
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

IT College

Joosep-Kristjan Välk 175164IDAR

BUILDING NETWORK MANAGEMENT
AND MONITORING SOLUTION FOR AN

ENTERPRISE USING FREEWARE
COMPONENTS

Diploma thesis

Supervisor: Truls Tuxen Ringkjob

Master of Science

Tallinn 2018

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

IT Kolledž

Joosep-Kristjan Välk 175164IDAR

ETTEVÕTTE ANDMESIDEVÕRGU
HALDUSE JA MONITOORINGU

LAHENDUSE
LOOMINE VABAVARALISTE

VAHENDITEGA
Diplomitöö

Juhendaja: Truls Tuxen Ringkjob

Magistrikraad

Tallinn 2018

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Joosep-Kristjan Välk

10.01.2018

3

Abstract

This thesis work takes on and completes the task of building a custom network

management and monitoring system for an enterprise. The problems of automation,

minimizing footprint, scalability, adequate error handling and reliability receive

attention. As defined by the enterprise, the project will use free software and tailor the

solution to match a previously compiled list of requirements and expectations.

As a result of the work, a new network management and monitoring system is built so

that the current commercial and outdated network management software can be

decommissioned. The new system covers the functions of event monitoring, tendency

graphing, automated backup, traffic analysis, remote logging, channel visualization and

aggregated dashboard.

The author concludes that building an all-round network monitoring and management

solution by utilizing freeware components is feasible and practical, as compared to other

common approaches – using commercial software packages or programming the whole

solution in-house.

This thesis is written in English and is 46 pages long, including 6 chapters and 12

figures.

4

Annotatsioon

Ettevõtte andmesidevõrgu halduse ja monitooringu lahenduse loomine

vabavaraliste vahenditega

Käesoleva lõputöö raames luuakse ettevõttele andmesidevõrgu halduse ja monitooringu

lahendus, kasutades vabavaralisi vahendeid. Töö algab peamiste võrguhalduse

alamülesannete ja ettevõtte poolt seatud piirangute ja eeltingimuste analüüsimisega,

jätkub uue lahenduse implementeerimisega ning jõuab selle juurutamisel tasemeni, mis

võimaldab likvideerida seni kasutusel olnud kommertsiaalse võrguhaldustarkvara. Töö

tulemusel vabanetakse ka mitmete senise töökorralduse juurde kuulunud korduvate

toimingute käsitsi tegemisest.

Töös käsitletakse probleeme automatiseerimise, ressursisäästlikkuse, skaleeruvuse,

dubleerituse ja veahalduse ümber. Vabavaralised, süsteemi ressurssidega säästlikult

ümber käivad võrguhaldus- ja monitooringu vahendid ei oma sageli kogu

funktsionaalsust, mistõttu tuleb programmeerida täiendavaid lahendusi nagu

konfiguratsiooni automaatne genereerimine ja seadmete ning teenuste automaattuvastus.

Töö tulemusel valmis distributeeritud võrguhalduse ja monitooringu lahendus, mis

katab intsidentide monitooringu, tendentside graafimise, automaatse varundamise,

võrguliikluse analüüsi, keskse logimise, kanalite koormuse visualiseerimise ja

agregeeritud monitooringu vaate kuvamise funktsioonid.

Lõputöö tulemusel järeldatakse, et vajalikku funktsionaalsust pakkuva võrguhalduse ja

monitooringu lahenduse loomine vabavaraliste vahenditega on praktiline ja saavutatav

eesmärk. Selline lähenemine konkureerib arvestatavalt alternatiividega, milleks on

kommertsiaalsete tarkvarapakettide kasutamine või kogu lahenduse programmeerimine

oma ressurssidega.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 46 leheküljel, 6 peatükki ja 12

joonist.

5

List of abbreviations and terms

API Application Programming Interface

ARP Address Resolution Protocol

CGI Common Gateway Interface

CI Configuration Item

CLI Command Line Interface

CMDB Configuration Management Database

CPU Central Processing Unit

DoS Denial of Service

GSM Global System for Mobile Communications

HP Hewlett-Packard

HTML Hypertext Markup Language

HTTPS Hyper Text Transfer Protocol Secure

HUP Hangup

IOS Internetwork Operating System

IPDB IP Database

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

IRB Integrated Routing and Bridging

ISP Internet Service Provider

ITIL Information Technology Infrastructure Library

JSON JavaScript Object Notation

LDAP Lightweight Directory Access Protocol

MAC Media Access Control

MNTOS Multi Nagios Tactical Overview System

NOC Network Operations Center

OID Object Identifier

OS Operating System

PHP Personal Home Page

6

PNG Portable Network Graphics

PPDIOO Prepare, Plan, Design, Implement, Operate, Optimize

RRD Round Robin Database

SMS Short Message Service

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Management Protocol

SNMPv2 Simple Network Management Protocol version 2

SNMPv3 Simple Network Management Protocol version 3

SSH Secure Shell

SVI Switch Virtual Interface

SVN Subversion

UDP User Datagram Protocol

URL Uniform Resource Locator

VLAN Virtual Local Area Network

VPN Virtual Private Network

WAN Wide Area Network

XML Extended Markup Language

7

Table of Contents

1 Introduction..11

2 The task of complex network management solution...15

2.1 Monitoring..15

2.1.1 Event monitoring...15

2.1.2 Tendency graphing...16

2.1.3 Redundancy and distribution considerations...16

2.1.4 Aggregated dashboard...17

2.1.5 Out of band notifications...17

2.2 Configuration management...18

2.2.1 Automated backup...18

2.2.2 Supervision and change visibility..19

2.3 Channel visualization..19

2.4 Traffic analysis..20

2.5 Multi-tier logging..21

2.6 Baseline data collection..21

2.7 Various utilities...21

2.8 Central CMDB and automation..22

3 Overview of components...23

3.1 Nagios for event monitoring...23

3.2 Cricket for tendency graphing..24

3.3 MNTOS for aggregated dashboard...24

3.4 Opengear ACM for out of band notifications...25

3.5 Rancid for automated backup...25

3.6 Rancid as supervision and change visibility tool..26

3.7 Rancid as baseline data collection tool...26

3.8 PHP Weathermap for channel visualization..27

3.9 NfSen with NFDUMP for NetFlow traffic analysis...27

3.10 Rsyslog for remote logging...28

8

4 Implementing the solution...29

4.1 Base installation..29

4.2 CMDB and configuration generation...30

4.3 Autodiscovery...32

4.4 Setting up the components..34

4.4.1 Nagios..34

4.4.2 Cricket..35

4.4.3 Rancid..38

4.4.4 PHP Weathermap...39

4.4.5 MNTOS...40

4.4.6 NFSen..41

4.4.7 Programming custom utilities..42

5 Results and conclusions...43

6 Summary..45

 References..46

9

List of Figures

Figure 1. A network weathermap. Source: https://traffic.lan.switch.ch...........................20

Figure 2. Example records of managed devices in JSON format....................................30

Figure 3. Help screen and usage examples of the hostlist utility....................................31

Figure 4. Excerpt of Nagios configuration written by the autodiscovery script..............33

Figure 5. Excerpt of Cricket configuration written by the autodiscovery script.............33

Figure 6. Nagios overview page..35

Figure 7. Multiple interface parameters on a single graph produced with Cricket.........37

Figure 8. Text summary generated by Cricket to explain each graph.............................37

Figure 9. WebSVN interface displaying a RANCID configuration repository...............38

Figure 10. Part of the enterprise network weathermap..39

Figure 11. MNTOS provides an overview of all Nagios instances.................................40

Figure 12. NFSen web interface displaying a stacked logarithmic scale graph of all sam-

pled UDP traffic...41

10

1 Introduction

Intriguingly, data communication networks (from hereon referred to simply as

“network”) are perhaps the most invisible, transparent and unseen component of the

Internet – or any computer network – from the user’s perspective. When a web page

does not load or an e-mail client fails to complete an SMTP (Simple Mail Transfer

Protocol) operation, the most common and immediate assumption is that the server or

service is to blame, overlooking the network in between. Given this, it is even more so

expected that when systems work flawlessly, the network between the endpoints goes

unnoticed. Until something happens (and it will).

