
Tallinn 2017

TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Software Science

Marina Lavrentjeva

143688 IAPM

TESTING ON EXAMPLE OF 3D PRINTING

SYSTEM

Master’s thesis

Supervisor: Jekaterina Tšukrejeva

 Master of Science

Tallinn 2017

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Tarkvarateaduse instituut

Marina Lavrentjeva

143688 IAPM

TESTIMINE 3D PRINTIMISSÜSTEEMI

NÄITEL

Magistritöö

Juhendaja: Jekaterina Tšukrejeva

 Magistrikraad

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Marina Lavrentjeva

28.04.2017

4

Abstract

The current Master’s thesis describes testing of 3D printing system. The purpose of this

work is to find and use automation tool for 3d printing system, where requirements are

not stable and change during project.

Firstly, project and application, for what automation tool is searched, is described

generally and development process in it. Secondly described what testing is. Testing

types, methods, levels and objectives is described in this theoretical part. In third place,

manual testing is done and description of basic tests in it. Lastly automated testing with

the analysis of basic tools is done with description of basic automated tests in it.

As a result, four automation tools are analysed and one automation tool is selected. This

tool will be used in a project to automate testing.

This thesis is in English and is 55 pages long, including 5 chapters, 11 figures and 8

tables.

5

Annotatsioon

Testimine 3D printimissüsteemi näitel

Käesolev magistritöö kirjeldab 3D printimise süsteemi testimist. Käesoleva töö eesmärk

on leida ja kasutada automatiseerimisvahend 3D printimise süsteemi jaoks, kus nõuded

ei ole stabiilsed ja arendatavad tarkvarad muutuvad kiiresti.

Esiteks kirjeldatakse projekti ja süsteem, mille jaoks on vaja leida ja kasutada

automaatika vahend arendamise protsessis. Teiseks kirjeldatakse testimise teooria.

Testimise tüüp meetodid, tasemed ja eesmärgid kirjeldatakse käesolevas teoreetilises

osas. Kolmandaks loodi ja kirjeldati käsitsi katsetamine ja kirjeldatakse põhilised testid.

Lõpetuseks analüüsitakse testimise automatiseerimisvahendid ja automatiseeritud

testimine on loodud. Selles osas kirjeldatakse ka põhilised testid.

Töö tulemusena analüüsitakse nelja erinevat automatiseerimisvahendit, kirjeldatakse

nende omadusi ning valitakse välja ühe, mis vastab kõige enam seotud kriteeriumitele.

Vahendit, mis välja valitakse, hakatakse kasutama kirjeldatud funktsionaalse rakenduse

automatiseeritud testimiseks.

Lõputöö on kirjutatud inglise keeles ning sisaldab 55 leheküljel teksti, 5 peatükki, 11

joonist, 8 tabelit.

6

List of abbreviations and terms

DPI Dots per inch

TUT Tallinn University of Technology

SDLC Software Development Life Cycle

GUI Graphical User Interface

XSS Cross-Site Scripting

UTF Unified Functional Testing

7

Table of contents

1 Introduction ... 10

2 Project description ... 12

2.1 3DPrinterOS Client... 12

2.2 3DPrinterOS Cloud... 12

2.3 Development process .. 14

3 Testing ... 15

3.1 Types of Testing ... 15

3.2 Testing methods .. 16

3.3 Test Objectives ... 18

4 Manual testing ... 20

4.1 Test Objectives ... 20

4.2 Planning of the testing process ... 20

4.3 Testing of 3D printing .. 22

4.4 Testing of client .. 23

4.5 Basic Cloud testing ... 25

4.6 How much time is spent ... 29

5 Automated Testing .. 31

5.1 Why to automate? ... 31

5.2 Automated testing tools .. 33

5.3 Tools used for testing ... 37

5.4 Examples of automated tests .. 38

5.5 Problems and bugs .. 44

5.6 How much time is spent ... 46

6 Summary .. 48

References .. 50

Appendix 1 – Test Wizard .. 51

Appendix 2 – Test SignIn ... 53

Appendix 3 – Refactored Test SignIn .. 55

8

List of figures

Figure 1. Testing Client Diagram ... 29

Figure 2. Testing Cloud Diagram ... 30

Figure 3. AutoIt simple test .. 35

Figure 4. Testing Client .. 39

Figure 5. Selenium Test Sign In ... 42

Figure 6. Selenium changed Test Sign In ... 42

Figure 7. 3DPrinterOS Tests .. 44

Figure 8. XSS alert ... 45

Figure 9. Internal Server Error ... 45

Figure 10. Cloud Auto Testing Time ... 46

Figure 11. Client Auto Testing Time ... 47

9

List of tables

Table 1. Black-Box Testing Advantages Disadvantages.. 16

Table 2. White-Box Testing Advantages Disadvantages ... 17

Table 3. Grey-Box Testing Advantages Disadvantages ... 18

Table 4. Basic Cloud Testing ... 25

Table 5. JUnit 4 Vs TestNG Comparison ... 37

Table 6. Example of the test SignIn ... 40

Table 7. Example of the test Dashboard ... 40

Table 8. Example of the test ProfileOverview .. 41

10

1 Introduction

At the present time, IT companies are trying to develop a quality product and at the

same time reduce the time required to the development. To simplify life for developers,

testers appeared. Testers create tests and looking for errors in the generated product.

Recently acquire a special urgency testing issues in information technology, as an

activity that improves the quality of software products, due to the ever-increasing

competition. [1]

This theme was chosen because, the relevance of testing currently underestimated by

developers, who believe that they themselves can test the product under development or

the manager may consider testing a waste of time and money.

However, in large-scale projects under testing in general it is very expensive and time-

consuming activity. Reliable and efficient product development is impossible without

testing. One of the obvious solutions to this situation is to automate the testing process.

At the moment, there are quite a few types of testing. The main ones will be discussed

in this present work.

In this thesis work, there was a task to implement testing for «3dprinteros» system. The

Company «3dprinteros» is developing a single system for printers and file management.

System «3dprinteros» is a one easy-to-use platform for managing files, machines and

users across your business. [2]

Initially, the problem was that the testing has not been implemented in the project.

Which is why was a lot of mistakes in the project. They were not corrected, because a

basic functional worked. Testing was created from scratch.

Since the Company is engaged in not only an ordinary site but also in software for

printers, it was impossible to use only the automatic testing. The task of work is

description of manual and automatic testing process of the «3dprinteros» system in

programming language Java.

11

The object of the research is manual testing and GUI testing in Java programming

language. As well will be discussed technologies for automated testing. Research of

tasks and process of project testing is presented in this work.

12

2 Project description

Firstly, is necessary to tell about what this 3DPrinterOS system is which needs to be

tested. Testing was not realized in this firm, which is why there were many errors in the

project. It became a large problem that had to be solved. In the following chapters will

be discussed about how testing was implemented manually and later automatically.

2.1 3DPrinterOS Client

3DPrinterOS Client part is the control software for 3D Printer’s. Server part location is

at URL: https://cloud.3dprinteros.com.

3DPrinterOS supports almost all printers based on Printrun and Makerbot Firmware.

