO)|). In case of
ISCAS'85 benchmark circuits the best results were obtained when the size of the
sample neighbourhood was 4. Increase of the size V* had no effect to the
improvement of the results. From these trial solutions the best solution SO*  V*
is chosen for the consideration as the next solution. The move to SO* is considered
even if SO* is worse than SO, that is, Cost(SO*) > Cost(SO). A move from SO to
SO* is made provided certain conditions are satisfied. The best candidate solution
SO*  V* may or may not improve the current solution but is still considered. It is
this feature that enables escaping from local optima.

Start with initial solution SO  
BestSolution:=SO;

Initialize Tabu list T:=
While number of empty iterations <E
 Or there is no return to previously visited solution
 Do

 Generate the sample of neighbour solutions V* N(SO);
 Find best Cost(SO*  V*);
M: If move to solution SO* is not in the T Then
 SOtrial :=SO*;
 Update Tabu list;
 Else

 Find the next best Cost(SO*  V*);
 Go to M;
 End If;
 If Cost(SOtrial)<Cost(BestSolution) Then
 BestSolution:=SOtrial;
 Else
 Increment number of empty iterations E;
 End If;
End While;
END.

Fig. 6-12. Tabu search based algorithm

One of the parameters of the algorithm is the size of the tabu list. A tabu list T is
maintained to prevent returning to previously visited solutions. The list contains
information that to some extent forbids the search from returning to a previously

89

visited solutions. Generally the tabu list size is small. The size can be determined
by experimental runs, watching the occurrence of cycling when the size is too
small, and the deterioration of solution quality when the size is too large [111].
Results have shown that the best average size of the tabu list for the ISCAS'85
benchmark family was 3. The size of the tabu list can be determined by
experimental runs, watching the occurrence of cycling when the size is too small
and the deterioration of the solution quality when the size is too large.

Let's have the following additional notations:

 E - number of allowed empty iterations (i.e. iterations that do not result in
finding a new best solution) defined for each circuit

 SOtrial - solution generated from current solution as a result of the move.

For finding a good initial feasible solution in order to make tabu search more
productive, a fast estimation method for a local optimal L proposed in [127]is
used. For this estimation, the number of not yet covered faults in RNOT(i) can be
used. The value of RNOT(i) can be acquired directly from the PRG simulation
results and be available for every significant time moment (Table 6-1). Based on
the value of RNOT(i) it is possible to estimate the expected number of test
patterns needed for covering the faults in RNOT(i). The starting point for the tabu
search procedure can be found by giving rough estimation of the total cost based
on the value of RNOT(i). Based on the statistical analysis of the costs calculated
for ISCAS'85 benchmark circuits, in [127] the following approximation was
proposed: one remaining fault results in 0,45 test patterns needed to cover it. In this
way, a simplified cost prediction function was derived:

C'TOTAL(k)=CGEN(k) + 0,45RNOT(k)

The value k*, where C'TOTAL(k*)=min(C'TOTAL(k)) was used as the initial solution
for tabu search.

6.8 Experimental results

6.8.1 Tabu search

Experiments were carried out on ISCAS'85 benchmarks in order to demonstrate the
advantage of tabu search compared to the known methods. Turbo Tester
toolset [147] was used for deterministic test pattern generation, fault simulation,
and test set compaction.

Investigations were carried out to find the best initial solution, the step defining
N(S), the size of V* and the size of tabu list for using the tabu strategy in a most
efficient way.

For finding the best initial solution the cost prediction proposed in [126] was
used. For finding the tabu list size, experiments were carried out with different

90

sizes of the list. Results showed that the best average size for the ISCAS'85
benchmark family was 3. Smaller list size would cause cycling around local
minimum, larger size would result in deterioration of the solution quality (see
Fig. 6-13a and Fig. 6-13b).

The size of the sample of neighbourhood solutions V* giving the best results for
all circuits, was 4. Smaller size would make the process of finding the minimum
very long, resulting in very small speedup. Larger size of V* did not improve the
results.

Fig. 6-13(a) Dependency of solution esimation accuracy from the Tabu list size

98,00

98,20

98,40

98,60

98,80

99,00

99,20

99,40

99,60

99,80

100,00

1 2 3 4 5 6 7 8 9 The length
of the tabu list

Estimation accuracy (%)

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

20,00

1 2 3 4 5 6 7 8 The length
of the tabu list

Speedup

Fig. 6-13(b) Dependancy of the solution estimation accuracy from the Tabu list size

91

The efficiency of the search depends significantly of the step size defining the
neighbourhood N(S). Based on the experimental results, the charts of dependency
of overall estimation accuracy and the overall speedup from step size were
composed. Analyzing results depicted in Fig. 6-14a and Fig. 6-14b led to the
conclusion that the most admissible step size can be counted as 3% of the
resultative clocks where the average estimation accuracy is the highest. Though the
larger step size would give us the increase of the speedup, it was found
inadmissible because of the rapid decrease in the cost estimation accuracy.

95,00

95,50

96,00

96,50

97,00

97,50

98,00

98,50

99,00

99,50

100,00

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Step size (% of resulative clocks)

Estimation accuracy
(%)

Fig. 6-14(a) Dependency of estimation accuracy from the neighbourhood step size

0

2

4

6

8

10

12

14

16

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Step size (% of resultative clocks)

Speedup

Fig. 6-14(b) Dependency of average speedup from the neighbourhood size

92

Investigations were carried out to find out the criteria to stop iterations.
Analysing the experiments with a fixed number of iterations to find out which
number of empty iterations E (iterations not giving new best cost) will most
probably end up in getting no better solution, the value was found E=7. The other
criteria to stop the iterations is the return of the search to a previously visited
solution.

The results of optimization of the hybrid BIST for the ISCAS'85 benchmark
circuits obtained using the parameters described above are depicted in Table 6-2
The number of cost calculations is given in row 6, the number of total iterations in
row 8.

Table 6-2(a) Experimental results - cost optimization using Tabu search

 c432 c499 c880 c1355 c1908

Simulated clocks 780 2036 5589 1552 5803

Resultative clocks 81 114 114 109 183

Actual total cost 165 398 366 374 487

Estimated total cost 165 398 367 376 487

Estimation accuracy, % 100.00 100.00 99.73 99.47 100.00

Number of calculations 11 19 15 18 28

Speedup 7.36 6.00 7.60 6.06 6.54

Iterations made 7 14 10 13 17

Table 6-2(b) Experimental results - cost optimization using Tabu search

 c2670 c3540 c5315 c6288 c7552

Simulated clocks 6581 8734 2318 210 18704

Resultative clocks 118 265 252 53 279

Actual total cost 2397 771 1072 63 3203

Estimated total cost 2420 771 1103 63 3213

Estimation accuracy, % 99.05 100.00 97.19 100.00 99.69

Number of calculations 9 16 12 15 8

Speedup 13.11 16.56 21.00 3.53 34.87

Iterations made 6 10 9 12 5

6.8.2 Comparing Tabu search to ATPG and FT based approaches

Experiments were carried out on the ISCAS'85 benchmark circuits for comparing
the previously described algorithms based on ATPG and fault table, and for
investigating the efficiency of tabu search based method for optimizing hybrid
BIST. Again, Turbo Tester toolset was used.

The results of the experiments are presented in Table 6-3 and Table 6-4 and
illustrated by a diagram in Fig. 6-15.

93

Fig. 6-15. Percentage of test patterns in the optimized test sets

compared to the original test sets.

For calculating the total cost of hybrid BIST the previously described formula
was used: CTOTAL=L+S. For simplicity, it is assumed that  = 1 and  = B
where B is the number of bytes of the input test vector applied to the CUT. To
carry out some experimental work for demonstrating the feasibility and efficiency
of the algorithm, the number of clocks is used as a cost for pseudorandom test
generator and the number of bytes is used as a cost for storing precomputed
deterministic test patterns.

In the columns of the Table 6-3 the following data is depicted: ISCAS'85
benchmark circuit name, L - length of the pseudorandom test sequence, FC - fault
coverage, S - number of test patterns generated by deterministic ATPG to be stored
in BIST, CT - total cost of BIST.

In the Table 6-4 the following data is shown: TG - the time (sec) needed for
ATPG to generate the deterministic test set, TA - the time (sec) needed for carrying
out manipulation on fault tables (subtracting faults, and compacting test set), N -
number of efficient patterns in the pseudorandom sequence, T1 and T2 -
the time (sec) to find the optimal cost by using tabu search. TS - the number of
calculations in tabu search, Acc - accuracy of the tabu search solution in
percentage compared to the exact solution found from the full cost curve. The total
testing time for ATPG and FT based algorithms and for tabu search was calculated
as follows:

T1 = N * TG,
T2 = TG + N * TA,

T3 = T2 * (TS/N) + ,

respectively, where  is the time needed to perform the tabu search calculations
(was below 0.1 sec in given experiments).

94

Table 6-3. Experimental results - pseudorandom, stored and hybrid test

Circuit Pseudorandom test Stored test Hybrid test

L FC S FC L S CT

c432 780 93.0 80 93.0 91 21 196

c499 2036 99.3 132 99.3 78 60 438

c880 5589 100.0 77 100.0 121 48 505

c1355 1522 99.5 126 99.5 122 52 433

c1908 5803 99.5 143 99.5 105 123 720

c2670 6581 84.9 155 99.5 444 77 2754

c3540 8734 95.5 211 95.5 297 110 1067

c5315 2318 98.9 171 98.9 711 12 987

c6288 210 99.3 45 99.3 20 20 100

c7552 18704 93.7 267 97.1 583 61 2169

In fact, the values for TG and TA differ for the different values of i = 1,2,..,N.
However the differences were in the range of few percents which allowed us to
neglect this impact and to use the average values of TG and TA.

In Fig. 6-15 the amount of pseudorandom and deterministic test patterns in the
optimal BIST solution is compared to the sizes of pseudorandom and deterministic
test sets when only either of the sets is used. In the typical cases less than half of
the deterministic vectors and only a small fraction of pseudorandom vectors are
needed, however the maximum achievable fault coverage is guaranteed and
achieved.

Table 6-4. Experimental results - calculation cost

Circuit Calculation cost

 TG TA N T1 T2 T3 TS Acc

c432 20.1 0.01 81 1632 21 2.85 11 100.0

c499 0.7 0.02 114 174 3 0.50 19 100.0

c880 0.2 0.02 114 17 2 0.26 15 99.7

c1355 1.2 0.03 109 133 5 0.83 18 99.5

c1908 11.7 0.07 183 2132 25 3.83 28 100.0

c2670 1.9 0.09 118 230 13 0.99 9 99.1

c3540 85.3 0.14 265 22601 122 7.37 16 100.0

c5315 10.3 0.11 252 2593 38 1.81 12 97.2

c6288 3.8 0.04 53 200 6 1.70 15 100.0

c7552 53.8 0.27 279 15004 129 3.70 8 99.7

Fig. 6-16 compares the costs of different approaches using for Hybrid BIST
cost calculation the equation CTOTAL=L+S with parameters  = 1 and  = B
where B is the number of bytes of the input vector to be applied on the CUT. As

95

pseudorandom test is usually the most expensive method, it has been selected as
reference with given value 100%. The other methods give considerable reduction
in terms of cost, and as it can be seen, hybrid BIST approach has significant
advantage compared to the pure pseudorandom or stored test approach in most
cases.

 Fig. 6-16. Cost comparison of different methods.
Cost of pseudorandom test is taken as 100%

96

6.9 Conclusions

1. In this chapter, hybrid BIST approach for testing systems-on-chips has been
described. It supports the combination of pseudorandom test patterns with
deterministic test patterns in a cost-effective way. The self-test architecture can be
implemented either in classical way, by using LFSRs, or in software to reduce the
area overhead and to take advantage of the SoC architecture.

2. For selecting the optimal switching point from pseudorandom test mode to
stored test mode, two approaches - ATPG and fault table based algorithms were
described that allow calculating the complete cost curve of different hybrid BIST
solutions.

3. The tabu search approach based algorithm for finding a global minimum in a
search space containing many local minimums was presented and described. The
proposed solution was developed to reduce the number of calculations in search for
the optimal solution for hybrid BIST. The speedup of using tabu search for
ISCAS'85 benchmark family varies from 3,5 to 34,9 (10,5 in average) in
comparison to fault table manipulations based algorithm, whereas the calculated
accuracy of the solution (the minimum cost compared to the exact minimum) was
not less than 97,2% for the whole family of ISCAS'85 benchmarks.

4. The experimental results demonstrate the feasibility of the method and
algorithms described, and the efficiency of the fault table based cost calculation
method combined with tabu search for finding optimized cost-effective solutions
for hybrid BIST.

97

Chapter 7 Constraints based optimization of
Hybrid BIST with reseeding

In this chapter, hybrid BIST algorithms that combine stored precomputed and
pseudorandom test vectors in order to perform SoC testing under given memory
contraints, such that the test time is minimized, but miaximum achievable fault
coverage is still guaranteed. The methods provide possibility to find a memory
contrained test solution for every individual core in the system. The experiments
have been conducted on different ISCAS benchmarks and the results are compared
with the techniques developed earlier. The results show the feasibility and
advantage of the new proposed approaches.

7.1 Basic principle of Hybrid BIST with reseeding

To illustrate the reseeding BIST method let us depict all possible N test patterns as
a line (Fig. 7-1 and Fig. 7-2). When using hybrid BIST methodology many faults
will be covered by pseudorandom patterns and the remaining hard to test faults
(HTTF) are covered by M deterministic patterns. The method could be improved if
we could devise such a pseudorandom sequence which would also cover HTTFs.
The solution is to use many smaller pseudorandom sequences, starting with some
specific test pattern (for example, a test pattern targeting HTTF) as a seed.
Consequently, the full test set will be constructed as a collection of pseudorandom
pattern blocks (PPB), represented in Fig. 7-2 as separate intervals, in such a way
that all HTTF will be covered by these test patterns. Each block has its own seed.
The main problem of this approach is how to calculate the number and size of
PPBs ad how these tests should be spread all over test patterns, i.e. which seeds for
PPBs should be used. The limiting factor is that in general case, we don't know
which faults are HTTF and which test patterns are needed for detecting them.

0

Hard
to test
faults

0

Pseudorandom
test:

Hard
to test
faults

N

Deterministic
tests (M):

Fig. 7-1. Hybrid BIST with M deterministic test vectors

98

0

Hard
to test
faults

0

Pseudorandom
sequence:

Hard
to test
faults

N

Deterministic
test:

Fig. 7-2. Reseeding with R seeds (R<M)

Such a test set can be found using the following algorithm. Let DT be the
deterministic test set for a given CUT, and R the set of all possible faults in the
CUT. Let us call all the faults in RH  R, which are covered only by a single test
pattern DT, HTTFs. With DTH  DT we denote the subset of test patterns which
cover HTTFs RH. Obviously DTH = RH. The first seed Ti  DTH for the first
pseudorandom pattern block Bi, i = 1, will be selected from the DTH.
Let bi =Bibe the length of the block Bi. The algorithm now removes all the faults
covered by Bi from R, and keeps in DT only these patterns that are needed for
covering the faults in the updated R. A new RH  R, and a new DTH  D are
calculated, and the next seed Ti  DTH, i = 2 from the updated DTH will be chosen
for starting the next block Bi, i = 2, of pseudorandom patterns. This procedure
should be continued the set of faults R is empty. Let the number of iterations be k.
Then the length of the full test is calculated as





k

i
ibL

1

and the amount of memory M needed for storing the seeds is determined by k test
patterns that are needed to generate these k blocks. The characteristics of the
solutions L and M are heavily depending on the lengths of the blocks. These blocks
can be with equal length or variable length. In order to illustrate the situation the
simulations have been carried out for a range of different block lengths for the
ISCAS benchmarks to see how the values of L and M are changing with the length
of b. As an example in Fig. 7-3 the curves of L1(b), L2(b) and M(b) for ISCAS
circuit c1908 have been depicted. L1(b) is the length of the final test set under
given memory constraint when the length of the blocks is equal, and L2(b) is the
test length when the length of the block is variable. The variable length is a result
of a simple optimization procedure where all blocks are fault simulated in order to
remove useless patterns from the end of the block. Useless patterns are those that
do not detect any new faults.