When it does, it is crucial to have a good network management toolkit at hand.

Monitoring may be the obvious answer, but in fact, monitoring is only a fraction of the

solution. When something happens, the network administrator needs, for example,

device configuration backups. Sometimes an administrator debugs a fault and sees a

suspicious yet inconclusive diagnostic output, leading to the question – “was it different

before the issue started (and if, then how exactly)?” – hence the need for baseline data

collection, logging and tendency graphing. Any network management tool is only of

any good if it knows which targets it has to manage or monitor, leaving no gaps, never

forgetting or overlooking a new addition, change or legitimate removal – hence the need

for central CMDB (Configuration Management Database) and automatic discovery. The

list of requirements and expectations to a full-coverage network management toolkit

goes on and on [1, pp. 25-26].

This thesis takes on the task of implementing one such network management toolkit for

an enterprise, using freeware components. It is meant to be applied work, not seeking to

discover new theoretical aspects of network management or prove/disprove any

statements. Rather it takes a look into the implementation of one complex IT system,

using the skills and practices obtained through courses at IT College and internship. It

capitalizes on the current trend of automation, integration and the blurring of boundaries

between system administration and software development stemming thereof.

11

The network administration team at the enterprise has held meetings and discussions

about the requirements and expectations for the new network management solution. The

current situation has been mapped and documented and plans for the new system drawn

up. Author of the thesis is tasked with building a network management system with the

following features:

 Event monitoring

 Tendency graphing

 Aggregated dashboard

 Out of band notifications

 Automated backup

 Supervision and change visibility

 Channel visualization

 Traffic analysis

 Multi-tier logging

 Baseline data collection

 Various utilities

 Central CMDB and automation

The enterprise has set the following guidelines to the network management software

choices:

 Reuse software already present in other parts of the IT infrastructure to minimize

later operational complexity

 Use software with OS (Operating System) integration (available in repository)

 Use mature, tried and proven software with visible track record of community

support

12

 Use the smallest-footprint software possible to complete any given task

Given this, the focus of the work is not to compare a wide variety of software

components for each task. Instead, it focuses on the overall functionality, following the

guidelines where possible. Functions performed by one software component/product

here (e.g. Nagios for event monitoring) can be most probably achieved by an alternate

product (e.g. Zabbix for event monitoring). The four expectations listed above do not

pose strict restrictions but act as guidelines. If a suitable component satisfying the

guidelines cannot be found, an exception will be made and documented.

The remaining part of the work is divided into 4 main chapters.

Chapter 2 – The task of complex network management solution – describes the tasks

and functions that need to be covered and discusses their position in the overall network

management problem.

Chapter 3 – Overview of components – discusses the components used, mentions some

of the choice criteria and describes details and considerations to take into account before

proceeding to implementation.

Chapter 4 – Implementing the solution – documents the implementation process and

details, gives examples and describes the results of implementing each individual

component.

Chapter 5 – Results and conclusions – looks at the overall result and discusses

afterthoughts, lessons learned, deficiencies discovered and next steps to take.

Methods and approaches used in this project are loosely based on the Cisco PPDIOO

(Prepare, Plan, Design, Implement, Operate, Optimize) methodology [2, pp. 12-13]. The

Prepare phase has already been completed by the enterprise network team. Chapters two

and three map to the Plan and Design phases of the methodology and chapter four

corresponds to the Implement phase. Though the Operate and Optimize phases are not

strictly in the scope of this work, chapter 5 and the summary touch on some operational

aspects and future optimizations.

13

Approaching the automated network management in a systematic and comprehensive

manner, beyond the capabilities and functions of any single product, is new for the

enterprise. The final result is expected to bring along a principal qualitative change and

innovation compared to the previously tried methods. It will, for the first time, introduce

true linear scalability for the network management process.

14

2 The task of complex network management solution

This chapter looks at the overall task of network management, the individual functions

that the enterprise needs to have covered and the expectations of added value. In this

chapter, main functions of network management software are discussed and mapped

out, before going into the specific products and solutions (which is done in chapter 3).

Most statements and conclusions in this chapter trace back to the body of common

knowledge throughout the industry, built piece by piece through experience and practice

over decades. Nevertheless, the path to filtering and accepting that vast and

disorganized collection of best practices, de facto standards and typical caveats is

different for each organization [1, p. 25].

The preliminary analysis done before this thesis work produced the following outline of

the new network management toolkit.

2.1 Monitoring

In broad sense, network monitoring typically falls into two subcategories – event

monitoring (real-time alerting, event handling) and tendency graphing (collecting time-

series data for graphical rendering). While trying to fulfill these functions,

infrastructure-, redundancy-, resiliency- and worst-case scenario-related issues need to

be considered. This section discusses each of these aspects.

2.1.1 Event monitoring

The first and most obvious type of network monitoring the enterprise needs is fault

detection with active notifications. Network devices usually offer comprehensive SNMP

(Simple Network Management Protocol) interface, which can be polled for immediate

state information and delta calculation [1, p. 27]. It was decided that event monitoring

should not only be reactive, i.e. detect true error states, but also pro-actively detect

15

events leading up to possible service interruptions. This requires rather detailed

monitoring of values like memory usage, interface counters, link utilization, etc.

Given these considerations, the event monitoring part of the solution has to be scalable,

lightweight (more about this in 2.1.3 in the context of redundancy and distribution

considerations), customizable and generic. A strict requirement is the feature of

differential monitoring, also known as delta calculation, because values like link

utilization can only be observed by examining static counters over a known period of

time.

2.1.2 Tendency graphing

In addition to event monitoring, the enterprise needs a tendency graphing solution to

monitor, visualize and store the developments in network over long time periods. As

with event monitoring, network devices offer static counters which need to be polled.

From there, delta values can be calculated, results stored, graphs rendered and web

interface provided for the operator. Good long-term graphs are expected to be a valuable

tool in growth prediction and network gear scaling for future upgrades.

Tendency graphing solution must once again be lightweight, scalable and customizable,

requirements descending from additional considerations given in separate sections

below. The back-end database used for graphing purposes must be of open and common

architecture. The data should be re-usable by other utilities like Weathermap (channel

visualization tool) and manual examination/correction (e.g. spike removal).

2.1.3 Redundancy and distribution considerations

It has been accepted by the enterprise that monitoring and management systems, out-of-

path systems by nature from the revenue service point of view, can be initially deployed

without full redundancy properties. However, the initial design and component choices

must accommodate for future high-availability requirements. Especially when

implemented through active polling, monitoring is a function that can be carried out

independently by multiple instances. There is no need for complex solutions like state-

synchronized clusters and copying of monitoring state data from one server to another,

because a number of monitoring servers can poll target systems individually and

achieve redundancy that way. However, a lightweight active/passive status coordination

16

still needs to exist for notifications. After introducing redundancy, only one monitoring

instance can actively send out notifications.

