
DOCTORAL THESIS

Computational Aspects of
Rewriting in Higher-Dimensional
Diagrams

Diana-Maria Kessler

TALLINNA TEHNIKAÜLIKOOL

TALLINN UNIVERSITY OF TECHNOLOGY
TALLINN 2025

TALLINN UNIVERSITY OF TECHNOLOGY
DOCTORAL THESIS

47/2025

Computational Aspects of Rewriting in
Higher-Dimensional Diagrams

DIANA-MARIA KESSLER

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Software Science
The dissertation was accepted for the defence of the degree of Doctor of
Philosophy on 16 June 2025

Supervisor:

Supervisor:

Opponents:

Doctor Amar Hadzihasanovic
Department of Software Science
School of Information Technologies
Tallinn University of Technology
Tallinn, Estonia

Professor Paweł Sobociński,
Department of Software Science
School of Information Technologies
Tallinn University of Technology
Tallinn, Estonia

Professor Samuel Mimram
Laboratoire d’informatique
École Polytechnique
Paris, France

Professor Fabio Zanasi
Department of Computer Science
University College London
London, United Kingdom

Defence of the thesis: 27 June 2025, Tallinn

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology, has not been
submitted for any academic degree elsewhere.

Diana-Maria Kessler
signature

Copyright: Diana-Maria Kessler, 2025
ISSN 2585-6898 (publication)
ISBN 978-9916-80-330-1 (publication)
ISSN 2585-6901 (PDF)
ISBN 978-9916-80-331-8 (PDF)
DOI https://doi.org/10.23658/taltech.47/2025
Printed by EVG Print

Kessler, D.-M. (2025). Computational Aspects of Rewriting in Higher-Dimensional
Diagrams [TalTech Press]. https://doi.org/10.23658/taltech.47/2025

https://digikogu.taltech.ee/et/Item/792ff142-321f-470c-b840-76489d4f9270

TALLINNA TEHNIKAÜLIKOOL
DOKTORITÖÖ

47/2025

Kõrgemamõõtmeliste diagrammide
ümberkirjutamise arvutuslikud

aspektid

DIANA-MARIA KESSLER

Contents

Abstract / Kokkuvõte 7

List of Publications 9

Author’s Contribution to the Publications 10

Acknowledgements 11

1 Introduction 14
1.1 Higher rewriting . 14
1.2 Pasting diagrams . 16
1.3 Higher-dimensional rewriting as a model of computation 18
1.4 Related work . 21
1.5 Structure of the thesis . 22
1.6 Main contributions . 23
1.7 Author’s note . 23

2 Oriented graded posets and molecules 24
2.1 Basic definitions . 27
2.2 Molecules . 33

2.2.1 Gluing . 34
2.2.2 The inductive definition of molecules 35
2.2.3 Basic properties of molecules 39

2.3 Graphs associated with diagrams . 45
2.3.1 Directed graph with open edges 46
2.3.2 Flow graphs . 52

2.4 Computational aspects of building molecules 53
2.4.1 Data structures for oriented graded posets 54
2.4.2 The traversal algorithm . 56
2.4.3 Correctness and runtime analysis 60
2.4.4 Traversal algorithm on an example 66
2.4.5 Algorithms for building molecules 67

5

3 The higher-dimensional subdiagram matching problem 69
3.1 Submolecules and substitutions . 71
3.2 Layerings . 74
3.3 Frame-dimension . 81
3.4 Molecule matching algorithm . 85

4 The rewritable submolecule problem 91
4.1 Relation between layerings and orderings 91
4.2 The rewritable submolecule decision algorithm 100
4.3 Runtime improvements under acyclicity conditions 104
4.4 Results in lower dimensions . 111
4.5 Obstructions . 117

5 Categorical framework 123
5.1 The category Mol/P . 124

5.1.1 Polygraphs . 129
5.2 Augmented directed complexes . 132
5.3 Image of the functor Z⃗ . 134
5.4 Acyclicity conditions . 135

5.4.1 Frame acyclicity . 137
5.4.2 Dimension-wise acyclicity . 139
5.4.3 Strongly dimension-wise acyclity 141
5.4.4 Acyclic regular directed complexes 143

5.5 Stability under constructions and operations 144

6 Future work 151

Bibliography 152

Appendices 159

A Paper I 159

B Paper II 179
C Paper III 203
D Paper IV 245
E Paper V 283
Curriculum Vitae 304

Elulookirjeldus 306

6

Abstract
Higher-dimensional rewriting is founded on the observation that certain rewrite
systems correspond to directed cell complexes in different dimensions. This gives
us a geometric grip on rewrite systems and rewrite derivations, connecting compu-
tational mathematics to higher categories and homotopy theory: rewrite systems
are directed cell complexes and rewrite rules are directed homotopies.
In this thesis we adopt a computational perspective and view higher-dimensional
rewriting as a model of computation in which an n-dimensional rewrite is a com-
putation on (n − 1)-dimensional data. Our motivation is the question of whether
such a model of computation would be a feasible one.
With this in mind, we start by studying the computational complexity of building
diagrams in the setting of diagrammatic sets. One of the main results is a traversal
algorithm for solving the isomorphism problem in time O(n2 log(n)). We continue
by studying the higher-dimensional subdiagram matching problem for rewritable
subdiagrams. We provide an algorithm for solving this problem in arbitrary di-
mension as well as an upper bound on its running time. In the general case, the
problem turns out to be in NP. We further show that under certain acyclicity
conditions (that are satisfied by all diagrams of dimension less than or equal to 3),
the running time of the algorithm is polynomial in the size of the diagram.
The diagrams mentioned so far correspond to pasting diagrams. We end the thesis
with the study of acyclicity conditions in a more general framework of diagrams.
We show that under one of the acyclicity conditions that we study for the subdi-
agram matching problem, the ω-category presented by a diagram shape is freely
generated in the sense of polygraphs. We further show that under stronger acyclic-
ity conditions this ω-category is equivalent to the one obtained from an augmented
directed chain complex in the sense of Steiner, or consists only of subsets of cells
in the diagram.

Kokkuvõte
Kõrgemamõõtmeline ümberkirjutamine põhineb tähelepanekul, et teatud ümberkir-
jutussüsteemid vastavad suunatud rakukompleksidele erinevates mõõtmetes. See
annab meile võimaluse ümberkirjutussüsteeme ja ümberkirjutustuletusi käsitleda
geomeetriliselt, seostades arvutusmatemaatika kõrgemate kategooriate ja homo-
toopiateooriaga: ümberkirjutussüsteemid on suunatud rakukompleksid ja ümberkir-
jutusreeglid on suunatud homotoopiad.
Käesolevas töös võtame arvutusliku vaatenurga ja käsitleme kõrgemamõõtmelist
ümberkirjutamist arvutusmudelina, kus n-mõõtmeline ümberkirjutamine on arvu-
tamine (n− 1)-mõõtmelistel andmetel. Meid ajendab küsimus, kas selline arvutus-
mudel võiks olla praktiline.
Kõigepealt uurime me diagrammide konstrueerimise arvutuslikku keerukust dia-
grammiliste hulkade kontekstis. Üks peamisi tulemusi on läbimisalgoritm isomor-
fismiprobleemi lahendamiseks O(n2 log(n)) ajas. Seejärel uurime kõrgemamõõt-
melist alamdiagrammide sobitamise probleemi ümberkirjutatavate alamdiagram-
mide jaoks. Esitame algoritmi selle ülesande lahendamiseks suvalises mõõtmes
koos ülemise tõkkega tema täitmiseks kuluvale ajale—üldjuhul kuulub see ülesanne

7

klassi NP. Lisaks näitame, et teatud mittetsüklilisuse tingimuste korral (mis on
täidetud kõikide kuni 3-mõõtmeliste diagrammide puhul) on algoritmi täitmiseks
kuluv aeg diagrammi suuruse suhtes polünomiaalne.
Diagrammid eeltoodus on kleepimisdiagrammid. Doktoritöö lõpuosas uurime tsük-
livabaduse tingimusi üldisemate diagrammide jaoks. Näitame, et ühe tsükliv-
abaduse tingimuse korral, mida alamdiagrammide sobitamise probleemi jaoks uurime,
on diagrammikujuga esitatud ω-kategooria polügraafide mõttes vabalt genereeri-
tud. Samuti näitame, et tugevamate tsüklivabaduse tingimuste korral on see ω-
kategooria kas ekvivalentne Steineri laiendatud suunatud ahelakompleksist saadud
ω-kategooriaga või koosneb ainult diagrammi rakkude alamhulkadest.

8

List of Publications
This thesis includes material from articles I, II and III. As customary in mathe-
matics, for articles I, II, III, and V the authors are listed in alphabetical order, and
papers are assumed to be equal collaborations between all of the listed authors.
Article V started during the Adjoint School 2024 (where the author was a teaching
assistant) and hence the students are listed in alphabetical order at the beginning
and the mentor (Koko Muroya) and TA’s (Diana Kessler and Juan F. Meleiro) are
listed in alphabetical order at the end.
For article IV, Fabian Wiesner is the first author, Ziad Chaoui, Diana Kessler and
Anna Pappa are in alphabetical order as second authors while Martti Karvonen is
the senior author. We all contributed to the final manuscript.

I A. Hadzihasanovic and D. Kessler. “Data Structures for Topologically Sound
Higher-Dimensional Diagram Rewriting”. In: Electronic Proceedings in The-
oretical Computer Science 380 (2023), pp. 111–127. doi: 10.4204/eptcs.
380.7

II A. Hadzihasanovic and D. Kessler. “Higher-dimensional subdiagram match-
ing”. In: 2023 38th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS). IEEE. 2023, pp. 1–13. doi: 10.1109/LICS56636.2023.
10175726

III A. Hadzihasanovic and D. Kessler. “Acyclicity Conditions on Pasting Dia-
grams”. In: Applied Categorical Structures 32 (Oct. 2024). doi: 10.1007/
s10485-024-09784-x

IV F. Wiesner, Z. Chaoui, D. Kessler, A. Pappa, and M. Karvonen. Why quan-
tum state verification cannot be both efficient and secure: a categorical ap-
proach. Online preprint arXiv:2411.04767. 2024

V A. Matsui, I. Obi, G. Sabbagh, L. Torres, D. Kessler, J. F. Meleiro, and
K. Muroya. “A Critical Pair Enumeration Algorithm for String Diagram
Rewriting”. In: Applied Category Theory (ACT) (2025). to appear

9

https://doi.org/10.4204/eptcs.380.7
https://doi.org/10.4204/eptcs.380.7
https://doi.org/10.1109/LICS56636.2023.10175726
https://doi.org/10.1109/LICS56636.2023.10175726
https://doi.org/10.1007/s10485-024-09784-x
https://doi.org/10.1007/s10485-024-09784-x

Author’s Contribution to the Publications
We refer to the list of publications on the previous page.

I The traversal algorithm and its runtime analysis are the joint work of the
two authors. The author was the lead contributor on the complexity/runtime
analysis aspects.

II The algorithms and runtime analysis of the algorithms presented in this paper
are the joint work of the two authors. The author was the lead contributor
on the complexity/runtime analysis aspects.

III The statements, proofs, and examples in this paper are the joint work of
the two authors. The author was the lead contributor in the comparison
between the regular directed complexes presented in this thesis and Steiner’s
augmented directed complexes.

IV The author contributed on the category theory part of the paper.

V The author contributed on the initial development of the algorithm as well
as to the final structure and presentation of the paper.

10

Acknowledgements
First and foremost, my thanks go to my supervisors.
To Amar Hadzihasanovic, to whom I am deeply grateful—for always having my
back, for believing in me, and for being there when I was struggling. It was a
pleasure to work with you and I learned a lot from our collaboration—not only how
to think more deeply and clearly, but also how to turn creative ideas into concise
mathematical ideas and research. Thank you for encouraging me to explore, to
question, and to write and express my thoughts and ideas.
To Paweł Sobociński, for giving me the freedom to pursue this research project and
for welcoming me into the beautiful group he created in Tallinn where I not only
learned a lot but also formed lifelong friendships. It was a privilege to be part of
this group and to see it grow.
Moreover, I want to thank both Amar and Paweł for supporting my travels to
conferences and for giving me the chance to be involved in more than just the
PhD work—learning how grant applications are written and how conferences are
organised.
I am deeply grateful to Michael Johnson, whom I had the pleasure to meet at ACT
2023. Our lovely and lively discussions and your wonderful intuitions have shaped
the way I view higher rewriting and its computational aspects which is especially
reflected in the introduction and future work of this thesis. Thank you for the
influence, the great stories I will always cherish and encouragement.
Special thanks to Jamie Vicary, for inviting me to visit his group in Cambridge
and for his valuable advice and deep insights on the problem of obstructions.
To my PhD sister and dear friend Clémence Chanavat—thank you for the insightful
discussions over the years. You have a beautiful mind, and I am looking forward
to reading your thesis.
My PhD journey would not have been the same without our sister group, the Logic
and Semantics Group. Many thanks to:
Tarmo Uustalu, for helping me settle into Estonia, for the career and research
advice, and for the careful translation of the title and abstract of this thesis. Also,
thank you for agreeing to be part of the defence committee.
Hellis Tamm, for the nice lunch breaks, your cheerful and caring spirit that always
lifted me up, and the beautiful trips around Estonia with Toomas. Thank you for
welcoming me into Estonia – it meant more than I can say. Also, many thanks for
your help with the Estonian translation.
Monika Perkmann for your cheerful spirit, our fun chats and your advice.
To friends from both our group and the sister group:
Philipp Joram, for your kind and caring nature. You were always there to check in
on me, remind me to rest, and gently pull me back when I was pushing too hard.
I will always be grateful. I will always cherish our endless discussions and debates,
the fun times we had in Tallinn and the excursions you organised.
Kat Zhuchko, for being an incredible friend on this journey—whether we were
working in cafés, sharing brunches, or just chatting or debating. Thank you for
always truly listening, for showing up when I needed someone, and for making even
the most stressful moments feel lighter. Your steady presence and constant support
meant more than I can say.

11

Michele De Pascalis, for noticing when I needed support (or snacks) and encourag-
ing me to keep space for my hobbies. Thank you for sharing your knowledge—and
passion—for food, coffee, and ale. I learnt so much from you and the way you
brought our group together with weekend lunches made Tallinn feel more like home.
To Andrea Laretto, for the piano breaks, for bringing a much-needed dose of real-
ism and for his dry humour that was often exactly what I needed.
To Elena Di Lavore and Mario Román, for sharing the ups and downs of our PhD
journeys and for the unforgettable times at conferences. Thank you for the laugh-
ter and for being there in the tougher moments, too – I really appreciate it.
Elina Shakhnovich - your bubbly spirit, courage and perseverance are inspiring.
To Tanguy Massacrier, for your patience and quiet kindness, and the good times
which made things feel more like home.
Matt Earnshaw and Eigil Fjeldgren Rischel, for sharing the (sometimes chaotic)
process of writing our theses and for being there through the highs, lows, and ev-
erything in between. Matt, for starting the PhD together and for your support
throughout the journey. Eigil, for the insightful math discussions, your matter-of-
fact jokes, and gentle reminders not to overwork.
To Fosco Loregian for movie nights, engaging conversations and sharing his math
knowledge.
To Ed Morehouse, for the beautiful conversations, for making difficult concepts
feel intuitive and fun, and for being there with support and kindness during the
difficult moments.
To Chad Nester - for always going the extra mile to welcome new members and
make sure they feel part of the group.
To the rest of the two groups, for advice, coffee break laughs, and conversations
about anything: Hendrik Maarand (thank you also for help with the Estonian
translation), Nathanael Arkor (thank you for advice on the introduction), Niels
Voorneveld (for the board game nights and agreeing to be part of the committee),
Niccolò Veltri, Nathan Haydon, Vahur Kotkas, Maksym Bortin, Silvio Capobianco.
And to the new members who enriched our community: Alkis Ioannidis, Callum
Reader (thank you for agreeing to be part of the defence committee), Eva Gra-
versen, Sofiya Taskova, Ioannis Andreou, Alessandro Di Giorgio (thank you for
agreeing to be part of the defence committee) and Priyaa Srinivasan.
Many thanks to Bryce Clarke, Samuel Mimram and Fabio Zanasi for being part of
the committee and agreeing to review this thesis - I appreciated your feedback.
I also want to thank TalTech for supporting some of my conference trips, and to the
wonderful people working behind the scenes who made everything run smoothly
(including, but not limited to): Ruth Laos, Ülle Ainsoo, Kaisa Saarman, Liisi
Ilu, Ülle Lõhmus, Tiina Hagen, Elena Vaarmets, and especially Kristi Ainen, who
always went the extra mile to make sure everything goes well for the group.
Additionally, I want to acknowledge the research collaborations that enriched my
PhD experience: I am grateful to Martti Karvonen, Ziad Chaoui, and Fabian
Wiesner, for the fun and fruitful collaboration on categorical cryptography. You
made it a safe and inspiring space to ask questions and express ideas. Many thanks
to the ACT Adjoint School, for the opportunity to participate, and to Koko Muroya,
Juan Meleiro, Anna Matsui, Innocent Obi, Guillaume Sabbagh, and Léo Torres —
I’m grateful we were all part of the same group and for our collaboration.

12

I am thankful to Chris Heunen who introduced me to this field and to Rik Sarkar
who encouraged me to pursue this direction.
Furthermore, I would like to acknowledge the ARIA grant, which provided me
with the opportunity to explore my research from a different perspective and to
collaborate with researchers from this community.
Beyond research, I am grateful to my friends, old and new, especially Andreea
Gavrilă, Alina Ion, Manali Sharma, Adelina Badea, Daniela Groza, Diana Tănase,
Vlad Iordan, Raluca Nae, Justyna Vădan and Zhe Deng for supporting me during
my PhD journey and not only.
I also want to acknowledge the teachers who shaped me over the years: my math
and physics teachers — Doina Enache, George Cazacu, Mioara Ionit,ă, Florina Băr-
bulescu, and Viorica Stănescu — as well as others who left a deep and lasting im-
print: Simona Kalamar, Angela Dogaru, Mihaela Stoenescu, Simona Mirea, Mag-
dalena Bartos, , Gerard Enache, Iulia Pop, Liana Lungu, Denisa Berindei, Manuela
Iana-Mihăilescu and Dragos, Mihăilescu.
I would not have been here without the support of my family. I want to thank
my parents (Nicoleta and Mihai) for all the love, support and encouragement.
Mult,umesc! Sunt norocoasă să vă am ca părint, i. I also want to thank both my
maternal and paternal grandparents for their immense love and kindness, for always
being there for me and my parents and for the wonderful holidays and hikes at
Oravit,a that turned my childhood from beautiful to magical.
I will always be grateful to my sister, Raluca, for her always cheerful and optimistic
spirit and for her kind and quiet support - you have always managed to lift my
spirits up.
I am also grateful to my extended family who contributed to where I am now,
among whom I mention: Mihai Corciova (for his continuous encouragements and
kind advice), Nela and Constantin Kessler, Raluca Manole, Cornelia and Lorent,
Cocard.
And last but not least, to the person who had to put up with me and shared
all the ups and downs of this journey – my husband, Ioan Stanciu. Thank you
for always believing in me, not shying away from problems, but on the contrary
brainstorming for solutions and for being there in every aspect of life. I’m more
grateful than words can express.

13

Chapter 1

Introduction

1.1 Higher rewriting
In the theory of computing, rewriting has been used as a mechanism of computa-
tion which relies on the idea of replacing a “subterm” in a formula with another
“subterm” to obtain a new formula. This substitution is done according to some
derivation rules called rewrites. Examples of models of computation that exhibit
rewriting as a computation mechanism include Petri nets via transitions - see [43]-
and λ-calculus via the β-reduction (see [21] for some examples). Rewriting theory
has been applied in different branches of computer science, including term rewrit-
ing [3], graph transformation techniques [49, Chapters 3 and 4] [19, 46, 44, 45],
rewriting logic [39, 13] as well as in the development of automated theorem provers
[14, 35]. Rewriting theory also has applications in abstract algebra as a tool for
studying the word problem in a monoid (or a group) or more generally as equational
logic in universal algebras.
Higher-dimensional rewriting was founded on the observation that particular rewrite
systems correspond to directed cell complexes in different dimensions. This gives
us a geometric grip on rewrite systems and rewrite derivations: rewrite systems
are directed cell complexes and rewrite rules are directed homotopies. Examples
of higher-dimensional rewrite systems include presentations of higher categories,
presentations of monoidal categories and presentations of (higher) operads. This
notion was independently introduced under the names of “polygraphs” and “com-
putads” by Burroni [11] and Street [52], respectively.
An example of a 1-dimensional rewrite system is an abstract rewrite system which
can be represented by a directed graph corresponding to a 1-dimensional cell com-
plex. Consider the following set of generators: {x, y, z, w, v} with the following
derivation rules: {x→ y, y → z, y → w, z → v, w → v}.

z•

x• y• v•

w•

(1.1)

14

Figure 1.1 shows two different possible derivations from x to v: according to the
relations above, x can be rewritten into y, y into z and so on. We are rewriting
0-dimensional elements and the rewrites are 1-dimensional. In other words, one
0-element can be turned into another if there is a path between them.
From here on, we may refer to individual elements of such rewrite systems as cells.
The 1-dimensional example already hints at the idea of two elements being related
if there is a path between them. We can make this intuition even more clear in the
2-dimensional case. By analogy with the first example, the elements being rewritten
are composable configurations of 1-dimensional cells - which can be viewed as paths
in a graph - and the rewrites are now 2-dimensional surfaces (see [32]). An example
of a 2-dimensional rewrite system is a string rewrite system used for presentations
of monoids or groups. Consider the example of a monoid generated by {a} with
relation aa = a. Now equality is a reversible relation that does not give us too many
details about the computations going on. We can weaken the notion of equality
and replace it by a (2-dimensional) rewrite rule: aa⇒ a. This is a non-symmetric,
irreversible operation that captures the idea of computation: turn an expression
into another expression according to some rules given beforehand. The following
picture represents an example of the unit law followed by an application of the
rewrite rule (the orientation of the surface is given by the 2-dimensional arrow):

• •

• •

a

a

a

e

a

By replacing equality with (non-symmetric) directed transformations, one may
study the word problem on monoids by using methods tailored to rewriting theory
such as confluence and termination [22].
As examples for the 3-dimensional case we have term-rewriting [3] and rewriting
on string diagrams. The terms are composable configurations of 2-dimensional
elements which are themselves rewrites on 1-dimensional paths. Note how above
we secretly replaced another equality relation with a rewrite rule: the unit law.
But elements in a monoid have to obey one more identity law: associativity. In our
2-dimensional example, associativity can be represented by the following picture:

• •

• •

a

a

a

a

a
=

• •

• •

a

a

a

a

a

This is a relation between 2-dimensional surfaces. By the same argument presented
in the 2-dimensional case, we can replace this equality with a 3-dimensional rewrite
rule obtaining an example of an associator:

• • • •

• • • •

(ab)c

a

ab

α

a(bc)

a

b

c

bc

b

c

15

In this example, the set of generators contains one 0-dimensional element, •, one
1-dimensional element, a, one 2-dimensional element that stands for composition
and one 3-dimensional element which is the associator above.
Continuing in this way, one obtains an n-dimensional rewrite system in which the
(n − 1)-dimensional surfaces being rewritten are themselves rewrites on surfaces
one dimension lower and so on.

1.2 Pasting diagrams
Pasting diagrams are a central tool for studying the composition of cells in high-
er-dimensional categories. The notion of 2-categorical pasting was introduced by
Bénabou in his treatment of bicategories [6]; in the 1980s and 1990s, a number of
frameworks for n-categorical pasting emerged, with corresponding pasting theorems
guaranteeing that a pasting diagram admits a suitably unique composite [33, 47,
53, 51]; see [20] for a recent survey.
A pasting diagram is, informally, a composable configuration of cells in an n-cate-
gory, such as the following:

x • y • z •

y •

f

g

f t

α

Examples of non-pasting diagrams include:

• • • and • • (1.2)

In the first example, the shape is not composable, while in the second one it is
ambiguous what the composite should be.
We show on an example how the higher-dimensional pasting diagrams arise from
the study of composition in a category. Take the following category (also a monoid
in this case) presented by the diagram below:

•

f
g

For a category theorist it is perfectly fine to represent f ◦ f ◦ f in the loopy way
pictured above. However, if we want to reason about composition in a category,
the picture above is ambiguous. This becomes intractable as we move to higher-
dimensional categories that may have higher-dimensional endo-arrows. To counter
this problem, we need to have an “unloopy” way to refer to this composition. In
the graphical representation of pasting diagrams, this becomes:

• • • •f f f

16

We can think of it as a parametrisation of the composition; the four dots and three
arrows are the “parametrising” objects, while the labelling is the “parametrisation”.
Throughout this thesis, the parametrising object will be called the shape of a
diagram, while the parametrisation will be called a diagram.
From another point of view, consider our monoid as a 1-object category. We can
enrich this category over Set seen as a 1-object bicategory (the delooping of Set as
a monoidal category) by sending (•, •) to a 1-arrow, M , representing our monoid.
Then the monoid operation ◦ :M ×M →M in the bicategory can be represented
by a 2-cell in the following fashion:

•

• •

MM

M

◦

Now, to satisfy the equations of a monoid, for every quadruple of objects, (three
endoarrows), the two ways in which we can compose have to be equal:

• •

• •

M

M

◦
M

M

M

◦
=

• •

• •

M

◦
MM

M

◦

However, we are in a bicategory in which morphism composition is associative up
to a natural isomorphism, α : (M ◦M) ◦M → M ◦ (M ◦M). This adds another
dimension to our diagrams:

• • • •

• • • •

M

M

◦

M

◦
MM

M

M

α

M

M

◦
◦

Since we do not have a strict equality between the two sides, this associator has to
satisfy a further coherence condition, MacLane’s pentagon, which is the 4-simplex
1:

1On a slightly different note (and to make the connection with the previous paragraph), see [5]
where the author shows that the equations for monoidal categories can be obtained by considering
a convergent term rewrite system on the equational theory of monoids.

17

•

• •

• •

• •

• • • •

• • • •

• •

• • • •

• • • •

We have seen how the higher-dimensional pasting diagrams for associativity and
MacLane’s pentagon arised from the study of composition in a category enriched
over a bicategory. The use of pasting diagrams has been leveraged for the study of
equations in n-categories. For example, the following diagrams appear as the left
hand side and right-hand side of the unit laws of a monad in a 2-category:

•

• •
t

idA

t

t

µ
η =

•

• •

t

t

idA

t

µ

η

Though it does not constitute the topic of this thesis, pasting diagrams are also used
in the study of weak higher categories, where the weak equalities are represented
by higher-dimensional cells - see [12] for an overview.

1.3 Higher-dimensional rewriting as a model of
computation

In this thesis, we turn our attention to higher-dimensional rewriting seen as a model
of computation. Namely, an n-dimensional rewrite is an n-cell in which the left
hand side and right-hand side are composable configurations (pasting diagrams) of

18

(n−1)-dimensional cells. As mentioned previously, these rewrites are not reversible
and hence, an n-dimensional rewrite can be seen as a computation step on (n− 1)-
dimensional data.
One feature of this approach is the encoding of computations as data. More specifi-
cally, an n-dimensional computation whose boundary is made of (n−1)-dimensional
data, can be part of the data of a computation one dimension higher. This allows
us to encode programs as data and compare the simulations of various machines
within the model.
A second advantage is that cells in a higher-dimensional diagram rewrite system
represent the data, the computations and the space in which the data lives (and
the computations take place). As a consequence, the operations that are part of
a program can be “seen” explicitly; for example, certain steps that are usually
hidden become now explicit, such as the operations of duplicating data or pointers
management (allocation and deallocation) [10]. Moreover, the way in which data
is processed or manipulated (e.g., the possibility of parallelism or accessing it as a
stack or in free-order) becomes internal topological constraints.
The mechanism of computation or a basic computation step in our model is as
follows: given a list of (n+1)-dimensional rewrite rules and a wider n-dimensional
diagram, d, we want to find matches of the left-hand side of the rewrite rules into
d. Once such a match is found, we apply the rewrite by substituting the input of
the rewrite rule in d with its output.
For example, in a string rewrite system with rule r1 := ab→ b, represented by the
2-dimensional diagram

• •

•

b

a b

r1

and the string abaab corresponding to the following 1-dimensional diagram, d:

• • • • • •a b a a b

there are two matches of the input of r1 into d. The diagrams embodying these
two substitutions are the following (respectively):

• • • • • •a

b

b a a b

r1

and • • • • • •a b a a

b

b

r1

The strings resulted after the rewrite was applied are baab and abab corresponding
to:

• • • • •
b a a b

and • • • • •a b a b

Now, the question that we are asking is: would a model of computation working
in the way explained above be a feasible model of computation? More explicitly,

19

“ Is the obvious cost model that attributes constant cost to each rewrite step a
“reasonable” cost model?”
To answer if such a machine would be a feasible model of computation, we start
by studying the computational complexity of building the shapes of diagrams in
the framework of diagrammatic sets introduced in [26]. This is a model of higher-
dimensional rewriting that is topologically sound - i.e., diagrams admit a functorial
interpretation as homotopies in CW complexes. The main contribution in this part
is the algorithm for deciding whether two shapes of diagrams are isomorphic - Pro-
cedure 2.4.8. We show that this decision algorithm is correct (Theorem 2.4.19) and
admits a low-degree polynomial time solution in the size of the diagram (Theo-
rem 2.4.21). This is not a trivial result, since the more general problem of graph
isomorphism has a quasipolynomial solution.
However, an inexpensive solution for building shapes of diagrams is not enough to
establish if our model would be a feasible model of computation. This question is
answered in the affirmative if and only if the subdiagram matching problem admits a
low-degree polynomial time algorithm with respect to a reasonable size measure for
diagrams. Since the problem of subgraph matching is NP-complete, the answer to
this question is not obvious. Our approach to the higher-dimensional subdiagram
matching problem is split in two main parts. Procedure 3.4.1, returns all inclusions
of a shape of diagram into a larger shape of diagram; the algorithm has a low-degree
polynomial time solution (Theorem 3.4.2). The second part is more difficult and
deals with verifying whether such an inclusion is indeed a subdiagram inclusion.
The solution to this problem (Procedure 4.2.1) involved developing more theory
about pasting decompositions for our shapes of diagrams. The algorithm for the
general case has a factorial running time and is in NP (Theorem 4.2.4). However,
under certain acyclicity conditions (that all shapes of diagram of dimension less
than or equal to 3 satisfy) the algorithm runs in linear time in the size of the data
structure encoding the diagram - Proposition 4.3.11.
The acyclicity conditions give rise to nice results in the problem of subdiagram
matching. In the last chapter of the thesis, we turn our attention to the study of
acyclicity conditions of various strength in a more general setting of diagrams.
In the previous formalisms, the acyclicity conditions were used to exclude examples
of non-pasting diagrams such as the “loopy” one in Figure 1.2. However, imposing
such conditions resulted in cutting out commonly occurring shapes that appear in
category theory already from dimension 3. One such example is the “weakened”
form of one of the triangle equations in the theory of pseudoadjunctions of 2-
categories pictured below:

C C

C D C D

D D

R
R

R

idC

R

idC

R

L

idD
idD

idRε η idR
(1.3)

Moreover, in the study of strict higher categories generated by diagram shapes, one
might also want to consider non-pasting diagrams, such as the ones in Figure 1.2
in which case, imposing such acyclicity conditions would exclude the shape on the
right.

20

In this thesis, the definitions for pasting diagram and the more general shapes of
non-pasting diagrams that we are using were first introduced in [26, 24] inspired
by Steiner’s directed complexes [51]. They allow examples of pasting diagrams
containing cycles, as the one exemplified above. One important property that
all our diagrams satisfy is regularity which imposes that the input and output
boundaries of a cell shape to be topologically closed balls.
At this point it is worth noting that (at least in the work of Johnson [33]) even
though they were excluding the shape above as a “parametrising” object, their
approach was to recover the behaviour we exemplified by a “parametrisation” of a
different (acyclic) shape:

C C

C D C D

D D D D

R
R

R

idC

R

idC

R

L

idD

η

idD

idR

idD

idD

ε idR

Apart from excluding “bad” examples, the acyclicity conditions served at least two
more purposes:

• to guarantee that an n-category can be formed out of subdiagrams, or “com-
posable subsets” of cells in the diagram;

• to ensure that the presented n-category is freely generated in the sense of
computads or polygraphs [52, 11, 1].

We continue the study of the acyclicity conditions of various strength to answer the
two questions above in the more general framework of regular directed complexes
which are diagrams that are locally pasting diagrams with one greatest element
(and which include both shapes from Figure 1.2). We investigate the connection
between our framework and Steiner’s work on augmented directed complexes [50]
and study the stability of the acyclicity conditions under the operations of joins,
Gray products and suspensions.

1.4 Related work
Similar work studying the computational complexity aspects of higher rewriting
is present in [15] and [10]. In [15], the authors present the data structures and
algorithms for rewriting in the homotopy.io proof assistant [48] which is based
on the theory of associative n-categories developed by Dorn, Douglas and Vicary
[18]. 2 In [10], the underlying framework is based on polygraphs but only up to
dimension 2.
The works of Bonchi, Gadducci, Kissinger, Sobocinski, and Zanasi [7, 8, 9] inves-
tigate string diagram rewriting, a form of three-dimensional rewrite system. Their

2Both diagrammatic sets and associative n-categories are frameworks for semi-strict higher
categories. However, the point of divergence is that associative n-categories have strict units
and associators and weak interchangers while diagrammatic sets have strict associators and in-
terchangers and weak units.

21

approach involves encoding string diagrams as hypergraphs, with rewriting subse-
quently carried out using the double pushout (DPO) method [19], a well-established
technique in graph transformations. These studies establish a framework for cer-
tain types of rewrite systems that include additional equations, such as those with
a Frobenius structure or a symmetric monoidal structure, and explore rewriting-
theoretic questions, such as confluence and termination, in relation to these sys-
tems. A more computational complexity approach to string diagram rewriting is
taken by Vicary and Delpeuch [16, 54].
The research in [36, 23, 42] focuses on the computational properties of rewrite
systems, such as confluence, termination or computing critical pairs in polygraphs
. Another notable contribution is by Plump [44, 45], who investigates a distinct
computational model known as term graphs. Term graphs, which are defined on
hypergraphs in a manner similar to the approach in [7, 8, 9], offer a framework
for rewriting on two-dimensional data. This work provides an alternative model of
computation, expanding on the concept of hypergraphs [46].

1.5 Structure of the thesis
In the second chapter, we introduce the basic structure that we use to encode our
shapes of diagrams, oriented graded posets. We give the inductive definition of
molecules which are our notion of pasting diagrams and prove some fundamental
results about them. We continue by defining two notions of graphs -flow graphs
and graphs with open edges - that will be used as tools in some of the proofs and
can also aid in visualizing the behavior of molecules in the higher dimensions. The
chapter concludes with a presentation of the basic data structures and algorithms
for constructing molecules, with the primary contribution being an isomorphism
algorithm for molecules (Procedure 2.4.8) which admits a low-degree polynomial
time solution in the size of the diagram (Theorem 2.4.21).
In the third chapter, we define the problem of higher-dimensional subdiagram
matching, which can be broken down into three subproblems, with the last one
having a trivial solution in our framework. We introduce the definitions of sub-
molecules and layerings, where a layering is a special kind of pasting decomposition
of molecules. We end the chapter with the molecule matching algorithm (Procedure
3.4.1), the first step in the problem of higher-dimensional subdiagram matching.
The fourth chapter focuses on the second step of the subdiagram matching problem:
the rewritable submolecule problem. This problem is more complex and requires
additional results related to layerings. We establish a connection between layerings
and specific orderings of the top-dimensional elements of a molecule, and use this
link to determine when the inclusion of molecules corresponds to a submolecule
inclusion - Theorem 4.1.20. We prove that the solution to the subdiagram matching
problem in the general case has a factorial running time (Theorem 4.2.4). We
present the acyclicity conditions on molecules under which the runtime of this
algorithm is improved. Moreover, we show that all molecules of dimension less
than or equal to 3 satisfy a certain acyclicity condition for which the runtime of
this algorithm is linear - Proposition 4.3.11.
The last chapter presents the ω-categorical framework of our diagrams. We give the
definition of regular directed complexes (a more general framework for diagrams).

22

We show that the set of isomorphism classes in the slice category of molecules
over an oriented graded poset, P , has the structure of an ω-category (Proposition
5.1.17). In a more constrained version of an oriented graded poset with frame-
acyclic molecules, we show that this category admits the structure of a polygraph
(Theorem 5.1.30). We show that for an even stronger acyclicity condition for the
molecules of a regular directed complex, P , this category consists only of subsets
of P (Corollary 5.4.27). We study the connection between our framework and
Steiner’s theory on augmented directed complexes. Finally, we end this chapter
by studying the stability of these acyclicity conditions under the operations of
suspensions, joins and Gray products.

1.6 Main contributions
This thesis is based on work published in [28, 29, 27].

• The traversal algorithm (Procedure 2.4.8) together with its runtime analysis
(Theorem 2.4.21).

• The molecule matching algorithm (Procedure 3.4.1) and its runtime analysis
(Theorem 3.4.2).

• The rewritable submolecule algorithm (Procedure 4.2.1), its runtime analysis
(Theorem 4.2.4) and the improvement of the running time when the molecules
are stably-frame acyclic (Proposition 4.3.11).

• The construction of the functor from the category of oriented graded posets
to ω-cat (Proposition 5.1.17); showing that the image of an oriented graded
poset with frame-acyclic molecules has the structure of a polygraph (Theorem
5.1.30). Studying the relation between our setting and the one of Steiner’s
augmented directed complexes (Proposition 5.4.10 and Theorem 5.4.15).

1.7 Author’s note
This thesis makes extensive use of pasting diagrams. This is on purpose. Apart
from the fact that the author believes that visualising is a great way to gain the
desired intuition, the author finds that the literature lacks examples in the form of
pasting diagrams. Usually, most examples of pasting diagrams include commonly
occurring shapes - i.e., simplices, cubes etc - that rarely go as high as dimension
3. However, these shapes are not general enough to model what we want. For this
reason, this thesis will include various examples of diagrams that do not fall into
these categories of commonly used examples.
To let the reader get accustomed to this graphical representation, the shapes of
diagrams that we will be using will be introduced along with the theory used to
encode them. Moreover, most of the times, a combinatorial or algebraic intuition
or description will be provided along with the diagram.

23

Chapter 2

Oriented graded posets and
molecules

We split the information representing a diagram in two. A diagram is formed out of
its shape and a labelling of its elements into a set of variables. Shapes of diagrams
represent our notion of pasting diagrams - i.e., composable configurations of cells
in an n-category. We will give the precise definition for a shape of diagram in
the section about molecules and a categorical definition for diagrams in a strict
ω-category in 5.1.23.

For the moment we concern ourselves with how we can encode the information of a
diagram. For example, take the following diagram which may correspond to monad
multiplication in the 2-category of categories, functors and natural transformations.

C • • C

C •

T

T T

µ

As already mentioned, we can split the information in the picture above into two;
The first is the shape of the diagram :

• •

•

24

The second is the labeling of its elements:

0− dimensional
elements C

1− dimensional
elements T

2− dimensional
elements µ

A shape of a diagram together with a labelling is a diagram. We label the elements
of a shape of diagram from a set of generating cells. When dealing with shapes
of diagram and their computational aspects, we want to refer to each element
individually. Each such element will be written in the form (n, k), where:

• n is the dimension of the element.

• k is the position of the elements in the traversal order - see Procedure 2.4.2.

So, when reasoning about shapes of diagrams, we think of them as:

(0,0) • • (0,2)

(0,1) •

(1,2)

(1,0) (1,1)

(2,0)

The unoriented version of our shapes of diagrams are regular cell complexes. We
take the approach from combinatorial topology and encode the shape of a diagram
using its face poset with extra structure to account for the directedness of our cells.
This structure is called an oriented graded poset and is represented with a Hasse
diagram with oriented edges. The poset encoding the shape above, without taking
account of the direction of the elements is:

(2,0)

(1,0) (1,1) (1,2)

(0,0) (0,1) (0,2)

How does this work? First of all, note that the elements of each dimension are on a
level. This diagram has dimension 2, and so the Hasse diagram representation has

25

3 levels: on the bottom level, are the 0-dimensional elements, on the middle level
are the 1-dimensional elements and on the last level are the 2-dimensional elements.
We call a poset with this property graded. The poset structure records whether
an n-dimensional element is in the boundary of an (n + 1)-dimensional element.
For example, the 0-dimensional elements (0, 0) and (0, 1) are in the boundary of
the 1-dimensional element (1, 0) so there is an edge between (0, 0) and (1, 0) and
between (0, 1) and (1, 0). We mentioned previously that the boundary of an n-
dimensional rewrite splits into an input (n − 1)-dimensional half and an output
(n − 1)-dimensional half. We can encode the membership of an element to one of
the faces by assigning an orientation(or colour) to the edges to indicate whether an
n-dimensional element is in the input boundary of an (n+ 1)-dimensional element
(arrows pointing upwards) or in the output boundary of an (n + 1)-dimensional
element (arrows pointing downwards).

(2,0)

(1,0) (1,1) (1,2)

(0,0) (0,1) (0,2)

For example, (0, 0) is in the input boundary of (1, 0) – arrow pointing upwards or
red – and (0, 1) is in the output boundary of (1, 0) – arrow pointing downwards or
blue – while for (2, 0), it has (1, 0) and (1, 1) in its input and (1, 3) in its output.
Oriented graded posets are the basic data structure that we use in describing our
shapes of diagrams. Since we use these structures to encode shapes of diagrams,
for the purpose of this thesis we are only considering finite posets. However, their
definition does not exclude the non-composable shapes. Our notion of pasting
diagrams is captured by molecules, which are an inductively defined subclass of
oriented graded posets. By defining molecules this way, we eliminate the “bad”
examples like those mentioned in the introduction. The combinatorial nature of
the definition makes it both straightforward to implement and easy to manipulate
by a computer. In the framework of rewriting as computations we are interested
in a model of computation on molecules and hence we are interested in the com-
putational cost of building such molecules which was the main focus of [28]. It
turns out that most of the operations that are necessary to build these molecules
have straightforward low-degree polynomial time complexity, with one exception:
the isomorphism problem for molecules. We show that the isomorphism prob-
lem extended to all oriented graded posets is equivalent to the graph isomorphism
problem. However, due to the rigid nature of molecules, the isomorphism problem
restricted only to shapes of diagrams can be solved in time O(n2 logn), where n is
the number of vertices and edges in the Hasse diagram representation of a molecule
(Theorem 2.4.21).
We begin by introducing the fundamental definitions for the structure used to
encode the shapes of diagrams. Next, we define molecules and conclude the chap-

26

ter by presenting the algorithms and data structures used in constructing these
molecules. Specifically, the final (sub)section focuses on illustrating on an example
the algorithm used to solve the molecule isomorphism problem.

2.1 Basic definitions
Definition 2.1.1 (Covering relation) — Let P be a poset. Given elements x, y ∈ P ,
we say that y covers x if x < y and, for all y′ ∈ P , if x < y′ ≤ y then y′ = y.

Many operations described from here on are operations on closed subsets of posets.
Also, many times when thinking about elements of a diagram, we think about the
element together with its “boundary” or the elements that are beneath it.

Definition 2.1.2 (Closure of a subset) — Let P be a poset and U ⊆ P . The closure
of U is the subset of P

clU := {x ∈ P | there exists y ∈ U such that x ≤ y} .

We say that U is closed if U = clU .

We encode the covering relation (whether an n-dimensional element is related to
an (n+1)-dimensional element) using faces. The dual notion is the one of cofaces;
we define both of them below:

Definition 2.1.3 (Faces and cofaces) — Let P be a poset and x ∈ P . The set of
faces of x is

∆x := {y ∈ P | x covers y}
and the set of cofaces of x is

∇x := {y ∈ P | y covers x} .

Example 2.1.4 — Take the following shape as an example.

(0,0) • • (0,2) • (0,3)

(0,1) •

(1,3)

(1,0)

(1,2)

(1,1)

(2,0)

Then, ∆(2, 0) = {(1, 0), (1, 1), (1, 3)}, ∆(0, 2) = ∅, ∇(0, 2) = {(1, 1), (1, 2), (1, 3)}
and ∇(2, 0) = ∅.

Definition 2.1.5 (Hasse diagram) — Let P be a poset. The Hasse diagram of P is
the directed acyclic graph H P whose

• set of vertices is the underlying set of P , and

• set of edges is
{(y, x) | x ∈ ∆y} ,

with s : (y, x) 7→ y called the source and t : (y, x) 7→ x called the target.

27

Definition 2.1.6 (Maximal path) — Let P be a poset. A maximal path starting
at x ∈ P is a sequence x1 < x2 < . . . < xn = x of elements of P such that for all
i ∈ {1, . . . , n− 1} if xi ≤ y ≤ xi+1 then y = xi or y = xi+1 and if y ≤ x1, then
y = x1. We call n the length of this path.

Definition 2.1.7 (Graded poset) — A poset P is graded if, for all x ∈ P , there
exists n such that all maximal paths in cl {x} have the same finite size n.

We already saw what being graded means and how to intuitively calculate the
dimension of an element. The poset below is not a graded poset. Element x has
height 2 when taking the path going through z and height 1 when taking the other
path.

• x

z •

• y
Now that we defined the basic structure we will be working with, we can proceed
to further define the properties that were used at the beginning of this chapter but
not articulated properly.

Definition 2.1.8 (Dimension of an element) — Let P be a graded poset and x ∈ P .
The dimension of x is the length dim x of a maximal path starting from x in H P .

Example 2.1.9 — Let U be the following shape of diagram, together with its Hasse
diagram representation:

(0,0) • • (0,2)

(0,1) •

(1,2)

(1,0) (1,1)

(2,0)

(2,0)

(1,0) (1,1) (1,2)

(0,0) (0,1) (0,2)

As discussed in the introduction, the dimension of (1, 0) is 1 and there are two
maximal paths from (1, 0) - one to (0, 0), another one to (0, 1) - both having
length 1. Similarly, for (2, 0): there are six maximal paths starting at (2, 0), all
having length 2.

Definition 2.1.10 (Dimension of a subset) — Let U be a closed subset of a graded
poset. The dimension of U is the integer

dimU :=
{
max {dim x | x ∈ U} if U is inhabited,
−1 if U is empty.

28

Example 2.1.11 — Consider the graded poset from example 2.1.9 and let U =
cl {(1, 0), (1, 1)} = {(0, 0), (1, 0), (0, 1), (1, 1), (0, 2)}. Then dimU = 1 , since (1, 0)
and (1, 1) are the elements with the greatest dimension.
Definition 2.1.12 (Maximal element) — Let P be a poset, x ∈ P . We say that x
is maximal in P if, for all y ∈ P , if x ≤ y then x = y. We write Max P for the set
of maximal elements in P .
We make a distinction between maximal elements and top-dimensional elements.
The shape from Example 2.1.4 has two maximal elements - (2, 0) and (1, 2)- but
only one top-dimensional element: (2, 0). That is, if x is an element in a closed
subset U of a graded poset P , then x is top-dimensional if dim x = dimU .
Throughout the thesis we will want to talk about the n-dimensional elements of a
subset.
Definition 2.1.13 (Grading of a subset) — Let U be a subset of a graded poset.
For each n ∈ N, we write Un := {x ∈ U | dim x = n}. We have U =

∑
n∈N Un.

Example 2.1.14 — If we let U be the shape of diagram from Example 2.1.9 seen
as a graded poset, then U0 = {(0, 0), (0, 1), (0, 2)}, U1 = {(1, 0), (1, 1), (1, 2)} and
U2 = {(2, 0)}.
We call a graded poset whose maximal elements are top-dimensional elements pure:
Definition 2.1.15 (Pure subset) — Let U be a closed subset of a graded poset,
n := dimU . We say that U is pure if all the maximal elements of U have dimension
n, that is, Max U = Un.
Finally, Definition 2.1.16 gives us the structure that we need to encode our shapes
of diagrams.
Definition 2.1.16 (Orientation on a graded poset) — Let P be a graded poset. An
orientation on P is an edge-labelling of H P with values in {+,−}.
Definition 2.1.17 (Oriented graded poset) — An oriented graded poset is a graded
poset P together with an orientation on P .
The orientation of the poset allows to partition the sets of faces and cofaces into
sets of input and output faces and cofaces.
Definition 2.1.18 (Input and output faces and cofaces) — Let P be an oriented
graded poset and x ∈ P . The set of input faces of x is

∆−x := {y ∈ P | x covers y with orientation −}
and the set of output faces of x is

∆+x := {y ∈ P | x covers y with orientation +} .
Dually, the set of input cofaces of x is

∇−x := {y ∈ P | y covers x with orientation −}
and the set of output cofaces of x is

∇+x := {y ∈ P | y covers x with orientation +} .
We have ∆x = ∆+x ∪∆−x and ∇x = ∇+x ∪∇−x.

29

Definition 2.1.19 (Oriented Hasse diagram) — Let P be an oriented graded poset.
The oriented Hasse diagram of P is the directed graph H⃗ P whose

• set of vertices is the underlying set of P , and

• set of edges is {
(y, x) | y ∈ ∆−x or x ∈ ∆+y

}
,

with s : (y, x) 7→ y called the source and t : (y, x) 7→ x called the target.
Example 2.1.20 — The oriented Hasse diagram of the shape of diagram from
Example 2.1.9 is:

(2,0)

(1,0) (1,1) (1,2)

(0,0) (0,1) (0,2)

Definition 2.1.21 (Input and output n-boundaries) — Let U be a closed subset of
an oriented graded poset. For all α ∈ {+,−} and n ∈ N, let

∆α
nU :=

{
x ∈ Un | ∇−αx ∩ U = ∅

}
.

For each n ∈ N, the input n-boundary of U is the closed subset

∂−n U := cl (∆−
nU) ∪

⋃

k<n

cl (Max U)k

and the output n-boundary of U is the closed subset

∂+n U := cl (∆+
nU) ∪

⋃

k<n

cl (Max U)k.

For n < 0, we let ∆α
nU = ∂αnU := ∅.

Definition 2.1.22 (Notation for boundaries) — We will use the following notations,
for x an element in an oriented graded poset, U a closed subset, n ∈ N, and
α ∈ {+,−}:

∂αnx := ∂αncl {x} , ∂nU := ∂−n U ∪ ∂+n U, ∆nU := ∆−
nU ∪∆+

nU.

Note that∆α
kU are not closed subsets of oriented graded posets as they only contain

k-dimensional elements. However, the sets ∂αnU are closed. We will later see that
when U is a molecule, ∂αkU are themselves molecules for any k ≥ 0.
Example 2.1.23 — Consider the shape from Example 2.1.4. Then, ∆−

0 = {(0, 0)},
∆+

0 = {(0, 3)}, ∆−
1 = {(1, 0), (1, 1), (1, 2)}, ∆+

1 = {(1, 3), (1, 2)}. For the bound-
aries: ∂−1 = {(1, 0), (1, 1), (1, 2), (0, 0), (0, 1), (0, 2), (0, 3)}, ∂+1 = {(1, 3), (1, 2),
(0, 0), (0, 2), (0, 3)}, ∂−0 = {(0, 0)}, ∂+0 = {(0, 3)}. We represent graphically the
input and output 1-dimensional boundaries of U :

∂−1 U = (0,0) • (0,1) • • (0,2) • (0,3)
(1,0) (1,1) (1,2)

∂+1 U = (0,0) • • (0,2) • (0,3)
(1,3) (1,2)

30

The example above does not illustrate why the definition of boundaries includes the
union of the closure of the maximal elements. Below, we present a 3-dimensional
example in which this condition is used.

Example 2.1.24 — Let U be the following shape of diagram:

•

• •

• •

•

(1,1)

(1,2)

(1,0)

(1,1)

(1,0)

(1,2)
(2,0) (3,0)

(2,1)

We omitted to add the labels for the 0-cells to not overcrowd the image, but on
both faces they are - from left to right- (0, 0), (0, 1), (0, 2).
Note that the 1-cell, (1, 1), is not in the closure of (3, 0). We drew the dia-
gram slightly tilted to help visualise that. More formally, ∆−

1 cl (3, 0) = {(1, 0)},
∆+

1 cl (3, 0) = {(1, 2)} and Max U = {(1, 1), (3, 0)}. Geometrically, U is a wedge
of a 3-dimensional ball and an interval. Now, ∆−

2 U = {(2, 0)} and ∆+
2 U =

{(2, 1)}. However, ∂−2 U = {(2, 0), (1, 0), (1, 2), (0, 0), (0, 1)} ∪ {(1, 1), (0, 2), (0, 1)}
and ∂+2 U = {(2, 1), (1, 0), (1, 2), (0, 0), (0, 1)} ∪ {(1, 1), (0, 2), (0, 1)}. Graphically,

∂−
2 U = • • • ∂+

2 U = • • •

(1,2)

(1,0)

(1,1)

(1,0)

(1,2)

(1,1)
(2,0) (2,1)

From the definitions previously presented, the following results hold:

Lemma 2.1.25. Let U be a closed subset of an oriented graded poset, n ∈ N, and
α ∈ {+,−}. Then dim ∂αnU ≤ n.

Proof. Let x ∈ ∂αnU . By definition there exists y such that x ≤ y and either
y ∈ ∆α

nU , so dim y = n, or y ∈ (Max U)k, and dim y = k < n. In either case, by
the monotonicity of dimension ([25, Lemma 1.2.33]), dim x ≤ dim y ≤ n. ■

Lemma 2.1.26. Let U be a closed subset of an oriented graded poset, n ∈ N, and
α ∈ {+,−}. Then

I (∂αnU)n = ∆α
nU ,

II (Max (∂αnU))k = (Max U)k for all k < n.

Proof. Let x ∈ ∂αnU . Then by definition there exists y such that x ≤ y and either
y ∈ ∆α

nU or y ∈ (Max U)k for some k < n. If x is maximal, necessarily x = y, and
we obtain one inclusion. The converse inclusions are evident. ■

31

Lemma 2.1.27. Let U be a closed subset of an oriented graded poset, n ∈ N, and
α ∈ {+,−}. Then

I (Max U)n = ∆+
nU ∩∆−

nU ,

II if n = dimU , then (Max U)n = ∆α
nU = Un.

Proof. Let x ∈ U , dim x = n. Then x is maximal if and only if it has no cofaces
in U , if and only if ∇−αx ∩ U = ∇αx ∩ U = ∅, if and only if x ∈ ∆+

nU ∩∆−
nU . If

n = dimU , then every element of Un is maximal in U , so

Un = (Max U)n ⊆ ∆α
nU ⊆ Un

using the first part of the proof, and we conclude that they are all equal. ■

Now we can state the result that one might have guessed from our previous exam-
ples: if U is a closed subset of an oriented graded poset and n < dimU , then the
n-dimensional boundaries are subsets of U .

Lemma 2.1.28. Let U be a closed subset of an oriented graded poset, n ∈ N, and
α ∈ {+,−}. Then

I ∂αnU ⊆ U ,

II ∂αnU = U if and only if n ≥ dimU .

Proof. See [25, Lemma 2.1.20]. ■

Now that we presented the data used to describe the shapes of diagrams, we define
morphisms of oriented graded posets and describe the category ogPos. We will
use the properties of this category in the next section where we’ll talk about gluing
and define molecules.

Definition 2.1.29 (Morphism of oriented graded posets) — Let P,Q be oriented
graded posets. A morphism f : P → Q is a function of their underlying sets which,
for all x ∈ P and α ∈ {+,−}, induces a bijection between ∆αx and ∆αf(x).

Note that the definition above is different than the one used in [28, 29] as the
condition of preserving the faces is more general while still capturing the behaviour
that we want in order to define molecules.

Definition 2.1.30 (The category ogPos) — We let ogPos denote the category
whose objects are oriented graded posets and morphisms are morphisms of oriented
graded posets.

We state some properties of oriented graded posets without proving them. One
can consult [25, Section 2.2] for the full proofs.

Lemma 2.1.31. Let f : P → Q be a morphism of oriented graded posets. Then

I f is order-preserving,

II f is closed,

32

III f is dimension-preserving, that is, for all x ∈ P , dim f(x) = dim x.
Proof. See [25, Lemma 2.2.3]. ■

Definition 2.1.32 (Inclusion of oriented graded posets) — An inclusion is an injec-
tive morphism of oriented graded posets.
Lemma 2.1.33. Let f : P → Q be a morphism of oriented graded posets. The
following are equivalent:
(a) f is a surjective inclusion;

(b) f is an isomorphism of oriented graded posets.
Proof. See [25, Lemma 2.2.10]. ■

Lemma 2.1.34. Let ı : P ↪→ Q be an inclusion of oriented graded posets and
U ⊆ P a closed subset. For all n ∈ N and α ∈ {+,−},

ı(∂αnU) = ∂αn ı(U).

Proof. See [25, Corollary 2.2.13]. ■

Proposition 2.1.35. The category ogPos has
I a strict initial object ∅,

II pushouts of inclusions along inclusions.
These colimits are computed as in the category of posets and order preserving maps.
Proof. See [25, Proposition 2.2.21]. ■

2.2 Molecules
Until now we have seen some examples of shapes of diagrams together with their
oriented graded posets. But not all oriented graded posets describe well formed
shapes of diagrams. Below we provide some examples of diagrams that are not
pasting diagrams together with their Hasse diagram representations:

• • •

• • • • • • •

•

• • • • • • •

• • • • • • • • • •
This section introduces molecules, our notion of pasting diagrams and builds up
on their theory and properties. We build molecules via gluing which we describe
in the following subsection.

33

2.2.1 Gluing

We take the approach from algebraic topology and construct what we will call
molecules by gluing. This is a technique that works by identifying common bound-
aries of spaces and gluing them together along these boundaries to form more
complicated objects. A good exposition of this technique can be found in [30].
We glue two oriented graded posets by taking the pushout of inclusions along
the identified elements. Before giving the formal definition, let us provide some
intuition about how the gluing operation works. To further highlight the definition
of molecules, we include examples of non-pasting diagrams in this subsection.
Let U and V be intervals (1-dimensional cells) and let’s say we want to glue them
along a 0-dimensional element. Then, we need to find an inclusion of the said
element in both diagrams. Suppose we find the following inclusion (identified with
purple):

• • •

• •

The pushout is the union of U and V where we identify the common elements of
the inclusions (this is equivalent to quotienting the union by the common elements
in the image):

• • •

•

• • • •

Let’s look at another example. Again, suppose that U and V are 1-dimensional
cells and we have the following inclusion of 0-dimensional cells:

• • • •

• •

34

By taking the pushout of the diagram above, we obtain:

• • • •

• • • •

2.2.2 The inductive definition of molecules
We want to avoid bad situations like those exemplified at the beginning of the sec-
tion. Our setting still allows for cycles to appear in higher-dimensional diagrams;
this is not an issue, but on the contrary a desired result. While we exclude the bad
examples mentioned above, our framework is lax enough to allow shapes of dia-
grams representing “phenomena” that are commonly occurring in category theory
like the one in Figure 1.3.
In our work the concept of a pasting diagram is captured by molecules. The term
is taken from [51]. Intuitively and similarly to pasting schemes, molecules are
configurations of composable cells. We define the class of molecules as an inductive
subclass of oriented graded posets using the paste and rewrite constructions defined
below:

Definition 2.2.1 (Pasting construction) — Let U , V be oriented graded posets,
k ∈ N, and let ϕ : ∂+k U

∼
↪→ ∂−k V be an isomorphism. The pasting of U and V at the

k-boundary along ϕ is the oriented graded poset U #ϕk V obtained as the pushout

∂+k U ∂−k V V

U U #ϕk V

ϕ

ıU

ıV

⌟

in ogPos.

Definition 2.2.2 (Rewrite construction) — Let U , V be oriented graded posets
of the same finite dimension n, and suppose ϕ : ∂U ∼

↪→ ∂V is an isomorphism
restricting to isomorphisms ϕα : ∂αU ∼

↪→ ∂αV for each α ∈ {+,−}. Construct the
pushout

∂U ∂V V

U ∂(U ⇒ϕ V)

ϕ

⌟

in ogPos. The rewrite of U into V along ϕ is the oriented graded poset U ⇒ϕ V
obtained by adjoining a single (n+1)-dimensional element ⊤ to ∂(U ⇒ϕ V), with

∆−⊤ := Un, ∆+⊤ := Vn.

35

Pasting diagrams also possess the property of globularity, which ensures that re-
peated operation of taking lower-dimensional input or output boundaries can be
reduced to a single instance.

Definition 2.2.3 (Globularity) — Let U be an oriented graded poset. We say that
U is globular if, for all k, n ∈ N and α, β ∈ {+,−}, if k < n then

∂αk (∂βnU) = ∂αkU.

The last example of a non-pasting diagram from the beginning of this section is
not globular. But let us see why:

Example 2.2.4 — Let U be the following oriented graded poset:

(0,1)• •(0,3)

(0,0)• •(0,2)

(1,0)

(0,0)

(2,0)

(2,0)

(1,0) (1,1)

(0,0) (0,2) (0,1) (0,3)

Note that ∂−0 U = {(0, 0), (0, 1)}, while ∂−0 (∂−1 U) = {(0, 0)} and ∂−0 (∂+1 U) =
{(0, 1)}.
Roundness, a stronger condition than globularity, is the last ingredient that we
need to define before introducing molecules. Intuitively, the property of roundness
ensures that the shape of an n-dimensional diagram is a closed topological n-ball.
As we will see later on, being round also has the consequence that the shape of
diagrams is “connected” at its (n− 1)-boundaries.

Definition 2.2.5 (Roundness) — Let U be an oriented graded poset. We say that
U is round if it is globular and, for all n < dimU ,

∂−n U ∩ ∂+n U = ∂n−1U.

Example 2.2.6 — The molecule in example 2.1.4 seen as an oriented graded
poset is not a round molecule as ∂−1 U ∩ ∂+1 U = {(0, 0), (0, 2), (0, 3)} while ∂0U =
{(0, 0), (0, 3)}.
Definition 2.2.7 (Point) — The point is the oriented graded poset 1 with a single
element and trivial orientation.

Definition 2.2.8 (Molecule) — The class of molecules is the inductive subclass of
oriented graded posets closed under isomorphisms and generated by the following
clauses.

I (Point). The point is a molecule.

II (Paste). Let U , V be molecules, let k < min {dimU,dimV }, and consider
ϕ : ∂+k U

∼
↪→ ∂−k V an isomorphism. Then U #ϕk V is a molecule.

36

III (Atom). Let U , V be round molecules of the same finite dimension and let
ϕ : ∂U ∼

↪→ ∂V be an isomorphism restricting to ϕα : ∂αU ∼
↪→ ∂αV for each

α ∈ {+,−}. Then U ⇒ϕ V is a molecule.

Let’s see how these molecules are constructed in practice. We start with the Atom
rule and build a 3-dimensional shape out of two 2-dimensional shapes of diagrams.
We chose to exemplify in dimension three, because the 0-dimensional elements
(the points) are trivially isomorphic. These points will be the input or output of
the 1-dimensional shapes that will form the input or output boundary of our 2-
dimensional shape, so building a 2-dimensional atom is always possible as long as
we have 1-dimensional well-formed pasting diagrams.
Consider the following two 2-dimensional shapes of diagrams:

U = (0,0) • • (0,2) V = (0,0) • • (0,2)

(0,1) • (0,1) •

(1,2)

(1,3)

(1,0)

(1,2)

(1,0)(1,1) (1,1)

(2,1)

(2,0)

(2,0)

We identify that the input and output boundaries of U and V are isomorphic and
glue the two shapes along this isomorphism. The gluing is done by taking the
pushout in the category ogPos. In our example, this corresponds to the following
picture:

• •

• •

• •

• • •

•

• •

What we obtain by taking the pushout is a sphere to which we want to add the
volume - the 3-dimensional cell. One way is to imagine some kind of a shell or
deflated balloon in which U is at the front and V at the bottom. To finish building
the atom, we now add a new 3-dimensional cell, (3, 0) going from U to V . The new
molecule U ⇒ V will look as follows:

37

(0,0) • • (0,2) (0,0) • • (0,2)

(0,1) • (0,1) •
(1,2)

(1,3)

(1,0)

(3,0)

(1,3)

(1,0)(1,1) (1,1)

(2,1)

(2,0)

(2,2)

Note that it is perfectly valid to do V ⇒ U in which case our shape looks like:

(0,0) • • (0,2) (0,0) • • (0,2)

(0,1) • (0,1) •

(1,2)

(1,0)

(3,0)

(1,3)

(1,2)

(1,0)(1,1) (1,1)

(2,2)

(2,0)

(2,1)

The Paste construction works similarly to the atom construction. Consider the
following two shapes of diagrams:

U =

(0,0) • • (0,2)

(0,1) •

(1,2)

(1,3)

(1,0) (1,1)

(2,1)

(2,0) and V =

• (0,2)

(0,0) • • (0,1)

(1,2)(1,1)

(1,0)

(2,0)

First note that dimU = dimV = 2, so k ∈ {0, 1}. We can paste at dimensions
0 and 1 as long as the boundaries are isomorphic. Let’s choose k = 1. Note that
both ∂+1 U ∼= ∂−1 V and ∂+1 V ∼= ∂−1 U and we get the following shapes:

V #1 U =
(0,0) • • (0,1)

•
and U #1 V =

•

• •

•

38

The pasting operation is done via taking the pushout along the isomorphic bound-
aries:

•

∂+1 U = • • ∂−1 V = • • V =

• •

•

U = • •

U #1 V = • •

•

•

∼

For k = 0, we always have an isomorphism, hence the shapes U #0 V and V #0 U
are:

U #0 V =

•

• • •

•

V #0 U =

•

• • •

•

2.2.3 Basic properties of molecules
We prove or state some basic properties of molecules. Namely, that all molecules
are globular, that the boundaries of a molecule are themselves molecules and that
for any element in a molecule, its closure is a molecule. Some of the properties pre-
sented below also hold for oriented graded posets. But since the thesis is dedicated
to molecules, we choose to present them at this stage.
We start by showing some properties about the operations of pasting and atom
on molecules. We introduce the concept of an atom - a molecule with a greatest
element. In Lemma 2.2.10, we show that the pasting of two molecules is always

39

a molecule, whenever an isomorphism between their respective boundaries exists
while in Lemma 2.2.14 we give a concise description of what it means for a molecule
to be an atom.
Lemma 2.2.9. Let U be a molecule. Then |U | is finite.
Proof. By induction on the construction of U . If U was produced by (Point),
then |U | = 1. If U was produced by (Paste), then it is equal to V #ϕk W for some
molecules V , W and k < min {dimV,dimW}. Then |U | ≤ |V | + |W |, which is
finite by the inductive hypothesis. If U was produced by (Atom), then it is of the
form V ⇒ϕ W for some molecules V , W . Then |U | ≤ |V |+ |W |+1, which is finite
by the inductive hypothesis. ■

Lemma 2.2.10. Let U , V be molecules, k ∈ N, and ϕ : ∂+k U
∼
↪→ ∂−k V an isomor-

phism. Then U #ϕk V is a molecule.
Proof. If k < min {dimU,dimV }, then this is an application of the (Paste) con-
structor. If k ≥ dimU , then ∂+k U = U and U #k V is isomorphic to V , which is
a molecule by assumption. Similarly, if k ≥ dimV , then U #k V is isomorphic to
U . ■

Lemma 2.2.11. Let U be a round oriented graded poset. If U is finite-dimensional,
then U is pure.
Proof. Suppose that U is not pure. Then there exists a maximal element x in U
with k := dim x < dimU . By Lemma 2.1.27, x ∈ ∂−k U ∩ ∂+k U . Then ∂−k U ∩ ∂+k U
is k-dimensional and cannot be equal to ∂k−1U , which is (k − 1)-dimensional. It
follows that U is not round. ■

The converse of the lemma above is not true:
Example 2.2.12 (Molecule that is pure but not round) — Before presenting the
example, let’s argue why this would not be the case. We saw from the definition
that one can glue two atoms along their k-dimensional boundary with k < n − 1
which will result in the two maximal elements not sharing (n − 1)-dimensional
elements.

• • •

Definition 2.2.13 (Atom) — An atom is a molecule with one maximal element.
Lemma 2.2.14. Let U be a molecule. The following are equivalent:
(a) U is an atom;

(b) the final constructor producing U is (Point) or (Atom).
Proof. If U was produced by (Point), then U is the point, which trivially has a
greatest element.
If U was produced by (Paste), then U splits into a union V ∪W , where V ∩W =
∂+k V = ∂−k W and k < max {dimV,dimW}. Then there exist elements x1 ∈ V and
x2 ∈W such that

40

I x1 is maximal in V and x2 is maximal in W ,

II dim x1 > k and dim x2 > k.

By Lemma 2.1.25, dim (V ∩W) ≤ k, so neither x1 nor x2 are contained in V ∩W .
It follows that x1 and x2 are distinct maximal elements of U , so U does not have
a greatest element.
If U was produced by (Atom), then U splits into (U− ∪U+) + {⊤}, where U− and
U+ are round molecules of dimension n, and ∆α⊤ = (Uα)n for each α ∈ {+,−}.
By Lemma 2.2.11, we have Uα = cl (Uα)n, so Uα = ∂α⊤ ⊆ cl {⊤}. It follows that
all elements of U are in the closure of x, that is, x is the greatest element of U . ■

We have the following results about the boundaries of molecules, which we prove
more generally for oriented graded posets.

Lemma 2.2.15. Let U , V be oriented graded posets and suppose U ⇒ϕ V is
defined. Then

I ∂−(U ⇒ϕ V) = U ,

II ∂+(U ⇒ϕ V) = V .

Proof. See [25, Lemma 3.2.3]. ■

Example 2.2.16 — The lemma above follows from the definition.

If we let U ⇒ V =

• •

• •

•

, then

∂−(U ⇒ V) = • • • = U

and
∂+(U ⇒ V) = • • • • = V.

Lemma 2.2.17. Let U , V be oriented graded posets, k ∈ N, and suppose U #ϕk V
is defined. Then

I ∂−k (U #ϕk V) = ∂−k U ,

II ∂+k (U #ϕk V) = ∂+k V .

Proof. See [25, Lemma 3.1.5]. ■

Example 2.2.18 — Let U =
• •

•
and V =

• •

• •
.

Then

U #1 V =

• •

• •

•

41

and
∂−1 (U #1 V) = • • • = ∂−1 U

and
∂+1 (U #1 V) = • • • • = ∂+1 V.

Lemma 2.2.19. Let U , V be globular oriented graded posets, k ∈ N, and suppose
U #ϕk V is defined. For all j < k and α ∈ {+,−},

∂αj U = ∂αj V = ∂αj (U #ϕk V).

Proof. See [25, Lemma 3.1.14]. ■

Lemma 2.2.19 holds for any molecule that is formed as a pasting of two molecules.
Since U and V are pasted at dimension k, by the property of globularity, all the
elements of dimension less than k are identified with their isomorphic image.
Symetrically to Lemma 2.2.19, we get:

Lemma 2.2.20. Let U , V be globular oriented graded posets, k ∈ N, and suppose
U #ϕk V is defined. For all n > k and α ∈ {+,−}, the pasting ∂αnU #ϕk ∂

α
nV is

defined and maps isomorphically onto ∂αn (U #ϕk V).

Proof. See [25, Lemma 3.1.15]. ■

Example 2.2.21 — Consider the molecules defined in Example 2.2.18; we then
have ∂−1 U #ϕ0 ∂

−
1 V
∼= ∂−1 (U #ϕ0 V). In pasting diagrams this looks like:

• • • #0 • • ∼= ∂−1




• •

• • •

•




We show that globularity is preserved under all the operations used to construct
molecules. In particular, we show that every molecule is globular; we moreover
show that molecules are preserved under taking boundaries. For this, we need a
few additional lemmas that hold for all oriented graded posets.

Lemma 2.2.22. Let U be a globular oriented graded poset, n ∈ N, and β ∈ {+,−}.
Then ∂αnU is globular.

Proof. Let k < m be natural numbers and α, γ ∈ {+,−}. If m < n, using globu-
larity of U twice,

∂αk (∂γm(∂βnU)) = ∂αk (∂γmU) = ∂αkU = ∂αk (∂βnU).

If m ≥ n, by Lemma 2.1.28 we have ∂γm(∂βnU) = ∂βnU , so

∂αk (∂γm(∂βnU)) = ∂αk (∂βnU). ■

Lemma 2.2.23. Let U , V be globular oriented graded posets, k ∈ N, and suppose
U #ϕk V is defined. Then U #ϕk V is globular.

42

Proof. Let m,n ∈ N such that m < n, and α, β ∈ {+,−}. If n < k, by Lemma
2.2.19

∂αm(∂βn(U #ϕk V)) = ∂αm(∂βnU) = ∂αm(U) = ∂αm(U #ϕk V).

If n = k, by Lemma 2.2.17 and Lemma 2.2.19,

∂αm(∂−n (U #ϕk V)) = ∂αm(∂−n U) = ∂αm(U) = ∂αm(U #ϕk V)

and
∂αm(∂+n (U #ϕk V)) = ∂αm(∂+n V) = ∂αm(V) = ∂αm(U #ϕk V).

Finally, if n > k, by Lemma 2.2.20 we have

∂αm(∂βn(U #ϕk V)) = ∂αm(∂βnU #ϕk ∂
β
nV),

and by Lemma 2.2.22 ∂βnU and ∂βnV are globular. If m < k we use Lemma 2.2.19
to obtain

∂αm(∂βnU #ϕk ∂
β
nV) = ∂αm(∂βnU) = ∂αmU = ∂αm(U #ϕk V).

If m = k we use Lemma 2.2.17 instead to obtain

∂−m(∂βnU #ϕk ∂
β
nV) = ∂−m(∂βnU) = ∂−mU = ∂−m(U #ϕk V)

and similarly

∂+m(∂βnU #ϕk ∂
β
nV) = ∂+m(∂βnV) = ∂+mV = ∂+m(U #ϕk V).

Finally, if m > k we use Lemma 2.2.20 once more to obtain

∂αm(∂βnU #ϕk ∂
β
nV) = ∂αm(∂βnU)#ϕk ∂

α
m(∂βnV) = ∂αmU #ϕk ∂

α
mV

and once more to obtain

∂αmU #ϕk ∂
α
mV = ∂αm(U #ϕk V). ■

Lemma 2.2.24. Let U , V be oriented graded posets and suppose U ⇒ϕ V is
defined. Then U ⇒ϕ V is globular.

Proof. For all k < dimU = dimV and α ∈ {+,−}, we have

∂αkU = ∂αk (∂βU) = ∂αk (∂βV) = ∂αk V

since ∂βU = ∂βV and U , V are globular. It then suffices to show that, for all
k < dimU and α ∈ {+,−},

∂αk (U ⇒ϕ V) = ∂αkU.

Indeed, suppose this holds, and let k < n < dim (U ⇒ϕ V) and α, β ∈ {+,−}. If
n = dimU , then by Lemma 2.2.15

∂αk (∂−n (U ⇒ϕ V)) = ∂αkU = ∂αk (U ⇒ϕ V)

43

and similarly

∂αk (∂+n (U ⇒ϕ V)) = ∂αk V = ∂αkU = ∂αk (U ⇒ϕ V).

If n < dimU , then

∂αk (∂βn(U ⇒ϕ V)) = ∂αk (∂βnU) = ∂αkU = ∂αk (U ⇒ϕ V)

using the globularity of U .
Let then k < dimU and α ∈ {+,−}. We have ∆α

k (U ⇒ϕ V) = ∆α
k (U ∪ V). Since

∆α
kU = ∆α

kV , by [25, Lemma 2.1.22] we have ∆α
k (U ∪ V) = ∆α

kU . Similarly, we
prove that for all j < k we have (Max (U ∪ V))j = (Max U)j . It follows that
∂αk (U ⇒ϕ V) = ∂αkU . ■

Proposition 2.2.25. Let U be a molecule, n ∈ N, α ∈ {+,−}. Then

I U is globular,

II ∂αnU is a molecule,

III if n ≤ dimU , then dim ∂αnU = n.

Proof. By induction on the construction of U . Suppose U was produced by (Point).
Then U is the point, it has no non-trivial boundaries, and is trivially globular.
Suppose U was produced by (Paste). Then U = V #ϕk W for some molecules V ,
W . By the inductive hypothesis, V and W are globular, and by Lemma 2.2.23 so
is U . We have k < min {dimV,dimW}. If n = k, then by Lemma 2.2.17 ∂−n U is
equal to ∂−n V and ∂+n U to ∂+nW . By the inductive hypothesis, both of these are
n-dimensional molecules. If n < k, then by Lemma 2.2.19 ∂αnU is equal to ∂αnV ,
and again the inductive hypothesis applies. If n > k, then by Lemma 2.2.20 ∂αnU is
equal to ∂αnV #ϕk ∂

α
nW . By the inductive hypothesis, ∂αnV and ∂αnW are molecules,

and if n < dimU = max {dimV,dimW}, at least one of them is n-dimensional.
Finally, suppose U was produced by (Atom). Then U = V ⇒ϕ W for some round
molecules V , W of the same dimension. By the inductive hypothesis, V and W
are globular, and by Lemma 2.2.24 so is U . If n ≥ dimU , then ∂αnU = U is by
assumption a molecule. If n = dimU − 1, then by Lemma 2.2.15 ∂−U is equal
to V and ∂+U to W , both molecules of dimension n. If n < dimU − 1, then
∂αnU = ∂αnV = ∂αnW by globularity, and the inductive hypothesis applies. ■

Roundness, however is preserved only under some of these operations:

Lemma 2.2.26. Let U be round, n ∈ N, and α ∈ {+,−}. Then ∂αnU is round.

Proof. If n ≥ dimU there is nothing to prove, so suppose n < dimU . By Lemma
2.2.22, ∂αnU is globular. Let k < dim (∂αnU) ≤ n. Then

∂−k (∂
α
nU) ∩ ∂+k (∂αnU) = ∂−k U ∩ ∂+k U = ∂k−1U = ∂k−1(∂αnU)

using roundness of U . ■

Lemma 2.2.27. Let U , V be round and suppose U ⇒ϕ V is defined. Then U ⇒ϕ

V is round.

44

Proof. Globularity follows from Lemma 2.2.24, so we only need to prove roundness.
Let n := dimU = dimV . By Lemma 2.2.15

∂−(U ⇒ϕ V) ∩ ∂+(U ⇒ϕ V) = U ∩ V = ∂U = ∂V,

and by globularity ∂U = ∂(∂−(U ⇒ϕ V)) = ∂n−1(U ⇒ϕ V). Finally, for k < n

∂−k (U ⇒ϕ V) ∩ ∂+k (U ⇒ϕ V) = ∂−k U ∩ ∂+k U = ∂k−1U = ∂k−1(U ⇒ϕ V)

by globularity of U ⇒ϕ V and roundness of U . ■

Corollary 2.2.28. All atoms are round.

Proof. Let U be an atom. If it was produced by (Point), it is trivially round. If it
was produced by (Atom), it is round by Lemma 2.2.27. ■

Remark 2.2.29. Note that roundness is not preserved under pasting. Example
2.2.12 motivates why: the molecule can be written as a 0-pasting of two atoms.

Lemma 2.2.30. Let U be a molecule, x ∈ U . Then cl {x} is an atom.

Proof. By induction on the construction of U . If U was produced by (Point), then
x must be the unique element of U whose closure is U itself. If U was produced
by (Paste), it splits into V ∪W , and x ∈ V or x ∈ W ; the inductive hypothesis
applies. If U was produced by (Atom), it is equal to (V ∪W) + {⊤}, and either
x ∈ V or x ∈ W , in which case the inductive hypothesis applies, or x = ⊤, and
cl {x} = U is an atom by definition. ■

2.3 Graphs associated with diagrams
As one might have noticed, the shapes of diagrams are already quite complicated
and beyond dimension 3, graphical representation of molecules becomes hard to
manipulate. Moreover, the Hasse diagram representation does not give us a good
idea or too much intuition on how our shapes look like: they get complicated as
the shapes become more and more complex and deriving any intuition from them
becomes cumbersome. Many times, we want to get an idea on how the top few
dimensions - i.e., from n to (n−2) - look like and derive results for them or we want
to know how the elements in the diagram relate to each other. For these purposes,
we introduce two notions of graphs that we use to study the behaviour of molecules
at the top two dimensions and to study how their elements are connected. Apart
from their usefulness in helping us better visualise the diagrams we are working
with, the graphs presented will also prove to be great tools in proving properties
about molecules. The directed graphs with open edges are a valuable tool for
proving some important properties about the molecules, such as the the fact that
there exists at most one isomorphism between two molecules. This allows us to
treat two isomorphic molecules as being equal. Moreover, flow graphs are used at
a later time in the thesis to study certain (a)cyclicity conditions of the molecules.

45

2.3.1 Directed graph with open edges
We want a way to reason about the shapes that are part of the diagram and the
way the elements of a certain dimension connect. Take for example the following
2-dimensional diagram:

• • • • • •
(1,5)

(1,0)

(1,8)

(1,6)

(1,1)
(1,2)

(1,7)

(1,3) (1,4)
(2,0) (2,1)

(2,3)

(2,2)
(2.1)

We are interested in the number of faces and cofaces of the elements in the top two
dimensions. To represent the diagram above we use the following graph:

(1,8)•

(2,3)•

(1,5)• (1,6)• (1,7)•

(2,0)• (2,1)• (2,2)•

(1,0)• (1,1)• (1,2)• (1,3)• (1,4)•

(2.2)

Note that the graphs above have two types of nodes: node vertices, which represent
the top-dimensional elements and wire vertices representing the (n−1)-dimensional
elements. A similar representation can be found in [17] where it is called an open
graph or in [34] where it is called a graph. We call it directed graph with open edges:

Definition 2.3.1 (Directed graph with open edges) — A directed graph with open
edges is a directed graph

G := EG NG +WG

s

t

with set of vertices bipartite into a set NG of node vertices and a set WG of wire
vertices, satisfying the following properties:

I the bipartition NG +WG exhibits G as a bipartite graph, that is, every edge
connects a node vertex to a wire vertex or vice versa;

II each wire vertex is the source of at most one edge and the target of at most
one edge.

Definition 2.3.2 (Boundary of a directed graph with open edges) — Let G be a
directed graph with open edges. The input boundary of G is the set

∆−G :=
{
x ∈WG | t−1(x) = ∅

}

46

and the output boundary of G is the set

∆+G :=
{
x ∈WG | s−1(x) = ∅

}
.

Example 2.3.3 — In the shape from 2.1 whose graph is 2.2, ∆+G = {(1, 7), (1, 8)}
and ∆−G = {(1, 0), (1, 1), (1, 2), (1, 3), (1, 4)}.

When reasoning about molecules, we are usually interested about what happens at
dimensions n and (n− 1):

Definition 2.3.4 (Graph of a molecule) — Let U be a molecule, n := dimU . The
graph of U is the directed graph

GU := EGU NGU +WGU ,
s

t

where

• EGU := {(x, y) | x ∈ Un, y ∈ ∆+x}+ {(x, y) | y ∈ Un, x ∈ ∆−y},

• NGU := Un,

• WGU := Un−1,

• s : (x, y) 7→ x,

• t : (x, y) 7→ y.

Definition 2.3.5 (Induced subgraph) — Let G be a directed graph and letW ⊆ VG .
The induced subgraph of G on W is the directed graph

G |W := E′ W
s|E′

t|E′

where E′ := {e ∈ EG | s(e), t(e) ∈W}.

Remark 2.3.6. Note that, if we forget the separation of the vertex set into NGU

and WGU , then GU is the induced subgraph of H⃗ U on vertices of dimension n and
n− 1.

Proposition 2.3.7. Let U be a molecule. Then

I GU is a directed graph with open edges,

II GU is acyclic,

III ∆αGU = ∆αU for all α ∈ {+,−}.

Proof. The fact that ∆αGU = ∆αU for all α ∈ {+,−} is immediate from the
definitions. Moreover, GU is bipartite by construction, so it suffices to check the
other conditions.
We proceed by induction on the construction of U . If U was produced by (Point)
or by (Atom), then by Lemma 2.2.14 it has a greatest element ⊤. In this case,

47

GU has a single edge (x,⊤) for each x ∈ ∆−⊤ and a single edge (⊤, x) for each
x ∈ ∆+⊤. Since ∆−⊤ ∩∆+⊤ = ∅, the graph is acyclic.
If U was produced by (Paste), it is of the form V #ϕk W . Let n := dimU . If
k < n− 1, then GU is the disjoint union of the induced subgraphs on the vertices
in the image of V and W , respectively. If n = dimV = dimW we can conclude
by the inductive hypothesis. Otherwise, the inductive hypothesis applies to one of
the components, while the other is a discrete graph with no node vertices, trivially
satisfying the conditions of an acyclic directed graph with open edges.
If k = n − 1, observe first that necessarily dimV = dimW = n. Then GU is
the union of GV and GW , and their intersection consists of the wire vertices in
∆+
n−1V = ∆−

n−1W . Let x be a wire vertex. If x ∈ V \W or x ∈ V \W , it is the
source of at most one edge and the target of at most one edge by the inductive
hypothesis applied to GV and GW . If x ∈ V ∩W , then x ∈ ∆+GV , so it is the
source of no edge of GV and at most one edge of GW , and x ∈ ∆−GW , so it is
the target of no edge of GW and the source of at most one edge of GV .
Finally, suppose there is a cycle in GU . Because GV and GW are separately
acyclic, such a cycle needs to cross from V to W \ V and back. However, a path
entering V from W \ V must enter a wire vertex y from a node vertex x ∈W such
that y ∈ ∆+x. But (V ∩W)n−1 = ∆−W , so this is impossible. We conclude that
GU is acyclic. ■

Before continuing, let’s look at another example.

Example 2.3.8 — Take the following molecule:

• • • •
(1,3)

(1,0)

(1,5)

(1,4)

(1,1)
(1,2)

(2,0) (2,1)

(2,2)

Then, GU is:

•(1,5)

(2,2)•

(1,3)• •(1,4) •(1,2)

(2,0)• •(2,1)

(1,0)• •(1,1)

Note that we have the following three situations for the wire vertices in Example
2.3.8:

48

• they have no incoming or outgoing edges,

• they have either one incoming edge or one outgoing edge,

• they have exactly one incoming edge and exactly one outgoing edge.

This observation is true for all the elements of codimension 1 in a molecule and is
captured by the following corollary:

Corollary 2.3.9. Let U be a molecule, x ∈ U with codimU (x) = 1, and α ∈
{+,−}. Then

I x ∈Max U if and only if |∇x| = 0,

II x ∈ ∆αU \∆−αU if and only if |∇αx| = 1 and |∇−αx| = 0,

III x /∈ ∆U if and only if |∇+x| = |∇−x| = 1.

Proof. By Proposition 2.3.7, GU is a directed graph with open edges, and by
construction we can identify ∇−x with s−1(x) and ∇+x with t−1(x). It follows
that |∇αx| ≤ 1. The statement then follows from the isomorphism between ∆αU
and ∆αGU , combined with Lemma 2.1.27. ■

Note that we can employ these graphs with open edges to obtain a formalisation
of string diagrammatic representation of the top two dimensions of our shapes of
diagrams. This is done according to the following technique:

• Each node vertex stays a vertex.

• If a wire vertex has only one incoming or outgoing arrow, then we replace
the arrow and the wire vertex with an edge and connect it to the node vertex
that was acting as the arrow’s source or target.

• If a wire vertex has one incoming and one outgoing arrow, then we connect
the two edges that replaced the arrows.

• If we have a wire vertex with no incoming or outgoing edges, we replace it
with an edge, thinking of it as the midpoint of that edge.

For example, the string diagram representation of the molecule from figure 2.1
obtained from 2.2 (where we extended the input and output edges to reach the
same height) is:

49

El(1, 8)

El(1, 7)

El(1, 6)El(1, 5)

El(1, 4)El(1, 3)El(1, 2)

El(1, 1)El(1, 0)

El(2, 0) El(2, 1)

El(2, 2)

El(2, 3)

Lemma 2.3.10. Let U be a molecule, n := dimU > 0, and x ∈ Un. Then there
exist y− ∈ ∆−U and y+ ∈ ∆+U such that there is a path from y− to y+ passing
through x in GU .

Proof. We construct a path x = x0 → y0 → . . . → xm → y+ by successive
extensions; the construction of a path from y− to x is dual. Suppose we have
reached xi. By Lemma 2.2.30 cl {xi} is an atom, so ∂+xi is (n − 1)-dimensional
and∆+xi is non-empty. Pick yi in∆+xi. If yi has no input cofaces, then yi ∈ ∆+U ,
so we can let m := i and y+ := yi. Otherwise, pick xi+1 ∈ ∇−yi. Since GU is
finite and acyclic by Proposition 2.3.7, this procedure must terminate after a finite
number of steps. ■

Example 2.3.11 — By Lemma 2.3.10, given an n-dimensional element, x, we can
“walk” through the molecule by alternating between its n-dimensional and (n−1)-
dimensional elements, starting with a y− in the input face and ending with a y+
in the output face.
Suppose we take the element (2, 2) from the molecule from Example 2.3.8. Then,
we can construct a path y− = (1, 0) → (2, 0) → (1, 3) → x = (2, 2) → y+ = (1, 5)
which is the following path in U :

The directed graphs with open edges allow us to prove that whenever an isomor-
phism exists between two molecules, then that isomorphism is unique.

50

Proposition 2.3.12. Let U , V be molecules. If U and V are isomorphic, there
exists a unique isomorphism ϕ : U ∼

↪→ V .

Proof. It suffices to prove that if ı : U ∼
↪→ U is an automorphism, then it is the

identity.
We proceed by induction on n := dimU . If n = 0, then U = 1 by Lemma 4.4.1
(note that the proof of the lemma does not produce any cross dependencies), and
the only endomorphism of 1 is the identity.
Suppose n > 0 and let α ∈ {+,−}. By Proposition 2.2.25, ∂αU is a molecule of
dimension n− 1, and ı(∂αU) = ∂αU . By the inductive hypothesis, the restriction
of ı to ∂αU is the identity.
Let x ∈ Max U , and suppose ı(x) = x. Then ı(∂αx) = ∂αx. By Lemma 2.2.30,
cl {x} is an atom, so ∂αx is a molecule of dimension strictly lower than n. By
the inductive hypothesis the restriction of ı to ∂αx is the identity. Since cl {x} =
(∂−x ∪ ∂+x) + {x}, it follows that ı restricts to the identity on cl {x}. Therefore,
it suffices to prove that ı fixes all x ∈Max U .
If dim x < n, then x ∈ ∂αU , and we have already proved ı(x) = x. Suppose then
dim x = n, and construct a path y− = y0 → x0 → . . . → ym → xm = x in GU as
in Lemma 2.3.10. Since ı preserves the covering relation and orientations, it maps
this path to another path in GU . We have y0 ∈ ∂−U , so ı(y0) = y0. Suppose
ı(yi) = yi. Since yi is a wire vertex in a directed graph with open edges, xi is
the only node vertex with an edge from yi, so necessarily ı(xi) = xi. If i < m,
then ı is the identity on cl {xi}, so ı(yi+1) = yi+1. Iterating until we reach m, we
conclude. ■

So from now, on we will refer to U #k V := U #ϕk V simply as the pasting of U and
V along their k-dimensional boundary. Similarly, for the atom rule, we will write
U ⇒ V := U ⇒ϕ V and say that U rewrites into V .
Moreover, pasting of molecules has the following properties:

Proposition 2.3.13. The following hold for all molecules:

I Let U , V , W be molecules and k ∈ N such that U #k V and V #kW are
both defined. Then (U #k V)#kW and U #k (V #kW) are both defined and
uniquely isomorphic.

II Let U be a molecule and k ∈ N. Then U #k ∂
+
k U and ∂−k U #k U are both

defined and uniquely isomorphic to U .

III Let U,U ′, V, V ′ be molecules and k < n ∈ N such that (U #n U
′)#k (V #n V

′)
is defined. Then (U #k V)#n (U ′ #k V ′) is defined and uniquely isomorphic
to (U #n U

′)#k (V #n V
′).

The reader familiar with higher category theory, may recognise the first property
as the associativity of pasting, the second property as unitality and the third as the
interchange law. In fact, in Chapter 5 we will show that the molecules together with
the operations #k and ∂αk with α ∈ {+,−} and n ∈ N form a strict ω-category.

51

2.3.2 Flow graphs
The connectivity of a diagram at dimension k is represented with a graph as the
one below. Note that in this case we are not concerned with the number of k-
dimensional elements that are shared between elements of dimension greater than
k; we are interested whether such an element exists. What we care about is whether
we can “travel” from the n-dimensional element x to the m-dimensional element y
through k-dimensional elements. For the diagram from figure 2.1 and k = 1, such
a graph would look like:

(2,3)•

(2,0)• (2,1)• (2,2)•

We call this the flow graph and it has the following definition:
Definition 2.3.14 (Flow graph) — Let P be an oriented graded poset, k ≥ −1.
The k-flow graph of P is the directed graph FkP whose

• set of vertices is
⋃
i>k Pi, and

• set of edges is {
(x, y) | ∆+

k x ∩∆−
k y ̸= ∅

}
,

with s : (x, y) 7→ x and t : (x, y) 7→ y.
Definition 2.3.15 (Maximal flow graph) — Let P be a finite-dimensional oriented
graded poset, k ≥ −1. The maximal k-flow graph of P is the induced subgraph
MkP of FkP on the vertex set

⋃

i>k

(Max P)i ⊆
⋃

i>k

Pi.

