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1 Introduction
1.1 Background and Motivation
The global impacts of pollution have a substantial negative impact on mortality rates andreduce the quality of life [6]. At the policy level, the European Union (EU) has developedframeworks including the European Green Deal [7], Zero-Pollution Action Plan [8], andEU Environmental Impact Assessment (EIA) Directive [9], all of which rely heavily on ro-bust and reliable environmental monitoring. Accordingly, the key to implementing theseambitious frameworks is ensuring that data are accurate and timely, enabling informeddecision-making and policy implementation. This work introduces a new concept, auto-mated environmental regulatory compliance monitoring (AERCM), which offers substan-tial advances over the state-of-the-art environmental monitoring paradigm. Specifically,the advantages of AERCM are that it:

• provides accurate, continuous data for informed environmental compliance moni-toring and forecasting;
• enhances transparency in environmental regulatory compliance, management andpolicy-making;
• allows for local and large-scale health impact assessments, including climate changeeffects, considering pollution-related risks;
• improves public awareness and stakeholder collaboration.
Despite recent advancements in environmental monitoring, existing approaches maynot fulfil all these needs. Therefore, AERCM aims to address these limitations and providea comprehensive solution to environmental monitoring and compliance challenges.The concept of AERCMstems from thenexus of relationships betweendecision-making,innovation, data security and privacy, and data integration, as illustrated in Fig.1. The mo-tivation behind AERCM lies in addressing these interconnected aspects.

Figure 1 – AERCM lies at the nexus of relationships needed to address the ambitious goals of EU regu-latory frameworks associated with environmental monitoring and compliance and can be visualizedas sets of concurrent and inter-related agendas, with the common goals of improved transparency,and standardization facilitating public participation and collaboration.
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In particular, the EU EIADirective [9]mandates the identification andmitigation of neg-ative impacts on the environment for environmental protection, which relies heavily onrelevant environmental data during the assessment process. When policy is successfullyimplemented, it ensures that environmental pollution risks and stressors are integratedinto the decision-making process. The EU guidelines outlined in the supplement on re-porting climate-related information [10] also highlight that the enhancement of the qual-ity and comprehensiveness of environmental reporting, must be achieved by integratingdata from a broad range of sources including government agencies, research institutionsand private organizations by employing standards or frameworks for the collection, man-agement, and reporting of environmental data. The General Data Protection Regulation(GDPR) [11] guidelines encourage data security measures (such as encryption, access con-trols, and secure storage) and privacy measures (such as anonymization) to protect andminimize the exposure of personal data necessary for environmental research. Finally,the Horizon 2020 Open Research Data Pilot [12] promotes the principles of open researchdata management: responsible collection, management, and sharing of environmentaldata to make it findable, accessible, interoperable, and reusable for research and innova-tion, policy development, and public awareness.
All of the previously mentioned policies and guidelines encourage open access to en-vironmental data and information to enhance transparency, and stimulate public engage-ment in governance, collaboration and innovation, which can lead to faster progress andeconomic growth. Thus, AERCM can implement the values outlined in the environmentalpolicies and guidelines by merging several environmental data sources to obtain compre-hensive and reliable estimates in an accessible and scalable way.
Previous studies highlight the need for implementing AERCM as a response to emerg-ing environmental challenges. Subsequently, these studies demonstrate how integrat-ing and assimilating in-situ and remote environmental monitoring and modeling data canbolster AERCM. For example, in the international fishing sector, on-board sensors pairedwith satellite-based remote sensing ensure adherence to fishing quotas and avoidanceof restricted zones [13]. In urban development, ground-based sensors capture data onair quality (AQ), noise levels, and traffic patterns, whereas remote sensing through high-resolution satellite imagerymonitors construction activities, helping to confirm alignmentwith zoning regulations and protection of restricted areas [14]. In the construction sector,spatial interpolation and noise propagation models are assimilated with field data col-lected by drones and noise sensors to continuously estimate noise levels within and out-side the construction site, facilitating compliance with noise regulations [15]. Finally, theassimilation of observational and model-based data harmonizes anthropogenic land-useCO2 flux estimations, supporting precise monitoring of climate change mitigation com-mitments [16] at the global scale.
To ensure transparency and accessibility of environmental monitoring and reporting,this dissertation further proposes open environmental data assimilation (OEDA) as a newand cost-efficient approach to data assimilation (DA) reusing existing, publicly availableenvironmental data sources to support AERCM, as shown in Fig.2.
OEDAunleashes the potential of existing, open in-situ and remote sensing data and nu-merical models to substantially improve both the coverage and reliability of available databy incorporating potentially more accurate and comprehensive data across both spatialand temporal scales [17, 18]. This in turn can facilitate additional methodological advance-ments and cost-sharing [19, 20, 21]. Eventually, OEDA can allow for the automated analysisof complex environmental processes acrossmultiple scales to identify regions needing en-hanced data collection and model refinement [19].
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Figure 2 – Schematic representation of the OEDA process: Assimilating physical observations (topright, blue) and numericalmodel data (top left, red) fromopen data sources andwith different errorsand uncertainty bounds, to produce an analysis estimate of better quality and optimized uncertainty(bottom, green).

In summary, the integration of OEDA within the AERCM concept, as depicted in Fig. 3is essential to provide a technologically-driven alignment of existing environmental moni-toring and reporting policies and guidelines. OEDA facilitates the use of open data, its pro-cessing, and assimilation as part of the larger AERCM system. Specifically, OEDA enhancesthe quality of opendata that facilitatesmore reliable information generation through anal-ysis, compliance forecasting, and reporting, meeting the diverse needs of multiple end-users. This dissertation develops and explores real-world implementations of the OEDAconcept using open environmental monitoring data first within Estonia and subsequentlyat the pan-European level.
1.2 Benefits and Challenges in Open Environmental Data Assimilation
OEDA integrates diverse publicly accessible environmental data intomodeling frameworksto enhance the comprehensiveness and reliability of the final estimates. In other words,when applied to open data, DA algorithms facilitate the retrieval of the best possible es-timate given the openly available data sources.
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Figure 3 – Representation of the AERCM concept including OEDA, which encompasses open datacollection and data processing. AERCM includes the additional stages of compliance estimation andreporting, ultimately the reports are used for decision- and policy-making.

The "best possible estimate" can be characterized considering the improvements indata quality parameters [22, 23, 24] which include:
• accuracy, which results in lower errors when compared with the true data values;
• completeness, by reducing the amount of missing data;
• precision, which minimizes the parameter value uncertainty.
DA algorithms can impute missing data and minimize uncertainty to improve the ac-curacy of the final estimates [25]. However, it is first important to note that the extent ofimprovement after applying DA is largely dependent on the following considerations:
• Selection of appropriate algorithms: Assimilating large amounts of data of differ-ent types and scales creates multiple challenges regarding algorithm selection andmight lead to significant computational challenges [26, 27, 28].
• Data quality of input data sources: Low data quality from input data sources mightlead to low-quality assimilation results, which without validation may result in mis-leading decision-making [29, 30].
• Temporal and spatial scales of input data sources: Environmental models oftenoperate at large spatial scales (several km), whereas DA uses local observationsat point locations. This necessitates knowledge of appropriate calibration mech-anisms, which in many cases are not available [31].
• Relevanceof uncertainty estimates of input data sources: DA solves the problemofuncertaintyminimization. To do so, this requires the uncertainty contributions fromthe initial conditions, parameters, measurements, and process errors to quantifythe contribution of the input data sources to the output assimilation results [23, 32].Therefore, DA is dependent on the availability of uncertainty estimates, which aremissing in many cases of practical importance.
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Thus the successful implementation of OEDA is dependent on data sources of satis-factory quality and choosing appropriate algorithms for data imputation, calibration ofdata sources at different temporal and/or spatial scales, and for uncertainty quantifica-tion. When all of these pre-conditions are met, the successful implementation of OEDAcan lead to benefits aligning with the concept of AERCM outlined in Fig.1:
• Informed decision-making: OEDA informs policy- and decision-making by providingmore comprehensive and reliable data [9].
• Transparency and accessibility: As the data used are openly accessible, it encour-ages transparency, fostering a collaborative environment for the public, researchers,and policymakers. This can enhance public trust in scientific findings and environ-mental policies based on the data [12].
• Cost-effectiveness through shared infrastructure: The sharing of infrastructure andcollaborative DA efforts allow for greater cost-effectiveness. Shared costs and ef-forts enable smaller programs and agencies to benefit from advanced modelingtechniques and extensive datasets they might not have had access to otherwise[19, 20, 21].
• Enriched scientific understanding: By employing algorithms that blend large- andsmall-scale estimates from global and regional data, OEDA can help in obtaininga better understanding of environmental processes. This in turn identifies gaps incurrent models and points to areas where additional data collection is needed [19].

1.3 Research Questions
The main challenges to implement OEDA, as identified in the previous section, includethe presence of missing and inaccurate data, themismatch of temporal and spatial scales,and the need to estimate the uncertainty of input data. To address these challenges, thisdissertation poses the following three research questions (RQ):
RQ1 Which data processingmethods are themost suitable to improve data completeness,accuracy, and precision of open environmental monitoring and modeling data?
RQ2 Candata assimilation be applied at different spatial and temporal scales using sourceswithout uncertainty?
RQ3 Are computationally lightweight assimilation methods suitable for large-scale openenvironmental monitoring data?

RQ1 seeks to identify methods to enhance the quality of open environmental data byaddressing challenges associated with missing, inaccurate and imprecise data. The so-lutions to these challenges are key for OEDA implementation, as they strengthen datareliability for informed decision- and policy-making in the environmental domain.RQ2 considers the challenges of assimilating environmental datawith scalemismatchesand unknown a priori uncertainty. This RQ is integral to the OEDA framework, as it seeksto develop and refine algorithms capable of assimilating disparate data sources even inthe absence of explicit uncertainty information. Such algorithms would not only need tomanage the complexities arising from scale mismatches, but also reliably estimate andincorporate unknown uncertainties. Successfully addressing this RQ would enable theOEDA framework to assimilate a broader range of environmental data sources, thereby
14



enhancing the accuracy and applicability of its outputs for comprehensive environmentalanalysis and decision-making.
RQ3 focuses on the feasibility and effectiveness of the proposed DA methods withinthe context of large-scale open environmental monitoring networks, such as those uti-lized for urban AQmonitoring in Europe. Ultimately, the success of OEDA depends on theperformance in real-world applications, which include evaluating the DA algorithm per-formance, comparing results with pan-European scale reference data and analyzing thepotential for further improvements by future researchers.

1.4 Contributions of the Thesis
The contributions of the thesis consist of three first-author journal manuscripts, each fo-cusing on addressing the three RQs, and are summarized in Table 1. The details of thecontributions are described in publications I, II, and III. A summary of how these con-tributions related to the RQs is included in Chapters 3 and 4. The summarized answers toeach of the three RQs are provided in Chapter 6 of this dissertation.

Table 1 – Publications (Publ.) and corresponding contributions to each of the three RQs. The opendata and code repository are provided for each publication via the GitHub link provided in the refer-ence.
Publ. Contributions RQs

I
C1.1. Identification of benefits and challenges in AERCM.C1.2. Introduction and promotion of the IoOGDT concept and opendata reuse as an alternative to new infrastructure deployment.C1.3. Design and implementation of a web UI for the AERCMsolution for Estonian rivers using OGD.Repository: [33]

RQ1

II

C2.1. Identification of benefits and challenges in OEDA.C2.2. Introduction and implementation of the algorithms DA2, DA3 -lightweight data-driven preprocessing and assimilation methods fordata with unknown uncertainty estimates and varying spatial scales.C2.3. Performance validation of the algorithms DA2, DA3using Tallinn AQ monitoring station (OGD) and Internet of Things(IoT) sensor data.Repository: [34]

RQ2

III

C3.1. Introduction and implementation of the algorithms S-DA, DA4,
S-DA4 - lightweight data-driven preprocessing and assimilationmethods for data with unknown uncertainty estimates and varyingtemporal and spatial scales.C3.2. Performance validation of the algorithms DA3, S-DA, DA4,
S-DA4 using pan-European urban AQ monitoring station data (OGD)to improve data quality across scales.Repository: [34]

RQ2,RQ3
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1.5 Thesis Organization
This dissertation is structured into five main chapters as follows:Chapter 1 offers a comprehensive introduction to the field of study. It provides themotivation behind the research, identifies benefits and challenges in OEDA, presents themain RQs, and lays out the significant contributions made through this work.Chapter 2 provides a review of the current landscape in environmental monitoringand OGD utilization. It also gives an in-depth look into AERCM and the DA of ambient AQdata. The chapter concludes with a synthesis of the state of the art, identifying existingknowledge gaps.Chapter 3 explores the integration of OGDwith the IoT to advance AERCM. It addressesspecific challenges in AERCM implementation and suggests potential solutions, facilitatingimproved and streamlined data utilization through OEDA. This chapter also includes themethods and results described in publication I.Chapter 4 examines the challenges in implementingOEDAand introduces a lightweightopen data-driven DA framework, demonstrating enhanced data quality for tackling thesechallenges. It also details the methods and results described in publication II.Chapter 5 introduces new methods to the previously developed lightweight, data-driven DA framework and discusses their validation using an extended dataset from real-world, pan-European urban AQ monitoring. Additionally, this chapter presents the meth-ods and results described in publication III.Finally, Chapter 6 serves as a conclusion for the dissertation, summarizing the key ob-jectives and the RQs that drove this study, alongside the solutions provided through thedevelopment and validation of novel DA algorithms and methods. It reiterates on the sig-nificance of the study, reviews its implications, and suggests future research directions inthe field.
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2 State of the Art
2.1 A Brief Overview of Environmental Monitoring
Environmental monitoring plays a crucial role in studying, understanding and managingthe dynamics of our environment, especially under the rapidly changing conditions drivenby human activities. It serves as a foundational tool, providing essential data for re-searchers and decision-makers to assess the state of the environment, evaluate manage-ment strategies, and foster informed decision-making for sustainable resource use andconservation [35]. The effectiveness of environmental monitoring is significantly height-ened when it is meticulously designed and executed, ensuring that the data collected isaccurate, timely, and reliable [36, 37].

However, the accuracy and utility of environmental monitoring can be compromisedby poorly implemented physical systems and data processing methods. Common issuesinclude improperly calibrated equipment or inadequate deployment locations can yieldmisleading data [38, 39]. Furthermore, the lack of real-time data retrieval mechanisms,such as wireless sensor networks, can result in timing failures and delays, crucially im-pacting decision-making processes, particularly in environmental emergencies [40]. Theabsence of standardized data collection methods and protocols can also lead to incon-sistent data that is difficult to compare and analyze [41]. Additionally, failing to integratemore recent data sources and technologies like remote sensing may result in less efficientand comprehensive monitoring [42, 43].
Environmental modeling complements monitoring, principally by addressing gaps andflaws in monitoring data. Techniques include numerical, machine learning-driven, andmulti-source spatial data modeling frameworks [44], along with evolutionary computa-tional and fuzzy rule-based models [45]. Despite challenges in model accuracy and relia-bility due to assumptions andparameter uncertainty [46], the combination of comprehen-sive modeling with monitoring data can significantly improve the reliability and accuracyof state estimates. DA is a methodology that integrates these approaches, continuouslyincorporating new observations to enhance model predictions and reduce prediction un-certainty [47, 48]. DA methods, including optimal interpolation, statistical, variational,ensemble, and hybrid methods, are employed across disciplines such as geophysics, hy-drology, meteorology, and oceanography [49, 50, 51].
The current state of the art in academia, industry, and the public sector can be sum-marized in the following manner:
Academia: In academia, the shift towards employing complex and computationallyintensive DA methods, often used in numerical weather prediction and environmentalmodeling, represents the cutting edge of research [27]. Global models, like the System forIntegrated modeLling of Atmospheric coMposition (SILAM) used in this work, play a cru-cial role in regional and global AQ and pollutant dispersion studies [52]. SILAM’s publiclyavailable data is invaluable for environmental research, aiding in the development of newapplications and testing of pioneering modeling and DA techniques.
Industry: The commercial sector has significantly advanced environmental monitoringthrough the development and implementation of proprietary technologies and sensornetworks, integrating sophisticated data processing algorithms for efficient and compre-hensive monitoring [53]. Enterprises in several sectors are actively deploying sensor net-works capable of collecting a diverse array of environmental data. These networks, oftenequipped with advanced IoT capabilities, facilitate real-time data transmission and anal-ysis [40, 43]. The immediacy of this data allows for quicker responses to environmentalchanges, leading to more effective management strategies.

17



Additionally, industries are leveraging artificial intelligence and machine learning toanalyze the collected data. These technologies enable the prediction of environmentaltrends and potential hazards, facilitating proactive measures [44, 45]. For instance, pre-dictive modeling based on sensor data can anticipate air pollution levels, water qualitychanges, or the impacts of industrial activities on local ecosystems [53].Through integration of IoT and artificial intelligence in environmentalmonitoring, com-panies can monitor, predict, and respond to environmental issues more efficiently andeffectively. A prime example is IBM’s Green Horizons initiative, demonstrating how large-scale sensor data combined with artificial intelligence can be utilized for advanced envi-ronmental predictions, showcasing the industry’s active role in managing and mitigatingenvironmental impacts through technology [53].Public sector: Governments and public agencies, such as the European EnvironmentAgency (EEA), are adopting open data policies to enhance monitoring, thereby improv-ing data accessibility and standardization [54]. This integration of advanced DA methodsand open data policies across sectors reflects a significant shift towards collaborative andintegrated approaches to environmental monitoring, enhancing the ability to effectivelypredict and respond to environmental changes.
2.2 Challenges in Using Open Government Data
Governments are pivotal in the production and collection of data across various domains,positioning them as primary providers of valuable information to the public [55]. Opengovernment data (OGD) typically comprises digital categorical and numerical data andinformation that governments release. This data plays a crucial role in analyzing publicpolicies and fostering transparency and accountability, which are essential for combatingcorruption [56, 57]. Additionally, OGD is instrumental in generating economic and socialvalue [58, 59], supporting sustainability-driven behavioral changes [60], and enhancingcitizen collaboration and participation [61]. The focus of OGD lies in its disclosure, acces-sibility, and reuse, prompting many countries to develop laws and policies that ensureproper indexing and availability of data [62, 63, 64].Despite the apparent benefits of OGD in promoting innovation, transparency, and citi-zen participation, government agencies often exhibit reluctance in opening their datasetsand integrating data publication into their daily operations [55]. A significant portion ofthe datasets advertised as open on government websites may not be readily accessibleto the public, and many published resources primarily offer informational content ratherthan granular source data, thus potentially limiting their practical utility [65]. This hesi-tation arises from various challenges, including ensuring a continuous data supply, pro-viding access to necessary open data infrastructures, and allocating sufficient resourceslike hardware, software, and finances [66, 60]. Concerns about privacy, data quality, andinteroperability also play a significant role in deterring agencies from making data openlyavailable [67, 56, 68]. However, it’s worth noting that advancements in OGD initiatives,such as the EU Open Data Directive [69], have aimed to address these challenges by pro-moting the publication of more accessible and granular datasets [70].The effectiveness of OGD initiatives in driving innovation heavily relies on data quality,influenced by the processes of collection, management, and dissemination [55], gover-nance frameworks [71], and the capabilities of data providers and users [72]. Data qualityis determined by attributes such as completeness, accuracy, timeliness, and consistency[62]. However, challenges like inconsistent government policies, lack of standard formats,interoperability issues, and privacy concerns [72, 71] can impede these initiatives. To over-come these challenges, robust data verification [73], standardizedmetadata [74], and reg-
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ular quality assessments [75] are essential, ensuring the data remains accurate and reli-able for innovation and decision-making purposes.
2.3 Automated Environmental Compliance Monitoring and Reporting
AERCM systems play a pivotal role in managing the complex environmental regulationsand commitments faced by various industries [76]. These systems are integral in promot-ing sustainable practices across multiple sectors, including the commercial fishing indus-try [13], chemical production [77], urban development planning [14], manufacturing [78],construction [15], and tourism [79].The implementation of AERCMsystems tailored for environmentalmonitoring presentsseveral challenges:

• the limited availability, completeness, coverage, and quality of data can hinder ac-curate compliance estimation [80];
• the labour-intensive nature of implementing and maintaining compliance manage-ment systems across different jurisdictions [81];
• the complexity of providing both detailed and summary information through com-pliance software [82];
• challenges in record keeping and communicating detected problems acrossmultiplefacilities [82, 81];
• technical and financial barriers in deployingmonitoring systems, particularly in low-resource countries [80, 77].
Overcoming these challenges requires thoroughplanning, appropriate compliance soft-ware, continuous monitoring, and collaborative efforts among organizations. Despite notbeing widely adopted in official compliance processes, AERCM systems offer significantbenefits, such as cost savings through streamlined processes, reduced manual labor, andensured adherence to regulatory requirements [83, 84, 85]. Automatedmonitoring capa-bilities allow organizations to quickly identify and address compliance issues, minimizingenvironmental damage and reducing the risk of non-compliance penalties [86, 87]. Ad-ditionally, AERCM leads to improved resource allocation and optimization, as it enablesbetter identification of underutilized data resources [83].

2.4 Data Assimilation of Ambient Air Quality Data
Effectively addressing the challenges posed by AERCM necessitates the utilization of DA.DA plays a critical role in improving the accuracy of AQ data by integrating observed datawith predictive models [88, 89]. This process results in a more precise representationof the atmosphere, which is vital for air pollution management and public health [90,91]. Consequently, DA aligns seamlessly with AERCM’s goals of refining data essential forunderstanding and managing environmental health [92, 93].DA techniques are particularly effective in managing themyriad sources of uncertaintyinherent in AQ data. For instance, when integrating chemical transport model simulationswith predictions, discrepancies between the predicted and observed data often point touncertainties in aspects like model emissions, spatial resolution, chemical reaction mech-anisms, process parameterizations, and measurement errors [89]. Moreover, the use ofcoupled chemistry-meteorologymodels allows for the assimilation of bothmeteorological
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and chemical data, encompassingmeteorological uncertainties for amore comprehensiveapproach to these challenges [18].A significant benefit of DA is its capacity to improve AQ forecasts in atmospheric chem-istry models. Ensuring accuracy in model predictions is imperative, especially consideringthe complexities introduced by errors in meteorological fields, urban structures, and thespatial transportation of pollutants in urban AQ simulations. Recent advancements advo-cate for the integration of more detailed environmental and meteorological interactionsand the use of cutting-edge computational methods alongside remote sensing data tomitigate modeling errors and enhance the accuracy of AQ predictions [94, 95].This work will use OGD from local Estonian and pan-European urban AQ monitor-ing ground stations and a global numerical model to develop and test computationallylightweight DA methods that are suitable for low-powered microcontrollers used by IoTdevices. By enhancing the precision of AQ forecasts and effectively tackling the uncer-tainties in environmental modeling, these new and sophisticated techniques will play anindispensable role in guiding informed decision-making for air pollution control and publichealth protection.
2.5 Conclusion on the State of the Art
Environmental monitoring is a critical component across various sectors, offering essen-tial data for effective resource management and planning. The EEA has underscored theurgent need for robust environmental monitoring in Europe, given the region’s signifi-cant environmental challenges [54]. However, environmental monitoring programs fre-quently encounter gaps and flaws in data, necessitating the integration of data from di-verse sources such as global models, remote sensing, and wireless sensor networks toensure comprehensive data collection [96, 97].Systematic environmental data collection can be resource-intensive, but the utilizationof existing, under-utilized open data presents a viable solution to reduce costs and min-imize the need for additional infrastructure [98, 99, 100]. In this regard, OGD initiativesplay a significant role. Nonetheless, the effectiveness of these initiatives largely dependson the accessibility and quality of the data provided [101, 102, 103].DA techniques are increasingly used for enhancing the quality of environmental data.These techniques effectively bridge the gap between observed data and model predic-tions, thereby improving accuracy and reliability [104, 91]. However, the success of DA iscontingent upon the quality of the input data. Challenges such as missing data and vary-ing data resolutions can significantly impact the outcomes of DA processes [105, 106].Consequently, accurate estimation of uncertainties is crucial for effective DA implemen-tation [107, 108]. These uncertainty estimates are fundamental for informed decision-making, which is critical to environmental management and compliance monitoring. Forexample, automated compliance monitoring systems are becoming increasingly impor-tant for adhering to environmental regulations and can offer significant cost-saving bene-fits [109, 110, 111].In conclusion, environmental monitoring remains a cornerstone of informed decision-making and effective management in the face of growing natural and human-induced un-certainty. The integration of DA and effective uncertainty estimation, coupled with theleveraging of open data will be essential to address the complexities and increasing vol-ume of environmental data, thereby enhancing the overall quality and reliability of envi-ronmental monitoring efforts.
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3 Automated Environmental ComplianceMonitoringUsing theInternet of Open Government Data and Things
3.1 Background
The EUWater Framework Directive (WFD) requires the calculation of environmental flows(eflows) to maintain water quality, yet its implementation varies across regions due tocomplex ecosystem dynamics, ambiguous regulations, and resource limitations [112, 113,114]. Traditional methods for estimating eflows are often grounded in extensive ecologicalresearch, which, while thorough, can be time-consuming and challenging to scale [115]. Toovercome these challenges, the study outlined in I proposes the innovative integrationof OGD with IoT data to facilitate continuous AERCM within the framework of the EUWFD. This approach aligns with regulatory values, as depicted in Fig. 1, and represents asignificant stride in enhancing environmental monitoring efficiency.

The study introduces the concept of the Internet of OpenGovernment Data and Things(IoOGDT). This concept merges existing OGD with IoT-collected data to create an auto-mated system for AERCM. By doing so, it fosters open data reuse, streamlines the moni-toring process through automation, and mitigates costs associated with new investmentsin data collection and processing, utilizing existing data infrastructure (C1.2). A practi-cal application of this system is demonstrated with Estonia’s national river gauging stationnetwork, used formonitoring eflows in rivers asmandatedby the EUWFD [112]. The imple-mentation of IoOGDT, particularly in facilitating continuous access to river OGD throughIoT technology, automates compliancemonitoring. This automation primarily involves theretrieval and analysis of data already published on the OGD portal, rather than the initialprovision of new data. Integrating IoT data with OGD enhances relevance, accuracy, time-liness, and usability [116]. IoT networks provide continuously collected, timestamped datawhich, when combined with OGD, yields timely insights critical for environmental moni-toring. This integration ensures rapid responses to environmental changes and adherenceto policy requirements [117].
The IoOGDT framework underscores the synergistic potential between government-released data and IoT. OGD can amplify the impact of IoT data, while IoT can drive im-provements in the quality and utility of OGD. This reciprocal relationship fosters reliableand innovative environmentalmonitoring solutions [118, 119, 116, 117]. IoOGDT enables theestablishment of a unified framework for managing, processing and interpreting diversedata sets. This framework facilitates the creation of comprehensive overviews, enablesmeaningful comparisons across regions, and offers flexibility to scale and adapt to emerg-ing data sources or methodologies.
Extending beyond its current application, IoOGDT holds the potential for broader envi-ronmental management contexts. By harnessing the power of real-time data and OGD, itcan be pivotal in addressing various environmental challenges, from urban planning to cli-mate change mitigation. The continuous evolution and integration of IoT technology withOGD are poised to unlock new frontiers in environmental monitoring, offering scalable,cost-effective, and dynamic solutions to meet the ever-growing demands of sustainableenvironmental governance.

