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Abstract

Large Language Models (LLMs) have significantly impacted software development by
automating code generation tasks, yet challenges remain in producing accurate solutions
to complex programming problems. This thesis evaluates how Test-Driven Development
(TDD) practices can enhance the effectiveness and reliability of LLM-generated code
when addressing complex software tasks.

The research begins by analyzing different prompt creation methods, using textual de-
scriptions, test cases, and their combination, to identify which approach yields the most
accurate code generation from LLMs. Following this, the study introduces an iterative
TDD-based approach to LLM-based code generation, comparing it to zero-shot methods
in terms of correctness and efficiency.

Quantitative evaluations conducted on the coding benchmarks MBPP and HumanEval
demonstrate that integrating TDD practices significantly improves code generation accu-
racy and reliability. Furthermore, a case study on custom-designed complex scenarios
shows that the iterative TDD approach consistently outperforms zero-shot methods.

This thesis provides valuable insights into practical techniques for integrating TDD prin-
ciples into LLM-based code generation, offering a clear strategy for software developers
aiming to leverage LLM capabilities for complex software engineering challenges.

The thesis is written in English and is 67 pages long, including 6 chapters, 4 figures and 5
tables.
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Annotatsioon
Testipõhise arenduse hindamine LLM-koodigenereerimisel keerukate

probleemidega

Suured keelemudelid (LLMid) on oluliselt mõjutanud tarkvaraarendust, automatiseerides
koodigeneratsiooni ülesandeid, kuid täpsete lahenduste loomine keerukatele program-
meerimisprobleemidele on endiselt väljakutse. Käesolev lõputöö hindab, kuidas tes-
timisel põhineva arenduse (TDD) meetodid võivad suurendada LLMide genereeritud koodi
tõhusust ja usaldusväärsust keerukate tarkvaraülesannete lahendamisel.

Uurimistöö algab erinevate sisendite loomise meetodite analüüsiga, kasutades tekstilisi
kirjeldusi, testjuhtumeid ning nende kahe kombinatsiooni, et tuvastada, milline lähenemine
tagab kõige täpsema koodigeneratsiooni LLMide abil. Seejärel tutvustatakse iteratiivset,
TDD-põhist lähenemist LLM-põhises koodigeneratsioonis, võrreldes seda nullõppe mee-
toditega nii täpsuse kui ka efektiivsuse osas.

Kvantitatiivsed hinnangud, mis viidi läbi koodikirjutamise võrdlusuuringutega MBPP
ja HumanEval, näitavad, et TDD praktikate integreerimine parandab oluliselt koodigen-
eratsiooni täpsust ja usaldusväärsust. Lisaks näitab spetsiaalselt loodud keeruliste stse-
naariumite juhtumiuuring, et iteratiivne TDD-lähenemine ületab järjepidevalt nullõppe
meetodeid.

Antud lõputöö pakub praktilisi teadmisi TDD põhimõtete integreerimiseks LLM-põhisesse
koodigeneratsiooni ning esitab selge strateegia tarkvaraarendajatele, kes soovivad rak-
endada LLMide võimalusi keerukate tarkvaraarendusprobleemide lahendamisel.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 67 leheküljel, 6 peatükki, 4 joonist,
5 tabelit.
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List of Abbreviations and Terms

LLM Large Language Model
TDD Test-Driven Development
MBPP Mostly Basic Python Problems
SFP Simple Function Point
TF Transactional Functions
DF Data Functions
CoT Chain-of-Thought
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1. Introduction

Large Language Models (LLMs) are powerful tools capable of performing a wide range of
natural-language tasks. Tools such as Copilot [1], ChatGPT [2], Claude [3], and others
have revolutionized the way software development is carried out. By providing quick
suggestions and generating code for trivial problems, they have already been shown to
increase the speed and efficiency of the development process [4]. However, these tools and
their underlying models are still far from perfect. They often fail to produce correct output,
so relying on them is not always advantageous [4].

Using these tools can be frustrating, particularly when the problem in question is highly
complex. For tasks that involve extensive logic, the LLM often cannot understand the
entire problem in one go. Researchers and practitioners have explored several strategies
to mitigate this limitation [5, 6, 7, 8]. From an end-user perspective, the most promising
approach so far is prompt engineering—supplying the LLM with additional, carefully
crafted instructions [5, 6]. The instructions help to steer the generation in the correct
direction, by disallowing certain actions or forcing certain patterns to the generation. That
said, putting the instructions together is quite difficult as there are no clear rules how the
rules affect the models. Therefor a lot of testing in this field is needed, to find possible
solutions.

Various Test-Driven Development (TDD) techniques have shown good results in different
coding benchmarks demonstrating their value for guiding LLMs [5, 6]. These approaches
use unit tests as a directing mechanism for the code generation by providing a well
structured instructions to the LLM. Furthermore the same tests can also be used as a
verification tool, where the test run feedback can be automatically used to enhance the
results even further. And while it has shown the potential in solving simple problems, little
research has been done in validating the TDD practices with complex problems [9, 10].

This thesis evaluates TDD practices in LLM-based code generation and introduces an
iterative, TDD-driven workflow. Its goal is to identify strategies that improve the success
rate and reliability of generated code, enabling existing LLMs to tackle more complex
tasks.
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1.1 Motivation

LLMs are an amazing tool for enhancing the productivity of software development. LLMs
can produce simple functionality and suggest valuable completions more quickly than
engineers, reducing development time. For more complex tasks, LLMs can still offer
insights, but achieving a successful generation remains a challenge. Incorrect generations
create additional noise that the engineer has to work through, further reducing productivity.

As with any tool, knowing how to use the tool helps you use its full potential. For
LLM-based tools, however, the technology is still fairly new, and practical know-how is
limited. While theoretical benchmarks can show excellent results [5, 6], translating those
gains to everyday work is not straightforward. Therefore, separate studies on real-world
use cases should be conducted to reveal the models’ true potential.

The thesis begins with an analysis of how the input prompt affects the generations produced
by LLMs. Several methods are compared: using textual descriptions, test cases, and a
combination of both. While textual descriptions are the most natural way to explain
problems, the TDD framework attempts to emphasize the importance of test cases by
entirely replacing the problem description [11]. However, this approach has been criticized
for overly limiting the input. Therefore, a combination of textual description and tests has
been suggested as the optimal method for clearly understanding the problem [12].

In the second part of the thesis, TDD practices are used to develop an iterative approach that
is expected to yield better generation results compared to zero-shot methods. Incorporating
the developer as a controller in the generation process is intended to enhance the capabilities
of LLM-based tools, enabling developers to tackle more complex problems with the same
tools.

1.2 Research objectives

The primary objective of this thesis is to evaluate the effectiveness of TDD practices in
enhancing the performance of LLMs for code generation, particularly when dealing with
complex problems.

To achieve this goal, the research addresses the following key questions:

1. Which approach is most efficient for prompt creation in LLM-based generation:
textual descriptions, test cases, or a combination of both?
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2. How does utilizing error messages as a feedback-loop mechanism affect the correct-
ness of generated outputs?

3. How can an iterative generation approach be effectively implemented using TDD
practices?

4. Do the results obtained from an iterative generation approach differ significantly
from zero-shot approaches given a fixed generation cost?

To address these questions, a quantitative study will be conducted on publicly available
coding benchmarks MBPP [13] and HumanEval [14] to evaluate best practices of TDD
and their effectiveness. Finally, a case study will be carried out using a complex problem
statement designed to reflect a real-world software-development scenario. The problem
will be approached using multiple methods and compared to evaluate differences in code
correctness and usability.
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2. Background

In this chapter we first examine the history and development of LLMs, with a particular
focus on tools created to assist software development. Next, we provide an overview of
TDD and explain how these practices relate to LLM-based code generation. Finally, we
review the existing work in this field, outline their processes, and identify the research
gaps that this thesis tries to answer.

2.1 Large Language Models

LLMs are natural-language-processing models that have a human-like ability to understand
and generate text. The core idea behind current state-of-the-art models is based on
transformer architectures, which use self-attention mechanisms to process natural language
[4]. Transformers read all the words from the input at once instead of one by one. Using
self-attention, each word checks every other word and decides how much it should “pay
attention” to them. By repeating this process in several layers, the model builds a detailed
context of the whole sentence, which it then uses to understand or generate text [4].

The largest models now use up to trillions of parameters, enabling them to comprehend
very complex ideas and concepts [4]. To reach this scale, they are trained on huge amounts
of data. As a result, tools like ChatGPT [2] and Claude [3] can act as universal assistants
for a wide range of jobs. Even when a model has not seen the exact data before, it can
reason about the topic and often provide an accurate answer.

2.1.1 History and development

Although language models have existed for decades, the last breakthrough with wide
commercial use came only after the introduction of transformer models [15]. The first
transformer-based LLM offered commercially was OpenAI’s GPT-3, released via the
OpenAI API in June 2020 [4]. Since then, many companies have begun offering their own
models, including Anthropic, Meta, Google, and others.

Besides the development of LLMs, there has also been a resurgence of LLM-based tools.
These tools act as a mid-layer that applies LLMs in specific ways. For coding, the most
famous example is likely GitHub Copilot [1], which integrates with various IDEs to give
developers convenient access to LLM chat functionality.
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2.1.2 Application in software development

LLM-based tools have become irreplaceable for software development, replacing and
automating various parts of the job.

Code generation

LLMs can generate functional code snippets, complete partial implementations, and
provide intelligent code suggestions across multiple programming languages. Tools such
as GitHub Copilot [1] and OpenAI Codex [16] leverage these capabilities to help developers
write code more efficiently and accurately.

Automated testing and debugging

LLMs can generate small helper functions or individual logic blocks. These intelligent
suggestions provide an effective autocomplete capability, boosting developers’ productivity.
Instead of having to consult documentation, built-in tools such as Copilot explain the
relevant code patterns in seconds.

Software design and architecture

LLMs can also suggest ways to design systems. Their strong pattern-recognition abilities
often point in the right direction, helping developers produce better-designed solutions.
These suggestions are useful both for generating initial ideas and for refining an existing
architecture.

2.1.3 LLM-based tools

The first commercially available applications were general-purpose conversational search
engines such as ChatGPT [2]. These systems quickly proved more helpful for many
information-seeking tasks than traditional search engines like Google, which in turn
motivated competitors such as Claude, Gemini, and others.

Beyond these general-purpose chatbots, an explosion of domain-specific tools has emerged,
all powered by LLMs. For researchers, Elicit [17] and ResearchRabbit [18] can summarize
papers, generate citations, and surface relevant studies. In software development, Copilot
[1] and Tabnine [19] integrate directly into popular IDEs, putting LLM assistance at
developers’ fingertips. Meanwhile, text-processing utilities such as Notion AI [20] and
Grammarly [21] provide spelling checks, style improvements, and proofreading.
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2.2 Test-Driven Development

Test-Driven Development (TDD) is a software-development methodology that provides
a clear framework for producing robust, well-tested code. The key idea is to write tests
before implementing the code, thereby defining and constraining the required functionality
in advance. The implementation is then grown iteratively until it satisfies the initial
requirements. This approach helps ensure high code quality and supports a modular design
[4].