Another concern that needs to be addressed is the globally distributed nature of the

enterprise network. When WAN (Wide Area Network) connections, individual sites or

global enterprise routing fail, a central monitoring system is not useful. On the other

hand, a complex and fragile hierarchical system of monitoring agents, where monitoring

data is sent between servers and aggregated, is not desirable. Once again, it was decided

that distributed monitoring instances can work in parallel with the global instance.

Remote sites will each have a monitoring server that will track local targets, providing

visibility and postmortem data at times of global connectivity interruptions.

From the above-mentioned stems a core requirement for most of the software

components used – the components need to be lightweight, resource-conserving, able to

work on small remote virtual machines with 1GB or less of memory.

2.1.4 Aggregated dashboard

As described, the overall monitoring solution is realized using several distributed

instances. The initial design uses multiple instances for redundancy and distribution, but

future developments may also require more than one central monitoring server for

performance scaling. Given this, the operator needs a central dashboard that would, at

minimum, aggregate and visualize the overview of all event monitoring instances on

one screen.

As the enterprise desires simple and lightweight components throughout the system, a

simple stateless web harvester is a preferred solution. It is sufficient if the dashboard

solution polls the web interfaces or APIs (Application Programming Interface) of the

monitoring instances every minute and visualizes the summary.

2.1.5 Out of band notifications

Most of the monitoring software available defaults to delivering notifications (alerts) by

e-mail. E-mail notifications are cheap, quick and there are no restrictive length and

detail constraints. On the other hand, they may not get through if the network is down.

Also, the operator needs quick and generic way of delivering notifications to their phone

17

during off-hours. Due to these considerations, the enterprise requires SMS (Short

Message Service) notifications in parallel with the e-mail solution.

There are several options to integrate SMS into a software solution. At one end of the

spectrum lies the usage of an external SMTP or other API accessible over the IP

(Internet Protocol) network (e.g Twilio1). That, however, does not solve the issue as it is

not out-of-band from the network’s perspective. At the other end of the spectrum lie the

physical cellular modems that can be attached to a monitoring server. This option is

problematic due to the virtualization layer in today’s systems. An in-between solution

would be a device that is available on the local network, accessible to the monitoring

server over a local IP subnet, sending the messages independently. Because only a

minimal network connectivity would be required, such option was considered

acceptable.

2.2 Configuration management

This section explains which aspects of configuration management are required from the

new solution. Configuration management itself is a broad term and an entire process,

compared to which the context and scope here is very limited. The author was tasked

with implementing a toolkit component that would automatically back up device

configuration, track changes, keep a revision history (a repository back-end to the

system) and provide automated notifications of configuration changes.

2.2.1 Automated backup

At the core of the system described above is regular, automated configuration backup.

Successful implementation of such features also sets requirements to the devices and

their configuration format. Devices need to provide a communication channel or an

interface that can be used to automatically fetch the whole configuration (e.g. CLI

(Command Line Interface) access over SSH (Secure Shell)).

Minimally, the new configuration management solution would need to regularly fetch

device configurations and store them in a configuration repository. It should log its

actions and generate notification, if configuration back-up attempt was unsuccessful.

1 https://www.twilio.com

18

The configuration repository should have a web interface usable by the network

operators.

2.2.2 Supervision and change visibility

Once automated configuration backup is implemented, supervision over configuration

changes and their visibility can be easily implemented. This, however, sets some

additional requirements to the devices and their configuration formats/interfaces. While

a closed-format binary configuration file can be fetched, checked into a repository and

the fact of its hash change acknowledged, individual changes can not be tracked and

understood easily. Thus devices need to provide a well-structured, human-readable text

configuration format.1

Once configuration files are checked into the repository, the system needs to detect

configuration changes, generate differential reports and send notifications to the

network team e-mail. This way every member of the team can keep up with the changes

and mistakes can be detected through peer review.

2.3 Channel visualization

Channel visualization is a form of real-time network health/status overview that is most

commonly used to display load on WAN links (often dubbed “weathermap” in the

industry). As the enterprise uses VPN (Virtual Private Network) and WAN links

between its remote locations, such links form potential bottlenecks and a weathermap

solution is required for good operational overview. Figure 1 displays an example of a

weathermap solution. In this case, channel loads are measured in megabits per second

and approximate load levels are expressed in color codes.

As interface counters will be polled, deltas calculated and time-series data stored for

tendency graphing, the weathermap solution should be able to re-use the same data, i.e.

the weathermap should be regularly generated from existing data, without additional

polling of the devices.

1 In the future, this may be solved by the YANG data modelling language and NETCONF, described in
(among others) IETF RFC 6020 (https://tools.ietf.org/html/rfc6020). Currently, the network devices
used in the enterprise do not fully implement such a universal solution.

19

https://tools.ietf.org/html/rfc6020

2.4 Traffic analysis

The enterprise is using routers and firewalls with NetFlow support. The new network

management solution should take advantage of this feature and include a NetFlow based

traffic analysis software. Traffic analysis will enable the network operators to identify

top talkers, discover and examine flood-type DoS (Denial of Service) attacks and plan

for growth and upgrades.

Currently, the whole global routing and VPN tier of the enterprise network supports

NetFlow. Because Juniper SRX branch series firewalls are widely used, NetFlow must

be sampled and the analysis software must support NetFlow sampling and scaling1. The

traffic analysis software has to provide a modern and convenient web interface for the

network operators.

1 Juniper Knowledge Base article KB16677 states that “Activation of flow collection can have a
significant impact on the performance of the SRX Series device. The smaller the sample rate, the
bigger the impact. It is recommended to not use a sampling input rate of 1.”
(https://kb.juniper.net/InfoCenter/index?page=content&id=KB16677)

20

Figure 1. A network weathermap. Source: https://traffic.lan.switch.ch

2.5 Multi-tier logging

The new network management toolkit must provide a multi-tier logging solution. All

network devices are required to support Syslog and make use of both local and remote

logging. Logging is arranged in three tiers: local logging to device internal storage, site-

local logging to a log server on site and global (central) logging to a central log server.

Lower tiers provide temporary log data at times of network interruptions.

Logging and log data storage is a critical process which needs to be protected by

redundancy. The nature of Syslog makes it possible to avoid complex cluster, replication

and forwarding solutions by configuring the devices themselves to log to multiple

destinations. That is, all replication of log data will happen closest to the source and log

servers will not have to coordinate or synchronize.

2.6 Baseline data collection

Some level of baseline information is collected from the network as byproduct of

monitoring and configuration management. However, the new network management

solution should provide additional means to collect custom baseline data. The operators

should be able to define diagnostic commands that will run regularly on the managed

devices. Output of such commands can then be saved to a repository and changes

tracked. When an error condition occurs, the current state of the network can be

compared to the previously established baseline and common deviations from the norm

can be spotted quickly [3, p. 27].

A lightweight solution combined with backup and configuration management is highly

preferred. As the automated backup solution will, in most general terms, log into the

devices, issue commands and save their output, the aim is to customize it as much as

needed to include necessary baseline collection functionality. If that does not produce

satisfactory results, a separate baseline collection software needs to be considered.

2.7 Various utilities

Though full discussion of establishing network management access and security is

beyond the scope of this document, it becomes obvious that the new network

21

management solution will be positioned in full view of the network devices’

management interfaces. Therefor it will be a proper place for hosting various custom

and future utilities.

Some examples of custom utilities in the network management toolkit are a layer 2 map

of the network, automated device software version tracking, configuration validation

scripts, etc. Placed at the network management server, utilities and scripts like these can

pull and link data from the network devices (e.g. MAC (Media Access Control) address

table) as well as enterprise databases like IPDB (IP Database) and CMDB. This enables

comprehensive, informative overviews for the IT infrastructure operators.