2.1.1 Client Features:

• Port selection or baud rate not needed because we have auto-detection with auto-

connection

• The connection and printing on multiple printers is possible on one computer at

the same time

• It is also possible to work remotely with the printer. In particular, the preparation

of a file for printing and printing itself

• Remote view of 3D printing thanks to the connected web camera (you can use

more than one web camera but you will need minimum 2.0 GHz 2 cores CPU or

more) [3]

2.2 3DPrinterOS Cloud

Cloud is a centralized file and printers management system. You can upload your 3D

files or search for free models and save them in 3DPrinterOS account for future

printing. Also, it is possible to change your stl model with applications such as Slicer or

Magic Fix. As well you can specify the number of print to a file or printer. 3DPrinterOS

https://cloud.3dprinteros.com/

13

provides fast connection with 3D printers, literally with one click. Cloud location is at

URL: https://cloud.3dprinteros.com. [2]

2.2.1 Cloud Features:

Cloud webpage have a several licenses. In this work will be used only free license.

Free license:

• Upload and Print Gcodes

• Gcode and Toolpath Viewing

• Remote Monitoring

• Forum Support

Premium license:

• All Free Features

• Printer Sharing and Permissions

• File/Project Sharing and Permissions

• Print Queuing

• Live Platform Support

Educational license:

• All the professional features

• Advanced User and Machine Reports

• Export Report Data

• Single Sign On Support

• Workgroup Creation

• Design Tool Integration

• Live Platform Support

Enterprise license:

• All the educational features

• Customize AM Workflows

14

• Industrial Machine Support

• Custom APIs

• Private Cloud

• Success Manager

• Monthly Check-Ins

• 24/7 Phone and Platform Support

2.3 Development process

The Flexible method of development or Agile is used in this project. Agile – is an

approach to product development that focuses on the use of iterations dynamically

evolving requirements and maintenance of their implementation. The implementation

happens as a result of permanent co-operation between group of developers, which

includes both programmers and testers.

The hard phases of project development life cycle are usually used in the traditional

testing. It all starts with the planning of release and definition of requirements, and ends

with the hasty testing phase and delayed release version of the product. This approach,

when testing takes place in the end, does not help to release a quality product. Testing

carried out hastily, as writing code often takes more time than expected, but also

because the development team gets to the error correction phase at the very end.

Agile development methodology provides opportunities to assess the direction of a

project throughout the development lifecycle. Teams work through sprints to respond to

unexpected changes in priorities during the iteration. This means that testers check

every addition of code immediately after it was written. Iteration may be short - one

week or longer - a month. The team assembles and testing a small piece of code, to

make sure it is working correctly, and then proceeds to write a new one. Developers

never break away from the testers, as their work is not complete until it is tested. [4]

15

3 Testing

Currently, the term "testing" means the search for errors in the project, but this is not

true. Existing test methods do not allow us to find all defects and to establish that the

test product is working properly. This means that all test methods formally checking

product, which is being developed. To understand what testing is all about and to get

acquainted with the principles of testing, it is necessary to understand what types and

methods of testing exist and are applied.

3.1 Types of Testing

This part is a description of different testing types that can be used for software or

webpage testing during SDLC. There are many signs, which are accepted to make types

classification of testing. In this work types of testing will be considered only in the

degree of automation of the product.

3.1.1 Manual Testing

Manual testing is testing with bare hands, when automation script’s not being used.

Tester’s work is to identify any unexpected problem in software. For that he is working

with program as an end-user. Tester checks the operability of all components of the

program, emulating the actions of the user. Manual testing has different stages: user

acceptance, unit, integration and system testing. Tester can use pre-prepared test plan,

which marked the most important aspects of the program.

3.1.2 Automation Testing

Automation testing or Test Automation is the testing process with a test scripts and

different software that tester can use to test the product. This process includes the

automation of the manual process. The most common form of Automation is to test

applications via a graphical user interface. Automation Testing is used to run the test

cases that usually were used by hands quickly and repeatedly.

16

Automation testing is used to test applications with stress tests, load tests and

performance tests. In comparison to manual testing, automation testing saves time and

improves accuracy by increasing the test coverage.

Of course, everything is impossible to automate. For example, what should be

automated, login or registration forms where user can make transactions and pages

where many users can access the software at the same time. In addition, can be

automatically tested, GUI elements, field validations, database connections etc. [5]

3.1.3 Semi-automated Testing

In this case, manual testing is combined with automated testing. For example, the tool

creates a new account, and then created user actions are performed manually. In this

work only manual and automated testing will be considered.

3.2 Testing methods

For software testing can be used many different methods. This chapter contains short

description of some of the available methods.

3.2.1 Black-Box Testing

Testing method is called black-box testing when you test without having any knowledge

of working processes inside the application. Tester don’t have any access to the source

code of the application and regardless to the system architecture.

Usually, during the black-box test, the tester communicates with the user interface of

the system, passing the input data and receiving the output data for later analysis. The

tester does not know where the data is processed.

In this table are listed advantages and disadvantages of black-box testing (Table 1).

Advantages Disadvantages

• Suitable and effective for large

segments of code

• Access to code is not required

• User's perspective is separated from the

• Code coverage is limited, because we

have only certain amount of test

scenarios

• Testing is inefficient, because the tester

Table 1. Black-Box Testing Advantages Disadvantages

17

developer's perspective

• Application can be tested with big

number of enough skilled testers

without any information of realization

or programming language

has limited information about

application itself

• Code coverage is blind, because tester

can’t target particular code sections or

mistake inclined zones

• It is hard to write test cases

3.2.2 White-Box Testing

Testing the "white box" is performed in order to detect problems in the internal structure

of the program. This requires the examiner to have a deep knowledge of the internal

structure and, therefore, cannot be performed by the ordinary user. The common goal of

such testing is to ensure that each step is checked according to the algorithm of the

program.

In this table are listed advantages and disadvantages of white-box testing (Table 2).

Advantages Disadvantages

• The tester has access to the source code

and can easily find more suitable data

types for testing. Therefore, testing

becomes more efficient

• It helps in making the most out of the

code

• Extra lines of code can be taken away

which can take in kept hidden problems

• The maximum coverage is achieved,

because the tester get needed

knowledge about the code when he is

writing test cases

• Testing cost is increased, because a

skilled tester is expected to perform

white-box testing

• It is impossible to test everything in the

code. Tester can’t look in every corner

and find everything. Too many time is

needed for that. Hidden errors may

create problems

• White-box testing is difficult to support,

because it has need of special

instruments like code analyzers and

debugger

3.2.3 Grey-Box Testing

Grey-box testing is a combination of a white and a black box testing techniques

together. It is a testing with low knowledge of the inside workings of an application. It

is assumed, for example, access to the internal structure and operation software

algorithms to write the most effective test cases, but the test itself is performed using

black box techniques, from user's position. Tester in this method has access to

Table 2. White-Box Testing Advantages Disadvantages

18

documents, design and the database. Tester that have this knowledge can create better

test cases and scenarios when he is creating a test plan.

In this table are listed advantages and disadvantages of grey-box testing (Table 3).

Advantages Disadvantages

• Grey-box tester does not depend on the

program code. Grey-box tester uses

functional specifications and interface

definitions

• Grey-box tester has limited information.

Therefore, he can develop good test

scenarios. For example, around data type

handlings and communication protocols

• The test is written from the user position,

not the developer or tester

• We don’t have access to source code,

which is why we have limited ability

for the test coverage

• The tests can be unnecessary if they

are repeated in test cases by tester

many times

• It’s not necessary to test every

possible input variable. It is

unprofitable, since it would take too

many times. That is why few program

routes will be untested

3.3 Test Objectives

To properly test a project, we need to set goals that must be met during the testing of the

project. This includes checking the functionality of the system, creating tests, possible

automating and organizing tests. All this is described below in more detail’s and will be

performed during both manual and automatic testing.