Remark 2.3.16. For k := dimP − 1, FkP and MkP coincide.
Example 2.3.17 — Take the following molecule:

U = • • • •
(1,5)

(1,0)

(1,7)

(1,6)

(1,1)
(1,2)

(2,0) (2,1)

(2,2)

The flow and maximal flow graphs are:

F1U =
(2,2)•

(2,0)• •(2,1)

, F0U =

(2,2)•

(2,0)• •(2,1) •(1,2)

(1,0)• •(1,1)

(1,5)• •(1,6) •(1,7)

52

Note how in F0U there are no edges between (2, 0) and (2, 2) and between (2, 1)
and (2, 2) as ∆+

0 (2, 0) ∩∆−
0 (2, 2) = ∅ and ∆+

0 (2, 1) ∩∆−
0 (2, 2) = ∅.

M1U = F1U =
(2,2)•

(2,0)• •(2,1)

, M0U =
(2,2)•

(2,0)• •(2,1) •(1,2)

Also note that the graphs above are all acyclic. This will become relevant when
we talk about the acyclicity conditions of molecules and will lead to nice results in
the problem of subdiagram matching.

Definition 2.3.18 (Topological sort) — Let G be a directed acyclic graph with finite
set of vertices, m := |VG |. A topological sort of G is a linear ordering (x(i))mi=1 of
VG such that, for all edges e ∈ EG , if s(e) = x(i) and t(e) = x(j), then i < j.

Definition 2.3.19 (Ordering of a molecule) — Let U be a molecule, k ≥ −1, and
suppose MkU is acyclic. A k-ordering of U is a topological sort of MkU .

Example 2.3.20 — Consider the molecule from Example 2.3.17. It has two 1-
orderings: [(2, 0), (2, 1), (2, 2)], [(2, 1), (2, 0), (2, 2)] and three 0-orderings given by:
[(2, 0), (2, 1), (2, 2), (1, 2)], [(2, 0), (2, 2), (2, 1), (1, 2)] and [(2, 2), (2, 0), (2, 1), (1, 2)].

Lemma 2.3.21. Let ı : V ↪→ U be an inclusion of oriented graded posets, k ≥ −1.
Then FkV is isomorphic to the induced subgraph of FkU on the vertices in the
image of ı.

Proof. See [25, Lemma 8.3.9]. ■

The following lemma shows that the acyclicity of the maximal flow graph is pre-
served under pasting. We will use it in Chapter 4 when we will make the connection
between orderings and a certain type of pasting decompositions.

Lemma 2.3.22. Let U , V be molecules and k < min {dimU,dimV } such that
U #k V is defined. If MkU and MkV are acyclic, then Mk(U #k V) is acyclic.

2.4 Computational aspects of building molecules
To study our framework from the point of view of a model of computation, we need
to make sure that working in this model of computation is indeed feasible. We want
to ensure that building the shapes of diagrams in our framework is computationally
inexpensive. Out of the operations that we use to construct our molecules, all but
one admit straightforward low-degree polynomial time solutions. The problem of
molecule isomorphism generalised to all oriented graded posets is equivalent to the
graph isomorphism problem (Proposition 2.4.5) whose best known running time
to day is quasipolynomial [4]. However, due to their rigid structure, we show that
the isomorphism problem restricted to the class of molecules admits a low-degree
polynomial time solution. Our solution to the molecule isomorphism problem is a
deterministic algorithm, the traversal algorithm, which outputs for each molecule

53

a unique ordering of its elements. Moreover, our solution justifies why we can
represent the elements of a molecule in the (dimension, position) format.
Most of the content of this chapter is part of Sections 1 and 2 from [28]. The
algorithms and the associated data structures presented in this chapter are part of
a tool called rewalt . Even though we do not present the tool in this thesis, we
will sometimes make a reference to the implementation details that are part of it.

2.4.1 Data structures for oriented graded posets
We mentioned in the introduction of this thesis the distinction between a diagram
and its shape. Moreover, in our treatment of molecules we named each element
individually. Note that this naming convention, which will be a consequence of the
traversal algorithm is different than the labelling that is part of the definition of a
diagram.

Definition 2.4.1 — Let V be a set of variables. A diagram is a pair (U, t), where
U is a molecule and t : U → V is a labelling. We call t a diagram of shape U .

Definition 2.4.2 — A cell is a diagram whose shape is an atom.

Remark 2.4.3. We can extend the definition of atom, #k and ∂αn operators, for
all n, k ∈ N and α ∈ {+,−} to the setting of diagrams.
The input/output k−boundary of t is the diagram: ∂αk t = ıαk ; t, where ıαk : ∂αkU ↪→
U . If t : U → V is a diagram such that U decomposes as U = U1 #k U2 then for
ıi : Ui ↪→ U , we can write t = t1 #k t2, where ti = ıi; t for i ∈ {1, 2}. If U is an
atom such that U = clx, then t = u−

t(x)⇒ u+ where uα = ∂αt.

We continue with the treatment of data structures and algorithms for molecules.
By Remark 2.4.3, these results can be extended to diagrams. Before presenting our
solution to the isomorphism problem, we introduce the data structures that we use
to represent oriented graded posets.
If we linearly order the elements of an oriented graded poset in each dimension,
each element x is uniquely identified by a pair of integers (n, k), where n is the
dimension of x, and k is the position of x in the linear ordering of n-dimensional
elements. In the implementation, there are methods that return, for each element,
the first and second projection - i.e., its dimension and position.
We then represent an oriented graded poset as a pair (face_data, coface_data) of
arrays of arrays of pairs of sets of integers, where

I j ∈ face_data[n][k][i] if and only if (n− 1, j) is covered by (n, k), and
II j ∈ coface_data[n][k][i] if and only if (n+ 1, j) covers (n, k)

with orientation − (i = 0) or + (i = 1). We may implement the sets of integers
as sorted arrays, or another data type which supports binary search in logarithmic
time. This defines a data type OgPoset.
This representation is essentially an adjacency list representation of the poset’s
Hasse diagram, with vertices separated according to their dimension, and incom-
ing and outgoing edges separated according to their label. If P is an oriented
graded poset and EP is the set of edges of the Hasse diagram of P , the OgPoset
representation of P takes space O(|P |+ |EP |).

54

Below we present an example of a shape of a diagram together with its oriented
Hasse diagram representation and its face and coface data:

Example 2.4.4 —

(0,0) (0,2) (0,3)

(0,1)

(1,3)

(1,0)

(1,2)

(1,1)

(2,0)

0 1 2 3

0 1 2 3

0

face_data:
([], []) ([], []) ([], []) ([], [])
([0], [1]) ([1], [2]) ([2], [3]) ([0], [2])
([0, 1], [3])
coface_data:
([0, 3], []) ([1], [0]) ([2], [1, 3]) ([], [2])
([0], []) ([0], []) ([], []) ([], [0])
([], [])

Each row in the face or coface data represents the dimension of the element - the
first index of the array. Each column represents the position of the element in the
linear order - the second index in the array. For example, the tuple containing
([0], [1]) from face_data corresponds to element (1, 0) in the pasting diagram, while
the tuple containing ([0, 3], []) from the coface_data corresponds to (0, 0).
Now, let us look at the face_data. The first set from each pair represents the input
faces while the second set represents the output faces. For example, element (2, 0)
- the pair on the third row, first column - has elements (1, 0) and (1, 1) in its input
face and element (1, 3) in its output face. So we store 0, 1 in the first component
of the pair and 3 in the second component.
In case of the coface_data, the first component from each pair represents the input
cofaces while the second component represents the output cofaces. For example,
element (0, 2) is covered with + by elements (1, 1) and (1, 3) and with − by element
(1, 2), hence the pair on the first row, third column in the coface_data has [2] in
its first component and [1, 3] in its second component.

Storing both face_data and coface_data is redundant since these are uniquely de-
termined by each other. However, most of the computations we need to perform
on oriented graded posets require regular access both to faces (covered elements)
and cofaces (covering elements) of a given element, so it is advantageous to be able
to access them in constant time. If we want to get the coface data from the face
data, we do the following for each element (n, k) in the face data: for each j in the
input or output set of (n, k), add k to the input or output set of (n − 1, j) in the
coface data. Let’s look at Example 2.4.4. Take element (2, 0) in the face data; the
information tells us that (1, 0) and (1, 1) are covered with − by (2, 0) and (1, 3)

55

is covered with + by (2, 0). In coface_data this translates as: in the second row
we add 0 to the first component of the first two pairs and we add 0 to the second
component of the last tuple.
We represent a set of elements of an OgPoset as an array of sets of positions, indexed
by dimensions. This allows us to access the subset of elements of a given dimension
in constant time. The size of arrays can be fixed to be equal to the dimension of a
specific OgPoset, or dynamically adjusted to the dimension of each set of elements.
Sets of positions can again be implemented as sorted arrays. This defines a data
type for graded sets.
Moreover, we represent a map f : P → Q as an array of arrays of pairs of integers
called mapping, together with pointers source, target to the OgPoset representations
of P and Q. This defines a data type OgMap. As an array of arrays, mapping has
the same size of P ’s face_data, and is defined by:

mapping[n][k] = (m, j) if and only if f((n, k)) = (m, j).

This representation takes space O(|P |).

2.4.2 The traversal algorithm
There are four steps involved in constructing molecules:

I compute the input and output boundaries of a molecule,

II check if a closed subset is round,

III determine if two molecules are isomorphic,

IV compute the pushout of a span of inclusions.

The first, second and fourth operations admit straightforward low-degree polyno-
mial time solutions which we provide in subsection 2.4.5. However, as mentioned
in the chapter’s introduction, the third problem generalised to all oriented graded
posets is equivalent to the graph isomorphism problem (GI) whose best running
time to date is quasipolynomial [4].

Proposition 2.4.5. The isomorphism problem for oriented graded posets is GI
complete.

Proof. Deciding isomorphism of oriented graded posets is equivalent to deciding
isomorphism of their Hasse diagrams with {+,−}-labelled edges. The isomorphism
problem for edge-labelled finite graphs is an instance of the isomorphism problem
for finite relational structures, which is GI-complete [40].
Conversely, one can represent a directed graph by its “oriented incidence poset”:
the 0-dimensional elements are the vertices, the 1-dimensional elements are the
edges, the only input face of an edge is its source, and the only output face of an
edge is its target. Two directed graphs are isomorphic if and only if their oriented
incidence posets are isomorphic. Since GI reduces to the isomorphism problem for
directed graphs, it reduces to the isomorphism problem for 1-dimensional oriented
graded posets. ■

56

In the rest of the section we show that restricting to the subclass of oriented graded
posets given by molecules, we can do much better.
The isomorphism problem for diagrams is the following decision problem:
Definition 2.4.6 (Diagram isomorphism problem) — Given diagrams t : U → V and
t′ : U ′ → V , does there exist an isomorphism φ : U → U ′ of their shapes such that
t = φ; t′?
Then, by Remark 2.4.3, once we found an isomorphism between U and U ′, verifying
that the labellings of the diagrams match can be checked in linear time.
A high-level description of the molecule isomorphism problem for two molecules
is as follows: check that the face data matches - this takes quadratic time in the
size of the molecule. If this fails, the molecules are not isomorphic; otherwise, we
run the traversal algorithm for both of them to obtain a linear order. We finally
verify if two molecules are isomorphic by linearly ordering their elements in each
dimension according to the traversal order and checking that these orders match.
Checking that the face data of two molecules matches is equivalent to verifying
that:

• the molecules have the same dimension,

• in each dimension both molecules have the same number of elements,

• the molecules are made of the same shapes (given by the number of elements
in the input and output face).

The procedure for checking these is:

procedure previousChecks(U, V : molecule)
if face_data(U).size() == face_data(V).size() then

3: for u ∈ face_data(U) and v ∈ face_data(V) do
if u.size() == v.size() then

for x ∈ u do
6: Search for a y ∈ v such that x.fst.size() == y.fst.size()

and x.snd.size() == y.snd.size().
Delete y from v.

if v ̸= ∅ then return False
9: else return False

return True
return False

Line 2 of the algorithm verifies that the dimension of U is equal to the dimension
of V . In Line 4 we check that U and V have the same number of elements in each
dimension. Inside the for loop from line 5 we check whether U and V have the
same number of input and output faces. The runtime of this algorithm is bounded
above by O(|U |)2, where |U | is the cardinality of U , i.e. the number of vertices in
the Hasse diagram representation.
Remark 2.4.7. Note that since the face and coface data can be determined from
each other, it is sufficient to only run these checks for one of them. The exact
same procedure as above can be applied for checking that the coface data of U and
V match.

57

We solve the isomorphism problem between two molecules with the help of a de-
terministic traversal algorithm. This algorithm takes a molecule of type OgPoset
and returns a unique ordering of its elements relying only on the intrinsic structure
of the oriented graded poset.

Procedure 2.4.8 (Traversal algorithm) — The procedure takes as input a molecule
U and returns a list of its elements in the order in which they are marked. It uses
an auxiliary stack of molecules V ⊆ U .
At the beginning, only U is on the stack and all elements are unmarked. We iterate
the main loop until the stack is empty, at which point the procedure terminates.
At each iteration, suppose V is on top of the stack. If all elements of V are
marked, then we pop V from the stack and iterate. Else, if any elements of ∂−V
are unmarked, we push ∂−V to the top of the stack and iterate. Else, if V = cl {x}
for some x ∈ U , we

I mark x and pop V from the stack,

II if any elements of ∂+V are unmarked, we push ∂+V to the top of the stack,
and

III we iterate.

If V ̸= cl {x}, we let y be the earliest marked element such that dim y = dimV − 1
and there is an unmarked x ∈ ∇−y∩V . Such a y always exists, and then∇−y∩V =
{x}. We push cl {x} to the top of the stack and iterate.

Below we give the pseudocode of the traversal algorithm:

procedure Traverse(U : molecule)
marked← []
stack← [U]
while stack is not empty do

5: focus← top of stack
dim← dim(focus)
if focus ⊆ marked then

pop focus from top of stack
else

10: if ∂−focus ̸⊆ marked then
push ∂−focus to top of stack

else
if focus = cl{x} for some x then

append x to marked
15: pop focus from top of stack

if ∂+focus ̸⊆ marked then
push ∂+focus on top of stack

else
y ← first item of dimension dim− 1 in marked such

20: that y has an unmarked input coface in focus
x← unique input coface of y in focus
push cl{x} on top of stack

return marked

58

Let’s take a look at some examples.

Example 2.4.9 — Consider the following two molecules in which the 0-dimensional
elements are labelled in both molecules from left to right as follows: (0, 0), (0, 1),
(0, 2), (0, 3), (0, 4). The 2-dimensional element is (2, 0).

• • • • •
(1,0)

(1,1)

(1,4)

(1,2) (1,3)

face_data:
([], []) ([], []) ([], []) ([], []) ([], [])
([0], [1]) ([1], [2]) ([2], [3]) ([3], [4]) ([1], [2])
([1], [4])
coface_data:
([0], []) ([1, 4], [0]) ([2], [1, 4]) ([3], [2]) ([], [3])
([], []) ([0], []) ([], []) ([], []) ([], [0])
([], [])

• • • • •
(1,0) (1,1)

(1,2)

(1,4)

(1,3)

face_data:
([], []) ([], []) ([], []) ([], []) ([], [])
([0], [1]) ([1], [2]) ([2], [3]) ([3], [4]) ([1], [2])
([2], [4])
coface_data:
([0], []) ([1], [0]) ([2, 4], [1]) ([3], [2, 4]) ([], [3])
([], []) ([], []) ([0], []) ([], []) ([], [0])
([], [])

With the elements ordered according to the traversal order, one can see that we
can distinguish between the two lists.

Example 2.4.10 — The traversal order for the molecule in Example 2.1.4 is:
{ (0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2), (0, 3), (2, 0), (1, 3) }.

Example 2.4.11 — Consider the molecule below. Its traversal order is: {(0, 0),
(1, 0), (0, 1), (1, 1), (0, 2), (2, 0), (1, 2), (0, 3), (1, 3)} which is different from the
one in Example 2.1.4 that we used to exemplify the algorithm.

(0,3) •

(0,0) • (0,1) • • (0,2)

(1,3)(1,2)

(1,0)

(1,1)(2,0)

However, the traversal algorithm alone is not sufficient to solve the isomorphism
problem as the following example shows:

59

Example 2.4.12 — Consider the following two shapes together with their face
and coface data in which we sorted the elements inside the face and coface data
according to traversal order.

(0,0) (0,2) (0,3)

(0,1)

(1,3)

(1,0)

(1,2)

(1,1)

(2,0)

face_data:
([], []) ([], []) ([], []) ([], [])
([0], [1]) ([1], [2]) ([2], [3]) ([0], [2])
([0, 1], [3])
coface_data:
([0, 3], []) ([1], [0]) ([2], [1, 3]) ([], [2])
([0], []) ([0], []) ([], []) ([], [0])
([], [])

(0,0) (0,1) (0,2) (0,3)

(1,3)

(1,0)

(1,1) (1,2)
(2,0)

face_data:
([], []) ([], []) ([], []) ([], [])
([0], [1]) ([1], [2]) ([2], [3]) ([0], [1])
([0], [3])
coface_data:
([0, 3], []) ([1], [0, 3]) ([2], [1]) ([], [2])
([0], []) ([], []) ([], []) ([], [0])
([], [])

The traversal order for both molecules is: {(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2),
(0, 3), (2, 0), (1, 3)}, but clearly the two shapes are different. There are two points to
be drawn from this example. Firstly, it is the dimension-wise order that needs to be
checked for isomorphism (which can be seen by looking at the face data of the two
molecules). Secondly, the traversal algorithm is an expensive procedure. Verifying
the face data for these molecules would have made the isomorphism algorithm to
return false at an earlier stage.

Combining the two methods, we obtained the desired results, i.e., two molecules
are isomorphic if and only if they have the same traversal order dimension-wise
and their face data matches. The reverse implication can be proved by defining a
bijective map between the corresponding traversal order which is compatible with
the faces operator. These checks are independent of each other so they may be
performed in either order.

2.4.3 Correctness and runtime analysis

The algorithm that we use to check for isomorphism of two molecules, U and V is
the following:

• first run PreviousChecks and then check that the traversal algorithm re-
turns the same list for both U and V .

60

procedure isIso(U, V : molecule)
if PreviousChecks(U, V) then

3: U ′ = Traverse(U)
V ′ = Traverse(V)
return U ′ == V ′

6: else return False

The worst case running time of this algorithm is O(n2log(n)) where n is the number
of vertices and edges of the Hasse diagram representation of the molecule. Verifying
whether the face_data matches takes O(m2), where m is the number of elements
in the molecule (vertices in the Hasse diagram).
In the remainder of the subsection, we prove the correctness of the isomorphism
algorithm. More specifically, we show that for two molecules, U and V , if U ′ =
traverse(U) and V ′ = traverse(V) (where U ′ and V ′ are the versions of U and V
with the elements reordered in each dimension according to their traversal order),
then:

U ≃ V if and only if U ′ ≡ V ′.
We will show that, with this strategy, we can solve the isomorphism problem for
molecules in time O(n2 logn). A more precise upper bound is given in Theorem
2.4.21 below. In addition to solving the isomorphism problem, the traversal order
gives us a canonical form for molecules. If we linearly order the elements in each
dimension according to the traversal order, we obtain a unique representation for
shapes of diagram. Note that the second component in our naming convention for
elements in a molecule - (dimension, position) - comes from the traversal order.
Remark 2.4.13. We can implement the constructors ∂αn , atom and #k in such
a way that the elements are arranged in traversal order after each step. With this
implementation, we can check molecules for equality instead of for isomorphism.
In order to prove the correctness of the traversal algorithm, we need some prelim-
inary results.
Lemma 2.4.14. Let V be an item on the stack. Then V is a molecule. If W is
below V on the stack, then V is a proper subset of W .
Proof. Initially, the stack only contains U , which is a molecule by assumption.
Assume, inductively, that the statement is true at the beginning of the current
iteration with focus V , and that a set V ′ is pushed onto the stack at the end. Then
either

I V ′ = ∂αV for some α ∈ {+,−}, or
II V ′ = cl{x} for some x ∈ V .

In both cases, V ′ is a molecule and a proper subset of V (hence also of each item
below V), under the assumption that V is a molecule. ■

Remark 2.4.15. In fact, any V that appears on the stack is either ∂−k U , which we
call “U -linked”, or it is cl{x} or ∂αk x, which we call “x-linked”, for some x ∈ U . In
the latter case, V is round, which implies that it is also pure 2.2.11: its maximal
elements all have the same dimension.

61

Lemma 2.4.16. Suppose V is on the stack. Then all elements of V must be
marked before any item below V is accessed, or before any proper superset of V
becomes the focus.

Proof. By Lemma 2.4.14, as long as V is on the stack, only V and its proper subsets
can be on top. It follows that, for a proper superset of V to be the focus, V must
be popped from the stack at the end of an iteration where V is the focus. There
are only two ways this can happen:

• V was already fully marked before the current loop iteration, or

• ∂−V was fully marked and V = cl{x} for some x which is marked at the
current loop iteration.

In both cases, ∂−V was already fully marked before the current loop iteration. In
the latter case, if ∂+V is already fully marked, then V = {x} ∪ ∂−V ∪ ∂+V is also
fully marked. Otherwise, ∂+V ⊊ V gets pushed onto the stack to replace V , and
must be popped before any superset of V becomes the focus. By the same case
distinction, whenever ∂+V is popped, either

• it was fully marked, in which case V was fully marked, or

• it is of the form cl{y} for some y which is marked at the current loop iteration.

In both situations, since all molecules satisfy the globularity property ∂α(∂+V) =
∂α(∂−V) ⊆ ∂−V , we know that ∂+V , hence V , is fully marked at the end of the
iteration, and nothing is added to the stack. ■

Lemma 2.4.17. Any subset V of U can be pushed onto the stack at most once.

Proof. Suppose V is pushed onto the stack. As long as V is on the stack, any
subsequent addition to the stack must be a proper subset of V , so it cannot be
equal to V .
If V is popped from the stack, by Lemma 2.4.16, it must be fully marked before
any item below it is accessed. Since the algorithm checks if a set is fully marked
before pushing it onto the stack, V can never appear again. ■

Lemma 2.4.18. Let V be the focus, n := dimV . Then either V is fully marked,
or there exists an n-dimensional element of V which is unmarked.

Proof. First, we prove a weaker result: either V is fully marked, or there exists a
maximal element of V which is unmarked.
Let x ∈ V be marked. At some prior iteration, cl{x} must have been the focus,
and by Lemma 2.4.16, in order for V to become the focus, cl{x} must have been
fully marked as well. Because

V =
⋃

k≤n
cl (Max V)k =

⋃

k≤n

⋃

x∈(Max V)k

cl {x},

it follows that V is fully marked if and only if its maximal elements are all marked.

62

Now, V has one of the two forms in Remark 2.4.15. If V is of the second form, its
maximal elements all have the top dimension, so we only need to consider the case
V = ∂−k U .
At the start of the algorithm, U, . . . , ∂−0 U are all consecutively added to the stack.
So ∂−k U becomes the focus either at this stage, in which case all its elements are
unmarked, or after ∂−k−1U is fully marked. In the latter case, any maximal element
of ∂−k U of dimension strictly smaller than k also belongs to ∂−k−1U . ■

Finally, we show that the traversal algorithm always terminates; given a molecule,
U , it returns a unique ordering of its elements.

Theorem 2.4.19. The traversal algorithm is correct: given a molecule U , it ter-
minates returning a unique linear ordering of the elements of U .

Proof. As a particular case of Lemma 2.4.16, U must be fully marked before the
stack is emptied. Therefore, the algorithm either terminates after all elements have
been traversed, or it does not terminate.
To prove that the algorithm does always terminate, it suffices to show that, unless
all elements are already marked, it always finds an element to mark. First of
all, observe that, from any state, the algorithm first goes through the following
sequence of steps:

I popping all fully marked subsets from the top of the stack;

II once it reaches a subset which is not fully marked, successively pushing its
lower-dimensional input boundaries that are not fully marked onto the stack.

At the end of this sequence, we always reach a state in which the focus V is not
fully marked, but ∂−V is fully marked. Let us call such a V a proper focus.
We proceed by induction on dimension and proper subsets of a proper focus. If
dimV = 0, since a 0-molecule always consists of a single element, V = {x}, and x
gets marked at the current iteration.
Let n := dimV . By Lemma 2.4.18, there is an unmarked x ∈ Vn. If V = cl{x},
then x is marked at the current iteration, and we are done. Otherwise, we prove
that there always exists a pair (y, x) where x ∈ Vn is unmarked, and y is a marked
input face of x. By Corollary 2.3.9 applied to V , the coface x is unique given y, so
among such pairs we can pick the one where y comes earliest in the list of marked
elements, and this selects a unique x.
Let x ∈ Vn be unmarked. By Lemma 2.3.10, there exists a sequence

y0 → x0 → . . .→ ym → xm = x

where y0 ∈ ∆−
n−1V , xi ∈ Vn, yi is an input face of xi, and yi+1 is an output face of

xi. Since V is a proper focus, y0 is marked. Let k be the smallest index such that
xk is unmarked; because xm is unmarked, such a k exists. Then xi is marked for
all i < k, hence cl{xi} is also marked. It follows that yk ∈ ∂+xk−1 is marked, and
the pair (yk, xk) satisfies our requirement.
Thus, the algorithm will find a unique x ∈ Vn and push cl{x} onto the stack. The
next proper focus will necessarily be a proper subset of V , and we conclude by the
inductive hypothesis. ■

63

Definition 2.4.20 — For a molecule U , and all k ∈ N, we let

EkU :=
∑

x∈Uk

∆x =
∑

y∈Uk−1

∇y,

|U∨| := max {|Ui|}i∈N ,

|E∨U | := max({|EiU |}i∈N ∪ {1}).

Note that EkU is the set of edges between k and (k − 1)-dimensional elements in
H U . We have |Uk| ≤ |EkU | for all k > 0, while |E0U | = 0. Since the maximum
of the |EkU | is 0 only when U is 0-dimensional, in which case |Uk| = 1, with our
definition we always have |U∨| ≤ |E∨U |.
Theorem 2.4.21. The traversal algorithm admits an implementation running in
time O(|U | |E∨U | log |E∨U |).
Proof. First of all, we represent any closed set on the stack with its graded set
of maximal elements. To initialise the algorithm, we only need to compute the
maximal elements of U . This can be done in time O(|U |) by going through the
elements of U and checking if their set of cofaces is empty.
We start by showing that there are O(|U |) iterations of the main loop.
We let k ≤ dimU and we count the number of loop iterations where a k-dimensional
subset V is on top of the stack. This can happen in two ways:

• V is either U or ∂αW for some W with dimW > k, where W was earlier
(and may still be) on the stack,

• V is cl {x} for some x ∈ W , where dimW = k and W is below V on the
stack.

Let (V (i))mi=1 be the sequence of all k-dimensional subsets appearing on the stack
in the first way during the run, in the order in which they appear. For all j < i ∈
{1, . . . ,m}, by Lemma 2.4.16 V (j) must be fully marked before V (i) can appear on
the stack. Moreover, V (i) can be on top at most

I once to push ∂−V (i) to the top,

II once every time we push cl {x} to the top for an unmarked x ∈ (V (i))k,

III once to pop V (i) from the stack.

Any k-dimensional cl {x} appearing in the second way appears while a unique V (i)

is on the stack, and at most

I once to push ∂−x to the top,

II once to mark x and pop cl {x} from the stack.

Let U (i)
k

:= (V (i))k \
⋃
j<i(V (j))k. Then U

(i)
k is precisely the set of unmarked

k-dimensional elements of V (i) when V (i) first appears on the stack. It follows that
the number of loop iterations with a k-dimensional subset on top of the stack while
V (i) is on the stack at most 2 + 3

∣∣∣U (i)
k

∣∣∣ times.

64

Since at the end of the procedure all k-dimensional elements of U are marked, the
(U (i)

k)mi=1 form a partition of Uk. Thus, the total number of loop iterations where
a k-dimensional subset is on top of the stack is bounded above by

m∑

i=1

(
2 + 3

∣∣∣U (i)
k

∣∣∣
)
= 2m+ 3

m∑

i=1

∣∣∣U (i)
k

∣∣∣ = 2m+ 3 |Uk| ≤ 5 |Uk| .

Summing over all dimensions, we get an upper bound of 5 |U | iterations.
What is now left to show is the cost of one loop iteration with focus V , where
dimV = n. In our implementation, we split the list of marked elements into three
objects: a list order (for the total traversal order), an array of lists grorder (for the
traversal order split by dimension), and a graded set marked (for the set of marked
elements).
(Line 7). By Lemma 2.4.18, to check if V is fully marked, it suffices to check
whether Vn ⊆ markedn. Since both are sorted arrays of integers, they can be
compared in time linear in |Vn|+|markedn|, which is O(|Un|). At this stage, we may
also record the unmarked n-dimensional elements of V in a sorted array unmarked
without affecting the complexity.
(Lines 10, 16). To compute the maximal elements of ∂−V and ∂+V , we may use
different strategies depending on whether V is “U -linked” or not.
If V = ∂−n U , we compute the (n−1)-dimensional elements of ∂−V = ∂−n−1U simply
by going through the elements of Un−1 and checking which ones have empty sets
of output cofaces, in time O(|Un−1|). Lower-dimensional maximal elements are
shared between V and ∂−V , so we may then point from the latter to the former,
at no extra cost.
If V is not U -linked, V and its boundaries are pure, so the set of maximal elements
of ∂αV is equal to ∆αV , and each of its elements is covered by an element of Vn.
To compute it, we add all the input and output faces of all x ∈ Vn to sets in_faces
and out_faces, respectively, then use the relations ∆−V = in_faces\out_faces and
∆+V = out_faces \ in_faces.
There are O(|EnU |) faces of elements of Vn, and we can sort in_faces and out_faces,
remove duplicates, and compute their difference in O(|EnU | · log |EnU |) which is
bounded above by O(|E∨U | log |E∨U |).
At this stage, we also create an associative array candidates as follows: whenever
x ∈ Vn is in unmarked, and y is an input face of x, we add the position of x as
a value to candidates, indexed by the position of y. We then sort the indices of
candidates. This also takes time O(|EnU | · log |EnU |) which is bounded above by
O(|E∨U | log |E∨U |) and it does not affect the overall complexity.
By the same reasoning applied to line 7, checking if ∂−V and ∂+V are fully marked
takes time O(|Un−1|).
(Line 14). If Vn has a single element that we mark, adding it to order and
grorder takes constant time with an appropriate implementation of lists. Adding
it to marked takes O(|Un|). That is because one needs to traverse the array at
dimension n until an empty position is found to add x.
(Lines 19—21). To select the next focus we traverse grordern−1 starting from the
first item and search for each item in the indices of candidates until we find a hit
y. This takes time O(|Un−1| · log |Un−1|) in the worst case. The next focus will be
cl{x}, where x is the value corresponding to index y.

65

Overall, we obtain that the worst-case complexity is O(|Un| + |E∨U | · log |E∨U | +
|Un−1| · log |Un−1|). Using the bounds |Un|, |Un−1| ≤ |U∨| and the fact that |U∨| ≤
|E∨U | from Definition 2.4.20, we obtain an upper bound of O(|E∨U | log |E∨U |)
for one iteration of the while loop. Multiplying by our bound on the number of
iterations, we conclude. ■

2.4.4 Traversal algorithm on an example
Consider the following shape of diagram, in which we name the elements to ease
the reading:

A• C• •D

B•

h

f

i

g

α

First, we start with the whole molecule being in the focus. Since marked is empty,
we push ∂−U and ∂−(∂−U) into the stack. After two iterations of the while loop,
marked is empty and stack contains the following molecules:

∂−0 U = A• , ∂−U =
A• C• •D

B•f

i

g

, U =
A• C• •D

B•

h

f

i

g

α

After the third iteration, we get ∂−0 U into marked (Line 14 of the algorithm) and
since ∂+(∂−0 U) = ∅, stack= {∂−U,U}. On the fourth iteration, focus= ∂−U , the
procedure enters else on Line 18 and x and y become f and A, respectively.

∂−U =
A• C• •D

B•
f

i

g

At the end of this iteration, stack contains the three sets below:

cl f = A• B•
f

, ∂−U , U.

On the fifth iteration, focus = cl f ; the element f is appended into marked and
∂+f added to the stack. After the fifth iteration we get marked = {A•, f−→} and
stack = {∂+f = B•, ∂−U, U}. In the sixth iteration, ∂+x = {B} gets into marked
and from iteration 7 the algorithm adds the elements of ∂−U in order following the
same steps as in iterations 4-6.
Once the whole of ∂−U was marked (iteration 12), we pop ∂−U from the stack
(iteration 13) and focus = U (in iteration 14). Since U is not an atom, the algorithm
does not enter the if clause on line 13, instead it enters else on Line 18. Again, x
and y are marked with red and green, respectively (where x = α and y = f):

A• C• •D

B•

h

f

i

g

α

66

At the end of iteration 14, marked = {A•, f−→, B•, g−→, C•, i−→, •D} and stack is:

clα =
A• C•

B•

h

f g

α , U.

On iteration 15, the 2-dimensional element is appended to marked and ∂+α gets
into the stack. In iteration 16, ∂+α gets into marked and on iteration 17, since the
whole of U is marked, it is popped from the stack and the procedure ends returning
marked. The returned list looks as follows: {A•, f−→, B•, g−→, C•, i−→, •D α⇒, h−→}. By
ordering the elements in each dimension according to the list above and using the
naming convention described in Chapter 2 we obtain the labelling from Example
2.1.4; the outputted marked list becomes: { (0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1,
2), (0, 3), (2, 0), (1, 3) }.

2.4.5 Algorithms for building molecules
Recall that we can represent a closed subset of an oriented graded poset with a
graded set of its maximal elements. (These graded sets can be implemented using
sorted arrays - where the elements are sorted by their dimension and position.) We
provide the algorithms for a molecule U , but they also work when U is a closed
subset of an oriented graded poset, in which case in the maximal() and boundary()
algorithms, we check if the coface of an element, x, is disjoint from the subset of
elements of the poset.

procedure maximal(U : molecule)
2: maximal← GrSet()

for x ∈ U do
4: if cofaces(x).isEmpty() then

maximal.add(x)
return maximal

The runtime of maximal() is bounded above by the number of elements of U ,
O(|U |) (which is the number of vertices in the Hasse diagram representation).

procedure boundary(U : molecule, dim, sign)
maximal← maximal(U)

3: boundary_max ← maximal[0, ..., dim]
for x ∈ Udim do

if cofaces(x, (− sign)).isEmpty() then
6: boundary_max.add(x)

return clos{boundary_max}

For boundary() algorithm: Line 3 in the algorithm is again bounded above by |U |
(if we do not want to point to the array of maximal elements) or it takes constant
time if we want to point to this array. The for loop on line 4 is bounded above
by |Udim|, while returning the closure is bounded above by |U | since we need to go
through the whole of U and add all its elements in the worst case. So the worst-case
running time for boundary() is O(|U |).

67

procedure isRound(U : molecule)
if U is not pure then return False

3: bound_in← boundary(U, (n− 1),−)
bound_out← boundary(U, (n− 1),+)
intersection← bound_in ∩ bound_out

6: for (k = dimU − 2, k = −1, k −−) do
bound_in← boundary(bound_in, (n− 1),−)
bound_out← boundary(bound_out, (n− 1),+)

9: if intersection ̸= bound_in ∪ bound_out then return False
intersection← bound_in ∩ bound_out

return True

By computing the number of maximal elements of a molecule, U , the if statement
in Line 2 can be checked in constant time with a sorted array implementation of
graded sets. So, Line 2 is bounded above by O(|U |). By linearly ordering the
elements of a molecule according to its traversal order, the set theoretic operations
can again be computed in linear time in the size of the sets considered, which
is bounded above by O(|U |). So the worst-case running time of isRound() is
O(dim (U) |U |).
The pushout of inclusions is computed as in the category of sets; that is, given two
inclusions, ı1 : U ↪→ V and ı2 : U ↪→W , the pushout is the disjoint union of V and
W quotiented by the equivalence relation ı1(u, 0) ≃ ı2(u, 1) for all u ∈ U . These
set operations are supported by the implementation of our data structures.

68

Chapter 3

The higher-dimensional
subdiagram matching
problem

In the paradigm of higher dimensional rewriting we are working in, a rewrite system
on diagrams looks as follows: we have a set S of (n+1)-dimensional cells - ri : Vi →
V - which are the rewrite rules and a target diagram D : U → V we want to rewrite
on. Since diagrams are labellings of molecules into a set of variables, verifying
whether two labellings match can be trivially done in linear time in the size of
the underlying molecule. So we can turn our attention to rewriting on shapes of
diagrams - i.e., S is a list of atoms, Vi and U is our target molecule. To rewrite on
U , we look, for each rewrite Vi ∈ S, for matches of ∂−Vi in U . Take the following
set of rewrite rules (where we named the top-dimensional elements in each atom
to make the text easier to read):

S =




• • • •α

,
• • • •

• •

β





and let U = • • • . The first step for rewriting in this

setting is searching in the target diagram for matches of the inputs of the rewrites

69

in the list, S. There are two matches for the input of α (highlighted in red):

• • •

And one match for the input of β (highlighted in green):

• • •

Applying one of the rewrites (say, β) means rewriting the part of the diagram where
the input of β was identified as a submolecule:

• • • • • •β

More specifically, it corresponds to the operation of substituting the input of β with
the output of β in U , producing a new diagram that we will denote by U [∂+β/∂−β]:

• • •

Note that unlike we do in pasting, we rewrite only on portions of a diagram. These
portions are identified as submolecules of the diagram. A rewrite is then represented
by substituting the input of the atom that was identified with its output. A rewrite
on an n-dimensional diagram can also be seen as an (n+1)-dimensional diagram -
the whiskered rewrite rule was pasted on the target diagram (which by Proposition
2.3.13 is isomorphic to the whiskered rewrite rule).
For example, applying β to U can be seen as the following whiskering:

• • • #1 cl {β}

Note that for the time being, we do not concern ourselves with the properties of
termination and confluence of such a rewrite system which would hopefully be part
of future work. The focus is on the algorithmic part of the problem: finding a

70

subdiagram inclusion algorithm and studying its running time. Ideally, we would
like to have a low polynomial time algorithm that solves this problem.
Even though in our example from this introduction it seems quite intuitive to
identify the portions we want to rewrite on, this is only the case for diagrams of
dimensions lower or equal than two and it does not generalise to arbitrary dimen-
sions. Indeed, from dimension 3 onwards not all inclusions of molecules represent
rewritable portions of a diagram.
We make a distinction between identifying inclusions of molecules (which is the
molecule matching problem) and verifying whether such an inclusion represents a
rewritable portion of a diagram (which is the rewritable submolecule problem). As
we will see later on in the next chapter, deciding if ∂−Vi is a rewritable portion of
U is equivalent to ∂−Vi appearing as a factor in a special kind of pasting decom-
position of U . These decompositions are called layerings and we will present them
in this chapter.
We begin by introducing the concepts of submolecules and substitution. We then
move on to the theory of layerings, where we present the upper and lower bounds
for the dimensions at which a molecule admits a layering. We end the chapter
with the molecule matching algorithm, an algorithm that identifies all the molecule
inclusions between two molecules. This algorithm represents the initial step in
solving the subdiagram matching problem. Most of the content of this chapter is
part of [29] Section 2 and the beginning of Section 3. For a more detailed exposition
on the theory of layerings, check [25].

3.1 Submolecules and substitutions
Definition 3.1.1 (Submolecule inclusion) — The class of submolecule inclusions is
the smallest subclass of inclusions of molecules such that

I all isomorphisms are submolecule inclusions,

II for all molecules U, V and all k ∈ N such that U #k V is defined, U ↪→
(U #k V) and V ↪→ (U #k V) are submolecule inclusions,

III the composite of two submolecule inclusions is a submolecule inclusion.

A closed subset V ⊆ U is a submolecule if its inclusion in U is a submolecule
inclusion. In that case we write V ⊑ U .

Definition 3.1.2 — We also let ∅ ⊑ ∅ to take care of some corner cases.

Example 3.1.3 — Let U be the following molecule

• • •

71

Then, by definition, U ⊑ U . Also, V = • • • is a submolecule of U

since U = V #1 • • • . Moreover, W = cl {(2, 0)} ⊑ U since V =

W #0 • • and W ↪→ V ↪→ U .

As one may expect, for any molecule, U , and n ∈ N its input or output n-
dimensional boundaries are always submolecules of U and for any element x ∈ U ,
cl {x} is a submolecule of U . The following lemma proves this intuition:
Lemma 3.1.4. Let U be a molecule. Then

I for all n ∈ N and α ∈ {+,−}, ∂αnU ⊑ U ;

II for all x ∈ U , cl {x} ⊑ U .
Proof. We have by proposition 2.2.25, ∂αnU is a molecule. Further, by Proposition
2.3.13, the pastings U #n ∂

+
n U and ∂−n U #n U are both defined and uniquely isomor-

phic to U . The inclusion of ∂−n U into U factors as the inclusion ∂−n U ↪→ (∂−n U #n U)
followed by an isomorphism, and the inclusion of ∂+n U factors as the inclusion
∂+n U ↪→ (U #n ∂

+
n U) followed by an isomorphism.

By Lemma 2.2.30, cl {x} is a molecule. We proceed by induction on the construc-
tion of U . If U was produced by (Point), then x must be the unique element of U ,
so cl {x} = U . If U was produced by (Paste), it splits into V ∪W with V , W ⊑ U ,
and x ∈ V or x ∈ W . By the inductive hypothesis, cl {x} ⊑ V or cl {x} ⊑ W . If
U was produced by (Atom), it is equal to (V ∪W) + {⊤} with V , W ⊑ U by the
first point from this same Lemma, and either x ∈ V or x ∈ W , in which case the
inductive hypothesis applies, or x = ⊤, and cl {x} = U . ■

Definition 3.1.5 (Rewritable submolecule) — A submolecule V ⊑ U is rewritable if
dimV = dimU and V is round.

Example 3.1.6 — For the molecule in example 3.1.3, • • • is a
rewritable submolecule of U , while V and any ∂αkU , for k < 2 are not since V is
not round and the dimension of the boundaries is strictly lower than the dimension
of U .
Definition 3.1.7 (Rewritable subdiagram) — Let t : U → V be a diagram. A
rewritable subdiagram of t is the restriction of t to a rewritable submolecule V ⊑ U .
Definition 3.1.8 — We extend boundary operations to diagrams t : U → V by
∂αn t := t|∂α

nU for all n ∈ N and α ∈ {+,−}.
Definition 3.1.9 (Subdiagram matching problem) — The subdiagram matching
problem is the following search problem: given diagrams t : U → V and s : V → V
such that dimU = dimV and V is round, find, if any, the submolecule inclusions
ı : V ↪→ U such that s = ı; t. This can be split into three subproblems.

72

I (Molecule matching problem). Find, if any, the inclusions ı : V ↪→ U .

II (Rewritable submolecule problem). Decide if ı(V) ⊑ U .

III Decide if s = ı; t.

In this chapter, we focus on the molecule matching problem, and in the next on
the rewritable submolecule problem. The third problem is trivial.

Definition 3.1.10 (Substitution) — Let U, V,W be molecules of equal dimension,
ı : V ↪→ U an inclusion, and suppose that V ⇒W is defined. Consider the pushout

V V ⇒W

U U ∪ (V ⇒W)

ı ⌟ (3.1)

in ogPos. The substitution of W for ı : V ↪→ U is the oriented graded poset
U [W/ı(V)] := ∂+(U ∪ (V ⇒ W)). When ı is the inclusion of a closed subset we
write simply U [W/V].

Example 3.1.11 — Let U = • • • , V = • • and W =

• • . Moreover, let ı be the inclusion highlighted in red in the following

pushout diagram in ogPos:

• • • • • •

• • • • • • • • •

⌟

ı

Then the output boundary of • • • • • • is:

73

• • •

which we write as U [W/V].

So, we can say that in our model performing a rewrite α inside a diagram D
corresponds to the following substitution: D[∂+α/∂−α].
Also, note that the result of the pushout in Figure 3.1 is a molecule, which we
prove below:

Lemma 3.1.12. Let V be a molecule, n < dimV , α ∈ {+,−}. Consider a pushout
diagram of the form

∂αnV V

U V ∪ U
ı

jU

jV⌟

in ogPos. If dimU = n and ı is a submolecule inclusion, then

I V ∪ U is a molecule,

II jU maps U onto ∂αn (V ∪ U),

III jV (V) ⊑ V ∪ U and jV (∂−αn V) ⊑ ∂−αn (V ∪ U).

Proof. By induction on the construction of ı. If ı is an isomorphism, then jV is
also an isomorphism, and all the statements are trivially satisfied.
Suppose U is of the form ∂αnV #kW for some k ∈ N, and ı is the inclusion of
∂αnV into the pasting. Since dimU = n, necessarily dimW ≤ n, so ∂αnW = W
by Lemma 2.1.25. If k ≥ n, then also k ≥ dimW , and in this case ı and jV are
again isomorphisms. Suppose that k < n. Identifying V with its image through
jV , V ∪ U splits into V ∪W with

V ∩W = ∂αnV ∩W = ∂−k W = ∂+k (∂
α
nV) = ∂+k V

where the final equation uses globularity of V . This exhibits V ∪U as V #kW , with
jV the inclusion of V into the pasting, and jU maps ∂αnV #kW onto ∂αn (V #kW)
by Lemma 2.2.20. By the same result, ∂−αn V ⊑ ∂−αn (V #kW). The case where U
is of the form W #k ∂

α
nV is dual.

By the pasting law for pushout squares, if the statement is true of two submolecule
inclusions, it is also true of their composite. ■

3.2 Layerings
With our current definition of submolecule inclusion, determining whether an in-
clusion of closed subsets is a submolecule inclusion is cumbersome. Our results on

74

the subdiagram matching problem rely on pasting decompositions of molecules. A
molecule can have several pasting decompositions - i.e., we can “deconstruct” it
into molecules such that the pasting of those molecules is isomorphic to the start-
ing molecule. In this section we introduce layerings - a special kind of pasting
decomposition - and present the condition for the maximal k such that a molecule
admits a k-layering. The results of this section were discussed in [29], but for a
better exposition, please consult [25, Section 4.2].
Consider the following molecule:

A• B• •C

b

a

d

c

α β (3.2)

It has three non-trivial pasting decompositions - two at dimension 1:

A• B• C•

b

a

c

α #1 A• B• C•
b

c

d

β ,

A• B• C•
a

c

d

β #1 A• B• C•

a

b

d

α

and one at dimension 0:

A• B•

a

b

α #0 B• •C

d

c

β .

A pasting decomposition does not necessarily need to contain exactly one maximal
element in each component. For example, in the molecule below,

A• B• C• •D

b

a

d

c

f

e

α β γ , (3.3)

the following is a valid pasting decomposition:

A• B• C•

b

a

d

c

α β #0 C• •D

f

e

γ .

We continue by presenting the theory of layerings which is a way of decomposing
a molecule into k-layers, where k is less than the dimension of the molecule such
that each layer contains at most one maximal element of dimension greater than
k.

75

Definition 3.2.1 — Let U be a molecule, −1 ≤ k < dimU , and

m :=
∣∣∣∣∣
⋃

i>k

(Max U)i

∣∣∣∣∣ .

A k-layering of U is a sequence (U (i))mi=1 of molecules such that U is isomorphic
to U (1) #k . . . #k U

(m) and dimU (i) > k for all i ∈ {1, . . . ,m}.
For k = −1, it is implied that m = 1, and U is an atom. We will regularly identify
the molecules in a layering of U with their isomorphic images in U , which are
submolecules.

Example 3.2.2 — The molecule from Figure 3.2 has two 1-layerings and one 0-
layering. The molecule from Figure 3.3 has six 1-layerings and one 0-layering.
The following molecule

A• B• C• •D

b

a

d

c

e
α β

has two 1-layerings:

A• B• C• •D

b

a

c
e

α #1 A• B• C• •D
b

c

d

e
β ,

A• B• C• •D
a

c

d

e
β #1 A• B• C• •D

a

b

d

e
α

and one 0-layering:

A• B•

a

b

α #0 B• C•

d

c

β #0 C• •De .

As expected, the following result holds:

Lemma 3.2.3. Let U be a molecule, k < dimU , and let (U (i))mi=1 be a k-layering
of U . Then, for all i ∈ {1, . . . ,m}, U (i) contains a single maximal element of
dimension > k.

Proof. See [25, Lemma 4.2.5]. ■

Lemma 3.2.4. Let U be a molecule, k ≤ ℓ < dimU . If U admits a k-layering,
then U admits an ℓ-layering.

76

Proof. Let (U (i))mi=1 be a k-layering of U . For all i ∈ {1, . . . ,m}, let

V (i) := ∂+ℓ U
(1) #k . . . #k ∂

+
ℓ U

(i−1) #k U
(i) #k ∂

−
ℓ U

(i+1) #k . . . #k ∂
−
ℓ U

(m).

By repeated applications of point 3 from Proposition 2.3.13 followed by point 2
from Proposition 2.3.13, U is isomorphic to

V (1) #ℓ . . . #ℓ V
(m).

Restricting to the subsequence of (V (i))mi=1 on those i ∈ {1, . . . ,m} such that
dimV (i) > ℓ, which does not change the result by point 2 from Proposition 2.3.13,
we obtain an ℓ-layering of U . ■

Example 3.2.5 — Consider the molecule from Example 3.2.2 together with its
0-layering (U (i))3i=1 and let

V (1) = A• B•

a

b

α #0 B• •Cc #0 C• •De

V (2) = A• •B
b

#0 B• C•

d

c

β #0 C• •De

V (3) = A• •B
b

#0 B• •C
d

#0 C• •De

Then we obtain a 1-layering:

V (1) #1 V
(2) = A• B• C• •D

b

a

c e
α #1 A• B• C• •Db

c

d

e
β

where V (3) = ∂+V (2), and by unitality of pasting (Proposition 2.3.13) we get that
V (2) #1 V

(3) is uniquely isomorphic to V (2).

Definition 3.2.6 (Layering dimension) — Let U be a molecule. The layering di-
mension of U is the integer

lydimU := min
{
k ≥ −1 |

∣∣∣∣∣
⋃

i>k+1
(Max U)i

∣∣∣∣∣ ≤ 1
}
.

Lemma 3.2.7. Let U be a molecule, n := dimU . Then

I lydimU ≤ n− 1,

II lydimU = n− 1 if and only if |Un| > 1.

77

Proof. We have ∣∣∣∣∣
⋃

i>n

(Max U)i

∣∣∣∣∣ = |∅| = 0,

so lydimU ≤ n− 1, with equality if and only if
∣∣∣∣∣
⋃

i>n−1
(Max U)i

∣∣∣∣∣ = |(Max U)n| = |Un| > 1,

where we used Lemma 2.1.27. ■

The following results justify why we can prove results for molecules using induction
on the layering dimension. For this we use two results about lower dimensional
molecules that will be proved in Section 4.4. The proofs of these results are self-
contained and do not rely on any content from the current chapter or subsequent
ones.
Lemma 3.2.8. Let U be a molecule. Then lydimU = −1 if and only if U is an
atom.
Proof. Suppose lydimU = −1. Either

∣∣⋃
i>0(Max U)i

∣∣ = 0, so dimU = 0 and we
conclude by Lemma 4.4.1, or 1 =

∣∣⋃
i>0(Max U)i

∣∣ = |Max U | by Lemma 4.4.2.
In either case, U has a greatest element. Conversely, if U has a greatest element,∣∣⋃

i>0(Max U)i
∣∣ ≤ |Max U | = 1. ■

Example 3.2.9 — The layering dimension of A• B•

g

f

α β
ψ

is −1 since

it contains only one maximal element, ψ.

The layering dimension of A• B• •C

g

f

h
α β

ψ
is 0 while the

layering dimension of A• B• •C •D

g

f

h

j

i

α β γ
ψ

is 1

and the layering dimension of A• B• •C

g

f

i

h

α β is also 1.

Lemma 3.2.10. Let U be a molecule, k := lydimU . Suppose k ≥ 0, and let
(U (i))mi=1 be a k-layering of U . Then

78

I m > 1,

II for each i ∈ {1, . . . ,m}, lydimU (i) < k,

III at most one of the U (i) contains an element of dimension > k + 1.

Proof. By definition of lydimU , if k ≥ 0 and a k-layering exists, then m > 1, for
otherwise k − 1 ≤ lydimU , a contradiction. Moreover, U contains at most one
element of dimension > k + 1, which can be contained at most in one of the U (i).
Finally, by Lemma 3.2.3, we have

∣∣∣
⋃
j>k(Max U (i))j

∣∣∣ = 1, so lydimU (i) ≤ k− 1 <
k. ■

Theorem 3.2.11. Let U be a molecule, lydimU ≤ k < dimU . Then U admits a
k-layering.

Proof. Let k := lydimU . If k = −1, then U is an atom and admits the trivial
layering U = U (1). If k ≥ 0, by Lemma 3.2.8 U is not an atom, so we can assume
that U was produced by (Paste). Then U is equal to V #ℓW for some molecules
V , W and ℓ < min {dimV,dimW}. By the inductive hypothesis, we have layerings

V (1) #kV . . . #kV V
(mV), W (1) #kW . . . #kW W (mW)

of V and W , respectively, for kV := lydimV and kW := lydimW . Furthermore, by
[25, Lemma 4.2.10], we know that k ≥ max {kV , kW , ℓ}. Let

nV :=





mV if kV = k,
1 if kV < k and dimV > k,
0 if kV < dimV < k,

nW :=





mW if kW = k,
1 if kW < k and dimW > k,
0 if kW < dimW < k.

Notice that it can never be the case that nV = nW = 0. We claim that we can
decompose V as

Ṽ (1) #k . . . #k Ṽ
(nV) #k ∂

+
k V #k . . . #k ∂

+
k V︸ ︷︷ ︸

nW times

, (3.4)

where each Ṽ (i) is a molecule containing exactly one maximal element of dimension
> k. If kV = k, we let Ṽ (i) := V (i) for all i ∈ {1, . . . ,mV }. If kV < k, then V
contains at most one maximal element of dimension > kV + 1, hence at most one
maximal element of dimension > k. If dimV > k, it contains exactly one, and we
let Ṽ (1) := V . If dimV < k, then V = ∂+k V . By Proposition 2.3.13, pasting copies
of ∂+k V does not change the result up to unique isomorphism. Similarly, we can
decompose W as

∂−k W #k . . . #k ∂
−
k W︸ ︷︷ ︸

nV times

#k W̃
(1) #k . . . #k W̃

(nW) (3.5)

79

where each W̃ (i) contains exactly one maximal element of dimension > k.
If ℓ = k, since ℓ < min {dimV,dimW}, we have 0 < min {nV , nW }. Then

Ṽ (1) #k . . . #k Ṽ
(nV) #k W̃

(1) #k . . . #k W̃
(nW)

is a k-layering of U . If ℓ < k, let

U (i) :=
{
Ṽ (i) #ℓ ∂

−
k W if i ≤ nV ,

∂+k V #ℓ W̃
(i−nV) if nV < i ≤ nV + nW .

Since dim ∂−k V = dim ∂+k W = k, each U (i) still contains exactly one maximal
element of dimension > k. Plugging (3.4) and (3.5) in V #ℓW and using the third
point from Proposition 2.3.13 repeatedly, we deduce that V #ℓW is isomorphic to

U (1) #k . . . #k U
(nV +nW),

which has the desired properties. Necessarily, nV + nW = m.
For lydimU < k < dimU , the statement follows from Lemma 3.2.4. ■

Using Lemma 3.2.10, Lemma 3.2.8 and Theorem 3.2.11, we can prove that a prop-
erty holds for all molecules U using induction on the layering dimension. To do
this it suffices to:

• prove that it holds when lydimU = −1, that is, when U is an atom,

• prove that it holds when k := lydimU ≥ 0, assuming that it holds of all the
(U (i))mi=1 in a k-layering of U .

We prove the following lemma that will be used in the next section using this
technique:

Lemma 3.2.12. Let U be a molecule, k ∈ N, and suppose
⋃

i>k

(Max U)i = {x} .

Then, for all α ∈ {+,−},
I ∂αk x ⊑ ∂αkU ,

II ∂αkU is isomorphic to ∂−αk U [∂αk x/∂
−α
k x].

Proof. We proceed by induction on lydimU . If lydimU = −1, then U is an atom
and equal to cl {x}. It follows that ∂αk x = ∂αkU , which is trivially a submolecule,
and is isomorphic to ∂−αk U [∂αk x/∂

−α
k x] by [25, Lemma 4.1.12].

Suppose ℓ := lydimU ≥ 0, and let (U (i))mi=1 be an ℓ-layering of U . Then ℓ ≤
k − 1 < k because

∣∣⋃
i>k(Max U)i

∣∣ = 1. By Lemma 2.2.20, ∂αkU is isomorphic to

∂αkU
(1) #ℓ . . . #ℓ ∂

α
kU

(m).

Now x is contained in a single U (i). By the inductive hypothesis, ∂αk x ⊑ ∂αkU
(i),

and the latter is isomorphic to ∂−αk U (i)[∂αk x/∂
−α
k x]. We conclude by [25, Lemma

4.1.16]. ■

80

3.3 Frame-dimension
The frame-dimension of a molecule is the number that gives the maximal dimension
at which two maximal elements intersect (are glued together). For example, a round
molecule always has frame dimension n−1 (as we will prove in Proposition 3.3.10).
We show that the frame-dimension provides a lower bound for which a molecule,
U , accepts a layering. While it is true that all molecules of dimension less than
or equal to 3 accept a layering in their frame dimension (see Lemma 4.4.15 and
Corollary 4.3.6), this does not hold in general. The first example of such behaviour
is 4-dimensional (see Example 3.3.8).
Definition 3.3.1 (Frame dimension) — Let U be a molecule. The frame dimension
of U is the integer

frdimU := dim
⋃
{cl {x} ∩ cl {y} | x, y ∈Max U, x ̸= y}.

Lemma 3.3.2. Let U be a molecule. Then frdimU = −1 if and only if U is an
atom.
Proof. If U is an atom, then there does not exist a pair of distinct elements of
Max U , so frdimU = dim∅ = −1. Otherwise, suppose that frdimU = −1, and let
x ∈ Max U . Then, letting V := cl ((Max U) \ {x}), we have U = cl {x} ∪ V and
cl {x} ∩ V = ∅. By [25, Lemma 3.3.13], V = ∅, so x is the greatest element of
U . ■

Lemma 3.3.3. Let U be a molecule. Then frdimU ≤ lydimU .
Proof. Let r := frdimU . If r = −1, by Lemma 3.3.2 U is an atom, and by
Lemma 3.2.8 lydimU is also −1. Suppose r ≥ 0. Then there exist distinct
maximal elements x, y ∈ U such that dim (cl {x} ∩ cl {y}) = r. Necessarily r <
min {dim x, dim y}, so x, y ∈ ⋃

i>r(Max U)i and
∣∣⋃

i>r(Max U)i
∣∣ ≥ 2. It follows

that r − 1 < lydimU , that is, r ≤ lydimU . ■

Example 3.3.4 — Let U be the following molecule:

• • •0 1

Then U has frdimU = 0 and lydimU = 1.
Unlike layering dimension, frame dimension is not stable under submolecule in-
clusions. That means that we will not prove properties about molecules using
induction on the frame dimension of the molecule.
Example 3.3.5 — Let U be the following molecule, where we omit the dimension
of the elements from the naming convention:

• • • • • •0

0

2
1 3 1

81

The maximal elements are (3, 0) and (2, 1) and frdimU = 0. The input boundary,
∂−U is:

• • •
0

2
1

The maximal elements in ∂−U are (2, 0), (2, 1) and (2, 2) and frdim ∂−U = 1 since
frdim {(2, 0), (2, 2)} = 1.

Lemma 3.3.6. Let U be a molecule, k ≥ −1. If U admits a k-layering, then
k ≥ frdimU .

Proof. See [25, Lemma 4.4.5]. ■

Corollary 3.3.7. Let U be a molecule. Then

frdimU ≤ min {k ≥ −1 | U admits a k-layering} ≤ lydimU.

Proof. Follows from Lemma 3.3.6 and Theorem 3.2.11. ■

Example 3.3.8 — Below we show an example of a molecule with frame dimension
2 that does not admit a 2-layering. Let U be the following 4-dimensional molecule:

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

1

2 0

3

5

2

3

4

5

6

7

4

a

u

b

t

a1

a2

u

A

t

b1

b2

u1

t1

a

u

b

t

a3

a2

u

B

b1

b2

t

u1

t1

a

u

b

t

u

a3

a2

t

b1

b3

u1

t1

The 4-dimensional element, A, rewrites the composable configuration of volumes
cl {1, 0} to cl {5, 4}, while B rewrites cl {2, 3} to cl {6, 7}. Note that frdim {A,B} =
2 since cl {A} and cl {B} do not share any 3-dimensional elements.

82

Then, cl {A} is:

• • • • • • • • •

• • • • • • • • •

1 0

5 4

a

u

b1 a1

a2

u

A

b1

u1

a2

a

u

b1 a3

a2

u

b1

u1

a2

and cl {B} is:

• • • • • • • • •

• • • • • • • • •

2 3

6 7

a2 b

t

a2
b1

b2

t

B

t1

b1

a2 b

t

a2
b1

b3

t t1

b1

If we want to write U as a layering UA #2 UB , where UA is a layer containing
A and UB is a layer containing B, then we would need to whisker ∂−2 A with
(∂+a2 #0 b)#1 t which is impossible since ∂−b ̸= ∂+b1.
Similarly, if we want to write U as a layering UB #2 UA, then we would need to
whisker ∂−2 B with (a#0 ∂

−b1)#1 u which is impossible since ∂+a ̸= ∂−a2.
We will understand this example better once we make the connection between
layerings and orderings more clear.

Finally, we obtain the following result, for any molecule, U .

Corollary 3.3.9. Let U be a molecule, n := dimU . Then U admits an (n −
1)-layering.

Proof. Follows from Theorem 3.2.11 together with Lemma 3.2.7. ■

Finally, we can prove:

Proposition 3.3.10. Let U be a molecule, n := dimU . If U is round, then Fn−1U
is connected.

Proof. First of all, if U is round, then it is pure, so the vertices of Fn−1U are the
elements of Un. If U is an atom, then Fn−1U consists of a single vertex and no

83

edges, so it is trivially connected. In particular this is true when n = 0 by Lemma
4.4.1, so we can proceed by induction on n.
Suppose n > 0 and |Un| > 1, which by Lemma 3.2.7 implies lydimU = n − 1.
Assume by way of contradiction that Fn−1U is not connected. Then there is a
bipartition Un = A + B such that there are no edges in Fn−1U between vertices
in A and vertices in B. By Corollary 2.3.9, no element of codimension 1 in U
can be covered by two elements with the same orientation, so this implies that
dim (clA ∩ clB) < n− 1. Let

A′ :=
{
x ∈ ∆−U | ∇−x ⊆ A

}
, B′ :=

{
x ∈ ∆−U | ∇−x ⊆ B

}
.

Then A′ + B′ is a bipartition of ∆−U . By Lemma 2.2.26, ∂−U is round, so
by the inductive hypothesis Fn−2(∂−U) is connected. It follows that there exist
α ∈ {+,−}, x ∈ A′, y ∈ B′, and z ∈ Un−2 such that z ∈ ∆αx ∩ ∆−αy. Then z
has two distinct cofaces in ∂−U , so by Corollary 2.3.9 z /∈ ∂(∂−U) = ∂n−2U . We
claim that z ∈ ∂+U , contradicting the roundness of U .
By Theorem 3.2.11, there exists an (n− 1)-layering (U (i))mi=1 of U ; we will identify
the U (i) with their isomorphic images in U . Let V0 := ∂−U and Vi := ∂+U (i) for
each i ∈ {1, . . . ,m}. We will prove that, for all i ∈ {0, . . . ,m},

I z ∈ Vi,
II there exist xi ∈ clA and yi ∈ clB such that ∇αz∩Vi = {xi} and ∇−αz∩Vi =
{yi}.

For i = 0, we have already established this with x0 := x, y0 := y. Let i ≥ 0,
and assume this holds for i − 1. By Lemma 3.2.3, there is a single n-dimensional
element x(i) in U (i), and by Lemma 3.2.12

Vi = ∂−U (i)[∂+x(i)/∂−x(i)] = Vi−1[∂+x(i)/∂−x(i)].
Suppose x(i) ∈ A. Then yi−1 /∈ cl

{
x(i)

}
, so yi−1 ∈ Vi, and we let yi := yi−1. If

xi−1 /∈ cl
{
x(i)

}
then also xi−1 ∈ Vi, and we let xi := xi−1. Otherwise, xi−1 is

the only coface of z in ∂−x(i), so by Corollary 2.3.9 we have z ∈ ∂α(∂−x(i)) =
∂α(∂+x(i)). It follows that z ∈ Vi and there exists a unique xi such that ∇αz ∩
∂+x(i) = {xi}. The case x(i) ∈ B is analogous.
Since Vm = ∂+U , we have proved that z ∈ ∂+U , a contradiction. ■

The converse of this proposition is not true, not even when the molecule is pure.
Example 3.3.11 — [25, Example 4.5.8] Let U be the following molecule presented
in its pasting diagram representation in which the elements are labelled according
to their traversal order, but we omitted the dimension from our usual notation:

0• 2• •1 0• 2• •1 0• 2• •11

3

0

2
0

1

4

3

0

2

5

1
4

3

0

5
0

1

3

2

4

1

2

5

Element (0, 2) is in ∂−2 U ∩∂+2 U , but (0, 2) /∈ ∂1U . Geometrically, one can note that
the intersection of (3, 0) and (3, 1) is not round.

84

3.4 Molecule matching algorithm
We are now ready to present the solution to the first step of the subdiagram
matching problem. The algorithm takes two n-dimensional molecules, U and V ,
where V is round and returns a list of all the inclusions V ↪→ U . The algorithm
first constructs the (n − 1)-dimensional flow graphs for both U and V . It then
chooses an n-element in V (according to some order, which can be the traversal
order of the n-dimensional elements of V) and using the traversal algorithm tries to
find a match (i.e., an isomorphism) of this element with an n-dimensional element
in U . Once such a match is found, there is exactly one way to extend this match
to all top-dimensional elements in V . By Proposition 3.3.10 we can find an n-
dimensional element that is connected to an already matched element. That is, the
two elements cover an (n−1)-dimensional element, z, that was already matched at
a previous round. By Corollary 2.3.9, z has exactly two cofaces in U , out of which
one was already matched. Then, it must be that the next match is the other coface
of z.
We provide both the pseudo code for the algorithm as well as a description of its
behaviour. We then continue with its runtime analysis and illustrate how it runs
on an example.

Procedure 3.4.1 (Molecule matching algorithm) — The procedure takes as input
two molecules U, V such that dimU = dimV and V is round, and it returns all
inclusions V ↪→ U .
Let n := dimU . To begin, we pick an arbitrary ordering (x(i))mi=1, for example the
traversal order, of the elements of Un. Moreover, we pick an ordering (y(j))pj=1 of the
elements of Vn with the property that, for all k ∈ {1, . . . , p}, the induced subgraph
of Fn−1V on (y(j))kj=1 is connected. This is possible because Fn−1V is connected
by Proposition 3.3.10. For each k ∈ {1, . . . , p}, we let V (k) :=

⋃
j≤k cl

{
y(j)

}
. We

have V (i) ⊆ V (j) whenever i ≤ j, and V (p) = V since V is pure by Lemma 2.2.11.
For each i ∈ {1, . . . ,m}, we try to construct a sequence of inclusions (ı(i,j) : V (j) ↪→
U)pj=1 such that the restriction of ı(i,j′) to V (j) is equal to ı(i,j) when j ≤ j′,
iterating on k ∈ {1, . . . , p}. When k = 1, if V (1) = cl

{
y(1)

}
is isomorphic to

cl
{
x(i)

}
, we let ı(i,1) be the unique isomorphism V (1) ∼

↪→ cl
{
x(i)

}
followed by the

inclusion cl
{
x(i)

}
⊆ U , and iterate on k. Else, we iterate on i.

When k > 1, we let j be the least value such that there exists an edge between y(j)
and y(k) in Fn−1V . Then j < k because of our connectedness assumption, and
there exists z ∈ ∆αy(j) ∩ ∆−αy(k) for some α ∈ {+,−}. We pick the least such
z with respect to some ordering of Vn−1, for example the traversal order. Since ı
is a morphism of oriented graded posets, ı(i,k−1)(y(j)) is one coface of ı(i,k−1)(z)
in U . If ı(i,k−1)(z) has no other cofaces, then we iterate on i. Else, by Corollary
2.3.9, ı(i,k−1)(z) has exactly one other coface, call it x; note that x cannot be in
the image of ı(i,k−1), since y(j) and y(k) are the only cofaces of z in V . If cl

{
y(k)

}

is isomorphic to cl {x}, and the unique isomorphism cl
{
y(k)

} ∼
↪→ cl {x} followed by

the inclusion cl {x} ⊆ U matches ı(i,k−1) on cl
{
y(k)

}
∩V (k−1), then we let ı(i,k) be

the unique extension of ı(i,k−1) that restricts to cl
{
y(k)

} ∼
↪→ cl {x} ⊆ U . Else, we

iterate on i.

85

If we succeed to construct ı(i,p), we add it to the list of inclusions V ↪→ U , then
iterate on i.

The pseudocode is described in a simplified version below:

procedure MoleculeMatching(U, V : molecule, V is round)
n← dimU(= dimV)
ı = []
Pick (x(i))mi=1 the traversal order of Un.

5: Pick (y(i))pi=1 an ordering of Vn with the property: for all
k ∈ {1, . . . , p}, the induced subgraph of Fn−1V on (y(i))ki=1 is connected.

▷ notation: V (k) :=
⋃

j≤k
cl
{
y(j)}

for i ∈ {1, . . . ,m} do
if V (1) ∼

↪→ cl
{
x(i)} then

10: ı(i,1) ← V (1) ∼
↪→ cl

{
x(i)}

for k ← {2, . . . , p} do
j ← least value such that there exists an edge between

y(k) and y(j) in Fn−1V .
z ← first element in ∆αy(j) ∩∆−αy(k) according to the

15: traversal order of Vn−1.
x′ ← ı(i,k−1)(y(j)) where x′ ∈ ∆αı(i,k−1)(z)
if |∇−αı(i,k−1)(z)| = 0 then

break;
x← ∇−αı(i,k−1)(z)[0] ▷ By Corollary 2.3.9.

20: if cl
{
y(k)} ∼

↪→ cl {x} then
iso ← cl

{
y(k)} ∼

↪→ cl {x}
if iso matches ı(i,k−1) on cl

{
y(k)} ∩ V (k) then

ı(i,k) ← unique extension of ı(i,k−1) that restricts to
cl
{
y(k)} ∼

↪→ cl {x}
25: else break;

else break
ı.add(ı(i,p))

return ı

Theorem 3.4.2. The molecule matching problem in dimension n can be solved in
time

O(|Un| |Vn| |V | |E∨V | log |E∨V |).

Proof. We suppose n > 0 since the case n = 0 is trivial. First of all, with our
choice of data structures both Un and Vn−1 already come with a linear order when
one is needed. Moreover, we can both construct Fn−1V and order its vertices in
the desired way by traversing the “slice” of H V on the elements of dimension n
and (n− 1). Since max {|Vn| , |Vn−1|} ≤ |EnV |, this can be done in time O(|EnV |)
with a standard traversal algorithm.
In the main part of the algorithm, we have exactly |Un| iterations. At each it-
eration, we need to solve at most |Vn| isomorphism problems for submolecules of
V . The time complexity of each can be bounded above by the time complexity
of the isomorphism problem for V , which is O(|V | |E∨V | log |E∨V |) by Theorem

86

2.4.21. It is straightforward to verify that all other operations, such as check-
ing that the isomorphisms match on intersections or finding the next match, have
lower complexity. Since |EnV | ≤ |E∨V |, we can ignore the O(|EnV |) summand, and
conclude. ■

Example 3.4.3 — Let’s show how the algorithm above works on an example. Let
S be the list containing one 3-dimensional atom:




• • • • • • • •α

a′

b′ c′

d′





and let U be the following diagram:

• •

• • • •

g

f
e

b

a

c d

We let

V := ∂−α = • • • •
a′

b′ c′

The (n− 1)-flow graphs of U and V are:

Fn−1U =

•f

•e

b• c• •d

a•

Fn−1V =
b′• c′•

a′•

The algorithm takes the “first” element in V and tries to match it with each element
in U . Once a match is found, we try to extend it by picking the “next” element in
V . Since the shapes of diagram are rigid, there is at most one choice for a match.
If this fails, we return to the main loop and try to find another match for the “first”
element in V .

87

We start with an empty list of inclusions, call it ı = [] and pick the traversal order
for the elements in U - [a, b, c, d, e, f] - and an order respecting the condition for
all k ∈ {1, . . . , p}, the induced subgraph of Fn−1V on (y(j))kj=1 is connected for
the elements in V - [b′, a′, c′]. Note that this order is different than the traversal
order of V which is [a′, b′, c′] - this would have also been a valid order. For each
k ∈ {1, 2, 3}, we let V (k) :=

⋃
j≤k cl

{
y(j)

}
. In this case, since V only has three

maximal elements,

V (1) = cl b′ = • •b′

,

V (2) = cl {a′, b′} = • • • •
a′

b′

,

V (3) = cl {a′, b′, c′} = V.

The algorithm first tries to match cl b′ to cl a; they are not isomorphic so it iterates
to the next element in U . For i = 2, it tries to match cl b′ to cl b; V (1) is isomorphic
to cl b so we let ı(2,1) be the inclusion mapping cl b′ to cl b. Next, we try to extend
the match by finding an inclusion from V (2) to U . In this case k = 2 and j = 1.
Let’s name the 1-dimensional elements in U and V that are involved at this step
in the algorithm:

• • • •f ′

l′

g′
h′

a′

b′ • • • •
f

l m

g
h

n

b

a

c d

Because of our connectedness assumption (there is an edge in the flow graph be-
tween b′ and a′), there exists an element z ∈ ∆αb′ ∩ ∆−αa′, for α ∈ {+,−}. In
this case, we have only one such element, g′, so we do not have to choose one.
Now, ı(2,1)(b′) = b is one coface of ı(2,1)(g′) = f in U . Element f has exactly one
other coface in U , a, so we check if cl a′ and cl a are isomorphic. There is indeed
an isomophism cl {a′} ∼

↪→ cl {a}, but this isomorphism does not match the assign-
ment that we had from the previous inclusion: g′ is mapped to g by this (latest)
morphism, but cl {a′} ∩ V (1) = g′ which is mapped to f by ı(2,1). So, we cannot
extend the inclusion ı(2,1). We break the inner loop and continue with i = 3. The
algorithm now finds an isomorphism ı(3,1) : cl {b′} ∼

↪→ cl {c}. Again, for k = 2,
V (2) = cl {a′, b′} (because b′ is the only previous element in the order to which a′
is connected) and g′ is the only element in ∆αb′ ∩∆−αa′. The only other element
(apart form c) covering g in U is a. Again, there is an isomorphism cl {a′} ∼

↪→ cl {a}
which matches ı(3,1) on cl {a′} ∩ V (1). So we let ı(3,2) be the unique extension of
V (3,1) restricted to cl a′ ∼

↪→ cl a. We continue by iterating on k = 3; V (3) = V
and y(3) = c′. The element y(j) is now a′ (the only element c′ is connected to) so
j = 2 and h′ ∈ ∆+a′ ∩∆−c′. We repeat the same argument as above: cl c′ ∼

↪→ cl d

88

which matches ı(3,2) on cl {c′} ∩ V (2) and we extend ı(3,2) to ı(3,3) by restricting to
cl c′ ∼

↪→ cl d. Since k = 3, and the whole of V has been traversed, we let ı = [ı(3,3)].
The algorithm continues by setting i = 4 and trying to match b′ with d. In the
end, the algorithm returns ı = [ı(3,3)].

The molecule matching algorithm is a stepping stone for identifying submolecule
inclusions, but not all inclusions that it returns are submolecule inclusions. As we
will see later on, the molecule matching algorithm identifies submolecule inclusions
in dimensions less than or equal to 2. However, from dimension 3 onwards, more
conditions are necessary. Below we provide a counterexample of a 3-dimensional
molecule inclusion found by the algorithm that is not a submolecule inclusion and
in the next chapter we discuss the submolecule inclusion algorithm on the general
case of n-dimensional molecules.

Example 3.4.4 — Let U be:

• • • • • • • • • • • •1 2 0
a

u

b

t

a1

a2

u

b

t

a1

u

b2

t1

u1

t1

and let V be:

• • • • • • • • •1 0
a

u

b2 a1

a2

u

b2

u1

a2

There is an inclusion of V into U that maps the elements labelwise. But this
inclusion is not a submolecule inclusion because cl {(3, 1), (3, 0)} does not appear
as a factor in a pasting decomposition - i.e., U cannot be written as a pasting in
which 0 and 1 are consecutive.
Intuitively what stops it from being a submolecule inclusion is the presence of the
3-dimensional rewrite 2 in U which creates a dependency between the 3-elements
0 and 1: the input of 0 is dependent on the output of 2 and the input of 2 is
dependent on the output of 1. Thus, the images of the elements 0 and 1 from V
cannot appear in consecutive order in a pasting decomposition of U .
There is an extra condition that inclusions in dimension 3 should satisfy in order
to be submolecule inclusions. However, we are not aware of such conditions for
molecules of dimension 4 or greater. We believe there is a gap in complexity between
deciding if an inclusion is a submolecule inclusion for molecules of dimension less
than or equal to 3 versus in the general case. It is exactly these dependencies that
gives rise to the phenomena causing an exponential running time in the rewritable
submolecule problem.
Situations like the one above do not occur in dimension 2. If it were to occur,
then V would not be a molecule. We leave below an example of a dependency in
dimension 2 which is similar to the situation above:

89

Let U = • • •
(1,1)

(1,3)

(1,0)

(1,4)

(1,2)
a

b

c

and let V = • • •
(1,1)

(1,3)

(1,0)

(1,4)

(1,2)

a

c

Firstly, V is not a molecule because of the lack of a 2-dimensional element between
the two arrows, (1, 1) and (1, 3). Also note that the molecule matching algorithm
would not return V as a molecule inclusion into U ; V is the closure of the atoms
a and c, however, V cannot be a submolecule of U because of the dependency
between a, b, c in U . We will come back to this later when discussing obstructions.

90

Chapter 4

The rewritable submolecule
problem

In the last chapter we presented an algorithm that returns all the inclusions of a
molecule V into another molecule of the same dimension, U , whenever V is round.
However, by Example 3.4.4 this is not enough to decide whether V is a submolecule
of U . The inductive definition of submolecule inclusion makes it challenging to di-
rectly translate into an algorithm. To counteract this we start studying the relation
between the layerings and orderings of a molecule. We present the conditions for
which an ordering is induced by a layering. Since by Definition 2.3.19, orderings are
topological sorts of a graph, we obtain a deterministic and easy to manipulate cri-
terion to find valid layerings for a molecule. We continue by tying the submolecule
inclusion to the existence of a certain layering that corresponds to the intuition we
gave at the beginning of the previous chapter: a submolecule appears as a factor
in a pasting decomposition. Finally, we link the submolecule inclusion to the ex-
istence of a certain ordering. The rewritable submolecule algorithm is then based
on this result.
In the general case, the rewritable submolecule decision algorithm has a factorial
running time. However, under certain acyclicity conditions, the running time is
improved. We present these acyclicity conditions and show that the subdiagram
matching problem for molecules of dimension less than or equal to 3 takes linear
time in the size of the Hasse diagram representation of the molecule. This makes
rewriting on 3-dimensional diagrams computationally feasible.
Most of the theory presented in this chapter is part of [29, Section 3 and Section
4]. For a detailed discussion on the connection between layerings and orderings
and the acyclicity conditions, check [27].

4.1 Relation between layerings and orderings
In this section we present the connection between layerings and orderings via path-
induced subgraphs. The connection is motivated by the following proposition.

91

Proposition 4.1.1. Let U be a molecule, k ≥ −1. If U admits a k-layering, then
MkU is acyclic, and U admits a k-ordering.

Proof. Let (U (i))mi=1 be a k-layering of U . For each i ∈ {1, . . . ,m}, the graph
MkU

(i) is trivially acyclic by Lemma 3.2.3. We conclude by applying Lemma
2.3.22 repeatedly. ■

Example 4.1.2 — Recall the molecule from Example 3.3.8 whose frame dimension
is 2, but it did not have a 2-layering. Its maximal flow graph, M2U contains a

cycle: A• •B

a2

b1

.

Corollary 4.1.3. Let U be a molecule, n := dimU . Then Fn−1U is acyclic.

Proof. By Theorem 3.2.11, U always admits an (n − 1)-layering. We conclude by
Proposition 4.1.1 combined with the fact that Fn−1U = Mn−1U . ■

Definition 4.1.4 — Let U be a molecule, k ≥ −1. We let

LaykU :=
{
k-layerings (U (i))mi=1 of U up to layer-wise isomorphism

}
,

OrdkU :=
{
k-orderings (x(i))mi=1 of U

}
,

Proposition 4.1.5. Let U be a molecule, k ≥ −1. For each k-layering (U (i))mi=1
of U and each i ∈ {1, . . . ,m}, let x(i) be the only element of

⋃
j>k(Max U)j in the

image of U (i). Then the assignment

ok,U : (U (i))mi=1 7→ (x(i))mi=1 (4.1)

determines an injective function LaykU ↪→ OrdkU .

Proof. By Lemma 3.2.3, the assignment (U (i))mi=1 7→ (x(i))mi=1 is well-defined. Let
i, j ∈ {1, . . . ,m}, and suppose that there is an edge from x(i) to x(j) in MkU ,
that is, there exists z ∈ ∆+

k x
(i) ∩∆−

k x
(j). By Proposition 4.1.1, MkU is acyclic, so

necessarily i ̸= j. If j < i, then U (j)∩U (i) ⊆ ∂+k U (j)∩∂−k U (i) by [25, Lemma 4.2.4],
contradicting the existence of z. It follows that i < j, so (x(i))mi=1 is a k-ordering
of U .
Let (V (i))mi=1 be another k-layering, and suppose it determines the same k-ordering
as (U (i))mi=1. Then the image of both U (1) and V (1) in U is

cl
{
x(1)

}
∪ ∂−U,

so U (1) is isomorphic to V (1). If m = 1 we are done. Otherwise, (U (i))mi=2 and
(V (i))mi=2 are k-layerings inducing the same k-ordering on their image. By recursion,
we conclude that they are layer-wise isomorphic. ■

We can now formally define a rewrite step in our framework. As discussed in the
introduction, rewriting on an n-dimensional molecule is equivalent to gluing the

92

(n+ 1)-dimensional diagram representing the rewrite to the target diagram. This
process can be understood as pasting the whiskered (n + 1)-dimensional diagram
onto the target diagram, which, by Proposition 2.3.13 (unitality), is isomorphic
to the already whiskered diagram. Consequently, applying an (n+ 1)-dimensional
rewrite to an n-dimensional diagram is equivalent to replacing the input of the
rewrite rule in the target diagram with its output. Moreover, the result of applying
a sequence of (n + 1)-dimensional rewrites on an n-dimensional diagram is the
output boundary of the (n+1)-dimensional diagram obtained by sequentially gluing
the rewrite rules. We formalize this intuition below:

Definition 4.1.6 (Rewrite steps) — Let U be a molecule, k ≥ −1, and let (U (i))mi=1
be a k-layering of U . The sequence (U st(i))mi=0 of rewrite steps associated with
(U (i))mi=1 is defined recursively by

• U st(0) := ∂−k U ,

• U st(i) := ∂+k U
(i) for i ∈ {1, . . . ,m}.

We can now finally prove the intuition we introduced about rewrite steps and
layerings: i.e., if we have a sequence of rewrite steps associated to a k-layering
induced by a k-ordering, then the result of applying the i-th rewrite is equivalent
to substituting the input of x(i) with the output of x(i) in U (i−1).

Corollary 4.1.7. Let U be a molecule, k ≥ −1, (U (i))mi=1 a k-layering of U , and
(x(i))mi=1 the associated k-ordering. For all i ∈ {1, . . . ,m}, the i-th rewrite step
U st(i) is isomorphic to U st(i−1)[∂+k x(i)/∂

−
k x

(i)].

Proof. By Proposition 3.2.3, x(i) is the only element of dimension > k in U (i). The
result then follows from repeated application of Lemma 3.2.12. ■

Example 4.1.8 — We have already secretly used rewrite steps when representing
the shapes of diagrams of dimension greater than 3 as a sequence of rewrites.
More specifically, in the molecule, U , from Example 3.3.8, its input boundary is a
sequence of 3-dimensional rewrites on 2-dimensional diagrams. This representation
is possible due to the existence of layerings and each such sequence is a rewrite step.
In the end, we depict the whole of the 4-dimensional molecule as a sequence of
sequences of rewrites. One advantage of this representation is that it lets one show
which (n−1)-dimensional elements are selected to be in the input of the rewrite one
wants to apply. The ability of writing a diagram as a sequence of rewrite steps is
of great importance in helping us visualise a higher dimensional shape of diagram.
We illustrate this below by looking at the string diagram representation of U .
Note that in Example 3.3.8 we had to state which elements are being rewritten by
both A and B. Now, this will be clear from the representation. To help illustrate,
we circled (and colour coded) the areas containing the elements being rewritten.
The red area corresponds to the input of A, while the blue one represents the input
of B.

93

Note how A rewrites cl {0, 1} into cl {4, 5}, while preserving the input and output
boundaries.

The following proposition gives the criteria for which a k-ordering is a k-layering.

Proposition 4.1.9. Let U be a molecule, k ≥ −1, and let (x(i))mi=1 be a k-ordering
of U . Let

U (0) := ∂−k U,

U (i) := ∂+k U
(i−1) ∪ cl

{
x(i)

}
for i ∈ {1, . . . ,m}.

The following are equivalent:

(a) (U (i))mi=1 is a k-layering of U ;

(b) for all i ∈ {1, . . . ,m}, ∂−k x(i) ⊑ ∂−k U (i).

Moreover, for all i ∈ {1, . . . ,m− 1}, if ∂−k x(i) ⊑ ∂−k U
(i), then U (i) and ∂+k U (i) =

∂−k U
(i+1) are molecules.

Proof. Suppose (U (i))mi=1 is a k-layering. Then, for all i ∈ {1, . . . ,m}, U (i) is a
molecule, and by Proposition 3.2.3 x(i) is the only element of dimension > k in
U (i). By Lemma 3.2.12, ∂−k x(i) ⊑ ∂−k U (i).
Conversely, it follows from Lemma 3.1.12 that for all i ∈ {1, . . . ,m}, if ∂−k U (i)

is a molecule and ∂−k x
(i) ⊑ ∂−k U

(i), then U (i) is a molecule, hence ∂+k U (i) is a
molecule. Moreover, since (x(i))mi=1 is a k-ordering, it is straightforward to prove
that U (i) ∩U (i+1) = ∂+k U

(i) = ∂−k U
(i+1) for all i ∈ {1, . . . ,m− 1}. Since ∂−U (1) =

∂−U is a molecule, it follows by induction, assuming condition (b), that U (i) is a
molecule for all i ∈ {1, . . . ,m}. This proves that (U (i))mi=1 is a k-layering of U . ■

Consider the following molecule, U :

• • • •(1,1)

(1,0)

(1,2)

(1,4)

(1,3)
(2,0)

(2,1)

94

We pick the 1-ordering {(2, 0), (2, 1)}, where

U (0) = • • •
(1,0) (1,3)

,

U (1) = • • • •(1,1)

(1,0)

(1,2)
(1,3)

(2,0)
,

U (2) = • • • •(1,1) (1,2)
(1,3)

(2,1)

.

By Proposition 4.1.9 if (U (i))2i=1 is a 1-layering of U , then (2, 0) ⊑ ∂−1 U
(1) and

(2, 1) ⊑ ∂−1 U (2).
This proposition applies in the general case, but it is still far from helping us with
the subdiagram matching problem. Our approach is to relate the submolecule
inclusion relation to (n− 1)-layerings and later on to (n− 1)-orderings.
As mentioned in the chapter introduction, the criteria for V being a submolecule of
U relies on V appearing as a factor in a pasting decomposition of U . In our solution,
we will consider layerings of U . Since V is rewritable, its maximal elements will
appear amongst the layers of U . By Proposition 4.1.1 we are looking for a layering
inducing an ordering in which the maximal elements of V are consecutive. Since
any ordering of the elements of V suffices and V is round, we can contract the graph
Fn−1U by merging the maximal elements of V . By merging the maximal elements
of V , we obtain a molecule which is an atom, ⟨V ⟩, whose input boundary is ∂−V
and whose output boundary is ∂+V . Our problem now simplifies to searching
through the topological sorts of a contracted graph, Fn−1U/Fn−1V .
Recall the definition of an induced subgraph from 2.3.5.

Definition 4.1.10 (Path-induced subgraph) — Let G be a directed graph and W a
subset of its vertex set. We say that induced subgraph G |W is path-induced if, for
all x, y ∈W , every path from x to y in G is included in G |W .

Path-induced subgraphs are also called convex subgraphs, for example in [8].

Definition 4.1.11 (Contraction of a connected subgraph) — Let G be a directed
graph andW a subset of its vertex set such that G |W is connected. The contraction
of G |W in G is the graph minor G /(G |W) obtained by contracting every edge in
G |W .

Definition 4.1.12 (Merger of a round molecule) — Let U be a round molecule. The
merger of U is ⟨U⟩ := ∂−U ⇒ ∂+U .

Another way to look at the merger is as the “unbiased” composition of the top-
dimensional elements of a round molecule.

95

Example 4.1.13 — Let U be the following 2-dimensional molecule:

A• B• •C

g

f

j

i

h

α β

Its merger, ⟨U⟩, is:

A• B• •C
f

j

h

Note that if U is an atom, dimU > 0, then it is easy to check that it is isomorphic
to ⟨U⟩.

Lemma 4.1.14. Let G be a directed acyclic graph and W ⊆ VG such that G |W is
connected. The following are equivalent:

(a) G |W is path-induced;

(b) G /(G |W) is acyclic;

(c) there is a topological sort of G in which vertices of W are consecutive.

Moreover, under any of the equivalent conditions, there is a bijection between

• topological sorts of G in which vertices of W are consecutive,

• pairs of a topological sort of G |W and a topological sort of G /(G |W).

Proof. We prove the contrapositive of the implication from (a) to (b). Suppose
G /(G |W) has a cycle. If the cycle does not pass through xW , then it lifts to a
cycle in G , contradicting the assumption that G is acyclic. It follows that the
cycle contains a segment of the form xW → x1 → . . . → xm → xW , where m > 0
and xi ̸= xW for all i ∈ {1, . . . ,m}. Then there exist y, z ∈ W and a path
y → x1 → . . .→ xm → z in G , so G |W is not path-induced.
Next, suppose that G /(G |W) is acyclic. Then both G /(G |W) and G |W are acyclic,
so they admit topological sorts (x(i))mi=1 and (y(j))pj=1, respectively. For exactly
one q ∈ {1, . . . ,m}, x(i) = xW . We claim that

((x(i))q−1
i=1 , (y

(j))pj=1, (x
(i))mi=q+1)

is a topological sort of G . Indeed, for all edges from x to x′ in G ,

• if x, x′ /∈ W , then x = x(i), x′ = x(i
′) for some i, i′ ∈ {1, . . . ,m} \ {q}, and

there is an edge from x to x′ in G /(G |W), so i < i′;

• if x, x′ ∈W , then x = y(j), x′ = y(j
′) for some j, j′ ∈ {1, . . . , p}, and there is

an edge from x to x′ in G |W , so j < j′;

96

• if x ∈ W , x′ /∈ W , then x = y(j), x′ = x(i) for some i ∈ {1, . . . ,m} \ {q},
j ∈ {1, . . . , p}, and there is an edge from xW to x′ in G /(G |W), so q < i;

• if x /∈ W , x′ ∈ W , then x = x(i), x′ = y(j) for some i ∈ {1, . . . ,m} \ {q},
j ∈ {1, . . . , p}, and there is an edge from x to xW in G /(G |W), so i < q.

This proves the implication from (b) to (c). Moreover, it defines an injection from
pairs of a topological sort of G |W and a topological sort of G /(G |W) to topological
sorts of G in which the vertices of W are consecutive. This will prove to be a
bijection as soon as we have proven the converse implication.
Finally, we prove the contrapositive of the implication from (c) to (a). Suppose
G |W is not path-induced, that is, there is a path x → x1 → . . . → xm → y in G
such that m > 0, x, y ∈ W , and xi /∈ W for all i ∈ {1, . . . ,m}. It follows that the
xi must come between x and y in every topological sort of G , so the vertices of W
can never be consecutive. ■

Proposition 4.1.15. Let ı : V ↪→ U be an inclusion of molecules such that dimV =
dimU and V is round. The following are equivalent:

(a) ı is a submolecule inclusion;

(b) for all molecules W such that V ⇒ W is defined, U [W/ı(V)] is a molecule
and j : W ↪→ U [W/ı(V)] is a submolecule inclusion;

(c) U [⟨V ⟩/ı(V)] is a molecule.

