
Tallinn 2022

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Lita Kornilova 195076IVSB

Building a Secure Mobile Application for

Läänemaa County

Bachelor’s thesis

Supervisor: Priidu Paomets

MSc

Tallinn 2022

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Lita Kornilova 195076IVSB

Turvalise mobiilirakenduse loomine

Läänemaale

Bakalaureusetöö

Juhendaja: Priidu Paomets

MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Lita Kornilova

03.01.2022

4

Abstract

The purpose of this bachelor’s thesis is to create a mobile application for Läänemaa

county that would improve the information flow between the local government and

residents. The application must be available for Android and iOS platforms and

implement OWASP MASVS security standard.

The mobile application was implemented using Flutter cross-platform framework and

allows the user to get an overview of events, dining places, news, services, transportation,

and local government contacts.

A security audit for compliance with OWASP MASVS has been conducted and its

outcome has been analysed.

As a result of the thesis, a working mobile application compliant with OWASP MASVS

security standard has been developed and released to Google Play and App Store.

The thesis is written in English and contains 46 pages of text, 5 chapters, 12 figures and

10 tables.

5

Annotatsioon

Käesoleva bakalaureusetöö eesmärgiks on luua mobiilirakendus, mis parandaks

infoliikumist Läänemaa omavalitsuse ja selle elanike vahel. Rakendus peab olema

kättesaadav nii Android kui ka iOS platvormidel ning vastama OWASP MASVS

turvastandardile.

Mobiilirakendus on realiseeritud Flutteri platvormiülese raamistiku abil ning võimaldab

selle kasutajatel saada ülevaade Läänemaa sündmustest, söögikohtadest, uudistest,

teenustest, ühistranspordist ja kohalike omavalitsuste kontaktidest.

Läbi on viidud turvaaudit kontrollimaks rakenduse vastavust OWASP MASVS

standarditele ja selle tulemuste analüüs.

Lõputöö tulemusena on välja töötatud OWASP MASVS turvastandarditele vastav töötav

mobiilirakendus, mis on avalikult kättesaadav Google Play ja App Store keskkondades.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 46 leheküljel, 5 peatükki, 12

joonist, 10 tabelit.

6

List of abbreviations and terms

CMS Content Management System

BLoC Business Logic Component

SMTP Simple Mail Transfer Protocol

UI User interface

REST Representational State Transfer

API Application Programming Interface

OWASP Open Web Application Security Project

MASVS Mobile Application Security Verification Standard

HTTPS Hypertext Transfer Protocol Secure

URI Uniform Resource Identifier

URL Uniform Resource Locator

7

Table of contents

1 Introduction ... 11

1.1 Problem and background .. 11

1.2 Goals ... 12

1.2.1 Functional requirements .. 12

1.3 Methodology ... 14

1.4 Thesis overview .. 14

2 Technologies .. 15

2.1 Mobile development approaches .. 15

2.2 Cross-platform mobile frameworks .. 17

3 Implementation .. 19

3.1 High level architecture.. 19

3.1.1 “Läänemaa” application .. 19

3.1.2 Midateha.visithaapsalu.com .. 19

3.1.3 Visithaapsalu.com.. 20

3.1.4 Firebase services .. 20

3.1.5 Flamelink ... 21

3.1.6 Twilio SendGrid .. 22

3.2 Third-party libraries .. 22

3.2.1 BLoC and Flutter BLoC .. 22

3.2.2 Retrofit.dart.. 23

3.2.3 Floor... 23

3.2.4 FlutterFire libraries .. 23

4 Security audit ... 24

4.1 Overview of OWASP MASVS .. 24

4.1.1 Verification types .. 24

4.1.2 Structure... 25

4.2 Assigning the verification type ... 25

4.3 Validating security requirements .. 26

4.3.1 V1: Architecture, Design and Threat Modelling Requirements 26

8

4.3.2 V2: Data Storage and Privacy Requirements .. 27

4.3.3 V3: Cryptography Requirements ... 28

4.3.4 V4: Authentication and Session Management Requirements 28

4.3.5 V5: Network Communication Requirements .. 29

4.3.6 V6: Platform Interaction Requirements ... 30

4.3.7 V7: Code Quality and Build Setting Requirements....................................... 32

4.4 Security audit results .. 34

5 Summary .. 36

References .. 37

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 40

Appendix 2 – Screenshots of “Läänemaa” mobile application 41

Appendix 2 – Mobile application in Play Store and App Store 46

9

List of figures

Figure 1. Cross-platform mobile development framework popularity according to

Google Trends .. 18

Figure 2. High level architecture of “Läänemaa” application infrastructure.................. 19

Figure 3. Events screen in “Läänemaa” application ... 41

Figure 4. Dining places screen in “Läänemaa” application.. 41

Figure 5. News screen in “Läänemaa” application... 42

Figure 6. Services screen in “Läänemaa” application .. 42

Figure 7. Contacts details view in “Läänemaa” application ... 43

Figure 8. Notice form screen in “Läänemaa” application .. 43

Figure 9. Transport screens: (a) list view, (b) content view in “Läänemaa” application 44

Figure 10. Favourites screen in “Läänemaa” application ... 44

Figure 11. Notification settings screen in “Läänemaa” application 45

Figure 12. Onboarding region screen in “Läänemaa” application 45

10

List of tables

Table 1. Comparison of mobile development approaches ... 15

Table 2. Overview of cross-platform mobile frameworks. .. 17

Table 3. Comparison of OWASP MASVS verification types.. 25

Table 4. OWASP MASVS-L1 V1: Architecture, Design and Threat Modelling

Requirements. ... 26

Table 5. OWASP MASVS-L1 V2: Data Storage and Privacy Requirements................ 27

Table 6. OWASP MASVS-L1 V3: Cryptography Requirements. 28

Table 7. OWASP MASVS-L1 V4: Authentication and Session Management

Requirements .. 29

Table 8. OWASP MASVS-L1 V5: Network Communication Requirements................ 30

Table 9. OWASP MASVS-L1 V6: Platform Interaction Requirements 30

Table 10. OWASP MASVS L1-V7: Code Quality and Build Setting Requirements 32

11

1 Introduction

1.1 Problem and background

Development of Läänemaa mobile application was ordered by Läänemaa county as a

software tender where several companies had to make their offers. Based on the design

wireframes and initial estimation, the company at which the author is employed [1] in

partnership with an Estonian design company Rethink [2], have won the tender. The

author of the thesis was assigned the role of mobile and backend developer. The author

was the only software developer involved in the project.

The requirements for the mobile application were to provide users with the information

concerning events happening in the county, available dining places, local services, and

local government contacts. Users must also be able to read news, receive notifications

when new articles are published and contact the local government. The mobile application

must be developed for both Android and iOS platforms and be available in Estonian

language.

The data was expected to come from various sources including two web applications and

Läänemaa application’s backend, however, this thesis does not cover development and

security analysis of these components.