3.3.1 Check the basic functionality of the system

The most important task of testing to check, that the necessary basic user functionality

of the system is working properly. As if action that the user will perform every day,

don’t work correctly, or illogical, then it will affect the effectiveness of the user work in

the future. From this comes the next task of testing – it is important to check up logic

and comfort of user interface.

3.3.2 Create Tests

Testing of a product is always associated with the creation of tests. Tests must contain a

minimum of code that, in future, they can be easily adjusted to a new version of the

Table 3. Grey-Box Testing Advantages Disadvantages

19

product. Mostly it concerns tests associated with a graphical interface, such as checking

webpage items.

3.3.3 Automate testing

It is also important to automate the testing, if appropriate. Automation reduces testing

time and simplifies the process. If for this purpose there is time and resources, it is

needed to consider automation as important component of testing.

3.3.4 Organize testing

Organize testing is necessary so that not only detect, but also to prevent defects in the

beginning. Create automated tests should be organized to use the same functions, rather

than create new ones for each part of the tested product.

As a result, we can say that the testing process is quite complicated and at the same

time, an easy task and it is should be treated seriously. In the following chapters, you

will see the purposes of testing, how was done manual and automated testing and

created tests examples.

20

4 Manual testing

Test absolutely everything is physically impossible. One reason is that the number of all

possible input data combinations is too large, so it cannot be fully checked. Because of

what is checked only the most frequently used input data and boundary values.

Another problem is the number of all possible sequences of code execution, as it is also

too high, that it can be fully checked. The user interface is generally too complex to full

testing. [8, p. 40]

4.1 Test Objectives

As a result of testing, we need to implement the following objectives:

• Implement testing so that the tested product was working with highest possible

quality

• Implement testing so that the tested product met all declared requirements

• Carry out the most complete product testing in the shortest time

The time and project quality is the criteria for a good testing of the developed product.

Manual testing will cover all the features from paragraph 2.

4.2 Planning of the testing process

Testing also implies a planned analysis and careful use of the tested product. This

implies the need for a test plan or a testing strategy. The purpose of a test strategy is to

clarify the major tasks and challenges of the tested project.

4.2.1 Creating a test plan

To formulate a test plan is possible by using the following points:

• Analyze the testing scope. Usually this is done by studying the documentation or

a definition of requirements. In our case there was no documentation, so the

work was limited by the developer requirements

21

• To analyze the testing approach by selecting the tests associated with each stage

of development. Since the work was associated with only one version of the

product, such analysis was not carried out. Tests were selected once

• Use of automated testing shall not exceed the time given to the testing project. In

this project, there were no restrictions for the use of automated tests, so testing is

not exceeded

4.2.2 Determining the testing scope

Test absolutely everything is physically impossible. Below are the reasons why the

complete testing can never be done:

• The number of all possible input data combinations is too large for a complete

testing

• The number of all possible code execution sequences is too large for a complete

testing

• The user interface is generally too complicated for a complete testing [8, p. 40]

Since it is impossible to find all the bugs, what should be tested in the first place? If you

spend too much time on testing, trying to find as many problems as possible, the

development process will be too long and will tighten the term of product delivery.

However, you can miss serious errors, which in the future will be difficult to resolve if

the project is not enough tested. That is why the test volume is determined on the

experience of the tester and can change during the product testing.

4.2.3 Choice of testable parts

It is worth remembering that it is not necessary trying to find as many errors as possible,

and should try to miss as little as possible. That is why it was necessary to decide what

exactly should be tested:

• Firstly, it is important to test boundaries of input values, basically because most

errors are appearing there. For example, if in the input line can only enter

numbers in the range from 1 to 1000, it is worth trying to enter or 1001 or 0. If

the length of the entered value must not exceed 10 characters, it is worth trying

to enter 11 characters

22

• It is also necessary to test changes which just appeared in the developed product.

For example, parts which changed because of the correction of the already found

error. These tests are called «Regression test»

• It is necessary to test the parts where finding of defect is most credible

• It is necessary to focus on the modules of the site, which is often used by end

users

4.2.4 Example the testing process

It is necessary to consider the example of a product testing process:

• New functionality has been created, for example, the new Slicer application was

added

• Functionality of the entire site is checked, because the development could break

down already working functions

• The created new functional is checked up

• Communication with the developer via Skype, if something is not clear in the

work of a new Slicer

• If an error was found, issue is opened in https://youtrack.3dprinteros.com

4.3 Testing of 3D printing

Basically, 3D printing on a printer is tested manually, since it is a machine and automate

machines a rather complex and expensive task. In the present case you can just

automate launch of printing but it is already quite simple and fast process which is why

it is not required.

For testing the different programs were used for the printing process, since the print

quality might be better when using other software.

Such programs as: Cura, Slic3r, CraftWare, Kisslicer, Simplify3D, MakerWare,

Makerbot Desktop. In different programs in different ways registered slicer. You need

to compare and validate gcode delivered to the printer. It is necessary that at the use of

the third-party software the printer printed identically well.

4.3.1 Problems when testing 3D printing

In this list, you can see the reasons why it is impossible to test printing automatically:

23

• We need to remove the finished model from the bed and clean the bed. If this is

not done, then the model will be printed directly in the ready-made model, lying

on the bed

• Check external factors such as whether there was movement of the bed during

printing

• During printing, the model may come unstuck from the bed. This requires

checking the heating temperature of the bed, if it is heated. Check is very easy.

Need to send a print item and make sure that the first print layers don’t come

unstuck

• Problems with the USB cable may stop printing halfway. If you have a printing

on 24 hours, and 20 hours later you will accidentally touch a bad USB cable,

printing will be interrupted, since there is no connection to the printer. To avoid

this, you need to check all the connected cables to the printer before printing

A person must do these processes. Automate some of these processes in such small firm

would be too expensive. For example, it is possible to automate the removal of the

finished model from the table by using robot. In this case, the robot also will need

maintenance of the average person.

The only testing that can be automated is when the printer operability is checked up. In

the present case printing starts without plastic and checked whether the system and the

printer is working. The system can write that the heating is, while the printer is actually

cold. Again, such things only person is checking.

4.4 Testing of client

The client is the software used in 3D printing for launching and tracking of 3D printing.

It must be tested for proper operation with the 3D printer. Testing process is divided

into 3 categories. The following tests were used to test client:

4.4.1 Test client with a connected printer

In the first category, you need to test a client with a connected printer. For this you have

to use these tests:

• Check CloudSync folder opening process (open a folder, where you can

upload any of the files for testing)

24

• View logs button should open log files

• Wizard testing – check if any of the buttons are working well and responding

to mouse clicks

• Report problem should be able to send messages (it is preferable to type

different characters and use different languages)

• Rename printer name should open a window with rename option (it is

preferable to type different symbols and characters in different languages)

• Button „Reset printer type“ should enable you to change the printer's type

• Button „Go to your account now“ should direct you to a cloud page

• Logout button should terminate the client, also system should re-ask a

password and login username on a next launch

• Check if „Restart camera button“ is working properly

• During the printing process you need to press „Pause“ button and wait, after

printing is finished – press „Resume“ (Printing should continue)

• During the second printing , you need to remove an USB cable, printing

should continue

• In the Apps of printer there should be „Joystick and Console“, currently

these functions are not supported in the Duplicator / Replicator printers

• You also need to check if printer is reacting minimum to 2 commands sent

over a „Joystick and Console“

4.4.2 Test a detect feature of a client

Second category of testing is needed to test a detect feature of a client.