99

Fig. 7-3. Comparison of equal length reseeding versus

variable length reseeding for the circuit c1908

In Fig. 7-4 a possible structure of the assumed BIST architecture is
shown [148]. ROM contains the seeds. Each pattern Pi in the ROM serves as an
initial state of the LFSR for test pattern generation. BIST controller counts the
number of Li pseudorandom patterns that are generated starting from Pi. After
finishing the cycle, ROM controller is forwarding the next pattern Pi+1 from the
ROM to the core under test. The important task is to find lengths of the blocks so
that L = min at the given constraint M  Mmax.

There are two important issues to consider when constructing the reseeding
based solutions: the number of seeds and the number of pseudorandom patterns
generated from each seed. Both have significant impact on the final solution in
terms of fault coverage, test length and test memory requirements. In the following
sections some approaches will be described to perform and optimize hybrid BIST
with reseeding to obtain the test that satisfies the given memory constraint.

C1908

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 500 1000 1500 2000 2500 3000

0

20

40

60

80

100

120

140
Test length L Memory cost M

M(b)

L1(b)

L2(b)

Block size

Fig. 7-4. Test Architecture for hybrid BIST with reseeding

100

7.2 Hybrid BIST length reduction using reseeding and test
set compaction

In the following, a method is described for finding the length of pseudorandom
seeds, such that the test memory (number of seeds) is constrained, the test time is
minimized, and the maximum achievable fault coverage guaranteed. The
pseudocode of the algoritm is shown in Fig. 7-5.

Algorithm using reseeding and test set compaction

- Generate deterministic test patterns;
- for (each deterministic pattern)

- Form a block by generating L pseudorandom patterns, using
deterministic pattern as a seed;
- Fault simulate the block;

- block_length = 1;
- loop (until L has been reached)

- for each (block)
- calculate coverage summary (block_length);
// Find coverage summary for a block with block_length
// number of vectors starting from the beginning
- minimize the block length;
// finds a point within a block from where the
// fault coverage is not any more increasing. Removes
// the useless pseudorandom vectors

- order blocks based on length
// order the tests in increasing length (shortest first)
- minimize the number of blocks
// finds minimal number of blocks needed to obtain
// the maximum fault coverage: remaining_blocks
- initialize total_coverage_summary;
- for each (remaining_block); // calculates final test length

- optimize block length;
// remove all unnecessary pseudorandom patterns
// that do not contribute to the final fault coverage
// taking into consideration ALL blocks that have been
// applied earlier (using total coverage summary)
- total_coverage_summary += coverage(block);
// add new faults from a block into total coverage summary

- set block_length (block_length += block_length/stepping_const);
// next iteration step

- done;

Fig. 7-5. The pseudocode of the algorithm using reseeding and test set compaction

Let DT be the deterministic test set DT = {DTi} for a given CUT and R the set
of possible faults in the CUT. Let us denote by R(DTi)  R the subset of faults
detected by a test pattern DTi  DT. We assume that DT obtains the maximum
achievable fault coverage, hence R(DT) = R.

Algorithm starts by generating pseudorandom sequences PRi with a given
length L where DTi is used as a seed for the pseudorandom sequence. Let us denote

101

the set of these hybrid sequences as PR = {PRi}. For all PRi  PR and for each test
pattern tk  PRi cumulative fault coverage can be calculated as:

R

tR

PRFC ij PRtkj
j

ki





;,1

,

)(

)((7-1)

Thereafter the pseudorandom sequences can be minimized. From each PRi 
PR all pseudorandom test patterns tj, tj+1, ..., tL where FC(PRi,k) = FC(PRi,k-1), for all
k = j, j+1, ... , L will be removed, because these patterns will not contribute for the
increase in fault coverage. These first steps are illustrated on Fig. 7-6. Let us
denote Li the new reduced length of the pseudorandom sequence PRi, with FC(PRi)
the fault coverage of the sequence PRi calculated using the Equation (7-1) of the
last pattern in PRi and with R(PRi)  R the subset of faults detected by PRi.

Fig. 7-6. First minimization of the pseudorandom sequences.

Thereafter, all hybrid test sequences PRi will be ordered in increasing order, so
that Li  Li-1 for every i=1,2, ..., N where N = DT.

Consider now a composite hybrid test sequence PT, composed of all sequences
PRi  PR in the order how they were ranked. Since all initially generated
deterministic test patterns t  DT are included in PT, we have

FC(PT) = FC(DT),
R(PT) = FC(DT) = R.

 DT1 DT2 DTN …

DT1 DT2 DTN …

L

Deterministic test vector (seed) DTi
Pseudorandom test sequence PRi
Pseudorandom sequence removed with the
first minimization

Li

PR1 PR2 PRN

102

To minimize the length of the multi-seed hybrid test sequence we will use here
the test pattern optimization algorithm. In this algorithm the minimal subset Tmin of
the given test set T will be found based on the information of fault subsets R(t)
detected by the test patterns ti  PR, so that the fault coverage remains the same
FC(Tmin) = FC(T). To do this we interpret the sequences PRi  PR as test patterns
t  T, and the fault sets R(PRi), respectively as fault sets R(t). As the result of
optimization we will find a minimal subset PRmin  PR, so that
FC(PRmin) = FC(PR). This step is rather fast as we do not optimize at the level of
individual patterns but only at the level of complete sequences (blocks).

Now a new composite hybrid sequence PTmin will be created from the ordered
set of subsequences PTmin = (PR1, PR2,…, PRm) where m < N.

The next step will be minimization of the total length of the sequence PTmin. As
the result, a reduced final multi-seed hybrid sequence PT * will be created.

Fig. 7-7. Calculation of the final hybrid sequence

To do that we calculate again the cumulative fault coverages for all the test
patterns tk  PTmin similarly to Equation (7-1) for all subsequences PRi  PRmin in
the order how they were ranked and put into PTmin. After calculating the fault
coverage of a current subsequence PRi in PT * we remove from PRi all the test
patterns tj, tj+1, …, tL,i where FC(PRi,k) = FC(PRi,k-1), for all k = j, j+1 ,…, Li. This
procedure is illustrated in Fig. 7-7. As the optimization procedure takes into
account only the cumulative fault coverage of earlier blocks and does not analyze
individual patterns in the current block, then also this step is rather fast.

…

…

PTmin

PT*

Deterministic test vector (seed) DTi
Pseudorandom test sequence PRi
Pseudorandom sequence removed with the
block length optimization

103

Since the described reduction of the whole multi-seed hybrid sequence will not
reduce the fault coverage, we have

FC(PT*) = FC(PT) = FC(DT).

As a result of this algorithm we can find the length of a hybrid sequence for any
arbitrary memory constraint. As a by-product we can also find the length of the
longest hybrid block, that remained at the end of the optimization sequence.

Such an optimization is very necessary when developing a solution for testing
core-based systems, such as SoCs or NoCs. The memory constraints can be seen as
limitations of the on-chip memory or ATE, where the deterministic test set will be
stored, and are therefore of great practical importance.

7.3 Optimization methods

7.3.1 Local search based algorithm for BIST length minimization

In this section, a local search based algorithm for test legth minimization is
described. The algorithm consists of two main parts – in the first part a solution
satisfying the memory contraint is found, in the second part the search is performed
in the neighbourhood of the solution to find an optimal solution, keeping in mind
the given memory constraint. The pseudocode of the algorithm is presented in Fig
7-8.

Local search based algorithm

- blockSize = initialBlockSize;
- currentMemory = seedCount (blockSize);

- while (currentMemory > maxMemory)

- blockSize' = blockSize + blockSize;
- currentMemory' = seedCount (blockSize);
- memory = currentMemory' - currentMemory;

- speed = memory/blockSize;
- blockSize = ROUNDUP ((currentMemory'-maxMemory)/speed);

- blockSize = blockSize';
- currentMemory = currentMemory';

- do

- step = ROUNDUP (step/2);
- chooseBest (HyBISTLength(blockSize+step),
 HyBISTLength(blockSize-step));

- until step =1;

Fig. 7-8. Local search based algorithm for test length minimization

104

The key notations of the algorithm are presented in Fig. 7-9 where both block
length and memory curves are presented.

The algorithm is initialized with a given block size initialBlockSize and a step
length initBlockSize that determines the next block size to be investigated. For the
both block sizes the numbers of seeds that are needed to perform the test are
calculated. Seeds are chosen from the precomputed set of deterministic test vectors
DT in accordance to the method described in Section 7.1. First steps of the
algorithm are illustrated in Fig. 7-10.

Fig. 7-10. Local search based algorithm - first steps

Step 1: PR sequences generated from DT
L1 – initial block length
m1 – initial memory size

L1

L1

L1

1

2

m1

Step 1: PR sequences generated from DT
L1 – initial block length
m1 – initial memory size

L1

L1

L1

1

2

m1

L2

L2

L2

1

2

m2

L

L

L

Step 2: PR sequences generated from DT
L2 – block length = L1+ L
m2 – memory size = seedCount(L2)

precompted deterministic
test set DT

precompted deterministic
test set DT

memory

memory

block length

blockSize

maxMemory

initial block size

initial memory size

Fig. 7-9. Illustration of the key terms used in the local search based algorithm

105

Based on this data, so-called speed is calculated by which it is expected to reach
the given memory constraint maxMemory. The speed determines the next block
size calculated via blockSize and again the corresponding number of seeds that
are needed is calculated. After that, the data is analyzed to determine what is the
next expected block size that would satisfy the memory constraint maxMemory.
This process is repeated until the memory constraint is not satisfied.

The second part of the algorithm is illustrated in Fig. 7-11. In the second part,
the search of the optimal solution is performed considering the memory constraint
maxMemory. The length of the hybrid BIST is analyzed using the function
chooseBest which determines the next possible solution (the one having the sorter
Hybrid BIST length) within the neighbourhood of the current solution determined
by the value of step. At every iteration, step becomes smaller thus approaching the
optimal solution or the solution close to optimal.

Fig. 7-11. Local search based approach - the second part of the algorithm

As an example several search processes for the ISCAS'85 circuit c880 with
different initial block sizes and different first step lengths are shown on Fig. 7-12
to illustrate how optimum is approached when applying the described algorithm.

Solution 1 Solution 2

Step 1. Choose best from Solution 1 and Solution 2

step step

Solution 1 Solution 2

Step 2. Choose best from Solution 3 and Solution 4

step/2 step/2

Solution space
maxMemory

106

Fig. 7-12. Search process of looking for the optimal solution

7.3.2 Tabu search based algorithm for optimization of memory-
constrained hybrid BIST

The method described in the previous section gives us the exact best solution that
satisfies the predefined memory constraint. However, this method is quite time-
consuming and computationally heavy as the entire solution space needs to be
calculated. Therefore, a new heuristic is needed for finding the optimal solution
and in the following, a new method is proposed, that allows to find the solution for
the predined memory contraint by calculating only a subset of the solution space.

As it can be seen from the simulations and experiments presented earlier, the
solution space is not linear, containing number of local optima. Experimental data
for benchmark circuit c7552 is shown on Fig. 7-13.

Block size

Number of iterations

Optimal solution

Different search processes with
different initial conditions

Fig. 7-13. Relationships between number of seeds, maximal block size and
total length for ISCAS benchmark c7552.

107

The proposed method takes into consideration all the key issues of applying re-
seeding based approaches and is based on tabu search which allows escaping from
the local optima in the solution space that may satisfy the given memory constraint
but not being best possible solution or close to that.

The pseudocode of the algorithm is presented in Fig. 7-14.

Tabu Search based algorithm

- Generate set of deterministic test patterns DT such that best possible

coverage is achieved;
- Choose block length L of an initial solution;
- Declare initial solution the best solution
- Calculate the initial solution SI, apply test block compaction
 //generate pseudorandom blocks of length
 //L for all deterministic patterns
 //remove test patterns that do not
 //contribute to overall fault coverage
- Initialize Tabu List
- until stopping criteria met
 - Calculate the current solution S, apply test block compaction
 - Update Tabu List
 - Create the neighbourhood N(S) of the
 current solution
 - Calculate the solutions in N(S), apply test block compaction
 - Find best S' solution from N(S)
 //find the shortest test set
 //where the number of deterministic test
 //patterns satisfies given
 //memory constraint M
 - loop (until solution S* is found)
 - if S' is not in Tabu List then
 - trial solution S*=S'
 - Update Tabu List
 else
 - Find the next best S'
 - if the current solution is best seen so far
 Update best solution
 //if the test set is shorter
 //than the previous best solution
 //next iteration step
- done

Fig. 7-14. The pseudocode of the tabu search based algorithm

The main steps of the algorithm are illustrated in Fig. 7-15. The algorithm starts
from the initial solution defined by the longest pseudorandom block length L of
the test set. Based on the statistical analysis of performed experiments, the initial
solution was determined by:

L=0,3*number of deterministic test vectors

Next, initial solution is calculated using the method described in Section 7.2
resulting in a set of precomputed deterministic test vectors from the set DT and the
corresponding pseudorandom test sequences. Then, a test set compaction is

108

applied, to remove the test patterns which do not contribute to fault coverage. After
that, tabu list is initialized and the search loop is started. Inside the loop, the
neighbourhood of the current solution is calculated.

From the generated neighbourhood, the best feasible solution is chosen for the
consideration as the next solution. If that solution happens to be in the tabu list the
next best solution is chosen, thus giving the search process a chance to escape from
the local optima and eventually reach a solution close to the best one. The search
loop continues until stopping criteria are met - either the search returns to the point
that was already passed or the number of empty iterations (i.e. iterations that do not
result in finding a new best solution) exceeds the given constraint E.

7.4 Experimental results

7.4.1 Local search based algorithm for test length minimization

Experiments were performed on ISCAS'85 benchmark circuits. The results are
depicted in Table 7-1. Test length L and the number of seeds k for different
memory constrains Mmax were calculated. For each circuit, experiments with three
different memory constraints were carried out. The algorithm was executed several
times for different starting points and lengths of iteration steps, and for each run of

Step 1. Initial solution.
Max block length L

Step 2. Generate solution
neighbourhood N(S)

Step 3. Choose the best solution
from N(S) and update the TABU list

T1 T2 ...

Trial solution S*

Fig. 7-15. Tabu search based algorithm

109

the algorithm, the solution and the number of itearations to reach it were found.
The minimum and maximum number of iterations are depicted in columns 3 and 4.
Column 5 shows lower bound of number of iterations for exhaustive search.For
each experiment the exact minimum was reached (the exact minimum was
determined based on the complete curves as shown on Fig. 7-3). In the presented
experiments, the fixed length of pseudorandom pattern blocks (PPBs) was
investigated. The algorithm can also be used for variable length PPBs.

Circuit Constraint
Mmax

Min no. of
iterations

Max no. of
iterations

Exhaustive
search

Test length
L

No. of
seeds k

1 2 3 4 5 6 7

c880

20 6 8 18 360 20

15 7 13 30 450 15

12 13 12 50 600 12

c1908

60 6 8 14 840 60

40 9 11 45 1776 40

35 11 14 51 1785 35

c2670

70 9 11 16 1120 70

67 7 15 34 2278 67

65 15 18 67 4288 64

c3540

60 5 10 16 896 56

40 10 12 36 1224 34

30 10 13 55 1650 30

c7552

90 7 8 17 1513 89

75 9 13 42 3150 75

70 11 13 58 4060 70

In Table 7-2 the length of the test created by this “store-and-generate”
approach is compared with the length of pure pseudorandom and pure deterministic
test approaches. In columns 3 and 4 the lengths of the test with fixed and variable
lengths, correspondingly, are given.

