
Tallinn 2018

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Department of Software Science

Valentin Popov 142421IAPB

TIME TRACKING WEB APPLICATION

Bachelor’s thesis

Supervisor: Deniss Kumlander

 PhD

Tallinn 2018

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Tarkvarateaduse instituut

Valentin Popov 142421IAPB

TÖÖAJA JÄLGIMISE VEEBIRAKENDUS

bakalaureusetöö

Juhendaja: Deniss Kumlander

 PhD

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Valentin Popov

19.05.2018

4

Abstract

The aim of this thesis is to investigate new solution including technology stack selection

for Unit4 Eesti OÜ, to migrate from Excel sharing document to a web platform. And then

use it for working time tracking and other features like dashboard, statistics and reports.

As the result of the work will be full stack web application including front-end and back-

end working code. It allows users to keep their working hours on server, edit them, see

statistics and stay calm for data safety. Application provides great opportunities for

further expansion of the functionality. The application is made for any screen size and

very easy to use.

During project development researched many JS dashboard libraries and further

implementation with Vue.js.

This thesis is written in English and is 42 pages long, including 5 chapters, 29 figures and

3 tables.

5

Annotatsioon

Käesoleva bakalaureusetöö eesmärgiks on uurida uut lahendust, sealhulgas Unit4 Eesti

OÜ tehnoloogiakogumi valikut, et minna Exceli dokumentide vahetamisest

veebipõhiseks platvormiks. Ja siis kasutada seda, et jälgida tööaega ja teisi funktsioone,

nagu tööriistapaneel, statistika ja aruanded.

Töö tulemusena saab kogu veebirakendus, sealhulgas kasutajaliidese ja serveri töökood.

See võimaldab kasutajatel salvestada oma tööaega serveril, muuta neid, vaadata statistikat

ja olla rahulik andmete turvalisuse tagamise küsimuses. Rakendus pakub suuri võimalusi

funktsionaalsuse edasiseks laiendamiseks. Rakendus on tehtud ükskõik mis suurusega

ekraani jaoks ja on väga lihtne kasutamises.

Projekti väljatöötamisel uuriti paljude raamatukogude JS-juhtpaneelid ja edasine

realiseerimine Vue.js-ga.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 42 leheküljel, 5 peatükki, 29

joonist, 3 tabelit.

6

List of abbreviations and terms

JSON JavaScript Object Notation

TUT

HTML

API

AJAX

REST

JS

CSS

DataTable

Tallinn University of Technology

HyperText Markup Language

Application Programming Interface

Asynchronous Javascript and XML

Representational State Transfer

JavaScript

Cascading Style Sheet

Plugin for the jQuery Javascript library

jQuery JavaScript library

SharePoint

NPM

Gmail

Blowfish

Brute force

SPA

UX

UI

JSX

ES6

HTTP

CLI

Gmail

SharePoint is a web-based, collaborative platform that

integrates with Microsoft Office

Package manager for the JavaScript programming language

Free, advertising-supported email service developed by Google

Symmetric-key block cipher

Cyberattack consists of an attacker trying

many passwords or passphrases

Single Page Application

User Experience

User Interface

Extension to the JavaScript language syntax

ECMAScript 6

The Hypertext Transfer Protocol

Command line interface

Google Mail

https://en.wikipedia.org/wiki/Package_manager
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Advertising
https://en.wikipedia.org/wiki/Email
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Symmetric-key_algorithm
https://en.wikipedia.org/wiki/Block_cipher
https://en.wikipedia.org/wiki/Password
https://en.wikipedia.org/wiki/Passphrase