• While client is turned on, connect printers to the client. They should receive

an idle status (ready)

4.4.3 Check a printing feature on all printers

Third category of testing is needed to check a printing feature on all printers

• You need to connect a printer and start printing on all printers

25

4.5 Basic Cloud testing

Cloud is a centralized file and printers management system. When you test Cloud you

need to check all clickable buttons. In this chapter, everything is listed with tables with

tests. In this table, you can see basic manual testing process when we use functionality

of different Cloud web pages on different browsers. Example of basic testing (a table

with categories) is provided below (Table 4):

 OK NOK Not supported Unable to test

Tester name Tester 1 Tester 2 Tester 3 Tester 4

Browser version

Chrome

Version: 50

Firefox

Version: 46

Opera

Version: 36

Chrome

Version: 50

My Profile

Sign In OK OK OK OK

Sign Out OK OK OK OK

Profile Overview OK OK NOK OK

Share Live Videos OK NOK OK OK

Add Media OK NOK NOK OK

Add Post NOK NOK NOK NOK

Drag and Drop OK NOK OK OK

Map OK NOK OK OK

Upload

Drag files here OK OK OK OK

Search

Search button OK OK OK OK

Add file (Thingverse) OK OK OK OK

My Files

Search button OK OK OK OK

Add files button OK OK OK OK

Table 4. Basic Cloud Testing

26

Quick view model OK OK OK OK

Edit name OK NOK OK OK

File Log OK OK OK OK

Slice button OK OK OK OK

Print button Unable to test Unable to test Unable to test Unable to test

Applications

3D Viewer OK OK OK OK

Resizer OK OK NOK OK

Net fabb NOK NOK NOK OK

Slicer OK OK OK OK

STL Editor OK OK OK OK

Magic fix NOK NOK NOK NOK

Sculpteo OK OK OK OK

Kitization OK NOK OK OK

Leopoly OK OK OK OK

Hollowing Unable to test Unable to test Unable to test Unable to test

Simplification OK NOK OK OK

Obfuscator OK OK OK OK

Autodesk Mesh Repair Unable to test Unable to test Unable to test OK

Spark Slicer OK OK OK OK

Share file OK OK OK OK

Facebook Unable to test Unable to test Unable to test Unable to test

FB Sketchfab Unable to test Unable to test Unable to test Unable to test

Twitter Sketchfab OK Not Supported OK OK

Print through

Virtual Factory OK Not Supported OK OK

Dashboard

27

World statistics OK OK OK OK

Show top 100 button OK OK OK OK

My printing history OK OK OK OK

Printers

Add Virtual

Printer/CNC OK Unable to test OK OK

Make Offline

printers Inactive OK Unable to test OK OK

Add Workgroup

Printers OK Unable to test OK OK

INSTALL button OK OK NOK OK

Set location OK OK OK OK

Logs button OK OK OK OK

Live view OK OK OK OK

Share OK OK OK OK

Live view wall tab OK NOK Unable to test OK

Inactive Printers tab OK Unable to test Unable to test OK

Settings

Camera mode OK OK Unable to test OK

Camera choose OK OK Unable to test OK

Reset camera module OK OK Unable to test OK

Make inactive OK OK Unable to test OK

Printer Applications

Console OK Unable to test Unable to test OK

Joystick OK Unable to test Unable to test OK

Description of notations:

OK Working perfectly

NOK Working with problems

28

Not supported Not supported in this browser

Unable to test
Tester don’t have camera, printer or in test webpage this functional is not

done yet

To get this table, the Client and Cloud sites were fully tested. Several browsers were

installed: Chrome, Firefox and Opera. For several days and a different number of hours,

this table was filled.

Example Test Scripts for Cloud webpage is set out below:

Test Log In

ID 001

Description Test goal is to log in by test user without problems

Precondition Web page is not opened. Nobody is logged in

Steps 1. Open webpage https://cloud.3dprinteros.com/sign/

2. Type in first text box email: example@email.com

3. Type in second text box sample password

4. Click button Sign In

5. Wait for page to open

Post Condition User is logged in with his username

Test Dashboard

ID 002

Description Test goal is to check Dashboard links and headers

Precondition Test user is logged in

Steps 1. Open webpage https://cloud.3dprinteros.com/dashboard/

2. Click link World statistics

3. Click link My printing history

4. Verify if header present with name Overview

Post Condition Links are working and header is in place

Test Profile Overview

ID 003

Description Test goal is to check that in Profile Overview Bandwidth and

Storage available is 10 GB

mailto:example@email.com
https://cloud.3dprinteros.com/dashboard/

29

Precondition Test user is logged in

Steps 1. Open webpage https://cloud.3dprinteros.com/

2. Click link Profile Overview

3. Check header: Profile overview

4. Check License: FREE

5. Check Storage available: 10 GB

6. Check Bandwidth available: 10 GB

7. Check Profile Settings

8. Check Change Password

9. Check Sign out

Post Condition Links and headers are in place

4.6 How much time is spent

It's time to calculate how long it took to manually test the Client and Cloud. Big amount

of site functions was manually tested (Table 5).

In this diagram, you can see amount of time we need to test manually Client system

(Figure 1):

Figure 1. Testing Client Diagram

10 10

20

10 10

20

10

20

30 30

20

30

0

5

10

15

20

25

30

35

Testing Client Diagram (minutes)

Time (minutes)

https://cloud.3dprinteros.com/

30

In this diagram, you can see amount of time we need to test manually Cloud system

(Figure 2):

As a result, we can say that the client testing spent about 2-3 hours (Figure 1), and a

complete testing system Cloud spent 3-5 hours (Figure 2). It's quite a lot of time and

since the client launches the page in the browser, it can be automated with Selenium.

And in the Cloud website can be automated verification of all links, buttons, and text

captions.

In this system pretty much need to be tested, but you cannot automate everything. Many

things can only be checked visually and manually.

For instance, in the Applications, you can check all of these programs that they are

working, but when you work with them, you can see a lot of errors that are only visually

determined as errors. For example, you can slice stl file with the STL Editor and get

fully working gcode, but it will not look as it should.

Figure 2. Testing Cloud Diagram

20
10 10

30

90

10

60

30
20

0

10

20

30

40

50

60

70

80

90

100

Testing Cloud Diagram (minutes)

Time (minutes)

31

5 Automated Testing

Most software products, produced today, аre web applications and run in the browser.

Testing efficiency of such applications differs in different companies and organizations.

In the modern world, when many organizations are using Agile methodology in the

process of software development, automation of testing often becomes necessary. By

automation of testing means the use of tools in order to repeatedly perform repetitive

tests to test the application. [9]

5.1 Why to automate?

With testing automation, as well as with many other highly directional IT - disciplines,

associated a lot of misconceptions. Companies are now taking advantage of automation

testing tools to increase their efficiency and productivity. Apart from several advantages

and benefits of automation software testing there are certain disadvantages of these tools

as well. The automated testing eliminating the need for manual labor of a tester and

improving the testing time of an application. Basically, automation is used to simplify

testing process and get rid of the routine repetition of everyday tests by tester. The more

the tester checks the same part of the code, the less chance to notice the problem. It is

necessary to list and describe the basic nuances of automation and provide an answer to

the main question - when the automation should be applied. [10]

5.1.1 Test Automation Advantages:

• Repeatability – all written tests will always be executed monotonously, i.e.

excluding the "human factor". The tester will not pass the test for negligence and

do not mess up in the results

• Fast execution - an automated script does not need to consult the instructions

and documentation. It saves a lot of execution time, because scripts execution is

much faster than a human testing

• Confirmation of the known - automatic checks - is a great way to confirm that

the application continues to function properly after the changes was made to it

32

We can easily identify new errors after changes in the code using automatic

regression checks. The most important thing is to run automatic checks as often

as possible

• Quick feedback – testers can give quick feedback about application problems as

soon as application was changed. It is very good for the developer’s

performance, since they need to fix everything that's broken before moving on to

coding other things, that is why fast feedback is significant

• Frees up the testers time – when tests can be run regularly (can be automated),

testers can work on other interesting parts of the program or on the parts that

cannot be automated. It’s frees up the testers working time very efficiently

5.1.2 Test Automation Disadvantages:

• Repeatability – all written tests will always be carried out monotonously. It is

both a disadvantage. Tester testing manually can pay attention to some details,

and after spending a few additional operations find defects. Automatic test

cannot do this

• Maintenance Time and Effort – it is especially important for regression testing -

testing new versions. Each update of the interface or functionality of the

software under test will require the completion of automation tests. Automation

tests cannot adapt themselves to the new interface, and to continue their correct

work, you have to change everything manually. The more the number of tests,

and the more innovations in the software, the more time it will take to update.