The client has emphasized that the developed application had to follow modern mobile

software security practices. OWASP MASVS became the security standard of their

choice due to its solid reputation and popularity. The applicable security level had to be

assigned by the author based on the application’s functionality.

Since the client has imposed the security requirements, the development team has decided

to test whether the company’s development practices comply with the OWASP MASVS

basic security level (see section 4.1.1). To do that, it was decided to first develop the

application not addressing the security standard and afterwards conduct a security audit

on the finished software to identify whether the requirements have been met. All the

12

discovered non-compliant requirements had to be fixed before handing the application to

the client.

1.2 Goals

The goal of the work is to develop and release Android and iOS applications that meets

the functional requirement defined in the section 1.2.1 and implements the OWASP

MASVS security standard.

1.2.1 Functional requirements

1.2.1.1 Events

User must be able to browse through the list of events which are fetched from

midateha.visithaapsalu.com [3] (see Figure 3). User must be able to perform the following

actions on event items:

 View event details, such as the event dates, description, and location

 Navigate to event homepage

 Filter events by date, category, and location

1.2.1.2 Dining places

User must be able to browse through the list of dining places, which are fetched from

visithaapsalu.com [4] (see Figure 4). User must be able to perform the following action

on dining places items:

 View dining place details, including location, preview image, category

 Navigate to the dining place homepage

 Filter dining places by category and location

1.2.1.3 News

User must be able to browse through the list of news which are inserted into the

application’s remote database from news portals of Läänemaa, Haapsalu, Vormsi and

Lääne-Nigula (see Figure 5). User must be able to perform the following actions on news

items:

 View news article styled text and details such as publication date, article’s topic

and affected region

13

 Filter news by topic and affected region

 See important alerts in a highlighted form on the application’s dashboard

 Receive notifications about newly published news articles

 Subscribe to and unsubscribe from news from specific regions

1.2.1.4 Services

User must be able to browse through the list of services, which are inserted into the

application’s remote database (see Figure 6). User must be able to perform the following

actions on service items:

 View service details, including contact details, location, description, opening

times and category

 Navigate to the service homepage

 Filter services by category

1.2.1.5 Contacts

User must be able to browse through the local government contacts, which are inserted

into the application’s remote database (see Figure 7). User must be able to perform the

following actions on contact items:

 View contact details including name, contact details, working schedule if

available

 Navigate to the contact homepage

 Filter village elders alphabetically

1.2.1.6 Government notice

User must be able to send a notice to the local government about potential issues or to

provide feedback (see Figure 8). User must be able to present their contact details,

description of the problem and attach an image.

1.2.1.7 Transportation

User must be able to browse public transport related information, published in a form of

articles (see Figure 9).

14

1.2.1.8 Favourites

User must be able to mark items as favourite for easy reference (see Figure 10). The items

that can be added to favourites include events, dining places, services, local government

contacts and news articles.

1.3 Methodology

To achieve the goal, the author had to analyse the application’s functionality and choose

the most appropriate technology stack considering that the application had to be

developed for both Android and iOS platforms with the lowest price possible to meet the

client’s budget expectations.

After that, the author had to develop the application using the chosen technology stack.

The application had to be developed with the use of reliable and reputed frameworks to

avoid maintenance issues, the use of third-party libraries was allowed.

To meet the security requirements, the author has identified the applicable security level

and conducted a security audit for compliance with OWASP MASVS standard. After the

security issues have been revealed, the author has addressed them.

1.4 Thesis overview

The second part of the thesis introduces available mobile development technologies and

explains the final technical stack choice.

The third part of the thesis describes the application development phase, provides the

overview of its architecture and key components.

The fourth part of the thesis covers the application’s security audit, evaluates its results,

and suggests future improvements.

The fifth part of the thesis summarizes the outcome of the work.

15

2 Technologies

2.1 Mobile development approaches

Commonly there are identified 3 mobile development approaches – native, hybrid and

cross-platform. Each of the approaches has its own benefits and disadvantages, which the

author has presented in the Table 1 [5], [6], [7].

Table 1. Comparison of mobile development approaches

 Native Hybrid Cross-platform

Performance Robust and efficient.

The code is executed

natively

Low performance

compared to native, as

the code is executed

inside a WebView

Depending on the

framework,

performance can be

comparable to native

or lower

Hardware

feature access

Easy and efficient.

Available out of the

box, no abstraction

needed.

Hard and less efficient.

Requires use of

plugins or a native

platform-specific

implementation

Can use all the APIs

exposed to native,

however, new features

and bug fixes might be

available with a delay,

since they will require

the framework

maintainer’s attention

Debugging

and profiling

tools

Excellent tools which

allow in-depth

analysis, including

CPU, memory,

network, and battery

usage profiling

Only web-specific

tools are available,

which might make

platform specific issue

mitigation more

challenging

Solid toolkit, although

native tools might be

required for more in-

depth analysis of

platform-specific

issues

Community

and

documentation

Excellent community

and platform creator’s

support; excellent

documentation; best

practices directly from

platform’s creator

Excellent

documentation and

community for web-

specific aspects,

however the

integration between

web and native is

much less supported

Community is smaller

than for native,

especially for newer

frameworks; issues

take longer to get

resolved; some issues

might need to be

solved on the native

level

16

 Native Hybrid Cross-platform

Development

cost

Native developers are

expensive. In addition,

there are needed

separate developers for

each platform

Low cost, since most

of the web code base

can be reused in a

mobile application,

however, sometimes

there might be a need

for a native feature or

plugin development

Depending on the

framework, cross-

platform developers

may be slightly more

or less expensive than

native, since they are

required to have

knowledge both about

the framework as well

as about OS specific

nuances

Development

time

A separate application

needs to be created for

every platform.

However,

development speed per

platform is quite high,

since native provides

easy access to

platform-specific

functionalities

Most of the code

works out of the box

on all platforms; web

development

frameworks are well

established and there

are well-known best

practices, hence

development time is

low

Most of the code

works across the

platforms, however

development time is

higher compared to

developing a native

application for a single

platform

Build size Smallest out of all the

options

Smaller or same as

native. Since the

application usually

includes only a

WebView and small

amount of custom

code, the download

size is low

Large with

applications developed

using Flutter being the

largest. Download size

can be twice the size

of a native application

Look and feel Best possible. Native

provides developers

with a rich selection of

components; there is a

number of third-party

libraries available as

well. Application is

responsive, graphic

rendering is fast

There are many tools

available for building

web UI, however since

the application is

located inside the

WebView, navigation

between views might

be clunky.

Depending on the

framework, can be

almost same as native

or worse.

According to the comparison presented in the table, the following high-level conclusions

can be made:

17

Native applications excel in performance, look, and feel, as well as reliability. This

approach is best for complex feature rich applications. However, development cost is

significantly higher compared to hybrid and cross-platform solutions.