2.8 Central CMDB and automation

All of the requirements and desired features described in this chapter come together and

will be viewed in the context of this final requirement. All of the different components

must honor one single CMDB that contains the managed targets (network devices). The

administrator will not manually create configuration files for different monitoring and

management components. Moves, adds and changes in the network will only be

registered in one single database. From this database, automation takes over and makes

sure that devices are added and removed from the backup software targets, that devices,

interfaces and links are added and removed from monitoring and so on [4, p. 45].

This goal sets requirements to most of the components used. As configuration needs to

be machine-generated, every software component used must provide a clean and simple

configuration format or API. To program and verify automated configuration

generation, a format that is both machine-readable/writable and human-readable is

highly preferred.

22

3 Overview of components

Chapter 2 outlined the discreet requirements for the network management solution

without mentioning specific software products or components. This chapter introduces

and explains the software components that will be used in the implementation phase.

Most of the choices are derived from enterprise requirements discussed in the

Introduction.

3.1 Nagios for event monitoring

Different event monitoring solutions have been repeatedly compared in previous thesis

works of IT College. Nagios has been found to be lightweight, versatile and generic,

which also suggests it should be highly customizable [5, p. 22]. These conclusions

coincide with those of the author and the understanding in the enterprise. Therefore,

Nagios was chosen as the event monitoring component of the network management

solution. Also, Nagios has been used in the enterprise to monitor other parts of the IT

infrastructure, so it leaves open the possibility to merge different monitoring systems in

the future.

An important requirement for all the components was that their configuration could be

machine-generated. Nagios uses well-structured text files for all of its configuration, so

this requirement is easily satisfied. The configuration is both machine- and human

readable/writable, so developing scripts for automated configuration generation is

simple and time-conserving. Additionally, Nagios comes with a configuration

validation/verification functionality, which is helpful for arranging fail-safe unattended

configuration changes1.

1 https://www.unix.com/man-page/debian/8/nagios3

23

3.2 Cricket for tendency graphing

Cricket is a high performance, extremely flexible system for monitoring trends in time-

series data. Cricket was expressly developed to help network managers visualize and

understand the traffic on their networks, but it can be used for all kinds of other jobs as

well1. Essentially, Cricket is a set of wrapper scripts around RRDtool2 to provide the

simplest and thinnest possible solution for tendency graphing of network parameters.

Cricket exists in the enterprise for monitoring other parts of the IT infrastructure.

Because no specific reason exists to introduce a new software package, Cricket was

chosen as the tendency graphing component of the new network management solution.

Cricket uses RRD (Round Robin Database) files for its data storage. It is expected that

the future weathermap component can re-use the data collected by Cricket for channel

visualization. Cricket, like Nagios, provides a text file configuration interface, equally

readable and writable by human and machine. This satisfies the requirement for simple

and effective automation scripting.

3.3 MNTOS for aggregated dashboard

MNTOS (Multi Nagios Tactical Overview System) is a lightweight PHP (Personal

Home Page) web application that aggregates multiple Nagios web interfaces into a

single overview page. It is the simplest and smallest similar solution the author was able

to find and successfully test. It satisfies the minimal requirement defined in section

2.1.4.

MNTOS is a stateless solution that harvests the Nagios web interfaces for information,

stores it in XML (Extended Markup Language) format until next run only and provides

a simple web interface to visualize the aggregated dashboard. Data collection from

different Nagios instances can be initiated using cron. For sufficiently up to date

dashboard view, a one minute or less polling interval is desired. It is easily achievable

with MNTOS because, as later tests showed, polling six Nagios instances took only a

few seconds.

1 http://cricket.sourceforge.net
2 https://oss.oetiker.ch/rrdtool

24

https://oss.oetiker.ch/rrdtool
http://cricket.sourceforge.net/

3.4 Opengear ACM for out of band notifications

For out of band notifications via SMS, the midrange option was chosen – the sending of

SMS will be handled by a physical GSM (Global System for Mobile Communications)

terminal., The terminal will be attached to an integrated device residing on the local

network (relative to the monitoring server). As Opengear ACM5500 devices1 were

available for use, the monitoring component of the new network management solution

will use these to send SMS notifications.

Opengear ACM5500 series are small devices running a customized version of the Linux

kernel and a set of core utilities. The device is connected to the local network over an

Ethernet interface and to the GSM network over an integrated modem. The operating

system provides utilities to send SMS messages, as well as SSH interface to access the

device itself. Sending an SMS from the monitoring server then becomes a matter of

making SSH connection and issuing proper commands. This interface was deemed

suitable for the project because the scripting needed to interface it to Nagios is simple

and straightforward.

3.5 Rancid for automated backup

RANCID2 is a traditional tool for automated configuration backup throughout the

network management field. It started out as Cisco IOS (Internetwork Operating System)

specific tool, but due to its modular and customizable nature, functionality to fetch

configurations from HP (Hewlett-Packard), Juniper and other network devices has been

added. RANCID is built around the concept of configuration repository that handles

incremental changes and version history. RANCID proved to sufficiently satisfy the

requirements of fault detection/notification and logging placed upon the backup

solution. If a device is unreachable or the regular backup fails for other reasons, the

administrator is notified by e-mail.

The configuration of RANCID comprises mainly of the targets list it has to work with.

This configuration is expressed in simple text file format, so it satisfies the needs of

automated configuration generation feature. Targets will not be added or removed

1 http://opengear.com/download/sdt-connector/Opengear%20User%20Manual.pdf
2 http://www.shrubbery.net/rancid/

25

manually, rather a central CMDB is used to keep the list of targets covered under

backup up to date. RANCID supports the required SSH transport method and it also

provides means to arrange public key authentication (as per enterprise requirements,

public key authentication must be used to access the network devices over SSH).

3.6 Rancid as supervision and change visibility tool

RANCID also acts as supervision and change visibility tool, part of the change

management process in the enterprise. After fetching the configuration from the target

devices, RANCID checks the changes into a repository an calculates the difference

between the current and previous versions. If configuration changes are detected, an e-

mail notification is sent with the differential changes highlighted. This assures that

changes can not happen in the network without the knowledge of the whole team and

that the quality and compliance of changes can be verified.

As RANCID uses SVN (Subversion) for its repository back-end, the requirement for

web interface can be satisfied. Independently of RANCID, WebSVN1 will be set up for

the operators to view and manage device configuration backups.

3.7 Rancid as baseline data collection tool

Though a separate baseline data collection tool or custom script is planned for future,

RANCID will be initially used to collect the output of additional diagnostic and

informative commands. Due to modular and open architecture, RANCID is easy to

modify and amend for such purposes. Commands used to fetch data from devices are

represented in a single list called “commandtable”. By amending the list, commands

like “show mac address-table” and “show interfaces status” can be added for baseline

data collection.

Because RANCID comes with differential change detection and e-mail notifications,

changes in baseline data can be tracked and monitored similarly to configuration

changes. That will act as complementary means to event monitoring through SNMP by

Nagios. Some more complex states and conditions may not be accessible through the

SNMP interface or their monitoring would be troublesome to realize using the core

1 https://websvnphp.github.io

26

plug-ins available to Nagios. In such cases, RANCID’s features discussed here will

become useful.

3.8 PHP Weathermap for channel visualization

For the weathermap-style channel visualization, Network Weathermap1, 2 was identified
as the simplest and most lightweight component available. PHP Weathermap is a simple
web application that re-uses data from RRD files, in this case, stored by Cricket. This
satisfies the requirement that, if at all possible, the channel visualization software should
not deal with additional polling and time-series data storage.