7

Table of contents

1 Introduction ... 11

1.1 Background and Problem ... 11

1.2 Ready solutions... 12

2 Requirements ... 13

2.1 Functional ... 13

2.2 Non-functional .. 13

3 Used technologies .. 15

3.1 SPA ... 15

3.2 SPA Architecture .. 15

3.2.1 MVC .. 15

3.2.2 MVVM .. 16

3.3 Front end as Vue.js ... 17

3.3.1 Additional Vue.js libraries ... 18

3.4 Back end as Node.js.. 19

3.4.1 Additional Node.js libraries ... 19

3.5 Database as MongoDB ... 20

4 Application Development .. 21

4.1 Application overall architecture ... 21

4.2 Use case models.. 22

4.3 Application security .. 24

4.3.1 Storing password using Bcrypt .. 24

4.3.2 Data transferring using JWT ... 25

4.4 Server-side implementation .. 26

4.4.1 Server-side architecture ... 27

4.4.2 Server-side project files structure .. 28

4.4.3 Entity relationship model .. 29

4.4.4 Application REST endpoints ... 30

4.5 Client-side implementation... 30

8

4.5.1 Application design ... 30

4.5.2 Vue.js concept ... 32

4.5.3 Client-side overall architecture .. 33

4.5.4 Client-side project files structure ... 34

4.5.5 Components ... 35

4.5.6 Application components hierarchy .. 36

4.5.7 Components overview ... 36

4.6 Future development .. 40

5 Summary .. 41

References .. 42

9

List of figures

Figure 1: MVC ... 16

Figure 2: MVVM .. 16

Figure 3: Vue.js logo .. 17

Figure 4: Node.js logo .. 19

Figure 5: mongoDB logo .. 20

Figure 6: Application overall architecture .. 21

Figure 7: Data managing use case diagram .. 22

Figure 8: Account managing use case diagram .. 23

Figure 9: JSON Web Token diagram ... 25

Figure 10: Server-side architecture... 27

Figure 11: Server-side project files structure ... 28

Figure 12: User mongoDB Schema .. 28

Figure 13: API remove record example ... 29

Figure 14: Entity relationship model .. 29

Figure 15: Application desktop view ... 31

Figure 16: Application mobile view ... 32

Figure 17: Vue.js concept ... 32

Figure 18: Client-side overall architecture ... 33

Figure 19: Client-side project files structure .. 34

Figure 20: API methods export .. 35

Figure 21: API Server URI example .. 35

Figure 22: Application components hierarchy ... 36

Figure 23: Login page view .. 37

Figure 24: Sign up page view ... 37

Figure 25: Sidebar view .. 38

Figure 26: Dashboard page view .. 38

Figure 27: Tasks table view .. 39

Figure 28: Task create modal view .. 39

Figure 29: Settings page view .. 40

10

List of tables

Table 1: Data managing table ... 23

Table 2: Account managing table ... 24

Table 3: Application REST endpoints .. 30

11

1 Introduction

Nowadays web development goes very quickly due to increasing number of different

frameworks and tools that allow to develop front end and back end more faster and more

efficiently. This fact allows us to change all view logic to client side and use our server

much less. As the result, applications can be more scalable, flexible to many devices

display size, faster and so on. Selecting the correct technology stack can make or break a

project. Sometimes, the dream to use the most fresh and new technology leads to make

bad decisions in this selection. Through this thesis, there will be explained and showed

which technologies were picked and why.

1.1 Background and Problem

In different field of human’s work, companies count hours, which workers spend and

keep by this way their progress and whole way of business development. For example

Unit4 Eesti OÜ has to record and keep data of every employee, to track how many hours

do they spend on different fields of their work, which takes place in Microsoft Excel

documents, which always shared between workers. This method has a lot of

disadvantages:

• Small amount of the devices where it can be opened

• Hard to keep and manipulate data

• Currently access from SharePoint not very reliable, one user blocks another

• Excel starts fail due large number of format

• Old technology

In this thesis will be discovered and apply new solution for this task by creating full-

stack Single Web Application (SPA).