Hybrid is the cheapest and fastest approach to implement, however the user experience

might be lower compared to native solutions, as well as hybrid applications are limited in

available features.

Cross-platform applications are a middle ground between native and hybrid applications

with their performance and look being comparable to native and development cost being

significantly lower.

2.2 Cross-platform mobile frameworks

There are several cross-platform mobile frameworks on the market with the most popular

and trusted being Flutter, React native and Xamarin. A brief overview of them is

presented in the Table 2.

Table 2. Overview of cross-platform mobile frameworks.

 React native Xamarin Flutter

Initial release March 26, 2015 May 28, 2014 May 2017

Questions on Stack

Overflow

118,791 47,231 107,008

Programming

language

JavaScript C# Dart

Vendor Facebook Microsoft Google

UI rendering Different look

throughout platforms

Can look identical or

different throughout

platforms

Can look identical or

different throughout

platforms

According to the table, Flutter is the newest framework, however the number of questions

on Stack Overflow is comparable to React Native which was released two years earlier –

that displays the active community of Flutter.

Another important factor is the way the frameworks render the UI. According to the

design specifications, the UI must look the same way throughout the platforms, as well

as it is relatively complex and contains a high number of non-standard components.

18

Figure 1 shows the beforementioned technologies’ popularity over timer according to

Google trends.

Based on the presented chart, it is possible to make a conclusion that by the year 2020

when the Läänemaa project was started, only two of the analysed platforms popularity

was not decreasing – React Native and Flutter. Demand for Xamarin’s was steadily

decreasing, as well as the developer community was relatively small.

Based on the popularity and community size, Xamarin was eliminated from candidate

technologies, leaving the choice between Flutter and React Native.

A major difference between React Native and Flutter lies in the approaches these

platforms utilize to draw user interfaces. React Native inherits native look of components,

which means that a layout designed with React Native will look differently on Android

and iOS devices, adapting to the platform. Flutter, on the other hand, draws identical user

interface on both platforms.

The author has decided in favour of Flutter because the UI presented by the design team

pictured the application equal on both platforms, which is more straightforward to achieve

with Flutter.

Figure 1. Cross-platform mobile development framework popularity according to Google Trends

19

3 Implementation

3.1 High level architecture

Although the thesis focuses only on the mobile application, for a better picture it is

important to present the full architecture of the supporting services (see Figure 2). Each

of the 11 components is briefly described below.

3.1.1 “Läänemaa” application

“Läänemaa” is a cross platform mobile application built with Flutter and distributed for

Android and iOS mobile devices. The application fetches data from

midateha.visithaapsalu.com, visithaapsalu.com, Firebase Firestore and Firebase Storage.

3.1.2 Midateha.visithaapsalu.com

Midateha.visithaapsalu.com [3] is a WordPress-based website which provides users with

information about upcoming events in Läänemaa county. The mobile application

Figure 2. High level architecture of “Läänemaa” application infrastructure

20

communicates with it via a REST API which exposes the information available on the

website. All the information is public and is accessed via GET requests.

3.1.3 Visithaapsalu.com

Visithaapsalu.com [4] is another WordPress-based website which provides users with

various information concerning Läänemaa county, such as news, tourist attractions, and

dining places. The mobile application retrieves list of dining places and associated

metadata via a GET request through REST API. All the fetched data is publicly available.

3.1.4 Firebase services

Google Firebase is a Google-backed application development software platform that

enables developers to use services that help to build iOS, Android, and web apps [8].

Firebase-based services play a significant role in the architecture of the application. They

serve as an alternative to more conventional backend solutions. Firebase is designed to

be used by application developers with no in-depth knowledge about infrastructure setup

as opposed to, for example, Amazon Web Services (AWS) [9].

3.1.4.1 Firestore

Firestore [10] is a NoSQL document database in cloud that allows to query data directly

from the application’s code without an additional middle layer. Firebase serves as the

primary database for the mobile application. The data stored in Firestore includes news

articles, transportation, services, and contacts. The mobile application retrieves the data

from Firestore using a Flutter Firestore client library (see the section 3.2.4).

3.1.4.2 Firebase storage

Firebase Storage [11] is a Firebase service which enables to store files in cloud. The files

can be added, modified, and queried directly from the application code. “Läänemaa”

application utilizes the Firebase storage benefits for storing images associated with news

articles. The images are retrieved in the mobile application with the help of a Flutter client

library (see the section 3.2.4)

3.1.4.3 Cloud functions for Firebase

Cloud functions for Firebase [12] is a service that allows to run backend code in response

to custom defined actions, such as Firestore database transactions. In case of “Läänemaa”

mobile application, Firebase functions are used to observe Firestore collection of news

21

articles and respond to the changes by triggering push notifications for Android and iOS

applications.

3.1.4.4 Firebase Cloud Messaging

Firebase Cloud Messaging [13] is a cross-platform messaging solution which allows to

send notification or data messages to and from an application. In “Läänemaa” app this

service is used for sending users notifications when cloud functions trigger the cloud

messaging client. Users have an option to fine-tune the notifications by subscribing to the

regions of their interest (UI can be observed on the Figure 11).

3.1.4.5 Firebase Crashlytics

Firebase Crashlytics [14] is a crash reporting service which helps to track and analyse

crash related issues in mobile applications. Both Android and iOS related crashes are

reported to Crashlytics and are displayed in the Firebase Console under the Crashlytics

tab. “Läänemaa” application uses Firebase Crashlytics to leverage timely response to

potential bugs.

3.1.4.6 Firebase Analytics

Firebase Analytics [15] is a service which enables to report predefined and custom app

events, such as number of daily active users, average engagement time, etc. In

“Läänemaa” application, the analytics is used to record the default events as well as the

user’s residence region: Lääne-Nigula, Vormsi, Haapsalu or unspecified. The selection

of the region is done during onboarding, and it is not mandatory (UI can be observed on

the Figure 12).

3.1.5 Flamelink

Flamelink [16] is a content management solution which is built to work in pair with

Firebase Firestore. Flamelink provides a significantly more user-friendly interface for

content managers, compared to editing content directly in Firebase Console. On the other

hand, it eliminates the need to build a dedicated content management system with

appropriate security measures.

In “Läänemaa” mobile application, Flamelink plays the role of a CMS which defines

schemas for the following entities: news articles, services, contacts, transportation

22

articles, application version metadata. Content editors can as well use Flamelink to upload

news article images to Firebase Storage.

3.1.6 Twilio SendGrid

Twilio SendGrid [17] is a customer communication platform which provides various

email related features. In “Läänemaa” app, SendGrid is used to send email notifications

to local government when a user submits a notice (UI can be observed on Figure 8). To

avoid the overhead of adding a new library, SendGrid API is accessed from the mobile

application through REST API.

3.2 Third-party libraries

This section is going to describe the third-party libraries used in the mobile application’s

codebase that the author believes to play an important role in the overall architecture of

the application. Other third-party utility libraries are purposefully omitted.