Table 7-2. Comparison of “store-and-generate” with other test sequences

Circuit Pseudorandom
test length

“Store and generate” test
length

Deterministic
test length

No. of seeds

1 2 3 4 5 6

c880 2694 600 208 56 12

c1908 4420 1785 1358 119 35

c2670 22682 4288 535 155 65

c3540 9631 1650 1095 211 30

c7552 24337 4060 1344 254 70

Experiments showed that the method converges well to the exact minimum
whereas the number of iterations does not exceed 18. Compared to exhaustive
search the speedup achieved by this method was from 1,5 up to 5,5.

Table 7-1. Characteristics of the benchmark circuits

110

7.4.2 Hybrid BIST length reduction using reseeding and test set
compaction

Experiments were carried out on the ISCAS'85 and ISCAS'89 benchmark
circuits for investigating the efficiency of the method for reducing the test length
based on the proposed algorithm of calculating the hybrid test sets for each
possible memory constraint. All ISCAS'89 circuits have been redesigned to include
full scan path. For some tasks (like ATPG and fault simulation) tools from the
Turbo Tester toolset [147] were used.

The results are presented in Table 7-3 and Table 7-4 where the length of the
final solution under different memory constraints (different number of seeds) is
depicted. Also, the described method has been compared to the hybrid BIST
method proposed in [149] and to the “store-and-generate” approach with local
search based algorithm [150], described in Section 7.3.1 The method proposed
in [149] was originally developed for multi-core systems but it can equally well be
used also for individual cores. These techniques have one serious shortcoming. The
deterministic and pseudorandom test sets are calculated in isolation and the
sequences were applied sequentially. Therefore, it might happen that the test
sequences could be substantially shortened if the tests are applied in different
order. This issue was addressed in the approach where test set compaction was
implemented.

Table 7-3. Comparison of test length, ISCAS'85

Circuit
Memory
Constraint

(bits)
Nr. of seeds

Test length

Reseeding
and test set
compaction

Hybrid BIST
[149]

Store and
generate
[150]

c499

820 20 313 492 940

1230 30 236 326 540

1640 40 174 193 400

2050 50 140 149 350

c1908

990 30 777 1318 1680

1320 40 589 869 1240

1650 50 444 735 1050

1914 58 337 667 870

c2670

11650 50 238 598 6400

12582 54 211 342 2538

13048 56 171 311 1568

13980 60 148 290 1080

c5315

2670 15 663 753 1290

6230 35 273 451 560

7476 42 173 299 504

8188 46 134 268 368

c7552

19665 95 379 900 1140

21114 102 333 500 714

23805 115 210 334 460

25668 124 165 192 372

111

Table 7-4. Comparison of test lengths, ISCAS'89

Circuit
Memory

Constraint (test
patterns)

Test Length (scan cycles)

Reseeding and
test set

compaction

Hybrid BIST
[149]

s3330

79 1272 1347

70 2121 1636

67 2775 1861

s4863

29 87 154

24 165 211

19 255 298

s6669

10 102 211

7 121 304

4 143 626

In all the presented solutions the fault coverage was guaranteed at the same
level as it was obtained by the deterministic generator.

As it can be seen from the results the method with reseeding and test set
compaction can always find a test set that is shorter than the test set found using
methods from [149] and [150]. The main explanation lies in the fact that the new
method handles the deterministic and pseudorandom sequences together and the
test sets are optimized using a fast optimization method, based on cumulative fault
coverage figures. The implementation of the store and generate method [150] is not
optimizing the length of the individual hybrid blocks (the reseeding blocks are
generated in isolation) and therefore also the results are worse than result of hybrid
BIST [149].

In order to illustrate the importance of the test set compaction, the lengths of
reseeding blocks for the same arbitrary solution are compared in Table 7-5. As it
can be seen the length of reseeding blocks is substantially longer when no
compaction is used and with proposed method we can reduce the size of the hybrid
block. This means that many pseudorandom test patterns that are not contributing
to the overall fault coverage and are only prolonging the test sequences have
successfully been removed.

112

Table 7-5. Comparison of block sizes

Circuit

Reseeding and
test set

compaction

Store and
generate
[150]

Circuit

Reseeding and
test set

compaction

Store and
generate
[150]

Max block size Max block size

c432

11 28

c2570

15 128

7 14 8 47

4 8 7 28

3 5 4 18

2 4 2 13

c499

23 47

c3540

6 15

10 18 5 10

6 10 3 7

4 7 2 4

3 4

c5315

10 16

c1908

30 56 5 12

21 31 4 8

13 21 3 5

10 15

c7552

10 12

9 13 6 7

c1355

10 31 3 4

6 12 2 3

4 7
3 6

In Fig. 7-16 and Fig. 7-17, more detailed results of some circuits are depicted.
In Fig. 7-16 the relationships between the memory constraint (nr. of seeds), the test
length and the length of the shortest block are illustrated. As it can be seen from
these charts the reduction of the number of seeds will increase the length of the
blocks and consequently, also the test length will be increased.

113

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 42 52 63 78 97 121 152 191 427

Max. block size

N
r.

 o
f

s
e

e
d

s

0

500

1000

1500

2000

2500

3000

T
e

s
t

le
n

g
th

Nr. of seeds v. max block size

Test length v. max block size

C1908

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Max. block size

N
r.

 o
f

s
e

ed
s

0

50

100

150

200

250

300

350

T
e

s
t

le
n

g
th

Nr. of seeds v. max. block size

Test length v. max. block size

C2670

0

20

40

60

80

100

120

140

160

1 11 21 31 42 63 97 152 242 388 626 1012 1643

Block Size

S
ee

d
s

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

T
e

st
 L

e
n

g
th

Nr. of seeds v. max. block size

Test length v. max. block size

C7552

Fig. 7-16. Relationships between number of seeds, maximal block size

and total test length

114

0

500

1000

1500

2000

2500

3000

109 72 56 42 40 37 34 30 24 23 22 18 18 14 12 10 6

Nr. of seeds

T
e

st
 le

n
g

th

C1908

0

50

100

150

200

250

300

350

88 60 56 53 51 48 47

Nr. of seeds

T
e

s
t

le
n

g
th

C2670

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

136 95 89 86 84 82 78 70 64 58 56 53 45

Nr. of seeds

T
e

st
 l

en
g

th

C7552

Fig. 7-17. Relationship between the test length and number of seeds.

In Fig. 7-17 this relationship is illustrated in more straightforward manner,
showing how the test length is increasing if the number of seeds is reducing.

115

The CPU times have not been included in these experimental results, as with the
described method the entire solution space is being calculated, while the method
described in [149] and store and generate approach [150] can find a single solution
for a predefined memory constraint. This requires an optimization heuristic that
would help to avoid calculation of the complete curves and thereafter the
comparison of CPU times would be also possible.

In Fig. 7-18 the total cost of the hybrid BIST solution for different number of
seeds are depicted. The cost calculation is performed according to the formula:

CTOTAL = CPR + CDET +CMEM  PRL+DETS+βS

where CPR is the cost of pseudorandom sequence, CDET is the cost of applying
deterministic patterns and CMEM is related to the cost of storing deterministic test
patterns in the memory; L is the length of the pseudorandom test, S is the number
of deterministic vectors used. Parameters αPR and βPR can be used to align the
application times of different test sequences. Constant β can be used to map the
number of test patterns in the deterministic test sequence into the memory cost,
measured in bits.

In the experiments described above, the parameters PR, DET and  had the
same value. In Fig. 7-18 the situation where the tester (or on-chip memory) has
different value is illustrated. The curve Total Cost has been calculated so that
PR= DET =  = 1. For the Total Cost 2 PR= DET=1, β = 2, and for Total Cost 3
PR= DET = 1, β = 6. The values β = 2 and β = 6 mean that it is respectively two
times and six times more expensive to store one deterministic pattern than to
generate one pseudorandom pattern. These curves can be used for finding total cost
minimums and to deduce from this information also the optimal number of seeds,
which according to the presented algorithm also determines the optimal block
sizes. Here it can be seen that the memory component influences the total cost of
hybrid BIST solution significantly.

Fig. 7-18. Comparison of the total test cost using different memory cost parameters.

116

7.4.3 Tabu search based algorithm for optimization of memory-
constrained hybrid BIST

Experiments were carried out on ISCAS'85 and ISCAS'89 benchmarks. ISCAS'89
circuits were redesigned in order to include full scan path. The results of these
experiments are shown in Table 7-6 and Table 7-7. In these tables, the test lengths
under different memory contraints found by the Tabu Search based method and test
lengths that are found by the reseeding with test set compaction method where the
full curve is calculated, are depicted.

Table 7-6. Comparison of test lengths and number
of calculations for ISCAS'85 benchmarks

Circuit
Memory
Constraint

(bits)

Tabu Search based
optimization

Reseeding and
test set compaction

Test
Length

Nr. of
calculations

Test
Length

Nr. of
calculations

c499

2050 140 15 140

144
1640 179 15 174

1230 236 14 236

820 335 11 313

c1908

1980 392 12 337

159
1650 444 11 444

1320 600 8 589

990 778 13 777

c2670

13980 183 17 148

181
12815 201 15 191

11650 252 11 238

10485 366 13 361

c5315

8010 157 10 141

144
6230 273 11 273

4450 433 9 433

2670 691 22 663

c7552

23805 210 34 210

167
21735 333 31 333

19665 408 20 379

17595 790 9 790

Average 370 15 358 159

117

Table 7-7. Comparison of test lengths and number of calculations
for ISCAS'89 benchmarks

Circuit
Memory
Constraint

(bits)

Tabu Search based
optimization

Reseeding and
test set compaction

Test
Length

Nr. of
calculations

Test
Length

Nr. of
calculations

s3330

4000 637 24 637

120 3800 730 22 694

3600 869 20 861

s4863

2205 79 15 64

144 1470 99 17 87

980 202 13 202

s6669

2158 56 5 43

95 1162 76 7 75

415 123 16 114

Average 319 15 309 120

As it can be seen from the presented results, the length of the test found by the
tabu search based method is not always exact minimum but nevertheless its length
is quite close to the shortest test under the given memory constraint found by
exhaustive method. However, the number of calculations needed to find the
solutions significantly smaller when compared to the results of the reseeding and
compaction approach.

It can be seen that the tabu search based method allows to find the close to
optimum solution for ISCAS’85 benchmarks in average 10 times faster than the
exhaustive search, whereas the calculated average test length is only 3,12% worse
than the average exact optimum. For ISCAS’89, the method is in average 7,75
times faster and, the calculated average test length is 3,39% worse.

118

7.5 Conclusions

1. In this chapter, several approaches to optimization of the hybrid BIST with
reseeding have been described. The purpose was to develop methods for finding an
optimal balance between the number of precomputed deterministic test vectors and
pseudorandom test sequences taking into consideration the constrained memory
size (number of LFSR seeds) and guaranteeing maximum achievable fault
coverage.

2. The BIST synthesis method is based on the test set compaction using cumulative
fault coverage of the hybrid test sequences. The method provides a possibility to
find a memory constrained test solution and to use it for constructing an optimal
test solution for the entire system.

3. Two methods were developed for optimization of the BIST sequence, the local
search method and tabu search method.

4. In the local search method, two different scenarios were considered, where the
length of the pseudorandom blocks was either constant or variable. In the latter
case the total length of the test was considerably smaller. However, in the case of
the variable block length the memory cost would increase, since for each seed the
length of the block should be stored as well.

5. The second described method incorporates the ideas of the test set compaction
approach with an approach known as tabu search which is targeting optimization
of the problems with multiple local optima. The experiments showed that the
approach allows to find the solution quite close to the shortest test under the given
memory constraint. This method does not require the calculation of the whole
solution space and therefore gives results much faster than the exhaustive search
method.

119

Chapter 8 BIST cost minimization and
testability analysis for industrial designs

In this chapter, the methods of minimization of cost for hybrid BIST with reseeding
are developed and experimental results are presented for the biosignal processors
and also ISCAS’89 family benchmarks. Experiments are carried out with the
industrial design developed at the Centre for Integrated Electronic Systems and
Biomedical Engineering CEBE for acquiring and measuring bioimpedance signals.
The testability of these designs is thoroughly analyzed. Different testability
characteristics are taken into consideration and the impact of alterations made to
the original design are investigated.

8.1 The role of the cost components of the Hybrid BIST

The function to calculate the cost of the hybrid BIST solution was thoroughly
described in Chapter 6. Let us recall that the total cost of the hybrid BIST CTOTAL
can be defined as follows:

CTOTAL = CGEN + CMEM L+S

where CGEN is the cost related to the time for generating L pseudorandom test
patterns (number of clock cycles), CMEM is the memory cost for storing S
precomputed test patterns needed to improve the results of the pseudorandom test
sequence [126].  and  are the constants to map the test length and memory space
to the costs of the two parts of the test solutions to be mixed.

It is obvious that the correspondence values of  and  have a great influence
on the total cost of the applied test. When  >>  it means the time used by the test
has more impact on the total cost of the test than the memory needed to store the
seeds that are used in the test, that is – the more time the test application takes, the
more expensive it becomes. On the other hand  <<  means that the memory
component of the total cost is more significant – the more seeds need to be stored,
the more expensive will be the test.

Fig. 8-1 represents the situation where the memory component  (which
represents the cost of storing one test pattern in the memory) has different values
for the ISCAS’89 circuit s13207.

120

 a) β = 25 b) β=75

c) β=100 d) β=500

Fig. 8-1. The cost curve for ISCAS’89 benchmark s13207
for different values of memory component

Experiments showed that for the ISCAS’89 benchmarks the cost function becomes
nonconvex in case when the value of time component α is 1 and the value of
memory component β is between 25 and 750, that is when the memory component
of the total cost is 25 to 750 times more “expensive”. When memory component β
is less than 25 the cost function tends to be linearly dependent from the time
component – the longer time is needed for applying the test, the higher the value of
the cost function is, that is – the more expensive the test becomes. When memory
component β is more than 750 the cost function tends to be linearly dependent from
the memory component – the more expensive it is to store one precomputed test
pattern, the higher value of the cost function is.

0

10 000

20 000

30 000

40 000

304 2516 6454 16441 29522

Te
st
 C
o
st

Test Length

0

10 000

20 000

30 000

40 000

304 2516 6454 16441 29522

Te
st
 C
o
st

Test Length

0

10 000

20 000

30 000

40 000

304 2516 6454 16441 29522

Te
st
 C
o
st

Test Length

0

40 000

80 000

120 000

160 000

304 2516 6454 16441 29522

Te
st
 C
o
st

Test Length

121

In the area where the cost function is nonconvex, suitable optimization
algorithms are needed to perform fast calculations in order to find the solution (the
combination of seeds and the corresponding pseudorandom test blocks) with
minimal cost taking into consideration the time and memory component.

8.2 Tabu Search based algorithm for minimizing the cost
of reseeding

As the as the test cost function is nonconvex in certain range, in order to find the
minimum value and reduce the number of calculations needed, the tabu search
based method for the hybrid BIST with reseeding (described in Chapter 7) was
implemented, as this approach allows escaping local optima while performing the
search.

The algorithm is described in Fig. 8-2.

The algorithm starts from generating the set of deterministic patterns DT. Then,
the pseudorandom blocks of length L0 (that denotes the block length of the initial
solution) are generated so that the patterns in DT are used as seeds. Thereafter, all
the created blocks PRi are minimized – the patterns that do not contribute to the
fault coverage of the block are removed. After the minimization is performed, the
blocks are reordered in increasing order and test pattern optimization algorithm is
applied, that takes into account cumulative fault coverage of the blocks and
removes the patterns that do not contribute to overall fault coverage (see details in
Section 7.2). The remaining test set that consists of precomputed patterns (seeds)
and the compressed pseudorandom sequences, is the initial solution S0. The cost of
the solution is calculated, according to the cost calculation function shown in
Section 8.1.

