

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies
Department of Software Science

 Gabriel Kolawole IVSM155847

MODEL BASED TESTING MOBILE
APPLICATIONS: A CASE STUDY OF MOODLE

MOBILE APPLICATION

Master’s Thesis

Supervisor: Juhan-Peep Ernits, PhD

Tallinn 2017

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Tarkvarateaduse instituut

Gabriel Kolawole IVSM155847

MOBIILIRAKENDUSTE MUDELIPÕHINE
TESTIMINE MOODLE’ MOBIILIRAKENDUSE

NÄITEL

Magistritöö

Juhendaja: Juhan-Peep Ernits, PhD

Tallinn 2017

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references to the

literature and the work of others have been referred to. This thesis has not been presented for

examination anywhere else.

Author: Kolawole Gabriel

Abstract

The tools for the development of mobile applications are in rapid development, with different

devices and mobile operating systems that are being introduced in the market periodically, this

poses a need to have an easy and effective approach of testing mobile applications in a cost

effective manner, one of such approaches is testing these applications based on the way they

are expected to behave with different range of inputs and scenarios which is termed Model

Based Testing (MBT).

The current thesis describes the process of performing MBT on the Moodle educational

software mobile application. Moodle Mobile app is the official front end to Moodle and is

available for Android and IOS.

This thesis has presented a behavioral approach in testing mobile applications using MBT with

which an application can be tested with multiple test cases on the fly or offline. This was

achieved by developing an adapter between the application behavior models and a real device

using JSON protocol exposed by Appium.

The first part of this thesis introduces the key concepts of MBT . The second section is centered

on the state of the art and the related work. The third section discusses model programs

developed in this work using NModel which is the framework which is used for modelling.

The fourth section focuses on tools setup and entire test architecture. Section 5 detailed the

adapter implementation and the end to end process of achieving the MBT using NModel.

This thesis is written in English and is 54 pages long, including 5 chapters, 14 figures and 2

tables.

Annotatsioon

Mobiilirakenduste arendamise vahendeid arendatakse pidevalt edasi. Erinevate seadmete ja

mobiilsete operatsioonisüsteemide versioonide perioodilise lisandumisega turule suureneb

vajadus lihtsa ja efektiivse lähenemise järele, mis võimaldaks mobiilirakendusi testida

kuluefektiivselt. Üks selliseid lähenemisi on kasutades käitumislikku lähenemist erinevate

sisenditega ning stsenaariumitega, mida võimaldab mudelipõhine testimine.

Käesolevas magistritöös kirjeldatakse, kuidas mudelipõhiselt testida Moodle mobiilirakendust.

Moodle Mobile App nimeline mobiilirakendus on Moodle ametlik kasutajaliides mobiilsetele

seadmetele, mis on kättesaadav nii Androidile kui ka IOS-le.

Antud magistritöös tutvustatakse mobiilirakenduste käitumuslikku testimist kasutades

mudelipõhist testimist erinevate testijuhtude käivitamiseks eelsalvestatud testidest või mudelit

käigupealt interpreteerides. See saavutati adapteri arendamisega, mis võimaldab käitumislikke

mudeleid käivitades juhtida mobiilirakendust Appiumi kaudu üle JSON keeles defineeritud

protokolli.

Magistritöö esimeses osas tehakse sissejuhatus mudelipõhise testimise põhimõistetele. Teises

osas keskendutakse mobiilirakenduste testimisvahenditele ja mudelipõhiste testimislahenduste

arengutele. Kolmandas osas tutvustatakse mudelprogrammide loomist NModel teeki

kasutades. Neljandas peatükis keskendutakse kogu testimislahenduse ülesseadmise detailidele.

Viiendas peatükis kirjeldatakse Moodle Mobile Appi jaoks adapteri loomist ja NModeliga selle

rakenduse testimise protsessile.

Käesolev magistritöö on kirjutatud inglise keeles 54-l leheküljel, sisaldades 5 peatükki, 14

joonist ning 2 tabelit.

List of abbreviations and terms

SUT System Under Test
MGT Model based GUI Testing

AUT Application Under Test

FSM Finite State Machine
API Application Programming Interface
MBT Model Based Testing
GUI Graphical User Interface
UI User interface

FSM Finite State Machine

SRS System Requirement Specification

APK Android Application Package

Table of contents

1 Introduction ... 1
Model Based Testing ... 3
1.2 Modelling ... 4
1.3 Model Programs ... 4
1.4 Aims and Objectives .. 6

2 Background and Related Work ... 7
State of the art of mobile application testing. .. 7
2.1 Modelling Frameworks .. 9
2.1.1 Microsoft Spec Explorer ... 9
2.1.2 NModel ... 9
2.1.3 PyModel .. 9
2.1.4 ModelJUnit ... 10
2.1.5 Conformiq’s Qtronic ... 10
2.2 Web Applications Testing Using NModel [10]. .. 11
2.3 MobiGUITAR Project: Automated MBT of Mobile Apps .. 12
2.4 Automated model-based Android GUI testing with multi-level GUI comparison criteria
.. 15

3 SUT Modelling ... 18
3.1 NModel Action .. 18
3.2 NModel State Variables ... 19
3.3 Model Composition ... 19
3.4 Model Programs ... 19

4 Test Setup .. 28
4.1 Required applications and tools ... 28
4.1.1 Moodle Software ... 28
4.1.2 Appium ... 29
4.1.3 Apache Web Server .. 30

5. System Adapter .. 31
5.1 Test Results and Observations ... 35

Conclusion and Recommendation ... 36
References .. 37

Appendix 1 – Login Feature Model ... 39
Appendix 2 – Search Feature Model ... 40

Appendix 3 – Self-Enrolment Feature ... 41
Appendix 4 – Stepper Class ... 42

Appendix 5 – F# Appium driver for Moodle App ... 43

 List of figures�

Figure 1 V-Model Diagram [1] .. 1
Figure 2 MBT work flow .. 4
Figure 3 Typical Model based testing setup [2]. ... 6
Figure 4 MBT setup for a web application [10]. .. 11
Figure 5 The abstract state machine for Aard dictionary and offline Wikipedia reader [18]. 14
Figure 6 - Login Feature true FSM. ... 20
Figure 7 Single user with correct password, scenario FSM .. 21
Figure 8 Search Feature true FSM ... 22
Figure 9 Single user search scenario FSM .. 23
Figure 10 Scenario FSM for self-enrolment feature ... 25
Figure 11 Coursework submission scenario FSM ... 26
Figure 12 Enabling mobile web service in moodle site administration menu 28
Figure 13 Test Setup .. 30
Figure 14 Model program viewer window [24] 32
Figure 15 Appium Client Window on Mac .. 33

List of tables�

Table 1 Test requirement list ... 19
Table 2 Summary of test results ... 35

	 1	

1 Introduction

Mobile application development and software development has evolved over the years with

the advent of various tools and methodologies for designing and implementing working

solutions on both mobile and desktop systems. With every tool, IDE, library involved in the

process of crafting the application some additional complexity and bugs may build up given

that some of such features can be poorly documented.

The usual workflow follows the V-Model of software design in each iteration where an

architect or a product owner, conceptualizes a solution to a problem, which is then transferred

into words as requirements which are then processed into detailed designs, these designs are

then implemented. On a successful implementation, the system goes through the testing phase

where series of tests are performed such as unit, integration and system level tests.

Figure	1	V-Model	Diagram	[1]	

Mobile applications are conceptualized in the form of wireframes and sketches which forms

the working input for the development team to provide a working solution to each requirement

as stated in the requirement document. In practice the developer or engineer develops a working

solution for which often a set of unit tests gets developed which is usually dependent on the

underlying language used in developing the solution.

Unit testing is the most 'micro' scale of testing; to test functions or code modules. Typically

done by the programmer and not by testers, as it requires detailed knowledge of the internal

program design and code [2]. Not always easily done unless the application has a well-designed

	 2	

architecture with a very effective source code which get a task done with minimum resource,

may require developing test driver modules or test harnesses [3].

The next move from unit testing is to test various components of the system through integration

tests. Integration test reveals defects of interfaces and integrated components or systems

interactions [4]. With integration testing communication, related defects with various

participating components are be detected. To achieve delivery of the application, system testing

is done, system test in involves user acceptance during which each of the requirements for the

solution are validated, this is performed based on the SRS, system testing is performed on a

complete and fully integrated software product, it is the final test to be conducted where both

functional and non-functional requirements are investigated [5].

Mobile application usage and development is experiencing exponential growth. According to

Gartner, by 2016 more than 300 billion applications will be downloaded annually. The mobile

domain presents new challenges to software engineering. Mobile platforms are rapidly

changing, including diverse capabilities as GPS, sensors, and input modes. Applications must

be omni-channel and work on all platforms. Developing such applications requires suitable

practices and tools e.g., architecture techniques that relate to the complexity at hand; improved

refactoring tools for hybrid applications using dynamic languages and polyglot development

and applications; and testing techniques for applications that run on different devices [6].