Although TDD is not directly discussed in LLM-based code-generation workflows, several
of its principles are adopted to improve results. Two common practices are using unit tests
as part of the prompt and feeding error messages from failing test runs back into the model
similar to the Red-Green-Refactor cycle in TDD [5, 6]. To understand these parallels more
clearly, we first discuss the core TDD practices.

2.2.1 Red-Green-Refactor Cycle

In the iterative approach, the Red-Green-Refactor cycle is used. As the name suggests,
this cycle has three phases, and the goal is to complete one piece of logic by the end of
each iteration. The cycle should therefore be applied only to problems small enough to
understand and solve in a single iteration. If the problem is too large, the cycle should be
restarted on a smaller sub-problem.

Red phase

The red phase begins by writing tests for functionality that does not yet exist. Because
these tests fail, most development tools highlight them in red. Since no implementation is
present, simple mocked values are often used. By starting with a failing test, developers
establish a natural flow in which the newly written logic is always validated immediately,
promoting a quick feedback loop [11].

For more complex logic, the triangulation method can be employed. Triangulation involves
writing several test cases for the same feature to clarify its general behavior and to cover
important edge cases [11].

The red phase can be compared to the prompt creation in LLM-based code generation. The
developer begins by defining the problem in a particular way to gain a clearer understanding
of the task at hand.
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Green phase

The green phase’s goal is to write the minimal amount of code needed to pass the previously
written tests. This locks down the required functionality and clarifies the core of the issue.
If the expected behavior is still unclear, it is acceptable to begin with mocked responses
and generalize the implementation later as new test cases are added. When the task is
trivial, the full solution can be implemented in one step.

Refactor

The final step of the cycle is refactor. Here, both the tests and the implementation are
cleaned up and reorganized into more logical components. It is important not to change
the observable behavior of the code. Frequent test runs help ensure that refactoring does
not introduce regressions. This step is essential for keeping the codebase scalable and
readable.

2.2.2 Benefits and challenges of TDD

The TDD framework was popularized by Martin Fowler as a way to introduce order into
the software-development process and to provide a structured learning curve—especially
for newcomers to the field. By enforcing sound practices, the framework aims to raise the
overall quality of the written code. A few advantages include naturally good test coverage,
clear guidance for writing code, and the continual improvement that comes from regular
refactoring [11].

Although a number of studies have examined TDD, their findings are often mixed [22]. The
main criticism is that TDD is difficult to learn, slowing down developers who are trying
to adopt the new framework. Moreover, it is easy to focus too much on simple, pointless
tests, which can further complicate and slow down software projects [22]. Because the
success of TDD still depends heavily on the interpretation and skill of the engineers, it can
be difficult to quantify the exact value that TDD can give.

2.3 Use of TDD practices with LLMs

LLMs can assist at various stages of the TDD process, enhancing productivity and reducing
manual effort. Different methods aim to automate parts of the workflow, but they share the
common goal of maximizing the correctness of the generated code.
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2.3.1 Prompt engineering

Prompt engineering is the simplest way to guide the generation process. One particularly
effective method is to include test cases directly within the prompt [5]. When test cases
are used, the model benefits from clear and specific constraints, reducing ambiguity in the
instructions. Consequently, the generated code more closely matches the specified require-
ments [5]. This approach helps overcome the ambiguity common in textual prompting, as
test cases provide explicit examples of desired outcomes.

Several strategies exist to improve prompt effectiveness under different scenarios. This
section briefly introduces some key strategies and terms used throughout this thesis.

Zero-shot prompting

Zero-shot prompting is a method in which the model is given only a direct question or task
without any additional examples. This approach generates the most general responses, as
the model treats the input as a broad question. Although zero-shot prompting is simple, it
can lead to inconsistent results, particularly for tasks that require complex reasoning.

Few-shot prompting

For more complex tasks, especially those requiring detailed reasoning, adding a few
representative examples significantly enhances the model’s performance [23]. Few-shot
prompting enables in-context learning by providing the model with specific examples,
guiding the generation towards the desired outcome.

Chain-of-thought prompting

When handling complex tasks like detailed calculations or logical reasoning, simply
providing correct examples may not be sufficient. Instead, explicitly describing each
reasoning step can greatly improve model understanding. This approach, known as
chain-of-thought (CoT) prompting, helps models better grasp challenging logical and
mathematical concepts [23]. CoT prompting can be combined effectively with few-shot
prompting by including multiple detailed examples, further enhancing performance.

Iterative prompting

Iterative prompting involves repeatedly refining and modifying prompts based on earlier
outputs. This method is similar to interacting with chatbots: if an initial answer is
insufficient or incorrect, further prompts clarify or correct the model’s response. Typically,
iterative prompting requires manual intervention, where human input or feedback is
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necessary to guide improvements. However, recent studies have explored automating
this iterative process by having multiple LLM agents collaboratively refine prompts and
responses to achieve higher accuracy and reliability [5, 6].

2.3.2 Iterative feedback loop with test failures

The iterative feedback loop with test failures mirrors the Red-Green-Refactor cycle of
TDD, using an iterative approach to improve code step by step. First, the LLM generates
an initial implementation based on the problem statement and provided test cases. That
code is executed against the tests; any failures or error messages are captured and fed
back to the model [5]. The LLM corrects the issues, produces a revised version, and the
process repeats until all tests pass. In this way, the model incrementally refines the solution,
following the usual developer workflow of debugging and refinement.

This strategy boosts the reliability and correctness of the output, as the LLM systematically
adapts to feedback. Its effectiveness, however, depends on the quality of the initial test
suite and leaves little room for human intervention, since engineers remain outside the
loop.

2.3.3 LLM-generated test cases

Another way to use an LLM is to generate test cases from a given problem description. This
aligns with the core principle of TDD, where tests are written first to clarify requirements
and expected behavior. By prompting the LLM to produce test cases, developers can
automate the creation of input–output pairs and edge cases, guiding the LLM toward better
code.

This method reduces the manual effort of writing tests and accelerates the TDD process,
especially for simple to moderately complex problems. However, the quality and complete-
ness of the generated tests are critical: incomplete or incorrect cases can lead to flawed
implementations [24, 25, 26]. Human review or additional validation steps are therefore
needed to ensure adequate coverage and accuracy.

2.3.4 Multi-agent systems

Multi-agent systems adopt a collaborative framework in which specialized agents—each
assigned a distinct role in the TDD process—work together to enhance LLM-driven code
generation. Typically, several LLM agents simulate a TDD workflow: a test agent produces
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test cases from the problem description, a code agent implements code to satisfy those
tests, and a validation agent runs the tests, validates the code, and feeds back any failures
[5, 6]. This division of responsibilities mirrors the staged nature of a conventional TDD
process.

The aim of these systems is to maximize the potential of LLMs, and they have achieved
strong results on coding benchmarks such as MBPP [13], HumanEval [14], and others [5,
6]. Nonetheless, most existing multi-agent frameworks remain prototype research tools
optimized mainly for benchmark performance. Further work is needed to generalize them
for everyday, real-world applications.

2.3.5 Automatic systems with human feedback

For a more guided approach, human actors can take on supervisory roles within otherwise
automated workflows. This setup combines the speed of automated code generation with
human expertise at critical points.

Implementations vary, but the human role typically involves verifying intermediate results
or specifying additional criteria. The LLM then uses this feedback to adjust its output and
satisfy those requirements, producing more reliable code [27, 7, 28, 8].

2.3.6 Research gaps

Research has demonstrated that applying TDD principles to code generation yields good
results for more simple problems. However, a significant gap remains in clear guidance
on how to use these models effectively in everyday work, especially for highly complex
software-development challenges. Existing studies are often confined to benchmark tasks
and tend to overlook practical engineering practices for deploying the available tools and
models.

This thesis aims to identify methods that maximize the value of LLM-based code-generation
tools.
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3. Solving simple problems

To start exploring how prompts affect code generation, we first look at simpler problems.
This approach is faster since many public datasets are available for LLM evaluation. These
benchmarks clearly show the strengths and weaknesses of language models by offering
problems of different difficulties. By checking how often the generated code passes tests,
we can easily compare different prompting methods.

In this chapter, we examine how different prompt creation methods influence the quality of
generated solutions. We focus on methods similar found in TDD, using unit tests and the
red-green-refactor cycle. We look at solutions created with varying detail levels in problem
descriptions and also study how well models improve solutions when given error feedback.

3.1 Evaluation setup

The two chosen benchmarks are MBPP [13] and HumanEval [14], both commonly used to
measure and compare the performance of LLMs. These benchmarks contain a variety of
problem statements with increasing complexity. This makes them useful for comparing
the success rates of different models in a consistent and quantitative way.

3.1.1 Example problem statements

To understand how different inputs influence code generation, we first compare the problem
statements and test suites provided by each benchmark.

MBPP benchmark

The Mostly Basic Python Programming (MBPP) benchmark contains 974 crowd-sourced
Python problems [13]. Each task is written as a short, free-form description, mirroring the
way entry-level programmers often phrase questions (Listing 3.1).

1 Write a function to find the minimum cost path to reach (m, n) from (0,

0) for the given cost matrix cost[][] and a position (m, n) in

cost[][].

Listing 3.1. MBPP problem statement

Every MBPP problem comes with a small test suite of three assertions on average. The
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tests contain no comments, only direct logic checks (Listing 3.2).

1 "assert min_cost([[1, 2, 3], [4, 8, 2], [1, 5, 3]], 2, 2) == 8",

2 "assert min_cost([[2, 3, 4], [5, 9, 3], [2, 6, 4]], 2, 2) == 12",

3 "assert min_cost([[3, 4, 5], [6, 10, 4], [3, 7, 5]], 2, 2) == 16"

Listing 3.2. MBPP test assertions

HumanEval benchmark

HumanEval, created by OpenAI, consists of 164 Python programming problems designed
for LLM evaluation [14]. Unlike MBPP, each HumanEval task is structured like a function
signature and includes a comment with examples (Listing 3.3).

1 from typing import List

2

3 def has_close_elements(numbers: List[float], threshold: float) -> bool:

4 \"\"\" Check if in given list of numbers, are any two numbers closer to

each other than given threshold.

5 >>> has_close_elements([1.0, 2.0, 3.0], 0.5)

6 False

7 >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)

8 True

9 \"\"\"

Listing 3.3. HumanEval problem statement

The accompanying tests follow the same simple assertion style as MBPP (Listing 3.4).
However, HumanEval provides an average of 7.7 test cases per problem, which is more
than twice the number in MBPP. That said, the tests provided do not provide any descriptive
information, having even the test names as "candidate".