12

1.2 Ready solutions

• Google Docs – is a free Web-based application in which documents and

spreadsheets can be created, edited, and stored online. Files can be accessed from

any computer with an Internet connection and a full-featured Web browser. But

using gmail account is a must, none of scalability, keeping private data, and

custom features.

• Rent third-party software – is one of the fastest way to solve a problem, but in

this case the client has to pay annually or monthly, overpriced unnecessary

functions as well, as Unit4 do not want to share their data with third-party

companies.

13

2 Requirements

Potential users of this application are R&D team members.

2.1 Functional

• Authentication should be done with email and password

• User has to have ability to create a new record in table

• User has to have ability to edit any record in table

• User has to have ability to remove any record in table

• User has to have ability to show different number of records per page in table

• Table should be filterable by cells, user might have mixing filterable queries

• User should see basic statistics of hours spend annually by months and field of

work

• User has to have ability to change password and email inside the application

2.2 Non-functional

• Application has to have an API

• Application has to be scalable for future development

• User data has to be secured

• Application has to use JSON Web Token for server communication

• Application has to use one of the following JS framework: Angular.js , Vue,js or

React

• Application has to be responsive to any display size

• Application has to store data in database

14

• Data has to be showed with DataTables

These requirements are full, practical, unique and necessary.

15

3 Used technologies

3.1 SPA

Single-page application is a web application or website that works by dynamically

rewriting code on front-end without downloading entire new page from server. This way

user loses interruptions from loading data and application behaves like desktop one.

Interaction with the single page app often has dynamic communication with the server

behind the scenes – SPA.

3.2 SPA Architecture

First of all, we will examine different web application architectures in order to fully

understand difference between various approaches and eventually comprehend the nature

of Single Page Applications.

3.2.1 MVC

One of the most popular architecture gives us ability to divide code of application by three

parts: Model, View, Controller. The first time it was described in 1979 year. Partitioning

allows you to simplify a large code in terms of volume. If the code is written with one

long script, it becomes difficult to understand it, and it's hard to make changes without

making an error. MVC is not tied to any particular programming language.

16

Figure 1: MVC

Partitioning here does not mean that there should be exactly 3 files in the code (or 3 file

folders, or 3 classes) with the names model, view and controller. MVC does not tell us

anything about how to organize code files. In practice, the model often occupies the bulk

of the application, and is represented in the form of large number of different types of

classes - entities, services, database classes, and separate folders for each class.

3.2.2 MVVM

MVVM was introduced in 2005 as modification of Presentation Model. It is used to

separate the model and its representation, which is necessary to change them separately

from each other. For example, the developer specifies the logic of working with data, and

the designer accordingly works with the user interface.

Figure 2: MVVM

17

Characteristics of MVVM

• Model - just as in the classic MVC, the Model is the logic of working with data

and a description of the fundamental data needed to run the application.

• View - this is a graphical interface, that is, a window, buttons, etc. The view is a

subscriber to the event of changing property values or commands provided by

the View Model. On the event that a property has changed in the ViewModel, it

notifies all subscribers about it, and the View in turn requests an updated

property value from the ViewModel. On the event that the user is working on an

element of the interface, the View invokes the appropriate command provided

by the View Model.

• View - is, on the one hand, the abstraction of Representation, and on the other

hand, provides a wrapper of data from the Model that is to be bound. That is, it

contains a Model that is converted to a View which also contains the commands

that the View can use to influence the Model.

3.3 Front end as Vue.js

Figure 3: Vue.js logo

This is a framework for creating user interfaces. Unlike monolithic frameworks, Vue is

designed for gradual implementation. Its core primarily solves the tasks of the

presentation level (view), which simplifies integration with other libraries and existing

projects. On the other hand, Vue is completely suitable for creating complex single-page

applications (SPA, Single-Page Applications), if used in conjunction with modern tools

and additional libraries. The purpose of creating Vue.js is to provide an easy-to-learn,

universal, powerful, easily supported and tested JavaScript framework.