3.2 Data Sources
The study is based on the repurposing of open Estonian national river discharge monitor-ing data as detailed in Table 2. A total of 54 river gauging stations were used, whose dataranged from 1867 to 2020 and included the daily mean flow rates and water levels.
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Table 2 – Map, sources, variables, and time periods of the river data used in publication I.
Map Data Source River Data

Map displaying 54 gauging stations
in Estonia, data sources for I.

River OGD,managed bythe EstonianMinistry of theEnvironment [120].

Daily meanflow rates [m³/s],water levels [cm].Time period:from 1867 to 2020.
Unpublished riverdata, provided bythe EstonianMinistry of theEnvironment.

Dailyminimum, mean,maximum flowrates [m³/s], watertemperatures [°C],water levels [cm].Time period:from 2009 to 2018.
3.3 Methods
The study utilizes the Environmental Intelligence Cycle (EIC) depicted in Fig. 4. This cyclerepresents a design science research methodology tailored for the iterative developmentand validation of intelligent environmental technology solutions [121, 122].

Figure 4 – Visual representation of the EIC methodology and its corresponding IoT architecture forthe AERCM system for river eflows, adapted from publication I.

The data flow and processes within the IoT system are shown in Fig. 4, which is de-signed for river eflow estimation, specifically the determination of exceedance levels asrequired by environmental regulations, specifically the EUWFD. The figure also delineateshow multiple processes and architectural layers relate to the EIC methodology. The cycleinitiates with the problem definition phase, which identifies stakeholders, sets decision-support goals, and ascertains the necessary data for the problem at hand (e.g., the re-quirements of water managers, hydrologists, and biologists). Subsequently, an IoT system
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is implemented to automate the problem’s resolution. The IoT system comprises threelayers:
• The Edge layer used for data collection. In the provided illustration, this layer con-sists of multiple gauging stations, each containing river sensor nodes that monitorattributes such as discharges (flow rates), water temperatures, and water levels.These raw measurements are then relayed to the Fog layer.
• The Fog layer is charged with data aggregation, assimilation, and processing. Theseoperations are proposed to be executed by the gateways affiliatedwith their respec-tive gauging stations. Subsequently, this processed data is conveyed to a centraldata server, which accumulates aggregated data from all gateways and forwards itfor in-depth analysis in the Cloud layer.
• The Cloud layer serves as the hub for data analysis and compliance assessment.For the eflows AERCM, the study conceptualizes and formulates the EnvironmentalFlows Compliance Estimation Service (EFCES), a web service that implements eflowformulas and interprets results essential for scenariomodeling and reporting. EFCEScomprises a backend application (Django, Python) that manages data extractionfrom the data server, compliance assessment, and interaction with the frontendapplication. The frontend application (React.js, Node.js) offers a user interface (UI)for scenario modeling and result exportation for reporting purposes.
End-users, includingwater resourcemanagers, hydrologists, and freshwater biologists,retrieve results and insights from EFCES using their client devices, accessed via a browser.These outcomes provide information for decision- and policy-making. Following this, afresh iteration of the EIC is launched by revising the specifications in the "Problem defini-tion" phase. This constitutes a perpetual loop where feedback can reconfigure the initialproblem statement, thereby reinitiating the cycle. Finally, it is worth mentioning that thedata collection phase may include deploying IoT sensors, monitoring stations, satellites,or modeling infrastructure for simulations or forecasts. Additionally, to reduce costs as-sociated with new infrastructure, the study I also explores repurposing existing river datareleased as OGD, transitioning the system into the IoOGDT system - a new concept thatwas first introduced in this study.

3.4 Results
3.4.1 Environmental Compliance Estimation ServiceAs a result of the research, a cloud-based component of the IoOGDT system was devel-oped to automate the estimation and interpretation of eflows compliance. This workprovides EFCES - a custom, containerized web application built with Django/React. Theapplication is based on OGD taken from 54 river gauging stations in Estonia and offers asuite of features for water managers, including:

• acquisition and manipulation of hydrological data;
• estimation of eflows;
• interpretation of compliance results;
• customization of estimation parameters;
• exporting compliance data.
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EFCES functions provide the required eflows calculation methods, allowing users toset the parameters for eflows estimation. Calculations are performed on the backend(Python, Django), and visual results are displayed on the frontend (React). This provideswater managers with an efficient tool for generating estimations, visualizations, and re-ports. End users, including water resource managers, hydrologists, and biologists, accessthe system via the EFCES interface to retrieve reports and test different estimation meth-ods using available river data. EFCES demonstrated its functionality using publicly avail-able hydrological station data from Estonia, implementing environmental regulations tocalculate minimum eflows based on a 95% exceedance probability, as detailed in publica-tion I as established in the Estonian environmental regulation [123]:
Qenv = Qdesc[p(N +1)], (1)

where Qenv represents the eflow discharge (or volumetric flow rate) [m3/s], Qdesc is anarray of observed discharge values sorted in descending order [array of m3/s], p denotesthe probability of exceedance for an observed discharge value (ranging from0 to 1); for in-stance, for a 95% exceedance probability, p = 0.95, N is the total number of observationsin Qdesc, [·] is the operator for rounding the index to the nearest integer and retrieving thevalue from the array using this index.
The demonstration includes an example of compliance analysis that can be performedwith EFCES. The interface allows for the calculation of the percentage of days in noncom-pliance with the chosen eflows regulation (such as Eq. 1). This compliance summary wascalculated and described for three differently-sized Estonian rivers over various bioperi-ods, and the summary table is presented in Table 3.

Table 3 – Eflows compliance summary for three Estonian rivers in 2009-2018 (summarized frompublication I).
River Average percentage of days in noncompliance per bioperiod [%]

Overwintering(Jan-Feb)
SpringSpawning(Mar-Jun)

Rearing andGrowth(Jul-Sep)
FallSpawning(Oct-Dec)Narva (large) 33.39 11.89 30.33 26.63Piusa (medium) 8.31 1.56 28.59 5.43Puhajõgi (small) 3.73 4.02 18.48 6.96

The percentages are calculated based on the total number of days within each biope-riod, highlighting the relative duration of noncompliance that could potentially impactthe river ecosystem during key biological periods. Additionally, EFCES produces compli-ance visualizations, such as the one in Fig. 5, and offers a user manual on GitHub [34].Fig. 5 presents discharge and water temperatures for the year 2016 at the Aesoo station.The x-axis represents time, the left y-axis represents discharge [m3/s], and the right y-axis represents temperature [°C]. Compliant and non-compliant discharges are markedwith green and red dots, respectively, and the eflow threshold is with a dotted blue line.Water temperatures are shown with an orange line. The user interface allows for the cus-tomization of measurements and includes markers for key biological periods for in-depthanalysis. EFCES’s testing on different rivers demonstrated the variability in compliance,highlighting the complex dynamics of river ecosystems and the impact of climate changeon hydrological management.
24



Figure 5 – Plot of eflows compliance indicating daily water discharge and temperatures with en-vironmental threshold markers for the Aesoo station in 2016, generated by EFCES as developed inpublication I.

3.4.2 Data Quality Analysis
The data used for the development of EFCES highlighted challenges related to formattingdifferences, missing data, and inconsistencies. These issueswere caused bymeasurementerrors, manual processing mistakes, and data revisions. A comparison between "Opendata" and "Requested data" from 2009-2018 for 52 common stations revealed varied per-centages of missing data. Inconsistencies were identified by comparing the minimum,mean, and maximum values of daily time series of discharges and water levels. Thesefindings are summarized in Table 4.

Table 4 – Overview of missing and inconsistent data in Estonian hydrological datasets: river data ob-tained from the government on request and OGD for the period from January 01, 2009, to December31, 2018. Summarized from publication I.
Missing Data [%] Inconsistent Data [%]Requested data OGD Requested data OGDDischarge 10.61 2.11 16.89 48.47Water levels 7.42 2.64 4.92 46.24

Challenges with data quality from different sources, including missing data and incon-sistencies could result from several factors, including uncalibrated sensing devices andadverse environmental conditions. These issues underscore the need for meticulous datavalidation, a task that is particularly arduous for secondary users of the data. The study ac-knowledges the benefits of reusing existing data to bypass the costs of new environmentalmonitoring infrastructure. Yet, it cautions that repurposed OGDmust meet rigorous stan-dards of quality to serve new purposes effectively. When properly managed, such datacan significantly improve the efficiency of environmental monitoring efforts, economizingon expenses.
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3.4.3 Proposed Solutions for Open Data Quality ChallengesThe study in I identifies key data quality challenges impacting the performance of theIoOGDT system and proposes strategies to improve open environmental data, essentialfor effective environmental policy and decision-making (C1.1). During the implementationof the Estonian AERCM case, the following challenges and solutions were identified:Data standardization: To address inconsistencies and fragmentation in datasets, suchas those impacting environmental flow metrics, uniform data formats and protocols arenecessary. Standardization, supported by ecological research, alongside OGD consolida-tion and API development for data sharing, can ensure consistency in metrics.Automated continuous monitoring: Stale data in OGD repositories hinder continuousmonitoring. By integrating IoT systems to continuously update OGD with current data,continuous monitoring can maintain data relevance and support proactive analysis.Data contextualization: The lack of context in OGD often leads to misinterpretation.Enriching datasets with extensive metadata can clarify and enhance their utility.Quality control and data assimilation: Sensor data quality is frequently compromisedby inaccuracies, data gaps, malfunctions, and connectivity issues. Implementing rigorousquality control protocols, including regular maintenance and calibration, and deployingredundant sensors are crucial for data integrity. Additionally, DA techniques can addressgaps and inconsistencies in OGD and IoT data, improving overall data completeness, ac-curacy, and precision.
3.5 Conclusion
The research outcomes in publication I were shown to directly address the challengesand opportunities associated with open environmental data, specifically those pertainingto RQ1.

RQ1: "Which data processing methods are the most suitable to improve datacompleteness, accuracy, andprecision of openenvironmentalmonitoring andmodeling data?"
Answer: A comprehensive DA framework is recommended to improve thecompleteness, accuracy, and precision of open environmental data. This ap-proach effectively combines observational data with model predictions to re-fine estimates continually, thereby enhancing the robustness and reliabilityof environmental monitoring and modeling outcomes.

Addressing data quality challenges in environmental monitoring, the study suggestsstandardization, automated updates, and sensor maintenance to enhance OGD reliabil-ity, advancing RQ1’s objectives. It leverages the AERCM approach for river eflows, in linewith EU regulations, optimizing resources through the integration of IoT and OGD. No-table contributions include the development of the IoOGDT framework (C1.2), a customweb UI for monitoring Estonian river eflows (EFCES, C1.3), and architecture of the auto-mated national-scale eflows compliance monitoring system (C1.1), operating within theEIC framework. Future research will extend these systems for broader regulatory compli-ance monitoring and stakeholder engagement, improving river management to supportthe EU WFD’s ecological objectives.

26



4 Lightweight Urban Air Quality Data Assimilation
4.1 Background
Urban AQ monitoring and modeling can benefit from DA to fill in missing data and toimprove the forecasting and reporting accuracy of ambient AQ, which is required for en-vironmental compliance monitoring and reporting [124, 125, 27]. The most common AQparameters reported are sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide(CO), ozone (O3) and particulate matter (PM2.5 and PM10). The values of these parame-ters vary widely across multiple temporal and spatial scales, and are critical to localize andmitigate pollution sources and estimate associated health risks [125]. Yet, as publicationII notes, no single source— be it IoT sensors, monitoring stations, numerical models, orsatellites — can independently offer a complete and accurate dataset for urban environ-ments [126, 127, 128, 129]. Such completeness is vital for dependable urban AQmonitoringand modeling, which is a cornerstone of effective regulatory compliance [124, 130].Errors in AQ data can stem frommultiple factors, including model discrepancies, mea-surement inaccuracies, and issues with data representation. Uncertainty is often quanti-fied as error metrics from repeated measurements or simulations, such as standard devi-ations under the assumption of Gaussian error distribution, or it might be deduced fromquality certificates or device specifications [131, 132]. The challenge lies in fully quantify-ing uncertainty due to the vast array of error sources, compounded by insufficient dataon these sources, lack of knowledge about them, or the data collection and generationprocess itself [133, 134].Fundamentally, DA techniques merge observations with numerical simulations—botherror-prone—to estimate the true state of the environment. The goal is to reduce anal-ysis errors by balancing background estimates from simulations with observational data[135]. These DA techniques require theweighting of data sources according to their uncer-tainties [136]. However, many sources, especially open data and IoT sensors, lack a prioriuncertainty estimates.Methods including Kalman filters, variational techniques, ensemble approaches, andhybrid methods are typically employed to improve data quality by integrating diversesources [137, 138]. These, however, hinge on known uncertainty estimates — often miss-ing from constantly updated numerical models and open-access data. Furthermore, thediffering temporal and spatial scales of the data sources necessitate calibration opera-tors that may not always be at hand. In response, the study presented in II proposesan approach to enable DA even without known uncertainty estimates by deriving theseestimates from the recursively built model of the data itself.
4.2 Data Sources
The study assimilated hourly fixed-point air pollution observations detailed in Table 5and corresponding hourly 0.2° grid forecasts from the SILAM public archive (retrievedin ZARR format from [139], transformed into CSV for processing). The data prepared forassimilation is available in [34]. The observations are obtained from the publicly avail-able data (downloaded from [140] in CSV format) from the Liivalaia AQmonitoring station(59°25.86’N, 24°45.6’E), employing different professional measurement devices Horibaanalyzers and a Met One BAM 1020, and two IoT sensors from Tallinn Smart City [141],located 60 meters and 700 meters from the station. The IoT sensors, which cost approxi-mately 25 USD, were mounted on street lights at a height of 3.5 m and powered by solarenergy. Each grid cell corresponds to a single hourly value, potentially leading to discrep-ancies between fixed-point observations and the spatial scale of the grid cells.
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Table 5 – Observation sources, variables, and time periods of the air pollution data used in publica-tion II from assimilation with the SILAM data. CO - carbon monoxide, NO2 - nitrogen dioxide, O3 -ozone, SO2 - sulfur dioxide, PM2.5 - particulate matter ≤ 2.5 µm, PM10 - particulate matter ≤ 10
µm.
Air Pollutant [µg/m³] Data Source Time PeriodCO

AQ monitoring station (OGD,managed by Estonian EnvironmentalResearch Center [140])

October 12, 2021 -November 10, 2021("Fall")
January 27, 2022 -February 25, 2022("Winter")

NO2O3SO2PM2.5

PM10 IoT sensors (60 and 700 metersaway from the station; sourced fromthe Tallinn Smart City, managed byThinnect [141])
October 12, 2021 -November 10, 2021("Fall")

The model data was sourced from the SILAM [52], an atmospheric dispersion modeldeveloped by the Finnish Meteorological Institute [142]. This model delivers a 0.2° gridof 4-day hourly air pollutant forecasts, with results refreshed daily and kept in a 30-daypublic archive [139], integrating several transport routines and transformation modules.The algorithms assimilate observations from Table 5 with the numerical simulations fromthe SILAM grid, as illustrated in Fig. 6.

Figure 6 – Map showing the Liivalaia AQ monitoring station within the 0.2° SILAM model grid cellin Tallinn, Estonia, as used in publication II. The fixed-point station is set against the backdrop ofthe large-scale SILAM grid, underscoring the contrast in spatial scales. The SILAM grid was retrievedfollowing [142].
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4.3 Methods
The study introduces a new, lightweight framework for assimilating urban ambient AQdata without a priori uncertainty estimates. The goal is to enhance data quality in termsof completeness, precision, and accuracy, aligning with the focus of RQ2. The frameworkuses the least-squares data assimilation (LSDA) algorithm and estimates regression-baseduncertainties recursively from the input data values.

In particular, the general LSDA formulas are computed as follows:
xa = k · xobs +(1− k) · xm = xm + k · (xobs− xm),

σ
2
a = (k ·σobs)

2 +((1− k) ·σm)
2,

k =
σ2

m

σ2
m +σ2

obs
,

(2)

where xobs represents the observation (measurement), xm - the background (model) esti-mate (simulation), xa - the analysis estimate, k - a coefficient characterizing the contribu-tion of xobs to xa, σm - the uncertainty of the background (model) estimate xm, σobs - theuncertainty of the observation xobs, σa - the uncertainty of the analysis estimate xa.
When utilizing open data, both σm and σobs are frequently unknown, making the ap-plication of the traditional LSDA algorithm impossible. Furthermore, either xm or xobs maybe absent, necessitating the imputation of missing data prior to employing LSDA. Instead,the study recommends estimating the unknown σm and σobs as errors εm and εobs fromthe recursively predicted values (termed "regression-based uncertainties"). The predic-tion is performed by 1st-order recursive least squares (RLS)-based linear (auto)regressionfilters.
By using a 1st-order RLS-based autoregressive (AR(1)) filter, instead of the unknown σ ,the regression-based uncertainty ε of a data source (which can be applied to both xobsand xm) is proposed to be calculated as:

xpred [t] = w1 · x[t−1]+w0,

ε[t] = |x[t]− xpred [t]|,
(3)

where xpred [t] represents the estimated value (predicted by AR(1)) at time t, w0 andw1 arethe coefficients obtained from the RLS algorithm at time t− 1 (when correlating x[t− 2]with x[t−1]), x[t−1] is the value (either actual or imputed) at the previous time step t−1,
ε[t] denotes the prediction error at time t, x[t] signifies the actual value at time t.

In Eq. 3, xpred [t] is only suggested for estimating ε[t], and should not replace x[t] whenavailable. Otherwise, xpred [t] can act as an imputed value for x[t]. The coefficients w0 and
w1 are updated post-prediction, implying that the prediction at time t utilizes coefficientsdetermined at time t−1. To manage issues of differing temporal scales and the absenceof a calibration operator, analogous procedures involving a 1st-order RLS-based linear re-gression (R(1)) filter can be executed. Initially, Eq. 2 should integrate the calibration of onedata source to another (e.g., model values aligned with observations as xc

m). By substi-tuting the unknown σobs and σm with the regression-based uncertainties εobs and εm andadding calibration indicators, Eq. 2 can be modified as follows:
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To derive the calibrated values xc
m and its uncertainty εc

m, the R(1) filter is deployed.This filter matches model values to observations. Since the input values already possessuncertainty estimates, they are propagated in accordance with the rules of uncertainty(error) propagation:
xc

m[t] = h1 · xm[t]+h0,

ε
c
m[t] = |h1| · εm[t]+ |xobs[t−1]− xc

m[t−1]|,
(5)

where xc
m[t] represents the calibrated (predicted by R(1)) model value at time t, h0 and h1are coefficients from the RLS algorithm at time t−1 (when fitting xm[t−1]with xobs[t−1]),

xm[t] is the non-calibrated model value at time t, εm[t] denotes the uncalibrated modelAR(1) prediction error at time t, εc
m[t] signifies the calibrated and propagated model pre-diction error at time t, xobs[t] represents the observation value (primary data source) attime t.In Eq. 5, xc

m[t] is calibrated linearly to align more closely with xobs[t]. Consequently,the uncertainty of this calibrated value is a summation of the calibrated model uncer-tainty |h1| · εm[t] and the regression-based uncertainty of the calibration R(1) filter. As thecalibration R(1) filter utilizes h0 and h1 adjusted at time t − 1, the calibration R(1) error
|xobs[t− 1]− xc

m[t− 1]| at time t− 1 is accordingly considered as a measure of how wellthe calibration performed for the coefficients.Eqs. 2-5 were incorporated into algorithms DA1, DA2, and DA3 depicted in Fig. 7.
DA1 is a traditional LSDA algorithm using known uncertainty estimates (see Eq.2), and

DA2 estimates unknown uncertainties using Eq.3 for each data source and uses them forEq.2. DA2 is designed for data sources with the same temporal and spatial scales (thatdo not require any calibration). Therefore, when the data sources have different spatialscales, spatial calibration using Eq.5 is recommended to be applied after the initial uncer-tainty estimation using Eq.3. This serves as the basis for the algorithm DA3, which usesthe adjusted form of the traditional LSDA algorithm described by Eq. 4.The validation involved comparing the performance of algorithms DA2 and DA3 whenassimilating hourly simulations from the SILAMmodel with hourly observations from theLiivalaia AQ monitoring station. Performance was assessed using the root mean squarederror (RMSE) and mean absolute uncertainty (MAU) metrics. A lower RMSE indicatescloser alignment to the reference values. The RMSE is computed pair-wise for each of theAQ variables, comparing station observations, model simulations, and assimilated values,and is defined by Eq.6 as:
RMSE(x1,x2) =

√
1
n

n

∑
i=1

(x1[i]− x2[i])2, (6)
where x1 and x2 are data value vectors of length n from the two sources, i - index variable.To compare the regression-based uncertainties, the MAU metric was computed withEq.7 for each AQ variable for station and sensor observations, model simulations, and
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Figure 7 – Visual representation of the introduced DA1, DA2 and DA3 algorithms, derived from pub-lication II.

assimilated values as:
MAU(ε) = 1

n

n

∑
i=1
|ε[i]|, (7)

where ε is a vector of length n containing regression-based uncertainties ε[i], with i as theindex variable, each calculated using Eq. 5.
Finally, it should be noted that n in both Eq. 6 and Eq. 7 represents the total durationof the experiment (the number of hours in the corresponding time period) and is used forthe overall assessment of the experiment.

4.4 Results
The study first analyzed AQ variables (CO, SO2, PM2.5, NO2, O3, PM10) [µg/m³] at theLiivalaia AQ station in Tallinn, Estonia, comparing station observations ("Station"), theSILAM data ("Model"), and assimilation results from DA2 ("DA2") and DA3 ("DA3") dur-ing October-November 2021 ("Fall") and January-February 2022 ("Winter"). The obtainedRMSE and MAU metrics were detailed in Tables 1 and 2 of the manuscript II.

The RMSE between "Station" and "Model" was higher than the RMSE between "Sta-tion" and either "DA2" or "DA3". "DA3" consistently had the lowest RMSE but the high-est MAU compared to "DA2" for both seasons across all the AQ variables. In October-November 2021 ("Fall"), PM10 concentrations [µg/m³] were assimilatedwithDA2 andDA3using data from the Liivalaia station ("Reference Sensor"), IoT sensors at 60 meters ("IoTSensor 60 m") and 700 meters ("IoT Sensor 700 m") from the station, and the SILAMmodel data ("Model"). For the station and IoT data, RMSE and MAU metrics were alsocalculated and described in Table 3 and Table 4 of the manuscript II, respectively.
Similar to the results of the first scenario, for all observation sources, DA3 consistentlyoutperformed DA2 in terms of RMSE, though at the expense of a higher MAU. The exam-ples of the validation scenarios with explanations are demonstrated in Table 6.
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Visual example of a validation scenario Performance metricsDA2 vs DA3:Reference Sensor:

IoT Sensor (60 meters from Reference):

IoT Sensor (700 meters from Reference):

Validation scenarios for the DA2 and DA3
algorithms over the period from October 30, 2021, to

November 1, 2021, in assimilating hourly PM10
concentrations at Liivalaia, Tallinn, Estonia.

"Station", "Sensor 60m", "Sensor 700m" correspond
to xobs "Model" - xm, "DA2" - xa(DA2), "DA3" - xa(DA3).
xobs is used as the reference (ref.) for comparison;

derived from publication II.

Accuracy metrics:
rRMSE = RMSE(xa(DA2);xobs)RMSE(xa(DA3);xobs)Precision metrics:

rMAU =
MAU(εa(DA2))MAU(εa(DA3))

Reference Sensor:For the visual example:
rRMSE = 9.038, rMAU = 0.694

(DA2 is 9.038 times less accurate and
1.441 times more precise than DA3)From October 12, 2021, toNovember 10, 2021 (from II):

rRMSE = 5.875, rMAU = 0.417
(DA2 is 5.875 times less accurate and
2.398 times more precise than DA3)From January 27, 2022, toFebruary 25, 2022 (from II):

rRMSE = 6.608, rMAU = 0.554
(DA2 is 6.608 times less accurate and
1.805 times more precise than DA3)

IoT Sensor 60m:For the visual example:
rRMSE = 8.344, rMAU = 0.365

(DA2 is 8.344 times less accurate and
2.740 times more precise than DA3)From October 12, 2021, toNovember 10, 2021 (from II):

rRMSE = 1.200, rMAU = 0.287
(DA2 is 1.200 times less accurate and
3.484 times more precise than DA3)

IoT Sensor 700m:For the visual example:
rRMSE = 3.552, rMAU = 0.160

(DA2 is 3.552 times less accurate and
6.250 times more precise than DA3)From October 12, 2021, toNovember 10, 2021 (from II):

rRMSE = 1.484, rMAU = 0.213
(DA2 is 1.484 times less accurate and
9.001 times more precise than DA3)

Table 6 – Examples of comparative analysis of DA2 vs DA3 algorithms for hourly PM10 concentra-tions in Liivalaia (Tallinn, Estonia). Performance metrics assess accuracy and precision against thereference sensor values. Data source: II.
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The overall validation results indicate that the assimilation results for both DA2 and
DA3 algorithms were successfully able to reduce the uncertainty (MAU) relative to theuncertainty of the input data sources. DA2 generally yields lower uncertainty than DA3,as evidenced by the lowerMAU ofDA2 results. However,DA3might achieve greater accu-racy (evident from the lower RMSE ofDA3 results compared toDA2 results) because of itscalibration step, albeit with a potential increase in uncertainty. In this context, the accu-racy ofDA3 hinges on the accuracy of the reference data source used for calibration. Thus,in DA3, calibrating one data source (model) to another (observations) reduces the errorbetween the reference and assimilated values, thereby enhancing accuracy. When assim-ilating model data with observations from IoT sensors, the magnitude of errors dependson the difference between station observations and IoT sensor measurements. Stationobservations exhibited the lowest uncertainty. DA3wasmost accurate for the station andleast accurate for the most distant IoT sensor.
4.5 Conclusion
The study in publication II discusses the benefits and challenges of OEDA in the urbanAQ monitoring domain. While improved data quality stands as a significant benefit, chal-lenges such as assimilating data across different spatial and temporal scales and the ab-sence of known uncertainty estimates are predominant. Furthermore, these challengesare often compounded by the requirement for substantial knowledge of the underlyingmodels (C2.1).These considerations have consequently informed the development of RQ2:

RQ2: "Candata assimilation be applied at different spatial and temporal scalesusing sources without uncertainty?"
Answer: The study introduces two lightweight DA methods, DA2 and DA3,which are suitable for continuous execution and provide uncertainty esti-mates for LSDA. DA2 performs LSDA using data sources of the same temporaland spatial scales without calibration. DA3 includes a calibration step to han-dle data of different spatial scales. The uncertainty estimation methods areanchored in the propagated prediction errors from the AR(1) and R(1) models.These approaches align with contributions C2.2 and C2.3 in the thesis, whichfocus on the development and performance validation of these algorithms.The findings demonstrate the feasibility of applyingDA in contextswhere datasources lack pre-established uncertainty metrics, thereby expanding the po-tential of DA in future automated environmental monitoring and compliancereporting applications.