1 assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True

2 assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False

3 assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True

4 assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False

5 assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == True

6 assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True

7 assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False

Listing 3.4. HumanEval test assertions

3.1.2 Evaluation methods

In this thesis, two aspects of code generation were examined in the context of TDD
practices. First, we studied how the amount of detail in the input prompt influences the
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resulting code. We compared solutions generated from a textual description only, unit tests
only, and a combination of both. Second, we investigated whether an iterative feedback
loop can correct a failed output. Each failed solution is executed against the test suite, and
any failure messages are fed back into the model for a new generation.

Because the two benchmarks contain more than one thousand tasks in total, all experiments
were run with an automated evaluation script.

3.2 Evaluating aspects of TDD efficiency

In this section, we describe how the automated evaluation was created and configured.

3.2.1 Test run setup

To handle thousands of test cases across several cycles, we wrote a script that automatically
pulls each problem statement and its tests from the benchmark datasets. The script was
integrated with OpenAI API, using the model 4o-mini [2]. The model choice was taken on
base of low cost to make it sensible to run thousands of generations.

The written functionality allowed to generate solutions based on different inputs and also
run real time test validation on generated code. This allowed to support evaluating both
methods of generation and using the test feedback as an input for correcting generations.

3.2.2 Different methods of generation

From the benchmarks there are in large two sets of available information: problem descrip-
tion and the tests. To evaluate how the input creation affects the generation, the available
information was used to make five different categories of inputs. Those are:

1. Problem description.
2. Test cases.
3. Problem description plus 1 test case.
4. Problem description plus 2 test cases.
5. Problem description plus all test cases.

For each problem, these five categories were used to generate the outputs, which could
later be used to evaluate the importance of the input.
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3.2.3 Feedback loop efficiency

For iterative prompting analysis with the test feedback, additional functionality was added
to the run setup. For this, the setup needed to first run the tests automatically and also
allow the test run information to be fed back to the LLM.

For base case, the problem generation from category problem description with all available
tests was used. For any failing test runs, the feedback system used both the current state
of the code and the test run information as an input for the LLM. Each test problem was
allowed up to 10 feedback generation before failure was allowed. As each generated
iteration is also saved, it is possible to afterwards compare the correctness by the feedback
generation.

3.3 Gaps in analyzing the simple cases

While quantitative research on simpler problems provides valuable information about
the effectiveness of various code-generation methods, these studies mainly focus on
maximizing model capabilities. Because of this, the research overlooks how to incorporate
code generation into engineers’ everyday work. In real-world scenarios, problems are
rarely simple enough to be solved by a single function and usually require integrating or
modifying existing logic.

To better understand how code generation can fit into daily engineering tasks, it is important
to identify and test practical approaches. This involves studying which ways of applying
code generation give the most value for more complex problem statements, including
problems that current models cannot consistently solve from the description alone.

In the following paragraph, we focus on an iterative approach to solving more complex
problems, drawing inspiration from the TDD framework. The goal is to develop a workflow
in which code-generation tools work hand in hand with developers, enabling them to
tackle increasingly complex tasks. This approach has the potential to improve efficiency
significantly.
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4. Solving complex problems

Moving towards more real world like problems first we need to find a problem to actually
solve. And while it is possible to find some famous examples from literature, it is quite
likely that the more known problems have been used in the training of the LLM models as
either the problem statement itself or from it’s solution available in the internet. To prevent
this, the problem statement was generated only for this thesis, reflecting a real-world
programming problem.

To analysis the problem and how to solve this, four different approaches were taken. The
in-depth analysis was possible as the qualitative research gave a high degree of freedom to
manipulate the input of the code generation.

4.1 Evaluation setup

In this section, we describe the setup and steps taken to carry on the evaluation of solving
the programming problems in multiple different approaches. In the evaluation we will
confirm previously analyzed prompt engineering methods (Chapter 3) and propose an
iterative generation workflow to improve the generation results.

For all the generation, the OpenAI model 4o-mini [2] was used.

4.1.1 Problem statement

In the evaluation we will focus on two different real-world inspired problem statements.
For both, the topic is parking price calculations, which was chosen as a familiar topic for
the author to create sensible scenarios.

The two problems are with varying complexity, allowing to evaluate the methods with
raising complexity. The less complex problem, requires a simple parking calculation with
fixed price (Appendix 2). The more complex problem tries to generalize the parking
calculations by allowing a more flexible parking structure (Appendix 3). To show the
difference in complexity multiple different methods could be applied. In this case the
Simple Function Point (SFP) method is used.
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Problem TF DF Total
Parking with discount 3 1 19
Generalized parking with reservation 5 2 34

Table 1. SFP summary table for problem statements

Evaluating complexity

The SFP has shown to be a valid method of evaluating the complexity of problems on
the requirements [29]. The SFP approach allows us to evaluate the two primary types of
software functions: transactional functions (TF) and data functions (DF). TF is defined as
inputs, outputs, and queries, and DF is defined as internal and/or external data interactions.

The total score is calculated as follows:

SFP = (Number of TF · 4) + (Number of DF · 7) (4.1)

Let’s add all the data from the problem statements to the table (Table 1).

While the total score does not give a definite answer on the overall complexity of the
problem statements, we can verify that compared to each other, the problems have a
different complexity, with the more generalized one being more complex (Table 1).

4.1.2 Evaluation methods

The evaluation was largely divided into two: iterative and zero-shot approach. In the
iterative approach, the problem statement was solved using the proposed TDD based
workflow. In the zero-shot approaches, the same problems were analyzed in a similar
methodology as described analyzing the different benchmarks for simple problems (Chapter
3).

TDD based iterative generation

In the iterative TDD based generation, a step wise approach is taken for the generation.
The generation was started with only one test case, which was used for the input. CoT was
used to provide additional descriptive information and the previously generated solutions
are also added as context for the input to help understand the state of the code. Throughout
the iterative steps, the TDD Red-Green-Refactor cycle is used as the basis of development.
The process was stopped once all initial requirements were fulfilled.
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As a result, test cases were implemented with corresponding functionality for both of the
problems. In the approach all the code was written by the LLM, with the developer only
manipulating the input prompt in various different ways. These include the use of CoT,
context augmentation and refactoring of the test cases.

Zero-shot generations

In the zero-shot generations, the methods follow a similar pattern as was done for the
benchmark evaluations (Chapter 3). The following different prompt creation methods were
used:

1. Problem description.
2. Test cases.
3. Problem description plus test cases.

The test cases created during the iterative approach were reused for zero-shot generations.
This decision was intentional, as these tests had already been verified to generate work-
ing solutions and covered the intial requirements. Additionally, this allowed for direct
comparison of the iterative approach with zero-shot methods using the exact same input.

To ensure a fair comparison between zero-shot and iterative approaches, the zero-shot
approaches were executed multiple times. The number of generations matched the number
of generations used in the final solutions walkthroughs of the iterative approach, ensuring
a similar generation cost. Since generation outputs from the model are not deterministic,
this approach enables a more equitable comparison, considering that iterative methods
require multiple generations.

4.2 Iterative approach walkthrough: Parking with discount

In this section the iterative approach is described in the step like manner as it was developed.
This shows both the successes and failures of the process with steps on how to handle
different situations. The section is loosely divided into different subsection to highlight
certain technique or process.

4.2.1 Triangulation

From the problem statement, there are three requirements: input, output and constraints
put on the parking price calculation. These are:
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■ Input: parking start and end time (in HH:MM 24-hour format).
■ Output: total parking cost.
■ Constraint: discount functionality.

To start with the iterative process, the most simple parking case is taken. This includes
a simple parking with a cost (Listing 4.1). Additionally the test already specifies a
wanted architectural decision of having additional class ParkingSession, which holds the
information about the session length. The idea here is to abstract the parking information
into a separate class to limit the functionality of the ParkingCalculator to only the
calculations.

1 @Test

2 fun underTwoHourRegularParking() {

3 // Parking up to 2 hours should cost $3.00

4 val session = ParkingSession("09:00", "10:30")

5 val parkingCalculator = ParkingCalculator()

6 val result = parkingCalculator.calculateParkingCost(session)

7 val expected = 3.00

8 assertEquals(expected, result)

9 }

Listing 4.1. Parking initial test case

The results of the generation.

1 data class ParkingSession(val startTime: String, val endTime: String)

2

3 class ParkingCalculator {

4

5 fun calculateParkingCost(session: ParkingSession): Double {

6 // Parse the start and end times from the session

7 val start = LocalTime.parse(session.startTime)

8 val end = LocalTime.parse(session.endTime)

9

10 // Calculate the duration in minutes

11 val duration = Duration.between(start, end).toMinutes()

12

13 // If the duration is less than or equal to 120 minutes (2

hours), return $3.00

14 return if (duration <= 120) {

15 3.00

16 } else {

17 // You can add more logic for longer durations if needed

18 0.0 // Default case (this could be modified depending on

additional requirements)

19 }
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20 }

21 }

Listing 4.2. Parking calculator failure state

The solution input is taken into consideration and the generated model supports the object
of ParkingSession and ParkingCalculator (Listing 4.2). The generated result is quite
strictly made to the given example case and supports only one case of parking lasting up to
120 minutes. To get past that we use the triangulation method and add additional tests.

After two more iterations of similar tests with varying durations and pricing we generated
the following code.

1 // ParkingSession class to hold start and end times

2 data class ParkingSession(val startTime: String, val endTime: String)

3

4 // ParkingCalculator class to compute parking cost

5 class ParkingCalculator {

6

7 // Method to calculate the parking cost

8 fun calculateParkingCost(session: ParkingSession): Double {

9 // Define the time format for parsing the string to LocalTime

10 val formatter = DateTimeFormatter.ofPattern("HH:mm")

11

12 // Parse the start and end times into LocalTime objects

13 val start = LocalTime.parse(session.startTime, formatter)

14 val end = LocalTime.parse(session.endTime, formatter)

15

16 // Calculate the duration in minutes

17 val durationInMinutes = java.time.Duration.between(start, end).

toMinutes()

18

19 // Calculate the parking cost

20 return when {

21 durationInMinutes <= 120 -> 3.00 // Up to 2 hours

22 durationInMinutes <= 360 -> 3.00 + (durationInMinutes -

120) * 1.5 / 60 // Between 2 and 6 hours

23 else -> 15.00 // Over 7 hours

24 }

25 }

26 }

Listing 4.3. Parking calculator corrected state

In the solution we can see that the code still quite strictly sticks to the input and does
not make any generalizations (Listing 4.3). This is fine in our case as our tests cover the
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necessary functionality, giving precisely defined length and prices.

4.2.2 Feedback mechanism from test run failures

Next the discount functionality will be implemented. To make the the discount logic more
understandable, CoT technique will be applied to describe the discount applying logic.

1 @Test

2 fun discountParking() {

3 // Parking where most of the duration is between 20:00 and 06:00

should have a discount of 20 percent

4 val session = ParkingSession("20:00", "23:00")

5 val parkingCalculator = ParkingCalculator()

6 val result = parkingCalculator.calculateParkingCost(session)

7 // Regular price would be 4.50 but as discount applies, it is

lowered by 20 percent to 3.60

8 val expected = 3.60

9 assertEquals(expected, result)

10 }

Listing 4.4. Parking with discount test case initial

In the test both the discount timing and price calculation have been described with the CoT
technic (Listing 4.4). This is important in this scenario as otherwise the discount period
would not be defined elsewhere. The test results in the following code.