Proof. If ı is a submolecule inclusion, by Lemma 3.1.12 U ∪ (V ⇒ W) and its
output boundary U [W/ı(V)] are molecules, and the inclusion ofW into U [W/ı(V)]
is a submolecule inclusion.
If V is a round molecule, then ⟨V ⟩ is an atom, which is round by Corollary 2.2.28,
and has boundaries isomorphic to those of V by Lemma 2.2.15. By [25, Corollary
3.4.14], V ⇒ ⟨V ⟩ is defined, so the third condition is a special case of the second
one.
Finally, suppose U [⟨V ⟩/ı(V)] is a molecule. By Lemma 3.1.4, since ⟨V ⟩ is an atom,
its inclusion j into U [⟨V ⟩/ı(V)] is a submolecule inclusion. Using Lemma 3.1.12
as in the first part, we deduce that (U [⟨V ⟩/ı(V)])[V/j(⟨V ⟩)] is a molecule, and the
inclusion of V into it is a submolecule inclusion. By Lemma [25, Lemma 4.1.14],
(U [⟨V ⟩/ı(V)])[V/j(⟨V ⟩)] is isomorphic to U , and ı factors as this submolecule in-
clusion followed by an isomorphism. ■

Example 4.1.16 — By Proposition 4.1.15 if we have an inclusion V ↪→ U , where

V = A• B• •C

f

g

j

i

α ,

97

U = A• B• •C

f

g

j

h

i

α β ,

then U [⟨V ⟩/ı(V)] = A• B• •C

f

j

h

i

β is a molecule.

Lemma 4.1.17. Let ı : V ↪→ U be an inclusion of molecules such that n := dimU =
dimV and V is round. Then Fn−1U [⟨V ⟩/ı(V)] is isomorphic to Fn−1U/Fn−1V .

Proof. By Lemma 2.3.21 and Proposition 3.3.10, Fn−1V is a connected induced
subgraph of Fn−1U , so its contraction is well-defined. Now, the vertices of the
graph Fn−1U [⟨V ⟩/ı(V)] are either

• x ∈ Un \ Vn, or
• xV such that the image of ⟨V ⟩ in U [⟨V ⟩/ı(V)] is cl {xV }.

Let x, y be two vertices of Fn−1U [⟨V ⟩/ı(V)].

• If x, y ∈ Un \ Vn, then ∆+x ∩ ∆−y is the same in U [⟨V ⟩/ı(V)] as in U , so
there is an edge from x to y in Fn−1U if and only if there is an edge in
Fn−1U [⟨V ⟩/ı(V)].

• If x = xV then ∆+xV ∩ ∆−y is in bijection with ∆+V ∩ ∆−y in U . For
all z ∈ ∆+V , since V is pure and n-dimensional, there exists w ∈ ∇+z. If
∆+xV ∩ ∆−y is non-empty, it follows that ∆+z ∩ ∆−y is non-empty in U
for some z ∈ ı(V)n. Thus there exist z ∈ ı(V)n and an edge from z to y in
Fn−1U .

• Dually, if y = xV , there is an edge from x to y in Fn−1U [⟨V ⟩/ı(V)] if and
only if there exist z ∈ ı(V)n and an edge from x to z in Fn−1U .

• Finally, ∆+V ∩∆−V = ∅ because V is pure, so ∆+xV ∩∆−xV and there is
no edge from xV to xV .

It is then straightforward to establish an isomorphism with the explicit description
of Fn−1U/Fn−1V . ■

Proposition 4.1.18. Let ı : V ↪→ U be an inclusion of molecules such that n :=
dimU = dimV and V is round. If ı is a submolecule inclusion, then Fn−1V is a
path-induced subgraph of Fn−1U .

Proof. By Proposition 4.1.15, if ı is a submolecule inclusion then U [⟨V ⟩/ı(V)] is a
molecule. By Corollary 4.1.3 Fn−1U [⟨V ⟩/ı(V)] is acyclic, and by Lemma 4.1.17 it
is isomorphic to Fn−1U/Fn−1V . It follows from Lemma 4.1.14 that Fn−1V is a
path-induced subgraph of Fn−1U . ■

98

Finally, the following results are the ones on which the rewritable submolecule
algorithm relies on.
Lemma 4.1.19. Let ı : V ↪→ U be an inclusion of molecules such that n := dimU =
dimV and V is round, and let (y(i))pi=1 be an (n − 1)-ordering induced by an
(n− 1)-layering of V . The following are equivalent:
(a) ı is a submolecule inclusion;

(b) there exist an (n−1)-ordering (x(i))mi=1 induced by an (n−1)-layering (U (i))mi=1
of U , and q ∈ {1, . . . ,m} such that

1. (x(i))p+q−1
i=q = (ı(y(i)))pi=1,

2. ı(∂−V) ⊑ ∂−U (q).

Proof. Identify V with its isomorphic image through ı, and suppose that ı is a
submolecule inclusion. Then Ũ := U [⟨V ⟩/V] is a molecule by Proposition 4.1.15,
and admits an (n− 1)-layering (Ũ (i))m−p+1

i=1 by Theorem 3.2.11. Let cl {x} be the
image of ⟨V ⟩ in Ũ ; then x ∈ Ũ (q) for exactly one q ∈ {1, . . . ,m− p+ 1}. Then
W := Ũ (q)[V/cl {x}] is defined, and by [25, Lemma 4.1.16] combined with Lemma
[25, Lemma 4.1.14], U is isomorphic to

Ũ (1) #n−1 . . . #n−1 Ũ
(q−1) #n−1W #n−1 Ũ

(q+1) #n−1 . . . #n−1 Ũ
(m−p+1).

By Lemma 3.2.12, ∂−x ⊑ ∂−Ũ (q), so by [25, Lemma 4.1.15] ∂−V ⊑ ∂−W . We can
apply the criterion of Proposition 4.1.9 to deduce that (y(i))pi=1 is an (n−1)-ordering
of W induced by an (n− 1)-layering (W (i))pi=1. Letting

(U (i))mi=1 := ((Ũ (i))q−1
i=1 , (W

(i))pi=1, (Ũ
(i))m−p+1

i=q+1),

produces an (n − 1)-layering of U , hence also an (n − 1)-ordering (x(i))mi=1 of U ,
with the property that (x(i))p+q−1

i=q = (y(i))pi=1.
Conversely, let (U (i))mi=1 be an (n − 1)-layering of U satisfying the properties in
the statement, and let W ⊑ U be the image of U (q) #n−1 . . . #n−1 U

(p+q−1) in U .
Then Wn = Vn, so

W = V ∪ ∂−W.
Because ∂−V ⊑ ∂−U (q) = ∂−W , by Lemma 3.1.12 V ⊑W ⊑ U . ■

Theorem 4.1.20. Let ı : V ↪→ U be an inclusion of molecules such that n :=
dimU = dimV and V is round, m := |Un|, p := |Vn|. The following are equivalent:
(a) ı is a submolecule inclusion;

(b) there is a topological sort ((x(i))q−1
i=1 , xV , (x(i))

m−p+1
i=q+1) of Fn−1U/Fn−1V such

that, letting

U (0) := ∂−U,

U (q) := ∂+n−1U
(q−1) ∪ ı(V),

U (i) := ∂+n−1U
(i−1) ∪ cl

{
x(i)

}
for i ̸= q,

we have ı(∂−V) ⊑ ∂−U (q) and ∂−x(i) ⊑ ∂−U (i) for all i ̸= q.

99

Proof. Identify V with its isomorphic image through ı, and suppose that ı is a
submolecule inclusion. Then Ũ := U [⟨V ⟩/V] is a molecule by Proposition 4.1.15,
so it admits an (n − 1)-layering (Ũ (i))m−p+1

i=1 , which induces an (n − 1)-order-
ing. By Lemma 4.1.17, this (n − 1)-ordering can be identified with a topological
sort ((x(i))q−1

i=1 , xV , (x(i))
m−p+1
i=q+1) of Fn−1U/Fn−1V . By Lemma 3.2.12, we have

∂−xV ⊑ ∂−Ũ (q) and ∂−x(i) ⊑ ∂−Ũ (i) for i ̸= q. By [25, Lemma 4.1.16] combined
with Lemma [25, Lemma 4.1.14], letting W := Ũ (q)[V/cl {xV }], U is isomorphic to

Ũ (1) #n−1 . . . #n−1 Ũ
(q−1) #n−1W #n−1 Ũ

(q+1) #n−1 . . . #n−1 Ũ
(m−p+1),

and W is isomorphic to U (q), while Ũ (i) is isomorphic to U (i) for all i ̸= q. We
conclude by [25, Lemma 4.1.15].
Conversely, let (y(i))pi=1 be an (n − 1)-ordering induced by an (n − 1)-layering of
V . Then ((x(i))q−1

i=1 , (y(i))
p
i=1, (x(i))

m−p+1
i=q+1) is an (n− 1)-ordering of U , and by the

criterion of Proposition 4.1.9 it is induced by an (n− 1)-layering. We conclude by
Lemma 4.1.19. ■

Lemma 4.1.19 describes the relation between layerings and orderings as a criteria
for rewritable submolecule inclusion. Theorem 4.1.20 however shifts the layer-
ing criteria to finding a certain topological sort and recursively checking that the
boundary of the top-dimensional element is a submolecule of the layer it is part of.

4.2 The rewritable submolecule decision algorithm
We saw in Example 3.4.4 a matching that is not a submolecule inclusion. As it
turns out, the rewritable submolecule problem is more difficult. In this chapter
we present an algorithm for deciding when a molecule inclusion is a submolecule
inclusion. This algorithm has a factorial running time, but under certain acyclicity
conditions (satisfied by all molecules of dimension less than or equal to 3), the
runtime is linear.

Procedure 4.2.1 (Rewritable submolecule decision algorithm) — The procedure
takes as input an inclusion V ⊆ U of molecules such that n := dimU = dimV
and V is round, and it returns whether V ⊑ U . We let m := |Un| and p := |Vn|.
We construct the graph G := Fn−1U/Fn−1V . Then we start a loop. At each
iteration, we search for a new topological sort of G . If we cannot find one, we
return false. Else, let ((x(i))q−1

i=1 , xV , (x(i))
m−p+1
i=q+1) be the new topological sort, and

let (U (i))m−p+1
i=1 be as in Theorem 4.1.20.

For each i ∈ {1, . . . ,m− p+ 1}, we start a recursive call to the algorithm to decide
whether ∂−x(i) ⊑ ∂−U (i) if i ̸= q, and ∂−V ⊑ ∂−U (q) if i = q. If this returns
false, we break the iteration on i and iterate the main loop. If this returns true,
we iterate on i. At the end of the iteration on i, we return true.

Below we present the algorithm in pseudocode.

100

procedure RewritableSubmol(V ⊆ U :inclusion of molecules, V is
round, n := dimU = dimV)

n := dimU
m := |Un|
p := |Vn|

5: Construct G := Fn−1U/Fn−1V .
for t ∈ tsorts of G do

▷ t is of the form ((x(i))q−1
i=1 , xV , (x(i))m−p+1

i=q+1)
Let (U (i))m−p+1

i=1 be as in Theorem 4.1.20.
for i← {1, . . .m− p+ 1} do

10: if i ̸= q then
if RewritableSubmol (∂−x(i) ⊆ ∂−U (i)) == False then

break
else if RewritableSubmol (∂−V ⊆ ∂−U (q)) == False then

break
return True

return False

To begin with, consider an example on 2-dimensional diagrams. Even though,
in the 2-dimensional case, an inclusion is already a submolecule inclusion, it is
instructive to see how the algorithm works on the lower dimensional cases.

Let U = • • •
(2,0)

(2,1)

(2,3)

(2,2) and let V = • • •
(2,0)

(2,1) .

The merger of V is ⟨V ⟩ = • • • .

The inclusion maps (2, 0) in V to (2, 0) in U and (2, 1) in V to (2, 1) in U . Then
|Un| = 4, |Vn| = 2 and the graph G is:

G := Fn−1U/Fn−1V =

•(2,3)

•(2,2)

xV •

.

The only topological sort of G is [xv, (2, 2), (2, 3)] and (U (i))m−p+1
i=1 is for each i,

where q = 1:

U (0) = • • , U (1) = ı(V) = • • • ,

101

U (2) = • • • , U (3) = • • •
(2,3)

.

Then for each i, we make a recursive call to check that ∂−x(i) ⊑ ∂−U (i) if i ̸= q,
and ∂−V ⊑ ∂−U (q) if i = q. In this example, we have by Lemma 3.1.4 that
∂−V ⊑ ∂−U (1) since ∂−V is an atom and for each x(i), ∂−x(i) ⊑ ∂−U (i) since
the boundaries of (2, 2) and (2, 3) are atoms so we can conclude by Lemma 3.1.4.
However, this situation rarely occurs and is not covered by the algorithm as a special
case. The algorithm will make a second recursive call to check the input boundaries
of each ∂−x(i) and ∂−V are submolecule inclusions (i.e., ∂−(∂−x(i)) ⊑ ∂−∂−U (i)

and ∂−∂−V ⊑ ∂−∂−U (1)).
At the end of this example, we have that V ⊑ U .
Before going into the analysis of this algorithm, let’s simulate it on the boundary
of a 4-dimensional molecule. This will help when we introduce the acyclicity con-
ditions and obstructions. Consider the following 4-dimensional shape of diagram,
call it U . What we want to check is: “Is ∂−A a submolecule of ∂−U?” (Note that
these are the molecules from Example 3.4.4).

• • • • • • • • • • • •

• • • • • • • • •

• • • • • • • • • • • •

• • • • • • • • •

1 2 0

1

3 0

4

3 5 4

6

3

4

7

a

u

b

t

a1

a2

u

b

t

B
u

a1

t1

b1

u1

t1

u

a

t

b

u

a1

a2

A

t

b1

b2

u1

t1

a

u

b

t

a

u

b1

b2

t

C

a2

u1

b2

t

u1

t1

a

u

b

t

a3

a2

u

b1

b2

t

u1

t1

(4.2)
The answer to the question is no, because there is a dependency in the input of
A on element 2 ∈ ∆−B. But let’s see how the algorithm determines this. The
inclusion map returned by the molecule matching algorithm is as expected. Note
that ∂−A = cl {0, 1}, so |(∂−U)3| = 3 and |(∂−A)3| = 2. The flowgraphs are:

102

F2∂
−U =

0•

2•

1•

and G := F2∂
−U/F2∂

−A = 2• •xV .

Since G contains a cycle, there is no topological sort of it. So, ∂−A ̸⊑ ∂−U .
Moreover, note that the flow graph of U is:

C•

B•

A•

This flow graph has three orderings: [A,B,C], [A,C,B], [B,A,C], however because
∂−A ̸⊑ ∂−U only [B,A,C] is induced by a valid layering. For a more detailed
discussion on why this is the case, see Section 4.5.

Remark 4.2.2. The rewritable submolecule algorithm returns whether an inclu-
sion of molecules is a submolecule inclusion and not whether a layering is a valid
layering. For example, in the molecule above, by letting UA be a layer that con-
tains the element A and UB being a layer that contains the element B, the layering
UA #3 UB is not a valid layering, but the algorithm will return that V = cl {A,B} is
a submolecule of U since UB #3 UA appears as a factor in a pasting decomposition
of U .

Theorem 4.2.3. The rewritable submolecule decision algorithm is correct: it al-
ways terminates, and returns true if and only if V ⊑ U .

Proof. We proceed by induction on the dimension n of U and V . If n = 0, this is
straightforward, so let n > 0.
The number of iterations of the main loop is bounded by the number of topological
sorts of Fn−1U/Fn−1V , which is finite. Consider one such iteration, produc-
ing a topological sort ((x(i))q−1

i=1 , xV , (x(i))
m−p+1
i=q+1). Let us write V (q) := V and

V (i) := cl
{
x(i)

}
for i ̸= q. For all i ∈ {1, . . . ,m− p+ 1}, we have a call to the

decision algorithm with input ∂−V (i) ⊆ ∂−U (i), assuming that the calls for j < i
all returned true.
Now, ∂−V (i) is round by Proposition 2.2.26 and Lemma 2.2.30 and Corollary
2.2.28. Moreover, ∂−U (1) = ∂−U , which is a molecule. For i > 1, assuming
that ∂−V (i−1) ⊑ ∂−U (i−1), we may apply Proposition 4.1.15 to derive that U (i−1)

and ∂+U (i−1) = ∂−U (i) are molecules. Thus

I the input of the first call is well-formed,

II for i > 1, assuming that the (i− 1)-th call correctly returned true, the input
of the i-th call is well-formed.

Since all of these are in dimension (n − 1), by the inductive hypothesis, each call
terminates returning the correct answer. By Theorem 4.1.20, this proves both
correctness and termination in dimension n. ■

103

Theorem 4.2.4. The rewritable submolecule problem in dimension n can be solved
in time

O


∏

k≤n
|Uk|! |Uk|


 .

Proof. For n = 0, this is obvious, so let n > 0. The number of iterations of the main
loop is bounded above by the number of topological sorts of G := Fn−1U/Fn−1V .
This reaches its maximum when G is a discrete graph, in which case the number
is (|Un| − |Vn|+ 1)!, tightly bounded above by |Un|!.
At each iteration of the main loop, we have at most |Un| − |Vn| + 1 calls to the
algorithm on molecules of dimension n − 1 contained in U . By the inductive
hypothesis, these take time O(

∏
k≤n−1 |Uk|! |Uk|).

All other operations have lower complexity: both finding topological sorts and
computing the boundaries of the U (i) take linear time in |EnU |, but this can be
bounded above by |Un| |Un−1|, and we conclude. ■

It still remains an open question whether the subdiagram matching problem admits
a polynomial-time algorithm in arbitrary dimension. On the other hand, we show
that the problem is in NP.

Proposition 4.2.5. For all n ∈ N, the n-dimensional subdiagram matching prob-
lem is in NP.

Proof. It suffices to prove by induction on n that the rewritable submolecule prob-
lem in dimension n is in NP. When n = 0, the problem is trivial. In dimension
n > 0, a polynomial-size certificate that V ⊑ U is given by

I a topological sort ((x(i))q−1
i=1 , xV , (x(i))

m−p+1
i=q+1) of the graph Fn−1U/Fn−1V ,

and

II polynomial-size certificates that ∂−V ⊑ ∂−U (q) and ∂−x(i) ⊑ ∂−U (i) for all
i ̸= q,

with the notations of Theorem 4.1.20. By the inductive hypothesis this exists and
is verifiable in polynomial time. ■

4.3 Runtime improvements under acyclicity con-
ditions

The running time of the algorithm above is factorial in the worst case due to the
iteration of the topological sorts. However, under certain acyclcicity conditions,
this runtime can be improved.

Definition 4.3.1 (Frame-acyclic molecule) — Let U be a molecule. We say that U
is frame-acyclic if for all submolecules V ⊑ U , if r := frdimV , then MrV is acyclic.

Lemma 4.3.2. Let U be a molecule, V ⊑ U . If U is frame-acyclic, then V is
frame-acyclic.

104

Proof. Straightforward. ■

As we will see later in this section, the first example of a non-frame acyclic molecule
first appears in dimension 4. The molecule in figure 4.2 is not frame acyclic and we
have already seen that its flow graph admits topological sorts that are not induced
by layerings. This is the main reason for the factorial increase in complexity in our
algorithm. However, in the example from figure 4.2 there is one more phenomenon
going on which we discuss at the end of this section. For this reason, we present
below a “nicer” shape of diagram in which the phenomenon mentioned previously
does not occur. Moreover, we exemplify how to spot frame-acyclicity in a string
diagram representation of a molecule.

Example 4.3.3 — Let U be the 4-dimensional molecule from Example 3.3.8.

Note that M2U contains a cycle: A• •B

a2

b1

. However, the dependency

is more apparent in the string diagram representation.

The portion enclosed by the red line is the input of A, namely ∂−A, while the one
inside the blue line is the input of B, i.e., ∂−B. The line is interrupted when it
comes across the elements that are part of the input or output 2-boundary of A or
B. We identify the elements that are part of the input boundary as the lines that
cross the coloured line and go into 3-dimensional elements. Similarly, the output
boundaries are identified as the lines that cross the coloured enclosure and go out
of the 3-dimensional elements. For example, the elements in the 2-input of A are
u, a, a1, while the elements in its 2-output are a2, u1. Similarly for B: b, t, a2 are
in its 2-input while b1, t1 are in its 2-output.
To see that the molecule is not frame-acyclic, note how one of the 2-dimensional
elements in the output of A - a2 which is going out of the highlighted red area -
is required in the 2-dimensional input of B (it is going into the highlighted blue
area), while one of the elements in the 2-dimensional output of B - b1 which is
going out of the highlighted blue area - is required in the input of A.
The reason why U is a molecule and we can do either of the rewrites is because
these dependencies do not cause any “deadlock”; no matter which of them we want
to apply first, the 3-dimensional input of the respective layer can be written such
that the elements of the rewrite we want to apply appear in consecutive order.

Lemma 4.3.4. Let U be a molecule. Suppose that for all submolecules V ⊑ U , if
r := frdimV , then V admits an r-layering. Then for all k ≥ frdimU the function

105

ok,U : LaykU ↪→ OrdkU is a bijection.

Proof. See [25, Lemma 8.1.3]. ■

Theorem 4.3.5. Let U be a molecule, r := frdimU . If U is frame-acyclic, then
U admits an r-layering.

Proof. By Lemma 4.3.2, we can proceed by induction on submolecules. For all
x ∈ U0, we have frdim {x} = −1, and {x} admits the trivial (−1)-layering, which
proves the base case.
We construct a finite plane tree of submolecules U (j1,...,jp) ⊑ U , as follows:

• the root is U () := U ;

• if lydimU (j1,...,jp) ≤ r, then we let lydimU (j1,...,jp) be a leaf;

• if k := lydimU (j1,...,jp) > r, then we pick a k-layering (V (i))qi=1 of U (j1,...,jp),
which is possible by Theorem 3.2.11, and for each i ∈ {1, . . . , q}, we let the
image of V (i) be a child U (j1,...,jp,i) of U (j1,...,jp).

By Lemma 3.2.10, the layering dimension of the children of a node is strictly smaller
than that of the node, so the procedure terminates.
Fix an r-ordering (x(i))mi=1 of U ; this is possible because MrU is acyclic. Let
V := U (j1,...,jp) be a node of the tree. We have

⋃

j>r

(Max V)j =
m∑

i=1

⋃

j>r

(
(Max V)j ∩ cl

{
x(i)

})
=:

m∑

i=1
M (i);

the M (i) form a partition because frdimU = r, so every element of dimension > r
is in the closure of x(i) for a unique i ∈ {1, . . . ,m}. We claim that V is isomorphic
to

V (1) #r . . . #r V
(m)

for some molecules (V (i))mi=1 such that, for each i ∈ {1, . . . ,m}, identifying V (i)

with its image in V , we have
⋃

j>r

(Max V (i))j =M (i).

We will prove this by backward induction on the tree U (j1,...,jp).
Suppose V is a leaf, so lydimV ≤ r. Then V admits an r-layering. For each
i ∈ {1, . . . ,m}, fix a topological sort (y(i,j))pij=1 of the induced subgraph MrV |M(i) .
We claim that ((y(i,j))pij=1)mi=1 is an r-ordering of V .
Suppose there is an edge from x to x′ in MrV . Then x ∈ M (i), x′ ∈ M (i′) for a
unique pair i, i′ ∈ {1, . . . ,m}. If i = i′, then x = y(i,j) and x′ = y(i,j

′) for some
j, j′ ∈ {1, . . . , pi}, and j < j′ because (y(i,j))pij=1 is a topological sort of MrV |M(i) .
If i ̸= i′, then there exists

z ∈ ∆+
r x ∩∆−

r x
′ ⊆ cl

{
x(i)

}
∩ cl

{
x(i

′)
}
.

106

Since ∂αr x(i) and ∂αr x
(i′) is pure and r-dimensional for all α ∈ {+,−}, by [25,

Proposition 4.4.8]

z ∈ (∆+
r x

(i) ∩∆−
r x

(i′)) ∪ (∆−
r x

(i) ∩∆+
r x

(i′)),

and by [25, Lemma 2.1.24] ∆−
r x

(i) ∩ cl {x} ⊆ ∆−
r x which is disjoint from ∆+

r x,
so z ∈ ∆+

r x
(i) ∩ ∆−

r x
(i′). It follows that there is an edge from x(i) to x(i

′) in
MrU , so i < i′ because (x(i))mi=1 is a topological sort of MrU . This proves that
((y(i,j))pij=1)mi=1 is an r-ordering of V .
Let W ⊑ V , ℓ := frdimW . If V ̸= U or W ̸= U , then W admits an ℓ-layering
by the inductive hypothesis on proper submolecules of U . If W = V = U then
ℓ = r and W admits an ℓ-layering by Theorem 3.2.11. In either case, V satisfies
the conditions of Lemma 4.3.4, and since r ≥ lydimV ≥ frdimV , every r-ordering
of V comes from an r-layering of V .
It follows that ((y(i,j))pij=1)mi=1 comes from an r-layering ((W (i,j))pij=1)mi=1, and we
can define

V (i) :=W (i,1) #r . . . #rW
(i,pi)

for each i ∈ {1, . . . ,m}, satisfying the desired condition.
Now, suppose that V is not a leaf, so k := lydimV > r, and V has children
(W (j))qj=1 forming a k-layering of V . By the inductive hypothesis, each of the
W (j) has a decomposition

W (j,1) #r . . . #rW
(j,m)

such that the maximal elements of dimension > r in the image of W (j,i) are con-
tained in cl

{
x(i)

}
. Then, for each i ∈ {1, . . . ,m} and j, j′ ∈ {1, . . . , q},

W (j,i) ∩W (j′) ⊆W (j′,i),

so V (i) :=W (1,i) #k . . . #kW
(q,i) is defined. Using point 3 from Proposition 2.3.13

repeatedly, we conclude that V is isomorphic to V (1) #r . . . #r V
(m).

This concludes the induction on the tree U (j1,...,jp). In particular, for the root
U () = U , the decomposition U (1) #r . . . #r U

(m) satisfies
⋃

j>r

(Max U (i))j =
{
x(i)

}
,

that is, (U (i))mi=1 is an r-layering of U . ■

Frame-acyclicity has further implications in the relation between layerings and
orderings, the most important (or used in the treatment of computational com-
plexity aspects for diagram rewriting) being the one in which the k-orderings and
k-layerings are in bijection:

Corollary 4.3.6. Let U be a molecule. The following are equivalent:

(a) U is frame-acyclic;

(b) for all V ⊑ U and all frdimV ≤ k < dimV , V admits a k-layering;

107

(c) for all V ⊑ U and all frdimV ≤ k < dimV , the sets LaykV and OrdkV are
non-empty and equinumerous.

Proof. The implication from (a) to (b) is a consequence of Theorem 4.3.5 together
with 4.3.2 and Lemma 3.2.4. The implication from (b) to (c) is Lemma 4.3.4.
Finally, the implication from (c) to (a) follows from Proposition 4.1.1. ■

Example 4.3.7 — The molecule in Example 3.3.8 is not frame-acyclic and it does
not admit a 2-layering even if its frame dimension is 2.

Proposition 4.3.8. If U is guaranteed to be frame-acyclic, the rewritable sub-
molecule problem in dimension n can be solved in time

O


∏

k≤n
|Uk|!


 .

Proof. Given a topological sort ((x(i))q−1
i=1 , xV , (x(i))

m−p+1
i=q+1) of Fn−1U/Fn−1V , by

Lemma 4.1.14, substituting any (n − 1)-ordering of V for xV produces an (n −
1)-ordering of U in which the elements of V are consecutive. By Theorem 4.3.6,
this is induced by an (n− 1)-layering of U . By Lemma 4.1.19, it suffices to check
that ∂−V ⊑ ∂−U (q) to conclude that V ⊑ U , so we have a single recursive call
instead of O(|Un|) many. Since ∂−U (q) ⊑ U (q) ⊑ U , it is frame-acyclic, and we can
proceed inductively. ■

Note that in this case, the running time is still factorial but this suggests a stronger
acyclicity condition might reduce the running time to polynomial. Once a topolog-
ical sort is found, we know it is induced by a layering in U , so to verify if V ⊑ U
by Lemma 4.1.19 we only need to check that ∂−V ⊑ ∂−U (q). The trick is that the
ordering we find is induced by a layering of U , but not necessarily by a layering
of U [⟨V ⟩/V]. So, we still need to iterate searching for a topological sort of the
contracted flow graph since U [⟨V ⟩/V] is not necessarily frame-acyclic. The next
condition has the consequence that if a topological sort of U [⟨V ⟩/V] exists, then it
must be induced by a layering.

Definition 4.3.9 (Stably frame-acyclic molecule) — Let U be a molecule. We say
that U is stably frame-acyclic if for all submolecules V ⊑ U and all rewritable
submolecules W ⊑ V , the molecule V [⟨W ⟩/W] is frame-acyclic.

Every stably frame-acyclic molecule is frame-acyclic: if we take V ⊑ U to be
an atom, the substitution U [⟨V ⟩/V] is trivial. Moreover, every submolecule of a
(stably) frame-acyclic molecule is (stably) frame-acyclic.
However, the converse of the statement above is not true; that is, not every frame-
acyclic molecule is stably frame-acyclic. We show in the example below that the
classes of frame-acyclic and stably frame-acyclic molecules do not coincide:

Example 4.3.10 — There exists a 4-dimensional molecule U whose representa-
tion as a sequence of string diagram rewrites (in the style of Definition 4.1.6 and
Example 4.1.8) is the following:

108

0

1
2

3
4

B−→ 0

1
7

8
4

A−→ 5

6
7

8
4

C−→
9

67

8

Since U is frame-acyclic andW = cl {A,B} is a submolecule of U with frdim(W) =
2, then by Theorem 4.3.5 it admits a 2-layering. To see that, let us spell out A and
B in their pasting diagram representation. As a pasting diagram, clA is:

• • • • • • • • •

• • • • • • • • •

1 0

6 5

a

u

a1

a2

u

A

u1

a2

a

u

a3

a2

u u1

a2

while clB is:

• • • • • • • • •

• • • • • • • • •

2 3

7 8

a2
b

t

a2 b1

b2

t

B

t1

b1

a2
b

t

a2 b1

b3

t t1

b1

The maximal 2-flow graph of W is:

M2W = A• •Ba2

There is only one 2-ordering ofW which can be induced by the 2-layering UA #2 UB ,
where UA is a layer containing A and UB is a layer containing B. Then UA #2 UB is
indeed a valid 2-layering where UA is obtained by whiskering A with the 2-elements
b and t and Ub is the layer obtained by whiskering B with u1.
Let V = cl {A,C} be a submolecule of U . Then U [⟨V ⟩/V] is the molecule which

109

corresponds to the following sequence of rewrites:

b2 a1
0

1
2

3
4

B−→ b2 a1
0

1
7

8
4

⟨A,C⟩−−−−→ b2
a1

5

67

8

The maximal flow graph of U [⟨V ⟩/V] has the following cycle:

M2U [⟨V ⟩/V] : ⟨A,C⟩ B

a1

b2

showing that U is not stably frame-acyclic.

Proposition 4.3.11. If U is guaranteed to be stably frame-acyclic, the rewritable
submolecule problem can be solved in linear time in the size of H U .

Proof. If V ⊑ U , by assumption U [⟨V ⟩/V] is frame-acyclic. By Theorem 4.3.6,
all its (n − 1)-orderings are induced by (n − 1)-layerings, and by Lemma 4.1.17
they are in bijection with topological sorts of Fn−1U/Fn−1V . From Proposition
4.1.9 it follows that, if any topological sort of Fn−1U/Fn−1V fails to satisfy the
conditions of Theorem 4.1.20, then V is not a submolecule of U , so in the decision
algorithm we can stop after the first iteration of the main loop.
This involves finding a single topological sort and computing ∂−U (q), both of which
take time O(|EnU |); then, as in Proposition 4.3.8, we make a single call to the
decision algorithm for ∂−V ⊑ ∂−U (q). Since ∂−U (q) ⊑ U (q) ⊑ U , it is stably
frame-acyclic, and we can proceed inductively. ■

The difference between the two conditions is that if U is only frame-acyclic, the
molecule U [⟨V ⟩/V] is not necessarily frame-acyclic so its orderings are not in bijec-
tion with its layerings. The improvement in the running time is because U [⟨V ⟩/V]
is frame-acyclic, so any (n − 1)-ordering is induced by an (n − 1)-layering; by
Proposition 4.1.9, ∂−xV ⊑ ∂−U (q) so any ordering should satisfy the conditions of
Theorem 4.1.20.

Corollary 4.3.12. The subdiagram matching problem restricted to diagrams with
stably frame-acyclic shape is in P.

The two conditions of frame-acyclicity and stably frame-acyclicity seem difficult to
verify in practice. However, they are implied by stronger acyclicity conditions.

Definition 4.3.13 (Acyclic molecule) — Let U be a molecule. We say that U is
acyclic if H⃗ U is acyclic.

Definition 4.3.14 (Dimension-wise acyclic molecule) — Let U be a molecule. We
say that U is dimension-wise acyclic if, for all k ∈ N, FkU is acyclic.

110

Proposition 4.3.15. Let U be a molecule. Then

I if U is acyclic, it is dimension-wise acyclic;

II if U is dimension-wise acyclic, it is frame-acyclic.

Proof. Suppose U is acyclic. Let k ∈ N and suppose there is a cycle x0 → x1 →
. . . → xm = x0 in FkU . By definition, for all i ∈ {1, . . . ,m} there exists yi ∈
∆+
k xi−1∩∆−

k xi. By Lemma 2.3.9, there exist paths from xi−1 to xi passing through
yi in H⃗ U . Concatenating all these paths, we obtain a cycle in H⃗ U .
Suppose U is dimension-wise acyclic, and let V ⊑ U be a submolecule inclusion,
r := frdimV . Then FrU is acyclic, hence so are its induced subgraphs FrV and
MrV . ■

Example 4.3.16 — [29, Example 109] Both implications are strict. The 3-dimen-
sional atom

0 • 2 • 0 • 2 •

1 • 1 •

3 3

42
0

0 1 0 1

1 2
30

(based on [51, Fig. 2]) is not acyclic, since its oriented Hasse diagram contains the
cycle

(0, 1)→ (1, 1)→ (2, 1)→ (3, 0)→ (2, 2)→ (1, 4)→ (0, 1),
but it is dimension-wise acyclic. The 3-dimensional atom

3 • 3 •
0 • 2 • 0 • 2 •

1 • 1 •
0

0
1 0

1

4
3

3
4

2
5

0 1 2 3

(based on [51, Fig. 4]) is not dimension-wise acyclic, since its 0-flow graph contains
the cycle (1, 2)→ (1, 5)→ (1, 2), but as we will soon see it is stably frame-acyclic
by Theorem 4.4.16.

4.4 Results in lower dimensions
We continue with the results in lower dimensions that were previously mentioned
and end the section with a 4-dimensional diagram exemplifying when the factorial
running time is arising.

Lemma 4.4.1. Let U be a molecule. If dimU = 0, then U is isomorphic to the
point.

Proof. By induction on the construction of U . If U was produced by (Point),
then U = 1 and dimU = 0. If U was produced by (Paste), then it is equal to
V #kW where V , W are molecules with k < min {dimV,dimW}. Then dimU =
max {dimV,dimW} > k ≥ 0. If U was produced by (Atom), then it is of the form
V ⇒W , and dimU = dimV + 1 = dimW + 1 > 0. ■

111

Lemma 4.4.2. Let U be a molecule. Then U has a maximal 0-dimensional element
if and only if dimU = 0.

Proof. If dimU = 0, then U is the point by Lemma 4.4.1, hence has a greatest
0-dimensional element. Conversely, let x be maximal and 0-dimensional, and let
V := cl ((Max U) \ {x}). Then {x} is closed, U = V ∪ {x}, and V ∩ {x} = ∅. By
[25, Lemma 3.3.13], V = ∅, so U = {x}. ■

Example 4.4.3 — By Lemma 4.4.2, we cannot have a molecule as the oriented
graded poset below, as it is not a composable configuration of cells:

• • •

•

Lemma 4.4.4. Let U be a 1-dimensional molecule, m := |U1|. Then U is isomor-
phic to mI⃗ := I⃗ #0 . . . #0 I⃗︸ ︷︷ ︸

m times

.

Proof. By Lemma 3.2.7, either lydimU = −1 or lydimU = 0. In the first case,
U is an atom by Lemma 3.2.8. Because by Lemma 4.4.1 the point is the only
0-dimensional molecule up to isomorphism, the arrow is the only 1-dimensional
atom, so U is isomorphic to I⃗. In the second case, U admits a 0-layering (U (i))mi=1
by Theorem 3.2.11, and by Lemma 3.2.10, for each i ∈ {1, . . . ,m}, necessarily
lydimU (i) = −1. By the first part, U (i) is isomorphic to I⃗. ■

Lemma 4.4.5. Let U be a molecule, dimU ≤ 1. Then

I U is round,

II U is acyclic,

III H⃗ U is a linear graph with |U | vertices,

IV F0U is a linear graph with |U1| vertices,

V U admits a unique 0-ordering.

Proof. All straightforward checks using Lemma 4.4.1 and Lemma 4.4.4. ■

Proposition 4.4.6. Let ı : V ↪→ U be an inclusion of 1-dimensional molecules.
Then ı is a submolecule inclusion.

Proof. By Lemma 2.3.21 F0V is an induced subgraph of F0U . By Lemma 4.4.5
both of them are linear graphs, and an induced subgraph of a linear graph is a
linear graph if and only if its vertices are consecutive in the ambient graph. All
other conditions of Lemma 4.1.19 are trivially satisfied. ■

Lemma 4.4.7. Let U, V be molecules and k < min {dimU,dimV } such that
U #k V is defined. If U and V are acyclic, then U #k V is acyclic.

Proof. See [25, Lemma 8.3.26]. ■

112

Lemma 4.4.8. Let U be a 2-dimensional atom, n := |∆−U |, m := |∆+U |. Then
U is isomorphic to Dn,m := nI⃗ ⇒ mI⃗.

Proof. Immediate from Lemma 4.4.4. ■

Proposition 4.4.9. Let U be a molecule, dimU ≤ 2. Then U is acyclic.

Proof. If dimU < 2 this is part of Lemma 4.4.5, and if U is a 2-dimensional atom
it can be checked directly using Lemma 4.4.8. The statement then follows by an
easy induction from Lemma 4.4.7. ■

In order to prove the main result about molecules of dimension 2, we need to
introduce horizontal and vertical orders.

Definition 4.4.10 (Horizontal and vertical order) — Let U be a molecule, dimU ≤ 2.
The horizontal order ⪯h and the vertical order ⪯v on the set U1 of 1-dimensional
elements of U are defined by

• x ⪯h y if and only if there is a path from x to y in H⃗ U only passing through
elements of dimension 0 and 1,

• x ⪯v y if and only if there is a path from x to y in H⃗ U only passing through
elements of dimension 1 and 2.

Lemma 4.4.11. Let U be a molecule, dimU ≤ 2. Then

I the union of ⪯h and ⪯v is a linear order on U1,

II the intersection of ⪯h and ⪯v is the identity relation on U1.

Proof. If dimU < 2, then ⪯v is trivially the identity relation, and ⪯h is a linear
order by Lemma 4.4.5. If U is a 2-dimensional atom, then U1 = ∆−U + ∆+U ,
and that ⪯h is a linear order on ∆αU for each α ∈ {+,−} separately, so we have
x ⪯v y for all x ∈ ∆−U and y ∈ ∆+U , and no other relations exist.
Otherwise, we proceed exactly as in the proof of Proposition 4.4.9, defining a
1-ordering (x(i))mi=1 and a sequence (V (i))mi=1 of increasing submolecules of U . We
let ⪯(i)

h and ⪯(i)
v be the orders determined by paths in H⃗ V (i), which are increasing

in i, and proceed by induction. Since dimV (0) = 1, we have already proved the
base case.
Let i > 0, assume that the statement holds of the orders ⪯(i−1)

h and ⪯(i−1)
v on

(V (i−1))1. Let x, y ∈ (V (i))1; we will show that x and y are comparable via ⪯(i)
h or

⪯(i)
v . If x, y ∈ V (i−1) or x, y ∈ cl

{
x(i)

}
, we can apply the inductive hypothesis or

the atom case, so it suffices to consider the case

x ∈ V (i−1) \∆−x(i), y ∈ ∆+x(i).

Let (z(j))pj=1 be the unique linear 0-ordering on ∂−x(i), so z(j) ⪯h z
(j′) if j ≤ j′.

For all j ∈ {1, . . . , p}, we have x ̸= z(j), and by the inductive hypothesis x and z(j)
are comparable via ⪯(i−1)

h or they are comparable via ⪯(i−1)
v .

113

• Suppose there exists j such that x and z(j) are comparable via ⪯(i−1)
v . Then

necessarily x ⪯(i−1)
v z(j), because ∆−x(i) ⊆ ∆+V (i−1). Since z(j) ⪯(i)

v y, we
have x ⪯(i)

v y.

• Otherwise, x and z(j) are comparable via ⪯(i−1)
h for all j ∈ {1, . . . , p}. Sup-

pose that x ⪯(i−1)
h z(1), in which case x ⪯(i−1)

h z(j) for all j ∈ {1, . . . , p}.
Then the path from x to z(1) through elements of dimension 0 and 1 must
enter z(1) from ∂−z(1) = ∂−0 x

(i). Since there is a path in H⃗ Vi from ∂−0 x
(i)

to y, we have x ⪯(i)
h y.

• Otherwise, there is a greatest j such that z(j) ⪯(i−1)
h x. If j < p, then

z(j) ⪯(i−1)
h x ⪯(i−1)

h z(j+1). Because all three are distinct, letting ∂+z(j) =
∂−z(j+1) = {w}, there is a non-trivial cycle in H⃗ V (i−1) from w to x and
back to w, a contradiction to Proposition 4.4.9. It follows that z(p) ⪯(i−1)

h x,
and the path between the two must leave z(p) through ∂+0 x(i), so y ⪯

(i)
h x.

This proves that the union of ⪯(i)
h and ⪯(i)

v is a linear order on (V (i))1.
Suppose that x ⪯(i)

h y and x ⪯(i)
v y; we will prove that x = y. If x ∈ cl

{
x(i)

}
, then

x ⪯(i)
v y implies that y ∈ cl

{
x(i)

}
, and any path from x to y in H⃗ V (i) is entirely

contained in cl
{
x(i)

}
, so we can apply the atom case. Suppose that x /∈ cl

{
x(i)

}
.

If y ∈ ∆+x(i), then any path from x to y through elements of dimension 1 and 2
consists of a path contained in V (i−1) to some z ∈ ∆−x(i) followed by the path
z → x(i) → y; while any path through elements of dimension 0 and 1 consists of a
path contained in V (i−1) to ∂−0 x(i) followed by a path contained in ∂+x(i). Since
there is a path from ∂−0 x

(i) to any z ∈ ∆−x(i) through elements of dimension 0
and 1 in V (i−1), we have that x ⪯(i−1)

h z and x ⪯(i−1)
v z for some z ∈ ∆−x(i). By

the inductive hypothesis, x = z, a contradiction since z ∈ cl
{
x(i)

}
.

It follows that y ∈ V (i−1). Then any path from x to y through elements of dimen-
sion 1 and 2 is entirely contained in V (i−1), so x ⪯(i−1)

v y; while a path through
elements of dimension 0 and 1 is either contained in V (i−1), or it enters ∂+x(i)
through ∂−0 x

(i), traverses it in its entirety, and leaves from ∂+0 x
(i). Such a path

segment can be replaced with the one that traverses ∂−x(i) in its entirety, so in ei-
ther case x ⪯(i−1)

h y, and we conclude that x = y by the inductive hypothesis. This
concludes the proof of the statement for V (i). Since V (m) = U , we conclude. ■

Lemma 4.4.12. Let ı : V ↪→ U be an inclusion of molecules, dimU ≤ 2. Then
F1V is a path-induced subgraph of F1U .

Proof. Both U and ı(V) are molecules of dimension ≤ 2. Let ⪯h, ⪯v be the
horizontal and vertical order on U , and ⪯Vh , ⪯Vv those on ı(V), which are subsets
of those on U .
Suppose by way of contradiction that F1V is not path-induced. Then there exists
a path x0 → . . . → xm in F1U such that m > 1, x0, xm ∈ ı(V), and xi /∈ ı(V)
for all i ∈ {1, . . . ,m− 1}. By definition, there exist 1-dimensional elements yi ∈
∆+xi−1 ∩∆−xi for all i ∈ {1, . . . ,m}. Then y1 ⪯v ym and y1 ̸= ym. By Corollary

114

2.3.9, xi−1 and xi are the only cofaces of yi for all i ∈ {1, . . . ,m}. Necessarily,
then, y1 ∈ ∆+ı(V) and ym ∈ ∆−ı(V), so it is not possible that y1 ⪯Vv ym. Then
by Lemma 4.4.11 applied to ı(V), one of y1 ⪯Vh ym, ym ⪯Vh y1, or ym ⪯Vv y1 must
hold. Combined with y1 ⪯v ym, each one of these implies y1 = ym by Lemma
4.4.11 applied to U , a contradiction. ■

Finally, we can state and prove the result for which we presented the intuition when
discussing the molecule matching, namely that any inclusion of molecules V ↪→ U ,
where the dimension of U and V is 2 and V is round, is a submolecule inclusion.

Theorem 4.4.13. Let ı : V ↪→ U be an inclusion of molecules such that dimU =
dimV = 2 and V is round. Then ı is a submolecule inclusion.

Proof. By Lemma 4.4.12 combined with Lemma 4.1.14, there exists a 1-ordering
(x(i))mi=1 of U in which the elements of ı(V) are consecutive, that is, x(i) ∈ ı(V) if
and only if p ≤ i ≤ q for some p, q ∈ {1, . . . ,m}.
By Proposition 4.4.9 U is acyclic, so by Lemma 4.3.15 it is frame-acyclic, and by
Corollary 4.3.6 the 1-ordering comes from a 1-layering (U (i))mi=1 such that ı(∂−V) ⊆
∂−U (p). Since both are 1-dimensional molecules, by Proposition 4.4.6 ı(∂−V) ⊑
∂−U (p), and we conclude by Lemma 4.1.19. ■

Corollary 4.4.14. The rewritable submolecule problem in dimension ≤ 2 has a
trivial constant-time solution.

Lemma 4.4.15. Let U be a molecule, dimU ≤ 3. Then U is frame-acyclic.

Proof. See [25, Theorem 8.4.11]. ■

Theorem 4.4.16. Let U be a molecule, dimU ≤ 3. Then U is stably frame-acyclic.

Proof. By Lemma 4.4.15 U is frame-acyclic. Since for all V ⊑ U and all rewritable
W ⊑ V , V [⟨W ⟩/W] is still a molecule of dimension ≤ 3, it is frame-acyclic. Hence
U is stably frame-acyclic. ■

Theorem 4.4.17. Let ı : V ↪→ U be an inclusion of molecules such that dimU =
dimV = 3 and V is round. The following are equivalent:

(a) ı is a submolecule inclusion;

(b) F2V is a path-induced subgraph of F2U .

Proof. One implication is Proposition 4.1.18, so we only need to prove the converse.
By Lemma 4.1.14, if F2V is path-induced, then there exists a 2-ordering (x(i))mi=1
of U in which the elements of ı(V) are consecutive, that is, x(i) ∈ ı(V) if and only
if p ≤ i ≤ q for some p, q ∈ {1, . . . ,m}.
By Lemma 4.4.15, U is frame-acyclic, so by Corollary 4.3.6 the 2-ordering comes
from a 2-layering (U (i))mi=1 such that ı(∂−V) ⊆ ∂−U (p). Since both are 2-dimen-
sional molecules and ∂−V is round, we have ı(∂−V) ⊑ ∂−U (p) by Theorem 4.4.13,
and we conclude by Lemma 4.1.19. ■

Theorem 4.4.18. The rewritable submolecule problem in dimension 3 can be
solved in time O(|E3U |).

115

Proof. By Theorem 4.4.17 combined with Lemma 4.1.14, it suffices to construct
F2U/F2V and check if it is acyclic. The first can be done while traversing the
induced subgraph of H U on U3∪U2, which takes time O(|E3U |). Both the number
of vertices and the number of edges of F2U/F2V is also O(|E3U |), and we conclude.

■

To match a diagram s : V → V in t : U → V in dimension 3, according to our
results we need

• O(|U3| |V3| |V | |E∨V | log |E∨V |) time to find all inclusions V ↪→ U , of which
there are O(|U3|),

• O(|E3U |) time to check whether each of them is a submolecule inclusion,

• O(|V |) time to compare labellings on each, assuming labels can be compared
in constant time,

leading to an overall

O(|U3| (|E3U |+ |V3| |V | |E∨V | log |E∨V |))

upper bound.
Here we used the bound on molecule matching in generic dimension; it is possible
that this can be improved by using strategies tailored to dimension 3, as it is
certainly the case in dimension ≤ 2.
If we consider a machine operating by rewriting 3-dimensional diagrams, which has
a fixed finite list of rewrite rules, the variables linked to V can be considered as
constant parameters of the machine. Our results then imply that such a machine
can be simulated with O(|U3| |E3U |) overhead in a standard model of computation.
It is still an open question whether the rewritable submolecule problem in dimension
greater than 3 is NP-complete.
Note that even though the molecule in Example 4.3.3 is not frame-acyclic, its
3-orderings and 3-layerings are in bijection. Below, we provide an example of a
4-dimensional molecule for which, even though F3U is a discrete graph with two
3-orderings, only one ordering is induced by a layering. This behaviour gives rise

116

to the notion of obstruction which will be the topic of study for the next section.

• • • • • • • • • • • •

• • • • • • • • •

• • • • • • • • • • • •

1 2 0

1

3 0

4

3 5 4

a

u

b

t

a1

a2

u

b

t

B
u

a1

t1

b1

u1

t1

a

u

b

t

a1

a2

u

A

t

b1

b2

u1

t1

a

u

b

t

u

a

t

b1

b2 a2

u1

b2

t

u1

t1

Even though the 3-flow graph of U is F3U = A• •B , only the ordering
[B,A] comes from a valid layering because the input of A, ∂−A = cl {1, 0} is not a
submolecule of ∂−U . We say that b ∈ ∆−B obstructs A as it acts as an obstacle
to A.

4.5 Obstructions

The study of obstructions in higher-dimensional diagrams stemmed from the study
of the computational complexity of the subdiagram matching problem. In Chapter
4 we noticed that under the condition of stably frame-acyclicity the runtime of the
algorithm above is greatly improved - i.e., linear instead of factorial.

The work in this chapter starts from the observation made in the following example:

117

Example 4.5.1 — Let U1 be:

• • • • • • • • •

• • • • • • • • •

• • • • • • • • •

1

2 0

3

5

2

3

4

5

6

7

4

a

u

b

t

a1

a2

u

A

t

b1

b2

u1

t1

a

u

b

t

a3

a2

u

B

b1

b2

t

u1

t1

a

u

b

t

u

a3

a2

t

b1

b3

u1

t1

and let U2 be

• • • • • • • • • • • •

• • • • • • • • •

• • • • • • • • • • • •

1 2 0

1

3 0

4

3 5 4

a

u

b

t

a1

a2

u

b

t

B
u

a1

t1

b1

u1

t1

a

u

b

t

a1

a2

u

A

t

b1

b2

u1

t1

a

u

b

t

u

a

t

b1

b2 a2

u1

b2

t

u1

t1

The first diagram is not frame-acyclic, however any ordering of its 3-flow graphs
is induced by a layering, so finding a valid layering is “easy” in this case. The
second diagram contains what we will call an obstruction. By looking at the string
diagram representation of ∂−U2 in Figure 4.1 one can see that in order to produce
the 3-dimensional input of A, we need an element that is part of the input of B; in
turn, this element is dependent on the 2-dimensional output from element 1 which
is in the input of A. We obtain some kind of “circularity”: the 2-input of 0 depends
on the 2-output of 2 whose 2-input depends on the 2-output of 1. We call this a

118

Figure 4.1: Input boundary of U .

dependency of 0 on 1 that goes through 2 or a dependency in the input of A going
through 2 ∈ ∆αB.
The difference between an obstruction and a molecule not being frame-acyclic is
that the dependency in convex but not frame-acyclic molecules is disjoint which
can be seen in the string diagram representation from Example 4.3.3.
When situations like the one described above arise we say that B obstructs A. As
argued in the previous sections we would like to find an ordering that is induced by
a layering. It is clear that rewrite A cannot appear first in a layering since its input
is not a submolecule of U . We hope that by applying B, we can “parallelise” the
2-dimensional faces causing an obstruction and get rid of the dependency of 0 and
1 on 2. We will call this technique “solving a non-convexity or obstruction”. Note
that in the example above, even if F3U is a discrete graph, with two orderings, we
only have one valid layering which induces the ordering: B,A.

One of our goals was to come up with a definition that captures the intuition
presented above, while containing minimal constraints. In the remainder of the
section, we provide the definition for the basic case of a molecule with an obstruc-
tion: for an n-dimensional molecule U , there are only two n-dimensional elements
involved in the obstruction called A and B and the obstruction passes only through
one element b ∈ ∆αB. We prove that the molecules of dimension lower or equal
than three have no obstructions and present a result in dimension 4 that covers the
intuition presented in the example above.
We discuss the potential generalisations in the Future work chapter.

Definition 4.5.2 — (Restricted flow graph) Let U be a molecule, k ≥ −1, k ≤ n.
The n-restricted k-flow graph of U is the induced subgraph Fn

k U of FkU on the

119

vertex set Un ⊆
⋃
i>k Ui.

At the moment, we will work with a simple definition, that for example only allow
obstructions that pass through exactly one element. We will think of possible
generalisations later on.

Definition 4.5.3 — Let U be an n-dimensional molecule and let A,B ∈ Un. U has
an obstruction (∆n−1A,B), if there exists a path a1 → b→ a2 in Fn−1

k U , where
a1, a2 ∈ ∆−A, b ∈ ∆αB and k = frdim(A,B).

Definition 4.5.4 — A molecule is convex if it has no obstructions.

The following proofs are meant to capture the intuition that we already have about
non-convexities: it is impossible for a molecule of dimension less than 3 to have an
obstruction. The intuition behind this lies in the following fact: assume we have
such an obstruction. The obstruction cannot pass through the (n− 1)-dimensional
elements, otherwise we would get a contradiction with the flow graph being acyclic.
So the obstructions can only pass through elements of dimension 0 or 1. These
elements are not parallelisable and hence we would obtain a shape that is not a
molecule (again a contradiction).

Lemma 4.5.5. Let U be a molecule, dim(U) ≤ 1. Then U is convex.

Proof. If dim(U) = 0, then U is a point, H⃗ U is also a point and there is no path
in H⃗ U . So U is convex.
Now let dim(U) = 1 and suppose U has an obstruction (∆−A,B), with A,B ∈ U1.
Then, there should be a path that is not a cycle in H⃗ U starting and ending in
∆−

0 A. This is impossible since
∣∣∆−

0 A
∣∣ = 1 and H⃗ U is linear (and acyclic). ■

To illustrate the technique used in the proofs, when U -is 2 and 3-dimensional, we
will prove an easier case before proving the general one.

Lemma 4.5.6. Let U be a molecule, dim(U) = 2, U2 = {A,B}. Then U is convex.

Proof. Case frdim(U) = 0: then F 1
0U is: 1 ∈ ∆−A→ 2 ∈ ∆αB → 0 ∈ ∆−A which

leads to a cycle A → B → A in F0U . This would mean that U is not dimension-
wise acyclic, which is a contradiction with Proposition 4.4.9 (every 2-dim molecule
is acyclic). We conclude by Proposition 4.3.15.
Case frdim(U) = 1: This is impossible from the definition since F1U is acyclic. ■

More generally, one proves:

Lemma 4.5.7. Let U be a molecule, dim(U) = 2. Then U is convex.

Proof. Suppose U has an obstruction (∆−A,B).
If frdim({A,B}) = 1, then we obtain a contradiction with F1U being acyclic. If
frdim({A,B}) = 0, then F0U has a cycle A → B → A which is a contradiction
with U being dimension-wise acyclic. ■

Lemma 4.5.8. Let U be a molecule, dim(U) = 3, U3 = {A,B} and U is pure.
Then U is convex.

120

Proof. Suppose that U has an obstruction (∆−A,B).
Case frdim(U) = 2 : then we would get a cycle A→ B → A in F2U . Contradiction.
Case frdim(U) ≤ 1 : then we would get a cycle A → B → A in Mfrdim(U)U .
Contradiction with U being stably frame-acyclic by Theorem 4.4.16. ■

More generally, one proves:

Lemma 4.5.9. Let U be a molecule, dim(U) = 3 and U is pure. Then U is convex.

Proof. Suppose U has an obstruction (∆−A,B), where A,B ∈ U3.
Case frdim({A,B}) = 2 : then we would get a cycle A → B → A in F2U .
Contradiction.
Case frdim({A,B}) ≤ 1. The trick we’ll employ is the following: A,B are not
connected in F2U , so there exists a 2-layering of U which is induced by an ordering
in which A and B are consecutive. Then, cl {A,B} is a submolecule and we will
show M1(cl {A,B}) has a cycle, contradicting the fact that U is frame-acyclic.
Since U is 3-dimensional and frame-acyclic, the 2-orderings and layerings are in
bijection by Corollary 4.3.6. Also frdim(A,B) = 1 which means they are not
connected in F2U . Hence, there exists a layering that induces an ordering in
which A and B are consecutive. Without loss of generality, consider the layering
U = U1 #2 . . . #2 UA #2 UB #2 . . . #2 Um and let UAB = UA #2 UB . This is well
defined since it is part of a valid layering of U and by definition, it is a submolecule
of U with frdim(UAB) = 1. Since frdim(A,B) = 1 and there is an obstruction
between A and B, we obtain a cycle in M1(UA,B) which by Lemma 4.4.15 is a
contradiction with U being frame-acyclic. ■

As it looks right now, it seems that a molecule that has an obstruction is not frame-
acyclic. There is a choice of whether to make that part of the definition or not. In
the first case, the results up to this point would be trivial, since any molecule of
dimension ≤ 3 is frame-acyclic. However, we chose a more general definition that
has the potential to be generalised even further to oriented graded posets.
The following lemma is meant to prove the intuition that was explained at the
beginning of the section. We show that given a molecule U with an obstruction,
(∆−A,B), if b is in the input boundary of B, then in any layering of U , B comes
before A and if b ∈ ∆+B, then A comes before B in any layering of U . We can
rephrase the statement above as follows:

• if b ∈ ∆−B, then b causes an obstruction in the input of A. In other words,
A cannot happen before B because its input is not submolecule. By doing
the rewrite B first, the obstruction is “solved” and we can then apply rewrite
A.

• if b ∈ ∆+B: the output of B causes an obstruction in the input of A. To
avoid this, rewrite A must happen before the rewrite B.

At the moment, we prove this for a pure 4-dimensional molecule with only two
elements.

Lemma 4.5.10. Let U be a 4-dimensional molecule, U4 = {A,B}, U is pure,
frdimU ≥ 2 and suppose U has an obstruction (∆−A,B). Then:

121

• if b ∈ ∆−B, then ∂−A ̸⊑ ∂−U and U admits the layering UB #n−1 UA.

• if b ∈ ∆+B, then ∂−A ̸⊑ ∂+UB and U admits the layering UA #n−1 UB.

Proof. We start with the proofs for b ∈ ∆−B.
Case frdim(U) = 3. Then U admits the layering induced by the 3-ordering.
Case frdim(U) = 2. Then there is a path a1 → x → b → y → a2 in H⃗ U ,
with a1, a2 ∈ ∆−A. Then M2U has a cycle A x−→ B

y−→ A. Let b ∈ ∆−B. Since
frdimU = 2, b /∈ Int(U), so b ∈ ∂−U . Similarly for the elements in ∆−A. Consider
the molecule ∂−U . By Remark 2.3.16 we know that M2∂

−U = F2∂
−U . Again,

since frdimU = 2, these graphs contain b and all the elements in ∆−A. In particu-
lar, from the obstruction, we get the following subgraph in M2∂

−U : a1 → b→ a2
from which we deduce there is no valid ordering in which the elements of ∆−A are
consecutive. Thus, by Theorem 4.4.18, ∂−A ̸⊑ ∂−U and the only layering available
for U is UB #3 UA. The case b ∈ ∆+B and showing that ∂−A ̸⊑ U [∂−B/∂+B] is
symmetrical.

■

122

Chapter 5

Categorical framework

The theory presented in this thesis so far is of very combinatorial flavour. However,
given the topological underlying structure, it is very natural to construct a categor-
ical framework. As alluded in the introduction of the thesis, our notion of molecules
is intimately related to the theory of pasting diagrams in strict ω-categories.
In this chapter we turn our attention to regular directed complexes, a more general
notion of diagrams which are oriented graded posets where the closure of each
element is an atom. We continue our study to answer the remaining two questions
from the introduction: subdiagrams form an n-category and that the presented
n-category is free in the sense of a polygraph. We show that the first of these two
can be achieved by considering suitable subdiagrams of regular directed complexes.
For the second property, we lift the notions of acyclity developed in the previous
chapter to the framework of regular directed complexes and show that when a
regular directed complex is frame-acyclic, the ω-category obtained from it is freely-
generated.
As already shown in the previous chapter for molecules, it remains true for regular
directed complexes that frame-acyclicity is difficult to check in practice. However,
as it was the case before, this condition is implied by stronger acyclicity conditions.
We study these conditions in relation to Steiner’s theory on augmented directed
complexes [50]. We show that our notion of dimension-wise acyclic regular directed
complexes translates to augmented directed complexes with loop-free basis, called
a Steiner complex. We prove that when a regular directed complex, P , is frame-
acyclic, the ω- category of “subdiagrams” of P Mol/P is isomorphic to the ω-
category obtained by applying Steiner’s ν functor to the Steiner complex obtained
from P . Moreover, when P is strongly dimension-wise acyclic - an even stronger
acyclicity condition that implies dimension-wise acyclicity - then the ω-category
Mol/P consists only of “subsets” of P . Finally, when P is acyclic, the corresponding
augmented directed complex has a strongly loop-free basis. We end the chapter
by studying the stability of the acyclicity conditions mentioned above under the
operations of pasting, suspensions, Gray products and joins.
The results of this chapter are part of the article [27] and appear with slightly
different proofs in [25, Chapter 8 and Chapter 11].

123

5.1 The category Mol/P
Definition 5.1.1 (Regular directed complex) — A regular directed complex is an
oriented graded poset P with the property that, for all x ∈ P , the closed subset
cl {x} is an atom. We write RDC for the full subcategory of ogPos whose objects
are regular directed complexes.

Remark 5.1.2. While superficially different, this is equivalent to the definition
of regular directed complex given in [26]. On the other hand, our definition of
molecule here corresponds to a molecule in a regular directed complex, or molecule,
and is more restrictive than the definition in [51]. Note that by Lemma 2.2.30, every
molecule is a regular directed complex. /

Before defining the functor from oriented graded posets to ω-categories, let us
describe an important property that all regular directed complexes satisfy.

Definition 5.1.3 (Positive least element) — Let P be an oriented graded poset,
⊥ ∈ P . We say that ⊥ is a positive least element of P if ⊥ is the least element
of P and ∇⊥ = ∇+⊥. We let ogPos+ denote the full subcategory of ogPos on
oriented graded posets with a positive least element.

Freely adjoining a positive least element and, respectively, deleting the least element
exhibit an equivalence between ogPos and ogPos+.

Proposition 5.1.4. There exists a pair of functors

(−)⊥ : ogPos→ ogPos+, (−)̸⊥ : ogPos+ → ogPos

inverse to each other up to natural isomorphism.

The following is a useful property of regular directed complexes.

Definition 5.1.5 (Oriented thin graded poset) — Let P be an oriented graded poset
with a positive least element. We say that P is oriented thin if, for all x, y ∈ P
such that x ≤ y and codimy(x) = 2, the interval [x, y] is of the form

y

z1 z2

x

α β

γ −αβγ

for exactly two elements z1, z2, and for some α, β, γ ∈ {+,−}.

Proposition 5.1.6. Let P be a regular directed complex. Then P⊥ is an oriented
thin graded poset.

Proof. See [25, Proposition 5.3.4] ■

The connection between oriented graded posets and strict ω-categories is given
by the fact that (isomorphism classes of) molecules form a strict ω-category with
pasting at the k-boundary as k-composition. The fibred version of this result

124

implies that (isomorphism classes of) molecules over an oriented graded poset P
form a strict ω-category.
In what follows, we recall the single-set definition of strict ω-category, which is
most natural in this context, and state these results more precisely.

Definition 5.1.7 (Reflexive ω-graph) — A reflexive ω-graph is a set X, whose
elements are called cells, together with, for all n ∈ N, operators ∂−n , ∂+n : X → X
called input and output n-boundary, satisfying the following axioms.

I (Finite dimension). For all t ∈ X, there exists n ∈ N such that

∂−n t = ∂+n t = t.

II (Globularity). For all t ∈ X, k, n ∈ N, and α, β ∈ {+,−},

∂αk (∂βnt) =
{
∂αk t if k < n,
∂βnt if k ≥ n.

If t is a cell in a reflexive ω-graph, the dimension of t is the natural number
dim t := min {n ∈ N | ∂−n t = ∂+n t = t}.
Definition 5.1.8 (Composable pair of cells) — Let t, u be a pair of cells in a reflexive
ω-graph, k ∈ N. We say that t and u are k-composable if ∂+k t = ∂−k u. We write

X ×k X :=
{
(t, u) ∈ X ×X | ∂+k t = ∂−k u

}
.

for the set of k-composable pairs of cells in X.

Definition 5.1.9 (Strict ω-category) — A strict ω-category is a reflexive ω-graph
X together with, for all k ∈ N, an operation −#k − : X ×k X → X called k-com-
position, satisfying the following axioms.

I (Compatibility with boundaries). For all k-composable pairs of cells t, u, all
n ∈ N, and α ∈ {+,−},

∂αn (t#k u) =





∂αn t = ∂αnu if n < k,

∂−k t if n = k, α = −,
∂+k u if n = k, α = +,
∂αn t#k ∂

α
nu if n > k.

II (Associativity). For all cells t, u, v such that either side of the equation is
defined, (t#k u)#k v = t#k (u#k v).

III (Unitality). For all cells t, t#k ∂+k t = ∂−k t#k t = t.

IV (Interchange). For all cells t, t′, u, u′ and n > k such that the left-hand side
is defined, (t#n t′)#k (u#n u

′) = (t#k u)#n (t′ #k u′).

Given a strict ω-category X and n ∈ N, we let σ≤nX denote its n-skeleton, that is,
its restriction to cells of dimension ≤ n. A strict ω-category is a strict n-category
if it is equal to its n-skeleton.

125

Definition 5.1.10 (Strict functor of strict ω-categories) — Let X,Y be strict ω-
categories. A strict functor f : X → Y is a function such that, for all k, n ∈ N,
α ∈ {+,−}, and k-composable cells t, u in X,

f(∂αn t) = ∂αnf(t), f(t#k u) = f(t)#k f(u).

Strict ω-categories and strict functors form a category ωCat.

Definition 5.1.11 (Generating sets and bases) — Let X be a strict ω-category and
S a set of cells in X. The set spanS is the smallest set such that

I if t ∈ S , then t ∈ spanS ,

II for all k ∈ N, if t, u ∈ spanS are k-composable, then t#k u ∈ spanS .

A generating set for X is a set S of cells such that spanS contains every cell in
X. A basis for X is a minimal generating set.

Lemma 5.1.12. Let f, g : X → Y be strict functors and let S be a generating set
for X. If f(t) = g(t) for all t ∈ S , then f = g.

Definition 5.1.13 (Isomorphism classes of molecules) — For each oriented graded
poset P , let [P] denote its isomorphism class in ogPos. We let

Mol := {[U] | U is a molecule} ,
Atom := {[U] | U is an atom} ⊂ Mol.

Note that we can use the traversal algorithm (Procedure 2.4.2) to choose a repre-
sentative for each isomorphism class of molecules.

Proposition 5.1.14. For all n, k ∈ N and α ∈ {+,−}, let

∂αn : Mol → Mol, [U] 7→ [∂αnU],
−#k − : Mol ×k Mol → Mol, [U], [V] 7→ [U #k V].

Then Mol together with these operations is a strict ω-category.

Proof. We have by Lemma 2.2.10 and Proposition 2.2.25 that the class of molecules
is preserved under taking boundaries and pushouts of inclusions. Furthermore
taking boundaries and pushouts of inclusions preserves isomorphisms, so ∂+n , ∂−n
and #n are well defined in Mol.
Finite dimension follows from Lemma 2.2.9 and applying Proposition 2.2.25, we
conclude that Mol is a reflexive ω-graph. We are left to check the axioms of strict
ω-category.
Compatibility with boundaries follows by combining Lemma 2.2.17, Lemma 2.2.19
and Lemma 2.2.20. Associativity, interchange and unitality follow from Proposition
2.3.13. ■

Proposition 5.1.15. The set Atom is a basis for the strict ω-category Mol.

126

Proof. First we show that Atom is a spanning set. We will induct on lydimU .
If lydimU = −1, then by Lemma 3.2.8, U is an atom and we are done. Oth-
erwise, if lydimU = k, we have by Theorem 3.2.11 that U admits a k-layering
U (1) #k U

(2) . . . #k U
(m). By Lemma 3.2.10, lydimU (i) < k, so we may apply the

inductive hypothesis on [U (i)] to conclude that [U] ∈ spanAtom.
For the other direction, let [U] ∈ Atom and suppose [U] = [U1]#k [U2] = [U1 #k U2]
for some [U1], [U2] ∈ spanAtom. If k < min {dimU1,dimU2}, then either [U] =
[U1] or [U] = [U2] and we are done. Otherwise, we obtain a contradiction with U
being an atom by Lemma 3.2.8. ■

Definition 5.1.16 (Molecules over an oriented graded poset) — For each morphism
f : U → P of oriented graded posets, let [f] denote its isomorphism class in the
slice category ogPos/P . Given an oriented graded poset P , we let

Mol/P := {[f : U → P] | U is a molecule} ,
Atom/P := {[f : U → P] | U is an atom} ⊆ Mol/P ,

which we call molecules and atoms over P . For all k ∈ N and α ∈ {+,−},
∂αk : Mol/P → Mol/P , [f : U → P] 7→ [f |∂α

k
U : ∂αkU → P]

make Mol/P a reflexive ω-graph. If [f : U → P], [g : V → P] are k-composable
molecules over P , then there exists a unique isomorphism ϕ such that

∂+k U ∂−k V V

U P

ϕ

f

g

commutes, which induces, by the universal property of U #k V , a unique morphism
f #k g such that the following diagram commutes:

∂+k U ∂−k V V

U U #k V

P.

ϕ

ıU

ıV⌟

f

g

f #k g

Proposition 5.1.17. Let P be an oriented graded poset and, for each k ∈ N,

−#k − : Mol/P ×k Mol/P → Mol/P ,
[f : U → P], [g : V → P] 7→ [f #k g : U #k V → P].

If F : P → Q is a morphism of oriented graded posets, we let Mol/F : Mol/P →
Mol/Q be defined by:

F ([f : U → P]) = [F ◦ f : U → Q].

This assignment extends to a functor Mol/− : ogPos→ ωCat.

127

Proof. The fact that Mol/− is a functor on objects is just a fibrant variant of
Proposition 5.1.14. Note that Mol/F is well-defined since precomposing with F
preserves isomorphisms in the slice category. Compatibility of F with boundaries
follows by checking the equality element-wise. The compatibility with the #n
operator comes from the universal property of the pushout, as follows:

∂+n U ∂−n V V

U U #ϕn V

P

Q

ϕ

ıU

ıV

⌟

f

g

f #
n g

F

F◦f

F◦g

F◦f #
n F◦g

We have that F ◦ (f #n g) ◦ ıU = F ◦ f (by definition); and by the uniqueness
property of the pushout, we obtain that F ◦ (f #n g) = F ◦ f #n F ◦ g. Therefore
Mol/F is a strict ω-functor. Functoriality of the assigment F → Mol/F is routine
to check.

■

Remark 5.1.18. The set Atom/P is a basis for Mol/P .

In particular Mol/− restricts to a functor from RDC to ωCat. When P is a
regular directed complex, Mol/P admits a basis whose elements are in bijection
with the elements of P . This comes from very strong rigidity properties of atoms,
which do not generalise to other oriented graded posets. To prove this we need the
following result:

Theorem 5.1.19. Let f : U → V be a morphism of atoms of the same dimension.
Then f is an isomorphism.

Proof. See [25, Theorem 5.3.7]. ■

Corollary 5.1.20. If P is a regular directed complex, {[cl {x} ↪→ P] | x ∈ P} is a
basis for the ω-category Mol/P .

Proof. We have by Lemma 2.1.31 that f(cl x) = cl f(x) is an atom, so by Theorem
5.1.19, f restricts to an isomorphism with its image. Therefore every morphism
cl x→ P is an inclusion. The claim follows from Remark 5.1.18. ■

Definition 5.1.21 (Local embedding of oriented graded posets) — A morphism
f : P → Q of oriented graded posets is a local embedding if, for all x ∈ P , the
restriction f |cl{x} is an inclusion, hence determines an isomorphism between cl {x}
and its image cl {f(x)}.

Proposition 5.1.22. Let f : P → Q be a morphism of regular directed complexes.
Then f is a local embedding.

128

Proof. Follows immediately from Theorem 5.1.19. ■

Definition 5.1.23 (Diagram in a strict ω-category) — Let X be a strict ω-category
and P a regular directed complex. A diagram of shape P in X is a strict functor
d : Mol/P → X. A diagram is a pasting diagram if its shape is a molecule.

Note that by [25, Proposition 5.3.15] a diagram in a strict ω-category induces a
diagram in the sense used in the previous chapters by picking an injective encoding
of non-degenerate cells in the set of variables.

5.1.1 Polygraphs
Definition 5.1.24 (Cellular extension of a strict ω-category) — Let X be a strict
ω-category. A cellular extension of X is a strict ω-category XS together with a
pushout diagram

∐
e∈S Mol/∂Ue

∐
e∈S Mol/Ue

X XS

(∂e)e∈S (e)e∈S

∐
e∈S

Mol/ıe

⌟

in ωCat, where, for each e ∈ S , Ue is an atom and ıe : ∂Ue ↪→ Ue is the inclusion
of its boundary.

Remark 5.1.25. The functor X ↪→ XS in a cellular extension is always injective,
as shown in [37, Section 4].
This is a non-standard definition of cellular extension, allowing any atom as a
potential cell shape; the usual definition only uses globes. However, the two are
equivalent in the sense that a cellular extension in our sense can always be turned
into a cellular extension in the more restrictive sense.

Definition 5.1.26 (Polygraph) — A polygraph, also known as computad, is a strict
ω-category X together with, for each n ∈ N, a pushout diagram

∐
e∈Sn

Mol/∂Ue
∐
e∈Sn

Mol/Ue

σ≤n−1X σ≤nX

(∂e)e∈Sn (e)e∈Sn

∐
e∈Sn

Mol/ıe

⌟

in ωCat, exhibiting σ≤nX as a cellular extension of σ≤n−1X, such that Ue is an
n-dimensional atom for all e ∈ Sn. The set

S :=
∑

n∈N
{e[idUe] | e ∈ Sn}

is called the set of generating cells of the polygraph. We write (X,S) for a poly-
graph X with set S of generating cells.

Lemma 5.1.27. Let (X,S) be a polygraph. Then S is a basis for X.

129

Proof. The fact that S is a generating set and its minimality are consequences of
[1, Proposition 15.1.8 and Lemma 16.6.2], respectively. ■

Definition 5.1.28 (Oriented graded poset with frame-acyclic molecules) — Let P
be an oriented graded poset. We say that P has frame-acyclic molecules if, for all
molecules U , if there exists a morphism f : U → P , then U is frame-acyclic.

Lemma 5.1.29. Let P be an oriented graded poset, n ∈ N, and let Sn be a set
containing one pasting diagram

e ≡ Mol/e : Mol/Ue → σ≤nMol/P

for each [e : Ue → P] in Atom/P such that dimUe = n. If σ≤nP has frame-acyclic
molecules, then

∐
e∈Sn

Mol/∂Ue
∐
e∈Sn

Mol/Ue

σ≤n−1Mol/P σ≤nMol/P

(∂e)e∈Sn (e)e∈Sn

∐
e∈Sn

Mol/ıe

⌟

is a pushout diagram in ωCat, exhibiting σ≤nMol/P as a cellular extension of
σ≤n−1Mol/P .

Proof. Let X be a strict ω-category and let

∐
e∈Sn

Mol/∂Ue
∐
e∈Sn

Mol/Ue

σ≤n−1Mol/P X

(∂e)e∈Sn k

h

∐
e∈Sn

Mol/ıe

be a commutative diagram of strict functors. We define h : σ≤nMol/P → X as
follows on cells [f : U → P] in σ≤nMol/P . If dimU < n, then we let

h[f] := h[f].

Suppose dimU = n; we proceed by induction on lydimU . If lydimU = −1,
then by Lemma 3.2.8 U is an atom, so there exists a unique Mol/e ∈ Sn such that
[f] = [e], and we let h[f] := k[idUe]. If lydimU = k ≥ 0, then U admits a k-layering
(U (i))mi=1, and each layer U (i) has strictly lower layering dimension. Then we let

h[f] := h[f |U(1)]#k . . . #k h[f |U(m)].

By construction, if h is well-defined, then it is a strict functor satisfying h ◦
(e)e∈Sn = k and restricting to h on σ≤n−1Mol/P . Moreover, let h′ be another
strict functor with the same property. Then h′ agrees with h on all atoms of di-
mension ≤ n, which form a basis of σ≤nMol/P . It follows from Lemma 5.1.12 that
h′ = h. It only remains to show that h is well-defined, that is, it is independent of
the choice of a k-layering of U when dimU = n and k := lydimU ≥ 0.

130

We may assume, inductively, that h is well-defined on all cells [g : V → P] such
that dimV < n or lydimV < k. Let (U (i))mi=1 and (V (i))mi=1 be two k-layerings
of U and let (x(i))mi=1, (y(i))mi=1 be the induced k-orderings. Further, let σ be the
unique permutation such that x(i) = y(σ(i)) for all i ∈ {1, . . . ,m} and

d := d((x(i))mi=1, (y(i))mi=1)
the number of pairs (j, j′) such that j < j′ but σ(j′) < σ(j), and proceeding
by induction on d. If d = 0, then the two layerings are equal up to layer-wise
isomorphism. If d > 0, then there exists j < m such that σ(j+1) < σ(j), and we let
W ⊑ U be the image of U (j) #k U

(j+1) in U . ThenW contains exactly two elements
z1 := x(j) = x(σ(j)) and z2 := x(j+1) = y(σ(j+1)) of dimension > k, yet there can
be no edge between them in MkU , from which we deduce that r := frdimW < k.
By assumption, W is frame-acyclic, so by Theorem 4.3.5 there exists an r-layering
of W , hence also a pair of molecules W (1), W (2), each containing a single element
of dimension > k, such that W is isomorphic to W (1) #rW

(2). We may assume,
without loss of generality, that z1 is in the image of W (1) and z2 in the image of
W (2). We then have

h[f |U(j)]#k h[f |U(j+1)] =

=
(
h[f |W (1)]#r h[f |∂−

k
W (2)]

)
#k

(
h[f |∂+

k
W (1)]#r h[f |W (2)]

)
,

which by interchange and unitality in X is equal to
h[f |W (1)]#r h[f |W (2)] =

=
(
h[f |∂−

k
W (1)]#r h[f |W (2)]

)
#k

(
h[f |W (1)]#r h[f |∂+

k
W (2)]

)
=

= h[f |Ũ(j)]#k h[f |Ũ(j+1)],

where we let Ũ (j) := ∂−k W
(1) #rW

(2) and Ũ (j+1) := W (1) #r ∂
+
k W

(2). Notice
that all the n-dimensional cells in this calculation involve molecules whose layering
dimension is < k, so h is well-defined on each of them. Letting Ũ (i) := U (i) for all
i ̸∈ {j, j + 1}, we have that

I (Ũ (i))mi=1 is a k-layering of U ,

II the definition of h[f] using (U (i))mi=1 is equal to the one using (Ũ (i)), and

III the induced k-ordering (x̃(i))mi=1 := (x(1), . . . , x(j+1), x(j), . . . , x(m)) satisfies
d((x̃(i))mi=1, (y(i))mi=1) < d,

so, by the inductive hypothesis on d, the definition of h[f] using (Ũ (i))mi=1 is equal
to the definition using (V (i))mi=1. We conclude that h[f] is well-defined, which
completes the proof. ■

Theorem 5.1.30. Let P be an oriented graded poset with frame-acyclic molecules.
Then Mol/P is a polygraph whose set of generating cells is Atom/P .
Proof. If P has frame-acyclic molecules, then σ≤nP has frame-acyclic molecules
for all n ∈ N. The statement then follows from Lemma 5.1.29. ■

Remark 5.1.31. In fact, by the roundness property of atoms, if Mol/P is a poly-
graph, then it is a regular polygraph in the sense of [31].

131

5.2 Augmented directed complexes
In this section we introduce augmented directed complexes which play a crucial part
in Steiner theory [50]. We define a functor from the category of regular directed
complexes to the category of augmented directed complexes.
Definition 5.2.1 (Chain complex) — A chain complex (A, d) is a sequence of abelian
groups,

...
d0←− A0

d1←− A1
d2←− ... dn←− An

dn+1←−−− ... ,
such that the composite of two consecutive maps is the zero morphism, i.e. dn ◦
dn+1 = 0 or d2 = 0.
Definition 5.2.2 (Augmented directed complex) — An augmented chain complex C
is a chain complex of abelian groups in non-negative degree

. . . Cn Cn−1 . . . C1 C0
d d d d d

together with a homomorphism e : C0 → Z satisfying e ◦ d = 0. A direction on C
is a choice of a commutative submonoid C→

n of Cn for each n ∈ N. An augmented
directed complex is an augmented chain complex C together with a direction on its
underlying chain complex.
Definition 5.2.3 (Homomorphism of augmented directed complexes) — Let C,D be
augmented directed complexes. A homomorphism f : C → D is a homomorphism of
the underlying augmented chain complexes, that is, a sequence (fn : Cn → Dn)n∈N
of homomorphisms of abelian groups satisfying

d ◦ fn+1 = fn ◦ d, e ◦ f0 = e,

which is compatible with directions in the sense that

fn(C→
n) ⊆ D→

n

for all n ∈ N. Augmented directed complexes with their homomorphisms form a
category ADC.
We are now ready to construct augmented directed complexes from regular directed
complexes.
Definition 5.2.4 (Augmented directed complex of a regular directed complex) — Let
P be a regular directed complex. The augmented directed complex of P , denoted
by Z⃗P , is the augmented chain complex

. . . ZPn ZPn−1 . . . ZP1 ZP0
d d d d d

where ZPn is the free abelian group on the set Pn and, for each n > 0, the homo-
morphism d: ZPn → ZPn−1 is defined on the generators x ∈ Pn by

x 7→
∑

y∈∆+x

y −
∑

y∈∆−x

y, (5.1)

together with the homomorphism e : ZP0 → Z defined on the generators x ∈ P0 by
x 7→ 1 and the direction given by ZP→

n := NPn for each n ∈ N.

132

To prove that Z⃗P is indeed an augmented directed complex, we will use the fol-
lowing lemma:
Lemma 5.2.5. Let U be a molecule. Then, ∆α(∂+U) = ∆α(∂−U).
Proof. Let x ∈ ∆α(∂+U). Then, by definition, x ∈ ∂α(∂+U) = ∂α(∂−U) where
the latter equality is by globularity. If x is not maximal in U , then by Proposition
5.1.6, x ∈ ∆α(∂−U). If x is maximal, then x is not covered by anything and we
can conclude that x ∈ ∆α(∂−U). ■

Proposition 5.2.6. Let P be a regular directed complex. Then Z⃗P is an augmented
directed complex.
Proof. To show Z⃗P defined is an augmented directed complex, we need to show
that d2 = 0 and ed = 0. First, let d+ :=

∑
y∈∆+x y and d− :=

∑
y∈∆−x y. Then,

dd+x =
∑

z∈∆+(∂+x)
z −

∑

z∈∆−(∂+x)
z, and

dd−x =
∑

z∈∆+(∂−x)
z −

∑

z∈∆−(∂−x)
z.

Since ∂αnx is a molecule and z is covered by y ∈ ∂αnx with orientation β, then by
Corollary 2.3.9 it is either only covered by y and we have z ∈ ∆β∂αnx or is covered
by another element y′ with orientation −β and in that case it cancels.
Because ∆+(∂αx) and ∆−(∂αx) are disjoint, we want to show that dd+x = dd−x,
that is, ∆+(∂+x) = ∆+(∂−x) and ∆−(∂+x) = ∆−(∂−x). By Lemma 5.2.5 the
two equalities hold and we get d2 = 0.
Now, we need to show that ed = 0. In this case, x is 1-dimensional and |∆+x| =
|∆−x| = 1. So ed(x) = 1− 1 = 0. ■

If f : P → Q is a morphism of regular directed complexes, we define Z⃗f : Z⃗P → Z⃗Q
by freely extending Z⃗f(x) = f(x) and letting Z⃗f(n) = n for n ∈ Z.

Lemma 5.2.7. Let f : P → Q be as above. Then Z⃗f : Z⃗P → Z⃗Q is a morphism
of augmented directed complexes.
Proof. It follows from Lemma 2.1.31 that f preserves the dimension so it maps Pn
to Qn. For x ∈ Pn, we have

d(Z⃗f(x)) = d(f(x)) =
∑

y∈∆+f(x)
y −

∑

y′∈∆−f(x)
y′,

Z⃗f(d(x)) = Z⃗f(
∑

y∈∆+x

y −
∑

y′∈∆−x

y′) =
∑

y∈∆+x

f(y)−
∑

y′∈∆−x

f(y′).

We have by the defintion of morphisms that f(∆α(x)) = ∆α(f(x)), so we obtain
d(Z⃗f(x)) = Z⃗f(d(x))). The compatibility of Z⃗f with e follows easily, thus Z⃗f is
indeed a morphism of augmented directed complexes. ■

Corollary 5.2.8. The assignment Z⃗ : RDC→ ADC is a functor.
Proof. Follows from Proposition 5.2.6 and Lemma 5.2.7 together with the easy
compatibility checks. ■

133

5.3 Image of the functor Z⃗
The functor Z⃗ is not full; to understand which augmented directed complexes may
be constructed from regular directed complexes, we need to recall more terminology
due to Steiner.

Definition 5.3.1 — (Basis for an augmented directed complex). Let C be an
augmented directed complex. A basis for C is a set B ⊂ ∪n∈NCn such that each
Cn is a free abelian group with basis B ∩ Cn and each C→

n is the submoid of C
generated by B ∩ Cn.
We can impose a partial order on Cn via x ≤ y if y− x ∈ C→

n . The basis elements
in Cn can be characterised as the minimal non-zero elements in C→

n , thus if C has
a basis, it is unique. Furthermore, Cn is a lattice so we may make the following
definition:

Definition 5.3.2 — Let x, y ∈ Cn. We denote x ∨ y the least upper bound of x
and y and x ∧ y the greatest lower bound.
If x ∈ Cn+1, there are elements denoted d−x, d+x ∈ Cn such that

dx = d+x− d−x, d+x ∧ d−x = 0Cn .

In fact if dx is expressed as a linear combination of distinct basis elements, then
d+x is the sum of terms with positive coefficients and −d−x is the sum of elements
with negative coefficients.

Definition 5.3.3 — Let b be a basis element and suppose that b ∈ Cn. We define
elements ⟨b⟩+i and ⟨b⟩−i via downward recursion:

⟨b⟩αi =





0 for i > n,

b for i = n,

dα⟨b⟩αi+1 for i < n.

(5.2)

Definition 5.3.4 — (Unital augmented directed complex). A basis B for an aug-
mented directed complex is unital if for all b ∈ B such that dim b = n, we have

e(⟨b⟩+0) = e(⟨b⟩−0) = 0.

We shall prove that under the functor Z⃗, regular directed complexes map to unital
augmented directed complexes. To do this, we need the following lemma:

Lemma 5.3.5. Let P be a regular directed complex and let b ∈ ZPn. Then,

⟨b⟩αk =
∑

y∈∆α
k
b

y

Proof. We prove this by downward induction.
Case k = n. Then ⟨b⟩αn = b =

∑
y∈∆α

nb
y.

Case k = n− 1. Then db =
∑
y∈∆+

n b
y−∑

y∈∆−
n b
y. By definition 5.3.2 we get that

db+ =
∑
y∈∆+

n b
y and db− =

∑
y∈∆−

n b
y. Note that this definition coincides with

134

the notation we use in the proof of Proposition 5.2.6.
Suppose the statement holds for the case k = i - i.e., ⟨b⟩αi =

∑
y∈∆α

i
b y; we prove

that it holds for k = i− 1. we have

d⟨b⟩αi = d(
∑

y∈∆α
i
b

y) =
∑

y∈∆α
i
b

dy =
∑

y∈∆α
i
b

(
∑

z∈∆+y

z −
∑

z∈∆−y

z). (5.3)

Since cl b is an atom and the only maximal element in cl b is b, cl∆α
i b = ∂αi b. Since

z is a codimension 1 element in ∂αi b, and and there are no maximal elements other
than b, we have by Corollary 2.3.9, that z is either in internal in ∂αi b which means
it is covered by exactly one element with orientation + and exactly one element
with orientation − and it cancels in (5.3) or z is in ∆β∂αi b.
By Corollary 2.3.9 and globularity, we can write the sum above as:

d⟨b⟩+i =
∑

z∈∆+
i−1b

z −
∑

z∈∆−
i−1b

z.

By definition 5.3.2 we can write d+⟨b⟩αi =
∑
z∈∆+

i−1b
z and d−⟨b⟩αi =

∑
z∈∆−

i−1b
z.

And we can conclude that

⟨b⟩αi−1 = dα⟨b⟩βi =
∑

z∈∆α
i−1b

z.

■

Proposition 5.3.6. Let P be a regular directed complex. Then Z⃗P is an augmented
directed complex with unital basis.

Proof. Let Xn be the set of elements of dimension n in P and X = ∪n∈NXn. By
construction, it is clear that X is a basis for Z⃗P , so we are left to prove it is unital.
Let x ∈ Xn.
If n = 0, then ex = 1 by definition, so we may assume n ≥ 1 and let b ∈ ZPn be a
basis element. We have by Lemma 5.3.5 that ⟨b⟩α0 =

∑
y∈∆α

0 b
y. Therefore, we get

e(⟨b⟩α0) = |∆α
0 b| = 1. ■

5.4 Acyclicity conditions
Now that we made the connection between regular directed complexes and aug-
mented directed complexes, let us recall Steiner’s functors between augmented
directed complexes and ω-categories.

Definition 5.4.1 — [50, Definition 2.6] Let C be a chain complex concentrated in
positive degree. One constructs µC to be the abelian group of double sequences
(x−0 , x

+
0 , x

−
1 ,x

+
1 , . . .) such that

• x−n , x
+
n ∈ Cn,

• x−n = x+n for all but finitely many n,

135

• x+n − x−n = dx−n+1 = dx+n+1 for n ≥ 0.

We impose a structure of a ω-category on µC by letting

∂αn (x) := (x−0 , x
+
0 , x

−
1 , x

+
1 , . . . , x

α
n, x

α
n, 0, 0 . . .)

and if ∂+n x = ∂−n y

x#n y = (x−0 , y
+
0 , . . . , x

−
n , y

+
n , x

−
n+1 + y−n+1, x

+
n+1 + y+n+1, . . .).

Definition 5.4.2 — [50, Definition 2.8] Let ν : ADC → ω-cat be the functor
defined as follows; for an augmented directed complex C, we let νC be the sub-ω-
category of µC consisting of elements

(x−0 , x
+
0 , x

−
1 , x

+
1 , . . .)

such that xαi ∈ C→
n and e(x−0) = e(x+0) = 1.

If f : C → D is a morphism of augmented directed complex, we define µ(f) :
µ(C)→ µ(D) via

µ(f)(x−0 , x
+
0 , x

−
1 , x

+
1 , . . .) := (f(x−0), f(x

+
0), f(x

−
1), f(x

+
1), . . .)

Definition 5.4.3 — Let C be an augmented directed complex with a unital basis
and let b be a basis element. We let ⟨b⟩ = (⟨b⟩+0 , ⟨b⟩−0 , ⟨b⟩+1 , ⟨b⟩−1 ,) ∈ νC.
Definition 5.4.4 — [50, Definition 2.4] The functor λ : ω-cat → ADC is defined
as follows. Let C be an ω-category. Then the chain group (λC)n for n ≥ 0 is
the group generated by the elements [x]n for x ∈ Cn (where Cn is an n-category)
subject to relations

[x#m y]n = [x]n + [y]n for m < n,
the boundary homomorphism d : (λC)n+1 → (λC)n for n ≥ 0 is given by

d[x]n+1 = [∂+n x]n − [∂−n x]n,

the augmentation e : (λC)0 → Z is given by

e[x]0 = 1,

the orientation λC→
n is the submonoid generated by the elements [x]n.

Theorem 5.4.5. [50, Theorem 2.11] The functors λ : ωCat → ADC and ν :
ADC→ ωCat form an adjoint pair with unit η : id→ νλ and counit π : λν → id
defined by:

ηx = ([d−0 x]0, [d
+
0 x]0, [d

−
1 x]1, [d

+
1 x]1, . . .)

π[x]n = x−n = x+n
(5.4)

There are now two ways to get from regular directed complexes to augmented
directed complexes: either directly via the Z⃗ functor, or by first passing to the
ω-category Mol/−, then applying Steiner’s linearisation functor λ. Dually, there
are two ways to get from a regular directed complex to an ω-category: either via the
ω-category Mol/−, or by applying the functor ν after Z⃗. In the following, we will
see how the combinatorial acyclicity conditions give rise to natural isomorphisms
of functors.