Due to the nature of the WAN links used by the enterprise, the suitable unit of measure

is load percentage on a link. Monitoring the nominal throughput itself would not be

practical, because different links have different speeds and so the nominal throughput is

not comparable in the context of detecting problematic bottlenecks. PHP Weathermap

supports channel load visualization according to percentage and manual configuration

of each link’s speed, so it was deemed suitable for the task.

3.9 NfSen with NFDUMP for NetFlow traffic analysis

NfSen (NetFlow Sensor)3 makes use of NFDUMP tools4 to analyze and visualize

NetFlow data and provide a web interface for the operators. After some researching and

testing, the NfSen/NFDUMP combination was found to be the only standalone freeware

solution to match the requirements of the enterprise.

As outlined in the requirements section, the NetFlow analyzer has to be able to work

with sampled NetFlow data (because of the performance considerations of the network

devices in use). FlowTools5 was also considered, but attempts to handle sampled

NetFlow with it failed.

The nfcapd NetFlow capture daemon listens to NetFlow exports from the devices and

stores the data in hierarchically organized file system structure. Tests and calculations

1 Called PHP Weathermap historically and in documentation (e.g. https://network-
weathermap.com/manual/0.98)

2 https://network-weathermap.com
3 http://nfsen.sourceforge.net
4 http://nfdump.sourceforge.net
5 https://github.com/adsr/flow-tools

27

https://network-weathermap.com/
https://network-weathermap.com/

show that with the current network traffic, one year worth of NetFlow data will weigh

around 30GB. The NfSen web interface uses the nfdump utility to read and parse this

file repository and visualize the flow data as charts. NfSen provides a quick and

convenient way for operators to search and filter flows, find top talkers, spot traffic

anomalies and more.

3.10 Rsyslog for remote logging

RSYSLOG1 is a versatile, high-performance syslog server. The requirements call for

centralized and multi-tiered logging solution and as RSYSLOG is already used in other

parts of the enterprise IT infrastructure, it was chosen to fulfill the required log server

functionality. RSYSLOG has support for a wide variety of back-end databases, leaving

a path open for future expansion. Initially, it is estimated that a simple file-based storage

with proper logrotate2 and compression set-up will suffice.

RSYSLOG instances will be installed on site-local network management servers and on

the global/central server. As with event monitoring, the replication of the log messages

will happen closest to the source (i.e. the devices will have multiple log targets),

avoiding the need for coordination and synchronization between log servers. RSYSLOG

instances on remote sites will collect log data from local devices, providing visibility

into events that happen during possible WAN interruptions. The central RSYSLOG

instance will collect all log data globally from all network devices.

1 http://www.rsyslog.com
2 https://linux.die.net/man/8/logrotate

28

4 Implementing the solution

This chapter describes the actual implementation of the new network management

toolkit. Installation and configuration is discussed together with discovered issues,

necessary modifications and programming of the automation and interfacing scripts.

The installation, configuration and scripting done for this work was an elaborate process

with copious amounts of input and output. It included numerous small issues and fixes,

considerations and choices, candidate material for figures and examples. As it is not

practical and feasible to represent all that in written form, the sections in this chapter

aim to give an all-round overview and present figures that show the final result.

4.1 Base installation

The Debian Linux distribution was chosen as the operating system for the new network

management servers (i.e. the central server and the site-local nodes). At the planning

phase of this work, Debian 9 was just released and Debian 8 was the mainstay stable

release used throughout the enterprise, so Debian 8 is still used at the time of this

writing. Before the support ends in May 2018, the base installation will be upgraded to

Debian 9.

As defined among the various requirements and expectations, sourcing the network

monitoring and management software through the distribution’s package management

system is highly desirable. Whenever possible, installing the development

dependencies, compiling applications from source and performing custom installation

was avoided. At times, this means using a more conservative version of software. As

long as the requirements were met, such a trade-off was knowingly accepted for the

benefits of concise package management features.

Because small footprint server installation was desired, the central monitoring server

was allocated 4 virtual CPU (Central Processing Unit) cores and 4GB of memory. The

site-local nodes were allocated a single core and 1GB of memory. As testing indicated,

29

most of the resources are consumed by Nagios. Still, with the central Nagios initially

tracking more than 4200 values (while running all the other components and scheduled

tasks) the load was moderate. Tests were performed with up to 10000 monitored values

with no performance issues. This indicates good scalability properties for future growth.

4.2 CMDB and configuration generation

The central CMDB requirement was satisfied by implementing a small subset of the

ITIL (Information Technology Infrastructure Library) CMDB concept. Figure 2 shows

an example of device records and the information typically included for every device1.

Each monitored/managed network device is considered as a CI (Configuration Item),

having a record in the central database. Scripts were written to generate configuration

for all the monitoring and management components based on these records, meaning,

the information about devices and their access parameters will never have to be

manually repeated in individual configuration files. JSON (JavaScript Object Notation)

1 On this and all consecutive figures, some sensitive data like IP addresses, host names, SNMP
communities, geographical location names, user account names etc. have been changed to protect
confidential data of the enterprise.

30

[
 { "hostname": "ea5-sw1.mg", "ip": "10.4.6.250", "location": "ea5",
"os": "junos", "snmpcomm": "sk5idlQu", "snmpver": "2c", "tags":
["live", "sw", "office"] },

 { "hostname": "ea5-sw2.mg", "ip": "10.4.6.250", "location": "ea5",
"os": "ios", "snmpcomm": "sk5idlQu", "snmpver": "2c", "tags": ["live",
"sw", "office"] },

 { "hostname": "ea5-sw3.mg", "ip": "10.4.6.251", "location": "ea5",
"os": "ios", "snmpcomm": "sk5idlQu", "snmpver": "2c", "tags": ["live",
"sw", "office"] },

 { "hostname": "ea5-ap1.mg", "ip": "10.4.6.248", "location": "ea5",
"os": "ruckus", "snmpcomm": "sk5idlQu", "snmpver": "2c", "tags":
["live", "sw", "office", "wifi"] },

 { "hostname": "ea5-ap2.mg", "ip": "10.4.6.249", "location": "ea5",
"os": "ruckus", "snmpcomm": "sk5idlQu", "snmpver": "2c", "tags":
["live", "sw", "office", "wifi"] }
]

Figure 2. Example records of managed devices in JSON format.

file was chosen as the storage means for the device database, as it is a lightweight

human-readable format with support in most major scripting languages [5] .

Figure 3 shows the help screen and a few use cases of a command-line utility called

“hostlist”, which was created to list and filter the device database based on tags. As it’s

not desirable for every script to read and parse JSON, the hostlist utility becomes useful.

The key question around the hostlist set-up was, which data to include in the CMDB.

Basic information like host name, IP address and SNMP community name are obvious

candidates. Because site-local network monitoring servers need to manage only their

local infrastructure, a location attribute is needed. As in the future we will want to

include support for SNMPv3 (Simple Network Management Protocol version 3), it is

also a good idea to provide information about SNMP version used by the device. Much

of the technical information like SNMP version, device type (operating system) could

also be automatically detected, so including information in the configuration database

becomes a balancing act between script performance/complexity and manual data

entry/storage. For easy expandability, an array of tags is used in every device entry. This

allows to attach information which some automation scripts recognize for their own

purposes (e.g. “do something with only ‘lab’ and not ‘live’ devices”) but which do not

have any global meaning for other parts of the network management toolkit.