You have to spend the time on changes for the broken tests

• Not many bugs found - most of the errors are found randomly, since the input

data for the test is most often changed during the experimental tests many times.

On the other hand, the fact that automated tests go along the same path with the

same input data reduces the probability of finding an error. But when we change

the data in the tests it takes a lot of time, which we are trying to avoid

• The cost of the automation tool – in the case if you are using licensed software,

its cost can be quite high. Free tool, usually are more modest with less

functionality

• Minor errors – auto tests cannot detect small defects that do not harm the

functionality of the code, but damage the visual interface and make it difficult

for the end user work. Those auto tests can be succeeded when there can be

33

hidden problems that test will not see, because test do not have to look there. It

was not written in test

In order to decide whether the automation is necessary you need to answer the question

"Does the advantages of the automation outweigh its disadvantages?" - At least for

some of the functionality of our product. If the disadvantages are not acceptable for this

project, then you should not use the automation.

When making a decision it is worth remembering that alternative - a manual testing,

with its own disadvantages. [11]

5.2 Automated testing tools

Automated testing has many advantages, mainly relating to the high-speed test

execution and the ability to perform the same type of tests repeatedly.

It is necessary to define the types of testing that should be used:

• Functional Testing

• Performance Testing

1. It is necessary to determine which test cases is planned to automate, and which

are not, and for what product components

2. You must define the technology that will be used in the project

5.2.1 Tool selection

For automated testing, it is essential to select a tool before we can use it. The

requirements for test automation tools are listed below:

1. Free

2. Cross platform run

3. Big community

4. Easy to learn

5. The possibility of using continuous integration (need of Jenkins or TeamCity)

6. Ability to develop test code in a modern IDE (JetBrains IntelliJ IDEA)

7. Accuracy of emulating user actions in the browser

34

The tool we need must meet all these requirements. It is necessary to look more closely

at some of the popular test automation tools to know if they support those requirements.

5.2.2 HP QuickTest Professional

HP Unified Functional Testing is the primary tool for automating functional testing of

HP (HP Quick Test Professional). This tool can automate functional and regression tests

by recording user actions while working with the application under test, and then

executes the recorded actions to verify the functionality of the software.

The recorded actions saved as scripts. Scripts can be displayed in the tool such as

VBScript (expert view) or as visual sequential steps with actions (keyword view). Each

step can be edited and checkpoints can be added to it, which compare the expected

result with the exact result. [12]

This tool is not suitable because of the following points:

1. It is not free

2. Cross platform run – only Windows

3. Ability to develop test code in a modern IDE – Visual Studio

5.2.3 IBM Rational Functional Tester

It is also a paid tool.

Rational Functional Tester provides testers automated testing tools that let you perform

regression testing, functional testing, data-driven testing and user interface testing.

Using IBM Rational Functional Tester as a management tool, the testing process

divided into three phases:

• Recording. The test script written "on the fly" as the user works with the

application. You can also insert verification points to test the system's response

and make test scripts dependent on the data to execute the same script with

different sets of input data

• Improvement. Adding code that performs a variety of functions. Typical changes

to test scenarios are conditional branching, refactoring, and exception handling

• Reproduction. Running scripts that emulate actions that the user of the

application performed while writing the test. Discrepancies are recorded, and the

35

tester can conclude whether the application works well or regression testing has

identified problems [13]

This tool is not suitable because of the following points:

1. It is not free

2. Cross platform run – recorder not supported on Linux

5.2.4 AutoIt

AutoIt v3 is a free scripting language designed to automate the Windows GUI and

create general-purpose scripts. It uses a variety of simulation operations involving the

use of keys, mouse movements and window / control elements to automate tasks in

cases where the use of other languages is impossible or unreliable. AutoIt has a small

size and does not require the presence of any third-party libraries in the system.

AutoIt was designed to be as autonomous as possible, not using external dll files or the

registry, so that its use was safe on servers. Scripts can be compiled into stand-alone

programs using Aut2Exe.

AutoIt uses syntax similar to BASIC syntax, which means that most people who have

ever written programs in high-level languages will easily understand it. [14]

Simple test has been created (Figure 3):

Steps:

• Run – Launch browser and open page https://cloud.3dprinteros.com

• Sleep(5000) – Timeout 5 second is needed because

• Send('sample@gmail.com') – Write in first text box on page email

• Send('{TAB}') – emulates pressing the TAB button on your keyboard

 Run("C:\... \chrome.exe --start https://cloud.3dprinteros.com", "")

 Sleep(5000)

 Send('sample@gmail.com')

 Send('{TAB}')

 Send('password')

 Send('{ENTER}')

 _ChromeShutdown()

Figure 3. AutoIt simple test

36

• Send('password') – Write in first text box on page ‘password’

• Send('{ENTER}') – emulates pressing the ENTER button on your keyboard

This tool is not suitable because of the following points:

• Cross platform run – only windows

• Can’t work in Intellij Idea

This automation tool is pretty simple to use and is free, but it was not selected for

testing, because the browser Google Chrome is poorly supported. This tool can be well

tested in Internet Explorer and Opera (old version 9.2), but it is not suitable for our

system. This tool can work only on windows.

5.2.5 Selenium

Selenium is a free automation tool from the Company OpenQA.org. It’s a set of

multiple tools, each of which assumes its own approach in test automation. In aggregate

Selenium, tool set provides a rich set of capabilities specifically assembled for testing

all types of Web applications. One of the key features of Selenium is the ability to run

the same test in different browsers. It supports different operating systems: Mac OS,

Microsoft Windows, and Linux.

«Selenium WebDriver» and «Selenium IDE» was used in this project, is necessary to

tell more about them:

• Selenium 2 (Selenium WebDriver) - a software library to control the browser.

The short name WebDriver is also often used. Sometimes it said that this is a

"browser driver", but in fact, it is a whole family of drivers for different

browsers, as well as a set of client libraries in different languages, allowing you

to work with these drivers. WebDriver supports the following browsers and

operating systems: Google Chrome; Internet Explorer; Firefox; Opera;

HtmlUnit; Android; iOS 3+ to 3.2+ phones and tablet

• Selenium IDE is a plug-in to the Firefox browser that can record user actions,

play them, and generate code for WebDriver or Selenium RC, in which the same

actions are performed. In general, this is a "Selenium recorder". Testers who do

not know how (or do not want to) program, use Selenium IDE as an independent

product, without converting the recorded scripts into program code [9]

37

Selenium is suitable for all requirements. That is why Selenium has been selected. For

this project, it was required as quick as possible to learn how to test and to write

automated tests. «Selenium» is suitable for novice testers by its simplicity. It is

important that this automation tool is free. It can be configured for almost any browser

and even mobile phones. In addition, criterion was the fact that it supports Linux and

Microsoft Windows.