3.2.1 BLoC and Flutter BLoC

BLoC (Business Logic Components) [18] is a design pattern that helps to separate

presentation from business logic using reactive approach of state management. BLoC

logically divides the application into three layers:

 Presentation

 Business Logic

 Data

Each of the layers performs its own function and can be individually tested.

In Flutter, BLoC is presented in two libraries: bloc [19] that helps with the core pattern

implementation, and flutter_bloc [20] that connects it with widgets for smooth

integration.

The author has picked this design pattern as it is the recommended approach by Google,

it is straightforward and helps to reduce complexity.

23

3.2.2 Retrofit.dart

Retrofit.dart [21] is a Dart HTTP client built on top of the low-level HTTP client Dio[22].

Retrofit.dart was inspired by the popular Android and Java library Retrofit [23]. It was

chosen by the author due to the author’s previous experience using Android Retrofit as

well as its high popularity among Dart developers and frequent releases. The library

utilizes automatic source code generation to minimize the amount of boilerplate code.

3.2.3 Floor

Floor [24] is a lightweight abstraction layer over SQLite for Flutter. Alike Retrofit.dart,

it was inspired by an Android counterpart – Room [25] and was chosen by the author of

the thesis for the same reasons as Retrofit.dart – frequent releases, high popularity, and

previous experience with a similar technology.

3.2.4 FlutterFire libraries

FlutterFire [26] is a set of Flutter libraries released by Google’s Firebase team that enable

Flutter developers to easily use Firebase products without a need to write custom bridges

for Android and iOS platforms. FlutterFire collection presents 14 stable Flutter plugins

with different levels of support for mobile, web and desktop. “Läänemaa” application

makes use of the following FlutterFire libraries:

 Firebase Core [27]

 Cloud Firestore [28]

 Firebase Storage [29]

 Firebase Messaging [30]

 Firebase Analytics [31]

 Firebase Crashlytics [32]

24

4 Security audit

4.1 Overview of OWASP MASVS

The Open Web Application Security Project (OWASP) is a non-profit foundation that

works to improve the security of software [33]. The foundation is a collaborate effort of

tens of thousands of security experts from all over the world. OWASP has been founded

on December 1st, 2001, and nowadays is considered one of the most famous and trusted

security communities. It defines more than 100 of active cyber security projects including

standards, tool, documentation, code, and other type of projects [34], and any member is

enabled to submit new proposals.

The OWASP Mobile Application Security Verification Standard (MASVS) [35] is a

standard for mobile application security listed as a part of OWASP Mobile Security

Testing Guide [36]. The standard is intended to be used by mobile software architects and

developers as well as testers to ensure mobile application security at any stage of the

product.

4.1.1 Verification types

OWASP MASVS defines two levels of application security: MASVS-L1 and MASVS-

L2, where MASVS-L1 presents security requirements applicable to all mobile

applications, whereas MASVS-L2 focuses on the applications that handle sensitive data

or functionalities.

In addition to those, MASVS provides an opportunity to validate a mobile application for

resiliency against reverse engineering and tampering. The resiliency requirements are

grouped under MASVS-R.

One can combine security levels with resiliency requirements, which results in the

verification types presented in the Table 3.

25

Table 3. Comparison of OWASP MASVS verification types

Verification type Description

MASVS-L1 Basic security requirements applicable to all mobile applications

MASVS-L2 In-depth security requirements applicable to mobile applications

handling sensitive data or functionalities, such as health care or

financial software

MASVS L1+R Basic security requirements applicable to all mobile applications with

additional protection against client-side attacks. This verification type

is often used for intellectual property protection or in gaming

industry where it is seen essential to prevent cheating

MASVS L2+R In-depth security requirements applicable to mobile applications

handling sensitive data or functionality, that also require protection

against client-side attacks. Applicable to the applications requiring

state of the art security as well as resilience, such as financial

industry applications and applications that actively use device storage

and payment options, as opposed to delegating them to the server

4.1.2 Structure

OWASP MASVS is grouped into 8 chapters based on objective and scope. Each chapter

consists of a list of security requirements where the first 7 chapters focus on Level 1 and

Level 2 and the last one – on resiliency. Chapters include relevant definitions and

references to testing guides.

4.2 Assigning the verification type

The first step in conducting a security audit is to assign the verification type relevant to

the audited application. To do so the author must identify the desired security level

(MASVS-L1 opposed to MASVS-L2) and whether the resiliency requirement is

applicable.

Since the application does not handle any sensitive data or functionalities, it is reasonable

to stick with MASVS-L1. As per resilience, the application does not hold any valuable

intellectual property, as well as all the data accessed from the application, is publicly

available, therefore the requirements for resiliency are not applicable.

Hence, the assigned verification type is MASVS-L1 which implies basic mobile

application security requirements.

26

4.3 Validating security requirements

Below are presented only the requirements relevant to the MASVS-L1 verification type.

The author is going to analyse the applicability of every requirement to the evaluated

application as well as verify whether the applicable requirements are satisfied.

4.3.1 V1: Architecture, Design and Threat Modelling Requirements

The requirements specific to MASVS-L1 defined in the chapter V1: Architecture, Design

and Threat Modelling Requirements are listed in the Table 4.

Table 4. OWASP MASVS-L1 V1: Architecture, Design and Threat Modelling Requirements.

MSTG-ID Description Applicable Passed

1.1 MSTG-

ARCH-1

All app components are identified and known to be

needed.

yes yes

1.2 MSTG-

ARCH-2

Security controls are never enforced only on the

client side, but on the respective remote endpoints.

yes yes

1.3 MSTG-

ARCH-3

A high-level architecture for the mobile app and all

connected remote services has been defined and

security has been addressed in that architecture.

yes yes

1.4 MSTG-

ARCH-4

Data considered sensitive in the context of the

mobile app is clearly identified.

yes yes

1.12 MSTG-

ARCH-12

The app should comply with privacy laws and

regulations.

yes yes

4.3.1.1 MSTG-ARCH-1 and MSTG-ARCH-3

Both app components and remote services have been identified and described in the

section 3.1. Each of the components has its designated purpose, which leaves the

requirements MSTG-ARCH-1 and MSTG-ARCH-3 satisfied.

4.3.1.2 MSTG-ARCH-2

The remote services accessed by the application include

 Two WordPress-based sites owned by the Läänemaa local government’s

institutions

 Twilio SendGrid REST service for sending emails

 Firestore accessed via Flutter Firestore official library

27

In all the mentioned cases, the security controls are applied to the endpoints utilized by

the mobile application.

4.3.1.3 MSTG-ARCH-4

In the context of MASVS, the following data is considered sensitive [37]:

 Personally identifiable information (PII) that can be abused for identity theft.

 Highly sensitive data that would lead to reputational harm and/or financial costs

if compromised.