Software testing has grown as an important technique to evaluate and help to improve software

quality. Numerous techniques and tools have appeared in the last decade, ranging from static

analysis to automatic test generation and application [7]. A perfect world for mobile application

testing will be a scenario where a single build of the application can be used to test and simulate

user/server interaction with the application with zero human intervention in terms of interaction

for testing. The test will be driven using pre-written test drivers which can simulate user

interaction by sending commands through some interface between the mobile device and the

underlying application running on the device. In this case, the tests will usually aim at asserting

if equal application states are reached for the equivalent commands sent to the device.

This thesis will describe the complete flow of testing Android applications in a behavioral

approach using NModel which is an MBT framework and Appium which is an automation

framework for Android and IOS. This work will provide a complete tool chain which is

	 3	

required in running model based tests on Android devices. A complete solution containing

various system adapters, scenario FSM’s and all other relevant source codes is also delivered.

Model Based Testing

Model based testing (MBT) is software testing using programs (models) modelled to behave

as the functionalities or requirements of the system under test (SUT), this forms the base of

generating test cases which drives the testing process. The functions of the system under test

(SUT) are abstracted at a very high level to achieve a very high level of automation, and this

can easily be applied and implemented during system and integration test of the SUT. The

verdicts from MBT can easily be used to rework the system so that a suitable solution is

delivered.

During component testing, different components of the system can be modelled as features of

the overall system which can be combined to test the overall system. The advantage of testing

the system using this approach includes:

i. Meaningful test cases can easily be generated

ii. Bugs of the system can be detected earlier.

iii. Reduced the cost of maintenance. You do not need to write new tests for each new

feature. Once you have a model it is easy to generate and re-generate test cases than

it is with hand-coded test cases [8].

iv. Test cases can easily be generated from large state machines by specifying relevant

scenario

v. Modelling help to refine unclear and poorly defined requirements [9].

MBT can be achieved with either online or offline approach. Online MBT involves the

generation of test cases in motion, which is useful in testing nondeterministic systems. In this

case, test cases can have very large number of steps.

Offline MBT involves automating test case generation where test cases are fixed at the time of

test generation and execution of tests is performed later.

	 4	

A typical workflow for MBT is as follows:

Figure	2		MBT	work	flow	

1.2 Modelling

This is the process of describing the SUT requirements which will be used by the test generator,

for generating test cases, as well as the output expected from the SUT. This involves a very

high level of abstraction of the SUT functions.

The objective during the modelling process is to be able to figure out which functions of the

SUT are to be tested, as well as deciding on variables or data structure that best describe the

SUT.

Every action of the model program to be modeled (written) must be able to answer the

following:

• Action enabling: a proper condition must guard the enabling of each action.

• State Update: which state variable or entity will be updated?

• Return value: it is must be determined whether the action returns a value or not.

1.3 Model Programs

A model program is a simple program describing the behavior and expected outputs of the

system under test. Where every feature of the specification is a action method in the model

program covering controllable such as input entry, button clicks and uncontrollable user actions

like application state changes, sever responses in a client-server scenario can all be captured

within a model program. The model is the test case generator and oracle [10].

A model program abstracts the implementation of the SUT at a very high level. Important terms

related to model program;

	 5	

Actions - This is a unit of behavior of the SUT. An action could be a single activity or comprise

of other activities. Action represents every method in the implementation of the SUT. Model

program’s actions are decorated like [Action].

States - This is the situation of things in the SUT at a point in time. At every point in system

variables takes achieve new state / values. In the model program this are represented as

variables which does not have to correspond to the variables in the implementation of the SUT.

Execution of a SUT begins from an initial/idle state to an accepting state where the goals of

the system have been achieved. A series of actions in sequence from initial state to the

accepting state is called a run/trace.

Behavior - This is the complete collection of runs/traces the SUT can attain.

Contract Model Program - This specifies all permissible behaviors of the implementation of

the SUT. This is the specification of the dos and don’ts of the implementation of the SUT.

Scenario – A specific subset of all possible runs/traces that adhere to a specific scenario.

A Scenario model program is peculiar to the scenario described in the form of a model

program. It is intended to be composed with the contract model program to restrict the set of

behaviors to a specific scenario.

A typical workflow for MBT is the following.

	 6	

Figure	3		Typical	Model	based	testing	setup	[2].	

1.4 Aims and Objectives

The aim of this thesis is to develop and demonstrate the process of model based testing with

focus on behavior/ scenario control approach for mobile applications using model programs

written with NModel framework.

My work will cover the following:

• Setting up different tools/frameworks required in achieving MBT testing

• How to implement a system adapter which will be used to glue model programs which

models a system behavior to the actual system execution.

• Writing model programs for the case study of this thesis, i.e. formalizing the

requirements.

• Testing of the case study application and reporting of the test results.

	 7	

2 Background and Related Work

State of the art of mobile application testing.

In a world where mobile applications are getting more sophisticated, relying on data from

various sources (agents) to ensure their smooth operation, automating the testing of most

significant behaviors of such system is crucial in quality control.

Therefore, to ensure the reliability of the software, along with quality assurance, verification

and validation, researchers have developed several techniques for the different abstraction

levels of software testing, i.e., unit, integration and system [10].

Automated Graphical User Interface (GUI) testing is one of the most widely used techniques

to detect faults in mobile applications (apps) and to test functionality and usability [11].

The evolution of various tools and languages used in developing mobile application results into

many challenges being encountered in testing the usability of this application. The challenges

are not limited to the following:

• Diversity of operating systems,

• Accelerated development,

• Integration / collaboration with existing system,

• Nature of the application (native or hybrid),

• Internet connection.

Android applications are tested in various ways. And the strategy involved in this test is usually

a function of the above stated challenges. Thus, test automation frameworks are introduced to

test mobile applications.

Popular open source test automation test tools include Appium [12], Monkey Talk [13],

Calaba.sh [14], Robotium [15], Selendroid [16]. What is common to all these tools is that they

are plainly for UI acceptance testing with no consideration for depending systems/hosts or

application usage scenario, this is which is not featured as to the usage and implementation of

this tools.

	 8	

MonkeyTalk is an open source test automation tool which can execute a test script on either an

emulator or a real device, it supports Android and IOS. Monkey Talk like Appium works a

mobile application build by executing a test script on against this build on a real device or an

emulator. MonkeyTalk can perform the following, during execution: ‘select, enterText, verify,

entertext; Using each of the commands.

To formulate a test, script a sequence of steps can be recorded using the monkeytalk ide, the

result of the recording step a sequence of steps which can be replayed during automation, and

this is what makes up the record and replay mode of monkey talk. Data driven testing is also

possible with monkey talk where a set of inputs are pre-defined and these values are used by

monkey talk during playback.

Another interesting testing approach is the Automated functionality testing through GUIs [17].

This is approach uses an MGT framework called the Action-Event framework (AEF). This

framework helps testers abstract away from low-level details of the GUI under test and generate

test cases in a behavior-oriented way. In this framework, testers can perform both business

logic testing and GUI testing in a reusable manner. At the core of AEF is a mapping language

that allows test engineers to map abstract actions to GUI implementations [17].

Taking mobile application testing beyond GUI acceptance testing, the behavioral approach can

be used, where by a requirement of the system is given in a more declarative manner including

an actor (feature) and what it is acting on as well as the expected result (output) of the action.

For example, consider an inventory system where the statement below can be given as a feature:

• Refunded	or	replaced	items	should	be	returned	to	stock	[18].

In the statement above the behavior of the system is expected to be that when customers are

refunded for items, such items are expected to be seen in the stock and like wisely for when

they are replaced. From the example given we can abstract this statement into a model, which

is modelled using a modelling framework and from this model test cases covering different

scenarios(behavior) of the system(model) are automatically generated with a test case generator

provided by the modelling framework.

There are number of modelling frameworks which can be employed for this, they are discussed

below;

	 9	

2.1 Modelling Frameworks

2.1.1 Microsoft Spec Explorer

Spec Explorer is an MBT tool which extends the functionality of Visual Studio, software can

be modelled, analyzed and visualized graphically. Spec explorer supports code generation,

such that standalone code is generated from models.

The models can be written in C#, and test generation is directed with test purposes written in

the Cord language. The right level of abstraction for the model used for test generation must

be chosen by the engineer to keep the model manageable, which requires a deep knowledge on

modeling and the tool [19].

Synchronous, asynchronous as well as non-deterministic systems can be modelled using spec

explorer. Explored behaviors of a model are displayed as exploration graphs.

Spec explorer concepts are closely related to NModel, for instance the concept of Action is

similar as this represents an interaction with the SUT in both NModel and spec explorer. Spec

explorer also uses Test Cases & Test Suites concepts as available in NModel.