5.3 Tools used for testing

In this project was used Selenium WebDriver, which was described above. To automate

the project was used build Maven. Description from the official site: “Apache Maven is

a software project management and comprehension tool. Based on the concept of a

project object model (POM), Maven can manage a project's build, reporting and

documentation from a central piece of information.“ [15]

5.3.1 JUnit 4 Vs TestNG – Comparison

Also, was used Framework TestNG. Test Java Framework was the choice of: JUnit4 or

TestNG. Because they both provide good performance and simple in the study. Below,

you can see the difference between them. This table taken from website Mkyong [16]

(Table 5):

Feature JUnit 4 TestNG

test annotation @Test @Test

run before all tests in this

suite have run
— @BeforeSuite

run after all tests in this suite

have run
— @AfterSuite

run before the test — @BeforeTest

run after the test — @AfterTest

run before the first test

method that belongs to any of

these groups is invoked

— @BeforeGroups

run after the last test method

that belongs to any of these

groups is invoked

— @AfterGroups

Table 5. JUnit 4 Vs TestNG Comparison

38

run before the first test

method in the current class is

invoked

@BeforeClass @BeforeClass

run after all the test methods

in the current class have been

run

@AfterClass @AfterClass

run before each test method @Before @BeforeMethod

run after each test method @After @AfterMethod

ignore test @ignore @Test(enbale=false)

expected exception
@Test(expected =

ArithmeticException.class)

@Test(expectedExceptions =

ArithmeticException.class)

timeout @Test(timeout = 1000) @Test(timeout = 1000)

JUnit 4 is considered to be faster than TestNG, but in this table can be seen that in

TestNG more functionality. The downside TestNG is that the TestSuite is necessary to

create in the XML file. Criterion for choosing was the fact that that the system of

priorities is supported in TestNG and @BeforeTest @AfterTest. “In JUnit 4, we have to

declare “@BeforeClass” and “@AfterClass” method as static method. TestNG is more

flexible in method declaration; it does not have these constraints.” [16]

5.4 Examples of automated tests

In this thesis work, in front of me there was a task to implement automated testing for

«3dprinteros» system. The tests are designed for checking the basic functionality that is

used frequently, such as authorization, all the buttons and headers.

5.4.1 3DPrinterOS Client Testing

Since the Client runs in the browser, all the functionality was tested with Selenium tests.

There were tested (Figure 4):

• Test TestFullWizard (Appendix 1) – Check "Wizard" for all buttons and texts

• Log In page – on the login page was checked that all the buttons are working

and the email validation is working correctly

• Log out – The webpage and software is closing correctly after exiting the system

39

• Test TestSetupCamera, TestRestartCamera: The camera has been tested only on

the change of the radio buttons. Since the camera is working or not, can only be

checked visually

• Button „Go to your account now” testing that new 3DPrinterOS page is opened

with your account

• Test TestDetectNetworkPrinters verifies that the correct text is given, if the

printer is connected

• Test TestEnableDisableCloudSync verify that Enable CloudSync button text

changes correctly

• Test TestRestoreDefaultSettings – checks, that the new window is opened with

the correct text

• Test TestSkipWizard – verifies that the Skip button brings us back to the main

page

• Test TestViewLogs – verifies that the View Logs button opens a page with logs

and a button

Figure 4. Testing Client

40

For the "Web Client" 12 tests were done. We have tests for all buttons and main

functions of the client. Time to run these tests are spent very little, only 3 minutes. More

time is spent on re-check all elements and rewrite test if something has changed.

5.4.2 3DPrinterOS Cloud Testing

All tests were originally created in the Selenium IDE and looked like this in the browser

(Table 6, 7, 8):

 testSignIn

1 open /sign

2 type id=signinUsername sample@email.com

3 type id=signupPassword sample password

4 clickAndWait name=signIn

5 click css=#uploadfiles_3dos > a.close

Steps in table:

1. Open webpage https://cloud.3dprinteros.com/sign/

2. Type in first text box email: sample@email.com

3. Type in second text box sample password

4. Click button Sign In and wait for page to open

5. Click button Close in popup

This test checks the user's authorization by repeating his steps.

 TestDashboard

1 open /dashboard/

2 clickAndWait link=World statistic

3 verifyElementPresent link=World statistics

4 verifyElementPresent link=My printing history

5 verifyText css=h4 Overview

Table 6. Example of the test SignIn

Table 7. Example of the test Dashboard

https://cloud.3dprinteros.com/sign/
mailto:sample@email.com

41

Steps in table:

1. Open webpage https://cloud.3dprinteros.com/dashboard/

2. Click menu link World statistic and wait for page to open

3. Verify if link World statistics present

4. Verify if link My printing history present

5. Verify if header text is Overview

This test verifies that the Dashboard menu item opens the desired page and it has all the

necessary links, and their text is right.

 TestProfileOverview

1 open /myfiles/

2 click id=menuitem_account

3 verifyText css=div.head_label Profile overview

4 verifyText css=div.info_block > div exact:License: FREE

5
waitForText //div[@id='user_submenu']/div[2]/div[2] Storage available: 10 GB

6
verifyText //div[@id='user_submenu']/div[2]/div[2] Storage available: 10 GB

7
verifyText //div[@id='user_submenu']/div[2]/div[3] Bandwidth available: 10 GB

8 verifyText link=Profile Settings Profile Settings

9 verifyText link=Change Password Change Password

10 verifyText link=Sign out Sign out

Steps in table:

1. Open webpage https://cloud.3dprinteros.com/myfiles/

2. Click link Profile Overview text

3. Check if header text is Profile overview

4. Check if License: FREE

5. Wait for text present Storage available: 10 GB

Table 8. Example of the test ProfileOverview

https://cloud.3dprinteros.com/dashboard/
https://cloud.3dprinteros.com/

42

6. Verify if text in block with xpath //div[@id='user_submenu']/div[2]/div[2] is

Storage available: 10 GB

7. Verify if text in block with xpath //div[@id='user_submenu']/div[2]/div[3] is

Bandwidth available: 10 GB

8. Verify if link text Profile Settings is present

9. Verify if link text Password is present

10. Verify if link text Check Sign out is present

This test verifies that the menu item opens the Profile Overview page and it has all the

necessary links, and their text is right.

Selenium WebDriver test examples

If we export from Selenium IDE testSignIn we will find this code (Figure 5):

In the code presented in Appendix 2 you can see how much code we've got, although

the test is quite small.

As a result, with small changes, we have a code like this (Figure 6) and full version in

(Appendix 3):

@Test

public void testSignIn() throws Exception {

 driver.get(baseUrl + "/sign/");

 driver.findElement(By.id("signinUsername")).sendKeys(username);

 driver.findElement(By.id("signinPassword")).sendKeys(password);

 driver.findElement(By.name("signIn")).click();

 driver.findElement(By.cssSelector("#uploadfiles_3dos >

a.close")).click();

}

Figure 5. Selenium Test Sign In

@Test

public void testSignIn () {

 webDriver.get(BaseUrl);

 getElement(By.id("signinUsername")).sendKeys(Username);

 getElement(By.id("signinPassword")).sendKeys(Password);

 getElement(By.name("signIn")).click();

 getElement(By.cssSelector("#uploadfiles_3dos > a.close")).click();

}

Figure 6. Selenium changed Test Sign In

43

If these 2 tests compare, we can see that a variety of methods was removed, repeated in

each generated test. As a result, the test is simpler and occupies less space.