18

Vue.js also aims to be progressive; this means that if you already have a ready project,

then Vue support can easily be added to this project, thereby expanding the functionality

and interactivity of the existing application.

Vue uses MVVM pattern.

Latest version of Vue is Vue.js 2.0, which was released in 2016 year. Now Vue has virtual

DOM, server-side rendering, ability to use JSX and other useful things.

What is advantage of Vue.js?

• Small Size of framework – Vue ecosystem small and fast, it weight under 20

kilobytes after gzipping. By the way user can separate the template-to-virtual-

DOM compiler and run time.

• Simple integration – Vue is very easy for developing SPA even including it in a

existing application.

• Flexibility - Vue can easy handle applications with JSX, EX6, routing and

handling

• Full documentation in Russian.

3.3.1 Additional Vue.js libraries

These additional libraries are used in application.

• Vue-router – is an official Vue.js supported library for easy routing configuration

of the SPA

• Vuex – is a state management pattern and library. It serves as a centralized store

for all the components in an application.

• Vue2-datatable-component – is a popular open-source DataTable library for

Vue.js.

• Vue-js-modal – is an open-source model component for Vue.js.

19

3.4 Back end as Node.js

Figure 4: Node.js logo

Node.js is a server platform for working with JavaScript through the V8 engine.

JavaScript executes the action on the client side, and the Node on the server. With Node,

you can write full-fledged applications. Node can work with external libraries, invoke

commands from JavaScript code, and act as a web server

What is the advantage of Node.js?

• JSON API - Non-blocking input/output and JavaScript make Node an excellent

option for writing a wrapper around a database or a web service that

communicates with the client in JSON format.

• NPM - Being an open-source technology, node.js has a shared repository of pre-

made tools and modules. The number of modules in the Node Package Manager

(NPM) increases everyday

• Real-time web applications - The event-driven architecture of node.js is

appropriate for real-time applications

• Speed of work - Node.js uses JavaScript in the backend, and that’s enough to

understand how fast the codes works and compile. Also, it runs on the Google’s

V8 Engine, which compiles the JavaScript directly into machine code making it

faster than most.

3.4.1 Additional Node.js libraries

These additional libraries are used in application.

• Express.js – is a popular and big web application framework for Node.js,

implemented as open-source, which serves to create Web application and API’s.

20

• Body-parser - is an open-source library, which helps to parse incoming request

bodies in a middleware before your handlers.

• Mongoose - This is a JavaScript library, often used in the Node.js application with

the MongoDB database. Simply, it is a object modeling tool designed to work in

an asynchronous environment.

3.5 Database as MongoDB

Figure 5: mongoDB logo

MongoDB implements a new approach to building databases, where there are no tables,

schemas, SQL queries, foreign keys, and many other things that are inherent in object-

relational databases.

• MongoDB is classified as a NoSQL database.

• MongoDB uses JSON-like documents with schemas.

• MongoDB supports field, range queries, regular expression searches.

Using this database with combination of server-side Node.js and client-side Vue.js gives

a lot of features, because there are a lot of additional modules in NPM.

https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Database_schema

21

4 Application Development

The current version of project source code is accessible on GitHub:

https://github.com/Firrero/vue-dashboard

In order to access to all features, strongly recommended to use latest version of any

browsers (at least ES5).

4.1 Application overall architecture

A general description of the architecture shows the main component that the system owns.

Also, these components are described more deeply in this thesis.

Figure 6: Application overall architecture

https://github.com/Firrero/vue-dashboard

22

4.2 Use case models

The following use case diagram describes use cases that are related to data managing:

Figure 7: Data managing use case diagram

In this table ‘Record’ means an entity which DataTable consists of.

Use case Description

Add record Authenticated user can add record to

DataTable.

Remove record Authenticated user can remove record from

DataTable.

Column visibility Authenticated user can change the visibility of

cells in DataTable.

Filter Authenticated user can filter cells ascending

and descending.