In a test case in Tallinn (C2.3), DA2 achieved the minimum uncertainty, while DA3 pro-vided the least error when compared to the reference measurements. Additionally, both
DA2 and DA3 seamlessly impute missing data using AR(1) filter predictions when no inputvalue is available, enhancing the output dataset’s completeness.The DA2 and DA3 algorithms provide a standardized approach to manage missing un-certainty estimates in IoT devices with limited processing capacities. Using simple 1st-order models and linear operators, they are suitable for IoT applications. Their main ob-jective is to improve urban AQ monitoring by incorporating IoT sensors and leveragingexisting open data sources, thus broadening the coverage of existing networks and po-tentially lowering costs. Future work will focus on applying DA2 and DA3 to larger net-works to further refine the quality of environmental data in terms of accuracy, precisionand completeness.
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5 Open Pan-European Urban Air Quality Data Assimilation
5.1 Background
Cities monitor their AQ to reduce pollution and plan for emergencies, combining grounddata with computer models for better accuracy. The EEA provides a public AQ database[143] that, when paired with models using DA methods, improves analysis while consid-ering data uncertainties [137, 144].

This chapter focuses on the study featured in publication III, which, in contrast to priorresearch on new IoT-based sensor networks [145, 146], aims to reuse OGD from the EEAAQ dataset [143]. The study demonstrates that, on a European scale, data from large-scale models such as SILAM [52] can be utilized without an in-depth understanding of themodel itself and can be assimilated with the EEA AQ data to improve the accuracy of theestimates by using the proposed novel DA methods.
Using open data sources for DA presents challenges, particularly when uncertainty es-timates are absent and the temporal and spatial scales differ [147], II. This research pro-videsmethods for estimating uncertainties using chained 1st-order recursive least squares(RLS) filters. The propagated errors from these filters have been shown to serve as data-driven uncertainty estimates for DA algorithms. The work does not analyze Europe’s AQbut offers a method to improve the quality of existing data using DA with open numeri-cal simulations. The goal is to enhance data quality using only timestamped air pollutantvalues and their location coordinates, without the need for additional information or un-certainty estimates.
This study extends prior work by introducing new algorithms for DAwhen data sourceshave differing spatial and temporal scales. Similar to the work in II, the work III addressesthe need to improve the accuracy and completeness of urban ambient AQmonitoring andmodeling through DA with the cost-efficient reuse of OGD. The latter work also validatesall algorithms using OGD from European urban ambient AQ monitoring stations.

5.2 Data Sources
The study assimilated hourly fixed-point surface observations from the open EEA AQ data,exported in CSV format [143], and numerical simulations from the SILAM. The latter wereretrieved in ZARR format from [139] and transformed into CSV for processing. SILAM isa global model that features an hourly 0.2° grid. The data prepared for assimilation isavailable in [34].

The EEA AQ dataset includes details onmonitoring networks, stations, measurements,and assessment configurations. Specific filtering criteria such as station type (background)and area type (urban)were applied, ensuring less than 20%missing data, to select stationsfor validation. The distribution and numbers of the selected AQ monitoring stations areillustrated in Table 7. For validation, hourly values from the data sources were averagedover 24 hours to retrieve daily values. Data from each station were assimilated with sim-ulation results from the corresponding SILAM grid cell. The same model was previouslyused for a single monitoring station (Liivalaia station referenced in publication II).
5.3 Methods
This study, found in publication III, presents three new DA methods outlined in Fig. 8, inaddition to the previously introduced algorithms developed and validated in publicationII:
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Table 7 – Map and variables of air pollutants from European monitoring stations, the data fromwhich were used in publication III.
Map Air Pollutant Number ofStations

Distribution of AQ monitoring stations
in Europe, the data from which was assimilated in III.

CO(carbonmonoxide) 86
NO2(nitrogendioxide) 593
O3(ozone) 462
SO2(sulfurdioxide) 137
PM2.5(particulatematter
≤ 2.5 µm)

254
PM10(particulatematter
≤ 10 µm)

445

• S-DA: sequential LSDA for a single source with unknown uncertainty, eliminatingthe need for a second data source to estimate uncertainty;
• DA4: LSDA for two sourceswith unknownuncertainties that have different temporaland spatial scales;
• S-DA4: sequential LSDA using results from DA4 and its predictions for S-DA, suit-able for two sources with unknown uncertainties and different temporal and spatialscales.
Each of the DA algorithms can be differentiated based on the number of data sourcesused, the presence of uncertainty estimates, and types of calibration. All the proposedDA algorithms (excluding DA1, which is a standard LSDA) utilize conventional 1st-order RLSfilters for uncertainty estimation, spatial and temporal calibration, sequential estimation,and data imputation. The complexity of a single RLS filter is O(L2) with L = 2. The coeffi-cients of the 1st-order linear equation are recursively refitted at each time step, resulting inconstant time complexity, O(1), which does not vary with more iterations. The proposedDA algorithms employ several RLS filters for 1st-order linear regression models to performpreprocessing tasks for LSDA, the numbers and execution times of which are shown inTable 8. The execution time was estimated using a computer with an Intel(R) Core(TM)i7-8565U CPU @1.80GHz × 8 and 16Gb RAM (details are in publication III).Each RLS-based 1st-order model is initially initialized with zero error and an identitystate transition matrix. These are refitted at each step based on the input data values.The difference between the predicted and actual outcomes (the error) is computed andused to adjust the RLS model’s parameters.
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Figure 8 – Visual representation of the introduced S-DA, DA4 and S-DA4 algorithms, derived frompublication III.

The RLS-based 1st-order autoregression AR(1) model is utilized to estimate initial un-certainties. This model predicts a current value using a previous one. When current datais missing, the RLS prediction fills the gap; otherwise, the actual value is used. The devia-tion from the prediction provides a regression-based uncertainty estimate (see Eq.3). Thismodel is applied to each data source. In addition, the R(1) model is used for the spatialcalibration of two datasets. It takes the outputs of the AR(1) model and aligns one datasource to another with a different spatial scale. The error from the AR(1) model is adjustedaccording to uncertainty propagation rules and combined with the R(1) error (see Eq.5).While DA2 solely employs the AR(1) model to impute missing data and estimate uncer-tainties, DA3 uses both AR(1) and R(1) models. The use of both models in DA3 is vital toadd a spatial calibration step to one of the data sources. This ensures that data from bothsources match in terms of scale and can be effectively compared or combined with LSDA(see Eq.4). Subsequently, LSDA is applied to obtain a refined analysis estimate consider-ing uncertainties and calibration. When the temporal scales differ, temporal calibrationis applied. In III, temporal calibration is illustrated using hourly and daily values, but thisapproach can be generalized to other temporal scales.
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Table 8 – Average execution time of 1 iteration of the proposed DA algorithms. The execution timewas estimated using a computer with an Intel(R) Core(TM) i7-8565U CPU @1.80GHz × 8 and 16GbRAM.
Algorithm Number of RLS Filters Execution Time (ms)
DA2 2 0.056
S-DA 2 0.058
DA3 3 0.077
DA4 4 0.100
S-DA4 5 0.126

As detailed in publication III, hourly data can be converted to daily data by averag-ing the values over a 24-hour period. The "Recursive daily average estimator" (describedin Algorithm 1 of publication III) processes hourly data, continuously updating daily av-erages. After receiving 24 data points, which equate to a full day, the daily average isrecorded, and the estimator begins anew for the subsequent day. For a mix of hourly andmonthly data, the transformation must account for the total hours in a month. To convertdaily data back to hourly, an RLS-based 1st-order R(1) model is employed. This model fitsdaily data to predict hourly values, akin to the previously described R(1) model for spatialcalibration. DA4 conducts LSDA by calibrating both temporal (time-related) and spatial(space or location-related) scales. The data sources undergo AR(1) data imputation, R(1)spatial and temporal calibration, and are then assimilated with LSDA.
To estimate sequential data points while considering previous data, the RLS-basedAR(1) model for sequential estimation is utilized. S-DA applies LSDA to assimilate a newobservation that has been processed through AR(1) for data imputation and uncertaintyestimation with the previously acquired S-DA analysis result. After each LSDA procedurerun, another RLS-based AR(1) model fits the relationship between the current analysis re-sult and the previous one, making a refined prediction for LSDA with a new observationin the subsequent step. Compared to S-DA updating the coefficients using incoming data,

S-DA4 uses the output from DA4 for sequential estimation.

5.4 Results
The developments in addressingRQ2 led directly to the exploration ofRQ3: evaluating theperformance of the algorithms in refining the accuracy of urban air pollution estimatesfrom European cities. The aim was to ascertain whether the algorithms stemming fromRQ2 could contribute tomore accurate AQmonitoring, which is imperative for both publichealth and regulatory compliance.

In addition to the validation and comparison of algorithms DA2 and DA3 in publicationII, the study III validated and compared the performance of algorithms S-DA, DA3, DA4,and S-DA4 using data fromEuropeanAQmonitoring stations (EEAAQdataset). The resultsof S-DA were compared with DA3, and DA4 results were compared with S-DA4. For eachAQ variable, results were averaged across all stations. Performance was evaluated andcompared using the ratios of two metrics: RMSE (see Eq.6) and MAU (see Eq.7), derivedby dividing the metrics of one DA method by those of the other. The examples of thevalidation scenarios for one of the AQ variables (O3 - ozone) are presented in Table 9.
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Visual example of a validation scenario Performance metricsDA3 vs S-DA:

Validation scenario for the DA3 and S-DA
algorithms over the period from February 6, 2022, to

February 8, 2022, in assimilating hourly ozone
concentrations at Peristeri, Athens, Greece.
"Station" corresponds to xobs, "Model" - xm,"DA3" - xa(DA3), "S-DA" - xa(S-DA). xobs is used as thereference for comparison; derived from publication III.

Accuracy metrics:
rRMSE = RMSE(xa(S-DA);xobs)RMSE(xa(DA3);xobs)Precision metrics:

rMAU =
MAU(εa(S-DA))MAU(εa(DA3))

For the visual example:
rRMSE = 1.406, rMAU = 0.885
(DA3 is 40.6% more accurate

and 11.5% less precise than S-DA)
Averaged for N=462 stationsfrom January 27, 2022, toFebruary 25, 2022 (from III):
rRMSE = 1.367, rMAU = 0.902
(DA3 is 36.7% more accurate

and 9.8% less precise than S-DA)

DA4 vs S-DA4:

Validation scenario for the DA4 and S-DA4
algorithms over the period from February 6, 2022, to
February 8, 2022, in assimilating hourly and daily
ozone concentrations at Peristeri, Athens, Greece.

"Station" corresponds to xhobs, "Model" - xdm,"Ref." - xhm, "DA4" - xa(DA4), "S-DA4" - xa(S-DA4);derived from publication III.

Accuracy metrics:
rd→hRMSE = RMSE(xa;xh

m)RMSE(xd
m;xh

m)Precision metrics:
rMAU =

MAU(εa(S-DA4))MAU(εa(DA4))
For the visual example:

DA4: rd→hRMSE = 0.922
S-DA4: rd→hRMSE = 0.950

(DA4 is 7.8% and S-DA4 is 5.0%
more accurate than flat-line extra-
polated daily values; DA4 is 2.8%

more accurate than S-DA4)
rMAU = 0.582 (DA4 is 41.8%
less precise than S-DA4)

Averaged for N=462 stationsfrom January 27, 2022, toFebruary 25, 2022 (from III):
DA4: rd→hRMSE = 0.868
S-DA4: rd→hRMSE = 0.885

(DA4 is 13.2% and S-DA4 is 11.5%
more accurate than flat-line extra-
polated daily values; DA4 is 1.7%

more accurate than S-DA4)
rMAU = 0.614 (DA4 is 38.6%
less precise than S-DA4)

Table 9 – Examples of comparative analysis of DA3 vs S-DA and DA4 vs S-DA4 algorithms for hourlyozone concentrations in Peristeri (Athens, Greece). Performance metrics assess accuracy and preci-sion against reference values. Data source: publication III.
38



The comparative analysis of S-DA and DA3 utilized hourly observations from the EEAAQ dataset, combined with hourly SILAM simulation data. Reference data for algorithms
S-DA and DA3 was based on observations from the monitoring stations. For all the AQvariables examined, S-DA proved to be less accurate yet more precise than DA3. The per-formance of the DA4 and S-DA4 algorithms was validated by changing one of the hourlydata sources to daily (e.g. model data xm). The assimilation results of the daily data xd

mwith the hourly data fromanother source xh
obs are then comparedwith the initial referencehourly data xh

m.While the results in terms of accuracy forDA4 and S-DA4 vary: DA4wasmore accuratefor PM2.5, NO2, O3 and PM10, and S-DA4 was more accurate for CO and SO2. For allthe variables, S-DA4 is more precise than DA4 due to the sequential estimation loop,reducing uncertainty through another round of DA. The results for all the AQ variables aresummarized in Table 2 (for S-DA and DA3) and Table 3 (for DA4 and S-DA4) of the originalmanuscript III.
5.5 Conclusion
The study offers a thorough evaluation of the performance of all proposed DAmethods inassimilating open AQ data sources, including EEA AQmonitoring station data and SILAM’slarge-scale model simulations, which vary in temporal and spatial scales and lack inputuncertainty estimates.

Contributions C3.1 and C3.2 are addressed in the study based on publication III. C3.1covers the introduction and implementation of lightweight, data-driven preprocessingand assimilation methods (S-DA, DA4, S-DA4). C3.2 focuses on the performance valida-tion of these algorithms using pan-European urban AQ monitoring station data (OGD) toimprove data quality across scales. The introduced algorithms S-DA, DA4 and S-DA4 fur-ther facilitate answering RQ2:

RQ2: "Candata assimilation be applied at different spatial and temporal scalesusing sources without uncertainty?"
Answer: The study addressesRQ2 by introducing novel DA algorithms such as
S-DA,DA4, and S-DA4 (in addition toDA2 andDA3 frompublication II), whichare designed to preprocess and assimilate urban AQ data across varying tem-poral and spatial scales without the need for prior uncertainty estimates. Inparticular, S-DA is designed to perform DA using one data source with un-known uncertainties, DA4 and S-DA4 - using the data sources of both varyingtemporal and spatial scales (compared to DA3). These methods improve theaccuracy by utilizing a data-driven approach to estimate uncertainties, whichis crucial for effective assimilation under the given constraints.

S-DA vs DA3 and DA4 vs S-DA4 are rigorously compared. S-DA is found to exhibit ahigher error but lower uncertainty than DA3. Moreover, DA4 and S-DA4 show similarperformance levels, with DA4 noted for its computational efficiency and S-DA4 for im-proved accuracy under specific conditions, especially during rapid data changes. Thesefindings underscore the feasibility of applying DA methods to diverse urban AQ data sets,paving the way for more sophisticated environmental monitoring and analysis.
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The results from publication III affirmatively answer RQ3:
RQ3: "Are computationally lightweight assimilationmethods suitable for large-scale open environmental monitoring data?"
Answer: The findings from publication III positively respond to RQ3, demon-strating the suitability of lightweight DAmethods for large-scale environmen-talmonitoring, specifically in the context of European urban AQdata. The val-idation confirms that the DAmethods can be applied to data of varying scales,effectively improving the accuracy of the final estimate. It demonstrates thatthe algorithms can enhance the accuracy of open European urban AQ esti-mates without the need for in-depth knowledge of the models, calibrationoperators, or prior uncertainty estimates. The introduced methods success-fully address missing data, ensuring dataset completeness — a crucial aspectof environmental monitoring. RMSE metrics are used to assess accuracy bymeasuring the differences between the assimilation outputs and the refer-ence data. The choice of a specific DA method is informed by several factors:the spatial and temporal scales of the input data, the availability (or lack) ofa priori uncertainty information, and the need to accommodate rapid vari-ations in environmental data. This versatility and adaptability underline thealgorithms’ potential to support robust, data-driven environmental monitor-ing and decision-making on a large scale.

Future research will build on this foundation, targeting the creation of dynamic maps,optimization of urban AQmonitoring placements, and the inclusion of a broader range ofdata sources.
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6 Conclusions
The primary objectives of this dissertation were to address three RQs to improve datacompleteness, accuracy, and precision in environmental monitoring. This was accom-plished by developing lightweight assimilation algorithms using OGD from varied spatialand temporal scales without a priori uncertainty estimates. The efficacy of the proposedalgorithms was assessed using Estonian local and pan-European urban air pollution es-timates. This work, consisting of publications I, II and III provides compelling answersto these questions through the development and validation of novel DA algorithms andmethodologies.The work aimed to develop a general approach to estimating uncertainty based solelyon the input data values, without reference to the model’s structure or the source ofobservations. The SILAMmodel was selected since it has publicly available access to dataarchives, and this does not limit the algorithms’ applicability to other models or domains.The proposed DA methods show promise for transforming AQ monitoring using opendata, affordable sensors, and numerical models, which could substantially reduce theneed for new infrastructure. Their adaptable and scalable design, supported by open-source code, paves the way for further research and innovation. Emphasizing the impor-tance of developing "lightweight" methods suitable for IoT devices, the study addressesthe challenge of unknown uncertainties by effectively using regression-based uncertain-ties. To juxtapose the research outputs of this dissertationwith the current state of the artin academia, industry, and the public sector, the following practices inDAandenvironmen-tal monitoring can be noted to highlight the specific advances made in this dissertation:Academia: In academia, the utilization of DA methods has been traditionally focusedon complex and often computationally intensive models, such as those described by [27]in their comprehensive review of DA methods for numerical weather prediction. The ad-vances in modeling techniques are driving the future of DA towards more complex, non-linear methods and a growing integration of machine learning, though it faces challengesin estimating uncertainty [148]. The lightweight DA algorithms developed in this disser-tation, such as DA2, DA3, DA4, S-DA, and S-DA4, represent a significant departure fromthis norm, offering simpler, more agile alternatives that are suitable for continuous appli-cations and IoT devices and including automatic uncertainty estimation.Industry: In the industry, environmental monitoring often relies on proprietary tech-nologies and sensor networkswith integrated data processing capabilities. Companies likeIBM and their Green Horizons initiative use large-scale sensor data to predict AQ [53]. Themethods introduced in this dissertation provide a cost-effective, open-source alternativethat can be integrated with existing IoT infrastructures, democratizing access to advancedmonitoring capabilities.Public sector: The public sector, particularly environmental agencies like the EEA, hasbeen increasingly adopting open data policies to enhance environmental monitoring. Thedissertation’s approach aligns with these policies by leveraging open data from EEA andother sources, improving upon the traditional methods that often require detailed modelknowledge or proprietary data [54].These points underscore the novelty and applicability of the research presented in thisdissertation, placing it at the forefront of current environmentalmonitoring practices. No-tably, the outcomes of this work are expected to impact not only academic research, butare likely to have substantial applications in industry and in the public sector. This is due tothe ability of the proposed DA algorithms to be integrated easily into existing monitoringsystems, providing enhanced data quality for ongoing research and development in thefield. Furthermore, this dissertation lays the groundwork for future research directions:
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• expanding the application of the proposed algorithms to dynamic air pollutionmap-ping;
• formulating methodologies for optimal sensor placements based on uncertainties;
• validating theproposed algorithmsondifferent types of environmental data sources;
• extending support for different data types and additional input parameters;
• implementing thesemethods onmesh networks of low-cost IoT devices to enhancesystem-wide consistency, reliability, and accuracy.
In summary, this dissertation advances the field of environmentalmonitoring and com-pliance reporting by introducing cost-effective, data-agnostic, and scalable DA algorithmsthat improve data quality on multiple fronts. These algorithms are particularly effectivefor assimilating disparate data sources and are validated to improve the reliability of openEuropean urban air pollution estimates. Open-source code and validation scenarios areprovided to ensure reproducibility and to encourage future research in this vital area. Byaddressing the challenges associated with assimilating multi-source, multi-scale environ-mental data, this work offers major insights and practical answers for adapting to a futurewhere precise, timely, and extensive environmental monitoring is urgently required.
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AbstractOpen Environmental Data Assimilation Under Unknown Un-certainty and Multiple Spatio-Temporal Scales
This dissertation focuses on advancing environmental monitoring through novel data as-similation methods. It addresses the challenges in enhancing data quality for environ-mental monitoring and modeling, particularly in open environmental data. Key contribu-tions include the development of lightweight data assimilation algorithms that improvethe accuracy of urban air pollution estimates without prior uncertainty estimates. Thesescalable algorithms are suitable for IoT devices and support continuous, accurate environ-mental data collection, aligning with EU environmental directives.The work also emphasizes the importance of open environmental data assimilationfor informed policy-making and compliance monitoring. It addresses research questionson improving data completeness, accuracy, and precision, and the efficacy of the newalgorithms in improving air quality data.Compared to existing methods, this dissertation offers cost-effective, open-source al-ternatives for environmental monitoring, promoting collaborative innovation and democ-ratizing advanced monitoring capabilities. Future research directions include air pollu-tion mapping, sensor placement optimization, and expanding the algorithms’ applica-tions. The research supports EU environmental policies and regulations and providesopen-source code for ongoing research, enhancing environmental monitoring’s precision,timeliness, and extent.
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KokkuvõteKeskkonna avaandmete assimilatsioon tundmatu määramatu-se ning erinevate aeg-ruumi skaalade korral
Käesolev doktoritöö keskendub keskkonnaseire edendamisele uuenduslike andmete as-simileerimise meetodite abil. Töös käsitletakse keskkonnaseire ja modelleerimise vald-konna väljakutseid seoses andmete kvaliteedi parandamisega, pöörates erilist tähelepanuavatud keskkonnaandmetele. Peamised panused, eesmärgiga parandada linnakeskkonnaõhusaaste mõõtetulemuste täpsust, hõlmavad kergekaaluliste algoritmide arendamist il-mamääramatuse hinnanguta andmete assimileerimiseks. Loodud algoritmid on hästi ska-leeruvad, vastavad ELi keskkonnadirektiividele, sobivad IoT seadmetele ja toetavad pide-vat, täpset keskkonnaandmete kogumist.Töö rõhutab ka avatud keskkonnaandmete assimileerimise olulisust teadliku poliitikakujundamisel ja sellest tulenevate nõuete ning regulatsioonide jälgimisel. Töö käsitlebuurimisküsimusi andmete täielikkuse, täpsuse ja kordustäpsuse parandamise ning uutealgoritmide tõhususe kohta õhu kvaliteedi andmete parandamisel.Võrreldes olemasolevatemeetoditega pakub käesolev doktoritöö kuluefektiivseid, ava-tud lähtekoodiga alternatiive keskkonnaseireks, edendades koostööl põhinevat innovat-siooni ja demokratiseerides arenenud seirevõimalusi. Tulevased uurimissuunad hõlma-vad õhusaaste kaardistamist, sensorite paigutuse optimeerimist ja algoritmide rakendustelaiendamist. Uurimus toetab ELi keskkonnapoliitikat ja -regulatsioone ning pakub avatudlähtekoodiga koodi käimasolevaks uurimistööks, suurendades keskkonnaseire täpsust, õi-geaegsust ja ulatust.
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A B S T R A C T

Environmental monitoring of rivers is a cornerstone of the European Union’s Water Framework Directive. It 
requires the estimation and reporting of environmental flows in rivers whose characteristics vary widely across 
the EU member states. This variability has resulted in a fragmentation of estimation and reporting methods for 
environmental flows and is exhibited by the myriad of regulatory guidelines and estimation procedures. To 
standardise and systematically evaluate environmental flows at the pan-European scale, we propose to formalise 
the estimation procedures through automation by reusing existing river monitoring resources. In this work, we 
explore how sensor-generated hydrological open government data can be repurposed to automate the estimation 
and monitoring of river environmental flows. In contrast to existing environmental flows estimation methods, we 
propose a scalable IoT-based architecture and implement its cloud-layer web service. The major contribution of 
this work is the demonstration of an automated environmental flows system based on open river monitoring data 
routinely collected by national authorities. Moreover, the proposed system adds value to existing environmental 
monitoring data, reduces development and operational costs, facilitates streamlining of environmental compli-
ance and allows for any authority with similar data to reuse or scale it with new data and methods. We critically 
discuss the opportunities and challenges associated with open government data, including its quality. Finally, we 
demonstrate the proposed system using the Estonian national river monitoring network and define further 
research directions.   

1. Introduction 

The negative environmental impacts on societies and ecosystems are 
frequently driven by human activity and amplified by increasing cli-
matic variability. The impacts may degrade the environment, decrease 
available natural resources, increase pollution levels, damage human 
health and well-being. Due to the importance of the environment and its 
role in societal and ecosystem health, governments have a persistent 
interest in regulating, monitoring and managing the state of the 
environment. 

River ecosystems are one of the most heavily regulated, monitored, 
and governed aspects of the environment. Maintaining healthy river 
ecosystems is necessary to ensure a large number of benefits to society, 
such as the provision of the drinking water supply, irrigation, agricul-
ture, power generation, transportation, and industry (Tickner et al., 

2017). However, to secure the health and benefits of these ecosystems, 
costly investments are needed for maintenance, governance, infra-
structure, and regulation. Meanwhile, new technological developments 
are increasingly being highlighted and tested to offset or reduce tradi-
tionally high costs. 

Environmental management is experiencing an increased interest in 
the use of disruptive technologies, such as the Internet of Things (IoT) 
and big data analytics, to improve efficiency, productivity, and effec-
tiveness of service delivery. However, systematic approaches integrating 
technological advances into existing governance and regulatory frame-
works remain largely absent for the monitoring and evaluation of river 
ecosystems. At the same time, such approaches are precisely what is 
needed for the governance of river ecosystems (Tickner et al., 2017). It is 
our belief that innovative technologies are necessary for better envi-
ronmental management and monitoring, but their implementation alone 
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is not wholly sufficient to provide the urgently needed gains in effec-
tiveness. To address this, we provide an Environmental Intelligence (EI) 
conceptualisation for environmental service delivery, which considers a 
broad variety of technical and non-technical social, political and eco-
nomic challenges needed to address the growing scope of environmental 
impacts on societies and ecosystems (Shin, 2014; Mathis et al., 2018). 