31

user@host:~$ hostlist.rb --help
Usage: hostlist [-tofd]
 -f, --file <filename> Hostlist file in JSON format
 -t, --tag <tag> Tag
 -o, --os <os> Operating System
 -d, --dump Dump all data, not just hostnames
 -n, --numeric Print IP addresses instead of

 host names
 -h, --help Display this screen
user@host:~$./hostlist.rb -t sw
ea5-sw1.mg
ea5-sw2.mg
ea5-sw3.mg
ea5-ap1.mg
ea5-ap2.mg
user@host:~$./hostlist.rb -t wifi
ea5-ap1.mg
ea5-ap2.mg

Figure 3. Help screen and usage examples of the hostlist utility

4.3 Autodiscovery

Network interface autodiscovery was by far the largest automation task in this project.

For each network interface, the monitoring of four conceptual values was required:

interface status, interface errors, interface discards and interface utilization. Because

errors, discards and utilization are individual values for both in- and out traffic through

an interface, there will be seven individual values tracked for each network interface.

The autodiscovery scripts that generate necessary configuration for Nagios and Cricket

first use the hostlist utility to read the device database. They then proceed to poll each

device with SNMP, learning about all the interfaces available on the device, their names,

descriptions, speeds and current status. Based on interface status and description, an

interface may or may not qualify for monitoring. For example, virtual interfaces like

SVI (Switch Virtual Interface) and IRB (Integrated Routing and Bridging) are not

monitored for discards and errors, whereas physical interfaces like GigabitEthernet and

ge-0/0/0 are. Interfaces with disabled administrative status are not monitored, along

with interfaces that have the string “NOMON” included in their description. As

utilization is tracked and alarms set based on percentage (e.g. warning at 75%, critical at

95%), interface speed is recorded and maximum allowable input/output deltas per time

period calculated. Eventually, configuration entries called “target” and “service” are

generated for Cricket and Nagios, respectively. Then, configuration files are assembled

and written out.

Figure 4 shows a machine-generated excerpt of Nagios configuration for monitoring

one interface’s utilization. As can be seen, Nagios is not aware of the overall speed of

the interface. The Warning and Critical counter increase values (93750000 and

118750000) have been calculated by the autodiscovery script, indicating a gigabit

interface1.

1 For utilization tracking purposes, it is not sufficient to decide that interface speed is one Gigabit per
second simply because the interface name or type suggests so (e.g. GigabitEthernet 0/8). A Gigabit
Ethernet interface may be negotiated or configured to run at 10 or 100 Megabits per second. In such
case, utilization monitoring would elegantly fail when relying on interface name. Instead, the ifSpeed
or ifHiSpeed SNMP OID needs to be polled to determine the real speed of the interface.

32

Figure 5 displays an excerpt of Cricket configuration, written by the autodiscovery

script.

A number of operational details were considered and solved while implementing the

whole automated configuration generating solution. Error handling was of paramount

importance, because if any single device becomes unresponsive or slow, the whole

monitoring and autodiscovery process should by no means fall apart. If, for some

unforeseen reason, the resulting configuration becomes invalid at some point, the

monitoring should be able to continue with the last known configuration and notify the

operator. An optimal run frequency for the autodiscovery scripts needed to be

determined, a task which is a balancing act between operational convenience and

performance hit to the monitoring system. A selection of such issues is discussed in

more detail in the following sections, which explain the set-up of individual

components.

33

define service {
 host_name ea5-swc.mg
 service_description Gi0/8 (ea5-swb gi0/8) HiUtilIn
 check_command check_snmp_rate!Ei1okv!1.3.6.1.2.1.31.1.1.1.6.10108!
93750000!118750000
 use network-service
 notification_interval 0
}

define service {
 host_name ea5-swc.mg
 service_description Gi0/8 (ea5-swb gi0/8) HiUtilOut
 check_command check_snmp_rate!Ei1okv!1.3.6.1.2.1.31.1.1.1.10.10108!
93750000!118750000
 use network-service
 notification_interval 0
}

Figure 4. Excerpt of Nagios configuration written by the autodiscovery script.

target GigabitEthernet0-8
 interface-name = "GigabitEthernet0/8"
 target-type = standard-interface
 inst = map(interface-name)
 short-desc = "ea5-swc;;gi0-8"
 long-desc = "ea5-swc.mg GigabitEthernet0/8 ea5-swb;;gi0-8"

Figure 5. Excerpt of Cricket configuration written by the autodiscovery script.

4.4 Setting up the components

The following sections give overview of installing and setting up the main components

of the network monitoring and management solution.

4.4.1 Nagios

At the time of this writing, major version 3.5 of Nagios is the matured and still widely

used release. Though Nagios 4 has been released, it is still not in the main Debian

repository, so Nagios 3.5 was used for this project. Nagios was installed from package

along with its components (plug-ins, web interface scripts, etc). Main post-installation

administrative tasks associated with Nagios were configuring the Apache web server to

run Nagios web interface and adjust Nagios base configuration (contact information for

notifications, web authentication parameters, etc). For the web interface, LDAP

(Lightweight Directory Access Protocol) authentication and valid HTTPS (Hyper Text

Transfer Protocol Secure) virtual host were set up.

To satisfy the requirement of SMS notifications, custom notification scripts for Nagios

were written. Nagios comes with a configuration file named commands.cfg, which

defines commands used for tasks like checking host status or sending an alert. Through

this file, the custom scripts which send SMS through Opengear ACM devices, are tied

to Nagios. In other words, Nagios does not have knowledge of the phone numbers or

any other specifics of sending SMS. Instead, it invokes a script, passes on the

notification data and the script takes care of transmitting the message.

The autodiscovery script discussed earlier regularly generates the main part of the

Nagios configuration – the hosts and services to monitor. Autodiscovery is invoked

through cron every hour. After doing its job and generating the configuration, the

autodiscovery process tests the configuration validity (by running “nagios -v” on the

new candidate configuration). In case of success, the autodiscovery process moves new

configuration in place and sends a HUP (Hangup) signal to the Nagios process.

An important feature of the autodiscovery script is error handling. Each device is

handled sequentially by the script and if exceptions occur, the script moves to a new

device. An unresponsive device will appear in Nagios as having no services, not

disturbing the monitoring process of other devices. Once the device recovers and next

34

scheduled run of configuration autodiscovery happens, the device will once again be

fully monitored. It should be noted that if a device is unresponsive by the beginning of

scheduled autodiscovery, it would have been noticed by Nagios while still using last

good configuration from previous discovery run. Nevertheless, the autodiscovery

notifies the NOC (Network Operations Center) by e-mail of any failed device polls and

other problems with generating the configuration.

Figure 6 shows part of the summary page of Nagios web interface. At the time of this

writing, 4231 individual values were monitored. Tests were run with up to 10000

monitored objects and no significant performance impact was seen. This gives adequate

scaling properties for future growth and changes.

4.4.2 Cricket

Cricket is a mature software package, available through Debian main repositories.

Cricket along with its Perl modules and other dependencies was installed and post-

35

Figure 6. Nagios overview page.

install customizations performed. Cricket web interface runs as a collection of CGI

(Common Gateway Interface) scripts under Apache, so proper Apache configuration for

LDAP authentication and permissions was performed. Cricket comes by default with

the configuration to monitor a few most common network interface OIDs (Object

Identifier; ifInOctets and ifOutOctets, i.e. to monitor interface throughput). The

enterprise requirement was to monitor much more – interface discard- and error

counters, CPU load and memory usage of the devices, routing-engine CPU

temperatures, etc. So the main part of post-installation Cricket configuration consisted

of defining all the SNMP OIDs and writing the data-source and target definitions that

use them.