23

Record per page Authenticated user can change the number of

record to see per one page.

Update table Authenticated user can manually update

DataTable

Edit record Authenticated user can choose record and edit

any filed of it.

Table 1: Data managing table

The following use case diagram describes use cases that are related to account managing:

Figure 8: Account managing use case diagram

24

User case Description

User registration Anybody can register a new user

User authentication In order to log in, User must provide valid

credential data. Email and password

User password update Authenticated user can change his password

in user options menu

User email update Authenticated user can change his email in

user options menu

Table 2: Account managing table

4.3 Application security

The security of web applications is one the most important part of an application. Indeed,

modern business processes and everyday life – more and more depends on the use of web

applications in a variety of aspects: from complex infrastructural systems to IOT devices.

Nevertheless, specialized tools for protecting Web applications are rather small, for the

most part this task is assigned to developers. This and the use of various frameworks

means of sanitation, data cleaning, normalization and much more. Nevertheless, even

with the use of these tools, the web did not become safer, moreover, all the vulnerabilities

of the ‘classic web’ practically migrated to mobile development almost unchanged. In

this thesis will be described main topics and basics methods of data security of a

developed application.

4.3.1 Storing password using Bcrypt

Bcrypt is an adaptive cryptographic key change function used for securely storing

passwords and developed by Niels Provos and David Mazier. The function is based on

the Blofwish cipher. To protect against attacks using rainbow tables, bcrypt uses salt. In

addition, the function is adaptive, its operation time is easy to configure and it can be

slowed down to complicate the attack by brute force

25

More over using and hashing bcrypt with Node.js is very easy. Npm has a lot of modules

to use.

4.3.2 Data transferring using JWT

JSON Web Token (JWT) – is a JSON object that is defined in the open standard RFC

7519. It is considered one of the safe ways of transferring information between two

participants. To create it, you need to define a header with general information on the

token, payload, such as the user id, its role, etc. and a signature.

Figure 9: JSON Web Token diagram

The application uses JWT to verify user authentication in this way:

• First, the user enters the authentication server using an authentication key (email,

password pair).

• The authentication server then creates the JWT and sends it to the user.

• When a user makes a request to the application API, he add the JWT previously

received to it.

26

• When a user makes an API request, the application can check whether the user

submitted the JWT with request is the valid user or not. In this scheme, the

application server is configured so that it can check whether the incoming JWT is

exactly what was created by the authentication services.

Structure of JWT consists of three parts: header, payload, signature. The module which

is used in application already has a header options (algorithm - HS256) and ready out of

the box to make signature by itself. In this way it needs only payload data, which can be

email, username, password.

4.4 Server-side implementation

The server-side of the application is implemented by using Node.js based server, which

uses Express.js framework for HTTP request processing and API creation. MongoDB is

used as a database of an application.

27

4.4.1 Server-side architecture

Figure 10: Server-side architecture

28

4.4.2 Server-side project files structure

Figure 11: Server-side project files structure

App.js – is a core file on the server, all server configuration like Express.js settings, API

and so on locate there.

Models folder contains two files: record.js and user.js. These files describe MongoDB

data model schema.

const user = mongoose.Schema({
 _id: mongoose.Schema.Types.ObjectId,
 email: {type: String, required: true},
 password: {type: String, required: true},
 userId: {type: String, required: true}
});

Figure 12: User mongoDB Schema

29

Routes folder contains two files as well: record-route.js and user.route.js. These files are

responsible for API request processing routes.

router.post('/removeRecord', function (req, res) {
 var uid = req.body.uid;
 jwt.verify(req.body.token, 'secret', function (err, decoded) {
 if (err) {
 res.status(500).json({
 error: err
 });
 } else {
 if (uid) {
 Record.remove({$or: [{"uid": uid}]}, function (err, removed) {
 res.status(200).json({
 success: 'Record removed'
 });
 });
 }
 }
 })
});

Figure 13: API remove record example

4.4.3 Entity relationship model

An entity–relationship model describes interrelated things of interest in a specific domain

of knowledge.