1 data class ParkingSession(val startTime: String, val endTime: String)

2

3 class ParkingCalculator {

4

5 fun calculateParkingCost(session: ParkingSession): Double {

6 // Convert the start and end times from string to LocalTime

7 val start = LocalTime.parse(session.startTime)

8 val end = LocalTime.parse(session.endTime)

9

10 // Calculate the duration in minutes

11 val durationInMinutes = Duration.between(start, end).toMinutes

()

12

13 // Calculate total hours (round up if necessary)

14 val totalHours = (durationInMinutes / 60.0).let { if (it % 1 !=

0.0) it + 1 else it }

15

16 var cost = 0.0

17

18 when {
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19 totalHours <= 2 -> {

20 cost = 3.00

21 }

22 totalHours in 2.1..6.0 -> {

23 cost = 3.00 + (totalHours - 2) * 1.50

24 }

25 totalHours > 7 -> {

26 cost = 15.00

27 }

28 }

29

30 // Apply discount if the parking is during the night time (

between 8:00 PM and 6:00 AM)

31 if (isNightTime(session)) {

32 cost *= 0.8 // 20% discount

33 }

34

35 return cost

36 }

37

38 private fun isNightTime(session: ParkingSession): Boolean {

39 val start = LocalTime.parse(session.startTime)

40 val end = LocalTime.parse(session.endTime)

41

42 // Check if most of the session is between 8:00 PM and 6:00 AM

43 return (start.isAfter(LocalTime.of(20, 0)) || start.isBefore(

LocalTime.of(6, 0))) &&

44 (end.isAfter(LocalTime.of(20, 0)) || end.isBefore(

LocalTime.of(6, 0)))

45 }

46 }

Listing 4.5. Parking with discount initial failure

Here we see our initial failures. There are two tests failing, previously added pricing test
underTwoHourRegularParking (Listing 4.1) and the newly added discountParking

(Listing 4.4).

Let’s use the feedback loop mechanism and add the test failures as an input for the LLM
prompt. After first iteration we manage to reduce the error count by one. The remaining
failing test is the newly added discountParking (Listing 4.4). As we saw from the
paragraph 3, there is some potential benefit in allowing multiple iterations of allowing the
LLM tool to fix the code. Let’s run a second iteration with the new error code as an input.

After the second iteration we have the following generated code.
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1 class ParkingCalculator {

2

3 fun calculateParkingCost(session: ParkingSession): Double {

4 // Convert the start and end times from string to LocalTime

5 val start = LocalTime.parse(session.startTime)

6 val end = LocalTime.parse(session.endTime)

7

8 // Calculate the duration in minutes

9 val durationInMinutes = Duration.between(start, end).toMinutes

()

10

11 // Calculate total hours (round up if necessary)

12 val totalHours = (durationInMinutes / 60.0).let {

13 // Round up to the next whole hour if there’s any remaining

minutes

14 if (it % 1 != 0.0) Math.ceil(it) else it

15 }

16

17 var cost = 0.0

18

19 when {

20 totalHours <= 2 -> {

21 cost = 3.00

22 }

23 totalHours in 2.1..6.0 -> {

24 cost = 3.00 + (totalHours - 2) * 1.50

25 }

26 totalHours > 7 -> {

27 cost = 15.00

28 }

29 }

30

31 // Apply discount if the parking is during the night time (

between 8:00 PM and 6:00 AM)

32 if (isNightTime(session)) {

33 cost *= 0.8 // 20% discount

34 }

35

36 return cost

37 }

38

39 private fun isNightTime(session: ParkingSession): Boolean {

40 val start = LocalTime.parse(session.startTime)

41 val end = LocalTime.parse(session.endTime)

42

43 // Check if the session overlaps with the night time (between

8:00 PM and 6:00 AM)
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44 return (start.isAfter(LocalTime.of(20, 0)) || start.isBefore(

LocalTime.of(6, 0))) ||

45 (end.isAfter(LocalTime.of(20, 0)) || end.isBefore(

LocalTime.of(6, 0)))

46 }

47 }

Listing 4.6. Parking with discount calculator initial successful state

This time all the tests pass. But from a quick analysis of the function isNightTime (Listing
4.6) we can determine that there are some shortcomings from the original criteria. To
generalize the functionality, let use the triangulation method again by adding additional
tests.

1 @Test

2 fun nonDiscountParkingEndingInDiscountPeriod() {

3 // Parking where most of the duration is not between 20:00 and

06:00 should not have a discount of 20 percent

4 val session = ParkingSession("18:00", "21:00")

5 val parkingCalculator = ParkingCalculator()

6 val result = parkingCalculator.calculateParkingCost(session)

7 // Regular price would be 4.50 but as discount applies, it is

lowered by 20 percent to 3.60

8 val expected = 4.50

9 assertEquals(expected, result)

10 }

Listing 4.7. Parking with discount additional test case

From the output let’s only focus on the discount application functionality. This can be
summed up with two of functions isDicsountApplicable and getDurationInHours

(Listing 4.8).

1 // Simple function to parse time and calculate difference in hours

2 private fun getDurationInHours(session: ParkingSession): Double {

3 val dateFormat = SimpleDateFormat("HH:mm", Locale.getDefault())

4 val start = dateFormat.parse(session.startTime)

5 val end = dateFormat.parse(session.endTime)

6

7 val diffInMillis = end.time - start.time

8 return diffInMillis.toDouble() / (1000 * 60 * 60) // Convert from

milliseconds to hours

9 }

10

11 // Function to check if the parking time was during the discount period

(20:00 to 06:00)

12 private fun isDiscountApplicable(session: ParkingSession): Boolean {
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13 val dateFormat = SimpleDateFormat("HH:mm", Locale.getDefault())

14 val start = dateFormat.parse(session.startTime)

15 val end = dateFormat.parse(session.endTime)

16

17 val discountStart = dateFormat.parse("20:00")

18 val discountEnd = dateFormat.parse("06:00")

19

20 val totalDurationInMillis = end.time - start.time

21 val discountDurationInMillis = (end.time.coerceAtMost(discountEnd.

time) - discountStart.time).coerceAtLeast(0)

22

23 return discountDurationInMillis.toDouble() / totalDurationInMillis

> 0.5

24 }

Listing 4.8. Parking with discount functionality initial state

Test run fails again with the first discount test failing discountParking (Listing 4.4).

Again, let’s first try the feedback loop mechanism. With the additional error message we
generate the following code.

1 // Simple function to parse time and calculate difference in hours

2 private fun getDurationInHours(session: ParkingSession): Double {

3 val dateFormat = SimpleDateFormat("HH:mm", Locale.getDefault())

4 val start = dateFormat.parse(session.startTime)

5 val end = dateFormat.parse(session.endTime)

6

7 val diffInMillis = end.time - start.time

8 return diffInMillis.toDouble() / (1000 * 60 * 60) // Convert from

milliseconds to hours

9 }

10

11 // Function to check if the parking time was during the discount period

(20:00 to 06:00)

12 private fun isDiscountApplicable(session: ParkingSession): Boolean {

13 val dateFormat = SimpleDateFormat("HH:mm", Locale.getDefault())

14 val start = dateFormat.parse(session.startTime)

15 val end = dateFormat.parse(session.endTime)

16

17 // Define discount period: 20:00 to 06:00

18 val discountStart = dateFormat.parse("20:00")

19 val discountEnd = dateFormat.parse("06:00")

20

21 // Calculate total duration of the parking session in milliseconds

22 val totalDurationInMillis = end.time - start.time

23
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24 // Find the overlap between the parking session and discount window

(20:00-06:00)

25 val overlapStart = maxOf(start.time, discountStart.time)

26 val overlapEnd = minOf(end.time, discountEnd.time + 24 * 60 * 60 *

1000) // 06:00 on the next day

27

28 val overlapDurationInMillis = maxOf(0, overlapEnd - overlapStart)

29

30 // Check if more than 50% of the parking time is in the discount

period

31 return overlapDurationInMillis.toDouble() / totalDurationInMillis >

0.5

32 }

Listing 4.9. Parking with discount fuctionality final state

This time all tests pass.

4.2.3 Context augmentation

Comparing the last the code generation (Listings 4.8 and 4.9) we can see that the final
iteration added the functionality to actually compare the overlaps between parking and
discount period. To verify the functionality, let’s add the specific case of an overnight
parking session.

1 @Test

2 fun discountParkingEndingOverNight() {

3 // Parking where most of the duration is between 20:00 and 06:00

should have a discount of 20 percent

4 val session = ParkingSession("23:00", "02:00")

5 val parkingCalculator = ParkingCalculator()

6 val result = parkingCalculator.calculateParkingCost(session)

7 // Regular price would be 4.50 but as discount applies, it is

lowered by 20 percent to 3.60

8 val expected = 3.60

9 assertEquals(expected, result)

10 }

Listing 4.10. Parking with discount test case for overnight

In the test run we see again failing tests. Both initial discountParking (Listing 4.4) and
newly added discountParkingEndingOverNight (Listing 4.10) fail. As previously, let’s
first try the LLM to correct the mistake by inputting the error message to the prompt.

After three iterations, the same errors however persist and we can not pass the tests without
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taking additional steps. For this let’s add the latest working state (Listing 4.9) as a context.
This way the LLM tool should stick more to the existing functionality and lower the chance
of previous tests breaking. With the previous state and tests, we generate the following
code.