2.1.2 NModel

NModel is an open source modelling framework built on the experiences of Microsoft Spec

Explorer [10]. User writes model programs in C#. NModel generates tests from your model

program in advance or on-the-fly as the test run executes.

Users may add custom test generation strategies in C# to achieve any coverage criteria. SUT

not limited to Windows [20].

2.1.3 PyModel

PyModel is an open source framework for model based testing in python. It is like the NModel

as it was influenced by NModel. Internal concepts the framework implements e.g composition,

it supports offline and on-the-fly testing. Composition is used for scenario control, where

coverage is being guided by a programmable strategy. It provides the PyModel Analyzer pma,

the PyModel Graphics program pmg for visualizing the analyzer output, and the PyModel

Tester pmt for generating, executing, and checking tests, both offline and on-the-fly. It also

	 10	

includes several demonstration samples, each including a contract model program, scenario

machines, and a test harness [20].

2.1.4 ModelJUnit

Model JUnit is an extension of the unit testing library in Java, (Junit) with the sole purpose of

model based testing. ModelJUnit allows java classes to be used in creating simple finite state

machine (FSM) models or extended finite state machine (EFSM), from this tests cases can be

generated and measure various model coverage metrics.

2.1.5 Conformiq’s Qtronic

Qtronic is a commercial model testing tool developed by Conformiq Software Ltd. Like every

other alternative, tests are driven from behavioral state models State space analysis of behavior

that is implied by design model are used in generating test cases. Conformiq also generates

automatic test case documentation in any language, which is uploaded to any test management

system. When the SUT design changes Conformiq automatically update test scripts and test

cases.

Qtronic is particularly suitable for component, sub-system, and system level testing [19].

Overall there is no much difference between these tools, as they influence each other regarding

implementations, except for Conformiq which is commercial.

All model programs in this work will be done using the NModel and F#. The reason for using

this two is because F# is a powerful functional language targeted for .NET framework and

NModel is a choice because it is open source and intended to be improved during this thesis.

The unique thing here is that when modelling with NModel we can take advantage of the

various types which F# has to offer like Tuples, Discriminated Unions, Records and Enums.

Related literatures which are related to this work are describe below;

	 11	

2.2 Web Applications Testing Using NModel [10].

Ernits J., Roo R., Jacky J., Veanes M. applied MBT in testing web applications in [4]. The SUT

was a commercial web based positioning system called Workforce Management (WFM). The

application tracks positions of employees. The application interacts with other system

(services) such as the billing and positioning system.

Models of for the SUT was written in c#, and the online testing strategy was used, such that

tests were generated on the fly.

The goal of this work was test the functional correctness of the WFM under normal working

conditions as well as startup and shutdown of the system.

The test setup is as follows:

Figure	4		MBT	setup	for	a	web	application	[10].

The model of the SUT is available in the component labelled Model of the web application

within the tester node.

The NModel Library is the central core that provides the tools for loading and stepping into the

model program according to the desired functionalities.

Conformance testing was done by the conformance Tester component which loads the model

program and the test harness. A test harness is the glue (connection) between the model

program and the actual web application that was being tested. The whole conformance

	 12	

procedure is triggered by the ct tool within NModel toolkit. The test harness is exposed and

called through IAsyncStepper (Asynchronous stepper) in NModel.

IAsyncStepper links synchronous actions within the model program to actual actions available

in the implementation of the SUT. The case study, the actual synchronous (blocking) action

corresponds to sending an HTTP request e.g GET, POST and waiting for the result to be

delivered (response).

Functional specifications are derived in terms of causal relationships between different

messages on from different ports on the system.

The SUT work such that the web server talks to the the backend system, which in turn

communicates with the billing and positioning system. All procedure logs are transported to

the history subsystem.

The following functionalities are modelled Login, LogOff, Positioning, BillingAndHistory and

Restart as features in NModel.

2.3 MobiGUITAR Project: Automated MBT of Mobile Apps

MobiGUITAR automates GUI-driven testing of Android apps, employing an abstraction of

GUI widgets' run-time state. The abstraction is a lable state machine model that, together with

test coverage criteria, provides a way to automatically generate test cases [18].

The working of MobiGUITAR (Mobile GUI Testing Framework) involves an implementation

of a toolchain that is android powered. The framework models the state of the app’s (SUT)

GUI.

There are three key steps to the working of MobiGUITAR including, ripping, generation and

execution.

Ripping involves dynamically traversing of an app’s GUI and creates a state machine model

from this. MobiGUITAR ripper is an advanced version of the Android ripper, it launches the

app in each start state and collects a list of events that can be performed on the GUI in the

current state, with this a task list is created with the events as a separate task on the list. The

Ripper traverse the task list which results into an event being fired according to the list, when

	 13	

an event is fired, the event is removed from the list, new state occurs, the GUI changes and

fireable events are collected and appended to the end of the list again.

This approach realizes a breadth-first traversal of the application’s GUI in generating the state

models. Base on some given criterion similar GUI are merged in a situation when the ripper

sees them as equivalent using object properties constituting this GUI’s to determine their

equivalence. Equivalent states comprise equivalent objects whose IDs and type properties have

the same values [18].

The steps explained above are used in testing a dictionary and offline reader called Aard

Dictionary.

The process of test case generation involves using the model from the ripping process and test

adequacy criteria to obtain test cases modelled as a sequence of GUI events. MobiGUITAR

operates on a pairwise edge coverage criterion, to this end all pairs of adjacent events must be

exercised together because of this all edges(events) adjacent to a node are created in pairs.

A pairwise edge coverage criterion was developed. Conceptually, this means that all pairs of

adjacent edges (events) must be exercised together. To this end, we create pairs of all edges in

our state machine that are adjacent to a node. For each pair, we generate a test case that's a path

in the state machine from the start state to the pair being covered. For example, a2 has four

incoming edges (el, ell, e12, and e13) and six outgoing edges (e7, e8, e9, e10, ell, and e12).

This creates 4×6=24 pairs to cover. The test case (el, ell, e8) covers two of these pairs: (el, ell)

and (ell, e8). For Aard Dictionary, we generated 678 test cases with 2,747 fireable events [18].

	 14	

Figure	5		The	abstract	state	machine	for	Aard	dictionary	and	offline	Wikipedia	reader	[18].	

In the execution step of MobiGUITAR tests outputs from the generator which are in JUnit

format are been replayed.

Such test cases can detect crashes during the app's execution. A tester can enhance a test case

by adding JUnit-like assert statements to check for functional errors. For Aard Dictionary, 674

of the 678 test cases executed with no problems and covered 70 percent of the code. Of the 678

test cases, four detected a bug that led to an unhandled IllegalArgumentException [18].

	 15	

2.4 Automated model-based Android GUI testing with multi-level GUI
comparison criteria

One of the most widely used methodologies of testing mobile application is via its graphical

user interface. The main goal of this approach is to validate the application through its views

since the application itself is GUI driven.

As a means of GUI test automation for Android apps, current studies that deal with automated

test input generation for android apps can be classified into several approaches. The simplest

of this is random input generation, in which random inputs and events are generated as inputs

to explore the behavior of the AUT while checking for runtime errors [11].

This research is main goal was to solve the problem that come along the line of using the

random testing tools. The common problem associated with using these tools include the

redundant test cases which are generated due to the nature/level of randomness, and with this

approach no specific trace or path could be specified for testing.

For effective model-based GUI testing, reflecting a behavior space of an AUT on a GUI model

is the most crucial ability to generate effective test inputs [19].

The core component of a systematic input generation is the underlying GUI model [11].

A GUI graph G is a directed graph that rep- resents distinct GUI states, distinguished by a

specific GUI comparison criterion (GUICC), as ScreenNodes, and represents transitions

between GUI states, which are triggered by events, as EventEdges. Simply, a GUI graph G is

defined as G=(S,E), where S is a set of ScreenNodes (S)={s1,s2…sn}) and E is a set

of EventEdges (E)={e1,e2…en}) [11].

When a model based testing, tool generates or updates a GUI graph while exploring the

behavior space, GUICC distinguishes the GUI of the current screen on Android device after a

test input is executed [11]. GUI comparison with GUICC helps the testing tool on how to

update the GUI graph.

The multi-level GUI comparison technique was designed based on a semi-automated

investigation with 93 real-word Android commercial apps registered in Google Play [11]. The

result of this investigation is as follows:

	 16	

The research came up with the GUICC model as 5 levels criteria with 3 possible outputs

according to the comparison result. A comparison output can be either of N(New), S(Same) or

T(Terminated) [11]. The default comparison level is set to level 5.