136

5.4.1 Frame acyclicity
Definition 5.4.6 — Let P be a regular directed complex that has frame-acyclic
molecules. We define G : λ(Mol/P) → Z⃗P as follows: G([cl b])n = b ∈ ZPn, if cl b
is an atom and dim b = n and G([cl b])n = 0 if dim cl b < n.
We freely extend G as follows: if m < n and x and y are atoms then G([x#m y]) =
G([x]n + [y]n) = G([x]n) + G([y]n). If U was obtained via the paste rule, with
dimU = n, let x1, x2 . . . xm be the maximal elements of dimension n. Then we let
G([U])n = x1 + ...+ xm ∈ ZPn.
Finally, to make G compatible with the augmentation, we let G(n) = n for n ∈ Z.

We will now show that G is an isomorphism of ADCs. Before proceeding, we need
to check that G is well-defined. For this, we will need two additional lemmas.

Lemma 5.4.7. Let U be a molecule, r = frdimU , r ≥ 0. Then, for any decompo-
sition U = U ′ #r U ′′, frdimU ′ ≤ frdimU and frdimU ′′ ≤ frdimU .

Proof. Let x1 and x2 be two maximal elements in U . First assume that x1, x2 are
in U ′. If min{dim x1, dim x2} ≤ r, then dim(cl x1 ∩ cl x2) ≤ r ≤ frdimU .
If dim x1 > r and dim x2 > r, then x1 and x2 are maximal in U ′ #r U ′′, because
∂+r U

′ = ∂−r U
′′ and by Lemma 2.1.25 dim (U ′ ∩ U ′′) = r ≤ frdim(U ′ #r U ′′). Hence,

by definition, dim(cl x1 ∩ cl x2) ≤ frdim(U ′ #r U ′′).
The case where x1 and x2 are in U ′′ is similar. If x1 ∈ U ′ and x2 ∈ U ′′, then
dim cl x1 ∩ cl x2 ≤ frdimU , from the definition of frame dimension.

■

Lemma 5.4.8. Let U be a frame-acyclic molecule, with frdimU = r. Then U
admits a decomposition into atoms using #m , where m ≤ r.

Proof. We will prove this by induction on the submolecules of U . Suppose that all
submolecules properly contained in U admit a an atom decomposition. If U is an
atom (r = −1), then we get the trivial decomposition. Alternatively, if U is not an
atom then it was generated using the Paste rule. By Theorem 4.3.5 and Corollary
4.3.6, U admits an r-layering induced by an r-ordering of MrU , say U1 #r ...#r Um.
By grouping the factors appropriately, we can write U = U ′ #r U ′′, where U ′ and
U ′′ are submolecules of U . From the definition, U ′ and U ′′ are frame-acyclic and
by 5.4.7, we get that frdimU ′ ≤ r and frdimU ′′ ≤ r. It follows by the inductive
hypothesis that U ′ and U ′′ have an atom decomposition for some m ≤ frdimU . So
U has a decomposition into atoms using #m . ■

Lemma 5.4.9. Let P be a regular directed complex with frame-acyclic molecules
and let G be a morphism defined as above. Let U be a molecule in P with dimU = n
and {yi}mi=1 the n-dimensional elements of U . Then G([U]n) = y1+ ...+ym ∈ Z⃗Pn.

Proof. To show that G is well defined, we need to show that for any two de-
compositions of U , d1 and d2, G(d1) = G(d2). We have by Proposition 5.4.8
that U has a decomposition into atoms using #l , with l < frdimU . Let U =
x1 #i1 x2 #i2 ...#ik−1 xk be an atom decomposition for U , with k > m. Since
{xi}ki=1 is an atom decomposition, each yi appears in at least one of x1, ..., xk.

137

What we need to show is that yi appears in exactly one of the terms. Suppose for
contradiction that yi = xa and yi = xb, with a < b. Define V,W,Z as follows:

V = x1 #i1 ...#ia−1 xa,

W = ∂+iaxa #ia ...#ib−2 xb−1,

Z = ∂+ib−1
xb−1 #ib−1 xb #ib ...#ik−1 xk.

Then U splits into V #ia (W #ib−1 Z) with ∂
+
ia
xa = ∂+iaV = ∂−ia(W #ib−1 Z) =

= V ∩ (W #ib−1 Z). Now cl{xa} ⊆ V and cl{xb} ⊆ (W #ib−1 Z). Then cl{xa} ∩
cl{xb} ⊆ V ∩ (W #ib−1 Z) = ∂+iaxa. Since dim xb = n by assumption and ∂+iaxa
contains elements of dimension less than or equal to ia < n, we obtain a contradic-
tion. ■

Proposition 5.4.10. Let G : λ(Mol/P) → Z⃗P be defined as in 5.4.6. Then G is
an isomorphism of augmented directed complexes.

Proof. We need to show that if dimU = n+1, then G(d[U]n+1) = dG([U]n+1) and
if dimU = 0, then G(e[U]0) = eG([U]0).
We start by first showing that G preserves the boundary homomorphism. We know
that d[U]n+1 = [∂+n U]n − [∂−n U]n. So,

G([∂+n U]n − [∂−n U]n)
G is free= G([∂+n U]n)−G([∂−n U]n)

5.4.9=
∑

y∈∂+
n U

dim(y)=n

y −
∑

z∈∂−
n U

dim(z)=n

z
2.1.26=

=
∑

y∈∆+
nU

y −
∑

z∈∆−
nU

z := s1.

Now,

dG([U]n+1)
5.4.9= d(

∑

x∈Un+1

x) = d(x1 + ...+ xm)

= dx1 + ...+ dxm =

= (
∑

y1∈∆+x1

y1 −
∑

y′1∈∆−x1

y′1) + ...+ (
∑

ym∈∆+xm

ym −
∑

y′m∈∆−xm

y′m)

:= s2.

Take y ∈ ∆αx1. Then, by Corollary 2.3.9 y is either covered only with orientation
α, so y ∈ ∆αU , or y is covered by exactly two elements with opposite orientations.
In the first scenario y appears exactly once in s1, while in the second situation
there is a cancellation in s2.
On the other hand, if y ∈ ∆αU , there exists xi such that y ∈ ∆αxi. Therefore

dG([U]n+1) =
∑

y∈∆+
nU

y −
∑

z∈∆−
nU

z = G(d[Un+1]).

138

Since the only 0-dimensional elements are the points, G[U]0 = U0 and e(U0) = 1
by definition. Alternatively, G(e[U]0) = G(1) = 1 as defined in 5.4.6. So G is a
morphism of augmented directed complexes.
By Theorem 5.1.30, we have that (λ(Mol/P))n is freely generated by its atoms
of dimension n. We get that G is an isomorphism since (by contruction) G is a
bijective map between the generators of the free groups of dimension n.

■

5.4.2 Dimension-wise acyclicity
Recall by Proposition 4.3.15 that dimension-wise acyclicity is a strictly stronger
condition that implies frame-acyclicity. We show that under the functor Z⃗ a
dimension-wise acyclic regular directed complex gives rise to a Steiner complex.

Definition 5.4.11 — Let P be a regular directed complex. We say that P is
dimension-wise acyclic if, for all n ∈ N, FnP is acyclic.

Definition 5.4.12 — A basis B for an augmented directed complex is loop-free if
there are partial orderings ≤0,≤1, . . . such that a <n b whenever ⟨a⟩+n ∧ ⟨b⟩−n >
0, |a|, |b| > n. An augmented directed complex is loop-free if it has a loop-free
basis. A Steiner complex is an augmented directed complex with a loop-free basis.
We let ADCSt be the full subcategory of ADC on Steiner complexes.

The following is the fundamental theorem of Steiner theory.

Theorem 5.4.13. The restriction of ν : ADC → ωCat to ADCSt is full and
faithful. Moreover, if C is a Steiner complex with basis (Bn)n∈N, then νC is a
polygraph whose set of generating cells is

{
⟨b⟩ | b ∈

⋃

n∈N
Bn

}
.

Proof. See [50, Theorem 5.6 and Theorem 6.1]. ■

Proposition 5.4.14. Let P be a dimension-wise acyclic regular directed complex.
Then Z⃗P is a Steiner complex.

Proof. By Proposition 5.3.6, Z⃗P has a basis given by the elements of P . We define
partial orderings ≤i in Z⃗P via a ≤i b if there is a path from a to b in FiP with
equality if and only if a = b. Since P is dimension-wise acyclic, ≤i are well-defined
as partial orderings - i.e., we cannot have a ≤i b and b ≤i a for a ̸= b.
Let n ∈ N and a, b ∈ Z⃗Pn with dim(a), dim(b) > n such that ⟨a⟩+n ∧ ⟨b⟩−n > 0. We
have by Lemma 5.3.5 that

⟨a⟩+n =
∑

y∈∆+
na

y and

⟨b⟩−n =
∑

y′∈∆−
n b

y′

139

Since elements of P form a basis for Z⃗Pn and ⟨a⟩+n ∧ ⟨b⟩−n > 0, we get that there
exists z ∈ ∆+

n a ∩∆−
n b, thus an edge from a to b in FnP , so a <n b. ■

Theorem 5.4.15. Let P be a dimension-wise acyclic regular directed complex.
Then νZ⃗P ∼= Mol/P as ω-categories.

Proof. Let f : Mol/P → ν(Z⃗P), f = ηMol/P ; ν(G) be a morphism of ω-categories,
where ηMol/P is the unit of the adjunction between λ and ν. We will show that f
defined as such is an isomorphism sending basis elements into basis elements.
Let cl x be an atom in Mol/P . By Theorem 5.4.5,

ηMol/P (x) = ([∂−0 x]0, [∂
+
0 x]0, [∂

−
1 x]1, [∂

+
1 x]1, ...),

so by definition 5.4.2

f(cl x) = ν(G)(ηMol/P (x)) = (G[∂−0 x]0, G[∂
+
0 x]0, G[∂

−
1 x]1, G[∂

+
1 x]1, ...).

We aim to prove that f(cl x) = ⟨x⟩; we will do this componentwise. Let n = dim x.
If k > n, then G([∂αk x]k) = G([x]k) = 0 by [50, Proposition 2.5]. If k = n, then
G([∂αk x]k) = G([x]k) = x ∈ Z⃗Pn. If k = n− p, then

G([∂αn−px]n−p) =
∑

y∈∆α(∂α...∂αx)
y =

∑

y∈∆α
n−p

x

y
5.3.5= ⟨x⟩αn−p.

By Proposition 5.3.6, the basis of Z⃗P consists of the elements of P and by Propo-
sition 5.4.14 Z⃗P is a Steiner complex. By Theorem 5.4.13, ⟨b⟩ is a basis for νZ⃗P .
Therefore f determines a bijection between the generating cells of Mol/P and
of νZ⃗P . By [1, Proposition 16.2.12], we conclude that f is an isomorphism of
polygraphs. ■

Example 5.4.16 — Theorem 5.4.15 does not extend beyond dimension-wise acyclic
regular directed complexes. Let P be the regular directed complex encoding the
1-dimensional diagram

a • b •f

g

h

(5.5)

which is evidently not dimension-wise acyclic. Then Mol/P is isomorphic to the
free category on the directed graph (5.5). However, in νZ⃗P , let

x := ⟨f⟩#0 ⟨g⟩, y := ⟨f⟩#0 ⟨h⟩,
We then have ⟨f⟩ = (a, b, f, f, 0, 0, . . .), ⟨g⟩ = (b, a, g, g, 0, 0, . . .) and ⟨h⟩ = (b, a, g, g,
0,0,. . .), so we get

x = (a, a, f + g, f + g, 0, 0, . . .), y = (a, a, f + h, f + h, 0, 0 . . .).
Then

x#0 y = y #0 x = (a, a, 2f + g + h, 2f + g + h, 0, 0, . . .).
We conclude that νZ⃗P is not free, so it is not isomorphic to Mol/P which is free
by Theorem 5.1.30.

140

5.4.3 Strongly dimension-wise acyclity
While dimension-wise acyclicity is a more manageable sufficient condition for frame-
acyclicity, it does not guarantee that the ω-category of molecules over P consists
only of subsets of P .

Example 5.4.17 — Let U be the 2-dimensional molecule encoding the shape of
the pasting diagram

x •

• •

x •
and let P be the result of identifying the two 0-dimensional cells marked with
x. Then P is a dimension-wise acyclic regular directed complex, and the canonical
quotient map q : U → P is a molecule over P . However, q is evidently not injective.

In this section, following [51], we consider a strengthening of dimension-wise acyclic-
ity which does guarantee this property at least for regular directed complexes.

Definition 5.4.18 (Extended flow graph) — Let P be an oriented graded poset,
k ≥ −1. The extended k-flow graph of P is the bipartite directed graph F kP
whose

• set of vertices is
P =

⋃

i≤k
Pi +

⋃

i>k

Pi,

• set of edges is E− + E+, where

E− :=



(y, x) | y ∈

⋃

i≤k
Pi, x ∈

⋃

i>k

Pi, y ∈ int ∂−k x



 ,

E+ :=



(y, x) | y ∈

⋃

i>k

Pi, x ∈
⋃

i≤k
Pi, x ∈ int ∂+k y



 ,

where the source of (y, x) is y and the target is x.

Definition 5.4.19 (Strongly dimension-wise acyclic oriented graded poset) — Let P
be an oriented graded poset. We say that P is strongly dimension-wise acyclic if,
for all k ≥ −1, F kP is acyclic.

Remark 5.4.20. Strong dimension-wise acyclicity is essentially the same as loop-
freeness in the sense of [51].

Lemma 5.4.21. Let P be an oriented graded poset, k ≥ −1, and suppose x, y ∈⋃
i>k Pi. If there exists a path from x to y in FkP , then there exists a path from

x to y in F kP .

141

Proof. Consider a path x = x0 → x1 → . . . → xm → y from x to y in FkP . By
definition of the k-flow graph, for all i ∈ {1, . . . ,m}, there exists zi ∈ ∆+

k xi−1 ∩
∆−
k xi. By definition of the extended k-flow graph, there exist edges xi−1 → zi and

zi → xi in F kP . Concatenating all the two-step paths xi−1 → zi → xi, we obtain
a path from x to y in F kP . ■

Proposition 5.4.22. Let P be a strongly dimension-wise acyclic oriented graded
poset. Then P is dimension-wise acyclic.

Proof. By Lemma 5.4.21 a cycle in FkU induces a cycle in F kU . ■

Proposition 5.4.23. Let f : P → Q be a local embedding of oriented graded posets.
For all k ≥ −1, f induces a homomorphism F kf : F kP → F kQ.

Proof. See [27, Proposition 5.7]. ■

As a corollary, we obtain immediately:

Corollary 5.4.24. Let f : P → Q be a local embedding of oriented graded posets.
If Q is strongly dimension-wise acyclic, then so is P .

Lemma 5.4.25. Let U be a frame-acyclic molecule, x, y ∈ U . Then there exists
k ≥ −1 such that there is a path from x to y or a path from y to x in F kU .

Proof. Follows by the same arguments as in [51, Theorem 2.16]. ■

Proposition 5.4.26. Let U be a molecule, P a strongly dimension-wise acyclic
oriented graded poset, and f : U → P a local embedding. Then f is an inclusion.

Proof. Let x, y ∈ U with x ̸= y and suppose that f(x) = f(y). By Corollary 5.4.24,
U is strongly dimension-wise acyclic. By Lemma 5.4.25 there exists k ≥ −1 such
that there is a path from x to y or a path from y to x in F kU . Then by Proposition
5.4.23 F kf maps this onto a cycle in F kP , a contradiction. We conclude that f
is injective. ■

Corollary 5.4.27. Let P be a strongly dimension-wise acyclic regular directed
complex. Then

Mol/P = {[U ↪→ P] | U ⊆ P,U is a molecule} .

Proof. Follows from Proposition 5.4.26 together with Proposition 5.1.22. ■

In particular, if P is finite and strongly dimension-wise acyclic, it follows that
Mol/P has finitely many cells.

142

5.4.4 Acyclic regular directed complexes
We now consider an even stronger acyclicity condition that implies all the other
conditions described in the previous subsections. Our acyclicity is essentially the
same as total loop-freeness in [51]. As we will see, it is also related to strong
loop-freeness in [50].
Definition 5.4.28 — Let P be a regular directed complex. We say that P is acyclic
if H⃗ P is acyclic as a graph.
Proposition 5.4.29. Let P be an acyclic regular directed complex, x, y ∈ P , and
k ≥ −1. If there is a path from x to y in F kP , then there is a path from x to y in
H⃗ P . Consequently, P is strongly dimension-wise acyclic.
Proof. See [51, Proposition 2.15 and Proposition 5.2]. ■

The following example shows that acylicity is a tighter condition that strongly
dimension-wise acyclicity.
Example 5.4.30 — Let U be a 3-dimensional atom whose input and output bound-
aries encode the pasting diagrams

3 •
0 • 2 •

1 •
0

1

2
3

0 and
3 •

0 • 2 •
1 •

0
1

2
3

4
1 2

respectively, and let (n, k) denote the n-dimensional cell labelled with k. Then the
extended 0-flow graph F 0U is

(1,2) • (0,3) • (1,3) •
(2,0) • (2,2) •

(0,0) • (1,4) • (0,2) •
(2,1) • (3,0) •
(1,0) • (0,1) • (1,1) •

while the extended 1-flow graph F 1U is

(1,1) • (2,0) • (1,2) •

(0,0) • (0,1) • (3,0) • (0,3) • (0,2) •

(1,0) • (2,1) • (1,4) • (2,2) • (1,3) •

and the extended 2-flow graph F 2U is

(2,2) • (0,0) • (0,3) • (1,2) •
(2,0) • (3,0) • (1,4) • (0,1) • (1,0) • (1,3) •

(2,1) • (0,2) • (1,1) •

143

all of which are acyclic. All other extended flow graphs are discrete, so U is strongly
dimension-wise acyclic. However, H⃗ U contains the cycle

(0, 1)→ (1, 1)→ (2, 0)→ (3, 0)→ (2, 1)→ (1, 4)→ (0, 1)

so U is not acyclic.

Definition 5.4.31 — A basis B for an augmented directed complex is strongly
loop-free if there is a partial ordering ≤N on B such that a <N b whenever a ≤ d−b
or d+a ≥ b. An augmented complex is called a strong Steiner complex if it has a
strongly loop-free basis.

Proposition 5.4.32. Let P be an acyclic regular directed complex. Then Z⃗P is a
strong Steiner complex.

Proof. Recall that Z⃗P has a basis given by the elements of P . We define a partial
order via a <N b if there is a path from a to b in H⃗ P and a ̸= b. Since H⃗ P is
acyclic, this is a well-defined partial order.
Suppose first that a ≤ d−b. We have by Lemma 5.3.5 that d−b =

∑
y∈∆−b y and

since the elements y ∈ ∆−b are part of the basis, we obtain a ∈ ∆−b. Thus by [25,
Lemma 8.1.11] there is a path from a to b in H⃗ P , so a <N b.
Similarly, if d+a ≤ b, we have d+a =

∑
y∈∆+a y, so b ∈ ∆+a. Again from Lemma

[25, Lemma 8.1.11] there is a path from a to b in H⃗ P , so a <N b. ■

5.5 Stability under constructions and operations
In this section, we consider some operations under which the classes of molecules
and regular directed complexes are closed — pastings, suspensions, Gray products,
joins, and duals — and study the stability of acyclicity conditions under these
operations.

Definition 5.5.1 (Suspension of an oriented graded poset) — Let P be an oriented
graded poset. The suspension of P is the oriented graded poset SP whose

• underlying set is {Sx | x ∈ P}+ {⊥+,⊥−},
• order and orientation are defined, for all x ∈ SP and α ∈ {+,−}, by

∇αx :=





{Sy | y ∈ ∇αx′} if x = Sx′, x′ ∈ P ,
{Sy | y ∈ P0} if x = ⊥α,
∅ if x = ⊥−α.

Definition 5.5.2 (Gray product of oriented graded posets) — Let P , Q be oriented
graded posets. The Gray product of P and Q is the oriented graded poset P ⊗Q
whose

• underlying graded poset is the product P ×Q of the underlying posets,

• orientation is defined, for all (x, y) ∈ P×Q and all α ∈ {+,−}, by∆α(x, y) :=
∆αx× {y}+ {x} ×∆(−)dim xαy.

144

Gray products determine a monoidal structure (ogPos,⊗, 1) on ogPos.

Definition 5.5.3 (Join of oriented graded posets) — Let P , Q be oriented graded
posets. The join of P and Q is the oriented graded poset P ⋆Q := (P⊥ ⊗Q⊥) ̸⊥.
Joins determine a monoidal structure (ogPos, ⋆ ,∅) on ogPos.

The following collects a number of non-trivial results of [25, Chapter 7].

Proposition 5.5.4. Both the classes of molecules and of regular directed complexes
are closed under suspensions, Gray products and joins.

We now move on to considering the stability of our acyclicity conditions.

Proposition 5.5.5. Let U be an acyclic regular directed complex. Then SU is
acyclic.

Proof. Let U be an acyclic molecule. Suppose SU has a cycle in H⃗ SU : x1 → x2 →
...→ xn. Then, there are two cases.
If xi ̸= ⊥α for all i, then the cycle x1 → x2 → ...→ xn is a cycle in H⃗ U , which is
a contradiction with the assumption.
Otherwise, there exists an element in the cycle, xi such that xi = ⊥α. Again, there
are two cases. First, suppose xi = ⊥−. Since ∆−

0 SU = {⊥−}, there is no arrow
pointing towards ⊥−. So, if ⊥− appears in the cycle it can only be for i = 1; now
let x1 = ⊥− in the cycle. Then, since ⊥− ∈ ∆−

0 SU there is no edge xn → ⊥−

in H⃗ SU . Now, suppose xi = ⊥+. We argue similarly to the case above. Since
∆+

0 SU = {⊥+}, a cycle cannot start with xi and once xi is reached, the sequence
ends. So we cannot have a cycle in H⃗ SU if xi = ⊥+. Hence, SU is acyclic. ■

To prove that strongly-dimension wise and dimension wise acyclicity is preserved
we will need the following Lemma:

Lemma 5.5.6. [25, Lemma 7.3.13] Let U be an n-dimensional molecule. Then
SU is an (n+ 1)-dimensional molecule with ∆α

0 SU = {⊥α} and ∆α
kSU =

S∆α
k−1U , for all k > 0.

As a corollary, we obtain:

Corollary 5.5.7. Let P be an oriented graded poset, k ∈ N. Then

I x 7→ Sx induces an isomorphism of directed graphs FkP
∼→ Fk+1SP , re-

stricting to an isomorphism MkP
∼→Mk+1SP ;

II x 7→ Sx induces an embedding of directed graphs F kP ↪→ F k+1SP , whose
complement is the discrete graph on {⊥−,⊥+}.

Corollary 5.5.8. Let P be a (strongly) dimension-wise acyclic regular directed
complex. Then SP is a (strongly) dimension-wise acyclic regular directed

Proof. Immediate from Corollary 5.5.7. ■

To prove that frame-acyclicity is also preserved, we need two additional results.

145

Lemma 5.5.9. Let U be a molecule and SU its suspension. Then, for any x ∈ U ,
cl Sx = Scl x.

Proof. By definition, cl Sx = {Sy|Sx ≥ Sy} + {⊥−,⊥+}. On the other hand,
Scl x = S{y|x ≥ y} = {Sy|Sx ≥ Sy}+ {⊥−,⊥+}. ■

Lemma 5.5.10. Let U be a molecule. Then V ⊑ SU if and only if V = ⊥−,
V = ⊥+ or V = SV ′, where V ′ ⊑ U .

Proof. We prove this by induction on the construction of V . If V was produced
by (Point), then either V = ⊥− or V = ⊥+. If V was produced by the (Atom)
rule, then V = cl Sx, for some Sx ∈ SU . By Lemma 5.5.9, V = Scl x, where
x ∈ U and by Lemma 3.1.4 cl x ⊑ U . Now suppose V was produced using the
(Paste) rule. Then, V = W #k Z. By the induction hypothesis, W = SW ′ and
Z = SZ ′, for W ′, Z ′ ⊑ U . We want to prove that V = S(W ′ #k−1 Z

′), where
W ′ #k−1 Z

′ ⊑ U . Since V = W #k Z, we know that ∂+k SW ′ = ∂−k SZ ′. By Lemma
5.5.6, ∂+k SW ′ = S∂+k−1W

′ and ∂−k SZ ′ = S∂−k−1Z
′ and hence ∂+k−1W

′ = ∂−k−1Z
′.

We thus know that W ′ #k Z ′ ⊑ U . We claim SW ′ #k SZ ′ = S(W ′ #k−1 Z
′).

Now, SW ′ #k SZ ′ = {Sx|Sx ∈ SW ′ − S∂+k−1W
′} + {Sx|Sx ∈ SZ ′ − S∂−k−1Z

′} +
{Sx|Sx ∈ S∂+k−1W

′} + {⊥−,⊥+}.
On the other hand, S(W ′ #k−1 Z

′) = {Sx|x ∈W ′ #k−1 Z
′} + {⊥−,⊥+} = {Sx|x ∈

W ′ − ∂+k−1W
′} + {Sx|x ∈ Z ′ − ∂−k−1Z

′} + {Sx|x ∈ ∂+k−1W
′} + {⊥−,⊥+} =

SW ′ #k SZ ′.
So, V = S(W ′ #k−1 Z

′), where W ′ #k−1 Z
′ ⊑ U . ■

Proposition 5.5.11. Let P be a regular directed complex that has frame-acyclic
molecules. Then SP has frame-acyclic molecules.

Proof. Follows from Lemma 5.5.10 and Corollary 5.5.7. ■

Proposition 5.5.12. Let P , Q be acyclic oriented graded posets. Then P ⊗Q is
acyclic.

Proof. We will prove this by contradiction. Suppose I have a cycle (x1, y1) → ...

→ (xn, yn)→ (x1, y1) in H⃗ (P ⊗Q). Also note that there exists an edge (xi, yi)→
(xj , yj) in H⃗ (P ⊗Q) when either xi = xj or yi = yj . Assume y1 = y2 = ... = yn.
Then the cycle above will be a cycle in x1 → ... → xn → x1 in H⃗ P which is a
contradiction with the assumption.
Now, suppose not all yi with 0 ≤ i ≤ n are equal. We have three cases.
Case x1 = x2 = ... = xn all equal. Then, we will get a cycle y1 → y2 → ...→ yn →
y1 in H⃗ Q if x1 is even or a cycle y1 → yn → ... → y2 → y1 in H⃗ Q if x1 is odd
which contradicts the assumption.
Case xn ̸= x1. Then, necessarily yn = y1 and we have an edge from xn to x1 in
H⃗ P . We construct the following sequence. Start with x1 and go through each
element, (xi, yi) of the cycle in H⃗ (P ⊗ Q). Every time xi = xi+1 in the cycle in
H⃗ (P ⊗Q), do nothing. When xi ̸= xi+1, add xi+1 to the sequence. Since xn ̸= x1,
this will happen at most once. Since an edge (xi, yi)→ (xi+1, yi+1) in H⃗ (P ⊗Q)
corresponds to an edge xi → xi+1 in H⃗ P whenever yi = yi+1, the sequence we
constructed above is a cycle in H⃗ P - contradiction with the assumption.

146

Case xn = x1. We treated the case when all xi are equal above. Suppose now that
not all xi are equal. We proceed as in the previous case and build the following
sequence. We start with x1 and go through each element, (xi, yi), of the cycle in
H⃗ (P ⊗Q); as before, every time xi = xi+1 in the cycle in H⃗ (P ⊗Q), do nothing.
When xi ̸= xi+1, add xi+1 to the sequence. From the assumption that not all xi
are equal, the last step will happen at least once. Also, since xn = x1, we know
that the sequence ends with x1. By a similar argument with the one from the
previous case, this sequence is a cycle in H⃗ P - contradiction.
Therefore, P ⊗Q is acyclic. ■

Proposition 5.5.13. Let P , Q be acyclic oriented graded posets. Then, P ⋆Q is
acyclic.

Proof. We prove this by contradiction. Suppose P ⋆Q is not acyclic. Then there
exists a cycle (x1, y1) → ... → (xn, yn) → (x1, y1) in H⃗ (P ⋆Q). If none of the
elements contains ⊥ in either component, then the same argument as in Lemma
5.5.12 applies. Otherwise, we have the following two cases.
In the first case, ⊥ appears in the first component - i.e., (xi, yi) = (⊥, yi). We
make the following claim: once we reach an element of the form (⊥, yi), then all
the elements following it in the sequence have ⊥ in their first component. The
argument goes as follows: once (⊥, yi) is reached, we have two ways to continue
the cycle:

I (xi+1, yi+1) = (xi+1, yi) covers (⊥, yi) with “-”,

II (xi+1, yi+1) = (⊥, yi+1) covers (⊥, yi) with “-”.

The first case is impossible to happen. Since yi is fixed, xi+1 must cover ⊥ with
“-” in H⃗ P⊥ (which is not possible by the definition of the join). In the second
case, since dim⊥ = 0 in H⃗ P⊥, having an edge (⊥, yi) → (⊥, yi+1 in H⃗ P ⋆Q

means yi+1 covers yi with “-” in H⃗ Q⊥. By the argument above it follows that
if (⊥, yi) appears anywhere in the cycle, then x1 = ⊥. Then, having a cycle
(⊥, y1) → ... → (⊥, yn) → (⊥, y1) in H⃗ (P ⋆Q) means having a cycle in H⃗ (Q)
(because dim(⊥) = 0) which is a contradiction.
In the second case, ⊥ appears in the second component - i.e., (xi, yi = (xi,⊥).
We have two further cases. If xi ̸= xi+1 for some i, then since dim⊥ = 0 in
H⃗ Q⊥, having a cycle (x1,⊥) → ... → (xn,⊥) → (x1,⊥) in H⃗ (P ⋆Q) gives a
cycle x1 → ... → xn → x1 in H⃗ P . Otherwise, let x1 = x2 = ... = xn and
suppose (x1, yi) = (x1,⊥). We claim that if such an element appears in a sequence
(x1, y1) → ... → (x1, yn) then that sequence cannot be a cycle (which contradicts
the assumption we started with). We argue on the parity of dim x1. If dim x1
is odd, then (x1,⊥) is covered only with “+” and the sequence ends once (x1,⊥)
is reached. If dim x1 is even, then (x1,⊥) is covered only with “-” in which case
a sequence can start with (x1,⊥), but it cannot be ended with (x1,⊥). Hence,
H⃗ (P ⋆Q) is acyclic if ⊥ appears in the second component and xi = xj , for all i, j.
Therefore, P ⋆Q is acyclic. ■

Remark 5.5.14. Propositions 5.5.12 and 5.5.13, in conjunction with the results
of [2] and Theorem 5.4.15, can be used to show that Mol/− is compatible with Gray

147

products and joins of strict ω-categories when restricted to acyclic regular directed
complexes.

Strongly dimension-wise and dimension-wise acyclicity are not preserved by Gray
products and joins as the following examples show:

Example 5.5.15 — [51] Let U be the following 3-dimensional molecule:

5 • 5 •

0 • 4 • 0 • 4 •

1 • 2 • 3 • 1 • 2 • 3 •
τ1

τ3

τ1

τ ′′
1

τ ′
1

ρ2 σ′′
1

σ′
1

σ1

τ ′
1 σ′

1

σ1σ2

τ2

Then we have the following cycle in F2(U ⊗ U): (2, τ3) → (2, τ2) → (σ′
1, τ2) →

(σ′
1, τ

′
1) → (σ2, τ ′1) → (σ2, 2) → (τ3, 2) → (τ2, 2) → (τ2, σ′′

1) → (τ ′′1 , σ′′
1) →

(τ ′′1 , σ2)→ (2, σ2)→ (2, τ3).

Example 5.5.16 — Let U be the 3-dimensional molecule from Example 5.5.15.
By taking SU ⋆U , we obtain the following cycle in F5(SU ⋆U): (2, τ3)→ (2, τ2)→
(σ′

1, τ2) → (σ′
1, τ

′
1) → (σ2, τ ′1) → (σ2, 2) → (τ3, 2) → (τ2, 2) → (τ2, σ′′

1) → (τ ′′1 , σ′′
1)

→ (τ ′′1 , σ2)→ (2, σ2)→ (2, τ3).

In what follows we present some results that move us closer to proving whether
frame-acyclicity is preserved under taking Gray products. Namely, with the results
below, we believe that if there exists a counter example to the statement above,
then the example must be a submolecule that is not the Gray product of two
submolecules of U and V , respectively.

Lemma 5.5.17. Let U and V be molecules. Then

frdimU ⊗ V = max{frdimU + dimV,dimU + frdimV }.

Proof. The atoms of U ⊗ V are of the form cl a × cl b, where cl a is an atom in U
and cl b is an atom in V .
Let cl a× cl b and cl c× cl d be two distinct atom in U ⊗ V .
We distinguish three cases.

I a ̸= c and b ̸= d. Then

dim(cl a× cl b ∩ cl c× cl d) = dim(cl a ∩ cl c× cl b ∩ cl d)
= dim(cl a ∩ cl c) + dim(cl b ∩ cl d)
≤ frdimU + frdimV

(5.6)

II a = c and b ̸= d. Then:

dim(cl a× cl b ∩ cl a× cl d) = a× (cl b ∩ cl d)
= dim a+ dim(cl b ∩ cl d)
≤ dimU + frdimV

(5.7)

148

III a ̸= c and b = d. Then:

dim(cl a× cl b ∩ cl c× cl b) = dim(cl a ∩ cl c× cl b)
= dim(cl a ∩ cl c) + dim b

≤ frdimU + dimV

(5.8)

Hence, we get that frdim(U ⊗ V) ≤ max{frdimU + dimV,dimU frdimV }
using the fact that frdimX < dimX for any moleculeX by combining Lemma
3.2.7 and Corollary 3.3.7.
To see that the equality can be achieved suppose without loss of generality
that max{frdimU + dimV,dimU + frdimV } = frdimU + dimV . Let cl a
and cl c be atoms such that dim(cl a ∩ cl c) = frdimU and cl b be such that
dim(cl b) = dimV . Then dim(cl a× cl b ∩ cl c× cl b) = frdimU + dimV .

■

Lemma 5.5.18. Let U and V be molecules and let n := frdim (U ⊗ V). If there
is an edge from x⊗ y → x′ ⊗ y′ in Mn(U ⊗ V) then either x = x′ or y = y′.

Proof. Suppose for a contradiction that x ̸= x′, y ̸= y′. Since there is an edge from
x⊗ y → x′ ⊗ y′ in Mn(U ⊗ V), then there exists

a⊗ b ∈ ∆+
n (x⊗ y) ∩∆−

n (x′ ⊗ y′).

Then we have by [25, Lemma 7.2.9] that there exists i such that a ∈ ∆+
i x ∩∆−

i x
′

and b ∈ ∆(−)i
n−i y ∩ ∆(−)i+1

i y′. Then by assumption, we get a ∈ cl x ∩ cl x′ and
b ∈ cl y∩ cl y′. Therefore, we get dim a ≤ frdimU and dim b ≤ frdimV , so dim(a⊗
b) ≤ frdimU + frdimV and by Lemma 5.5.17, we obtain that frdimU + frdimV <
frdim(U ⊗ V) = n, which contradicts a⊗ b ∈ ∆+

n (x⊗ y). ■

Lemma 5.5.19. Let U and V be molecules and let n := frdim (U ⊗ V). If there
is an edge from x⊗ y → x′ ⊗ y in Mn(U ⊗ V), then there is an edge from x to x′
in MfrdimUU .

Proof. Let let a ⊗ b ∈ ∆+
n (x⊗ y) ∩ ∆−

n (x′ ⊗ y). We have again by [25, Lemma
7.2.9] that there exists i such that a ∈ ∆+

i x ∩∆−
i x

′. If i < frdimU , then dim(a⊗
b) = dim(a) + dim(b) < frdimU + dimV = frdim(U ⊗ V) (by Lemma 5.5.17),
contradicting the fact that a⊗ b ∈ ∆+

n (x⊗ y). Therefore, i = frdimU , so there is
an edge from x to x′ in MfrdimUU . ■

Similarly, we may prove:

Lemma 5.5.20. Let U and V be molecules and let n := frdim (U ⊗ V). If there
is an edge from x⊗ y → x⊗ y′ in Mn(U ⊗ V), then:

• If dim x is even there is an edge from y to y′ in MfrdimV V .

• If dim x is odd there is an edge from y′ to y in MfrdimV V .

Proposition 5.5.21. Let U and V be molecules and let n := frdim (U ⊗ V). If
MfrdimUU and MfrdimV V are acyclic then so is Mn(U ⊗ V).

149

Proof. Assume for a contradiction that there exits x1 ⊗ y1, . . . , xk ⊗ yk, x1 ⊗ y1 a
cycle in Mn(U ⊗ V). We have by Lemma 5.5.18 and Lemma 5.5.19 that either
xi = xi+1 or there is an edge from xi to xi+1 in MfrdimUU for 1 ≤ i ≤ k − 1.
Thus if there exists i such that xi ̸= x1, by considering the set xi, we would obtain
a cycle in MfrdimUU . Otherwise, if xi = x1 for all i by applying Lemma 5.5.18
and Lemma 5.5.20, we obtain a cycle MfrdimV V with the direction of the cycle
controlled by the parity of dim x1. ■

Note that the results above are not enough to show that frame-acyclicity is pre-
served under taking Gray products since not all submolecules of U ⊗ V are of the
form u⊗ v with u ⊑ U and v ⊑ V . Below we present an example of a submolecule
which is not the Gray product of two submolecules.

Example 5.5.22 — Let U be the 1-dimensional atom. Then, U⊗U is the following
molecule:

3 •

0 • 2 •

1 •

2 3

0 1

0

The input boundary of U ⊗ U (highlighted in red) is an example of a submolecule
which is not the product of two submolecules.

150

Chapter 6

Future work

One of the questions that remains to be answered is:

Question 6.0.1. Is the rewritable submolecule problem NP-hard?

Motivated by the examples that we saw, we believe the answer to this question
is affirmative for the general case. This points toward a possible complexity gap
between the 3-dimensional and 4-dimensional rewrite systems. However, proving
such results — even in the 4-dimensional case — remains challenging. Molecule U1
from Example 4.5.1 hinted at the fact that there may be a better running time for
molecules that are not frame-acyclic, but are convex - thus generalising our results.
At the moment, it seems that progress on this problem depends on the following:

• Generalise the definition of obstructions to include more than two top-dimen-
sional elements.

• Generalise the definition of obstructions to account for obstructions that may
happen at lower dimensions.

• Give a precise definition to what it means for a rewrite to be “parallelisable”
and for the concept of “solving an obstruction”.

We believe that by developing the theory of obstructions and investigating the
running time of the subdiagram matching algorithm for convex molecules, would
bring us closer to answering Question 6.0.1.
Moreover, in the paradigm of rewrites as computations, studying how the lower-
dimensional elements of two (or more) rewrites interact, will provide a basis for
studying situations such as concurrency or deadlock in the framework of higher-
dimensional rewriting. For example, let’s take a look at molecule U1 from Ex-
ample 4.5.1. Even though U1 is not frame-acyclic and we have the case of the
2-dimensional rewrites in the closures of A and B interacting in such a way that
hints towards a dependency of A on B or vice-versa, we know that these rewrites
can be parallelised and do not impact the order in which A or B can be applied -
i.e., the order in which the computations are executed does not affect the outcome.
However, molecule U2 exhibits what we called a dependency: rewrite A has to wait
for B to happen.

151

When studying the nature of higher-dimensional computations, it is important to
know the nature of the computations that are going on at a lower dimension and
know how they interact to avoid situations such as deadlocks or reaching a stage
when a computation that ought to happen cannot occur since its “requirements”
are not met.
With this in mind, our long-term goal is to study the rewrite-theoretic aspects -
such as critical pair analysis, confluence and termination - of higher-dimensional
rewrite systems within the framework described in this thesis. Work in this vein
has been done for 2-dimensional or 3-dimensional rewrite systems in [41, 42] in
the framework of computads or polygraphs [1, 11, 52] or in [9] where the authors
study the confluence for string diagram rewrite systems in symmetric monoidal
categories, which are a special case of the rewrite systems that can be expressed in
our framework. We believe that the results about obstructions will provide valuable
insights into the study of these rewrite theoretic aspects for rewrite systems of
dimension greater or equal than 4.

152

Bibliography

[1] D. Ara, A. Burroni, Y. Guiraud, P. Malbos, F. Métayer, and S. Mimram.
“Polygraphs: From Rewriting to Higher Categories”. In: London Mathemat-
ical Society Lecture Note Series. Cambridge University Press, 2025, pp. 572–
583. doi: 10.1017/9781009498968.

[2] D. Ara and G. Maltsiniotis. Joint et tranches pour les ∞-catégories strictes.
Société Mathématique de France, 2020. doi: 10.24033/msmf.473.

[3] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Univer-
sity Press, 1998. doi: 10.1017/CBO9781139172752.

[4] L. Babai. “Graph isomorphism in quasipolynomial time [extended abstract]”.
In: Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing. ACM, 2016, pp. 684–697. doi: 10.1145/2897518.2897542.

[5] T. Beke. “Categorification, term rewriting and the Knuth–Bendix proce-
dure”. In: Journal of Pure and Applied Algebra 215.5 (2011), pp. 728–740.
issn: 0022-4049. doi: 10.1016/j.jpaa.2010.06.019.

[6] J. Bénabou. “Introduction to bicategories”. In: Reports of the Midwest Cate-
gory Seminar. Berlin, Heidelberg: Springer Berlin Heidelberg, 1967, pp. 1–77.
doi: 10.1007/BFb0074299.

[7] F. Bonchi, F. Gadducci, A. Kissinger, P. Sobocinski, and F. Zanasi. “String
diagram rewrite theory I: Rewriting with Frobenius structure”. In: Journal
of the ACM (JACM) 69.2 (2022), pp. 1–58. doi: 10.1145/3502719.

[8] F. Bonchi, F. Gadducci, A. Kissinger, P. Sobocinski, and F. Zanasi. “String
diagram rewrite theory II: rewriting with symmetric monoidal structure”. In:
Mathematical Structures in Computer Science 32.4 (2022), pp. 511–541. doi:
10.1017/S0960129522000317.

[9] F. Bonchi, F. Gadducci, A. Kissinger, P. Sobocinski, and F. Zanasi. “String
Diagram Rewrite Theory III: Confluence with and without Frobenius”. In:
Mathematical Structures in Computer Science 32.7 (2022), pp. 829–869. doi:
10.1017/S0960129522000123.

[10] G. Bonfante and Y. Guiraud. “Polygraphic programs and polynomial-time
functions”. In: Logical Methods in Computer Science 5.2: 14 (2009), pp. 1–37.
doi: 10.2168/LMCS-5(2:14)2009.

153

https://doi.org/10.1017/9781009498968
https://doi.org/10.24033/msmf.473
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1016/j.jpaa.2010.06.019
https://doi.org/10.1007/BFb0074299
https://doi.org/10.1145/3502719
https://doi.org/10.1017/S0960129522000317
https://doi.org/10.1017/S0960129522000123
https://doi.org/10.2168/LMCS-5(2:14)2009

[11] A. Burroni. “Higher-dimensional word problems with applications to equa-
tional logic”. In: Theoretical Computer Science 115.1 (1993), pp. 43–62. doi:
10.1016/0304-3975(93)90054-W.

[12] E. Cheng and A. Lauda. “Higher-dimensional categories: an illustrated guide
book”. In: (2004). Online preprint. url: https://eugeniacheng.com/wp-
content/uploads/2017/02/cheng-lauda-guidebook.pdf.

[13] M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. Martí-Oliet, and
C. Talcott. “Two decades of maude”. In: Logic, Rewriting, and Concurrency:
Essays Dedicated to José Meseguer on the Occasion of His 65th Birthday
(2015), pp. 232–254. doi: 10.1007/978-3-319-23165-5_11.

[14] J. Cockx, N. Tabareau, and T. Winterhalter. “The taming of the rew: a type
theory with computational assumptions”. In: Proc. ACM Program. Lang.
5.POPL (Jan. 2021). doi: 10.1145/3434341.

[15] N. Corbyn, L. Heidemann, N. Hu, C. Sarti, C. Tataru, and J. Vicary. “homo-
topy.io: a proof assistant for finitely-presented globular n-categories”. Online
preprint arXiv:2402.13179. 2024.

[16] A. Delpeuch and J. Vicary. “The Word Problem for Braided Monoidal Cat-
egories is Unknot-Hard”. In: Electronic Proceedings in Theoretical Computer
Science 372 (2022), pp. 72–87. doi: 10.4204/EPTCS.372.6.

[17] L. Dixon and A. Kissinger. “Open-graphs and monoidal theories”. In: Math-
ematical Structures in Computer Science 23.02 (2013), pp. 308–359. doi:
10.1017/S0960129512000138.

[18] C. Dorn. “Associative n-categories”. Online preprint arxiv:1812.10586. PhD
thesis. 2018.

[19] H. Ehrig, M. Pfender, and H. J. Schneider. “Graph-grammars: An algebraic
approach”. In: 14th Annual Symposium on Switching and Automata Theory
(swat 1973). 1973, pp. 167–180. doi: 10.1109/SWAT.1973.11.

[20] S. Forest. “Unifying notions of pasting diagrams”. In: Higher Structures 6.1
(2022), pp. 1–79. doi: 10.21136/HS.2022.01.

[21] Y. Guiraud. “Présentations d’opérades et systèmes de réécriture”. Theses.
Université Montpellier II - Sciences et Techniques du Languedoc, June 2004.
url: https://theses.hal.science/tel-00006863.

[22] Y. Guiraud. Rewriting methods in higher algebra. Thèse d’habilitation à
diriger des recherches, Université Paris 7. 2019. url: https://hal.science/
tel-02161197v1.

[23] Y. Guiraud. “Termination orders for three-dimensional rewriting”. In: Jour-
nal of Pure and Applied Algebra 207.2 (Oct. 2006), pp. 341–371. issn: 0022-
4049. doi: 10.1016/j.jpaa.2005.10.011.

[24] A. Hadzihasanovic. “A combinatorial-topological shape category for poly-
graphs”. In: Applied Categorical Structures 28.3 (2020), pp. 419–476. doi:
10.1007/s10485-019-09586-6.

[25] A. Hadzihasanovic. Combinatorics of higher-categorical diagrams. Online preprint
arXiv:2404.07273, 2024.

154

https://doi.org/10.1016/0304-3975(93)90054-W
https://eugeniacheng.com/wp-content/uploads/2017/02/cheng-lauda-guidebook.pdf
https://eugeniacheng.com/wp-content/uploads/2017/02/cheng-lauda-guidebook.pdf
https://doi.org/10.1007/978-3-319-23165-5_11
https://doi.org/10.1145/3434341
https://doi.org/10.4204/EPTCS.372.6
https://doi.org/10.1017/S0960129512000138
https://doi.org/10.1109/SWAT.1973.11
https://doi.org/10.21136/HS.2022.01
https://theses.hal.science/tel-00006863
https://hal.science/tel-02161197v1
https://hal.science/tel-02161197v1
https://doi.org/10.1016/j.jpaa.2005.10.011
https://doi.org/10.1007/s10485-019-09586-6

[26] A. Hadzihasanovic. “Diagrammatic sets and rewriting in weak higher cate-
gories”. Online preprint arXiv:2007.14505. 2020.

[27] A. Hadzihasanovic and D. Kessler. “Acyclicity Conditions on Pasting Dia-
grams”. In: Applied Categorical Structures 32 (Oct. 2024). doi: 10.1007/
s10485-024-09784-x.

[28] A. Hadzihasanovic and D. Kessler. “Data Structures for Topologically Sound
Higher-Dimensional Diagram Rewriting”. In: Electronic Proceedings in The-
oretical Computer Science 380 (2023), pp. 111–127. doi: 10.4204/eptcs.
380.7.

[29] A. Hadzihasanovic and D. Kessler. “Higher-dimensional subdiagram match-
ing”. In: 2023 38th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS). IEEE. 2023, pp. 1–13. doi: 10.1109/LICS56636.2023.
10175726.

[30] A. Hatcher. Algebraic topology. Cambridge University Press, 2002. isbn: 0-
521-79540-0. url: https://pi.math.cornell.edu/~hatcher/AT/AT.pdf.

[31] S. Henry. “Regular polygraphs and the Simpson conjecture”. Online preprint
arXiv:1807.02627. 2018.

[32] M. Johnson. “Linear term rewriting systems are higher dimensional string
rewriting systems”. In: The Unified Computation Laboratory: Modelling, Spec-
ifications, and Tools. Oxford University Press, Inc., 1992, pp. 101–110. isbn:
0198536844. url: https://web.science.mq.edu.au/~mike/pubclas.html.

[33] M. Johnson. “The combinatorics of n-categorical pasting”. In: Journal of
Pure and Applied Algebra 62.3 (1989), pp. 211–225. doi: 10.1016/0022-
4049(89)90136-9.

[34] J. Kock. “Graphs, hypergraphs, and properads”. In: Collectanea Mathematica
67.2 (2016), pp. 155–190. doi: 10.1007/s13348-015-0160-0.

[35] A. Krauss, C. Sternagel, R. Thiemann, C. Fuhs, and J. Giesl. “Termination
of Isabelle Functions via Termination of Rewriting”. In: Interactive Theorem
Proving. Ed. by Marko van Eekelen, Herman Geuvers, Julien Schmaltz, and
Freek Wiedijk. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 152–
167. isbn: 978-3-642-22863-6. doi: /10.1007/978-3-642-22863-6_13.

[36] Y. Lafont. “Towards an algebraic theory of Boolean circuits”. In: Journal of
Pure and Applied Algebra 184.2 (2003), pp. 257–310. issn: 0022-4049. doi:
10.1016/S0022-4049(03)00069-0.

[37] M. Makkai. “The word problem for computads”. Available at http://www.
math.mcgill.ca/makkai. 2005.

[38] A. Matsui, I. Obi, G. Sabbagh, L. Torres, D. Kessler, J. F. Meleiro, and K.
Muroya. “A Critical Pair Enumeration Algorithm for String Diagram Rewrit-
ing”. In: Applied Category Theory (ACT) (2025). to appear.

[39] J. Meseguer. “Twenty years of rewriting logic”. In: The Journal of Logic and
Algebraic Programming 81.7 (2012). Rewriting Logic and its Applications,
pp. 721–781. issn: 1567-8326. doi: 10.1016/j.jlap.2012.06.003.

155

https://doi.org/10.1007/s10485-024-09784-x
https://doi.org/10.1007/s10485-024-09784-x
https://doi.org/10.4204/eptcs.380.7
https://doi.org/10.4204/eptcs.380.7
https://doi.org/10.1109/LICS56636.2023.10175726
https://doi.org/10.1109/LICS56636.2023.10175726
https://pi.math.cornell.edu/~hatcher/AT/AT.pdf
https://web.science.mq.edu.au/~mike/pubclas.html
https://doi.org/10.1016/0022-4049(89)90136-9
https://doi.org/10.1016/0022-4049(89)90136-9
https://doi.org/10.1007/s13348-015-0160-0
https://doi.org//10.1007/978-3-642-22863-6_13
https://doi.org/10.1016/S0022-4049(03)00069-0
http://www.math.mcgill.ca/makkai
http://www.math.mcgill.ca/makkai
https://doi.org/10.1016/j.jlap.2012.06.003

[40] G. L. Miller. “Graph isomorphism, general remarks”. In: Journal of Computer
and System Sciences 18.2 (1979), pp. 128–142. issn: 0022-0000. doi: 10.
1016/0022-0000(79)90043-6.

[41] S. Mimram. “Computing Critical Pairs in 2-Dimensional Rewriting Systems”.
In: Leibniz International Proceedings in Informatics, LIPIcs 6 (Apr. 2010).
doi: 10.4230/LIPIcs.RTA.2010.227.

[42] S. Mimram. “Towards 3-Dimensional Rewriting Theory”. In: Logical Methods
in Computer Science Volume 10, Issue 2 (2014). issn: 1860-5974. doi: 10.
2168/lmcs-10(2:1)2014.

[43] T. Murata. “Petri nets: Properties, analysis and applications”. In: Proceedings
of the IEEE 77.4 (1989), pp. 541–580. doi: 10.1109/5.24143.

[44] D. Plump. “Critical pairs in term graph rewriting”. In: Mathematical Foun-
dations of Computer Science 1994. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 1994, pp. 556–566. doi: 10.1007/3-540-58338-6_102.

[45] D. Plump. “Essentials of Term Graph Rewriting”. In: Electronic Notes in
Theoretical Computer Science 51 (2002). GETGRATS Closing Workshop,
pp. 277–289. issn: 1571-0661. doi: 10.1016/S1571-0661(04)80210-X.

[46] D. Plump. “Hypergraph rewriting: critical pairs and undecidability of con-
fluence”. In: Term graph rewriting: theory and practice. 1993, pp. 201–213.
url: https://www-users.york.ac.uk/~djp10/Papers/wiley.93.pdf.

[47] J. Power. “An n-categorical pasting theorem”. In: Lecture Notes in Mathe-
matics. Springer Nature, 1991, pp. 326–358. doi: 10.1007/BFb0084230.

[48] D. Reutter and J. Vicary. “High-level methods for homotopy construction
in associative n-categories”. In: 2019 34th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS). IEEE. 2019, pp. 1–13. url: https:
//dl.acm.org/doi/10.5555/3470152.3470214.

[49] G. Rozenberg, ed. Handbook of graph grammars and computing by graph
transformation: volume I. foundations. USA: World Scientific Publishing Co.,
Inc., 1997. isbn: 9810228848. url: https://dl.acm.org/doi/10.5555/
278918.

[50] R. Steiner. “Omega-categories and chain complexes”. In: Homology, Homo-
topy and Applications 6.1 (2004), pp. 175–200. doi: 10.4310/HHA.2004.v6.
n1.a12.

[51] R. Steiner. “The algebra of directed complexes”. In: Applied Categorical
Structures 1.3 (1993), pp. 247–284. doi: 10.1007/BF00873990.

[52] R. Street. “Limits indexed by category-valued 2-functors”. In: Journal of
Pure and Applied Algebra 8.2 (1976), pp. 149–181. doi: 10.1016/0022-
4049(76)90013-X.

[53] R. Street. “Parity complexes”. In: Cahiers de topologie et géométrie différen-
tielle catégoriques 32.4 (1991), pp. 315–343. url: https://www.numdam.
org/item/CTGDC_1991__32_4_315_0/.

[54] J. Vicary and A. Delpeuch. “Normalization for planar string diagrams and a
quadratic equivalence algorithm”. In: Logical Methods in Computer Science
18 (2022). doi: 10.46298/LMCS-18(1:10)2022.

156

https://doi.org/10.1016/0022-0000(79)90043-6
https://doi.org/10.1016/0022-0000(79)90043-6
https://doi.org/10.4230/LIPIcs.RTA.2010.227
https://doi.org/10.2168/lmcs-10(2:1)2014
https://doi.org/10.2168/lmcs-10(2:1)2014
https://doi.org/10.1109/5.24143
https://doi.org/10.1007/3-540-58338-6_102
https://doi.org/10.1016/S1571-0661(04)80210-X
https://www-users.york.ac.uk/~djp10/Papers/wiley.93.pdf
https://doi.org/10.1007/BFb0084230
https://dl.acm.org/doi/10.5555/3470152.3470214
https://dl.acm.org/doi/10.5555/3470152.3470214
https://dl.acm.org/doi/10.5555/278918
https://dl.acm.org/doi/10.5555/278918
https://doi.org/10.4310/HHA.2004.v6.n1.a12
https://doi.org/10.4310/HHA.2004.v6.n1.a12
https://doi.org/10.1007/BF00873990
https://doi.org/10.1016/0022-4049(76)90013-X
https://doi.org/10.1016/0022-4049(76)90013-X
https://www.numdam.org/item/CTGDC_1991__32_4_315_0/
https://www.numdam.org/item/CTGDC_1991__32_4_315_0/
https://doi.org/10.46298/LMCS-18(1:10)2022

[55] F. Wiesner, Z. Chaoui, D. Kessler, A. Pappa, and M. Karvonen. Why quan-
tum state verification cannot be both efficient and secure: a categorical ap-
proach. Online preprint arXiv:2411.04767. 2024.

157

Appendix A

Paper I

A. Hadzihasanovic and D. Kessler. “Data Structures for Topologically Sound
Higher-Dimensional Diagram Rewriting”. In: Electronic Proceedings in Theoretical
Computer Science 380 (2023), pp. 111–127. doi: 10.4204/eptcs.380.7

159

https://doi.org/10.4204/eptcs.380.7

J. Master & M. Lewis (Eds.): Fifth International
Conference on Applied Category Theory (ACT 2022).
EPTCS 380, 2023, pp. 111–127, doi:10.4204/EPTCS.380.7

© A. Hadzihasanovic & D. Kessler

Data Structures for Topologically Sound
Higher-Dimensional Diagram Rewriting

Amar Hadzihasanovic
1 Tallinn University of Technology

2 Quantinuum, 17 Beaumont Street, Oxford, UK
amar@ioc.ee

Diana Kessler
Tallinn University of Technology

diana-maria.kessler@taltech.ee

We present a computational implementation of diagrammatic sets, a model of higher-dimensional
diagram rewriting that is “topologically sound”: diagrams admit a functorial interpretation as homo-
topies in cell complexes. This has potential applications both in the formalisation of higher algebra
and category theory and in computational algebraic topology. We describe data structures for well-
formed shapes of diagrams of arbitrary dimensions and provide a solution to their isomorphism prob-
lem in time O(n3 logn). On top of this, we define a type theory for rewriting in diagrammatic sets and
provide a semantic characterisation of its syntactic category. All data structures and algorithms are
implemented in the Python library rewalt, which also supports various visualisations of diagrams.

Introduction

This article concerns the computational implementation of higher-dimensional diagrams in the sense of
higher category theory, and contains some first steps in the computational complexity theory of diagram-
matic rewriting in arbitrary dimensions.

Higher-dimensional rewriting, as emergent from the theory of polygraphs [5] – see [12] for a survey –
is founded on an interpretation of rewrites as directed homotopies. A particular aim of our work is prov-
able topological soundness, namely, the existence of a functorial interpretation of rewrite systems as cell
complexes, and of rewrites as homotopies. This ensures that our implementation of higher-dimensional
rewriting can act as a formal system for homotopical algebra and higher category theory in all generality.

With this aim, we turn to the diagrammatic set model [13] developed by the first author as a combin-
atorial alternative to polygraphs. Diagrammatic sets have a dual nature as higher-dimensional rewrite
systems and “combinatorial directed cell complexes”. They support a model of weak higher categories
and, unlike polygraphs, are topologically sound.

Beside the formalisation of higher algebra and category theory, potential applications are manifold.
String diagram rewriting, which is a form of 3-dimensional rewriting, is arguably the characteristic
computational mechanism of applied category theory. It has been suggested [4] that even “classical”
forms of rewriting are more faithfully represented as diagram rewriting: for example, term rewriting
implemented as rewriting in monoidal categories with cartesian structure explicitates the “hidden costs”
of copying and deleting terms. In these contexts, it is important to have a grasp on the computational
complexity of the basic operations of diagram rewriting, to ensure that one’s cost model for a machine
operating by diagram rewriting is reasonable.

Via topological soundness, we also envisage applications to computational algebraic topology. Direc-
tedness of cells gives an algebraic grip on their pasting, which lends itself better to computation. Directed
cell complexes are also equipped with an orientation on their cells, which makes them naturally suited to
the computation of cellular homology.

112 Data Structures for Topologically Sound Higher-Dimensional Diagram Rewriting

Structure of the paper

In Section 1, we present some basic data structures from the theory of diagrammatic sets, together with
their formal encoding: in particular, oriented graded posets which are used to encode shapes of diagrams.

In Section 2, we focus on the implementation of regular molecules, the inductive subclass of oriented
graded posets corresponding to well-formed shapes of diagrams. To construct regular molecules, we
need to decide their isomorphism problem; for general oriented graded posets, this is equivalent to the
graph isomorphism problem (Proposition 2.11), not known to be in P. Our main result is a solution to
the isomorphism problem for regular molecules in time O(n3 logn) (Theorem 2.19), which also gives us
a canonical form, hence a unique representation of shapes of diagrams.

In Section 3, we move on to the formalisation of diagrams and diagrammatic sets. We present this
in the form of a type theory DiagSet living “on top” of our implementation of shapes of diagrams: the
terms, corresponding to diagrams, are “filtered by regular molecules”. This allows us to define formal
semantics and give a semantic characterisation of our formal system (Theorem 3.10).

Related work

A number of type theories for higher-categorical structures of arbitrary dimension have been defined in
recent years: most notably, Finster and Mimram’s CaTT [8], implementing the Maltsiniotis model of
weak higher categories [3], together with its “strictly associative” [10] and “strictly unital” [9] variants;
and the opetopic type theories by Ho Thanh, Curien, and Mimram [15, 6].

The former are not particularly concerned with diagram rewriting, and focus instead on the imple-
mentation of coherent globular composition; the link to our work is tenuous. The latter have some
commonality, albeit with a focus on a more restrictive class of shapes. In fact, DiagSet takes some in-
spiration not from one of the published opetopic type theories, but from a privately communicated variant
due to Curien, which similarly rests on a “black-boxed” implementation of opetopic shapes.

Most closely related is the work by Vicary, Bar, Dorn, and others on quasistrict [2] and later associative
[7, 17] n-categories, serving as the foundation of the homotopy.io proof assistant. While the aim is nearly
the same, we believe that our framework has a number of advantages over associative n-categories.

From a theoretical perspective, it is only conjectural that associative n-categories, in general, are to-
pologically sound or satisfy the homotopy hypothesis. They also currently lack connections with other
models of higher categories and a clear functorial viewpoint. On the other hand, diagrammatic sets are
topologically sound, satisfy a version of the homotopy hypothesis, and support a model of weak higher
categories with concrete functorial ties to well-established models.

From a user perspective, the main point of divergence is that diagrams in associative n-categories have
“strict units” but “weak interchange”, while our diagrams have “strict interchange” but need weak units
to model “nullary” inputs or outputs. For rewrite systems with many “nullary” generators, associative
n-categories may have a practical advantage, while diagrammatic sets are otherwise favoured.

Finally, in associative n-categories, diagram shapes are essentially descriptions of cubical tilings, and
by lack of strict interchange, each rewrite gets by default its own “layer” in the tiling. This makes it so a
“local” rewrite on a portion of a diagram leads to an inefficient “global” duplication of information. Our
“face poset” representation of diagrams, on the other hand, allows local rewrites to stay local, which is
more efficient and will be beneficial to the parallelisability of diagram rewriting.

A. Hadzihasanovic & D. Kessler 113

Implementation

All data structures, algorithms, and systems discussed in this article were implemented by the authors as
part of a Python library for higher-dimensional rewriting and algebra, called rewalt.1 An example of
rewalt code is included in Example 3.13. The library also supports various kinds of visualisation for
diagrams, optionally in the form of TikZ output. All the Hasse and string diagrams in this article were
generated by rewalt and included here with no subsequent retouching.

Acknowledgements

This work was supported by the ESF funded Estonian IT Academy research measure (project 2014-
2020.4.05.19-0001) and by the Estonian Research Council grant PSG764.

1 Basic data structures

1.1. In the theory of diagrammatic sets, the shape of a pasting diagram is encoded by its face poset,
recording whether a cell is located in the boundary of another cell, together with orientation data which
specifies whether an (n− 1)-dimensional cell is in the input or output half of the boundary of an n-di-
mensional cell. We call the mathematical structure containing these data an oriented graded poset. This
is essentially the same as what Steiner calls a directed precomplex [18] and Forest an ω-hypergraph [11].

1.2 (Graded poset). Let P be a finite poset with order relation ≤ and let P⊥ be P extended with a least
element ⊥. We say that P is graded if, for all x ∈ P, all directed paths from x to ⊥ in the Hasse diagram
H P⊥, with edges going from covering to covered elements, have the same length. If this length is n+1,
we let dim(x) := n be the dimension of x. We write Pn for the subset of n-dimensional elements of P.

1.3 (Oriented graded poset). An orientation on a finite poset P is an edge-labelling of its Hasse diagram
with values in {+,−}. An oriented graded poset is a finite graded poset with an orientation.

Implementation 1.4. If we linearly order the elements of an oriented graded poset in each dimension,
each element x is uniquely identified by a pair of integers (n,k), where n is the dimension of x, and k is
the position of x in the linear ordering of n-dimensional elements.
We then represent an oriented graded poset as a pair (face_data,coface_data) of arrays of arrays of
pairs of sets of integers, where

1. j ∈ face_data[n][k][i] if and only if (n−1, j) is covered by (n,k), and

2. j ∈ coface_data[n][k][i] if and only if (n+1, j) covers (n,k)

with orientation − (i= 0) or + (i = 1). We may implement the sets of integers as sorted arrays, or another
data type which supports binary search in logarithmic time. This defines a data type OgPoset.

This representation is essentially an adjacency list representation of the poset’s Hasse diagram, with
vertices separated according to their dimension, and incoming and outgoing edges separated according
to their label. If EP is the set of edges of the Hasse diagram of P, the OgPoset representation of P takes
space O(|P|+ |EP|).

Storing both face_data and coface_data is redundant since these are uniquely determined by each
other. However, most of the computations we need to perform on oriented graded posets require regular
access both to faces (covered elements) and cofaces (covering elements) of a given element, so it is
advantageous to be able to access them in constant time.

1Code: https://github.com/ahadziha/rewalt. Documentation: https://rewalt.readthedocs.io .

114 Data Structures for Topologically Sound Higher-Dimensional Diagram Rewriting

Example 1.5. Consider a diagram formed of one 2-cell with two input 1-cells and a single output 1-cell,
whiskered to the right with a single 1-cell. The following are representations of its shape as

• an oriented face poset, pictured as a Hasse diagram with input faces pointing upwards (in magenta)
and output faces downwards (in blue);

• a string diagram (0-cells are unlabelled, but correspond to bounded regions of the plane);

• the pair of face_data and coface_data (rows are outer array indices and columns inner array in-
dices).

0 1 2 3

0 1 2 3

0

3

2

10

0

face_data:
([], []) ([], []) ([], []) ([], [])
([0], [1]) ([1], [2]) ([2], [3]) ([0], [2])
([0,1], [3])
coface_data:
([0,3], []) ([1], [0]) ([2], [1,3]) ([], [2])
([0], []) ([0], []) ([], []) ([], [0])
([], [])

Remark 1.6. The representation of an oriented graded poset (up to isomorphism) is not unique: any
permutation of the linear order on elements in each dimension leads to an equivalent representation.

1.7. Many important computations are performed on (downwards) closed subsets, rather than the whole
of an oriented graded poset. In particular, the structure of an oriented graded poset supports a purely
combinatorial definition of the input and output boundary of a closed subset.

1.8 (Closed subsets). Let P be an oriented graded poset and U ⊆ P. We say that U is closed if, for all
y ∈U and x ∈ P, if x≤ y then x ∈U . The closure of U is the subset clU := {x ∈ P | ∃y ∈U x≤ y}.

We let dim(U) be the maximum of dim(x) for x ∈U , or −1 if U is empty.

1.9 (Input and output boundaries). Let P be an oriented graded poset and U ⊆ P a closed subset. For all
α ∈ {+,−} and n ∈ N, let

• ∆α
n U ⊆U be the subset of elements x such that dim(x) = n and, if y ∈U covers x, then it covers it

with orientation α ;

• MnU ⊆U be the subset of elements x such that dim(x) = n and x is maximal in U (not covered by
any other element of U).

The input (α :=−) or output (α :=+) n-boundary of U is the closed subset

∂ α
n U := cl

(
∆α

n U ∪
⋃

k<n

MkU
)
.

We let ∂nU := ∂+
n U ∪∂−n U and omit n when n = dim(U)−1. For all x ∈ P, we let ∂ α

n x := ∂ α
n cl{x}.

Remark 1.10. It is convenient to also let ∂ α
−1U = ∂ α

−2U := /0, so that ∂ αU is defined for all U ⊆ P.
Example 1.11. Let U be the oriented face poset of Example 1.5. Then

∂−1 U = {(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2)},
∂+

1 U = {(0,0),(0,2),(0,3),(1,2),(1,3)},
∂−0 U = {(0,0)}, ∂+

0 U = {(0,3)}.

A. Hadzihasanovic & D. Kessler 115

Implementation 1.12. We represent a set of elements of an OgPoset as an array of sets of positions,
indexed by dimensions. This allows us to access the subset of elements of a given dimension in constant
time. The size of arrays can be fixed to be equal to the dimension of a specific OgPoset, or dynamically
adjusted to the dimension of each set of elements. Sets of positions can again be implemented as sorted
arrays. This defines a data type GrSet (for graded set).

1.13 (Map of oriented graded posets). A map f : P→ Q of oriented graded posets is a function of their
underlying sets that satisfies ∂ α

n f (x) = f (∂ α
n x) for all x ∈ P, n ∈N, and α ∈ {+,−}. We call an injective

map an inclusion. Oriented graded posets and their maps form a category ogPos.

Example 1.14. A closed subset of an oriented graded poset inherits the structure of an oriented graded
poset by restriction. Its subset inclusion is an inclusion of oriented graded posets.
Implementation 1.15. We represent a map f : P→ Q as an array of arrays of pairs of integers mapping,
together with pointers source,target to OgPoset representations of P and Q. This defines a data type
OgMap. As an array of arrays, mapping has the same size of P’s face_data, and is defined by

mapping[n][k] = (m, j) if and only if f ((n,k)) = (m, j).

This representation takes space O(|P|).

2 Unique representation of shapes of diagrams

2.1. In the theory of diagrammatic sets, shapes of diagrams form an inductively generated class of ori-
ented graded posets, called regular molecules after Steiner [18].

2.2 (Round subset). Let U be a closed subset of an oriented graded poset, n := dim(U). We say that U is
round if, for all k < n,

∂+
k U ∩∂−k U = ∂k−1U.

Remark 2.3. Roundness is called “spherical boundary” in [13].
Example 2.4. Shapes of 2-dimensional diagrams, as oriented face posets, are round precisely when

1. their string diagram representation is connected, and

2. all nodes of the string diagram have at least one input and one output wire.

For example, the oriented graded poset of Example 1.5 is not round: we have

∂0U = {(0,0),(0,3)} (∂+
1 U ∩∂−1 U = {(0,0),(0,2),(0,3)}.

On the other hand, the following oriented graded poset is round:

0 1 2 3

0 1 2 3 4

0 1
4

3

2

1
0

0

1

2.5 (Regular molecules). The class of regular molecules is generated by the following clauses.

116 Data Structures for Topologically Sound Higher-Dimensional Diagram Rewriting

• (Point). The terminal oriented graded poset • is a regular molecule.

• (Atom). Let U,V be round regular molecules such that dim(U) = dim(V) and, for all α ∈ {+,−},
∂ αU is isomorphic to ∂ αV . Then U ⇒ V is a regular molecule, where U ⇒ V is the essentially
unique oriented graded poset U ⇒V with the property that

1. U ⇒V has a greatest element, and
2. ∂−(U ⇒V) is isomorphic to U , while ∂+(U ⇒V) is isomorphic to V .

• (Paste). Let U,V be regular molecules and k <min(dim(U),dim(V)), such that ∂+
k U is isomorphic

to ∂−k V . Then the pushout U #k V of the span ∂+
k U →֒U , ∂+

k U
∼→֒ ∂−k V →֒V is a regular molecule.

A regular molecule is an atom if it has a greatest element; these are precisely the molecules whose final
generating clause is (Point) or (Atom).

The submolecule relation U ⊑V is the preorder generated by U,V ⊑U ⇒V and U,V ⊑U #kV .

Comment 2.6. The properties of regular molecules are explored in [13, Sections 1, 2]. Importantly, the
following results ensure that §2.5 is a valid definition:

1. the category ogPos has pushouts of inclusions;

2. if U and V are isomorphic regular molecules, they are isomorphic in a unique way;

3. input and output boundaries of regular molecules are regular molecules;

4. if U and V are round, then a pair of isomorphisms between ∂ αU and ∂ αV for α ∈ {+,−} extends
uniquely to an isomorphism between ∂U and ∂V .

The first three imply that U #k V is well-defined and does not depend on a choice of isomorphism between
∂+

k U and ∂−k V . The fourth implies that U ⇒V can be uniquely constructed by extending the isomorph-
isms ∂ αU

∼→֒ ∂ αV to an isomorphism ∂U
∼→֒ ∂V , then gluing U and V along this isomorphism, and

finally adding a greatest element with the appropriate orientation.
Example 2.7. Let arrow := (• ⇒ •) and binary := ((arrow #0 arrow)⇒ arrow). The shape of the dia-
gram of Example 1.5 is generated as binary #0 arrow, while the oriented graded poset of Example 2.4 is
generated as (cobinary #0 arrow)#1 (arrow #0binary), where cobinary := (arrow⇒ (arrow #0 arrow)).
Remark 2.8. As discussed in [13, §2.1], the pasting constructions − #k− satisfy the equations of com-
position in strict ω-categories up to unique isomorphism. It follows that the “same” regular molecule
may be constructed in different ways. For example, letting globe := (arrow⇒ arrow), we have

(globe #0 arrow)#1 (arrow #0 globe) ≃ globe#0 globe ≃ (arrow #0 globe)#1 (globe #0 arrow).

0 1 2

0 1 2 3

0 1

32

10

0 1

Implementation 2.9. We want to implement regular molecules as a subtype Shape of OgPoset with a
nullary constructor point and partial binary constructors atom(−,−) and pastek(−,−) for k ∈ N. In
order to implement the constructors, we need to be able to perform the following operations:

1. compute input and output k-boundaries;

A. Hadzihasanovic & D. Kessler 117

2. check if a closed subset is round;

3. determine if two regular molecules are isomorphic;

4. compute the pushout of a span of inclusions.

The first, second, and fourth of these admit straightforward algorithms of low-degree polynomial time
complexity, that do not rely on any special properties of regular molecules. The third problem, however,
is non-trivial. Indeed, the isomorphism problem generalised to all oriented graded posets is equivalent to
the graph isomorphism (GI) problem, which is not known to be in P; the best known algorithm, due to
Babai, runs in quasipolynomial time [1].
Remark 2.10. As customary in this context, a graph is a simple graph (no loops or multiple edges).

Proposition 2.11 — The isomorphism problem for oriented graded posets is GI-complete.

Proof. Deciding isomorphism of oriented graded posets is equivalent to deciding isomorphism of their
Hasse diagrams with {+,−}-labelled edges. The isomorphism problem for edge-labelled finite graphs
is an instance of the isomorphism problem for finite relational structures, which is GI-complete [16].

Conversely, a directed graph can be represented by its “oriented incidence poset”: the 0-dimensional
elements are the vertices, the 1-dimensional elements are the edges, the only input face of an edge is
its source, and the only output face of an edge is its target. Two directed graphs are isomorphic if and
only if their oriented incidence posets are isomorphic. Since GI reduces to the isomorphism problem for
directed graphs, it reduces to the isomorphism problem for 1-dimensional oriented graded posets. �

Nevertheless, in the special case of regular molecules, we can do much better. Our strategy is to
describe a deterministic traversal algorithm, where the traversal order depends only on the intrinsic
structure of a regular molecule as an oriented graded poset and not on its representation.

Given U,V : OgPoset representing regular molecules, we traverse both U and V , and then reorder
their elements in each dimension according to their traversal order. If U ′,V ′ : OgPoset are the reordered
versions of U,V , we then have

U ≃V if and only if U ′ ≡V ′.

We will show that, with this strategy, we can solve the isomorphism problem for regular molecules in
time O(n3 log n). A more precise upper bound is given in Theorem 2.19 below.

In addition to solving the isomorphism problem for regular molecules, the traversal order gives us a
canonical form for regular molecules in OgPoset form. If we implement the constructors of Shape in
such a way that they always produce an OgPoset in traversal order, we obtain that

for all U,V : Shape, U ≃V if and only if U ≡V ,

that is, we have a unique representation for shapes of diagrams.
The algorithm is described in Figure 1. At each iteration of the main loop (line 4), the current state is

fully described by the stack – including its top element, the focus – and by the list of marked elements.

Lemma 2.12 — Let V be an item on the stack. Then V is a regular molecule. If W is below V on the
stack, then V is a proper subset of W .

Proof. Initially, the stack only contains U , which is a regular molecule by assumption. Assume, induct-
ively, that the statement is true at the beginning of the current iteration with focus V , and that a set V ′ is
pushed onto the stack at the end. Then either

1. V ′ = ∂ αV for some α ∈ {+,−}, or

118 Data Structures for Topologically Sound Higher-Dimensional Diagram Rewriting

procedure TRAVERSE(U : regular molecule)
marked← []
stack← [U]
while stack is not empty do

5: focus← top of stack
dim← dim(focus)
if focus⊆marked then

pop focus from top of stack
else

10: if ∂−focus 6⊆marked then
push ∂−focus to top of stack

else
if focus= cl{x} for some x then

append x to marked
15: pop focus from top of stack

if ∂+focus 6⊆marked then
push ∂+focus on top of stack

else
y← first item of dimension dim− 1 in marked such that

20: y has an unmarked input coface in focus
x← unique input coface of y in focus
push cl{x} on top of stack

return marked

Figure 1: The traversal algorithm.

2. V ′ = cl{x} for some x ∈V .

In both cases, V ′ is a regular molecule and a proper subset of V (hence also of each item below V), under
the assumption that V is a regular molecule. �

Remark 2.13. In fact, any V that appears on the stack is either ∂−k U , which we call “U -linked”, or it is
cl{x} or ∂ α

k x, which we call “x-linked”, for some x ∈U . In the latter case, V is round, which implies that
it is also pure [13, Lemma 1.35]: its maximal elements all have the same dimension.

Lemma 2.14 — Suppose V is on the stack. Then all elements of V must be marked before any item below
V is accessed, or before any proper superset of V becomes the focus.

Proof. By Lemma 2.12, as long as V is on the stack, only V and its proper subsets can be on top. It
follows that, for a proper superset of V to be the focus, V must be popped from the stack at the end of an
iteration where V is the focus. There are only two ways this can happen:

• V was already fully marked before the current loop iteration, or

• ∂−V was fully marked and V = cl{x} for some x which is marked at the current loop iteration.

In both cases, ∂−V was already fully marked before the current loop iteration. In the latter case, if ∂+V
is already fully marked, then V = {x} ∪ ∂−V ∪ ∂+V is also fully marked. Otherwise, ∂+V (V gets
pushed onto the stack to replace V , and must be popped before any superset of V becomes the focus. By
the same case distinction, whenever ∂+V is popped, either

• it was fully marked, in which case V was fully marked, or

A. Hadzihasanovic & D. Kessler 119

• it is of the form cl{y} for some y which is marked at the current loop iteration.

Either way, since all regular molecules satisfy the globularity property ∂ α(∂+V) = ∂ α(∂−V)⊆ ∂−V , we
know that ∂+V , hence V , is fully marked at the end of the iteration, and nothing is added to the stack. �

Lemma 2.15 — Any subset V of U can be pushed onto the stack at most once.

Proof. Suppose V is pushed onto the stack. As long as V is on the stack, any subsequent addition to the
stack must be a proper subset of V , so it cannot be equal to V .

If V is popped from the stack, by Lemma 2.14, it must be fully marked before any item below it is
accessed. Since the algorithm checks if a set is fully marked before pushing it onto the stack, V can never
appear again. �

Lemma 2.16 — Let V be the focus, n := dim(V). Then either V is fully marked, or there exists an
n-dimensional element of V which is unmarked.

Proof. First, we prove a weaker result: either V is fully marked, or there exists a maximal element of V
which is unmarked.

Let x ∈V be marked. At some prior iteration, cl{x} must have been the focus, and by Lemma 2.14, in
order for V to become the focus, cl{x} must have been fully marked as well. Because

V =
⋃

k≤n

clMkV =
⋃

k≤n

⋃

x∈MkV

cl{x},

it follows that V is fully marked if and only if its maximal elements are all marked.
Now, V has one of the two forms in Remark 2.13. If V is of the second form, its maximal elements all

have the top dimension, so we only need to consider the case V = ∂−k U .
At the start of the algorithm, U, . . . ,∂−0 U are all consecutively added to the stack. So ∂−k U becomes

the focus either at this stage, in which case all its elements are unmarked, or after ∂−k−1U is fully marked.
In the latter case, any maximal element of ∂−k U of dimension strictly smaller than k also belongs to
∂−k−1U . �

Theorem 2.17 — The traversal algorithm is correct: given a regular molecule U, it terminates returning
a unique linear ordering of the elements of U.

Proof. As a particular case of Lemma 2.14, U must be fully marked before the stack is emptied. There-
fore, the algorithm either terminates after all elements have been traversed, or it does not terminate.

To prove that the algorithm does always terminate, it suffices to show that, unless all elements are
already marked, it always finds an element to mark. First of all, observe that, from any state, the algorithm
first goes through the following sequence of steps:

1. popping all fully marked subsets from the top of the stack;

2. once it reaches a subset which is not fully marked, successively pushing its lower-dimensional
input boundaries that are not fully marked onto the stack.

At the end of this sequence, we always reach a state in which the focus V is not fully marked, but ∂−V
is fully marked. Let us call such a V a proper focus.

We proceed by induction on dimension and proper subsets of a proper focus. If dim(V) = 0, since a
0-molecule always consists of a single element, V = {x}, and x gets marked at the current iteration.

120 Data Structures for Topologically Sound Higher-Dimensional Diagram Rewriting

Let n := dim(V). By Lemma 2.16, there is an unmarked x ∈Vn. If V = cl{x}, then x is marked at the
current iteration, and we are done. Otherwise, we prove that there always exists a pair (y,x) where x ∈Vn
is unmarked, and y is a marked input face of x. By [13, Lemma 1.16] applied to V , the coface x is unique
given y, so among such pairs we can pick the one where y comes earliest in the list of marked elements,
and this selects a unique x.

Let x ∈Vn be unmarked. By a dual version of [ibid., Lemma 1.37], there exists a sequence

y0→ x0→ . . .→ ym→ xm = x

where y0 ∈ ∆−n−1V , xi ∈Vn, yi is an input face of xi, and yi+1 is an output face of xi. Since V is a proper
focus, y0 is marked. Let k be the smallest index such that xk is unmarked; because xm is unmarked, such
a k exists. Then xi is marked for all i < k, hence cl{xi} is also marked. It follows that yk ∈ ∂+xk−1 is
marked, and the pair (yk,xk) satisfies our requirement.

Thus, the algorithm will find a unique x ∈ Vn and push cl{x} onto the stack. The next proper focus
will necessarily be a proper subset of V , and we conclude by the inductive hypothesis. �

2.18. In what follows, for a fixed regular molecule U , we let |En| be the number of edges between n and
(n−1)-dimensional elements in the Hasse diagram of U , and we let

|Umax| := max
n
|Un|, |Emax| := max

n
|En|.

Theorem 2.19 — The traversal algorithm admits an implementation running in time

O
(
|U |2(|Emax| · log |Emax|+ |Umax| · log |Umax|)

)
.

Proof. First of all, we represent any closed set on the stack with its graded set of maximal elements. To
initialise the algorithm, we only need to compute the maximal elements of U . This can be done in time
O(|U |) by going through the elements of U and checking if their set of cofaces is empty.

Next, let us find an upper bound for the number of iterations of the main loop (line 4). Let V be a set
on the stack, n := dim(V). Then V can become the focus

• at most once before pushing ∂−V onto the stack (line 11),

• at most once before pushing cl{y} onto the stack for each y ∈Vn (line 22), and

• at most once to be popped from the stack (line 8),

after which, by Lemma 2.15, it can never appear again. Thus, the number of loop iterations with V as
focus is bounded by |Vn|+2.

By Remark 2.13, every set V on the stack is either “U -linked” or “x-linked” for some x ∈U . There are
(dim(U)+1) many U -linked focusses and (2dim(x)+1) many x-linked focusses. Then

• the number of loop iterations with U -linked focusses is bounded by |U |+2dim(U)+2, and

• for each x, the number of iterations with x-linked focusses is bounded by |cl{x}|+4dim(x)+2.

Since there are |U | elements, |cl{x}| ≤ |U |, and dim(x) ≤ dim(U), we have a coarse upper bound of
(|U |+1)(|U |+4dim(U)+2) on the total number of iterations, which is O(|U |2).

Next, in our implementation, we split the list of marked elements into three objects: a list order (for the
total traversal order), an array of lists grorder (for the traversal order split by dimension), and a graded
set marked (for the set of marked elements).

Consider a single loop iteration with focus V , n := dim(V).

A. Hadzihasanovic & D. Kessler 121

(Line 7). By Lemma 2.16, to check if V is fully marked, it suffices to check whether Vn ⊆ markedn.
Since both are sorted arrays of integers, they can be compared in time linear in |Vn|+ |markedn|, which is
O(|Un|). At this stage, we may also record the unmarked n-dimensional elements of V in a sorted array
unmarked without affecting the complexity.
(Line 10). To compute the maximal elements of ∂−V and ∂+V , we may use different strategies depend-
ing on whether V is “U -linked” or not.

If V = ∂−n U , we compute the (n−1)-dimensional elements of ∂−V = ∂−n−1U simply by going through
the elements of Un−1 and checking which ones have empty sets of output cofaces, in time O(|Un−1|).
Lower-dimensional maximal elements are shared between V and ∂−V , so we may then point from the
latter to the former, at no extra cost.

If V is not U -linked, V and its boundaries are pure, so the set of maximal elements of ∂ αV is equal
to ∆αV , and each of its elements is covered by an element of Vn. To compute it, we add all the in-
put and output faces of all x ∈ Vn to sets in_faces and out_faces, respectively, then use the relations
∆−V = in_faces\out_faces and ∆+V = out_faces\ in_faces.

There are O(|En|) faces of elements of Vn, and we can sort in_faces and out_faces, remove duplicates,
and compute their difference in time O(|En| · log |En|).

At this stage, we also create an associative array candidates as follows: whenever x ∈ Vn is in
unmarked, and y is an input face of x, we add the position of x as a value to candidates, indexed by
the position of y. We then sort the indices of candidates. This also takes time O(|En| · log |En|) so it does
not affect the overall complexity.
(Lines 10, 16). By the same reasoning applied to line 7, checking if ∂−V and ∂+V are fully marked
takes time O(|Un−1|).
(Line 14). If Vn has a single element that we mark, adding it to order and grorder takes constant time
with an appropriate implementation of lists. Adding it to marked takes O(|Un|).
(Lines 19—21). To select the next focus we traverse grordern−1 starting from the first item and search
for each item in the indices of candidates until we find a hit y. This takes time O(|Un−1| · log |Un−1|) in
the worst case. The next focus will be cl{x}, where x is the value corresponding to index y.

Overall, the worst-case complexity is O(|Un|+ |En| · log |En|+ |Un−1| · log |Un−1|). Using the bounds
|Un|, |Un−1| ≤ |Umax| and |En| ≤ |Emax|, and multiplying by our bound on the number of iterations, we
conclude. �

3 A type theory for higher-dimensional rewriting

3.1. We rapidly go through the definitions of diagrammatic sets and some related notions. For a thorough
treatment, we refer to [13, Section 4 and onwards], and to [14, Section V] for diagrammatic complexes
as presentations of higher-dimensional theories.

3.2 (Diagrammatic set). Let (to be read atom) be a skeleton of the full subcategory of ogPos on
the atoms of every dimension. A diagrammatic set is a presheaf on . Diagrammatic sets and their
morphisms of presheaves form a category Set.

3.3. We identify with a full subcategory →֒ Set via the Yoneda embedding. With this identi-
fication, we use morphisms in Set as our notation for both elements and structural operations of a
diagrammatic set X :

• x ∈ X(U) becomes x : U → X , and

• for each map f : V →U in , X(f)(x) ∈ X(V) becomes f ;x : V → X .

122 Data Structures for Topologically Sound Higher-Dimensional Diagram Rewriting

The embedding →֒ Set extends along pushouts of inclusions to the full subcategory of ogPos on the
regular molecules.

3.4 (Diagrams and cells). Let X be a diagrammatic set and U a regular molecule. A diagram of shape
U in X is a morphism x : U → X . A diagram is a cell if U is an atom. For all n ∈ N, we say that x is an
n-diagram or an n-cell when dim(U) = n.

If U decomposes as U1 #k U2, we write x = x1 #k x2 for xi := ıi;x, where ıi is the inclusion Ui →֒U for
i∈ {1,2}. Let ıαk : ∂ α

k U →֒U be the inclusions of the k-boundaries of U . The input k-boundary of x is the
diagram ∂−k x := ı−k ;x and the output k-boundary of x is the diagram ∂+

k x := ı+k ;x. We write x : y−⇒ y+

to express that ∂ α
k x = yα for each α ∈ {+,−}.

3.5 (Diagrammatic complex). For each n ∈ N, let n be the full subcategory of on the atoms of
dimension ≤ n, and let −1 be the empty subcategory. The restriction functor Set→ PSh(n) has a
left adjoint; let σ≤n be the comonad induced by this adjunction. The n-skeleton of a diagrammatic set X
is the counit σ≤nX → X . For all k ≤ n, the k-skeleton factors uniquely through the n-skeleton of X .

A diagrammatic complex is a diagrammatic set X together with a set X = ∑n∈NXn of generating
cells such that, for all n ∈ N,

⊔
x∈Xn

∂U(x)

σ≤nXσ≤n−1X

⊔
x∈Xn

U(x)

(∂x)x∈Xn (x)x∈Xn

is a pushout in Set, where U(x) denotes the shape of x. A diagrammatic complex is finite if X is finite.

3.6 (Support-based diagrammatic complex). Each cell in a diagrammatic complex (X ,X) is uniquely of
the form (p : U ։V, x : V →X), where p is a surjective map of atoms and x∈X . We let supp(p,x) := x,
the support of (p,x).

A support-based diagrammatic complex is the quotient of a diagrammatic complex by the relations

x∼ y if and only if supp(ı;x) = supp(ı;y) for all inclusions of atoms ı : V →֒U, (1)

for all atoms U and cells x,y : U → X . We let Cpxfsb denote the category of finite, support-based
diagrammatic complexes with morphisms of their underlying diagrammatic sets.

3.7. We define a dependent type theory for diagrammatic sets – more precisely, for finite, support-based
diagrammatic complexes – that relies on an underlying unique representation of regular molecules and
their maps, treated as a “black box”. Of course, in the previous section we have provided such an
implementation and proved that it is computationally feasible. Nevertheless, it is useful to separate its
abstract properties from the implementation details.

3.8 (DiagSet). Let V be an infinite set of variables. We define a type theory DiagSet as follows.
Terms. A term t is a pair of a regular molecule U , the shape of t, and a function t : U → V. We write
t/U to express that t is a term of shape U . Maps p : U →V act on terms by precomposition: if t/V is a
term, then p∗t := (p; t)/U . In particular, we let ∂ α

k t := (ıαk ; t)/∂ α
k V for all k ∈ N and α ∈ {+,−}.

Types. A type A is either ∅ or an expression t ⇒ s where t,s are terms. We may annotate a term t of
shape U with the type A :=∅ if U ≡ •, and A := ∂−t⇒ ∂+t otherwise.
Contexts. A context Γ is a list x1 : A1, . . . ,xn : An of typed variables. We consider two contexts to be
equal if they are equal up to a permutation. If x : A is a typed variable, we say that x has shape • if A≡∅,
and U ⇒V if A≡ t/U ⇒ s/V . We write x/U : A to express that x : A has shape U .

A. Hadzihasanovic & D. Kessler 123

Substitutions. A substitution σ is a list x1 7→ t1, . . . ,xn 7→ tn of assignments of terms to variables. We
consider two substitutions to be equal if they are equal up to a permutation.
Judgments. We consider three kinds of judgments:

• Γ ⊢ meaning that Γ is a well-formed context,

• Γ ⊢ t meaning that t is a well-formed term in context Γ, and

• ∆ ⊢ σ : Γ meaning that σ is a well-formed substitution from context ∆ to context Γ.

The inference rules of DiagSet are the following. We use 〈〉 to indicate the empty list.

Rules for contexts.

init

〈〉 ⊢
Γ ⊢

pt

Γ, x : ∅ ⊢
Γ ⊢ t/U : r−⇒ r+ Γ ⊢ s/V : r−⇒ r+ U,V round

gen

Γ, x : t⇒ s ⊢

(where x ∈ V is fresh)
Rules for terms.

Γ ⊢ (x/V : A) ∈ Γ U atom p : U ։V surjective
cell

Γ ⊢ p∗x̂/U

Γ ⊢ t/U Γ ⊢ s/V ∂+
k t ≡ ∂−k s

pastek, k < min(dim(U),dim(V))
Γ ⊢ (t #k s)/(U #k V)

Rules for substitutions.

Γ ⊢
id

Γ ⊢ 〈〉 : Γ

∆ ⊢ σ : Γ Γ, x : s/U ⇒ r/V ⊢ ∆ ⊢ t/U ⇒V : s[σ]⇒ r[σ]
ext

∆ ⊢ 〈σ , x 7→ t〉 : (Γ, x : s⇒ r)

In the rules cell and paste, the terms x̂ and t #k s are defined as follows:

• x̂ is the unique term of shape V which sends the greatest element of V to x, and, if A ≡ t ⇒ s, is
equal to t on ∂−V and to s on ∂+V ;

• t #k s is the unique term of shape U #k V that is equal to t on U →֒ (U #k V) and to s on V →֒ (U #k V).