1 data class ParkingSession(val startTime: String, val endTime: String)

2

3 class ParkingCalculator {

4

5 private val discountRate = 0.2

6 private val regularRatePerHour = 1.5

7 private val baseRate = 3.0

8 private val flatRate = 15.0

9

10 // Simple function to parse time and calculate difference in hours

11 private fun getDurationInHours(session: ParkingSession): Double {

12 val dateFormat = SimpleDateFormat("HH:mm", Locale.getDefault())

13 val start = dateFormat.parse(session.startTime)

14 val end = dateFormat.parse(session.endTime)

15

16 // Handle parking sessions spanning across midnight

17 if (end.before(start)) {

18 end.time += 24 * 60 * 60 * 1000 // Add 24 hours to end time

to adjust for the next day

19 }

20

21 val diffInMillis = end.time - start.time

22 return diffInMillis.toDouble() / (1000 * 60 * 60) // Convert

from milliseconds to hours

23 }

24

25 // Function to check if the parking time was during the discount

period (20:00 to 06:00)

26 private fun isDiscountApplicable(session: ParkingSession): Boolean

{

27 val dateFormat = SimpleDateFormat("HH:mm", Locale.getDefault())

28 val start = dateFormat.parse(session.startTime)

29 val end = dateFormat.parse(session.endTime)

30

31 // Define discount period: 20:00 to 06:00

32 val discountStart = dateFormat.parse("20:00")

33 val discountEnd = dateFormat.parse("06:00")

34

35 // Handle parking sessions spanning across midnight

36 if (end.before(start)) {

37 end.time += 24 * 60 * 60 * 1000 // Add 24 hours to end time

38 }
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39

40 // Calculate total duration of the parking session in

milliseconds

41 val totalDurationInMillis = end.time - start.time

42

43 // Find the overlap between the parking session and discount

window (20:00-06:00)

44 val overlapStart = maxOf(start.time, discountStart.time)

45 val overlapEnd = minOf(end.time, discountEnd.time + 24 * 60 *

60 * 1000) // 06:00 on the next day

46

47 val overlapDurationInMillis = maxOf(0, overlapEnd -

overlapStart)

48

49 // Check if more than 50% of the parking time is in the

discount period

50 return overlapDurationInMillis.toDouble() /

totalDurationInMillis > 0.5

51 }

52

53 // Function to calculate parking cost based on the session

54 fun calculateParkingCost(session: ParkingSession): Double {

55 val duration = getDurationInHours(session)

56

57 val baseCost = when {

58 duration <= 2 -> baseRate // up to 2 hours

59 duration <= 6 -> baseRate + (duration - 2) *

regularRatePerHour // between 2 and 6 hours

60 duration > 7 -> flatRate // over 7 hours

61 else -> baseRate // Default to base rate in other cases

62 }

63

64 // Apply discount if applicable

65 return if (isDiscountApplicable(session)) {

66 baseCost * (1 - discountRate)

67 } else {

68 baseCost

69 }

70 }

71 }

Listing 4.11. Parking with discount final state

All tests pass. Also analyzing the original requirements we can determine that the func-
tionality is covering all necessary use cases.
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4.3 Iterative approach walkthrough: Generalized parking with reser-
vation

In this section the second problem of generalized parking with reservation is worked solved.
The approach will remain the same from the previous example.

4.3.1 Triangulation

For the second problem we take the parking calculation problem and will generalize the
pricing structure. To do this we have additional input parameter to define the pricing
structure on a zone level. Also, there’s additional reservation logic to add additional
complex flows to the mix. The requirements are as followed.

■ Input: zone, start time and end time (HH:MM format), reservation.
■ Output: total parking cost.
■ Constraint: reservation logic.

Let’s start the implementation on a similar path as previously. But this time add the parking
zone object as a parameter to define the importance of the more generalized approach
(Listing 4.12).

1 @Test

2 fun oneHourRegularParking() {

3 val parkingCalculator = ParkingCalculator()

4 val result = parkingCalculator.calculateParkingCost(

5 startTime = LocalTime.of(10, 0),

6 endTime = LocalTime.of(11, 0),

7 parkingZone = ParkingZone(

8 name = "Zone A",

9 periods = listOf(

10 ParkingPeriod(

11 startTime = LocalTime.of(0, 0),

12 endTime = LocalTime.of(23, 59),

13 pricePerHour = 1.00,

14 )

15 )

16 ),

17 )

18 assertEquals(1.00, result)

19 }

Listing 4.12. Generalized parking calculator initial test case
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The generated code follows the objects exactly, creating multiple data classes for
ParkingPeriod, ParkingZone, ParkingPeriod and ParkingZone. The Parking-

Calculator was generated as follows (Listing 4.13).

1 class ParkingCalculator {

2

3 fun calculateParkingCost(startTime: LocalTime, endTime: LocalTime,

parkingZone: ParkingZone): Double {

4 // Calculate the parking duration in minutes

5 val durationInMinutes = Duration.between(startTime, endTime).

toMinutes()

6

7 // Round up to the nearest 15 minutes

8 val roundedDurationInMinutes = ((durationInMinutes + 14) / 15)

* 15

9

10 // Calculate the duration in hours (for price calculation)

11 val hours = roundedDurationInMinutes / 60.0

12 val pricePerHour = parkingZone.periods.firstOrNull()?.

pricePerHour ?: 0.0

13

14 // Calculate the cost

15 return hours * pricePerHour

16 }

17 }

Listing 4.13. Generalized parking calculator calculator initial state

All tests pass. From the code we can see that the ParkingZone is indeed used for the
parking, but there is no logic on how to pick the correct matching period. To force the
generation to add the corresponding logic, let’s use the triangulation and add tests for
ParkingZone with multiple ParkingPeriod entities.

1 @Test

2 fun parkingInParkingZoneWithMultiplePeriods() {

3 val parkingCalculator = ParkingCalculator()

4 val parkingPeriod = ParkingZone(

5 name = "Zone A",

6 periods = listOf(

7 ParkingPeriod(

8 startTime = LocalTime.of(0, 0),

9 endTime = LocalTime.of(12, 0),

10 pricePerHour = 1.00,

11 ),

12 ParkingPeriod(

13 startTime = LocalTime.of(12, 0),

14 endTime = LocalTime.of(23, 59),
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15 pricePerHour = 2.00,

16 )

17 )

18 )

19

20 val result = parkingCalculator.calculateParkingCost(

21 startTime = LocalTime.of(12, 0),

22 endTime = LocalTime.of(13, 0),

23 parkingZone = parkingPeriod,

24 )

25 assertEquals(2.00, result)

26 }

Listing 4.14. Generalized parking test case with multiple parking periods

In the test we specified multiple ParkingPeriod entities with the parking only starting in
the second of two (Listing 4.14). This way we force a period change within the logic. We
generate the following code (Listing 4.15).

1 class ParkingCalculator {

2

3 fun calculateParkingCost(

4 startTime: LocalTime,

5 endTime: LocalTime,

6 parkingZone: ParkingZone

7 ): Double {

8 // Calculate the duration of parking in minutes

9 val durationInMinutes = Duration.between(startTime, endTime).

toMinutes()

10

11 // Round up the duration to the nearest 15 minutes

12 val roundedDurationInMinutes = (ceil(durationInMinutes / 15.0)

* 15).toLong()

13

14 // Find the correct parking period based on the time

15 var totalCost = 0.0

16

17 for (period in parkingZone.periods) {

18 if (!startTime.isBefore(period.endTime) && !endTime.isAfter

(period.startTime)) {

19 // Calculate hours and round them up

20 val hoursParked = (roundedDurationInMinutes / 60.0).

toInt()

21 totalCost += hoursParked * period.pricePerHour

22 }

23 }

24
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25 return totalCost

26 }

27 }

Listing 4.15. Generalized parking calculator with multiple period failure

From test run we get multiple failing tests for oneHourRegularParking, roundUpTo-
FifteenMinutes and parkingInParkingZoneWithMultiplePeriods. This seems to be
indicating that the new period choosing logic does not work as intended and also breaking
the previously added tests. Let’s use the feedback loop and allow the LLM model to correct
the functionality.

1 class ParkingCalculator {

2

3 fun calculateParkingCost(

4 startTime: LocalTime,

5 endTime: LocalTime,

6 parkingZone: ParkingZone

7 ): Double {

8 // Calculate the duration of parking in minutes

9 val durationInMinutes = Duration.between(startTime, endTime).

toMinutes()

10

11 // Round up the duration to the nearest 15 minutes

12 val roundedDurationInMinutes = (ceil(durationInMinutes / 15.0)

* 15).toLong()

13

14 var totalCost = 0.0

15 var remainingDuration = roundedDurationInMinutes

16

17 for (period in parkingZone.periods) {

18 // Check if the start time and end time fall within the

current period

19 val periodStartTime = period.startTime

20 val periodEndTime = period.endTime

21

22 // Calculate overlap between the parking duration and the

current period

23 val overlapStart = maxOf(startTime, periodStartTime)

24 val overlapEnd = minOf(endTime, periodEndTime)

25

26 // If there is an overlap, calculate the cost

27 if (!overlapStart.isAfter(overlapEnd)) {

28 val overlapDurationInMinutes = Duration.between(

overlapStart, overlapEnd).toMinutes()

29 val roundedOverlapDurationInMinutes = (ceil(

overlapDurationInMinutes / 15.0) * 15).toLong()
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30

31 // Calculate the cost for this period

32 totalCost += (roundedOverlapDurationInMinutes / 60.0) *

period.pricePerHour

33 }

34 }

35

36 return totalCost

37 }

38 }

Listing 4.16. Generalized parking calculator with multiple period corrected

This time we see all tests passing. Also analyzing the code between the last two generations
(Listing 4.15 and Listing 4.16) we see the additional logic of calculating and using the
overlap between parking and period. This way we make sure that only the part of the
parking which is inside the specific period, gets correctly calculated.

4.3.2 Refactoring test cases

Next we will add a more realistic parking scenario where the start and end times are not
from full hours (Listing 4.17). This way we will test the case of parking duration rounding
and pricing between multiple periods.

1 @Test

2 fun parkingInParkingZoneWithMultiplePeriodsWithoutFullCross() {

3 val parkingCalculator = ParkingCalculator()

4 val parkingPeriod = ParkingZone(

5 name = "Zone A",

6 periods = listOf(

7 ParkingPeriod(

8 startTime = LocalTime.of(0, 0),

9 endTime = LocalTime.of(12, 0),

10 pricePerHour = 1.00,

11 ),

12 ParkingPeriod(

13 startTime = LocalTime.of(12, 0),

14 endTime = LocalTime.of(23, 59),

15 pricePerHour = 2.00,

16 )

17 )

18 )

19

20 // Parking is calculated by 15 minute intervals. New period price

is applied only if the intervals starts in the new period
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21 val result = parkingCalculator.calculateParkingCost(

22 startTime = LocalTime.of(11, 39),

23 endTime = LocalTime.of(12, 9),

24 parkingZone = parkingPeriod,

25 )

26 assertEquals(0.50, result)

27 }

Listing 4.17. Generalized parking test cases for period triangulation

This however is quite a difficult scenario all together as it would need to handle the parking
duration rounding and period change together. From the generated solution we get failure
for parkingInParkingZoneWithMultiplePeriodsWithoutFullCross.

After three iterations of using the error in a feedback loop we still do not get to a working
solution. This would indicate that the current prompt is too ambigiuous, difficult or
incorrectly created for the model at hand to fully comprehend. Therefore let’s try to add
additional context from the last state of working solution (Listing 4.16). We generate the
following functionality.