13 tests have been created covering verification of all links, buttons, and text captions

on 3DPrinterOs Cloud webpage. Tests (Figure 7):

• TestActivePrinters, TestInactivePrinters – verify that the button “Printers” works

and opens the desired page. All the buttons and headers on the page are right

• TestClientDownload – verify that the link to the client download file with the

correct size

• TestDashboard – verify that the button “Dashboard” works and opens the

desired page. All the buttons and headers on the page are right

• TestLiveViewWall – verify that the page exists and writes “No connected

cameras”

• TestLogin – user authorization check

• TestMyFilesButtons – verify that the button “My Files” works and opens the

desired page. All the buttons and headers on the page are right

• TestMyProject – verify that the button “My Files” works and opens the desired

page. Popup „Add new files“ opens and all the buttons are right

• TestProfileOverview – verify that the button “Profile Overview” works and

opens the desired page. All text on the page is correct

• TestSearch – check that all links on “Search” page are working and desired page

opens correctly

• TestSearchLinks – search validation is checked

• TestSettingsUserId – check that the user settings open and buttons on this page

works correctly

• TestSignInOut – user authorization and verification check

• TestUploadFiles – verification of all buttons and headers on the “Upload Files”

page

44

Thereby, we have tests for all buttons and main functions of the site and the client. Tests

using mail, various files for changes or require printing is not automated, because they

require visual inspection, to say exactly whether they are working properly.

5.5 Problems and bugs

Sometimes tests can produce an error simply because they have broken down. Quite

often we have to figure out why they broke. This happens because of the fact that the

project is updated periodically which means functionality, css and buttons names

changes too.

Quite a big problem, when as a result of testing is an issue which seems to be little and

fix is not difficult, but none of the developers did not want to correct such minor

problems particularly associated with the GUI. This is a communication problem with

the developer.

We must not forget that name of elements on the page may change. When you create a

test, you have to remember to refactor code for better maintenance in the future. And

perhaps, the elements need to be renamed in the great number of tests. To avoid such

problems Web Elements can be taken in a separate list and later change them there.

Figure 7. 3DPrinterOS Tests

45

The great number of errors was found on XSS attacks. XSS is the abbreviation of the

term decrypted as "cross-site scripting". In the actions of cross-site scripting and the

main goal of XSS is the obtaining of user's cookies through the HTTP page of the

HTML page.

Unlike SQL injection, this type of attack, on the one hand is safe for servers and is

dangerous for site users. On the other hand, if you steal admin cookies, then you will get

access to the administration panel. The hacker will have more chances to get to the

database. [17] There were no checks on XSS injection in almost every text box. It was

possible to save this code: <script>alert("test");</script> and receive a message on the

screen (Figure 8).

Also during the “Search” testing was found error – Internal Server Error (Figure 9).

Figure 8. XSS alert

Figure 9. Internal Server Error

46

To find it, you had to write symbols «> <_ |?"» in a search textbox. After that, the site

stopped working for a short period.

5.6 How much time is spent

As a result, we can say that on the complete Cloud system testing with automatic tests

spent 6 minutes to run and pass all the tests (Figure 10) and approximately 20 - 30

minutes to change all tests. Changes made by developers in recent times were tested in

about an hour.

Total tests for Cloud webpage were made 13, but 26 turned out, because for every test

also the test of authorizing was started. This was done in order to be able parallelize the

test launch in the future and reduce the time of their passage even more.

A total of 12 tests were done for the Client. As a result, we can say that on the complete

Client testing with automatic tests spent 3 minutes to run and pass all the tests (Figure

11) and approximately 20 - 30 minutes to change all tests. Changes made by developers

in recent times were tested in about half an hour.

Figure 10. Cloud Auto Testing Time

47

We have tests for all buttons and main functions of the site and the client.

In summary, it is possible to say that testing went well. Many problems were found,

both with an interface and with a base functionality. Time spent on basic functionality

testing; both the client and the website has been reduced. Automatic tests helped

simplify a testing process and get rid of the routine repetition of everyday tests by tester.

However, it is not worth to give up on the manual testing. Manual testing helps to

identify the problems of logic. Automated testing helps to note problems in the recently

running functional and correct them.

Figure 11. Client Auto Testing Time

48

6 Summary

Manual and automatic testing should be used together. Because we will get the most

completely tested and better product. Manual testing helps to identify the problems of

logic. On the other hand, tester may not notice some small changes that will record test.

Testing is not only comparison of predefined test steps and comparison of results, but

also visual control. Therefore, for more complete testing, human intelligence is also

needed.

My goal was to test the project as much as possible and cover the product code with

automatic tests. To do this, first was required to study the product under development,

and to understand what kind of functionality will be used on a daily basis. Most of the

buttons links and headers were checked using automated tests. All that is needed to be

tested visually has been tested by hand. For example, the camera and printing were

tested manually.

In this system pretty much need to be tested, but you cannot automate everything. Many

things can only be checked visually and manually. A large number of tests have been

created covering verification of all links, buttons, and text captions on 3DPrinterOs

Cloud webpage and 3DPrinterOS Client. As a result, we can say that the client manual

testing spent about 2-3 hours, and a complete testing system Cloud spent 3 - 5 hours.

On the complete Cloud system, testing with automatic tests spent 6 minutes to run and

pass all the tests and approximately 20-30 minutes to change all tests. Changes made by

developers in recent times were tested in about an hour. On the complete Client testing

with automatic tests was spent 3 minutes to run and pass all the tests and approximately

20-30 minutes to change all tests. Changes made by developers in recent times were

tested in about half an hour.

In this work was also discussed, what problems occur when you test 3D print.

When you print on 3D printer, you need to consider many factors, such as the heating

temperature of the table, if it is heated, or the environment. During printing, the model

49

may come unstuck from the bed, because of the fact that the first print layer is not

glued.

It was considered, how to choose instruments for testing, the studied methodologies and

types of tests are described.

In summary, it is possible to say that testing went well. Many problems were found,

both with an interface and with a base functionality. Testing helped to simplify a testing

process and get rid of the routine repetition of everyday tests by tester.

Time spent on basic functionality testing, both the client and the website reduced.

50

References

[1] H. L. Grippa, "Техносфера," 2006. [Online]. Available:

http://tekhnosfera.com/avtomatizatsiya-testirovaniya-programmnyh-prilozheniy-metodom-

klyuchevyh-sostoyaniy. [Accessed 18 March 2016].

[2] "3dprinteros," [Online]. Available: https://www.3dprinteros.com/how-it-works/. [Accessed

17 March 2016].

[3] "Github," [Online]. Available: https://github.com/3dprinteros/3dprinteros-client. [Accessed

04 March 2016].

[4] "Qa-helper," [Online]. Available: http://qa-helper.com/agile-scrum-kanban-xp/. [Accessed

08 April 2016].

[5] "Tutorialspoint," [Online]. Available:

http://www.tutorialspoint.com/software_testing/software_testing_types.htm. [Accessed 20

March 2016].

[6] "Tutorialspoint," [Online]. Available:

http://www.tutorialspoint.com/software_testing/software_testing_methods.htm. [Accessed

21 March 2016].

[7] "Softwaretestingfundamentals," [Online]. Available:

http://softwaretestingfundamentals.com/software-testing-levels/. [Accessed 22 March

2016].

[8] J. F. H. Q. N. Cem Kaner, Testing Computer Software, Second Edition, Canada:

Publishing by John Wiley & Sons, Inc, 1999.

[9] "Selenium," [Online]. Available:

http://www.seleniumhq.org/docs/01_introducing_selenium.jsp#introducing-selenium.