Initial solution S0 is the starting point of the algorithm. The values are set for
current solution SCURR=S0, best solution SBEST=SCURR. Also, the tabu list is
initialized. After that, the loop starts to find optimal solution.

First, the neighbourhood N of the current solution is generated (neighbouring
solutions are defined by the length of the pseudorandom block). For neighbours,
the solutions are calculated (by generating the test set consisting of deterministic
seeds and corresponding pseudorandom test pattern blocks). Then, the costs of all
solutions in the generated neighbourhood are calculated. The solution STRIAL with
best cost in the neighbourhood is chosen and compared with the tabu list. If the
solution STRIAL is not in tabu list, it is chosen as the next current solution SCURR. If
the solution is tabu then the next best solution from the neighbourhood is chosen.
The chosen current solution SCURR is compared to best solution seen so far SBEST
and if the cost of SCURR is better than the cost of SBEST then SCURR becomes the best
solution SBEST. The loop continues until the stop criterion is met – the search return
to an already visited solution or there in no improvement in SBEST for defined
number of steps.

122

Tabu Search based algorithm

- Generate set of deterministic test patterns DT
- Choose the block length L0 of the initial solution
- Generate the initial solution S0 based L0

//generate pseudorandom blocks with length L0 for all
//patterns from the set DT
//apply test set compaction removing the patterns that
//do not contribute to the overall FC

- Calculate Cost (S0)
- Declare current solution SCURR=S0
- Declare best solution SBEST = SCURR
- Initialize tabu list TL
- repeat (until stopping criterion met)

 Generate neighbourhood N of SCURR
 Calculate the solutions in N, apply test set compaction

//generate pseudorandom blocks of length LN1, LN2 etc.
//apply test block compaction based on FC
//rearrange the blocks
//minimize the number of blocks
//apply test set compaction

 Calculate the Cost of solutions in N
 Find best Cost(STRIALN)
 loop (until best solution STRIALN is found)

 if STRIAL is not in TL, then
 Declare SCURR=STRIAL
 Update TL

 else
 find the next best STRIAL

 if Cost (SCURR)< Cost(SBEST)
 Declare SBEST=SCURR

- done

Fig. 8-2. Tabu search based algorithm for reducing number of calculations

The resulting SBEST is the solution found by the algorithm.

In the presented approach, the following algorithm parameters were chosen:

initial solution S0: 0,3*length of the deterministic test
size of the neighbourhood: Size (N) = 10
tabu list TL length: Length (TL) = 7
stopping criterion: 10 unresulative iterations

The experimental results of using the method are described and discussed in

Section 8.6

123

8.3 Simulated annealing based algorithm for minimizing
the cost of reseeding

As simulated annealing possesses the “hill climbing” property needed for escaping
local optima of nonconvex solution space, an optimization algorithm for reducing
the number of calculations in order to find minimal cost of hybrid BIST with
reseeding was also implemented using an approach of simulated annealing. The
description of the algorithm is shown in Fig. 8-3.

Simulated annealing based algorithm

- Generate set of deterministic test patterns DT
- Choose the block length L0 of the initial solution
- Generate the initial solution S0 based L0

//generate pseudorandom blocks with length L0 for all
//patterns from the set DT
//apply test set compaction removing the patterns that
//do not contribute to the overall FC

- Calculate Cost (S0)
- Declare current solution SCURR=S0
- Declare new solution SNEW=S0
- Declare best solution SBEST = SCURR
- Set initial temperature T
- repeat

 repeat
 Generate neighbour SNEW of the current solution SCURR

//generate pseudorandom blocks of length LN
//apply test block compaction based on FC
//rearrange the blocks
//minimize the number of blocks
//apply test set compaction

 Calculate Cost (SNEW)
 Calculate Cost = Cost (SCURR)-Cost(SNEW)
 if (Cost<0) then

 Declare SCURR=SNEW
 if Cost(SCURR)<Cost(SBEST) then

 Declare SBEST=SCURR
 else

 if (random_number < -Cost/T)
 SCURR=SNEW

 reduce the value of M
 until M=0
 reduce the value of T

- until max number of empty Markov’s chains achieved
- SBEST is the solution

The algorithm starts from generating the set of deterministic patterns DT. Then,
the pseudorandom blocks of length L0 (that denotes the block length of the initial
solution) are generated so that patterns in DT are used as seeds. Thereafter, all the

Fig. 8-3. Simulated annealing based algorithm for reducing the number of calculations

124

created blocks PRi are minimized – the patterns that do not contribute to the fault
coverage of the block are removed. After minimization is performed, the blocks are
reordered in increasing order and test pattern optimization algorithm is applied, that
takes into account cumulative fault coverage of the blocks and removes the patterns
that do not contribute to overall fault coverage (see details in Section 7.2). The
remaining test set that consists of precomputed patterns (seeds) and the compressed
pseudorandom sequences, is the initial solution S0. The cost of the solution is
calculated, according to the cost function.

Solution S0 becomes the starting point of the algorithm. It is also declared to be
the current solution SCURR and the best solution SBEST (solution with the best cost
seen so far). The important parameter of simulated annealing – the initial
temperature T is set. After that, the calculations are performed in a loop – the heart
of the algorithm, the Metropolis procedure which simulates annealing of metal at
given temperature. In this loop, a local neighbour is chosen from the
neighbourhood of SCURR. For the chosen neighbour (determined by the block length
LN) the solution SNEW is generated (by generating the test set consisting of
deterministic seeds and corresponding pseudorandom test pattern blocks). The cost
of the generated solution is calculated. Now, if the Cost(SNEW) is better than the
Cost(SCURR), the new solution is accepted, thus SCURR=SNEW. In case Cost(SNEW) is
worse than Cost (SCURR), the solution SNEW might still be accepted on probabilistic
basis (here, the “hill climbing” property of simulated annealing is realized). The
random number is generated in range 0 to 1. In case this generated number is

smaller than
T

Cost
e


 where Cost is the difference of costs and T is the

current temperature, the uphill solution is accepted. The loop is performed M times
(the value of M represents the amount of time for which annealing must be applied
at given temperature T). After that, the value of temperature T is reduced (based on
cooling rate defined by αSA) and the value of M that defines the duration of the one
annealing loop is also reduced. The loop is repeated with decreasing values of T
and M until the given number of unresultative Markov’s chains is achieved.

In the current approach, based on empirical studies, the following parameters
for simulated annealing were chosen:

initial solution: 0,3*length of the deterministic test
initial temperature: T = 100
constant to determine cooling schedule: αSA = 0,9
initial value of length of Metropolis procedure: M = 15
constant to reduce value of M in a controlled manner: βSA = 1,1

The experimental results of using the method are described and discussed in
Section 8.6

125

8.4 Benchmark circuits family based on biosignal
processor designs

In biomedical engineering, bioimpedance is a term used to describe the response of
a living organism to an externally applied electric current. Measurement of
electrical bioimpedance enables to characterize tissues and organs, to get
diagnostic images, etc.[152]. Multi-channel data-acquisition devices are used often
in biomedicine to measure the properties of organs and tissues. The main reason is
the fact that the useful information is hidden under background signals generated
by the normal body activity [153][154]. An example would be respiration
generated noise when measuring heart activities. Electrical bioimpedance

Ż=R + jX

is determined by measuring of voltage response V to the excitation current I flow
through the tissue or organ, and calculated as

Ż=V/I

The impedance of tissues and organs is measured between the electrodes having
different locations. Multisite and multifrequency bioimpedance information has a
great diagnostic value [156][157].

In the following, the DSP (digital signal processing)-based solution for a multi-
frequency measurement unit prototype has been described.

The basic architecture of the digital multichannel bioimpedance analyzer
(DMBA) is shown in Fig. 8-4 [153]. The parameters of the response receiving part
(multiplexer and signal analyzer) are defined by the use of single analog-to-digital
converter (ADC) for multichannel measurements. For instance, practical
measurement on body surface (thorax EBI measurements) with 8 excitation sources
and also 8 response signals require operating in the frequency range of interest
between 30 kHz and 100 kHz. The task can be accomplished using single ADC
with at least 10MHz multisampling rate. The resolution must be between 18 to 20
to represent low (0.01% range) impedance changes adequately [158].

Fig. 8-4. A simplified block diagram of DMBA

126

The heart of the electronic test arrangement (prototype) is the Field
Programmable Gate Array (FPGA) SpartanTM-3 from Xilinx. The FPGA handles
input channel selection, sampling pulse generation, preamplifier gain control,
compensating voltage code generation, reading samples from ADCs (analog-to-
digital converters). The functional block diagram of the FPGA unit is shown on
Fig. 8-5.

Fig. 8-5. Functional block of the FPGA unit with I/O connections

and peripheral components

There has been a number of different modifications developed in order to
compare different architectural solutions of this functionality.

Fig. 8-6. Schematic of the industrial design

The part controlled
by the FPGA

127

Fig. 8-6 shows an example block diagram of the design – reconfigurable multi-
channel multi-frequency application specific signal processor (DSP), which was
designed for acquiring and measuring bioimpedance signals.

The acquired data is first sampled, then sorted and finally processed. The
processing includes calculating the values that are needed to calculate the
bioimpedance of the tissue. The sampling order is controlled by a programmable
decoder, implemented in block RAM. The sampled data is then placed into one of
two on-chip memories, which are working in parallel – when one is collecting the
incoming data, the other is sending the previously collected values for processing.
Data is accumulated and accumulation registering is performed. After that, data
from registered accumulators are multiplexed to a single output register.

The general structure of the 8-channel signal processor for bioimpedance
measurements is shown in Fig. 8-7. During the design process, alterations were
made to both preprocessor part of the design and the integrator part of the design,
resulting in eight different configurations performing the same function: 8a,8b,
8be,8bk,8bs,8c,8d and 8de. The goal of the research in this thesis was to
investigate how different structural implementations would impact on the
testability of the design, and to find out which properties of the design will cause
worse testability.

Fig. 8-8 shows which successive changes were introduced into the designs.
Design 8a was the original version with eight data channels, other designs are
different alterations.

Fig. 8-7. General structure of the biosignal processor

128

Fig. 8-8. Overview of the benchmark designs

8.5 Testability analysis of the benchmark family

Testability analysis of different configurations of biosignal processor design
was performed by using deterministic and pseudorandom test pattern generators,
fault simulator and by using the algorithms for hybrid BIST optimization
developed in this thesis. Several testability characteristics were analyzed: the test
length achieved and the needed time for deterministic test pattern generation, the
time needed for fault simulation and for the pseudorandom test generation, the
hybrid BIST length and the calculated optimal test cost of hybrid BIST. The results
are presented in Table 8-1.

Table 8-1. Testability characteristics of 8-channel signal processors

Design Deter‐
ministic

test length

Deter‐
ministic test
generation
time, s

Fault
simulation
time, s

Random
test

generation
time, s

HyBIST
length

HyBIST
optimal
cost

8a 1364 47 13,7 1408 23 038 197 823

8b 1201 34 11,8 1130 18 540 138 324

8be 995 114 27,9 2784 14 202 104 474

8bk 1288 35 11,3 1129 17 497 144 876

8bs 1186 296 69,0 7095 14 086 113 038

8c 1320 75 15,5 1583 35 641 224 121

8d 1394 62 16,6 1647 32 610 209 384

8de 1096 112 33,4 3344 33 968 162 557

129

The most significant changes in testability characteristics because of the design
modifications are highlighted in Table 8-2.

Table 8-2. Changes in testability characteristics because of the design modifications

Design Deter‐
ministic test

length

Deter‐
ministic test
generation
time, s

Fault
simulation
time, s

Random
test

generation
time, s

HyBIST
length

HyBIST
optimal
cost

8a  8b      
8b  8be      
8b  8bk

8bk  8bs      
8a  8c     
8c  8d   
8d  8de     

The different design implementations are characterized by different levels of
sharing of resources such as input buffers, preprocessing units, adders and
subtractors in preprocessors, and integrators. Sharing of the resources was
accompanied by introducing additional multiplexers and control circuits which in
their turn increased the number of reconvergent fan-out branches in the topology of
the circuits. A rough estimation of the number of convergent control signals is
given in Table 8-3.

Table 8-3. Modifications in the different benchmark designs

Design

Number of reconvergent control
signals

Modification made in the designs

Pre‐
processor

Integrator Total

8a
8b
8bk
8c
8d

32
32
64
32
32

64
64
64
64
64

96
96
128
96
96

Initial design
Shared preprocessor

Shared preprocessor and adder/subtractor
Initial design with input buffers

Shared preprocessor

8be
8de

32
32

512
512

544
544

Shared preprocessor and integrator
Shared preprocessor and integrator

8bs 64 1536 1600 Maximum sharing of resources

The transition from 8a to 8b was the replacement of eight different channels in
preprocessing part of the circuit by one common channel, thus the redundancy was
removed, resulting in shared preprocessor. This change resulted in improvement of
all the testability characteristics under consideration. The best improvements were
seen in reduction of test generation time (generation of deterministic test 1,4 times
and generation of pseudorandom test 1,25 times faster). Fault simulation time was
1,16 times faster. Also, the optimal cost and the test length of the hybrid BIST

130

(with reseeding) significantly improved – one of the reasons is smaller number of
inputs in 8b which results in the less cost of the memory component of the hybrid
BIST.

The transition from 8b to 8be was the replacement of eight channels of
integrators with one channel. Multiplexers were added to the inputs of adders in the
integrator. As it can be seen from the presented results, deterministic test length
improved - it was 1,2 times shorter which can be explained by the reduction of the
circuit because of sharing a single channel instead of using eight different channels.
On the other hand, the time needed for deterministic test generation was 3,35 times
higher because of increasing of the number of reconvergent control signals in the
circuit from 94 to 544, which causes higher number of backtracks during search for
consistent solutions. Also, fault simulation time became 2,36 times slower, and the
time needed for pseudorandom test generation was 2,46 times higher. This is
explained by the use of exact critical path tracing algorithm [159] used for fault
simulation which is highly sensitive to the number of reconvergent control signals.
Since pseudorandom test generation uses the same fault simulator, the test
generation time consequently as well increases as well. The cost of the hybrid
BIST was improved due to the smaller number of deterministic vectors needed.

The transition from 8b to 8bk was using one adder/subtractor and additional
multiplexers in the preprocessor part. The increase of the reconvergent control
signals (from 96 to 128) did not significantly influence the testability of the circuit.

 The transition from 8bk to 8bs combined the preprocessor part of the design
8bk and the integrator part of the design 8be. As it can be seen from the
Table 8-3, the number of reconvergent control signals increased drastically (128 for
8bk and 1600 for 8bs). Table 8-2 shows worsening of the testability
characteristics regarding test generation and fault simulation: the time of
deterministic test generation became 8,45 times longer, the time of fault simulation
6,1 times longer, and the time of random test generation became 6,28 times longer.
On the other hand, because of the reduction in circuit size, the length of
deterministic test set became slightly shorter (1,08 times). The length of optimal
hybrid BIST was 1,24 times shorter and optimal cost was 1,28 times smaller due to
the smaller number of seeds needed to achieve the best possible fault coverage.

The transition from 8a to 8c resulted in adding additional buffer registers to the
inputs of input buffers. The eight channels of data remained. In Table 8-2 it can be
seen that test generation and fault simulation time related characteristics have
become worse: generation time of deterministic test became 1,59 times longer,
generation time of random test became 1,13 times longer and fault simulation time
became 1,13 times longer. This worsening of indicators can be explained by the
increase of the number of reconvergencies because of adding control signals for
addressing the buffer registers. The test length did not change because of the circuit
size remained the same. The length of hybrid BIST sequence test became 1,54

131

times longer, and the cost of Hybrid BIST was bigger for 8c due to the bigger
number of inputs (buffer registers).