1 class ParkingCalculator {

2

3 fun calculateParkingCost(

4 startTime: LocalTime,

5 endTime: LocalTime,

6 parkingZone: ParkingZone

7 ): Double {

8 // Calculate the duration of parking in minutes

9 val durationInMinutes = Duration.between(startTime, endTime).

toMinutes()

10

11 // Round up the duration to the nearest 15 minutes (if it is

not already a multiple of 15)

12 val roundedDurationInMinutes = ceil(durationInMinutes / 15.0) *

15.0

13

14 var totalCost = 0.0

15 var remainingDuration = roundedDurationInMinutes

16

17 // Handle overlapping periods

18 for (period in parkingZone.periods) {

19 val periodStartTime = period.startTime

20 val periodEndTime = period.endTime

21

22 // Calculate overlap between the parking duration and the

current period
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23 val overlapStart = maxOf(startTime, periodStartTime)

24 val overlapEnd = minOf(endTime, periodEndTime)

25

26 // If there is an overlap, calculate the cost

27 if (!overlapStart.isAfter(overlapEnd)) {

28 val overlapDurationInMinutes = Duration.between(

overlapStart, overlapEnd).toMinutes()

29

30 // Round the overlap duration to the nearest 15 minutes

(to handle fractional time)

31 val roundedOverlapDurationInMinutes = ceil(

overlapDurationInMinutes / 15.0) * 15.0

32

33 // Calculate the cost for this period

34 totalCost += (roundedOverlapDurationInMinutes / 60.0) *

period.pricePerHour

35 }

36 }

37

38 return totalCost

39 }

40 }

Listing 4.18. Generalized parking failed generation

Test cases still fail. And even the feedback loop technique fails after three iterations.
Looking at the last generated solution (Listing 4.18) we can see that the function complexity
is quite high with having to both round the duration of the parking, handle period switch
and interval creation. To simplify the logic we could abstract the creation of the intervals
out from the calculator and have a separate entity.

Let’s create a test suit for ParkingSession class and define the interval creation to the
class.

1 @Test

2 fun getParkingIntervalsForNonRegularParkingLength() {

3 val parkingSession = ParkingSession("21:00", "21:16")

4 // 16 minute parking will create 2 intervals of 15 minutes lasting

after the specified end time

5 val parkingIntervals = parkingSession.getParkingIntervals()

6 // Expected output: 2 intervals of 15 minutes. First interval:

21:00 - 21:15, Second interval: 21:15 - 21:30

7 val expectedParkingIntervals = listOf(

8 ParkingInterval("21:00", "21:15"),

9 ParkingInterval("21:15", "21:30"),

10 )
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11 assertEquals(expectedParkingIntervals, parkingIntervals)

12 }

Listing 4.19. Generalized parking test cases for parking session interval abstraction

In the test we specify the function of getParkingIntervals to handle the creation of
the parking intervals (Listing 4.19). The idea behind this is if we can clearly define the
creations of the intervals, ParkingCalcuator has a lower complexity to handle. We
achieve the following ParkingSession class (Listing 4.20).

1 class ParkingSession(start: String, end: String) {

2 private val startTime: LocalTime = LocalTime.parse(start,

DateTimeFormatter.ofPattern("HH:mm"))

3 private val endTime: LocalTime = LocalTime.parse(end,

DateTimeFormatter.ofPattern("HH:mm"))

4

5 fun getParkingIntervals(): List<ParkingInterval> {

6 val intervals = mutableListOf<ParkingInterval>()

7 var currentStartTime = startTime

8

9 while (currentStartTime < endTime) {

10 val currentEndTime = currentStartTime.plusMinutes(15)

11 intervals.add(ParkingInterval(

12 start = currentStartTime.format(DateTimeFormatter.

ofPattern("HH:mm")),

13 end = currentEndTime.format(DateTimeFormatter.ofPattern

("HH:mm"))

14 ))

15 currentStartTime = currentEndTime

16 }

17

18 // Ensure intervals go beyond the end time

19 if (currentStartTime < endTime) {

20 val currentEndTime = currentStartTime.plusMinutes(15)

21 intervals.add(ParkingInterval(

22 start = currentStartTime.format(DateTimeFormatter.

ofPattern("HH:mm")),

23 end = currentEndTime.format(DateTimeFormatter.ofPattern

("HH:mm"))

24 ))

25 }

26

27 return intervals

28 }

29 }

Listing 4.20. Generalized parking session interval abstraction
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Going back to the ParkingCalculator, we first have to modify the existing tests to also
accommodate to the new ParkingSession class.

1 @Test

2 fun parkingInParkingZoneWithMultiplePeriodsWithoutFullCross() {

3 val parkingCalculator = ParkingCalculator()

4 val parkingPeriod = ParkingZone(

5 name = "Zone A",

6 periods = listOf(

7 ParkingPeriod(

8 startTime = LocalTime.of(0, 0),

9 endTime = LocalTime.of(12, 0),

10 pricePerHour = 1.00,

11 ),

12 ParkingPeriod(

13 startTime = LocalTime.of(12, 0),

14 endTime = LocalTime.of(23, 59),

15 pricePerHour = 2.00,

16 )

17 )

18 )

19

20 // For parking from 11:50 to 12:05, we should pay for 15 minutes in

the first period and 0 minutes in the second period. This is

21 val result = parkingCalculator.calculateParkingCost(

22 parkingSession = ParkingSession(

23 start = "11:50",

24 end = "12:05",

25 ),

26 parkingZone = parkingPeriod,

27 )

28 assertEquals(0.25, result)

29 }

Listing 4.21. Generalized parking test cases for pricing with parking intervals

Also, let’s add the additional context of the working state. So with the tests will pass
ParkingSession and ParkingCalculator previous working state. We generate the
following.

1 class ParkingCalculator {

2

3 fun calculateParkingCost(parkingSession: ParkingSession,

parkingZone: ParkingZone): Double {

4 val intervals = parkingSession.getParkingIntervals()

5 var totalCost = 0.0

6

7 for (interval in intervals) {
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8 val intervalStart = LocalTime.parse(interval.start)

9 val intervalEnd = LocalTime.parse(interval.end)

10

11 val applicablePeriod = parkingZone.periods.firstOrNull {

period ->

12 intervalStart >= period.startTime && intervalStart <

period.endTime

13 }

14

15 if (applicablePeriod != null) {

16 val minutesParked = ChronoUnit.MINUTES.between(

intervalStart, intervalEnd).toDouble()

17 val hourlyRate = applicablePeriod.pricePerHour

18 totalCost += (minutesParked / 60) * hourlyRate

19 }

20 }

21

22 return String.format("%.2f", totalCost).toDouble()

23 }

24 }

Listing 4.22. Generalized parking calculator with parking intervals

With the latest generation we can pass all the tests. This verifies that the abstraction of the
functionality for parking interval creation was a success, lowering the complexity of the
ParkingCalculator functionality. Furthermore we can now reuse the ParkingSession

class on future features to encapsulate the complexity in smaller classes.

4.3.3 Applying CoT for complex scenarios

Let’s create additional logic for reservations. The original requirement for reservations
was that the price had to be locked to the initial price of the parking. Looking at the last
working implementation (Listing 4.22) we can see that the interval start is only used. In
this we could theoretically reuse the interval creation to cover the functionality by allowing
the reservation intervals to be created for the full parking time. To test this, first create a
test suit.

1 @Test

2 fun getReservationParkingIntervals() {

3 val parkingSession = ParkingSession("21:00", "22:30", reservation =

true)

4 // For reservation parking, the interval is the total length of the

parking session

5 val reservedParkingIntervals = parkingSession.getParkingIntervals()

6 val expectedReservedParkingIntervals = listOf(
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7 ParkingInterval("21:00", "22:30"),

8 )

9 assertEquals(expectedReservedParkingIntervals,

reservedParkingIntervals)

10 }

Listing 4.23. Generalized parking test cases for reservation

In the test suit we use a new parameter reservation for the ParkingSession creation.
This is an important syntax use as otherwise there would be no definition of the potential
flag for the code generation. We generate the following code.

1 class ParkingSession(

2 private val start: String,

3 private val end: String,

4 private val reservation: Boolean = false

5 ) {

6

7 fun getParkingIntervals(): List<ParkingInterval> {

8 if (reservation) {

9 // If it’s a reservation, return a single interval

10 return listOf(ParkingInterval(start, end))

11 }

12

13 val intervals = mutableListOf<ParkingInterval>()

14 var currentStartTime = start

15 val endMinutes = timeToMinutes(end)

16

17 // Generate intervals of 15 minutes

18 while (timeToMinutes(currentStartTime) < endMinutes) {

19 val nextEndTime = addMinutesToTime(currentStartTime, 15)

20 intervals.add(ParkingInterval(currentStartTime, nextEndTime

))

21 currentStartTime = nextEndTime

22 }

23

24 return intervals

25 }

26

27 // Helper function to convert time "HH:mm" to total minutes since

"00:00"

28 private fun timeToMinutes(time: String): Int {

29 val (hours, minutes) = time.split(":").map { it.toInt() }

30 return hours * 60 + minutes

31 }

32

33 // Helper function to add minutes to a time "HH:mm" string
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34 private fun addMinutesToTime(time: String, minutesToAdd: Int):

String {

35 val totalMinutes = timeToMinutes(time) + minutesToAdd

36 val hours = totalMinutes / 60

37 val minutes = totalMinutes % 60

38 return String.format("%02d:%02d", hours, minutes)

39 }

40 }

Listing 4.24. Generalized parking session with reservation

With the tests passing we now look at the ParkingCalculator side to accommodate the
price differences between reservation and non-reservation parking.

1 @Test

2 fun parkingInParkingZoneWithReservation() {

3 val parkingCalculator = ParkingCalculator()

4 val parkingPeriod = ParkingZone(

5 name = "Zone A",

6 periods = listOf(

7 ParkingPeriod(

8 startTime = LocalTime.of(0, 0),

9 endTime = LocalTime.of(12, 0),

10 pricePerHour = 1.00,

11 ),

12 ParkingPeriod(

13 startTime = LocalTime.of(12, 0),

14 endTime = LocalTime.of(23, 59),

15 pricePerHour = 2.00,

16 )

17 )

18 )

19

20 // Reservation has a base price of 5 and locks the price to the

current period for the full parking length

21 val result = parkingCalculator.calculateParkingCost(

22 parkingSession = ParkingSession(

23 start = "10:00",

24 end = "20:00",

25 reservation = true,

26 ),

27 parkingZone = parkingPeriod,

28 )

29 assertEquals(15.0, result)

30 }

Listing 4.25. Generalized parking test cases for pricing with reservation
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In the test we specify multiple periods to verify that the reservation actually locks in the
price for the entire session and does not switch. We generate the following code.