Figure 14: Entity relationship model

30

4.4.4 Application REST endpoints

URL HTTP Verb POST Body Use case

/api/record/create POST JSON Object Create record or

Edit record

/api/record/removeRecord POST JSON Object Remove record

/api/record/getRecord POST JSON Object Update DataTable

/api/record/getStatistics POST JSON Object

/api/user/signup POST JSON Object User registration

/api/user/signin POST JSON Object User

authentication

/api/user/editUser POST JSON Object User email update

or User password

update

Table 3: Application REST endpoints

4.5 Client-side implementation

The client-side of the application is implemented by using Vue.js framework.

4.5.1 Application design

Design is one of the most important part of any product. An application design that has a

stunning look and feel is a result of efficient UX and UI work.

 While creating this application, there were exact requirements:

• Fully responsive – an application must work on any devices with a different

display size

31

• Simple and easy access – the design must be very easy to understand, and user dot

not need too much explanation

• Elegant visual appearance – a well-designed interface including colors, and fonts

Taking all these factors, it was decided to use the dashboard style template. There are a

lot open-source dashboard/control panel templates, but in this application is used one

theme called AdminLTE.

Figure 15: Application desktop view

AdminLTE is an open-source admin dashboard theme. Built with Bootstrap 3, jQuery,

Font-Awesome libraries. It is fully customizable and easy to use.

32

Figure 16: Application mobile view

4.5.2 Vue.js concept

Vue.js is focused on the ViewModel layer of the MVVM pattern, which was mentioned

in previous chapters.

Figure 17: Vue.js concept

Vue connects the View with two-way data bindings. Dom manipulations and output

formatting are abstracted away into Directives.

33

ViewModel is an object that syncs the Model and the View. In Vue.js, every Vue instance

is a ViewModel.

View is the actual DOM that is managed by Vue instances.

Model is a modified plain JS object.

Directives is a prefixed HTML attributes that tell Vue.js how to manage DOM element.

4.5.3 Client-side overall architecture

Figure 18: Client-side overall architecture

All from this architecture was described in previous chapters instead of two things:

34

• Vuex – is a state management pattern with library for Vue.js. It works as a

centralized store for all the components in an application, with rules ensuring that

the state can only be mutated in a predictable form.

• Axios – is a promise-based HTTP client for browser and Node.js.

4.5.4 Client-side project files structure

Figure 19: Client-side project files structure

Application project is created using Vue.js official CLI. Build, config, test folders are

created automatically. More detailed information can be found by this url:

https://github.com/vuejs/vue-cli/blob/dev/docs/README.md

https://github.com/vuejs/vue-cli/blob/dev/docs/README.md

35

Api folder contains Axios plugin configuration JS file.

export default {
 request (method, uri, data = null) {
 if (!method) {
 console.error('API function call requires method argument')
 return
 }

 if (!uri) {
 console.error('API function call requires uri argument')
 return
 }

 var url = config.serverURI + uri
 return axios({ method, url, data })
 }
}

Figure 20: API methods export

Components folder contains all Vue.js components and views.

Config folder contains server URI information.

export default {
 serverURI: 'http://localhost:8081/api',
 fixedLayout: false,
}

Figure 21: API Server URI example

Store folder contains four Vuex files with all actions, mutations, states. Vuex is

described in previous chapters.

Main.js file is the main file on the application, it contains root element creation, Vue-

router registration and project files importation.

Router.js contains all routes and dependencies for vue-router.

4.5.5 Components

Vue.js component is every Vue instance. Components form tree like hierarchy that shows

your application interface.

36

4.5.6 Application components hierarchy

Figure 22: Application components hierarchy

4.5.7 Components overview

App.vue – this component is the core element of components tree. It contains vue-router

entrance to the application.