The comparison levels include:

• Level l: Compare package names

• Level 2: Activity names comparison

• Level 3: Compare layout widgets

• Level 4: Compare executable widgets

• Level 5: Content comparison

The research test setup is as follows:

A test environment which comprises of a testing engine which contains an error checked, graph

generator and test executor. During test execution graph generator generates GUI graphs which

is used in exploring the behavioral space of the AUT using the multi-level comparison criteria.

The comparison begins at level where the package name of the currently executing screen is

compared to that of the visited ScreenNodes. To efficiently explore a behavior space (i.e.,

explore only the relevant space), a testing engine must be able to clearly distinguish the

boundary of the space of an AUT. To avoid exploration outside of the app boundary, the testing

engine analyzes which app package is currently being focused and run by the Android device.

If the device does not focus on the package of the target AUT, the status of the target app is

considered as a terminated state T (i.e., an exit state). This exit case can be caused by transitions

to a third-party app, shutdown, or crashes by an executed event [11].

At level 2 after the comparison at level 1 is passed, the current activity name is compared in

the same fashion as the package name in level 1. If not all ScreenNodes in the CUI graph have

the same activity name, the current screen is considered as a newly discovered CUI state. On

the contrary, if one or more ScreenNodes that have the same activity name are discovered in

the CUI graph, the next level of comparison level 3 is taken [11].

At level 3 and 4 widget composition are the major criteria which are used for comparison. GUI

layouts are compared in succession.

	 17	

Level 5 is the last level of comparison, which is performed on a GUI which can be distinguished

by its contents. In the case that multiple screens have separated context even if there is no

difference in their widget compositions of two screens, modeling GUIs for each screen

separately is necessary to represent behaviors that can act differently in different contexts [11].

The related works that have been describe leaves gap which is the fact that none of this random

testing frame works is not considering observable features or behavior of their AUT. More

generally, another opportunity for future research may lie in approaches for combining

dynamic information obtained from system execution with information contained in the models

[20].

	 18	

3 SUT Modelling

All model programs in this thesis will be written in F# (.NET) using the NModel framework.

NModel model programs uses the industry standard language c#. Interestingly a previous work

by Anmol Gautam [21], has made it possible to be able to write model programs in F# which

this thesis will put into good use.

Before diving into the modelling of our case study, it will be beneficial to understand some key

concepts and features of NModel.

NModel supports modelling with abstract data structures including sets, maps as well as

objects. Model programs can be composed of each other in a situation where features are

splitted up into separate models.

NModel comes bundled with the following tools:

mpv tool which is used to visualize models and ensure that they behave as intended. Also design

errors can be spotted in doing this.

otg offline test generator is used to generate test suite which contain test cases in the offline

mode. test suite can later be passed to the ct to execute them.

ct is a test runner which executes by using a test harness for coupling an implementation. For

this thesis and f# test harness will be written. The ct can either take a test suite generated by an

otg or generated tests by itself on the fly. Using the model program supplied to it, with or

without the option of a feature.

3.1 NModel Action

After completing the choice of the SUT behaviors which are to be modelled. this behavior or

SUT requirements which are to be checked for conformance are wrapped within the action

blocks of the model program.

In NModel the abstracted method which represents the feature or behavior of the SUT is

decorated with `[Action]` symbol directly on the method. The enabling conditions which

	 19	

permits the operation of the MBT from one state to the other are determined by the value of

the actions methods.

The action methods have zero or more arguments. the method is only enabled if the enabling

condition evaluates to true.

3.2 NModel State Variables

When the model program is being run, different environmental variables are established which

represents certain conditions in the internal of the SUT. The progress of the test, while it moves

from one action to the other effects these variables causing them to take on new values from

time to time as the test progresses.

3.3 Model Composition

With NModel SUT behaviors can be modelled in pieces as features which stands for a

functionality or requirement of the system, NModel facilitates composition such that individual

features modelled separately can be combined as during conformance testing.

3.4 Model Programs

A pre-condition to modelling our SUT is declaring those features of the SUT which are to be

tested. We must never model a large system in one model instead we should make many small

model programs [25].

Table 1 below is a list of requirements of our SUT which is the case study of this thesis. These

are requirements crucial to the usage of the Moodle educational application on mobile.

Req1 A registered user should be able to access Moodle site from mobile

Req2 A user will be able to search a list of courses

Req3 A user will be able to do self-enrollment

Req4 Download and view some course resources

Req5 An enrolled user to a course will be able to view courses at a glance

Req6 An enrolled user to a course will be able to access the content of the course

Req7 A user will be able to access private messages, through the messages link
Table	1	-	Test	requirement	list

The requirements above have been abstracted into smaller dedicated features.

	 20	

A feature is a cluster of related state variables and actions that can be selectively included or

excluded from a model program. Features make it possible to define different configurations

for a model program, which include different subsets of features, in a single source program

file (or collection of files) [1].

The combination of different features can be used in guiding a scenario which can translate to

a requirement.

- Login

- Course self-enrollment

- Course search / Course Overview

- Course work submission

Appendix 1 shows the model program for the login feature from which the true FSM below is

generated.

An FSM whose purpose is to define a scenario us called a scenario FSM. It is possible to define

different scenario FSMs for any model program; each different scenario FSM defines a

different collection of runs [1]. The FSM which can generate all the runs of a model program

is called its true FSM [1].

Figure	6	-	Login	Feature	true	FSM.

the FSM below shows a two user scenario where a login can be performed with either a correct

or incorrect password or login credential. The left branch of the FSM as shown above is the

scenario where both user’s (Student A and Student B) credentials attempted login with a correct

password which are shown on Node 0,2,7 and 0,1,6 respectively for both users. The right-side

branch of the FSM is the scenario where login was attempted with incorrect password and login

results to a Failure as shown on node 5.

	 21	

A strength of NModel is in the fact that we can drill this down by guiding the model with a

scenario which is supplied to the NModel as an FSM when generating the model FSM.

Automated test input generation techniques attempt to generate a set of input values for a

program or program component, typically with the aim of achieving some coverage goal or

reaching a state (e.g., the failing of an assertion) [24].

In other to describe this we can demonstrate a login scenario with a single student, say Student

A and a correct password. To this we can apply the following FSM text into the model

generation command line argument:

FSM(

 0,

 AcceptingStates(),

 Transitions(t(0,login_Start(User("StudentA"),Password("Correct")),1)),

 Vocabulary("login_Start")

)

the result of this is Figure 7 below:

Figure	7		Single	user	with	correct	password,	scenario	FSM	

A more interesting scenario to describe will be the course search scenario, where a logged in

user is a requirement before a search can be made. There are several possible scenarios which

can be generated from this action. Figure 8 below shows the gigantic FSM that is generated

from the search feature model. Obviously, this is large and hard to interpret at a glance.

	 22	

Figure	8	Search	Feature	true	FSM

There are different scenarios in the true FSM above. For clarity, let use the FSM text below to

narrow the true FSM down:

FSM(

 0,

 AcceptingStates(

 2

),

 Transitions(

 t(0,login_Start(User("StudentA"),Password("Correct")),1),

 t(1,search_Start(_),2)

),

 Vocabulary(

 "login_Start", "search_Start"

)

)

	 23	

Figure	9		Single	user	search	scenario	FSM

The scenario FSM above is clear and it describes the behavior of automation when the

conformance testing is performed on the model using a single student with a correct login

credential and a valid course code is supplied as an argument during search. The advantage of

this approach is that a tester can test and monitor the behavior of the AUT under any

circumstance as the conformance tester generate several runs as shown in the large true FSM

in Figure 8 above.

The other possible inputs which are generated to the various nodes during the generation of the

model program as shown in the true FSM of our model in Figure8 is derived from the following

enumerations:

type User = StudentA = 0 | StudentB = 1
type Password = Correct = 0 | Incorrect = 1
type LoginStatus = Success = 0 | Failure = 1
type SearchKey = ValidCourse = 0 | InvalidCourse = 1

From the enumeration values listed above, the test generator can generate a different

combination that is passed to the action nodes of model program according to the parameter

this action is expecting. To see how this is implemented reference can be made to both

Appendix1 and Appenix2.

Let’s go further to describe other features. Below is the course self-enrollment feature which

involves the two other features Login and Search, in the sense that a user must be logged in to

perform the self-enrollment step and to the get view that shows the self-enrolment button, a

course search operation must be performed, provided that the user is not already registered to

this course.

	 24	

Self-enrolment feature model program can be found in Appendix 3. The scenario FSM in

Figure 10 below shows a scenario where student A is the currently logged in user and other

possible scenarios where the course searched can either be a valid or invalid course, and the

enrolment fulfillment can result to either of Pending, Failed, Enrolled or Successful.

The feature scenario is guided with the FSM text below.