In the transition from 8c to 8d eight channels of the preprocessor were
removed and replaced with a single channel. Multiplexers were added to the inputs
of the preprocessor. The characteristics that changed most significantly were
deterministic test generation time (became shorter) and the length of the optimal
hybrid BIST became slightly shorter, similarly as in the case of “from 8a to 8b”

In transition from 8d to 8de, the eight channels of integrator were replaced by
a single channel and also some multiplexers were added. This change resulted in a
bigger number of reconvergent control signals (Table 8-3) and, consequently, also
in longer times for test generation and fault simulation: test generation time for
deterministic test was 1,81 times longer and test generation time for random test
was 2,03 times longer. Fault simulation time was 2,01 times longer. The length of
deterministic test set was 1,27 times shorter and the cost of the optimal hybrid
BIST test was 1,28 times smaller (due to the smaller number of seeds needed). This
case affected the testability characteristics in the similar way as in the case
 “from 8b to 8bk”

8.6 Experimental results of BIST optimization

Experiments were performed on ISCAS’89 benchmarks and on the different
configurations of the biosignal processor design to investigate the efficiency of the
described optimization algorithms. The circuits were redesigned to include full
scan path.

The results for ISCAS’89 benchmarks are presented in Table 8-4, where the
number of calculations needed to find the minimum value of the cost function is
shown for all three cases – exhaustive calculation, tabu search based algorithm and
simulated annealing based algorithm. In all solutions the highest fault coverage
was guaranteed.

For test cost was defined by the formula, which takes into account the
deterministic part of the test sequence:

CTOTAL = CGEN + CMEM  L+βS

where L is the total length of the pseudorandom sequences of the test and S is the
number of precomputed deterministic test patterns, stored in the memory.

132

The values of parameters were chosen as follows:

α = 1 (the cost of applying one test pattern)
β = 3*B (the cost of storing one deterministic test in memory; B is the

number of bits of the input vector, 3 is the cost of storing one bit in the memory)

Table 8-4. Comparison of Tabu search and Simulated annealing
 based approaches for ISCAS’89

Circuit s3271 s3330 s5378 s13207 s15850 s3982 Average

Test Length 314 950 1896 1733 606 3982

No. of seeds 24 83 55 195 208 484

Length of the PR block 21 29 52 20 7 22

Real best cost 938 4270 3821 7778 3518 17500

Best cost found by SA 938 4270 3821 7778 3518 17500

Best cost found by TS 950 4300 3821 7778 3558 17500

No. of calculations 3000 1500 2500 2000 2000 500 1917

No. of calculations by SA 81 49 53 71 52 141 75

No. of calculations by TS 24 25 20 35 34 106 41

For calculating the test cost of the biosignal processor design, the values of the
constants were chosen as follows:

α = 1 (the cost of applying one test pattern)
β: number of bytes needed to store one deterministic test in memory

Table 8-5(a) Comparison of TS and SA based approaches for biosignal processor

Design 8a 8b 8be 8bk Average

No. of primary inputs 2528 1744 1744 1744

No. of nods 31070 23785 26263 23656

Test Length 28038 18540 14202 17497

Fault coverage, % 98,69 98,31 98,19 98,25

No. of seeds 539 552 416 587

Length of the PR block 174 116 89 97

Real best cost 197823 138324 104474 144876

Best cost found by SA 197823 138324 104474 144876

Best cost found by TS 200382 142037 106725 148805

No. of calculations 1500 1500 1500 1500 1500

No. of calculations by SA 103 65 73 51 73

No. of calculations by TS 54 31 29 21 34

133

Table 8-5(b) Comparison of TS and SA based approaches for biosignal processor

Design 8bs 8c 8d 8de Average

No. of primary inputs 1744 3043 2707 2707

No. of nods 26868 34314 33577 35600

Test Length 14086 35641 32610 33968

Fault coverage, % 97,85 97,97 98,83 98,71

No. of seeds 456 496 523 424

Length of the PR block 66 231 210 121

Real best cost 113038 224121 209384 162557

Best cost found by SA 113698 224121 210359 162557

Best cost found by TS 120848 224123 212270 163423

No. of calculations 1500 1500 1500 1500 1500

No. of calculations by SA 51 134 45 62 73

No. of calculations by TS 32 43 37 42 39

As it can be seen from the presented results, simulated annealing based
approach can in almost all cases find the exact solution with the smallest value of
the cost function. The tabu search based approach needs less calculations but does
not always guarantee the best possible solution. However, if the solution found by
tabu search based approach is not really the best possible, it is still quite close to
minimal solution. For both ISCAS’89 benchmarks and the biosignal processor
designs, simulated annealing based method found the solution in average about 20
times faster and the tabu search based method found the solution in average about
40 times faster.

Additional experiments were carried out in order to determine if the described
approaches are also applicable in cases where the cost function loses its parabolic
nature. Examples of such cases are presented in Fig. 8-9.

a) β=1 b) β=2000

Fig. 8-9. The cost curve for ISCAS’89 benchmark s13207
for extreme values of memory component

0

10 000

20 000

30 000

40 000

304 2516 6454 16441 29522

Te
st
 C
o
st

Test Length

0

200 000

400 000

600 000

800 000

304 2516 6454 16441 29522

Te
st
 C
o
st

Test Length

134

Table 8-6. The search results for extreme values of β for benchmark s13207

 β=1 β=2000

No. of seeds 304 19

Length of the PR block 1 1565

Real best cost 304 64040

Best cost found by SA 379 73179

Best cost found by TS 379 76084

No. of calculations 1500 1500

No. of calculations by SA 38 511

No. of calculations by TS 40 175

Experiments showed that even in these extreme cases, the algorithms are
applicable and capable of finding the solution that is close to optimal. Table 8-6
shows the results for extreme case for circuit s13207 (also illustrated on Fig. 8-9)
– in one case cost of storing one deterministic test pattern in memory β = 1, and in
the other case the cost of storing one deterministic test pattern in memory
β = 2000. As it can be seen, in case of both approaches the search time is similar in
case of “cheap” memory and tends to be quite long in the case of “expensive”
memory.

135

8.7 Conclusions

1. Two algorithms for cost minimization of hybrid BIST with reseeding based on
tabu search and simulated annealing were presented, described and investigated.

2. The impact of constants α and β in the cost function of the hybrid BIST with
reseeding was investigated, where α represents the cost of applying one test vector
thus allowing to measure the time component of the total cost and β represents the
cost of storing one precomputed test pattern (seed for LFSR) thus allowing to
measure the memory component of the total cost.

3. Experimental research was carried out both on the ISCAS’89 and on the
industrial circuits which represented a family of biosignal processors. In all
processors the same functions were implemented, however by different circuit
architectures and sharing of resources.

4. Experiments showed that the cost minimization based on simulated annealing
and tabu search are suitable for solving the problem, giving the minimal or near
minimal solution within reasonable time cost – number of times faster than in case
where it is needed to calculate the whole cost curve

5. Experiments also showed that simulated annealing based solution tends to be
more exact but takes more time than tabu search based solution; tabu search based
solution will give less exact results but works faster than simulated annealing
based approach.

6. In cases, where the cost function tends to lose its parabolic nature – that is, when
the value of memory component β is either very small or very big compared to the
time component α, the presented algorithms are also capable of finding the
solutions with a close to minimal cost.

7. It has been shown that the BIST quality considerably depends on the testability
of circuits. By experimental research a correlation was established between the
structural properties of circuits and their testability characteristics. It was shown
that sharing of resources, which leads to the increase of number of
reconvergencies, on one hand, will increase the time needed for test generation and
fault analysis, but on the other, hand will reduce the test length.

136

Summary

In this thesis, several important issues in the area of built-in self-test of digital
systems were presented:

 defect-oriented analysis of pseudorandom built-in self-test efficiency was
investigated

 optimization techniques for different approaches of hybrid built-in self-test
were developed

 throughout the research, two optimization techniques tabu search and
simulated annealing were taken as basis of algorithms and compared with
each other.

 the testability issues and relations to BIST of the industrial circuits
developed for bioimpedance measurements were analyzed

Research on different fault models with the goal of adequate representing of
physical defects for improving the quality of BIST analysis was carried out. A
novel defect-oriented functional fault model called also conditional SAF model
was introduced to support high quality BIST analysis.

As the classical built-in self-test approach has a number of drawbacks, there are
many improvement techniques proposed. In this work, the emphasis was made on
hybrid BIST approach – the combination of precomputed deterministic tests stored
in memory and pseudorandom sequence, and on the “store-and-generate” BIST
approach based on reseeding the LFSR.

In order to evaluate the test, a cost function was introduced that takes into
consideration, on one hand, the cost related to applying the test patterns, and on the
other hand, the cost related to storing the deterministic test patterns in on-chip
memory. This cost function allows to find an optimal balance between
pseudorandom and deterministic test sets, and to perform the hybrid self-test with
minimum cost of both, time and memory, and without losing in test quality

For the Hybrid BIST with reseeding, the methods were developed which allow
to minimize the test length at the given constraints for memory cost, and the
methods which allow to optimize the BIST regarding both, time and memory.

The algorithms developed for solving the optimization tasks
are based on two methods: tabu search and simulated annealing. Experiments
showed that the proposed optimization techniques allow to find the optimal balance
between the deterministic data and pseudorandom sequences for both the hybrid

137

BIST where pseudorandom sequence is combined with deterministic patterns and
for “store-and-generate” hybrid BIST with reseeding. The results obtained by
simulated annealing were more exact, but needed more calculation time, tabu
search allowed to obtain results faster, but the solution found was less exact.
However, the difference was still minor. Therefore, if the solution needs to be
found fast, tabu search can be used, but if the exact solution is more important,
then simulated annealing should be used.

A special testability related experimental research was carried out
for a family of industrial designs - for different modifications of the biosignal
processor system. The developed cost optimization techniques have proven to be
feasible and efficient for creating an optimal "store-and-generate" type BIST with
minimum cost for these systems. However, the testability analysis of the whole
family showed that the quality and cost of the BIST may considerably depend on
the structure of the biosignal processor.

138

References

[1] L. Benini, G.De Micheli. “Networks on Chip: a New SoC Paradigm”. IEEE
Computer, Vol.35, No.1, pp.70-78, 2002.

[2] A.Jantsch, H.Tenhunen. “Networks on Chip. Kluwer Academic Publishers”.
2003.

[3] L.-T.Wang, Ch.-W.Wu, X.Wen. “VLSI Test Principles and Architectures”.
Elsevier, 2006.

[4] R.Klein, T.Piekarz. “Accelerating Functional Simulation for Processor
Based Designs”. Mentor Graphics Corporation. White paper, 2005.

[5] K.Roy, T.M.Mak, K.-T.T.Cheng. “Test consideration for nanometer-scale
CMOS circuits”. IEEE Design and Test of Computers, vol.23, no 2,
pp.128-136, 2006.

[6] A.Fin, F.Fummi. “Genetic Algorithms: the Philosopher’s Stone or an
Effective Solution for High-Level TPG?”. In Proc. of IEEE HLDVT,
pp. 163–168. 2003.

[7] F. Xin, M. Ciesielski, I. Harris. “Design validation of behavioral VHDL
descriptions for arbitrary fault models”. In Proc. of IEEE ETS, pp. 156–161.
2005.

[8] E. J. Marinissen, Y. Zorian. “Challenges in Testing Core-Based Ics”. IEEE
Communic. Mag, pp. 104-109, June 1999.

[9] International Technology Roadmap for Semiconductors http://www.itrs.net/

[10] M. Bushnell, V. Agrawal, “Essentials of Electronic Testing for Digital,
Memory and Mixed-Signal VLSI Circuits”, Boston, Kluwer Academic
Publishers, 2000.

[11] Charles E. Stroud “A Designer's Guide to Build-In-Self-Test”, Kluwer
Academic Publishers, 2002.

[12] I.Dear, C.Dislis, A.Amber, J.Dick “Economic Effects in Design and Test”,
IEEE Design and Test of Computers, Vol. 8, No. 4, pp 64-77, Dec 1991.

[13] N. K. Jha, S.Gupta. “Testing of Digital Systems” Cambridge University
Press, 2003.

[14] O.Novák, E. Gramatova, R.Ubar. “Handbook Of Testing Electronic
Systems”. Chech Technical University Publishing House, 2005.

[15] T.Williams, N. Brown. “Defect Level as a Function of Fault Coverage”
IÈEE Trans. Comput., C-30(12), pp. 987-988, 1981.

139

[16] S. Chakravarty. “Defect Based Testing” Invited talk at the 4th International
Workshop on IEEE Design and Diagnostics of Electronic Circuits and
Systems Inc, 2001.

[17] M. Abramovici, M.Bauer, A. Friedman “Digital Systems Testing and
Testible Desig”", Piscataway, New Jersey. IEEE Press, 1994.

[18] P.Maxwell, R.Aitken. “Defect-Oriented Testing”. IEEE European Test
Workshop. Tutorial, 2003.

[19] M.Blyzniuk, T.Cibakova, E.Gramatova, W.Kuzmicz, M.Lobur,
W.A.Pleskacz, J.Raik, R.Ubar. “Defect Oriented Fault Coverage of 100%
Stuck-at fault Test Sets”. Proc. of the 7th International Conference on Mixed
Design of Integrated Circuits and Systems. Gdynia (Poland), June 15-17,
2000, pp.511-516.

[20] S.Chakravarty, P.J.Thadikara. “Introduction to IDDQ Testing”. Kluwer
Academic Publisher, 1997.

[21] M.Sachev. “Defect Oriented Testing for CMOS Analog and Digital Circuits”
Kluwer Academic Publisher, 1998.

[22] K.L.Kodandapani, D.K.Pradhan. “Undetectability of bridging faults and
validity of stuck-at fault test sets”. IEEE Trans. on Computers, C-29 (1),
1980, pp. 55–59.

[23] J.C.-M Tseng, Ch.-W. Tseng, E.J.McCluskey. “Testing for Resistive Opens
and Stuck Opens”. Proceedings of International Test Conference, 2001, pp
1049-1057.

[24] Ch.F.Hawkins, J.M.Soden, A.Righter, F.J.Ferguson. “Defect Classes -an
Overdue Paradigm for CMOS IC Testing”. Production Testing. Proceedings
of International Test Conference ITC, 1994, pp 513-425.

[25] S.Chakravarty, A.Jain. “Fault Models for Speed Failures Caused by Bridges
and Opens", Proceedings of VLSI Test Symposium, 2002, pp. 1-3.

[26] J.Yi, J.P.Hayes. “A fault Model for Function and Delay Testing”.
Proceedings of IEEE European Test Workshop, 2001, pp. 77-78.

[27] J.Roth. “Diagnosis of automata failures: A calculus and a method”. IBM J.
Res develop., 10(4) 278-291, 1966.

[28] P.Goel. "An implicit enumeration algorithm to generate tests for
combinatorial logic circuits”. IEEE Trans. Comput. C-30(3) 215-222, 1981.

[29] H.Fujiwara, T.Shimono. “On the acceleration of test generation algorithms”.
IEEE Trans. Comput. C-32(12), 1137-1144.

[30] M.H.Schulz, E. Trischler, T.M. Serfert. “SOCRATES: A highly efficient
automatic test pattern generation system”. IEEE Trans. Computer –Aided
Design, CAD 7(1), 126-137, 1988.

140

[31] T.Kirkland, M.R.Mercer. “A Topological Search Algorithm for ATPG”.
Proc of the 24th Design Automation Conference. June-July 1987,
pp. 502-508.

[32] M.L.Bushnell, J.Giraldi. “A Functional Decomposition method for
Redundancy Identification and Test Generation”. Journal of Electronic
Testing: Theory and Applications. vol 10, no3, pp. 175-195, June 1997.