The proper management of negative impacts to river ecosystems 
requires ensuring environmental regulatory compliance in the face of 
increasing challenges related to environmental uncertainty, scientific 
(estimation methodologies), technological (e.g. missing equipment, 
failing sensors, infrastructure, and acquisition of high quality, up-to- 
date, and relevant data), and regulatory (e.g. lacking or missing pol-
icies). The monitoring of river ecosystem health requires complete and 
accurate information on the river flow regime, water usage, and the state 
of the aquatic ecosystems. However, it is often missing, of poor quality, 
or limited to a specific geographical scope (Pahl-Wostl et al., 2013). 

In the European Union (EU), the Water Framework Directive (WFD) 
establishes the necessary cross-cutting water policies committing the EU 
member states to achieve a good status of water bodies, and serves as the 
fundamental framework for European water legislation (European Par-
liamentCouncil of the European Union, 2000). The compliance of rivers 
with the WFD involves the maintenance of the hydrological regime 
(water quantity and dynamics) sustaining aquatic ecosystems quantified 
by environmental (or ecological) flows (eflows) (European Commission, 
2015). 

The methods to estimate eflows vary depending on the situational 
complexity, available resources and user requirements (European 
Commission, 2015; Poff et al., 1997; Stamou et al., 2018; Zeiger and 
Hubbart, 2021; Parasiewicz et al., 2018). However, the geographical 
scope of their implementation is uneven, and the eflows requirements 
are not systematically assessed at a large scale, which is fundamental to 
improve the effectiveness of eflows estimation as a water management 
tool (Gopal, 2016; Mezger et al., 2019). The impediments to large-scale 
implementation include the complexity of ecosystem functions and 
habitat biodiversity, ambiguity and uncertainty over method choice, 
lack of transferable eflows rules and strategies, agility and scalability of 
the existing estimation system and legislation, insufficient resources and 
knowledge, lack of collaboration, commitment and support by govern-
ments and stakeholders, conflicts of interest, and many other (Pahl--
Wostl et al., 2013; Opperman et al., 2018; Mezger et al., 2019; Espinoza 
et al., 2021; Gopal, 2016; Le Quesne et al., 2010; Parasiewicz et al., 
2018; European Commission, 2015). 

Organisational uncertainties and inefficiencies resulting from the 
complexity of eflows policies and laws have a significant effect on the 
implementation of the WFD objectives and commitment of executives 
(Taylor et al., 2021; Wineland et al., 2021; Manna and Moffitt, 2019). 
Therefore, we suggest complementing expensive and time-consuming 
ecological studies involving deep evaluation, complex habitat simula-
tion and expert consultation with automated minimum viable eflows 
estimation and monitoring. 

To enable automated eflows monitoring, we propose implementing 
automated, data-driven methods. In particular, simple hydrological 
methods use data routinely collected by the government hydrological 
services (e.g. flow rates, water depths and temperatures), and their 
implementation would allow for an automated minimum viable esti-
mation procedure. In the scope of the work, we make use of the ex-
ceedance probabilities of the calculated eflows (minimum flow rates 
required by aquatic species) as a compliance criterion, which can further 
be updated and replaced with more detailed criteria as needed. 

In this paper, we ask the following research question: ”How can open 
government data be repurposed to enable automated eflows estimation 
and monitoring for river management at the national scale?“. To answer 
this research question, we built and tested an IoT-based system for 
automated eflows estimation and monitoring based on the Estonian 
national river sensing network and its open government hydrological 
data. Methodologically, this paper follows a particular implementation 

of the design science research methodology that also takes into account 
the environmental intelligence (EI) cycle. Though this paper focuses on 
the specific case of Estonia, the approach adopted here is well suited for 
new implementations in different country contexts. The core contribu-
tion of this paper is related to the design and demonstration of a system 
that enables automated monitoring and evaluation of eflows by repur-
posing existing open river monitoring data routinely collected by the 
government, followed by the introduction of the concept of the “Internet 
of Open Government Data and Things” (IoOGDT). 

2. Background 

Environmental managers have a unique role in large-scale environ-
mental monitoring because they possess information relating to the state 
of the environment, meteorological observations and forecasts of 
different types and enforce environmental policies, legislation, plans, 
permits, licenses, and others. Currently, environmental regulations are 
unevenly enforced (Keith-Roach et al., 2014), and environmental reg-
ulatory technologies, which could promote the implementation of 
environmental regulations, remain rare. 

In the water domain, the enforced objectives of the EU Water 
Framework Directive (WFD) to achieve good chemical and ecological 
statuses of all surface and groundwater bodies remain unachieved, and 
deadlines across Europe have been extended (European Commission, 
2017a). The major reasons for non-compliance are large uncertainties 
associated with the definition of monitoring and assessment procedures 
of water protection areas, as well as the lack of adaptation strategies to 
the effects of climate change, including more frequently occurring 
flooding and droughts (European Commission, 2017a; Voulvoulis et al., 
2017). 

The monitoring of compliance of rivers with the WFD involves the 
estimation of the hydrological regime (water quantity and dynamics) 
sustaining aquatic ecosystems often quantified with environmental (or 
ecological) flows (eflows) (European Commission, 2015). Since gov-
ernments already collect river data for national and regional monitoring, 
reporting and research and provide them to open access as open gov-
ernment data (OGD), the data can be reused for eflows estimation. 
Different types of river OGD can be fused (Ghamisi et al., 2019; Mod-
afferi et al., 2013), merged with proprietary data and software (Gupta, 
2012) to complement each other, calibrate sensors (Ferrer-Cid et al., 
2020), validate the reliability of data (Ocio et al., 2019), estimate un-
measured locations with some form of spatial interpolation (Modafferi 
et al., 2013) and create new environmental data-driven solutions sup-
porting decision- and policy-making. The real-time provision of river 
OGD allows for the automation of compliance monitoring of rivers that 
can serve the needs of various environmental policies and agencies 
(European Commission, 2017b, 2019). 

Substantial literature has been devoted to the study of how OGD can 
be used to drive the creation of new innovative services (Janssen et al., 
2012; McBride et al., 2019a; Jetzek et al., 2014). However, there re-
mains a lack of studies that specifically examine OGD originating from 
the Internet of Things (IoT) networks and how these OGD may be uti-
lised in a similar way to how it is done within this paper. This paper 
primarily differs from previously conducted research in that it specif-
ically focuses on how OGD, generated by an IoT system, can be used to 
drive and enable the development of a targeted tool for environmental 
monitoring. When previously published papers do discuss IoT and OGD, 
the papers are almost exclusively related to the topic of smart cities, see, 
for example, Aguilera et al. (2017); Zanella et al. (2014); Ahlgren et al. 
(2016), or rather explore the generation and use of data from IoT devices 
(Montori et al., 2017; Borges Neto et al., 2015; Calbimonte et al., 2012). 
While such papers do, sometimes, focus on the utilization of OGD, they 
also often refer simply to data generated from IoT devices. These data 
are not conceptually the same as OGD. Furthermore, such papers are not 
necessarily focused on the immediate usage of OGD, generated from IoT 
networks, for a specific environmental monitoring task or application. In 
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this paper, this specific concept of OGD being generated and released 
from IoT networks, is defined/conceptualized as the Internet of Open 
Government Data and Things (IoOGDT). IoOGDT can be understood as 
data that have been collected or paid for by a government organisation, 
are generated via IoT and subsequently released as OGD (with an 
appropriate license, in a machine-readable, human-understandable, and 
freely reusable format). Data released in this way may help to improve 
and extend the effectiveness and value of the IoT system since anyone 
can take advantage of them to build a new useful service (Mergel et al., 
2018). 

As OGD may help with improving the quality, relevance, and impact 
of IoT, so too may IoT also help drive the improvement and use of OGD. 
The primary reason for this is that data coming via an IoOGDT system 
may be reasonably expected to be more relevant, accurate, timely, and 
useable than other standard sources of OGD. This is an important point 
because it is known that one of the primary reasons that individuals or 
citizens do not take advantage of OGD is due to lack of quality, rele-
vance, or timeliness (Young and Yan, 2017; Zuiderwijk et al., 2012). It is 
also known that one of the highest predictors for future use of OGD is 
related to a positive previous experience with an OGD-based system 
(McBride et al., 2019b). Thus, it can be argued that OGD and IoT 
generate a symbiotic relationship, with each improving the other, and 
that by releasing OGD collected via IoT, it is possible to encourage the 
creation of new services, thereby simultaneously extending and 
improving the value of the IoT system. 

3. Methodology 

3.1. Procedures and data sources 

In order to answer the research question of how to develop a system 
providing automated environmental compliance monitoring of rivers, 
we adopt a particular implementation of the design science research 
methodology (Peffers et al., 2007) - environmental intelligence (EI) 
cycle (Mathis et al., 2018), involving an iterative creation and applica-
tion of an environmental technology artefact addressing a specific 
design problem and facilitating its better understanding. The adaptation 
of the EI cycle for the eflows compliance estimation is presented in 
Fig. 1. 

The EIcycle can be useful for stakeholders of different sectors, 

supporting various environmental focus areas, e.g. business risk man-
agement, critical infrastructure protection, military operations, as well 
as environmental regulatory compliance management stakeholders. 
Data collection can involve spatial and temporal environmental data of 
multiple types, used independently, in parallel, assimilated or fused. 
With the extraction of the functional evidence from the data, the new 
information is evaluated, communicated and applied. The steps of the EI 
cycle are iteratively revisited to respond to the needs of stakeholders. 

To reduce implementation expenses, we suggest repurposing avail-
able river data. Rivers provide a variety of uses, including shipping, 
drinking water, and irrigation. And river monitoring data are widely 
available from local, regional, national and international institutions 
and are supported by domain experts with multi-generational knowl-
edge. IoT-based river monitoring systems are now rapidly advancing 
beyond data logging services to provide data-driven solutions for 
pumping station control (Dong and Yang, 2020), increase the automa-
tion level of water-intensive agriculture (Puranik et al., 2019) and flood 
alert systems (Rani et al., 2020). 

In this work, in order to estimate the compliance of river flows, we 
use the data collected by the Estonian Ministry of the Environment for 
weather reporting and water resource management obtained on request 
as well as publicly accessible Estonian river data - Estonian hydrological 
OGD. This paper uses hydrological observations from 54 Estonian 
gauging stations (see Fig. 2) from January 01, 2009 to December 31, 
2018 with the following features:  

● minimum/maximum/average daily water level [centimetres],
● minimum/maximum/average daily water temperature [◦C],
● minimum/maximum/average daily discharge [meters cubed per 

second]. 

Open government data include longer time series of historical hy-
drological measurements from the gauging stations, starting from 1867 
up to 2020 (see open datasets on Ministry of the Environment, 2020) and 
have the following features:  

● average daily water level [centimetres],
● average daily discharge [meters cubed per second]. 

Fig. 1. Environmental Intelligence (EI) cycle for the automated environmental flows (eflows) compliance estimation. Each step of the cycle corresponds to a layer of 
the IoT-based system automating the environmental compliance monitoring. 
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3.2. Assumptions and limitations 

In this work, we demonstrate how automated compliance moni-
toring can be achieved in a scalable and practical manner by utilising IoT 
and simultaneously taking advantage of existing data. The limitations of 
the work include the limitations of methods used to estimate eflows, the 
necessity to establish procedures for how to use the results of assessment 
for regulatory purposes and the lack of availability of open IoT 
infrastructure. 

Automatable methods of eflows estimations are often too simple for 
the sufficient evaluation of river ecological status, whereas current 
extensive field studies are expensive, time-consuming and cannot be 
carried out very often in many locations, which is necessary considering 
climate change conditions (Parasiewicz et al. (2018)). We acknowledge 

the limitations of the methods and do not resolve them. Instead, we 
suggest complementing extensive manual assessments with a simplified 
automated assessment to extend the evaluation coverage and encourage 
the creation of more profound but automatable assessment methods. 

Since there are no universally used methods of eflows assessment for 
regulatory purposes, there is a need to establish procedures and 
compliance rules. The proposed service provides a simple estimation 
and interpretation tool for environmental specialists, governmental 
authorities and other stakeholders. Still, the definition of specific rules 
for water management actions and measures are, however, out of the 
scope of the paper. 

In this work, we reuse the data from existing river sensing infra-
structure provided and maintained by the government for river moni-
toring purposes. We assume that the fog and edge layers are 

Fig. 2. Map showing the locations of the 54 sites which make up the Estonian river hydrological monitoring network, the map layer is retrieved from https://www. 
openstreetmap.org. 

Fig. 3. Architecture of the proposed IoOGDT real-time environmental flows (eflows) compliance monitoring system. The edge layer consists of the river sensor nodes 
which measure the flow rate (Q), water temperature (TW) and water level (WL). The raw measurements undergo data quality control and post-processing, the 
statistical results are pushed to the data server. The compliance estimation service runs at the cloud layer, which is accessed by high-end users. 
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implemented as a wireless sensor network, but it might be not always 
the case. Open access to data can add value to any existing infrastructure 
implementing a river monitoring system. 

4. Results 

4.1. System architecture 

To automate the estimation and monitoring of compliance with 
eflows levels, we have designed an IoOGDT system, the architecture of 
which is presented in Fig. 3. The workflow of the system is defined by the 
EI cycle mentioned above (see Fig. 1). 

The edge layer of the IoT system is represented by a Wireless Sensor 
Network (WSN) carrying out the collection of river data. The fog layer 
involves data aggregation and processing, which is organised through 
passing the collected data to the data server through sink nodes, or 
“gateways”. The collected measurement data are stored in the data 
server. The presented river data are commonly collected by govern-
ments and provided to open access. Reusing the data, we develop a cloud 
layer of the IoOGDT system - eflows compliance estimation service 
(EFCES). EFCES is a dockerised Django/React web application providing 
eflows compliance estimation and interpretation for reporting. The code 
repository of the web service is available open-source on GitHub, see 
https://github.com/effie-ms/eeflows. 

EFCES implements the following functional requirements:  

1. Hydrological data acquisition and manipulation.  
2. Environmental flows estimation.  
3. Compliance estimation and interpretation.  
4. Configuration of estimation parameters.  
5. Export of the generated compliance information. 

The estimation of eflows by EFCES is carried out similarly to existing 
eflows calculators (Smakhtin and Anputhas, 2006). EFCES allows setting 
the eflows estimation parameters (gauging stations, dates, methods to be 
used, and other parameters). The processing and calculations are 
implemented at the backend (Django) application of the service, and the 
visual interpretation of results is carried out by the frontend (React) 
application. The service also allows the export of the obtained infor-
mation for reporting, representing a benefit to water managers who can 
simply use the tool to generate needed estimations, images, and reports. 

On the high-end of the system, water resource managers, hydrolo-
gists, freshwater biologists, and other users use the system through the 
EFCES interface to access reports on the environmental compliance of 
rivers as well as test various methods and parameters of compliance 
estimation using the available river data. 

4.2. Data quality 

Data quality is essential to enable the automated processing of data. 
However, during the development of the service using the data from 
multiple sources, we have faced the problems of differences in format-
ting, missing data and inconsistencies in existing data. For the devel-
opment of the eflows compliance estimation service, we used data 
provided by the government to open access (referred to as “OGD” - open 
government data) with preliminary quality control and a sample of data 
from the same owner without revision (referred to as “Requested data”). 

OGD have historical time series of mean flow rates and water levels 
from 1867 to 2020. The availability of data is increasing with the 
installation of new gauging stations (see Fig. 4). However, downward 
fluctuations in the number of stations are associated with missing data. 

The data obtained on request from the government correspond to the 
period from January 01, 2009 to December 31, 2018. Taking OGD from 
the same period, we have compared the percentages of missing data for 
that period from all the 52 stations common for both datasets, the results 
are presented in Table 1. 

The approaches to impute (fill in) missing data vary. Since open and 
requested data correspond to the same locations, average flow rates and 

Fig. 4. Availability of daily river open government data (OGD) at Estonian gauging stations over time from 1867 to 2020.  

Table 1 
Missing data in Estonian hydrological datasets: river data obtained from the 
government on request and open government data (OGD). Each column corre-
sponds to percentages of missing values in minimum, mean and maximum daily 
time series of flow rates (Q) and water levels (WL) from January 01, 2009 to 
December 31, 2018. NA - data not available.  

Data source Percentage of missing values [%] 

Min Q Mean Q Max Q Min WL Mean WL Max WL 

Requested 
data 

10.06 11.71 10.05 9.52 3.26 9.48 

OGD NA 2.11 NA NA 2.64 NA  
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water levels can be filled with the corresponding OGD levels and vice 
versa. At the same time, due to Estonia’s relatively uniform hydro-
climate and homogeneous river morphologies, the river data of most 
Estonian rivers are highly correlated (see Table 2), allowing for the 
implementation of various imputation methods (e.g., see Ekeu-wei et al. 
(2018)). 

Another problem occurring with data from multiple sources is in-
consistencies caused by sensor failures, human errors from manual 
processing and revision of data. Given the minimum and maximum 
values from the requested data, we have carried out a simple comparison 
of average values with them, assuming that average values should be 
within the range of corresponding minimum and maximum values. The 
numbers of violations of the rule (inconsistencies when average values 
are out of range) were counted, the percentages are given in Table 3. 

There are many different types of faults and inconsistencies that can 
affect further steps of analysis and modelling and consequent decision- 
making. The faults and inconsistencies in data can be caused by uncal-
ibrated sensors, hardware failures or extreme environmental conditions. 
The validation of data quality has many challenges for the owners of the 
data collection infrastructure, and it can become even more challenging 
for parties reusing the data of invalidated quality. 

The data from multiple sources can be combined to potentially their 
correctness and other quality parameters. In particular, with the provi-
sion of uncertainty estimates, well-calibrated redundant sensors can be 
fused or assimilated with numerical forecasts to provide a potentially 
better estimate with decreased uncertainty. The procedures to address 
the discussed problem are left for further research. 

4.3. Demonstration 

To demonstrate IoOGDT for eflows compliance estimation and 
monitoring, we used Estonian hydrological OGD, which is publicly 
available data from the Estonian national hydrological sensing network 
(see Fig. 2). Current Estonian environmental regulation (Ministry of the 
Environment, 2014) defines the national methodology for determining 
the minimum eflow for the ice-free period from May to October as 
calculating the average monthly minimum flow with a 95% exceedance 
probability (1). 

qenv ​ = ​ qdesc ​
[

⌞p(N + 1)⌝] (1)  

where. 
qenv - eflow discharge (or volumetric flow rate) [m3/s], 
qdesc - array of observed discharge values sorted in the descending 

order [array of m3/s], 
p - probability of exceedance for an observed discharge value [0 to 1] 

(e.g. for 95% exceedance probability p = 0.95). 
N - total count of observations in qdesc. 
⌊
⌉ - operator of rounding to the nearest integer. 

[] - index operator (taking a value in an array by index). 
The eflows calculation according to Formula (1) requires river 

discharge data in the form of volumetric flow rates. To estimate the 
compliance of river flows following the eflow threshold, a user needs to 
select a location and configure the estimation parameters. An example of 

a plot generated by the developed environmental flows compliance 
estimation service (EFCES) is shown in Fig. 5. Refer to Supplementary 
material or README of the. 

web-service repository (https://github.com/effie-ms/eeflows) to 
view the user manual, screenshots of its graphical user interface and 
examples of other plots that can be generated. 

The long-term management of rivers requires further analysis of 
continuous and cyclical trends, cumulative effects of eflows non- 
compliance in four different bioperiods. 

For example, using formula (1), we calculate the number of all the 
occurred low flow events (below eflow thresh-old) - the total number of 
days of non-compliance per each bioperiod (bioperiods are described in 
Parasiewicz et al. (2018)) over 2009–2018. The results are presented for 
three Estonian rivers monitored at the following gauging stations: Narva 
linn (Narva river), Korela (Piusa river), and Toila-Oru (Pühajõgi river) 
located in eastern Estonia. The days of non-compliance are plotted in 
Fig. 6 where the “large” Narva river (corresponding to the 100th 
percentile as the largest river in Estonia) is shown as a black line, a grey 
line corresponds to the “medium” Piusa river (57th percentile) and the 
“small” river, Pühajõgi (20th percentile) is shown as a red line. 

The results for the first “overwintering” bioperiod from January to 
February is shown in the top left panel of Fig. 6. During this bioperiod, 
the decreasing trend observed in Narva river is assumed to be related to 
climate change as there have been no major anthropogenic changes in 
the river during the period of observation. However, it can be seen that 
none of the other rivers shows a substantial change in the days of non- 
compliance. Therefore, decision-makers may wish to carry out tar-
geted mitigation measures. This could be accomplished for example by 
routing more water flows to Narva river, reducing the number of days of 
non-compliance to as close to zero as possible, as during the over-
wintering bioperiod. 

The “spring spawning” bioperiod runs from March to June, and is 
shown in the top left panel of Fig. 6. Here, the effects of increased winter 
seasonal air temperature and precipitation in Estonia have resulted in an 
earlier beginning and decrease in spring floods, and consequently longer 
dry periods. Again, the most impacted river is Narva river, which clearly 
shows a recent jump in the days of non-compliance from 2017. Water 
managers may therefore wish to target this region of the river for miti-
gation measures, for example by artificially creating more fish spawning 
habitats to help reduce the stress placed on fish due to the increase in 
days of eflow non-compliance in this bioperiod. 

Table 2 
The Pearson cross-correlation coefficients of time series from 52 Estonian gauging stations of both river data obtained from the government on request and open 
government data (OGD). Each column corresponds to Pearson cross-correlation ranges of coefficients of minimum, mean and maximum daily time series of flow rates 
(Q) and water levels (WL) from January 01, 2009 to December 31, 2018. SD - standard deviation, NA - data not available.

Data source Pearson cross-correlation coefficients [mean ± sd (min; max)] 

Min Q Mean Q Max Q Min WL Mean WL Max WL 

Requested 
data 

0.71 ± 0.25 (− 0.58; 
0.98) 

0.73 ± 0.24 (− 0.45; 
0.98) 

0.70 ± 0.25 (− 0.58; 
0.98) 

0.61 ± 0.22 (− 0.29; 
0.99) 

0.62 ± 0.21 (− 0.24; 
0.99) 

0.61 ± 0.21 (− 0.26; 
0.98) 

OGD NA 0.73 ± 0.24 (− 0.45; 
0.98) 

NA NA 0.62 ± 0.21 (− 0.26; 
0.98) 

NA  

Table 3 
Inconsistent data in Estonian hydrological datasets: river data obtained from the 
government on request and open government data (OGD). Each column corre-
sponds to percentages of inconsistent values identified from the comparison of 
minimum, mean and maximum values of daily time series of flow rates (Q) and 
water levels (WL). The percentages are calculated from the non-missing data in 
the period from January 01, 2009 to December 31, 2018.  

Data source Q WL 

Requested 
data 

16.89% (out of 79.92% 
available) 

4.92% (out of 88.15% 
available) 

OGD 48.47% (out of 89.71% 
available) 

46.24% (out of 88.79% 
available)  
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The third bioperiod occurs during summer, and is referred to as 
“rearing and growth”. Considering all of the three rivers assessed in 
detail, a clear biannual pattern from 2011 onwards can be seen in the 
bottom left panel of Fig. 6. This pattern has been attributed to climate 
change and has been recognised to have a negative effect not only on fish 
populations but also on the water quality (chemical status) and aquatic 
habitats for other animal species as well (Kallis et al., 2017). In contrast 
to the first two bioperiods, the pattern of eflow non-compliance affects 
rivers of all sizes. Therefore the changes in Estonian river eflows 
observed in the rearing and growth bioperiod may present a large-scale 
problem for aquatic biodiversity. Especially concerning is the rapid in-
crease in the days of non-compliance observed in 2018 for all three 
rivers evaluated. 

Finally, the fourth “fall spawning” bioperiod is shown in the bottom 
right panel of Fig. 6. Once again, the large Narva river is clearly 
differentiated from the remainder of the other five rivers, with the 
highest number of days of eflows non-compliance from 2009 to 2018. In 
contrast to the rearing and growth bioperiod, there is no clear large scale 
pattern affecting all rivers. However, there is some commonality in 
peaks of non-compliance in 2010 and 2015 between Narva river and 
Pühajõgi. We believe that the explanation for this may be geographical, 
as both rivers are located in northeast Estonia, and are therefore subject 
to similar rainfall conditions. 

Thus, the proposed system automates the estimation and reporting 
procedures, however, the analysis of the estimated results (as described 
above) for decision- and policy-making requires the expertise of water 
managers and other associated specialists, or further automated to assist 
planning procedures. In particular, the next step would be to add on the 
ability to simulate water management actions addressing the ecological 
conditions: restoration of the natural flow regime, decrease of water 
withdrawals to agricultural and industrial end-users, etc. 

5. Discussion 

Building new large-scale environmental monitoring networks and 
integrating the resulting data into bespoke decision-making support 
systems is expensive and time-consuming (Lovett et al., 2007), and the 
additional communication costs alone can be prohibitive (Liu et al., 
2010). Instead, we propose that existing OGD from national hydrolog-
ical services can be repurposed for eflows compliance estimation. A 
web-service demonstrator provides the first step in automating envi-
ronmental compliance monitoring and evaluation. It allows authorities 
to allocate their limited resources to more important tasks such as 
strategic planning and enforcement (Qin, 2011). Using the publicly 
accessible environmental data, as well as combining it with the data 
from other sources, creates new opportunities for the reuse of open 
government data to develop new value-added services and tools. The 
real-time provision of environmental data to open access empowers 
data-driven services addressing sustainability and climate resilience 
challenges with timely reporting, critical for short-term high-risk events. 

The implementation and deployment of intelligent environmental 
solutions supporting the successful implementation of environmental 
regulations must align with sustainability and climate resilience goals to 
protect and preserve the environment and enable disaster-resilient 
governance. The pressure on governments to ensure better water man-
agement practices under the increasing frequency of occurrence of 
water-related disasters can be alleviated using automated environ-
mental monitoring and evidence-based decision making, risk assessment 
and planning. Environmentally intelligent services require not only a 
deep understanding of the domain and the problem to be addressed but 
also include stakeholder feedback after using the system in practice. 
Environmental regulatory compliance often requires decision- and 
policy-making under conflicting environmental, social and economic 

Fig. 5. Example of compliance estimation results for the Keila River in 2016 using the environmental flows compliance estimation service (EFCES). The blue curve 
corresponds to the flow rate of the river, the dashed blue line indicates the calculated eflow level. Compliance is indicated by colour. Red: the river flow is below the 
required eflow level, non-compliant. Green: the flow is at or above the required eflow level, compliant. The four major bioperiods for local fish populations used in 
the subsequent assessment of compliance are shown as vertical purple lines. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.) 
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needs of the involved parties. Therefore, the system should serve as an 
assistant rather than a burden for successful integration. 