 Any data that must be protected by law or for compliance reasons.

Based on the definition, “Läänemaa” application does not collect or interact with any

sensitive data. Hence, the requirement MSTG-ARCH-4 is satisfied.

4.3.1.4 MSTG-ARCH-12

The application complies with Estonian privacy laws and regulations. The privacy policy

of the application is accessible inside the application under the “More” menu [38].

4.3.2 V2: Data Storage and Privacy Requirements

The requirements specific to MASVS-L1 defined in the chapter V2: Data Storage and

Privacy Requirements are listed in the Table 5.

Table 5. OWASP MASVS-L1 V2: Data Storage and Privacy Requirements.

MSTG-ID Description Applicable

2.1 MSTG-

STORAGE-1

System credential storage facilities need to be used to store

sensitive data, such as PII, user credentials or

cryptographic keys.

no

2.2 MSTG-

STORAGE-2

No sensitive data should be stored outside of the app

container or system credential storage facilities.

no

2.3 MSTG-

STORAGE-3

No sensitive data is written to application logs. no

2.4 MSTG-

STORAGE-4

No sensitive data is shared with third parties unless it is a

necessary part of the architecture.

no

2.5 MSTG-

STORAGE-5

The keyboard cache is disabled on text inputs that process

sensitive data.

no

2.6 MSTG-

STORAGE-6

No sensitive data is exposed via IPC mechanisms. no

28

MSTG-ID Description Applicable

2.7 MSTG-

STORAGE-7

No sensitive data, such as passwords or pins, is exposed

through the user interface.

no

As identified in the section 4.3.1.3, no sensitive data is handled by “Läänemaa”

application, hence none of the requirements from the chapter V2: Data Storage and

Privacy Requirements for L1 are deemed applicable.

4.3.3 V3: Cryptography Requirements

The requirements specific to MASVS-L1 defined in the chapter V3: Cryptography

Requirements are listed in the Table 6.

Table 6. OWASP MASVS-L1 V3: Cryptography Requirements.

MSTG-ID Description Applicable

3.1 MSTG-

CRYPTO-1

The app does not rely on symmetric cryptography with

hardcoded keys as a sole method of encryption.

no

3.2 MSTG-

CRYPTO-2

The app uses proven implementations of cryptographic

primitives.

no

3.3 MSTG-

CRYPTO-3

The app uses cryptographic primitives that are appropriate

for the particular use-case, configured with parameters

that adhere to industry best practices.

no

3.4 MSTG-

CRYPTO-4

The app does not use cryptographic protocols or

algorithms that are widely considered deprecated for

security purposes.

no

3.5 MSTG-

CRYPTO-5

The app doesn't re-use the same cryptographic key for

multiple purposes.

no

3.6 MSTG-

CRYPTO-6

All random values are generated using a sufficiently

secure random number generator.

no

“Läänemaa” application does not utilize cryptographic approaches, hence none of the

requirements from the chapter V3: Cryptography Requirements for L1 are applicable.

4.3.4 V4: Authentication and Session Management Requirements

The requirements specific to MASVS-L1 defined in the chapter V4: Authentication and

Session Management Requirements are listed in the Table 7.

29

Table 7. OWASP MASVS-L1 V4: Authentication and Session Management Requirements

MSTG-ID Description Applicable

4.1 MSTG-

AUTH-1

If the app provides users access to a remote service, some

form of authentication, such as username/password

authentication, is performed at the remote endpoint.

no

4.2 MSTG-

AUTH-2

If stateful session management is used, the remote endpoint

uses randomly generated session identifiers to authenticate

client requests without sending the user's credentials.

no

4.3 MSTG-

AUTH-3

If stateless token-based authentication is used, the server

provides a token that has been signed using a secure

algorithm.

no

4.4 MSTG-

AUTH-4

The remote endpoint terminates the existing session when

the user logs out.

no

4.5 MSTG-

AUTH-5

A password policy exists and is enforced at the remote

endpoint.

no

4.6 MSTG-

AUTH-6

The remote endpoint implements a mechanism to protect

against the submission of credentials an excessive number

of times.

no

4.7 MSTG-

AUTH-7

Sessions are invalidated at the remote endpoint after a

predefined period of inactivity and access tokens expire.

no

4.12 MSTG-

AUTH-12

Authorization models should be defined and enforced at the

remote endpoint.

no

“Läänemaa” application does not require users to be authorized to access the application

features; the data accessed by the application is publicly available in read-only mode and

is not secured by access tokens.

Hence, none of the requirements from the chapter V4: Authentication and Session

Management Requirements for L1 are applicable to the analysed application.

4.3.5 V5: Network Communication Requirements

The requirements specific to MASVS-L1 defined in the chapter V5: Network

Communication Requirements are listed in the Table 8.

30

Table 8. OWASP MASVS-L1 V5: Network Communication Requirements

MSTG-ID Description Applicable Passed

5.1 MSTG-

NETWORK-

1

Data is encrypted on the network using TLS. The

secure channel is used consistently throughout

the app.

yes yes

5.2 MSTG-

NETWORK-

2

The TLS settings are in line with current best

practices, or as close as possible if the mobile

operating system does not support the

recommended standards.

yes yes

5.3 MSTG-

NETWORK-

3

The app verifies the X.509 certificate of the

remote endpoint when the secure channel is

established. Only certificates signed by a trusted

CA are accepted.

yes yes

Since the application utilizes exclusively HTTPS protocol, the requirement MSTG-

NETWORK-1 is considered passed.

As per MSTG-NETWORK-2, the minimum allowed TLS version is set to 1.2 as by

default Flutter security context settings [39]. As of January 2021, when the project was

finalized, it was not possible to modify the lowest TLS version from the client code [40].

No self-signed certificates are allowed in the app. Only default trusted root certificates

built into the respective platform [41] are whitelisted. That marks MSTG-NETWORK-3

as passed.

4.3.6 V6: Platform Interaction Requirements

The requirements specific to MASVS-L1 defined in the chapter V6: Platform Interaction

Requirements are listed in the Table 9.