1 class ParkingCalculator {

2

3 fun calculateParkingCost(parkingSession: ParkingSession,

parkingZone: ParkingZone): Double {

4 val intervals = parkingSession.getParkingIntervals()

5 var totalCost = 0.0

6

7 // Handle the reservation case separately

8 if (parkingSession.isReservation()) {

9 val applicablePeriod = parkingZone.periods.firstOrNull {

10 val sessionStartTime = LocalTime.parse(parkingSession.

start)

11 sessionStartTime >= it.startTime && sessionStartTime <

it.endTime

12 }

13 // Use fixed price for reservation

14 if (applicablePeriod != null) {

15 val duration = ChronoUnit.MINUTES.between(LocalTime.

parse(parkingSession.start), LocalTime.parse(parkingSession.end)).

toDouble()

16 totalCost = (duration / 60) * applicablePeriod.

pricePerHour

17 totalCost = if (totalCost < 5.00) 5.00 else totalCost

// Ensure minimum reservation cost

18 }

19 } else {

20 // For regular parking sessions

21 for (interval in intervals) {

22 val intervalStart = LocalTime.parse(interval.start)

23 val intervalEnd = LocalTime.parse(interval.end)

24

25 val applicablePeriod = parkingZone.periods.firstOrNull

{ period ->

26 intervalStart >= period.startTime && intervalStart

< period.endTime

27 }

28

29 if (applicablePeriod != null) {

30 val minutesParked = ChronoUnit.MINUTES.between(

intervalStart, intervalEnd).toDouble()

31 val hourlyRate = applicablePeriod.pricePerHour

32 totalCost += (minutesParked / 60) * hourlyRate

33 }

34 }
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35 }

36

37 // Round the cost to two decimal places

38 return String.format("%.2f", totalCost).toDouble()

39 }

40 }

Listing 4.26. Generalized parking calculator with reservation

In the initial try we get a syntax error with the start and end being a private member of
ParkingSession (Listing 4.24) class. After one iteration of feedback loop to the code
generator we have a working running solution.

Running tests we still see a failure for lastly added test parkingInParkingZoneWith-
Reservation. After three iterations of the feedback loop we still cannot get a passing test
run, so let’s take a look back at the test case parkingInParkingZoneWithReservation

(Listing 4.25). The test case leaves the pricing calculation quite ambiguous. To help the
LLM tool to interpret the logic, let’s add the logic with CoT technique (Listing 4.27).

1 @Test

2 fun parkingInParkingZoneWithReservation() {

3 val parkingCalculator = ParkingCalculator()

4 val parkingPeriod = ParkingZone(

5 name = "Zone A",

6 periods = listOf(

7 ParkingPeriod(

8 startTime = LocalTime.of(0, 0),

9 endTime = LocalTime.of(12, 0),

10 pricePerHour = 1.00,

11 ),

12 ParkingPeriod(

13 startTime = LocalTime.of(12, 0),

14 endTime = LocalTime.of(23, 59),

15 pricePerHour = 2.00,

16 )

17 )

18 )

19

20 // Reservation has a base price of 5 and locks the price to the

current period for the full parking length

21 val result = parkingCalculator.calculateParkingCost(

22 parkingSession = ParkingSession(

23 start = "10:00",

24 end = "20:00",

25 reservation = true,

26 ),
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27 parkingZone = parkingPeriod,

28 )

29 // Price is calculated as follows: 5.0 as a reservation fee and 1.0

* 10 = 10.0 for the parking duration with a total of 15.0

30 assertEquals(15.0, result)

31 }

Listing 4.27. Generalized parking test cases for reservation with CoT

The most straight forward is to add the entire calculation flow in a step like manner to to
the test as a comment. In this case we want to specify that there is a 5 unit reservation fee
in addition to the normal parking fee. We generate the following functionality (Listing
4.28).

1 class ParkingCalculator {

2

3 fun calculateParkingCost(parkingSession: ParkingSession,

parkingZone: ParkingZone): Double {

4 var totalCost = 0.0

5

6 // If the session is a reservation, calculate it with the fixed

reservation fee

7 if (parkingSession.isReservation()) {

8 totalCost = 5.0 // Fixed reservation fee

9 val parkingPeriod = parkingZone.periods.first { it.

startTime <= LocalTime.parse(parkingSession.getStartTime()) && it.

endTime > LocalTime.parse(parkingSession.getStartTime()) }

10 val minutesParked = ChronoUnit.MINUTES.between(LocalTime.

parse(parkingSession.getStartTime()), LocalTime.parse(

parkingSession.getEndTime())).toDouble()

11 totalCost += (minutesParked / 60) * parkingPeriod.

pricePerHour

12 return String.format("%.2f", totalCost).toDouble()

13 }

14

15 // Otherwise, calculate for each 15-minute interval

16 val intervals = parkingSession.getParkingIntervals()

17 for (interval in intervals) {

18 val intervalStart = LocalTime.parse(interval.start)

19 val intervalEnd = LocalTime.parse(interval.end)

20

21 // Find the applicable period for the interval

22 val applicablePeriod = parkingZone.periods.firstOrNull {

period ->

23 intervalStart >= period.startTime && intervalStart <

period.endTime

24 }
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25

26 if (applicablePeriod != null) {

27 val minutesParked = ChronoUnit.MINUTES.between(

intervalStart, intervalEnd).toDouble()

28 val hourlyRate = applicablePeriod.pricePerHour

29 totalCost += (minutesParked / 60) * hourlyRate

30 }

31 }

32

33 // Round total cost to two decimal places

34 return String.format("%.2f", totalCost).toDouble()

35 }

36 }

Listing 4.28. Generalized parking calculator final state

This time all the tests pass and we have filled all the initial requirements.
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5. Evaluation

In this chapter, we examine the results for both the simple and the complex problem sets.
Our evaluation focuses on the differences observed among the various prompt-creation
techniques and on the added benefits delivered by the TDD-based iterative approach.
Finally, we outline the limitations imposed on this study and propose ideas for future
research.

5.1 Evaluating simple problems

With the simple problems, the evaluation focuses on two aspects. First, we change the
input prompt creation methods in which the problem statements are presented to see how
input design affects the generated output. Second, we test the model’s ability to correct its
own mistakes through a feedback loop. The analysis explores whether LLMs can fix their
own code and whether allowing multiple attempts yields additional gains.

5.1.1 Differences in input prompt creation

There where 5 different methods compared in the creation of the input prompt.

1. Problem description.
2. Test cases.
3. Problem description plus 1 test case.
4. Problem description plus 2 test cases.
5. Problem description plus all test cases.

Starting with the MBPP benchmark, we observe a clear trend that providing more initial
information leads to better generation results (Figure 1). The "Problem description"
setting performs worst, with a success rate of 48.25%. The "Test cases" and the "Problem
description plus 1 test case" perform similarly, achieving success rates of 63.24% and
64.27%, respectively. Finally "Problem description plus all test cases" yields the best
outcome, with a success rate of 77.31%.

Looking back on the example problem statement (Listing 3.1) and its corresponding tests
(Listing 3.2), we conclude that well-defined tests provide greater value for simple problems.
Because the assertion-function names describe the main idea, the LLM can understand the
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Figure 1. MBPP generation results with different methods

desired behavior directly from the test suite. Even so, combining the textual description
with the full set of tests still outperforms using either source in isolation.

Furthermore, we observe a clear positive correlation between the number of tests supplied
and generation accuracy. The success rate improves when moving from one to two tests,
and again from two to three tests (Figure 1).

In the HumanEval benchmark the pattern changes. The best score comes from "Problem
description" prompt: 75% of the solutions pass (Figure 2). Adding tests lower the success
rate, as "Problem statement plus all test cases" have a success rate of 74.39%, "Problem
description plus 2 test cases" is at 73.78%, and "Problem description plus 1 test case" at
72.56%. The "Test cases" method drops a lot lower at 40.85% success rate.

To explain the different outcome, first let’s look back at the HumanEval benchmark problem
statement example (Listing 3.3). The problem statement is much different from MBPP
benchmark, defining a clear structure for the solution with example cases already added
with descriptive comments. Therefor the "Problem description" method more corresponds
to using the both the description and tests for generating the results, which also explains
far better success rate from the tests only method.

Secondly, looking back at the test cases (Listing 3.4), the assertions do not even include
the function name. This seems to be affecting the generation, not only making the "Test
cases" method far worse, but also reducing the success rate of using description with tests
compared to not using any tests at all. The results indicate that the differing function name
is confusing the LLM and making the request more ambiguous.
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Figure 2. HumanEval generation results with different methods

From the results of both benchmark runs, it is clear that more contextual information
produces a higher success rate for the generated solutions. This means providing descriptive
information about the problem together with a set of corresponding tests. However, it is
important not to include non-contextual information, as it can hurt the generation. As seen
from the HumanEval example, poor naming of test cases can cause problems.

5.1.2 Differences in feedback mechanism iterations

The feedback mechanism was tested on results of the generations based on description and
all tests, with the maximum of 10 iterations available.

For MBPP, the feedback iterations showed a gradual increase of the success rate of the
solutions, with the original success rate of 77.31% raising all the way up to 81.62% (Figure
3). The biggest jump of the correctness was from the first iteration, where the success
rate was increased by 1.95%. Starting from 7th iteration, the improvements stayed around
0.10% per iteration.

In HumanEval benchmark, the difference between iterations was much less gradual and
had a greater effect on the success rate. The first iteration raised the success rate from
74.39% to 84.15%, second iteration to 84.76% and third to 86.59% (Figure 4). Starting
from fourth iteration the success rate no longer changed.

Both benchmarks show clear improvements from using the test-run feedback as additional
input for the failed runs. The success rate shows a 4–12% improvement for the same
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Figure 3. MBPP code generation with feedback iterations

Figure 4. HumanEval code generation with feedback iterations
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problem statement, with the first three iterations of the feedback session giving the majority
of the improvement.

5.2 Evaluating complex problems

With the complex problems evaluation, we will first look at the iterative generation and
define any learning points from the process. After that we will compare the success rate of
different methods including the aforementioned iterative approach, to show the advantages
and disadvantages of different methods.

5.2.1 Iterative generation summary

In this section we will focus on the iterative approach as described in the thesis (Chapter
4). The focus will be on what the approach adds to the generation process and what are the
limitations met.

TDD methods

As the iterative approach relies on the Red–Green–Refactor cycle, all the enhancements are
done in a step-like manner. This brings visibility to when the LLM is unable to generate
a working solution as the tests start failing. And while sometimes allowing the LLM to
correct its mistakes (Section 4.2.2), there might be a break point where the input needs to
be refactored entirely (Section 4.3.2).

Furthermore, from the iterative approach it was visible that the test cases were always
followed quite strictly, not providing additional logic or generalization if it was not
requested. To still achieve generalization in the logic, triangulation showed good results in
both examples (Section 4.2.1 and Section 4.3.1), where the complex logic was defined by
using multiple test cases with varying parameters.

Finally, one of the outcomes of the method is to have a set of test cases covering most
parts of the code. This is an excellent side-effect of the approach, as good test coverage is
necessary for long-lasting functionality and any enhancements.

Context augmentation

It is not always necessary to add the previous states of code as context. If the input is
definitive enough, the state could be generated from consistently again and again. The
issue however raises with the more complex situations. With the raising complexity, the
change of the LLM succeeding to generate code that covers all the test scenarios decreases.
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This was also confirmed in the iterative approach, where the necessity to use context
augmentation came later in the process, when a large portion of the logic was already
implemented and a new feature was in works (Section 4.2.3).

Applying CoT

In some cases, a complex logic has to be precisely defined for it to be understood by the
LLM. And while methods like triangulation work fine, in some cases it is not sensible to
create tens of different tests to define all the possible logic edge cases. Instead it is much
more convenient to describe the logic in a text. For TDD based generation a practical
way is to use comments inside of the test cases (Section 4.3.3). This way the comments
also remain with the code explaining the underlying logic that the initial implementation
considered.