[33] J. Giraldi, M.L. Bushnell. “EST: The New Frontier in Automatic Test
Pattern Generation”. Proc. of the 27th Design Automation Conference,
June 1990, pp 667-672.

[34] S.T. Chakradhar “Neural Network Models and Optimization Methods for
Digital Testing”. PhD thesis, Computer Scence Department, Rutgers
University, New Brunswick, New Jersey, Oct 1990.

[35] S.T.Chakradhar, V.D. Agrawal, M.L.Bushnell. “Neural Models and
Algorithms for digital Testing”. Boston: Kluwer Academic Publishers 1991.

[36] E.McCluskey. “Verification Testing - A Pseudoexhaustive Test Technique”
IEEE Trans. on Computers, Vol.33, No.6 pp541-546, June 1984.

[37] M.H. Schulz, E. Auth. “ESSENTIAL: An Efficient Self-Learning Test
Pattern Generation Algorithm for Sequential Circuits”. Proc. of the
International Test Conf., Aug. 1989, pp. 28–37.

[38] R. Bencivenga, T. J. Chakraborty, S. Davidson. “The Architecture of the
Gentest Sequential Test Generator”. Proc. of the Custom Integrated Circuits
Conf., May 1991, pp. 17.1.1–17.1.4.

[39] W.-T. Cheng, T. J. Chakraborty. “Gentest: An Automatic Test Generation
System for Sequential Circuits”. Computer, vol. 22, no. 4, pp. 43–49,
Apr. 1989.

[40] T. M. Niermann, J. H. Patel. “HITEC: A Test Generation Package for
Sequential Circuits”. Proc. of the European Design Automation Conf.,
Feb. 1991, pp. 214–218.

[41] X.Chen, M.L.Bushnell. “Efficient Branch and Bound Search with
Application to Computer-Aided Design”. Boston: Kluwer Academic
Publishers, 1996.

[42] T.P.Kelsey, K.K.Saluja, S.Y.Lee. “An Efficient Algorithm for Sequential
Circuit Test Generation”. IEEE Trans. on Computers, vol. 42, no. 11,
pp. 1361–1371, Nov. 1993.

[43] F. J. Hill, B.Huey. “SCIRTSS: A Search System for Sequential Circuit Test
Sequences”. IEEE Trans. on Computers, vol. C-26, no. 5, pp. 490–502, May
1977.

141

[44] H.-K. T. Ma, S. Devadas, A. R. Newton, A. Sangiovanni-Vincentelli. “Test
Generation for Sequential Circuits”. IEEE Trans. on Computer-Aided
Design, vol. 7, no. 10 pp. 1081–1093, Oct. 1988.

[45] A.Ghosh, S.Devadas, A.R.Newton. “Sequential Logic Testing and
Verification”. Boston: Kluwer Academic Publishers, 1992.

[46] V. D. Agrawal, K.-T. Cheng, P. Agrawal. “A Directed Search Method for
Test Generation using a Concurrent Simulator”. IEEE Trans. on Computer-
Aided Design, vol. 8, no. 2, pp. 131–138, Feb. 1989.

[47] K.-T. Cheng, V.D.Agrawal. “Unified Methods for VLSI Simulation and Test
Generation”. Boston: Kluwer Academic Publishers, 1989.

[48] D.G.Saab, Y.G.Saab, J. A. Abraham. “Automatic Test Vector Cultivationfor
Sequential VLSI Circuits Using Genetic Algorithms”. IEEE Trans. on
Computer-Aided Design, vol. 15, no. 10, pp. 1278–1285, Oct. 1996.

[49] E. M. Rudnick, J. H. Patel, G. S. Greenstein, T. M. Niermann. “A Genetic
Algorithm Framework for Test Generation”. IEEE Trans. on Computer-
Aided Design, vol. 16, no. 9, pp. 1034–1044, Sept. 1997.

[50] F. Corno, P. Prinetto, M. Rebaudengo, M.S.Reorda. “A Genetic Algorithm
for Automatic Test Pattern Generation for Large Synchronous Sequential
Circuits”. IEEE Trans. on Computer-Aided Design, vol.15, no.8,
pp. 991–1000, Aug. 1996.

[51] M.S.Hsiao, E.M.Rudnick, J.H.Patel. “Sequential Circuit Test Generation
using Dynamic State Traversal”. in Proc. of the European Design and Test
Conf.,1997, pp. 22-28.

[52] M.S.Hsiao,E.M.Rudnick, J.H.Patel. “Dynamic State Traversal for Sequential
Circuit Test Generation”. ACM Trans. on Design Automation of Electronic
Systems (TODAES), vol. 5, no. 3, July 2000.

[53] J. H. Holland. “Adaptation in Natural and Artificial Systems”. Ann Arbor,
Michigan: University of Michigan Press, 1975.

[54] D. E. Goldberg. “Genetic Algorithms in Search, Optimization, and Machine
Learning”. Reading, Massachusetts: Addison-Wesley, 1989.

[55] C.Stover. “ATE: Automatic Test Equipment”. New York: McGraw-Hill,
1984.

[56] A.Miczo. “Digital Logic Testing and Simulation”. John Wiley & Sons, inc.,
Publications, 2003, USA.

[57] Y. Zorian, E. J. Marinissen, S. Dey, “Testing Embedded Core-Based System
Chips”. IEEE International Test Conference (ITC), pp. 130-143,
Washington, DC, October 1998. IEEE Computer Society Press.

142

[58] E.J.Marinissen, Y.Zorian. “Challenges in Testing Core-Based ICs”. IEEE
Communic. Mag, pp. 104-109, June 1999.

[59] C.Fagot, O.Gascuel, P.Girard, C.Landrault. “Calculating Efficient LFSR
Seeds for BIST”. Eur.Test Symp, Munich, 1999.

[60] P.D.Hortensius, et al. “Cellular automata based pseudorandom generators for
BIST”. IEEE Trans. CAD, (8), 8, 1990.

[61] S. W. Golomb. “Shift Register Sequences”, Aegan Park Press, Laguna Hills,
1982.

[62] N.A.Touba, E.J.McCluskey. “Test Point Insertion Based on Path Tracing”.
Proc. VLSI Test Symposium, 1996, pp.2-8.

[63] B.Koenemann. “LFSR-Coded Test Patterns for Scan Designs”. Proc.
European Test Conference, March 1991, pp.237-242.

[64] V.K.Agrawal, E.Cerny. “Store and Generate Built-In Test Approach”. Fault-
Tolerant Computing Symp. 1981, pp.35-40.

[65] H.-J. Wunderlich, G.Kiefer. “Bit flipping BIST”. Proc. ICCAD, Nov. 1996,
pp.337-343.

[66] N.A.Touba,E.J.McCluskey. “Bit-fixing in pseudo-random sequences for
scan BIST”. IEEE Trans. CAD, (20), 4, 2001.

[67] S. Hellebrand, S. Tarnick, J. Rajski, B. Courtois. “Generation of Vector
Patterns through Reseeding of Multiple-Polynomial Linear Feedback Shift
Registers”. IEEE International Test Conference, pp. 120-129, 1992.

[68] N.A.Touba, E. McCluskey. “Transformed Paseudo-Random Patterns for
BIST”. VLSI Test Symp, 1995, pp.410-416.

[69] S.Hellebrand, H.-J.Wunderlich, A.Hertwig. “Mixed-Mode BIST using
Embedded Processors”. JETTA 12, pp. 127-138, 1998.

[70] J.Rajski, J.Tyszer. “Arithmetic Built-In Self-Test For Embedded Systems”.
Prentice-Hall, New Jersey, 1998.

[71] M. Chatterjee, D. K. Pradhan. “A novel pattern generator for near-perfect
fault-coverage”. VLSI Test Symposium, pp. 417-425, 1995.

[72] M.Sugihara, H.Date, H.Yasuura. “Analysis and Minimization of Test Time
in a Combined BIST and External Test Approach”. Design, Automation &
Test In Europe Conference DATE 2000, pp. 134-140, Paris, France,
March 2000.

[73] N.A Touba, E. J. McCluskey. “Synthesis of mapping logic for generating
transformed pseudo-random patterns for BIST”. IEEE Int. Test Conference
ITC’95, pp. 674-682, 1995.

143

[74] N. Zacharia, J. Rajski, J. Tyzer. “Decompression of Test Data Using
Variable-Length Seed LFSRs”. 13th VLSI Test Symposium, pp. 426-433,
1995.

[75] Z.Peng, Z.He, P.Eles. “Challenges and Solutions for Thermal-Aware SoC
Testing”. Invited paper. MIDEM Workshop on Electronic Testing, Bled,
Slovenia, Sept. 12-14, 2007, pp.11-17.

[76] P.Nigh,W.Maly. “Layout - Driven Test Generation”. Proc. ICCAD, 1989,
pp. 154-157.

[77] M.Jacomet, W.Guggenbuhl. “Layout-Dependent Fault Analysis and Test
Synthesis for CMOS Circuits”. IEEE Trans. on CAD, 1993, 12, 888-899.

[78] U.Mahlstedt, J.Alt, I.Hollenbeck. “Deterministic Test Generation for
Non-Classical Faults on Gate Level”. 4th ATS, 1995, pp. 244-251.

[79] S.Holst, H.-J.Wunderlich. “Adaptive Debug and Diagnosis Without Fault
Dictionaries”. 13th ETS, 2008, pp.199-204.

[80] K.N.Dwarakanath, R.D.Blanton. “Universal Fault Simulation using fault
tuples”. DAC, Los Angeles, June 2000, pp.786-789.

[81] K.B.Keller. “Hierarchical Pattern Faults for Describing Logic Circuit Failure
Mechanisms”. US Patent 5546408, Aug. 13, 1994.

[82] R.D.Blanton, J.P.Hayes. “On the Properties of the Input Pattern Fault
Model”. ACM Trans. Des. Automat. Electron. Syst., Vol. 8, No. 1,
pp. 108-124, Jan. 2003.

[83] R.Ubar. “Fault Diagnosis in Com. Circuits by Solving Bool. Diff.
Equations”. Automatics & Telemechanics, No.11, 1979, Moscow, pp.170-
183 (in Russian). Transl. in: “Detection of Suspected Faults in Comb.
Circuits by Solving Bool. Diff. Equations”, Automation and Remote
Control, Vol.40, No 11, part 2, Nov. 1980, Plenum Publishing Corporation,
USA, pp. 1693-1703.

[84] Y.Cho, S.Mitra, E.J.McCluskey. “Gate Exhaustive Testing”. International
Test Conference, 2005.

[85] A.Jas, S.Natarajan, S.Patil. “The Region-Exhaustive Fault Model”. 16th
Asian Test Symp. Beijing, China, Oct. 2007, pp. 13-18.

[86] J.M.Acken, S.D.Millman. “Accurate Modeling and Simulating of Bridge
Faults”. Custom Integrated Circuits Conf., San Diego, CA, May 1991,
pp. 17.4.1-17.4.4.

[87] P.Maxwell, R.Aiken. “Biased Voting: A Method for Simulating CMOS
Bridging Faults in the Presence of Variable Gate Logic Thresholds”. Proc.
ITC, 1993, pp. 63-72.

144

[88] L.Zhuo, X.Lu, W.Qiu, W.Shi, D.M.H.Walker. ”A Circuit Level Fault Model
for Resistive Opens and Bridges”. Proc. VLSI Test Symp., Napa, CA,
Apr./May 2003, pp. 379-384.

[89] P.Engelke, I.Polian, M.Renovell, B.Becker. “Simulating resistive bridging
and stuck-at faults”. IEEE Trans. on CAD of IC and Systems, Vol. 25,
No. 10, pp. 2181-2192, Oct. 2006.

[90] A.Rousset, A.Bosio, P.Girard, C.Landrault, S.Pravossoudovitch, A.Virazel.
“Fast Bridging Fault Diagnosis Using Logic Information”. 16th ATS.
Beijing, China, Oct. 2007, pp.33-38.

[91] S.K.Jain, V.D.Agrawal. “Modeling and Test Generation Algorithms for
MOS Circuits”. IEEE Trans. Comput., Vol. C-34, No. 5, pp. 426-433,
May 1985.

[92] H.K.Lee, D.S.Ha. “SOPRANO: An Efficent Automatic Test Pattern
Generator for Stuck-Open Faults in CMOS Combinational Circuits”. DAC,
Orlando, FL, June 1990, pp. 660-666.

[93] A.Kristic, K.T.Cheng. “Delay Fault Testing for VLSI Circuits”. Dordrecht,
The Netherlands, Kluwer Acad. Publishers, Oct. 1998.

[94] G.Chen, S.Reddy, I.Pomeranz, J.Rajski, P.Engelke, B.Becker. “A Unified
Fault Model and Test Generation Procedure for Interconnect Opens and
Bridges”. 10th ETS, Tallinn, May 2005.

[95] D.Lavo, T.Larrabee, B.Chess. “Beyond the Byzantine Generals: Unexpected
Behavior and Bridging Fault Diagnosis”. Proc. ITC, 1996, pp. 611-619.

[96] S.Huang. “Speeding up the Byzantine Fault Diagnosis Using Symbolic
Simulation”. Proc. VTS, 2002, pp.193-198.

[97] C.Y.Lee. “Representation of Switching Circuits by Binary Decision
Programs. The Bell System Technical Journal”. pp.985-999. July 1959.

[98] R. Ubar, R. “Test Generation for Digital Circuits with Alternative Graphs”.
Proceedings of Tallinn Technical University, No 409, pp.75-81, 1976 (in
Russian).

[99] S.B. Akers. “Functional Testing with Binary Decision Diagrams”. Journal of
Design Automation and Fault-Tolerant Computing (Vol.2), pp.311-331,
Oct. 1978.

[100] R.E. Bryant. “Graph-based algorithms for Boolean function manipulation”.
IEEE Trans. on Computers (Vol.C-35), No 8, pp.667-690, 1986.

[101] R.Ubar. “Test Synthesis with Alternative Graphs”. IEEE Design&Test of
Computers, Spring, pp.48-57, 1996.

145

[102] R. Ubar, A. Moraviec, J.Raik. “Cycle-based Simulation with Decision
Diagrams”. IEEE Proc. of Design Automation and Test in Europe – DATE,
pp.454-458, 1999.

[103] S.Kirkpatrick, C.Gelatt, M.Vecchi. “Optimization by Simulated Annealing”.
Science, 220 (4598): 498-516. 1983.

[104] V. Černy. “Thermodynamical approach to the travelling salesman problem:
an efficient simulation algorithm”. Journal of Optimization Theory and
Applications, 45(1):41-51, 1985.

[105] J.H. Holland. “Adaptation in Natural and Arificial Systems”. University of
Michigan Press, Ann Arbor. 1975.

[106] D.E. Goldberg. “Genetic Algorithms in Search, Optimization and Machine
Learning”. Addison-Wesley, 1989.

[107] F.Glover, M.Laguna. “Tabu Search”. Kluwer, MA 1997.

[108] F.Glover. “Tabu search – Part I”. ORSA Journal on Computing, 1(3): 190-
206, 1989.

[109] F.Glover. “Tabu search – Part II”. ORSA Journal on Computing, 2(1): 4-32,
1990.

[110] S.Nahar, S.Sahni, E.Shragowitz. “Experiments with simulated annealing and
combinatorial optimization”. International Journal of Computer-Aided VLSI
Design. 1989.

[111] S.M. Sait, H. Youssef. “Iterative Computer Algorithms with Application in
Engineering”. IEEE Computer Society, 1999.

[112] P.Hansen. “The steepest ascent mildest descent heuristic for combinatorial
programming”. Congress on Numerical Methods in Combinatorial
Optimization, 1986.

[113] Teofilo F.Gonzales. “Handbook on Approximation and Metaheuristics”.
Chapman & Hall/CRC, 2007.