FSM(

 0,

 AcceptingStates(

 3

),

 Transitions(

 t(0,login_Start(User("StudentA"),Password("Correct")),1),

 t(1,search_Start(_),2),

 t(2,enrol_Finish(_ , _),3)

),

 Vocabulary(

 "login_Start", "search_Start", "enrol_Finish"

)

)

In the FSM text above the underscore symbol ‘_’ passed as argument to the search_Start and

enroll_Finish actions are so that the model viewer tool can generate all possible arguments to

these actions respectively.

	 25	

Figure	10		Scenario	FSM	for	self-enrolment	feature	

State 3 and 9 are dead states as marked in the Figure 10 above, while state 7 and 8 are the

accepting state in which the test can be marked as completed. Adding the liveness parameter

to model generator command we can view the dead states in the model program which are

filled in color yellow above.

Course work submission model like the self-enrolment is a feature that combines all of the

other features that have been previously described. i.e Authentication is a pre-condition so the

Login feature is required to complete the course work submission task.

A user needs to login into the app, search for the course, from the course overview page, course

activities can be viewed from which a selection can be made, and then the user can add a

submission to the course activity that was previously selected. This is visualized in Figure 11

below we can see clearly the accepting states which marked in nodes 10 for when the

submission is success and node 11 for when the submission fails.

	 26	

Figure	11	Coursework	submission	scenario	FSM	

The transition from one state to the other is basically a result of action guards which are put in

place, meaning that an action of the model program is not enabled not until the all the

prerequisite conditions evaluates to true, and this is very important as we can use this in

expressing the behavior of an application in different scenario.

Let us examine the sample code below which is the submission feature model program
namespace MoodleModel
open System
open NModel
open NModel.Attributes
open NModel.Execution
type CourseWork = Assignment1 = 0
type SubmissionStatus = Submitted = 0 | Failed = 1

[<Feature("Submit")>]
type MoodleSubmitApp() =
 static member val view = Screen.Submission with get, set
 static member show() = Console.WriteLine("Current View is" + MoodleSubmitApp.view.ToString())
 static member val submissionFinished = false with get, set
 static member val currentUser : Set<User> = Set<User>.EmptySet with get,set
 static member val submissionQueue : Set<CourseWork> = Set<CourseWork>.EmptySet with get,set

 static member submit_StartEnabled(student: User, submission : CourseWork) =
 MoodleEnrolApp.courseParticipants.Contains(Pair<User,EnrolmentStatus>(student,EnrolmentStatus.SuccessFul))
 && MoodleSubmitApp.submissionQueue.Count < 1 && MoodleSubmitApp.submissionFinished = false
 [<Action>]
 static member submit_Start(student: User, submission) =
 MoodleSubmitApp.show()
 MoodleSubmitApp.submissionQueue <- MoodleSubmitApp.submissionQueue.Add(submission)

 static member submit_FinishEnabled(taskStatus: SubmissionStatus) = MoodleSubmitApp.submissionFinished = false
 && MoodleSubmitApp.submissionQueue.Count > 0
 [<Action>]
 static member submit_Finish(taskStatus)=
 MoodleEnrolApp.show()
 MoodleSubmitApp.submissionQueue <-
 match taskStatus with
 | SubmissionStatus.Submitted -
> MoodleEnrolApp.view <- Screen.CourseOverview ; MoodleSubmitApp.submissionFinished<- true ; Set<CourseWork>.EmptySet
 | _ -> MoodleSubmitApp.submissionQueue

	 27	

The action guard to enable a submission as shown in the snippet above is for the

i. course participant’s collection(Map) to contain a key with the currently logged in

user (student) and the corresponding value which is the enrollment status to be

Successful,

ii. The length of the submission queue must be empty and

iii. Submission completion tracker submissionFinished must be false

These guards will ensure that the action they are tied to can only be executed when all these

conditions are evaluated to true. This pattern also applied to the completion face which checks

whether there is a submission in progress, by checking the length of the submissionQueue and

ensuring that the submission have not been previously finished.

	 28	

4 Test Setup

4.1 Required applications and tools

In this chapter, the setup that is used for the test in this research will be discussed. The following

software/tools are used in this thesis.

a. Moodle Software (Mobile and Desktop).

b. Appium

c. Apache server

4.1.1 Moodle Software

Moodle educational software is the popular educational software, it is a learning platform that

is developed for personalized usage.

Moodle mobile application is the SUT, this is installed on a android device which is connected

to the desktop version of the software in motion. To achieve this, the web service option of the

desktop application (Moodle) needs to enable, which is by default set to `No`, Figure 4 below

shows the site administration page of Moodle desktop software where this option can be turned

on.

Figure	12		Enabling	mobile	web	service	in	moodle	site	administration	menu	

Moodle web application is needed to create courses and other resource related to our tests setup.

Moodle mobile is a hybrid mobile application. A hybrid application is an application developed

with HTML, JavaScript and CSS and then wrapped into a native wrapper for the target mobile

platform which can either be Android or IOS.

Moodle mobile application was installed on an android device (Huawei LYO-L21) running

Android OS v5.1. To carry out tests on the android device USB debugging must be toggled on

the device through the developer options menu on the device.

	 29	

4.1.2 Appium

Appium is an open source tool used in automating native, mobile web and hybrid applications

on both Android and IOS platform. With Appium multiple tests can be written targeting

different platforms with same API. Appium’s automation is as in Selenium where all the

application containing elements are exposed and can be accessed using permitted operations

like clicks, taps, shakes, swiping and send keys to input fields.

The choice of Appium over other alternatives; it is open source and has an active community

of developers. The Appium framework is used as this work intend to provide the technology

to be used by the Telia Testlab.

The key concept behind the working of Appium is the client/server architecture, Appium server

is a Nodejs server, which listens to regular http requests (POST/GET) and then transforms the

request using the internal JSON wire protocol the output of this is passed to the instrumentation

layer of the device which has been implemented in the core of Appium

A driver is required to perform automations on devices. An Appium driver can be written in

any of the following languages, C#, JavaScript, Java, Python.

This thesis an F# Appium driver was written with the same official bindings for the C# driver.

The driver is connected to the IStepper interface of the NModel program, which all our model

programs will execute when actioned with the conformance testing tool.

The target device must be selected on the Appium client, this can either be an emulator or a

real device, our case we selected out device on which we have installed the Moodle application.

	 30	

4.1.3 Apache Web Server

Apache is the mostly widely used web server software [26]. A web server is a software that

accepts HTTP requests and respond to such requests accordingly.

Apache was installed on a cloud server, which is where the Moodle desktop software is

deployed. A cloud server is not compulsory, the desktop software can be installed on a local

machine. The choice of the cloud server was to test the Moodle web service on a remote system,

which is the way this we be in production setup.

The tools described above are chained as follows, as shown in the diagram below:

Figure	13	Test	Setup	

Figure 13 above shows the overall architecture of our setup. The tester node comprises of our

model programs, Appium server and our testing device. The cloud server maintains the Apache

server, the Moodle desktop application is served.

The interface between the tester node and the cloud server is HTTP web service request, though

which various requests from the mobile application are sent.

The interface between the model program and the Appium server is through the system adapter

described in the next section.

	 31	

5. System Adapter

The stepper is the binding interface between the different AUT behaviors modelled in our

model programs and the actual application execution. This is the pipeline through which the

various action triggered by the conformance tester ct tool of NModel gets to the actual

application which sits on the mobile device.

The adapter is developed using the Appium Framework, and the implementation is done using

F#. The adapter contains different methods which may be directly translated to an equivalent

action in the model program, depending on the implementation approach.

Appendix 4 shows the source code of the stepper, which is an implementation for the IStepper

interface which get the actions symbols of the model program during execution, with the action

symbol the stepper decides the equivalent action to be taken by the automation driver. The

automation driver is an Appium f# driver implementation class in Appendix 5 with methods

which contains series of steps executed within the application, a step can be an input entry,

button click, a look for a view element.

The Appium framework exposes almost equivalent methods exposed by the selenium web

driver.

The entire process of achieving MBT testing of a mobile application starting from the selection

and modelling of AUT requirements stage to the implementation of an actual stepper that

automates the actions modelled can be described in the following steps

Step 1: Base on the requirements we have in Table 1 above, a tester will select some the

behavior of the application to be tested, and the recommendation in this case to group behaviors

into features, which will result in to having small model programs which are concise and enable

easy abstraction of the MBT behavior.

A sample feature modelled is the Login feature in Appendix 1.

Step 2: After the modelling task has been completed, the next thing is for us to visualize and

make sense of the what we have modelled. An FSM can be generated using the mpv tool, which

comes bundled with NModel.

	 32	

This is achieved by running the mpv command on the terminal:

mpv /r:MoodelModel.dll MoodleModel.Factory.Create

Figure	14	Model	program	viewer	window	[24]	.	

Figure 12 above shows the mpv display windowon Windows operating system. The mpv tool

performs exploration, which generates a finite state machine (FSM) from a (possibly "infinite'')

model program. The tool displays the graph of the generated FSM [24].