The major contributions of this work are two-fold. First, we created 
and implemented an IoOGDT demonstrator automating eflows compli-
ance monitoring and reporting at the national scale. The system provides 
a scalable platform for the integration of other data-driven methods of 
eflows compliance estimation, such as the regionally applicable envi-
ronmental method proposed recently by Parasiewicz et al. (2018). 
Furthermore, we suggest that the inclusion of compound event sce-
narios, which are co-occurring weather and climatic combinations of 
drivers and hazards contributing to societal or environmental risk, can 
be integrated into these more advanced systems to increase societal 
climate resilience (Zscheischler et al., 2020). 

Second, we introduce the “Internet of Open Government Data and 
Things” (IoOGDT) concept to encourage others to develop and imple-
ment more advanced automated compliance systems using OGD for a 
wider range of applications. Ultimately, IoT-based systems can provide a 
largely overlooked source of highly valuable OGD enabling the creation 
of new and improved systems for decision- and policy-making. We 
believe that the future of automated monitoring and regulatory 
compliance lies in linking OGD with the connectivity, speed and ease of 
use common to IoT technologies. The internet provides the ideal me-
dium for real-time monitoring, thus helping to facilitate secure and 
reliable online decision-making. In our example, the modular architec-
ture of the eflows system allows for rapid modification and optimisation 
of various components from functional (e.g. optimisation of routing 
between nodes, computing, energy use of sensing devices, and others) 
and non-functional (e.g. security and reliability of data exchange) per-
spectives. In addition, the integration of modules performing intelligent 
computing (advanced analytics, machine learning and data-driven 
learning) can be applied to data pipelines on different network layers 
(edge, fog or cloud) to detect patterns, extract and interpret the infor-
mation in an operationally useful way. In future works, we will 

investigate the trade-offs in complexity and utility of a large-scale 
environmental monitoring system with multi-objective, distributed in-
telligence as a new type of environmental regulatory technology 
(EnvRegTech). 

Since EnvRegTech lags behind RegTech solutions in other sectors, we 
promote it with the design and development of EI artefact. We suggest 
designing and implementing EnvRegTech artefacts following the EI 
framework to ensure that the needs of stakeholders, currently per-
forming the procedures in a semi-automated way, are addressed. With 
the provision of environmental OGD of proper quality, it should be 
possible not only to enable automated environmental compliance 
monitoring and associated with it real-time situational awareness about 
the ecological state of rivers but also scale this minimum viable assess-
ment and benefit from the proposed centralised solution. Moreover, 
further insights can be gained after the implementation of scenario and 
impact modelling and forecasting capabilities, further enhancing 
evidence-based measures to address river flow alterations. 

6. Conclusion 

In this paper, we hypothesise and investigate how open government 
data (OGD), along with IoT-based national river monitoring infrastruc-
ture, can be repurposed to automate the estimation of environmental 
flows (eflows). This estimation is important to establish and monitor 
regulatory compliance with the EU Water Framework Directive (WFD). 
In addition, we demonstrate how an environmental intelligence cycle 
framework can utilise governmental data collection infrastructure to 
create an automated eflows estimation and compliance estimation web- 
service. This service can be used by a broad range of stakeholders with 
an interest in ensuring river environmental regulatory compliance. 

We fully acknowledge that it is unrealistic to find a universal eflows 
method applicable to all rivers. However, we wish to point out that 
scenario- and impact-modelling are readily achievable based solely on 

Fig. 6. Compliance estimation per bioperiod results for rivers monitored at three Estonian gauging stations in 2009–2018. Sorted by their mean annual discharges, 
the “large” Estonian river Narva is shown with black lines, the “medium” river Piusa as grey lines, and the “small” Pühajõgi river as red lines. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

L. Miasayedava et al.                                                                                                                                                                                                                          



Journal of Environmental Management 303 (2022) 114283

9

the available OGD. Our long-term aim is to continue developing the 
proposed system to automate manual functions (e.g. statistical analysis 
and reporting), allowing government administrators to focus on other 
high-priority tasks such as resilience planning (Timashev, 2015) and 
hazard mapping (Nateghi, 2018). 

With the use of Estonian river open government data, we develop an 
eflows estimation web-service. We showcase the method following 
current environmental regulations and illustrate its use as a compliance 
estimation tool via a graphical interpretation of the calculated eflow 
level exceedance. Through this example, it can be seen that the number 
of days of non-compliance for each of the four different bioperiods varies 
depending on the size of the river and can vary widely from year to year. 
This is important because the variability of flows in rivers is expected to 
increase due to climate change, indicating that eflows non-compliance 
rates are therefore subject to increased uncertainty as well. The pro-
posed method is a scalable technology that can be used to further 
automate eflows estimation and interpretation, aiding policy-makers in 
assessing how environmental regulations may require further adapta-
tion when faced with increased uncertainty. We critically discuss the 
associated challenges of the WFD implementation, eflows estimation 
and the challenges associated with repurposing publicly available river 
data. 

To create a truly automated and scalable system, data stand-
ardisation and quality control of the publicly available data must be 
ensured. Cross-border automation requires consistent supply, the uni-
fied format of data and metadata. Data quality is critical since machine 
processing is sensitive to differences in formatting. The data scattered 
out in multiple environmental information systems, processed and 
interpreted differently, complicate capturing the overview on multi- 
parameter phenomena and scaling of solutions. 

This work has multiple future research directions. The system can be 
improved with alerting, scenario- and impact-modelling, forecasting 
and early warning capabilities. It could feasibly also assist in decision 
support and policy-making, by adapting it to reflect additional regula-
tory requirements (e.g. industrial water withdrawals) and supplemented 
by stakeholder feedback. To make these changes, it is important to 
consider that active collaboration and additional interviews with non- 
governmental stakeholders are required to optimise the workflow. 

In conclusion, the current embodiment of an automated eflows 
compliance monitoring system resolves fundamental inefficiencies of 
existing river eflows systems, which in their current form hinder the 
achievement of a good ecological status, as stipulated by the EU WFD. 
Furthermore, we show that these inefficiencies can be largely addressed 
by creating an automated eflows estimation service providing a cen-
tralised and dynamic overview of the current compliance state of 
monitored rivers at a national scale. 
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Abstract
Accurate monitoring systems and numerical models of urban ambient air quality are essential to reduce the risks to public 
health. The growing quantity of online open data provide new opportunities for assimilation algorithms to improve ambient 
air quality monitoring, including estimates of their uncertainty. The assimilation of large-scale numerical simulations with 
observations from urban ambient air quality monitoring stations requires uncertainty estimates from both data sources to 
cope with unknown events and changing environmental conditions. However, uncertainty estimates from open access numeri-
cal models and monitoring stations are frequently unavailable. To address this gap, we propose a lightweight data-driven 
framework for data assimilation on low-powered embedded hardware suitable for open data without uncertainty estimates, 
including Internet of Things (IoT) systems. The algorithms are compared and validated using open data from a reference 
ambient air quality monitoring station during two time periods, the first in fall (October to November) and the second in 
winter (January to February). Open numerical model data were obtained during these periods from the System for Integrated 
modeLing of Atmospheric coMposition (SILAM). The algorithms are also demonstrated on two IoT sensors located 60 m 
and 700 m from the reference station. This work is significant because it offers a computationally lightweight approach 
to sequentially assimilate station, sensor, and numerical simulation data that do not have prior uncertainty estimates. The 
proposed method can be applied to impute missing data, to improve the reporting accuracy of air quality observations, and 
to provide missing uncertainty estimates.

Keywords Ambient air quality · Data assimilation · Environmental monitoring · Internet of things · Open data

1 Introduction

Ambient air pollution poses a persistent and growing threat 
to human health. In cities, ambient air pollution is moni-
tored using ground station observations of the concentra-
tion of atmospheric gases and particulate matter. The most 
commonly monitored parameters are sulfur dioxide (SO2), 

nitrogen dioxide (NO2), carbon monoxide (CO) and ozone 
(O3), and particulate matter (PM2.5 and PM10) [1]. These 
parameters are also often modeled over a wide range of tem-
poral and spatial resolutions, where a detailed classification 
is provided in [2]. The European Union (EU) requires con-
tinuous monitoring of air pollution, and the assessment of air 
quality is performed using a combined metric of air pollut-
ants [3, 4]. Thus, both modeled and ground station observa-
tions are key to assessing health risks and exposure levels 
and to localize, quantify, and mitigate potentially harmful 
sources of ambient air pollution [5].

Urban ambient air pollution is challenging to monitor 
and model, primarily due to the chemical and meteorologi-
cal interactions that occur on multiple temporal and spatial 
scales [6, 7]. The modeling of ambient air pollution is most 
commonly carried out using computational fluid dynamics 
models that include specialized solvers for chemical trans-
port and near-source dispersion [2]. These models can pro-
vide forecasts with spatial resolutions ranging from several 
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meters to several hundreds of kilometers and temporal 
resolutions ranging from minutes to several years [8]. Air 
pollution changes rapidly over short distances due to micro-
meteorological and anthropogenic conditions and includes 
static and moving sources, including industrial emissions 
and traffic [9, 10]. As a result, the complexity of building 
accurate local models with high spatial and temporal resolu-
tion remains a substantial challenge.

Air pollution modeling is complemented by in  situ 
ground station monitoring and remote sensing using sat-
ellites to retrieve optical aerosol signatures [11, 12]. Cali-
brated air quality monitoring stations generate data of the 
highest precision and accuracy, but they are expensive to 
purchase and maintain. On the contrary, there is a grow-
ing number of fixed and mobile low-cost air pollution sen-
sors. However, the performance of low-cost sensors now 
common for IoT-based platforms varies depending on the 
specific make and model. A major downside of IoT sensors 
is that they currently require frequent calibration and main-
tenance to provide the needed accuracy and completeness 
of the data for ambient air quality monitoring [10, 13, 14]. 
Satellites provide gridded data products at resolutions from 
meters to kilometers in space and from minutes to weeks in 
time [15]. However, the availability and accuracy of satellite 
data are often negatively impacted by cloud cover and can 
vary widely, depending on the post-processing algorithms 
implemented [16].

To improve the quality of data from single sources, data 
are combined using data fusion and assimilation methods, 
referring to both concepts simply as “assimilation” in the 
remainder of this work. These methods are widely applied 
in geoscience and engineering for optimal state estimation. 
This is done to minimize errors between models and meas-
urements by weighting their contributions based on uncer-
tainty estimates [17, 18]. Kalman filters, variational (3DVar, 
4DVar), ensemble, and hybrid methods are commonly used 
assimilation methods, and the choice of methods depends 
largely on the available observations and model data. The 
authors of [18] and [19, 20] provide a comprehensive over-
view of data assimilation methods, including their formula-
tions and limitations, with a focus on air pollution data.

An overview of air pollution assimilation using data from 
numerical models, satellites, stations, and sensors is pro-
vided in [19, 21]. A wide body of literature exists using 
numerical model simulations (e.g., chemical transport, urban 
dispersion, microscale models) with in situ measurements 
from low-cost sensors as well as high-quality monitoring 
stations for different air pollutants (see, for example, PM2.5 
[22], NO2 [10, 23], PM10 [24, 25], O3 [26]). Where in situ 
measurements demonstrate a reasonable correlation with 
satellite aerosol optical depth observations [12, 27], they can 
be used to create more accurate maps (see, for example, for 
PM2.5 [16, 28], CO2, O3, CO, NOx, SO2, and HCHO [29]). 

To further improve maps, spatial interpolation approaches, 
including kriging and inverse distance weighting meth-
ods [10, 23, 30–32] and regression analysis [12, 33], can 
also be applied.

A common feature of data assimilation methods is that 
the contribution of each data source is weighted by its uncer-
tainty estimate [34]. Therefore, current data assimilation 
methods make use of available uncertainty estimates. The 
estimates themselves can be evaluated in several different 
ways and can have a substantial impact on the overall data 
assimilation results [7, 9, 24].

The main objective of this work is to improve ambient air 
quality monitoring by assimilating observation/simulation 
sources without existing uncertainty estimates. The main 
challenge of this work is to develop a method to provide 
uncertainty estimates for the open access air quality model 
and monitoring data. A second challenge is to assimilate 
these sources considering the large differences in spatial 
and temporal scales between the modeled and monitored 
parameters. To address these challenges, we propose a data-
driven method to estimate unknown uncertainties. Once the 
uncertainty estimate has been obtained, we demonstrate that 
a lightweight least-squares data assimilation algorithm can 
substantially improve urban ambient air pollutant model esti-
mates at the global to mesoscale. Compared to batch assimi-
lation analogs, recursive methods are more computationally 
efficient [35], which is key when considering the rapidly 
growing number of low-cost ambient air quality sensors inte-
grated into the Internet of Things (IoT) [10]. Our approach 
makes use of open access numerical model results obtained 
from the System for Integrated modeLing of Atmospheric 
coMposition (SILAM) [36], ground station monitoring data 
provided by the Estonian Environmental Research Center, 
and IoT sensor data from the Tallinn smart city [37].

The major contribution of this work is a computation-
ally lightweight uncertainty estimation method suitable for 
low-power microcontroller-based IoT systems for the robust 
assimilation of observational and model time series data at 
different spatial scales.

2 Background

Given a set of continuous time series observations and 
numerical simulations which contain errors from multiple 
sources, data assimilation provides an analysis estimate xa , 
of the true state xtrue at a given point in time based on the 
error statistics of data sources. The absolute value of the 
analysis error |�a| = |xa − xtrue| is minimized by solving an 
optimization problem [38]. The analysis estimate xa is found 
by estimating the correction �x of the prior estimate of the 
true state or by using the background estimate, which is most 
commonly the numerical simulation data ( xm ). Observations 
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xobs are then used to minimize |�a| : xa = xtrue + �a = xm + �x . 
In data assimilation, the following errors are usually con-
sidered [38]:

• Background errors �m = xm − xtrue;
• Observation errors �obs = xobs − H(xtrue) (between meas-

urements and the operator modeling the measuring
device);

• Analysis errors �a = xa − xtrue.

Background and observation errors include model simula-
tion errors, the errors which are attributed to the measuring 
device, discretization, and other representation-related errors. 
The measuring device is modeled using the operator H(xtrue).

Since xtrue is unknown, the derivation of the equation for 
�x depends on several assumptions regarding the optimal
state estimate. Most often, each error from �obs , �m , and �a 
is modeled probabilistically as a random variable with a
known probability density function (PDF). To reduce the
computational cost of calculating PDFs, the most typical
error models assume Gaussian distributions described with
means, standard deviations, or covariances. Background �m 
and observation �obs errors are assumed to be unbiased with 
zero mean Gaussian distributions and uncorrelated, with
zero correlation and covariance [38].

Thus, at each time point t, �obs = �obs[t] , �m = �
m
[t] , 

and �a = �
a
[t] are assumed to be fully described by the 

parameters of a Gaussian distribution: �obs = �
obs

[t] , 
�m = �

m
[t] , and �a = �

a
[t] . In this configuration, each 

� = �[t] can be used to quantify the range of possible values 
of x = x[t] : [x - � ; x + � ] with different levels of confidence 
characterizing the uncertainty of x. Therefore, the � of each
data source can be used to estimate the contribution to the
analysis estimate needed for data assimilation.

Measurement uncertainties are commonly evaluated as 
standard deviations of distributions of repeated measurements 
(type A), or using other information provided in certificates, 
specifications, and other sources (type B) [39, 40]. The uncer-
tainty of measurements and numerical model simulations 
can be quantified in a forward way considering each possible 
source of uncertainty. However, for most practical applications, 
this remains challenging [41] because there are a large number 
of sources of uncertainty. The sources include the limitations 
of measurement devices (noise, systematic errors), discretiza-
tion, linearization, finite-precision arithmetic, reduction to 
finite-dimensional problems, incomplete or simplified math-
ematical models of physical processes and their numerical rep-
resentation, model parameters, data and metrics used for their 
calibration and evaluation, interpolation, and human errors. 
Each modeling assumption, such as the structure of a model 
and its parameters, introduces an additional source of uncer-
tainty. Furthermore, there are unknown sources of uncertainty 
and known uncertainties which simply lack data for evaluation.

When there is not enough information about measuring 
systems, models, and associated uncertainties, the distribu-
tions of errors to quantify uncertainty are estimated from the 
data by building a forecasting model and finding errors as 
differences between obtained values and their forecasts (e.g., 
observations and forecasts of observations). Examples of 
data-driven methods to estimate error using autocovariance 
and least squares are discussed in [42, 43].

3 Related Work

3.1  Data Sources

To demonstrate the performance of the two proposed light-
weight assimilation algorithms, we assimilated CO, NO2, 
O3, SO2, PM2.5, and PM10 air pollution data from two 
open data sources: station measurements (observations) and 
numerical simulations (model data). As an analog to station 
measurements, we demonstrated the use of two IoT PM10 
sensors as observations. The station measurements obtained 
from the Liivalaia air quality monitoring station located in 
the city center of Tallinn [24°46′E; 59°26′N], Estonia. The 
station uses automatic analyzers for air pollutant concentra-
tions: Horiba APNA-360 for NO2, Horiba APSA-360 for 
SO2, Horiba APOA-360 for O3, Horiba APMA-360 for 
CO, Met One BAM 1020 for PM2.5, PM10 [44]. The two 
IoT sensors used for PM10 measurements are located 60 m 
[24°45′E, 59°25′N] and 700 m [24°44′E, 59°25′N] away 
from the Liivalaia station. The IoT sensors for air quality 
use Plantpower PMS7003 particle concentration sensor (cost 
of ca. 25 USD) for PM10 measurements. These sensors are 
attached to street lighting poles at a height of 3.5 m and use 
rechargeable batteries together with a solar panel for power-
ing the sensor.

The model data were obtained from SILAM—System for 
Integrated modeLing of Atmospheric coMposition, which is 
a global-to-mesoscale atmospheric dispersion model [36] 
developed and maintained by the Finnish Meteorological 
Institute. SILAM provides a 4-day air pollutant forecast with 
1-h time intervals for global, European, Northern European, 
and South-East Asian regions. The model consists of Eule-
rian and Lagrangian transport routines, 8 chemico-physical
transformation modules, and 3- and 4-dimensional vari-
ational data assimilation (3DVar, 4DVar) modules [45, 46].

The open model data were exported from the publicly availa-
ble archives [44–46]. The Liivalaia station provides hourly fixed  
location [24°46′E; 59°26′N] measurements, whereas SILAM 
simulations are hourly estimates obtained from a 0.2° grid 
cell [24°36′E–24°48′E; 59°24′N–59°36′N]. The data used for 
the validation were exported in the period from 12.10.2021 
01:00:00 to 10.11.2021 18:00:00 (“Fall”) and 27.01.2022 
01:00:00 to 25.02.2022 15:00:00 (“Winter”). The IoT data were 
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retrieved from the owner [37]. The PM10 sensors from both 
fixed locations provide measurements every 10 min, and the 
hourly averages for the “Fall” period were calculated from them 
and used to demonstrate the assimilation algorithms.

3.2 Procedures

There are two basic approaches to data assimilation: sequen-
tial, which considers only past observations and is most 
commonly used for real-time systems, and non-sequential, 
which performs reanalysis of the observations from future 
time steps. Sequential and non-sequential assimilation can 
be performed in batches or continuously. They differ in their 
numerical costs, performance, and suitability for real-time 
data assimilation [38]. The focus of this work is on low-cost 
sensor networks which must be capable of processing data 
in real-time [35], and for this reason, we will use sequential, 
continuous univariate data assimilation.

Given the probabilistic representation of errors, we 
further assume that the correction �x is linearly depend-
ent on xobs − H(xm) and that the operator H(xtrue) is linear. 
The optimal state is found by minimizing the variance �2

a
 , 

which can be implemented using the least-squares analy-
sis. Since background and observation errors are assumed 
to be of Gaussian distribution, this method is equivalent 
to maximum likelihood analysis (an excellent derivation 
is provided in [34, 38]).

Least-squares data assimilation [38] can be considered 
as one of the simplest and most computationally light-
weight data assimilation algorithms. In this work, we will 
consider three cases of least-squares data assimilation 
of sources of the same temporal scales: when the prior 
uncertainties are known (DA1, Fig. 1a), when the prior 
uncertainties are unknown, the data sources are of the 
same spatial scales and do not require calibration (DA2, 
Fig. 1b), and when the prior uncertainties are unknown, 
the data sources are of different spatial scales and require 
calibration to the spatial scale of interest (DA3, Fig. 1c).

DA1 is the standard least-squares data assimilation 
algorithm which requires uncertainty estimates (errors or 
their distribution parameters). Direct estimation of error 
distribution parameters requires repeated measurements at 
each time point t, which is often not possible when using 
open data. Instead, depending on the data, estimating the 
errors from the mean within windows, rolling windows 
by batches or recursively [38], which frequently results in 
non-Gaussian distributions and consequently suboptimal 
error estimation using least-squares data assimilation.

To address the challenge, we propose algorithms DA2 
and DA3 for two univariate open data sources with missing 
uncertainty estimates. Both DA2 and DA3 algorithms do 
not require prior uncertainty estimates; they are sequen-
tially estimated from the provided data streams. Both algo-
rithms are suitable for the data of the same temporal scales. 

Fig. 1  Data assimilation algorithms: a)  DA1: standard least-squares 
data assimilation of a measurement x

obs
 with uncertainty �

obs
 and 

model simulation x
m
 with uncertainty �

m
 , both data sources have the 

same temporal and spatial scales; b) DA2: least-squares data assimi-
lation of data sources x

obs
 and x

m
 of the same temporal and spatial 

scales with missing uncertainty estimates. The uncertainties are esti-

mated as 1-order autoregression AR(1) modeling errors �
obs

 and �
m
 ; 

c) DA3: proposed least-squares data assimilation of data sources x
obs

 
and x

m
 of the same temporal and different spatial scales with missing

uncertainty estimates. In contrast to DA2, in DA3, x
m
 is calibrated to

the spatial scale x
obs

 with a 1-order linear regression model R(1)
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In this work, we demonstrate the performance using hourly 
data sources at the same site during the fall and winter 
periods. The difference between the algorithms is that DA2 
implements least-squares data assimilation for data sources 
of the same spatial scales, whereas DA3 can be applied at 
different spatial scales.

When data sources are of different spatial scales, before 
applying the least-squares data assimilation, the data should 
be translated to the same scales. The proposed algorithms 
allow the translation to the scale of one of the data sources. 
Thus, when observations from ground stations and numeri-
cal models are assimilated, the output of the data assimila-
tion can be obtained at the spatial scale of the observations 
(from a fixed location) or at the spatial scale of the model. 
To implement the translation, we suggest calibrating one 
data source to the other. For example, the DA3 algorithm in 
Fig. 1c demonstrates a scheme to calibrate a model simula-
tion to the spatial scale of the observations. The choice of 
the scheme depends on the user’s interest, where the more 
trusted data source should be preferred.

The calibration is implemented using an RLS-based 
regression R(1) model that serves as a calibration linear 
operator. The R(1) model is fitted using the RLS algorithm, 
a data value to be calibrated as input and a data value of a 
spatial scale of interest as output. The regression relation-
ships obtained in the previous step are applied for the predic-
tion; the predictions are used instead of the input values of a 
calibrated data source.

Similarly to AR(1) model predictions, R(1) model predic-
tions are used to estimate uncertainty as errors. However, 
since the input of the R(1) model already has estimated 
AR(1) uncertainty, we apply the rules of uncertainty propa-
gation to consider not only the error of R(1) modeling as 
uncertainty but also AR(1) uncertainty.

4 Methods

4.1  DA1: Least‑squares Data Assimilation 
with Known Uncertainty

The procedures of the “Data Assimilation” block for all 
DA algorithms used in this work, shown in Fig. 1, can be 
described with the equations of the continuous sequential 
least-squares data assimilation. In this section, we begin by 
assuming that the uncertainties, � , are known.

When both data sources are of the same scales, at each 
time step t, the analysis estimate xa = x

a
[t] is equivalent to 

the weighted average of the data sources xobs = x
obs

[t] and 
xm = x

m
[t] [34] and can be written as

where xobs - observation (measurement), xm - background 
(model) estimate (simulation), xa - analysis estimate, k - 
coefficient characterizing the contribution of xobs to xa.

The coefficient k = k[t] in Eq. (1) is derived from the least-
squares algorithm by minimizing �2

a
= �

2
a
[t] , which by the 

rules of uncertainty propagation [34] can be given by

Under the assumption of uncorrelated errors ( covobs,m = 0 ), 
Eq. (2) can be simplified as

where �obs = �
obs

[t] - uncertainty estimate of xobs , �m = �
m
[t] -  

uncertainty estimate of xm , covobs,m = cov
obs,m[t] - error covar-

iance of xobs and xm , �a = �
a
[t] - uncertainty estimate of xa.

Then, the coefficient k is found from solving ��
2
a

�k
= 0 as 

follows:

When data sources are of different scales, they should be cali-
brated to the scale of interest. In time, this can be the mapping 
of hourly observations to observations recorded each minute or 
the averaging of observations recorded each minute to hourly 
observations. In space, this can be a match between data of a 
lower and higher spatial resolution (e.g., local observations and 
numerical model grid cells). A mismatch between scales in the 
observations and model field results in the representation error 
between observations and model simulations [47].

For example, when we consider 2 data sources of the same 
temporal scales but different spatial scales and assume that the 
scale of interest is the scale of xobs , xm should be calibrated 
to the scale of xobs with the operator H. Then, Eq. (1) for 
H(xm) = xm (without calibration) can be generalized as follows:

(1)xa = k ⋅ xobs + (1 − k) ⋅ xm,

(2)
�
2

a
=(|

�xa

�xobs
| ⋅ �obs)2 + (|

�xa

�xm
| ⋅ �m)2+

+ 2 ⋅ |
�xa

�xobs
| ⋅ |

�xa

�xm
| ⋅ covobs,m.

(3)�
2

a
= (k ⋅ �obs)

2 + ((1 − k) ⋅ �m)
2
,

(4)k =
�
2

m

�2
m
+ �

2

obs

.

(5)xa = xm + �x = xm + k ⋅ (xobs − H(xm)),
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which can be interpreted as the correction �x of the back-
ground (model) estimate xm.

The operator H(xm) is used to linearly map model 
simulations xm of a lower spatial resolution to the reso-
lution of observations xobs to calibrate their mismatch 
in spatial scales. In Fig. 1, DA2 corresponds to the data 
assimilation without calibration and DA3 with calibra-
tion, where the operator H is sequentially fitted from 
the provided data.

4.2  DA2: Least‑squares Data Assimilation 
with Unknown Uncertainty Without Calibration

In this work, we estimate the unknown uncertainty from 
the data in an inverse way. To do this, we apply a sim-
ple linear autoregressive model structure of order (lag) 1 
(AR(1)), fitting the model coefficients sequentially from 
the data in each step, and estimate the errors by taking a 
difference between the AR(1) prediction (using the model 
fitted in a previous step) and the observation value.