The side conditions for gen and paste ensure that this is well-defined.
To define the action t[σ] of a well-formed substitution σ on a term t, we extend σ to a function V→V

as follows: for all x ∈ V, if (x 7→ t/U) ∈ σ , we let σ(x) := t(⊤), where ⊤ is the greatest element of
U ; otherwise, σ(x) := x. Then t[σ] is the composite of t : U → V and σ : V→ V. Note that this is
well-defined because a well-formed substitution assigns to each variable a term whose shape is an atom.

3.9 (Syntactic category). The syntactic category Ctx[DiagSet] has

• well-formed contexts Γ as objects, and

• well-formed substitutions as morphisms from ∆ to Γ,

with the obvious composition of substitutions, and empty substitutions as identities.

Theorem 3.10 — The category Ctx[DiagSet]op is equivalent to Cpxfsb.

124 Data Structures for Topologically Sound Higher-Dimensional Diagram Rewriting

Sketch of proof. We define an encoding enc of finite support-based diagrammatic complexes, diagrams,
and morphisms as contexts, terms, and substitutions. Given (X ,X), we pick an injective function
name : X → V, assigning unique variable names to the generating cells of X .

For all diagrams d : U → X , we define a term enc(d) as follows: for all x ∈U , we let enc(d)(x) be
equal to name(supp(d|cl{x})). Since (X ,X) is support-based, enc(d)≡ enc(d′) implies d = d′.

Let n be the greatest dimension in which Xn is non-empty, and pick a linear ordering x1, . . . ,xmk of
Xk for all k ≤ n. We let enc(X ,X) := Γ0, . . . ,Γn, where

Γk := name(x1) : enc(∂−x1)⇒ enc(∂+x1), . . . , name(xmk) : enc(∂−xmk)⇒ enc(∂+xmk).

By the construction of X as a colimit of its generating cells, any map X → Y is uniquely determined by
what it does on X . Given a map f : (X ,X)→ (Y,Y) in Cpxfsb, we let enc(f) be the substitution

〈nameX(x) 7→ encY (f (x))〉x∈X .

Conversely, we define an interpretation J−K of well-formed contexts, terms, and substitutions by induc-
tion on inference rules of DiagSet. At each step the interpretation JΓK of a well-formed context is a
support-based diagrammatic complex with one generator Jx̂K of shape U for each variable x/U in Γ.

• (init) The interpretation of the empty context is the initial diagrammatic set.

• (pt) Suppose JΓK is defined. The interpretation of Γ, x : ∅ is the coproduct JΓK+•. The interpret-
ation of x̂ is the inclusion • →֒ JΓK+•.

• (gen) Suppose JΓK and Jt/UK,Js/V K are defined. The interpretation of Γ, x : t ⇒ s is the pushout
of ∂ Jx̂K : ∂ (U ⇒ V)→ JΓK and ∂ (U ⇒ V) →֒ (U ⇒ V), quotiented by the equations (1), where
∂ Jx̂K is equal to JtK on ∂−(U ⇒V) and to JsK on ∂+(U ⇒V).

• (cell) Suppose JΓK is defined and has a generating cell Jx̂K. The interpretation of p∗x̂ is p;Jx̂K.

• (pastek) Suppose JΓK and JtK,JsK are defined with ∂+
k JtK = J∂+

k tK = J∂−k sK = ∂−k JsK. The inter-
pretation of t #k s is the diagram JtK #k JsK.

• (id) The interpretation of the empty substitution in context Γ is the identity of JΓK.

• (ext) Suppose JσK and JtK are defined, where Jx̂K and JtK both have the same shape U . By the
construction of JΓ,xK as a colimit of JΓK and U , the pair of JσK : JΓK→ J∆K and JtK : U → JΓK
induces a unique morphism Jσ ,x 7→ tK : JΓ,xK→ J∆K.

It is routine to check that enc and J−K define contravariant functors between Cpxfsb and Ctx[DiagSet],
and that they are each other’s inverse up to natural isomorphism. �

Remark 3.11. The proof of Theorem 3.10 gives a semantic characterisation of well-formed terms as
diagrams in a diagrammatic set. An immediate consequence is that the following rule is admissible:

Γ ⊢ t/V p : U →V map
pb

Γ ⊢ p∗t/U

where p is an arbitrary map of regular molecules.

Comment 3.12. A sticking point in our type theory is the fact that cell is parametrised by an arbitrary
surjective map of atoms p. This is necessary to access the “weak units” and degenerate cells which in
our framework are needed, among other things, to model nullary operations in an algebraic theory.

A. Hadzihasanovic & D. Kessler 125

In practice, however, this is the one point in which the underlying implementation of regular molecules
and their maps has to be explicitly accessed in order to define p and its domain. To avoid this, in a
practical implementation, we want to include explicitly some extra admissible rules, corresponding to
the application of useful maps that are parametric in their codomain.

In particular, we want to explicitly include

• the trivial case p≡ idU :

Γ ⊢ (x/U : A) ∈ Γ
cell′

Γ ⊢ x̂/U
,

• unit rules, modelling [13, §4.16]:

Γ ⊢ t/U
unit

Γ ⊢ unit(t) := τ∗(t) : t⇒ t
,

• left and right unitor rules, modelling [ibid., §4.17]:

Γ ⊢ t/U V ⊑ ∂−U round
lunitor

Γ ⊢ lunitorV (t) := (ℓ−V →֒U)
∗t

Γ ⊢ t/U V ⊑ ∂+U round
runitor

Γ ⊢ runitorV (t) := (r−V →֒U)
∗t

where V can be specified, for example, by the set of positions of its maximal elements.

We may also have extra rules for simplex and cube degeneracy maps and for cube connection maps, in
the case where U is an oriented simplex or cube as in [ibid., §3.33]. All of these are implemented as
diagram methods in rewalt.
Example 3.13. As an example, we give a presentation in DiagSet of the theory of a left-unital binary
operation, together with its implementation in rewalt. In the framework of diagrammatic sets, a many-
sorted “monoidal theory” is presented by a diagrammatic complex with a single 0-cell; this is analogous
to the way a monoidal category is a bicategory with a single 0-cell. The sorts are generating 1-cells, the
basic operations are generating 2-cells, and “oriented equations” are generating 3-cells.

First, we add a single 0-cell x and a single sort a.

init

〈〉 ⊢
pt

x : ∅
cell′

x : ∅ ⊢ x̂

x : ∅ ⊢ x̂ x : ∅ ⊢ x̂
gen

x : ∅, a : x̂⇒ x̂ ⊢
cell′

x : ∅, a : x̂⇒ x̂ ⊢ â

1 import rewalt
2 Lun = rewalt.DiagSet ()
3 x = Lun.add(’x’)
4 a = Lun.add(’a’, x, x)

Let Γ := x : ∅, a : x̂⇒ x̂. We add a binary operation m.

Γ ⊢ â Γ ⊢ â
paste0

Γ ⊢ â #0 â Γ ⊢ â
gen

Γ, m : â #0 â⇒ â ⊢
cell′

Γ, m : â#0 â⇒ â ⊢ m̂

5 m = Lun.add(’m’, a.paste(a), a)

Let Γ′ := Γ, m : â #0 â⇒ â. We produce a weak unit on x and add a nullary operation u.

Γ′ ⊢ x̂
unit

Γ′ ⊢ unit(x̂) Γ′ ⊢ â
gen

Γ′, u : unit(x̂)⇒ â ⊢
cell′

Γ′, u : unit(x̂)⇒ â ⊢ û

6 u = Lun.add(’u’, x.unit (), a)

126 Data Structures for Topologically Sound Higher-Dimensional Diagram Rewriting

Let Γ′′ := Γ′, u : unit(x̂)⇒ â. We produce a left unitor 2-cell on a, and add an “oriented equation”
exhibiting the fact that u is a left unit for m.

Γ′′ ⊢ û Γ′′ ⊢ â
paste0

Γ′′ ⊢ û #0 â Γ′′ ⊢ m̂
paste1

Γ′′ ⊢ (û #0 â)#1 m̂

Γ′′ ⊢ â/arrow
lunitor

Γ′′ ⊢ lunitor∂−arrow(â)
gen

Γ′′, lu : ((û #0 â)#1 m̂)⇒ lunitor∂−arrow(â) ⊢

7 lu = Lun.add(’lu’, u.paste(a).paste(m), a.lunitor ())

The following is a representation of lu as a term of DiagSet, that is, an oriented graded poset la-
belled with names, together with string diagram representations of lu, its input boundary, and its output
boundary, and the rewalt code that generated them.

0,x 1,x 2,x

0,x 1,a 2,a 3,a

0,u 1,m 2,a

0,lu
a

mu

lu

a

a

a
x

u

m
a

ax

8 lu.hasse(tikz =True)
9 lu.draw(bgcolor =’gray !10 ’, tikz =True)

10 lu.input.draw (bgcolor=’gray !10’, tikz =True)
11 lu.output.draw (bgcolor=’gray !10’, tikz=True)

Comment 3.14. Provided we have a unique underlying representation of shapes, as described in Section
2, every term of DiagSet also has a unique representation. In this sense, terms of DiagSet are “noncom-
putational”: all the computation, which consists exclusively of computing and matching shapes, happens
under the hood before a term is even created, so the equality theory of terms is trivial.

This is intended. Rather than a computational theory in itself, DiagSet is intended as a substrate for
computational theories according to the paradigm of higher-dimensional rewriting. A term t : r−⇒ r+

can be seen as a rewrite of the “lower-dimensional” term r− to the term r+, and the extension of t via the
pastek rules establishes how the rewrite can happen in a wider context. In this sense, every well-formed
context in DiagSet contains its own internal computational theory on terms of each dimension.
Remark 3.15. While “rewrites in context” can be built with the pastek rules, this is quite impractical. In
practice, one wants to start from a diagram and apply a generating rewrite directly to a subdiagram. This
is modelled by pasting along a subdiagram [13, §4.12] in the theory of diagrammatic sets.

Pasting along a subdiagram is implemented in rewalt with methods to_inputs and to_outputs.
These invoke a procedure for recognising subdiagrams, which currently uses a quite naive algorithm.
The issue of recognising subdiagrams deserves further study, so we leave it to future work.

Conclusions and outlook

We have provided a formal implementation of “plain” diagrammatic sets. An obvious next step is the
formalisation of weakly invertible cells, and then of diagrammatic sets with weak composites, a model of

A. Hadzihasanovic & D. Kessler 127

weak higher categories [13, Sections 5, 6]. This is in fact part of rewalt, but still lacks a formal analysis.
In addition, we still have a limited range of high-level methods for handling weak units. We may want,

for example, flexible higher-dimensional versions of “Mac Lane triangle” rules for shuffling weak units
around. Development of these methods, and others tailored to specific applications, will likely go hand
in hand with practical experience in the use of rewalt as a proof assistant.

To conclude, we have only scratched the surface of the algorithm and complexity theory of diagram
rewriting in higher dimensions. In particular, we have not yet studied the problem of searching for
a subdiagram within another diagram, whose solution is essential to any form of fully automated or
assisted diagram rewriting. We plan to tackle this problem in future work.

References
[1] L. Babai (2016): Graph isomorphism in quasipolynomial time [extended abstract]. In: Proceed-

ings of the forty-eighth annual ACM symposium on Theory of Computing, ACM, pp. 684–697,
doi:10.1145/2897518.2897542.

[2] K. Bar & J. Vicary (2017): Data structures for quasistrict higher categories. In: 2017 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), IEEE, doi:10.1109/lics.2017.8005147.

[3] T. Benjamin, E. Finster & S. Mimram (2021): Globular weak ω-categories as models of a type theory.
arXiv:2106.04475.

[4] G. Bonfante & Y. Guiraud (2009): Polygraphic programs and polynomial-time functions. Logical Methods
in Computer Science 5(2), doi:10.2168/lmcs-5(2:14)2009.

[5] A. Burroni (1993): Higher-dimensional word problems with applications to equational logic. Theoretical
Computer Science 115(1), pp. 43–62, doi:10.1016/0304-3975(93)90054-w.

[6] P.L. Curien, C. Ho Thanh & S. Mimram (2019): Syntactic approaches to opetopes.
[7] C. Dorn (2018): Associative n-categories. Ph.D. thesis, University of Oxford.
[8] E. Finster & S. Mimram (2017): A type-theoretical definition of weak ω-categories. In: 2017 32nd Annual

ACM/IEEE Symposium on Logic in Computer Science (LICS), IEEE, doi:10.1109/lics.2017.8005124.
[9] E. Finster, D. Reutter & J. Vicary (2020): A type theory for strictly unital ∞-categories. arXiv:2007.08307.

[10] E. Finster, A. Rice & J. Vicary (2021): A type theory for strictly associative infinity categories.
arXiv:2109.01513.

[11] S. Forest (2019): Unifying notions of pasting diagrams.
[12] Y. Guiraud (2019): Rewriting methods in higher algebra. Thèse d’habilitation à diriger des recherches,

Université Paris 7.
[13] A. Hadzihasanovic (2020): Diagrammatic sets and rewriting in weak higher categories. arXiv:2007.14505.
[14] A. Hadzihasanovic (2021): The smash product of monoidal theories. In: 2021 36th Annual ACM/IEEE

Symposium on Logic in Computer Science (LICS), IEEE, doi:10.1109/lics52264.2021.9470575.
[15] C. Ho Thanh, P.L. Curien & S. Mimram (2019): A Sequent Calculus for Opetopes. In: 2019 34th Annual

ACM/IEEE Symposium on Logic in Computer Science (LICS), IEEE, doi:10.1109/lics.2019.8785667.
[16] G.L. Miller (1979): Graph isomorphism, general remarks. Journal of Computer and System Sciences 18(2),

pp. 128–142, doi:10.1016/0022-0000(79)90043-6.
[17] D. Reutter & J. Vicary (2019): High-level methods for homotopy construction in associative n-

categories. In: 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), IEEE,
doi:10.1109/lics.2019.8785895.

[18] R. Steiner (1993): The algebra of directed complexes. Applied Categorical Structures 1(3), pp. 247–284,
doi:10.1007/bf00873990.

Appendix B

Paper II

A. Hadzihasanovic and D. Kessler. “Higher-dimensional subdiagram matching”.
In: 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS). IEEE. 2023, pp. 1–13. doi: 10.1109/LICS56636.2023.10175726

179

https://doi.org/10.1109/LICS56636.2023.10175726

ar
X

iv
:2

30
4.

09
21

6v
1

 [
m

at
h.

C
T

]
 1

8
A

pr
 2

02
3

Higher-Dimensional Subdiagram Matching
Amar Hadzihasanovic

1 Department of Software Science
Tallinn University of Technology

2 Quantinuum, 17 Beaumont Street
Oxford OX1 2NA, United Kingdom

Diana Kessler
Department of Software Science
Tallinn University of Technology

Abstract—Higher-dimensional rewriting is founded on a dual-
ity of rewrite systems and cell complexes, connecting computa-
tional mathematics to higher categories and homotopy theory:
the two sides of a rewrite rule are two halves of the boundary of
an (n+1)-cell, which are diagrams of n-cells. We study higher-
dimensional diagram rewriting as a mechanism of computation,
focussing on the matching problem for rewritable subdiagrams
within the combinatorial framework of diagrammatic sets. We
provide an algorithm for subdiagram matching in arbitrary
dimensions, based on new results on layerings of diagrams, and
derive upper bounds on its time complexity. We show that these
superpolynomial bounds can be improved to polynomial bounds
under certain acyclicity conditions, and that these conditions
hold in general for diagrams up to dimension 3. We discuss
the challenges that arise in dimension 4.

INTRODUCTION

Higher-dimensional rewriting [1], [2] is founded, as a
field, on the observation that different varieties of rewrite
systems are instances of directed cell complexes in different
dimensions. These, in turn, can be seen as presentations of
higher or monoidal categories and groupoids, situating objects
traditionally associated with syntactic and quantitative aspects
of computation in the same universe as objects traditionally
associated with semantic and logical aspects.

Informally, a directed cell complex is an object assembled
from “directed n-cells”, models of topological n-balls whose
boundary, an (n − 1)-sphere, is subdivided into an input
and an output half, modelling the left and right-hand sides
of a rewrite rule. A 1-dimensional directed cell complex is
a directed graph, which is the same as an abstract rewrite
system up to interpretive nuances. A 2-dimensional directed
cell complex is the presentation with “oriented equations”
of a category; when the category has a single object, it is
the presentation of a monoid, also known as a string rewrite
system. One dimension higher, we find presentations with
oriented equations of monoidal categories, which subsume,
via functorial semantics [3], term rewrite systems such as
presentations of algebraic theories.

The duality of rewrite systems and higher structures has, so
far, been leveraged mostly on the side of higher algebra, for
example in the study of homotopically coherent presentations
of algebras [4] or the development of proof assistants for
homotopy theory and higher category theory [5]. We would

like to argue that, also as a mechanism of computation, higher-
dimensional rewriting has some unique characteristics which
may be significant in fundamental computer science, yet have
remained underexplored.

One of these is a kind of uniformity of data and computa-
tions. In most models, computations or executions are objects
of different nature from the data that they manipulate: for
example, sequences of configurations as opposed to terms or
strings of characters. There is no internal way to manipulate
computations as data, that does not require encoding in some
external “reference” machine, to which the same consideration
applies. In higher-dimensional rewriting, on the other hand,
data is given in the form of a diagram (sometimes called
a pasting diagram) of n-cells, and a computation is then
embodied by a diagram of (n+1)-cells, which is naturally the
data of a computation one dimension above. This suggests that
higher-dimensional rewriting may, for example, be a natural
framework for the formal study of simulations of machines by
other machines.

Another point of interest is that a higher-dimensional rewrite
system presents not only the admissible data and computations,
but also the space in which computations happen. The possib-
ility of parallelism, or whether the data is accessed as a stack or
in free order, become internal topological features rather than
externally imposed constraints. This is particularly interesting
in relation to quantum models where the topological features
themselves drive the computation [6].

This article is an effort to establish some fundamental
facts about higher-dimensional rewriting as a mechanism of
computation. In particular, we try to answer the following
question: is a machine that operates by higher-dimensional
rewriting a “reasonable” machine, according to the standards
of computational complexity theory? More precisely: is the
obvious cost model that attributes constant cost to each rewrite
step a “reasonable” cost model?

The basic computational step of any such machine may be
described as follows. The machine has a list (ri)mi=1 of rewrite
rules, which are (n + 1)-cells, and whose input boundaries
(∂−ri)mi=1 and output boundaries (∂+ri)

m
i=1 are n-dimensional

diagrams. Given an n-dimensional diagram t as input, the
machine tries to match one of the input boundaries with a
rewritable subdiagram of t. If it finds a match with ∂−ri for
some i ∈ {1, . . . ,m}, it substitutes ∂+ri for the match in t;
otherwise it stops.Accepted for LICS 2023

Evidently, our question is answered in the affirmative for
such a machine if and only if the subdiagram matching
problem is feasible in dimension n, which we read as: ad-
mits a (preferably low-degree) polynomial-time algorithm with
respect to a reasonable size measure for diagrams. Since a
cognate problem such as subgraph matching is notoriously
NP-complete, it is not at all obvious that this should be true.

With this in mind, in this article we study the higher-
dimensional subdiagram matching problem. As a first step, we
must fix a particular model of higher-dimensional diagrams.
We adopt the diagrammatic set model defined by the first
author [7] after a combinatorial approach to diagrams started
by Steiner [8]. This model combines expressiveness with the
property of topological soundness: diagrams admit a functorial
interpretation as homotopies in CW complexes. Furthermore, it
uses inductive data structures that are suitable for computation;
we began a study of their algorithms and complexity in [9].

Our main contribution is an algorithm for subdiagram
matching in arbitrary dimension, relying on new combinatorial
results on layerings of diagrams (decompositions into layers
containing each a single cell of highest dimension). Only one
stage in this algorithm takes superpolynomial time in the worst
case. We show that this can be avoided under certain acyclicity
conditions on diagrams, which hold in general up to dimension
3. We derive that subdiagram matching is feasible up to
dimension 3, which should cover most current applications
of higher-dimensional rewriting. We then discuss the case of
dimension 4 and higher, showing through a counterexample
why there is no obvious patch to the algorithm. We leave the
question of feasibility in higher dimensions open.

Related work

Complexity-theoretic aspects of higher-dimensional rewrit-
ing in the proper sense were considered by Bonfante and
Guiraud in [10], but this work focussed only on a particular
class of 2-dimensional rewrite systems.

Other works focus on string diagram rewriting, which is
connected to higher-dimensional rewriting in that both of
them have semantics in higher and monoidal categories, but
the flavour is altogether different: models of string diagram
rewrite systems are typically 2-dimensional but have extra
structure which makes the diagrams “graph-like”, and it can
be convenient to reflect that in the data structures. Works in
this vein include the series by Bonchi, Gadducci, Kissinger,
Sobocinski, and Zanasi [11], [12], [13] with a focus on
rewriting-theoretic questions, and articles by Delpeuch and
Vicary [14], [15] with a more complexity-theoretic focus.

Structure of the article

Section I presents the combinatorial framework together
with the data structures used to represent diagrams. It also
provides an improved complexity upper bound for the diagram
isomorphism problem. Section II defines rewritable subdia-
grams and their matching problem, which can be split into
subproblems. It then deals with the first subproblem, which
is to match the shape of a diagram in another diagram,

irrespective of whether it is a subdiagram. Section III deals
with the second subproblem, which is to recognise which
matches are, in fact, rewritable subdiagrams. It presents a
theory of layerings and orderings of diagrams as a way to
an algorithm solving this problem in any dimension. This
algorithm has only a superpolynomial upper bound, but it is
shown that it can be improved to a polynomial bound under
certain acyclicity conditions. Section IV shows that these
acyclicity conditions hold automatically up to dimension 3,
and the algorithms can be further simplified in low dimensions.
It then discusses an example in dimension 4 which highlights
why the strategies that work in low dimensions do not have
obvious extensions to higher dimensions.

Proofs of combinatorial results are attached in the appendix.
A full development will be presented in a forthcoming tech-
nical monograph [16].

I. THE DATA STRUCTURES

1. This section is for the largest part a recap of [9]. We refer
the reader there for more details.

2. In the framework of diagrammatic sets, a diagram t is
specified by the data of

1) its shape U ,
2) a labelling t : U → V in a set of variables.

The shape of a diagram records its cells, together with the
information of which (n− 1)-dimensional cells are located in
the input or output half of the boundary of an n-dimensional
cell. This is similar to the data of an abstract polytope or
polytopal complex, but comes with additional orientation data.
We present these data in the form of an oriented graded poset.

3 (Covering relation). Let P be a finite poset with order
relation ≤. Given elements x, y ∈ P , we say that y covers
x if x < y and, for all y′ ∈ P , if x < y′ ≤ y then y′ = y.

4 (Hasse diagram). Let P be a finite poset. The Hasse diagram
of P is the directed acyclic graph H P whose

• set of vertices is the underlying set of P , and
• for all vertices x, y, there is an edge from y to x if and

only if y covers x in P .

5 (Graded poset). Let P be a finite poset. We say that P is
graded if, for all x ∈ P , all maximal paths starting from x in
H P have the same length.

6 (Dimension of an element). Let P be a graded poset and
x ∈ P . The dimension of x is the length dimx of a maximal
path starting from x in H P . For each U ⊆ P and n ∈ N, we
write Un := {x ∈ U | dimx = n}.

7 (Oriented graded poset). Let P be a finite poset. An
orientation on P is an edge-labelling of H P with values in
{+,−}. An oriented graded poset is a graded poset P together
with an orientation on P .

8 (Faces and cofaces). Let P be an oriented graded poset,
x ∈ P , α ∈ {+,−}. The set of input (α = −) or output
(α = +) faces of x is

∆αx := {y ∈ P | x covers y with orientation α} .
The set of input (α = −) or output (α = +) cofaces of x is

∇αx := {y ∈ P | y covers x with orientation α} .
We let ∆x := ∆−x ∪∆+x and ∇x := ∇−x ∪∇+x.

9 (Oriented Hasse diagram). Let P be an oriented graded
poset. The oriented Hasse diagram of P is the directed graph
H̊ P whose

• set of vertices is the underlying set of P , and
• for all vertices x, y, there is an edge from y to x if and

only if y ∈ ∆−x or x ∈ ∆+y.

10. To represent an oriented graded poset P , we linearly
order Pn in each dimension n, so that each element x ∈ P
is uniquely identified by a pair of integers (n, k), where
n := dimx and k is the position of x in the linear order on
Pn. Then we represent P as a pair (face_data, coface_data)
of arrays of arrays of pairs of sets of integers, where

1) j ∈ face_data[n][k][i] iff (n− 1, j) ∈ ∆α(i)(n, k),
2) j ∈ coface_data[n][k][i] iff (n+ 1, j) ∈ ∇α(i)(n, k);

here the index i ∈ {0, 1} is used to encode pairs, α(0) := −
and α(1) := +. Sets of integers may be implemented as
any data type supporting binary search in logarithmic time.
Note that this representation is redundant: face_data and
coface_data can be reconstructed from each other.

This is essentially an adjacency list representation of H P ,
with vertices separated according to their dimension, and
incoming and outgoing edges separated according to their
label. It is not unique: any permutation of the dimension-wise
linear orders produces an equivalent representation.

Example 11. The following are representations of the same
2-dimensional diagram shape as

• a typical drawing of a pasting diagram;
• an oriented Hasse diagram, with input edges in pink, and

dimension increasing from bottom to top;
• the pair of face_data and coface_data (rows are outer

array indices, increasing from top to bottom, and columns
inner array indices, increasing from left to right).

0 • 2 • 3 •

1 •

3

2

0 1

0

0 1 2 3

0 1 2 3

0

face_data:
({} , {}) ({} , {}) ({} , {}) ({} , {})
({0} , {1}) ({1} , {2}) ({2} , {3}) ({0} , {2})
({0, 1} , {3})
coface_data:
({0, 3} , {}) ({1} , {0}) ({2} , {1, 3}) ({} , {2})
({0} , {}) ({0} , {}) ({} , {}) ({} , {0})
({} , {})

12 (Closure of a subset). Let P be a poset, U ⊆ P . The
closure of U is the subset clU := {x ∈ P | ∃y ∈ U x ≤ y}.
We say that U is closed if U = clU .

13 (Dimension of a subset). Let U be a closed subset of a
graded poset. The dimension of U is the integer

dimU :=

{
max {dimx | x ∈ U} if U is inhabited,
−1 if U is empty.

14 (Input and output boundaries). Let U be a closed subset
of an oriented graded poset. For all α ∈ {+,−} and n ∈ N,
let

∆α
nU :=

{
x ∈ Un | ∇−αx ∩ U = ∅

}
.

Note that, if MaxU is the set of maximal elements of U , then

∆−
nU ∩∆+

nU = (MaxU)n.

The input (α = −) and output (α = +) n-boundary of U is
the closed subset

∂α
nU := cl (∆α

nU) ∪
⋃

k<n

cl (MaxU)k.

We omit the subscript when n = dimU − 1, and for
n ∈ {−1,−2}, we let ∆α

nU = ∂α
nU := ∅.

15. We use the following notations, for x an element in
an oriented graded poset, U a closed subset, n ∈ N, and
α ∈ {+,−}: ∂α

nx := ∂α
ncl {x}, ∂nU := ∂−

n U ∪ ∂+
n U ,

∆nU := ∆−
nU ∪∆+

nU .

Lemma 16. Let U be a closed subset of an oriented graded
poset, n ∈ N, and α ∈ {+,−}. Then

1) ∂α
nU ⊆ U ,

2) ∂α
nU = U if and only if n ≥ dimU .

Example 17. Let U be the oriented graded poset of Example
11. Then ∂−

2 U = ∂+
2 U = U , and

∂−
1 U = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2)} ,

∂+
1 U = {(0, 0), (0, 2), (0, 3), (1, 2), (1, 3)} ,

∂−
0 U = {(0, 0)} , ∂+

0 U = {(0, 3)} .

18 (Map of oriented graded posets). Let P,Q be oriented
graded posets. A map f : P → Q is a function of their
underlying sets that satisfies

f(∂α
nx) = ∂α

nf(x)

for all x ∈ P , n ∈ N, and α ∈ {+,−}. There is a
category ogPos whose objects are oriented graded posets and
morphisms are maps.

19 (Inclusion of oriented graded posets). An inclusion is an
injective map of oriented graded posets.

Lemma 20. Let ı : P →֒ Q be an inclusion of oriented graded
posets. Then

1) ı is both order-preserving and order-reflecting, that is,
ı(x) ≤ ı(y) if and only if x ≤ y;

2) ı preserves dimensions, that is, dim ı(x) = dimx for all
x ∈ P ;

3) ı preserves the covering relation and orientations, that is,
if y covers x in P with orientation α, then ı(y) covers
ı(x) in Q with orientation α;

4) for all closed U ⊆ P , n ∈ N and α ∈ {+,−}, ı maps
∂α
nU isomorphically onto ∂α

n ı(U).

Remark 21. Every closed subset of an oriented graded poset
inherits an orientation by restriction, and its inclusion as a
subset is an inclusion of oriented graded posets. The fact that
inclusions preserve all boundaries justifies us in identifying
an oriented graded poset with its image through an inclusion,
which we will often do implicitly.

Proposition 22. The category ogPos has

1) a terminal object 1,
2) an initial object ∅,
3) pushouts of inclusions.

23. Not all oriented graded posets describe well-formed dia-
gram shapes. In our framework, the well-formed shapes form
an inductive subclass, the regular molecules, generated by the
following constructions.

24 (Pasting construction). Let U, V be oriented graded posets,
k ∈ N, and let ϕ : ∂+

k U
∼→֒ ∂−

k V be an isomorphism. The
pasting of U and V at the k-boundary along ϕ is the oriented
graded poset U #

ϕ
k V obtained in ogPos as the pushout

∂+
k U ∂−

k V V

U U #
ϕ
k V.

ϕ

y

25 (Rewrite construction). Let U, V be oriented graded posets
of the same dimension n, and suppose ϕ : ∂U

∼→֒ ∂V is an
isomorphism restricting to isomorphisms ϕα : ∂αU

∼→֒ ∂αV
for each α ∈ {+,−}. Construct the pushout

∂U ∂V V

U ∂(U ⇒ϕ V)

ϕ

y

in ogPos. The rewrite of U into V along ϕ is the oriented
graded poset U ⇒ϕ V obtained by adjoining a single
(n + 1)-dimensional element ⊤ to ∂(U ⇒ϕ V) such that
∆−⊤ := Un and ∆+⊤ := Vn.

Lemma 26. Let U, V be oriented graded posets and suppose
U ⇒ϕ V is defined. Then

1) ∂−(U ⇒ϕ V) is isomorphic to U ,
2) ∂+(U ⇒ϕ V) is isomorphic to V .

Remark 27. The notation ∂(U ⇒ϕ V) for the pushout in
the rewrite construction is a posteriori justified, that is, the
pushout indeed constructs the boundary of U ⇒ϕ V .

28 (Roundness). Let U be an oriented graded poset. We say
that U is round if, for all n < dimU , ∂−

n U ∩∂+
n U = ∂n−1U .

Example 29. The shape of a pasting diagram is round when,
intuitively, the diagram is shaped as a topological ball of the
appropriate dimension. For example, the oriented graded poset
of Example 11 is not round, since

∂0U = {(0, 0), (0, 3)}
(∂+

1 U ∩ ∂−
1 U = {(0, 0), (0, 2), (1, 2), (0, 3)} ,

and, indeed, the pasting diagram is shaped as the wedge of a
2-ball (disc) with a 1-ball (interval). However, the following
pasting diagram is round:

3 •

0 • 2 •

1 •

2
4

0
1

3
0 1

0 1 2 3

0 1 2 3 4

0 1

30 (Pure subset). Let U be a closed subset of a graded poset,
n := dimU . We say that U is pure if all the maximal elements
of U have dimension n, that is, MaxU = Un.

Lemma 31. If U is round, then it is pure.

32 (Regular molecule). The class of regular molecules is
the inductive subclass of oriented graded posets closed under
isomorphisms and generated by the following clauses.

1) (Point). The terminal oriented graded poset 1 is a regular
molecule.

2) (Paste). If U , V are regular molecules, ϕ : ∂+
k U

∼→֒ ∂−
k V

is an isomorphism with k < min {dimU, dimV }, then
U #

ϕ
k V is a regular molecule.

3) (Atom). If U , V are round regular molecules of the
same dimension and ϕ : ∂U

∼→֒ ∂V is an isomorphism
restricting to ϕα : ∂αU

∼→֒ ∂αV for each α ∈ {+,−},
then U ⇒ϕ V is a regular molecule.

33. We summarise the essential properties of regular mo-
lecules. The second point of Proposition 34 allows us to write
U #k V and U ⇒ V instead of U #

ϕ
k V and U ⇒ϕ V when

the latter are defined and U, V are regular molecules.

Proposition 34. Let U, V be regular molecules, k ∈ N. Then

1) if U and V are isomorphic, they are isomorphic in a
unique way;

2) if U #
ϕ
k V or U ⇒ϕ V is defined, it is defined for a

unique ϕ;
3) for all n ∈ N, α ∈ {+,−}, ∂α

nU is a regular molecule;
4) U is globular, that is, for all k, n ∈ N and α, β ∈ {+,−},

if k < n then ∂α
k (∂

β
nU) = ∂α

kU ;
5) if U is round, for all n ∈ N, α ∈ {+,−}, ∂α

nU is round.

Example 35. Let

arrow := 1 ⇒ 1,

binary := (arrow#0 arrow) ⇒ arrow,

cobinary := arrow ⇒ (arrow#0 arrow).

Then the shape of Example 11 is a regular molecule construc-
ted as binary#0 arrow, while the shape of Example 29 is a
regular molecule constructed as

(cobinary#0 arrow)#1 (arrow#0 binary).

36. The following results imply, together, that pasting of
regular molecules satisfies the equations of strict ω-categories
up to unique isomorphism. In particular, the associativity result
allows us to write multiple pastings in the same dimension
without bracketing.

Proposition 37. Let U, V,W be regular molecules and let
k ∈ N such that U #k V and V #k W are both defined.
Then (U #k V)#k W and U #k (V #k W) are both defined
and uniquely isomorphic.

Proposition 38. Let U be a regular molecule and k ∈ N.
Then U #k ∂

+
k U and ∂−

k U #k U are both defined and uniquely
isomorphic to U .

Proposition 39. Let U,U ′, V, V ′ be regular molecules and
k < n ∈ N such that (U #n U

′)#k (V #n V
′) is defined. Then

(U #k V)#n (U
′
#k V

′) is defined and uniquely isomorphic to
(U #n U

′)#k (V #n V
′).

40 (Atom). An atom is a regular molecule with a greatest
element.

41 (Merger of a round regular molecule). Let U be a round
regular molecule of dimension > 0. The merger of U is the
atom 〈U〉 := ∂−U ⇒ ∂+U .

Example 42. The following pair of pasting diagrams depicts
a round regular molecule U and its merger 〈U〉, an atom.

• •

• • • • •

• U • 〈U〉

Proposition 43. Let U be a regular molecule. Then

1) U is an atom if and only if it was produced by (Point) or
(Atom);

2) for all x ∈ U , cl {x} is an atom;
3) if U is an atom, then U is round, and if dimU > 0 then

U is isomorphic to 〈U〉.
44. For us, a cell is a diagram whose shape is an atom.

45 (Diagram isomorphism problem). The diagram isomorph-
ism problem is the following decision problem: given diagrams
t : U → V and t′ : U ′ → V, does there exist an isomorphism
ϕ : U

∼→֒ U ′ of their shapes such that t = ϕ; t′?

By Proposition 34, if ϕ exists it is unique, and if ϕ is found
the labellings t and ϕ; t′ can be compared in linear time, so
this problem reduces to the isomorphism problem for regular
molecules. One of the main results of [9] is a polynomial-time
solution to this problem, relying on a deterministic traversal
algorithm for regular molecules:

1) all elements of a regular molecule can be traversed in
polynomial time in such a way that the traversal order is
invariant under isomorphism;

2) consequently, U and U ′ are isomorphic if and only if their
representations using the traversal order dimension-wise
are identical.

The traversal order also gives a canonical representation of
regular molecules. The constructors for regular molecules can
be implemented in such a way that the elements are rearranged
in traversal order after each step, so that regular molecules can
be checked for equality rather than isomorphism.

The complexity upper bound given in [9, Theorem 2.19] is
in fact the result of overcounting. We describe the traversal
algorithm, whose correctness is proved in [9, Theorem 2.17],
and give an improved upper bound.

46 (Traversal algorithm). The procedure takes as input a
regular molecule U and returns a list of its elements in the
order in which they are marked. It uses an auxiliary stack of
regular molecules V ⊆ U .

At the beginning, only U is on the stack and all elements are
unmarked. We iterate the main loop until the stack is empty,
at which point the procedure terminates.

At each iteration, suppose V is on top of the stack. If all
elements of V are marked, then we pop V from the stack and
iterate. Else, if any elements of ∂−V are unmarked, we push
∂−V to the top of the stack and iterate. Else, if V = cl {x}
for some x ∈ U , we

1) mark x and pop V from the stack,
2) if any elements of ∂+V are unmarked, we push ∂+V to

the top of the stack, and
3) we iterate.

Else, we let y be the earliest marked element such that
dim y = dimV − 1 and there is an unmarked x ∈ ∇−y ∩ V .
Such a y always exists, and then ∇−y ∩ V = {x}. We push
cl {x} to the top of the stack and iterate.

47. For a regular molecule U , and all k ∈ N, we let

EkU :=
∐

x∈Uk

∆x =
∐

y∈Uk−1

∇y,

|U∨| := max {|Ui|}i∈N ,

|E∨U | := max({|EiU |}i∈N ∪ {1}).

Note that EkU is the set of edges between k and (k − 1)-di-
mensional elements in H U . We have |Uk| ≤ |EkU | for all
k > 0, while |E0U | = 0. Since the maximum of the |EkU |
is 0 only when U is 0-dimensional, in which case |Uk| = 1,
with our definition we always have |U∨| ≤ |E∨U |.

Theorem 48. The traversal algorithm admits an implementa-
tion running in time O(|U | |E∨U | log |E∨U |).
Proof. The upper bound of O(|E∨U | log |E∨U |) on each loop
iteration is derived as in [9, Theorem 2.19], simplified by our
modified definition of |E∨U |, so we only need to show that
there are O(|U |) loop iterations.

We let k ≤ dimU and we count the number of loop
iterations where a k-dimensional subset V is on top of the
stack. This can happen in two ways:

• V is either U or ∂αW for some W with dimW > k,
where W was earlier (and may still be) on the stack,

• V is cl {x} for some x ∈ W , where dimW = k and W
is below V on the stack.

Let (V (i))mi=1 be the sequence of all k-dimensional subsets
appearing on the stack in the first way during the run, in the
order in which they appear. For all j < i ∈ {1, . . . ,m}, by
[9, Lemma 2.14] V (j) must be fully marked before V (i) can
appear on the stack. Moreover, V (i) can be on top at most

1) once to push ∂−V (i) to the top,
2) once every time we push cl {x} to the top for an un-

marked x ∈ (V (i))k,
3) once to pop V (i) from the stack.

Any k-dimensional cl {x} appearing in the second way appears
while a unique V (i) is on the stack, and at most

1) once to push ∂−x to the top,
2) once to mark x and pop cl {x} from the stack.

Let U (i)
k := (V (i))k \

⋃
j<i(V

(j))k. Then U
(i)
k is precisely the

set of unmarked k-dimensional elements of V (i) when V (i)

first appears on the stack. It follows that the number of loop
iterations with a k-dimensional subset on top of the stack while
V (i) is on the stack is at most 2 + 3

∣∣∣U (i)
k

∣∣∣.
Since at the end of the procedure all k-dimensional elements

of U are marked, the (U
(i)
k)mi=1 form a partition of Uk. Thus,

the total number of loop iterations where a k-dimensional
subset is on top of the stack is bounded above by

m∑

i=1

(
2 + 3

∣∣∣U (i)
k

∣∣∣
)
= 2m+ 3

m∑

i=1

∣∣∣U (i)
k

∣∣∣ = 2m+ 3 |Uk| ,

which is bounded above by 5 |Uk|. Summing over all dimen-
sions, we get an upper bound of 5 |U | iterations. �

II. THE SUBDIAGRAM MATCHING PROBLEM

49 (Submolecule inclusion). The class of submolecule in-
clusions is the smallest subclass of inclusions of regular
molecules such that

1) all isomorphisms are submolecule inclusions,
2) for all regular molecules U, V and all k ∈ N such that

U #k V is defined, U →֒ (U #k V) and V →֒ (U #k V)
are submolecule inclusions,

3) the composite of two submolecule inclusions is a sub-
molecule inclusion.

A closed subset V ⊆ U is a submolecule if its inclusion in U
is a submolecule inclusion. In that case we write V ⊑ U .

50. We also let ∅ ⊑ ∅ to take care of some corner cases.

Lemma 51. Let U be a regular molecule. Then
1) for all n ∈ N and α ∈ {+,−}, ∂α

nU ⊑ U ;
2) for all x ∈ U , cl {x} ⊑ U .

52 (Substitution). Let U, V,W be regular molecules with
dimU = dimV = dimW , ı : V →֒ U an inclusion, and
suppose that V ⇒ W is defined. Consider the pushout

V V ⇒ W

U U ∪ (V ⇒ W)

ı y (1)

in ogPos. The substitution of W for ı : V →֒ U is the oriented
graded poset U [W/ı(V)] := ∂+(U ∪ (V ⇒ W)). When ı is
the inclusion of a closed subset we write simply U [W/V].

Proposition 53. Let ı : V →֒ U be an inclusion of regular
molecules such that dimV = dimU and V is round. The
following are equivalent:
(a) ı is a submolecule inclusion;
(b) for all regular molecules W such that V ⇒ W is defined,

U ∪ (V ⇒ W) in (1) is a regular molecule;
(c) for all regular molecules W such that V ⇒ W is defined,

U [W/ı(V)] is a regular molecule;
(d) U [〈V 〉/ı(V)] is a regular molecule.

54 (Rewritable submolecule). A submolecule V ⊑ U is
rewritable if dimV = dimU and V is round.

55 (Rewritable subdiagram). Let t : U → V be a diagram. A
rewritable subdiagram of t is the restriction of t to a rewritable
submolecule V ⊑ U .

56. We extend boundary operations to diagrams t : U → V
by ∂α

n t := t|∂α
nU for all n ∈ N and α ∈ {+,−}.

57. Suppose t is an n-dimensional diagram of shape U and
r a rewrite rule, in the form of an (n + 1)-dimensional cell
of shape V ⇒ W . If there is an inclusion ı : V →֒ U such
that ∂−r = ı; t, then the application of the rewrite r to t is
modelled by an (n + 1)-dimensional diagram t ∪ r of shape
U ∪ (V ⇒ W) as in (1).

By Proposition 53, ∂+(t∪r), which models the substitution
of ∂+r for ∂−r in t, is guaranteed to be an n-dimensional
diagram precisely when ı is a submolecule inclusion, that is,
∂−r is isomorphic to a rewritable subdiagram of t.

Example 58. The following is a depiction of diagram (1) when
V ⇒ W := cobinary, U := arrow#0 arrow, and ı is the
inclusion of the second arrow into the pasting.

•

• • • •

• • •

• • • •

The result of the substitution is the output boundary of the
bottom right diagram, isomorphic to arrow#0 arrow#0 arrow.

59 (Subdiagram matching problem). The subdiagram match-
ing problem is the following search problem: given diagrams
t : U → V and s : V → V such that dimU = dimV and V
is round, find, if any, the submolecule inclusions ı : V →֒ U
such that s = ı; t. This can be split into three subproblems.

1) (Molecule matching problem). Find, if any, the inclusions
ı : V →֒ U .

2) (Rewritable submolecule problem). Decide if ı(V) ⊑ U .
3) Decide if s = ı; t.

In this section, we will focus on the molecule matching prob-
lem, and in the next on the rewritable submolecule problem.
The third problem is trivial.

Lemma 60. Let U be a regular molecule, n := dimU ,
x ∈ Un−1, and α ∈ {+,−}. Then

1) x ∈ MaxU if and only if |∇x| = 0,
2) x ∈ ∆αU \ ∆−αU if and only if |∇αx| = 1 and

|∇−αx| = 0,
3) x /∈ ∆U if and only if |∇+x| = |∇−x| = 1.

61 (Flow graph). Let U be a regular molecule, k ≥ −1. The
k-flow graph of U is the directed graph FkU whose

• set of vertices is
⋃

i>k Ui, and
• for all vertices x, y, there is an edge from x to y if and

only if ∆+
k x ∩∆−

k y is non-empty.

62 (Induced subgraph). Let G be a directed graph and let W
be a subset of its vertex set. The induced subgraph of G on W
is the directed graph G |W whose vertex set is W , and there
is an edge from x to y for every edge from x to y in G .

63 (Maximal flow graph). Let U be a regular molecule,
k ≥ −1. The maximal k-flow graph of U is the induced
subgraph MkU of FkU on the vertex set

⋃

i>k

(MaxU)i ⊆
⋃

i>k

Ui.

Note that, if k = dimU − 1, then FkU = MkU .

Example 64. If U is the regular molecule of Example 11,

F0U :

(1, 3)

(2, 0) (1, 2)

(1, 0) (1, 1)

M0U : (2, 0) (1, 2)

F1U = M1U : (2, 0)

If U is the round regular molecule of Example 29,

F1U = M1U : (2, 0) (2, 1)

Lemma 65. Let ı : V →֒ U be an inclusion of regular
molecules, k ≥ −1. Then FkV is isomorphic to the induced
subgraph of FkU on the vertices in the image of ı.

Proposition 66. Let U be a regular molecule, n := dimU . If
U is round, then Fn−1U is connected.

67. We describe an algorithm for the molecule matching
problem. The main idea is the following: if we succeed
in matching only one top-dimensional atom in V with one
top-dimensional atom in U , then there is only one possible
matching of all other top-dimensional atoms of V to atoms in
U . This is because, by Proposition 66, we can try to match
top-dimensional elements of V in such an order that the next
element to match is connected by an edge in Fn−1V to a
previously matched element; that is, it shares a face z with a
previously matched element. In particular, z has already been
matched. By Lemma 60, in order for us to continue, the match
of z must have exactly two cofaces in U , one of which is the
previously matched top-dimensional element. Necessarily, the
other coface is the next match.

68 (Molecule matching algorithm). The procedure takes as
input two regular molecules U, V such that dimU = dimV
and V is round, and it returns all inclusions V →֒ U .

Let n := dimU . To begin, we pick an arbitrary ordering
(x(i))mi=1, for example the traversal order, of the elements of
Un. Moreover, we pick an ordering (y(j))pj=1 of the elements
of Vn with the property that, for all k ∈ {1, . . . , p}, the
induced subgraph of Fn−1V on (y(j))kj=1 is connected. This
is possible because Fn−1V is connected by Proposition 66.
For each k ∈ {1, . . . , p}, we let V (k) :=

⋃
j≤k cl

{
y(j)

}
. We

have V (i) ⊆ V (j) whenever i ≤ j, and V (p) = V since V is
pure by Lemma 31.

For each i ∈ {1, . . . ,m}, we attempt to construct a sequence
of inclusions (ı(i,j) : V (j) →֒ U)pj=1 such that the restriction
of ı(i,j

′) to V (j) is equal to ı(i,j) when j ≤ j′, iterating on
k ∈ {1, . . . , p}. When k = 1, if V (1) = cl

{
y(1)

}
is iso-

morphic to cl
{
x(i)

}
, we let ı(i,1) be the unique isomorphism

V (1) ∼→֒ cl
{
x(i)

}
followed by the inclusion cl

{
x(i)

}
⊆ U ,

and iterate on k. Else, we iterate on i.
When k > 1, we let j be the least value such that there

exists an edge between y(j) and y(k) in Fn−1V . Then j < k
because of our connectedness assumption, and there exists
z ∈ ∆αy(j) ∩ ∆−αy(k) for some α ∈ {+,−}. We pick
the least such z with respect to some ordering of Vn−1, for
example the traversal order. By Lemma 20, ı(i,k−1)(y(j)) is
one coface of ı(i,k−1)(z) in U . If ı(i,k−1)(z) has no other
cofaces, then we iterate on i. Else, by Lemma 60, ı(i,k−1)(z)
has exactly one other coface, call it x; note that x cannot be in
the image of ı(i,k−1), since y(j) and y(k) are the only cofaces
of z in V . If cl

{
y(k)

}
is isomorphic to cl {x}, and the unique

isomorphism cl
{
y(k)

} ∼→֒ cl {x} followed by the inclusion
cl {x} ⊆ U matches ı(i,k−1) on cl

{
y(k)

}
∩ V (k−1), then we

let ı(i,k) be the unique extension of ı(i,k−1) that restricts to
cl
{
y(k)

} ∼→֒ cl {x} ⊆ U . Else, we iterate on i.
If we succeed to construct ı(i,p), we add it to the list of

inclusions V →֒ U , then iterate on i.

Theorem 69. The molecule matching problem in dimension n

can be solved in time

O(|Un| |Vn| |V | |E∨V | log |E∨V |).
Proof. We suppose n > 0 since the case n = 0 is trivial.
First of all, with our choice of data structures both Un

and Vn−1 already come with a linear order when one is
needed. Moreover, we can both construct Fn−1V and order
its vertices in the desired way by traversing the “slice” of
H V on the elements of dimension n and (n − 1). Since
max {|Vn| , |Vn−1|} ≤ |EnV |, this can be done in time
O(|EnV |) with a standard traversal algorithm.

In the main part of the algorithm, we have exactly |Un|
iterations. At each iteration, we need to solve at most |Vn|
isomorphism problems for submolecules of V . The time
complexity of each can be bounded above by the time
complexity of the isomorphism problem for V , which is
O(|V | |E∨V | log |E∨V |) by Theorem 48. It is straightforward
to verify that all other operations, such as checking that
the isomorphisms match on intersections or finding the next
match, have lower complexity. Since |EnV | ≤ |E∨V |, we can
ignore the O(|EnV |) summand, and conclude. �

III. THE REWRITABLE SUBMOLECULE PROBLEM

70. Our solution to the rewritable submolecule problem re-
quires us to develop new results about layerings of diagrams,
and their associated orderings.

71 (Layering of a regular molecule). Let U be a regular
molecule, −1 ≤ k < dimU , and

m :=

∣∣∣∣∣
⋃

i>k

(MaxU)i

∣∣∣∣∣ .

A k-layering of U is a sequence (U (i))mi=1 of regular mo-
lecules such that U is isomorphic to U (1)

#k . . . #k U
(m) and

dimU (i) > k for all i ∈ {1, . . . ,m}.
For k = −1, it is implied that m = 1, and U is an atom. We

will regularly identify the regular molecules in a layering of U
with their isomorphic images in U , which are submolecules.

Example 72. The shape of the pasting diagram

• • • •

admits no (−1)-layerings, a single 0-layering
(

• • , • • , • •
)
,

and two 1-layerings:
(

• • • • , • • • •
)
,

(
• • • • , • • • •

)
.

Lemma 73. Let U be a regular molecule, k < dimU , and
suppose U admits a k-layering (U (i))mi=1. Then

1) for all i ∈ {1, . . . ,m}, U (i) contains a single maximal
element of dimension > k,

2) for all k ≤ ℓ < dimU , U admits an ℓ-layering.

74. A regular molecule does not, in general, admit a k-layering
for each k < dimU ; however, by Lemma 73, when it does
admit a k-layering, it also admits a layering in dimensions
higher than k. The next result shows that every regular
molecule does admit a k-layering for some k, and that the
smallest such k falls into a particular range.

75 (Layering dimension). Let U be a regular molecule. The
layering dimension of U is the integer

lydimU := min

{
k ≥ −1 |

∣∣∣∣∣
⋃

i>k+1

(MaxU)i

∣∣∣∣∣ ≤ 1

}
.

76 (Frame dimension). Let U be a regular molecule. The
frame dimension of U is the integer

frdimU := dim
⋃

{cl {x} ∩ cl {y} | x, y ∈ MaxU, x 6= y}.

Theorem 77. Let U be a regular molecule. Then there exists
k < dimU such that U admits a k-layering. Moreover,

frdimU ≤ min {k | U admits a k-layering} ≤ lydimU.

Corollary 78. Let U be a regular molecule, n := dimU . Then
U admits an (n− 1)-layering.

79 (Ordering of a regular molecule). Let U be a regular
molecule, k ≥ −1, and suppose MkU is acyclic. A k-ordering
of U is a topological sort of MkU .

Proposition 80. Let U be a regular molecule, k ≥ −1. If U
admits a k-layering, then MkU is acyclic, hence U admits a
k-ordering.

Corollary 81. Let U be a regular molecule, n := dimU . Then
Fn−1U is acyclic.

Proof. Follows from Corollary 78 and Proposition 80 com-
bined with the fact that Fn−1U = Mn−1U . �

82. Let U be a regular molecule, k ≥ −1. We let

LaykU :=
{
k-layerings (U (i))mi=1 of U

}
,

OrdkU :=
{
k-orderings (x(i))mi=1 of U

}
,

where layerings are considered up to layer-wise isomorphism.

Proposition 83. Let U be a regular molecule, k ≥ −1. For
each k-layering (U (i))mi=1 of U and each i ∈ {1, . . . ,m}, let
x(i) be the only element of

⋃
j>k(MaxU)j in the image of

U (i). Then the assignment

mk,U : (U (i))mi=1 7→ (x(i))mi=1 (2)

determines an injective function LaykU →֒ OrdkU .

84. In general, the function mk,U is not surjective, that is, not
every k-ordering is induced by a k-layering. The following

is a criterion for deciding when a k-ordering comes from a
k-layering.

Proposition 85. Let U be a regular molecule, k ≥ −1, and
let (x(i))mi=1 be a k-ordering of U . Let

U (0) := ∂−
k U,

U (i) := ∂+
k U (i−1) ∪ cl

{
x(i)

}
for i ∈ {1, . . . ,m}.

The following are equivalent:
(a) (U (i))mi=1 is a k-layering of U ;
(b) for all i ∈ {1, . . . ,m}, ∂−

k x(i) ⊑ ∂−
k U (i).

Moreover, for all i ∈ {1, . . . ,m− 1}, if ∂−
k x(i) ⊑ ∂−

k U (i),
then U (i) and ∂+

k U (i) = ∂−
k U (i+1) are regular molecules.

86 (Path-induced subgraph). Let G be a directed graph and
W a subset of its vertex set. We say that G |W is path-induced
if, for all x, y ∈ W , every path from x to y in G is included
in G |W .

87. Path-induced subgraphs are also called convex subgraphs,
for example in [12].

88 (Contraction of a connected subgraph). Let G be a directed
graph and W a subset of its vertex set such that G |W is
connected. The contraction of G |W in G is the graph minor
G /(G |W) obtained by contracting every edge in G |W .

Lemma 89. Let G be a directed acyclic graph and W a subset
of its vertex set such that G |W is connected. The following are
equivalent:
(a) G |W is path-induced;
(b) G /(G |W) is acyclic;
(c) there is a topological sort of G in which vertices of W

are consecutive.
Moreover, under any of the equivalent conditions, there is a
bijection between

• topological sorts of G in which vertices of W are
consecutive,

• pairs of a topological sort of G |W and a topological sort
of G /(G |W).

Lemma 90. Let ı : V →֒ U be an inclusion of regular
molecules such that n := dimU = dimV and V is round.
Then Fn−1U [〈V 〉/ı(V)] is isomorphic to Fn−1U/Fn−1V .

Proposition 91. Let ı : V →֒ U be an inclusion of regular
molecules such that n := dimU = dimV and V is round. If
ı is a submolecule inclusion, then Fn−1V is a path-induced
subgraph of Fn−1U .

Proof. By Proposition 53, if ı is a submolecule inclusion
then U [〈V 〉/ı(V)] is a regular molecule. By Corollary 81
Fn−1U [〈V 〉/ı(V)] is acyclic, and by Lemma 90 it is iso-
morphic to Fn−1U/Fn−1V . It follows from Lemma 89 that
Fn−1V is a path-induced subgraph of Fn−1U . �

92. Given an inclusion ı : V →֒ U of regular molecules such
that n := dimU = dimV and V is round, the vertices of
Fn−1U/Fn−1V are either

• x ∈ Un \ ı(Vn), or
• xV , obtained from contracting all vertices in ı(Vn).

The following results will justify our algorithm for the rewrit-
able submolecule problem.

Lemma 93. Let ı : V →֒ U be an inclusion of regular
molecules such that n := dimU = dimV and V is round,
and let (y(i))pi=1 be an (n − 1)-ordering induced by an
(n− 1)-layering of V . The following are equivalent:

(a) ı is a submolecule inclusion;
(b) there exist an (n − 1)-ordering (x(i))mi=1 induced by an

(n − 1)-layering (U (i))mi=1 of U , and q ∈ {1, . . . ,m}
such that

1. (x(i))p+q−1
i=q = (ı(y(i)))pi=1,

2. ı(∂−V) ⊑ ∂−U (q).

Theorem 94. Let ı : V →֒ U be an inclusion of regular
molecules such that n := dimU = dimV and V is round,
m := |Un|, p := |Vn|. The following are equivalent:
(a) ı is a submolecule inclusion;
(b) there is a topological sort ((x(i))q−1

i=1 , xV , (x
(i))m−p+1

i=q+1)
of Fn−1U/Fn−1V such that, letting

U (0) := ∂−U,

U (q) := ∂+
n−1U

(q−1) ∪ ı(V),

U (i) := ∂+
n−1U

(i−1) ∪ cl
{
x(i)

}
for i 6= q,

we have ı(∂−V) ⊑ ∂−U (q) and ∂−x(i) ⊑ ∂−U (i) for all
i 6= q.

Sketch of proof. By Proposition 53, if ı is a submolecule
inclusion then U [〈V 〉/ı(V)] is a regular molecule, so by Corol-
lary 78 it admits an (n−1)-layering inducing an (n−1)-order-
ing. By Lemma 90 this can be identified with a topological sort
of Fn−1U/Fn−1V . The properties of the U (i) follow from
the properties of the layering of U [〈V 〉/ı(V)], as established
by Proposition 85, after we “reverse” the substitution of 〈V 〉
for ı(V), producing a regular molecule isomorphic to U .

Conversely, if (y(i))pi=1 is an (n−1)-ordering induced by an
(n−1)-layering of V , then ((x(i))q−1

i=1 , (y
(i))pi=1, (x

(i))m−p+1
i=q+1)

is an (n − 1)-ordering of U , which by the criterion of
Proposition 85 is induced by an (n−1)-layering. We conclude
by Lemma 93. �

95 (Rewritable submolecule decision algorithm). The proced-
ure takes as input an inclusion V ⊆ U of regular molecules
such that n := dimU = dimV and V is round, and it returns
whether V ⊑ U . We let m := |Un| and p := |Vn|.

We construct the graph G := Fn−1U/Fn−1V . Then we
start a loop. At each iteration, we search for a new topological
sort of G . If we cannot find one, we return false. Else, let
((x(i))q−1

i=1 , xV , (x
(i))m−p+1

i=q+1) be the new topological sort, and
let (U (i))m−p+1

i=1 be as in Theorem 94.
For each i ∈ {1, . . . ,m− p+ 1}, we start a recursive call

to the algorithm to decide whether ∂−x(i) ⊑ ∂−U (i) if i 6= q,
and ∂−V ⊑ ∂−U (q) if i = q. If this returns false, we break

the iteration on i and iterate the main loop. If this returns true,
we iterate on i. At the end of the iteration on i, we return true.

Theorem 96. The rewritable submolecule decision algorithm
is correct: it always terminates, and returns true if and only
if V ⊑ U .

Proof. We proceed by induction on the dimension n of U and
V . If n = 0, this is straightforward, so let n > 0.

The number of iterations of the main loop is bounded
by the number of topological sorts of Fn−1U/Fn−1V ,
which is finite. Consider one such iteration, producing a
topological sort ((x(i))q−1

i=1 , xV , (x
(i))m−p+1

i=q+1). Let us write
V (q) := V and V (i) := cl

{
x(i)

}
for i 6= q. For all

i ∈ {1, . . . ,m− p+ 1}, we have a call to the decision
algorithm with input ∂−V (i) ⊆ ∂−U (i), assuming that the
calls for j < i all returned true.

Now, ∂−V (i) is round by Proposition 34 and Proposition 43.
Moreover, ∂−U (1) = ∂−U , which is a regular molecule. For
i > 1, assuming that ∂−V (i−1) ⊑ ∂−U (i−1), we may apply
Proposition 53 to derive that U (i−1) and ∂+U (i−1) = ∂−U (i)

are regular molecules. Thus
1) the input of the first call is well-formed,
2) for i > 1, assuming that the (i − 1)-th call correctly

returned true, the input of the i-th call is well-formed.
Since all of these are in dimension (n − 1), by the inductive
hypothesis, each call terminates returning the correct answer.
By Theorem 94, this proves both correctness and termination
in dimension n. �

Theorem 97. The rewritable submolecule problem in dimen-
sion n can be solved in time

O


∏

k≤n

|Uk|! |Uk|


 .

Proof. For n = 0, this is obvious, so let n > 0. The number
of iterations of the main loop is bounded above by the number
of topological sorts of G := Fn−1U/Fn−1V . This reaches
its maximum when G is a discrete graph, in which case the
number is (|Un| − |Vn|+1)!, tightly bounded above by |Un|!.

At each iteration of the main loop, we have at most
|Un| − |Vn|+1 calls to the algorithm on regular molecules of
dimension n− 1 contained in U . By the inductive hypothesis,
these take time O(

∏
k≤n−1 |Uk|! |Uk|).

All other operations have lower complexity: both finding
topological sorts and computing the boundaries of the U (i)

take linear time in |EnU |, but this can be bounded above by
|Un| |Un−1|, and we conclude. �

98. The superpolynomial upper bound on the rewritable sub-
molecule problem leaves it inconclusive whether subdiagram
matching admits a polynomial-time algorithm in arbitrary
dimension. Nevertheless, we are at least able to prove that
the problem is in NP.

Proposition 99. For all n ∈ N, the n-dimensional subdiagram
matching problem is in NP.

Proof. It suffices to prove by induction on n that the rewritable
submolecule problem in dimension n is in NP. When n = 0,
the problem is trivial. In dimension n > 0, a polynomial-size
certificate that V ⊑ U is given by

1) a topological sort ((x(i))q−1
i=1 , xV , (x

(i))m−p+1
i=q+1) of the

graph Fn−1U/Fn−1V , and
2) polynomial-size certificates that ∂−V ⊑ ∂−U (q) and

∂−x(i) ⊑ ∂−U (i) for all i 6= q,

with the notations of Theorem 94. By the inductive hypothesis
this exists and is verifiable in polynomial time. �

100. We conclude this section by considering some improve-
ments on the subdiagram matching algorithm conditional on
acyclicity properties.

101 (Frame-acyclic molecule). Let U be a regular molecule.
We say that U is frame-acyclic if for all submolecules V ⊑ U ,
if r := frdimV , then MrV is acyclic.

Theorem 102. Let U be a regular molecule. The following
are equivalent:

(a) U is frame-acyclic;
(b) for all V ⊑ U and all frdimV ≤ k < dimV , V admits

a k-layering;
(c) for all V ⊑ U and all frdimV ≤ k < dimV , the sets

LaykV and OrdkV are non-empty and equinumerous.

103 (Stably frame-acyclic molecule). Let U be a regular
molecule. We say that U is stably frame-acyclic if for all
submolecules V ⊑ U and all rewritable submolecules W ⊑ V ,
the regular molecule V [〈W 〉/W] is frame-acyclic.

104. Every stably frame-acyclic regular molecule is frame-
acyclic: if we take V ⊑ U to be an atom, the substitution
U [〈V 〉/V] is trivial. Moreover, every submolecule of a (stably)
frame-acyclic regular molecule is (stably) frame-acyclic.

We are not aware of examples of regular molecules that are
stably frame-acyclic but not frame-acyclic (as we will see in
the next section, any such example is at least 4-dimensional),
so we cannot exclude that the two classes coincide, but neither
it seems clear that they do.

105. In general, frame-acyclicity seems difficult to check.
However, it is implied by stronger acyclicity conditions that
are easier to check. We do not know any easily verifiable
sufficient conditions for stable frame-acyclicity.

106 (Acyclic molecule). Let U be a regular molecule. We say
that U is acyclic if H̊ U is acyclic.

107 (Dimension-wise acyclic molecule). Let U be a regular
molecule. We say that U is dimension-wise acyclic if, for all
k ∈ N, FkU is acyclic.

Lemma 108. Let U be a regular molecule. Then

1) if U is acyclic, it is dimension-wise acyclic;
2) if U is dimension-wise acyclic, it is frame-acyclic.

Example 109. Both implications are strict. The 3-dimensional
atom

0 • 2 • 0 • 2 •

1 • 1 •

3 3

42
0

0 1 0 1

1 2
30

(based on [8, Fig. 2]) is not acyclic, since its oriented Hasse
diagram contains the cycle

(0, 1) → (1, 1) → (2, 1) → (3, 0) → (2, 2) → (1, 4) → (0, 1),

but it is dimension-wise acyclic. The 3-dimensional atom

3 • 3 •
0 • 2 • 0 • 2 •

1 • 1 •
0

0
1 0

1

4
3

3
4

2

5
0 1 2 3

(based on [8, Fig. 4]) is not dimension-wise acyclic, since its
0-flow graph contains the cycle (1, 2) → (1, 5) → (1, 2), but
it is frame-acyclic by Theorem 121.

Proposition 110. If U is guaranteed to be frame-acyclic, the
rewritable submolecule problem in dimension n can be solved
in time

O


∏

k≤n

|Uk|!


 .

Proof. Given a topological sort ((x(i))q−1
i=1 , xV , (x

(i))m−p+1
i=q+1)

of Fn−1U/Fn−1V , by Lemma 89, substituting any (n−1)-or-
dering of V for xV produces an (n−1)-ordering of U in which
the elements of V are consecutive. By Theorem 102, this is
induced by an (n−1)-layering of U . By Lemma 93, it suffices
to check that ∂−V ⊑ ∂−U (q) to conclude that V ⊑ U , so we
have a single recursive call instead of O(|Un|) many. Since
∂−U (q) ⊑ U (q) ⊑ U , it is frame-acyclic, and we can proceed
inductively. �

Proposition 111. If U is guaranteed to be stably frame-
acyclic, the rewritable submolecule problem can be solved in
linear time in the size of H U .

Proof. If V ⊑ U , by assumption U [〈V 〉/V] is frame-acyclic.
By Theorem 102, all its (n − 1)-orderings are induced by
(n − 1)-layerings, and by Lemma 90 they are in bijection
with topological sorts of Fn−1U/Fn−1V . It follows that, if
any topological sort of Fn−1U/Fn−1V fails to satisfy the
conditions of Theorem 94, then V is not a submolecule of U ,
so in the decision algorithm we can stop after the first iteration
of the main loop.

This involves finding a single topological sort and com-
puting ∂−U (q), both of which take time O(|EnU |); then, as
in Proposition 110, we make a single call to the decision
algorithm for ∂−V ⊑ ∂−U (q). Since ∂−U (q) ⊑ U (q) ⊑ U , it
is stably frame-acyclic, and we can proceed inductively. �

Corollary 112. The subdiagram matching problem restricted
to diagrams with stably frame-acyclic shape is in P.

113. Proposition 111 begs the question: why not just develop
a higher-dimensional rewriting theory around stably frame-
acyclic shapes of diagrams? The reason is that, in general,
acyclicity properties are global properties of diagrams, that
are not stable under local substitutions, essential to rewriting
theory. Indeed, the inductive definition of regular molecules
makes them “minimal” for a class of shapes closed un-
der pasting and rewrites of round diagrams, with roundness
seemingly the natural condition ensuring both topological
soundness and a good combinatorial account of substitution.
Any further restriction would almost certainly be impractical
from a rewriting-theoretic perspective.

Nevertheless, the following section will show that up to
dimension 3 there is no restriction at all: all regular molecules
are stably frame-acyclic, and in fact we can further simplify
our algorithms.

IV. IN LOW DIMENSIONS

114. Some results in this section come from [17, Section 3].

Lemma 115. Let U be a 1-dimensional regular molecule,
m := |U1|. Then H̊ U is a linear graph with (2m+1) vertices,
and F0U is a linear graph with m vertices.

Proposition 116. Let ı : V →֒ U be an inclusion of regular
molecules, dimV = dimU = 1. Then ı is a submolecule
inclusion.

Proof. By Lemma 65 F0V is an induced subgraph of F0U .
By Lemma 115 both of them are linear graphs, and an induced
subgraph of a linear graph is a linear graph if and only if
its vertices are consecutive in the ambient graph. All other
conditions of Lemma 93 are trivially satisfied. �

Proposition 117. Let U be a regular molecule, dimU ≤ 2.
Then U is acyclic.

Lemma 118. Let ı : V →֒ U be an inclusion of regular
molecules, dimU ≤ 2. Then F1V is a path-induced subgraph
of F1U .

Theorem 119. Let ı : V →֒ U be an inclusion of regular
molecules such that dimU = dimV = 2 and V is round.
Then ı is a submolecule inclusion.

Proof. By Lemma 118 combined with Lemma 89, there exists
a 1-ordering (x(i))mi=1 of U in which the elements of ı(V) are
consecutive, that is, x(i) ∈ ı(V) if and only if p ≤ i ≤ q for
some p, q ∈ {1, . . . ,m}.

By Proposition 117 U is acyclic, so by Lemma 108 it is
frame-acyclic, and by Theorem 102 the 1-ordering comes from
a 1-layering (U (i))mi=1 such that ı(∂−V) ⊆ ∂−U (p). Since
both are 1-dimensional regular molecules, by Proposition 116
ı(∂−V) ⊑ ∂−U (p), and Lemma 93 allows us to conclude. �

Corollary 120. The rewritable submolecule problem in dimen-
sion ≤ 2 has a trivial constant-time solution.

Theorem 121. Let U be a regular molecule, dimU ≤ 3. Then
U is stably frame-acyclic.

Theorem 122. Let ı : V →֒ U be an inclusion of regular
molecules such that dimU = dimV = 3 and V is round.
The following are equivalent:
(a) ı is a submolecule inclusion;
(b) F2V is a path-induced subgraph of F2U .

Proof. One implication is Proposition 91, so we only need to
prove the converse. By Lemma 89, if F2V is path-induced,
then there exists a 2-ordering (x(i))mi=1 of U in which the ele-
ments of ı(V) are consecutive, that is, x(i) ∈ ı(V) if and only
if p ≤ i ≤ q for some p, q ∈ {1, . . . ,m}. By Theorem 121, U
is frame-acyclic, so by Theorem 102 the 2-ordering comes
from a 2-layering (U (i))mi=1 such that ı(∂−V) ⊆ ∂−U (p).
Since both are 2-dimensional regular molecules and ∂−V is
round, by Theorem 119 ı(∂−V) ⊑ ∂−U (p), and we conclude
by Lemma 93. �

Theorem 123. The rewritable submolecule problem in dimen-
sion 3 can be solved in time O(|E3U |).
Proof. By Theorem 122 combined with Lemma 89, it suffices
to construct F2U/F2V and check if it is acyclic. The first
can be done while traversing the induced subgraph of H U
on U3 ∪ U2, which takes time O(|E3U |). Both the number
of vertices and the number of edges of F2U/F2V is also
O(|E3U |), and we conclude. �

124. To match a diagram s : V → V in t : U → V in
dimension 3, according to our results we need

• O(|U3| |V3| |V | |E∨V | log |E∨V |) time to find all inclu-
sions V →֒ U , of which there are O(|U3|),

• O(|E3U |) time to check whether each of them is a
submolecule inclusion,

• O(|V |) time to compare labellings on each, assuming
labels can be compared in constant time,

leading to an overall

O(|U3| (|E3U |+ |V3| |V | |E∨V | log |E∨V |))
upper bound. Here we used the bound on molecule matching
in generic dimension; it is possible that this can be improved
by using strategies tailored to dimension 3, as it is certainly
the case in dimension ≤ 2.

If we consider a machine operating by rewriting 3-di-
mensional diagrams, which has a fixed finite list of rewrite
rules, the variables linked to V can be considered as constant
parameters of the machine. Our results then imply that such a
machine can be simulated with O(|U3| |E3U |) overhead in a
standard model of computation.

125. We leave the existence of a polynomial algorithm for
subdiagram matching in dimension 4 or higher as an open
problem. The main obstacle to overcome is the expensive
iteration on topological sorts, motivated by the fact that, from
dimension 4 onwards, not all of them arise from layerings. One
may hope, perhaps, that this is due to flow graphs “missing”
some relations, and that it should be possible to supplement
them with extra information, in such a way as to restore the
bijective correspondence between layerings and topological

0

1

2

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

4

5

6

7

8

9

0

1

2

3

Figure 1. Oriented Hasse diagram of Example 126.

sorts. Unfortunately, this cannot be the case in general, as the
following counterexample shows.

Example 126. This example is a 4-dimensional regular mo-
lecule U which is not frame-acyclic. Its Hasse diagram is given
in Figure 1, with dimensions increasing from left to right.

To understand this example, we can picture the 4-dimen-
sional elements of U as rewrites of planar projections of
3-dimensional diagrams, portrayed as string diagrams. Then
U has one 3-layering inducing the 3-ordering

((4, 1), (4, 3), (4, 0), (4, 2))

corresponding to the sequence of rewrite steps

0

12

3
1⇒

0

1

5 3⇒
0

18

9

0⇒ 4

8

9

2⇒
6

78

9

where nodes represent 3-dimensional elements and incoming
and outgoing wires represent their input and output faces. It
has one other 3-layering inducing the 3-ordering

((4, 0), (4, 2), (4, 1), (4, 3)).

These are the only two 3-layerings of U . Indeed, the ap-
plication of the rewrite (4, 1) creates a “non-convexity”
in the input boundary of (4, 0), in the form of a path
(3, 1) → (3, 5) → (3, 0) in F2U , which can also be spotted
as the upward path 1 → 5 → 0 in the second string diagram.
Before (4, 0) can be applied, this needs to be resolved by
the application of (4, 3), which removes the non-convexity.
Similarly, if (4, 0) is applied first, it creates a non-convexity in
the input boundary of (4, 1), a path (3, 2) → (3, 4) → (3, 3) in
F2U , which needs to be resolved by the application of (4, 2).

Now we have examples of all the following.
1) A 3-ordering that is not induced by a 3-layering.

The graph F3U is simply

(4, 0) (4, 2)

(4, 1) (4, 3)

so U admits four other 3-orderings which do not determ-
ine 3-layerings; for example, ((4, 0), (4, 1), (4, 2), (4, 3)).
What is more, there is no extension of F3U , and more
in general no graph whose vertex set is U4, whose
topological sorts correspond to the 3-layerings of U .

2) A regular molecule that is not frame-acyclic.
We can deduce that U is not frame-acyclic using The-
orem 102. More directly, V := cl {(4, 0), (4, 3)} is a
submolecule of U such that frdimV = 2, but M2V
contains a cycle (4, 3) → (4, 0) → (4, 3), since

(2, 5) ∈ ∆+
2 (4, 3) ∩∆−

2 (4, 0),

(2, 7) ∈ ∆+
2 (4, 0) ∩∆−

2 (4, 3).

3) An inclusion of a round regular molecule that is not a
submolecule inclusion.
We have that ∂−(4, 0) = cl {(3, 0), (3, 1)} is a round
3-dimensional regular molecule, included in the 3-dimen-
sional regular molecule W := cl {(3, 0), (3, 1), (3, 5)}.
However, it is not a submolecule of W , due to the
presence of the path (3, 1) → (3, 5) → (3, 0) in M2W .

CONCLUSIONS AND OUTLOOK

We have taken the first steps into the study of machines
based on higher-dimensional rewriting in all dimensions. We
have presented algorithms by which they could be simulated in
standard models of computation, and shown that this requires
only low-degree polynomial time overhead in dimension ≤ 3.

Feasibility in dimension > 3 is the most obvious open
question. We hope that a deeper understanding of cases like
Example 126 will lead either to an improved algorithm, or to
a proof of NP-completeness. The way in which 4-dimensional
rewrites can introduce obstructions to “disjoint” rewrites, in a

non-local way, may be a hint that the latter is more likely. In
either case, we are actively working on the problem.

Beyond the more immediate questions, we hope to have laid
the groundwork for an approach to complexity theory based
on higher-dimensional rewriting, that leverages its unique
characteristics as described in the introduction. For instance,
we believe that the coexistence of higher algebraic structures
and rewrite systems within the same category, as made pos-
sible by the theory of diagrammatic sets or their variants,
may lead to a unified and compositional understanding of
interpretations of rewrite systems, such as polynomial and
matrix interpretations, which are one of the key techniques in
implicit computational complexity. We plan to develop various
aspects of this programme in future work.

Acknowledgements

This work was supported by the ESF funded Estonian IT
Academy research measure (project 2014-2020.4.05.19-0001)
and by the Estonian Research Council grant PSG764. We
thank the anonymous referees for their helpful comments on
an earlier draft.

REFERENCES

[1] A. Burroni, “Higher-dimensional word problems with applications to
equational logic,” Theoretical Computer Science, vol. 115, no. 1, pp.
43–62, 1993.

[2] Y. Guiraud, “Rewriting methods in higher algebra,” Thèse d’habilitation
à diriger des recherches, Université Paris 7, 2019.

[3] F. Lawvere, “Functorial semantics of algebraic theories,” Proceedings
of the National Academy of Sciences of the United States of America,
vol. 50, no. 5, p. 869, 1963.

[4] S. Gaussent, Y. Guiraud, and P. Malbos, “Coherent presentations of Artin
monoids,” Compositio Mathematica, vol. 151, no. 5, pp. 957–998, 2015.

[5] D. Reutter and J. Vicary, “High-level methods for homotopy construction
in associative n-categories,” in 2019 34th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS). IEEE, 2019, pp. 1–13.

[6] M. Freedman, A. Kitaev, M. Larsen, and Z. Wang, “Topological quantum
computation,” Bulletin of the American Mathematical Society, vol. 40,
no. 1, pp. 31–38, 2003.

[7] A. Hadzihasanovic, “Diagrammatic sets and rewriting in weak higher
categories,” arXiv preprint arXiv:2007.14505, 2020.

[8] R. Steiner, “The algebra of directed complexes,” Applied Categorical
Structures, vol. 1, no. 3, pp. 247–284, 1993.

[9] A. Hadzihasanovic and D. Kessler, “Data structures for topologically
sound higher-dimensional diagram rewriting,” in Proceedings Fifth In-
ternational Conference on Applied Category Theory (ACT2022), 2022.

[10] G. Bonfante and Y. Guiraud, “Polygraphic programs and polynomial-
time functions,” Logical Methods in Computer Science, vol. 5, no. 2:
14, pp. 1–37, 2009.

[11] F. Bonchi, F. Gadducci, A. Kissinger, P. Sobocinski, and F. Zanasi,
“String diagram rewrite theory I: Rewriting with Frobenius structure,”
Journal of the ACM (JACM), vol. 69, no. 2, pp. 1–58, 2022.

[12] ——, “String diagram rewrite theory II: Rewriting with symmetric
monoidal structure,” Mathematical Structures in Computer Science,
vol. 32, no. 4, pp. 511–541, 2022.

[13] ——, “String diagram rewrite theory III: Confluence with and without
Frobenius,” arXiv preprint arXiv:2109.06049, 2021.

[14] A. Delpeuch and J. Vicary, “The word problem for braided monoidal
categories is unknot-hard,” arXiv preprint arXiv:2105.04237, 2021.

[15] J. Vicary and A. Delpeuch, “Normalization for planar string diagrams
and a quadratic equivalence algorithm,” Logical Methods in Computer
Science, vol. 18, 2022.

[16] A. Hadzihasanovic, “Higher-categorical pasting diagrams,” to appear.
[17] ——, “The smash product of monoidal theories,” in 2021 36th Annual

ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE,
2021.

APPENDIX
ADDITIONAL PROOFS

A. Proofs for Section I

127. Most of the proofs are taken from a forthcoming mono-
graph on the combinatorics of pasting diagrams [16]. To avoid
making this appendix longer than it already is, we cite results
of [8], [7], [17] whenever possible, even though they use
slightly different definitions; all the results used have been
independently reproved.

Proof of Lemma 20. This is a combination of [7, Lemma 1.9
and Lemma 1.11]. �

Proof of Proposition 22. By [7, Lemma 1.9], there is a forget-
ful functor U from ogPos to the category Pos of posets and
order-preserving maps. All these limits and colimits exist in
Pos, so it suffices to prove that they can be lifted to ogPos.

The terminal poset is the poset with a single element, and
the initial poset is the empty poset. Both of them admit a
unique orientation. Let P be an oriented graded poset. Both
the unique map from UP to the terminal poset and the unique
map from the initial poset trivially preserve boundaries, so
they lift to maps of oriented graded posets.

Let ı1 : Q →֒ P1 and ı2 : Q →֒ P2 be inclusions of oriented
graded posets. Computing their pushout in Pos determines
two order-preserving maps

j1 : UP1 → UP1 ∪ UP2, j2 : UP2 → UP1 ∪ UP2.

Since Uı1 and Uı2 are closed embeddings, it is an exercise to
show that j1 and j2 are also closed embeddings, and deduce
that UP1∪UP2 is a graded poset. Since j1 and j2 preserve the
covering relation and are jointly surjective, we can put a unique
orientation on UP1 ∪ UP2 in such a way that j1 and j2 both
preserve orientations; overlaps are resolved by the fact that
(Uı1); j1 = (Uı2); j2 and ı1 and ı2 preserve orientations. This
choice of orientation determines a unique lift of the pushout
to ogPos. �

Lemma 128. Let U be a closed subset of an oriented graded
poset, n ∈ N, and α ∈ {+,−}. Then

1) (∂α
nU)n = ∆α

nU ,
2) (Max (∂α

nU))k = (MaxU)k for all k < n.

Proof. Let x ∈ ∂α
nU . Then by definition there exists y such

that x ≤ y and either y ∈ ∆α
nU or y ∈ (MaxU)k for some

k < n. If x is maximal, necessarily x = y, and we obtain one
inclusion. The converse inclusions are evident. �

Lemma 129. Let U be a closed subset in an oriented graded
poset, n ∈ N, and α ∈ {+,−}. Then

1) (MaxU)n = ∆+
nU ∩∆−

nU ,
2) if n = dimU then (MaxU)n = ∆α

nU = Un.

Proof. Let x ∈ U , dimx = n. Then x is maximal
if and only if it has no cofaces in U , if and only if
∇−αx∩U = ∇αx∩U = ∅, if and only if x ∈ ∆+

nU ∩∆−
nU .

If n = dimU , then every element of Un is maximal in U , so

Un = (MaxU)n ⊆ ∆α
nU ⊆ Un

using the first part of the proof, and we conclude that they are
all equal. �

Lemma 130. Let U, V be closed subsets of an oriented graded
poset, n ∈ N, and α ∈ {+,−}. Then

1) Max (U ∪ V) = (MaxU ∩ MaxV) + (MaxU \ V)+
(MaxV \ U),

2) ∆α
n(U ∪V) = (∆α

nU ∩∆α
nV)+(∆α

nU \V)+(∆α
nV \U).

Proof. Follows straightforwardly from the definitions using
the decomposition U ∪V = (U ∩V)+(U \V)+(V \U). �

Proof of Lemma 26. Identifying U and V with their iso-
morphic images, we will prove that ∂−(U ⇒ϕ V) = U and
∂+(U ⇒ϕ V) = V . Let n := dimU = dim V . By construc-
tion, we have ∆−

n (U ⇒ϕ V) = Un and ∆+
n (U ⇒ϕ V) = Vn.

For all k < n, the set (Max (U ⇒ϕ V))k is equal to
(Max (U∪V))k . We claim that this is equal to both (MaxU)k
and (MaxV)k. For k < n− 1,

(MaxU)k = (Max ∂αU)k = (Max ∂αV)k = (MaxV)k

by Lemma 128. For k = n− 1, by Lemma 129

(MaxU)n−1=∆−U ∩∆+U=∆−V ∩∆+V =(MaxV)n−1.

We then conclude by Lemma 130. �

Proof of Lemma 31. We will prove the contrapositive. Sup-
pose that U is not pure. Then there exists a maximal element
x in U with k := dim x < dimU .

Since (MaxU)k = ∆−
k U∩∆+

k U , we have x ∈ ∂−
k U∩∂+

k U .
Then ∂−

k U ∩ ∂+
k U is k-dimensional and cannot be equal to

∂k−1U , which is (k− 1)-dimensional. It follows that U is not
round. �

Proof of Proposition 34. The first point follows from [7, Pro-
position 1.38], the third and fourth point from [7, Proposition
1.23]. The second point follows from the first and the third for
the pasting construction, and [7, Lemma 2.2] for the rewrite
construction. The fifth point is an immediate consequence of
the definition of roundness combined with globularity. �

Proof of Propositions 37, 38, 39. These all follow from [7,
Proposition 1.23] in conjunction with uniqueness of isomorph-
isms of regular molecules. �

Proof of Proposition 43. We prove the first point by induc-
tion. If U was produced by (Point), then U is the terminal
oriented graded poset, which trivially has a greatest element. If
U was produced by (Paste), then U splits into a union V ∪W ,
where V ∩W = ∂+

k V = ∂−
k W and k < max {dim V, dimW}.

Then there exist elements x1 ∈ V and x2 ∈ W such that
1) x1 is maximal in V and x2 is maximal in W ,
2) dimx1 > k and dimx2 > k.

We have dim (V ∩W) ≤ k, so neither x1 nor x2 are contained
in V ∩ W . It follows that x1 and x2 are distinct maximal
elements of U , so U does not have a greatest element. If U
was produced by (Atom), then U splits into (U−∪U+)+{⊤},
where U− and U+ are round regular molecules of dimension
n, and ∆α⊤ = (Uα)n for each α ∈ {+,−}. By Lemma 31,

we have Uα = cl (Uα)n, so Uα = ∂α⊤ ⊆ cl {⊤}. It follows
that all elements of U are in the closure of x, that is, x is the
greatest element of U .

We prove the second point also by induction. If U was
produced by (Point), then x must be the unique element of
U whose closure is U itself. If U was produced by (Paste),
it splits into V ∪ W , and x ∈ V or x ∈ W ; the inductive
hypothesis applies. If U was produced by (Atom), it is equal
to (V ∪W)+{⊤}, and either x ∈ V or x ∈ W , in which case
the inductive hypothesis applies, or x = ⊤, and cl {x} = U
is an atom by definition.

For the third point, if U was produced by (Point), it is
trivially round. If it was produced by (Atom), it is of the form
V ⇒ W where ∂−U is isomorphic to V and ∂+U to W ,
and by definition of the rewrite construction their intersection
is uniquely isomorphic to ∂V and ∂W ; we conclude by
globularity. If dimU > 0, then U was produced by (Atom),
so it is of the form V ⇒ W , with ∂−U isomorphic to V
and ∂+U to W . By uniqueness of these isomorphisms, U is
isomorphic to ∂−U ⇒ ∂+U . �

B. Proofs for Section II

Proof of Lemma 51. For the first point, ∂α
nU is a regular

molecule by Proposition 34. By Proposition 38, the pastings
U #n ∂

+
n U and ∂−

n U #n U are both defined and uniquely
isomorphic to U . The inclusion of ∂−

n U into U factors as
the inclusion ∂−

n U →֒ (∂−
n U #n U) followed by an iso-

morphism, and the inclusion of ∂+
n U factors as the inclusion

∂+
n U →֒ (U #n ∂

+
n U) followed by an isomorphism.

For the second point, cl {x} is an atom by Proposition 43.
We proceed by induction on the construction of U . If U was
produced by (Point), then x must be the unique element of
U , so cl {x} = U . If U was produced by (Paste), it splits
into V ∪ W with V,W ⊑ U , and x ∈ V or x ∈ W . By
the inductive hypothesis, cl {x} ⊑ V or cl {x} ⊑ W . If U
was produced by (Atom), it splits into (V ∪W) + {⊤} with
V,W ⊑ U , and either x ∈ V or x ∈ W , in which case the
inductive hypothesis applies since V,W ⊑ U by Lemma 51,
or x = ⊤, and cl {x} = U . �

Lemma 131. Let V be a regular molecule, n < dim V ,
α ∈ {+,−}. Consider a pushout diagram of the form

∂α
nV V

U V ∪ U

ı

jU

jVy

in ogPos. If dimU = n and ı is a submolecule inclusion,
then

1) V ∪ U is a regular molecule,
2) jU maps U onto ∂α

n (V ∪ U),
3) jV (V) ⊑ V ∪ U and jV (∂

−α
n V) ⊑ ∂−α

n (V ∪ U).

Proof. By induction on the construction of ı. If ı is an
isomorphism, then jV is also an isomorphism, and all the
statements are trivially satisfied.

Suppose U is of the form ∂α
nV #k W for some k ∈ N, and

ı is the inclusion of ∂α
nV into the pasting. Since dimU = n,

necessarily dimW ≤ n, so ∂α
nW = W . If k ≥ n, then also

k ≥ dimW , and in this case ı and jV are again isomorphisms.
Suppose that k < n. Identifying V with its image through jV ,
V ∪ U splits into V ∪W with

V ∩W = ∂α
nV ∩W = ∂−

k W = ∂+
k (∂α

nV) = ∂+
k V

where the final equation uses globularity of V . This exhibits
V ∪U as V #k W , with jV the inclusion of V into the pasting,
and jU maps ∂α

nV #k W onto ∂α
n (V #k W) by [7, Propos-

ition 1.23] and the axioms of strict ω-categories. Similarly,
∂−α
n V ⊑ ∂−α

n (V #k W). The case where U is of the form
W #k ∂

α
nV is dual.

By the pasting law for pushout squares, if the statement
is true of two submolecule inclusions, it is also true of their
composite. �

Lemma 132. Let U be an oriented graded poset, V,W round
regular molecules, and ı : V →֒ U an inclusion such that
U [W/ı(V)] is defined. Let ϕ : ∂V

∼→֒ ∂W be the isomorphism
used in the construction of V ⇒ W . Then U [W/ı(V)] can be
constructed as the pushout

∂V ∂W W

U \ (ı(V) \ ı(∂V)) U [W/ı(V)].

ϕ

jy (3)

Proof. We can safely identify V with its image through ı,
and treat it as a closed subset of U . First of all, observe that
U \(V \∂V) is the complement of the complement of a closed
subset in a closed subset, so it is closed in U , and well-defined
as an oriented graded poset.

Let n := dimU , so dim(U∪(V ⇒ W)) and dim(V ⇒ W)
are both equal to n+ 1. Then

∆+
n (V ⇒ W) = Wn, ∆+

nU = Un

and since U ∩ (V ⇒ W) = V , by Lemma 130

∆+
n (U∪(V ⇒ W)) = Wn+(Un\Vn) = Wn+(U\(V \∂V))n,

while for all k < n

(Max (U ∪ (V ⇒ W)))k = (MaxU)k =

= (Max (U \ (V \ ∂V)))k

because both V and V ⇒ W are round, hence pure, and do
not contain any maximal elements of dimension k.

It follows that ∂+(U ∪ (V ⇒ W)) is the union of W and
(U \ (V \ ∂V)), with intersection ∂W = ∂V . �

Lemma 133. Let U be an oriented graded poset, V,W round
regular molecules, and ı : V →֒ U an inclusion such that
U [W/ı(V)] is defined. Let j : W →֒ U [W/ı(V)] be the
right side of (3). Then (U [W/ı(V)])[V/j(W)] is defined and
isomorphic to U .

Proof. Since W ⇒ V is defined whenever V ⇒ W is
defined, it follows that (U [W/ı(V)])[V/j(W)] is defined.

The isomorphism with U is straightforward algebra of closed
subsets using Lemma 132 twice. �

Proof of Proposition 53. If ı is a submolecule inclusion, by
Lemma 131 U ∪ (V ⇒ W) and its output boundary
U [W/ı(V)] are regular molecules, and the inclusion of W
into U [W/ı(V)] is a submolecule inclusion.

If V is a round regular molecule, then 〈V 〉 is an atom, which
is round by Proposition 43, and has boundaries isomorphic to
those of V by Lemma 26. Then V ⇒ 〈V 〉 is defined, so the
fourth condition is a special case of the third one.

Finally, suppose U [〈V 〉/ı(V)] is a regular molecule. By
Lemma 51, since 〈V 〉 is an atom, its inclusion j into
U [〈V 〉/ı(V)] is a submolecule inclusion.

Using Lemma 131 as in the first part, we deduce that
(U [〈V 〉/ı(V)])[V/j(〈V 〉)] is a regular molecule, and the inclu-
sion of V into it is a submolecule inclusion. By Lemma 133,
(U [〈V 〉/ı(V)])[V/j(〈V 〉)] is isomorphic to U , and ı factors as
this submolecule inclusion followed by an isomorphism. �

Proof of Lemma 60. This is [7, Lemma 1.16]. �

Proof of Lemma 65. It follows from Lemma 20 that, for all
x ∈ V and α ∈ {+,−}, the set ∆α

kx is isomorphic to ∆α
k ı(x).

It follows that, for all x, y ∈ ⋃
i>k Vi, there is an edge between

x and y in FkV if and only if there is an edge between ı(x)
and ı(y) in FkU . �

134. The following proof uses results proved in the following
sections; none of their proofs use it, so there is no circularity.

Proof of Proposition 66. First of all, if U is round, then it is
pure, so the vertices of Fn−1U are the elements of Un. If
U is an atom, then Fn−1U consists of a single vertex and
no edges, so it is trivially connected. In particular this is true
when n = 0 since U is then the point, so we can proceed by
induction on n.