[114] K.Binder. “Monte Carlo Methods in Statistical Physics”. Springer, Berlin
1978.

[115] M. Metropolis, A.Rosenbluth, M. Rosenbluth, A. Teller, E. Teller. “Equation
of state calculations by fast computing machines”. Journal of Chemical
Physics, 21, 1953, 1087-1092.

[116] R. Ubar. “Test Synthesis with Alternative Graphs”. IEEE Design&Test of
Computers, Spring, pp.48-57, 1996.

[117] R.Ubar. “Multi-Valued Simulation of Digital Circuits with Structurally
Synthesized Binary Decision Diagrams”. OPA (Overseas Publishers

146

Assotiation) N.V. Gordon and Breach Publishers, Multiple Valued Logic,
Vol.4 pp. 141-157, 1998.

[118] R.Ubar, J.Raik, A.Karputkin, M.Tombak. “Synthesis of High-Level
Decision Diagrams for Functional Test Pattern Generation”. 16th Int.
Conference MIXDES 2009. June 25-27, 2009 Lodz, pp.519-524.

[119] A.K.Gupta, J.R.Armstrong. “Functional Fault modelling and Simulation for
VLSI Devices”. 22nd Design Automation Conference, 1985, pp.720-726.

[120] S.M.Thatte, J.A.Abraham. “Test Generation for Microprocessors”. IEEE
Trans. On Computers, Vol. C-29, No. 6, pp.429-441, June 1980.

[121] D.Brahme, J.A. Abraham. “Functional Testing of Microprocessors”. IEEE
Trans. On Computers, Vol. C-33, No.6, pp.475-485, June 1984.

[122] R.D. Blanton, J.P. Hayes. “On the Properties of the Input Pattern Fault
Model”. ACM Trans. Design Automation of Electronic. Systems, (8)1, 108-
124, 2003.

[123] R.Ubar, M.Aarna, H.Kruus, J.Raik. “How to Generate High Quality Tests
for Digital Systems”. IEEE International Semiconductor Conference,
CAS’2004, Sinaia, Romania, Oct. 4-6, 2004, pp.459-462.

[124] T.Cibáková, M.Fischerová, E.Gramatová, W.Kuzmicz, W.Pleskacz, J.Raik,
R.Ubar. “Hierarchical Test Generation for Combinational Circuits with Real
Defects Coverage”. Pergamon Press. Journal of Microelectronics Reliability,
Vol. 42, 2002, pp.1141-1149.

[125] M. Bershteyn. “Calculation of Multiple Sets of Weights for Weighted
Pseudorandom Testing”. Proc. IEEE International Test Conference. 1993,
pp. 1031-1040.

[126] G. Jervan, Z. Peng, R. Ubar, H. Kruus. “A Hybrid BIST Architecture and its
Optimization for SoC Testing”. IEEE 2002 3rd International Symposium on
Quality Electronic Design. March 18-20, 2002 San Jose, California, USA.
IEEE Computer Society Press, 2002, 273 - 279.

[127] G. Jervan, Z. Peng, R. Ubar. ”Test Cost Minimization for Hybrid BIST”.
IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Systems,
pp. 283-291, 2000.

[128] Z. Zhao, B. Pouya, N. A. Touba. “BETSY: Synthesizing Circuits for a
Specified BIST”. International Test Conference, pp. 144-153, 1998.

[129] F. Brglez, D. Bryan, K.Kominski. “Combinatorial Profiles of Sequential
Benchmark Circuits”. Proc. IEE International Test Conference, 1990,
pp.1929-1934.

[130] A. Russ, C.Stroud. “Non-Intrusive Built-In Self-Test for FPGA and MCM
Applications”. Proc IEEE Automatic Test Conf. 1995, pp. 480-485.

147

[131] P.Bardell, W.McAnney, J.Savir. “Built-In Self-Test for VLSI: Psudorandom
Sequences”. Somerset, New Jersey. John Wiley & Sons 1987.

[132] F. Muradali, V. Agarwal, B.Nadeau-Dostie. “A New Procedure for
Weighted Random Built-In Self-Test”. Proc IEEE International Test
Conference. 1990, pp. 660-669.

[133] M. F. AlShaibi, C. Kime. “MFBIST: A BIST Method for Random Pattern
Resistant Circuits”. International Test Conference, pp. 176-185, 1996.

[134] G. Kiefer, H. Vranken, E. J. Marinissen, H.-J. Wunderlich. “Application of
Deterministic Logic BIST on Industrial Circuits”. International Test
Conference, pp. 105-114, 2000.

[135] H. Hashempour, F. J. Meyer, F. Lombardi. “Analysis and Measurement of
Fault Coverage in a Combined ATE and BIST Environment”. IEEE
Transactions on Instrumentation and Measurement, Vol. 53, Issue 2,
pp. 300-307, 2004.

[136] P. Fišer. “Pseudo-Random Pattern Generator Design for Column Matching
BIST”, Euromicro Conference on Digital Systems Design, pp. 657-663,
2007.

[137] M.E. Aboulhamid, E.Cerny. “A class of test generators for built-in testing”,
IEEE Trans. Comput, C-32(10), 957 -959, 1983.

[138] R. Dandapani, J. Patel, J. Abraham. “Design of test pattern generators for
built-in test”. In Proc Int. Test Conf. October 1984, pp. 315-319.

[139] G. Edirisooriya, J.P. Robinson. “Design of low cost ROM based test
generators”. In Proc. VLSI Test Symposium. April 1992, pp. 61-66.

[140] J.Rajski, J.Tyszer, N.Zacharia. “Test data decompression for multiple scan
designs with boundary scan”, IEEE Trans. Comput. 47(11), 1188-1200,
1998.

[141] S.Hellebrand, B.Reeb, S.Tarnick, H.-J. Wunderlich. “Pattern generation for
deterministic BIST scheme”. In Proc. Int. Conf on Compput.-Aided Design,
November 1995, pp. 88-94.

[142] H.-G.Liang, S.Hellebrand, H.-J. Wunderlich.”Two-dimentional test data
compression for scan based deterministic BIST”. International Test
Conference, September 2001, pp. 894-902.

[143] A.Al-Yamini, S.Mitra, E.J.McCluskey. “Optimized reseeding by seed
ordering and encoding”. IEEE Trans. Computer-Aided Design. 24(2), pp.
264-270, 2005.

[144] G.Kiefer, H.-J. Wunderlich. “Deterministic BIST with multiple scan chains”.
Proc International Test Conference, October 1998, pp. 1057-1064.

148

[145] G. Jervan, A. Markus, P. Paomets, J. Raik, R. Ubar. “A CAD system for
Teaching Digital Test”. European Workshop on Microelectronics Education,
pp. 287-290, 1998.

[146] R. Ubar, G. Jervan, Z. Peng, E. Orasson, R. Raidma. “Fast Test Cost
Calculation for Hybrid BIST in Digital Systems”. Euromicro Symposium on
Digital Systems Design, pp. 318-325, 2001.

[147] Turbo Tester Reference Manual. Version 3.2002.10. Tallinn University of
Technology, www.pld.ttu.ee/tt

[148] V. K. Agarwal, E. Cerny. “Store and Generate Built-In Testing Approach”.
Proc. of Fault Tolerant Computing Conference, Portland, 1981, pp.35-40.

[149] G. Jervan, P. Eles, Z. Peng, R. Ubar, M. Jenihhin. “Test Time Minimization
for Hybrid BIST of Core-Based Systems”. Journal of Computer Science and
Technology, 21(6), pp. 907-912, 2006.

[150] R. Ubar, G. Jervan, H. Kruus, E. Orasson, I. Aleksejev. “Optimization of the
Store-and-Generate Based Built-In Self-Test”. Baltic Electronic Conference,
pp. 199-202, 2006.

[151] F.Glover, E.Taillard, D. De Werra. “Auser’s guide to Tabu Search”. Annals
of Operations Reserach, 41:3-28, 1993.

[152] E. T. McAdams, J. Jossinet, “Tissue impedance: a historical review”.
Physiological Measurements,Vol. 16, pp. A1-A13.

[153] V. Pesonen, M. Gorev, P. Annus, M. Min, P. Ellervee. “Reconfigurable Data
Acquisition Unit for Bioimpedance Measurements”. The 12th Biennial
Baltic Electronics Conference BEC'2010, Tallinn, Estonia, pp.257-260,
Oct. 2010.

[154] V. Pesonen, M. Gorev, P. Annus, M. Min, P. Ellervee. “Reprogrammable
Data Acquisition Unit to Reduce Aliasing Effect in Bioimpedance
Measurements”. The 7th Annual FPGAworld Conference, Copenhagen,
Denmark, 6 pp., Sept. 2010.

[155] P. Ellervee, P. Annus, M. Min. “High Speed Data Preprocessing for
Bioimpedance Measurements: Architectural Exploration”. The 27th
NORCHIP Conference, Trondheim, Norway, pp.1-4, Nov. 2009.

[156] S. Grimnes, O. G. Martinsen. “Bioimpedance and Bioelectricity Basics”.
Academic Press, San Diego, 2000.

[157] T. Dudykevych, E. Gersing, F. Thiel and G. Hellige. “Impedance Analyzer
Module for EIT and Spectroscopy Using Undersampling”. Physiological
Measurement, No. 22, Institute of Physics Publ. Ltd, UK, pp. 19-24, 2001.

149

[158] M.Min, T.Parve, P.Annus, T.Paavle. “A method of synchronous sampling in
Multifrequency Impendace Maesurments”. IMTC 2006, Sorrento, Italy, Apr.
2006.

[159] R.Ubar, S.Devadze, J.Raik, A.Jutman. “Parallel X-Fault Simulation with
Critical Path Tracing Technique”. IEEE Conf. Design, Automation & Test in
Europe - DATE-2010, Dresden, Germany, March 8-12, 2010, pp. 1-6.

150

Curriculum Vitae

Personal data

Name Helena Kruus

Date of birth 23.06.1979

Place of birth Estonia

Citizenship Estonian

Contact information

Address Raja 15, Tallinn 12618, ESTONIA

Phone +372 620 2260

E-mail helena.kruus@ati.ttu.ee

Education

2003 - ... Ph.D. student in Computer Engineering,

 Tallinn University of Technology

2001 - 2003 M.Sc. in Computer Engineering, TUT

1997 - 2001 B.Sc. in Computer Engineering, TUT

1986 - 1997 Secondary Education from
 Tõnismäe Reaalkool, Tallinn

Career

2004 - ... Tallinn University of Technology
 Faculty of Information Technology
 Department of Computer Engineering

Chair of Computer Engineering and Diagnostics
Researcher

2002 - 2004 Tallinn University of Technology
Faculty of Information Technology
Department of Computer Engineering
Chair of Systems Programming
Teaching assistant

2000 - 2002 Tallinn University of Technology
Faculty of Information Technology
Department of Computer Engineering
Chair of Systems Programming
Lecturer

151

Scientific work

Publications

H.Kruus, R.Ubar, J.Raik. "Defect-Oriented BIST Quality Analysis." 12th
International Biennial Baltic Electronic Conference BEC 2010, Tallinn (Estonia),
October 4-6, 2010.

G.Jervan, E.Orasson, H.Kruus, R.Ubar. "Hybrid BIST Optimization Using
Reseeding and Test Set Compaction." Microprocessors and Microsystems, 32(5-6),
pp. 254 – 262, 2008.

H.Kruus, G.Jervan, R.Ubar. "Using Tabu Search for Optimization of Memory-
Constrained Hybrid BIST". IKTDK Annual Conference, Voore (Estonia), 2008.

R.Ubar, J.Raik, H. Kruus, H.Lensen, T.Evartson. "Diagnostic Modelling of Digital
Systems with Binary and High-Level Decision Diagrams." Bonilla, L.L.; Moscoso,
M.; Platero, G.; Vega, J.M. (Toim.) Progress in Industrial Mathematics at ECMI
2006 (902 - 907). Springer-Verlag, 2008

H.Kruus, G.Jervan, R.Ubar. "Using Tabu Search for Optimization of Memory-
Constrained Hybrid BIST" International Biennial Baltic Electronic Conference, pp.
155 – 158, 2008.

G.Jervan, H.Kruus, E.Orasson, R.Ubar. "Hybrid BIST Optimization Using
Reseeding and Test Set Compaction." 10th EUROMICRO Conference on Digital
System Design DSD 2007, Lübeck (Germany), IEEE Computer Society Press,
2007, pp. 596 – 603, 29-31 August 2007.

G.Jervan, H.Kruus, E.Orasson, R.Ubar. "Optimization of Memory-Constrained
Hybrid BIST for Testing Core-Based Systems". IKTDK Annual Conference,
Viinistu (Estonia), 2007.

G. Jervan, H.Kruus, E.Orasson, R.Ubar. "Optimization of Memory-Constrained
Hybrid BIST for Testing Core-Based Systems." IEEE 2nd International
Symposium on Industrial Embedded Systems SIES 2007, Lisbon (Portugal), IEEE
Computer Soc, 2007, pp. 71 – 77, 4-6 July 2007.

R.Ubar, G.Jervan, H.Kruus, E.Orasson, I.Aleksejev. "Optimization of the Store-
and-Generate Based Built-In Self-Test." 10th Biennial Baltic Electronics
Conference BEC 2006, Laulasmaa (Estonia), IEEE Computer Society Press, 2006,
pp. 199 - 202. October 2-4, 2006.

R.Ubar,G.Jervan,H.Kruus, E.Orasson, I.Aleksejev. "Optimization of the Store-and-
generate Based Built-in Self-Test". IKTDK Annual Conference, Jäneda (Estonia),
2006.

152

R.Ubar, M.Aarna, H.Kruus, J.Raik. "High Quality Test Generation for Digital
Systems." Romanian Journal of Information Science and Technology, 8(1), pp. 73
– 84, 2005.

V.Vislogubov, A.Jutman, H.Kruus, E.Orasson, J.Raik, R.Ubar. "Diagnostic
software with WEB interface for teaching purposes." Proceedings of the 9th
Biennial Baltic Electronics Conference BEC 2004, Tallinn (Estonia) pp. 255 – 258,
October 3-6, 2004.

R.Ubar, M.Aarna, H.Kruus, J.Raik. "How to Generate High Quality Tests for
Digital Systems." IEEE International Semiconductor Conference CAS2004 Sinaia
(Romania) IEEE-Inst Electrical Electronics Engineers Inc, 2004, October 04-06,
2004.

T. Robal, H.Kruus. "e-Bibliothecula - A Virtual Library Service." 13th
International Conference on Information Systems Development. Advances in
Theory, Practice and Education, Vilnius (Lithuania); (Toim.) O. Vacilecas, A.
Caplinskas, W. Wojtkowski, W.G. Wojtkowski, J. Zupancic, S. Wrycza. Vilnius:
Technika, pp.139 – 148, 2004.

H.Kruus, E.Orasson, T.Robal, R.Ubar. "Investigating Defects in Digital Circuits by
Boolean Differential Equations." The 4th International Conference "Distance
Learning - Educational Sphere of XXI Century" DLESC'04 Minsk (Belarus),
pp. 432 – 435, November 10-13, 2004.

G.Jervan, Z.Peng, R.Ubar, H.Kruus. "A Hybrid BIST Architecture and its
Optimization for SoC Testing." IEEE 2002 3rd International Symposium on
Quality Electronic Design ISQED'02, San Jose, California (USA), IEEE Computer
Society Press, 2002, pp. 273 – 279, March 18-20, 2002.

R.Ubar, H.Kruus, G.Jervan, Z.Peng. "Using Tabu Search Method for Optimizing
the Cost of Hybrid BIST." 16th Conference on Design of Circuits and Integrated
Systems DCIS 2001, Porto (Portugal), pp. 445 – 450, November 20-23, 2001.