The approach results in a simple and lightweight strat-
egy to quantify changes in the data through the obtained 
AR(1) modeling errors (corresponds to the “RLS-based 
AR(1) model” in Fig. 1). In the probabilistic represen-
tation, the AR(1) modeling errors would correspond to 
standard deviations � of zero-mean Gaussian distributions. 
We will use a first-order AR(1) filter as follows:

where x[t] and x[t − 1] - state estimates at time t and t − 1 
correspondingly, w0 and w1 - coefficients of the AR(1) model 
(fitted at time t − 1 : w0 = w0[t − 1] and w1 = w1[t − 1] ), �[t] 
- AR(1) modeling error.

AR models are usually used to predict future values
using only the past values. In this case, we use the assump-
tion that the state can be modeled as a general linear pro-
cess and as a hidden Markov chain. Each state estimate at
time step t is assumed to be conditioned on the most recent 
state estimate at time t − 1 (lag 1) and quantifies how well
a linear model fitted at time t − 1 is capable of predicting
the state at time t (by finding �[t] ). Since w0 and w1 are
fitted based on the error � , the larger the error, the more
model coefficients are modified. The changes of regres-
sion relationships over time are often used to quantify the
stability of a process [48].

(6)x[t] = w1 ⋅ x[t − 1] + w0 + �[t],

The coefficients of the AR(1) filter are the linear regres-
sion model coefficients estimated recursively using the 
recursive least squares (RLS) algorithm commonly used for 
optimal state estimation in adaptive filters for sequential data 
assimilation. In real-time implementation, recursive methods 
have advantages over stage-wise methods in more rapid con-
vergence and no requirement for direct matrix inversion [35, 
49]. The implementation of the 1-order RLS-based regres-
sion model is presented in Algorithm 1.

Algorithm 1 begins by initializing RLS() (with a con-
structor INIT()) with the following algorithm param-
eters: a state matrix P (2x2) and a vector of coefficients 
w (2x1). For the AR(1) model, with each new observa-
tion at time t, the parameters P and w are updated with 
RLS.UPDATE(x, y), where x = x[t − 1] and y = x[t] . The 
error � = �[t] is found by taking the difference between the 
prediction and the observation.

The AR(1) model can also be used for imputation in the 
case of missing values. In this case, the procedures are as 
follows in Algorithm 2.
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Algorithm 2 starts with the initialization INIT() of the 
parameters of the RLS algorithm. Afterwards, we model 
(6) using the ESTIMATE() procedure. This requires find-
ing the coefficients w = (w0,w1)

T using the RLS algorithm 
using x[t − 2] as input and x[t − 1] as output (perform
RLS.UPDATE() with x[t − 2] and x[t − 1] ). Next, we use
w and x[t − 1] = xpast to model x[t] , and the error of the
modeling �[t] = � between the modeled w1 ⋅ x[t − 1] + w0 
and actual xnew is returned and applied to complete the
assimilation.

We also use the AR(1) model to fill in the missing 
values (when xnew is missing). For this, we use the mod-
eled w1 ⋅ x[t − 1] + w0 instead of xnew and use the error 

from the previous modeling �[t − 1] without updating the 
model. For several missing values in a row, the last fitted 
(updated) model is used.

4.3  DA3: Least‑squares Data Assimilation 
with Unknown Uncertainty with Calibration

Compared to DA2, algorithm DA3 adds a procedure “RLS-
based R(1) model” to calibrate model simulations to the spatial 
scale of observations (see Algorithm 3).

In Algorithm 3, the mismatch between the scales is cali-
brated using the operator H ( H(x) = h1 ⋅ x + h2 ) within an 
RLS-based linear regression model R(1).

Algorithm 3 uses the data (or imputations if needed) and 
errors obtained from both AR(1) models for xobs and xm to 
linearly calibrate the mismatch using coefficients w fitted 
with the RLS algorithm ( H = w ) where xm is the input and 
xobs is the output. Thus, at step t, the calibrated prediction is 
xC
m
= w1 ⋅ xm + w0 , where coefficients w = (w0,w1)

T were fit-
ted at step t − 1.

To calculate the errors of the calibrated predictions, we apply 
the rules of the propagation of uncertainty. In Algorithm 3, we 
represent �C

m
 as a sum of the calibration error RLSH .� and the 

scaled | �H(xm)

�xm
| ⋅ �m = | �x

C
m

�xm
| ⋅ �m = |RLSH .w1| ⋅ �m . Thus, �C

m
 can 

be found as follows:

(7)�
C
m
= |RLSH .w1| ⋅ �m + RLSH .�.
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Finally, in Algorithm 3, the prediction xC
m

 and error �C
m

 are 
further used instead of xm and �m for assimilation.

4.4  Main Algorithm

The overall procedures of the data assimilation algorithms 
are presented in Algorithm 4.

Algorithm 4 includes the steps to estimate the miss-
ing uncertainties using the AR(1) models ARobs and ARm 
for observations and model simulations (see Algorithm 2 
for the implementation details). The R(1) model Rm is 
used to calibrate model simulations to the spatial scale 
of the observations (see Algorithm 3 for the implemen-
tation details). After the uncertainties are estimated, the 
standard procedures of least-squares data assimilation are 
applied. In Algorithm 4, the data assimilation scheme DA3 
includes calibration. Otherwise, Algorithm 4 is identical 
to the assimilation scheme DA2.

5  Results

To demonstrate the performance of the developed algo-
rithms, we assimilated the hourly simulations xm from 
SILAM (time series from the grid cell [24°36′E–24°48′E; 
59°24′N–59°36′N]) and hourly observations xobs from 
the Liivalaia air quality monitoring station (time series 
from the location [24°46′E; 59°26′N]) in the period from 
12.10.2021 01:00:00 to 10.11.2021 18:00:00 (“Fall”) and 

from 27.01.2022 01:00:00 to 25.02.2022 15:00:00 (“Win-
ter”). The air quality variables used for demonstration are 
CO, SO2, PM2.5, NO2, O3, and PM10.

xobs and xm have missing uncertainty estimates at the same 
hourly temporal scale, but different spatial scales ( xobs are 
obtained from a single-point location, while xm from the 
0.2° grid). Therefore, the spatial scales can be directly cal-
culated. In order to compare the performance of DA2 and 
DA3 (included in Algorithm 4), we chose to apply both data 
assimilation schemes.

Figure 2 demonstrates the experiment for DA2 visualiz-
ing time series plots of SO2, NO2, and PM10 station obser-
vations xobs (“Station”), SILAM simulations xm (“Model”), 
and assimilated values xa without calibration (“DA2”) for 
the Liivalaia air quality monitoring station (Tallinn, Estonia) 
in fall, October–November 2021 and in winter, January–Feb-
ruary 2022.

Considering DA3, we applied Algorithm 3 for the calibra-
tion of model simulations to station observations. DA3 time 
series plots of SO2, NO2, and PM10 are shown in Fig. 3 includ-
ing the station observations xobs (“Station”), SILAM simula-
tions xm (“Model”), and assimilated values xa with the calibra-
tion of “Model” to “Station” (“DA3 (Model → Station)”).

In both cases in Figs. 2 and 3, the assimilated values are 
constrained to input values of “Station” and “Model” as their 
weighted sums. Without calibration, “DA2” values in Fig. 2 
depend only on the dynamics of a process encoded in the 
data of each data source independently, whereas “DA3” val-
ues in Fig. 3 use reference values for the calibration. In other 
words, being calibrated to the spatial scale of interest, the 
error between the reference values used for calibration 
and the assimilated values decreases. Thus, when calibrat-
ing model simulations to observations, the error between 
the assimilated values of “DA3 (Model → Station)” and 
“Station” decreases.

The data assimilation results for SO2, NO2, and PM10 
are provided in Figs. 2 and 3. A summary of the root mean 
squared errors (Table 1) and mean absolute uncertainties 
(Table 2) is provided for both data sources for the fall and 
winter time periods.

The root mean squared error (RMSE) is calculated pair-
wise and given by

where x1 and x2 are vectors of data values of length n from 
2 data sources. The RMSE values were calculated using 
Eq. (8) for each of “Station,” “Model,” “DA2,” and “DA3 
(Model → Station).”

Table 1 provides the RMSE of station observations and 
assimilated values without calibration (“Station - DA2”). 

(8)RMSE(x1;x2) =

√√√√1

n

n∑

i=1

(x1[i] − x2[i])
2,
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Model simulations and assimilated values without cali-
bration (“Model - DA2”) were found to be lower than the 
RMSE of station observations as well as the model simula-
tions (“Station - Model”). Unsurprisingly, the calibration 
of model simulations to station observations resulted in 
the lowest RMSE values when comparing the assimilated 
data to the station (“Station - DA3”). Similarly, after cal-
ibration of the station observations to the model simu-
lations, the RMSE of model simulations and calibrated 
assimilated values (“Model - DA3”) was lower than “Sta-
tion - Model” and “Model - DA2.” However, the RMSE 
of station observations and calibrated assimilated values 
(“Station - DA3”) was found to be higher than “Station 
- DA2.” In summary, calibration results in the minimum
error between the reference and assimilated values, but
leads to a higher error between the values being calibrated 
and assimilated values when compared to the uncalibrated
data assimilation. This general finding was found to be
true for both time periods.

To compare the regression-based uncertainties, we cal-
culated the mean absolute uncertainties (MAU) for each of 
the station observations, model simulations, and assimilated 
values as follows:

where � is a vector of uncertainties of length n.
The MAU values calculated using Eq. (9) for each of the 

air quality variables for both time periods and are presented 
in Table 2. “Station” and “Model” are AR(1) uncertainties 
of station and model data values, and “Model (DA3)” are the 
uncertainties of calibrated model values. Equation (7) was 
used in “DA3,” and “DA2” and “DA3” are the uncertainties 
of the assimilated values with and without calibration.

In Table  2, the uncertainties of the calibrated val-
ues “Model (DA3)”  are higher than the uncertainties 
of uncalibrated values for both time periods. After data 

(9)MAU(�) =
1

n

n∑

i=1

|�[i]|,

Fig. 2  Time series of observa-
tions and assimilated values 
for SO2, NO2, and PM10 
air quality variables in fall, 
October–November 2021 and in 
winter, January–February 2022. 
“Station” corresponds to obser-
vations made by the Liivalaia 
air quality monitoring station 
(Tallinn, Estonia), “Model” - 
SILAM simulations, “DA2” - 
least-squares data assimilation 
without calibration
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assimilation, the uncertainty is reduced compared to the 
uncertainties of single input sources. However, due to the 
larger uncertainties of the calibrated values, “DA3” uncer-
tainties are also higher than the “DA2” uncertainties. In 

general, the lowest uncertainties were obtained using 
“DA2.”

Similarly to the station data, the data from the IoT sen-
sors can be used as observations. During the “Fall” period, 

Fig. 3  Time series of observa-
tions and assimilated values 
for SO2, NO2, and PM10 air 
quality variables for SO2, NO2, 
and PM10 air quality variables 
in fall, October–November 2021 
and in winter, January–Febru-
ary 2022. “Station” corresponds 
to observations made by the 
Liivalaia air quality monitor-
ing station (Tallinn, Estonia), 
“Model” - SILAM simulations, 
“DA3 (Model → Station)” - 
least-squares data assimilation 
with calibration of “Model” to 
“Station” data

Table 1  Root mean squared errors (RMSE) between station observa-
tions (“Station”), model simulations (“Model”), and obtained assimi-
lated values for both uncalibrated (“DA2”) and calibrated (“DA3”) 

data assimilation. “Fall”  - fall, October-November 2021, “Wint.”  - 
winter, January–February 2022

Variable RMSE between station observations (“Station”), model simulations (“Model”), and assimilated values (“DA2” and 
“DA3”) [ �g∕m3 ] in fall 2021 (“Fall”) and winter 2022 (“Wint.”) at the Liivalaia station (Tallinn, Estonia)

Station-Model (Fall/
Wint.)

Station-DA2 (Fall/
Wint.)

Station-DA3 (Fall/
Wint.)

Model-DA2 (Fall/Wint.) Model-DA3 (Fall/Wint.)

CO 145.41/103.61 75.2/67.71 15.06/21.54 110.39/64.15 145.44/101.05
SO2 2.98/2.58 1.01/0.96 0.16/0.11 2.6/2.2 2.97/2.59
PM2.5 6.6/5.04 3.35/2.05 1.03/0.31 5.07/4.17 6.38/5.01
NO2 13.23/15.26 11.64/13.64 3.13/3.92 4.77/4.49 11.86/13.76
O3 19.41/12.87 13.66/8.67 3.12/3.13 10.3/7.55 18.56/11.9
PM10 11.04/6.68 7.52/3.37 1.28/0.51 6.75/5.17 10.66/6.64
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the sensor, station, and model time series data are depicted 
in Fig. 4.

The hourly PM10 data from sensors corresponds to the 
data from the same SILAM grid cell and as of the station, 
and therefore, the same data assimilation schemes DA2 and 
DA3 were applied as shown in Fig. 5.

Similarly to Tables 1 and 2, the summary results of the 
experiments with sensor data are provided in Tables 3 and 4.

When comparing the station and sensor data sources 
and the results of their assimilation with the same model 
data source, the results primarily depend on the difference 
between the assimilated data sources. Thus, the difference 
between the model and observation data is lowest for the 
Liivalaia station, and the errors between the input data 
sources and the assimilated values for both DA2 and DA3 
algorithms are lowest for the station data. Comparing two 
sensors, the highest error between the model and observa-
tions was found to be for the IoT sensor located furthest from 
the station (700 m). Thus, the errors between the observa-
tions and assimilation results are lower for the closer sensor, 
whereas the error between the model and DA2 results is 
lower for the farther sensor. This follows intuitively, since 
DA3 calibrated the model data to the observation data, the 
errors between the model and DA3 results are reasonably 

expected to be lowest for the station and highest for the far-
ther sensor.

Using the developed methods to estimate uncertainty, the 
station observations and the numerical model data calibrated 
to the station observations were found to have the lowest 
uncertainty when compared to the sensor observations and 
the model data calibrated to the sensor observations. As a 
result, both DA2 and DA3 uncertainties are lowest when 
using the station data for data assimilation.

At the same time, the closer IoT sensor had a higher uncer-
tainty than the more distant IoT sensor, but since the closer 
IoT sensor had a lower error from the model data, it allowed 
calibration of the model data with lower overall uncertainty. 
Thus, when comparing the assimilation uncertainties of the 
two sensors, the closer to the station sensor has a higher uncer-
tainty in DA2 but a lower uncertainty in DA3.

The data and results of this work can be reproduced using 
the open-source Python software developed by the authors 
and are accessible on GitHub by https:// github. com/ effie- 
ms/ rls- assim ilati on distributed under the MIT license. The 
repository includes the scripts of the described algorithms, 
exported data sources (SILAM time series from the grid cell 
[24°36′E–24°48′E; 59°24′N–59°36′N] and Liivalaia station 
(time series from the location [24°46′E; 59°26′N]) SO2, NO2, 

Table 2  Mean absolute 
uncertainties (MAU) of station 
observations (“Station”), model 
simulations obtained in the DA2 
(“Model in DA2”) and DA3 
(“Model in DA3”) algorithms, 
and of obtained assimilated 
values for both uncalibrated 
(“DA2”) and calibrated 
(“DA3”) data assimilation. 
“Fall” - fall, October–November 
2021, “Wint.” - winter, 
January–February 2022

Variable MAU of station observations (“Station”), model simulations (“Model”), and assimilated 
values (“DA2” and “DA3”) [ �g∕m3 ] in fall 2021 (“Fall”) and winter 2022 (“Wint.”) at the 
Liivalaia station (Tallinn, Estonia)

Station (Fall/Wint.) Model in DA2 
(Fall/Wint.)

Model in DA3 
(Fall/Wint.)

DA2 (Fall/Wint.) DA3 (Fall/Wint.)

CO 15.59/19.65 12.99/10.25 54.88/45.04 4.62/5.48 11.65/14.04
SO2 0.18/0.11 0.37/0.38 0.4/0.21 0.1/0.08 0.13/0.07
PM2.5 0.96/0.39 0.98/0.82 4.31/2.48 0.32/0.21 0.75/0.33
NO2 3.23/3.84 1.07/0.9 9.23/9.99 0.6/0.69 2.43/2.76
O3 4.14/4.01 3.18/2.32 15.02/11.8 1.53/1.36 3.27/3.04
PM10 1.23/0.67 1.31/1.05 7.49/3.54 0.43/0.31 1.03/0.56

Fig. 4  Time series plots of 
input PM10 data sources in fall, 
October–November 2021. “Sta-
tion” corresponds to observa-
tions made by the Liivalaia 
air quality monitoring station 
(Tallinn, Estonia), “Model” - 
SILAM simulations, “Sen-
sor (60 m)” - IoT sensor data 
located 60 m from the Liivalaia 
station, and “Sensor (700 m)” - 
IoT sensor data located 700 m 
from the Liivalaia station
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CO, O3, PM10, PM2.5 air quality data from [44–46] in the 
period from 12.10.2021 01:00:00 to 10.11.2021 18:00:00 and 
from 27.01.2022 01:00:00 to 25.02.2022 15:00:00). The IoT 
PM10 sensor data from the [24°45′E, 59°25′N] and [24°44′E, 

59°25′N] locations in the period from 12.10.2021 01:00:00 to 
10.11.2021 18:00:00 can be also found in the repository. Please 
refer to the repository’s README for the description of the 
repository content and installation instructions.

Fig. 5  Time series plots of input sensor data sources and assimilated 
values for PM10 air quality variable in fall, October-November 2021. 
”Sensor” corresponds to observations made by one of the IoT sensors 
located 60 meters or 700 meters away from the Liivalaia air quality 

monitoring station (Tallinn, Estonia), ”Model” - SILAM simulations, 
”DA2” - least-squares data assimilation without calibration, ”DA3 
(Model → Sensor)” - least-squares data assimilation with calibration 
of ”Model” to ”Sensor” data.

Table 3  Root mean squared errors (RMSE) between PM10 observa-
tions (“Observ.”), model simulations (“Model”), and obtained assimi-
lated values for both uncalibrated (“DA2”) and calibrated (“DA3”) 
data assimilation in fall, October–November 2021. The observations 

are represented by “Station” -Liivalaia station (Tallinn, Estonia) and 
2 IoT sensors: “Sensor (60 m)” and “Sensor (700 m)” from the nearby 
locations

Variable RMSE between PM10 observations (“Observ.”), model simulations (“Model”), and assimilated values 
(“DA2” and “DA3”) [ �g∕m3 ] in October–November 2021 (“Fall”) at and nearby the Liivalaia station (Tallinn, 
Estonia)

Observ.-Model Observ.-DA2 Observ.-DA3 Model-DA2 Model-DA3

Station 11.04 7.52 1.28 6.75 10.66
Sensor (60 m) 16.11 14.25 11.87 6.86 16.16
Sensor (700 m) 20.17 18.24 12.29 6.5 21.28
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6 Discussion

In order to implement a lightweight data-driven sequential esti-
mation of uncertainty, we used first-order regression modeling. 
In this work, the uncertainties were estimated using an inverse 
approach based on the prediction errors of the regression mod-
els. The regression models were then fitted sequentially using 
the recursive least squares (RLS) algorithm. A recursive vec-
tor–matrix implementation of the least squares method was 
applied, in which the parameters of the linear regression model 
are updated at each step with new observations [35, 49]. Thus, 
when the data sources have the same spatial scales, we suggest 
estimating the uncertainty using errors from the RLS-based 
autoregression AR(1) model predictions. Each data source then 
has an AR(1) model that recursively models the incoming data 
and makes predictions based on one previous value. The predic-
tions can be used for imputation if the input value is missing; 
otherwise, the predictions are used to estimate the uncertainty, 
and the actual input value is used for data assimilation. The algo-
rithm DA2 uses the same temporal and spatial scales and AR(1) 
uncertainties as the input for the least-squares data assimilation.

DA2 estimates the uncertainty for each data source 
independently using only Algorithm 2 to provide a 1-order 
autoregressive (AR(1)) error. Compared to DA2, DA3 cali-
brates one of the data sources (e.g., “Model simulation,” 
“Model”) to the other (“Observation,” “Station,” “Sensor,” 
also called as “reference”) using Algorithm 3 to perform a 
1-order regressive (R(1)) calibration and uncertainty propa-
gation. The reference data source uses the AR(1) uncertainty
as input for the final assimilation step in both algorithms.

The calibration suggested in DA3 may be especially useful 
when data sources have different spatial scales. The calibration 

Algorithm 3 offers a fully data-driven approach and does not 
require any knowledge of the relation between varying scales. 
Thus, the calibration step in DA3 improves the accuracy at the 
cost of lower precision. The accuracy of DA3 depends on the 
accuracy of the ground station because the model data is cali-
brated using the station data as the ground truth. The precision 
depends on the dynamics of the data sources for both DA2 and 
DA3, as well as the changes in the relationship between them 
(DA3 only). The estimated uncertainties can be potentially 
helpful to relative comparison and change detection, as changes 
in time and relationship between data sources result in higher 
uncertainties. It is worth noting that DA2 generally results in a 
lower uncertainty than DA3. This is expected as the calibration 
step biases one data source to the reference source to achieve 
higher accuracy, at the cost of lower precision.

7  Conclusion

In this work, we propose two lightweight data assimila-
tion methods suitable for real-time execution that are able 
to provide uncertainty of estimates which are frequently 
unavailable when using open data. The proposed methods 
sequentially estimate unknown uncertainty of air pollution 
data sources of the same temporal and different spatial scales 
using least-squares data assimilation.

The proposed uncertainty estimation methods are based 
on sequential 1-order linear autoregression AR(1) and 
regression R(1) methods and are fitted using the recursive 
least squares (RLS) algorithm. Specifically, the AR(1) and 
R(1) models estimate and propagate uncertainty over time 
as an error from the sequential prediction. Thus, AR(1) 
prediction errors characterize the uncertainties associated 
with changes in the observed air quality parameters with 
respect to the previous values modeled sequentially. The 
R(1) prediction errors account for differences in the regres-
sion relationships between the numerical simulation and 
ground monitoring station source data sources. To encourage 
their use by others, we have provided an open-source reposi-
tory including scripts and test data to reproduce the results 
obtained in this study. Our hope is that researchers explore 
the use of these lightweight algorithms, extending their 
range of application to other urban monitoring networks, 
using data from a wider range of temporal and spatial scales.

The proposed assimilation algorithms DA2 and DA3 
perform sequential data assimilation using data sources of 
the same and different spatial scales, without (DA2) and 
after (DA3) calibration. The calibration of one data source to 
another is derived from the propagation of uncertainty equa-
tions. Considering the Tallinn test case, it was found that 
the minimum uncertainty was achieved using DA2, whereas 
DA3 provided the minimum error between the ground sta-
tion measurements after assimilation.

Table 4  Mean absolute uncertainties (MAU) of PM10 observa-
tions (“Observ.”), model simulations obtained in the DA2 (“Model 
in DA2”) and DA3 (“Model in DA3”) algorithms, and of obtained 
assimilated values for both uncalibrated (“DA2”) and calibrated 
(“DA3”) data assimilation in fall, October–November 2021. The 
observations are represented by “Station”  - Liivalaia station (Tal-
linn, Estonia) and 2 IoT sensors: “Sensor (60  m)”  and “Sensor 
(700 m)” from the nearby locations

Variable MAU of PM10 observations (“Observ.”), model 
simulations (“Model”), and assimilated values 
(“DA2” and “DA3”) [ �g∕m3 ] in October– 
November 2021 (“Fall”) at and nearby the 
Liivalaia station (Tallinn, Estonia)

Observ. Model in 
DA2

Model in 
DA3

DA2 DA3

Station 1.23 1.31 7.49 0.43 1.03
Sensor (60 m) 5.61 1.31 10.14 0.75 2.61
Sensor 

(700 m)
4.07 1.31 14.09 0.67 3.14
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It is worth noting that sequential recursive calculations 
based on first-order models, linear operators, and single var-
iables were found to substantially reduce the computational 
effort of the proposed methods. Furthermore, we wish to 
point out that DA2 and DA3 do not fully quantify the uncer-
tainty but rather provide a standardized method that can be 
efficiently implemented when simulation and observational 
data are present.

The proposed assimilation methods were developed to 
be used by IoT-based devices with limited communication 
bandwidth and computational power. Air quality IoT sensors 
are known to vary in agreement with the reference moni-
tors (such as stations) depending on the measured variable, 
specific make and model of the sensor, and their state in 
terms of calibration and maintenance [14]. However, they 
have the potential to increase spatial and temporal coverage 
of existing air quality monitoring stations and can be used 
to optimize the station placement of additional locations.

The accuracy of the data assimilation results largely 
depends on the accuracy of the input data sources. Without 
calibration, the assimilation results depend only on the uncer-
tainties of the input data sources: the higher the uncertainty 
of sources, the higher the uncertainty of the assimilated result 
(DA2). Calibration forces the assimilated result to become 
dependent on the difference (assumed error) between the 
input data sources. The higher this difference is, the higher 
the resulting uncertainty of the calibrated assimilation (DA3).

This study showcases how the growing amount of online 
open data can be effectively used for ambient air quality moni-
toring in a typical urban European city environment. This is 
especially promising, as the cost of building, maintaining, and 
processing new IoT-based systems for ambient air quality may 
be substantially reduced at locations where reliable open data 
already exist. Further research will evaluate the methods at a 
wider range of European monitoring locations. The methods 
presented in this work can be implemented in networks of hun-
dreds of distributed low-cost IoT ambient air quality monitoring 
stations to reduce costs and improve the reliability and accuracy 
of IoT urban sensors. The results of the data assimilation algo-
rithms proposed in this work depend only on the available data, 
which makes the algorithms applicable to a broad range of data 
types. Finally, future research can evaluate spatial maps of the 
estimated uncertainties to identify locations for optimal sensor 
placement, reduce the total number of sensors, and optimize the 
accuracy of the sensor network.
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ABSTRACT The number of ambient air quality monitoring stations is growing globally, driven by the
need to quantify potential health risks posed by air pollution on urban populations. Reliable, robust and
interoperable air quality monitoring requires observations with consistent accuracy and low amounts of
missing data. In practice, this is challenging to achieve due to the measurement limitations and complexity
of the physical phenomena. Data assimilation methods are widely used to fill missing or faulty observations
and improve data quality by combining observations from fixed air quality monitoring ground stations
with large-scale numerical models. A further advantage of data assimilation is that it can decrease costs by
reusing existing open government data. A key requirement for assimilation is that uncertainty estimates are
available for both measurements and model data. However, this poses a major bottleneck for widespread data
assimilation with open data because uncertainty estimates are frequently unavailable. Additional challenges
addressed in this work include the needs to impute missing data and process observations and model
simulation results at different temporal and spatial scales. To address these challenges, we have developed
novel, lightweight data assimilation algorithms based on recursive least-squares. The algorithms provide a
fully data-driven way to estimate unknown uncertainties by defining the weights of the input data sources
using least-squares data assimilation. The lightweight data assimilation algorithms can be executed to update
the current state estimate in near real-time scenarios to improve the accuracy, completeness, and precision
of the analysis estimate. A sensitivity analysis is conducted using synthetic data based on logistic maps with
increasing noise levels. In addition, the proposed assimilation algorithms are applied to large-scale open pan-
European air quality monitoring station data. The data were obtained from 86 stations for CO, 593 stations
for NO2, 462 stations for O3, 137 stations for SO2, 254 stations for PM2.5, and 445 stations for PM10 in
the period from 2022-01-27 01:00:00 to 2022-02-25 15:00:00 from the European Environmental Agency
(EEA) and corresponding simulation results from the System for Integrated modeLling of Atmospheric
composition (SILAM, global, version 5.7, FRC forecasts at the surface). The proposed lightweight data
assimilation methods were found suitable to improve the completeness (filling in all missing data), accuracy
(taken as the RMSE between the assimilation results and ground station observations) and precision for all of
the open air quality parameters evaluated in this work. Furthermore, the proposed lightweight assimilation
algorithms may also provide new and cost-effective methods to improve the data quality of the growing
number of Internet of Things (IoT) urban air quality sensors.