Suppose n > 0 and |Un| > 1, which by Lemma 136
implies lydimU = n − 1. Assume by way of contradiction
that Fn−1U is not connected. Then there is a bipartition
Un = A+B such that there are no edges in Fn−1U between
vertices in A and vertices in B. By Lemma 60, no element
of Un−1 can be covered by two elements with the same
orientation, so this implies that dim (clA ∩ clB) < n − 1.
Let

A′ :=
{
x ∈ ∆−U | ∇−x ⊆ A

}
,

B′ :=
{
x ∈ ∆−U | ∇−x ⊆ B

}
.

Then A′ + B′ is a bipartition of ∆−U . By Proposition 34,
∂−U is round, so by the inductive hypothesis Fn−2(∂

−U) is
connected. It follows that there exist α ∈ {+,−}, x ∈ A′,
y ∈ B′, and z ∈ Un−2 such that z ∈ ∆αx ∩ ∆−αy.
Then z has two distinct cofaces in ∂−U , so by Lemma 60
z /∈ ∂(∂−U) = ∂n−2U . We claim that z ∈ ∂+U , contradicting
the roundness of U .

By Theorem 77, there exists an (n− 1)-layering (U (i))mi=1

of U ; we will identify the U (i) with their isomorphic images in

U . Let V0 := ∂−U and Vi := ∂+U (i) for each i ∈ {1, . . . ,m}.
We will prove that, for all i ∈ {0, . . . ,m},

1) z ∈ Vi,
2) there exist elements xi ∈ clA and yi ∈ clB such that

∇αz ∩ Vi = {xi} and ∇−αz ∩ Vi = {yi}.
For i = 0, we have already established this with x0 := x,
y0 := y. Let i ≥ 0, and assume this holds for i − 1. By
Lemma 73, there is a single n-dimensional element x(i) in
U (i), and by Lemma 144

Vi = ∂−U (i)[∂+x(i)/∂−x(i)] = Vi−1[∂
+x(i)/∂−x(i)].

Suppose x(i) ∈ A. Then yi−1 /∈ cl
{
x(i)

}
, so yi−1 ∈ Vi,

and we let yi := yi−1. If xi−1 /∈ cl
{
x(i)

}
then also

xi−1 ∈ Vi, and we let xi := xi−1. Otherwise, xi−1 is
the only coface of z in ∂−x(i), so by Lemma 60 we have
z ∈ ∂α(∂−x(i)) = ∂α(∂+x(i)). It follows that z ∈ Vi and
there exists a unique xi such that ∇αz ∩ ∂+x(i) = {xi}. The
case x(i) ∈ B is analogous.

Since Vm = ∂+U , we have proved that z ∈ ∂+U , a
contradiction. �

C. Proofs for Section III

Lemma 135. Let U be a regular molecule, −1 ≤ k < dimU ,
and (U (i))mi=1 a k-layering of U . For all i < j ∈ {1, . . . ,m},

U (i) ∩ U (j) = ∂+
k U (i) ∩ ∂−

k U (j).

Proof. Let i < j ∈ {1, . . . ,m}, and

V := U (1)
#k . . . #k U

(i),

W := ∂+
k U

(i)
#k U

(i+1)
#k . . . #k U

(j−1),

Z := U (j)
#k . . . #k U

(m).

Then U splits into V ∪ (W #k Z) along the k-boundary, so

∂+
k U (i) = ∂+

k V = ∂−
k (W #k Z) = V ∩ (W #k Z).

Since U (i) ⊆ V and U (j) ⊆ (W #k Z), it follows that
U (i) ∩ U (j) ⊆ ∂+

k U (i). Dually, from the fact that U
splits into (V #k W) ∪ Z along the k-boundary, we derive
U (i) ∩ U (j) ⊆ ∂−

k U (j). �

Proof of Lemma 73. For the first point, since dimU (i) > k
each U (i) contains at least one maximal element of dimension
> k, and because

dim (U (i) ∩ U (j)) = dim (∂+
k U (i) ∩ ∂−

k U (j)) ≤ k

by Lemma 135, no such maximal element is contained in
two of them. Since there are exactly m maximal elements
of dimension > k, it follows that each U (i) contains exactly
one of them.

For the second point, for all i ∈ {1, . . . ,m}, let

V (i) := ∂+
ℓ U

(1)
#k . . . #k ∂

+
ℓ U (i−1)

#k

#k U
(i)

#k ∂
−
ℓ U (i+1)

#k . . . #k ∂
−
ℓ U (m).

By repeated applications of Proposition 39 followed by Pro-
position 38, U is isomorphic to

V (1)
#ℓ . . . #ℓ V

(m).

Restricting to the subsequence of (V (i))mi=1 on those i such
that dimV (i) > ℓ, which does not change the result by
Proposition 38, we obtain an ℓ-layering of U . �

Lemma 136. Let U be a regular molecule, n := dimU . Then
1) lydimU ≤ n− 1,
2) lydimU = n− 1 if and only if |Un| > 1.

Proof. We have
∣∣∣∣∣
⋃

i>n

(MaxU)i

∣∣∣∣∣ = |∅| = 0,

so lydimU ≤ n− 1, with equality if and only if
∣∣∣∣∣
⋃

i>n−1

(MaxU)i

∣∣∣∣∣ = |(MaxU)n| = |Un| > 1,

where we used Lemma 129. �

Lemma 137. Let U be a regular molecule. Then lydimU is
−1 if and only if U is an atom.

Proof. Suppose lydimU = −1. If
∣∣⋃

i>0(MaxU)i
∣∣ = 0, then

dimU = 0 and U is the point.
Otherwise, 1 =

∣∣⋃
i>0(MaxU)i

∣∣ = |MaxU | because a
regular molecule which is not 0-dimensional cannot have
a 0-dimensional maximal element. In either case, U has a
greatest element. Conversely, if U has a greatest element,∣∣⋃

i>0(MaxU)i
∣∣ ≤ |MaxU | = 1. �

Lemma 138. Let U, V be regular molecules, and suppose
U #k V is defined for some k < min {dimU, dimV }. Then

lydim (U #k V) ≥ max {lydimU, lydimV, k} .

Proof. Identifying U and V with their isomorphic images,
U #k V splits into U ∪V with dim (U ∩ V) = dim ∂+

k U = k.
By Lemma 130, for all i > k,

(Max (U #k V))i = (MaxU)i + (MaxV)i,

and since k < min {dimU, dimV }, both U and V have at
least one maximal element of dimension strictly larger than k.
It follows that

∣∣∣∣∣
⋃

i>k

(Max (U #k V))i

∣∣∣∣∣ =

=

∣∣∣∣∣
⋃

i>k

(MaxU)i

∣∣∣∣∣+
∣∣∣∣∣
⋃

i>k

(MaxV)i

∣∣∣∣∣ ≥ 2,

so k − 1 < lydim (U #k V), that is, k ≤ lydim (U #k V).
Furthermore, letting n := lydim (U #k V), since n+ 1 > k,

∣∣∣∣∣
⋃

i>n+1

(MaxU)i

∣∣∣∣∣+
∣∣∣∣∣
⋃

i>n+1

(MaxV)i

∣∣∣∣∣ =

=

∣∣∣∣∣
⋃

i>n+1

(Max (U #k V))i

∣∣∣∣∣ ≤ 1,

which implies that
∣∣∣∣∣
⋃

i>n+1

(MaxU)i

∣∣∣∣∣ ≤ 1,

∣∣∣∣∣
⋃

i>n+1

(MaxV)i

∣∣∣∣∣ ≤ 1.

Then max {lydimU, lydimV } ≤ lydim (U #k V). �

Lemma 139. Let U be a regular molecule, k := lydimU .
Suppose k ≥ 0, and let (U (i))mi=1 be a k-layering of U . Then

1) m > 1,
2) for each i ∈ {1, . . . ,m}, lydimU (i) < k,
3) at most one of the U (i) contains an element of dimension

> k + 1.

Proof. By definition of lydimU , if k ≥ 0 and a k-layering
exists, then m > 1, for otherwise k − 1 ≤ lydimU , a
contradiction. Moreover, U contains at most one element of di-
mension > k+1, which can be contained at most in one of the
U (i). Finally, by Lemma 73, we have

∣∣∣
⋃

j>k(MaxU (i))j

∣∣∣ = 1,

so lydimU (i) ≤ k − 1 < k. �

Proof of Theorem 77. Let k := lydimU . If k = −1, then U
is an atom and admits the trivial layering U = U (1). If k ≥ 0,
by Lemma 137 U is not an atom, so we can assume that U
was produced by (Paste). Then U is equal to V #ℓ W for some
regular molecules V,W and ℓ < min {dimV, dimW}. By the
inductive hypothesis, we have layerings

V (1)
#kV

. . . #kV
V (mV), W (1)

#kW
. . . #kW

W (mW)

of V and W , where kV := lydimV and kW := lydimW .
Furthermore, by Lemma 138, k ≥ max {kV , kW , ℓ}. Let

nV :=





mV if kV = k,
1 if kV < k and dim V > k,
0 if kV < dimV < k,

nW :=





mW if kW = k,
1 if kW < k and dimW > k,
0 if kW < dimW < k.

Notice that it can never be the case that nV = nW = 0. We
claim that we can decompose V as

Ṽ (1)
#k . . . #k Ṽ

(nV)
#k ∂+

k V #k . . . #k ∂
+
k V︸ ︷︷ ︸

nW times

, (4)

where each Ṽ (i) is a regular molecule containing exactly one
maximal element of dimension > k. If kV = k, we let
Ṽ (i) := V (i) for all i ∈ {1, . . . ,mV }. If kV < k, then V
contains at most one maximal element of dimension > kV +1,
hence at most one maximal element of dimension > k. If
dimV > k, it contains exactly one, and we let Ṽ (1) := V . If
dimV < k, then V = ∂+

k V . By Proposition 38, pasting copies
of ∂+

k V does not change the result up to unique isomorphism.
Similarly, we can decompose W as

∂−
k W #k . . . #k ∂

−
k W︸ ︷︷ ︸

nV times

#k W̃
(1)

#k . . . #k W̃
(nW) (5)

where each W̃ (i) contains exactly one maximal element of
dimension > k.

If ℓ = k, since ℓ < min {dimV, dimW}, we have
0 < min {nV , nW }. Then

Ṽ (1)
#k . . . #k Ṽ

(nV)
#k W̃

(1)
#k . . . #k W̃

(nW)

is a k-layering of U . If ℓ < k, let

U (i) :=

{
Ṽ (i)

#ℓ ∂
−
k W if i ≤ nV ,

∂+
k V #ℓ W̃

(i−nV) if nV < i ≤ nV + nW .

Since dim ∂−
k V = dim ∂+

k W = k, each U (i) still contains
exactly one maximal element of dimension > k. Plugging (4)
and (5) in V #ℓ W and using Proposition 39 repeatedly, we
deduce that V #ℓ W is isomorphic to

U (1)
#k . . . #k U

(nV +nW),

which has the desired properties. Necessarily, nV +nW = m.
This proves that U has a k-layering. It remains to show that

frdimU ≤ k. Let x, y be distinct maximal elements of U . If
min {dimx, dim y} ≤ k, then dim (cl {x} ∩ cl {y}) < k.

Suppose that k < min {dim x, dim y}, and let (U (i))mi=1

be a k-layering of U . By Lemma 73 there exist i 6= j such
that x ∈ U (i) and y ∈ U (j). By Lemma 135, there exists
α ∈ {+,−} such that U (i) ∩ U (j) = ∂α

kU
(i) ∩ ∂−α

k U (j).
Then cl {x} ∩ cl {y} ⊆ ∂α

kU
(i) ∩ ∂−α

k U (j), which is at most
k-dimensional. �

Proof of Corollary 78. Follows from Theorem 77 together
with Lemma 136. �

Lemma 140. Let U, V be regular molecules and suppose
U #k V is defined for some k < min {dimU, dimV }. If MkU
and MkV are acyclic, then Mk(U #k V) is acyclic.

Proof. Suppose that MkU and MkV are acyclic. We may
identify U and V with their images in U #k V . By Lemma
130, since dim (U ∩ V) = k,

⋃

i>k

(Max (U #k V))i =
⋃

i>k

(MaxU)i +
⋃

i>k

(MaxV)i,

so MkU and MkV are isomorphic to the induced subgraphs
of Mk(U #k V) on the vertices in U and V , respectively. It
follows that a cycle in Mk(U #k V) cannot remain in U or
V , but has to visit vertices in both. In particular, such a cycle
has to go through an edge from x ∈ V to y ∈ U , induced
by the existence of z ∈ ∆+

k x ∩∆−
k y. But then z /∈ ∂−

k V and
z /∈ ∂+

k U , yet z ∈ U ∩ V , a contradiction. �

Proof of Proposition 80. Let (U (i))mi=1 be a k-layering of U .
For each i ∈ {1, . . . ,m}, the graph MkU

(i) is trivially
acyclic by Lemma 73. We conclude by applying Lemma 140
repeatedly. �

Proof of Proposition 83. The function (U (i))mi=1 7→ (x(i))mi=1

is well-defined by Lemma 73. Let i, j ∈ {1, . . . ,m}, and
suppose that there is an edge from x(i) to x(j) in MkU ,
that is, there exists z ∈ ∆+

k x
(i) ∩ ∆−

k x
(j). By Proposition

80, MkU is acyclic, so necessarily i 6= j. If j < i, then

U (j)∩U (i) ⊆ ∂+
k U (j)∩∂−

k U (i) by Lemma 135, contradicting
the existence of z. It follows that i < j, so (x(i))mi=1 is a
k-ordering of U .

Let (V (i))mi=1 be another k-layering, and suppose it determ-
ines the same k-ordering as (U (i))mi=1. Then the image of both
U (1) and V (1) in U is

cl
{
x(1)

}
∪ ∂−U,

so U (1) is isomorphic to V (1). If m = 1 we are done.
Otherwise, (U (i))mi=2 and (V (i))mi=2 are k-layerings inducing
the same k-ordering on their image. By recursion, we conclude
that they are layer-wise isomorphic. �

Lemma 141. Let U, V,W be regular molecules, k < dimU ,
α ∈ {+,−}, and let ı : V →֒ U be a submolecule inclusion
such that U [W/ı(V)] is defined. Then ∂α

kU is isomorphic to
∂α
k (U [W/ı(V)]).

Proof. By Lemma 131, U ∪ (V ⇒ W) is a regular molecule
and U is isomorphic to its input boundary. By globularity,
∂α
kU is isomorphic to

∂α
k (∂

+(U ∪ (V ⇒ W))) = ∂α
k (U [W/ı(V)]). �

Lemma 142. Let U, V,W,U ′, U ′′ be regular molecules, let
k < dimU , and let ı : V →֒ U be a submolecule inclusion
such that

U #k U
′, U ′′

#k U,U [W/ı(V)]

are defined. Then
1) U [W/ı(V)]#k U

′ and U ′′
#k U [W/ı(V)] are defined,

2) if dimU ′ ≤ dimU , then (U #k U
′)[W/ıU (ı(V))] is

defined and isomorphic to U [W/ı(V)]#k U
′,

3) if dimU ′′ ≤ dimU , then (U ′′
#k U)[W/ıU (ı(V))] is

defined and isomorphic to U ′′
#k U [W/ı(V)].

Proof. It follows from Lemma 141 that U [W/ı(V)]#k U
′ and

U ′′
#k U [W/ı(V)] are defined.

The substitution (U #k U
′)[W/ıU (ı(V))] is then defined if

and only if dim (U #k U
′) = dimU , equivalently, if and only

if dimU ′ ≤ dimU . Similarly, (U ′′
#k U)[W/ıU (ı(V))] is

defined if and only if dimU ′′ ≤ dimU . The isomorphisms
follow straightforwardly from the definitions using the pasting
law for pushout squares. �

143. Theorem 77 in conjunction with Lemma 139 and Lemma
137 allows us to prove properties of regular molecules by
induction on their layering dimension. That is, to prove that a
property holds of all regular molecules U , it suffices to

• prove that it holds when lydimU = −1, that is, when U
is an atom,

• prove that it holds when k := lydimU ≥ 0, assuming
that it holds of all the (U (i))mi=1 in a k-layering of U .

Lemma 144. Let U be a regular molecule, k ∈ N, and suppose
⋃

i>k

(MaxU)i = {x} .

Then, for all α ∈ {+,−},

1) ∂α
k x ⊑ ∂α

kU ,
2) ∂α

kU is isomorphic to ∂−α
k U [∂α

k x/∂
−α
k x].

Proof. We proceed by induction on lydimU .
If lydimU = −1, then U is an atom and equal to cl {x}.

It follows that ∂α
k x = ∂α

kU , which is trivially a submolecule,
and is isomorphic to ∂−α

k U [∂α
k x/∂

−α
k x].

Suppose ℓ := lydimU ≥ 0, and let (U (i))mi=1 be an ℓ-layer-
ing of U . Then ℓ ≤ k− 1 < k because

∣∣⋃
i>k(MaxU)i

∣∣ = 1.
By [7, Proposition 1.23] and the axioms of strict ω-categories,
∂α
kU is isomorphic to

∂α
kU

(1)
#ℓ . . . #ℓ ∂

α
kU

(m).

Now x is contained in a single U (i). By the inductive
hypothesis, ∂α

k x ⊑ ∂α
kU

(i), and the latter is isomorphic to
∂−α
k U (i)[∂α

k x/∂
−α
k x]. We conclude by Lemma 142. �

Proof of Proposition 85. Suppose (U (i))mi=1 is a k-layering.
Then, for all i ∈ {1, . . . ,m}, U (i) is a regular molecule, and
by Proposition 73 x(i) is the only element of dimension > k
in U (i). By Lemma 144, ∂−

k x(i) ⊑ ∂−
k U (i).

Conversely, it follows from Lemma 131 that for all i, if
∂−
k U (i) is a regular molecule and ∂−

k x(i) is its submolecule,
then U (i) is a regular molecule, hence ∂+

k U (i) is a regular mo-
lecule. Moreover, since (x(i))mi=1 is a k-ordering, it is straight-
forward to prove that U (i) ∩ U (i+1) = ∂+

k U (i) = ∂−
k U (i+1)

for all i ∈ {1, . . . ,m− 1}. Since ∂−U (1) = ∂−U is a regular
molecule, it follows by induction, assuming condition (b), that
U (i) is a regular molecule for all i ∈ {1, . . . ,m}. This proves
that (U (i))mi=1 is a k-layering of U . �

145. In the following, we use the following explicit construc-
tion of G /(G |W). Its set of vertices is (VG \W)+{xW }, and
for all pair of vertices x, y,

• if x, y 6= xW , there is an edge between x and y for each
edge between x and y in G ,

• if x = xW and y 6= xW , there is an edge from x to y for
each pair of a vertex z ∈ W and an edge from x to y in
G ,

• if x 6= xW and y = xW , there is an edge from x to y for
each pair of a vertex z ∈ W and an edge from x to z in
G ,

• there are no edges from xW to xW .

Proof of Lemma 89. We prove the contrapositive of the im-
plication from (a) to (b). Suppose G /(G |W) has a cycle.
If the cycle does not pass through xW , then it lifts to a
cycle in G , contradicting the assumption that G is acyclic.
It follows that the cycle contains a segment of the form
xW → x1 → . . . → xm → xW , where m > 0 and xi 6= xW

for all i ∈ {1, . . . ,m}. Then there exist y, z ∈ W and a path
y → x1 → . . . → xm → z in G , so G |W is not path-induced.

Next, suppose that G /(G |W) is acyclic. Then both the
graphs G /(G |W) and G |W are acyclic, so they admit topo-
logical sorts (x(i))mi=1 and (y(j))pj=1, respectively. For exactly
one q ∈ {1, . . . ,m}, x(i) = xW . We claim that

((x(i))q−1
i=1 , (y

(j))pj=1, (x
(i))mi=q+1)

is a topological sort of G . Indeed, for all edges from x to x′

in G ,
• if x, x′ /∈ W , then x = x(i), x′ = x(i′) for some
i, i′ ∈ {1, . . . ,m} \ {q}, and there is an edge from x
to x′ in G /(G |W), so i < i′;

• if x, x′ ∈ W , then x = y(j), x′ = y(j
′) for some

j, j′ ∈ {1, . . . , p}, and there is an edge from x to x′

in G |W , so j < j′;
• if x ∈ W , x′ /∈ W , then x = y(j), x′ = x(i) for some
i ∈ {1, . . . ,m} \ {q}, j ∈ {1, . . . , p}, and there is an
edge from xW to x′ in G /(G |W), so q < i;

• if x /∈ W , x′ ∈ W , then x = x(i), x′ = y(j) for some
i ∈ {1, . . . ,m} \ {q}, j ∈ {1, . . . , p}, and there is an
edge from x to xW in G /(G |W), so i < q.

This proves the implication from (b) to (c). Moreover, it
defines an injection from pairs of a topological sort of G |W
and a topological sort of G /(G |W) to topological sorts of G in
which the vertices of W are consecutive. This will prove to be
a bijection as soon as we have proven the converse implication.

Finally, we prove the contrapositive of the implication from
(c) to (a). Suppose G |W is not path-induced, that is, there is
a path x → x1 → . . . → xm → y in G such that m > 0,
x, y ∈ W , and xi /∈ W for all i ∈ {1, . . . ,m}. It follows that
the xi must come between x and y in every topological sort
of G , so the vertices of W can never be consecutive. �

Proof of Lemma 90. By Lemma 65 combined with Proposi-
tion 66, Fn−1V is a connected induced subgraph of Fn−1U ,
so its contraction is well-defined. Now, the vertices of the
graph Fn−1U [〈V 〉/ı(V)] are either

• x ∈ Un \ Vn, or
• xV such that the image of 〈V 〉 in U [〈V 〉/ı(V)] is cl {xV }.

Let x, y be two vertices of Fn−1U [〈V 〉/ı(V)].
• If x, y ∈ Un \ Vn, then ∆+x ∩ ∆−y is the same

in U [〈V 〉/ı(V)] as in U , so there is an edge from x
to y in Fn−1U if and only if there is an edge in
Fn−1U [〈V 〉/ı(V)].

• If x = xV then ∆+xV ∩ ∆−y is in bijection with
∆+V ∩∆−y in U . For all z ∈ ∆+V , since V is pure and
n-dimensional, there exists w ∈ ∇+z. If ∆+xV ∩∆−y
is non-empty, it follows that ∆+z ∩∆−y is non-empty
in U for some z ∈ ı(V)n. Thus there exist z ∈ ı(V)n
and an edge from z to y in Fn−1U .

• Dually, if y = xV , there is an edge from x to y in
Fn−1U [〈V 〉/ı(V)] if and only if there exist z ∈ ı(V)n
and an edge from x to z in Fn−1U .

• Finally, ∆+V ∩ ∆−V = ∅ because V is pure, so
∆+xV ∩∆−xV and there is no edge from xV to xV .

It is then straightforward to establish an isomorphism with the
explicit description of Fn−1U/Fn−1V . �

Proof of Lemma 93. Identify V with its isomorphic image
through ı, and suppose that ı is a submolecule inclusion. Then
Ũ := U [〈V 〉/V] is a regular molecule by Proposition 53, and
admits an (n− 1)-layering (Ũ (i))m−p+1

i=1 by Theorem 77. Let
cl {x} be the image of 〈V 〉 in Ũ ; then x ∈ Ũ (q) for exactly

one q ∈ {1, . . . ,m− p+ 1}. Then W := Ũ (q)[V/cl {x}] is
defined, and by Lemma 142 combined with Lemma 133, U is
isomorphic to

Ũ (1)
#n−1 . . . #n−1 Ũ

(q−1)
#n−1

#n−1 W #n−1 Ũ
(q+1)

#n−1 . . . #n−1 Ũ
(m−p+1).

By Lemma 144, ∂−x ⊑ ∂−Ũ (q), so by Lemma 141
∂−V ⊑ ∂−W . We can apply the criterion of Proposition 85
to deduce that (y(i))pi=1 is an (n− 1)-ordering of W induced
by an (n− 1)-layering (W (i))pi=1. Letting

(U (i))mi=1 := ((Ũ (i))q−1
i=1 , (W

(i))pi=1, (Ũ
(i))m−p+1

i=q+1),

produces an (n − 1)-layering, hence an (n − 1)-ordering
(x(i))mi=1 of U , with the property that (x(i))p+q−1

i=q = (y(i))pi=1.
Conversely, let (U (i))mi=1 be an (n − 1)-layering of U

satisfying the properties in the statement, and let W ⊑ U
be the image of U (q)

#n−1 . . . #n−1 U
(p+q−1) in U . Then

Wn = Vn, so
W = V ∪ ∂−W.

Because ∂−V ⊑ ∂−U (q) which is equal to ∂−W , by Lemma
131 V ⊑ W ⊑ U . �

Full proof of Theorem 94. Identify V with its isomorphic im-
age through ı, and suppose that ı is a submolecule inclusion.
Then Ũ := U [〈V 〉/V] is a regular molecule by Propos-
ition 53, so it admits an (n − 1)-layering (Ũ (i))m−p+1

i=1 ,
which induces an (n − 1)-ordering. By Lemma 90, this
(n − 1)-ordering can be identified with a topological sort
((x(i))q−1

i=1 , xV , (x
(i))m−p+1

i=q+1) of Fn−1U/Fn−1V . By Lemma
144, we have ∂−xV ⊑ ∂−Ũ (q) and ∂−x(i) ⊑ ∂−Ũ (i) for
i 6= q. By Lemma 142 combined with Lemma 133, letting
W := Ũ (q)[V/cl {xV }], U is isomorphic to

Ũ (1)
#n−1 . . . #n−1 Ũ

(q−1)
#n−1

#n−1 W #n−1 Ũ
(q+1)

#n−1 . . . #n−1 Ũ
(m−p+1).

and W is isomorphic to U (q), while Ũ (i) is isomorphic to U (i)

for all i 6= q. We conclude by Lemma 141.
The converse implication has already been fully proved. �

Lemma 146. Let U be a regular molecule, ℓ ≥ −1. If
U has an ℓ-layering, then for all k > ℓ the function
mk,U : LaykU →֒ OrdkU is a bijection.

Proof. Let (U (i))mi=1 be an ℓ-layering of U , and let (x(i))mi=1

be its image through mℓ,U . For k > ℓ, let (y(i))pi=1 be
a k-ordering of U . Then there exists a unique injection
j : {1, . . . , p} →֒ {1, . . . ,m} such that y(i) = x(j(i)) for all
i ∈ {1, . . . , p}. Let

V (i) := ∂
α(i,1)
k U (1)

#ℓ . . . #ℓ U
(j(i))

#ℓ . . . #ℓ ∂
α(i,m)
k U (m),

α(i, j) :=

{
+ if j = j(i′) for some i′ < i,
− otherwise.

Applying Proposition 38 and Proposition 39 repeatedly, we
find that (V (i))pi=1 is a k-layering of U and (y(i))pi=1 is its

image through mk,U . This proves that mk,U is surjective, and
we conclude by Proposition 83. �

Lemma 147. Let U be a regular molecule. Suppose that
for all submolecules V ⊑ U , if r := frdimV , then V
admits an r-layering. Then for all k ≥ frdimU the function
mk,U : LaykU →֒ OrdkU is a bijection.

Proof. Let r := frdimU . By assumption, there exists an
r-layering of U , so by Lemma 146 it suffices to show that
mr,U is a bijection.

Given two r-orderings (x(i))mi=1 and (y(i))mi=1, there exists
a unique permutation σ such that x(i) = y(σ(i)) for all
i ∈ {1, . . . ,m}. Let d((x(i))mi=1, (y

(i))mi=1) be the number of
pairs (j, j′) such that j < j′ but σ(j′) < σ(j). Under the
assumption that (x(i))mi=1 is in the image of mr,U , we will
prove that (y(i))mi=1 is also in the image of mr,U by induction
on d((x(i))mi=1, (y

(i))mi=1). Since the image of mr,U is not
empty, this will suffice to prove that mr,U is surjective, hence
bijective by Proposition 83.

If d((x(i))mi=1, (y
(i))mi=1) = 0, then x(i) = y(i) for all

i ∈ {1, . . . ,m}, and there is nothing left to prove.
Suppose d((x(i))mi=1, (y

(i))mi=1) > 0. Then there exists
j < m such that σ(j + 1) < σ(j). Suppose (x(i))mi=1 is the
image of the r-layering (U (i))mi=1. Let V ⊑ U be the image
of U (j)

#r U
(j+1) in U , and let

z1 := x(j) = y(σ(j)), z2 := x(j+1) = y(σ(j+1)).

Because z1 comes before z2 in one r-ordering, but after in
another, there can be no edge between them in MrU , so

dim (cl {z1} ∩ cl {z2}) < r.

Since z1, z2 are the only maximal elements of dimension > r
in V , we deduce that ℓ := frdimV < r. By assumption,
there exists an ℓ-layering of V . In particular, there exist regular
molecules V (1), V (2) such that

1) zi is in the image of V (i) for all i ∈ {1, 2}, and
2) V is isomorphic to V (1)

#ℓ V
(2) or to V (2)

#ℓ V
(1).

Without loss of generality suppose that V is isomorphic to
V (1)

#ℓ V
(2). By Proposition 38 and Proposition 39, letting

Ũ (j) := ∂−
r V (1)

#ℓ V
(2),

Ũ (j+1) := V (1)
#ℓ ∂

+
r V

(2),

we have that V is isomorphic to Ũ (j)
#r Ũ

(j+1). Letting
Ũ (i) := U (i) for i /∈ {j, j + 1}, we have that (Ũ (i))mi=1 is
an r-layering of U , and

mr,U : (Ũ (i))mi=1 7→ (x̃(i))mi=1 =

= (x(1), . . . , x(j+1), x(j), . . . , x(m)).

Then d((x̃(i))mi=1, (y
(i))mi=1) < d((x(i))mi=1, (y

(i))mi=1) and
(x̃(i))mi=1 is in the image of mr,U . We conclude by the
inductive hypothesis. �

Lemma 148. Let U be a regular molecule, r := frdimU . If
U is frame-acyclic, then U admits an r-layering.

Proof. Since submolecules of frame-acyclic regular molecules
are frame-acyclic, we can proceed by induction on sub-
molecules. For all x ∈ U0, we have frdim {x} = −1, and
{x} admits a trivial (−1)-layering, proving the base case.

We construct an ordered tree of submolecules U (j1,...,jp) of
U , as follows:

• the root is U () := U ;
• if lydimU (j1,...,jp) ≤ r, then we let lydimU (j1,...,jp) be

a leaf;
• if k := lydimU (j1,...,jp) > r, then we pick a k-layering
(V (i))qi=1 of U (j1,...,jp), which is possible by Theorem
77, and for each i ∈ {1, . . . , q}, we let the image of V (i)

be a child U (j1,...,jp,i) of U (j1,...,jp).
By Lemma 139, the layering dimension of the children of a
node is strictly smaller than that of the node, so the procedure
terminates.

Fix an r-ordering (x(i))mi=1 of U ; this is possible because
MrU is acyclic. Let V := U (j1,...,jp) be a node of the tree.
We have

⋃

j>r

(MaxV)j =

m∑

i=1

⋃

j>r

(
(MaxV)j ∩ cl

{
x(i)

})

=:
m∑

i=1

M (i);

the M (i) form a partition because frdimU = r, so every
element of dimension > r is in the closure of x(i) for a unique
i ∈ {1, . . . ,m}. We claim that V is isomorphic to

V (1)
#r . . . #r V

(m)

for some regular molecules (V (i))mi=1 with the following
property: for each i ∈ {1, . . . ,m}, identifying V (i) with its
image in V , we have

⋃

j>r

(MaxV (i))j = M (i).

We will prove this by backward induction on the tree
U (j1,...,jp).

Suppose V is a leaf, so lydimV ≤ r. Then V admits an
r-layering. For each i ∈ {1, . . . ,m}, fix a topological sort
(y(i,j))pi

j=1 of the induced subgraph MrV |M(i) . We claim that
((y(i,j))pi

j=1)
m
i=1 is an r-ordering of V .

Suppose there is an edge from x to x′ in MrV . Then
x ∈ M (i), x′ ∈ M (i′) for a unique pair i, i′ ∈ {1, . . . ,m}.
If i = i′, then x = y(i,j) and x′ = y(i,j

′) for some
j, j′ ∈ {1, . . . , pi}, and j < j′ because (y(i,j))pi

j=1 is a
topological sort of MrV |M(i) . If i 6= i′, then there exists

z ∈ ∆+
r x ∩∆−

r x
′ ⊆ cl

{
x(i)

}
∩ cl

{
x(i′)

}
.

Since ∂α
r x

(i) and ∂α
r x

(i′) is pure and r-dimensional for all
α ∈ {+,−}, by [8, Proposition 6.4]

z ∈ (∆+
r x

(i) ∩∆−
r x

(i′)) ∪ (∆−
r x

(i) ∩∆+
r x

(i′)),

and ∆−
r x

(i) ∩ cl {x} ⊆ ∆−
r x which is disjoint from ∆+

r x,
so z ∈ ∆+

r x
(i) ∩ ∆−

r x
(i′). It follows that there is an edge

from x(i) to x(i′) in MrU , so i < i′ because (x(i))mi=1 is a
topological sort of MrU . This proves that ((y(i,j))pi

j=1)
m
i=1 is

an r-ordering of V .
Let W ⊑ V , ℓ := frdimW . If V 6= U or W 6= U , then

W admits an ℓ-layering by the inductive hypothesis on proper
submolecules of U . If W = V = U then ℓ = r and W admits
an ℓ-layering by Theorem 77. In either case, V satisfies the
conditions of Lemma 147, and since r ≥ lydimV ≥ frdimV ,
every r-ordering of V comes from an r-layering of V .

It follows that ((y(i,j))pi

j=1)
m
i=1 comes from an r-layering

((W (i,j))pi

j=1)
m
i=1, and we can define

V (i) := W (i,1)
#r . . . #r W

(i,pi)

for each i ∈ {1, . . . ,m}, satisfying the desired condition.
Now, suppose that V is not a leaf, so k := lydimV > r, and

V has children (W (j))qj=1 forming a k-layering of V . By the
inductive hypothesis, each of the W (j) has a decomposition

W (j,1)
#r . . . #r W

(j,m)

such that the maximal elements of dimension > r in the
image of W (j,i) are contained in cl

{
x(i)

}
. Then, for each

i ∈ {1, . . . ,m} and j, j′ ∈ {1, . . . , q},

W (j,i) ∩W (j′) ⊆ W (j′,i),

so V (i) := W (1,i)
#k . . . #k W

(q,i) is defined. Using Pro-
position 39 repeatedly, we conclude that V is isomorphic to
V (1)

#r . . . #r V
(m).

This concludes the induction on U (j1,...,jp). In particular,
for the root U () = U , the decomposition U (1)

#r . . . #r U
(m)

satisfies ⋃

j>r

(MaxU (i))j =
{
x(i)

}
,

that is, (U (i))mi=1 is an r-layering of U . �

Proof of Theorem 102. The implication from (a) to (b) is a
consequence of Lemma 148 together Lemma 73. The implic-
ation from (b) to (c) is Lemma 147. Finally, the implication
from (c) to (a) follows from Proposition 80. �

Proof of Lemma 108. Suppose U is acyclic. Let k ∈ N and
suppose there is a cycle x0 → x1 → . . . → xm = x0

in FkU . By definition, for all i ∈ {1, . . . ,m} there exists
yi ∈ ∆+

k xi−1 ∩∆−
k xi. By [7, Lemma 1.37], there exist paths

from xi−1 to yi and then from yi to xi in H̊ U . Concatenating
all these paths, we obtain a cycle in H̊ U .

Suppose U is dimension-wise acyclic, and let V ⊑ U be a
submolecule inclusion, r := frdimV . Then FrU is acyclic,
hence so are its induced subgraphs FrV and MrV . �

D. Proofs for Section IV

Proof of Lemma 115. We will show that U is isomorphic to

arrow#0 . . . #0 arrow︸ ︷︷ ︸
m times

.

By Lemma 136, either lydimU = −1 or lydimU = 0. In the
first case, U is an atom by Lemma 137. Because the point is

the only 0-dimensional molecule up to isomorphism, the arrow
is the only 1-dimensional atom, so U is isomorphic to arrow. In
the second case, U admits a 0-layering (U (i))mi=1 by Theorem
77, and by Lemma 139, for each i ∈ {1, . . . ,m}, necessarily
lydimU (i) = −1. By the first part, U (i) is isomorphic to
arrow. �

Proof of Proposition 117. This is [17, Proposition 5]. �

149 (Horizontal and vertical order). Let U be a regular
molecule, dimU ≤ 2. The horizontal order �0 and the
vertical order �2 on the set U1 of 1-dimensional elements
of U are defined by

• x �0 y if and only if there is a path from x to y in H̊ U
only passing through elements of dimension 0 and 1,

• x �2 y if and only if there is a path from x to y in H̊ U
only passing through elements of dimension 1 and 2.

Lemma 150. Let U be a regular molecule, dimU ≤ 2. Then

1) the union of �0 and �2 is a linear order on U1,
2) the intersection of �0 and �2 is the identity relation on

U1.

Proof. If dimU < 2, then �2 is trivially the identity relation,
and �0 is a linear order by 115. If U is a 2-dimensional atom,
then U1 = ∆−U+∆+U , and that �0 is a linear order on ∆αU
for each α ∈ {+,−} separately, so we have x �2 y for all
x ∈ ∆−U and y ∈ ∆+U , and no other relations exist.

Otherwise, we proceed exactly as in the proof of Proposition
117, defining a 1-ordering (x(i))mi=1 and a sequence (V (i))mi=1

of increasing submolecules of U . We let �(i)
0 and �(i)

2 be the
orders determined by paths in H̊ V (i), which are increasing
in i, and proceed by induction. Since dimV (0) = 1, we have
already proved the base case.

Let i > 0, assume that the statement holds of the orders
�(i−1)

0 and �(i−1)
2 on (V (i−1))1. Let x, y ∈ (V (i))1; we

will show that x and y are comparable via �(i)
0 or �(i)

2 . If
x, y ∈ V (i−1) or x, y ∈ cl

{
x(i)

}
, we can apply the inductive

hypothesis or the atom case, so it suffices to consider the case

x ∈ V (i−1) \∆−x(i), y ∈ ∆+x(i).

Let (z(j))pj=1 be the unique linear 0-ordering on ∂−x(i), so
z(j) �0 z(j

′) if j ≤ j′. For all j ∈ {1, . . . , p}, we have
x 6= z(j), and by the inductive hypothesis x and z(j) are
comparable via �(i−1)

0 or they are comparable via �(i−1)
2 .

• Suppose there exists j such that x and z(j) are com-
parable via �(i−1)

2 . Then necessarily x �(i−1)
2 z(j),

because ∆−x(i) ⊆ ∆+V (i−1). Since z(j) �(i)
2 y, we have

x �(i)
2 y.

• Otherwise, x and z(j) are comparable via �(i−1)
0 for all

j ∈ {1, . . . , p}. Suppose that x �(i−1)
0 z(1), in which

case x �(i−1)
0 z(j) for all j ∈ {1, . . . , p}. Then the path

from x to z(1) through elements of dimension 0 and 1
must enter z(1) from ∂−z(1) = ∂−

0 x(i). Since there is a
path in H̊ Vi from ∂−

0 x(i) to y, we have x �(i)
0 y.

• Otherwise, there is a greatest j such that z(j) �(i−1)
0 x.

If j < p, then z(j) �(i−1)
0 x �(i−1)

0 z(j+1). Because
all three are distinct, letting ∂+z(j) = ∂−z(j+1) = {w},
there is a non-trivial cycle in H̊ V (i−1) from w to x and
back to w, a contradiction to Proposition 117. It follows
that z(p) �(i−1)

0 x, and the path between the two must
leave z(p) through ∂+

0 x(i), so y �(i)
0 x.

This proves that the union of �(i)
0 and �(i)

2 is a linear order
on (V (i))1.

Suppose that x �(i)
0 y and x �(i)

2 y; we will prove
that x = y. If x ∈ cl

{
x(i)

}
, then x �(i)

2 y implies that
y ∈ cl

{
x(i)

}
, and any path from x to y in H̊ V (i) is entirely

contained in cl
{
x(i)

}
, so we can apply the atom case. Suppose

that x /∈ cl
{
x(i)

}
.

If y ∈ ∆+x(i), then any path from x to y through elements
of dimension 1 and 2 consists of a path contained in V (i−1)

to some z ∈ ∆−x(i) followed by the path z → x(i) → y;
while any path through elements of dimension 0 and 1 consists
of a path contained in V (i−1) to ∂−

0 x(i) followed by a path
contained in ∂+x(i). Since there is a path from ∂−

0 x(i) to any
z ∈ ∆−x(i) through elements of dimension 0 and 1 in V (i−1),
we have that x �(i−1)

0 z and x �(i−1)
2 z for some z ∈ ∆−x(i).

By the inductive hypothesis, x = z, a contradiction since
z ∈ cl

{
x(i)

}
.

It follows that y ∈ V (i−1). Then any path from x to y
through elements of dimension 1 and 2 is entirely contained
in V (i−1), so x �(i−1)

2 y; while a path through elements of
dimension 0 and 1 is either contained in V (i−1), or it enters
∂+x(i) through ∂−

0 x(i), traverses it in its entirety, and leaves
from ∂+

0 x
(i). Such a path segment can be replaced with the

one that traverses ∂−x(i) in its entirety, so in either case
x �(i−1)

0 y, and we conclude that x = y by the inductive
hypothesis. This concludes the proof of the statement for V (i).
Since V (m) = U , we conclude. �

Proof of Lemma 118. Both U and ı(V) are regular molecules
of dimension ≤ 2. Let �0, �2 be the horizontal and vertical
order on U , and �V

0 , �V
2 those on ı(V), which are subsets of

those on U .
Suppose by way of contradiction that F1V is not path-

induced. Then there exists a path x0 → . . . → xm in F1U
such that m > 1, x0, xm ∈ ı(V), and xi /∈ ı(V) for all
i ∈ {1, . . . ,m− 1}. By definition, there exist 1-dimensional
elements yi ∈ ∆+xi−1 ∩∆−xi for all i ∈ {1, . . . ,m}. Then
y1 �2 ym and y1 6= ym. By Lemma 60, xi−1 and xi are
the only cofaces of yi for all i ∈ {1, . . . ,m}. Necessarily,
then, y1 ∈ ∆+ı(V) and ym ∈ ∆−ı(V), so it is not possible
that y1 �V

2 ym. Then by Lemma 150 applied to ı(V), one of
y1 �V

0 ym, ym �V
0 y1, or ym �V

2 y1 must hold. Combined
with y1 �2 ym, each one of these implies y1 = ym by Lemma
150 applied to U , a contradiction. �

Proof of Theorem 121. By [17, Theorem 1] U is frame-
acyclic. Since for all V ⊑ U and all rewritable W ⊑ V ,
V [〈W 〉/W] is still a regular molecule of dimension ≤ 3, it is
frame-acyclic. Hence U is stably frame-acyclic. �

Appendix C

Paper III

A. Hadzihasanovic and D. Kessler. “Acyclicity Conditions on Pasting Diagrams”.
In: Applied Categorical Structures 32 (Oct. 2024). doi: 10.1007/s10485-024-
09784-x

203

https://doi.org/10.1007/s10485-024-09784-x
https://doi.org/10.1007/s10485-024-09784-x

Acyclicity conditions on pasting diagrams

Amar Hadzihasanovic and Diana Kessler
Tallinn University of Technology

Abstract. We study various acyclicity conditions on higher-
categorical pasting diagrams in the combinatorial frame-
work of regular directed complexes. We present an appar-
ently weakest acyclicity condition under which the ω-cat-
egory presented by a diagram shape is freely generated in the
sense of polygraphs. We then consider stronger conditions
under which this ω-category is equivalent to one obtained
from an augmented directed chain complex in the sense of
Steiner, or consists only of subsets of cells in the diagram.
Finally, we study the stability of these conditions under the
operations of pasting, suspensions, Gray products, joins and
duals.

Current version: 2nd September 2024

Contents
1. Regular directed complexes and ω-categories 5
2. Layerings, flow graphs, and orderings 13
3. Frame-acyclicity and polygraphs . 16
4. Dimension-wise acyclicity and Steiner complexes . . 23
5. Stronger acyclicity conditions. 30
6. Stability under constructions and operations 35

Introduction

Pasting diagrams are a central tool for studying the composition of cells in
higher-dimensional categories. The notion of 2-categorical pasting was in-
troduced by Bénabou [Bén67]; in the 1980s and 1990s, a number of frame-
works for n-categorical pasting emerged, with corresponding pasting theor-
ems guaranteeing that a pasting diagram admits a suitably unique composite
[Joh89, Pow91, Str91, Ste93], see [For22] for a recent survey.
A pasting diagram is, informally, a composable configuration of cells in an

2 hadzihasanovic and kessler

n-category, such as the following:

x • y • z •

y •

f

g

f t

α

More in general, one considers “non-pasting” diagram shapes, that do not
admit a composite, such as the following:

• • •

Various formalisms for diagrams have tried to encode, either combinatorially
or topologically the information of such a diagram, in a way that reflects (and
generalises in higher dimensions) the content of these pictures, and has a
univocal interpretation, in the form of a higher category presented by the
diagram shape, together with a functor out of it.
Most of these formalisms include, as part of the definition of a pasting

diagram shape, some acyclicity conditions of varying strength, barring — at
the very least — the existence of “direct loops” where a cell may appear more
than one time in a composite. These conditions serve at least three purposes:
1. to restrict the class of admissible structures so that some undesirable ex-

amples are not part of it;
2. to guarantee that an n-category can be formed out of subdiagrams, or

“composable subsets” of cells in the diagram;
3. to ensure that the presented n-category is freely generated in the sense of

polygraphs or computads [Str76, Bur93, ABG+23].
On the other hand, imposing such conditions comes with a cost. Firstly,
they exclude commonly occuring shapes of pasting diagrams that appear in
dimension 3: for example, a 3-cell of the form

C C

C D ⇒ C D

D DR

L

idC

idD

R idC

R

R

R idD

ε η idR idR

appears as a “weakened” form of one of the triangle equations in the theory
of pseudoadjunctions of 2-categories, but its shape is not acyclic, not even
in a weak sense, due to the 1-cells in the interiors of the two sides forming
a direct loop. If we look at non-pasting diagrams, simple counterexamples
appear already in dimension 1, where looping diagrams of shape

• •

acyclicity conditions on pasting diagrams 3

are perfectly well-defined, yet any result proved with an assumption of acyc-
licity will not extend to them. Secondly, acyclicity properties are global prop-
erties that tend to be unstable, not preserved under common operations. For
example, stronger acyclicity conditions are not preserved under direction-
reversing duality operations, and weaker acyclicity conditions are not pre-
served under pasting and various forms of products.
In [Had20a, Had20b], the first-named author started exploring a framework

for diagrams inspired by Steiner’s approach in [Ste93], but based on the “local”
property of regularity, which requires the input and output boundaries of cells
in a diagram to be closed balls in a topological sense, and is remarkably stable
under all sorts of constructions. This has resulted, recently, in the book-
length exposition [Had24]. The structures encoding “diagram shapes” in this
framework are called regular directed complexes.
The inductive definition of pasting diagram shapes, called molecules in this

framework, ensures that “bad” examples are left out, but is general enough in
the sense that it allows further shapes that one might wish to have. However,
in general, the two other properties listed above — subdiagrams form an
n-category, the n-category is a polygraph — are no longer guaranteed. In
this article we use regular directed complexes as a backdrop for a more refined
study of acyclicity conditions, and their role in achieving these properties.
For the first, we argue that, to a certain extent, it is a non-problem in

that one can replace subsets with more general morphisms whose domains are
molecules in order to obtain an ω-category even without acyclicity. This is
akin to the situation with directed graphs, where linear subgraphs only form
a category if the graph is acyclic, but paths always form a category.
For the “free generation” property, we show that this is achieved by a weaker

notion of acyclicity, called frame-acyclicity, which is shared by all regular direc-
ted complexes of dimension lower or equal then 3 — including the non-acyclic
examples above. Frame-acyclicity for molecules is equivalent to splitness in the
sense of [Ste93], and also has interesting algorithmic consequences as studied
by the authors in [HK23]. However, frame-acyclicity is very technical, difficult
to check, and its stability properties are unclear. so it is useful to consider
other conditions which are easier to check in practice, but more restrictive.
The first such notion is dimension-wise acyclicity which is tied to Steiner’s

loop-freeness property in the theory of augmented directed chain complexes
[Ste04], and allows us to make a precise connection between this and our
framework. In particular, we prove the existence of an isomorphism between
the ω-category presented by a dimension-wise acyclic regular directed complex,
and the ω-category obtained by first passing to an augmented directed chain
complex and then applying Steiner’s functor ν. A slightly stronger notion,
that we call strong dimension-wise acyclicity, is what guarantees that every
morphism from a molecule is injective, hence “subsets suffice”. These two
conditions have the nice property of being closed under direction-reversing

4 hadzihasanovic and kessler

duals, but not under other operations such as pasting (for molecules), Gray
products, or joins. For this reason, we finally consider an even stronger notion,
acyclicity, corresponding to total loop-freeness in [Ste93], and which is stable
under the latter operations.

Structure of the article

In Section 1, we introduce oriented graded posets, our basic data structure
on which we define regular directed complexes and the inductive class of mo-
lecules, together with their category ogPos. We then present the construction
of a strict ω-category Mol/P from an oriented graded poset P , whose cells are
morphisms from a molecule to P , taken up to isomorphism in the slice cat-
egory ogPos/P . Section 2 is dedicated to the theory of layerings of molecules,
which are ways of writing a molecule as a pasting decomposition in which each
term or layer contains exactly one maximal element of dimension greater then
the pasting dimension. In Section 3, we discuss the frame-acyclicity condi-
tion, giving full proofs of some results outlined in [HK23]. We end the section
with the proof that, if an oriented graded poset P has frame-acyclic molecules,
then Mol/P is a polygraph. In Section 4 we make the connection between our
framework and Steiner’s theory of augmented directed chain complexes. We
prove that for a dimension-wise acyclic regular directed complex P , the ω-cat-
egory Mol/P is isomorphic to the ω-category obtained by applying Steiner’s
ν functor to the Steiner complex obtained from P . In Section 5 we study the
stronger acyclicity conditions implying that the ω-category Mol/P consists
only of subsets of P . We also show that the strongest condition translates to
the associated Steiner complex being a “strong Steiner complex”. Finally, in
Section 6 we study the stability of the acyclicity conditions presented above
under the operations of pasting, suspensions, Gray products, joins and duals.

Note

The content of this article was recently exposed, with more detail and all
results reproved from scratch, in [Had24, Chapter 8 and Chapter 11], as part
of a reference book written by the first-named author. The results, however,
have been developed in cooperation by the two authors, and many of them
have not appeared in print before. The purpose of this article is both to give a
clearer picture of the original research developments — in contrast to the book,
we do not reprove results when a proof with roughly the same content has
appeared before, even when the definitions are slightly different — and to offer
a concise, self-contained treatment of a topic which seems particularly subtle
and somewhat misunderstood in the theory of higher-categorical diagrams.

Acknowledgements

The first-named author was supported by Estonian Research Council grant
PSG764. We thank Guillaume Laplante-Anfossi for discussions which helped

acyclicity conditions on pasting diagrams 5

shape the article and Clémence Chanavat for discussions about [Ste04].

1. Regular directed complexes and ω-categories

In this section, we give an overview of our combinatorial framework for higher-
categorical diagrams, and state without proof some of the foundational results.
This is exposed in much more detail in the first chapters of [Had24]. The basic
structure that we use to represent shapes of diagrams is called an oriented
graded poset. Before introducing it, we first recall some notions about posets
with order relation ≤.

1.1 (Faces and cofaces). Let P be a poset. Given elements x, y ∈ P , we say
that y covers x if x < y and, for all y′ ∈ P , if x < y′ ≤ y then y′ = y. For
each x ∈ P , the sets of faces and cofaces of x are, respectively,

∆x := {y ∈ P | x covers y} and ∇x := {y ∈ P | y covers x} .

1.2 (Closed subsets). Let P be a poset and U ⊆ P . The closure of U is the
subset clU := {x ∈ P | there exists y ∈ U such that x ≤ y}. We say that U is
closed if U = clU .

1.3 (Graded poset). A poset P is graded if, for all x ∈ P , all maximal chains
in cl {x} have the same finite size n. In this case, we let dim x, the dimension
of x, be equal to n− 1. If P is a graded poset, the dimension of P is

dimP :=
{
max ({−1} ∪ {dim x | x ∈ P}) if defined,
∞ otherwise.

For each n ∈ N, we write Pn := {x ∈ P | dim x = n}.
Remark 1.4 — In a graded poset, if y ∈ ∆x, then dim y = dim x− 1.

1.5 (Oriented graded poset). An oriented graded poset is a graded poset P
together with, for all x ∈ P , a bipartition ∆x = ∆−x+∆+x of the set of faces
of x into a set ∆−x of input faces and a set ∆+x of output faces.

Remark 1.6 — By duality, this induces a bipartition ∇x = ∇+x+∇−x of the
set of cofaces of each element x.
We will use α, β, . . . for variables ranging over {+,−}. We let −α be − if
α = + and + if α = −.

1.7 (Oriented Hasse diagram). Let P be an oriented graded poset. The oriented
Hasse diagram of P is the directed graph H⃗ P whose
• set of vertices is the underlying set of P , and
• set of edges is

{
(x, y) | x ∈ ∆−y or y ∈ ∆+x

}
, where the source of (x, y)

is x and the target is y.

6 hadzihasanovic and kessler

The oriented Hasse diagram is the usual Hasse diagram of a poset, with edges
representing input and output faces given opposite orientations (input from
lower to higher dimension, and output from higher to lower dimension). An
oriented graded poset is uniquely specified by its oriented Hasse diagram,
together with the dim function, which graphically can be encoded by height,
as in the following example.
Example 1.8 — Consider the 2-dimensional pasting diagram shape

0 • 2 • 3 •

1 •

3

2

0 1

0

where we used progressive natural numbers for cells of each dimension. This
is encoded by the oriented graded poset whose oriented Hasse diagram is

0 1 2 3

0 1 2 3

0

where we also (redundantly) represented the “input” edges as densely dashed
lines for extra emphasis.

1.9 (Morphism of oriented graded posets). Let P,Q be oriented graded posets.
A morphism f : P → Q is a function of their underlying sets which, for all
x ∈ P and α ∈ {+,−}, induces a bijection between ∆αx and ∆αf(x). An
inclusion of oriented graded posets is an injective morphism.
We let ogPos denote the category whose objects are oriented graded posets

and morphisms are morphisms of oriented graded posets.

We list some basic properties of morphisms of oriented graded posets. By
closed map, we mean a map that sends closed subsets to closed subsets.

Lemma 1.10 — Let f : P → Q be a morphism of oriented graded posets. Then
f is an order-preserving, closed, dimension-preserving map of the underlying
graded posets.
Moreover, if f is an inclusion, then f is order-reflecting, and reflects input

and output faces, that is, if f(x) ∈ ∆αf(y), then x ∈ ∆αy.
In particular, f is an isomorphism if and only if it is a surjective inclusion.

Remark 1.11 — Consequently, there is a forgetful functor U : ogPos → Pos,
where Pos is the category of posets and order-preserving maps.

acyclicity conditions on pasting diagrams 7

Remark 1.12 — The inclusion of a closed subset U ⊆ P of an oriented graded
poset with the induced order and orientation is always an inclusion of oriented
graded posets.
Proposition 1.13 — The category ogPos has a strict initial object ∅ and
pushouts of inclusions along inclusions, which are both preserved and reflected
by U : ogPos → Pos. Moreover,
1. the pushout of an inclusion along an inclusion is an inclusion,
2. a pushout square of inclusions is also a pullback square.

1.14 (Input and output n-boundaries). Let U be a closed subset of an oriented
graded poset, and let Max U ⊆ U be its subset of maximal elements. For all
α ∈ {+,−} and n ∈ N, let ∆α

nU := {x ∈ Un | ∇−αx ∩ U = ∅}. The input and
output n-boundary of U are, respectively, the closed subsets

∂−
n U := cl (∆−

nU) ∪
⋃

k<n

cl (Max U)k, ∂+
n U := cl (∆+

nU) ∪
⋃

k<n

cl (Max U)k.

We let ∂nU := ∂+
n U ∪ ∂−

n U . For n < 0, we let ∆α
nU = ∂α

nU := ∅.
Lemma 1.15 — Let V ⊆ U be closed subsets of an oriented graded poset,
n ∈ N, and α ∈ {+,−}. Then V ∩∆α

nU ⊆ ∆α
nV .

Proposition 1.16 — Let ı : P ↪→ Q be an inclusion of oriented graded posets
and U ⊆ P a closed subset. For all n ∈ N and α ∈ {+,−}, ı(∆α

nU) = ∆α
nı(U)

and ı((Max U)n) = (Max ı(U))n. Consequently, ı(∂α
nU) = ∂α

n ı(U).
Not all oriented graded posets represent shapes of diagrams. In what follows,
we introduce the two constructions that we use to build shapes of diagrams,
then give the inductive construction of molecules, the subclass of oriented
graded posets that represents well-formed shapes of diagrams.
1.17 (Pasting construction). Let U , V be oriented graded posets, k ∈ N, and
let ϕ : ∂+

k U
∼
↪→ ∂−

k V be an isomorphism. The pasting of U and V at the
k-boundary along ϕ is the oriented graded poset U #ϕ

k V obtained in ogPos as
the pushout

∂+
k U ∂−

k V V

U U #ϕ
k V.

ϕ

ıU

ıV

⌟

1.18 (Globularity). Let U be an oriented graded poset. We say that U is
globular if, for all k, n ∈ N and α, β ∈ {+,−}, if k < n then

∂α
k (∂β

nU) = ∂α
kU.

Let U be a globular oriented graded poset such that n := dimU < ∞. For all
α ∈ {+,−}, we write ∂αU := ∂α

n−1U , and ∂U := ∂+U ∪ ∂−U . We also write
intU := U \ ∂U .

8 hadzihasanovic and kessler

1.19 (Roundness). Let U be an oriented graded poset. We say that U is round
if it is globular and, for all n < dimU ,

∂−
n U ∩ ∂+

n U = ∂n−1U.

1.20 (Rewrite construction). Let U , V be round oriented graded posets of
the same finite dimension n, and suppose ϕ : ∂U ∼

↪→ ∂V is an isomorphism
restricting to isomorphisms ϕα : ∂αU

∼
↪→ ∂αV for each α ∈ {+,−}. Construct

the pushout in ogPos

∂U ∂V V

U ∂(U ⇒ϕ V).

ϕ

⌟

The rewrite of U into V along ϕ is the oriented graded poset U ⇒ϕ V obtained
by adjoining a single (n+ 1)-dimensional element ⊤ to ∂(U ⇒ϕ V), with

∆−⊤ := Un, ∆+⊤ := Vn.

1.21 (Point). The point is the oriented graded poset 1 with a single element
and trivial orientation.

We are now ready to give the definition of molecules.

1.22 (Molecules and atoms). The class of molecules is the inductive subclass
of oriented graded posets closed under isomorphisms and generated by the
following clauses.
1. (Point). The point is a molecule.
2. (Paste). Let U , V be molecules, let k < min {dimU,dimV }, and let

ϕ : ∂+
k U

∼
↪→ ∂−

k V be an isomorphism. Then U #ϕ
k V is a molecule.

3. (Atom). Let U , V be round molecules of the same finite dimension and
let ϕ : ∂U ∼

↪→ ∂V be an isomorphism restricting to ϕα : ∂αU
∼
↪→ ∂αV for

each α ∈ {+,−}. Then U ⇒ϕ V is a molecule.
An atom is a molecule with a greatest element. Equivalently, it is a molecule
whose final generating clause is either (Point) or (Atom).

The following summarises some basic properties of molecules.

Proposition 1.23 — Let U be a molecule, n ∈ N, α ∈ {+,−}, x ∈ U . Then
1. U is globular,
2. ∂α

nU is a molecule,
3. cl {x} is an atom and is round.

acyclicity conditions on pasting diagrams 9

Proposition 1.24 — Let U , V be molecules, k ∈ N. Then
1. if U and V are isomorphic, there exists a unique isomorphism ϕ : U ∼→ V ,
2. if U #ϕ

k V or U ⇒ϕ V are defined, they are defined for a unique ϕ.

Remark 1.25 — This allows us to write U #k V and U ⇒ V , omitting the
specific isomorphism, when U and V are molecules and the constructions are
defined. It will also allow us to be relaxed about the distinction between
isomorphism and equality of molecules.

1.26 (Regular directed complex). A regular directed complex is an oriented
graded poset P with the property that, for all x ∈ P , the closed subset cl {x}
is an atom. We write RDCpx for the full subcategory of ogPos whose objects
are regular directed complexes.

Comment 1.27 — While superficially different, this is equivalent to the defin-
ition of regular directed complex given in [Had20b]. On the other hand, our
definition of molecule here corresponds to a molecule in a regular directed com-
plex, or regular molecule, and is more restrictive than the definition in [Ste93].
Note that by Proposition 1.23, every molecule is a regular directed complex.

1.28 (Positive least element). Let P be an oriented graded poset, ⊥ ∈ P .
We say that ⊥ is a positive least element of P if ⊥ is the least element of P
and ∇⊥ = ∇+⊥. We let ogPos+ denote the full subcategory of ogPos on
oriented graded posets with a positive least element.

Freely adjoining a positive least element and, respectively, deleting the least
element exhibit an equivalence between ogPos and ogPos+.

Proposition 1.29 — There exists a pair of functors

(−)⊥ : ogPos → ogPos+, (−)̸⊥ : ogPos+ → ogPos

inverse to each other up to natural isomorphism.

The following is a useful property of regular directed complexes.

1.30 (Oriented thin graded poset). Let P be an oriented graded poset with a
positive least element. We say that P is oriented thin if, for all x, y ∈ P such
that x ≤ y and codimy(x) = 2, the interval [x, y] is of the form

y

z1 z2

x

α β

γ −αβγ

for exactly two elements z1, z2, and for some α, β, γ ∈ {+,−}.

10 hadzihasanovic and kessler

Proposition 1.31 — Let P be a regular directed complex. Then P⊥ is an
oriented thin graded poset.

The connection between oriented graded posets and strict ω-categories is given
by the fact that (isomorphism classes of) molecules form a strict ω-category
with pasting at the k-boundary as k-composition. The fibred version of this
result implies that (isomorphism classes of) molecules over an oriented graded
poset P form a strict ω-category.
In what follows, we recall the single-set definition of strict ω-category, which

is most natural in this context, and state these results more precisely.

1.32 (Reflexive ω-graph). A reflexive ω-graph is a set X, whose elements are
called cells, together with, for all n ∈ N, operators ∂−

n , ∂
+
n : X → X called

input and output n-boundary, satisfying the following axioms.
1. (Finite dimension). For all t ∈ X, there exists n ∈ N such that

∂−
n t = ∂+

n t = t.

2. (Globularity). For all t ∈ X, k, n ∈ N, and α, β ∈ {+,−},

∂α
k (∂β

nt) =
{
∂α
k t if k < n,

∂β
nt if k ≥ n.

If t is a cell in a reflexive ω-graph, the dimension of t is the natural number
dim t := min

{
n ∈ N | ∂−

n t = ∂+
n t = t

}
.

1.33 (Composable pair of cells). Let t, u be a pair of cells in a reflexive ω-graph,
k ∈ N. We say that t and u are k-composable if ∂+

k t = ∂−
k u. We write

X ×k X :=
{
(t, u) ∈ X ×X | ∂+

k t = ∂−
k u

}
.

for the set of k-composable pairs of cells in X.

1.34 (Strict ω-category). A strict ω-category is a reflexive ω-graph X together
with, for all k ∈ N, an operation −#k − : X ×k X → X called k-composition,
satisfying the following axioms.
1. (Compatibility with boundaries). For all k-composable pairs of cells t, u,

all n ∈ N, and α ∈ {+,−},

∂α
n (t#k u) =





∂α
n t = ∂α

nu if n < k,

∂−
k t if n = k, α = −,

∂+
k u if n = k, α = +,

∂α
n t#k ∂

α
nu if n > k.

acyclicity conditions on pasting diagrams 11

2. (Associativity). For all cells t, u, v such that either side of the equation is
defined, (t#k u)#k v = t#k (u#k v).

3. (Unitality). For all cells t, t#k ∂
+
k t = ∂−

k t#k t = t.
4. (Interchange). For all cells t, t′, u, u′ and n > k such that the left-hand

side is defined, (t#n t
′)#k (u#n u

′) = (t#k u)#n (t′ #k u
′).

Given a strict ω-category X and n ∈ N, we let σ≤nX denote its n-skeleton,
that is, its restriction to cells of dimension ≤ n. A strict ω-category is a strict
n-category if it is equal to its n-skeleton.

1.35 (Strict functor of strict ω-categories). Let X,Y be strict ω-categories. A
strict functor f : X → Y is a function such that, for all k, n ∈ N, α ∈ {+,−},
and k-composable cells t, u in X,

f(∂α
n t) = ∂α

nf(t), f(t#k u) = f(t)#k f(u).

Strict ω-categories and strict functors form a category ωCat.

1.36 (Generating sets and bases). Let X be a strict ω-category and S a set
of cells in X. The set spanS is the smallest set such that
1. if t ∈ S , then t ∈ spanS ,
2. for all k ∈ N, if t, u ∈ spanS are k-composable, then t#k u ∈ spanS .

A generating set for X is a set S of cells such that spanS contains every cell
in X. A basis for X is a minimal generating set.

Lemma 1.37 — Let f, g : X → Y be strict functors and let S be a generating
set for X. If f(t) = g(t) for all t ∈ S , then f = g.

1.38 (Isomorphism classes of molecules). For each oriented graded poset P , let
[P] denote its isomorphism class in ogPos. We let

Mol := {[U] | U is a molecule} ,
Atom := {[U] | U is an atom} ⊂ Mol.

Proposition 1.39 — For all n, k ∈ N and α ∈ {+,−}, let

∂α
n : Mol → Mol, [U] 7→ [∂α

nU],
−#k − : Mol ×k Mol → Mol, [U], [V] 7→ [U #k V].

Then Mol together with these operations is a strict ω-category. Moreover,
1. for all molecules U , dim [U] = dimU ,
2. Atom is a basis for Mol.

12 hadzihasanovic and kessler

1.40 (Molecules over an oriented graded poset). For each morphism f : U → P
of oriented graded posets, let [f] denote its isomorphism class in the slice
category ogPos/P . Given an oriented graded poset P , we let

Mol/P := {[f : U → P] | U is a molecule} ,
Atom/P := {[f : U → P] | U is an atom} ⊆ Mol/P ,

which we call molecules and atoms over P . For all k ∈ N and α ∈ {+,−},

∂α
k : Mol/P → Mol/P , [f : U → P] 7→ [f |∂α

k
U : ∂α

kU → P]

make Mol/P a reflexive ω-graph. If [f : U → P], [g : V → P] are k-composable
molecules over P , then there exists a unique isomorphism ϕ such that

∂+
k U ∂−

k V V

U P

ϕ

f

g

commutes, which induces, by the universal property of U #k V , a unique
morphism f #k g such that the following diagram commutes:

∂+
k U ∂−

k V V

U U #k V

P.

ϕ

ıU

ıV

⌟

f

g

f #k g

Proposition 1.41 — Let P be an oriented graded poset and, for each k ∈ N,

−#k − : Mol/P ×k Mol/P → Mol/P ,

[f : U → P], [g : V → P] 7→ [f #k g : U #k V → P].

Then Mol/P together with these composition operations is a strict ω-cat-
egory, which has the set Atom/P as a basis. In particular, if dimP ≤ n,
then Mol/P is a strict n-category. This assignment extends to a functor
Mol/− : ogPos → ωCat.

When P is a regular directed complex, Mol/P admits a basis whose elements
are in bijection with the elements of P , as a consequence of the following
result. This comes from very strong rigidity properties of atoms, which do not
generalise to other oriented graded posets.

acyclicity conditions on pasting diagrams 13

1.42 (Local embedding of oriented graded posets). A morphism f : P → Q of
oriented graded posets is a local embedding if, for all x ∈ P , the restriction
f |cl{x} is an inclusion, hence determines an isomorphism between cl {x} and
its image cl {f(x)}.
Proposition 1.43 — Let f : P → Q be a morphism of regular directed com-
plexes. Then f is a local embedding.
Corollary 1.44 — If P is a regular directed complex, {[cl {x} ↪→ P] | x ∈ P}
is a basis for the ω-category Mol/P .
1.45 (Diagram in a strict ω-category). Let X be a strict ω-category and P
a regular directed complex. A diagram of shape P in X is a strict functor
d : Mol/P → X. A diagram is a pasting diagram if its shape is a molecule.

2. Layerings, flow graphs, and orderings

Since pasting of molecules satisfies the axioms of strict ω-categories, it is clear
that every molecule admits multiple pasting decompositions. However, the
space of possible decompositions can at least in part be constrained by con-
sidering decompositions of a special type, called layerings, where each factor
(layer) contains exactly one maximal cell of dimension higher than the pasting
dimension. Such decompositions have played a role in most past approaches to
higher-categorical diagrams — see for example [For22] — but we first studied
them systematically in [HK23]. We give an overview of the main notions and
results, and refer to [Had24, Chapter 4] for proofs.
2.1 (Layering). Let U be a molecule, −1 ≤ k < dimU . A k-layering of
U is a sequence (U (i))mi=1 of molecules such that U = U (1) #k . . . #k U

(m) and∣∣∣
⋃

i>k(Max U (j))i
∣∣∣ = 1 for all j ∈ {1, . . . ,m}, that is, each “layer” U (j) contains

a single maximal element of dimension > k.
Example 2.2 — If U is the molecule encoding the 2-dimensional pasting dia-
gram shape

• • • •
0

3
1

4

2

10

then U admits a single 0-layering with layers

• • • • • •
0

3 4

2

1 10

and two 1-layerings with layers

• • • • • • • •
0

3
21 3 1

4

2

0 1 ,

14 hadzihasanovic and kessler

• • • • • • • •
0

3
410 1

4

2

01

respectively.

2.3 (Frame and layering dimension). Let U be a molecule. The frame dimension
of U is the integer

frdimU := dim
⋃

{(cl {x} ∩ cl {y}) | x, y ∈ Max U, x ̸= y}.

The layering dimension of U is the integer

lydimU := min



k ≥ −1 |

∣∣∣∣∣∣
⋃

i>k+1
(Max U)i

∣∣∣∣∣∣
≤ 1



 .

Proposition 2.4 — Let U be a molecule. Then
1. there exists k ≥ −1 such that U admits a k-layering,
2. if U admits a k-layering, it admits an ℓ-layering for all k ≤ ℓ < dimU ,
3. frdimU ≤ min {k ≥ −1 | U admits a k-layering} ≤ lydimU .

Lemma 2.5 — Let U be a molecule. Then
1. lydimU = −1 if and only if frdimU = −1 if and only if U is an atom,
2. if k ≥ 0 and (U (i))mi=1 is a k-layering of U , then for each i ∈ {1, . . . ,m},

lydimU (i) < k.

Comment 2.6 — Proposition 2.4 in conjunction with Lemma 2.5 allows us to
prove properties of molecules by induction on their layering dimension. That
is, to prove that a property holds of all molecules U , it suffices to
• prove that it holds when lydimU = −1, that is, when U is an atom,
• prove that it holds when k := lydimU ≥ 0, assuming that it holds of all

the (U (i))mi=1 in a k-layering of U .

2.7 (Flow graph). Let P be an oriented graded poset, k ≥ −1. The k-flow
graph of P is the directed graph FkP whose
• set of vertices is ⋃

i>k Pi, and
• set of edges is {

(x, y) | ∆+
k x ∩∆−

k y ̸= ∅
}
,

where the source of (x, y) is x and the target is y.

2.8 (Maximal flow graph). Let P be a finite-dimensional oriented graded poset,
k ≥ −1. The maximal k-flow graph of P is the induced subgraph MkP of FkP
on the vertex set ⋃

i>k

(Max P)i ⊆
⋃

i>k

Pi.

acyclicity conditions on pasting diagrams 15

Example 2.9 — If U is the molecule encoding the 2-dimensional pasting dia-
gram shape

•

• • •

•

3 5 6

20 1

40 21

the 0-flow graph F0U is

(1,5) •

(1,3) • (2,1) • (1,6) •

(1,4) • (2,2) •

(2,0) • (1,1) • (1,2) •

(1,0) •

and the maximal 0-flow graph M0U is its induced subgraph

(2,1) • (2,2) •

(2,0) •

while the 1-flow graph F1U is

(2,1) • (2,2) •

(2,0) •

and it is equal to M1U , since every 2-dimensional element of U is maximal.

2.10 (Ordering of a molecule). Let U be a molecule, k ≥ −1. A k-ordering of
U is a topological sort of MkU .

Remark 2.11 — A k-ordering of U exists if and only if MkU is acyclic.

Proposition 2.12 — Let U be a molecule, k ≥ −1, and let

LaykU :=
{
k-layerings (U (i))mi=1 of U up to layer-wise isomorphism

}
,

OrdkU :=
{
k-orderings (x(i))mi=1 of U

}
.

16 hadzihasanovic and kessler

For each k-layering (U (i))mi=1 of U and each i ∈ {1, . . . ,m}, let x(i) be the only
element of ⋃j>k(Max U)j in the layer U (i). Then the assignment

ok,U : (U (i))mi=1 7→ (x(i))mi=1

determines an injective function LaykU ↪→ OrdkU . Moreover, if U admits a
k-layering, then for all ℓ > k, the function ok,U is a bijection.

3. Frame-acyclicity and polygraphs

In this section, we study what seems to be the mildest acyclicity condition on
an oriented graded poset P guaranteeing that Mol/P is freely generated in
the sense of polygraphs. On molecules, this condition, which we call frame-
acyclicity, is (non-trivially) equivalent to what is called being split in [Ste93];
our treatment elucidates its status as an acyclicity condition, which was not
originally recognised.
Frame-acyclicity was first defined in [Had21], and in [HK23] we studied

its role in algorithmic properties of higher-dimensional rewriting. However,
self-contained proofs of the main results related to frame-acyclicity have not
appeared in print; this section is meant to fix this gap.

3.1 (Submolecules). Let V ⊆ U be molecules. We say that V is a submolecule
of U , and write V ⊑ U , if V is a factor in a pasting decomposition of U .

Remark 3.2 — Equivalently, ⊑ can be characterised as the smallest partial
order on molecules such that U, V ⊑ U #k V whenever the latter is defined,
once U and V are identified with their images in the pasting.

3.3 (Frame-acyclic molecule). Let U be a molecule. We say that U is frame-
acyclic if for all submolecules V ⊑ U , if r := frdimV , then MrV is acyclic.

3.4 (Oriented graded poset with frame-acyclic molecules). Let P be an oriented
graded poset. We say that P has frame-acyclic molecules if, for all molecules
U , if there exists a morphism f : U → P , then U is frame-acyclic.

We recall without proof the following result [HK23, Theorem 121], which im-
plies that this condition is only non-trivial starting from dimension 4.

Theorem 3.5 — Let U be a molecule, dimU ≤ 3. Then U is frame-acyclic.

Corollary 3.6 — Let P be an oriented graded poset, dimP ≤ 3. Then P has
frame-acyclic molecules.

Example 3.7 — The dimensional bound in Theorem 3.5 is strict: [HK23, Ex-
ample 126], exhibits a 4-dimensional molecule which is not frame-acyclic.

acyclicity conditions on pasting diagrams 17

Lemma 3.8 — Let U be a molecule. Suppose that for all submolecules V ⊑ U ,
if r := frdimV , then V admits an r-layering. Then for all k ≥ frdimU the
function ok,U : LaykU ↪→ OrdkU is a bijection.

Proof. Let r := frdimU . By assumption, there exists an r-layering of U , so
by Proposition 2.12 it suffices to show that or,U is a bijection.
Given two r-orderings (x(i))mi=1 and (y(i))mi=1, there exists a unique permuta-

tion σ such that x(i) = y(σ(i)) for all i ∈ {1, . . . ,m}. Let d((x(i))mi=1, (y(i))mi=1)
be the number of pairs (j, j′) such that j < j′ but σ(j′) < σ(j). Under the
assumption that (x(i))mi=1 is in the image of or,U , we will prove that (y(i))mi=1
is also in the image of or,U by induction on d((x(i))mi=1, (y(i))mi=1). Since the
image of or,U is not empty, this will suffice to prove that or,U is surjective,
hence bijective by Proposition 2.12.
If d((x(i))mi=1, (y(i))mi=1) = 0, then x(i) = y(i) for all i ∈ {1, . . . ,m}, and there

is nothing left to prove.
Suppose d((x(i))mi=1, (y(i))mi=1) > 0. Then there exists j < m such that

σ(j+1) < σ(j). Suppose (x(i))mi=1 is the image of the r-layering (U (i))mi=1. Let
V ⊑ U be the image of U (j) #r U

(j+1) in U , and let

z1 := x(j) = y(σ(j)), z2 := x(j+1) = y(σ(j+1)).

Because z1 comes before z2 in one r-ordering, but after in another, there can
be no edge between them in MrU , so

dim (cl {z1} ∩ cl {z2}) < r.

Since z1, z2 are the only maximal elements of dimension > r in V , we deduce
that ℓ := frdimV < r. By assumption, there exists an ℓ-layering of V . In
particular, there exist molecules V (1), V (2) such that
1. zi is in the image of V (i) for all i ∈ {1, 2}, and
2. V is isomorphic to V (1) #ℓ V

(2) or to V (2) #ℓ V
(1).

Without loss of generality suppose that V is isomorphic to V (1) #ℓ V
(2). By

the unitality and interchange properties of pasting, letting

Ũ (j) := ∂−
r V

(1) #ℓ V
(2),

Ũ (j+1) := V (1) #ℓ ∂
+
r V

(2),

we have that V = Ũ (j) #r Ũ
(j+1). Letting Ũ (i) := U (i) for i /∈ {j, j + 1}, we

have that (Ũ (i))mi=1 is an r-layering of U , and

or,U : (Ũ (i))mi=1 7→ (x̃(i))mi=1 = (x(1), . . . , x(j+1), x(j), . . . , x(m)).

Then d((x̃(i))mi=1, (y(i))mi=1) < d((x(i))mi=1, (y(i))mi=1) and (x̃(i))mi=1 is in the image
of or,U . We conclude by the inductive hypothesis. ■

18 hadzihasanovic and kessler

Comment 3.9 — Let P be a property of molecules such that, whenever P holds
of a molecule U , then P holds of every submolecule V ⊑ U ; the property of
frame-acyclicity is of this sort. Because every proper submolecule of U has
strictly fewer elements than U , the submolecule relation on U is well-founded,
and its minimal elements are the 0-dimensional one-element subsets {x} ⊑ U
for each x ∈ U0.
If we want to prove that P implies Q for all molecules, we can then proceed

by induction on submolecules: assume that a molecule U satisfies P, then
• prove that {x} satisfies Q for all x ∈ U0,
• prove that U satisfies Q under the assumption that every proper sub-

molecule V ⊑ U satisfies Q.

Lemma 3.10 — Let U be a molecule and let x, y ∈ Max U such that x ̸= y.
For all k ≥ frdimU , cl {x} ∩ cl {y} = (∂−

k x ∩ ∂+
k y) ∪ (∂+

k x ∩ ∂−
k y).

Proof. See [Ste93, Proposition 6.4]. ■

Theorem 3.11 — Let U be a molecule, r := frdimU . If U is frame-acyclic,
then U admits an r-layering.

Proof. We proceed by induction on submolecules. For all x ∈ U0, we have
frdim {x} = −1, and {x} admits the trivial (−1)-layering, which proves the
base case.
We construct a finite plane tree of submolecules U (j1,...,jp) ⊑ U , as follows:
• the root is U () := U ;
• if lydimU (j1,...,jp) ≤ r, then we let lydimU (j1,...,jp) be a leaf;
• if k := lydimU (j1,...,jp) > r, then we pick a k-layering (V (i))qi=1 of U (j1,...,jp),

and for each i ∈ {1, . . . , q}, we let the image of V (i) be a child U (j1,...,jp,i)

of U (j1,...,jp).
By Lemma 2.5, the layering dimension of the children of a node is strictly
smaller than that of the node, so the procedure terminates.
Fix an r-ordering (x(i))mi=1 of U ; this is possible because MrU is acyclic. Let

V := U (j1,...,jp) be a node of the tree. We have
⋃

j>r

(Max V)j =
m∑

i=1

⋃

j>r

(
(Max V)j ∩ cl

{
x(i)

})
=:

m∑

i=1
M (i);

the M (i) form a partition because frdimU = r, so every element of dimension
> r is in the closure of x(i) for a unique i ∈ {1, . . . ,m}. We claim that V is
isomorphic to V (1) #r . . . #r V

(m) for some molecules (V (i))mi=1 such that, for
each i ∈ {1, . . . ,m}, identifying V (i) with its image in V , we have

⋃

j>r

(Max V (i))j = M (i).

acyclicity conditions on pasting diagrams 19

We will prove this by backward induction on the tree U (j1,...,jp).
Suppose V is a leaf, so lydimV ≤ r. Then V admits an r-layering. For

each i ∈ {1, . . . ,m}, fix a topological sort (y(i,j))pij=1 of the induced subgraph
MrV |M(i) . We claim that ((y(i,j))pij=1)mi=1 is an r-ordering of V .
Suppose there is an edge from x to x′ in MrV . Then x ∈ M (i), x′ ∈ M (i′)

for a unique pair i, i′ ∈ {1, . . . ,m}. If i = i′, then x = y(i,j) and x′ = y(i,j
′) for

some j, j′ ∈ {1, . . . , pi}, and j < j′ because (y(i,j))pij=1 is a topological sort of
MrV |M(i) . If i ̸= i′, then there exists

z ∈ ∆+
r x ∩∆−

r x
′ ⊆ cl

{
x(i)

}
∩ cl

{
x(i

′)
}
.

Since ∂α
r x

(i) and ∂α
r x

(i′) is pure and r-dimensional for all α ∈ {+,−}, by
Lemma 3.10

z ∈ (∆+
r x

(i) ∩∆−
r x

(i′)) ∪ (∆−
r x

(i) ∩∆+
r x

(i′)),

and by Lemma 1.15 ∆−
r x

(i) ∩ cl {x} ⊆ ∆−
r x which is disjoint from ∆+

r x, so
z ∈ ∆+

r x
(i) ∩ ∆−

r x
(i′). It follows that there is an edge from x(i) to x(i

′) in
MrU , so i < i′ because (x(i))mi=1 is a topological sort of MrU . This proves
that ((y(i,j))pij=1)mi=1 is an r-ordering of V .
LetW ⊑ V , ℓ := frdimW . If V ̸= U orW ̸= U , thenW admits an ℓ-layering

by the inductive hypothesis on proper submolecules of U . If W = V = U then
ℓ = r and W admits an ℓ-layering by Proposition 2.4. In either case, V
satisfies the conditions of Lemma 3.8, and since r ≥ lydimV ≥ frdimV , every
r-ordering of V comes from an r-layering of V .
It follows that ((y(i,j))pij=1)mi=1 comes from an r-layering ((W (i,j))pij=1)mi=1, and

we can define V (i) := W (i,1) #r . . . #r W
(i,pi) for each i ∈ {1, . . . ,m}, satisfying

the desired condition.
Now, suppose that V is not a leaf, so k := lydimV > r, and V has children

(W (j))qj=1 forming a k-layering of V . By the inductive hypothesis, each of
the W (j) has a decomposition W (j,1) #r . . . #r W

(j,m) such that the maximal
elements of dimension > r in the image of W (j,i) are contained in cl

{
x(i)

}
.

Then, for each i ∈ {1, . . . ,m} and j, j′ ∈ {1, . . . , q}, W (j,i) ∩W (j′) ⊆ W (j′,i),
so V (i) := W (1,i) #k . . . #k W

(q,i) is defined. Using interchange repeatedly, we
conclude that V is isomorphic to V (1) #r . . . #r V

(m).
This concludes the induction on the tree U (j1,...,jp). In particular, for the

root U () = U , the decomposition U (1) #r . . . #r U
(m) satisfies

⋃

j>r

(Max U (i))j =
{
x(i)

}
,

that is, (U (i))mi=1 is an r-layering of U . ■

Corollary 3.12 — Let U be a molecule. The following are equivalent:

20 hadzihasanovic and kessler

(a) U is frame-acyclic;
(b) for all V ⊑ U and all frdimV ≤ k < dimV , V admits a k-layering;
(c) for all V ⊑ U and all frdimV ≤ k < dimV , the sets LaykV and OrdkV

are non-empty and equinumerous.

Proof. The implication from (a) to (b) is a consequence of Theorem 3.11 to-
gether with Proposition 2.4. The implication from (b) to (c) is Lemma 3.8.
Finally, the implication from (c) to (a) follows from Proposition 2.12. ■

Remark 3.13 — Corollary 3.12 implies that a molecule is frame-acyclic if and
only if it is split in the sense of [Ste93]. Thus this condition rephrases the
splitness condition as an acyclicity condition, which will help us elucidate its
connection to other, stronger acyclicity conditions.

3.14 (Cellular extension of a strict ω-category). Let X be a strict ω-category.
A cellular extension of X is a strict ω-category XS together with a pushout
diagram

∐
e∈S Mol/∂Ue

∐
e∈S Mol/Ue

X XS

(∂e)e∈S (e)e∈S

∐
e∈S

Mol/ıe

⌟
in ωCat, where, for each e ∈ S , Ue is an atom and ıe : ∂Ue ↪→ Ue is the
inclusion of its boundary.

Comment 3.15 — The functor X ↪→ XS in a cellular extension is always
injective, as shown in [Mak05, Section 4].
This is a non-standard definition of cellular extension, allowing any atom as

a potential cell shape; the usual definition only uses globes. However, the two
are equivalent in the sense that a cellular extension in our sense can always
be turned into a cellular extension in the more restrictive sense.

3.16 (Polygraph). A polygraph, also known as computad, is a strict ω-category
X together with, for each n ∈ N, a pushout diagram

∐
e∈Sn

Mol/∂Ue

∐
e∈Sn

Mol/Ue

σ≤n−1X σ≤nX

(∂e)e∈Sn (e)e∈Sn

∐
e∈Sn

Mol/ıe

⌟

in ωCat, exhibiting σ≤nX as a cellular extension of σ≤n−1X, such that Ue is
an n-dimensional atom for all e ∈ Sn. The set

S :=
∑

n∈N
{e[idUe] | e ∈ Sn}

acyclicity conditions on pasting diagrams 21

is called the set of generating cells of the polygraph. We write (X,S) for a
polygraph X with set S of generating cells.

Lemma 3.17 — Let (X,S) be a polygraph. Then S is a basis for X.

Proof. The fact that S is a generating set and its minimality are consequences
of [ABG+23, Proposition 15.1.8 and Lemma 16.6.2], respectively. ■

Lemma 3.18 — Let P be an oriented graded poset, n ∈ N, and let Sn be a
set containing one pasting diagram

e ≡ Mol/e : Mol/Ue → σ≤nMol/P

for each [e : Ue → P] in Atom/P such that dimUe = n. If σ≤nP has frame-
acyclic molecules, then

∐
e∈Sn

Mol/∂Ue

∐
e∈Sn

Mol/Ue

σ≤n−1Mol/P σ≤nMol/P

(∂e)e∈Sn (e)e∈Sn

∐
e∈Sn

Mol/ıe

⌟

is a pushout diagram in ωCat, exhibiting σ≤nMol/P as a cellular extension
of σ≤n−1Mol/P .

Proof. Let X be a strict ω-category and let

∐
e∈Sn

Mol/∂Ue

∐
e∈Sn

Mol/Ue

σ≤n−1Mol/P X

(∂e)e∈Sn ℓ

h

∐
e∈Sn

Mol/ıe

be a commutative diagram of strict functors. We define h : σ≤nMol/P → X
as follows on cells [f : U → P] in σ≤nMol/P . If dimU < n, then we let

h[f] := h[f].

Suppose dimU = n; we proceed by induction on lydimU . If lydimU = −1,
then by Lemma 2.5 U is an atom, so there exists a unique Mol/e ∈ Sn such
that [f] = [e], and we let h[f] := ℓ[idUe]. If lydimU = k ≥ 0, then U admits a
k-layering (U (i))mi=1, and each layer U (i) has strictly lower layering dimension.
Then we let

h[f] := h[f |U(1)]#k . . . #k h[f |U(m)].

By construction, if h is well-defined, then it is a strict functor satisfying
h ◦ (e)e∈Sn = ℓ and restricting to h on σ≤n−1Mol/P . Moreover, let h′ be

22 hadzihasanovic and kessler

another strict functor with the same property. Then h′ agrees with h on all
atoms of dimension ≤ n, which form a basis of σ≤nMol/P . It follows from
Lemma 1.37 that h′ = h. It only remains to show that h is well-defined, that
is, it is independent of the choice of a k-layering of U when dimU = n and
k := lydimU ≥ 0.
We may assume, inductively, that h is well-defined on all cells [g : V → P]

such that dimV < n or lydimV < k. Let (U (i))mi=1 and (V (i))mi=1 be two
k-layerings of U and let (x(i))mi=1, (y(i))mi=1 be the induced k-orderings. We now
proceed as in the proof of Lemma 3.8, letting σ be the unique permutation
such that x(i) = y(σ(i)) for all i ∈ {1, . . . ,m}, letting

d := d((x(i))mi=1, (y(i))mi=1)

be the number of pairs (j, j′) such that j < j′ but σ(j′) < σ(j), and proceeding
by induction on d. If d = 0, then the two layerings are equal up to layer-wise
isomorphism. If d > 0, then there exists j < m such that σ(j+1) < σ(j), and
we let W ⊑ U be the image of U (j) #k U

(j+1) in U . Then W contains exactly
two elements z1 := x(j) = y(σ(j)) and z2 := x(j+1) = y(σ(j+1)) of dimension
> k, yet there can be no edge between them in MkU , from which we deduce
that r := frdimW < k. By assumption, W is frame-acyclic, so by Theorem
3.11 there exists an r-layering of W , hence also a pair of molecules W (1), W (2),
each containing a single element of dimension > k, such that W is isomorphic
to W (1) #r W

(2). We may assume, without loss of generality, that z1 is in the
image of W (1) and z2 in the image of W (2). We then have

h[f |U(j)]#k h[f |U(j+1)] =

=
(
h[f |W (1)]#r h[f |∂−

k
W (2)]

)
#k

(
h[f |∂+

k
W (1)]#r h[f |W (2)]

)
,

which by interchange and unitality in X is equal to

h[f |W (1)]#r h[f |W (2)] =

=
(
h[f |∂−

k
W (1)]#r h[f |W (2)]

)
#k

(
h[f |W (1)]#r h[f |∂+

k
W (2)]

)
=

= h[f |Ũ(j)]#k h[f |Ũ(j+1)],

where we let Ũ (j) := ∂−
k W

(1) #r W
(2) and Ũ (j+1) := W (1) #r ∂

+
k W

(2). Notice
that all the n-dimensional cells in this calculation involve molecules whose
layering dimension is < k, so h is well-defined on each of them. Letting
Ũ (i) := U (i) for all i ̸∈ {j, j + 1}, we have that
1. (Ũ (i))mi=1 is a k-layering of U ,
2. the definition of h[f] using (U (i))mi=1 is equal to the one using (Ũ (i)), and
3. the induced k-ordering (x̃(i))mi=1 := (x(1), . . . , x(j+1), x(j), . . . , x(m)) satis-

fies d((x̃(i))mi=1, (y(i))mi=1) < d,

acyclicity conditions on pasting diagrams 23

so, by the inductive hypothesis on d, the definition of h[f] using (Ũ (i))mi=1 is
equal to the definition using (V (i))mi=1. We conclude that h[f] is well-defined,
which completes the proof. ■

Theorem 3.19 — Let P be an oriented graded poset with frame-acyclic mo-
lecules. Then Mol/P is a polygraph whose set of generating cells is Atom/P .

Proof. If P has frame-acyclic molecules, then σ≤nP has frame-acyclic mo-
lecules for all n ∈ N. The statement then follows from Lemma 3.18. ■

Comment 3.20 — In fact, by the roundness property of atoms, if Mol/P is a
polygraph, then it is a regular polygraph in the sense of [Hen18].
Comment 3.21 — Frame-acyclic molecules seem to be the tightest combinator-
ial condition ensuring that Mol/P is a polygraph: the 4-dimensional molecule
of [HK23, Example 126] does not present a polygraph, since its two possible
3-layerings cannot be related by applications of the interchange equation. This
does not mean that having frame-acyclic molecules is equivalent to Mol/P
being a polygraph: one can engineer a variant of this example where a 4-di-
mensional molecule only has one valid 3-layering (even though it has multiple
3-orderings), so there are no “extra equations”. However the algebraic freeness
of such examples can be seen as accidental.

4. Dimension-wise acyclicity and Steiner complexes

In the previouse section we saw that the property of frame-acyclic molecules is
sufficient to obtain freeness of the ω-category presented by an oriented graded
poset. Unfortunately, beyond low dimensions where it holds automatically,
this property is difficult to check, since one needs to verify acyclicity of one
graph for each molecule over an oriented graded poset. Its stability properties
are also unclear. However, it is implied by stronger acyclicity conditions which
are more restrictive, but easier both to check and to work with in practice.
In this section, we start by considering a property we call dimension-wise

acyclicity. This is of interest because it corresponds in a precise sense to
the loop-freeness property of augmented directed chain complexes considered
in [Ste04]; see also [AM20]. This will allow us to make a precise connection
between our framework and what has come to be known as Steiner theory.