404.vue – a component for displaying HTTP 404 error.

37

Login.vue – login form display component.

Figure 23: Login page view

Signup.vue – registration form display component.

Figure 24: Sign up page view

SidebarMenu.vue – contains menu links to other components.

38

Sidebar.vue – is the sidebar of the application, including user display name, user avatar,

search in menu field, online status and SidebarMenu.vue.

Figure 25: Sidebar view

Dash.vue – takes a role of content-container of the application, it contains toggle menu

navigation with Sidebar.vue, user avatar, header and vue-router entrance for other

elements.

Dashboard.vue – is a component for statistics and other useful information display. This

is the first view, which user sees.

Figure 26: Dashboard page view

39

Timesheet.vue – is a component where user works with DataTable. Create, edit, remove

data in it.

Figure 27: Tasks table view

Figure 28: Task create modal view

40

Setting.vue – is a component where user can change email and password.

Figure 29: Settings page view

4.6 Future development

• Admin user – who can remove, create, edit any of users and their data.

• Detailed statistics – more detailed statistics with reports.

• User notifications and messages – important user notification from administrator

or personal messages about tasks.

41

5 Summary

The main goal of this thesis was to discover and apply a new solution for task given by

Unit4 Eesti OÜ with all functional and non-functional requirements. During this thesis

there have been reviewed a lot of aspects of Single Page Application specifically Vue.js

such as project initialization, modules organization, Vue.js application architecture,

integration with third-party JavaScript libraries.

The back end of the application went through development as well, there were reviewed

different back end frameworks and databases, finally we have Node.js and mongoDB as

a database.

As the result the final product is a full stack web application, running with Vue.js on front

end and Node.js with mongoDB including all requirements of functionality like mobile-

responsive, fast, safe and independent.

42

References

[1] E. You, “Vue.js introduction docs,” vue.js, 2014. [WWW]. Available:

https://vuejs.org/v2/guide/. [Accessed 10 May 2018].

[2] Wikipedia.org, “Express.js,” 22 04 2018. [WWW]. Available:

https://en.wikipedia.org/wiki/Express.js.

[3] Wikipedia.org, “Single Page Applications,” 1 05 2018. [WWW]. Available:

https://en.wikipedia.org/wiki/Single-page_application.

[4] N. Foundation, “Node.js docs,” 14 05 2018. [WWW]. Available:

https://nodejs.org/en/docs/.

[5] D. Dastanaron, “Vue.js and how to know it,” habrahabr, 24 04 2018. [WWW].

Available: https://habr.com/post/351882/.

[6] “Vue-router docs,” Vue.js , 7 05 2018. [WWW]. Available:

https://router.vuejs.org/ru/.

[7] Wikipedia, “Model-View-ViewModel (MVVM),” 27 04 2018. [WWW].

Available:

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel.

[8] “MongoDB Docs,” 3 05 2018. [WWW]. Available: https://docs.mongodb.com/.

[9] S.T.Huang, “How not to get desperate with MVVM implementation,”

Medium.com, 13 05 2018. [WWW]. Available: https://medium.com/flawless-app-

stories/how-to-use-a-model-view-viewmodel-architecture-for-ios-46963c67be1b.

[10] Microsoft, “MVC Overview,” 21 05 2018. [WWW]. Available:

https://msdn.microsoft.com/en-us/library/dd381412(v=vs.108).aspx.

[11] jwt.io, “Introduction to JSON Web Tokens,” 21 05 2018. [WWW]. Available:

https://jwt.io/introduction/.

[12] P. Heard, “How To Architect Enterprise Single Page Application,”

logicroom.com, 29 04 2018. [WWW]. Available: https://www.logicroom.co/how-

to-architect-enterprise-single-page-applications-part1/.

[13] npmjs.org, “NPM docs,” 13 05 2018. [WWW]. Available:

https://docs.npmjs.com/.