The autodiscovery solution for Cricket works similarly to that of Nagios’s. Cricket

configuration is written in text format but then compiled into a binary database with an

included utility. When the generated configuration is invalid, the compilation process

fails and Cricket will continue using the last known good configuration. Due to this, a

separate verify process and safe restart strategy is not needed (in fact, a restart strategy

is not at all an issue, because Cricket is not run as a daemon but regularly invoked by

cron). The run interval used for Cricket in this project is 1 minute, the smallest

resolution easily achievable. As devices are arranged in a tree-like structure in Cricket

configuration (for example, devices in each physical location residing on their own

branch), Cricket is easily scalable. Each branch of the tree can be polled by a separate

Cricket process, meaning that extremely large installations can be polled within tight

time limitations by using parallelism. This is important, because a single run cannot last

more than one minute when calculation of a one minute average is desired. The same

holds true for any other numbers, of course. The polling process always needs to be

faster than the resolution used for averaging. Large or scalability-oriented installations

need to plan around this issue diligently.

Figure 7 shows a resulting graph of a network interface parameters generated by

Cricket. The web interface enables the operator to choose, which values (measured in

different units) to stack on a single graph and which to view separately. All of the

tracked values are stacked on one graph here for illustration purposes only.

36

Figure 8 shows a text summary of the graph represented in figure 7. For the hourly

graph, the initially calculated one minute average deltas are saved. For all longer time

periods (seen in the right column on figure 8), consecutive averages based on shorter

period data are calculated.

37

Figure 7. Multiple interface parameters on a single graph produced with Cricket.

Figure 8. Text summary generated by Cricket to explain each graph.

4.4.3 Rancid

Rancid was installed from Debian package. Rancid is written in Perl and defaults to

SVN (Subversion) as its back-end storage, so dependencies include the SVN package

and some Perl libraries.

As with previously discussed components, the configuration for Rancid is generated

automatically, based on the hostlist information. The auto-generated part of Rancid

configuration is a simple human-readable text file with a line of information for each

managed device: its IP address or host name, type and status.

To satisfy the web front-end requirement for the configuration management system,

WebSVN was installed and configured. Figure 9 shows a portion of the WebSVN

interface, displaying the repository of configuration files. The operator can view and

compare revisions and changes, download the latest configuration snapshot for device

recovery or any earlier known good version, if configuration error is suspected.

Configuration for Rancid is generated once per hour, a process initiated by cron. After

this, Rancid itself is likewise invoked by cron and device information is fetched every

hour. All managed devices support SSH with public key authentication, which Rancid

38

Figure 9. WebSVN interface displaying a RANCID configuration repository.

uses to log in, using its own account. This solves the issue of password security and no

individual access credentials configuration for each device needs to be generated.

4.4.4 PHP Weathermap

The PHP Weathermap web application was downloaded and installed under Apache

web server. Configuration for weathermap is static, because only a small number of key

links and channels will be visualized. Main WAN (Wide Area Network) links and VPN

tunnels of the enterprise were chosen for visualization and the data recorded in RRD

files by Cricket was re-used to obtain load information.

PHP Weathermap configuration is based on the concept of links and nodes. This does

not inherently cater well for visualizing the load on Internet connections, because the

many ISPs (Internet Service Provider) used by the enterprise are not “nodes” from the

enterprise point of view. To resolve this, “virtual nodes” ISP-1, ISP-2 and so on were

used. Figure 10 shows a portion of the completed weathermap.

The Weathermap back-end is a PHP script which looks into the RRD files as per

configuration and generates a PNG (Portable Network Graphics) image accordingly.

The script is invoked by cron every minute, which also defines the map refresh rate for

the user.

39

Figure 10. Part of the enterprise network weathermap.

4.4.5 MNTOS

MNTOS was downloaded and configured to work with Apache web server. As with

PHP Weathermap, the configuration of MNTOS is static, defining the URL (Uniform

Resource Locator) and access credentials for each Nagios server it is intended to track

and aggregate.

Figure 11 shows the completed MNTOS dashboard. Each section of the dashboard

shows the summary of one Nagios server. In this example, AE1 is the main/global

Nagios and R1 through S3 are site-local Nagios instances.

The dashboard provides active links to the actual Nagios web interfaces (by clicking on

the blue globe image) and to the contact information to each individual operator (by

clicking on the green figurine image; if configured).

40

Figure 11. MNTOS provides an overview of all Nagios instances.

4.4.6 NFSen

As NFSen and its main dependency, nfdump tools, were not available as Debian

packages, they were compiled and installed from source code. NFSen uses the nfcapd

daemon from the nfdump tools package to listen to and record NetFlow data. An

instance of nfcapd is invoked for each device that exports NetFlow. As each instance

uses different UDP (User Datagram Protocol) port, there must be matching entries in the

device’s configuration and in NFSen configuration. Automation script was written to

generate NFSen configuration. The script will scan device configurations and discover

any configured NetFlow export targets (flow-server in Juniper terms). Having this

information, the script re-writes the “sources” part of NFSen configuration file and

restarts NFSen. This configuration update is invoked by cron every hour, making

NFSen automatically follow relevant adds, moves and changes in the network.

NFSen web frontend provides the operator with graphing, searching and analyzing

features. Custom graphs can be created based on filters and time ranges. Top talkers by

parameters like number of flows, packets per second or bytes per second can be

identified by searching and filtering. Figure 121 shows a product of the completed

NFSen installation, the web interface displaying stacked graph of UDP traffic flows

from all NetFlow-enabled devices for the past two weeks.

1 Host names of the network devices have been intentionally redacted to protect confidential details.

41

Figure 12. NFSen web interface displaying a stacked logarithmic scale graph of all sampled UDP traffic.

4.4.7 Programming custom utilities

In addition to the main components of the network management toolkit discussed

above, there was need for some custom utilities and tools for the network operators.

Most of such utilities fetch data from the network devices and generate HTML

(Hypertext Markup Language) views or periodically perform some repeated task,

notifying by e-mail if there was a failure. The custom utilities were realized in Bash and

Ruby. Some examples are given below.

L2MAP (Layer 2 map) is a utility that scans all network switches and stores information

about port names, port descriptions, port VLAN (Virtual Local Area Network)

configuration and MAC addresses seen on ports. It then fetches ARP (Address

Resolution Protocol) tables from the firewalls and matches MAC addresses to IP

addresses. As a result, it generates a HTML table of the whole network, showing the

switches, ports, descriptions and MAC and IP addresses of hosts connected to each port.

Such utility is very helpful for the system administrators who want to track a server or a

virtual machine without having to ask help from the network team.

VerWatch (Version Watch) is an utility that keeps track of software versions installed on

network devices. The script uses a configured list of device models and the software

versions that are required on them. It then uses the device database to connect to every

device and check the version with SNMP. As a result, it generates an HTML report,

highlighting any device with wrong software version. If any wrong versions are found,

an e-mail notification is also sent. This utility is helpful in managing the software

versions of large network installations, making sure no single device is left out when

critical software updates are rolled out or when device replacement or recovery occurs.

The network management server periodically runs tens of different custom scripts and

utilities, helping to manage the network, detect and avoid human errors, bridge the gap

between the network and system administration teams and lower workforce demand by

automating repeated tasks. New orders from the operators and system administrators

can be taken and custom utilities can be programmed by using rapid prototyping

languages like Ruby. The scripts can make use of the data already existing on the

network management server, like device configuration files (collected by Rancid),

interface monitoring data in RRD files (collected by Cricket), etc.