As of the time of this work, the only option available for the MAC operating system is to follow

the process of generating a dot file from which a pdf is generated for viewing the model

program.

mono ~/nmodelTools/binaries/mp2dot.exe
/mp:MoodleModel[Login,Search,Enrol,Submit]
/nodeLabelsVisible+
/r:../MoodleModel.dll
/dotFileName:submit_studentA.dot /fsm:submit_SubmitA.fsm
/livenessCheckIsOn+

Running the command above from the terminal generates a dot file. Different options can be

passed to the to the mp2dot.exe command, for a full usage, execute

mono ~/nmodelTools/binaries/mp2dot.exe /?

To convert this dot file to a pdf file that can be viewed we need to run the dot command

specifying the output format and the input dot file name as follows:

dot -Tpdf submit_studentA.dot -o submit_studentA.pdf
&& open submit_studentA.pdf

	 33	

the first parameter is the output format we are targeting, there are other formats available with

the dot library, in our case we want a pdf file so we specify –Tpdf and the second parameter is

the input dot file name submit_studentA.dot the next parameter is the output file name which

is specified with a flag –o submit_studentA.pdf

The result of this is shown in Figure 11 above.

This process can be repeated as required. If all is well and the tester is comfortable with the

model the next step is to prepare for automation.

Step3: this step involves the setting up the needed tools/frameworks upon which our

automation driver depends. We need install Appium client and server, which is available for

both windows and mac operating systems. Installation guide for Appium is available on the

project website here; http://appium.io/

Figure	15		Appium	Client	Window	on	Mac	

	 34	

Figure 13 above shows the Appium client on mac. The client application we can setup the

target device as well as the operating system. On the client application, we can inspect

application view elements properties including ids, style, xpath e.t.c

In this work, the xpath strategy was used because, the only unique attribute with which view

elements in the Moodle application which is a Cordova application can be accessed is the xpath.

This was a challenge during this work. In general, other strategies presented by the Appium

driver class can be used, this which is a function of the application in question.

Step4: On a successful setup of the Appium client and server which is the core component

required by the stepper class, we can begin to implement our stepper as shown in Appendix 6.

Step5: This is the conformance testing phase where we validate our model program(s) against

the AUT using an emulator or an actual device. This is achieved by running the ct command

from a terminal window after starting the Appium server.

Execute command below in a terminal window,

mono ~/nmodelTools/binaries/ct.exe /r:MoodleStepper.dll
/iut:AppStepper.Stepper.Create
/r:../../../../MoodleModel/MoodleModel/bin/Debug/MoodleModel.dll
/mp:MoodleModel[Login] /timeout:20000
/fsm:../../../../MoodleModel/MoodleModel/bin/Debug/scenarios/onecorrectuser
scenario.fsm

The command above is readable except for the additional options passed to the command, this

can vary as required. For the full usage of the ct tool, execute the command below in the

terminal.

mono ~/nmodelTools/binaries/ct.exe /?

On executing the conformance test, the test reports are reported can be seen on the console or

in text file if one is specified to the ct command, the test output will be written to this file.

	 35	

5.1 Test Results and Observations

All tests are carried out on a real device. A summary of the tests conducted and the outcomes

are inline in Table 2 below.

Table	2	Summary	of	test	results	

All test is conducted combining separate features together depending on the requirement

features. For instance, the course work submission test requires combining [Login, Search,

Submit]

Tests are conducted using applicable scenario FSM to guide the test to have the specific test

required. The tests are carried out on mac OS system using mono which shows that this setup

is fine with mac OS.

Overall we have successfully chained all tools and achieved MBT testing in a behavioral

pattern using NModel and Appium

 Test Description Expected Result

1. Connect a site desktop site Login page should be displayed Passed

2. Login with incorrect password Login should fail with adequate error

message displayed.

Passed

3. Login with correct password Dashboard screen should be displayed Passed

4. Search for an available course The search screen should return a list of

containing the searched course

Passed

5. Search for an unavailable course An empty list should be returned Passed

6. Enroll for a course Course enrolment should be successful

and course should be listed on the

dashboard

Passed

7. Check course overview Details of the course should be

displayed with related course activities

listed

Passed

8. Submit course work Course work should be successfully

submitted using the text area input of

the course work submission screen

Passed

	 36	

Conclusion and Recommendation

This thesis has presented a behavioral approach to testing Android mobile applications using

NModel, Appium and Moodle. A system adapter that binds model programs written in F# to

actual application execution via JSON wire protocol has also been implemented.

Behavioral approach to testing mobile applications using models and strategic scenarios can

be used in testing complex applications with different dynamics. Using this approach for testing

mobile applications can affect the way mobile applications are developed.

One key challenge experienced during this work was the visual element selection using the

Appium client application inspector, with this tool, the only attribute that distinguished visual

elements is its xpath in the Moodle mobile application, and because of this, there are long

parameter values supplied to the selector in form of xpath strings as shown in Appendix 6,

normally it should be possible to target visual elements using other strategies, but the attributes

to this strategies are not available in the Moodle application.

Future works that can be done to improve MBT with NModel can be in form of building tools

that replaces terminal operations, as this seem to be a difficult operation for an average tester

with minimal terminal experience. Behavioral test framework integration e.g Tickspec, with

this, models can be combine with FSM’s for test, this will make test readable and

understandable.

	 37	

References
	
[1] J. Jacky, M. Veanes, C. Campbell and W. Schulte, Model-Based Software Testing

and Analysis with c#.
[2] S. Admin, "QATestingTools.com," 27 December 2015. [Online]. Available:

http://www.qatestingtools.com/testing-tool-article/model-based-testing.

[3] R. Hower, "What kind of testing should be considered," [Online]. Available:
http://www.softwareqatest.com/qatfaq1.html#FAQ1_5.

[4] "Integration Testing," [Online]. Available:
http://softwaretestingfundamentals.com/integration-testing/.

[5] "Definition of System Testing," [Online]. Available:
http://economictimes.indiatimes.com/definition/system-testing.

[6] A. Abadi, D. Dig and E. Tillevich, "MobileDeli’14 Workshop: welcome message of
the chairs".

[7] É. Cota, "Embedded software testing: what kind of problem is this?".

[8] Microsoft, "Model Based Testing," [Online]. Available:
https://msdn.microsoft.com/en-us/library/ee620469.aspx.

[9] Christian, "Model-based testing. An introduction to benefits and drawbacks,"
[Online]. Available: http://testtech.dk/content/model-based-testing-introduction-
benefits-and-drawbacks.

[10] J. Ernits, R. Roo, J. Jacky and M. Veanes, "Model-Based Testing of Web
Applications using NModel.," 2009.

[11] Y.-M. Baek and D.-H. Bae, "Automated model-based Android GUI testing using
Multi-level GUI comparison criteria.".

[12] appium.io, "Appium," [Online]. Available: http://appium.io/.

[13] S. T. Material, "Monkey Talk," [Online]. Available:
https://softwaretestingbin.blogspot.com.ee/p/monkey-talk-monkey-talk-is-open-
source.html.

[14] calaba.sh, "calaba.sh," [Online]. Available: calaba.sh.
[15] Robotium, "Robotium," [Online]. Available: https://robotium.com/.
[16] Selendroid, "Selendroid," [Online]. Available: http://selendroid.io/.
[17] N. D. Hoai, P. Strooper and J. G. Süß, "Automated functionality testing through

GUIs," 2010.
[18] D. Amalfitano, A. R. Fasolino and P. Tramontana, "MobiGUITAR: Automated

Model-Based Testing of Mobile Apps," 2014.
[19] G. N. K. S. W. Choi, "Guided gui testing of android apps with minimal restart and

approximate learning," vol. 48, no. 10, pp. 623-640, Oct 2013..
[20] A. Orso and G. Rothermel, "Software Testing: A Research Travelogue (2000 –

2014)".
[21] A. Gautam, "NModel Fsharp: Modelling in F# for Model Based Testing.," 2016.
[22] S. J. A. U. Monalisa Sarma, "Model-Based Testing in Industry – A Case Study with

Two MBT Tools.".

	 38	

[23] J. Jacky, "PyModel: Model-based testing in Python," in Proc. of The 10th Python in
Science Conference. (SCIPY 2011).

[24] M. P. Viewer, "Codeplex.com," [Online]. Available:
https://nmodel.codeplex.com/wikipage?title=Model%20Program%20Viewer&referri
ngTitle=Home.. [Accessed May 2017].