Refactoring test cases

In some cases, the code generation can still not provide a correct result even after using
many other techniques provided in this chapter like CoT, context augmentation or modify-
ing the tests to make the input less ambiguous. In these cases a more drastic measure has to
be taken in the form of refactoring the test cases. This could include even the architectural
side of the code, as it is possible to divide the problem between different classes or objects.

One example of this can be seen in the iterative approach (Section 4.3.2), where the logic
part was defined for a separate class to direct the generation in a specific direction. For our
case it worked greatly as the implementation was possible to be continued.

5.2.2 Code correctness comparison between methods

To compare the correctness of the different generation methods, a separate set of test suites
was created to fully cover scenarios for all requirements. This ensured that the solutions
were not solely tuned to the tests used during the generation process.

Parking with discount results

For the first parking problem, altogether 10 test cases covering the basic parking calculation
and the discount were created. As the iterative approach used 10 generations in the
workflow, the zero-shot approaches were also given in total 10 new generations. The
tests showed a clear difference between the zero-shot and iterative approaches, with the
TDD-based iterative approach being the only one to pass all the tests (Table 2).
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Generation method Passed tests Passed tests Total test count
(average) (median)

Problem statement only 6.0 6.0 10
Tests only 6.8 6.5 10
Problem statement with tests 4.8 6.0 10
TDD based iterative 10 10 10

Table 2. Parking with discount test run results for different generation methods

Generation method Passed tests Passed tests Total test count
(average) (median)

Problem statement only 5.0 7.0 11
Tests only 5.7 6.0 11
Problem statement with tests 4.7 5.0 11
TDD based iterative 11 11 11

Table 3. Generalized parking with reservation test run results for different generation
methods

Among the three zero-shot approaches, the success rate varied slightly. The best results
were shown by the "Tests only" approach, with an average passed test count of 6.8, followed
by the "Problem statement only" at 6.0 and finally by the combined solution of "Problem
statement with tests" at 4.8 (Table 2). While there is a slight difference in the averages, the
median of the results is even smaller, staying between 6.0-6.5 (Table 2). Therefor it is not
reasonable to make many decisions on what zero-shot approach performed the best, as in
the end, all of them failed.

With the "TDD based iterative" approach passing all tests, we can concur that there is
additional value in the iterative process in itself. This is because the zero-shot approaches
used the same set of tests in the generation, but failing at reproducing the results. That might
be due to several reasons, but main one being in the constant evaluation and correction
that comes from the iterative approach. Once a test fails, the necessary changes are done
at the moment of failure, allowing to correct the exact problem at hand. With zero-shot
approaches this is not possible, as there are can be many problems raising at the same time.

Generalized parking with reservation results

Continuing with the generalized parking problem we see a similar result. The zero-shot
approaches again fail to achieve the same results to the TDD based iterative one. From
the zero-shot approaches, the "Tests only" method achieves the best average passed tests
count with 5.7, then "Problem statement only" at 5.0 and lastly the "Problem statement
with tests" at 4.7 (Table 3).
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The close average and median results again make it difficult to compare the zero-shot
approaches to each other.

The "TDD based iterative" approach is again able to pass all the test cases with the same
tests as an input. This again proves the method to be more efficient at generating results to
complex problems compared to zero-shot approaches.

5.2.3 Code coverage

As TDD promotes the importance of tests, good code coverage naturally follows as a side
effect of the practice. This also holds when using LLMs for code generation. As seen from
the methods that use tests as input, the test coverage is quite high, covering in most cases
90–100 % of the generated code (Table 4 and 5). This indicates that the generation quite
strictly follows the provided test cases on its own and does not introduce additional logic
that might not be expected.

Generation method Class (%) Method (%) Line (%) Branch (%)
Problem statement only - - - -
Tests only 100 100 100 100
Problem statement with tests 100 100 96 66
TDD based iterative genera-
tion

100 100 97 92

Table 4. Test coverage of different generation methods

Generation method Class (%) Method (%) Line (%) Branch (%)
Problem statement only - - - -
Tests only 100 100 100 91
Problem statement with tests 100 100 100 81
TDD based iterative genera-
tion

100 100 100 85

Table 5. Test coverage of different generation methods

5.3 Limitations of the work

In this section we discuss about some limitations of the methods and approaches. The
main limitations came from the choice of the generative model and the testing size for the
iterative approach. As the methods used require a lot of manual work, a large quantitative
study is not possible in this approach.
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5.3.1 Limited model testing

For the purposes of showing differences in different prompt mechanisms, the examples
were picked specifically for the model used, ChatGPT 4o-mini. The use of the model played
a significant role in the complexity degree of the problem statements, as every model has a
different capability in problem solving. Therefore, the same problem statements would not
give much useful information for better or worse models. Better models could solve the
issues with all generation methods the same, and worse models might not complete the
solution at all.

Also, LLM research is right now moving at a very fast-paced rate. With the latest advance-
ments coming in the use of reasoning models, which have changed the behavior of the
models, this is untested in regard to the ways of working provided by the thesis.

5.3.2 Limited user research

The research provided a novel solution on how to use the existing limited models in a way
that could solve issues otherwise not possible with the models. This, however, introduced
a high level of dependency on the human side, which controls and manages the generation
process. In this thesis, the impact of the way of working was not estimated by the value it
could provide versus the time taken. Because of this, the true value of the method remains
uncertain and would require user research to estimate the feasibility of the process in the
real world.

5.4 Future works

To continue with the work there are multiple different directions that it could be taken
as. From the research it has been verified that there are some aspects that do allow the
generative model to achieve a better result, which are not yet applied in the available tools.

5.4.1 Feedback loop mechanism

In the quantitative analysis it was determined that the feedback gotten from test runs can
help reduce issues with generations. This is however still quite a manual process, requiring
to run the test cases and copying any explicit error into a prompt. If it would be possible to
introduce a tool to allow an automatic run of such scenarios could help to achieve better
results with the current models.
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5.4.2 User research for iterative TDD practices

While the novel flow introduced in this thesis was proven to work on specific examples,
it is still unknown how useful the tool would be for everyday use. To estimate the value
an user research would be necessary where multiple engineers would need to evaluate the
practicality of the method of work. The research should estimate both the practical value
of the solution generation speed and ease of work to understand better its value for the
engineers.
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6. Summary

This thesis investigates the integration of Test-Driven Development (TDD) practices into
Large Language Model (LLM)–based code generation workflows to enhance accuracy and
reliability, especially for complex software tasks. We begun by evaluating prompt engineer-
ing strategies—textual descriptions, standalone test cases, and their combination—using
established benchmarks (MBPP and HumanEval). This analysis demonstrated that com-
bining natural-language descriptions with test cases yields more consistent generation
accuracy than either method alone.

Building on these insights, we proposed an iterative, TDD-inspired approach in which
LLMs generate code guided by a Red–Green–Refactor cycle. Develop takes the role
of test-case creator and controls the generations, allowing an incremental refinement
of the solution. Comparative experiments reveal that our iterative method consistently
outperforms traditional zero-shot prompting, achieving near-complete test coverage with
comparable generation costs.

A detailed case study on custom-designed parking scenarios further validates our approach
in a real-world context. The iterative TDD workflow enables LLMs to handle complex
requirements that zero-shot methods struggle to address effectively.

The key contributions of this work include a systematic evaluation of prompt-creation
techniques that identifies best practices for combining natural-language descriptions with
test cases, the design of a TDD-based iterative framework for effective LLM-based code
generation, and empirical evidence from both benchmarks and complex case studies demon-
strating the superior performance of the TDD-based methods over zero-shot prompting.

This thesis provides a clear instructions for software developers to use LLM capabilities
more effectively, enabling the reliable automation of complex coding tasks. Future work
may explore user experience research, multi-agent tools, and broader model research to
generalize these techniques across different LLMs.
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Appendix 2 - Parking with discount

Scenario:
A parking garage charges based on time tiers with discounts for off-peak hours and daily
maximums.

■ Rates:

1. 0–2 hours: $3.00 flat rate (covers up to 2 hours).
2. 2–6 hours: $1.50 per hour (in addition to the $3.00 for the first 2 hours).
3. 6+ hours: A daily maximum rate of $15.00 for any parking session that goes

beyond 6 hours.

■ Off-Peak Discount: If the majority of the parked time occurs between 8:00 PM and
6:00 AM, apply a 20% discount to the final cost.

– For example, if someone parks from 10:00 PM to 2:00 AM (4 hours, mostly
off-peak), they get the discount on their total bill.

■ Requirements:

1. Input:

– Start time (in HH:MM 24-hour format).
– End time (in HH:MM 24-hour format).

2. Output: The total cost for the parking session, considering tiered rates and
potential off-peak discount.

3. Constraints:

– The parking session cannot exceed 24 hours.
– If the parking session crosses midnight, handle the date change accordingly

(assume it is within the same 24-hour period).
– The discount only applies if more than 50% of the parked time is within

the off-peak window (20:00–06:00).
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Appendix 3 - Generalized parking with reservation

Scenario:
A large city operates multiple parking zones, each with different base rates. Prices vary
dynamically based on the time of day (e.g., morning rush, evening rush, overnight discount,
etc.). Additionally, drivers can pre-book their parking space online at a fixed reservation
fee, which will lock in a lower hourly rate.

Reservation System

■ Online Reservation Fee: $5.00 flat fee.
■ Locked Hourly Rate: Once a driver reserves, they pay the zone’s rate as of the

reservation time block for their entire stay—no time-of-day changes will apply
mid-session.

■ No Reservation: If a driver does not reserve, the rate for each hour (or partial hour)
is determined by the time-of-day block in which that hour begins. If the parking
session crosses multiple pricing blocks, they pay accordingly for each segment.

Time and Billing

1. Billing Increment: 15-minute increments, rounding up.
2. If the user does not reserve and crosses into a new time block (e.g., from Morning

Rush to Midday) at the top of any hour, the rate for subsequent increments is
recalculated based on the new time block’s rules.

3. If the user does reserve, the rate remains constant throughout the stay, regardless of
crossing different time blocks.

Requirements

1. Input:

■ Start time & end time (HH:MM format).
■ Whether the user made a reservation or not (if yes, they pay the reservation fee

and lock the rate from the start time’s pricing block).
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■ ParkingZone. Example format.

1 {

2 "name": "Downtown",

3 "periods": [

4 { "startTime": "06:00", "endTime": "10:00", "pricePerHour": 6.00 },

5 { "startTime": "10:00", "endTime": "16:00", "pricePerHour": 4.00 },

6

7 ]

8 }

2. Output:

■ The final cost, factoring in:

– Base zone rate.
– Time-of-day dynamic pricing (for non-reserved sessions).
– Reservation fee (if applicable).
– Partial-hour billing increments.

3. Constraints:

■ Rounding to the next 15-minute increment applies at each segment if there’s
fractional usage.
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