42

5 Results and conclusions

As a result of this thesis work, an integrated network monitoring and management

system was built, tailored to enterprise requirements. A diverse toolkit consisting of

different freeware tools covers the areas of monitoring, configuration management, log

management, traffic analysis and network visibility. The automation scripts follow

changes in the network so that typical moves, adds and changes do not create significant

reconfiguration burden. Previously, the enterprise was using commercial network

monitoring and management systems, which did not cover all aspects. The old solutions

also required per-device licenses and were not open for customizations and

modifications. As a result of this work, all such software products were

decommissioned and significant resources vacated.

The ultimate goal of any network monitoring and management system is not the

existence that system itself, but the good health of the network it targets. By operating

the new solution, a better visibility into the network became obvious. Small problems

and opportunities for improvement surfaced in numbers. Unused network interfaces not

being disabled, links flapping, gigabit Ethernet links running at speeds 100Mbps or

lower due to poor cabling, error or discard counters increasing, a device accidentally

skipped during a software upgrade. These are some examples of conditions and events

in the network that can now be managed in a more systematic and proactive manner.

The author concludes that tried and proven, simple, mature lightweight tools can be

used to replace commercial network management software. By default, such tools often

lack the automation and integration features. They would have to be manually

configured, replicating and repeating the basic information about managed devices for

each and every tool. On the other hand, this issue can be solved quite easily by scripts

that automate configuration updates, as the configuration itself is usually in easily

manageable format. The main resource consumed throughout the implementation of

such a solution is the quite high number of man-hours of work. Once this resource has

43

been deployed sufficiently, the resulting system appears to be adequately reliable,

without performance and scaling problems and mostly maintenance free.

It can be also concluded that setting up a system of many disperse freeware components

tends to end up being more elaborate task than initially imagined. More detail-level

issues need to be solved, more tests run, more error-handling scenarios considered, than

initially planned. During the time it took to complete this work, new versions of some

components matured to the point that an upgrade should be considered. This brings the

author to think about future plans and developments.

A list of future developments and upgrades was identified as the project draw to a close.

The underlaying operating system used for the network management servers will soon

need to be upgraded to Debian 9. As Nagios 4 matures and especially when Debian

packages become available, a Nagios upgrade will be considered. Nagios 4 provides

better performance, further conserving the CPU and memory resources. It maintains

most of the Nagios 3 configuration syntax, so the automation scripts would not need

significant modification. Currently, all network management communication in the

enterprise goes through VPN tunnels, so the use of protocols like SNMPv2 (Simple

Network Management Protocol version 2) is still possible. It is desirable, however, to

upgrade to SNMPv3, a support for which requires some further development and

testing. As discussed in the initial parts of this document, a door was left open for

adding redundancy to the global network management server, but full 1+1 redundancy

was not yet implemented during this project. Redundancy will be added in future

developments, with the monitoring and management processes running in parallel and

active/passive server status coordinated for alerts and notifications. Last but not least, a

full IPv6 (Internet Protocol version 6) support will be implemented and tested. There are

many components that claim IPv6 compatibility. However, making full use of it,

including IPv6 support in every script that currently uses IPv4 (Internet Protocol version

4), is not trivial.

44

6 Summary

With this thesis project, a network monitoring and management system was built for an

enterprise, using freely available software. The project started with discussing the

enterprise needs and prerequisites. Next, the components chosen or required to be used

for the project were reviewed, highlighting the features relevant for this implementation.

Network monitoring and management areas covered by the project were event

monitoring, tendency graphing, configuration management, traffic analysis, baseline

data collection, channel visualization and remote logging. A basic design pattern was

established throughout the system, a CMDB to which all the components plug in

through automation and configuration scripts.

The practical part of the project took on the task of implementing the new system to the

point where previously used commercial solutions could be decommissioned, vacating

enterprise resources. First, the base infrastructure from the virtual machines and

operating system up, along with the main components of the network management

toolkit, was installed and configured.

The main goal of the project was to create an automated and unattended system that

follows moves, adds and changes in the network. To meet this objective, scripts were

written to regularly read the CMDB and generate configuration for the various

monitoring and management tools. Custom scripts also take care of various household

tasks like sending monitoring alerts via SMS.

The system was used and tested in live enterprise environment, observing how it helped

to improve the network, detect hidden problems and react to critical incidents. Finally,

some goals for future developments and upgrades were identified, including IPv6

support and addition of full redundancy.

45

References

[1] A. Nucci, K. Papagiannaki, “Design, Measurement and Management of Large-Scale IP
Networks: Bridging the Gap between Theory and Practice”, USA, Cambridge University
Press, 2008

[2] J. Tiso, “Designing Cisco Network Service Architectures (ARCH)”, USA, Cisco Press,
2011.

[3] K. Wallace, “CCNP TSHOOT 642-832 Official Certification Guide”, USA, Cisco Press,
2010.

[4] J. Välk, E. Proomann, A. Volkov, “Example Corporation Inc. andmesidevõrgu projekt ja
teostus”, Tallinn, IT College, 2015.

[5] K. Jõgi, “Monitooringusüsteemi valik ja rakendamine Spark Systems OÜ näitel”, Tallinn,
IT College, 2009.

46

	1 Introduction 11
	2 The task of complex network management solution 15
	2.1 Monitoring 15
	2.2 Configuration management 18
	2.3 Channel visualization 19
	2.4 Traffic analysis 20
	2.5 Multi-tier logging 21
	2.6 Baseline data collection 21
	2.7 Various utilities 21
	2.8 Central CMDB and automation 22

	3 Overview of components 23
	3.1 Nagios for event monitoring 23
	3.2 Cricket for tendency graphing 24
	3.3 MNTOS for aggregated dashboard 24
	3.4 Opengear ACM for out of band notifications 25
	3.5 Rancid for automated backup 25
	3.6 Rancid as supervision and change visibility tool 26
	3.7 Rancid as baseline data collection tool 26
	3.8 PHP Weathermap for channel visualization 27
	3.9 NfSen with NFDUMP for NetFlow traffic analysis 27
	3.10 Rsyslog for remote logging 28

	4 Implementing the solution 29
	4.1 Base installation 29
	4.2 CMDB and configuration generation 30
	4.3 Autodiscovery 32
	4.4 Setting up the components 34

	5 Results and conclusions 43
	6 Summary 45
	References 46
	1 Introduction
	2 The task of complex network management solution
	2.1 Monitoring
	2.1.1 Event monitoring
	2.1.2 Tendency graphing
	2.1.3 Redundancy and distribution considerations
	2.1.4 Aggregated dashboard
	2.1.5 Out of band notifications

	2.2 Configuration management
	2.2.1 Automated backup
	2.2.2 Supervision and change visibility

	2.3 Channel visualization
	2.4 Traffic analysis
	2.5 Multi-tier logging
	2.6 Baseline data collection
	2.7 Various utilities
	2.8 Central CMDB and automation

	3 Overview of components
	3.1 Nagios for event monitoring
	3.2 Cricket for tendency graphing
	3.3 MNTOS for aggregated dashboard
	3.4 Opengear ACM for out of band notifications
	3.5 Rancid for automated backup
	3.6 Rancid as supervision and change visibility tool
	3.7 Rancid as baseline data collection tool
	3.8 PHP Weathermap for channel visualization
	3.9 NfSen with NFDUMP for NetFlow traffic analysis
	3.10 Rsyslog for remote logging

	4 Implementing the solution
	4.1 Base installation
	4.2 CMDB and configuration generation
	4.3 Autodiscovery
	4.4 Setting up the components
	4.4.1 Nagios
	4.4.2 Cricket
	4.4.3 Rancid
	4.4.4 PHP Weathermap
	4.4.5 MNTOS
	4.4.6 NFSen
	4.4.7 Programming custom utilities

	5 Results and conclusions
	6 Summary
	References