	 39	

Appendix 1 – Login Feature Model
namespace MoodleModel

open System
open NModel
open NModel.Attributes
open NModel.Execution

type Screen =Login = 0| Dashboard = 2 | CourseSearch = 3 | CourseOverview = 4 | Submission =5
type public User = StudentA = 0| StudentB = 1
type Password = Correct = 0| Incorrect = 1
type public LoginStatus = Success = 0 | Failure = 1

[<Feature("Login")>]
type MoodleApp() =
 static member val view = Screen.Login with get, set
 static member show() = Console.WriteLine("Login ::" + MoodleApp.view.ToString());

 static member val currentLogins = Map<User,LoginStatus>.EmptyMap with get, set
 static member val currentUser : Set<User> = Set<User>.EmptySet with get,set

 static member login_StartEnabled() = MoodleApp.view = Screen.Login
 [<Action>]
 static member login_Start (user : User , password : Password)=
 MoodleApp.show()
 MoodleApp.view <- Screen.Dashboard
 if password = Password.Correct then
 MoodleApp.currentLogins <- MoodleApp.currentLogins.Add (user, LoginStatus.Success)
 else
 MoodleApp.currentLogins <- MoodleApp.currentLogins.Add (user, LoginStatus.Failure)

 static member login_FinishEnabled (user, loginStatus) =
 MoodleApp.currentLogins.Contains (Pair<User,LoginStatus> (user, loginStatus))
 [<Action>]
 static member login_Finish (user : User, loginStatus) =
 if loginStatus = LoginStatus.Success then
 MoodleApp.currentUser <- Set<User> (user)
 else
 MoodleApp.currentUser <- Set<User>.EmptySet
 MoodleApp.currentLogins <- MoodleApp.currentLogins.RemoveKey (user)

type Factory() =
 static member Create() =
 LibraryModelProgram (typedefof<Factory>.Assembly, "MoodleModel")

	 40	

Appendix 2 – Search Feature Model

namespace MoodleModel

open System
open NModel
open NModel.Attributes
open NModel.Execution

type public SearchStatus = Found = 0 | NotFound = 1
type public SearchKey = ValidCourse = 0 | InvalidCourse = 1

[<Feature("Search")>]
type MoodleSearchApp() =
 static member val view = Screen.Dashboard with get, set
 static member show() = Console.WriteLine("Search :: " + MoodleApp.view.ToString());
 static member log(message : string) = Console.WriteLine(message);

 static member val foundCourse = Set<SearchKey>.EmptySet with get, set
 static member val currentSearch = Map<SearchKey,SearchStatus>.EmptyMap with get, set
 static member val searchStarted = false with get, set

 static member search_StartEnabled() = MoodleApp.currentUser.Count > 0
 [<Action>]
 static member search_Start(keyWord : SearchKey) =
 MoodleSearchApp.log("Search Started");
 MoodleSearchApp.show()
 MoodleSearchApp.view <- Screen.CourseSearch

 if keyWord = SearchKey.ValidCourse then
 MoodleSearchApp.currentSearch <- MoodleSearchApp.currentSearch.Add (keyWord, Sear
chStatus.Found)
 else
 MoodleSearchApp.currentSearch <- MoodleSearchApp.currentSearch.Add (keyWord, Sear
chStatus.NotFound)

 static member search_FinishEnabled(searchKeyType:SearchKey,searchOutcome:SearchStatus) =
 MoodleSearchApp.currentSearch.Contains (Pair<SearchKey,SearchStatus> (searchKeyType,
searchOutcome))
 [<Action>]
 static member search_Finish(searchKeyType: SearchKey, searchOutcome : SearchStatus) =
 MoodleSearchApp.log("Search Finished")

 if searchOutcome = SearchStatus.Found then
 MoodleSearchApp.foundCourse <- Set<SearchKey>(searchKeyType)
 else
 MoodleSearchApp.foundCourse <- Set<SearchKey>.EmptySet
 MoodleSearchApp.currentSearch <- MoodleSearchApp.currentSearch.RemoveKey (searchKeyTy
pe)

	 41	

Appendix 3 – Self-Enrolment Feature

namespace MoodleModel

open System
open NModel
open NModel.Attributes
open NModel.Execution

type public EnrolmentStatus = Pending=0 | Successful= 1 | Failed = 2 | Enrolled = 3

[<Feature("Enrol")>]
type MoodleEnrolApp() =
 static member val view = Screen.Dashboard with get, set
 static member show() = Console.WriteLine("Enrol :: " + MoodleApp.view.ToString());
 static member log(message : string) = Console.WriteLine(message);
 static member val enrolStarted = false with get, set
 static member val courseParticipants = Map<User,EnrolmentStatus>.EmptyMap with get, set

 static member enrol_StartEnabled(student) = MoodleSearchApp.foundCourse.Count > 0 &&

not (MoodleEnrolApp.courseParticipants.ContainsKey(student)) && MoodleApp.currentUser.
Contains(student)
 [<Action>]
 static member enrol_Start(student : User) =
 MoodleEnrolApp.log("Enrolment Inprogress");
 MoodleEnrolApp.view <- Screen.CourseSearch
 MoodleEnrolApp.show()
 MoodleEnrolApp.courseParticipants <- MoodleEnrolApp.courseParticipants.Add(student, E
nrolmentStatus.Pending)
 MoodleEnrolApp.enrolStarted <- true

 static member enrol_FinishEnabled(student:User, actionStatus:EnrolmentStatus) =
 (MoodleEnrolApp.enrolStarted = true) && (MoodleEnrolApp.courseParticipants.Contains(P
air<User,EnrolmentStatus>(student,EnrolmentStatus.Pending)))
 [<Action>]
 static member enrol_Finish(student, actionStatus) =
 MoodleEnrolApp.log("Enrolment Completed")
 if actionStatus = EnrolmentStatus.SuccessFul then
 MoodleEnrolApp.view <- Screen.CourseOverview
 MoodleEnrolApp.courseParticipants <- MoodleEnrolApp.courseParticipants.RemoveKey(
student)
 MoodleEnrolApp.courseParticipants <- MoodleEnrolApp.courseParticipants.Add(Pair<U
ser,EnrolmentStatus>(student, EnrolmentStatus.SuccessFul))
 else
 MoodleEnrolApp.view <- Screen.CourseSearch
 MoodleEnrolApp.enrolStarted <- false

	 42	

Appendix 4 – Stepper Class

namespace AppStepper

open NModel.Conformance
open NModel.Terms
open System
open System.IO

open AppiumActions

type Stepper() =
 let appiumCaller = new Actor()
 do appiumCaller.Init ()

 static member Create() =
 new Stepper ()

 interface IStepper with
 member this.DoAction (a) =
 match a.FunctionSymbol.ToString() with
 //| "appLaunched" -> appiumCaller.connectSite ()
 | "login_Start" -> appiumCaller.logIn (a)
 | "courseSearch" -> appiumCaller.courseSearch ()
 | "courseEnrollment" -> appiumCaller.enrollForCourse()
 | "courseSubmission" -> appiumCaller.addSubmission()

 member this.Reset() =
 Actor.driver.Quit()
 appiumCaller.Init ()

	 43	

Appendix 5 – F# Appium driver for Moodle App

namespace AppStepper

open NModel.Conformance
open NModel.Terms
open System
open System.IO

open OpenQA.Selenium
open OpenQA.Selenium.Appium
open OpenQA.Selenium.Remote
open OpenQA.Selenium.Appium.Android

open MoodleModel

module utils =

 let log (text : string) =
 System.Console.Error.WriteLine(text)

 let wait (duration:int) =
 log("Now waiting for " + string(duration) + " seconds")
 System.Threading.Thread.Sleep(duration)

open utils

module AppiumActions =
 type Credentials = { Username : String ; Password : String }

 type Actor() =
 let STUDENT_CREDENTIAL = Map.empty.Add("correct", { Username = "student" ; Password =
 "c#tjumpsThresh0ld"}).Add("incorrect", { Username = "student" ; Password = "c#tjumpsThresh0l
ds"})
 let MOODLE_SITE = "http://46.101.125.192/moodle/"
 let MOODLE_USERNAME = "student"
 let MOODLE_PASSWORD = "c#tjumpsThresh0ld"
 let SEARCH_TEXT_2 = "Data Structures";
 let SEARCH_TEXT = "Business Process Management";
 let TEST_ENDPOINT = new Uri("http://127.0.0.1:4723/wd/hub") // If Appium is running l
ocally
 let INIT_TIMEOUT_SEC = TimeSpan.FromSeconds(300.0) (* Change this to a more reasonabl
e value *)
 let IMPLICIT_TIMEOUT_SEC = TimeSpan.FromSeconds(200.0) (* Change this to a more reaso
nable value - This is the time to wait when looking for an item on the page *)
 let cap = new DesiredCapabilities()
 static member val setupComplete = false with get, set
 static member val driver = null with get, set

 member this.Init ()=
 cap.SetCapability("deviceName", "LYO-L21")
 cap.SetCapability("appPackage", "com.moodle.moodlemobile")
 Actor.driver <- new AndroidDriver<AndroidElement>(TEST_ENDPOINT, cap, INIT_TIMEOU
T_SEC)
 Actor.driver.Manage().Timeouts().ImplicitlyWait(IMPLICIT_TIMEOUT_SEC) |> ignore
 Actor.setupComplete <- true
 log("Completed setup")
 this.connectSite()

 member this.connectSite () =
 let siteTxtBox = Actor.driver.FindElementByXPath("//android.widget.LinearLayout[1
]/android.widget.FrameLayout[1]/android.webkit.WebView[1]/android.webkit.WebView[1]/android.v
iew.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[3]/android.view.View[
1]/android.view.View[1]/android.view.View[1]/android.view.View[2]/android.view.View[1]/androi
d.view.View[1]/android.widget.EditText[1]");