4.1 (Dimension-wise acyclic oriented graded poset). Let P be an oriented graded
poset. We say that P is dimension-wise acyclic if, for all k ≥ −1, FkP is
acyclic.

Proposition 4.2 — Let U be a molecule. If U is dimension-wise acyclic, then
U is frame-acyclic.

24 hadzihasanovic and kessler

Proof. Let V ⊑ U be a submolecule inclusion, r := frdimV . If U is dimension-
wise acyclic, then FrU is acyclic. Then FrV is the induced subgraph of FrU
on the vertices contained in V , while MrV is an induced subgraph of FrV ,
and an induced subgraph of an acyclic graph is always acyclic. ■

Example 4.3 — This example, which is essentially [Ste93, Fig. 4], shows that
the implication of Proposition 4.2 is strict. Let U be a 3-dimensional atom
whose input and output boundaries correspond to the pasting diagrams

3 •
0 • 2 •

1 • 10

43

2
10 and

3 •
0 • 2 •

1 •0 1

3 4

5
2 3

respectively. Let (n, k) denote the n-dimensional cell labelled k. Then F0U
contains the cycle

(1, 2) → (1, 5) → (1, 2),

so U is not dimension-wise acyclic. However, since U is 3-dimensional, it is
frame-acyclic as a consequence of Theorem 3.5.

Proposition 4.4 — Let f : P → Q be a local embedding of oriented graded
posets. Then, for all k ≥ −1, f induces a homomorphism Fkf : FkP → FkQ.

Proof. For all x ∈ P , the restriction f |cl{x} is an inclusion. By Proposition
1.16, for all α ∈ {+,−}, if y ∈ ∆α

kx, then f(y) ∈ ∆α
kf(x), so if there is an

edge between x and y in FkP , then there is an edge between f(x) and f(y)
in FkQ. ■

Corollary 4.5 — Let f : P → Q be a local embedding of oriented graded posets.
If Q is dimension-wise acyclic, then so is P .

Proposition 4.6 — Let P be a dimension-wise acyclic regular directed complex.
Then P has frame-acyclic molecules.

Proof. Let U be a molecule and f : U → P a morphism. By Proposition 1.43,
f is a local embedding, so by Corollary 4.5 U is dimension-wise acyclic. It
follows from Proposition 4.2 that U is frame-acyclic. ■

Corollary 4.7 — Let P be a dimension-wise acyclic regular directed complex.
Then Mol/P is a polygraph.

4.8 (Augmented directed chain complex). An augmented chain complex C is a
chain complex of abelian groups in non-negative degree

. . . Cn Cn−1 . . . C1 C0
d d d d d

acyclicity conditions on pasting diagrams 25

together with a homomorphism e : C0 → Z satisfying e ◦ d = 0. A direction
on C is a choice of a commutative submonoid C→

n of Cn for each n ∈ N. An
augmented directed chain complex is an augmented chain complex C together
with a direction on its underlying chain complex.

4.9 (Homomorphism of augmented directed chain complexes). Let C,D be aug-
mented directed chain complexes. A homomorphism f : C → D is a homo-
morphism of the underlying augmented chain complexes, that is, a sequence
(fn : Cn → Dn)n∈N of homomorphisms of abelian groups satisfying

d ◦ fn+1 = fn ◦ d, e ◦ f0 = e,

which is compatible with directions in the sense that

fn(C→
n) ⊆ D→

n

for all n ∈ N. Augmented directed chain complexes with their homomorphisms
form a category DCh+.

4.10 (Linearisation of a strict ω-category). Let X be a strict ω-category. The
linearisation of X is the augmented directed chain complex λX whose under-
lying augmented chain complex is defined by

λXn := Z(σ≤nX)
⟨t#k u− t− u | t, u ∈ σ≤nX, k < n⟩

for all n ∈ N, where Z(σ≤nX) denotes the free abelian group on the set of cells
of the n-skeleton of X, with the homomorphisms determined by

d: t ∈ σ≤nX 7→ (∂+
n−1t− ∂−

n−1t), e : t ∈ σ≤0X 7→ 1

for each n > 0, and the direction defined by

λX→
n := Im (N(σ≤nX) ↪→ Z(σ≤nX) → λXn)

for each n ∈ N, where Z(σ≤nX) → λXn is the canonical quotient homomorph-
ism. This extends to a functor ωCat → DCh+, see [Ste04, Definition 2.4].

4.11 (Globular table in an augmented directed chain complex). Let C be an
augmented directed chain complex. A globular table in C is a double sequence

x ≡ (xαn)n∈N, α∈{+,−}

such that
1. xαn ∈ C→

n for all n ∈ N and α ∈ {+,−},
2. dxαn = x+n−1 − x−n−1 for all n > 0 and α ∈ {+,−},
3. exα0 = 1 for all α ∈ {+,−},

26 hadzihasanovic and kessler

4. there exists m ∈ N such that xαn = 0 for all n > m and α ∈ {+,−}.

4.12 (Strict ω-category of globular tables). Let C be an augmented directed
chain complex. The strict ω-category of globular tables in C is the strict
ω-category νC whose set of cells is {x | x is a globular table in C}, with the
boundary operators defined, for all n ∈ N and α ∈ {+,−}, by

(∂α
nx)βm :=





xβm if m < n,
xαn if m = n,
0 if m > n,

and the k-composition operations defined, for all k ∈ N and k-composable
pairs x, y of globular tables, by

(x#k y)αn := xαn − (∂+
k x)

α

n
+ yαn .

This extends to a functor ν : DCh+ → ωCat, see [Ste04, Definition 2.8].

Proposition 4.13 — The functor λ is left adjoint to ν.

Proof. See [Ste04, Theorem 2.11]. ■

4.14 (Augmented directed chain complex of an oriented thin graded poset). Let
P be an oriented graded poset such that P⊥ is oriented thin. The augmented
directed chain complex of P , denoted by Z⃗P , is the augmented chain complex

. . . ZPn ZPn−1 . . . ZP1 ZP0
d d d d d

where ZPn is the free abelian group on the set Pn and, for each n > 0, the
homomorphism d: ZPn → ZPn−1 is defined on the generators x ∈ Pn by

x 7→
∑

y∈∆+x

y −
∑

y∈∆−x

y, (1)

together with the homomorphism e : ZP0 → Z defined on the generators x ∈ P0
by x 7→ 1 and the direction given by ZP→

n := NPn for each n ∈ N.

Proposition 4.15 — Let P be an oriented graded poset such that P⊥ is ori-
ented thin. Then Z⃗P is well-defined as an augmented directed chain complex.
Moreover, if f : P → Q is a morphism of oriented graded posets such that P⊥,
Q⊥ are oriented thin, then the sequence of homomorphisms

Zfn : ZPn → ZQn,

x ∈ Pn 7→ f(x) ∈ Qn

is a homomorphism Z⃗f : Z⃗P → Z⃗Q of augmented directed chain complexes.

acyclicity conditions on pasting diagrams 27

By Proposition 1.31, this gives us an assignment Z⃗ : RDCpx → DCh+ which
is easily determined to be functorial. There are now two ways to get from
regular directed complexes to augmented directed chain complexes: either
directly via Z⃗, or by first passing to the ω-category of molecules, then applying
Steiner’s linearisation functor. Fortunately, the two coincide up to natural
isomorphism.

Proposition 4.16 — Let P be a regular directed complex. Then the assign-
ment, for each n ∈ N,

ϕn : ZPn → (λMol/P)n ,
x ∈ Pn 7→ [cl {x} ↪→ P] ∈ σ≤nMol/P

is a natural isomorphism between Z⃗P and λMol/P .

Dually, there are two ways to get from a regular directed complex to an ω-cat-
egory: either via the ω-category of molecules, or applying the right adjoint
ν after Z⃗. These two do not, in general, coincide. The rest of this section is
dedicated to showing that they do coincide when P is dimension-wise acyclic,
in which case Z⃗P is a Steiner complex in the sense of [AM20].

4.17 (Basis of an augmented directed chain complex). Let C be an augmented
directed chain complex. A basis for C is a sequence of subsets (Bn ⊆ Cn)n∈N
such that, for all n ∈ N, Cn is isomorphic to ZBn and C→

n to NBn.

4.18 (Support of a chain). Let C be an augmented directed chain complex
with basis (Bn)n∈N, n ∈ N, and x ≡ ∑

b∈Bn
xbb ∈ Cn. The support of x is the

subset
suppx := {b ∈ Bn | xb ̸= 0} ⊆ Bn.

If C has a basis, then for all x there exist unique x+, x− ∈ C→
n such that

x = x+ − x− and suppx+ ∩ suppx− = ∅.

4.19 (Unital basis). Let C be an augmented directed chain complex with basis
(Bn)n∈N. For all n ∈ N and b ∈ Bn, let

⟨b⟩αm :=





0 if m > n,
b if m = n,
(d⟨b⟩αm+1)α if m < n

for each m ∈ N and α ∈ {+,−}, where the definition is obtained by downward
recursion when m ≤ n. We say that the basis (Bn)n∈N is unital if, for all
n ∈ N and b ∈ Bn,

⟨b⟩ ≡ (⟨b⟩αm)m∈N, α∈{+,−}

is a globular table, or, equivalently, if e⟨b⟩+0 = e⟨b⟩−0 = 1.

28 hadzihasanovic and kessler

4.20 (Flow graph of an augmented directed chain complex with basis). Let C be
an augmented directed chain complex with basis (Bn)n∈N, k ∈ N. The k-flow
graph of C is the directed graph FkC whose
• set of vertices is ⋃

i>k Bi, and

• set of edges is
{
(b, c) | supp ⟨b⟩+k ∩ supp ⟨c⟩−k ̸= ∅

}
, where the source of

(b, c) is b and the target is c.

4.21 (Steiner complex). A Steiner complex is an augmented directed chain
complex C with a unital basis such that, for all k ∈ N, FkC is acyclic. We let
DCh+

St denote the full subcategory of DCh+ on the Steiner complexes.

The following is the fundamental theorem of Steiner theory.

Theorem 4.22 — The restriction of ν : DCh+ → ωCat to DCh+
St is full and

faithful. Moreover, if C is a Steiner complex with basis (Bn)n∈N, then νC is
a polygraph whose set of generating cells is

{
⟨b⟩ | b ∈

⋃

n∈N
Bn

}
.

Proof. See [Ste04, Theorem 5.6 and Theorem 6.1]. ■

We will need the following result, which we state without proof.

Lemma 4.23 — Let P be a regular directed complex and let U ⊆ P be a
molecule, n := dimU > 0. Then, in Z⃗P ,

d


 ∑

x∈Un

x


 =

∑

y∈∆+U

y −
∑

y∈∆−U

y.

Lemma 4.24 — Let P be a regular directed complex, x ∈ P , m ∈ N, and
α ∈ {+,−}. Then, in Z⃗P ,

⟨x⟩αm =
∑

y∈∆α
mx

y.

Proof. Let n := dim x, so x ∈ Pn. By definition, for m > n, ⟨x⟩αm = 0, while
∆α

mx = ∅, and the equality holds. For m ≤ n, we proceed by downward
recursion. If m = n, we have ⟨x⟩αm = x, while ∆α

mx = {x}, and the equality
holds. Let m < n. Then

d⟨x⟩αm+1 = d




∑

y∈∆α
m+1x

y




acyclicity conditions on pasting diagrams 29

by the inductive hypothesis, and ∆α
m+1x = (∂α

m+1x)m+1. By Lemma 4.23 and
globularity of cl {x}, this is equal to

∑

y∈∆+(∂α
m+1x)
y −

∑

y∈∆−(∂α
m+1x)
y =

∑

y∈∆+
mx

y −
∑

y∈∆−
mx

y ,

hence by definition

⟨x⟩+m =
∑

y∈∆+
mx

y , ⟨x⟩−m =
∑

y∈∆−
mx

y .

This completes the proof. ■

Corollary 4.25 — Let P be a regular directed complex, x ∈ P , n ∈ N,
α ∈ {+,−}. Then supp ⟨x⟩αn = ∆α

nx.

Proposition 4.26 — Let P be a regular directed complex. Then (Pn)n∈N is a
unital basis of Z⃗P .

Proof. Let x ∈ P . For all α ∈ {+,−}, ∆α
0x = ∂α

0 x = {xα} for a unique
xα ∈ P0, since the point is the only 0-dimensional molecule. Then, by Lemma
4.24, e⟨x⟩α0 = exα = 1, so the basis (Pn)n∈N is unital. ■

Lemma 4.27 — Let P be a regular directed complex. Then FkZ⃗P is iso-
morphic to FkP .

Proof. Immediate from Corollary 4.25. ■

Proposition 4.28 — Let P be a dimension-wise acyclic regular directed com-
plex. Then Z⃗P is a Steiner complex.

Proof. Follows from Proposition 4.26 and Lemma 4.27. ■

Theorem 4.29 — Let P be a dimension-wise acyclic regular directed complex.
Then νZ⃗P is naturally isomorphic to Mol/P .

Proof. Composing the component η : Mol/P → νλMol/P of the unit of the
adjunction between λ and ν with the natural isomorphism between λMol/P
and Z⃗P from Theorem 4.16, we obtain a strict functor

ϕ : Mol/P → νZ⃗P .

By Corollary 4.7, Mol/P is a polygraph generated by {[cl {x} ↪→ P] | x ∈ P},
while by Theorem 4.22 combined with Proposition 4.28, νZ⃗P is a polygraph
whose set of generating cells is {⟨x⟩ | x ∈ P}. By sending [cl {x} ↪→ P] to ⟨x⟩,
ϕ determines a bijection between the generating cells of Mol/P and of νZ⃗P .
By [ABG+23, Proposition 16.2.12], we conclude that ϕ is an isomorphism of
polygraphs. ■

30 hadzihasanovic and kessler

Example 4.30 — Theorem 4.29 does not extend beyond dimension-wise acyclic
regular directed complexes. Let P be the regular directed complex encoding
the 1-dimensional diagram

a • b •f

g

h

(2)

which is evidently not dimension-wise acyclic. Then Mol/P is isomorphic to
the free category on the directed graph (2). However, in νZ⃗P , let

x := ⟨f⟩#0 ⟨g⟩, y := ⟨f⟩#0 ⟨h⟩,

which as globular tables are defined, for all α ∈ {+,−}, by

xαn :=





a if n = 0,
f + g if n = 1,
0 if n > 1,

yαn :=





a if n = 0,
f + h if n = 1,
0 if n > 1.

Then x#0 y and y #0 x are both equal to the globular table z defined, for all
α ∈ {+,−}, by

zαn :=





a if n = 0,
2f + g + h if n = 1,
0 if n > 1.

We conclude that νZ⃗P is not free, so it is not isomorphic to Mol/P .

5. Stronger acyclicity conditions

While dimension-wise acyclicity is a more manageable sufficient condition for
frame-acyclicity, it does not guarantee a second property that we considered
in the introduction, that is, that the ω-category of molecules over P consists
only of subsets of P .
Example 5.1 — Let U be the 2-dimensional molecule encoding the shape of
the pasting diagram

x •

• •

x •
and let P be the result of identifying the two 0-dimensional cells marked
with x. Then P is a dimension-wise acyclic regular directed complex, and
the canonical quotient map q : U → P is a molecule over P . However, q is
evidently not injective.

acyclicity conditions on pasting diagrams 31

In this section, following [Ste93], we consider a strengthening of dimension-
wise acyclicity which does guarantee this property at least for regular directed
complexes. Then, we consider an even stronger acyclicity property, relying on
acyclicity of a single directed graph, which, as we will see in Section 6, has
better stability properties with respect to a number of constructions.

5.2 (Extended flow graph). Let P be an oriented graded poset, k ≥ −1. The
extended k-flow graph of P is the bipartite directed graph F kP whose
• set of vertices is

P =
⋃

i≤k

Pi +
⋃

i>k

Pi,

• set of edges is E− + E+, where

E− :=



(y, x) | y ∈

⋃

i≤k

Pi, x ∈
⋃

i>k

Pi, y ∈ int ∂−
k x



 ,

E+ :=



(y, x) | y ∈

⋃

i>k

Pi, x ∈
⋃

i≤k

Pi, x ∈ int ∂+
k y



 ,

where the source of (y, x) is y and the target is x.

5.3 (Strongly dimension-wise acyclic oriented graded poset). Let P be an ori-
ented graded poset. We say that P is strongly dimension-wise acyclic if, for
all k ≥ −1, F kP is acyclic.

Comment 5.4 — Strong dimension-wise acyclicity is essentially the same as
loop-freeness in the sense of [Ste93].

Lemma 5.5 — Let P be an oriented graded poset, k ≥ −1, and suppose
x, y ∈ ⋃

i>k Pi. If there exists a path from x to y in FkP , then there exists a
path from x to y in F kP .

Proof. Consider a path x = x0 → x1 → . . . → xm → y from x to y in
FkP . By definition of the k-flow graph, for all i ∈ {1, . . . ,m}, there exists
zi ∈ ∆+

k xi−1 ∩∆−
k xi. By definition of the extended k-flow graph, there exist

edges xi−1 → zi and zi → xi in F kP . Concatenating all the two-step paths
xi−1 → zi → xi, we obtain a path from x to y in F kP . ■

Proposition 5.6 — Let P be a strongly dimension-wise acyclic oriented graded
poset. Then P is dimension-wise acyclic.

Proof. By Lemma 5.5 a cycle in FkU induces a cycle in F kU . ■

Proposition 5.7 — Let f : P → Q be a local embedding of oriented graded
posets. For all k ≥ −1, f induces a homomorphism F kf : F kP → F kQ.

32 hadzihasanovic and kessler

Proof. Similar to the proof of Proposition 4.4, using the fact that, by Proposi-
tion 1.16, inclusions preserve boundaries, hence they also preserve interiors. ■

Corollary 5.8 — Let f : P → Q be a local embedding of oriented graded posets.
If Q is strongly dimension-wise acyclic, then so is P .

Lemma 5.9 — Let U be a frame-acyclic molecule, x, y ∈ U . Then there exists
k ≥ −1 such that there is a path from x to y or a path from y to x in F kU .

Proof. See [Ste93, Theorem 2.16], which applies by Remark 3.13. ■

Proposition 5.10 — Let U be a molecule, P a strongly dimension-wise acyc-
lic oriented graded poset, and f : U → P a local embedding. Then f is an
inclusion.

Proof. Let x, y ∈ U and suppose that f(x) = f(y). By Corollary 4.5, U is
strongly dimension-wise acyclic. It follows from Proposition 5.6 and 4.2 that
U is frame acyclic, so by Lemma 5.9 there exists k ≥ −1 such that there is
a path from x to y or a path from y to x in F kU . Then by Proposition 5.7
F kf maps this onto a cycle in F kP , a contradiction, unless x = y and the
path is constant. We conclude that f is injective. ■

Corollary 5.11 — Let P be a strongly dimension-wise acyclic regular directed
complex. Then

Mol/P = {[U ↪→ P] | U ⊆ P,U is a molecule} .

Proof. Follows from Proposition 5.10 together with Proposition 1.43. ■

Remark 5.12 — In particular, if P is finite and strongly dimension-wise acyclic,
it follows that Mol/P has finitely many cells.

5.13 (Acyclic oriented graded poset). Let P be an oriented graded poset. We
say that P is acyclic if H⃗ P is acyclic.

Comment 5.14 — Acyclicity is essentially the same as total loop-freeness in
[Ste93]. As we will see, it is also related to strong loop-freeness in [Ste04].

Proposition 5.15 — Let P be an acyclic regular directed complex, x, y ∈ P ,
and k ≥ −1. If there is a path from x to y in F kP , then there is a path from
x to y in H⃗ P . Consequently, P is strongly dimension-wise acyclic.

Proof. See [Ste93, Proposition 2.15 and Proposition 5.2]. ■

Remark 5.16 — In fact, the following, stronger fact holds: in every regular
directed complex P , if there is a path from x to y in F kP , then there is a
path from x to y in H⃗ P . However, the proof is quite lengthy and technical
and does not add much for our purposes.

acyclicity conditions on pasting diagrams 33

Example 5.17 — Let U be a 3-dimensional atom whose input and output
boundaries encode the pasting diagrams

3 •
0 • 2 •

1 •0 1

2 3

0 and
3 •

0 • 2 •
1 •0 1

2 3

4
1 2

respectively, and let (n, k) denote the n-dimensional cell labelled with k. Then
the extended 0-flow graph F 0U is

(1,2) • (0,3) • (1,3) •
(2,0) • (2,2) •

(0,0) • (1,4) • (0,2) •
(2,1) • (3,0) •
(1,0) • (0,1) • (1,1) •

while the extended 1-flow graph F 1U is

(1,1) • (2,0) • (1,2) •

(0,0) • (0,1) • (3,0) • (0,3) • (0,2) •

(1,0) • (2,1) • (1,4) • (2,2) • (1,3) •

and the extended 2-flow graph F 2U is

(2,2) • (0,0) • (0,3) • (1,2) •
(2,0) • (3,0) • (1,4) • (0,1) • (1,0) • (1,3) •

(2,1) • (0,2) • (1,1) •

all of which are acyclic. All other extended flow graphs are discrete, so U is
strongly dimension-wise acyclic. However, H⃗ U contains the cycle

(0, 1) → (1, 1) → (2, 0) → (3, 0) → (2, 1) → (1, 4) → (0, 1)

so U is not acyclic.

Proposition 5.18 — Let f : P → Q be a morphism of oriented graded posets.
Then f induces a homomorphism of directed graphs H⃗ f : H⃗ P → H⃗ Q.

Proof. Let x, y ∈ P and suppose there is an edge from x to y in H⃗ P . Then
either x ∈ ∆−y, hence f(x) ∈ ∆−f(y), or y ∈ ∆+x, hence f(y) ∈ ∆+f(x). In
either case there is an edge from f(x) to f(y) in H⃗ Q. ■

34 hadzihasanovic and kessler

Lemma 5.19 — Let f : P → Q be a morphism of oriented graded posets. If
Q is acyclic, then P is acyclic.

Proof. Suppose that there is a cycle in H⃗ P . By Proposition 5.18, H⃗ f maps
it onto a cycle in H⃗ Q. ■

Proposition 5.20 — Let P be an acyclic oriented graded poset. Then P has
frame-acyclic molecules.

Proof. Let U be a molecule and f : U → P be a morphism. By Lemma 5.19,
U is an acyclic regular directed complex, so by Proposition 5.15, Proposition
5.6, and Proposition 4.6, it is frame-acyclic. ■

Corollary 5.21 — Let U be an acyclic molecule, x, y ∈ U . Then there exists
a path from x to y or from y to x in H⃗ U .

Proof. Follows from Proposition 5.20 in combination with Lemma 5.9 and
Proposition 5.15. ■

Corollary 5.22 — Let P be an acyclic oriented graded poset. Then Mol/P is
a polygraph.

Proposition 5.23 — Let U be a molecule, P an acyclic oriented graded poset,
and f : U → P a morphism. Then f is an inclusion.

Proof. Let x, y ∈ U and suppose that f(x) = f(y). By Corollary 5.21, there
is a path from x to y or a path from y to x in H⃗ U . Then H⃗ f maps this onto
a cycle in H⃗ P , a contradiction, unless x = y and the path is constant. We
conclude that f is injective. ■

Corollary 5.24 — Let P be an acyclic oriented graded poset. Then

Mol/P = {[U ↪→ P] | U ⊆ P,U is a molecule} ,
Atom/P = {[cl {x} ↪→ P] | x ∈ P, cl {x} is an atom} .

Proof. By Proposition 5.23, every morphism from a molecule to P is an inclu-
sion, equivalent to a subset inclusion U ↪→ P for some closed subset U ⊆ P .
In particular, every morphism from an atom to P is equivalent to the inclusion
cl {x} ↪→ P for some x ∈ P . ■

Remark 5.25 — Corollary 5.24 also implies that Mol/P has finitely many cells
as soon as P is finite.
Remark 5.26 — Observe that Corollary 5.24 does not require P to be a regular
directed complex, unlike Corollary 5.11.
We conclude by showing that acyclic regular directed complexes determine
strong Steiner complexes in the sense of [AM20].

acyclicity conditions on pasting diagrams 35

5.27 (Oriented Hasse diagram of an augmented directed chain complex with
basis). Let C be an augmented directed chain complex with basis (Bn)n∈N.
The oriented Hasse diagram of C is the directed graph H⃗ C whose
• set of vertices is ⋃

n∈N Bn,
• set of edges is

{
(b, c) | b ∈ supp (dc)− or c ∈ supp (db)+

}
, where the source

of (b, c) is b and the target is c.

5.28 (Strong Steiner complex). A strong Steiner complex is an augmented
directed chain complex C with a unital basis such that H⃗ C is acyclic. We let
DCh+

sSt denote the full subcategory of DCh+ on strong Steiner complexes.

Lemma 5.29 — Let P be an oriented graded poset such that P⊥ is oriented
thin. Then H⃗ Z⃗P is isomorphic to H⃗ P .

Proof. By construction, for all x ∈ P ,

supp (dx)+ = ∆+x, supp (dx)− = ∆−x,

so the definitions of H⃗ Z⃗P and of H⃗ P coincide. ■

Proposition 5.30 — Let P be an acyclic regular directed complex. Then Z⃗P
is a strong Steiner complex.

Proof. Follows from Proposition 4.26 and Lemma 5.29. ■

6. Stability under constructions and operations

In this section, we consider some operations under which the classes of mo-
lecules and regular directed complexes are closed — pastings, suspensions,
Gray products, joins, and duals — and study the stability of acyclicity condi-
tions under these operations.

6.1 (Suspension of an oriented graded poset). Let P be an oriented graded
poset. The suspension of P is the oriented graded poset SP whose
• underlying set is {Sx | x ∈ P}+ {⊥+,⊥−},
• order and orientation are defined, for all x ∈ SP and α ∈ {+,−}, by

∇αx :=





{Sy | y ∈ ∇αx′} if x = Sx′, x′ ∈ P ,

{Sy | y ∈ P0} if x = ⊥α,

∅ if x = ⊥−α.

6.2 (Gray product of oriented graded posets). Let P , Q be oriented graded
posets. The Gray product of P and Q is the oriented graded poset P ⊗ Q
whose

36 hadzihasanovic and kessler

• underlying graded poset is the product P ×Q of the underlying posets,
• orientation is defined, for all (x, y) ∈ P × Q and all α ∈ {+,−}, by

∆α(x, y) := ∆αx× {y}+ {x} ×∆(−)dim xαy.
Gray products determine a monoidal structure (ogPos,⊗, 1) on ogPos.
The monoidal structure (ogPos,⊗, 1) restricts to ogPos+, and through the
equivalence (−)̸⊥ induces a different monoidal structure on ogPos.
6.3 (Join of oriented graded posets). Let P , Q be oriented graded posets. The
join of P and Q is the oriented graded poset P ⋆Q := (P⊥ ⊗Q⊥) ̸⊥. Joins
determine a monoidal structure (ogPos, ⋆ ,∅) on ogPos.
6.4 (Duals of an oriented graded poset). Let P be an oriented graded poset,
J ⊆ N \ {0}. The J-dual of P is the oriented graded poset DJP whose
• underlying set is {DJx | x ∈ P},
• partial order and orientation are defined by

∆αDJx :=
{
{DJy | y ∈ ∆−αx} if dim x ∈ J,

{DJy | y ∈ ∆αx} if dim x ̸∈ J

for all x ∈ P and α ∈ {+,−}.
When J = N \ {0}, we write P ◦ for DJP , and call it the total dual of P .
The following collects a number of non-trivial results of [Had24, Chapter 7].
Proposition 6.5 — Both the classes of molecules and of regular directed com-
plexes are closed under suspensions, Gray products, joins, and all duals.
We now move on to considering the stability of our acyclicity conditions.
Proposition 6.6 — Let U, V be molecules and k ∈ N such that U #k V is
defined. If U and V are acyclic, then U #k V is acyclic.
Proof. See the proof of [Ste93, Theorem 2.18]. ■

Example 6.7 — We show that Proposition 6.6 does not extend to weaker acyc-
licity conditions. Let V be a 3-dimensional atom whose input and output
boundaries correspond to the pasting diagrams

•
• •

•
and

•
• •

•
respectively, and let U be the 3-dimensional atom from Example 5.17. Then
both V and U are strongly dimension-wise acyclic. However, the boundary of
the pasting V #2 U is isomorphic to the boundary of the 3-dimensional atom
from Example 4.3, which contains a cycle in its 0-flow graph. We conclude
that V #2 U is not dimension-wise acyclic.

acyclicity conditions on pasting diagrams 37

The following lemma has a straightforward proof.

Lemma 6.8 — Let P be an oriented graded poset, k ∈ N. Then
1. x 7→ Sx induces an isomorphism of directed graphs FkP

∼→ Fk+1SP ,
restricting to an isomorphism MkP

∼→ Mk+1SP ;
2. x 7→ Sx induces an embedding of directed graphs F kP ↪→ F k+1SP , whose

complement is the discrete graph on {⊥−,⊥+}.

Proposition 6.9 — Let P be an oriented graded poset. If P is acyclic (strongly
dimension-wise acyclic, dimension-wise acyclic), then so is SP .

Proof. The strongly dimension-wise acyclic and dimension-wise acyclic cases
follow from Lemma 6.8, together with the observation that F0SP is always a
discrete graph, and that F 0SP has
• an edge from ⊥− to every element of the form Sx,
• an edge from every element of the form Sx to ⊥+,

and no other edges. The acyclic case is part of [Ste93, Theorem 2.19]. ■

Next, we prove that frame-acyclicity is also preserved under suspension.

Lemma 6.10 — Let U be a frame-acyclic molecule. Then SU is frame-acyclic.

Proof. The following facts are straightforward: the submolecules of SU are
either

{⊥+}, {⊥−}, or SV for V ⊑ U , and

frdim SV =
{
−1 if V is an atom,

frdimV + 1 otherwise.

Given a submolecule V ′ ⊑ SU , then, either V ′ is an atom, in which case
M−1V ′ is trivially acyclic, or V ′ = SV for V ⊑ U with frdimV = r ≥ 0, in
which case frdimV ′ = r + 1 and, by Lemma 6.8, Mr+1V ′ is isomorphic to
MrV , which is acyclic by assumption. ■

Proposition 6.11 — Let P be a regular directed complex with frame-acyclic
molecules. Then SP has frame-acyclic molecules.

Proof. By Lemma 6.10, it suffices to show that every molecule over SP is, up
to isomorphism, either {⊥α} ↪→ P or of the form Sf : SU → SP for some
molecule U and morphism f : U → P . Let f ′ : U ′ → SP be a molecule
over SP ; we can proceed by induction on submolecules. If U ′ is an atom,
by Proposition 1.43 f ′ is isomorphic to the inclusion cl {x} ↪→ SP for some
x ∈ SP , which is either {⊥α} ↪→ SP or cl {Sx′} ↪→ SP for some x′ ∈ P ,
and the latter is isomorphic to Scl {x′} ↪→ SP . Otherwise, f ′ is isomorphic
to g′ #k h

′ : V ′ #k W
′ → SP with k < min {dimV ′, dimW ′}. Then V ′ and W ′

are not 0-dimensional, so by the inductive hypothesis g′ = Sg and h′ = Sh for

38 hadzihasanovic and kessler

some g : V → P and h : W → P . Moreover, for all α ∈ {+,−}, necessarily
∂α
0 g

′ = ∂α
0 h

′ = ({⊥α} ↪→ SP), so g′ and h′ cannot be 0-composable, and k > 0.
Then g and h are (k − 1)-composable and g′ #k h

′ is equal to S(g #k−1 h) up
to isomorphism. ■

Proposition 6.12 — Let P , Q be acyclic oriented graded posets. Then P ⊗Q
and P ⋆Q are acyclic.

Proof. This is a part of [Ste93, Theorem 2.19]. ■

Comment 6.13 — This, in conjunction with the results of [AM20] and Theorem
4.29, can be used to show that Mol/− is compatible with Gray products
and joins of strict ω-categories when restricted to acyclic regular directed
complexes.
Example 6.14 — We show that strongly dimension-wise acyclic and dimension-
wise acyclic molecules are not closed under Gray products. Let U be a 3-di-
mensional atom whose input and output boundary correspond to the pasting
diagrams

0 • 2 •

1 •0

3

1

2
0 1 and

0 • 2 •

1 •0

3

4

1

2 3

respectively. Then U is strongly dimension-wise acyclic. However, in U ⊗ U ,
writing x⊗ y instead of (x, y) for better readability, we have

(0, 1)⊗ (2, 2) ∈ ∆+((0, 1)⊗ (3, 0)) ∩∆−((1, 1)⊗ (2, 2)),
(1, 1)⊗ (1, 0) ∈ ∆+((1, 1)⊗ (2, 2)) ∩∆−((2, 1)⊗ (1, 0)),
(2, 1)⊗ (0, 1) ∈ ∆+((2, 1)⊗ (1, 0)) ∩∆−((3, 0)⊗ (0, 1)),
(2, 2)⊗ (0, 1) ∈ ∆+((3, 0)⊗ (0, 1)) ∩∆−((2, 2)⊗ (1, 2)),
(1, 4)⊗ (1, 2) ∈ ∆+((2, 2)⊗ (1, 2)) ∩∆−((1, 4)⊗ (2, 1)),
(0, 1)⊗ (2, 1) ∈ ∆+((1, 4)⊗ (2, 1)) ∩∆−((0, 1)⊗ (3, 0)).

These relations determine a cycle in F2(U ⊗ U). This proves that U ⊗ U is
not dimension-wise acyclic.

6.15 (Converse of a directed graph). Let G be a directed graph. The converse
of G is the directed graph G ◦ with
• the same sets of vertices and edges as G ,
• source and target functions swapped with respect to G .

Lemma 6.16 — Let P be an oriented graded poset, J ⊆ N \ {0}, k ≥ −1,
and consider the bijection DJ : x 7→ DJx between the underlying sets of P and
DJP . Then

acyclicity conditions on pasting diagrams 39

1. if k + 1 ∈ J , then DJ induces isomorphisms of directed graphs

(MkP)◦ ∼→ MkDJP , (FkP)◦ ∼→ FkDJP , (F kP)◦ ∼→ F kDJP ,

2. if k + 1 ̸∈ J , then DJ induces isomorphisms of directed graphs

MkP
∼→ MkDJP , FkP

∼→ FkDJP , F kP
∼→ F kDJP .

Proposition 6.17 — Let P be an oriented graded poset, J ⊆ N \ {0}. Then
1. if P is frame-acyclic, then so is DJP ,

2. if P is dimension-wise acyclic, then so is DJP ,

3. if P is strongly dimension-wise acyclic, then so is DJP .

Proof. Follows from Lemma 6.16, combined with the fact that a directed graph
is acyclic if and only if its converse is acyclic. ■

Example 6.18 — We show that strongly dimension-wise acyclic and dimension-
wise acyclic molecules are not closed under joins. Let U be the same 3-dimen-
sional atom as in Example 6.14. Since U is strongly dimension-wise acyclic,
by Proposition 6.17 so is its total dual U◦. Using the isomorphism between
(U ⋆U◦)⊥ and U⊥ ⊗ (U◦)⊥, since the total dual counteracts the orientation
reversal on faces of the second factor due to dimensions being raised by 1, we
see that the cycle in F2(U ⊗ U) maps to a cycle

(0, 1) ⋆ (3, 0)◦ → (1, 1) ⋆ (2, 2)◦ → (2, 1) ⋆ (1, 0)◦ → (3, 0) ⋆ (0, 1)◦ →
→ (2, 2) ⋆ (1, 2)◦ → (1, 4) ⋆ (2, 1)◦ → (0, 1) ⋆ (3, 0)◦

in F3(U ⋆U◦). This proves that U ⋆U◦ is not dimension-wise acyclic.

Lemma 6.19 — Let P be an oriented graded poset. Then the bijection x 7→ x◦

induces an isomorphism (H⃗ P)◦ ∼→ H⃗ (P ◦) of directed graphs.

Proposition 6.20 — Let P be an acyclic oriented graded poset. Then P ◦ is
acyclic.

Proof. Immediate from Lemma 6.19. ■

Example 6.21 — Let U be the 3-dimensional atom of Example 5.17. Then U
is not acyclic, but D{1}U is acyclic. Since every dual is involutive, we conclude
that acyclicity is not in general stable under duals.

40 hadzihasanovic and kessler

References

[ABG+23] D. Ara, A. Burroni, Y. Guiraud, P. Malbos, F. Métayer, and S. Mim-
ram. Polygraphs: from rewriting to higher categories. Online preprint
arXiv:2312.00429, 2023.

[AM20] D. Ara and G. Maltsiniotis. Joint et tranches pour les ∞-catégories
strictes. Société Mathématique de France, 2020.

[Bén67] J. Bénabou. Introduction to bicategories. In Reports of the Midwest
Category Seminar, pages 1–77, Berlin, Heidelberg, 1967. Springer Berlin
Heidelberg.

[Bur93] A. Burroni. Higher-dimensional word problems with applications to equa-
tional logic. Theoretical Computer Science, 115(1):43–62, 1993.

[For22] S. Forest. Unifying notions of pasting diagrams. Higher Structures, 6(1):1–
79, 2022.

[Had20a] A. Hadzihasanovic. A combinatorial-topological shape category for poly-
graphs. Applied Categorical Structures, 28(3):419–476, 2020.

[Had20b] A. Hadzihasanovic. Diagrammatic sets and rewriting in weak higher cat-
egories. Online preprint arXiv:2007.14505, 2020.

[Had21] A. Hadzihasanovic. The smash product of monoidal theories. In 2021 36th
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pages 1–13. IEEE, 2021.

[Had24] A. Hadzihasanovic. Combinatorics of higher-categorical diagrams. Online
preprint arXiv:2404.07273, 2024.

[Hen18] S. Henry. Regular polygraphs and the Simpson conjecture. Online preprint
arXiv:1807.02627, 2018.

[HK23] A. Hadzihasanovic and D. Kessler. Higher-dimensional subdiagram
matching. In 2023 38th Annual ACM/IEEE Symposium on Logic in Com-
puter Science (LICS), pages 1–13. IEEE, 2023.

[Joh89] M. Johnson. The combinatorics of n-categorical pasting. Journal of Pure
and Applied Algebra, 62(3):211–225, 1989.

[Mak05] M. Makkai. The word problem for computads. Available at http://www.
math.mcgill.ca/makkai, 2005.

[Pow91] J. Power. An n-categorical pasting theorem. In Lecture Notes in Math-
ematics, pages 326–358. Springer Nature, 1991.

[Ste93] R. Steiner. The algebra of directed complexes. Applied Categorical Struc-
tures, 1(3):247–284, 1993.

[Ste04] R. Steiner. Omega-categories and chain complexes. Homology, Homotopy
and Applications, 6(1):175–200, 2004.

[Str76] R. Street. Limits indexed by category-valued 2-functors. Journal of Pure
and Applied Algebra, 8(2):149–181, 1976.

[Str91] R. Street. Parity complexes. Cahiers de topologie et géométrie différenti-
elle catégoriques, 32(4):315–343, 1991.

Appendix D

Paper IV

F. Wiesner, Z. Chaoui, D. Kessler, A. Pappa, and M. Karvonen. Why quantum
state verification cannot be both efficient and secure: a categorical approach. Online
preprint arXiv:2411.04767. 2024

245

Why quantum state verification cannot be
both efficient and secure: a categorical approach

Fabian Wiesner1 , Ziad Chaoui1, Diana Kessler2 ,

Anna Pappa1 , and Martti Karvonen3

1 Technische Universität Berlin {f.wiesner,ziad.chaoui,anna.pappa}@tu-berlin.de
2 Tallinn University of Technology diana-maria.kessler@taltech.ee

3 University College London martti.karvonen@ucl.ac.uk

Abstract. The advantage of quantum protocols lies in the inherent prop-
erties of the shared quantum states. These states are sometimes provided by
sources that are not trusted, and therefore need to be verified. Finding secure
and efficient quantum state verification protocols remains a big challenge,
and recent works illustrate trade-offs between efficiency and security for dif-
ferent groups of states in restricted settings. However, whether a universal
trade-off exists for all quantum states and all verification strategies remains
unknown. In this work, we instantiate the categorical composable cryptog-
raphy framework to show a fundamental limit for quantum state verification
for all cut-and-choose approaches used to verify arbitrary quantum states.
Our findings show that the prevailing cut-and-choose techniques cannot lead
to quantum state verification protocols that are both efficient and secure.

Keywords: Quantum state verification · Categorical cryptography ·
Security limitations.

1 Introduction

For much of cryptography’s history, security has been assumed but not proven.
Even today, we rely on protocols without proven security, which are rather based on
intuitive arguments [12]. In the comparably young field of quantum cryptography,
many protocols claim provable security under the assumption that the devices used
in these protocols are trustworthy. While the protocols offer a real advantage in
tackling modern cryptographic challenges [7,21], they often come with two caveats:

1. Quantum hardware is expensive and difficult to operate and maintain. This
is particularly true for quantum computers or their main building blocks, such
as implementations of entangling gates [22].

2. The devices might not be trustworthy. To assume otherwise might in fact be
a very strong assumption; someone untrusted could be operating the device,
or there could be a hardware-based attack that leaks important information,
as was done in the past for quantum key distribution systems [15].

ar
X

iv
:2

41
1.

04
76

7v
1

 [
qu

an
t-

ph
]

 7
 N

ov
 2

02
4

2 F. Wiesner et al.

Interestingly, these two issues are connected. Indeed, one way to address the first
issue is to delegate some complex tasks to other parties while making sure that
these perform the tasks as requested. Quantum correlations provide a way to check
that the operations and tasks at hand are executed correctly. In the most general
case, this is done through a framework called ’Device-Independence’ [1], where the
parties involved in a protocol can verify that the operations performed are correct,
without putting any trust on the hardware.
In this paper, we focus on one specific task: quantum state verification. In quantum
state verification protocols, an untrusted source prepares quantum states and dis-
tributes them among the clients who are sometimes considered honest. If the source
is honest, it always prepares the target state, i.e. the state the clients desire to hold,
and the clients accept the result. However, if the source is dishonest, it might not
always send the target state, and the clients should ideally reject it. By virtue of the
no-cloning theorem, the clients cannot simply measure and then use the quantum
states the source sent. Hence the need to verify that the quantum states are indeed
correct. A typical way to verify quantum states is for the source to send several copies
of the state, some of which are thenmeasured by the clients. If enoughmeasurements
correspond to the expected the states,the clients are convinced that the source is
honest. They can then use the states they did not measure for further tasks. Indeed,
some protocols use quantum state verification as a subroutine, for example when the
clients don’t have the local resources to create the state or the network resources to
distribute it [8]. This modular use of quantum state verification begs for composable
security but until recently, it wasn’t clear if a quantum state verification protocol
could be composably secure, especially if the clients are not trusted.Then, in [27], the
authors showed composable security for the protocol in [20] but only against a dis-
honest source. Following a different approach for the clients, the authors of [5] demon-
strated that stand-alone security implies composable security formany target states.
In this work we provide a no-go result showing that a quantum state verification
protocol cannot be composably secure and efficient at the same time. We use the
novel framework of categorical composable cryptography [2, 3] to prove this result.
The motivation for using this framework lies in its combination of rigor and flex-
ibility. On the one hand, modeling quantum processes and protocols as morphisms
in a category provides a precise, albeit abstract, machine model which, by design,
prevents mistakes and hidden assumptions. On the other hand, the ability to define
attack models in the framework formally but still freely allows for the flexibility
to investigate more complex adversarial settings such as ’honest-but-curious’ or
notions of i.i.d.-restrictions. Although we use a rather general attack model for
our result, we will see that by the nature of the actual attacks, one could use
more restrictive attack models as well. However, we stress that we believe that our
results could be proven with essentially the same proofs in other frameworks for
composably secure quantum cryptography [16,17,25].

1.1 Our contribution and related work

Many protocols implement quantum state verification for different types of states,
e.g. [18,20,23,24]. However, all protocols suffer from the same efficiency vs. security

Why quantum state verification cannot be both efficient and secure 3

trade-off: a quantum state verification protocol cannot be secure and efficient. We
investigate this trade-off in a general setting and find fundamental limitations for
quantum state verification.
Theorem 1.1 (Main result (informal)). Let π be a protocol for quantum state
verification with the following properties:
– the clients cannot prepare the target state, and
– if the clients output a state received from the source, they perform no map on it.

At least one of the following statements about π with security parameter λ is false:
1. π rejects the target state with a probability negligible in λ.
2. If the source is dishonest, either the probability to accept or the distance to the

target state is negligible in λ.
3. The number of rounds N is polynomial in λ.
Moreover, we find with εH being the distinguishability to the idealized process if
the source is honest and εD if it is not

εH+εD≥
{

1/8
√
N if the target state is pure.

1/27N if the target state is mixed.

This trade-off has been proven in other works before, albeit in more restrictive
settings. In both [19] and [29], the authors showed that for a quantum verification
protocol for pure target states with a fixed number of rounds, the worst-case
infidelity (1−Fid.) scales with the inverse of number of rounds. Although, in [19]
the authors argue that this is not a restriction, both assume that the clients perform
single round tests, i.e. do not use collective measurements. However, our work
differs from [19, 29] in many aspects. First, the assumptions differ: we do not
consider a fixed number of rounds, we allow for collective measurements, and,
very importantly, we derive a bound for mixed states as well. To illustrate the
importance of the latter, consider quantum state verification for a pure target state
|φ⟩⟨φ|. One can then circumvent the results from [19,29] by using a protocol with
a target state (1−f(N))|φ⟩⟨φ|+f(N)

∣∣φ⊥
〉〈
φ⊥
∣∣, where f can be even negligible in

the number of roundsN . Our result closes such loopholes. Further, the perspectives
on the topic are different. In [19, 29], the authors utilize the hypothesis testing
framework4, which is useful for quantum state verification but is not common in
other areas of quantum cryptography. We argue that quantum state verification
should be viewed as a building block of larger protocols and hence use categorical
composable cryptography. Because of this difference, we developed a novel proof
technique which we expect to also be adaptable to other settings.

Our results provide bounds for self-testing as well [30]. Self-testing is slightly
different from quantum state verification, since there is a single client that does
not trust any of their devices, including preparation and measurement apparatus.
Self-testing can therefore be seen as a stricter case of quantum state verification.
Hence, any attack on quantum state verification implies an attack on self-testing.
4 See [28] for a review on quantum state verification focused on the hypothesis testing
approach.

4 F. Wiesner et al.

1.2 Structure

Our work is structured as follows. In section 2, we first present results from quantum
information theory that we need for our security analysis. We then provide a gentle
introduction to category theory and our categoryCPTP alongsidemorphisms used
to express the algorithms in later sections. We conclude section 2 with the n-comb
construction necessary to define the resource theories for the subsequent work. We
outline the resource theory that we work with in section 3, guided by [2,3]. We then
give a formal security definition and a description of our ideal resource before pre-
senting ourmain results in section 4. In section 4, we present our no-go result first for
a simple type of protocols and then for general quantum state verification protocols.
In both cases, we prove the no-go result in the single- and multi-client cases. Finally,
we discuss open questions and possible implications of our work in section 5.

2 Preliminaries

2.1 Quantum Information Theory

Before instantiating the categorical framework we need for our security analysis,
we present some preliminaries on quantum information theory. All results in this
section are taken from [26].
In the following, we write our definitions with respect to density operators and
quantum channels, although they hold for general linear operators and linear maps.
A density operator on a space X is a positive semidefinite operator with trace equal
to one. D(X) is the space of density operators. A quantum channel from X to Y
is a completely positive trace preserving map from the space of linear operators
on X , L(X) to L(Y). C(X ,Y) denotes the space of quantum channels from X to Y .
Definition 2.1 (Trace norm, diamond norm, diamond distance). For a
density operator ρ∈D(X), we define the trace norm to be ∥ρ∥1=Tr

(√
ρρ†
)
. The

induced trace norm of a quantum channel Φ∈C(X ,Y) is then ∥Φ∥1=max{|Φ(ρ)|1 :
ρ∈D(X)}. The diamond norm of Φ is then defined as

∥Φ∥⋄=∥Φ⊗idL(X)∥1.

Finally we define the diamond distance between Φ,Ψ ∈C(X ,Y) as

d⋄(Φ,Ψ)=∥Φ−Ψ∥⋄. (2.1)

Two properties of the diamond distance that hold for CPTP maps Φ0,Φ1,Ψ0,Ψ1∈
C(X ,Y) and any space Z are

d⋄(Ψ1Ψ0,Φ1Φ0)≤d⋄(Ψ1,Φ1)+d⋄(Ψ0,Φ0), (2.2)
d⋄
(
Φ⊗idL(Z), Ψ⊗idL(Z)

)
≤d⋄(Φ,Ψ). (2.3)

The distances above also have an operational interpretation. Indeed the trace
distance yields a bound on the achievable distinguishing advantage between two
density operators given by the Holevo-Helstrom Theorem.

Why quantum state verification cannot be both efficient and secure 5

Theorem 2.2 (Holevo-Helstrom Theorem). Let ρ0,ρ1 ∈ D(X) be density
operators, and let λ ∈ [0,1]. For any measurement µ : {0,1} → Pos(X) (where
Pos(X) denotes all positive definite operators on X) it then holds

λ⟨µ(0)|ρ0⟩+(1−λ)⟨µ(1)|ρ1⟩≤
1
2+

1
2∥λρ0−(1−λ)ρ1∥1. (2.4)

Moreover there exists a projective measurement µ : {0,1} → Pos(X) for which
equality is achieved in (2.4).
To see that this actually gives a bound on the distinguishing advantage we set
λ= 1

2 in (2.4) and we obtain
1
2 ⟨µ(0)|ρ0⟩+

1
2 ⟨µ(1)|ρ1⟩≤

1
2+

1
4∥ρ0−ρ1∥1 (2.5)

⇔⟨µ(1)|ρ1⟩+(⟨µ(0)|ρ0⟩−1)=⟨µ(1)|ρ1⟩−⟨µ(1)|ρ0⟩≤
1
2∥ρ0−ρ1∥1. (2.6)

Using (2.6) with an adequate choice of measurement µ that satisfies ⟨µ(0)|ρ0⟩≥ 1
2

and ⟨µ(1)|ρ1⟩≥ 1
2 , we find the distinguishing advantage.

Another important quantity is the fidelity. The fidelity between two density op-
erators ρ0, ρ1 is given by

F (ρ0,ρ1)=Tr
(√√

ρ0ρ1
√
ρ0

)2
.

The Fuchs-van de Graaf inequalities link the trace distance to the fidelity [26].
Theorem 2.3 (Fuchs-van de Graaf Inequalities). Let ρ0,ρ1∈D(X) be density
operators, it holds that

1−
√
F (ρ0,ρ1)≤

1
2∥ρ0−ρ1∥1≤

√
1−F (ρ0,ρ1) (2.7)

(
1− 1

2∥ρ0−ρ1∥1
)2
≤F (ρ0,ρ1)≤1− 1

2∥ρ0−ρ1∥
2
1 (2.8)

Lemma 2.4 (Bounds for multi copy distinction). For ρ0,ρ1∈D(X) we have

1−
(√

1− 1
2∥ρ0−ρ1∥

2
1

)n
≤ 1

2∥ρ
⊗n
0 −ρ⊗n1 ∥1≤

√
1−(1−∥ρ0−ρ1∥1)n. (2.9)

Proof. An important property of the fidelity function is

F (ρ⊗n0 ,ρ⊗n1)=F (ρ0,ρ1)n. (2.10)

Using this and the Fuchs-van de Graaf inequalities we first derive the left hand
side of (2.9)

1−
(√

1− 1
2∥ρ0−ρ1∥

2
1

)n
(2.7)
≤ 1−

√
F (ρ0,ρ1)

n

(2.10)= 1−
√
F (ρ⊗n0 ,ρ⊗n1)

(2.7)
≤ 1

2∥ρ
⊗n
0 −ρ⊗n1 ∥1.

6 F. Wiesner et al.

For the right hand side we have

1
2∥ρ

⊗n
0 −ρ⊗n1 ∥1

(2.7)
≤
√
1−F (ρ⊗n0 ,ρ⊗n1)

(2.10)=
√

1−F (ρ0,ρ1)n
(2.8)
≤
√

1−(1− 1
2∥ρ0−ρ1∥1)

2n

≤
√
1−(1−∥ρ0−ρ1∥1)n.

⊓⊔
For pure states however, it holds that

∥|ψ⟩⟨ψ|−|φ⟩⟨φ|∥1=2
√

1−|⟨ψ|φ⟩|2,

which implies
1
2∥ρ

⊗n
0 −ρ⊗n1 ∥1=

√
1−|⟨ψ|φ⟩|2n. (2.11)

2.2 Category Theory

To introduce the framework of categorical composable cryptography, we need to
introduce some notions about category theory. Informally, a category is a collection
of objects - usually denoted A,B,C,... - and morphisms - f,g,h,... - between objects.
Whenever we have twomorphisms f :A→B, g :B→C such that the domain of g and
the codomain of f coincide, we can compose them to obtain themorphism g◦f :A→
C. This composition operation is required to be associative and for every object A,
there should exist a morphism idA which acts as identity on morphism composition.

Example 2.5. 1. Sets and functions between them form a category, Set, in which
the objects are sets and the morphisms are functions. Morphism composition
is function composition and the identity morphism is the identity function,
f(x)=x.

2. The category FHilb, is the category in which the objects are finite dimensional
Hilbert spaces and the morphisms are linear transformations between them.

3. The categoryMet of extended pseudometric spaces has extended pseudometric
spaces as its objects: these are pairs (X,d)whereX is a set and d : X×X→ [0,∞]
satisfies the axioms of a pseudometric5, except that we allow for points with
infinite distance6. The morphisms in Met are given by the short (or distance
non-increasing) maps, so that maps (X,d)→ (Y,e) are given by functions
f : X→Y satisfying e(f(x),f(y))≤d(x,y) for all x,y∈X.

4. Recall that amonoid is basically a groupwithout inverses, i.e., a setM equipped
with a binary operation · : M ×M →M that is associative and has a unit
element. Any monoid (M,·) can be viewed as a category with one object •,
with the morphisms •→• given by elements ofM and composition given by ·.

5 These are almost the axioms of a metric, except distinct points can have distance zero.
6 This corresponds to the adjective “extended”, and is mostly for mathematical
convenience. This can be ignored as in the sequel as all metrics we use take finite values.

Why quantum state verification cannot be both efficient and secure 7

5. Any partially ordered set (P,≤) induces a category whose objects are given
by the elements of P , and there exists a a unique morphism x→y iff x≤y.

For any two objects in a category C, we denote the set of all morphisms A→B
by C(A,B).
Inmany categories of interest one can not only composemorphisms sequentially, but
also in parallel. For instance in Set, given two morphisms f : A→B and g : C→D,
we can form the morphism f ×g : A×C→B×D. This parallel composition is
almost associative, commutative and has a unit. For instance, there is an obvious
bijection relating the sets A×(B×C) and (A×B)×C that merely re-brackets the
data. This idea is made precise by the notion of a symmetric monoidal category
(SMC). We begin by introducing a stricter notion which is easier to define precisely
although it fails to capture many examples of interest.

Definition 2.6 (Symmetric strict monoidal category).
A strict monoidal category (C,⊗,I) is a category C equipped with an object I called
the monoidal unit and a monoidal product ⊗ sending a pair (A,B) of objects to
an object A⊗B, and two morphisms f : A→ B and g : C →D to a morphism
f⊗g : A⊗C→B⊗D. The operation ⊗ must respect identity morphisms in that
idA⊗idB=idA⊗B. Moreover, the operation ⊗ should satisfy the interchange law,
which states that whenever g◦f and i◦h are defined, then

(g◦f)⊗(i◦h)=(g⊗i)◦(f⊗h) (2.12)

Finally, the operation ⊗ should be associative and unital in that for all objects
A,B,C and morphisms f,g,h, we have:

(A⊗B)⊗C=A⊗(B⊗C),
I⊗A=A⊗I=A,
(f⊗g)⊗h=f⊗(g⊗h),
idI⊗f=f⊗idI=f.

A symmetric strict monoidal category is a strict monoidal category with chosen iso-
morphisms σA,B :A⊗B→B⊗A for all A,B such that (i) σB,A◦σA,B=idA⊗B (ii)
the isomorphisms {σA,B}A,B are natural in the sense that (g⊗f)◦σ=σ◦(f⊗g).
In the general (not necessarily strict) case, a monoidal category has an operation ⊗
as above, but the associativity and unit equations of it are replaced by isomorphisms
(satisfying some further conditions), see [9] for more details.

Example 2.7. 1. The monoidal structure of Set is described as follows: the
monoidal product is the cartesian product, ×, and the unit object is a chosen
one element set: {•}.

2. Themonoidal structure ofFHilb has the tensor product of Hilbert spaces as the
monoidal product and the one-dimensional Hilbert space, C, as the unit object.

3. We equip Met with a monoidal structure as follows: we define (X,d)⊗(Y,e) to
be the set X×Y equipped with the ℓ1 distance, so that the distance between
(x,y) and (x′,y′) in X⊗Y is given by the sum d(x,x′)+e(y,y′).

8 F. Wiesner et al.

A nice feature of (symmetric) monoidal categories is that there is an intuitive yet
precise graphical syntax for describing morphisms in them. We next introduce
these string diagrams and our conventions for them. We draw string diagrams from
left to right, just like quantum circuits, although the reader should be warned that
different papers might have their string diagrams drawn from top to bottom or
from bottom to top instead. The sequential composition looks like:

g◦f
CA

:= f g
BA C

While the tensor composition is simply drawing two morphisms in parallel.

f⊗g

BA

DC

:=
f

g

BA

C D

The symmetry isomorphisms are drawn as wire crossings :

σA,B

A

B

B

A

:=

A

AB

B

The string diagrams make the axioms intuitive: for instance, the condition σB,A◦
σA,B=idA⊗B becomes

A

A

A

B

B

B

=

A

B

so that two crossings undo each other, and the naturality condition for the sym-
metry can be pictured as us being allowed to slide the boxes corresponding to the
morphisms f and g through the crossing:

g

f

D

BC

A

=
f

g

A

C B

D

Other axioms are used in the pictures implicitly: for instance, when drawing
three parallel lines we don’t add in any brackets, and the interchange law (2.12)
guarantees that the following picture is unambiguous:

f

h

g

i

Why quantum state verification cannot be both efficient and secure 9

We will also need the definition of a bimonoidal (rig) category, which we state
formally below. This is a “categorified” version of a rig/semiring (≈ ring without
negatives, like the natural numbers with addition and multiplication), just like a
monoidal category is a categorified version of a monoid.

Definition 2.8. A bimonoidal category is a category equipped with two monoidal
products - a symmetric monoidal structure (C,⊕,0) and a monoidal structure
(C,⊗,I)- such that there exist distributivity isomorphisms

dl :A⊗(B⊕C)→(A⊗B)⊕(A⊗C),
dr : (A⊕B)⊗C→(A⊗C)⊕(B⊗C),

and absorption isomorphisms
al :A⊗0→0,
ar :0⊗A→0

that satisfy some coherence laws [14].

Base Categorical modeling We will model our quantum systems of interest as
finite-dimensional C∗-algebras and our quantum processes as quantum channels
i.e., CPTP maps between them. We will only sketch these informally and refer
the reader to [13] for full details. A paradigmatic example of a C∗-algebra is given
by the space of bounded operators on a Hilbert space. First of all this is a vector
space over the complex numbers and composition of operators makes it into an
algebra. Moreover, the operation of taking the adjoint equips this algebra with
an involution, and the general notion of a C∗-algebra abstracts away from this by
axiomatizing important interactions between these structures and the operator
norm. It is standard that any C∗-algebra embeds into one of this form, much like
any group embeds into a permutation group.
In the finite-dimensional case, a paradigmatic example of a C∗-algebra is given by
Mn(C), the n×n complex matrices. Any finite-dimensional C∗-algebra is isomor-
phic to a finite direct sum of such matrix algebras (see e.g. [6, Theorem III.I.1]),
and hence can be captured by a list [n1,...nk] of non-negative natural numbers
specifying the dimension of each matrix algebra.
The main reason we work with general (but finite-dimensional) C∗ algebras is that
they allow us to treat quantum and classical systems. For example, the state-space
of a qubit is modeled by the C∗-algebraM2(C), whereas the state-space of a classi-
cal bit is modeled byM1(C)⊕M1(C)∼=C⊕C. The act of destructively measuring a
qubit in the standard basis is then represented by the CPTP-mapM2(C)→C⊕C
acting by

(
a b
c d

)
7→(a d), and a non-destructive measurement of a qubit could be

modeled as a mapM2(C)→M2(C)⊗(C⊕C).

Definition 2.9 (CPTP). The categoryCPTP of quantum channels is defined as
follows: the objects are finite-dimensional C∗-algebras and the maps are completely
positive trace preserving maps.

10 F. Wiesner et al.

The category of C∗-algebras admits two monoidal structures, ⊕ and ⊗ given by
the natural direct sum and direct product of the underlying vector space. Thus,
if A∼=Mn1(C)⊕...⊕Mnk

(C) and B∼=Mm1(C)⊕...⊕Mmp(C), then

A⊕B=Mn1(C)⊕...⊕Mnk
(C)⊕Mm1(C)⊕...⊕Mmp(C)

A⊗B=Mn1m1(C)⊕Mn1m2(C)⊕...Mn1mp(C)⊕Mn2m1(C)⊕...Mnkmp(C)

In shorthand, this can be represented as

[n1,...,nk]⊕[m1,...,mp]=[n1,...nk,m1,...,mp]
[n1,...,nk]⊗[m1,...,mp]=[n1m1,n1m2,...,nkmp]

With respect to the ⊕ product, the 0-dimensional C∗-algebra is the unit object,
while with respect to the ⊗ product, C∼=M1(C) is the unit object.
Lemma 2.10 (CPTP is bimonoidal). The category CPTP is bimonoidal with
product operations ⊕ and ⊗.
Proof. See [10, Definition 2.10].

Pseudo-Code To express algorithms in this category in a simple fashion, we
introduce translations from pseudo-code to morphisms in CPTP. This transla-
tion relies on the bimonoidal structure of CPTP. We start with Branch-up and
Branch-down – isomorphisms that essentially state that there are two ways of
expressing classical distributions of quantum states.
Definition 2.11 (Branch-up/ Branch-down). Let A be an object in CPTP.
Then, we define the isomorphism Bupn,A using the unitors and distributors as follows:

Bupn,A :I⊕n⊗A ≃−→(I⊕n−1⊗A)⊕(I⊗A) ≃−→(I⊕n−1⊗A)⊕A ≃−→ ...
≃−→A⊕n.

So, Bupn,A :I⊕n⊗A ≃−→A⊕n.
Symmetrically, we define Bdownn,A :A⊕n ≃−→I⊕n⊗A.
In particular, for algorithms in the context of verification, explicit branching is
essential. We allow for branching using the following definition.
Definition 2.12 (If-Else). Let A,B,C be objects in CPTP and let f : A→B,
g : A→ C be morphisms in CPTP. Then, ife(f,g) : (I ⊕ I)⊗A→ B ⊕C is a
morphism (channel) defined as:

ife(f,g)=(f⊕g)◦Bup2,A
More generally, an if-else channel applied to n arguments f1,...,fn (and corre-
sponding to an if-then-else structure with (n−2) else-if structures) is a morphism
elif((fi)ni=1) : (I⊕n⊗A→

⊕n
i=1Bi) defined as

elif((fi)ni=1)=
(

n⊕

i=1
fi

)
◦Bupn,A,

where fi :A→Bi.

Why quantum state verification cannot be both efficient and secure 11

Using the symmetry of the category allows for swapping registers. To denote this
formally in an algorithm, we introduce the corresponding pseudo-code.

Definition 2.13 (Swap). Given A1,...,An, objects in CPTP, to define a map
swapk,l :A1⊗...⊗Ak⊗...⊗Al⊗...⊗An→A1⊗...⊗Al⊗...⊗Ak⊗...⊗An we first let
Σk,k+1=

⊗k−1
i=1 I⊗σk,k+1⊗

⊗n
i=k+2I. Then,

swapk,l=Σk,l−1◦...◦Σk,k+1◦Σk,l◦...◦Σl−2,l◦Σl−1,l.

Graphically, for the case n=3, if we want to swap A1 and A3 the equation looks
like (note that we do not draw the tensor units):

σ2,3

σ1,3

σ1,2

A2

A3

A1

A2 A3

A2

A3

A1 A2

A1

Definition 2.14 (Move-back). Given A1, ... ,An objects in CPTP, the map
move−backk,n :A1⊗ ...⊗Ak⊗ ...⊗An→A1⊗ ...⊗Ak−1⊗Ak+1⊗ ...⊗An⊗Ak is
defined as:

move−backk,n=◦ni=kswapi,i+1.

At last, we need to implement a different kind of branching. So far, we are only repre-
senting explicit branching. Hence, one can learn from the outside which branch the
program chose. However, if the meta-data of the state, especially the dimensionality,
does not give away which branch was chosen, one can choose not to output this
information. In this case, we shall delete this information after branching with elif.

Definition 2.15 (Forget-branch). Given an object A in CPTP, the morphism
forget−branchn,A :A⊕n→A is defined as follows:

forget−branchn,A=(TrI⊕n⊗idA)◦Bdownn,A ,

where Tr(−) is the map to the monoidal unit.

n-combs In the following, we wish to formalize settings where we can model useful
cryptographic resources based on quantum channels shared between n parties. In
cryptographic protocols, each party acts locally on their system, and the parties
interact with one another over multiple rounds. Our category therefore needs to
model both local actions on systems as well as multiple rounds of interactions
between parties. To this end, we present a slightly modified version of the n-comb
category defined in [3, Definition 3.2]. In n-comb morphisms represent a given
agent’s part of a protocol. In contrast to the one in [3], our definition allows for
settings, where the protocols don’t necessarily use all shared resources.

Definition 2.16. Given an SMC C, the category n-comb(C) is defined as follows:
objects of n-comb(C) are finite lists (Ai,Bi)mi=1 of pairs of objects of C. Morphisms

12 F. Wiesner et al.

are defined in two stages: For p≤m, a morphism (Ai,Bi)mi=1→(C,D) is given by
an injection ı : {1,...,p}→{1,...,m} and a p-comb

g0 g1

...

...

gp−1 gp
C

Aı(1)

Y1

Bı(1) Aı(2)

Y2 Yp−1

Aı(p)

Yp

Bı(p)

D

Bı(p−1)

in C. Formally, a p-comb is an equivalence class of tuples (g0,...,gp) of maps in
C, where g0 : C→Aı(1)⊗Y1, gi : Bı(i)⊗Yi→Aı(i+1)⊗Yi+1 for i=1...p−1 and
gp : Bı(p)⊗Yp→D for some objects Yi. Two such tuples are identified if, whenever
one “plugs the holes” with maps of the form Zi⊗Aı(i)→Zi⊗Bı(i), the resulting
maps in C are equal.
A morphism (Ai,Bi)mi=1→(Cj ,Dj)kj=1 is given by a function f : {1,...,m}→{1,...,k}
and a morphism (Ai,Bi)i∈f−1(j)→(Cj ,Dj) for each j. Composition is defined by
nesting circuits into circuits, and the monoidal product is given by concatenation
of lists.

Note that the monoidal product in the underlying category C is different from
that of in n-comb(C).

3 Categorical Composable Cryptography

One of the main contributions of [2, 3] are highly general composition theorems.
These can be viewed as giving a blueprint for numerous models of composable
cryptography: one gets a specific model by fixing each degree of freedom in the for-
malism. To fix these, one first needs to choose two SMCsD andC, whereDmodels
the protocols, and C models the relevant kind of (computational) processes, which
may or may not be more general than those given inD. One also needs to fix a map
D→C of SMCs which interprets protocols into processes. One also needs to give a
map out ofC, which gives for each object (thought of as a system type) the resources
of that type, and specifies how processes inC act on these resources. If one requires
perfect security, this operationR can be modeled as a suitable kind of map of SMCs
C→Set, so that in particular for each object A we have a set R(A) of resources of
that type. If we want to model security up to (computational) indistinguishability,
R(A) should be equipped with an equivalence relation, and if we want to do security
up to some notion of distance, then R(A) should be a (pseudo)metric space. The
chain of maps D→C→Set (or D→C→Met) then induces a resource theory of
correct conversions between resources. To add in a notion of security, one needs a fur-
ther structure called an attack model onC, which in a nutshell specifies the way that
adversaries can force a protocol to deviate from its intended behavior. One can then
form the SMC of (suitably correct) resource conversions that are secure against this
attackmodel, and the fact that this results in an SMC is the heart of the composition
theorem—secure conversions are closed under sequential and parallel composition.

Why quantum state verification cannot be both efficient and secure 13

For a detailed exposition on how these resource theories arise we refer the reader
to [2, 3]. For a more general study of resource theories one can consult [4].
In this sectionwe adapt this framework for our analysis of quantum state verification
protocols. We present the resource theories we work in for single- and multi-client
verification protocols. Based on this we can present our security definition and
finally we give a formal definition of our ideal resources.

3.1 The relevant resource theories

We wish to consider “security up to ε”, so our mapping R specifying the resources
of a given type should be a (pseudo)metric space. In other words, we wish for R
to land in the SMC Met of extended (pseudo)metric spaces and short maps from
examples 2.5 and 2.7.
In fact, we will define two different, albeit similar, resource theories for multi- and
single-party quantum state verification. In quantum state verification, we consider
a source that can perform any arbitrary quantum operation. This corresponds to
the category CPTP, which we denote from now on with C to simplify notation.
In the single-party case we consider the receiving party, that wishes to verify the
quantum state, to be able to measure the state, but not to create the state. We
define D to be the sub-SMCs of C generated by morphisms that are destructive
quantum measurements and by arbitrary maps between classical systems (which
correspond to stochastic maps).
For multi-party verification, we again consider a source corresponding to C along
with k clients each also acting in C. The clients can only act locally and cannot
create entanglement with one another. This restriction is represented by the Carte-
sian product Ck. The resource theories of single- and multi-party quantum state
verification respectively are induced by the maps

n-comb(D×C)→n-comb(C)→Met (3.1)
n-comb(Ck×C)→n-comb(C)→Met (3.2)

The morphisms on the left are the monoidal functors induced by the (k-)fold tensor
productD×C ↪→C andCk×C ↪→C. The second map is given by n-comb(C)(I,−),
where I is the tensor unit in n-comb(C).
Let us now explain what these abstract definitions amount to concretely, start-
ing from the simpler case of (3.1). We first unwind the definitions. An object of
n-comb(D×C) is given by a finite list (Ai,Bi)ni=1 of objects ofD×C, but we’ll first
focus on lists (A,B) of length one. In turn, an object ofD×C is a pair of objects: one
of D and one of C. Thus each (A,B) is of the form ((A1,A2),(B1,B2)), and one can
then show that themap (3.1) sends ((A1,A2),(B1,B2)) toCPTP(A1⊗A2,B1⊗B2).
It follows that a resource of type ((A1,A2),(B1,B2)) is given by a bipartite quantum
channel A1⊗A2→B1⊗B2, where we think of the first input and output belonging
to the first party (the verifier) and the second input and output belong to the
second party (the source). More generally, a resource of type (Ai,Bi)ni=1 is a list
of n such bipartite channels.

14 F. Wiesner et al.

Given a starting resource f : A1⊗A2→B1⊗B2 (of type ((A1,A2),(B1,B2)) and
a target resource g : C1⊗C2→D1⊗D2 (of type ((C1,C2),(D1,D2)), a resource
conversion f→g can be depicted by two 1-combs, one for each party, as in

g0 g1
C1

A1

Y1

B1

D1
, h0 h1

C2

A2

Y2

B2

D2

(3.3)
where we require that the first part, belonging to the verifier, lives in the category
D (i.e., that g0 and g1 are morphisms in D). This resource conversion is correct,
exactly if, when applied to f , it produces g, i.e., filling the hole in

g0 g1

h0 h1

C1

A1

Y1

B1

D1

C2

A2

Y2

B2

D2

(3.4)

with f results in g. Typically, but not necessarily, the resources used enable com-
munication between the parties, so that one could then think of these pictures
as depicting a 2-party 1-round protocol. A more general resource conversion
(f1,...fn)→g is similar, except that (i) there’s more holes in the pictures (corre-
sponding to more rounds in the protocol) and (ii) the parties have to agree on
the order they call the shared resources fi (which, in the case of communication,
amounts to agreeing what kind of information is sent at each round). The parties
can also agree to not use some of the shared resources. We note that since n-combs
are finite and holes represent rounds, we are de facto setting an upper limit on
the number of rounds. However, this does not pose a problem since the size of the
n-comb can be arbitrarily chosen. In fact, any sensible model would not allow for
an infinite number of rounds and would abort after a preset number of rounds.
We consider security of such protocols in the next subsection, and conclude this
subsection by verifying carefully that n-comb(C)(I,−) is indeed a map to Met.
Objects in n-comb(C) are finite lists, and the tensor unit I of n-comb(C) is the
empty list. For C,D∈C we have (C,D)∈n-comb(C) and

n-comb(C)(I,(C,D))=C(C,D).

By endowing C(C,D) with the diamond distance (2.1), we obtain a metric space
(C(C,D),d⋄). For an object (Ai,Bi)ni=1, one can show that n-comb(C)(I,−) maps
it to a product space

n-comb(C)(I,(Ai,Bi)ni=1)=C(A1,B1)×···×C(An,Bn). (3.5)

Why quantum state verification cannot be both efficient and secure 15

For this product space we use the monoidal structure of Met, so it is equipped
with the ℓ1-distance given by the sum of diamond distance on each of the hom
spaces. Let d :=

∑n
i=1d⋄ denote said distance. The product space (3.5) is then also

a metric space
(×n

i=1C(Ai,Bi),d
)
.

Next, we show that n-combs induce morphisms in Met, which are short maps. A
n-comb maps a list (Ai,Bi)li=1 with l≥n to (C,D) This induces a morphism

γ :n-comb(C)(I,(Ai,Bi)li=1)→n-comb(C)(I,(C,D)).

that is, a morphism

C(A1,B1)×···×C(An,Bn)→C(C,D)

that acts on (a1,...an) by filling the holes in the comb with ai. We then need to
check that γ itself induces a short map, i.e., a morphism inMet. Let x=(ı,(hi)ni=0)
with h0 : C → Aı(1)⊗Y1, h1 : Bı(i)⊗Yi → Aı(i+1)⊗Yi+1 for i = 1, ... ,n− 1 and
hn :Bı(n)⊗Yn→D specify an n-comb, and let x(ā) be the n-comb filled with the
tuple of CPTP maps ā=(a1,...,al), where ai :Ai→Bi and l≥n. And Yk denotes
an auxiliary register. To show that γ induces a short map we need to show that
d(ā,b̄)≥d⋄(x(ā),x(b̄)). Indeed using the notation as in Definition 2.16, with ı being
an injection from {1,...,n} to {1,...,l}, we can write x(ā) as

x(ā)=hn◦ni=1 [(aı(i)⊗idYi)◦hi−1].

By the properties of the diamond distance (2.2),(2.3) and the fact that d⋄(f,f)=0
by virtue of it being a metric, it then follows

d⋄(x(ā),x(b̄))
=d⋄(hn◦ni=1 [(aı(i)⊗idYi)◦hi−1],hn◦ni=1 [(bı(i)⊗idYi)◦hi−1])
≤d⋄(hn,hn)+d⋄(◦ni=1[(aı(i)⊗idYi)◦hi−1],◦ni=1[(bı(i)⊗idYi)◦hi−1])

≤
n∑

i=1
d⋄((aı(i)⊗idYi)◦hi−1,(bı(i)⊗idYi)◦hi−1)

≤
n∑

i=1
[d⋄((aı(i)⊗idYi),(bı(i)⊗idYi))+d⋄(hi−1,hi−1)]

≤
n∑

i=1
d⋄(aı(i),bı(i))≤

l∑

i=1
d⋄(ai,bi)=d(ā,b̄).

3.2 Security Definition

Using the resource theories (3.1) and (3.2), we can present our security definition
based on [2, 3]. The security definition relies on an attack model A. An attack
model on a category C gives for every morphism f in C a class of morphisms A(f)
that fulfills certain properties which are stated in the original work.
To capture both of the situations above in a single situation, we model the situation

16 F. Wiesner et al.

with K+1 parties, where the last party acts maliciously in C, and let E be a
sub-SMC of C (where in the above, we either have E=C or E=D). We define an
attack model on n-comb(EK×C) derived from a general attack model in [3]. The
attack model A consists of allowing the last party to change their part of any m-
comb arbitrarily while leaving everything else in the morphisms of n-comb(EK×C)
unchanged. For example, in the 2-party 1-round case depicted in (3.3) and (3.4),
this amounts to allowing the second party to change their comb (and hence their
resulting input C2 and output D2) arbitrarily, provided they do send and receive
something of type A2 and B2 respectively into the shared resource.
We now give a formal definition of the attack model, but note that the intuitive
definition above is sufficient for many purposes.

Definition 3.1 (Attack model A on n-comb(EK×C)). We define an attack
model A on n-comb(EK×C) corresponding to K honest parties and one malicious
party. Consider a morphism in n-comb(EK×C) given by an injection ı :{1,...,m}→
{1,...,l} and a m-tuple of morphisms in n-comb(Ck), (g0,...,gm), that is

(ı,(g0,...,gm)) : (Ai,Bi)li=1→(C,D)

Each gj is a morphism in EK×C, and as such itself a tuple of morphisms in E
and one in C. We write πj :EK×C→E for the j-the projection. The attack model
is then defined as

A((ı,(g0,...,gm))) :={(ı,(h0,...,hm))|πj(hℓ)=πj(gℓ) for all ℓ and 1≤j≤K}.

In the following we study quantum state verification protocols with K≥1 honest
clients and a dishonest source. The source is then modeled in C and the clients
correspond to EK in Definition 3.1.
Intuitively, security against a dishonest source means that for every attack a in
the attack model in A(π) applied on the protocol, there is an attack b in the attack
model A(ids) on the identity for the ideal resource such that a applied on the
real resources and b on the ideal resource are indistinguishable up to ε. With this
intuition and the attack model we defined before, we now define security formally.

Definition 3.2 (Security against the source). Let E be any sub-SMC in C.
We further consider F :n-comb(EK×C)→n-comb(C) being the injection E ↪→C
followed by the (K+1)-fold tensor product and R : n-comb(C)→Met given by
n-comb(C)(I,−). A protocol (morphism in n-comb(EK×C)) π : (A,r̄)→ (B,q̄)
ε-securely implements (B,s̄) with an untrusted source if

∀a∈A(π) ∃b∈A(idB) :
1
2d⋄(RF (a)r̄,RF (b)s̄)≤ε,

where A is the attack model as defined in Def. 3.1.

Apart from security, we need a definition of correctness, i.e. that the implementation
is close to the ideal resource if all parties act honestly.

Why quantum state verification cannot be both efficient and secure 17

Definition 3.3 (Correctness). Let E be any sub-SMC in C. We further consider
F : n-comb(EK ×C)→ n-comb(C) being the injection E ↪→ C followed by the
(K+1)-fold tensor product and R :n-comb(C)→Met given by n-comb(C)(I,−). A
protocol (morphism in n-comb(EK×C)) π : (A,r̄)→(B,q̄) ε-correctly implements
(B,s̄) if

1
2d⋄(RF (π)r̄,RF (idB)s̄)≤ε.

3.3 Ideal resource

To prove that there is no efficient and secure quantum state verification, we also
need to define the ideal resource. The ideal resource we consider is the same as in [5].
To ease the reading of the ideal resource as morphisms, we will write out tensor
units explicitly when they represent the input or output of parties. Further, we
use the tensor unit as a constant signal, which can either be the start signal or the
abort/end signal, depending if it is the input or output of the morphism.

Ideal resource 1: SQSV
φ,K , the ideal quantum state verification resource for K clients

and one source.
Input: The clients input I.
Input: The source inputs c∈{0,1}.

if c=0 then
ξ←φ

else
ξ←I⊗n

end if
Output: The client receives ξ.

Remark 3.4. In the category CPTP, morphisms are quantum channels defined
on finite-dimensional C∗-algebras, or concretely on direct sums of matrix alge-
brasMn(C). In quantum cryptography, however, we work with density matrices.
Density matrices form a subset of all complex matrices, that is D

(⊗k
i=1Cni

)
⊆

⊗k
i=1Mni(C) for any tuple (n1,...,nk)∈Nk. Moreover, a quantum channel always

maps density operators to density operators. Therefore, all the preliminaries in
Section 2.1 also hold for the morphisms in the category CPTP. In the subsequent
work we can therefore restrict our analysis to density operators while still working
with the morphisms in CPTP.

Definition 3.5 (Quantum state verification). Let SQSVφ,K be the quantum state
verification resource for K clients C = {i}Ki=1, a source S and a target state
φ ∈ D

(⊗K
i=1Cni

)
. The source decides with their input c ∈ {0,1} if the clients

18 F. Wiesner et al.

receive the target state φ or the tensor unit I. As a morphism, we can type SQSVφ,K
as follows

SQSVφ,K :
(

K⊗

i=1
I

)
⊗(I⊕I)→

((
K⊗

i=1
Mni(C)

)
⊕
(

K⊗

i=1
I

))
⊗I.

We show the ideal resource in Ideal resource 1.

We further introduce the 1-comb t♯S that takes the role of a filter, i.e. an operation
applied to the ideal resource that shields access that should be only available to
dishonest parties. We apply a filter in the honest case to ensure that the source
cannot force the ideal resource to abort. Again, we write tensor units explicitly
to represent the inputs or outputs of the different parties:

t♯S =
(
I⊗K+1→I⊗K⊗

(
1 0
0 0

)
,id((⊗K

i=1
Mni

(C)
)
⊕
(⊗K

i=1
I
))

⊗I

)
.

We define ♯S=(1 7→1,t♯S).
Now we have all definitions we need to define ε-implementations of quantum state
verification.

Definition 3.6 (Implementation). Let r̄ be any sequence of resources, and π be
a protocol in form of a morphism in n-comb(EK×C) applicable to ā. We say π(ā)
is an ε-implementation for quantum state verification if

– π ε-correctly implements ♯S
(
SQSVφ,K

)
and

– π ε-securely implements SQSVφ,K

from r̄.

We still need to list the resources we are considering for the implementation. While
we shouldn’t be overly restrictive, we must ensure that the clients cannot use these
resources alone to fully prepare the target state. Nevertheless, the resource should
provide the necessary communication structure. Motivated by this contrast, we
describe the abilities provided by the resources and their restrictions below.

– W is a resource allowing the clients to coordinate their verification. It is assumed,
thatW either doesn’t allow to or is not used to distribute the output state.

– Q is a quantum communication channel from the source to the client in
single-client quantum verification.

– T is a quantum communication channel from the source to all clients and
allows some quantum communication among the clients. Nevertheless, the
graph representing the connectivity of the clients is not connected. We assume
T for quantum state verification.

– V is a resource allowing the clients to sample whether they query another state
and reveals the decision to the source. We assume once, V outputted that no
further state should be queried, the parties don’t use it or ignore its outputs.

Why quantum state verification cannot be both efficient and secure 19

4 No-Go result

4.1 Simple protocols

We first consider a simple type of quantum state verification protocols. In this
simple setting, an honest source sendsN+1 copies of the ideal state to the client(s).
The client(s) perform a measurement on a random subset of size N . If the mea-
surement outcome is 0 they accept the verification and output the remaining state
to the environment. If the measurement outcome is 1, they output the abort signal
I to the environment.

Definition 4.1 (Simple protocol type). Let N≥0 be an integer, η∈I⊕N+1 a
probability distribution, φ∈D

(⊗K
i=1Cni

)
the target state for K≥1 client(s) and

µ :
(⊗K

i=1Mni(C)
)⊗N

→I⊕I a measurement. πSP is defined by the two algorithms
πSPS and πSPC , where πSPS describes the protocol followed by the source preparing
the states and πSPC the protocol followed by the client(s) to verify the states.

Protocol 2: The protocol πSP of the source and the (joint) protocol of the client(s).
N , K and φ are publicly known and fixed per protocol instance.
Source’s protocol πSP

S :
1: Prepare N+1 copies of the target state, i.e. I→φ⊗(N+1).
2: Send these copies to the client(s).

Client’s protocol πSP
C :

1: The client(s) receive their respective share of each of theN+1 states inD
(⊗K

i=1C
ni
)
,

i.e. I→
⊗N+1

i=1 ρi.
2: The client(s) sample the output register: r←η
3: if r=1 then
4:

⊗N+1
i=1 ρ′i←MOVE-BACKN+1,1(

⊗N+1
i=1 ρi).

5: else if r= ... then
6:

...
7: else
8:

⊗N+1
i=1 ρ′i←MOVE-BACKN+1,N+1(

⊗N+1
i=1 ρi).

9: end if
10: Perform FORGET-BRANCHN+1,Hc and get

⊗N+1
i=1 ρ′′i .

11: Perform the measurement µ on the first N registers, the result is s. The remaining
register is now called ρ′′′.

12: if s=0 then
13: Output ρ′′′, distributed to the clients.
14: else
15: Output Tr(ρ′′′) to each client.
16: end if

20 F. Wiesner et al.

Where the else-if structure, MOVE-BACK, and FORGET-BRANCH are defined in Defi-
nitions 2.12, 2.14, and 2.15. With the definition of the simple protocol type, we
can derive our first result. We show that there is no composably secure single- or
multi-client quantum state verification protocol that is efficient. Intuitively, both
players, the client(s) and the distinguisher, are limited by the Holevo-Helstrom
theorem. The crucial observation is, that the distinguisher can choose a state that
is likely to pass the test of the client(s), but is still non-negligibly far away from the
target state. We start with single-client state verification, i.e. we consider a single
client, who is not able to prepare a state at all. For any simple protocol π with
N+1 rounds we show that π cannot be an negl(N)-implementation as defined in
3.6, i.e., π cannot be negligible close to the ideal functionality and efficient.

Theorem 4.2 (No efficient single-client state verification with fixed num-
ber of rounds). Let π={πS ,πC} be a simple protocol (see Def.4.1). Then there
exists a morphism Aρ∈A(π) such that for all Bρ∈A

(
idSQSV

φ,1

)
it holds

1
2d⋄

(
RF (π)(ā),RF (♯S)

(
SQSVφ,1

))
+1
2d⋄

(
RF (Aρ)(ā),RF (Bρ)

(
SQSVφ,1

))
≥ε,

where ā=(Q)×N+1 consists of N+1 copies on quantum communication from the
source to the client, ε=1/27N, if φ is mixed and ε=1/8

√
N, if φ is pure.

Proof. First,we consider the setting,where the source is honest, i.e. 12d⋄
(
RF (π)(ā),RF (♯S)

(
SQSVφ,1

))
.

Half the diamond distance being the distinguishing advantage, we know that this
quantity is lower bounded by the difference of the probabilities that the real and
ideal resource output 0, that is

1
2d⋄

(
RF (π)(ā),RF (♯S)

(
SQSVφ,1

))
≥
∣∣∣Pr[(π(ā))(I)=0]−Pr

[(
♯S
(
SQSVφ,1

))
(I)=0

]∣∣∣.
(4.1)

We consider the channelM=TrMn(C)⊕idI . If we applyM to the resource’s output,
we find

Pr[(M◦π(ā))(I)=0]=
〈
µ(0)

∣∣φ⊗N
〉

Pr
[(
M◦♯S

(
SQSVφ,1

))
(I)=0

]
=1.

However the diamond distance is contractive with respect to CPTP maps, i.e.M
cannot increase the diamond distance, which implies

1
2d⋄

(
RF (π)(ā),RF (♯S)

(
SQSVφ,1

))

≥ 1
2d⋄

(
RF (M◦π)(ā),RF (M◦♯S)

(
SQSVφ,1

))
≥1−

〈
µ(0)

∣∣φ⊗N
〉
. (4.2)

If the source is dishonest, we use the family of attacks {Aρ}ρ∈D(Cn). We apply
these attacks to Q×N+1 and obtain a channel from I to Mn(C)⊕ I. Aρ inputs

Why quantum state verification cannot be both efficient and secure 21

N+1 copies of as state ρ∈D(Cn) and implements πC on the client side. To bound
1/2d⋄

(
RF (Aρ)(ā),RF (Bρ)

(
SQSVφ,1

))
we need to model any attack on idSQSV

φ,1
. For

the input part of the comb we consider any channel from I to I⊕I. The output part
can only be the identity, since there is no output on the side of the source and the
client is honest. Hence,Bρ can only input a single classical bit c to the ideal resource
SQSVφ,1 . Therefore, we can assume without loss of generality, that there is a probabil-
ity pN (ρ) for the simulator to input c=1, i.e. pN (ρ)=Pr

[
c=0 |c←Bρ

(
SQSVφ,1

)]
.

As in the honest case, we want to apply a measurement channel to the outputs of
the channels obtained by Aρ(ā) and Bρ

(
SQSVφ,1

)
. LetMD={γ(0)⊕1,γ(1)⊕0} be

a measurement channel, where γ is an arbitrary binary measurement. It follows7

Pr[MD◦Aρ(ā)(I)=1]=⟨γ(1)|ρ⟩
〈
µ(0)

∣∣ρ⊗N
〉

Pr
[
MD◦Bρ

(
SQSVφ,1

)
(I)=1

]
=⟨γ(1)|φ⟩pN (ρ).

And the Holevo-Helstrom Theorem implies
1
2d⋄

(
RF (Aρ)(ā),RF (Bρ)

(
SQSVφ,1

))
≥
∣∣⟨γ(1)|ρ⟩

〈
µ(0)

∣∣ρ⊗N
〉
−⟨γ(1)|φ⟩pN (ρ)

∣∣.
(4.3)

When considering γ(1)=1Cn , we find
1
2d⋄

(
RF (Aρ)(ā),RF (Bρ)

(
SQSVφ,1

))
≥|
〈
µ(0)

∣∣ρ⊗N
〉
−pN (ρ)|.

We denote pN (ρ)=
〈
µ(0)

∣∣ρ⊗N
〉
+δ(N,ρ) and find

1
2d⋄

(
RF (Aρ)(ā),RF (Bρ)

(
SQSVφ,1

))
≥|δ(N,ρ)|.

For an arbitrary γ(1), we then have
1
2d⋄

(
RF (Aρ)(ā),RF (Bρ)

(
SQSVφ,1

))

≥|
〈
µ(0)

∣∣ρ⊗N
〉
⟨γ(1)|ρ⟩−pN (ρ)⟨γ(1)|φ⟩|

=|
〈
µ(0)

∣∣ρ⊗N
〉
(⟨γ(1)|ρ⟩−⟨γ(1)|φ⟩)−δ(N,ρ)⟨γ(1)|φ⟩|

≥|
〈
µ(0)

∣∣ρ⊗N
〉
(⟨γ(1)|ρ⟩−⟨γ(1)|φ⟩)|−|δ(N,ρ)|

≥
〈
µ(0)

∣∣ρ⊗N
〉
|⟨γ(1)|ρ⟩−⟨γ(1)|φ⟩|− 1

2d⋄
(
RF (Aρ)(ā),RF (Bρ)

(
SQSVφ,1

))
.

If we consider the optimal measurement {γ(0),γ(1)} to distinguish ρ and φ, i.e., the
measurement that saturates the Holevo-Helstrom bound, then the above inequality
is yields

1
2d⋄

(
RF (Aρ)(ā),RF (Bρ)

(
SQSVφ,1

))
≥ 1

2
〈
µ(0)

∣∣ρ⊗N
〉1
2∥ρ−φ∥1. (4.4)

7 Note, that the attack is i.i.d., hence the probability distribution η used by the client(s),
does not occur in the analysis.

22 F. Wiesner et al.

Adding both honesty-setting (4.2) and (4.4), the Holevo-Helstrom bound yields
1
2d⋄

(
RF (π)(ā),RF (♯S)

(
SQSVφ,1

))
+1
2d⋄

(
RF (Aρ)(ā),RF (Bρ)

(
SQSVφ,1

))

≥
(
1−
〈
µ(0)

∣∣φ⊗N
〉)
+1
2
〈
µ(0)

∣∣ρ⊗N
〉1
2∥ρ−φ∥1

≥ 1
4∥ρ−φ∥1

(
1−
(〈
µ(0)

∣∣ρ⊗N
〉
−
〈
µ(0)

∣∣φ⊗N
〉))

≥ 1
4∥ρ−φ∥1

(
1− 1

2∥ρ
⊗N−φ⊗N∥1

)
. (4.5)

Depending on whether target state φ is pure or mixed we obtain a different bound.
We first consider the mixed case. Using Lemma 2.4, we find

1
2d⋄

(
RF (π)(ā),RF (♯S)

(
SQSVφ,1

))
+1
2d⋄

(
RF (Aρ)(ā),RF (Bρ)

(
SQSVφ,1

))

≥ 1
4∥ρ−φ∥1

(
1−
√

1−(1−∥ρ−φ∥1)N
)

Now we fix Aρ such that 1
2∥ρ−φ∥1=α/N, which give us

1
2d⋄

(
RF (π)(ā),RF (♯S)

(
SQSVφ,1

))
+1
2d⋄

(
RF (Aρ)(ā),RF (Bρ)

(
SQSVφ,1

))

≥ α

2N


1−

√
1−
(
1− 2α

N

)N



≥ α

2N
(
1−
√
2α
)
,

where we used (1− β
k)k≥1−β for k∈N and |β|≤k. This is maximized for α=2/9

which gives
1
2d⋄

(
RF (π)(ā),RF (♯S)

(
SQSVφ,1

))
+1
2d⋄

(
RF (Aρ)(ā),RF (Bρ)

(
SQSVφ,1

))
≥ 1

27N .