Table 9. OWASP MASVS-L1 V6: Platform Interaction Requirements

MSTG-ID Description Applicable Passed

6.1 MSTG-

PLATFORM-

1

The app only requests the minimum set of

permissions necessary.

yes yes

6.2 MSTG-

PLATFORM-

2

All inputs from external sources and the user

are validated and if necessary sanitized. This

includes data received via the UI, IPC

mechanisms such as intents, custom URLs, and

network sources.

yes yes

31

MSTG-ID Description Applicable Passed

6.3 MSTG-

PLATFORM-

3

The app does not export sensitive functionality

via custom URL schemes unless these

mechanisms are properly protected.

no -

6.4 MSTG-

PLATFORM-

4

The app does not export sensitive functionality

through IPC facilities, unless these mechanisms

are properly protected.

no -

6.5 MSTG-

PLATFORM-

5

JavaScript is disabled in WebView’s unless

explicitly required.

no -

6.6 MSTG-

PLATFORM-

6

WebView’s are configured to allow only the

minimum set of protocol handlers required

(ideally, only https is supported). Potentially

dangerous handlers, such as file, tel and app-id,

are disabled.

no -

6.7 MSTG-

PLATFORM-

7

If native methods of the app are exposed to a

WebView, verify that the WebView only

renders JavaScript contained within the app

package.

no -

6.8 MSTG-

PLATFORM-

8

Object deserialization, if any, is implemented

using safe serialization APIs.

yes yes

4.3.6.1 MSTG-PLATFORM-1

The application requests different sets of permissions on Android and iOS due to the

differences in permission handling between the platforms. On Android, two permissions

are requested: the INTERNET permission is requested at install time and the

WRITE_EXTERNAL_STORAGE permission is requested when user tries to perform an

image uploading action. On iOS, access to library is requested at install time and push

notifications permission is requested during onboarding. Therefore, the requirement is

deemed as satisfied.

4.3.6.2 MSTG-PLATFORM-2

The application does not utilize intents, custom URLs, and external network sources. The

only functionality in the application requiring the user input is a form for communication

with local government – all the inputs in the form are validated to be not empty. No

additional validation mechanisms are implemented to simplify the user flow. The input is

32

passed directly to the SMTP provider. Based on that, the requirement MSTG-

PLATFORM-2 is evaluated as passed.

4.3.6.3 MSTG-PLATFORM-3 and MSTG-PLATFORM-4

As identified in the section 4.3.1.3, “Läänemaa” application does not contain any

sensitive functionality. Hence, the requirements concerning sensitive functionalities

exposure are not applicable.

4.3.6.4 MSTG-PLATFORM-5 to MSTG-PLATFORM-7

“Läänemaa” application contains a way to open web pages, however they are launched

in external browser as opposed to WebView’s inside the app. Since the application does

not make use of WebView’s, the requirements MSTG-PLATFORM-5 to MSTG-

PLATFORM-7 do not apply.

4.3.6.5 MSTG-PLATFORM-8

The application takes advantage of the Google’s “json_serializable” serialization API

[42]. The deserialization is implemented for the data coming from REST API - dining

places, events, and Google Places - all of which are fetched from trusted sources.

Deserialization of data coming from Firebase Storage is performed by the firebase storage

Flutter client and is provided to the application in a shape of a map of strings to dynamic

objects. Based on the information explained above, the requirement MSTG-

PLATFORM-8 is considered as implemented.

4.3.7 V7: Code Quality and Build Setting Requirements

The requirements specific to MASVS-L1 defined in the chapter V7: Code Quality and

Build Setting Requirements are listed in the Table 10.

Table 10. OWASP MASVS L1-V7: Code Quality and Build Setting Requirements

MSTG-ID Description Applicable Passed

7.1 MSTG-

CODE-1

The app is signed and provisioned with a valid

certificate, of which the private key is properly

protected.

yes yes

7.2 MSTG-

CODE-2

The app has been built in release mode, with

settings appropriate for a release build (e.g., non-

debuggable).

yes yes

33

MSTG-ID Description Applicable Passed

7.3 MSTG-

CODE-3

Debugging symbols have been removed from

native binaries.

yes yes

7.4 MSTG-

CODE-4

Debugging code and developer assistance code

(e.g., test code, backdoors, hidden settings) have

been removed. The app does not log verbose

errors or debugging messages.

yes yes

7.5 MSTG-

CODE-5

All third-party components used by the mobile

app, such as libraries and frameworks, are

identified, and checked for known vulnerabilities.

yes yes

7.6 MSTG-

CODE-6

The app catches and handles possible exceptions. yes yes

7.7 MSTG-

CODE-7

Error handling logic in security controls denies

access by default.

yes yes

7.8 MSTG-

CODE-8

In unmanaged code, memory is allocated, freed,

and used securely.

no -

7.9 MSTG-

CODE-9

Free security features offered by the toolchain,

such as bytecode minification, stack protection,

PIE support and automatic reference counting, are

activated.

yes yes

4.3.7.1 MSTG-CODE-1

The Android application is distributed as an application bundle [43] with using V1 and

V2 signing schemes. The iOS application is signed using Apple issued certificates [44].

In both cases, the applications are signed and distributed using the platform recommended

approaches, hence the requirement MSTG-CODE-1 is deemed as satisfied.

4.3.7.2 MSTG-CODE-2

Both the Android and iOS applications are built in release mode with the appropriate

release settings, i.e., minification and proguard in case of Android, hence the requirement

MSTG-CODE-2 is considered satisfied.

4.3.7.3 MSTG-CODE-3

On Android when building with Gradle and on iOS when assembling a distribution build,

debug symbols are removed by default. Hence, the requirement MSTG-CODE-3 is

satisfied.

34

4.3.7.4 MSTG-CODE-4

All the debugging code has been removed from the application before releasing. The

logging is configured to only produce logs in debug builds. Therefore, the requirement

MSTG-CODE-4 is passed.

4.3.7.5 MSTG-CODE-5

The third-party libraries utilized in the application are distributed by reputable developers

and hold to security standards. The author of the thesis has verified the security of the

libraries before making them part of the application code, for this reason the requirement

MSTG-CODE-5 is considered satisfied.

4.3.7.6 MSTG-CODE-6

The exceptions that might occur during the network requests, database operations and

unchecked mappings, are caught and handled. Therefore, the requirement MSTG-CODE-

6 is considered satisfied.

4.3.7.7 MSTG-CODE-7

The error handling logs are handled by Firebase Crashlytics and are only available to the

user authorized in Firebase console. Therefore, the requirement MSTG-CODE-7 is

deemed as satisfied.

4.3.7.8 MSTG-CODE-8

The requirement MSTG-CODE-8 is not applicable in case of “Läänemaa” app, since the

term of “unmanaged code” refers to C/C++ languages, and hence applies to Android NDK

or Xamarin based applications, which is not the case of the analysed Flutter application.

4.3.7.9 MSTG-CODE-9

The default security features offered by the Flutter framework and Android and iOS

building tools are enabled – therefore the requirement MSTG-CODE-9 is met.

4.4 Security audit results

As it was stated in the Problem and background, the development team agreed to use

“Läänemaa” project as an opportunity to test internal development practices for

compliance with basic security requirements.

35

During the security audit for compliance with MASVS-L1, the author evaluated 46

requirements, out of which 19 were deemed as applicable and 19 were marked passed.

According to the numbers, “Läänemaa” application met all the applicable security

requirements, which shows that the company’s development practices provided a

successful outcome.

No security patches were required.

Although the results of the test are highly satisfactory, that might not have been the case

for a more feature rich application. An application handling user authentication and

processing user entered, or sensitive data would require more attention to guidance of

security standards. Developers need to be trained about the basic level security

requirements and security audits must be conducted as part of standard testing process.