INDEX TERMS Ambient air quality, data assimilation, environmental monitoring, open data, uncertainty
quantification.

The associate editor coordinating the review of this manuscript and

approving it for publication was Geng-Ming Jiang .

I. INTRODUCTION
Cities across the globe rely on urban air quality (AQ) data to
develop strategies to reduce emissions, lower the population’s

84670 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023
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FIGURE 1. Map showing the ground station locations of the open access
air quality monitoring network of the European Environment Agency
(EEA) [11] used in this work for testing and validation. The map is
generated using [12], [13] and [14].

exposure to air pollution and assist in emergency response [1],
[2], [3], [4]. Urban ambient AQ monitoring can be performed
using ground station observations and numerical simulations.
Data assimilation (DA) algorithms combine both sources
and can substantially improve the accuracy and spatial cov-
erage of urban AQ monitoring. However, in practice, the
widespread use of DA remains highly challenging due to the
non-linear dynamics and spatio-temporal complexity of the
underlying physical phenomena [5].
The European Environment Agency (EEA) provides an

open access, pan-European database of urban AQmonitoring
station data (see Fig 1). These data can be combined with
numerical models of large-scale systems, including atmo-
spheric, oceanic, and land surface interactions using DA
methods [6], [7], [8], [9]. The choice of a particular DA
method depends largely on the case-specific observations and
models available. Considering AQ data, 3- and 4-dimensional
variational assimilation, Kalman and particle filters are the
most common. These DA methods solve inverse problems
and are thus mathematically similar to machine learning
(ML) optimization problems. The main difference between
the DA andMLmethods is that DA considers observation and
model uncertainties [10].When uncertainties are well charac-
terized, they can be used to reduce the overall uncertainty of
the system’s state when compared with only observation or
model data on their own [5].
DA methods also improve the quality of single-source

estimates by imputing the missing values and can increase
the accuracy and precision of predictions [5], [9], [10]. High-
density AQ monitoring networks are costly to purchase,
install and maintain, and therefore they remain scarce [15].
Recent advances in low-cost sensing now allow for the pos-
sibility of creating high-density AQ monitoring networks

based on the Internet of fixed and mobile Things (IoT) [15].
Currently, a variety of authors have proposed, developed and
tested low-cost AQ sensors [16], [17], [18].
In contrast to previous works focusing on the development

and implementation of new IoT-based sensor networks [4],
[15], we propose to reuse open government AQ data sources
for DA. Our concept has several benefits: it decreases the
costs of providing AQ monitoring by applying DA to openly
available large-scale numerical models of air pollution trans-
port and dispersion. Moreover, we demonstrate that large-
scale numerical model data from open numerical models such
as SILAM can be reused without explicit knowledge about
the model. In contrast to research performed in [19] and [20],
our work takes SILAM numerical model results as a source
of continuous spatial and temporal data, which can be used to
address a large amount of missing data without uncertainty
estimates from the EEA ground station observations. Since
numerical models provide globally complete spatial and tem-
poral coverage, they can provide estimates at locations where
observations from fixed or mobile AQmonitoring stations are
sparse or completely absent. Our proposed lightweight DA
methods are tested and validated on a pan-European scale,
making them suitable for large-scale mapping and decision-
making [1], [21].
The reuse of open data sources for DA is significantly

complicated by the missing uncertainty estimates, which are
required parameters for all the DA algorithms. In work [22],
we elaborate on why it is hardly possible to fully estimate
the uncertainty parameters and suggest a workaround by esti-
mating the uncertainty parameters recursively over time from
the input data values as regression errors (‘‘regression-based
uncertainties’’) and develop methods for their estimation.
The uncertainties are estimated using chained 1-order recur-
sive least squares (RLS) filters representing a 1-order linear
regression model the parameters of which are estimated by
the RLS algorithm from the observed data. The filters are
chained using the rules of error (uncertainty) propagation (as
described in [22]).
The reasoning behind this type of uncertainty estimation

is as follows: if the behaviour of the system changed at the
moment when a prediction should be made, then the model
fitted with the RLS algorithmmay not give an accurate result.
Rather, it would give a result that would be accurate for the
system that didn’t change. Therefore, for single sources, the
RLS filter is not used to predict the current value if it is
provided. Instead, the predictions under the assumption of
a steady state are used only if the current value is missing.
In other words, the imputed values are predicted for a system
the behaviour of which didn’t change since the last RLS
filter update. Instead, we use the errors from the steady-state
prediction as an uncertainty estimate. The more a system
changed at a certainmoment of time, the higher the error from
its steady state prediction is. And we claim that this property -
the error from the steady state prediction - can be used as a
data-driven uncertainty estimate for DA algorithms that use
uncertainties to determine the weights of input data sources.
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For the fair estimation of weights, the steady state modelling,
relative to which the errors are calculated, is suggested to be
executed uniformly for all the data sources. This means that
the parameters of the RLS filters are suggested to be the same,
which would standardize the procedure on a large scale.
We acknowledge that ‘‘uncertainty’’ and ‘‘error’’ are two

distinct concepts, and this work does not intend to conflate
them but rather demonstrate how the suggested regression-
based uncertainties could be used for the assimilation pro-
cedures to improve the data quality (accuracy, completeness,
precision) of single data sources. We intend to perform DA
for univariate streams of air pollution data by applying DA to
the most recent (current) value. We do not take into account
any other data or information such as information about
the SILAM model, distribution patterns of air pollutants,
or weather data assuming that it is unknown or unavailable.
In this study, we demonstrate that with our algorithms and
reuse of open data, it is still possible to improve the data qual-
ity of single open data sources only from the timestamped air
pollutant data values with their location coordinates, without
uncertainty estimates or additional information provided.
In this work, we do not intend to analyze the state of AQ

in Europe or validate the reported data. Instead, we provide
a method which reuses existing AQ monitoring station data
and numerical model data of Europe. As much of the exist-
ing ground station data has large amounts of missing data
and is without uncertainty estimates, our proposed methods
improve the quality of existing European AQ ground station
monitoring data by using DA with open numerical simu-
lations. In addition, our proposed methods can be applied
on a large number of low-power low-quality IoT-based AQ
monitoring stations. This allows for the reuse of open data
and may provide higher quality data to local and regional
decision-makers to improve the enforcement of European
environmental policy objectives.
This work is an extension of our previous work [22], com-

pared to which we add new algorithms demonstrating how
DAwithout known uncertainty estimates can be appliedwhen
not only the spatial resolution is different (DA3), but also the
temporal resolution of assimilated data sources is different
(on the example of hourly and daily values, DA4). We also
demonstrate the effect of reusing the previous analysis values
on the suggested DA (S-DA and S-DA4), perform sensitivity
analysis for a logistic map in different modes and different
noise (uncertainty) levels for all the algorithms and validate
all the algorithms using the data from urban background
stations throughout Europe.
The paper is structured as follows: Chapter II provides

an overview of previous works on urban AQ DA. Chap-
ter III describes the methods, the sources of observations
and numerical simulation data, the performance evaluation
criteria and sensitivity analysis using synthetic logistic map
data. Chapter IV presents the results and compares the per-
formance of the DA algorithms, and Chapter V discusses
the obtained results with a focus on the effects of spatial
and temporal scaling. Finally, Chapter VI provides concrete

suggestions for further applications, improvements, limita-
tions and a future outlook of the proposed lightweight DA
methods for open urban AQ monitoring systems.

II. RELATED WORK
Monitoring urban air quality (AQ) commonly involves
regression, interpolation and when numerical models are
available, data assimilation (DA) of the available data [23].
Within the European Union (EU), AQ time series and maps
are frequently generated by assimilation of observation and
model data using linear regression models followed by resid-
ual kriging [2]. However, the real-time estimation of urban
AQ data has substantial computational constraints. Due to
these constraints, conceptually and computationally simple,
or ‘‘lightweight’’ methods suitable for large spatially dis-
tributed data sets as well as for IoT sensors in smart cities
have become a focus of AQ assimilation research [23], [24].
Open AQ data often do not include uncertainty esti-

mates which are required inputs in most DA methods [5].
Neglecting uncertainty has led to fallacious risk assessments
and incorrect environmental policy decisions [1], [25], [26].
To address the lack of uncertainty data, we set out to create
a way to estimate the uncertainty. This poses a substan-
tial challenge, as AQ parameters vary widely over space
and time, and the mathematical methods used to quantify
uncertainty typically rely on long-term observations from
calibrated fixed-station observations [1], [3], [10], [22], [25].
In addition, the classical formulation of the propagation of
uncertainty requires sub-models for each system component
for bias correction and to account for the underlying variabil-
ity of the physical measurement processes themselves [27].
To obtain uncertainty estimates, previous works have

applied computationally-expensive ensemble methods which
perturb model parameters and input data within their uncer-
tainty ranges [1], [3]. Amajor drawback of ensemblemethods
is that due to their high computational costs, they remain
unsuitable for the generation of real-time air pollution fore-
casts for large open data sets of varying data quality as
well as for low-power IoT devices with limited communi-
cation bandwidth and computational power. In general, most
DAmethods require comprehensive uncertainty models [25],
which remain largely unsuitable for computationally con-
strained IoT devices. To address this, lightweight uncertainty
estimation methods using sequential inverse modelling have
been proposed to obtain the simple difference between the
regressed estimates and the actual values of the ground station
observations or numerical models [3], [16], [22].

In our previous work [22], the authors have pro-
posed lightweight least-squares DA (LSDA) regression-
based methods to assimilate open observation and numerical
model data for a single ground observation station in the
Tallinn metropolitan region. The methods impute missing
values, estimate uncertainties and provide a linear obser-
vation operator to calibrate observation and model data to
the same spatial scale. Our previous methods also provide
a standardized uncertainty estimate for open ground station
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observations and numerical model results which do not
include uncertainty data. The current work presents a major
advancement in the use of DA for open large-scale AQ moni-
toring data and includes new algorithms which can cope with
multiple temporal and spatial scales [26].
In contrast to our previous work, which made use of a

single observation station, we have substantially expanded
and improved our previous methods by including hourly pan-
European openly available urban background observations
obtained from the European Environment Agency (EEA).
In addition to increasing the background data to the pan-
European scale, we test and validate three new lightweight
DA algorithms; sequential single-source DA with unknown
uncertainty (S-DA), non-sequential and sequential DA for
two data sources of different spatial and temporal scales
(DA4 and S-DA4). The AQ monitoring stations used for
testing and validation in this work include 86 stations for
CO, 593 stations for NO2, 462 stations for O3, 137 stations
for SO2, 254 stations for PM2.5, and 445 stations for PM10.
The locations are shown in Fig 1), and the observations from
the location were assimilated with hourly and daily 0.2Â◦

numerical model simulation results obtained from the openly
available System for Integrated modeLling of Atmospheric
composition (SILAM, global, version 5.7, FRC forecasts at
the surface).
Contributions: The major contributions of this work are as

follows:

• We provide three new algorithms S-DA, DA4 and
S-DA4 for the lightweight assimilation of urban AQ data
with unknown uncertainty.

• We investigate how sequential estimation affects DA
performance at the pan-European scale using openly
available EEA and SILAM AQ data.

• We demonstrate how the proposed lightweight algo-
rithms can utilize data sources of higher temporal resolu-
tion, using hourly observations, to improve the estimates
from lower-resolution data sources based on daily model
simulations.

• We validate and illustrate the scalability of the three
proposedmethods using several hundred AQmonitoring
stations of open government observations provided by
the EEA and the numerical model, SILAM.

III. METHODS
A. OVERVIEW AND ABBREVIATIONS OF DATA
ASSIMILATION METHODS
The algorithms proposed in this work are based on the
least-squares data assimilation (LSDA) algorithm. Our pri-
mary contributions are to automatically impute missing
data, to calibrate the analysis between observations and
numerical models with different temporal and spatial scales
and to provide uncertainty estimates for datasets with
unknown uncertainties. In our previous work [22], the authors
have proposed the following algorithms for lightweight
DA:

• DA1: LSDA of 2 sources with known uncertainties. This
method corresponds to the classic LSDA approach and
serves as the basis for the proposed algorithms presented
in these works.

• DA2: LSDA with unknown uncertainties using data
from two sources. This algorithm requires that both data
sources have the same temporal and spatial scales.

• DA3: LSDA with unknown uncertainties using data
from two sources. Here, the requirement is that the same
temporal scales are used for the two sources, and spatial
calibration is applied using an observation operator to
assimilate the two sources at different spatial scales.

In the current work, we present three new LSDA-based
methods providing substantial improvements over our previ-
ous DA2 and DA3 methods:

• S-DA: Sequential LSDA of a single source and its pre-
dictions with unknown uncertainty. Compared to DA2
and DA3, S-DA does not require another data source.

• DA4: LSDA with unknown uncertainties using data
from two sources of different temporal and spatial
scales. Compared to DA2, which requires data of the
same temporal and spatial scales and compared to DA3,
which requires data of the same temporal and different
spatial scales, DA4 allows for the use of data sources
with both different temporal and spatial scales.

• S-DA4: Sequential LSDA with unknown uncertainties
using data from two sources of different temporal and
spatial scales. Compared to S-DA using the source data,
S-DA4 uses the assimilation results of DA4 and their
predictions.

B. DATA ASSIMILATION WITH UNKNOWN UNCERTAINTY
AND DIFFERENT SPATIAL SCALES
The methods developed in work [22] are designed to pre-
process data before applying the LSDA algorithm. All the
developed preprocessing methods are based on the first-order
recursive least squares (RLS) algorithm shown in Fig. 2 (a).
For each new data point, RLS sequentially fits the coefficients
of a first-order linear regression model w using inputs xin and
outputs xout by correcting an initial prediction xpred based on
the error ϵ from the actual value xout . The RLS outputs x ′

out
and ϵ′ depend on the regression model it was used for.
We suggest applying two RLS-based first-order regression

models, as each model is well-suited for different purposes.
The first model is an RLS-based first-order autoregression
AR(1) model (see Fig. 2 (b)) to estimate initial uncertainties
at the given temporal and spatial scales. At time step t , the
AR(1) model fits a past value x[t − 1] to a current value
x[t]. If x[t] is missing, the RLS prediction xpred is used to
impute the missing value, otherwise x[t] is used as-is, and the
error ϵ from the prediction is taken as the regression-based
uncertainty estimate. AR(1) models are applied to each data
source.
The second model is an RLS-based first-order regression

R(1) model for spatial calibration (see Fig. 2 (c)) of two data
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sources that takes the outputs of AR(1) models as inputs and
calibrates one data source x1 to the other data source with
different spatial scale, x2 by RLS-based fitting. The calibrated
input value, xpred is used instead of x1 LSDA, and the AR(1)
error ϵ1 is scaled by the rules of uncertainty propagation and
augmented with the R(1) error ϵ.
The DA2 algorithm was based solely on AR(1) models,

whereas the DA3 algorithm uses both AR(1) and R(1) mod-
els. We found that both models are required when implement-
ingDA3 in order to provide one data sourcewith an additional
spatial calibration step. Detailed explanations of the DA1,
DA2 and DA3 algorithms including their pseudocode can be
found in [22].

C. SEQUENTIAL DATA ASSIMILATION WITH MISSING
UNCERTAINTY, DIFFERENT SPATIAL AND TEMPORAL
SCALES
In this work, we extend the previously developed methods
with temporal calibration and reuse of the previously esti-
mated (at time step t− 1) analysis values for DA (see Fig. 3).
Here, we restrict the temporal calibration to hourly and

daily values. However, the same approach can be applied
to other temporal scales without a loss of generality. As an
example, when hourly outputs are desired, at least one of the
data sources must be hourly. We also wish to point out that
similar procedures can be applied to other temporal scales.
If the input temporal scales are hourly and monthly, then
the number of hours in a month should be used instead
of 24 hours in the recursive average estimator. If the input
temporal scales are monthly and daily, then the number of
days in a month should be used instead, or both should be
transformed into hourly supplied data. In Fig. 3 (a, left),
the hourly data are transformed to daily data by recursively
obtaining a full-day (24-hour) daily average of values and
errors, which is reset every 24 hours. The algorithm for
recursive daily averages is further outlined in Algorithm 1.
To transform daily data xd1 into hourly data xh1 (see Fig. 3

(a, right)), we suggest fitting an RLS-based first-order model
for the hourly data source xh2 . The input of the model is
daily values xd2 obtained with the recursive daily average esti-
mator RD(), and the output is hourly valuesxh2 . Afterwards,
the coefficients of the model for x2 are used to predict xh1
from xd1 . Similarly to the spatial alignment model, the output
uncertainty ϵh1 is taken as the simple sum of the scaled input
uncertainty ϵd1 and the model prediction error ϵ.
The DA outputs (also commonly referred to as analy-

sis values) can be fitted autoregressively to assimilate the
analysis predictions with the obtained data. In Fig. 3 (b),
we demonstrate the use of an RLS-based AR(1) model for
sequential estimation using the outputs of LSDA xa[t − 1]
at the previous time step, t − 1 as the input and the analysis
value, xa[t] as the output to predict the next analysis value.
The RLS-based AR(1) model for sequential estimation

enables a sequential single-source LSDA as shown in
Fig. 4 (a) S-DA algorithm. Furthermore, in this work the

Algorithm 1 Recursive Daily Average Estimator

xh - current average data value, ϵh - current average error
(uncertainty), xd - last full-day daily average data value, ϵd

- last full-day daily average error (uncertainty),N - counter
of previous hours (reset after each 24 hour interval).
procedure INIT( )

xh, ϵh, xd , ϵd = 0, 0, 0, 0
N = 0

end procedure
procedure RESET( )

xh, ϵh = 0, 0
N = 0

end procedure
procedure UPDATE(xhnew, ϵ

h
new)

if N == 24 then
xd = xh

ϵd = ϵh

RESET ()
end if
N = N + 1
xh =

1
N · (xh · (N − 1) + xhnew)

ϵh =
1
N · (ϵh · (N − 1) + ϵhnew)

end procedure
procedure RD( )

INIT()
end procedure

S-DA algorithm is compared with the previously suggested
DA3 algorithm that uses 2 data sources (see Fig. 4 (b)) for
LSDA with respect to the reference data source (data source
of spatial scale S).
Models for temporal alignment are integrated into the

DA4 algorithm, enabling LSDA with unknown uncertainties
including both temporal and spatial calibration. Overall, DA4
is similar to DA3 but adds the temporal calibration (align-
ment) step after the spatial calibration, as shown in Fig. 5 (a).
When used the output of DA4 instead of AR(1)-preprocessed
data taken directly from a source, S-DA shown in Fig. 4 (a)
is transformed into S-DA4, as shown in Fig. 5 (b).
The performance of DA4 and S-DA4 algorithms is com-

pared by transforming one of the hourly data sources to daily
intervals by averaging over a 24-hour period. Afterwards, the
original hourly values are assimilated and used as a reference.
The daily data are assimilated with the hourly data from the
other data source and compared to the hourly assimilation
results.

D. PARAMETERS AND SENSITIVITY ANALYSIS
DA algorithms often require continuous data without miss-
ing values, uncertainties (error and noise covariance matri-
ces), state transition and observations operators, as well as
additional algorithm-specific parameters (e.g. the number of
particles for particle filters, number of ensemble members
for ensemble filters, among others) [28], [29]. Unfortunately,
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FIGURE 2. Recursive algorithms for least-squares data assimilation (LSDA) from [22]. (a) recursive least squares (RLS)-based first-order model used as a
core for data-driven uncertainty estimation and spatio-temporal alignment (calibration). (b) RLS-based first-order autoregression AR(1) model for
sequential imputation and uncertainty estimation using the AR(1) model. (c) RLS-based first-order regression R(1) model for spatial alignment
(calibration) of xin with the scales of xout , considering the errors xin and ϵ from the AR(1) and R(1) models.

open AQ datasets and IoT sensors provide only the physical
parameter values without sufficient information to quickly
and efficiently determine the necessary additional parameters
to carry out DA [17], [21].

With the goal to enable the use of DA to improve the
accuracy, completeness and precision of the single input data
sources, we propose methods estimating the uncertainties
recursively over time from the input data values as regression
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FIGURE 3. The recursive data-driven preprocessing algorithms for least-squares data assimilation (LSDA) proposed in this work. (a) models of temporal
alignment (calibration) of hourly xh and daily xd data. (b) RLS-based first-order regression model for sequential estimation using the previously
estimated analysis values, xa[t − 1] as input and the newly obtained data, xt as output.

errors (‘‘regression-based uncertainties’’). We do not intend
to conflate the two distinct concepts of ‘‘uncertainty’’ and
‘‘error’’. Instead, we suggest an alternative to theoretical
uncertainty estimates specifically for the cases of DA and
demonstrate that the suggested parameters in conjunction
with DA algorithms are capable of improving the data quality
(accuracy, completeness, precision) of single data sources.
The uncertainties are estimated using chained 1-order RLS

filters, creating a 1-order linear regression model whose
parameters are estimated by the RLS algorithm using ground
station observations. The filters are chained using the rules of
the propagation of uncertainty as described in [22]. To min-
imize the number of parameters, we use a classical RLS
algorithm for univariate data sources. The parameters are
filter coefficients, w which consist of a 2 × 1 vector of the
linear model coefficients estimated by the algorithm as well

as an inverse covariance matrix, P (2× 2) which weights the
previous contributions. Since there is no prior information
available, the classical implementation of RLS initializes the
weights to zero to avoid any bias in the estimate of the filter
coefficients and the matrix P to the identity matrix that per-
forms a linear transformation and makes all past observations
weighted equally regardless of their time index. We wish to
point out that this common practice may result in a slower
convergence compared to the initialization with other param-
eters based on the prior knowledge or sensitivity analysis of
each particular input signal. However, their identification and
optimization are not the objective of the current work. Our
approach is in line with the classical RLS algorithm without
a forgetting factor, meaning that all the past observations are
weighted equally in the estimate of the filter coefficients and
that the regularization parameter is set to zero.
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FIGURE 4. Validated data assimilation (DA) algorithms: (a) 1-source sequential least-squares DA (S-DA) using AR(1) model from Fig. 3 (b) and (b) 2-source
least-squares DA with unknown uncertainties and different spatial scales (DA3, previously suggested in work [22]).

The application of the algorithms varies depending on
the spatial and/or temporal scales (need to calibrate the
data in space and/or time). Thus, each of the developed
algorithms corresponds to a scenario of matching or non-
matching scales, as described in Chapter IIIA. Each of
the scenarios varies in the estimation of uncertainty, and
after the uncertainties are estimated, the best-performing
DA algorithm should be applied. We have chosen LSDA
since it requires only the uncertainties as parameters and it
is lightweight enough to perform DA in real-time and on
low-powered IoT devices in the future. Nevertheless, if the
parameters for other algorithms are known, the estimated
uncertainties can be used as input for the other DA algorithms

such as Kalman or particle filters with low numbers of
particles (e.g. 100).
The performance of DA algorithms (accuracy of the

analysis results) largely depends on the optimality of pro-
vided parameters, but as mentioned above, the parameters
are not always known in advance for real-world real-time
implementation.
Nevertheless, the tests can also be carried out using syn-

thetically generated datasets. For this, we perform a sensi-
tivity analysis using one-dimensional datasets of a logistic
map [30] xn+1 = r · xn · (1 − xn) in 3 modes: periodic
(r = 3.5, x0 = 0.5), transient (r = 3, x0 = 0.75) and
chaotic (r = 4, x0 = 0.1). Since the proposed algorithms
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FIGURE 5. Validated data assimilation (DA) algorithms: (a) 2-source least-squares DA with unknown uncertainties, different temporal and spatial scales
(DA4) and (b) 2-source sequential DA4 (S-DA4).

do not require the provision of any parameters (except the
data values), we examine the performance using the data
of different uncertainty (noise) levels. To generate the data
sources for the DA algorithms, we apply Gaussian noise
of zero mean and standard deviation σ to a clean signal
of 100 iterations. The first data source is generated with
a fixed amount of noise σ = 0.1 and the second data
source with an increasing amount of noise from σ = 0.1
to σ = 1.