(4.6)

Next, we consider φ= |φ⟩⟨φ| to be a pure state, and we can choose a pure state
ρ= |ψ⟩⟨ψ| as well. Using (2.11) plugged into (4.5) we obtain

1
2d⋄

(
RF (π)(ā),RF (♯S)

(
SQSVφ,1

))
+1
2d⋄

(
RF (Aρ)(ā),RF (Bρ)

(
SQSVφ,1

))

≥ 1
2
√

1−|⟨ψ|φ⟩|2
(
1−
√
1−|⟨ψ|φ⟩|2N

)
.

Replacing
√

1−|⟨ψ|φ⟩|2 with τ yields
1
2d⋄

(
RF (π)(ā),RF (♯S)

(
SQSVφ,1

))
+1
2d⋄

(
RF (Aρ)(ā),RF (Bρ)

(
SQSVφ,1

))

≥ τ2

(
1−
√

1−(1−τ2)N
)
.

Why quantum state verification cannot be both efficient and secure 23

Now we choose |ψ⟩ such that τ = 1/2
√
N and we find again using (1− β

k)k≥1−β
for k∈N and |β|≤k

1
2d⋄

(
RF (π)(ā),RF (♯S)

(
SQSVφ,1

))
+1
2d⋄

(
RF (Aρ)(ā),RF (Bρ)

(
SQSVφ,1

))
≥ 1

8
√
N
.

(4.7)

⊓⊔

We can also extend the result for simple protocols for multi-client quantum state
verification.

Theorem 4.3 (No efficient secure state verification with fixed number
of rounds for entangled states). Let π={πS}∪{πi}i∈C be a simple protocol
as defined in Def. 4.1. Then there exists a morphism Aρ∈A(π) such that for all
Bρ∈A

(
idSQSV

φ,K

)
it holds

1
2d⋄

(
π(ā),♯S

(
SQSVφ,K

))
+1
2d⋄

(
Aρ(ā),Bρ

(
SQSVφ,K

))
≥ε,

where ā=(T ×N+1,W) consits of N+1 copies of T used to distribute the states and
one copy ofW used to coordinate the verification task. Further, we find ε=1/27N,
if φ is mixed and ε=1/8

√
N, if φ is pure.

The proof of Theorem 4.3 is just a repetition of the proof of Theorem 4.2 – having
multiple clients does not change the fundamental inequalities we used.

4.2 General protocols

Next, we consider general protocols of quantum state verification. In this setting,
the client(s) sample r and i, where r is the number of states to be sent by the source
and i, the number of those states that are then measured to verify the state. To this
end the clients use a joint probability distribution p(r,i). Again, if the measurement
outcome is 0, they accept the verification and output one of the remaining r−i
states to the environment. If the measurement outcome is 1, they output the abort
signal I to the environment.
For the general protocol, we need to adapt our categorical model for the multi-client
case. For the single-client case, the client is still not able to create a state and needs to
output a state created by the distinguisher. This translates to p(l,l)=0 for all l. In the
multi-client case, the clients can prepare a state. However, the state they can prepare
is separable with respect to a partition with respect to which to the target state is en-
tangled. Otherwise, the clients would not require an external source in the first place.
In the proof of Theorems 4.4 and 4.5 we allow for an arbitrary number of verification
rounds, i.e. r and i are arbitrary positive integers. However, in our categorical mod-
eling, we set an upper bound on the number of rounds. The bound can be arbitrarily
chosen and the two settings are then equivalent. Indeed let D be the upper bound,
then we can set p(r,i)=0 for all r≤D. On the other hand, the upper boundD can be

24 F. Wiesner et al.

chosen arbitrarily large and is therefore no significant restriction. The probabilities
for r>D can be chosen arbitrarily small, but non-zero, for every distribution.

With this general formulation of protocols, we find that any implementation of quan-
tum state verification either has a non-negligible distance to the ideal functionality
according to Def. 3.6 or is inefficient in the number of rounds.

Theorem 4.4 (No efficient secure state verification for entangled states).
Let π={πS}∪{πi}i∈C be any protocol applied on resources ā=(T ×M ,V×M ,W),
and D is an upper bound for the number of rounds. π(ā) is an implementation with
the following properties

– K clients sample the number of rounds r and the number of verification rounds
0≤ i≤r from any joint distribution p(r,i),

– the clients perform a measurement µr,i and accept the outcome if the result is 0,
– if r= i, the clients prepare a state χ∈D

(⊗K
j=1Cnj

)
, where χ and the target

state φ are separable respectively entangled with respect to a particular partition,
– if r ̸= i, the clients output one of the r− i states drawn to any unspecified
distribution.

It then follows that there exists Aρ ∈A(π) such that for all Bρ ∈A
(
idSQSV

φ,K

)
it

holds that
1
2d⋄

(
π(ā),♯S

(
SQSVφ,K

))
+1
2d⋄

(
Aρ(ā),Bρ

(
SQSVφ,K

))
≥ε,

where ε= 1/27N, if φ is mixed and ε= 1/8
√
N, if φ is pure and N is the expected

number of rounds.

Proof (sketch). The proof is very similar to the proof of Thm. 4.2. Hence, we only
sketch the proof idea and provide the formal proof in the appendix A.1.

1. If the source is honest, we use the same measurementM as in (4.1) to find a
lower bound for 1/2d⋄

(
π(ā),♯S

(
SQSVφ,K

))
.

2. If the source is dishonest, we use a similar i.i.d. attack and the measurement
MD used for (4.3), which yields a lower bound 1/2d⋄

(
Aρ(ā),Bρ

(
SQSVφ,K

))
.

3. Next, we consider γ(1) = 1⊗K

i=1
Cni

, find a δ which we use to eliminate the
acceptance probability of Bρ.

4. An argument based on the direction of ρ and γ shows that min(⟨γ(1)|χ⟩−
⟨γ(1)|φ⟩,⟨γ(1)|ρ⟩−⟨γ(1)|φ⟩)≥0. We then bring both honesty configurations
together.

5. At last, we use Jensen’s inequality, and the fact that λ≥ 1/2
√
N≥ 2/9N in the

asymptotic limit, as 1/2∥χ−φ∥1 > 0 is constant, to deduce the same lower
bounds as in (4.6) and (4.7).

Why quantum state verification cannot be both efficient and secure 25

In fact, the same proof works for single-client quantum state verification as well.
The difference is now that p(l,l) = 0 for every l ≥ 0 as the client is not able to
prepare states at all. Hence, we provide a bound for single-client quantum state
verification without restating the proof.

Theorem 4.5 (No efficient secure single-client quantum state verifica-
tion). Let π={πC ,πS} be any protocol applied to resources ā=(Q×M ,V×M ,W)
and D be an upper bound on the number of rounds. π(ā) is an implementation with
the following properties

– the client samples the number of rounds r and the number of verification rounds
0≤ i<r from any joint distribution p(r,i),

– the client performs a measurement µr,i and accepts the outcome if the result is 0,
– the client outputs one of the r−i states drawn to any unspecified distribution.

It then follows that there exists Aρ∈A(π) such that for Bρ∈A
(
idSQSV

φ,1

)
it holds

1
2d⋄

(
π(ā),♯S

(
SQSVφ,K

))
+1
2d⋄

(
Aρ,Bρ

(
SQSVφ,1

))
≥ε,

where ε= 1/27N, if φ is mixed and ε= 1/8
√
N, if φ is pure and N is the expected

number of rounds.

Remark 4.6 (Categorical modeling). Our categorical modeling is more restrictive
than necessary. Indeed, in the single-client case, the no-state-preparation assump-
tion is overly restrictive. It is enough to assume that the client cannot prepare
states that are too close to the target state, otherwise a source would be superfluous.
A reasonable assumption could be that the client can only prepare states that
are outside a finite-size ball around the target state. Nevertheless, the categorical
model remains simpler and more intuitive with stronger restrictions.
In themulti-client case, we only need to ensure that the target state is entangledwith
respect to a partition for which the clients cannot generate entanglement. This holds
as long as there is a subset of clients which is not connected via quantum channels. If
the clients are not connected via quantum channels they can only perform separable
operations with respect to that particular partition. Since separable operations
cannot create entanglement, we can be certain that any state the clients prepare
will be far enough from any target state that is entangled with respect to the same
partition. This restriction is sensible, as otherwise, an external source is superfluous.

5 Discussion

5.1 Summary

In our work, we first present how to use the categorical composable cryptography
framework for quantum cryptography. For that, we introduce a resource theory
based on n-combs on CPTP. The instantiation of the framework we presented
can contribute to a deeper understanding of composable quantum cryptography

26 F. Wiesner et al.

as it defines protocols, resources and attacks rigorously while still being applicable
without additional effort.
Using this instantiation of the framework, we prove that quantum state verifi-
cation can not be efficient and secure if one relies on the usual cut-and-choose
technique, i.e. uses one of the rounds directly as output. Indeed we show that in
the usual cut-and-chose regime a quantum state verification protocol is either
to far from the ideal quantum state verification resource and therefore insecure
or it is inefficient in the number of rounds. Our result is agnostic about the tar-
get state, the number of clients, and used resources, except for a few reasonable
restrictions. These restrictions should only prevent the clients from preparing
the target state themselves and are the motivation to use such a protocol in
the first place. Although we only consider quantum state verification for our
results, one finds direct implications for other primitives. One example is self-
testing, in which a party prepares states with an untrusted device and measures
them with a different untrusted device to verify the preparation. It is easy to
see that this is even harder than quantum state verification as the measurement
device is not trustworthy in self-testing, i.e. our result extends naturally to self-
testing.

5.2 Discussion of the assumptions

The strength and generality of our results stems from the fact that we only use
very few and simple assumptions. A fundamental assumption is the inability of the
clients to prepare the state themselves. While we argue that this assumption comes
naturally in the setting of quantum state verification, we modeled the categorical
representation of this assumption stricter than necessary. For the proof to work,
we only need that the client can not prepare states that are far enough from the
target state, especially since we consider the asymptotic behavior. However, this
restriction is complicated to model in a category for the client, which motivates the
stricter modeling. We leave it open to future work to find less restrictive categories
which implement the assumption.

Another assumption is that the clients output the state as received. While this
seems to be the natural approach for verification, our work shows that it fails. In
fact, questioning this assumption might lead to a workaround, which we discuss
in more detail in the next section.

At last, one might be tempted to see the framework we used as an assumption.
Because of that, we emphasize that one can find the same lower bounds for implemen-
tations of quantum state verification in other composability frameworks [16,17,25].
This fact is already reflected by how we present the proof. Indeed, measuring the
output and input choice would be part of a distinguisher in other frameworks,
such as abstract cryptography. The simulator would implement the attack Bρ on
the ideal resource but it would have to obey the same restrictions regarding the
input of the ideal resource as the attack. In the end, the inequalities are the same.

Why quantum state verification cannot be both efficient and secure 27

However, the explicit and strict typing of the categorical composable cryptography
framework allows for rigorous proofs without significant overhead once the user
understands the framework. Further, the flexibility of choosing the appropriate
attack model enables the user to analyse more restricted or complicated adversar-
ial situations such as honest-but-curios or non-colluding adversaries. Our proof
provides an example of this flexibility: One could restrict the attack model to i.i.d.
attacks and still find the same result.

5.3 Possible workarounds and open questions
The lower bounds we presented are an inherent property of quantum state verifica-
tion in a cut-and-choose fashion. They raise the question of how to circumvent this
lower bound and what consequences follow. First, one should recall the implication
of the result: One can not use quantum state verification in a modular manner for
cryptography as one can not have efficiency and security. This no-go result holds
not only for composable cryptography; in the recent work [5], the authors show that
stand-alone secure protocols for quantum state verification are composable secure,
where the ε for composable security is a polynomial of the one for the stand-alone se-
curity definition. This lifting implies that our result extends to stand-alone security
as well. Either way, the implication is about the modular use or as a protocol for its
own sake. However, most times verification is used in the context of a larger protocol,
which raises the question of what happens in a non-modular setting.We investigated
this question to some extent by post-composing the ideal resource with different
kinds of channels on the client side. We found that the lower bounds similarly
extend to post-composition with unital channels and measurements in a basis. We
present this result in more detail in the Appendix A.2. The idea of post-composition
also leads to other approaches. One of these is error-detection: If the server has
to prepare the target state in an error-detection code and the clients run the verifi-
cation on the encoding, they can decode the output and eliminate or detect errors
introduced by a dishonest server. Similar techniques are already used in verifiable
delegated quantum computing [11], which already indicates that other primitives
using verification in quantum cryptography could be affected by similar lower
bounds. So, while we show that the naive approach to quantum state verification is
doomed to fail, many open questions remain, and possible workarounds may exist.

References
1. Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-

independent security of quantum cryptography against collective attacks. Physical
Review Letters 98(23) (Jun 2007). https://doi.org/10.1103/physrevlett.98.230501

2. Broadbent, A., Karvonen, M.: Categorical composable cryptography. In:
Foundations of Software Science and Computation Structures (FoSSaCS).
Lecture Notes in Computer Science, vol. 13242, pp. 161–183. Springer (2022).
https://doi.org/10.1007/978-3-030-99253-8_9

3. Broadbent, A., Karvonen, M.: Categorical composable cryptography: ex-
tended version. Logical Methods in Computer Science 19, 30:1–30:46 (2023).
https://doi.org/10.46298/LMCS-19(4:30)2023

28 F. Wiesner et al.

4. Coecke, B., Fritz, T., Spekkens, R.W.: A mathematical theory of
resources. Information and Computation 250, 59–86 (Oct 2016).
https://doi.org/10.1016/j.ic.2016.02.008

5. Colisson, L., Markham, D., Yehia, R.: All graph state verification protocols are
composably secure (2024)

6. Davidson, K.: c∗-Algebras by Example. American Mathematical Society (1996)
7. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod.

Phys. 74, 145–195 (Mar 2002). https://doi.org/10.1103/RevModPhys.74.145
8. Hahn,F., de Jong, J., Pappa,A.:Anonymous quantumconference key agreement. PRX

Quantum 1, 020325 (Dec 2020). https://doi.org/10.1103/PRXQuantum.1.020325
9. Heunen, C., Vicary, J.: Categories for quantum theory: an introduction. Oxford

University Press (Nov 2019)
10. Huot, M., Staton, S.: Quantum channels as a categorical completion. In: 2019 34th

Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE (Jun
2019). https://doi.org/10.1109/lics.2019.8785700

11. Kashefi, E., Wallden, P.: Optimised resource construction for verifiable quantum
computation. Journal of Physics A: Mathematical and Theoretical 50(14), 145306
(mar 2017). https://doi.org/10.1088/1751-8121/aa5dac

12. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, Second Edition.
Chapman & Hall/CRC, 2nd edn. (2014)

13. Keyl, M.: Fundamentals of quantum information theory. Physics Reports 369(5),
431–548 (Oct 2002). https://doi.org/10.1016/s0370-1573(02)00266-1

14. Laplaza, M.L.: A new result of coherence for distributivity. In: Coherence in
Categories. pp. 214–235. Springer Berlin Heidelberg, Berlin, Heidelberg (1972)

15. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J.,
Makarov, V.: Hacking commercial quantum cryptography systems
by tailored bright illumination. Nature Photonics 4, 686–689 (2010).
https://doi.org/https://doi.org/10.1038/nphoton.2010.214

16. Maurer, U.: Constructive cryptography – a new paradigm for security definitions
and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) Theory of Security and
Applications. pp. 33–56. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

17. Maurer, U., Renner, R.: Abstract cryptography. In: Chazelle, B. (ed.) The Second
Symposium on Innovations in Computer Science, ICS 2011. pp. 1–21. Tsinghua
University Press (1 2011)

18. Morimae, T., Takeuchi, Y., Hayashi, M.: Verification of hypergraph states. Phys.
Rev. A 96, 062321 (Dec 2017). https://doi.org/10.1103/PhysRevA.96.062321

19. Pallister, S., Linden, N., Montanaro, A.: Optimal verification of entangled
states with local measurements. Physical Review Letters 120(17) (Apr 2018).
https://doi.org/10.1103/physrevlett.120.170502

20. Pappa, A., Chailloux, A., Wehner, S., Diamanti, E., Kerenidis, I.: Multipartite
entanglement verification resistant against dishonest parties. Physical Review
Letters 108(26) (Jun 2012). https://doi.org/10.1103/physrevlett.108.260502

21. Pirandola, S., Andersen, U.L., Banchi, L., Berta, M., Bunandar, D., Colbeck,
R., Englund, D., Gehring, T., Lupo, C., Ottaviani, C., Pereira, J.L., Razavi, M.,
Shaari, J.S., Tomamichel, M., Usenko, V.C., Vallone, G., Villoresi, P., Wallden,
P.: Advances in quantum cryptography. Adv. Opt. Photon. 12(4), 1012–1236 (Dec
2020). https://doi.org/10.1364/AOP.361502

22. Preskill, J.: Quantum computing in the nisq era and beyond. Quantum 2, 79 (Aug
2018). https://doi.org/10.22331/q-2018-08-06-79

23. Takeuchi, Y., Morimae, T.: Verification of many-qubit states. Physical Review X
8(2) (Jun 2018). https://doi.org/10.1103/physrevx.8.021060

Why quantum state verification cannot be both efficient and secure 29

24. Unnikrishnan, A., Markham, D.: Verification of graph states in an untrusted network.
Physical Review A 105(5) (May 2022). https://doi.org/10.1103/physreva.105.052420

25. Unruh, D.: Universally composable quantum multi-party computation. In: Gilbert,
H. (ed.) Advances in Cryptology – EUROCRYPT 2010. pp. 486–505. Springer Berlin
Heidelberg, Berlin, Heidelberg (2010)

26. Watrous, J.: The Theory of Quantum Information. Cambridge University Press,
1 edn. (Apr 2018). https://doi.org/10.1017/9781316848142

27. Yehia, R., Diamanti, E., Kerenidis, I.: Composable security for multipar-
tite entanglement verification. Physical Review A 103(5) (May 2021).
https://doi.org/10.1103/physreva.103.052609

28. Yu, X., Shang, J., Gühne, O.: Statistical methods for quantum state verification
and fidelity estimation. Advanced Quantum Technologies 5(5) (Mar 2022).
https://doi.org/10.1002/qute.202100126

29. Zhu, H., Hayashi, M.: Efficient verification of pure quantum states
in the adversarial scenario. Phys. Rev. Lett. 123, 260504 (Dec 2019).
https://doi.org/10.1103/PhysRevLett.123.260504

30. Šupić, I., Bowles, J.: Self-testing of quantum systems: a review. Quantum 4, 337
(Sep 2020). https://doi.org/10.22331/q-2020-09-30-337

A Appendix

A.1 Detailed proof for general protocols

Before we restate the theorem, we note that we’ll encounter expectation values
of function of the following type in the proof, for 0<a<1

fa(X)=
√
1−aX . (A.1)

The functions fa are concave, since their second derivative is negative, indeed

f ′′a (Z)=
d2f

dX2 (Z)=−
aZ ln(a)2

(
2−aZ

)

4
(√

1−aZ
)3 <0. (A.2)

Since fa is concave, we can use Jensen’s inequality for the expectation value of fa
and we find

E(fa(X))≤fa(E(X)). (A.3)

Theorem A.1 (No efficient secure state verification for entangled states).
Let π={πS}∪{πi}i∈C be any protocol applied on resources ā=(T ×M ,V×M ,W),
and D is an upper bound for the number of rounds. π(ā) is an implementation with
the following properties

– K clients sample the number of rounds r and the number of verification rounds
0≤ i≤r from any joint distribution p(r,i),

– the clients perform a measurement µr,i and accept the outcome if the result is 0,

30 F. Wiesner et al.

– if r= i, the clients prepare a state χ∈D
(⊗K

j=1Cni

)
, where χ and the target

state φ are separable respectively entangled with respect to a particular partition,
– if r ̸= i, the clients output one of the r− i states drawn to any unspecified
distribution.

It then follows that there exists Aρ ∈A(π) such that for all Bρ ∈A
(
idSQSV

φ,K

)
it

holds that
1
2d⋄

(
RF (π)(ā),RF (♯S)

(
SQSVφ,K

))
+1
2d⋄

(
RF (Aρ)(ā),RF (Bρ)

(
SQSVφ,K

))
≥ε,
(A.4)

where ε= 1/27N, if φ is mixed and ε= 1/8
√
N, if φ is pure and N is the expected

number of rounds.

Proof. First we consider correctness, i.e. assume the source is honest. Again, we
can bound the diamond-distance by composing with aM=Tr⊗

i∈C
Mni

(C)⊗idI
and find

1
2d⋄

(
RF (π)(ā),RF (♯S)

(
SQSVφ,K

))
≥1−

∞∑

r=0

r∑

i=0
p(r,i)

〈
µr,i(0)

∣∣φ⊗i
〉
. (A.5)

If the source is dishonest, we consider a family of attacks {Aρ}ρ∈D(⊗
i∈C

Cni

) which
prepares and inputs for every query the state ρ on the source’s side and implements
πC as the clients are considered to be honest. As dom(Aρ(ā))=I, the domain of
any suitable attackBρ∈A

(
idSQSV

φ,K

)
must have the same domain, i.e. prepares and

inputs a binary distribution {q(ρ),1−q(ρ)}, inputs this at the source’s interface and
acts as the identity on the client’s side. Again, withMD={γ(0)⊕1,γ(1)⊕0}we find

Pr[MD◦Aρ(ā)(I)=1]

=⟨γ(1)|ρ⟩
∞∑

r=1

r−1∑

i=0
p(r,i)

〈
µr,i(0)

∣∣ρ⊗i
〉
+⟨γ(1)|χ⟩

∞∑

r=0
p(r,r)

〈
µr,r(0)

∣∣ρ⊗r
〉

(A.6)

Pr[MD◦Bρ

(
SQSVφ,K

)
(I)=1]=⟨γ(1)|φ⟩q(ρ) (A.7)

With ⟨γ(1)|φ⟩=⟨γ(1)|ρ⟩=⟨γ(1)|χ⟩=1 we find:

1
2d⋄

(
RF (Aρ)(ā),RF (Bρ)

(
SQSVφ,K

))
≥
∣∣∣∣∣

(∞∑

r=0

r∑

i=0
p(r,i)

〈
µr,i(0)

∣∣ρ⊗i
〉
)
−q(ρ)

∣∣∣∣∣= |δ|,

(A.8)

with

δ=
(∞∑

r=0

r∑

i=0
p(r,i)

〈
µr,i(0)

∣∣ρ⊗i
〉
)
−q(ρ). (A.9)

Why quantum state verification cannot be both efficient and secure 31

With that, we find for any measurement γ

1
2d⋄

(
RF (Aρ)(ā),RF (Bρ)

(
SQSVφ,K

))
≥
∣∣∣∣∣⟨γ(1)|ρ⟩

∞∑

r=1

r−1∑

i=0
p(r,i)

〈
µr,i(0)

∣∣ρ⊗i
〉

+ ⟨γ(1)|χ⟩
∞∑

r=0
p(r,r)

〈
µr,r(0)

∣∣ρ⊗r
〉
−⟨γ(1)|φ⟩q(ρ)

∣∣∣∣∣

=
∣∣∣∣∣(⟨γ(1)|ρ⟩−⟨γ(1)|φ⟩)

∞∑

r=1

r−1∑

i=0
p(r,i)

〈
µr,i(0)

∣∣ρ⊗i
〉

+ (⟨γ(1)|χ⟩−⟨γ(1)|φ⟩)
∞∑

r=0
p(r,r)

〈
µr,r(0)

∣∣ρ⊗r
〉
+⟨γ(1)|φ⟩(δ)

∣∣∣∣∣

≥
∣∣∣∣∣(⟨γ(1)|ρ⟩−⟨γ(1)|φ⟩)

∞∑

r=1

r−1∑

i=0
p(r,i)

〈
µr,i(0)

∣∣ρ⊗i
〉

+ (⟨γ(1)|χ⟩−⟨γ(1)|φ⟩)
∞∑

r=0
p(r,r)

〈
µr,r(0)

∣∣ρ⊗r
〉
∣∣∣∣∣−|δ|,

(A.10)

which implies

1
2d⋄

(
RF (Aρ)(ā),RF (Bρ)

(
SQSVφ,K

))
≥ 1

2

∣∣∣∣∣(⟨γ(1)|ρ⟩−⟨γ(1)|φ⟩)
∞∑

r=1

r−1∑

i=0
p(r,i)

〈
µr,i(0)

∣∣ρ⊗i
〉

+ (⟨γ(1)|χ⟩−⟨γ(1)|φ⟩)
∞∑

r=0
p(r,r)

〈
µr,r(0)

∣∣ρ⊗r
〉
∣∣∣∣∣ (A.11)

We can choose the direction of ρ and γ(1) such that ⟨γ(1)|χ⟩≥⟨γ(1)|φ⟩≤⟨γ(1)|ρ⟩
and define λ=min(⟨γ(1)|χ⟩−⟨γ(1)|φ⟩,⟨γ(1)|ρ⟩−⟨γ(1)|φ⟩):

1
2d⋄

(
RF (Aρ)(ā),RF (Bρ)

(
SQSVφ,K

))
≥ λ2

∣∣∣∣∣
∞∑

r=1

r−1∑

i=0
p(r,i)

〈
µr,i(0)

∣∣ρ⊗i
〉
+

∞∑

r=0
p(r,r)

〈
µr,r(0)

∣∣ρ⊗r
〉
∣∣∣∣∣

= λ

2

∣∣∣∣∣
∞∑

r=0

r∑

i=0
p(r,i)

〈
µr,i(0)

∣∣ρ⊗i
〉
∣∣∣∣∣. (A.12)

32 F. Wiesner et al.

Now, we again consider both honesty configurations together
1
2d⋄

(
RF (Aρ)(ā),RF (Bρ)

(
SQSVφ,K

))
+1
2d⋄

(
RF (π)(ā),RF (♯S)

(
SQSVφ,K

))

≥ λ2

∣∣∣∣∣
∞∑

r=0

r∑

i=0
p(r,i)

〈
µr,i(0)

∣∣ρ⊗i
〉
∣∣∣∣∣+
∣∣∣∣∣1−

∞∑

r=0

r∑

i=0
p(r,i)

〈
µr,i(0)

∣∣φ⊗i
〉
∣∣∣∣∣

≥ λ2

∣∣∣∣∣1+
∞∑

r=0

r∑

i=0
p(r,i)

(〈
µr,i(0)

∣∣ρ⊗i
〉
−
〈
µr,i(0)

∣∣φ⊗i
〉)
∣∣∣∣∣

≥ λ2

(
1−

∞∑

r=0

r∑

i=0
p(r,i)

∣∣〈µr,i(0)
∣∣ρ⊗i

〉
−
〈
µr,i(0)

∣∣φ⊗i
〉∣∣
)

≥ λ2

(
1−

∞∑

r=0

r∑

i=0
p(r,i)∥ρ⊗i−φ⊗i∥1

)
. (A.13)

For mixed states we find with 1/2∥ρ−φ∥1=2/9N

1
2d⋄

(
RF (Aρ)(ā),RF (Bρ)

(
SQSVφ,K

))
+1
2d⋄

(
RF (π)(ā),RF (♯S)

(
SQSVφ,K

))

≥ λ2

(
1−

∞∑

r=0

r∑

i=0
p(r,i)

√
1−(1−4/9N)i

)

≥ λ2

(
1−

∞∑

r=0

√
1−(1−4/9N)r

(
r∑

i=0
p(r,i)

))
≥ λ2

(
1−
√
1−(1−4/9N)N

)
, (A.14)

where we used Jensen’s inequality with N being the average number of rounds. If
N is large enough and the clients are not able to prepare φ, we find the same
expression as in the proof of Thm. 4.2 and find 1/2d⋄

(
Aρ(ā),Bρ

(
SQSVφ,K

))
+

1/2d⋄
(
π(ā),♯S

(
SQSVφ,K

))
≥1/27N.

For pure states, we use again a pure state for ρ, ρ= |ψ⟩⟨ψ| and find if N is large
enough:

1
2d⋄

(
RF (Aρ)(ā),RF (Bρ)

(
SQSVφ,K

))
+1
2d⋄

(
RF (π)(ā),RF (♯S)

(
SQSVφ,K

))

≥
√

1−|⟨ψ|φ⟩|2
2

(
1−

∞∑

r=0

r∑

i=0
p(r,i)

√
1−
√

1−|⟨ψ|φ⟩|2i
)

≥
√

1−|⟨ψ|φ⟩|2
2

(
1−

∞∑

r=0

√
1−
√

1−|⟨ψ|φ⟩|2r
r∑

i=0
p(r,i)

)

≥
√

1−|⟨ψ|φ⟩|2
2

(
1−
√

1−|⟨ψ|φ⟩|2N
)
, (A.15)

i.e. we find again 1
2d⋄
(
RF (Aρ)(ā),RF (Bρ)

(
SQSVφ,K

))
+ 1

2d⋄
(
RF (π)(ā),RF (♯S)

(
SQSVφ,K

))
≥

1/8
√
N ⊓⊔

Why quantum state verification cannot be both efficient and secure 33

A.2 Extending to post-composition with channels

We also need to consider the situation where the clients try to overcome or at least
improve the no-go result. The clients could do so by applying a channel either
before or after the verification. Since for any channel φ it holds that

1
2∥ρ−φ∥1≥

1
2∥Λ(ρ)−Λ(φ)∥1, (A.16)

precomposing with a channel is of no help, as it could decrease the clients’ chance of
catching the source cheating. However, applying a channel after accepting the state
could yield a good implementation as it cannot increase the distinguishing advan-
tage. For a channelΛperformed on the output ofVfφ in the case of no abort, we denote
the resulting (ideal) resourceΛ◦Vfφ . The question is then whether there are channels
that can either improve the lower bound or avoid the no-go result all together.
Different channels lead to vastly different results. In fact, the analysis in the pre-
vious section breaks down completely for some channels. For example, consider
a replacement channel:

Λχrepl(ρ)=Tr(ρ)χ. (A.17)

We find that 1
2∥Λ

χ
repl(ρ)−Λ

χ
repl(φ)∥1 = 1

2∥χ−χ∥1 = 0, i.e. there is no chance a
distinguisher could distinguish the implementation and the ideal resource. However,
replacement channels are not interesting because they imply that the clients were
able to prepare the desired state in the first place, making the source and therefore
the verification obsolete.
Since the trace distance is unitarily invariant, the no-go result is upheld under
post-composition with unitary channels. In the following we take a closer look at
measurement and unital channels.

Measurement channels We consider the scenario where the clients, after accept-
ing the verification, measure the state and output the outcome. Let the same happen
in the ideal setting. Can this be composably secure with negligible distinguishing
advantage? The verification works as in the general case. We just need to specify
how the distinguisher could distinguish the outputs. We use the general setting
described in section 4.2, but with p(i,i)=0 for all i. Let d> 2 be the dimension
of the output space, then we denote the measurement channel as

M(ρ)=
d∑

j=1
|j⟩⟨ξj |ρ|ξj⟩⟨j|, (A.18)

The distinguisher now fixes one j̃ and only outputs 1 if the measurement outcome is
j̃. We restrict our analysis to pure states. For a large enough N , we have that there

34 F. Wiesner et al.

is an attack Aψ∈A(π′) such that for every attack Bψ∈A(idSQSV

φ,K

) holds (A.15)

1
2d⋄

(
RF (Aψ)(ā),RF (Bψ)

(
SQSVφ,K

))
+1
2d⋄

(
π′(ā),♯S

(
SQSVφ,K

))

≥
√
1−|⟨ψ|φ⟩|2

2

(
1−
√
1−|⟨ψ|φ⟩|2N

)
.= (A.19)

For our current setting the protocol π then includes the measurement and if we
set |ξ⟩=

∣∣ξj̃
〉
, we find that there is an attack Aψ∈A(π) such that for every attack

Bψ∈A(idM◦SQSV

φ,K

)

1
2d⋄

(
RF (Aψ)(ā),RF (Bψ)

(
M◦SQSVφ,K

))
+1
2d⋄

(
RF (π)(ā),RF (♯S)

(
M◦SQSVφ,K

))

≥
∣∣|⟨ξ|ψ⟩|2−|⟨ξ|φ⟩|2

∣∣
2

(
1−
√

1−|⟨ψ|φ⟩|2N
)
. (A.20)

We choose |ξ⟩ such that 1/
√
2>1/

√
d≥|⟨ξ|φ⟩|≥0. This is possible since we assume

d≥ 3. We now choose π/2> η ≥ 0 and π/2> θ≥ 0 such that cos(θ) = |⟨ξ|φ⟩| and
cos(η)= |⟨ψ|φ⟩|. Next, we fix |ψ⟩ to be in the plane spanned by |φ⟩ and |ξ⟩. We
define the following basis

|b0⟩= |φ⟩ (A.21)

|b1⟩=
|ξ⟩−⟨φ|ξ⟩|φ⟩√
1−|⟨φ|ξ⟩|2

= |ξ⟩−⟨φ|ξ⟩|φ⟩√
1−cos(θ)2

. (A.22)

With ⟨ξ|φ⟩=cos(θ)eiα we can express |ψ⟩ in the basis as

|ψ⟩=cos(η)e−iα|b0⟩+sin(η)|b1⟩, (A.23)

With that we find

⟨ξ|ψ⟩=cos(η)cos(θ)+sin(η) 1−cos(θ)2√
1−cos(θ)2

(A.24)

=cos(η)cos(θ)+sin(η)sin(θ)=cos(θ−η). (A.25)

Why quantum state verification cannot be both efficient and secure 35

We can now obtain a lower bound on
∣∣|⟨ξ|ψ⟩|2−|⟨ξ|φ⟩|2

∣∣ as follows
∣∣|⟨ξ|ψ⟩|2−|⟨ξ|φ⟩|2

∣∣=
∣∣∣cos(θ−η)2−cos(θ)2

∣∣∣ (A.26)

=
∣∣∣∣
e2iθ−2iη+2+e2iη−2iθ

4 − e
2iθ+2+e−2iθ

4

∣∣∣∣ (A.27)

=
∣∣∣∣
e2iθ−2iη+e2iη−2iθ−e2iθ−e−2iθ

4

∣∣∣∣ (A.28)

=
∣∣∣∣∣

(
e−2iη−1

)
e2iθ+

(
e2iη−1

)
e−2iθ

4

∣∣∣∣∣ (A.29)

=
∣∣∣∣∣

(
e−iη−eiη

)
e2iθ−iη+

(
eiη−e−iη

)
e−2iθ+iη

4

∣∣∣∣∣ (A.30)

=
∣∣∣∣∣

(
e−iη−eiη

)(
ei(2θ−η)−e−i(2θ+η)

)

4

∣∣∣∣∣ (A.31)

=|sin(η)sin(2θ−η)|= |sin(η)||sin(2θ−η)| (A.32)

From 0 ≤ cos(θ) < 1/
√
2 it follows that π/2 > θ > π/4 and we choose η such that

sin(η)= 1
2
√
N

and sin(2θ−η)≥sin(η). Using A.20

1
2d⋄

(
RF (Aψ)(ā),RF (Bψ)

(
M◦SQSVφ,K

))
+1
2d⋄

(
RF (π)(ā),RF (♯S)

(
M◦SQSVφ,K

))

≥ sin2(η)
2

(
1−
√

1−cos(η)2N
)

= sin2(η)
2

(
1−
√

1−(1−sin(η)2)N
)
≥ 1

16N . (A.33)

Unital channels A channel is unital when it preserves the identity. That is, for
a spaceMa(C) a unital channel Λ mapsMa(C) toMa(C) and it holds that

Λ(1Ma(C))=1Ma(C). (A.34)

Again, we consider a setting as described in section 4.2 with p(i,i)=0 where we
post-compose the protocol with a unital channel Λ. We need to find a lower bound
on the distinguishing advantage after applying the unital channel. Using the bound
in Theorem 4.4 for mixed states, because Λ(φ) might be mixed even when φ is
pure, we find for arbitrary ρ

1
2d⋄

(
RF (Aρ)(ā),RF (Bρ)(Λ◦SQSVφ,K)

)
+1
2d⋄

(
RF (π)(ā),RF (♯S)

(
Λ◦SQSVφ,K

))
≥

∥Λ(ρ)−Λ(φ)∥1
4

(
1−
√
1−(1−∥ρ−φ∥1)N

)
.

(A.35)

36 F. Wiesner et al.

We can freely choose ρ, and set the following:

ρ=αφ+(1−α)1−φ
d−1 . (A.36)

And we find

∥Λ(φ)−Λ(ρ)∥1=
∥∥∥∥φ′−

(
αφ′+(1−α)1−φ

′

d−1

)∥∥∥∥
1

(A.37)

=
∥∥∥∥(1−α)

(
φ′−1−φ

′

d−1

)∥∥∥∥
1
=(1−α)

∥∥∥∥
(d−1)φ′−1+φ′

d−1

∥∥∥∥
1

(A.38)

=(1−α) d

d−1

∥∥∥∥φ′−
1

d

∥∥∥∥
1
. (A.39)

With β=1−α, we obtain

1
2∥Λ(φ)−Λ(ρ)∥1=

βd

d−1
1
2∥Λ(φ)−

1/d∥1. (A.40)

Similarly, the trace distance of the inputs is then

1
2∥ρ−φ∥1=

1
2

∥∥∥∥φ−
(
αφ+(1−α)1−φ

d−1

)∥∥∥∥
1
= βd

(d−1)
1
2∥φ−

1/d∥1. (A.41)

We define

ω= d

d−1
1
2∥φ−1/d∥1, (A.42)

ω′= d

d−1
1
2∥Λ(φ)−1/d∥1. (A.43)

We can then rewrite A.35 as follows
1
2d⋄

(
RF (Aρ)(ā),RF (Bρ)(Λ◦SQSVφ,K)

)
+1
2d⋄

(
RF (π)(ā),RF (♯S)

(
Λ◦SQSVφ,K

))

≥ ω
′β
2

(
1−
√
1−(1−2ωβ)N

)
. (A.44)

We set β= 1
2ωN , and we can assume that N≥ 1

2ωN , since φ does not depend on the
number of rounds. Using (1− β

k)k≥1−β for k∈N and |β|≤k we find:

1
2d⋄

(
RF (Aρ)(ā),RF (Bρ)(Λ◦SQSVφ,K)

)
+1
2d⋄

(
RF (π)(ā),RF (♯S)

(
Λ◦SQSVφ,K

))

≥ ω′

2(2ωN)


1−

√
1−
(
1− 1

N

)N

≥ ω′

4ωN . (A.45)

Appendix E

Paper V

A. Matsui, I. Obi, G. Sabbagh, L. Torres, D. Kessler, J. F. Meleiro, and K. Muroya.
“A Critical Pair Enumeration Algorithm for String Diagram Rewriting”. In: Ap-
plied Category Theory (ACT) (2025). to appear

283

Submitted to:
ACT 2025

© A. Matsui et al.
This work is licensed under the
Creative Commons Attribution License.

A Critical Pair Enumeration Algorithm for String Diagram
Rewriting*

Anna Matsui
Johns Hopkins University, USA

amatsui1@jhu.edu

Innocent Obi
University of Washington, USA

innoobi@cs.washington.edu

Guillaume Sabbagh
University of Technology of Compiègne, France†

guillaume.sabbagh@utc.fr

Leo Torres
Universidad Nacional de Córdoba, Argentina

leo.torres@mi.unc.edu.ar

Diana Kessler
Tallinn University of Technology, Estonia‡

diana-maria.kessler@taltech.ee

Juan F. Meleiro
University of São Paulo, Brazil

juan.meleiro@usp.br

Koko Muroya
National Institute of Informatics, Japan§

kmuroya@nii.ac.jp

Critical pair analysis provides a convenient and computable criterion of confluence, which is a fun-
damental property in rewriting theory, for a wide variety of rewriting systems. Bonchi et al. showed
validity of critical pair analysis for rewriting on string diagrams in symmetric monoidal categories.
This work aims at automation of critical pair analysis for string diagram rewriting, and develops an
algorithm that implements the core part of critical pair analysis. The algorithm enumerates all critical
pairs of a given left-connected string diagram rewriting system, and it can be realised by concrete
manipulation of hypergraphs. We prove correctness and exhaustiveness of the algorithm, for string
diagrams in symmetric monoidal categories without a Frobenius structure.

1 Introduction

1.1 Rewriting Theory and Critical Pair Analysis

Mathematical reasoning often involves derivation of a (complex) equation from known (typically sim-
pler) equations, which is sometimes called equational reasoning. Equations can be between various
mathematical objects, e.g. terms, programs, graphs, processes, and objects/morphisms in a category.
Rewriting theory has been established (see e.g. [1, 14]), with equational reasoning as one application.
The starting point is to turn known equations a = a′ into directed1 rewrite rules a⊸ a′. Each step
b→ b′ of rewrite modifies a part of b by applying one rewrite rule. Derivation of an equation c ?

= c′ then
boils down to finding some d with two chains c→ ··· → d and c′→ ··· → d of rewrites. These chains
altogether imply a chain of equations c = · · ·= d = · · ·= c′, which concludes the desired equation c ?

= c′.

*We are grateful to organisers of Adjoint School 2024 in which our collaboration started.
†G.S. was funded by BNP Paribas CIB EMEA and the French Ministry of Research under CIFRE project No. 2021/1502.
‡D.K. was funded by an Advanced Research + Invention Agency (ARIA) Safeguarded AI: TA1.1 Theory grant.
§K.M. was funded by JSPS, KAKENHI Project No. 22K17850, Japan.
1The direction is typically chosen so that a′ is “simpler” than a.

2 A Critical Pair Enumeration Algorithm for String Diagram Rewriting

Confluence is a fundamental property in rewriting theory, intuitively meaning that ordering of rewrites
does not matter. Rewrites→ are said to be confluent if any two diverging chains b← ···← a→ ···→ b′

of rewrites are joinable, that is, there exists c with converging chains b→ ··· → c← ··· ← b′. Local
confluence is a variant of confluence in which the two diverging chains are in fact given by two single
rewrites, i.e. b← a→ b′.
For some pair of two diverging rewrites b← a→ b′, joinability is obvious. An example is the so-called
parallel case, namely when the two rewrites change different, independent, parts of a. Consequently,
checking local confluence boils down to analysing joinability of non-parallel pairs.
Critical pair analysis is a well-established technique for automatically checking local confluence, pro-
viding a convenient and computable criterion. It reduces local confluence to joinability of critical pairs
that are finitely many representatives of non-parallel pairs. Critical pairs can be enumerated from a given
set of rewrite rules a⊸ a′. This enumeration plays a central role in automating local-confluence check.

1.2 String Diagram Rewriting

String diagrams [11, 15] provide a graphical syntax of category theory. They are particularly useful
in equational reasoning on morphisms of a category, because they trivialise certain equations as graph
isomorphism.
Rewriting theory for string diagrams has been developed by Bonchi et al. [2, 3, 4], targeting at string
diagrams for symmetric monoidal categories (with and without a Frobenius structure). String diagrams
are combinatorially represented using hypergraphs, and rewrites on string diagrams are categorically
modelled using double pushout rewriting (DPO rewriting in short) [6]. A key concept in string diagram
rewriting theory is that of interface. An interface of a hypergraph specifies how other hypergraphs can
be connected to the hypergraph.
Bonchi et al. showed validity of critical pair analysis for string diagram rewriting [4]. They defined
critical pairs for an adaptation of DPO rewriting (dubbed convex2 DPOI rewriting) that takes interface
into account, and proved that joinability of critical pairs implies local confluence. Their development
focuses on a theoretical side, and automation, which is an important aspect of critical pair analysis, has
not been investigated.

1.3 Contributions

We aim at automation of critical pair analysis for string diagram rewriting, and develop an algorithm
that implements the core part of the automation. The algorithm enumerates of all critical pairs for a
given set of DPOI rewrite rules. We focus on the so-called left-connected DPOI rewrite rules [3, 4].
Left-connectivity allows us to reducing enumeration of critical pairs to enumeration of certain cospans
in the category of hypergraphs. While it is an arguably powerful restriction, it still accommodates various
concrete string diagram rewriting systems from the literature [8, 9, 12].
Each critical pair is associated with two DPOI rewrite rules, which are given by spans L1←K1→ R1 and
L2← K2→ R2 in the category of hypergraphs. Thanks to left-connectivity, the critical pair is uniquely
determined by a certain cospan of the form L1+L2↠ S← J. Its left leg is, in particular, an epimorphism
given by the coupling of monomorphisms.
Our key idea is that the cospan, in particular the hypergraph S, can be generated by suitably gluing
hyperedges and nodes of L1+L2 (i.e. the hypergraph that puts L1 and L2 in parallel). We observe that the

2Convexity is for dealing with the absence of a Frobenius structure.

A. Matsui et al. 3

gluing process can be realised in two steps: (1) repeatedly merge a hyperedge from L1 with a hyperedge
from L2, and (2) repeatedly merge a node from L1 with a node from L2 without merging any hyperedges.
Our contributions can be summarised as follows.

• We develop an algorithm (Algo. 3) that enumerates all critical pairs of a given set of left-connected
DPOI rewrite rules by implementing the two-fold gluing process.

• We prove that the algorithm generates all critical pairs and nothing else (correctness and exhaus-
tiveness; Thm. 3.9).

• We provide a proof-of-concept Haskell implementation3.
• We present an optimised algorithm (Algo. 4) that enumerates less but sufficient critical pairs to

decide local confluence by only performing the first step of the two-fold gluing process.
In the rest of this paper, Sec. 2 recalls relevant concepts (e.g. hypergraph, interface, DPOI rewriting,
critical pair) from string diagram rewriting theory [2, 3, 4]. Sec. 3 presents our main contribution, the
critical pair enumeration algorithm with a proof of its correctness and exhaustiveness. Sec. 4 provides
the optimised algorithm. Examples and some proofs can be found in Appendix.

Related work. For term rewriting, rewrite rules typically use variables as placeholders to succinctly
represent a family of rewrite rules, e.g. x+ y⊸ y+ x. To deal with variables, enumeration of critical
pairs employ a technique called unification. In contrast, for string diagram rewriting, rewrite rules are
always concrete without placeholders. We can therefore take a direct approach and generate a critical
pair by suitably gluing hyperedges and nodes of left-hand sides of rewrite rules. There are some attempts
to enumerating critical pairs for variations of graph rewriting (graph transformation), e.g. [13, 5, 10].

2 Critical Pairs for String Diagram Rewriting

We denote the composition of morphisms f : A→ B and g : B→C by f ;g. We denote coprojections of
a coproduct by ι1, ι2. Given a set A, the free monoid on A is denoted by A∗. For a function f : A→ B, we
denote as f ∗ : A∗→ B∗ the pointwise application of f over a list of elements. Let N be the set of natural
numbers.

2.1 Hypergraphs with Interface

When a symmetric monoidal category is equipped with a Frobenius structure, string diagrams in the
category can be combinatorially represented as (edge-labelled) hypergraphs with interface [2].

Definition 2.1 (Hypergraphs). A (directed) hypergraph is a tuple G = (V,E,s : E → V ∗, t : E → V ∗)
where V and E are finite sets of nodes and hyperedges, s maps each hyperedge to a list of source nodes
and t maps each hyperedge to a list of target nodes. The arity of a hyperedge is the number of its sources,
the coarity of a hyperedge is the number of its targets.
We refer to V as Nodes(G) and E as HEdges(G).
Let σ be an alphabet, a signature Σ on σ is a subset of σ ×N×N. A triplet (x,n,m) represents a label x
for morphisms with arity n and coarity m.
A Σ-labelled hypergraph (Σ-hypergraph in short) is a hypergraph equipped with a labelling function
l : E→ Σ such that lE maps a hyperedge with arity n and coarity m to a triplet (x,n,m).

3available online at https://github.com/GuiSab/hypergraphrewriting

4 A Critical Pair Enumeration Algorithm for String Diagram Rewriting

Definition 2.2 (Σ-hypergraph morphisms). A Σ-hypergraph morphism between Σ-hypergraphs (V0,E0,s0, t0, l0)
and (V1,E1,s1, t1, l1) is a pair of functions fV : V0 → V1 and fE : E0 → E1 that respects sources, targets
and labels; that is, that satisfies f ∗V ◦ s0 = s1 ◦ fE , f ∗V ◦ t0 = t1 ◦ fE and l0 = l1 ◦ fE .

Given a signature Σ, Σ-hypergraphs and Σ-hypergraph morphisms form a category HypΣ. It has all
small limits and colimits (since it is a presheaf category); in particular, it has pushouts, coproducts and
coequalizers. We can spell them out in set-theoretic terms, which makes them suitable for an algorithmic
implementation; see Appendix B for details.
Interface specifies nodes of a hypergraph to which other hypergraphs can be connected.

Definition 2.3 (Σ-hypergraph with interfaces). A discrete Σ-hypergraph is a Σ-hypergraph with no hy-
peredges. A Σ-hypergraph with interface is a cospan n−−→ G←−− m in HypΣ where n, m are finite
discrete Σ-hypergraphs.

The discrete hypergraphs n and m specify input interface and output interface, respectively. We some-
times identify a Σ-hypergraph with interface n−−→ G←−− m by a single morphism G← n+m.
For a general symmetric monoidal category without a Frobenius structure, the combinatorial representa-
tion of string diagrams requires extra conditions on hypergraphs [3]: monogamy and acyclicity.

Definition 2.4 (Paths). A path P in a Σ-hypergraph is a list of hyperedges [e1,e2, · · · ,en] such that for
every consecutive pair of hyperedges (ek,ek+1), there is at least one target of ek equal to a source of ek+1.
A cycle C in a Σ-hypergraph is a path such that at least one source of e1 is a target of en.

Definition 2.5 (Monogamous acyclicity). A Σ-hypergraph is monogamous acyclic (ma-hypergraph) if
1. it contains no cycles (acyclicity) ;
2. every node has at most in- and out- degree 1 (monogamy).

Here in- (out-) degree of a node v in a Σ-hypergraph H is the number of pairs (e, i) where e is a hyperedge
of H with v as its i-th target (source). We call input nodes those with in-degree 0, denoted by in(H).
Similarly, output nodes have out-degree 0 and are denoted by out(H).

A Σ-hypergraph with interface n
f−→H

g←−m is monogamous acyclic (ma-cospan) if H is an ma-hypergraph,
f is mono and its image is in(H), and g is mono and its image is out(H).

2.2 Convex DPOI Rewriting

Rewriting on string diagrams can be modelled categorically [2, 3], by adapting DPO rewriting [6]. We
first recall DPO rewriting in HypΣ.
A rewrite rule is a span L←−− K −−→ R in HypΣ. A rewrite system R is a finite set of rewrite rules. We
say that a Σ-hypergraph G rewrites into a Σ-hypergraph H if there exists a rule L←− K→ R, a morphism
L m−→ G (called match) and an object C ∈HypΣ such that the following two squares are pushouts:

L K R

G C H

m

f g

⌟ ⌟

The above rewrite works as follows. Computing the pushout complement removes the image of L (the
left-hand side of the rewrite rule) in G while keeping the image of K intact. By computing the pushout
of C←−− K

g−−→ R, we glue R and C along the image of K, thus replacing the image of L in G with R.
More intuitively, what this procedure does is to take away the part that corresponds to the matching of the
left-hand side, L, of a rewrite rule and replace it by its right-hand side, R. See Example C.1 in Appendix.
In this work we focus on left-connected rewrite rules.

A. Matsui et al. 5

Definition 2.6 (Strong connectivity). An ma-hypergraph G is strongly connected if for every input
x ∈ in(G) and output y ∈ out(G) there exists a path from x to y in G.

A left-connected rewrite rule is a span L
[iL,oL]←−−− I +O

[iR,oR]−−−→ R such that I iL−→ L oL←− O and I iR−→ R oR←− O
are ma-cospans, [iL,oL] is mono (we say that the rule is left-linear) and L is strongly connected.
A left-connected rewriting system is a set of left-connected rewrite rules.

The first adaptation of DPO rewriting for string diagrams is to accommodate interface. This yields DPOI
rewriting [2]. Given two hypergraphs with interfaces, G←− J and H ←− J, we say that G rewrites into H

if there exists a rewrite rule L
f←−− K

g−−→ R, a match L m−→G and a hypergraph with interface C←− J, such
that the squares below are pushouts and the whole diagram commutes:

L K R

G C H

J

m

f g
⌟ ⌟

The second adaptation of DPO rewriting is to impose convexity on matches. This is necessary to deal
with the absence of a Frobenius structure [3].

Definition 2.7 (Convex matches). A Σ-hypergraph morphism m : L→G is a convex match if it is mono
and its image m(L) is convex, i.e. for any nodes v,v′ in m(L) and any path p from v to v′ in G, every
hyperedge in p is also in m(L).

Definition 2.8 (Convex rewriting). Given a left-connected rewrite system R, we say that an ma-cospan
n

iG−→ G
oG←− m rewrites convexly into n iH−→ H oH←− m if there is a convex match m′ : L→ G, a rewrite rule

L
[iL,oL]←−−− I +O

[iR,oR]−−−→ R in R and a Σ-hypergraph C such that the following diagram commutes, the left
square is a boundary complement [3, Definition 30] and the right square is a pushout:

L I +O R

G C H

n+m

m′

[iL,oL] [iR,oR]

[iG,oG] [iH ,oH]

⌟ ⌟

(1)

We will write n
iG−→ G

oG←− m⇛R n iH−→ H oH←− m and call it a derivation.

Thanks to left-connectedness, a derivation can be uniquely determined by an ma-cospan n→ G← m, a

mono match L m′−→ G and a rewrite rule L← I +O→ R.

Proposition 2.9. In left-connected rewrite systems, the boundary complement condition is always met.
In left-connected rewrite systems, a mono match is always convex.

Proposition 2.10. In left-connected rewrite systems, given a rewrite rule and a mono matching the
pushout complement C always uniquely exists.

2.3 Critical Pairs

We finally recall the definition of critical pairs [4].

6 A Critical Pair Enumeration Algorithm for String Diagram Rewriting

Definition 2.11 (Critical pairs). Let R be a left-connected rewrite system, and L1←−− K1 −−→ R1 and
L2←−− K2 −−→ R2 be its two rewrite rules. Consider two derivations with common source n→ S← m:

R1 K1 L1 L2 K2 R2

H1 C1 S C2 H2

n+m

m1 m2

⌟ ⌟ ⌟

⌟

1. We say that (n→H1←m)⇚R (n→ S←m)⇛R (n→H2←m) is a pre-critical pair if [m1,m2] :
L1 +L2→ S is epi.

2. The pre-critical pair is joinable if there exists W such that (n→H1←m)
∗
⇛R (n→W ←m)

∗
⇚R

(n→ H2← m).
3. The pre-critical pair is a parallel pair if there exist g1 : L1 → C2 and g2 : L2 → C1 making the

diagram below commute:

K1 L1 L2 K2

C1 S C2

n+m

g1 g2

⌟ ⌟

4. The pre-critical pair is a critical pair if it is not parallel.
Thanks to Prop. 2.9 and Prop. 2.10, for left-connected rewrite systems, the pre-critical pair (n→ H1←
m)⇚R (n→ S← m)⇛R (n→ H2← m) can uniquely be determined by a cospan (dubbed cp-cospan)
L1 +L2↠ S← I +O such that: (i) L1 +L2↠ S is an epimorphism given by the coupling of two mono
matches from L1 and L2 to S; and (ii) I→ S← O is a ma-cospan.

3 A Critical Pair Enumeration Algorithm

Our goal is to enumerate automatically all critical pairs for a given left-connected rewrite system R.
To do so, we have to enumerate all relevant epimorphisms Li + L j ↠ S where Li and L j are left hand
sides in rewrite rules of R. We will glue different nodes and hyperedges of Li +L j to enumerate these
epimorphisms.
Definition 3.1. Let L1 and L2 be two Σ-hypergraphs. A gluing scheme is given by a Σ-hypergraph G
and two Σ-hypergraph morphisms g1 : G→ L1 +L2 and g2 : G→ L1 +L2. The gluing is the coequalizer
of g1 and g2. For two nodes (or hyperedges) x and x′ of L1 +L2, they are glued if there exists a node (or
a hyperedge) y of G such that g1(y) = x and g2(y) = x′.

G L1 +L2 coeqG(g1,g2)
g1

g2
ε

Each gluing scheme (g1 : G→L1+L2,g2 : G→L1+L2) induces a cospan L1+L2↠ coeqG(g1,g2)
[⊆,⊆]←−−−

in(coeqG(g1,g2))+ out(coeqG(g1,g2)). We call the coequaliser coeqG(g1,g2) candidate source. As
observed in Sec. 2.3, this cospan uniquely determines a pre-critical pair if it is a cp-cospan. Now the
question is: what are necessary conditions on the gluing scheme so that the cospan becomes a cp-cospan
and hence induces a (pre-)critical pair?
We first observe that a gluing scheme should not glue nodes nor hyperedges within L1 and L2.

A. Matsui et al. 7

Proposition 3.2. If two nodes from L1 (resp. L2) are glued, then the gluing scheme does not yield a
critical pair. If two hyperedges from L1 (resp. L2) are glued, then the gluing scheme does not yield a
critical pair.

Proof. If two nodes from L1 are glued in coeqG(g1,g2), then ι1;ε is not mono and is thus not a valid
convex matching. The same proof works for hyperedges.

Secondly we observe that nodes, separately from L1 and L2, should be glued in a specific way.

Proposition 3.3. If a node A from L1 and a node B from L2 are glued and the gluing scheme yields a
valid critical pair, then either

• A and B are the k-th source of a glued hyperedge ;
• A and B are the i-th target of a glued hyperedge ;
• A is an output of L1, B is an input of L2.
• A is an input of L1, B is an output of L2;

Proposition 3.4. If a node A from L1 and a node B from L2 are glued and the gluing scheme yields a
valid critical pair, then:

• if A is an output of L1, B is an input of L2, then no input of L1 is glued to an output of L2;
• if A is an input of L1 and B is an output of L2, then no output of L1 is glued to an input of L2.

Proof. Suppose that a node A from L1 and a node B from L2 are glued, the gluing scheme yields a valid
critical pair, A is an output of L1 and B is an input of L2.
Suppose X an input of L1 is glued to Y an output of L2. There are paths X ⇝ A and B⇝ Y by strong
connectedness of L1 and L2. Then, we obtain a cycle [X]⇝ [A] = [B]⇝ [Y] = [X] which contradicts the
acyclicity property.
The second point follows a similar argument.

Finally, we can obtain a sufficient and necessary condition for a gluing scheme to induce a critical pair.

Proposition 3.5. A pre-critical pair L1+L2↠ coeqG(g1,g2)
[⊆,⊆]←−−− in(coeqG(g1,g2))+out(coeqG(g1,g2))

yielded by a gluing scheme is parallel iff the following holds:
1. no hyperedges from L1 and L2 are glued, and
2. if two nodes from L1 and L2 are glued, they are in interfaces of L1 and L2.

Proposition 3.6. A pre-critical pair L1+L2↠ coeqG(g1,g2)
[⊆,⊆]←−−− in(coeqG(g1,g2))+out(coeqG(g1,g2))

yielded by a gluing scheme is a critical pair iff there are hyperedges separately from L1 and L2 that are
glued.

Proof. This is a consequence of Prop. 3.5 and coeqG(g1,g2) being an ma-hypergraph.

These observations suggest the following two-fold gluing process to yield a suitable gluing scheme
(g1 : G→ L1+L2,g2 : G→ L1+L2) that induces a critical pair: (1) glue (at least one pair of) hyperedges
that are separately from L1 and L2, and (2) glue inputs/outputs that are separately from L1 and L2.
To compute such a gluing scheme, we use independent edge sets on complete bipartite graphs.

Definition 3.7. Given two sets A and B, the complete bipartite graph KA,B is defined as follows: its
vertices are A+B and there is an edge between every element of A and every element of B.
A independent edge set4 on KA,B is a set of edges such that no two edges share common vertices.

4Independent edge sets are also called “matching” in graph theory.

8 A Critical Pair Enumeration Algorithm for String Diagram Rewriting

The following shows an example of an independent edge set.

a 1 a 1

b b

c 2 c 2

K{a,b,c},{1,2}

For each independent edge set on hyperedges, i.e. on KHEdges(L1),HEdges(L2) (or nodes, i.e. on KNodes(L1),Nodes(L2)),
we can construct the induced hypergraph γ as follows: for each edge connecting two vertices in the
independent edge set, we add the pair of hyperedges (or pair of nodes) associated with those vertices
together with their induced pairs of sources and targets. We let pγ

1 : γ → L1 be the first projection of γ
into L1 and pγ

2 : γ → L2 be the second projection of γ into L2. Consequently, we obtain a gluing scheme
(pγ

1; ι1 : γ → L1 +L2, pγ
2; ι2 : γ → L1 +L2).

By suitably generating independent edge sets firstly on hyperedges (i.e. KHEdges(L1),HEdges(L2)), and sec-
ondly on nodes (i.e. KNodes(L1),Nodes(L2)), in particular its restriction on inputs and outputs, we can com-
pute gluing schemes that glue hyperedges and nodes as specified by the independent edge sets and hence
induces a critical pair; if there is an edge between two vertices of a bipartite graph, the two endpoints of
the edge gets merged (glued).
Our algorithm uses subroutines to enumerate independent edge sets on a complete bipartite graph Ka,b.
We assume that the sets a and b are totally ordered. We believe this is a reasonable assumption, because
the set of hyperedges and the set of nodes, of a hypergraph, are typically implemented using a totally
ordered data structure. The zip function turns two lists of the same length into a list of pairs.

Algorithm 1: An algorithm for enumerating independent edge sets
Input: a set a and a set b
Output: independent edge sets on Ka,b

1 return
⋃

k∈J0,min(|a|,|b|)K enumerateKIndependentEdgeSets(a,b,k) ;

Algorithm 2: An algorithm for enumerating k independent edge sets
Input : a set a, a set b, and a number k
Output: independent edge sets on Ka,b with k edges

1 for x⊆ a such that |x|= k do
2 for y being a partial permutation of y′ ⊆ b such that |y|= k do
3 yield zip(x,y)
4 end
5 end

Proposition 3.8. There are ∑0≤k≤min(|a|,|b|) k!
(|a|

k

)(|b|
k

)
independent edge sets on Ka,b.

Proof. There are
(|a|

k

)
choices of k elements from a set containing |a| elements and k!

(|b|
k

)
partial permu-

tations of k elements from a set containing |b| elements.

We can now present our critical pair enumeration algorithm (Algo. 3). It uses a subroutine InducedHypergraphs
that computes induced hypergraphs of a given set of independent edge sets on hyperedges or nodes.

A. Matsui et al. 9

Algorithm 3: An algorithm for enumerating all critical pairs

Input : rewrite rules ρ = {Li
fi← Ki

gi→ Ri}i∈I

Output: epimorphisms with interface {{Li +L j
ε↠ Si jγ ← I +O}γ∈Ii j}(i, j)∈I2

1 for (i, j) ∈ I2 do
2 for γ ∈ InducedHypergraphs(

⋃
l∈Σ

enumerateIndependentEdgeSets(

3 {e | e ∈ Hyperedges(Li), label(e) = l},{e | e ∈ Hyperedges(L j), label(e) = l})) do
4 if γ has at least a hyperedge then
5 (Si jγ ,εi jγ) = coeqγ(pγ

1; ι1, pγ
2; ι2);

/* the coequalizer (γ Li +L j Si jγ

pγ
1;ι1

pγ
2;ι2

εi jγ
in HypΣ) */

6 I1 = in(Si jγ)∩ εi jγ(ι1(in(Li)));
7 I2 = in(Si jγ)∩ εi jγ(ι2(in(L j)));
8 O1 = out(Si jγ)∩ εi jγ(ι1(out(Li)));
9 O2 = out(Si jγ)∩ εi jγ(ι2(out(L j)));

10 for γ ′ ∈ InducedHypergraphs(enumerateIndependentEdgeSets(I1,O2)+
11 enumerateIndependentEdgeSets(I2,O1)) do
12 (Si jγ ′ ,εi jγ ′) = coeqγ ′(pγ ′

1 , pγ ′
2);

/* the coequalizer (γ ′ Si jγ Si jγ ′
pγ ′

1

pγ ′
2

εi jγ
) */

13 I′ = in(Si jγ ′);
14 O′ = out(Si jγ ′);

15 if I′ ⊆−→ Si jγ ′
⊆←− O′ is a ma-cospan then

16 yield Li +L j

εi jγ ;εi jγ ′
↠ Si jγ ′

[⊆,⊆]←−−− I′+O′;
17 end
18 end
19 end
20 end
21 end

Theorem 3.9. Algorithm 3 is correct and exhaustive. That is,

Correctness Each result Li +L j

εi jγ ′
↠ Si jγ ′

[⊆,⊆]←−−− I′+O′ of Algorithm 3 is a critical pair.

Exhaustiveness Any critical pair of the form Li+L j

εi jγ ′
↠ Si jγ ′

[⊆,⊆]←−−− I′+O′ can be yielded by Algorithm 3.

Proof. Proof of correctness. A coequalizer is an epimorphism, thus εi jγ and εi jγ ′ is epi. Their composi-

tion is therefore epi. I′ ⊆−→ Si jγ ′
⊆←− O′ is a ma-cospan as required by the pre-critical pair with interface

definition because of the if statement in line 15. Moreover, the matchings ι1;εi jγ ;εi jγ ′ and ι2;εi jγ ;εi jγ ′ are
mono, because the gluing schemes γ and γ ′ do not glue nodes and hyperedges of the same hypergraph.
The gluing scheme γ also glues at least a pair of hyperedges (line 4). Therefore, by Prop. 3.6, each result
yielded is a critical pair.
Proof of exhaustiveness. Let Li +L j

ε↠ X F← J be a precritical-pair with interface.

10 A Critical Pair Enumeration Algorithm for String Diagram Rewriting

An epimorphism of hypergraphs is surjective on nodes and on hyperedges because the category of hy-
pergraphs is a presheaf category.
Thus, each node and each hyperedge of X has a non-empty preimage set by ε . Moreover, each preimage
set by ε contains: (i) at most two elements, and (ii) is there are two elements, they come separately from
L1 and L2. This is because ιi;ε and ι j;ε are mono.
We construct a hypergraph γ whose nodes are given by preimage sets ε−1(v) with size 2 for v ∈
Nodes(X), and hyperedges are given by preimage sets ε−1(e) with size 2 for e ∈ HEdges(X). It comes
with two hypergraph homomorphisms F1 : γ→ L1 +L2 and F2 : γ→ L1 +L2, such that F1 maps a preim-
age set to its element from L1 and F2 maps a preimage set to its element from L2. We obtain a gluing
scheme (F1,F2).
Because this gluing scheme induces a critical pair, it satisfies the necessary conditions of the propositions
in Sec. 3. Namely:

1. If it glues edges, they are separetely from L1 and L2.
2. It glues at least a pair of hyperedges separately from L1 and L2.
3. If it glues nodes, they are either a source/target of glued hyperedges, or input/output separately

from L1 and L2.
These conditions are realised by Algo. 3, respectively by lines 2 & 10, line 4, and line 10.
We can therefore conclude that the merging of hyperedges and nodes specified by the gluing scheme
(F1,F2) is impelemented by Algo. 3.

We implement Algo. 3 in Haskell5, and test it using the example of non-commutative bimonoids [4,
Sec. 6.1]. While there are 22 critical pairs, the implementation outputs 58 critical pairs. This is due to
duplication caused by isomorphic gluing schemes γ,γ ′. Our implementation currently does not check for
isomorphisms of hypergraphs.

3.1 An Example Run

We compute critical pairs associated to the following pair of rules that is taken from the example of
non-commutative bimonoids [4, Sec. 6.1].

L1 K1 R1

0 0 0

µ
1

4 1 3 1 µ
4

3

1 µ
2

3 2 µ
3

4

2 2

L2 K2 R2

5

µ
1

6 5 6 5 = 6

η
1

7

We first enumerate the independent edge sets associated to the labels µ: there are three independent edge
sets, namely {},{(µ

1
, µ

1
)} and {(µ

2
, µ

1
)}. There is only one independent edge set for the label

5Available online at https://github.com/GuiSab/hypergraphrewriting

A. Matsui et al. 11

η , namely the empty one. We thus have 2 gluing schemes for the hyperedges which are not empty:

(0,5) (4,5)

µ
(1,1)

(4,6) and µ
(2,1)

(3,6)

(1,7) (2,7)

The gluings associated to the gluing schemes are the following:

[0] [0]

µ
[1]

[4] µ
[1]

[4]

η
[1]

[1] µ
[2]

[3] and [1] µ
[2]

[3]

[2] η
[1]

[2]

For the first gluing, we compute I1 = {[0], [2]}, I2 = {[0]}, O1 = {[3]}, O2 = {}. The only independent
edge sets on the nodes are {} and {([0], [3])}. The gluing associated to {([0], [3]} is not acyclic:

[0]

µ
[1]

[4]

η
[1]

[1] µ
[2]

[2]

Therefore, we only yield the critical pair given by the first gluing.
For the second gluing, we compute I1 = {[0], [1]}, I2 = {}, O1 = {[3]}, O2 = {3}. The independent edge
sets on the nodes are {}, {([0], [3])} and {([1], [3])}. The gluing associated to {([0], [3]} and {([1], [3])}
are not acyclic:

[0] [0]

µ
[1]

[4] µ
[1]

[4]

[1] µ
[2]

[1] µ
[2]

η
[1]

[2] η
[1]

[2]

Therefore, we only yield the critical pair given by the second gluing:

[0]

µ
[1]

[4]

[1] µ
[2]

[3]

η
[1]

[2]

12 A Critical Pair Enumeration Algorithm for String Diagram Rewriting

4 An Optimisation

Algo. 3 implements the two-fold gluing process, firstly gluing hyperedges and secondly gluing in-
puts/outputs. We can in fact prove that the second step is redundant, for the purpose of critical pair
analysis (and local-confluence check).
Let Si jγ be a gluing of hyperedges of algorithm 3 and Si j′γ a gluing of nodes on Si jγ .

Proposition 4.1. If Si j′γ yields a valid critical pair, then Si jγ yields a valid critical pair as well.

Proof. If Si j′γ is monogamous acyclic, then the hypergraph Si jγ in which no nodes were glued cannot be
cyclic; moreover, it will respect the monogamy condition.

We now suppose that Si j′γ yields a valid critical pair (and thus Si jγ yields a valid critical pair as well).

Proposition 4.2. Any convex match in I→ Si jγ ← O is a convex match in I′→ Si j′γ ← O′.

Corollary 4.3. Any rewriting sequence on I→ Si jγ ←O is also a rewriting sequence on I′→ Si j′γ ←O′.

Corollary 4.4. If I′→ Si j′γ ← O′ yields a critical pair that is not joinable, then so does I→ Si jγ ← O.

By Corollary 4.4, it suffices to enumerate the critical pairs where only hyperedges are glued, to determine
if a left-connected rewrite system is locally confluent or not. Algo. 4 enumerates a sufficient subset of
critical pairs necessary to determine local confluence.

Algorithm 4: An algorithm for enumerating sufficient critical pairs

Input : rewrite rules ρ = {Li
fi← Ki

gi→ Ri}i∈I

Output: epimorphisms with interface {{Li +L j
ε↠ Si jγ ← I +O}γ∈Ii j}(i, j)∈I2

1 for (i, j) ∈ I2 do
2 for γ ∈ InducedHypergraphs(∏

l∈Σ
enumerateIndependentEdgeSets(

3 {e | e ∈ Hyperedges(Li), label(e) = l},{e | e ∈ Hyperedges(L j), label(e) = l}) do
4 if γ has at least a hyperedge then
5 (Si jγ ,εi jγ) = coeqγ(pγ

1;q1, pγ
2;q2);

/* the coequaliser of (γ L1 +L2 Si jγ

pγ
1;q1

pγ
2;q2

εi jγ
in HypΣ) */

6 I = in(Si jγ);
7 O = out(Si jγ);

8 if I ⊆−→ Si jγ
⊆←− O is a ma-cospan then

9 yield Li +L j
εi jγ
↠ Si jγ

[⊆,⊆]←−−− I +O;
10 end
11 end
12 end
13 end

A. Matsui et al. 13

References
[1] Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press (1998)
[2] Bonchi, F., Gadducci, F., Kissinger, A., Sobocinski, P., Zanasi, F.: String diagram rewrite theory I: rewriting

with frobenius structure. J. ACM 69(2), 14:1–14:58 (2022). https://doi.org/10.1145/3502719, https://doi.
org/10.1145/3502719

[3] Bonchi, F., Gadducci, F., Kissinger, A., Sobocinski, P., Zanasi, F.: String diagram rewrite theory
II: rewriting with symmetric monoidal structure. Math. Struct. Comput. Sci. 32(4), 511–541 (2022).
https://doi.org/10.1017/S0960129522000317, https://doi.org/10.1017/S0960129522000317

[4] Bonchi, F., Gadducci, F., Kissinger, A., Sobocinski, P., Zanasi, F.: String diagram rewrite the-
ory III: confluence with and without frobenius. Math. Struct. Comput. Sci. 32(7), 829–869 (2022).
https://doi.org/10.1017/S0960129522000123, https://doi.org/10.1017/S0960129522000123

[5] Born, K., Taentzer, G.: An algorithm for the critical pair analysis of amalgamated graph transformations. In:
Echahed, R., Minas, M. (eds.) Graph Transformation. pp. 118–134. Springer International Publishing, Cham
(2016)

[6] Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: An algebraic approach. In: 14th
Annual Symposium on Switching and Automata Theory (swat 1973). pp. 167–180 (1973).
https://doi.org/10.1109/SWAT.1973.11

[7] Ehrig, H.: Fundamentals of algebraic graph transformation. Springer, Berlin (2006), oCLC: 79651676
[8] Fiore, M.P., Campos, M.D.: The algebra of directed acyclic graphs. In: Coecke, B., Ong, L., Panangaden,

P. (eds.) Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky -
Essays Dedicated to Samson Abramsky on the Occasion of His 60th Birthday. Lecture Notes in Computer
Science, vol. 7860, pp. 37–51. Springer (2013). https://doi.org/10.1007/978-3-642-38164-5_4, https://
doi.org/10.1007/978-3-642-38164-5_4

[9] Ghica, D.R.: Diagrammatic reasoning for delay-insensitive asynchronous circuits. In: Coecke, B., Ong, L.,
Panangaden, P. (eds.) Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson
Abramsky - Essays Dedicated to Samson Abramsky on the Occasion of His 60th Birthday. Lecture Notes
in Computer Science, vol. 7860, pp. 52–68. Springer (2013). https://doi.org/10.1007/978-3-642-38164-5_5,
https://doi.org/10.1007/978-3-642-38164-5_5

[10] Hristakiev, I.: Confluence analysis for a graph programming language. Ph.D. thesis, University of York, UK
(2018), https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.745783

[11] Joyal, A., Street, R.: The geometry of tensor calculus, I. Advances in Mathematics 88(1), 55–112 (1991).
https://doi.org/https://doi.org/10.1016/0001-8708(91)90003-P, https://www.sciencedirect.com/
science/article/pii/000187089190003P

[12] Lafont, Y.: Towards an algebraic theory of boolean circuits. Journal of Pure and Applied Algebra
184(2), 257–310 (2003). https://doi.org/https://doi.org/10.1016/S0022-4049(03)00069-0, https://www.
sciencedirect.com/science/article/pii/S0022404903000690

[13] Mimram, S.: Computing critical pairs in 2-dimensional rewriting systems. In: Lynch, C. (ed.) Proceedings of
the 21st International Conference on Rewriting Techniques and Applications, RTA 2010, July 11-13, 2010,
Edinburgh, Scottland, UK. LIPIcs, vol. 6, pp. 227–242. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2010). https://doi.org/10.4230/LIPICS.RTA.2010.227, https://doi.org/10.4230/LIPIcs.RTA.2010.
227

[14] Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Transformation. WORLD SCIEN-
TIFIC (1997). https://doi.org/10.1142/3303, https://www.worldscientific.com/doi/abs/10.1142/
3303

[15] Selinger, P.: A Survey of Graphical Languages for Monoidal Categories, pp. 289–355. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12821-9_4, https://doi.org/10.
1007/978-3-642-12821-9_4

14 A Critical Pair Enumeration Algorithm for String Diagram Rewriting

A Proofs

A.1 Proofs for Section 2

Proof of Proposition 2.9. Let’s prove that in left-connected rewrite systems, the boundary complement
condition is always met. All rules are left-linear in a left-connected rewrite system, the morphism [iL,oL]
is thus mono and the pushout complement defined by the left square of the diagram is unique up to
isomorphism because HypΣ is an adhesive category (it is a presheaf category).
Now let’s prove that the convexity condition of a convex match is also always met in left-connected
rewrite systems.
Suppose that a match m : L→ G is not convex, meaning that there are nodes v and v′ in m(L), a path p
from v to v′ and a hyperedge e of p not in m(L).
Suppose e is the last hyperedge of the path p. Then v′ which is a target of e could not be in m(L) because
e is not in m(L). Therefore, e cannot be the last hyperedge of the path p. Similarly, e cannot be the first
hyperedge of the path. We consider the largest subpath [ei, · · · ,e · · · ,e j] of p not in the image m(L). Let
a be a target of the predecessor of ei in p which is a source of ei and b a source of the successor of e j in
p which is a target of e j.

L V A B V ′

G v a • · · · • b v′
m m m m m

ei e j

m m

Let’s prove that there is no hyperedge in L with source A the preimage of a by m.
Suppose that there is a hyperedge x with source A in L. Then m(x) is a hyperedge in G with source a but
it cannot be ei because ei is not in m(L). However, ei and m(x) share a common source a which is not
possible because G is monogamous. Therefore, x cannot exist.
By the same reasoning there is no hyperedge in L with target B the preimage of b by m.
Therefore, A is an output node of L and B is an input node of L. By strong connectedness of L, there is a
path from B to A. This path has an image by m and forms a cycle when composed with [ei, · · · ,e j] which
contradicts the fact that G is acyclic. This refutes our first hypothesis and m is convex.
Thus, a match in a left-connected rewrite system is always convex.

Proof of Proposition 2.10. We recall a result on pushout complements in the category of hypergraphs
which can be found in [7, pp.44,45].

Let RR = L
[iL,oL]←−−− K

[iR,oR]−−−→ R be a rewrite rule and m : L→ X be a matching of the left-hand side of the
rule.

• The gluing points GP are the nodes and hyperedges in L that are not deleted by the rewrite rule,
namely the nodes and hyperedges in the image of [iL,oL], i.e., GP = [iL,oL](VK)∪ [iL,oL](EK);

• the identification points IP are the nodes and hyperedges in L that are identified by m, namely the
nodes and hyperedges with at least two different preimages by m, i.e.,

IP = {v ∈VL | (∃w ∈VL)w ̸= v∧m(v) = m(w)}
∪ {e ∈ EL | (∃ f ∈ EL) f ̸= e∧m(e) = m(f)}

• the dangling points DP are the nodes in L whose images under m are the source or target of an
edge in X with no preimage by m, i.e.,

DP = {v ∈VL | (∃e ∈ EX \ m(EL)),s(e) = m(v)∨ t(e) = m(v)}

A. Matsui et al. 15

The pushout complement
L K

X C

m

[iL,oL]

⌟

exists if and only if IP∪DP⊆ GP.

In our case, GP are the interface nodes (nodes images of [iL,oL]). IP is empty because a matching is
mono (by the definition of a convex match). DP are necessarily input and output nodes by monogamy of
X , therefore they must be included in the interface defined by [iL,oL].
Finally, uniqueness of the pushout complement follows from the mono condition on the match [2, Prop.
3.18].

A.2 Proofs for Section 3

Proof of Proposition 3.3. Suppose that a node A from L1 and a node B from L2 are glued and the gluing
scheme yields a valid critical pair.
Suppose that A is not a source or a target of any hyperedge in L1. Then A is both an input node and an
output node. Therefore, [iL1 ,oL1] is not mono and the first rule is not left-linear which contradicts our
hypothesis that R is a left-connected rewrite system. Thus, A is at least a source or target node of a
hyperedge e1 in L1.
By a similar reasoning we get that B is at least a source or target node of a hyperedge e2 in L2.

1. Suppose A is the i-th source of e1 and B is the j-th source of e2.
• Suppose e1 is glued to e2. Suppose i ̸= j, we then have [e1] having [A] as its i-th source and

j-th source which contradicts the monogamy of the candidate source. Thus i = j and A and
B are both the i-th source of a glued hyperedge.

• Suppose on the contrary that e1 and e2 are not glued, then [A] is the source of [e1] and [e2]
which contradicts the monogamy of the candidate source. ⊥

2. By a similar reasoning, if A and B are both targets then A and B are both the i-th target of a glued
hyperedge.

3. Suppose that A is the i-th target of e1 and B is the j-th source of e2.
• Suppose that A is not an output of L1. Then A is also a source of a hyperedge e′1 and we get

the case 1. A similar argument applies to the case: B is not an input of L2.
• The other two cases are: A is an output of L1 and B is an input of L2 or A is an input of L1

and B is an output of L2.

Proof of Proposition 3.5 Proof of⇒. Suppose we have a parallel pair

K1 L1 L1 +L2 L2 K2

C1 S C2

[i1,o1] q1

q1;ε

f2

ε

q2

f1

q2;ε

[i2,o2]

⌟ ⌟

• Let v1 ∈ L1,v2 ∈ L2 be two glued nodes (they must come from different hypergraphs by proposition
3.2). Since this is a parallel pair, there are mappings f1 : L2 → C1, f2 : L1 → C2 such that the
diagram above commutes. Because the triangle commutes, f1(v2) must be sent to [v2] = [v1] ∈ S.
Moreover, (q1;ε)(v1) = [v1] = [v2] ∈ S. But S is a pushout, so the identified elements of C1 and L1

16 A Critical Pair Enumeration Algorithm for String Diagram Rewriting

must be present in K1, so v1 and f1(v2) have a preimage in K1, and v1 ∈ [i1,o1](K1). By symmetry
of the argument we have v2 ∈ [i2,o2](K2).

• Suppose there are glued hyperedges. Let e1 ∈ L1 and e2 ∈ L2 be mapped to the same e ∈ S. As
before, for the identified nodes we can conclude that they are in the interfaces [i1,o1], [i2,o2] by
diagram chasing. But K1,K2 are discrete, so such hyperedges cannot exist - there are no elements
e′1 ∈C2, e′2 ∈C1 such that f−1

2 (e′1) = e1 and f−1
1 (e′2) = e2 and the diagram commutes.

Proof of ⇐. Suppose the assumptions 1 and 2 hold, let’s prove that the pre-critical pair is parallel.
Consider

K1 L1 L2 K2

C1 S C2

[i1,o1]

[i′1,o
′
1] m1 m2

[i2,o2]

[i′2,o
′
2]

a1

⌟ ⌟

a2

The proof is by diagram chasing.
If no nodes are glued, then no hyperedges are glued and S∼= L1 +L2 which obviously is a parallel pair.
Otherwise, consider a pair of nodes (v1 ∈ L1, v2 ∈ L2) with the same image v = m1(v1) = m2(v2) in S.
By assumption, v2 is in the image of [i2,o2] : K2→ L2. Let f2 : L1→C2 be the morphism sending v1 to
[i′2,o

′
2](v2) and acting as an identity on the rest of the nodes and edges (since by assumption no edges

from L1 and L2 glued).
By construction this will make the triangle commute.
Similarly for f1 : L2→C1.

A.3 Proofs for Section 4

Proof of Proposition 4.2. Let m : L→ Si jγ be a convex match. We will prove that m;εi jγ ′ : L→ Si jγ ′ is a
convex match as well.
Let e1 and e2 be two hyperedges of L such that (m;εi jγ ′)(e1) = (m;εi jγ ′)(e2), meaning that εi jγ ′(m(e1)) =
εi jγ ′(m(e2)). We must have m(e1) = m(e2) because εi jγ ′ only glues nodes, it is thus mono on hyperedges.
We then deduce e1 = e2 because m is mono. m;εi jγ ′ is therefore mono on hyperedges.
Let v1 and v2 be two nodes of L such that (m;εi jγ ′)(v1) = (m;εi jγ ′)(v2), meaning that εi jγ ′(m(v1)) =
εi jγ ′(m(v2)).
Suppose m(v1) ̸= m(v2). εi jγ ′ would glue m(v1) with m(v2). By construction of εi jγ ′ we either have m(v1)
an input of Si jγ and m(v2) an output of Si jγ or m(v1) an output of Si jγ and m(v2) an input of Si jγ . Let’s
suppose WLOG the first case. As m is a convex match, there is a path [m(e1), · · · ,m(en)] from m(v1) to
m(v2) in the image of m. By applying εi jγ ′ to the path, we get [εi jγ ′(m(e1)), · · · ,εi jγ ′(m(e2))] a path from
εi jγ ′(m(v1)) to εi jγ ′(m(v2)) = εi jγ ′(m(v1)). Si jγ ′ would not be acyclic which contradicts the hypothesis
that Si j′γ yields a valid critical pair. Therefore we proved m(v1) = m(v2). We then deduce v1 = v2 because
m is mono. m;εi jγ ′ is therefore mono on nodes.
m;εi jγ ′ is mono, we can therefore deduce that m;εi jγ ′ : L→ Si jγ ′ is a convex match.

B Categorical constructions in the category of hypergraphs

The category of Σ-hypergraphs considered in this paper is a functor category [EΣ−hypergraph,FinSet]
where EΣ−hypergraph is the category generated by a quiver having:

• an object V corresponding to the nodes of the hyperedge;

A. Matsui et al. 17

• for each couple of natural numbers (i, j) an object Ei, j corresponding to the hyperedges of arity i
and coarity j;

• for each couple of natural numbers (i, j) an object Σi, j corresponding to the signature of hyperedges
of arity i and coarity j;

• for each couple of natural numbers (i, j) and for each natural number k in J1, iK an arrow sk : Ei, j→
V corresponding to the kth source function on hyperedges of arity i and coarity j;

• for each couple of natural numbers (i, j) and for each natural number k in J1, jK an arrow tk : Ei, j→
V corresponding to the kth target function on hyperedges of arity i and coarity j;

• for each couple of natural numbers (i, j) an arrow li, j : Σi, j → V corresponding to the labelling
function on hyperedges of arity i and coarity j.

Σ0,0 Σ0,1 Σ0,2 · · ·

Σ1,0 Σ1,1
. . .

Σ2,0
. . . E0,0 E0,1 E0,2 · · ·

... E1,0 E1,1
. . .

E2,0
. . .

... V

l0,0 l0,1

t1

l0,2

t1
t2

l1,0

s1

l1,1

s1

t1

l2,0

s1

s2

Therefore, limits and colimits are computed pointwise: there are isomorphisms [I , [EΣ−hypergraph,FinSet]]∼=
[I ×EΣ−hypergraph,FinSet]∼= [EΣ−hypergraph×I ,FinSet]∼= [EΣ−hypergraph, [I → FinSet]] by curryfica-
tion and symmetry of the product. Thus a diagram D element of [I , [EΣ−hypergraph,FinSet]] yields a
hypergraph H of diagrams in FinSet element of [EΣ−hypergraph, [I ,FinSet]], the (co)limit of D is the
hypergraph given by the (co)limits of the various images H(−).
For example, we spell out what a product is in [EΣ−hypergraph,FinSet]. Let H1 and H2 be two Σ−hypergraphs,
we could also say that H1 and H2 are functors H1 : EΣ−hypergraph → FinSet and H2 : EΣ−hypergraph →
FinSet. The product H1×H2 : EΣ−hypergraph→ FinSet is then defined as follows:

• (H1×H2)(V)
def
= H1(V)×H2(V);

• (∀(i, j) ∈ N) (H1×H2)(Ei, j)
def
= H1(Ei, j)×H2(Ei, j);

• (∀(i, j) ∈ N) (H1×H2)(Σi, j)
def
= H1(Σi, j)×H2(Σi, j);

• (∀(i, j) ∈ N)(∀k ∈ J1, iK) (H1×H2)(sk)((e1,e2))
def
= (H1(sk)(e1),H2(sk)(e2));

• (∀(i, j) ∈ N)(∀k ∈ J1, jK) (H1×H2)(tk)((e1,e2))
def
= (H1(tk)(e1),H2(tk)(e2));

• (∀(i, j) ∈ N) (H1×H2)(li, j)((e1,e2))
def
= (H1(li, j)(e1),H2(li, j)(e2)).

The projections are the obvious ones. The coproduct is defined dually.
We spell out what a coequalizer is in [EΣ−hypergraph,FinSet]. Let f : H1→ H2 and g : H1→ H2 be two
Σ−hypergraph morphisms, we could also say that f and g are natural transformations f : H1⇒ H2 and
g : H1⇒ H2. The coequalizer coeqH1

(f ,g) is then defined as follows:

• coeqH1
(f ,g)(V)

def
= coeqH1

(fV ,gV) = H2(V)/R(V) where R(V) is the smallest equivalence rela-
tion generated by the relation { fV (x)∼ gV (x) | x ∈ H1(V)};

• (∀(i, j)∈N) coeqH1
(f ,g)(Ei, j)

def
= coeqH1

(fEi, j ,gEi, j) = H2(Ei, j)/R(Ei, j) where R(Ei, j) is the
smallest equivalence relation generated by the relation { fEi, j(x)∼ gEi, j(x) | x ∈ H1(Ei, j)};

18 A Critical Pair Enumeration Algorithm for String Diagram Rewriting

• (∀(i, j)∈N) coeqH1
(f ,g)(Σi, j)

def
= coeqH1

(fΣi, j ,gΣi, j) = H2(Σi, j)/R(Σi, j) where R(Σi, j) is the
smallest equivalence relation generated by the relation { fΣi, j(x)∼ gΣi, j(x) | x ∈ H1(Σi, j)};

• (∀(i, j) ∈ N)(∀k ∈ J1, iK) coeqH1
(f ,g)(sk)([e]H2(Ei, j)/R(Ei, j))

def
= [sk(e)]H2(V)/R(V) where [x]E/R

is the notation for the equivalence class associated to an element x of E in the quotient set E/R;

• (∀(i, j) ∈ N)(∀k ∈ J1, jK) coeqH1
(f ,g)(tk)([e]H2(Ei, j)/R(Ei, j))

def
= [tk(e)]H2(V)/R(V);

• (∀(i, j) ∈ N) coeqH1
(f ,g)(li, j)([e]H2(Ei, j)/R(Ei, j))

def
= [li, j(e)]H2(Σi, j)/R(Σi, j).

The coprojection is the obvious one (the mapping sending each element to its equivalence class). The
pushout computation is deduced from the coproduct and the coequalizer.

C Examples

Example C.1 (An example of DPO rewriting in HypΣ). Take the following rewrite rule that removes one
b from a graph (we identified the mapping by numbering the dots):

0• 0• 0•

a • b •2 •2 a •2

1• 1• 1•

and let G be the following hypergraph:

•

a • b • b •

•

Then, by using DPO rewriting, we obtain H by the following procedure:

0• 0• 0•

a • b •2 •2 a •2

1• 1• 1•

0• 0• 0•

a • b •2 b • 2• b • a •2 b •

1• 1• 1•

f g

m

Example C.2 (Examples of independent edge sets). Given two sets {1,2} and {A,B}, independent edge
sets on K{1,2},{A,B} are:

• for size 0: /0,
• for size 1: {(1,A)}, {(1,B)}, {(2,A)}, {(2,B)},

A. Matsui et al. 19

• for size 2: {(1,A),(2,B)}, {(1,B),(2,A)}.
These independent edge sets correspond to the following bipartite graphs:

1 A

2 B

1 A 1 A 1 A 1 A

2 B 2 B 2 B 2 B

1 A 1 A

2 B 2 B

Example C.3 (Example yielding a critical pair in which two nodes are glued). Let’s give an example of
rewrite rules where the gluing of nodes matter: we will study the critical pairs associated to the rules
below.

L1 K1 R1

2 γ 3 3 2 φ 3

α υ

1 1 1

L2 K2 R2

4 γ 5 4 4 χ 5

β ψ

6 6 6

The two critical pairs yielded by the algorithm are given by the following gluings:

[2] γ [3] [2] γ [3]

α β and α β

[1] [6] [1]

Elulookirjeldus

ISSN 2585-6901 (PDF)
ISBN 978-9916-80-331-8 (PDF)

	Abstract / Kokkuvõte
	List of Publications
	Author's Contribution to the Publications
	Acknowledgements
	Introduction
	Higher rewriting
	Pasting diagrams
	Higher-dimensional rewriting as a model of computation
	Related work
	Structure of the thesis
	Main contributions
	Author's note

	Oriented graded posets and molecules
	Basic definitions
	Molecules
	Gluing
	The inductive definition of molecules
	Basic properties of molecules

	Graphs associated with diagrams
	Directed graph with open edges
	Flow graphs

	Computational aspects of building molecules
	Data structures for oriented graded posets
	The traversal algorithm
	Correctness and runtime analysis
	Traversal algorithm on an example
	Algorithms for building molecules

	The higher-dimensional subdiagram matching problem
	Submolecules and substitutions
	Layerings
	Frame-dimension
	Molecule matching algorithm

	The rewritable submolecule problem
	Relation between layerings and orderings
	The rewritable submolecule decision algorithm
	Runtime improvements under acyclicity conditions
	Results in lower dimensions
	Obstructions

	Categorical framework
	The category Mol/P
	Polygraphs

	Augmented directed complexes
	Image of the functor Z
	Acyclicity conditions
	Frame acyclicity
	Dimension-wise acyclicity
	Strongly dimension-wise acyclity
	Acyclic regular directed complexes

	Stability under constructions and operations

	Future work
	Bibliography
	Appendices
	Paper I
	Paper II
	Paper III
	Paper IV
	Paper V
	Curriculum Vitae
	Elulookirjeldus