36

5 Summary

The purpose of the work was to develop a mobile application for Läänemaa county which

would help to enhance the information flow between the local government and residents

of the county. The application must be available for Android and iOS platforms and must

implement OWASP MASVS mobile security standard.

The author studied available mobile development approaches, compared them, and

selected cross-platform approach as the most suitable for the aim of the project. Flutter

was chosen as the cross-platform framework for its popularity and the way it renders UI

on different platforms.

As a result, the author has developed the application that meets the client’s functional

requirements and follows the UI specifications provided by the design team.

After the implementation phase, the author has conducted a security audit for compliance

with OWASP MASVS security standard. As a result of the audit, it was concluded that

the developed application implements the standard and the client approved it for release.

As a result, the goal of the work was achieved, and the application was successfully

published on the App Store and Google Play Store (see Appendix 2 for information).

After closing the project, the client has contacted the company where the author is

employed for minor fixes, as well as presented some ideas for new features. Next

development phase is currently in the process of negotiation.

37

References

[1] FOB Solutions homepage. Available: https://www.fob-solutions.com. [Accessed 21

December 2021].

[2] Rethink homepage. Available: https://rethink.ee. [Accessed 21 December 2021].

[3] Events in Läänemaa homepage. Available: https://midateha.visithaapsalu.com. [Accessed

21 December 2021].

[4] Läänemaa tourism homepage. Available: https://www.visithaapsalu.com. [Accessed 21

December 2021].

[5] Rakesh Patel, “Different Types of Mobile Apps?”, 2021. Available:

https://www.spaceo.ca/types-of-mobile-apps/. [Accessed 16 December 2021].

[6] Clearbridge Mobile, “A Guide to Mobile App Development: Web vs. Native vs. Hybrid”,

2020. Available: https://clearbridgemobile.com/mobile-app-development-native-vs-web-vs-

hybrid/. [Accessed 16 December 2021].

[7] Satinder Singh, “Native vs Hybrid vs Cross Platform – What to Choose in 2022?”, 2021.

Available: https://www.netsolutions.com/insights/native-vs-hybrid-vs-cross-platform/.

[Accessed 16 December 2021].

[8] Linda Rosencrance, “Google Firebase”, 2019. Available:

https://searchmobilecomputing.techtarget.com/definition/Google-Firebase. [Accessed 26

December 2021].

[9] Taavi Rehemägi, “Firebase vs AWS – Is It Even a Fair Fight?”, 2020. Available:

https://dashbird.io/blog/aws-lambda-vs-firebase/. [Accessed 26 December 2021].

[10] Firebase Firestore. Available: https://firebase.google.com/products/firestore. [Accessed

26 December 2021].

[11] Firebase Cloud Storage. Available: https://firebase.google.com/products/storage.

[Accessed 26 December 2021].

[12] Firebase Cloud Functions. Available: https://firebase.google.com/products/functions.

[Accessed 26 December 2021].

[13] Firebase Cloud Messaging. Available: https://firebase.google.com/products/cloud-

messaging. [Accessed 26 December 2021].

[14] Firebase Crashlytics. Available: https://firebase.google.com/products/crashlytics.

[Accessed 26 December 2021].

[15] Firebase Analytics. Available: https://firebase.google.com/products/analytics.

[Accessed 26 December 2021].

[16] Flamelink homepage. Available: https://flamelink.io. [Accessed 26 December 2021].

[17] Twilio SendGrid homepage. Available: https://www.twilio.com/sendgrid/email-api.

[Accessed 26 December 2021].

[18] BLoC pattern homepage. Available: https://bloclibrary.dev/. [Accessed 26 December

2021].

[19] BLoC project homepage. Available: https://pub.dev/packages/bloc. [Accessed 26

December 2021].

https://www.fob-solutions.com/
https://rethink.ee/
https://midateha.visithaapsalu.com/
https://www.visithaapsalu.com/
https://www.spaceo.ca/types-of-mobile-apps/
https://clearbridgemobile.com/mobile-app-development-native-vs-web-vs-hybrid/
https://clearbridgemobile.com/mobile-app-development-native-vs-web-vs-hybrid/
https://www.netsolutions.com/insights/native-vs-hybrid-vs-cross-platform/
https://searchmobilecomputing.techtarget.com/definition/Google-Firebase
https://dashbird.io/blog/aws-lambda-vs-firebase/
https://firebase.google.com/products/firestore
https://firebase.google.com/products/storage
https://firebase.google.com/products/functions
https://firebase.google.com/products/cloud-messaging
https://firebase.google.com/products/cloud-messaging
https://firebase.google.com/products/crashlytics
https://firebase.google.com/products/analytics
https://flamelink.io/
https://www.twilio.com/sendgrid/email-api
https://bloclibrary.dev/
https://pub.dev/packages/bloc

38

[20] Flutter BLoC project homepage. Available: https://pub.dev/packages/flutter_bloc.

[Accessed 26 December 2021].

[21] Flutter Retrofit project homepage. Available: https://pub.dev/packages/retrofit.

[Accessed 28 December 2021].

[22] Dio project homepage. Available: https://pub.dev/packages/dio. [Accessed 28

December 2021].

[23] Retrofit project homepage. Available: https://square.github.io/retrofit/. [Accessed 28

December 2021].

[24] Floor project homepage. Available: https://pub.dev/packages/floor. [Accessed 28

December 2021].

[25] Room project homepage. Available:

https://developer.android.com/jetpack/androidx/releases/room. [Accessed 28 December

2021].

[26] FlutterFire homepage. Available: https://firebase.flutter.dev. [Accessed 2 January

2022].

[27] Firebase Core Flutter plugin homepage. Available:

https://pub.dev/packages/firebase_core. [Accessed 14 December 2021].

[28] Cloud Firestore Flutter plugin homepage. Available:

https://pub.dev/packages/cloud_firestore. [Accessed 14 December 2021].

[29] Firebase Storage Flutter plugin homepage. Available:

https://pub.dev/packages/firebase_storage. [Accessed 14 December 2021].

[30] Firebase Messaging Flutter plugin homepage. Available:

https://pub.dev/packages/firebase_messaging. [Accessed 14 December 2021].

[31] Firebase Analytics Flutter plugin homepage. Available:

https://pub.dev/packages/firebase_analytics. [Accessed 14 December 2021].

[32] Firebase Crashlytics Flutter plugin homepage. Available:

https://pub.dev/packages/firebase_crashlytics. [Accessed 14 December 2021].

[33] Open Web Application Security Project, “About the OWASP Foundation”. Available:

https://owasp.org/about/. [Accessed 26 December 2021].

[34] OWASP - Projects. Available: https://owasp.org/projects/. [Accessed 26 December

2021].

[35] OWASP MASVS Github page. Available: https://github.com/OWASP/owasp-masvs.