Defended theses

Master of Science in Computer Engineering, TUT
"Iterative Nondeterministic Optimization Algorithms. Special Course"
supervisor: Prof. R.Ubar

Bachelor of Science in Computer Engineering, TUT
"Using Tabu Search for Optimizing BIST in Digital Systems"
supervisor: Prof. R.Ubar

153

Awards

“Tiger University” of Estonian Information Technology Foundation grant for ITC
students, 2006

AS Eesti Energia grant, Development fund of TUT, 2005

Nominated as a candidate for the Gerald W. Gordon Award, a joint International
Test Conference (ITC) and IEEE Test Technology Technical Council (TTTC)
award that recognizes outstanding student volunteer contributions to the IEEE
Computer Society, 2005

“Tiger University” of Estonian Information Technology Foundation grant for ITC
students, 2004

“Tiger University” of Estonian Information Technology Foundation grant for ITC
students, 2003

AS Merko Ehitus grant, Development fund of TUT, 2002

Main areas of scientific work

Design and test of digital systems, optimization of built-in self-test, iterative
optimization algorithms

154

Elulookirjeldus

Isikuandmed

Nimi Helena Kruus

Sünniaeg 23.06.1979

Sünnikoht Eesti

Kodakondsus Eesti

Kontaktandmed

Adress Raja 15, Tallinn 12618, EESTI

Telefon +372 620 2260

E-post helena.kruus@ati.ttu.ee

Hariduskäik

2003 - ... Dokturantuur, Info- ja kommunikatsioonitehnoloogia

 Tallinna Tehnikaülikool

2001 - 2003 Tehnikateaduste magister, Tallinna Tehnikaülikool

1997 - 2001 Tehnikateaduste bakalaureus Tallinna Tehnikaülikool

1986 - 1997 Keskharidus, Tõnismäe Reaalkool, Tallinn

Teenistuskäik

2004 - ... Tallinna Tehnikaülikool
 Infotehnoloogia teaduskond
 Arvutitehnika instituut
 Arvutitehnika ja -diagnostika õppetool
 Teadur

2002 - 2004 Tallinna Tehnikaülikool
Infotehnoloogia teaduskond
Arvutitehnika instituut
Süsteemitarkvara õppetool
Assistent

2000 - 2002 Tallinna Tehnikaülikool
Infotehnoloogia teaduskond
Arvutitehnika instituut
Süsteemitarkvara õppetool
tunnitasuline õppejõud

155

Teadustegevus

Publikatsioonid

H.Kruus, R.Ubar, J.Raik. "Defect-Oriented BIST Quality Analysis." 12th
International Biennial Baltic Electronic Conference BEC 2010, Tallinn (Estonia),
October 4-6, 2010.

G.Jervan, E.Orasson, H.Kruus, R.Ubar. "Hybrid BIST Optimization Using
Reseeding and Test Set Compaction." Microprocessors and Microsystems, 32(5-6),
pp. 254 – 262, 2008.

H.Kruus, G.Jervan, R.Ubar. "Using Tabu Search for Optimization of Memory-
Constrained Hybrid BIST". IKTDK Annual Conference, Voore (Estonia), 2008.

R.Ubar, J.Raik, H. Kruus, H.Lensen, T.Evartson. "Diagnostic Modelling of Digital
Systems with Binary and High-Level Decision Diagrams." Bonilla, L.L.; Moscoso,
M.; Platero, G.; Vega, J.M. (Toim.) Progress in Industrial Mathematics at ECMI
2006 (902 - 907). Springer-Verlag, 2008

H.Kruus, G.Jervan, R.Ubar. "Using Tabu Search for Optimization of Memory-
Constrained Hybrid BIST" International Biennial Baltic Electronic Conference, pp.
155 – 158, 2008.

G.Jervan, H.Kruus, E.Orasson, R.Ubar. "Hybrid BIST Optimization Using
Reseeding and Test Set Compaction." 10th EUROMICRO Conference on Digital
System Design DSD 2007, Lübeck (Germany), IEEE Computer Society Press,
2007, pp. 596 – 603, 29-31 August 2007.

G.Jervan, H.Kruus, E.Orasson, R.Ubar. "Optimization of Memory-Constrained
Hybrid BIST for Testing Core-Based Systems". IKTDK Annual Conference,
Viinistu (Estonia), 2007.

G. Jervan, H.Kruus, E.Orasson, R.Ubar. "Optimization of Memory-Constrained
Hybrid BIST for Testing Core-Based Systems." IEEE 2nd International
Symposium on Industrial Embedded Systems SIES 2007, Lisbon (Portugal), IEEE
Computer Soc, 2007, pp. 71 – 77, 4-6 July 2007.

R.Ubar, G.Jervan, H.Kruus, E.Orasson, I.Aleksejev. "Optimization of the Store-
and-Generate Based Built-In Self-Test." 10th Biennial Baltic Electronics
Conference BEC 2006, Laulasmaa (Estonia), IEEE Computer Society Press, 2006,
pp. 199 - 202. October 2-4, 2006.

R.Ubar,G.Jervan,H.Kruus, E.Orasson, I.Aleksejev. "Optimization of the Store-and-
generate Based Built-in Self-Test". IKTDK Annual Conference, Jäneda (Estonia),
2006.

156

R.Ubar, M.Aarna, H.Kruus, J.Raik. "High Quality Test Generation for Digital
Systems." Romanian Journal of Information Science and Technology, 8(1), pp. 73
– 84, 2005.

V.Vislogubov, A.Jutman, H.Kruus, E.Orasson, J.Raik, R.Ubar. "Diagnostic
software with WEB interface for teaching purposes." Proceedings of the 9th
Biennial Baltic Electronics Conference BEC 2004, Tallinn (Estonia) pp. 255 – 258,
October 3-6, 2004.

R.Ubar, M.Aarna, H.Kruus, J.Raik. "How to Generate High Quality Tests for
Digital Systems." IEEE International Semiconductor Conference CAS2004 Sinaia
(Romania) IEEE-Inst Electrical Electronics Engineers Inc, 2004, October 04-06,
2004.

T. Robal, H.Kruus. "e-Bibliothecula - A Virtual Library Service." 13th
International Conference on Information Systems Development. Advances in
Theory, Practice and Education, Vilnius (Lithuania); (Toim.) O. Vacilecas, A.
Caplinskas, W. Wojtkowski, W.G. Wojtkowski, J. Zupancic, S. Wrycza. Vilnius:
Technika, pp.139 – 148, 2004.

H.Kruus, E.Orasson, T.Robal, R.Ubar. "Investigating Defects in Digital Circuits by
Boolean Differential Equations." The 4th International Conference "Distance
Learning - Educational Sphere of XXI Century" DLESC'04 Minsk (Belarus),
pp. 432 – 435, November 10-13, 2004.

G.Jervan, Z.Peng, R.Ubar, H.Kruus. "A Hybrid BIST Architecture and its
Optimization for SoC Testing." IEEE 2002 3rd International Symposium on
Quality Electronic Design ISQED'02, San Jose, California (USA), IEEE Computer
Society Press, 2002, pp. 273 – 279, March 18-20, 2002.

R.Ubar, H.Kruus, G.Jervan, Z.Peng. "Using Tabu Search Method for Optimizing
the Cost of Hybrid BIST." 16th Conference on Design of Circuits and Integrated
Systems DCIS 2001, Porto (Portugal), pp. 445 – 450, November 20-23, 2001.

Kaitstud lõputööd

2003 Magistritöö "Iteratiivsed mittedeterministlikud optimeerimisalgoritmid.
Erikursus". TTÜ ATI. juh.R.Ubar

2001 Bakalaureusetöö "Tabu otsingu algoritmi rakendamine digitaalsüsteemide
isetestimise optimeerimiseks". TTÜ ATI. juh.R.Ubar

157

Teaduspreemiad ja -tunnustused

EITSA “Tiigriülikooli” stipendium, 2006

AS Eesti Energia stipendium, TTÜ Arengufond, 2005

Gerald W. Gordon Award nominent (IEEE Computer Society), 2005

EITSA “Tiigriülikooli” stipendium, 2004

EITSA “Tiigriülikooli” stipendium, 2003

AS Merko Ehitus stipendium, TTÜ Arengufond, 2002

Teadustöö põhisuunad

Digitaalsüsteemide disain ja test, digitaalsüsteemide enesetestimise optimeerimine,
iteratiivsed optimeerimisalgoritmid

158

DISSERTATIONS DEFENDED AT
TALLINN UNIVERSITY OF TECHNOLOGY ON

INFORMATICS AND SYSTEM ENGINEERING

 1. Lea Elmik. Informational Modelling of a Communication Office. 1992.

 2. Kalle Tammemäe. Control Intensive Digital System Synthesis. 1997.

 3. Eerik Lossmann. Complex Signal Classification Algorithms, Based on the
Third-Order Statistical Models. 1999.

 4. Kaido Kikkas. Using the Internet in Rehabilitation of People with Mobility
Impairments – Case Studies and Views from Estonia. 1999.

 5. Nazmun Nahar. Global Electronic Commerce Process: Business-to-Business.
1999.

 6. Jevgeni Riipulk. Microwave Radiometry for Medical Applications. 2000.

 7. Alar Kuusik. Compact Smart Home Systems: Design and Verification of Cost
Effective Hardware Solutions. 2001.

 8. Jaan Raik. Hierarchical Test Generation for Digital Circuits Represented by
Decision Diagrams. 2001.

 9. Andri Riid. Transparent Fuzzy Systems: Model and Control. 2002.

10. Marina Brik. Investigation and Development of Test Generation Methods for
Control Part of Digital Systems. 2002.

11. Raul Land. Synchronous Approximation and Processing of Sampled Data
Signals. 2002.

12. Ants Ronk. An Extended Block-Adaptive Fourier Analyser for Analysis and
Reproduction of Periodic Components of Band-Limited Discrete-Time Signals.
2002.

13. Toivo Paavle. System Level Modeling of the Phase Locked Loops: Behavioral
Analysis and Parameterization. 2003.

14. Irina Astrova. On Integration of Object-Oriented Applications with Relational
Databases. 2003.

15. Kuldar Taveter. A Multi-Perspective Methodology for Agent-Oriented
Business Modelling and Simulation. 2004.

16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004.

17. Artur Jutman. Selected Issues of Modeling, Verification and Testing of
Digital Systems. 2004.

18. Ander Tenno. Simulation and Estimation of Electro-Chemical Processes in
Maintenance-Free Batteries with Fixed Electrolyte. 2004.

159

19. Oleg Korolkov. Formation of Diffusion Welded Al Contacts to Semiconductor
Silicon. 2004.

20. Risto Vaarandi. Tools and Techniques for Event Log Analysis. 2005.

21. Marko Koort. Transmitter Power Control in Wireless Communication
Systems. 2005.

22. Raul Savimaa. Modelling Emergent Behaviour of Organizations. Time-Aware,
UML and Agent Based Approach. 2005.

23. Raido Kurel. Investigation of Electrical Characteristics of SiC Based
Complementary JBS Structures. 2005.

24. Rainer Taniloo. Ökonoomsete negatiivse diferentsiaaltakistusega astmete ja
elementide disainimine ja optimeerimine. 2005.

25. Pauli Lallo. Adaptive Secure Data Transmission Method for OSI Level I.
2005.

26. Deniss Kumlander. Some Practical Algorithms to Solve the Maximum Clique
Problem. 2005.

27. Tarmo Veskioja. Stable Marriage Problem and College Admission. 2005.

28. Elena Fomina. Low Power Finite State Machine Synthesis. 2005.

29. Eero Ivask. Digital Test in WEB-Based Environment 2006.

30. Виктор Войтович. Разработка технологий выращивания из жидкой фазы
эпитаксиальных структур арсенида галлия с высоковольтным p-n переходом
и изготовления диодов на их основе. 2006.

31. Tanel Alumäe. Methods for Estonian Large Vocabulary Speech Recognition.
2006.

32. Erki Eessaar. Relational and Object-Relational Database Management
Systems as Platforms for Managing Softwareengineering Artefacts. 2006.

33. Rauno Gordon. Modelling of Cardiac Dynamics and Intracardiac Bio-
impedance. 2007.

34. Madis Listak. A Task-Oriented Design of a Biologically Inspired Underwater
Robot. 2007.

35. Elmet Orasson. Hybrid Built-in Self-Test. Methods and Tools for Analysis
and Optimization of BIST. 2007.

36. Eduard Petlenkov. Neural Networks Based Identification and Control of
Nonlinear Systems: ANARX Model Based Approach. 2007.

37. Toomas Kirt. Concept Formation in Exploratory Data Analysis: Case Studies
of Linguistic and Banking Data. 2007.

160

38. Juhan-Peep Ernits. Two State Space Reduction Techniques for Explicit State
Model Checking. 2007.

39. Innar Liiv. Pattern Discovery Using Seriation and Matrix Reordering: A
Unified View, Extensions and an Application to Inventory Management. 2008.

40. Andrei Pokatilov. Development of National Standard for Voltage Unit Based
on Solid-State References. 2008.

41. Karin Lindroos. Mapping Social Structures by Formal Non-Linear
Information Processing Methods: Case Studies of Estonian Islands Environments.
2008.

42. Maksim Jenihhin. Simulation-Based Hardware Verification with High-Level
Decision Diagrams. 2008.

43. Ando Saabas. Logics for Low-Level Code and Proof-Preserving Program
Transformations. 2008.

44. Ilja Tšahhirov. Security Protocols Analysis in the Computational Model –
Dependency Flow Graphs-Based Approach. 2008.

45. Toomas Ruuben. Wideband Digital Beamforming in Sonar Systems. 2009.

46. Sergei Devadze. Fault Simulation of Digital Systems. 2009.

47. Andrei Krivošei. Model Based Method for Adaptive Decomposition of the
Thoracic Bio-Impedance Variations into Cardiac and Respiratory Components.

48. Vineeth Govind. DfT-Based External test and Diagnosis of Mesh-like
Networks on Chips. 2009.

49. Andres Kull. Model-Based Testing of Reactive Systems. 2009.

50. Ants Torim. Formal Concepts in the Theory of Monotone Systems. 2009.

51. Erika Matsak. Discovering Logical Constructs from Estonian Children
Language. 2009.

52. Paul Annus. Multichannel Bioimpedance Spectroscopy: Instrumentation
Methods and Design Principles. 2009.

53. Maris Tõnso. Computer Algebra Tools for Modelling, Analysis and Synthesis
for Nonlinear Control Systems. 2010.

54. Aivo Jürgenson. Efficient Semantics of Parallel and Serial Models of Attack
Trees. 2010.

55. Erkki Joasoon. The Tactile Feedback Device for Multi-Touch User Interfaces.
2010.

56. Jürgo-Sören Preden. Enhancing Situation – Awareness Cognition and
Reasoning of Ad-Hoc Network Agents. 2010.

57. Pavel Grigorenko. Higher-Order Attribute Semantics of Flat Languages. 2010.

161

58. Anna Rannaste. Hierarcical Test Pattern Generation and Untestability
Identification Techniques for Synchronous Sequential Circuits. 2010.

59. Sergei Strik. Battery Charging and Full-Featured Battery Charger Integrated
Circuit for Portable Applications. 2011.

60. Rain Ottis. A Systematic Approach to Offensive Volunteer Cyber Militia.
2011.

61. Natalja Sleptšuk. Investigation of the Intermediate Layer in the Metal-Silicon
Carbide Contact Obtained by Diffusion Welding. 2011.

62. Martin Jaanus. The Interactive Learning Environment for Mobile
Laboratories. 2011.

63. Argo Kasemaa. Analog Front End Components for Bio-Impedance
Measurement: Current Source Design and Implementation. 2011.

64. Kenneth Geers. Strategic Cyber Security: Evaluating Nation-State Cyber
Attack Mitigation Strategies. 2011.

65. Riina Maigre. Composition of Web Services on Large Service Models. 2011.