The plots for all the scenarios (DA2, DA3, S-DA, DA4 and
S-DA4) are presented in Supplementary material (see Fig. 10
for DA2, DA3 and S-DA, Fig. 11 for DA4 and Fig. 12 for
S-DA4). The results include the plots of increases in accuracy
with respect to the amount of noise (uncertainty) in the second
data source. The results in the plots are arranged in columns,
each column corresponds to the same mode of a logistic map,
and each row to the same scenario (DA2, DA3, S-DA, DA4,
and S-DA4 of different window sizes (M=2, M=5, M=10).
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The window size corresponds to the temporal resolution:
when assimilating daily and hourly data, the window size is
M=24 (the number of hours). Fig. 6 demonstrates an example
for DA3.
The scenarios vary in purpose: S-DA is suitable when the

second data source is not provided, DA2: when both data
sources match in scales, represent the same variables and do
not require calibration, DA3: when any of the data sources
requires calibration (e.g. spatial calibration) to match the
second data source, DA4 or S-DA4: when the data sources
have a different temporal resolution (e.g. hourly and daily)
and need alignment to produce the analysis result. No matter
what the input uncertainties are, if any calibration or mapping
procedure is performed, the rules of uncertainty propagation
should be applied to update the final uncertainty estimate
correspondingly, which creates the technical differences in
the procedures of any DA algorithms (LSDA or any other DA
algorithm) performed in DA2, DA3, S-DA, DA4 or S-DA4
scenarios.
The proposed by the authors algorithms use the LSDA

procedure for DA and are named after the name of a sce-
nario: DA2, DA3, S-DA, DA4 or S-DA4. For the logistic
map test cases, the applied noise levels (standard deviations
σ of Gaussian distributions) are known and can serve as
uncertainty parameters. Therefore, we can perform LSDA
with known uncertainties (in our notation in Supplementary
material, LSDA for DA2 (also DA1), LSDA for DA3, LSDA
for S-DA, LSDA for DA4, and LSDA for S-DA4). The
difference between ‘‘LSDA for DA3’’ (LSDA with known
uncertainties, the second data source is calibrated to the first)
and ‘‘DA3’’ (LSDA with unknown uncertainties, the second
data source is calibrated to the first) is in the provision of
input uncertainties: we use standard deviations σ of Gaussian
distributions of the applied noise as known uncertainties,
whereas our algorithms estimate uncertainties not knowing
about the σ uncertainties using the regression procedures
described above.
At the same time, instead of LSDA, other lightweight

methods can be used, e.g. ensemble Kalman filter
(EnKF) [28] or particle filter (PF) [29]. EnKF updates the
state estimate by propagating a set of model state vectors
(ensemble members) through time and using the observations
to correct the ensemble’s mean and covariance. PF uses a set
of weighted particles to represent the probability distribution
of the state variables. The particles are sampled from the
prior distribution and are propagated through the transition
function to obtain a posterior distribution. The particles are
then resampled based on their weights, which are computed
using the likelihood function to account for the observation
uncertainty. Both filters provide a flexible DA framework,
but the quality of the estimates depends on the number of
ensemble members or particles used and the choice of the
weighting scheme. In general, larger numbers of ensemble
members and particles increase the accuracy at the cost of
more calculations, limiting the use of these methods for
computationally limited applications such as IoT sensors.

To demonstrate the performance of lightweight versions of
EnKF and PF assimilations, we use an EnKF with 10 ensem-
ble members and a PF with 100 particles. Models of this size
are feasible to run on IoT devices and thus these models
provide a realistic comparison of the two established DA
methods (EnKF, PF) against those proposed in this work (S-
DA, DA4 and S-DA4).
For each of the DA cases, the source is corrupted with noise

of increasing amounts to generate progressively less accurate
sources. The performance is assessed using the root mean
squared error (RMSE) in relation to the ideal, zero-noise
signal. The change in accuracy after assimilation is estimated

as a percentage: (1 −
RMSE(true, assimilated)

RMSE(true, less accurate source) ) · 100%.
For each of the logistic map test cases, we assimilate with a

data source of the fixed lowest amount of noise, we expect the
sources of the lowest uncertainty to result in lower increases
in accuracy and the sources of the highest uncertainty to have
the largest increases in accuracy after assimilation. The goal
of the analysis is to compare LSDA with known uncertain-
ties to the author’s proposed LSDA methods with unknown
uncertainties. For each of the test cases, 4 algorithms were
compared against each other: LSDA for one of the scenarios
(DA2, DA3, S-DA, DA4, or S-DA4) with known uncertain-
ties σ , LSDA with unknown uncertainties. The scenarios
are named based on the classical filter type (EnKF or PF),
both of which are run using unknown uncertainties. For each
noise level, the test is repeated 100 times, and the mean
increase in accuracy is plotted as the ensemble average of
these 100 repetitions.
The results show that for all the modes of the logistic

map, the algorithms using a single source (S-DA) scenario
perform worse than in scenarios with 2 data sources. For
periodic and chaotic modes of the logistic map test cases,
LSDA with known uncertainties outperforms the suggested
LSDA with unknown uncertainties by around 20%, EnKF:
25%, and PF: 40% of increase in accuracy. For the tran-
sient mode, the results of LSDA with known uncertainties,
LSDAwith unknown uncertainties and EnKF provide similar
results, varying within 5-8% with LSDA using unknown
uncertainties. Without calibration (scenario DA2), PF perfor-
mance decreases by nearly a factor of two when compared to
the LSDA and EnKF algorithms. With calibration (scenario
DA3), the performance of PF becomes closer to the other
3 algorithms, and consistently under-performs with a margin
of around 5%. Considering the S-DA scenario, PF and LSDA
with unknown uncertainties were found to be the two best
performing algorithms.
Since DA4 and S-DA4 are designed to handle data of

different temporal scales, their performance is tested for
different data resolutions, defined by the window size M:
the lower the window size, the higher the resolution of the
data. The averaging mechanism is used only to generate the
data and does not affect the execution of algorithms. For
all the algorithms, the lowering of the resolution of data
slightly drops the increase in accuracy within 15% fromM=2
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FIGURE 6. Sensitivity analysis for LSDA with known uncertainties, LSDA with unknown uncertainties (uncertainties are estimated using the authors’
methods, labeled by the name of a scenario), ensemble Kalman filter (EnKF, uncertainties are estimated using the authors’ methods, number of ensemble
members is 10), particle filter (PF, uncertainties are estimated using the authors’ methods, number of particles is 100) in scenario DA3 (with calibration).
Assimilation is performed using 2 data sources corrupted with Gaussian noise of zero mean and standard deviation σ . For the assimilation of 2 data
sources, the first source has a fixed amount of noise σ = 0.1, whereas the second data source has an increasing amount of noise from σ = 0.1 to σ = 1.
Each experiment is performed 100 times, and the mean value of the increase in accuracy compared to the accuracy of the second data source is plotted.

to M=10. Nevertheless, the ranking of the algorithms per
mode in DA4 is as follows: in the periodic mode, LSDA
with known uncertainties outperformed LSDAwith unknown
uncertainties by around 10%, EnKF by 20%, and PF by 30%;
in the chaotic mode, LSDA with known uncertainties also
outperforms the rest by 20%, 30%, 40% correspondingly in
the same order, but in the transient mode, LSDA with known
uncertainties demonstrated theworst performancewhen com-
pared to the other three algorithms.
Compared to the DA4 scenario, S-DA4 does not introduce

a significant increase in accuracy for LSDA with unknown
uncertainties. The observed reduction in accuracy increases
by around 10% in the periodic mode and by around 20% in
the chaotic mode compared to DA4. In the transient mode, all
the other algorithms demonstrate a similar performance for
both DA4 and S-DA4 with LSDA with known uncertainties
being closer to the rest of the algorithms in performance. It is
worth noting that the implementation of both the EnKF and
PF methods require knowledge of optimal parameters and
therefore themost accurate results using ensemble algorithms
(EnKF or PF) may not be achievable when they are applied
as lightweight DA algorithms.
Overall, the results show that the introduction of the

sequential loop for S-DA4 did not provide a substantial gain
in performance when compared to the DA4 algorithm for the
logistic map test cases. Since DA4 has a lower computational
complexity, it should therefore be chosen over S-DA4 in
this example. The comparison of algorithms’ performance in
DA4 or S-DA4 scenarios to DA2, DA3, or S-DA scenarios
was not conducted because each algorithm is designed to
handle different types of data sources. Thus, there is no need
to apply DA4 to the data of the same temporal resolution,
as the mapping between data sources is already handled by
the calibration operator in DA3. When both data sources

measure or model the state in the same manner (e.g. 2 sensors
measuring the concentration of an air pollutant, 2 accurate
logistic map signals corrupted by the noise resulting in differ-
ent precision), DA3 is not expected to provide a significant
boost in accuracy compared to DA2, as is illustrated when
comparing the DA2 and DA3 logistic map test cases.
The sensitivity analysis based on the logistic map scenarios

shows that LSDA, EnKF and PF are suitable for lightweight
assimilation. In general, the methods were able to cope with
increasing level of random noise. We wish to point out that,
in general, the results obtained by assimilating two data
sources of σ1 = 0.1 and σ2 = 0.1 are less accurate than those
obtained by assimilating two data sources of σ1 = 0.1 and
σ2 = 1. The assimilation of 2 data sources with overall lower
uncertainty would typically result in a more accurate estimate
than the assimilation of data sources of higher uncertainty.
This point is crucial when applying lightweight DA to cases
where the data source quality is mixed: for example, one
of the sources provides more accurate data, but the second
source has less missing data, or when the quality of any of the
data sources changes over time. In order to further investigate
the performance of the proposed lightweight DA methods
for sources with unknown uncertainty, open air quality data
are taken from pan-European sources and assimilated with a
global numerical model at a large scale.

E. DATA SOURCES
In this work, we have assimilated AQ data from the following
open data sources: System for IntegratedmodeLling ofAtmo-
spheric coMposition (SILAM, global, version 5.7, FRC fore-
casts at the surface, hourly 0.2Â◦ model grid) and European
Environment Agency (EEA) Air Quality data (European AQ
data, hourly fixed point surface observations) in the period
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from 2022-01-27 01:00:00 to 2022-02-25 15:00:00. When
generating the daily values from the hourly data, we retrieve
the arithmetic averages of hourly values within the same day.
The AQ data include the concentrations of the following air
pollutants: sulfur dioxide (SO2), nitrogen dioxide (NO2), car-
bon monoxide (CO) and ozone (O3), and particulate matter
(PM2.5 and PM10).
SILAM generates global 4-day forecasts of AQ data

including SO2, NO, NO2, O3, PM2.5, and PM10. The results
are updated daily and stored in a 30-day publicly available
archive [31]. The samemodel was used for our previouswork,
albeit for a single ground observation station [22].
The European AQ dataset used in this work includes AQ

data reported by the European Union (EU) member states,
meta-information on the monitoring networks, stations and
measurements, and assessment settings [11]. Stations were
filtered by the AQ station type (‘‘background’’) and station
area (‘‘urban’’). For validation purposes, we have also chosen
stations that have less than 20% of missing data. The filter
criteria resulted in 86 stations for CO, 593 stations for NO2,
462 stations for O3, 137 stations for SO2, 254 stations for
PM2.5, and 445 stations for PM10. The individual station
locations and correspondingAQvariables are shown in Fig. 1.
The data from each of the stations are assimilated with
simulation results obtained from the corresponding SILAM
numerical model grid cell.
The data used for the experiments as well as the

source code of the algorithms are available via GitHub by
https://github.com/effie-ms/rls-assimilation and distributed
under the MIT license.

IV. RESULTS
A. COMPUTATIONAL COMPLEXITY AND PERFORMANCE
The proposed algorithms are based on a conventional first-
order RLS filter with O(L2) computational complexity per
iteration, where L is the filter length (L = 2). The com-
plexity can be further reduced using other versions of RLS
filters, see [32] for a more detailed overview. DA2 and S-DA
use 2 RLS filters, DA3: 3, DA4: 4, S-DA4: 5.
The computational performance on a standard desktop PC

was assessed using an Intel(R) Core(TM) i7-8565U CPU @
1.80GHz x 8with 16GbRAM. The execution times per single
iteration of the algorithm are provided in Table 1. Note that
this baseline is only used to provide a rough estimate of the
computational performance of the lightweight assimilation
methods.

B. VALIDATION
To compare the developed algorithms, the results obtained
at each of the individual European AQ monitoring stations
were pooled and averaged across all sites. Two different sce-
narios were compared: S-DA and DA3 and DA4 and S-DA4.
Examples of results for selected EEAAQmonitoring stations
are presented in Fig. 7 (DA3 and S-DA, calibration to station

TABLE 1. Execution time of 1 iteration of algorithms. The tests were
performed on a computer with Intel(R) Core(TM) i7-8565U CPU @
1.80GHz × 8 and 16Gb RAM.

observations) and Fig. 8 (DA4 and S-DA4, calibration to
model simulations).
First, we compare the performance of algorithms S-DA

(sequential 1-source LSDA) and DA3 (non-sequential
2-source LSDA) as illustrated in Fig. 4. Hourly observations
were taken from the EEA AQ dataset and assimilated with
hourly SILAM simulation data. To compare performance, the
root mean squared error (RMSE, see Equation (1)) and mean
absolute uncertainty (MAU, see Equation (2)) were used.

RMSE(x1; x2) =

√√√√1
n

n∑

i=1

(x1[i] − x2[i])2, (1)

where x1, x2 are vectors of data values of length n from 2 data
sources.

MAU (ϵ) =
1
n

n∑

i=1

|ϵ[i]|, (2)

where ϵ is a vector of regression-based uncertainties of
length n.
As a reference data source for S-DA and DA3, we chose

station observations (xobs). Here, the S-DA assimilated station
observations and analysis predictions of station observations
and RMSE were calculated between the analysis values
xa(S−DA) and input station observations xobs. For DA3, the
spatial scale of interest S is the scale of station observations,
meaning that model estimates are calibrated to the scale of
station observations and RMSE is also calculated between
the analysis values xa(DA3) and input station observations xobs.
After calculating RMSE and MAU for each station using the
S-DA and DA3 algorithm, we obtained ratios for RMSE (see
(3)) and MAU (see (4)) for each station.

rRMSE =
RMSE(xa(S−DA); xobs)

RMSE(xa(DA3); xobs)
, (3)

rMAU =
MAU (ϵa(S−DA))

MAU (ϵa(DA3))
, (4)

where ϵ is a vector of uncertainties of length n.
When dividing the calculated RMSE and MAU metrics of

S-DA by the metrics of DA3, if rRMSE is 1 or larger, then the
performance is the same, or S − DA results in a higher error
as compared to DA3. Otherwise, DA3 had the larger error.
If rMAU is 1 or larger, then the uncertainties are the same for
both algorithms or S−DA has a higher uncertainty thanDA3,
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FIGURE 7. Time series plots of input data sources and assimilated values for CO, SO2, PM2.5, NO2, O3, PM10 AQ variables. ‘‘Station’’ corresponds to
observations made by the AQ monitoring stations in Madrid (Spain, CO, SO2), Peristeri (Athens, Greece, O3, NO2), Paris (France, PM2.5, PM10).
‘‘Model’’ refers to the SILAM simulations, ‘‘DA3 (Model → Station)’’, applied DA3 using a calibration of hourly model simulations to hourly station
observations. ‘‘Sequential DA’’, used algorithm S-DA for hourly station observations. The shown time interval is the first week of the interval used for
experiments: from 2022-01-27 01:00:00 to 2022-02-03 00:00:00.

otherwise DA3 results in a higher uncertainty. The results of
the comparison of S-DA and DA3 are presented in Table 2.
Overall, the RMSE ratios show that S-DA results in a

slightly higher error from the reference compared to DA3.
However, the MAU ratios demonstrate that S-DA can pro-
vide a lower uncertainty than DA3. Thus, the use of two
sources results in a slightly lower error from the reference,
whereas sequential estimation resulted in an overall lower
uncertainty.

Secondly, we compared the DA4 and S-DA4 algorithms as
illustrated in Fig. 5. Here, two data sources (station obser-
vations and SILAM model estimations) were used to see
whether sequential estimation for 2 data sources can improve
the results of DA4. The DA4 algorithm assimilates data
of both different temporal and spatial scales. For this test,
we replaced hourly SILAM estimations, xhm with the last
available daily averages from the previous day, xdm. We define
hourly as the temporal scale of interest, T and the spatial
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FIGURE 8. Time series plots of the input data and assimilated values for CO, SO2, PM2.5, NO2, O3, PM10 AQ variables. ‘‘Station’’ corresponds to
observations made by the AQ monitoring stations in Madrid (Spain, CO, SO2), Peristeri (Athens, Greece, O3, NO2), Paris (France, PM2.5, PM10).
‘‘Model’’ - SILAM simulations, ‘‘DA4 (Station → Model)’’ refers to the DA4 algorithm with calibration of hourly station observations to daily model
simulations, ‘‘Sequential DA4 (Station → Model)’’ shows results from S-DA4 based on the calibration of hourly station observations to daily model
simulations. The time interval is the first week of the interval used for experiments: from 2022-01-27 01:00:00 to 2022-02-03 00:00:00.

scale of SILAM as the spatial scale of interest, S. In this
case, using DA4, station observations were spatially cali-
brated to the scale of SILAM (as in DA3) and included
the temporal alignment of daily SILAM to hourly station
observations to obtain hourly SILAM values. The recursive
daily average estimator based on RLS are shown in Fig. 3 (a).
The motivation of this experiment was to test the suggested
DA algorithms to improve the accuracy of hourly SILAM

results given daily SILAM values and hourly ground station
observations.
The tests were performed for each of the European AQ

stations, and the RMSE was calculated with respect to the
reference hourly model values following Equation (5). In this
case, when the ratios are higher than 1, the errors between the
hourly assimilated and hourly reference values are larger than
the errors obtained between the daily averages and hourly
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TABLE 2. Comparison of RMSE and MAU for S-DA and DA3 algorithms by
S-DA/DA3 ratios for hourly station observations as reference. The mean
ratio value (mean), standard deviation (sd), minimum and maximum
values of ratios (min and max ) and the number of stations (N).

TABLE 3. Comparison of RMSE and MAU for the S-DA4 and DA4
algorithms using ratios based on the hourly SILAM simulations as
reference. The mean ratio value (mean), standard deviation (sd),
minimum and maximum values of ratios (min and max and the number
of stations (N).

reference values. This indicates that the calibration did not
substantially improve the assimilation results.

rd→h
RMSE =

RMSE(xa; xhm)

RMSE(xdm; xhm)
, (5)

where xa are analysis values for the DA4 and S-DA4 algo-
rithms.
The MAU ratios rd→h

MAU are calculated similarly to
Equation (4), but by dividing MAU (ϵa(S−DA4)) by
MAU (ϵa(DA4)).
The results of the comparison of S-DA4 and DA4 are

presented in Table 3.
Table 3 indicates that both DA4 and S-DA4 can result in

higher accuracy (lower overall error) than the daily refer-
ence when compared to the hourly reference. However, the
algorithms with the lowest RMSE ratio vary depending on
the AQ variable. In particular, DA4 was found most suitable

FIGURE 9. Demonstration of situations when S-DA4 can outperform DA4.
‘‘Station’’ corresponds to observations made by the Nisko AQ monitoring
station (Nisko, Poland), ‘‘Model (hourly)’’, hourly SILAM simulations, ‘‘DA4
(Station → Model)’’, algorithm DA4 with calibration of hourly station
observations to daily model simulations, ‘‘Sequential DA4 (Station →

Model)’’, algorithm S-DA4 with calibration of hourly station observations
to daily model simulations. ‘‘Model (hourly)’’ are target values used for
validation when performing DA with calibration of hourly station
observations to daily model simulations. When spikes occur in ‘‘Station’’,
but not in ‘‘Model’’ data, S-DA4 smooths the analysis value more than
DA4 resulting in a lower error from the target value (‘‘Model (hourly)’’)
and consequently higher accuracy.

for PM2.5, NO2, O3 and PM10 and S-DA4 for CO and SO2.
It should also be noted that the uncertainties of S-DA4 were
found to be significantly lower than the uncertainties of
DA4. Similar tests with additional observations and numer-
ical models can be obtained using the open code repository
provided in this work.

V. DISCUSSION
Algorithm performance was found to correspond to the spe-
cific temporal and spatial scales of the assimilation output.
In particular, if only one data source is available, S-DA is
recommended for use. In cases where the temporal and spatial
scales of the data sources are the same, DA2 can be applied.
If the spatial scales are different, DA3 was applied for data
of the same temporal scales and DA4 (or S-DA) for data of
different temporal scales. The current implementation of the
algorithms serves as a demonstration of how to assimilate
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FIGURE 10. Sensitivity analysis for LSDA with known uncertainties, LSDA with unknown uncertainties (uncertainties are estimated using the authors’
methods, labelled by the name of a scenario), ensemble Kalman filter (EnKF, uncertainties are estimated using the authors’ methods, number of
ensemble members is 10), particle filter (PF, uncertainties are estimated using the authors’ methods, number of particles is 100) in scenarios DA2
(without calibration), DA3 (with calibration) and S-DA (sequential assimilation for a single data source) for the logistic map in 3 different modes.
Assimilation is performed using 2 data sources corrupted with Gaussian noise of zero mean and standard deviation σ . For the assimilation of 2 data
sources, the first source has a fixed amount of noise σ = 0.1, whereas the second data source has an increasing amount of noise from σ = 0.1 to σ = 1.
S-DA performs assimilation for a single data source of an increasing amount of noise. Each experiment is performed 100 times, and the mean value of
the increase in accuracy compared to the accuracy of the second data source is plotted.

data of two data sources, leaving the extension of more than
two sources for future research. The current code implemen-
tation of the algorithms covers only hourly and daily temporal
scales, however, additional scales could be implemented and
tested as needed by users after modification of the provided
open source code.
When assimilating data from 2 data sources, the required

temporal and spatial scales (resolution) must be represented
by one of the data sources, especially when obtaining anal-
yses of a higher resolution. For example, when assimilating
grids of 0.2Â◦ and 0.4Â◦ spatial resolution, the algorithms
allow only for retrieving analyses of 0.2Â◦ or 0.4Â◦ spatial
resolution, unless explicitly coding a translation operator to
other resolutions. The same applies to both temporal and
spatial scales.
When choosing between algorithms DA4 and S-DA4,

both demonstrated similar overall performance, but DA4 is
computationally more lightweight compared to S-DA4. Nev-
ertheless, S-DA4 can provide a higher accuracy compared to

DA4 when a calibrated data source has rapid changes with
high magnitudes which are not captured by the reference
data source. In this case, when assimilating with a previous
analysis value after applying DA4 (S-DA4) the analysis was
found to frequently generate short-duration peaks of at lower
amplitudes. As an example, in Fig. 9, the station observations
are found to produce rapid changes of a high magnitude, but
these events are not well-resolved by the numerical model
simulations. Since model simulations serve as a reference
data source for these analyses and station observations are
calibrated to model simulations, the analysis peaks from both
DA4 and S-DA4 exhibit a lowermagnitude. Themagnitude of
S-DA4 was lower than that of DA4, making the result closer
to the reference source and consequently of higher accuracy.

VI. CONCLUSION
The growing number of openly available AQ data
require improved and standardized methods for uncer-
tainty estimation as well as spatio-temporal calibration to
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FIGURE 11. Sensitivity analysis for LSDA with known uncertainties, LSDA with unknown uncertainties (uncertainties are estimated using the authors’
methods, labelled by the name of a scenario), ensemble Kalman filter (EnKF, uncertainties are estimated using the authors’ methods, number of
ensemble members is 10), particle filter (PF, uncertainties are estimated using the authors’ methods, number of particles is 100) in scenarios DA4 for the
logistic map in 3 different modes. Assimilation is performed using 2 data sources corrupted with Gaussian noise of zero mean and standard deviation σ .
The first source has a fixed amount of noise σ = 0.1, whereas the second data source has an increasing amount of noise from σ = 0.1 to σ = 1. The
temporal resolution of the second data source is also decreased within windows of size M=2, M=5 and M=10. Each experiment is performed 100 times,
and the mean value of the increase in accuracy compared to the accuracy of the second data source is plotted.

enable data assimilation. In our work, we have developed
a lightweight method to pre-process data for least-squares
data assimilation in a fully data-driven way. Compared to our
previous work on a single station [22], we extend lightweight
assimilation methods to include temporal calibration and
sequential estimation and validate the proposed methods
using the data from urban AQmonitoring stations throughout
Europe.
To evaluate algorithmic performance, we assessed the

errors of the assimilated values from the ground station
reference sources as well as their corresponding uncertain-
ties. First, we compared a single-source sequential (S-DA)
algorithm against a two-source non-sequential with differ-
ent spatial scales (DA3) algorithm. This error comparison
indicated that DA3 can reduce the error from the ground
station reference value, but exhibited higher uncertainties
when compared with the canonical S-DA algorithm. Sec-
ondly, we compared two-source non-sequential (DA4) and
sequential (S-DA4) algorithms with different temporal and
spatial scales. The comparison showed that both DA4 and

S-DA4 results were more accurate with respect to the hourly
reference as compared to daily reference values.
Using the openly available EEA AQ ground station

observations and SILAM numerical simulation results, the
proposed lightweight assimilation methods were shown to
improve the overall quality of single-source estimates. In par-
ticular, the proposed methods were found to improve the
completeness, accuracy and precision of theAQobservations.
This study also demonstrates that the reuse of open data with-
out uncertainty could become a cost-efficient alternative to
the deployment of additional urban AQ monitoring stations.
In Fig. 7, the differences between the model and obser-

vations are expected due to the significant scale differences
between the values from the SILAM grid forecasts and fixed-
point observations. As a result, local sources of pollution such
as traffic congestion or industrial emissions observed locally
might not be included in the model forecasts. Additionally,
the observations themselves may not be perfectly accurate
due to instrument errors or meteorological conditions. We do
not intend to draw definitive conclusions about the validity
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FIGURE 12. Sensitivity analysis for LSDA with known uncertainties, LSDA with unknown uncertainties (uncertainties are estimated using the authors’
methods, labelled by the name of a scenario), ensemble Kalman filter (EnKF, uncertainties are estimated using the authors’ methods, number of
ensemble members is 10), particle filter (PF, uncertainties are estimated using the authors’ methods, number of particles is 100) in scenarios S-DA4 for
the logistic map in 3 different modes. Assimilation is performed using 2 data sources corrupted with Gaussian noise of zero mean and standard deviation
σ . The first source has a fixed amount of noise σ = 0.1, whereas the second data source has an increasing amount of noise from σ = 0.1 to σ = 1. The
temporal resolution of the second data source is also decreased within windows of size M=2, M=5 and M=10. Each experiment is performed 100 times,
and the mean value of the increase in accuracy compared to the accuracy of the second data source is plotted.

of the data from any of the data sources where there are
significant differences, as we are reusing open data collected
or generated by external sources. Moreover, we do not have
detailed information on the true reasons for the drastic differ-
ences observed.
A univariate state-space model was applied to create a

dynamic linear model of a system or process in which a
single variable (e.g. air pollutants) is observed over time.
The observation function specifies the relationship between
the observed variable and the state variable, and the state
transition function specifies how the state variable evolves
over time. The LSDAmethods applied in this work implicitly
assume that the state transitions are time-invariant. Thus, the
observed variables are used ‘‘as-is’’ for the state estimation
and provide a weighted average. Additional variables can also
be included to account for weather-related parameters and
nonlinear transition operators could be applied to improve the
final accuracy. However, multivariate cases are beyond the
scope of the paper.

Future research will focus on creating time-varying maps
based on the interpolation of the data assimilation outputs
to at hourly and daily temporal resolutions. In addition,
we intend on exploring the use of the proposed lightweight
data assimilation methods to develop algorithms for the
optimal placement of urban air quality monitoring stations
to reduce AQ forecast uncertainty. We hope that other
researchers make use of the open repository provided in this
work, as the lightweight algorithms provided can be tested,
calibrated and validated on monitoring data of various types
and can be feasibly extended to assimilate additional data
sources such as satellite observations or mobile sensors.

SUPPLEMENTARY MATERIAL
See Figures 10–12.
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