[Accessed 26 December 2021].

[36] OWASP Mobile Security Testing Guide, “Mobile App Security Requirements and

Verification”, 2021. [Online]. Available https://owasp.org/www-project-mobile-security-

testing-guide/. [Accessed 26 December 2021].

[37] Open Web Application Security Project, “OWASP MASVS 1.3”, 2021. Available:

https://github.com/OWASP/owasp-masvs/releases/download/v1.3/OWASP_MASVS-1.3-

en.pdf. [Accessed 26 April 2021].

[38] Läänemaa privacy policy page. Available: https://laanemaa.ee/privaatsustingimused/.

[Accessed 02 January 2021].

[39] Dart language source code, “Context security”. Available: https://github.com/dart-

lang/sdk/blob/bbde6ba9b3c8ef4b86c5096d3b836c6490eca280/runtime/bin/security_context

.cc#L810. [Accessed 26 December 2021].

https://pub.dev/packages/flutter_bloc
https://square.github.io/retrofit/
https://pub.dev/packages/firebase_crashlytics
https://owasp.org/projects/
https://github.com/OWASP/owasp-masvs
https://laanemaa.ee/privaatsustingimused/

39

[40] Dart SDK issues, “SecurityContext with minimal protocol version”. Available:

https://github.com/dart-lang/sdk/issues/37173. [Accessed 26 December 2021].

[41] Flutter API documentation, “Security Context – defaultContext property”. Available:

https://api.flutter.dev/flutter/dart-io/SecurityContext/defaultContext.html. [Accessed 24

December 2021].

[42] Json Serializable plugin homepage. Available:

https://pub.dev/packages/json_serializable. [Accessed 24 December 2021].

[43] Android documentation – App Bundle. Available:

https://developer.android.com/guide/app-bundle. [Accessed 24 December 2021].

[44] Apple documentation – Certificates. Available:

https://developer.apple.com/support/certificates/. [Accessed 24 December 2021].

https://github.com/dart-lang/sdk/issues/37173
https://pub.dev/packages/json_serializable
https://developer.android.com/guide/app-bundle
https://developer.apple.com/support/certificates/

40

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis

I Lita Kornilova

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis " Building a secure mobile application for Läänemaa county ", supervised by Priidu

Paomets

1.1. to be reproduced for the purposes of preservation and electronic publication of the

graduation thesis, incl. to be entered in the digital collection of the library of Tallinn

University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be entered

in the digital collection of the library of Tallinn University of Technology until expiry of

the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act or

rights arising from other legislation.

03.01.2022

41

Appendix 2 – Screenshots of “Läänemaa” mobile application

Figure 3. Events screen in “Läänemaa” application

Figure 4. Dining places screen in “Läänemaa” application

42

Figure 5. News screen in “Läänemaa” application

Figure 6. Services screen in “Läänemaa” application

43

Figure 7. Contacts details view in “Läänemaa” application

Figure 8. Notice form screen in “Läänemaa” application

44

Figure 9. Transport screens: (a) list view, (b) content view in “Läänemaa” application

Figure 10. Favourites screen in “Läänemaa” application

(a) (b)

45

Figure 11. Notification settings screen in “Läänemaa” application

Figure 12. Onboarding region screen in “Läänemaa” application

46

Appendix 2 – Mobile application in Play Store and App Store

The mobile application was uploaded to the Google Play Store and iOS App store under

the name “Läänemaa”, published by SA Läänemaa. It is available on the following URLs:

 https://apps.apple.com/sa/app/läänemaa/id1542797570

 https://play.google.com/store/apps/details?id=ee.laanemaa

https://apps.apple.com/sa/app/läänemaa/id1542797570

	Author’s declaration of originality
	Abstract
	Annotatsioon
	List of abbreviations and terms
	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Problem and background
	1.2 Goals
	1.2.1 Functional requirements
	1.2.1.1 Events
	1.2.1.2 Dining places
	1.2.1.3 News
	1.2.1.4 Services
	1.2.1.5 Contacts
	1.2.1.6 Government notice
	1.2.1.7 Transportation
	1.2.1.8 Favourites

	1.3 Methodology
	1.4 Thesis overview

	2 Technologies
	2.1 Mobile development approaches
	2.2 Cross-platform mobile frameworks

	3 Implementation
	3.1 High level architecture
	3.1.1 “Läänemaa” application
	3.1.2 Midateha.visithaapsalu.com
	3.1.3 Visithaapsalu.com
	3.1.4 Firebase services
	3.1.4.1 Firestore
	3.1.4.2 Firebase storage
	3.1.4.3 Cloud functions for Firebase
	3.1.4.4 Firebase Cloud Messaging
	3.1.4.5 Firebase Crashlytics
	3.1.4.6 Firebase Analytics

	3.1.5 Flamelink
	3.1.6 Twilio SendGrid

	3.2 Third-party libraries
	3.2.1 BLoC and Flutter BLoC
	3.2.2 Retrofit.dart
	3.2.3 Floor
	3.2.4 FlutterFire libraries

	4 Security audit
	4.1 Overview of OWASP MASVS
	4.1.1 Verification types
	4.1.2 Structure

	4.2 Assigning the verification type
	4.3 Validating security requirements
	4.3.1 V1: Architecture, Design and Threat Modelling Requirements
	4.3.1.1 MSTG-ARCH-1 and MSTG-ARCH-3
	4.3.1.2 MSTG-ARCH-2
	4.3.1.3 MSTG-ARCH-4
	4.3.1.4 MSTG-ARCH-12

	4.3.2 V2: Data Storage and Privacy Requirements
	4.3.3 V3: Cryptography Requirements
	4.3.4 V4: Authentication and Session Management Requirements
	4.3.5 V5: Network Communication Requirements
	4.3.6 V6: Platform Interaction Requirements
	4.3.6.1 MSTG-PLATFORM-1
	4.3.6.2 MSTG-PLATFORM-2
	4.3.6.3 MSTG-PLATFORM-3 and MSTG-PLATFORM-4
	4.3.6.4 MSTG-PLATFORM-5 to MSTG-PLATFORM-7
	4.3.6.5 MSTG-PLATFORM-8

	4.3.7 V7: Code Quality and Build Setting Requirements
	4.3.7.1 MSTG-CODE-1
	4.3.7.2 MSTG-CODE-2
	4.3.7.3 MSTG-CODE-3
	4.3.7.4 MSTG-CODE-4
	4.3.7.5 MSTG-CODE-5
	4.3.7.6 MSTG-CODE-6
	4.3.7.7 MSTG-CODE-7
	4.3.7.8 MSTG-CODE-8
	4.3.7.9 MSTG-CODE-9

	4.4 Security audit results

	5 Summary
	References
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis
	Appendix 2 – Screenshots of “Läänemaa” mobile application
	Appendix 2 – Mobile application in Play Store and App Store