	 44	

 siteTxtBox.Clear()
 siteTxtBox.SendKeys(MOODLE_SITE)
 let connectBtn = Actor.driver.FindElementByXPath("//android.widget.LinearLayout[1
]/android.widget.FrameLayout[1]/android.webkit.WebView[1]/android.webkit.WebView[1]/android.v
iew.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[3]/android.view.View[
1]/android.view.View[1]/android.view.View[1]/android.view.View[2]/android.view.View[1]/androi
d.view.View[2]/android.widget.Button[1]");
 connectBtn.Click()
 wait 10
 //let (rtn:CompoundTerm) = null
 //rtn
 log("Site connected")

 member this.logIn (a:CompoundTerm)=
 log("Login started ...")
 let usernameTxtBox = Actor.driver.FindElementByXPath("//android.widget.LinearLayo
ut[1]/android.widget.FrameLayout[1]/android.webkit.WebView[1]/android.webkit.WebView[1]/andro
id.view.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[3]/android.view.V
iew[1]/android.view.View[1]/android.view.View[1]/android.view.View[2]/android.view.View[1]/an
droid.view.View[1]/android.widget.EditText[1]");
 usernameTxtBox.Clear()
 let passwordTxtBox = Actor.driver.FindElementByXPath("//android.widget.LinearLayo
ut[1]/android.widget.FrameLayout[1]/android.webkit.WebView[1]/android.webkit.WebView[1]/andro
id.view.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[3]/android.view.V
iew[1]/android.view.View[1]/android.view.View[1]/android.view.View[2]/android.view.View[1]/an
droid.view.View[2]/android.widget.EditText[1]");

 log("current user: " + string((a).[0]) + " with " + string((a).[1]))
 log((string)(a).Arguments)
 if (string((a).[1]) = "Password(\"Correct\")") then
 let studentLogin = STUDENT_CREDENTIAL.Item("correct")
 usernameTxtBox.SendKeys(studentLogin.Username)
 passwordTxtBox.SendKeys(studentLogin.Password)
 else
 let studentLogin = STUDENT_CREDENTIAL.Item("incorrect")
 usernameTxtBox.SendKeys(studentLogin.Username)
 passwordTxtBox.SendKeys(studentLogin.Password)

 let loginBtn = Actor.driver.FindElementByXPath("//android.widget.LinearLayout[1]/
android.widget.FrameLayout[1]/android.webkit.WebView[1]/android.webkit.WebView[1]/android.vie
w.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[3]/android.view.View[1]
/android.view.View[1]/android.view.View[1]/android.view.View[2]/android.view.View[1]/android.
view.View[3]/android.widget.Button[1]");
 loginBtn.Click();

 let searchBtnXPathString = "//android.widget.LinearLayout[1]/android.widget.Frame
Layout[1]/android.webkit.WebView[1]/android.webkit.WebView[1]/android.view.View[1]/android.vi
ew.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[2]/android.view.View[1
]/android.view.View[2]/android.view.View[1]"
 let searchBtn = Actor.driver.FindElementByXPath(searchBtnXPathString)
 if searchBtn.Displayed then
 log("Login Completed")
 Action.Create("login_Finish", (a).[0], LoginStatus.Success):> CompoundTerm
 else
 log("Cant complete Login")
 Action.Create("login_Finish", (a).[0], LoginStatus.Failure) :> CompoundTerm

 member this.courseSearch ()=
 let searchBtn = Actor.driver.FindElementByXPath("//android.widget.LinearLayout[1]
/android.widget.FrameLayout[1]/android.webkit.WebView[1]/android.webkit.WebView[1]/android.vi
ew.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[2
]/android.view.View[1]/android.view.View[2]/android.view.View[1]");
 searchBtn.Click();
 let searchTxtBox = Actor.driver.FindElementByXPath("//android.widget.LinearLayout
[1]/android.widget.FrameLayout[1]/android.webkit.WebView[1]/android.webkit.WebView[1]/android
.view.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[1]/android.view.Vie
w[3]/android.view.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[1]/andr
oid.view.View[1]/android.widget.EditText[1]");
 searchTxtBox.Clear();
 wait (30)
 searchTxtBox.SendKeys(SEARCH_TEXT);
 let searchBtn = Actor.driver.FindElementByXPath("//android.widget.LinearLayout[1]
/android.widget.FrameLayout[1]/android.webkit.WebView[1]/android.webkit.WebView[1]/android.vi

	 45	

ew.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[3
]/android.view.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[1]/android
.view.View[1]/android.widget.Button[1]\n");
 searchBtn.Click();
 let (rtn:CompoundTerm) = null
 rtn

 member this.enrollForCourse ()=
 let searchResultItem = Actor.driver.FindElementByXPath("//android.widget.LinearLa
yout[1]/android.widget.FrameLayout[1]/android.webkit.WebView[1]/android.webkit.WebView[1]/and
roid.view.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[1]/android.view
.View[3]/android.view.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[3]/
android.view.View[1]");
 searchResultItem.Click();
 wait(20);
 let enrolBtn = Actor.driver.FindElementByXPath("//android.widget.LinearLayout[1]/
android.widget.FrameLayout[1]/android.webkit.WebView[1]/android.webkit.WebView[1]/android.vie
w.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[3]
/android.view.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[1]/android.
view.View[3]/android.widget.Button[1]");
 enrolBtn.Click();
 wait(20);
 let okConfirmationBtn = Actor.driver.FindElementByXPath(" //android.widget.Linear
Layout[1]/android.widget.FrameLayout[1]/android.webkit.WebView[1]/android.webkit.WebView[1]/a
ndroid.view.View[1]/android.view.View[3]/android.view.View[1]/android.widget.Button[2]\n");
 okConfirmationBtn.Click();
 let (rtn:CompoundTerm) = null
 rtn

 member this.addSubmission() =
 let courseButton = Actor.driver.FindElementByXPath("//android.widget.LinearLayout
[1]/android.widget.FrameLayout[1]/android.webkit.WebView[1]/android.webkit.WebView[1]/android
.view.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[1]/android.view.Vie
w[3]/android.view.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[1]/andr
oid.view.View[1]");
 courseButton.Click();
 wait(80);
 let topicButton = Actor.driver.FindElementByXPath("//android.widget.LinearLayout[
1]/android.widget.FrameLayout[1]/android.webkit.WebView[1]/android.webkit.WebView[1]/android.
view.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[1]/android.view.View
[3]/android.view.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[1]/andro
id.widget.ListView[1]/android.view.View[3]/android.view.View[1]\n");
 topicButton.Click();
 let homeworkButton = Actor.driver.FindElementByXPath("//android.widget.LinearLayo
ut[1]/android.widget.FrameLayout[1]/android.webkit.WebView[1]/android.webkit.WebView[1]/andro
id.view.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[1]/android.view.V
iew[3]/android.view.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[1]/an
droid.view.View[1]\n");
 homeworkButton.Click();
 let addSubmissionButton = Actor.driver.FindElementByXPath(" //android.widget.Line
arLayout[1]/android.widget.FrameLayout[1]/android.webkit.WebView[1]/android.webkit.WebView[1]
/android.view.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[1]/android.
view.View[3]/android.view.View[1]/android.view.View[1]/android.view.View[1]/android.view.View
[2]/android.view.View[1]/android.view.View[2]\n");
 addSubmissionButton.Click();
 let textArea = Actor.driver.FindElementByXPath("//android.widget.LinearLayout[1]/
android.widget.FrameLayout[1]/android.webkit.WebView[1]/android.webkit.WebView[1]/android.vie
w.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[3]
/android.view.View[1]/android.view.View[1]/android.view.View[1]/android.view.View[1]/android.
view.View[1]/android.view.View[2]/android.view.View[1]/android.view.View[1]/android.view.View
[1]\n");
 textArea.SendKeys("Hello World submission");
 let (rtn:CompoundTerm) = null
 rtn

 member this.checkIfExist (locator : string):Boolean =
 let elements = Actor.driver.FindElements(By.XPath(locator))
 elements.Count > 0