[Accessed 25 March 2016].

[10] "Testing excellence," [Online]. Available: http://www.testingexcellence.com/test-

automation-advantages-and-disadvantages/. [Accessed 06 April 2016].

[11] "Protesting," [Online]. Available:

http://www.protesting.ru/automation/functional/whytoauto.html. [Accessed 26 March

2016].

[12] "Automation consultants," [Online]. Available: http://www.automation-

consultants.com/index.php/products/hp-products/hp-unified-functional-testing-quick-test-

professional. [Accessed 09 April 2016].

[13] "Automation consultants," [Online]. Available: http://www.automation-

consultants.com/index.php/products/ibm-products/rational-functional-tester. [Accessed 09

April 2016].

[14] "Autoitscript," [Online]. Available: https://www.autoitscript.com/site/autoit/. [Accessed 05

April 2016].

[15] "Maven," [Online]. Available: https://maven.apache.org. [Accessed 20 April 2016].

[16] "Mkyong," [Online]. Available: www.mkyong.com/unittest/junit-4-vs-testng-comparison.

[Accessed 15 April 2016].

[17] "Acunetix," [Online]. Available: http://www.acunetix.com/websitesecurity/cross-site-

scripting/. [Accessed 05 April 2016].

51

Appendix 1 – Test Wizard

public class TestFullWizard extends TestClient {

@Test

public void testFullWizard() throws Exception {

 webDriver.get(BASE_URL_CLIENT + "/");

 getElement(By.xpath("//input[@value='Start wizard']")).click();

 for (int second = 0; ; second++) {

 if (second >= 60) fail("timeout");

 try {

if("Welcome!".equals(getElement(By.cssSelector("h3")).

getText())) break;

 } catch (Exception e) {}Thread.sleep(1000);

 }

assertTrue(getElement(By.cssSelector("center> div")).

getText().contains("Welcome!"));

getElement(By.xpath("//input[@value='Next']")).click();

assertEquals(getElement(By.cssSelector("h3")).

getText(), "Connect your printer");

assertTrue(getElement(By.cssSelector(

"div>form> input.middle_button")).getAttribute("value").

contains("virtual printer"));

assertEquals(getElement(By.xpath("//div[@id='printers_info']/p/b")).

getText(), "No printers detected");

getElement(By.xpath("//input[@value='Next']")).click();

assertEquals(getElement(By.cssSelector("h3")).

getText(), "Select your printer type");

getElement(By.xpath("//input[@value='Next']")).click();

assertEquals(getElement(By.cssSelector("h3")).

getText(), "Select live view mode");

assertEquals(getElement(By.cssSelector("div.checkbox_div > p")).

getText(), "Dual camera");

assertEquals(getElement(By.xpath("//form[@id='switch_camera']/div/p[2]
")).getText(), "HD camera");
assertEquals(getElement(By.xpath("//form[@id='switch_camera']/div/p[3]
")).getText(), "Multi camera");

 assertEquals(getElement(

By.cssSelector("font[title=\"Current live view mode\"]")).

getText(), "Disable camera");

 getElement(By.xpath("//input[@value='Next']")).click();

 assertEquals(getElement(By.cssSelector("h3")).

getText(), "Using the 3DPrinterOS Tray icon");

 getElement(By.xpath("//input[@value='Next']")).click();

 assertEquals(getElement(By.cssSelector("h3")).

getText(), "Congratulations!");

 getElement(By.xpath("//input[@value='Next']")).click();

52

 assertEquals(getElement(By.cssSelector("h3")).

getText(), "Renaming your printer");

 getElement(By.xpath("//input[@value='Next']")).click();

 assertEquals(getElement(By.cssSelector("h3")).

getText(), "Sharing access with Workgroups");

 getElement(By.xpath("//input[@value='Next']")).click();

 assertEquals(getElement(By.cssSelector("h3")).

getText(), "CloudSync");

 getElement(By.xpath("//input[@value='Next']")).click();

 assertEquals(getElement(By.cssSelector("h3")).

getText(), "Restore default settings");

 getElement(By.xpath("//input[@value='Next']")).click();

 assertEquals(getElement(By.cssSelector("h3")).

getText(), "Reporting problems");

 getElement(By.xpath("//input[@value='Next']")).click();

 assertEquals(getElement(By.cssSelector("h3")).

getText(), "Happy Printing!");

 getElement(By.xpath("//input[@value='Complete']")).click();

 assertEquals(getElement(By.xpath("//h3[2]")).

getText(), "Printers connected to\ncloud.3dprinteros.com");

 }

}

53

Appendix 2 – Test SignIn

public class Test {

 private WebDriver driver;

 private String baseUrl;

 private boolean acceptNextAlert = true;

 private StringBuffer verificationErrors = new StringBuffer();

 @BeforeClass(alwaysRun = true)

 public void setUp() throws Exception {

 driver = new FirefoxDriver();

 baseUrl = "https://cloud.3dprinteros.com/";

 driver.manage().timeouts().implicitlyWait(30, TimeUnit.SECONDS);

 }

 @Test

 public void test() throws Exception {

 driver.get(baseUrl + "/");

 driver.findElement(By.id("signinUsername")).clear();

 driver.findElement(By.id("signinUsername")).sendKeys("sample@email.com");

 driver.findElement(By.id("signupPassword")).clear();

 driver.findElement(By.id("signupPassword")).sendKeys("sample password");

 driver.findElement(By.name("signIn")).click();

 driver.findElement(By.cssSelector("#uploadfiles_3dos >a.close")).click();

 }

 @AfterClass(alwaysRun = true)

 public void tearDown() throws Exception {

 driver.quit();

 String verificationErrorString = verificationErrors.toString();

 if (!"".equals(verificationErrorString)) {

 fail(verificationErrorString);

 }

 }

 private boolean isElementPresent(By by) {

 try {

 driver.findElement(by);

 return true;

 } catch (NoSuchElementException e) {

 return false;

 }

 }

 private boolean isAlertPresent() {

 try {

 driver.switchTo().alert();

 return true;

 } catch (NoAlertPresentException e) {

 return false;

 }

 }

54

 private String closeAlertAndGetItsText() {

 try {

 Alert alert = driver.switchTo().alert();

 String alertText = alert.getText();

 if (acceptNextAlert) {

 alert.accept();

 } else {

 alert.dismiss();

 }

 return alertText;

 } finally {

 acceptNextAlert = true;

 }

 }

}

55

Appendix 3 – Refactored Test SignIn

public class TestLogIn {

 public WebDriver webDriver;

 @BeforeTest

 public void beforeTest() {

 WebDriverFactory.startBrowser(true);

 webDriver = WebDriverFactory.getDriver();

 }

 @Test()

 public void signIn() {

 this.signInWithParameters(BASE_URL_WEB, USER_NAME, PASSWORD);

 }

 public void signInWithParameters(String BaseUrl,

String Username, String Password) {

 webDriver.get(BaseUrl);

 getElement(By.id("signinUsername")).sendKeys(Username);

 getElement(By.id("signinPassword")).sendKeys(Password);

 getElement(By.name("signIn")).click();

 getElement(By.cssSelector("#uploadfiles_3dos > a.close")).click();

 }

 @AfterClass

 public void afterClass() {

 WebDriverFactory.finishBrowser();

 }

 public boolean isElementPresent(By by) {

 try {

 getElement(by);

 return true;

 } catch (NoSuchElementException e) {

 return false;

 }

 }

 public WebElement getElement(By by){

 return webDriver.findElement(by);

 }

}

